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A B S T R A C T

Urinary concentrations of non-persistent environmental pollutants (npEPs) are widely assessed in biomonitoring
studies under the assumption that they are metabolised and eliminated in urine. However, some of these che-
micals are moderately lipophilic, and their presence in other biological matrices should also be evaluated to
estimate mid/long-term exposure to npEPs and its impact on human health. The present study aims to explore
concentrations and potential determinants of npEPs in adipose tissue from a hospital-based adult cohort (GraMo
cohort, Southern Spain).

Concentrations of bisphenol-A (BPA), benzophenone-3 (BP-3), triclosan (TCS), three chlorophenols (2,4-DCP,
2,5-DCP and 2,4,5-TCP) and two phenylphenols (2-PP and 4-PP), triclocarban (TCCB) and parabens [methyl-
(MeP), ethyl- (EtP), propyl- (n-PrP and i-PrP), butyl- (n-BuP and i-BuP) and benzyl-paraben (BzP)] were analysed
in adipose tissue samples from a subcohort of 144 participants. Spearman correlation tests were performed,
followed by stepwise multivariable linear regression analyses to assess determinants of the exposure.

Detection frequencies and median concentrations were: BPA (86.8%, 0.54 ng/g tissue), BP-3 (79.2%, 0.60 ng/
g tissue), TCS (45.8%,< LOD), 2-PP (18.8%,< LOD), MeP (100.0%, 0.40 ng/g tissue), EtP (20.1%,< LOD) and
n-PrP (54.2%, 0.06 ng/g tissue). The remaining npEPs were detected in<10% of the samples. BPA, MeP, EtP
and n-PrP levels were significantly and positively correlated, while BP-3 showed a positive correlation with TCS
and 2-PP. Older participants showed higher concentrations of TCS and MeP, while BMI was inversely associated
with most of the analysed compounds and perceived recent weight loss was inversely associated with 2-PP.
Female participants and residents of rural areas had increased BP-3 concentrations. npEP concentrations were
positively associated with the consumption of fatty food but negatively associated with the consumption of
vegetables and fruit.

This study reveals the widespread presence of numerous npEPs in adipose tissue from adults in southern
Spain, suggesting a generalized distribution of these environmental compounds in fatty tissues. In these adults,
many of the determinants of npEP concentrations in adipose tissue were similar to those of more lipophilic and
persistent compounds.

1. Introduction

A substantial group of widely-used chemicals are suspected to exert

potential adverse effects on humans, including compounds to which
humans are daily exposed. In this context, increased attention has been
paid to non-persistent environmental pollutants (npEPs) such as
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phenols and parabens, given their generalized presence as industrial
pollutants or pesticide residues in food and other consumer items, in-
cluding personal care products (Guo and Kannan, 2013; Liao et al.,
2013a). The production of bisphenol-A (BPA) is one of the highest of
any synthetic chemical worldwide, with an estimated volume of 5.5
million tons in 2011 (QYResearch Group, 2015). This organic and
moderately lipophilic chemical is employed in the production of poly-
carbonate plastics and epoxy resins for water bottles, plastic containers,
dental sealants or cans for food and beverages, among many other
products (Geens et al., 2012a). Triclosan (TCS) is an antimicrobial
agent extensively used in toothpaste, disinfectants, detergents and
soaps, among numerous personal care products, meaning that human
exposure to TCS is highly frequent (CDC, 2017; Frederiksen et al., 2014;
Kim et al., 2011a). Benzophenone-3 (BP-3) belongs to a wide family of
UV-filters included in sunscreen formulations and in plastics and food-
packaging materials and also serves as a fragrance and flavour enhancer
(Calafat et al., 2008). Polychlorophenols [dichlorophenols (2,4-DCP
and 2,5-DCP), 2,4,5-trichlorophenol (2,4,5-TCP) and phenylphenols (2-
PP and 4-PP)] are pesticides and fungicides used primarily as a pre-
servative in citrus fruits after harvesting but also for vegetable pre-
servation. They are also applied to disinfect hospital and veterinary
equipment and are included in household products. 2-PP is also added
to food packaging and may migrate into the food (Coelhan et al., 2006).
Parabens [methylparaben (MeP), ethylparaben (EtP), n-propyl and
isopropylparaben (n-PrP and i-PrP), n-butyl and isobutylparaben (n-
BuP and i-BuP) and benzylparaben (BzP)] are alkyl esters of p-hydro-
xybenzoic acid. They are widely used as antimicrobial preservatives,
especially against mould and yeast, in cosmetics, pharmaceuticals, food
and beverages (Darbre and Harvey, 2008; Liao et al., 2013b; Ursino
et al., 2011).

Several in vitro and in vivo studies have reported estrogenic (Boberg
et al., 2010; Li et al., 2012; Perez et al., 1998) and/or antiandrogenic
activity of the above-mentioned xenobiotics (Bonefeld-Jorgensen et al.,
2007). However, complementary mechanisms of action have been de-
scribed for many of these compounds such as BPA, parabens or BP-3
(Asimakopoulos et al., 2016; Huang et al., 2017), including oxidative
status imbalance (Macczak et al., 2017; Tiwari and Vanage, 2017) and
induction of an inflammatory response (Elswefy et al., 2016). In addi-
tion, exposure in some population groups has been related to beha-
vioural and reproductive abnormalities (Braun et al., 2011; Fernández
et al., 2016; Lassen et al., 2014; Perez-Lobato et al., 2016) and chronic
diseases (Kim and Park, 2013; Lakind et al., 2014; Lang et al., 2008).

Exposure of the general population to these compounds can occur
via dermal, inhalational, or oral routes, including the intake of treated
or contaminated food (El Hussein et al., 2007; Hayden et al., 2005;
Vandenberg et al., 2007). Exposure to BPA or phenylphenols is con-
sidered to be largely dietary, whereas exposure to TCS, BP-3 and
parabens is mainly dermal (Søeborg et al., 2014). Orally ingested
compounds are usually converted into more hydrophilic derivatives,
whereas exposure via the skin may avoid this first-pass metabolism, so
that the parent compounds directly enter the bloodstream, increasing
their distribution to other tissues (Søeborg et al., 2014). Thus, it has
traditionally been assumed that environmental phenols and parabens
are excreted via urine within the first 24 h, but pharmacodynamic
studies suggest that a small fraction of administered chemicals may
remain within the organism (Stahlhut et al., 2009). Moreover, the log of
the octanol–water partition coefficient (Kow) of phenols and parabens
typically ranges from 1 to 5; therefore, they should be considered at
least partially lipophilic compounds that would potentially be dis-
tributed in adipose tissues, as reported in several studies (Artacho-
Cordón et al., 2017; Barr et al., 2012; Darbre et al., 2004; Fernandez
et al., 2007; Geens et al., 2012b; Wang et al., 2015). Urine and serum
concentrations are widely used in biomonitoring studies to estimate
exposure to these pollutants (Koch et al., 2012), but they have been
described as highly dependent on very recent exposure (within past few
hours), and multiple samples must often be taken at different time

points to correctly classify exposure to certain npEPs e.g. for BPA be-
cause of its low interclass correlation (Braun et al., 2012). Hence, there
are limitations in the utilisation of urine and serum concentrations to
estimate mid/long-term exposure to some of these compounds, a crucial
issue for the evaluation of associated health effects (Aylward et al.,
2017). In this regard, our group previously reported very low correla-
tion coefficients between concentrations of these compounds in adipose
tissue and those in spot urine or serum samples (Artacho-Cordón et al.,
2017). The present investigation was prompted by recent evidence
obtained in the GraMo cohort suggesting a role for certain xenobiotics
stored in adipose tissue in the development of chronic diseases such as
diabetes (Arrebola et al., 2013b), hypertension (Arrebola et al., 2015),
obesity (Arrebola et al., 2014b), metabolic syndrome (Mustieles et al.,
2017) and cancer (Arrebola et al., 2014a). Accordingly, the objective of
this study was to explore the distribution of a selection of non-persistent
environmental chemicals in adipose tissue samples from an adult hos-
pital-based cohort recruited in Southern Spain and to evaluate potential
determinants of the exposure.

2. Material and methods

2.1. Study population

The study population is a subsample of the GraMo cohort (Arrebola
et al., 2013a; Arrebola et al., 2010; Arrebola et al., 2009; Artacho-
Cordon et al., 2016). Participants were recruited between July 2003
and June 2004 among patients undergoing non-cancer-related surgery
at two public hospitals in Southern Spain separated by 70 km (San
Cecilio University hospital in Granada and Santa Ana Hospital in Mo-
tril). The economy of the city of Granada (urban, 240,000 inhabitants)
is mainly based on services (university and tourism), while Motril
(semi-rural, 50,000 inhabitants) is a small town on the Mediterranean
coast surrounded by extensive areas of intensive greenhouse agri-
culture. Study inclusion criteria were age over 16 years, absence of
diagnosed hormone-related disease or cancer and residence in one of
the two study areas for ≥10 years. Out of the 409 individuals initially
recruited, 387 agreed to participate in the study. npEP concentrations
were measured in a subgroup of participants with an adequate adipose
tissue sample available (n=144, 37.2%). No statistically significant
differences in baseline characteristics were found between the initial
(n=387) and final (n=144) study populations except for the higher
percentage of participants who were urban residents in the latter
(77.8% vs. 48.1% in the initial cohort) (Supplementary Table 1).

All participants signed their informed consent to participate in the
study, which was approved by the Ethics Committee of Granada (Comité
de Ética de la Investigación Biomédica de la Provincia de Granada).

2.2. Sample preparation and chemical analysis

Adipose tissue samples were intraoperatively collected and im-
mediately coded and stored in aliquots at −80 °C until analysis. Main
tissue sources were pelvic waist (46.5%), front abdominal wall (44.4%),
and limbs (9.0%). Environmental phenols and parabens were isolated
from approximately 100mg of adipose tissue samples following a pre-
viously validated methodology (Artacho-Cordón et al., 2017). Briefly,
samples were spiked with 25 μL of internal standard stock solution
(200 ng/mL, 13C12-TCS, 13C6-TCCB, 13C6-2,4,5-TCP, 13C6-2-PP, 13C6-n-
BuP, 13C6-BP-3, D4-EtP, D4-n-PrP, D8-BPA, D3-2,4-DCP, and D4-MeP)
and then centrifuged and left to equilibrate at room temperature for
30min. Sample extraction was performed in two steps. First, spiked
samples were immersed in acetone, mechanically homogenized with a
mixer, and then sonicated in an ultrasound bath for 10min after the
addition of 2mL methanol, followed by reduction of the total extract
volume to 2mL by evaporation under a gentle nitrogen stream at room
temperature. In a second step, lipids were removed by transferring the
remaining extract to a 2mL Eppendorf tube, which was kept at −15 °C
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for 15min and then centrifuged at 18213×g (at 4 °C) for 10min. Next,
the organic phase was transferred to a new glass tube, resuspended in
200 μL methanol/20% HCOOH (1:1)+ 300 μL of 1M ammonium
acetate buffer (pH 5.5) and centrifuged twice more to remove the re-
maining lipids. Finally, the supernatant was transferred to an HPLC vial
for liquid chromatography-tandem mass spectrometry (LC-MS/MS)
analyses. Nine npEPs and seven parabens (sum of unconjugated, de-
glucuronidated and desulfated compounds) were determined by Tur-
boFlow liquid chromatography-tandem mass spectrometry (LC-MS/
MS), as described elsewhere (Frederiksen et al., 2013a; Frederiksen
et al., 2011). For phenol analyses, the LC-MS/MS system was equipped
with an atmospheric pressure chemical ionization source (APCI) run-
ning in negative mode and the injection volume was 100 μL, while an
electrospray ion source (ESI) running in negative mode and injection
volume of 20 μL were used for analyses of parabens. Further data on the
flow rate, solvent programming and optimized instrument settings were
previously described in detail for both phenol and paraben methods
(Frederiksen et al., 2013a; Frederiksen et al., 2011).

Adipose samples were analysed in four batches over a period of six
weeks. Each batch included standards for calibration curves (injected at
beginning and end of each batch), 30–40 unknown samples, two blanks,
two adipose tissue pool controls and two adipose tissue pool controls
spiked at low and high levels, as previously described (Artacho-Cordón
et al., 2017). In the absence of synthetic adipose tissue, adipose tissue
pool samples were used as blanks, in addition to blanks without tissue.
All selected npEPs were below the LOD in pool samples except for MeP
and BP-3, whose concentrations were therefore subtracted to calculate
concentrations in real samples. The inter-day variation, expressed as the
relative standard deviation, was< 10%, while the recovery of spiked
samples ranged from 85.4 to 107.6% for all analytes at low and high
spike levels. Analyses were also repeated twice in a subset of samples to
identify and track unintended contamination with the target analytes
during handling in the laboratory, as reported elsewhere (Ye et al.,
2013). Reagents and standards used were shipped as previously de-
scribed (Artacho-Cordón et al., 2017). All reagents and solvents were of
analytical, HPLC or MS grade, and all chemicals and laboratory
equipment were tested for contamination before utilisation.

2.3. Sociodemographic and dietary information

Face-to-face interviews were conducted by trained interviewers
during the hospital stay, gathering data on sociodemographic char-
acteristics, lifestyle and dietary habits. Questionnaires and research
procedures were standardised and validated in a pilot study with 50
subjects. Body mass index (BMI) was expressed as weight/height
squared (kg/m2). Distances from industry and agriculture and the
number of years working in these sectors were gathered. Self-reported
weight loss during the previous year was recorded as a dichotomous
variable. A subject was considered a smoker (past or present) with any
level of daily tobacco consumption (≥1 cig/day).

In a dietary section to assess food habits and eating behaviour,
subjects indicated the frequency of their consumption of the following
food groups: meat, fats (oil, butter and/or margarine), fish, eggs,
cheese, bread, pasta, pulses, vegetables and fruit. The frequency of food
consumption was gathered in four categories (< 1 portion/week,
1 portion/week, 2–6 portions/week, or> 7 portions/week) that were
then recoded when a trend was detected to minimise the number of
parameters in models.

2.4. Statistical analysis

In the descriptive analysis, npEP concentrations (ng/g tissue) were
expressed as means with standard deviation (SD); 25th, 50th, 75th and
95th percentiles; and minimum and maximum concentrations. Adipose
tissue concentrations of npEP below the LOD were assigned a value of
LOD/√2. Spearman's test was used to evaluate monotonic correlations

between different npEPs in adipose tissue.
All npEP concentrations were log-transformed to minimise the in-

fluence of extreme values; therefore, β coefficients are also presented as
exp(β). Potential predictors of adipose tissue concentrations of en-
vironmental phenols and parabens were assessed by multivariable
linear regression analysis using a combination of backward and forward
stepwise multiple linear regression. Determinants of npEPs for
which<75% of samples were above the LOD were considered as di-
chotomous variables (< LOD/> LOD), and predictors were evaluated
using multivariable logistic regression models. Age, gender, BMI, study
area and educational level were always kept in the analyses, regardless
of their statistical significance, given published evidence of their po-
tential association. In addition, the final models were further adjusted
for adipose tissue source. The significance level was set at p=0.05, and
all tests were two-tailed. R statistical computing environment 3.0
(http://www.r-project.org/) and SPSS Statistics 22.0 (IBM, Chicago, IL)
were used for data analyses.

3. Results and discussion

3.1. Baseline characteristics of study participants

Table 1 summarises the main characteristics of the study popula-
tion. The mean (± SD) age of the 144 participants was 52.3 (± 17.8)
years. There was a slightly higher proportion of males than females
(61.1 vs. 38.9%) and of overweight/obese than normal weight in-
dividuals (66.7 vs. 33.3%). Almost half of the population (44.4%) re-
ported weight loss during the previous year; 32 participants (22.2%)
lived in the semirural area, 102 (70.8%) had at least primary studies
and 55 (38.2%) were smokers at recruitment.

> 70% of participants declared the consumption at least twice
weekly of fish, vegetables and fruit, while 66 (45.8%), 90 (62.5%), 71
(49.3%) and 43 (29.9%) participants reported the consumption at least
twice weekly of cheese, meat, pulses and eggs, respectively. Nearly 10%
and 90% of participants reported the daily consumption of fats and
bread, respectively, while three-quarters of the population consumed
pasta once per week or less.

3.2. Concentrations of environmental phenols and parabens in adipose
tissue

All analysed samples were positive for ≥1 of the selected xeno-
biotics, and the majority of samples (n=87, 60.4%) were positive for
≥4 compounds (Fig. 1). Frequencies of detection and adipose tissue
npEP concentrations are reported in Table 2. With regard to environ-
mental phenols, detectable levels of BPA, BP-3, TCS and 2-PP were
found in 86.8%, 79.2%, 45.8% and 18.8% of the analysed samples,
respectively, with median concentrations of 0.54 ng/g tissue for BPA
and 0.36 ng/g tissue for BP-3. Detectable levels of 2,4-DCP were ob-
served in 9 out of 144 samples and TCCB in 2. Regarding parabens, MeP
was detected in all adipose tissue samples, while n-PrP and EtP were
detected in 54.2% and 20.1%, respectively, with a median concentra-
tion of 0.40 ng/g tissue for MeP and 0.06 ng/g tissue for n-PrP. n-BuP
and i-BuP concentrations above LOD were recorded in 8 and 3 of the
144 samples, respectively. Thus, these results confirm the presence of
these xenobiotics in the adipose tissue of a relatively large population
sample. A wide variability in exposure levels was found among parti-
cipants, with some samples showing 10 to 50-fold higher levels than the
median level in the population. 2,5-DCP, 2,4,5-TCP, 4-PP, iPrP and BzP
were not detected in any of the samples.

This research also represents the largest study to date on the adipose
tissue burden of environmental phenols and parabens in a human co-
hort. Only a few studies (summarised in Supplementary Table 2) pre-
viously analysed adipose tissue concentrations of these npEPs, and their
sample sizes were relatively small (Artacho-Cordón et al., 2017; Barr
et al., 2012; Darbre et al., 2004; Fernandez et al., 2007; Geens et al.,
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2012b; Wang et al., 2015). The detection frequency of BPA in our series
was similar to that observed by Geens et al. (2012b) (100%) and Wang
et al. (2015) (90.0%), but the median adipose tissue BPA concentration
(0.54 ng/g tissue) was lower than reported in populations from the
USA, Belgium and Spain (Fernandez et al., 2007; Geens et al., 2012b;
Wang et al., 2015). BP-3 was detected in the large majority of adipose

tissue samples (79.2%), as in our pilot study (Artacho-Cordón et al.,
2017) and in agreement with Wang et al. (2015), but the geometric
mean concentration was markedly lower than in the latter study (0.36
vs. 43.4 ng/g tissue, respectively). The detection frequency (45.8%) of
TCS in our population were similar to those reported by Geens et al.
(2012b), who detected TCS in nearly half of their samples. By contrast,
Wang et al. (2015) found detectable TCS levels in all samples from
adults in the USA (n=20). The lack of similar studies hampers com-
parisons with other populations in the detection frequencies and con-
centrations of the remaining environmental phenols (2-PP, 2.5-DCP,
2.4.5-TCP, 4-PP and 2.4-DCP).

In relation to parabens, MeP was detected in all the samples from
our cohort, similar to the finding by Barr et al. (2012) in a UK popu-
lation but much higher than the frequency of 25% reported by Wang
et al. in the USA (Wang et al., 2015). Median MeP adipose tissue con-
centrations (0.40 ng/g tissue) were markedly lower than those observed
by Barr et al. (2012). n-PrP, EtP and BuP were detected in> 50%,>
20% and>5% of adipose tissue samples, respectively, in agreement
with most studies that assessed exposure to parabens in other biological
matrices (de Renzy-Martin et al., 2014; Frederiksen et al., 2013b;
Jiménez-Díaz et al., 2016; Philippat et al., 2012). However, Barr et al.
(2012), Darbre et al. (2004) and Wang et al. (2015) reported higher
detection frequencies for EtP than for n-PrP in adipose tissue. The
median adipose tissue n-PrP concentration in the present adult cohort
was lower than was observed by Barr et al. (2012) in 40 breast adipose
tissue samples from women with primary breast cancer. These findings
might be partially explained by sociodemographic, dietary and lifestyle
differences in the target populations, although further research is
needed to clarify this issue.

Higher levels of BPA, BP-3 and MeP were found in the adipose tissue
from limbs, although only 13 individuals were in this category
(Supplementary Table 3). Additionally, samples collected from the
pelvic waist showed 2-fold higher n-PrP concentrations in comparison
to the other sources.

Table 3 displays the results of correlation tests between pairs of
xenobiotics in the adipose tissue samples, showing positive correlations
between pairs of parabens (Spearman ρ ranging from 0.273 to 0.595,
p < 0.001). Similar results were found in previous studies of urine
samples, indicating that these parabens might share sources of exposure
(Jiménez-Díaz et al., 2016; Larsson et al., 2014). BPA was positively
associated with both MeP and n-PrP (ρ=0.384 and 0.201, respec-
tively) in the present study, and these correlations have not been found
in other biological matrices (Frederiksen et al., 2013b; Jiménez-Díaz
et al., 2016). Finally, positive correlations were found among BP-3, TCS
and 2-PP (ρ ranging from 0.188 to 0.419, p < 0.05). Our group pre-
viously found no correlation between adipose tissue concentrations of
selected npEPs and their urine or serum concentrations, with the ex-
ception of BP-3 (Artacho-Cordón et al., 2017), suggesting that adipose
tissue concentrations of npEPs might offer different information from

Table 1
Characteristics of the study population (n=144).

n (%)

Age (years)a 52.3± 17.8
Gender
Female 56 (38.9)
Male 88 (61.1)

Body mass index (Kg/m2)
Normalweight (18–25 kg/m2) 48 (33.3)
Overweight/obese (> 25 kg/m2) 96 (66.7)

Study area
Semi-rural 32 (22.2)
Urban 112 (77.8)

Educational level
Without studies 42 (29.2)
Primary studies 69 (47.9)
Secondary school/university 33 (22.9)

Recent weight loss 64 (44.4)
Menopausal status (only women)
Premenopausal 22 (39.3)
Postmenopausal 34 (60.7)

Accumulated lactation time (years)a

(only women) 0.5 ± 0.4
Current smoker 55 (38.2)
Residential distance to industry

<100m 27 (18.8)
≥100m 117 (81.3)

Working in industry in the last 10 years
Yes 22 (15.3)
No 122 (84.7)

Residential distance to agriculture
<100m 68 (47.2)
≥100m 76 (52.8)

Working in agriculture (accumulated years)a 0.2 ± 1.2
Fish consumption

<2 portions/week 42 (29.2)
≥2 portions/week 102 (70.8)

Oily fish consumer 103 (71.5)
White fish consumer 106 (73.6)
Cheese consumption
≤2 portions/week 76 (52.8)
>2 portions/week 66 (45.8)

Meat consumption
≤2 portions/week 51 (35.4)
>2 portions/week 90 (62.5)

Fat consumption
>1 portion/day 127 (88.2)
Everyday 14 (9.7)

Pulse consumption
≤2 portions/week 73 (50.7)
>2 portions/week 71 (49.3)

Egg consumption
≤2 portions/week 101 (70.1)
>2 portions/week 43 (29.9)

Bread consumption
>1 portion/day 9 (6.3)
Everyday 135 (93.8)

Pasta consumption
≤1 portion/week 108 (75.0)
>1 portion/week 36 (25.0)

Vegetable consumption
≤1 portion/week 41 (28.5)
2 portions/week 43 (29.9)
>2 portions/week 60 (41.7)

Fruit consumption
≤2 portions/week 26 (18.1)
>2 portions/week 118 (81.9)

Organic food consumer 52 (36.1)

a Mean ± standard deviation.
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Fig. 1. Frequency of detection of npEPs in adipose tissue from the study po-
pulation.
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those measured in urine or serum. Further research is warranted to
explore this possibility.

Comparison with other studies should be made with care, given
their limited sample sizes and the reduced number of compounds as-
sessed, which also hampers the elucidation of the real internal npEP
levels of the general population. Discrepancies among studies may also
be explained, at least in part, by differences in sociodemographic
variables and dietary habits, among others.

3.3. Determinants of the concentrations of environmental phenols and
parabens in adipose tissue

Sociodemographic and dietary determinants of the adipose tissue
npEP concentrations are shown in Table 4 (linear regression models for
BPA, BP-3 and MeP) and Table 5 (logistic regression models for TCS, 2-
PP, EtP and n-PrP).

A quadratic relationship was observed between age and adipose
tissue TCS concentrations and a positive association close to statistical
significance between age and adipose tissue MeP concentrations (p-
value=0.060). Numerous publications in the past decade have re-
ported higher urinary levels of BPA and parabens in younger adults,
likely reflecting their greater use of personal care products (Engel et al.,
2014; Jiménez-Díaz et al., 2016; Larsson et al., 2014). Conversely, in-
creased adipose tissue MeP and TCS concentrations were observed in
the older participants, similar to various observations on several per-
sistent organic pollutants (Agudo et al., 2009; Artacho-Cordón et al.,
2015a; Artacho-Cordón et al., 2015b; Ibarluzea et al., 2011). Indeed,
previous studies suggested that npEPs may not be completely excreted,
with part of them being retained in certain body compartments (Aubert
et al., 2012; Doerge et al., 2012; Stahlhut et al., 2009). In this regard, a
pharmacokinetic study revealed that unconjugated BPA levels remained

up to 20 h in the adipose tissue, whereas serum concentrations are ra-
pidly converted (< 5 h) into the nonestrogenic BPA monoglucuronide
isoform (Doerge et al., 2012). Regarding parabens, pharmacokinetic
studies in rats also revealed that 2% of total parabens was retained in
several body tissues after subcutaneous administration (Aubert et al.,
2012). Nevertheless, the positive association with age might be also a
consequence of a lower metabolic activity in older individuals, which
may delay the metabolism and clearance of these chemicals.

The higher adipose tissue BP-3 concentrations in the females than in
the males are consistent with most studies on human exposure to en-
vironmental phenols and parabens (Engel et al., 2014; Smith et al.,
2012), attributable to the presence of this compound in cosmetics and
other personal care products that are more frequently used by women.
More studies accounting for the use of specific personal care products
are warranted in order to confirm this hypothesis.

It has been postulated that BPA and other npEP compounds are
obesogens, i.e., promote adipogenesis (Grün and Blumberg, 2007),
implying that the BMI of individuals would be higher with greater ex-
posure. In the present study, 2-PP concentrations were lower in in-
dividuals perceiving significant weight loss over the previous
12months than in those who did not, (Artacho-Cordón et al., 2015b).
Although the mechanisms involved are not fully understood, the ne-
gative influence of weight loss on adipose tissue concentrations of xe-
nobiotics may be related to their release during fat mobilisation, en-
hancing their exchange between different body compartments and
therefore facilitating their elimination (De Roos et al., 2012; Kim et al.,
2011b).

In addition, an inverse relationship close to statistical significance
was observed between BMI and adipose tissue concentrations of BPA,
TCS and 2-PP (0.060 < p-value < 0.090). It has been reported that
severe obesity has a potential dilution effect on lipophilic chemicals,
whose concentration may be decreased with increased adipose tissue
volume (La Merrill and Birnbaum, 2011). This may lead to the detection
of a negative association between exposure to obesogens and BMI when
exposure estimates are based on adipose tissue concentrations (Smith
et al., 2012).

Adipose tissue BPA and MeP concentrations were higher in the
participants with more schooling, while residents of the semi-rural
coastal area showed higher BP-3 and n-PrP concentrations that ap-
proached statistical significance (p-value=0.095 and p-value=0.050,
respectively). Detectable adipose tissue concentrations of 2-PP were
found in samples from participants who had worked in agriculture for a
longer time, while elevated EtP concentrations were found in samples
from those living at a distance from agricultural land and in those who

Table 2
Levels of npEPs in adipose tissue (n=144) (ng/g tissue).

LOD % > LOD Percentiles Max

25th 50th 75th 95th

Phenols BPA 0.143 86.8 0.23 0.54 0.95 3.25 7.88
TCS 0.732 45.8 < LOD <LOD 1.23 2.32 14.34
TCCB 0.918 1.4 < LOD <LOD <LOD <LOD 1.31
BP-3 0.178 79.2 0.21 0.36 0.60 3.31 40.05
2.4-DCP 0.102 6.3 < LOD <LOD <LOD 0.13 0.31
2.5-DCP 1.830 0.0 < LOD <LOD <LOD <LOD <LOD
2.4.5-TCP 0.486 0.0 < LOD <LOD <LOD <LOD <LOD
2-PP 0.100 18.8 < LOD <LOD <LOD 0.28 0.46
4-PP 1.310 0.0 < LOD <LOD <LOD <LOD <LOD

Parabens MeP 0.057 100.0 0.22 0.40 0.71 1.32 4.45
EtP 0.060 20.1 < LOD <LOD <LOD 0.13 2.99
i-PrP 0.049 0.0 < LOD <LOD <LOD <LOD <LOD
n-PrP 0.046 54.2 < LOD 0.06 0.14 0.38 15.19
i-BuP 0.060 2.1 < LOD <LOD <LOD <LOD 1.36
n-BuP 0.075 5.6 < LOD <LOD <LOD 0.12 2.74
BzP 0.052 0.0 < LOD <LOD <LOD <LOD <LOD

LOD: limit of detection: SD: standard deviation.

Table 3
Spearman correlation coefficients between pairs of npEPs in adipose tissue.

BPA TCS BP-3 2-PP MeP EtP n-PrP

BPA –
TCS 0.094 –
BP-3 0.045 0.419⁎⁎ –
2-PP 0.063 0.188⁎ 0.272⁎⁎ –
MeP 0.384⁎⁎ 0.097 −0.062 0.089 –
EtP 0.132 0.146 −0.009 0.128 0.273⁎⁎ –
n-PrP 0.201⁎ 0.075 −0.015 0.072 0.314⁎⁎ 0.595⁎⁎ –

⁎ p < 0.05.
⁎⁎ p < 0.01.
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had been worked in industry for longer. Given that 2-PP is a fungicide
used in fruit and vegetable faming (Blasco et al., 2002), these results
may indicate occupational exposure to 2-PP. We highlight the elevated
intensive greenhouse agricultural activity in Southern Spain, in which
pesticides are concentrated in an enclosed space under high humidity
and temperature conditions with inadequate or no air renewal (Olea-
Serrano et al., 1999), facilitating contamination of the workers and the
foods.

Regarding dietary habits, the consumption of fatty food proved to
be a relevant predictor of adipose tissue concentrations of npEPs in this
cohort. Specifically, the daily consumption of butter and/or margarine
was positively associated with adipose tissue TCS, BPA and EtP con-
centrations, while the consumption of fish was positively associated
with adipose tissue 2-PP concentrations. Adipose tissue BPA con-
centrations were higher in participants declaring the consumption of
oily fish, although the association did not reach statistical significance
(p-value=0.096), while BP-3 concentrations were higher in those de-
claring the consumption of white fish. A positive trend approaching
statistical significance (p-value=0.074) was also detected for BP-3
concentrations among cheese consumers. In this context, higher urinary
BPA and parabens concentrations have been associated with an ele-
vated consumption of fat, fish, or poultry (Larsson et al., 2014; Mervish
et al., 2014). These studies did not distinguish between chemicals de-
rived from the food itself (these foodstuffs are rich in fat) or leached
from the plastic containers in which the food is usually bought. The few
studies that have examined npEP levels in dietary items have published
some evidence pointing to fish as a relevant source of BPA exposure
(Corrales et al., 2015; Lindholst et al., 2001; Yang et al., 2014). Ad-
ditionally, a global presence of parabens has been reported in several
foodstuffs examined in the USA and China (Liao et al., 2013a; Liao
et al., 2013b). MeP concentrations were increased in participants de-
claring the weekly consumption of bread, while a close to significant
relationship was found between 2-PP concentrations and higher pasta
consumption (p-value= 0.066). Higher urinary concentrations of
npEPs were previously reported in consumers of grains and flour
(Mervish et al., 2014), while it has also been hypothesised that these
chemicals may migrate into these foods from their antibacterial plastic
packaging (Jiménez-Díaz et al., 2016; Lu et al., 2014).

Finally, the consumption of vegetables was associated with lower
adipose tissue 2-PP concentrations, while the consumption of fruit was
associated with lower EtP concentrations, similar to previous findings
in urine samples (Mervish et al., 2014). Interestingly, the participants
reporting a diet based on organic food also showed lower concentra-
tions of 2-PP (p-value=0.064), which may reflect the reduced use of
chemicals in organic agriculture.

Regarding the adipose tissue source, it was only related to n-PrP
concentrations, although the association was only close to statistical
significance (p-value=0.063). This is of interest given previous find-
ings of no significant differences in paraben adipose tissue concentra-
tions among four different regions of the breast, with the exception of
higher levels of n-PrP in axilla versus mid or medial regions (Barr et al.,
2012).

Our study has several limitations. It is a hospital-based study and
therefore not entirely representative of the general adult population in
the study area. In addition, although our research is the largest in-
vestigation of adipose tissue npEPs to date, the limited sample size may
preclude detection of a wider range of associations. Furthermore, given
the cross-sectional study design and the lack of information on the
contribution of recent exposures to the adipose tissue burden of npEPs,
we cannot rule out reverse-causality in some associations. Data were
not available on the use of cosmetics and personal care products by our
cohort, although information gathered on other variables (e.g., occu-
pation, social class and schooling) may help to identify population
subgroups characterized by the use of these products.

To the best of our knowledge, this study is among the very first to
contribute evidence on the distribution and predictors of environmental
phenols and parabens in adipose tissue from an adult cohort, showing
the widespread presence of certain npEPs in the fat compartment. We
consider these results of special interest to public health, given the in-
creasing importance of adipose tissue as a biologically-active matrix,
highly relevant in the development of chronic diseases (Kershaw and
Flier, 2004). Further research on the potential health implications of
our findings is currently being addressed in the GraMo cohort.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2018.05.052.

Table 4
Determinants of npEP adipose tissue concentrations. Multivariate linear regression analyses.

BPA BP-3 MeP

β exp(β) 95%CI p-value β exp(β) 95%CI p-value β exp(β) 95%CI p-value

Age 0.00 1.00 0.99 1.02 0.467 0.00 1.00 0.99 1.01 0.671 0.01 1.01 1.00 1.02 0.060 ⁎

Gender=malea 0.00 1.00 0.70 1.43 0.994 −0.46 0.63 0.43 0.93 0.021 ⁎⁎ 0.00 1.00 0.76 1.32 0.998
BMI (kg/m2) −0.03 0.97 0.94 1.00 0.086 ⁎ −0.02 0.98 0.95 1.02 0.284 −0.02 0.98 0.95 1.01 0.110
Study area= semi-ruralb 0.23 1.26 0.83 1.92 0.282 0.36 1.44 0.94 2.20 0.095 ⁎ 0.17 1.18 0.85 1.64 0.322
Educational level= up to primaryc 0.27 1.31 0.84 2.05 0.238 −0.06 0.94 0.60 1.47 0.791 0.21 1.23 0.88 1.72 0.218
Oily fish consumption= yesd 0.34 1.40 0.94 2.08 0.096 ⁎ – – – – – – – – – –
White fish consumption=yese – – – – – 0.43 1.54 1.01 2.33 0.045 ⁎⁎ – – – – –
Fat consumption (oil, butter, margarine)= dailyf 0.62 1.85 1.04 3.30 0.036 ⁎⁎ – – – – – – – – – –
Current/former smoker= yesg – – – – – 0.40 1.49 1.02 2.18 0.039 ⁎⁎ – – – – –
Cheese consumption=dailyh – – – – – 0.40 1.49 0.96 2.31 0.074 ⁎ – – – – –
Bread consumption > 1 portion/weeki – – – – – – – – – – 0.65 1.92 1.00 3.70 0.050 ⁎⁎

CI: confidence intervals.
Only statistically significant variables were included in the models, with the exception of age, gender, BMI, study area and educational level.

a Reference category= female.
b Reference category=Granada.
c Reference category=without studies.
d,e Reference category=No.
f Reference category=≤2 portions/week.
g Reference category=≤1 portion/week.
h Reference category≤1 portion/day.
i Reference category≤1 portion/week.
⁎ p < 0.10.
⁎⁎ p < 0.05.
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