
Formative evaluation and learning analytics for agile teaching
JJ Merelo-Guervós

jmerelo@ugr.es
Department of Computer Engineering, Automatics and Robotics and CITIC, University of Granada

Granada, Spain

ABSTRACT
The agilemanifesto provides a framework for software development
in which customer comes first. Here we will describe a teaching
experience based on agile principles that puts students at the cen-
ter of a strategy that, through the use of fit learning analytics, is
able to optimize the potential of a class and its individual students.
We used project-based learning and formative evaluation as agile
teaching best practices, evaluating student progress based on learn-
ing objectives submitted and evaluated asynchronously. The time
when every objective is submitted and the time taken to pass it are
the essential data points that will be leveraged to evaluate class
progress, and the impact of specific measures taken to improve it,
in-class or from one course to the next. Measures taken through
three years with the same methodology prove that agile teaching
can work, but it needs measurements for diagnosis and subsequent
interventions to reach its full potential.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment.

KEYWORDS
Software engineering, agile methodologies
ACM Reference Format:
JJ Merelo-Guervós. 2024. Formative evaluation and learning analytics for ag-
ile teaching. In Proceedings of ITICSE’24. ACM, New York, NY, USA, 7 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Teaching software engineering represents not only one, but a series
of challenges to the teacher, who needs the student to acquire a
series of marketable skills at the same time that this acquisition is
assessed in order to obtain a grade; essentially, it needs to deliver
a product (student with acquired competences). Software develop-
ment also focuses on delivering products, and it currently employs
an agile mindset, following the Agile Manifesto [2], which is a
customer-centered philosophy that maintains that any change in
code should add value to the customer, either directly or indirectly.
Teaching mindsets of philosophies is a notch more complicated
than teaching skills; evaluating mindsets is even more complex. But
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITICSE’24, June 03–05, 2018, Milan, IT
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

that is what an industry with its ever growing need for talent is
asking for.

One of the ways of teaching a mindset is having that same mind-
set while teaching; that is, if you want to teach agile, be agile while
teaching [3, 6]. One step into this mindset is simply to consider
class experience a product for which students, collectively and in-
dividually, are the customers, and use industry-standard tools such
as GitHub to produce class materials, create course-oriented mile-
stones, as well as generate issues with the problems that need to
be solved, content-wise or related to any software that you might
have developed to support teaching.

You can, however, go a bit further and embrace agile in all stages
of the teaching/learning process. Several researchers have proposed
manifestos in agile teaching, so the first step would be to understand
those manifestos and adopt them where possible. In our case, the
manifesto created by Krehbiel et al. [6] seems the closest to our
philosophy; this manifesto emphasizes adaptability to personal (and
other) circumstances, teamwork, focusing on learning objectives
and not on grades, autonomous learning by the student, practical
working instead of theoretical teaching, and, over all, continuous
improvement.

Manifestos are never enough either in development or teaching,
and agile development encourages the adoption of best practices in
every phase of development; but the last part of themanifesto which
talks about continuous improvement, as well as the fact that we are
talking about best practices, would need some way of measuring
progress and how adopted practices affect the classroom. This is
why we would like to add a new item to the manifesto: learning
analytics [4] over anecdotal evidence or end-of-class failure/success
rates.

Within this agile mindset, there are teaching methodologies that
fit better; adopting these best practices is the first step towards agile
teaching. We will focus on two of them that fit well with each other:
project-based learning gives the student autonomy (which is one
of the items in the manifesto) through the development of a project
across one or several subjects [5]; formative evaluation [10] also
fits the autonomous learning part of the manifesto, but also focuses
on learning objectives, since it pursues helping the student through
continuous feedback on their submitted work (that advances the
project mentioned above). This feedback helps continuous improve-
ment of the project they are working with, which is other of the
items in the manifesto. Finally, flipped learning [7], that turns class-
rooms into working, and not student-listening-to-lectures spaces,
is another best practices that blends well with the two mentioned
above.

In this paper we will describe the experience carried out in the
last three school years in a 4th year (7th semester) subject in the
Computer Science degree at the University of A City in A Country
the subject deals with A Subject Matter so the project needs to be

https://orcid.org/0000-0002-1385-9741
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ITICSE’24, June 03–05, 2018, Milan, IT J. J. Merelo

working towards the deployment of an application of that kind. But
alongside the description of the experience, we will try to answer
the following research questions:

• RQ1: Can you leverage metrics to improve individual and
collective learning?

• RQ2: Are there early indicators or class success or failure?
• RQ3: Can we measure the effect of flipped learning through
the gathered software analytics?

The rest of the paper is organized as follows: next we will present
the state of the art in learning analytics applied to evaluative for-
mation and flipped learning. The class setup, as well as how data is
collected will be presented in Section 3. The results of the analysis
will be presented in Section 4 along with the answers to the research
questions. Finally we will draw some conclusions in Section 5.

2 STATE OF THE ART
Learning analytics (LA) [4] have been applied to all kind of learning
processes and subjects; this includes problem-based learning com-
bined with formative assessment (FA); [1] mentions that learning
analytics and formative assessment work well together since they
both provide immediate feedback on the quality of the learning
process; however, it can be argued that LA is an essential part of FA,
since a deep understanding of the objectives achieved by students
is needed in order to provide student-specific feedback. In general,
however, LA will refer to additional, macro-measurements at a class
level or analytics that compare student performance with other
students or with previous years [11]. This last paper reveals an
increasing interest in FA combined with LA, with computer science
courses leading the way, but with other disciplines and subjects also
using it to improve success rates. However, there are no general
rules on what specific analytics should be used. In general, it is
important to consider a learning (and possibly learner) model in
order to be able to correctly measure learning outcomes and how
they are reached. For instance, [8] focuses on conceptions, how the
students understand (or not) certain specific and common ideas,
thus their process is geared towards using common assessment
tools to measure understanding of those conceptions. Student at-
titude and disposition towards learning can be as interesting as
a model but impossible to measure without explicitly asking the
student; that is why authors such as [9] propose a framework that
combines traces with surveys in order to predict outcomes such as
early drop out.

What seems to be missing is, however, a single set of learning
process measurements that can be used across any platform, subject,
or way of deployment of formative assessment strategies, andwhich
can be used for individual assessment, as well as aggregated for
class and course assessment. This is what we will try to propose
and evaluate next, after exposing how our class has been set up in
the next Section.

3 CLASS SETUP AND METHODOLOGY
Problem-based learning make students work on their own project
and repository; this course will have 10 levels of project comple-
tion ("objectives"), numbered from 0 to 9. For every objective they
will create a branch and a pull request from that branch to their
main one; a pull request is a "request to merge" a set of changes;

acceptance of that PR will imply merging into the main branch
(and, in real world, usually deployment to production). This class
setup matches the agile philosophy which prefers interaction and
working software over "comprehensive documentation" (which,
in a class environment, would mainly be "theoretical" classes and
memory-based exams). At the same time, PRs are the main interac-
tion medium in software development: it allows members of the
team to perform quality (and other, such as compliance) checks on
the code that is going to be used; this matches the requirements of
formative evaluation too. The professor (and other students who
have also overcome that specific objective) will review that PR,
request changes if it falls short of reaching the objectives, and
eventually accept it when it does.

Since these PRs happen in the students’ repos, we need a single,
centralized place as a platform to have an unified view of the whole
class; this is carried out via a single, "class" repository, where the
students submit a PR to a file that is different for each objective,
triggering a workflow with a series of baseline tests of correctness
of the PR submitted. When the student overcomes the objective,
a mark is inserted into the same file by the professor. Automatic
workflows then analyze these files to generate a data file that records
these events and when they occur. This file is the single source of
truth for the state of every objective for every student, and will be
analyzed to study the progress of the class.

The student needs to pass objective number 5 to get a passing
grade; every objective beyond that one works toward obtaining full
marks. Objectives receive a different percentage of the total grade
depending on the actual amount of work they need. The percentage
was adjusted depending on the amount of time students needed
from submission to passing the objective in the first year. It did not
need further adjustments in the following years. Bigger objectives
get 15% of the grade, while the smallest ones (for instance, the first
one) can get only 5 %. All students passing a certain objective obtain
the same grade; this is why formative evaluation is often called
grade-less, since learning objectives are reached or not, and when
reached, everyone gets the same grade. Different grades correspond
only to the fact that different objectives are reached.

Using GitHub as a platform and pull requests as the main vehicle
helps the creation of other workflows and work patterns around
these PRs. Every time a PR submitted to the "central" repository
passes tests, five random reviewers are drawn from the pool of other
students that have already cleared that objective. The student, then,
receives feedback for every learning objective not only from the
teacher, but also from their peers. Again, this fits the agile mindset,
but when students need to verbalize the issues with a PR by a
colleague, it helps them settle the knowledge they have acquired
in the objective they already passed. Additionally, it helps them
understand the need for a efficient communication, through PRs,
with other members of the team, and to use effectively these tools,
closing the gap between classes and actual work and following an
agile mindset1.

In general, we strive to make feedback as fast as possible, so that
students can react to it in a timely way. The general rule is that
we will react to requests for feedback (which are made either by

1These reviews are made for additional credit; reaching all the objectives includes only
70% of the final grade

Formative evaluation and learning analytics for agile teaching ITICSE’24, June 03–05, 2018, Milan, IT

a comment with mention in a pull request or using the specific
mechanism GitHub has to request reviews) in less than 48h2. A
fast feedback is essential for the student to still have whatever
conceptions or assumptions fresh so that they can be modified.

This implies a certain (and rather irregular) workload, mainly in
the early stages when students submit their pull requests at pretty
much the same time. However, early objectives require less effort
to review than later ones; and when these ones arrive, the teacher
only has to chime in when one to three other students have already
approved the submission. Although it is rather infrequent than no
further suggestions have to been made, most frequent errors have
already been ironed out by these reviews and request for changes.
Additionally, every course a frequent errors specific for every objec-
tive is created. This is used by the students as a check list before
submitting the review, but also, since it is created as submissions
are reviewed, also by the teacher for quoting when these frequent
errors show up in a pull request. In some cases specific errors that
can be automatically checked show up (for instance, using capital
letters in the names of files, something that is generally discour-
aged in repository-checked projects) they are incorporated into
the automatic tests the PRs undergo when submitted to the central
repository, so that they do not require additional rounds of review-
ing by the teacher, releasing time needed for in-depth examination
and feedback to the student; this is well within the agile mindset.

In general, workload for the teacher is bigger than for summa-
tive evaluation or traditional flipped learning classes. However, the
system has been set up so that most of the time spent by the teacher
is effectively spent in giving constructive feedback to the student,
so that they can reach their learning objectives.

During face to face classes, time is spent either addressing issues
with specific students, or making small-group explanations on the
next submission to those that have just passed an objective. These
whiteboard (never slide-based) expositions are adapted to specific
circumstances of the student of group of students (early submitters,
or late ones, for instance). In general, classes are working spaces
where students and teacher interact with each other and work
towards reaching their learning objectives.

In our country universitary system and for this subject, classes
and evaluations are organized in this way:

• A class period, which takes 15 weeks, for a total of (up to)
60 face-to-face hours. This is equivalent to 6 ECTS credits.

• The ordinary evaluation period, which takes place up to 4
weeks later than the end of classes.

• The extraordinary evaluation period, which takes place up to
3 weeks after the ordinary evaluation period.

Whoever passes the minimum number of objectives during the
ordinary period is evaluated during that period; if that is not the
case, students can continue submitting the rest of their objectives
up to the end of the extraordinary evaluation period. Data has been
collected in this way for three consecutive school years: 2021-22,
2022-23 and 2023-243. After the course is over, student GitHub nicks

2Exception being some weekends, and official holidays
3Incomplete at the time of this writing

Table 1: General data about the three courses

Course 2021-22 2022-23 2023-245
Students 51 48 40
% no-shows 37.25% 66.66% 27%
% passed ordinary 39.21% 20.83% 52%
% passed extraordinary 23.53% 12.5% N/A
% total passed 62.74% 33.33% N/A

are anonymized with a one-way hash so that privacy is preserved4.
These are publicly available at https://github.com/JJ/ivR.

Next we will choose metrics and analyze the kind of insights
we can obtain from them, and how they can be used to improve
learning outcomes.

4 RESULTS
Some basic numbers of the three courses over which we have been
using this methodology is shown in Table 1, which shows that a
methodology, by itself, is not enough to guarantee good results. The
first year it was used the overall result was relatively good (more
than 50% passed), but almost 1/4th of the class needed additional
time to pass. The next year, overall, was a disaster, with only 1/3rd of
the class passing, and of those who did, more than 1/3rd needed to
do so on additional time6. The causes of this are still being analyzed
(and are beyond the scope of this paper), but what is clear is that
specific changes need to be made from one year to the next so that
whatever students fall in class every year are able to succeed. Please
note that no-shows + passed add up to 100%, since technically those
that do not pass are not submitting their objectives, they are "not
showing up" to be evaluated.

These end-of-course metrics will need to be supported by real-
time analytics for the teacher to be able to intervene on class while
there is still time to do it. The metrics used in the learning analytics
system should, ideally, be obtained directly from the student activity,
without needing additional surveys. They should also be directly
related to learning outcomes, and, if possible, learning attitude,
possibly indirectly in this case. This is why in this case we are
gathering two data points:

• The time in which a student submits their PR for an objective.
• The time in which the teacher marks the objective as passed
for the student.

In the first case, it is computed directly from the date the PR to
the centralized repository is merged, that is, when the objective
submitted clears the initial tests; a GitHub workflow computes it au-
tomatically and submits it to a data file that is also registered in the
repository. It follows our requirements: it is obtained directly from
the student activity, directly related to learning outcomes, namely,
when the students feel they are ready at least to understand initial
feedback from the teacher. Their attitude is reflected mainly in the
time between clearing the previous objective and that submission,

4Even if students are warned to use whatever GitHub nick they want, including an
anonymous, class-only one. The only thing needed for the teacher is to be able to
clearly identify which student corresponds to every nick
6Provisional results for this year are, however, quite promising, with the number of
persons who have passed already surpassing 21-22

https://github.com/JJ/ivR

ITICSE’24, June 03–05, 2018, Milan, IT J. J. Merelo

although that is clearly influenced by the difficulty of the objective
itself.

In the second case, there might be a small delay between the
moment the objective is accepted and the mark is done in the file
and submitted to the repository, but this delay is usually a few
minutes, and except for errors, less than one hour. The scale of this
metric, or the difference between both times, is counted by days,
so the small bias this might introduce is not really important. How
many days the student needs, and its relationship with the time
needed by other students in their class or previous years, is really
representative of attitude.

In order to be able to normalize and compare different courses,
dates are counted from the day the course starts. Raw data is shown
in Figure 1.

0 50 100 150
Days from the beginning

O
rd

er
 o

f s
ub

m
is

si
on

Figure 1: Segment plot showing the number of days from the
beginning of the course when objectives (indicated by color)
have been submitted, with the segment end indicating when
they have been approved. From bottom to top, this has been
done for course 2021-22, 22-23 and 23-24 (still ongoing).

This visualization already gives you an idea of the time needed
to pass every objective: there is an abundance of long segments
in the brown color, which is used for objectives number 2 and 4,
the most complicated. The slope that the left hand side ends of
the segments form also shows the rhythm of submission, how it
slumps during certain periods and then becomes steeper. We need,
however, additional processing to gather actionable insights from
this data.

For instance, some specific measure of individual performance.
The one that pops out most immediately is simply the difference
between the time of submission and the time of approval, a measure
of the effort the students put into learning the specific concepts
and skills required for every objective.

Figure 2 shows the histogram of this difference for every objec-
tive in every course; differences between the different courses go
beyond the different number of students; the first two courses had
approximately the same number of students, while this year had
less However, 21-22 and 23-24 show the same distribution, with
the mode being student overcoming the objective in 1 week or less,
while 22-23 shows that most students took between 1 and 2 weeks
to pass objectives. This already shows the descriptive power of this
metric: we already know that the results during 22-23 were not

0

30

60

90

0 20 40
Days to approval

N
um

be
r

of
 o

bj
ec

tiv
es

Course

21−22

22−23

23−24

Figure 2: Histogram of the difference between the time of
submission and the time of approval for every objective.
Bins are 7 days wide

good, and this is correlated with the fact that they needed more
time to pass objectives.

7
4

0

10

20

30

40

50

FALSE TRUE
Pass

D
ay

s
to

 a
pp

ro
va

l

Figure 3: Boxplot of the difference between the time of
submission and the time of approval for every objective,
grouped by whether the student passed or not.

This metric, however, does not distinguish between students
who passed and those who fell short of objective number 5, the
minimum requirement. Will time-to-pass be a good predictor of
success? This is represented in Figure 3, that shows a boxplot of
the number of days to pass an objective (from submission) for
those who failed the course (FALSE) and those who passed (TRUE).
Median differs, as shown, in 3 days, and the difference is statistically
significant (p-value < 0.001), so this metric is a good candidate for
being an early indicator of success. However, this is an average
over all objectives and over all the class, with objectives with more
submissions weighing more. It is also an average over all courses,
with path-dependent differences between courses (because it will
depend on the student that submits first, and how they help the rest
of the student with reviews). We show the boxplot for the different
courses in Figure 4, taking into account only students who have
passed. In this case, the difference between courses 21-22 and 23-24
is not statistically significant, but the difference between 22-23 and
the other two is (p-value < 0.001).

Even when we are taking into account those that passed, on
average a suboptimal course will take more time to succeed in
passing an objective. Obviously, more time for every objective will

Formative evaluation and learning analytics for agile teaching ITICSE’24, June 03–05, 2018, Milan, IT

0

10

20

30

40

50

21−22 22−23 23−24
Pass

D
ay

s
to

 a
pp

ro
va

l

Course

21−22

22−23

23−24

Figure 4: Boxplot of time needed to pass objectives by course

mean that there will be less time for the rest of the remaining
objectives. While a better-than-average course will have a high
success rate, students will be able to reach further in terms of
objectives than others that do not.

This metric refers, in general, to autonomous learning; formative
evaluation favors that mode of achieving learning objectives, but in
order to have a clearer picture of how learning takes place, we need
to factor in interaction with the teacher and other students in class.
Problem-based learning favors flipped learning, eschewing lectures
with unidirectional communication from teacher to students; this
is why we need to find out how this time spent in class actually
translates into learning. First we will compare submission during
the class period (first 15 weeks) to the rest.

0

20

40

60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Week

N
um

be
r

of
 o

bj
ec

tiv
es

Objective

0

1

2

3

4

5

6

7

8

9

Figure 5: Barplot of submission per week, with colors indi-
cating objective number.

Figure 5 shows a barplot of the number of objectives, with color
indicating the actual number of objective. We can see what is the
usual period of submission for every objective (objective 0 finish-
ing in the second week, for instance, objective 1 in the 5th week,
objective 2 in the 7th and so on). Submissions take a dive after
the 15th week, but this is due to many factors, including the fact
that it is a vacation period and that at least some of the students
stop submitting after reaching the minimum number of objectives
required for passing. We also see a dip in the 5th week, where there
is a national holiday that, in the past years, has implied essentially
a week without classes. This dip repeats itself in the 8th week (an-
other national holiday) and the 13th week (essentially a week-long
national holiday). Submissions hardly recover after that week; in

many cases this is due to the students reaching the minimum re-
quirement in week 11 and dropping out. But even if the student
wants to continue, it is complicated for them due to the workload
in other classes, which usually concentrate on the last week of face
to face classes. With this data, we can already see that attending
class contributes to the submission of objectives: less is achieved
in weeks without classes. But we need to delve a bit deeper into
this data, since it might be other factors, like help from other stu-
dents, or simply the fact that during weeks with classes the student
allocates more time to work (in this and other courses).

0

20

40

60

0 2 4 6
Weekday

N
um

be
r

of
 s

ub
m

is
si

on
s

Course

21−22

22−23

23−24

Figure 6: Barplot of submissions by day of the week.

Figure 6 shows submissions by day of the week, starting by
Sunday (day 0) to Saturday (day 6). Classes take place on days 4 and
5, Thursday and Friday. Thursdays take place in a big room with all
students attending (it is called the "Theory" class regularly); Fridays
are split equally in two groups, and take place in a different class
with a different configuration. We need to analyze the situation for
every course, since behavior is different. During the first course, 21-
22, Thursday was devoted mainly to lectures, instead of individual
work. There are less submissions on that day than in any other day
of the week, even less than Saturdays; this probably implies that
lectures are substracting value to students, instead of adding value
to them; Fridays, anyway, registered the top number of submissions,
so that class was effectively adding value to students. Next course,
22-23, changed how these classes took place with lectures almost
eliminated after a fewweeks: submissions on Thursdays and Fridays
are much higher than the rest of the days. Surprisingly enough,
Fridays are lower than on Thursdays. Paradoxically, this was due
to the fact that students expected lectures on Thursdays, and then
attended class that day. Class attendance was dismal on Fridays, but
even so, more submissions were made on that day. Situation this
course, 23-24, is close to ideal: submission rise on the days leading
up to the class (with a dip on Wednesday, which could be explained
by the abundance of holidays on that day this year) and they reach
its optimum on Thursdays and Fridays, with a relatively small
difference. In general, it can be said that the presence of the teacher
and other students adds value to them, and this value is inversely
proportional to the time devoted to unidirectional lectures.

Figure 7 shows the number of objectives approved by day of the
week. The situation is similar to the previous one, except for the
anomalous number of approvals on Sunday the first year. However,

ITICSE’24, June 03–05, 2018, Milan, IT J. J. Merelo

0

20

40

60

0 2 4 6
Day of the week

N
um

be
r

of
 a

pp
ro

va
ls

Course

21−22

22−23

23−24

Figure 7: Barplot of number of approvals by day of theweek.

while the first and last year the number of approvals was higher
on Friday than on Thursday, the second year there were half as
many approvals on Friday than on Thursday. Taking into account
the average number of days to approval, this in general implied
that students waited for Thursday to understand feedback given
by teacher (and other students), and devoted class to it, managing
a pass possibly by the end of the class or even when returning
home. Very few left it for Friday, since attendance on Fridays was
very low. In general, however, this shows that face to face personal
explanations in class are a good complement to written reviews
in the pull request, and it really adds value to students, helping
them overcome the objective. This frequent interaction is also one
of the principles in the Agile Manifesto. Together with focusing on
activities that add value to the student, like personal or very small
group introductions to every objective and face to face feedback on
obstacles to achieving the objective, it shows how an agile mindset
can be successfully applied in the classroom.

5 DISCUSSION AND CONCLUSIONS
In this paper we have described our experience in the use of an
agile mindset in computer science education, including using per-
formance indicators from the activity to assess (and eventually
improve) course-wide, as well as individual performance. With the
use of learning analytics, in this paper we propose two simple data
points that are able to capture most of the activity, and to a certain
point the attitude, of the student, as long as the teacher devotes
enough time to providing feedback and eventually approving the
learning objectives provided by the student.

The data points that we have proposed are two: submission
and approval time for every objective, and the main metric is the
difference between them, which reflects the time needed by the
student to assimilate, and thus pass, objectives. By using collective
analytics and proposing specific actions, we were able to improve
course performance from last year (22-23) to this one (23-24). This
metric also captured the main differences between courses, mainly
time needed to pass every objective from the time of submission.
Although it is soon to tell, a good methodology leads not only to
better results, but also results that are indistinguishable statistically
between courses, as shown in Figure 4. This constitutes a positive
response to RQ1: metrics, if collected and chosen with precision,

can capture the main differences between courses, and also be
used to improve course performance: measuring time-to-pass every
objective individually can be used to target individual students for
special attention.

Research question 2 can be answered by looking at the same
metric in early objectives. Even if submissions are made early, or
soon after the previous objective is cleared, managing to get an
objective approved in more days than the average, on or beyond
the 75% percentile, will raise a flag and indicate a student that will
need special attention. The same happens for the whole class; if
the median starts to shift beyond 6 days, some intervention will be
needed to get a significant amount of students passing the subject.
Of course, too many students dropping out of class and stopping
making submissions will also be a cause for failure, but the lever-
age the professor might have in those case is extremely limited.
Too much time to pass an objective, however, would indicate that
the student has the attitude, if not the aptitude to pass it, so an
intervention should have a certain impact.

The answer to RQ3 can be seen mainly in Figures 5, 6 and 7, that
show that weekly classes have a clear impact on submissions as
well as passes; weeks without classes show overall lower numbers
of submissions. This proves that agile teaching, with frequent in-
teractions with the client (= student), and using data to assess and
address specific needs, can be used to improve individual student,
as well as class performance, adding value to the student.

This learning analytics system, which was deployed from the
first year (with small variations), allowed us to make different inter-
ventions, not all of them successful. To avoid the high dropout rate
in the first objectives, we started a hackathon in the first week of
class of 22-23. Unfortunately, this intervention did not succeed, and
that was clearly reflected in the analytics. Starting a hackathon to
pass objectives 2 and 3 (and dropping lectures) did have a limited
success, and helped some students to get back on track. In the first
days of this course 23-24 we introduced another gamification expe-
rience after dropping the hackathon; this achieved its short-term
objectives, as the analytics show, and apparently some long-term
objectives too.

In general we can conclude that an agile mindset of serving the
customer (the student) and adapting to specific class circumstances,
as revealed by the learning analytics and its comparison, will boost
student success and efficient acquisition of engineering best prac-
tices and skills. Besides, the learning analytics system is totally
independent of the platform that is used for assessing student’s
submissions. As long as the submission time and when it is passed
is known with precision, the same measurements can be applied;
these measures can be downloaded from a LMS or simply noted in
a spreadsheet.

Since every class is going to be different, in-class measurements
such as the time the student needs from submission to objective
success as a measurement of product quality is an actionable diag-
nostic that can help teachers apply individual-level or collective
measures to improve learning outcomes in an agile way.

REFERENCES
[1] Naif Radi Aljohani and Hugh C Davis. 2013. Learning analytics and formative

assessment to provide immediate detailed feedback using a student centered
mobile dashboard. In 2013 Seventh international conference on next generation

Formative evaluation and learning analytics for agile teaching ITICSE’24, June 03–05, 2018, Milan, IT

mobile apps, services and technologies. IEEE, 262–267.
[2] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-

ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. The agile manifesto.

[3] Andy Hon Wai Chun. 2004. The agile teaching/learning methodology and its
e-learning platform. In Advances in Web-Based Learning–ICWL 2004: Third In-
ternational Conference, Beijing, China, August 8-11, 2004. Proceedings 3. Springer,
11–18.

[4] Doug Clow. 2013. An overview of learning analytics. Teaching in Higher Education
18, 6 (2013), 683–695.

[5] Joseph S Krajcik and Phyllis C Blumenfeld. 2006. Project-based learning. na.
[6] Timothy C Krehbiel, Peter A Salzarulo, Michelle L Cosmah, John Forren, Gerald

Gannod, Douglas Havelka, Andrea R Hulshult, and Jeffrey Merhout. 2017. Agile
Manifesto for Teaching and Learning. Journal of Effective Teaching 17, 2 (2017),
90–111.

[7] Fernando M Otero-Saborido, Antonio J Sánchez-Oliver, Moisés Grimaldi-Puyana,
and José Álvarez-García. 2018. Flipped learning and formative evaluation in
higher education. Education+ Training 60, 5 (2018), 421–430.

[8] Judith Stanja, Wolfgang Gritz, Johannes Krugel, Anett Hoppe, and Sarah Dan-
nemann. 2023. Formative assessment strategies for students’ conceptions—The
potential of learning analytics. British Journal of Educational Technology 54, 1
(2023), 58–75.

[9] Dirk Tempelaar, Quan Nguyen, and Bart Rienties. 2020. Learning feedback based
on dispositional learning analytics. Springer, 69–89.

[10] Martin Tessmer. 1994. Formative evaluation alternatives. Performance Improve-
ment Quarterly 7, 1 (1994), 3–18.

[11] Ke ZHANG, Ramazan YILMAZ, Ahmet Berk USTUN, and Fatma
Gizem KARAOĞLAN YILMAZ. 2023. Learning analytics in formative
assessment: A systematic literature review. Journal of Measurement and
Evaluation in Education and Psychology 14, Özel Sayı (2023), 359–381.

	Abstract
	1 Introduction
	2 State of the art
	3 Class setup and methodology
	4 Results
	5 Discussion and conclusions
	References

