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Abstract
This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach
utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes
equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced
sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm
is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to
model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly
captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element
mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get amesh composed
exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant
problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.

Keywords Sediment transport · Coupled model · Adaptive grid · Positive definite algorithm

1 Introduction

Prediction of fluid-terrain interaction involving the transport
of cohesionless sediment is fundamental to understanding
the morphodynamics of natural systems as deserts, rivers
or coastal regions and its effects on civil structures. For
this kind of problems we consider three different interfaces:
fluid/erodible sediment layers, erodible/non-erodible layers
and fluid/non-erodible beds. Interfaces limiting with non-
erodible beds could appear when the fluid or the moving
sediment particles are in contact with cohesive strata or
with structures and obstacles. Some examples of predictions
including these interfaces are about the evolution of riverbeds
around bridge foundations, barchan and transverse dunes in
deserts and coastal areas, subaqueous dunes for the mainte-
nance of channels, and silting of reservoirs.

Apart from its role in the sediment dynamics, evolutionary
bedforms play an important role in determining the fluid flow,
given that bed shape changes create boundary forcings to the
flow due to momentum variations. In practice, timescale of
the flow variability is frequently much shorter than that for
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the bed evolution, enabling the use of two widely established
strategies. First plan of action is to neglect the two-phase
interaction. Second plan is to adopt a quasi-steady approxi-
mation. To illustrate the first category, in Refs. [23, 26] fluid
and sediment dynamics are separated and a semi-analytic
solution is integrated to link both domains. A representa-
tive example of a quasi-steady procedure can be found in
Ref. [27], where authors integrate the flow equations past a
frozen landform to a steady state, and update the boundary
shape subsequently. Computational cost of this line of action
is low and the procedure captures the basic physics of prob-
lems with evolving bedforms, although results do not always
fit experimental data completely. An affordable approach to
relax the limitations of the quasi-steady approximation is to
use a coupled model for a severe flow scenario, shrinking the
gap between timescales. An hypothetical severe-scenario is
adopted in Refs. [19, 20], amplifying the sediment flux few
orders of magnitude, and at the same time improving the
efficacy of computation.

An effective numerical procedure of the fluid/sediment
interface must include a straightforward treatment of the
erodible/non-erodible limit. In previous works some of the
present authors were concentrated on the coupling of the
sediment transport with free surface flows, either by depth-
integrated flow solutions [16–18], or by fully incompressible
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free surface flow solutions [14]. Both procedures incorporate
a Non-Oscillatory Finite Element Method (NFEM) that per-
mits the concurrent simulation of erodible and non-erodible
interfaces. The method avoids nonphysical computed val-
ues by preserving bounds for the thickness of the erodible
stratum in a conservative form. Sign preservation given by
the NFEM is essential both for flow computation and for
interface tracking procedure. In the first case, this prop-
erty avoids unphysical overshoots in pressure and velocity
fields. In the second case, a positive definite thickness of the
erodible layer of sediment is mandatory to account for inter-
action between evolving cohesionless sediment layers and
rigid beds. An alternate methodology was adopted in Refs.
[3, 4], where an explicit particle Lagrangian procedure was
used to solve the fluid and sediment flows. This methodology
proves to be efficient in several practical applications, never-
theless treatment of non erodible obstacles is not apparent. In
the two-dimensional NFEM approach of Ref. [14] the solid
domain is deactivated, while fluid-solid interface is updated
by solving a conservation equation with mass fluxes derived
from the fluid flow solution.

In this work we expand the numerical model developed
in Ref. [14] to solve complete three dimensional problems
involving the interaction of fluids with changing erodible
beds, rigid strata, and immersed structures. The simulation of
problems with embedded moving interfaces has been a chal-
lenge for decades due to the necessity of handling large jumps
in physical properties. Numerical methods documented in
the literature can be categorised into two widely recognised
groups, those based on surface capturing and those based on
surface tracking [5, 7]. First class of procedures establishes
the interface implicitly by means of a phase function gov-
erned by a transport equation. In these methods, it is usual
to resort to mesh refinement algorithms [12] or to enrich-
ment functions [2] to improve the solution quality at the
interface. Otherwise, in second class of methods the discon-
tinuity matches with a mesh boundary or it is defined by
faces of mesh elements. These methodologies usually give
better accuracy, although the mesh has to be updated as inter-
face evolves, thus grid adaptation or remeshing is ineludible.
Some fields where this technique is applied are the propaga-
tion of fractures [8, 21], two fluids flows [22] and fluid-solid
interactions [15, 24], among others. In previous references,
mesh adaptation typically follows three steps: refinement of
the discontinuity neighbourhood, definition of new nodes fit-
ting the interface, and movement of background nodes to
improve the mesh quality.

We propose a surface tracking method. However, the
remeshing algorithm is simpler than usual, because it does
not need an improved resolution at the discontinuity. Rea-
sons for this simplification are the following: (a) solid phase
is essentially at rest in typical problems with coupled fluid
and erodible beds, while interface dynamics is governed by a

saltation process, thus the solid phase is not considered in the
computation (and jumps) of variables through the interface
(e.g., pressure gradient); (b) velocity field does not have to be
reproduced in detail at the vicinity of the bedformbecausewe
assume a logarithmic wall law to compute the friction veloc-
ity; (c) in the sediment transport problems treated here, the
interface is frequently smooth with slope changes in a larger
scale than usual spatial discretization sizes, then intersections
between interface and elements can be considered as planar.
Also, the natural slope limiter (avalanche effect) is usually
active for cohesionless materials, helping to regularize the
interface. Therefore, present grid adaptation procedure adds
new nodes fitting the interface and deactivates those elements
belonging to the solid phase. Refinement step and movement
of background nodes are omitted with the consequent reduc-
tion of computational cost.

Section 2 reports the governing equations for fluid and
sediment (2.1), and the numerical model formulation (2.2)
including details of the mesh adaptation algorithm. More-
over, particulars of the method regarding flux limiting
procedure are provided in Appendix. Numerical experi-
ments are described in Sect. 3. The first series of tests (3.1)
explores the evolution of trenches due to both water flow and
wind, and involves simplified two-dimensional and full three-
dimensional simulations. Second test (Sect. 3.2) concerns the
scour of submerged piles due to a water flow. Finally, con-
clusions in Sect. 4 close the paper.

2 Governing equations and numerical
solution

2.1 Governing equations

Simulation of sediment transport involves the solution of
two sets of equations: those governing the fluid flow, and
thosegoverning the sediment transport and thefluid/sediment
interface evolution. The continuousmodel for fluid flow solu-
tion is the set of Navier–Stokes equations for a Newtonian
incompressible fluid with density ρ f and dynamic viscosity
μ f . The system is written as

∇ · u = 0 (1)
∂u
∂t

+ ∇ · (uu) = − 1

ρ f
∇ p + 1

ρ f
∇ · τ (2)

in Ω ∈ RD, t ∈ [t0, T ]. Here, u(x, t) is the velocity field
(x = (xl), l = 1, D), D is the number of space dimensions,
p = p′ − ρ f gz is the dynamic pressure where p′ is the
total pressure, g is the gravity acceleration, z is the vertical

coordinate, τ = μ f

(
∂ui
∂x j

+ ∂u j
∂xi

)
is the viscous stress tensor

and [t0, T ] is the time interval. Initial conditions are given by
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u(x, t0) = u0(x), p(x, t0) = p0(x), and boundary conditions
are

u = u f ,
∂ p

∂nb
= 0 on Γ −

f (a)

u · nb = 0, tb · τ · nb = 0, bb · τ · nb = 0,
∂ p

∂nb
= 0 on Γ −

s (b)

∂u
∂nb

= 0, p = p on Γ + (c).

The boundary of the domain Ω is designated as Γ , Γ =
Γ − +Γ +, and u0, p and u f are known functions (from now
on overline designates known values). Further, nb, tb,bb are
the normal, tangent and bitangent to the boundary, respec-
tively. Boundary Γ − = Γ −

f ∪ Γ −
s comprises those parts of

the border with inlet or wall conditions (u · nb ≤ 0), where
subscripts f and s denote fixed velocity condition and slip
condition, respectively, and Γ + represents the part of the
boundary with outlet conditions.

Second set of equations consists of a law for the sediment
flux qs , and a conservation equation of the effective sediment
layer thickness h(x̃, t) establishing the solid–fluid interface
as

ρs
∂h

∂t
+ ∇H · qs = ∇H · (ρsK∇Hh

∗) (3)

in
(
Γh ⊂ Γ −

f

) ∈ RD−1, t ∈ [t0, T ] with initial condition
h(x̃, t0) = h0(x̃) (x̃ = (x̃l), l = 1, D − 1), and boundary
condition h = h on ∂Γh . InEq. (3), h∗(x̃, t) = hs(x̃)+h(x̃, t)
denotes the vertical position of the bottom depth, where hs is
the upper position of a non-erodible stratum.Moreover, ρs =
ρm (1 − λ) is the bulk density, ρm is the density of the grain
material, and λ is the porosity (volume fraction of voids).
The sediment mass flux is considered as vertically integrated

over the sediment layer, and∇H =
(

∂
∂ x̃1

, . . . , ∂
∂ x̃D−1

)
. In the

right-hand side of the equation, the avalanche flux ρsK∇Hh∗
operates as a natural slope limiter. This term is computed
as an anisotropic diffusion, where the diffusion coefficient
K ≡ β max

(
0, sgn(‖∇Hh∗‖− sC )

)
, where sC = tan α is the

critical slope and α the angle of friction; hence, K depends
critically on the bottom slope. The diffusivity β is specified
in terms of temporal and spatial resolution of the numerical
model [19].

In this work, we consider aeolian transport problems we
consider sediment transport problems where sand is the pre-
vailing fraction of the grain mixture. Thus, the sediment flux
qs is essentially ascribed to the saltation process, involving
the directmomentum transfer fromfluid to the grains, in addi-
tion to the ejection due to collisions between grains. Efficacy
of saltation flux models depends significantly on a detailed
calculation of the wall shear stress field. Among existing

models to compute bedload sediment fluxes (see a compre-
hensive review in Ref. [14]), the general adjusted Bagnold’s
law [9] is widely used for aeolian transport and is selected
in this work,

qs = C
ρ f

g
u∗ ‖u∗‖2 max

(
0, 1 − ut

‖u∗‖
)

. (4)

In the flux law C = 4.2
√
d/d1 is an empirical coefficient

[9], d is the grain size, d1 = 2.5 × 10−4 m, g is the gravity
acceleration, u∗ = u∗u ‖u‖−1 is the friction velocity and

u∗ =
√

ρ−1
f τw (τw denotes the wall shear stress). Lastly, ut

is the threshold value of the friction velocity, which considers
the angle γ between the local flow current direction and slope
(see derivation in [19]),

ut =
√√√√ sin θ

sC
cos γ +

√
sin2 θ

s2C

(
cos2 γ −1

)+cos2 θ ut0 ,

(5)

where θ is the local slope angle, and ut0 the threshold friction
velocity for a flat bed.

2.2 Numerical model

Numerical solutions ofEqs. (1)–(2) andEq. (3) are performed
using the non-oscillatory finite element method. The NFEM
strategy employs flux correction techniques to correct a
conservative and sign-preserving predictor algorithm with
anti-diffusive contributions, maintaining the properties of
the predictor scheme. Corrections are calculated by limit-
ing the difference between the contributions of a high order
(HO) method and those of a predictor or low order (LO)
method. Therefore, complete solutions of fluid dynamics
and conservation of the sediment layer demand two numer-
ical approximations to perform the flux correction limiting
process. Algorithms defining HO and LO approaches could
be related. For instance, in Ref. [10], computation of LO
solution is achieved by adding extra diffusion to the HO
solution. The NFEM makes use of independent high order
and low order solutions. In the case of the high order algo-
rithm, solution of Eqs. (1)–(2) is the Characteristic Based
Scheme (CBS), incorporating a second-order accuracy exten-
sion for transient advective fields [16], and solution of Eq. (3)
is the second-order accuracy Characteristic-Galerkin algo-
rithm [16]. On the other hand, the low order method for the
NFEM is such that it has a nearly minimum added diffu-
sion to preserve positivity. The best candidate is a first-order
upwind finite element procedure.

For completeness, we include an Appendix where the
reader can find the basis of the flux correction procedure
proposed, as well as a simple one-dimensional illustration of
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the algorithm. In the next subsection, we introduce the finite
element high order and low order solutions.

2.2.1 High and low order solutions

First, we specify the characteristic-based-split (CBS) algo-
rithm as the HO procedure for the fluid dynamics (Eqs. (1)–
(2)). After time discretization, the velocity solution can be
written as

un+1 = un + Δu∗ + Δu∗∗ (6)

where the velocity at time level (n + 1)Δt is computed
as the sum of a predictor velocity u∗ = un + Δu∗ and a
pressure correction velocity increment Δu∗∗. Finite element
discretization for Δu∗ is determined by the Characteristic
Galerkin method (see e.g. [16]), and its formulation (repro-
duced concisely below) can be consulted in detail in Refs.
[11, 12, 14]. Finite element discretizations are equipped with
the finite element spaces Vh

i , Uh
i ,Wh , and Ph , (i = 1, D)

stated as

Vh
i ⊂ Vi = {vi ∈ H1(Ω) | vi = 0 on Γ −

f },
Uh
i ⊂ Ui = {ui ∈ H1(Ω) | ui = ui on Γ −

f },
Wh ⊂ W = {w ∈ H1(Ω) | w = 0 on Γ +},
Ph ⊂ P = {p ∈ H1(Ω) | p = p on Γ +}.

Thus, the predictor solution is determined as: Find Δu∗h
i ∈

Uh
i for all t ∈ [t0, T ] such that

(
vhi ,

Δu∗h
i

Δt

)

Ω

= −
(
vhi ,∇ ·

(
(uh)n+1/2(uhi )

n
))

Ω

+
(
vhi , f hi

)n
Ω

−Δt

2

{〈
∇ ·

(
vhi

(
uhuh

)n+1/2
)

,∇(uhi )
n
〉

ΩI

−
〈
vhi

(
(uh)n+1/2 · ∇(uh)n

)
,∇(uhi )

n
〉
ΩI

+
(
vhi , (uh)n+1/2 · (∇( f hi )n

)
ΩI

}
(7)

where f = μ f
ρ f

∇2u and

(v,w)Ω =
∫

Ω

v w dΩ

〈v,w〉Ω =
∫

Ω

(v · w) dΩ

and [v, c]Γ =
∫

Γ

v c · nb dΓ

for vector fields v,w, c and scalars v and w. Moreover, ΩI

is the domain without elements with sides belonging to the
boundary. Specifics about the computation of the velocity
field at (n + 1/2)Δt in Eq. (7) are discussed in Ref. [14].

Second step involves pressure computation from the conti-
nuity equation. The solution is formulated as: Find (ph)n+1 ∈
Ph for all t ∈ [t0, T ], such that
Δt

ρ f

〈
∇wh,∇(Δph)

〉
Ω

=
〈
∇wh,Δu∗h〉

Ω

−Δt

ρ f

〈
∇wh,∇ ph

〉n
Ω

−
[
wh,Δuh

]
Γ

(8)

where Δuh = (uh)n+1 − (uh)n . Final pressure field is
pn+1 = pn + Δp. Last step updates velocity field through
Eq. (6), where Δu∗∗ is given by

(
vhi ,

Δu∗∗h
i

Δt

)

Ω

= − 1

ρ f

(
vhi , (∇ ph)n+1

i

)
Ω

− Δt

2ρ f

(
∇ ·

(
vhi (uh)n+1/2

)
, (∇ ph)n+1

i

)
ΩI

. (9)

Second, the high order solution for the advective-diffusion
transport law(3) is attained by the Characteristic Galerkin
method and is stated in terms of the spaces Sh and Hh ,
defined as Sh ⊂ S = {s ∈ H1(Γh) | s = 0 on ∂Γh},Hh ⊂
H = {h ∈ H1(Γh) | h = h on ∂Γh}, where Γh (specified
after Eq. (3)) corresponds with the solid/fluid interface sur-
face. Then, the HO solution is formulated as: Find hh ∈ Hh

for all t ∈ [t0, T ], such that

(
sh,

Δhh

Δt

)

Γh

=
(
un+1/2
s · ∇Hs

h, (hh)n
)

Γh

−
[
sh,

qs
ρs

]n
∂Γ +

h

−
(
∇Hs

h,K(∇Hh
∗h)

)n
Γh

+
[
sh,K(∇Hh

∗h)
]n
∂Γh

−Δt

2

{〈
∇H ·

(
sh

(
uhs u

h
s

)n+1/2
)

,∇H (hh)n
〉

Γh I

−
〈
sh

(
(uhs )

n+1/2 · ∇H (uhs )
n
)

,∇H (hh)n
〉
Γh I

+
(
∇H · sh(uhs )n+1/2,

(
hh∇H · uhs

)n)
Γh I

}
(10)

where us≡ qs
hhρs

, ∂Γ +
h is defined as the portion of the bed-

form boundary with a prescribed sediment mass flux qs , and

(v,w)Γh =
∫

Γh

v w dΓh
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〈v,w〉Γh
=

∫

Γh

(v · w) dΓh

and [v, c]∂Γh =
∫

∂Γh

v c · nb d∂Γh .

Computation of sediment mass flux requires stress recovery
from the updated velocity field attained in the flow solution.
In this work, shear stresses at the sediment/fluid interface are
estimated by assuming a logarithmic wall velocity law; then,
friction velocity is calculated as

(u∗)n+1 = κ
un+1

Δ −
(
un+1

Δ · nb
)
nb

ln (zΔ/z0)
, (11)

where uΔ = u(zΔ) is the velocity value taken at height zΔ
over the bedform, κ = 0.41 is the Von Karman constant, and
z0 is the equivalent roughness length. The height zΔ is esti-
mated in terms of mesh resolution, and its value in Eq. (11) is
assumed at time nΔt . Prior to the solution (10), computation
of qn+1

s and un+1/2
s = (uns +un+1

s )/2 is achieved by elemen-
twise usage of the law stated by Eq. (4) and an a posteriori
nodal recovery.

Now, we examine the low-order solutions. The proposed
low-order approach is an upwind finite element monotone
scheme independent of the high-order procedure. From now
on, we introduce the notation LO( ) comprising upwind
fluxes computation such that

LO (ψ, a) = (a · ∇ψ) + [∇ · (k∇ψ)] (12)

for a scalar field ψ and a vector field a, where k is a diffu-
sivity tensor corresponding to the artificial diffusion of the
finite element upwind scheme (see specifics in Eq. (13) of
Ref. [14]). Results in the computation of the LO solution are
essentially the same by median dual finite volume method or
Galerkin linear finite elements with lumped mass approxi-
mation [16]. Here, the low-order predictor method is written
via the Galerkin formulation for the sake of simplicity.

Amonolithic implementation of the low-order solution for
fluid flow requires three steps similar to Eqs. (7)–(9). Then,
this course of action would entail the computation of two
implicit solutions for pressure (Eq. (8) and the corresponding
for the LO solution). Both calculations should be performed
every time step followed by the correction reported in the
Appendix. A cost-effective way to circumvent this double
computation is by performing correction only for the predic-
tor velocity field. Then, the abbreviated procedure has the
following steps:

1. Computation of the HO velocity predictor u∗h = (uh)n +
Δu∗h given by Eq. (7).

2. Calculation of the LO velocity predictor u∗h
LO = (uh)n +

Δu∗h
LO , where the intermediate velocity increment is

(
vhi L ,

Δu∗h
i LO

Δt

)

Ω

=
(

vhi ,LO
(

(uhi + Δt

2
f hi )n, (uh)n

))

Ω

+
(
vhi , f hi

)n
Ω

(13)

where vhi L is the lumped mass matrix and LO subindex
signifies low-order solution.

3. Computation of the corrected velocity predictor ũ∗h by
the correction algorithm (Appendix, see Eq. (23)).

4. Calculation of the updated pressure by solving the implicit
equation (8) and replacingΔu∗h by the corrected velocity
increment Δũ∗h = ũ∗h − (uh)n .

5. Get the updated velocity field by computing Δu∗∗ with
Eq. (9).

Low-order form for the bedform evolution (3) is formu-
lated as: Find (hh)n+1

LO ∈ Hh for all t ∈ [t0, T ], such that

(
shL ,

ΔhhLO
Δt

)

Γh

=
(
sh,LO

(
(hh)n, (uhs )

n
))

Γh

−
〈
∇Hs

h,K(∇Hh
∗h)n

〉
Γh

+
[
sh,K(∇Hh

∗h)
]n
∂Γh

, (14)

where shL corresponds to the lumped mass matrix, and
(hh)n+1

LO = (hh)n + ΔhhLO .
All series of experiments in precedingworks [11–14] have

shown that the use of this reduced method instead of the
monolithic procedure has no noticeable differences in results
and retains the capability to preserve interface resolution.
The average extra computational cost of the abridged NFEM
respect to the procedure with no corrections is about 1% for
serial calculation of incompressible flows.

2.2.2 Mesh adaptation algorithm

In this subsection we report the proposed grid adaptation
method to the practical tracking of the fluid–bedform inter-
face. Grid adaptation requires the following initialmesh data:
(a) coordinates of all nodes and their connectivity; (b) all
edges and the pair of nodes defining each one; and (c) edges
defining each element of the mesh. These data are conve-
niently stored by linked lists. Once values of hn+1 and bed
position are updated, grid adaptation is conducted by three
steps:
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1. Loop over nodes: h∗
i is calculated at coordinates (xi , yi )

of every node i ∈ Ω (with vertical coordinate zi of the
original mesh). Nodes are labelled as

– Under the interface: zi + ς < h∗
i , Node flag is 0

(inactive).
– Over the interface: zi−ς > h∗

i . Node flag is 1 (active).
– Coincident with the interface: zi − ς ≤ h∗

i ≤ zi + ς .
Node flag is 2 (coincident).

The number ς is of the order of round-off value.
2. Loop over edges: pair of nodes delimiting every edge are

labelled as

– Both nodes have flag 0: edge is under the bedform;
edge flag is 0 (inactive).

– Both nodes have flag 1: edge is over the bedform; edge
flag is 1 (active).

– Both nodes have flag 2: edge is contained in the inter-
face; edge label is 2 (coincident).

– One node has flag 2 and the other node has flag 0 or 1;
edge flag is 0 or 1 depending on the flag of the second
node.

– One node has flag 0 and the other node has flag 1; edge
is cut by the bedform and its flag is 3 (intersected).
In this situation, coordinates of the cut-off node are
calculated and stored. Nevertheless, if the intersection
is close to one of the edge nodes, element could be
too small in compare with those of the original mesh.
To avoid this inconvenience, we define a tolerance ξ

such that, if L1
L1 + L2

< ξ (see Fig. 1), flag of node

1 is designated as 2. Practical values for the tolerance
are ξ ∈ [0.05, 0.10]. If this special case occurs, step
2 must be run again to avoid indeterminacy of other
edges containing modified nodes.

3. Loop over elements:we consider tetrahedrons and assume
elements small enough such that the cut caused by the
bedform is plane. Hence, the following cases can be pro-
duced,

• There are not nodes with flag 1: the tetrahedron is
completely below the bedform, then it is deactivated
and not included in the new mesh.

• The sum of nodes with flag 1 and nodes with flag 2 is
four: tetrahedron is over (or tangent to) the bedform,
then the element is active and its geometry is identical
to that of the original mesh.

• One edge has flag 2 and other edge has flag 3: the
element is split and a new element is formed with (a)
the active node, (b) the cut-off node of the edge with
label 3 and (c) the two nodes with flag 2 (see Fig. 2).

• Two edges have flag 3 and one node has flag 2: we
can distinguish two cases. The first one occurs when
just one node is label 1, in this case the new element

Fig. 1 Edge (black line) cut by the bedform (red line). (Color figure
online)

is formed with (a) the active node, (b) the two cut-off
nodes of edgeswith label 3 and (c) the nodewith flag 2
(see Fig. 3). Second case takes place when two nodes
have flag 1; the resulting square pyramid is divided
into two tetrahedrons by splitting the pyramid base by
the shortest diagonal (see Fig. 4). Then, the two new
elements are formed by (a) active nodes, (b) the node
with flag 2 and (c) the two cut-off nodes of edges with
label 3.

• Three edges have label 3: here two cases are iden-
tified. The first one takes place when just one node
has label 1, in this case, the new element is formed
by (a) the three cut-off nodes and (b) the node with
flag 1 (see Fig. 5). Second case occurs when there are
three nodes with flag 1; in this situation, the result-
ing triangular prism is split into three tetrahedrons by
subdividing the square faces (see Fig. 6). Special care
must be taken when faces are split to avoid an unte-
trahedralizable polyhedron.

• Four edges have label 3: here the resulting triangular
prism is divided into three tetrahedrons by subdividing
the square faces as in the previous case (see Fig. 7).

Once activated elements are established, the subsequent steps
involve the assembling of the new mesh and the prescrip-
tion of boundary conditions on those edges in contact with
the bedform. Pressure values at new nodes on edges with
label 3 are taken from previous nodes belonging to the same
edge. Errors introduced in this process are negligible as the
fluid-bedform interfacemovement has a time scale variability
much larger than the flow and the updating timestep; hence,
new nodes are very close to the former ones. Furthermore, in
this instance, the grid adaptation algorithm does not need to
beperformed every time step.Otherwise,when a “severeflow
scenario" is adopted, defined either by similar time scales of
fluid flow and saltation flux or by the saltation flux amplified
a few orders of magnitude [20], mesh adaptation every time
step is recommended.
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Fig. 2 Case with one edge with
label 2 and other edge with label
3. Red line indicates the cut
made by the bedform. (Color
figure online)

Fig. 3 Case with two edges
with label 3, one node with label
2 and one node with label 1. Red
line indicates the cut made by
the bedform. (Color figure
online)

Fig. 4 Case with two edges
with label 3, one node with label
2 and two nodes with label 1.
Red line indicates the cut made
by the bedform and blue line
shows face subdivision. (Color
figure online)

2.2.3 A brief on parallel coding development

The Finite Element model described above has been pro-
grammed in C++ and parallelized with MPI (Message
Passing Interface). In addition, OpenMP (Open Multi-
Processing) is also employed for those tasks requiring shared
memory. In summary, the procedure is as follows: the root
process reads grids for fluid solution and for solid–fluid inter-
face solution; then, grids are divided in the X–Y plane into
N subdomains, being N the number of available computa-
tional cores. Each core receives data of all nodes and elements

within its domain, in addition to data of ‘shared’ elements
(those with at least one node belonging to the subdomain).
On the basis of this information, each core is able to get local
nodal vectors resulting from the computation of the right
hand side of Eqs. (7)–(10), (13) and (14). Hence, solutions of
aforementioned equations are calculated employing a Pre-
conditioned Conjugate Gradient (PCG), which also allows
for MPI parallelization as the coefficient matrix does not
have to be assembled.

There are some modules of the code that use data from
the whole mesh. For example, the sediment fluxes compu-
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Fig. 5 Case with three edges
with label 3 and one node with
flag 1. Red line indicates the cut
made by the bedform. (Color
figure online)

Fig. 6 Case with three edges
with label 3 and three nodes with
flag 1. Red line indicates the cut
made by the bedform and blue
lines show faces subdivision.
(Color figure online)

Fig. 7 Case with four edges
with label 3. Red line indicates
the cut made by the bedform and
blue lines show faces
subdivision. (Color figure
online)

tation (Eq. (4)) requires the recovering of the velocity field
from the fluid dynamics solution and involves a search of ele-
ments surrounding each node of the fluid-solid interface (see
details in Ref. [14]). Other examples are steps 2 and 3 of the
mesh adaptation algorithm (Sect. 2.2.2), whose implemen-
tation is more efficient by using shared memory parallelism.
As mentioned before, parallelization in these modules is per-
formed with OpenMP. In some tests carried out on an Intel
Core i9-12900K,we found that theMPI parallelization accel-
erated the execution up to 3 times respect to the same code
but entirely parallelized with OpenMP.

3 Results

3.1 Evolution of trenches

In this section we examine the evolution of different trenches
due to the effect of a water flow and of the wind. In the
first simulation we assess the performance of the numeri-
cal model when a non-erodible stratum is present within the
domain. For this purpose we reproduce one of the exper-
iments reported by Struiksma [25]. It was performed in a
straight channel with 11.5 m length, 0.2 m width, and a ver-
tical side rigid wall of 0.5 m. Initial configuration of the
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Fig. 8 Struiksma’s experiment: initial set-up

test is depicted in Fig. 8. As can be seen, the flume is par-
tially filled with a non-erodible layer forming an obstacle
(blue line in Fig. 8) and, above it, there is an erodible bed-
form of sand with d = 0.6 mm. Moreover, a trench with
0.04 m depth and 2m length is dug in the erodible layer (red
line in Fig. 8). In the experiment, a water flow of 9.2 l/s is
discharged from left to right in Fig. 8, and the free surface
is placed at z = 0.362m. The employed two dimensional
structured mesh has an average element size1 δ = 0.005m,
and its dimensions are 17.25 × 0.237 m. Regarding bound-
ary conditions, no-slip condition is imposed at the bottom,
left boundary has a prescribed influx condition and right
boundary reproduces a water discharge over a weir to keep
a subcritical flow in the flume. In the simulation, we solve
the dynamics of a two-phase flow (air and water), where the
gas-liquid interface is captured using a conservative level-set
method (see formulation in Ref. [14]). Air has ρ1 = 1.205
kg/m3 and μ1 = 1.808 × 10−5 kg/(ms), while water has
ρ2 = 998kg/m3, μ2 = 1.0×10−3 kg/(ms). Sediment flux is
computed by using the formula proposed by Struiksma [25],

qs/ρs = Cεu ‖u‖4 , (15)

where Cε = 0.00049 s4/m3 and u is the depth-averaged
water velocity. Note that the equation (15) is not universally
applicable, as it was tuned in the laboratory specifically for
the current experiment; hence, its use should be restricted
to this particular setup. Furthermore, fluxes obtained from
Eq. (15) are scaled by a factor of 60 to transform 4min of
simulated time into 4h of real time. Simulations last 255s
and the timestep is Δt = 0.001 s. During the first 15 s, sed-
iment transport is deactivated to reach an initial steady-state
in hydrodynamics; subsequently, the bedload transport law
is activated.

Figure9 shows experimental and numerical results by rep-
resenting the bottom level at t = 1, 2, 3 and 4h. Results are
shown superimposed on the initial bed. Numerics match sat-
isfactory with laboratory results, even when the non-erodible
bed becomes uncovered (Fig. 9c, d). The sharp front position
and the silting process of the trench are accurately captured at
t = 1, 2 and 3h, with L2-norm errors e(L2)1h = 6.94×10−3

1 Average element size for 2D structured meshes is δ = √
Δx2 + Δy2.

m, e(L2)2h = 7.41 × 10−3 m, and e(L2)3h = 9.70 × 10−3

m. However, the front at t = 4h is not evinced by the lab
experiment (Fig. 9d), and the error increases to e(L2)4h =
1.40 × 10−2 m. Otherwise, position of the bedform down-
stream the trench is very similar to laboratory outputs for
t = 1h and 2h, and somewhat overpredicted for t = 3h and
4h. This slight overprediction can be ascribed to deviations
in the sediment outflow through the right boundary respect to
the laboratory set-up. Despite the fact that the sediment flux
law (15) has not a threshold condition for sediment onset of
motion, erosion excess is apparent only in a reduced region
close to the upper boundary of the non-erodible obstacle.
Similar effect can be recognized in Refs. [18, 25].

In the second series of simulations, we study the evolu-
tion of two different trenches due to the wind action. The
first trench has a depth of 0.05 m, a bottom length of 0.2
m, and a side slope of 45◦; and the second trench has a
0.025 m depth, a bottom length of 0.1 m, and side slope
of 22.5◦ (see the solid line in Figs. 10 and 11). In both cases,
the employed mesh is structured, with a 1.0 m length, 0.05
m width, and 0.2 m height, and has an average element
size2 of δ = 0.0023 m. Physical parameters of the air are
ρ f = 1.205kg/m3, μ f = 1.808 × 10−5,kg/(ms). The air is
considered at rest at the initial time. Left boundary of the
mesh has inlet conditions, and air enters the domain accord-
ing to a boundary layer law: u(z) = 0.5

κ
log

(
z
z0

)
. Regarding

the sediment, ρs = 1987.5kg/m3, d = 2.5 × 10−4 m,
z0 = 2.5 × 10−5 m, ut0 = 0.22m/s, and α = 45◦. Besides,
to accelerate the computation of sediment flux, it is scaled
by a time multiplier of 50, assuming the time scale of flow
variability much shorter than that for bed evolution. We run
the simulation for a total of 8 s with Δt = 5× 10−5 s, which
is equivalent to 400 real seconds for the erodible bed. Fig-
ure10 shows the deep trench profile at real times t = 0, 100,
200, and 400s, and Fig. 11 shows the profile for the shal-
low case at t = 0, 25, 100, 200, and 400s. Additionally,
a 3D view of some time steps is shown in Figs. 12 and 13.
As can be seen, in both cases the trench moves in the wind
direction, i.e. there is sediment deposition on the upwind
(left) side and erosion on the downwind (right) side. How-
ever, the velocity migration of the deep trench is lower than
the shallow case, in line with previous numerical simula-
tions [20] and experimental observations [1]. We also notice
that erosion on the right side is more intense than deposition
on the left side. This fact results in a progressive change of
the trench shape leading to partial silting (see trench depth
and bottom length evolution in Figs. 10 and 11). Moreover,
it is manifest that the left side of the trench starts to migrate

2 Average element size for three-dimensional meshes is defined as δ =
3
√∑n

i=1 Vi
N , where Vi is the volume of cell i , and N is the total number

of cells.
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Fig. 9 Struiksma’s experiment.
Black dashed line and blue line
are the initial erodible and
non-erodible bed profiles,
respectively, black solid line
indicates numerical results and
red dots show laboratory
outputs. (Color figure online)
[25]

123



Computational Mechanics

Fig. 10 Deep trench evolution

Fig. 11 Shallow trench evolution

just after reaching its critical slope. This is notorious in the
shallow case (see Fig. 11), which starts with a side slope
lower than the critical. Otherwise, sediment subtracted from
the right side forms a secondary pile downwind advancing
faster than the downwind side of the trench. This fact is con-
sistent with the classic relation stating that dune velocity is
inversely proportional to its height (see e.g. Ref. [14], Fig.
16). Sediment contribution to this sandpile is determined by
downwind slope, affecting air flow and ultimately sediment
transport. Then, fluid/sediment dynamics can give rise to two
opposed scenarios. If there is no sediment supply upstream
the trench (current case), its shape would be similar to an
inverted barchan dune and, depending on the depth, it would
migrate or disappear with time [20]. On the other hand, if
there exists an unlimited sediment source, the trench will
ultimately get silted regardless of its depth.

3.2 Scour in a pile

In this section, we examine the local scour around a sub-
merged vertical pile. In particular, we reproduce laboratory
test 21 of Ref. [29]. This test was conducted in a water flume
with an erodible bedform composed of sand with d = 0.40
mm, ρm/ρ f = 2.69, and α = 35◦. A cylindrical structure
with a diameter D = 0.1 m was inserted into the sediment in
such a manner that the height hc not buried by sediment was
hc/D = 5. Undisturbed flow velocity profile was measured
in the laboratory (see figure 3b of Ref. [29]), and it cor-

relates with the logarithmic law u(z) = u∗
κ
ln

(
z
z0

)
, where

Fig. 12 3D visualization of the deep trench at times t = 0, 200 and
400s

Fig. 13 3D visualization of the shallow trench at times t = 0, 200 and
400s

u∗ = 0.0483 m/s and z0 = 0.0043 m, resulting in a mean
flow velocity of 0.441 m/s. The numerical domain employed
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in this simulation is a prism of 20D length, 10D width, and
7D height with a cylinder-shaped hole in the middle (see
Fig. 14). The domain was discretised by using tetrahedrons
with δ = 0.076D (unstructured). Physical parameters for
water are ρ f = 1000 kg/m3, μ f = 0.001kg/ms and, for
the sediment, ut0 = 0.0148 m/s according to data provided
in Ref. [29]. Regarding boundary conditions, a fixed inlet
velocity was imposed at the left boundary with a law coin-
ciding with the laboratory setup; outlet condition described
in Sect. 2.1 was applied at the right boundary. For the bed-
form and the cylinder surface, we employ non-slip condition,
while a slip condition is used for side boundaries. At the free
surface, we also applied slip boundary condition, resembling
standard simulations involving scour around structures. The
basis of this simplification lies in the independence of the
scour depth of the water depth when the ratio of water depth
to cylinder diameter is greater than 4 (see [29] and references
therein). This assumption is not expected to have an appre-
ciable effect on the numerics. At initial time, the bedform is
assumed horizontal and placed at z = 0 (see the reference
system in Fig. 14). For the computation of sediment fluxeswe
employ the equation specifically calibrated for water flows
proposed by Duran et al. [6],

qs = 5.78ρs(
ρm/ρ f − 1

)
g
u∗ max

(
0, ‖u∗‖2 − u2t

)
, (16)

whichwas used in previous works (see e.g. [14]) giving good
results.

The simulation was run with Δt = 0.005 s until reach-
ing the scour depth equilibrium. This state is represented in
Fig. 15, which shows a pit around the pile and a longitudinal
trench downstream. These features arise due to a horseshoe
vortex and vortex shedding downstream the pile, that erode
the sediment located close to the cylinder surface and its
wake. The equilibrium takes place when the pit sides take
a slope lower or equal to the critical (see Fig. 15b), and the
flow velocity is very low in the pit (see Fig. 15a), resulting
in a friction velocity lower than the threshold. Under these
conditions, sediment transport ceases, and the scour depth
remains constant. Additionally, irregular ripples are observed
upstream the pile, consistent with the report of Ref. [29] for
tests with a mean inflow velocity of 0.441 m/s. The resulting
bedform is not symmetric with respect to the horizontal axis,
particularly downstream the pile, due to the vortex shedding
depicted by the streamlines in Fig. 15a. This pattern is also
appreciated in laboratory experiments. Figure15c shows the
scour depth around the pile, ranging from 0.91D to 1.22D.
While there are slight variations in scour depth upstream and
downstream of the pile (θ = 180◦ and θ = 0◦, respectively)
compared to the laboratory results, the calculatedmean scour
depth of 1.06D (see the dashed line in Fig. 15c) closely aligns
with the reference value of 1.03D reported in Table 1 of Ref.
[29].

Fig. 14 Scour in a pile: sketch of the numerical domain

4 Conclusions

The numerical model proposed in this work combines a
complete three-dimensional flow solution with an interface
tracking algorithm to adapt the mesh to an evolving bedform,
governed by a dimension-reduced conservation equation.
This method admits beds formed by a combination of cohe-
sionless and non-removable materials, making necessary the
implementation of the non-oscillatory finite element method
(NFEM) to assure the positivity of the erodible layer thick-
ness. The coupling permits free surface flows simulations and
takes advantage of NFEM benefits to shrink instabilities in
the hydrodynamics, particularly near interfaces. In contrast
with previous works where hydrodynamics was solved by
using depth-integrated fluid flow equations, here we achieve
a more detailed hydrodynamics solution, in special vertical
dynamics and vortexes distribution, allowing computation of
amore realisticwall shear stress field aswell as erodible layer
dynamics.

Numerical simulations explore scenarios connected with
relevant engineering problems. In the first series of tests,
we study the evolution of trenches under the influence of
both a water flow and wind. In the two-dimensional case
of a channel with a partially erodible bed, the complex
dynamics resulting from the presence of a deep trench and a
medium gravel obstacle lead to the exposure of the obstacle
and the burial of the trench. This experiment demonstrates
the numerical model capability to handle several interfaces
(i.e., air/water, water/cohesionless sediment, cohesionless
sediment/non-erodible bed, and water/non-erodible bed),
with results consistent with laboratory experiments. In the
three-dimensional case, we investigate the migration and
shape evolution of two trenches in a sandy environment.
We observe that migration velocity increases as trench depth
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Fig. 15 Scour in a pile: numerical results once the equilibrium scour
depth is reached

decreases, in addition to a partial silting in both tests, par-
ticularly noticeable in the shallow case. This pattern aligns
with numerical simulations from prior studies and resembles
the behavior seen in barchan dunes. In fact, as illustrated in
numerical results, the trench adopts a shape similar to an
inverted dune, with an upstream side slope steeper than the
downstream one. Finally, in the last test, we study the scour

around a submerged pile caused by a steady current. The
process is governed by the combination of a horseshoe vor-
tex and vortex shedding, which washes the sediment around
the pile and in the wake of the cylinder, forming a pit and a
trench. The numerical model also yields encouraging results
similar to outputs observed in the laboratory, particularly in
terms of the mean scour depth around the pile.

Present model assumes the hypothesis of saturated sedi-
ment flows, which gives reasonable results for phenomena
simulated in this work, as substantiated by numerics. How-
ever, the extension of the numerical model to reproduce
non-saturated sediment flows is of great interest to study a
wider spectrum of physical processes, and will be pursued
and reported in future publications.
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Appendix: Flux correction basis

Corrected solution of Eqs. (1)–(3) is established in terms of a
high order (HO) and low order (LO) finite element solutions
denoted here as B and b, respectively. High order corrected
solution at node i of the finite element mesh Ω = ⋃

Ω j ,
( j = 1, E), at time (n+1)Δt is designated as B̃n+1

i , and is
built as

B̃n+1
i = bn+1

i +
e∑

j=1

Ã j = bn+1
i +

e∑
j=1

c jA j = bn+1
i

+
e∑

j=1

c j (AHO − ALO) j (17)

resulting from updating the LO solution b at time (n + 1)Δt
by the sum of corrected anti-diffusive element contributions,
denoted as Ã, that counterbalance the truncation error of the
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LO scheme. In Eq. (17), Ã j is the corrected anti-diffusive
contribution of element j , whileA j is the difference between
the contribution of the high order scheme AHO and the con-
tribution of the low order scheme ALO corresponding to
element j . Sum extends over e, the number of elements j
surrounding node i ; summation convention is not used.

Elementwise correction functions c j impose desired prop-
erties ofLOsolution (positivity and, under certain conditions,
monotonicity) in the corrected HO solution. Range of c j ’s
is: 0 ≤ c jm ≤ 1, c jm ∈ c j , where m denotes the number of
variables of the problem (m ∈ [1, D + 1] for Eqs. (1) and (2),
and m = 1 for Eq. (3)). Note that if c jm = 1 the corrected
solution equals the HO solution, while for c jm = 0 solution
equals the LO solution [17]. To determine correcting func-
tions values the method defines nodal bounds Bmin

i , Bmax
i

(here written for a scalar equation to simplify notation) such
that Bmin

i ≤ B̃n+1
i ≤ Bmax

i . For instance, appropriate and
successful nodal bounds were given by Ref. [28] (see equa-
tions (17’) and (18’) therein),

Bmin
i = min

j=1,e

(
Bn
i , bn+1

i , Bn
k , bn+1

k

)
, ∀ (nodes k �= i) ∈ j

(18)

Bmax
i = max

j=1,e

(
Bn
i , bn+1

i , Bn
k , bn+1

k

)
, ∀ (nodes k �= i) ∈ j

(19)

where all variables in Eqs. (18) and (19) are positive definite.
Correcting functions c j depend on element anti-diffusive
contribution A j to the node, on the bounds Bmin

i , Bmax
i , and

on the LO nodal solution bn+1
i .

To illustrate practical details of the procedure, consider
Fig. 16, where elements and nodes surrounding a node i are
sketched; nodes are numbered as i + 1 . . . i + 5 to simplify
notation. Anti-diffusive contributions to node i have super-
script + or −, either if the elementwise flux increases or
decreases the value of bn+1

i . Then, given that corrected anti-
diffusive contribution should fulfill the constraint

Bmin
i ≤ bn+1

i +
e∑

j=1

Ã+
j −

e∑
j=1

| Ã−
j | ≤ Bmax

i , (20)

the following two sufficient conditions arise for the case
depicted in Fig. 16,

bn+1
i − | Ã−

2 | − | Ã−
3 | − | Ã−

5 | ≥ Bmin
i , (21)

bn+1
i + Ã+

1 + Ã+
4 ≤ Bmax

i . (22)

To find the equation defining correcting functions, we
rewrite in compact form the corrected solution (17) at node

Fig. 16 Anti-diffusive contributions to node i

i (see Eq. (15) in [16]) for a scalar quantity as

B̃n+1
i = bn+1

i +
e∑

j=1

1

2

[
c+
j (A j + |A j |) + c−

j (A j − |A j |)
]

(23)

and conditions (21)–(22) result in

bn+1
i − c−

i

(|A−
2 | + |A−

3 | + |A−
5 |) ≥ Bmin

i , (24)

bn+1
i + c+

i

(
A+
1 + A+

4

) ≤ Bmax
i . (25)

In these equations, c+
i , c−

i indicate nodal correcting func-
tions. A general form of these conditions can be easily
reached as,

c+
i = min

⎛
⎝1,

Bmax
i − bn+1

i∑e
j=1

1
2

[
A j + |A j |

] + ς

⎞
⎠

c−
i = min

⎛
⎝1,

bn+1
i − Bmin

i∑e
j=1

1
2

[|A j | − A j
] + ς

⎞
⎠

where a small number ς is integrated to avoid the vanishing
of the denominator. Whereas correcting functions are estab-
lished at nodes, elementwise coefficients used in Eq. (23)
are c+

j = min(c+
k ), c−

j = min(c−
k ), ∀ nodes k ∈ j . If

Eq. (17) is employed to recover a single correction coeffi-
cient as c j = min(c+

j , c−
j ), the corrected solution will be

more diffusive and closer to LO answer than that obtained
from Eq. (23). Direct extension of scalar correction (m = 1)
for the complete set of equations of motion (m = 1, D + 1)
could result in inappropriate constraints on some of the vari-
ables. However, the action only on velocity components [10]
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Fig. 17 Analytical solution and numerical results for the advection of
a heaviside step function

is an effective approach to coordinate corrections. Now the
correcting functions for a node i are defined as ci = min(cip),
where p (p = 1, D) indicates the velocity component.

As an example to complement this Appendix, the non-
oscillatory finite element method is utilized in the simulation
of the pure advection of a Heaviside step function f (x, t)
such that, at t = 0,

f (x, 0) =
{
1 if x ∈ [0, 1]
0 otherwise

.

The 1D equation to solve is

∂ f

∂t
+ ∂(u f )

∂x
= 0,

where advective velocity is u = 1.0m/s. The finite element
mesh has Δx = 0.01m, time step Δt = 0.002 s and final
time is T = 20 s. Figure17 shows results at t = T by apply-
ing three different methods: a) Characteristic-Galerkin (high
order), b) Upwind scheme (low order) and c) NFEM. Ana-
lytical solution is superimposed in Fig. 17. It is apparent the
conservation of bounds of the low order scheme, although
it introduces additional diffusion that spoils the experiment,
giving a standard L2-norm error of e(L2)LO = 2.005×10−1.
High order algorithm achieves an error e(L2)HO = 5.672 ×
10−2, and, as expected, without bounds preservation. Finally,
NFEM reaches a very similar accuracy of the HO solution:
e(L2)NFEM = 5.677 × 10−2 and solution is monotone.
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