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Abstract

�-lactamases are produced by many modern bacteria as a mechanism of resistance toward �-lactam antibiotics, the most
common antibiotics in use. �-lactamases, however, are ancient enzymes that originated billions of years ago. Recently,
proteins corresponding to 2- to 3-Gy-old Precambrian nodes in the evolution of Class A �-lactamases have been prepared
and shown to be moderately efficient promiscuous catalysts, able to degrade a variety of antibiotics with catalytic
efficiency levels similar to those of an average modern enzyme. Remarkably, there are few structural differences (in
particular at the active-site regions) between the resurrected enzymes and a penicillin-specialist modern �-lactamase.
Here, we propose that the ancestral promiscuity originates from conformational dynamics. We investigate the differences
in conformational dynamics of the ancient and extant �-lactamases through MD simulations and quantify the contri-
bution of each position to functionally related dynamics through Dynamic Flexibility Index. The modern TEM-1 lacta-
mase shows a comparatively rigid active-site region, likely reflecting adaptation for efficient degradation of a specific
substrate (penicillin), whereas enhanced deformability at the active-site neighborhood in the ancestral resurrected
proteins likely accounts for the binding and subsequent degradation of antibiotic molecules of different size and
shape. Clustering of the conformational dynamics on the basis of Principal Component Analysis is in agreement with
the functional divergence, as the ancient �-lactamases cluster together, separated from their modern descendant. Finally,
our analysis leads to testable predictions, as sites of potential relevance for the evolution of dynamics are identified and
mutations at those sites are expected to alter substrate-specificity.
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Introduction
It is widely acknowledged that, in many cases, biological func-
tion may not be fully understood on the basis of a single static
3D protein structure. Indeed, experimental and computa-
tional studies have made increasingly clear that conforma-
tional dynamics of protein structures often underlies
fundamental molecular phenomena related to biological
function, such as enzyme catalysis and molecular recognition
(Doucet et al. 2007; Henzler-Wildman et al. 2007; Bahar et al.
2010; Leone et al. 2010; Glembo et al. 2012; Liberles et al. 2012;
Sikosek and Chan 2014). It appears plausible then that dy-
namic features required for function are a product of natural
selection, a possibility supported by a number of careful com-
putational studies (Pang et al. 2005; Carnevale et al. 2006;
Maguid et al. 2006; Hollup et al. 2011; Glembo et al. 2012;
Micheletti 2013; Sikosek and Chan 2014). A particularly inter-
esting possibility in this context is that conformational dy-
namics plays an important role in protein promiscuity,
roughly, the capability of proteins to perform several more
or less related molecular tasks. Experimental studies have
shown beyond doubt that many proteins are able to perform

several functions (Copley 2003; Khersonsky et al. 2006; Babtie
et al. 2010; Khersonsky and Tawfik 2010; Garcia-Seisdedos
et al. 2012; Duarte et al. 2013). In some cases, the protein is
found to display one clearly defined primary function to-
gether with several low-level “promiscuous activities.” Yet in
other cases (e.g., detoxifying enzymes [Zhang et al. 2012]), the
protein can efficiently perform several related functions
(involving similar chemical transformations and/or sub-
strates) or even clearly different tasks associated with different
molecular surfaces or active sites, the so-called protein
“moonlighting.” It appears reasonable to expect that a special
feature of dynamics in functionally relevant protein regions
(e.g., conformational diversity, active-site “flexibility,” or
“deformability,” leading to the capability to stabilize different
substrates, transition states of leaving groups) may be associ-
ated with many cases of protein promiscuity (Khersonsky
et al. 2006; Babtie et al. 2010; Khersonsky and Tawfik 2010;
Lopez-Canut et al. 2011; Garcia-Seisdedos et al. 2012; Fornili
et al. 2013).

The phenomenon of protein promiscuity has important
implications both for protein engineering (Kazlauskas 2005;
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Nobeli et al. 2009) and for the understanding of molecular
evolution (Khersonsky et al. 2006; Babtie et al. 2010;
Khersonsky and Tawfik 2010; Garcia-Seisdedos et al. 2012;
Duarte et al. 2013). Low, yet significant promiscuous activity
levels are often required as a starting point for the directed
evolution of high levels of targeted functions of biotechno-
logical interest. Thus, promiscuity is thought to play an es-
sential role in the evolutionary development of new
functions. Furthermore, even if some modern enzymes are
highly efficient specialists, primordial enzymes were likely pro-
miscuous generalists (Jensen 1976; O’Brien and Herschlag
1999; Khersonsky et al. 2006; Babtie et al. 2010; Khersonsky
and Tawfik 2010; Garcia-Seisdedos et al. 2012; Duarte et al.
2013). Many proteins have therefore evolved from generalists
into specialists during the course of evolution. Although the
molecular mechanisms behind such evolutionary conversions
remain poorly understood, we propose that they may be
determined to some extent by changes in protein dynamics
(Glembo et al. 2012). Certainly, this proposal cannot be tested
on the basis of the comparative analysis of modern, evolu-
tionary related proteins, as they do not include the hypothet-
ical promiscuous ancestor. However, recent experimental
work (Risso et al. 2013; Risso, Gavira, Gaucher, et al. 2014;
Risso, Gavira, Sanchez-Ruiz 2014) on the laboratory resurrec-
tion of the ancestors of enzymes involved in antibiotic resis-
tance has recapitulated in the laboratory the evolutionary
conversion of generalists into specialist enzymes and demon-
strated that such conversion may take place with little change
in static X-ray structures, thus suggesting a role for dynamics.
As explained below in detail, this recent work on antibiotic
resistance proteins (Risso et al. 2013; Risso, Gavira, Gaucher,
et al. 2014; Risso, Gavira, Sanchez-Ruiz 2014) provides a
unique opportunity to explore the relation among promiscu-
ity, conformational dynamics, and evolution in proteins.

Antibiotic resistance is one of the most serious threats to
public health. Bacteria are becoming less and less susceptible
to the currently available antibiotics, whereas the develop-
ment of new antibiotics is becoming more and more difficult
and expensive. It is urgent to understand the evolution of
antibiotic resistance in order to continually combat bacterial
infection (Livermore 1995; Levy and Marshall 2004; Cant�on
and Coque 2006; Pitout and Laupland 2008; United States
Centers for Disease Control and Prevention 2013). Indeed,
antibiotic resistance is an ancient phenomenon and resis-
tance genes have been found in uncontaminated environ-
ments, such as Alaskan soil (Allen et al. 2009), sediments
from the bottom of pacific ocean (Toth et al. 2010), and
even 30,000-year-old Beringian permafrost sediments
(D’Costa et al. 2011). �-Lactamases in particular probably
originated more than 2 Ga, and some of them have been in
plasmids for millions of years. To understand the evolution of
�-lactamases as well as the evolutionary origin antibiotic re-
sistance, we recently performed an ancestral sequence recon-
struction exercise targeting the following Precambrian nodes:
The last common ancestor of enterobacteria (ENCA), the last
common ancestor of gamma-proteobacteria (GPBCA), the
last common ancestor of various Gram-negative bacteria
(GNCA), and the last common ancestor of Gram-positive

and Gram-negative bacteria (PNCA) (Risso et al. 2013).
These ancestors inhabited Earth about 1 Ga (ENCA), 1.5 Ga
(GPBCA), 2 Ga (GNCA), and 3 Ga (PNCA) based on the
estimates of divergence times. The protein sequences of
those ancestors were derived through Bayesian Maximum
Likelihood approach in a phylogenetic framework, targeting
the Precambrian nodes in the evolution of Class A �-lacta-
mases. The sequence identities of these ancestral proteins
range from 53% to 79% in pairwise alignments with TEM-1
�-lactamase, one of their modern descendants. However, de-
spite the significant variations in sequence, they share the
canonical lactamase fold and no significant differences are
observed at the active site positions when comparing with
the extant TEM-1 �-lactamase. More interestingly, labora-
tory-resurrected �-lactamases corresponding to 2- to 3-Gy-
old nodes are highly stable with melting temperate (Tm)
about 35� higher than most modern lactamases (Risso et al.
2013). Additionally, they can degrade a variety of antibiotics in
vitro with levels of catalytic efficiency similar to that of an
average modern enzyme, whereas the modern TEM-1
�-lactamase is clearly a penicillin specialist (Risso et al.
2013). These results supported the thermophilicity of
Precambrian life and provided evidence for the evolutionary
conversion of generalists into specialists proposed by Jensen
(1976) many years ago.

To summarize, laboratory resurrections of Precambrian
�-lactamases show dramatically enhanced stability and sub-
strate-promiscuity when compared with some modern dece-
dents, and yet they have very similar 3D structures (Risso et al.
2013, 2014). This prompts the question whether conforma-
tional dynamics can provide mechanistic insights about the
evolution of �-lactamases. Our approach to probe the rela-
tion between substrate promiscuity and dynamics in �-lacta-
mases is based upon the increasingly accepted view that
native proteins are to be described as ensembles of more or
less diverse conformations. In fact, computational and exper-
imental studies support the notion that, in many cases of
substrate promiscuity, the conformations responsible for
the different interactions pre-exist in equilibrium in the unli-
gated protein (Pang et al. 2005; Tobi and Bahar 2005; Gerek
et al. 2009; Bahar et al. 2010; Gerek and Ozkan 2010; Kar et al.
2010; Khersonsky and Tawfik 2010). This relation between
protein interactions and protein dynamics is actually that
embodied in the so-called conformational selection model,
which has received considerable attention in recent years
(Tobi and Bahar 2005; Boehr et al. 2009; Changeux and
Edelstein 2011; Munz et al. 2012; Vogt and Di Cera 2012).
Inspired by these views, we picture the lactamase molecule in
vivo as undergoing transitions between different conforma-
tions triggered by random interactions with surrounding sol-
vent molecules, other macromolecules, and so forth. We
simulate computationally these random events on the basis
of the Perturbation Response Scanning (PRS), which relies on
sequentially applying an external random force (i.e., a
Brownian kick) on a single residue and recording of the re-
sponse of other residues (Ikeguchi et al. 2005; Atilgan C
and Atilgan AR 2009; Atilgan et al. 2010; Gerek and Ozkan
2011). The PRS results allow us to calculate a metric called
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Dynamic Flexibility Index (dfi) that measures the resilience of
each given residue to perturbation (Gerek et al. 2013). The
special dynamics associated with substrate promiscuity
should be revealed by patterns of high dfi values in regions
close to the active site revealing the deformability required for
the binding and catalysis of different ligands. That is, these
specific dfi patterns would support that the protein exists as
an ensemble of conformations displaying the structural var-
iability in the active site region required for efficient binding of
substrates of different sizes and shapes. It is relevant to note at
this point that, in our recent proposal of the dfi metric in PRS,
an Elastic Network Model (ENM) was used to compute the
dynamics (Gerek et al. 2013). ENMs describe the protein mol-
ecule as a network of nodes connected by uniform springs
and have been shown to provide a computationally efficient
approach to the calculation of dynamic features that depend
on native contact topology, that is, the structure-encoded
dynamics (Bahar et al. 2010). However, we are interested
here in exploring the differences in dynamics between pro-
teins (ancestral and extant �-lactamases) that share essen-
tially the same static 3D structure as determined by X-ray
crystallography. Therefore, we need to go beyond the first-
degree approximation (structure-encoded dynamics) and
specifically account for the sequence-encoded dynamics
within a given structure. To this end, in our application of
PRS, we replace the hessian matrix derived from an ENM
model with covariance matrices calculated from replica-ex-
change molecular dynamics (REMD) simulations performed
with each specific protein.

The outline of the computational studies reported here is
therefore as follows. The three ancestral �-lactamases (corre-
sponding to the nodes PNCA, GNCA, and ENCA) and a
modern descendant (TEM-1) are simulated using reservoir
REMD (r-REMD), an efficient simulation technique incorpo-
rating geometric simulation with REMD algorithm (Roitberg
et al. 2007). The simulations provide us with the fundamental
dynamics information of those �-lactamases. As we describe
in detail further below, the analysis of residue fluctuations
indicates that the ancient lactamases are more deformable
than TEM-1 lactamase. Furthermore, the results of these MD
simulations are used as a basis of a PRS analysis on each
�-lactamase from which dfi profiles are calculated. Overall,
the conformational dynamics of individual �-lactamases
shows changes that are in agreement with the functional
divergence: Although the dfi distributions of PNCA and
GNCA lactamases are similar to each other and distinctively
separated from the functionally divergent TEM-1 lactamase,
ENCA lactamase (the most substrate-specific ancient
�-lactamase) shows a dfi distribution more similar to that
of TEM-1 lactamase. Moreover, TEM-1 lactamase has a
more rigid catalytic pocket, suggesting that the shape of the
pocket has also evolved toward a specific target, as the catal-
ysis becomes penicillin-specific. Finally, we also analyze the
statistical pattern of their dynamics profiles using singular
value decomposition (SVD), which enhances the signal-to-
noise ratio of the data by expressing them as a linear combi-
nation of a few dominant principal components. On the basis
of their pairwise distances in the subspace of principal

components, a cladogram is constructed to illustrate the evo-
lutionary relationship of these �-lactamases in terms of
dynamics. Furthermore, through SVD, we identify likely can-
didates for mutations that are critical for the dynamics diver-
gence among �-lactamases. Changes of the dynamics caused
by mutations at those critical sites might potentially lead to
the change of the substrate-specificity of the protein. In sum-
mary, our findings suggest that divergent evolution of con-
formational dynamics best explains the evolution of catalytic
function in �-lactamases. Thus, the analysis of the detailed
conformational dynamics could help us understand the
underlying mechanism of evolutionary change from promis-
cuous generalists into specialist enzymes.

Results and Discussion

Structure Inspection

The sequences of ENCA, GNCA, and PNCA lactamases sub-
stantially differ from the sequences of modern �-lactamases
and, in particular, they show 79.2%, 53.6%, and 52.9% se-
quence identity with the sequence of the modern TEM-1.
Despite of the extensive sequence differences, they all share
the canonical �-lactamase fold with all-atom RMSDs of 0.53,
0.76, and 0.86 Å with respect to TEM-1 lactamase (fig. 1A).
Closer inspection of RMSD at individual residue sites reveals
minor movement with RMSD� 2 Å in the �+� domains of
the GNCA and PNCA lactamases corresponding to N-termi-
nal helix and solvent-exposed loops (fig. 1B). Moreover, no
substantial differences are found in the �-domain and all
active site residues occupy canonical space (fig. 1C).
Therefore, the structural analysis is not sensitive enough to
address the cause of the functional divergence, that is, how
the �-lactamases evolve from substrate-promiscuous gener-
alists to specialists.

The Relationship between Functional Divergence and
Structural Dynamics

Here, we turn to investigate the role of structural dynamics on
the functional divergence observed among the �-lactamases.
The unbound conformations of the three ancestral �-lacta-
mases (PNCA, GNCA, and ENCA) and a modern descendant
(TEM-1) are simulated using r-REMD. r-REMD incorporates
the conformations generated by the geometric simulation
algorithm FRODA (Wells et al. 2005) as reservoir structures,
which in turn increases the efficiency of conformational sam-
pling (Roitberg et al. 2007). We first analyze the root mean
square fluctuation (RMSF) of residues for each �-lactamase.
RMSF is a measure of the positional deviation of a residue
over time from its time-averaged position. Although the
structural analysis does not appear to reveal any functionally
relevant differences, the RMSF profiles do provide some first
indication of such differences. Indeed, the ancient lactamases
(PNCA, GNCA, and ENCA) fluctuate somewhat more than
TEM-1 lactamase. More interestingly, at the essential active
site S70, PNCA and GNCA lactamases show significantly
higher fluctuation (i.e., more flexibility) than ENCA and
TEM-1 lactamase (fig. 2).
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FIG. 2. The RMSF of C� atoms in TEM-1 (red), ENCA (orange; 1 Gy), GNCA (green; 2 Gy) and PNCA (blue; 3 Gy). The vertical dash lines mark the
location of active sites.

A

B

C

FIG. 1. Structural characterization of laboratory resurrections of Precambrian �-lactamases. (A) Structural comparison of the TEM-1 �-lactamase (PDB:
1BTL; red), and the �-lactamases corresponding to the last common ancestor of ENCA (PDB: 3ZDJ; orange), the last common ancestor of various GNCA
(PDB: 4B88; green), and the last common ancestor of PNCA (PDB: 4C6Y; blue). (B) RMSD of individual residues along the sequence. The vertical dash
lines mark the location of active sites. Minor structural differences are seen in the N-terminal helix and solvent-exposed loops (labeled 1–6) (C). Close
examination of the structural differences at the active site.
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RMSF profiles present the structural dynamics of �-lacta-
mase extracted from their equilibrated unbound conforma-
tional dynamics. We are, however, more interested in
capturing the dynamics profiles of each position as they de-
viate from unbound equilibrium, as these profiles may shed
light on the response of the protein to an approaching sub-
strate as it exerts forces on the protein. For this purpose, we
apply PRS approach (see Materials and Methods). In PRS, we
introduce perturbations by applying a random external unit
force on single residues, and then analyze the residue response
fluctuation profile of the rest of the chain using linear re-
sponse theory. It has been shown in the past that PRS and
its derivative are powerful tools to 1) capture conformational
changes upon binding (Atilgan C and Atilgan AR 2009;
Atilgan et al. 2010), 2) reveal allosteric pathways and identify
critical residues that mediate long-range communication
(Gerek and Ozkan 2011), 3) generate an ensemble of config-
uration rapidly for flexible docking that improves binding
affinity score (Bolia et al. 2012), and 4) distinguish disease-
associated and putatively neutral population variations in
human proteome (Gerek et al. 2013). To ensure the isotropi-
city of perturbation, the Brownian kick is applied at ten dif-
ferent directions for individual sites one at a time. The
magnitude of displacement by residue i in respond to the
perturbation at residue j is given by the mean square fluctu-
ation j�Rj j i. Then, the perturbation is repeated at all other
residues and dynamics flexibility index dfi is normalized av-
erage mean square fluctuation of a site upon perturbations of
others as shown in equation (4) (see Materials and Methods).

As defined, dfi is a relative value that indicates the average
response of any residue site in a protein structure. It measures
the resilience of each of individual site to perturbation as it
arises from interactions, binding processes or amino acid sub-
stitutions. Sites with high dfi are more flexible and prone to
“feel” the perturbation of other residues. Furthermore, due to
this enhanced flexibility, regions encompassing several high-
dfi residues are expected to be more deformable overall. On
the other hand, sites with low dfi may absorb and transfer the
perturbation throughout the protein in a cascade fashion.
They are usually involved with hinge parts of the protein
that control the motion like joints in skeleton. Therefore,
the dfi could evaluate the contribution of each site to the
functionally important dynamics. To eliminate the effect of
the global flexibility of different proteins, we here compute
the rank of the dfi profile and label it as %dfi. In figures 3A and
B, the %dfi profiles for the four �-lactamases under study are
compared. It is useful to examine first the dynamics at the
active-site residues participating in catalysis. The catalytic
mechanism of class A �-lactamase involves the acylation of
the active site S70, followed by deacylation. During this
process, a general base is expected to activate the primary
catalytic site S70 by accepting the proton from it (Lamotte-
Brasseur et al. 1991; Strynadka et al. 1992). Although the
identification of the general base as K73 or E166 remains
controversial, it is well known that the two sites are critical
in this proton transfer event (Chen et al. 1996; Damblon et al.
1996; Atanasov et al. 2000). In addition, several residues, such
as S130, N132, K234, R244 (K244 in PNCA/GNCA), are also

identified as important for catalysis (Lamotte-Brasseur et al.
1991; Delairesq et al. 1992; Atanasov et al. 2000). According to
the %dfi profile, TEM-1 and ENCA lactamases have lower
values than PNCA/GNCA at those active site residues.
However, it is important to note that in general, it is the
positions in the vicinity of the active site that show the
most pronounced change in the dynamic profile when com-
paring ancestral and extant beta-lactamases. In fact, visual
inspection of the %dfi profiles identifies four regions (a–d)
showing significant flexibility discrepancy among the �-lacta-
mases studied (fig. 3C): 1) Region a (residues 57–75) consists
of part of helix H2 and a loop region between strand B2 and
helix H2, strand B2), 2) region b (residues 123–134) includes a
loop region between H4 and H5, 3) region c (residues 140–
161) consists of part of helix H6 and a loop region between
helix H6 and �-loop, and 4) region d (residues 240–267)
spans from strands B3 to B5. The dynamics and structural
details of those regions are provided in figure 4. Overall, we
observe increasing %dfi values from TEM-1 to PNCA lacta-
mase in all those regions except the region c, where the trend
becomes the opposite. The three regions a, b, and d span the
active site and nearby residues, supporting an enhanced
active-site deformability in the generalists PNCA and GNCA
lactamases (as compared with the specialists ENCA and TEM-
1 lactamases), a result which may explain their capability to
accommodate antibiotic molecules of different size and shape
(fig. 4A). This finding also suggests the catalytic specificity in
the modern �-lactamase evolved through the decrease of
flexibility/deformability in the binding pocket as observed
earlier for the evolution of stress hormone receptor
(Glembo et al. 2012). That is, PNCA and GNCA lactamases
are more deformable around the active site and thus show
higher catalytic promiscuity, whereas TEM-1 and ENCA lac-
tamases are more rigid and thus more substrate-specific.
Interestingly, region c, which does not include the active-
site and nearby residues, shows a trend opposite to that of
regions a, b, and d; that is, the deformability of TEM-1 in that
region would be higher and there is trend of decreasing
deformability from TEM-1 to PNCA. An interesting, although
speculative, possibility is that, for this system, there is a cor-
relation between deformability and stability in such a way
that a decrease in stability linked to enhanced deformability
(i.e., higher dfi trend) at the active-site neighborhood is com-
pensated by decreased deformability (i.e., lower dfi trend) at
other regions.

Investigation of Catalytic Pocket Dynamics

We have also measured the catalytic pocket volume of the
�-lactamases using POVME (POcket Volume MEasurer)
(Durrant et al. 2011). It fills the regions that encompass the
catalytic pocket with equispaced points and then removes
those points near protein atoms. The volume of the catalytic
pocket is then obtained by counting the remaining points.
The pocket volumes in the X-ray structures are 240, 264, 240,
and 192 Å3 for TEM-1, ENCA, GNCA, and PNCA lactamases,
respectively. Thus, the pocket volume in crystal structure
does not show any trend regarding functional specificity

136

Zou et al. . doi:10.1093/molbev/msu281 MBE
 at U

niversidad de G
ranada - B

iblioteca on D
ecem

ber 30, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

since 
Perturbation Response Scanning (
)
;
;
;
S
Method
3
4 
 to 
-
-
.
-
.
-
il
i.e.
es
-
 &Aring;3
 &Aring;3
 &Aring;3
http://mbe.oxfordjournals.org/


versus promiscuity. Then, we analyze how the pocket volume
fluctuates and generates volume-size ensemble during the
simulations for these four proteins. Figure 5 shows how the
pocket volume changes over the last 2-ns r-REMD of each
molecular dynamics simulation. Quantitatively, the mean
pocket volumes and their fluctuations from the molecular
simulations are 170� 84, 216� 73, 325� 117, and
349� 112 Å3 for TEM-1, ENCA, GNCA, and PNCA lactamases,
respectively. It indicates that 1) TEM-1 has the smallest cata-
lytic pocket, and the catalytic pockets PNCA and GNCA are
larger than ENCA and TEM-1; and 2) the pocket volumes of
TEM-1 and ENCA also fluctuate less than GNCA and PNCA.
Interestingly, benzylpenicillin is the smallest substrates in the
study with the volume 286 Å3, compared with the volume of
cefotaxime 353 Å3 and that of ceftazidime 437 Å3 (www.che-
micalize.org, last accessed October 19, 2014). Therefore, it is
reasonable that PNCA and GNCA can accommodate all these

substrates with different size due to their large pockets and
also their higher deformability that facilitates the necessary
induced conformational changes. We emphasize again that
these are dynamic features of the oldest ancestral proteins
which are not apparent in the static X-ray structures but that
become obvious in the MD simulations. On the other hand,
TEM-1 and ENCA are specific likely because through evolu-
tion the conformational dynamics and size of the pocket has
been shaped for the small penicillin substrate and large sub-
strates such as cefotaxime and ceftazidime cannot access the
active site due limited space and lesser deformability.

Clustering Proteins Based on Dynamics Profile and
Identify Potentially Function Altering Mutations

Despite the conserved structures of these four �-lactamases,
the experimental characterization has shown that their

A

B C

FIG. 3. The dynamics profile of residues in TEM-1 (modern), ENCA (1 Gy), GNCA (2 Gy), and PNCA (3 Gy) �-lactamases. (A) The %dfi index is mapped
onto the multiple sequence alignment of the four �-lactamases. Residues are colored with a spectrum of red to blue, where rigid residues are denoted by
blue/green and flexible regions are denoted with red/orange. The primary active site S70 is marked with red dot and other active sites are marked with
green dots. Five regions where the �-lactamases show high discrepancy by visual observation are marked with red boxes (region a: residues 57–75; region
b: residues 123–134; region c: residues 140–161; region d: residues 240–267). (B) The %dfi distribution in the four �-lactamases: TEM-1 (red), ENCA
(orange), GNCA (green), and PNCA (blue). The vertical dash lines mark the location of active site residues. The five regions with high discrepancy are
marked in gray shadow. (C) Mapping of the four regions (a–d) with significant dfi difference among �-lactamase to the structure. The active site
residues are displayed with sticks. The dynamics and structural details of those regions are shown in figure 4.

137

Evolution of Conformational Dynamics . doi:10.1093/molbev/msu281 MBE
 at U

niversidad de G
ranada - B

iblioteca on D
ecem

ber 30, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

 &Aring;3
 &Aring;3
 &Aring;3
to 
Source: 
www.chemicalize.org
www.chemicalize.org
like 
http://mbe.oxfordjournals.org/


antibiotic degradation patterns are different, with PNCA and
GNCA showing substrate promiscuity (capability to degrade
different antibiotics) and TEM-1 and ENCA lactamases being
more specific toward penicillins. In order to further clarify the
relation between the underlying structural dynamics of these
four proteins and the functional differences, we performed an
SVD-based clustering analysis of the pattern of dfi profiles for
the four �-lactamases. Subsequently, we used the pairwise
distances in the left subspace of SVD (fig. 6A) to construct
the cladogram for clusters shown in figure 6B. Interestingly,
the �-lactamases are separated into two major branches, with
one branch consisting only TEM-1 lactamase (the most

modern one), and the remaining three lactamases appearing
in the other branch. The larger branch found in this analysis is
divided into two subbranches separating ENCA from PNCA
and GNCA lactamases. This result shows that PNCA and
GNCA lactamases are very similar to each other but further
separated from TEM-1 lactamase based on their dynamic
characterization.

SVD analysis also enables us to identify mutations that are
plausible candidates for being linked to the structural dynam-
ics divergence. The weight of each site, given by its contribu-
tion to the top principal components, may be viewed as a
measure of the site impact on the dynamic differences

FIG. 4. Close investigation of four regions with significant dfi difference among the four �-lactamases studied. These regions are colored with a spectrum
of red to blue, where lowest dfi regions are denoted by blue and flexible regions are denoted with red/orange. The active sites are displayed with sticks.
(A) In region a (residues 57–75), TEM-1 and ENCA lactamases have lower dfi profile than GNCA and PNCA lactamases, especially at the active sites S70
and K73, indicating the alteration in conformational dynamics linked to the evolution of this �-lactamases. In region b (residues 123–134), TEM-1 and
ENCA lactamases are also more rigid than GNCA and PNCA lactamases, especially at the active sites S130 and N132. Overall, the catalytic pocket,
surrounded by regions a, b, and d, exhibits a trend of increased flexibility when going from the specialists (ENCA and TEM1 lactamases) to the ancestral
generalists (PNCA and GNCA lactamases). (B) In contrast, region c (residues 250–267) seems to evolve toward lower dfi values as we examine the
change from PNCA to TEM-1 and, in fact, TEM-1 lactamase is significantly more rigid than the other three proteins in this region.
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simulation. The promiscuous ancestral enzymes PNCA and GNCA lactamases exhibit larger flexibility and pocket volume compared with the specialists
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between the �-lactamases (see Materials and Methods).
Figure 7 displays the weights of all residue sites and marks
the statistically critical sites that have large weights.
Interestingly, as we also observed from the %dfi profiles,
there is a trend for positions around the active site to be
involved in the alteration of conformational dynamics and,
plausibly, to be linked the evolutionary conversion from pro-
miscuous generalists into specialist enzymes. Overall, sites
with large weights in figure 7 are likely important for the
change of the dynamics that leads to functional divergence
and are, therefore, obvious candidates for mutational studies
aimed at engineering substrate specificity.

Conclusion
It is increasingly accepted that protein dynamics underlies
biological function and, therefore, that functionally relevant
dynamical features in proteins play a major role in protein

evolution. Direct evidence of this proposed evolution–dy-
namics relation has remained, nevertheless, elusive. For in-
stance, several computational comparisons between the
dynamics of homolog proteins have indeed found conserva-
tion of important dynamic features (Carnevale et al. 2006;
Maguid et al. 2006, 2008; Micheletti 2013). However, it has
been noted that evolutionary conservation of low-energy col-
lective modes may not reflect their functional importance but
rather be a consequence of the robustness of these modes
against mutation effects (Echave and Fernandez 2010; Echave
2013). These uncertainties in interpretation are common to
the so-called horizontal approaches to molecular evolution,
that is, approaches based on the comparison between extant
proteins (Harms and Thornton 2010; Ingles-Prieto et al. 2013).
On the other hand, several important issues in molecular
evolution have been successfully addressed in recent work
on the basis of the comparison between extant and ancestral
resurrected proteins (Harms and Thornton 2010; Finnigan
et al. 2012; Hobbs et al. 2012; Voordeckers et al. 2012; Bar-
Rogovsky et al. 2013; Ingles-Prieto et al. 2013; Risso et al. 2013;
Kratzer et al. 2014; Risso, Gavira, Sanchez-Ruiz 2014).

Here, we have used this “vertical” approach to explore the
relation between protein dynamics and protein evolution.
We find that the evolution of conformational dynamics
best explains how modern specialists �-lactamases arose
from ancestral promiscuous ancestors over a time scale of
several billion years. Our results thus provide evidence for the
notions that dynamics is crucial for biological function and
that variations in sequence can lead to change in dynamics
without changing the structure even in functional sites.
Therefore, conformational dynamics can be one of the mech-
anisms. Nature uses to evolve at a molecular level.
Furthermore, we have shown how computational analyses
can be used to determine sites of potential relevance for
the evolution of dynamics thus paving the way for the protein
engineering exploitation of protein dynamics

Materials and Methods

Structure Refinement and Simulation

The refinement and equilibrium sampling of ancestral �-lac-
tamases is accomplished with r-REMD (Roitberg et al. 2007).
REMD samples the system by molecular dynamics at different
temperatures (replicas) and allows the system to attempt
exchange between replicas (Sugita and Okamoto 1999). By
doing so, systems at high temperature might overcome po-
tential energy barriers and explore a large volume of config-
uration space. A structure reservoir is prepared and coupled
with REMD, a procedure that has shown to improve sampling
and capture equilibrium dynamics much more efficiently
(Glembo et al. 2012). The system at the highest temperature
replica is also allowed to exchange the configuration with the
reservoir structure periodically. The configurations in the res-
ervoir are generated using a highly efficient geometric-based
sampling technique called FRODA (Wells et al. 2005), which
decomposes a protein into a set of small rigid units and in-
teractions are modeled as harmonic constraints. With
FRODA and its unfolding version FRODAN (Farrell et al.

A

B

FIG. 6. Clustering of �-lactamases based on the dynamics profiles. (A)
Distribution of �-lactamases in the subspace formed by top three left-
singular vectors (principal components or PC). (B) Cladogram of SVD
distances for �-lactamases determined from their dfi data at 262 residue
sites. The structural dynamics clustering agrees with the functional di-
vergence of these enzymes.
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2010), we generate a large ensemble of partially unfolded
conformations. In detail, we first run a restrained simulation
for 1.5 ns with 40 replicas from 270 to 450 K in the
AMBER96SB force field (Pearlman et al. 1995) with general-
ized born implicit solvent model (Onufriev et al. 2004). The
residue–residue pairs are constrained if their C� atoms are
within 8.0 Å cutoff distance among 90% of reservoir struc-
tures. The residue–residue constraints are applied at the C�
atoms of the residues and the force constant is 0.5 kcal/(mol
Å2). After the restrained run, an unrestrained r-REMD with
identical parameters is allowed to continue for 15 ns, which
gives a total of 600 ns (more than half microsecond) aggregate
simulation time. The typical swap likelihood we choose be-
tween replicas is approximately 48% (set by appropriate
spacing between replica temperatures for an appropriate
Boltzmann factor). A convergence analysis is then performed
by evaluating the correlation between the successive slowest
modes obtained from the covariance matrices of different
windows using the MD trajectory. The simulations were con-
sidered to have reached convergence when the correlation
was above 0.80.

PRS Model and dfi

The canonical PRS model was originally based on the ENM,
where the protein is viewed as an elastic network in which
each node represents a residue and an harmonic interaction is
assigned to a pair of residues if the two residues are within a
specified cutoff distance (Atilgan et al. 2001; Atilgan C and
Atilgan AR 2009). PRS relies on sequentially applying exter-
nally random force (i.e., perturbation like a Brownian kick) on
a single residue. The perturbation cascades throughout the
residue interaction network and may introduce conforma-
tional changes of the protein. The linear responses of other
residues are formed as

�R½ �3N�1 ¼ �H½ �
�1

3N�3N F½ �3N�1; ð1Þ

where F is a unit random force on selected residues, H�1 is
the iinverse of Hessian matrix, and �R is the positional
displacements of the N residues of the protein in three
dimensions.

A disadvantage of the ENM-based PRS model is that the
coarse-grained network makes it insensitive to changes arising
from the biochemical specificity of amino acids. Therefore, in
order to compare the ancestral �-lactamases with similar
backbone structures, we replace the ENM basis of PRS with
all-atom r-REMD simulations, where the inverse of Hessian
matrix is replaced with the covariance matrix G derived from
the MD trajectory, that is,

�R½ �3N�1 ¼ G½ �3N�3N F½ �3N�1: ð2Þ

MD simulations take into account long-range interactions as
well as the biochemical specificity of amino acids. Thus incor-
porating MD allows PRS to provide more insights about spe-
cific residues beyond the scope of the canonical PRS.

The metric by which PRS quantifies the flexibility of a res-
idue upon the perturbation of other residues is called dfi. To
compute dfi, we first apply a unit external force on a single
residue. The response vector of positional displacement �R is
computed by equation (2). To ensure the isotropicity of per-
turbation, we perform the perturbation in ten directions and
take the average of the response vectors. The perturbation is
repeated for each residue site and we obtain the perturbation
matrix which records the displacement for each residue upon
the perturbation of the other residues like

A½ �N�N ¼

j�R1j1 j�R2j1 . . . j�RNj1

j�R1j2 j�R2j2 . . . j�RNj2

� � . .
.

�

j�R1jN�1 j�R2jN�1 . . . j�RNjN�1

j�R1jN j�R2jN . . . j�RNjN

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ð3Þ

50 75 100 125 150 175 200 225 250 275
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
ei

gh
tin

 P
C

s

Residue ID

63

64

70 89 91 154

155

247

36

47
48

49

61

62

65

69 84

85
86

88 90

92 151

152

153

156
193

194

198

200

211

216

230

231

242
248

249

251

261

266

267

282

285

FIG. 7. Weights of residue sites based on their contribution in the top principal components are plotted. The sites whose weights deviate more than
twice of standard deviation and one standard deviation from the mean are labeled in red and blue, respectively. The structural dynamics of these sites
may contribute the most to the conversion of a promiscuous generalist into a specialist enzyme. The sites where the residue types are not consistent
among the four enzymes (i.e., mutational sites) in the four �-lactamases are marked in box.

140

Zou et al. . doi:10.1093/molbev/msu281 MBE
 at U

niversidad de G
ranada - B

iblioteca on D
ecem

ber 30, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

K
-
-
&sim;
Elastic Network Model (
)
i.e.
Dynamic Flexibility Index (
)
http://mbe.oxfordjournals.org/


where j�Rjji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�RÞ2i

p
denotes the magnitude of the

displacement by residue i in response to the perturbation
at residue j. A given row of this matrix presents the average
displacement of a specific residue from its equilibrium posi-
tion when other residues are perturbed one at a time, whereas
the column shows the response profile of all residues under
the perturbation of a specific residue. dfi is defined as the total
displacement of residue i induced by perturbations placed on
the rest of the residues in the protein, that is, the sum of
element in column j of the matrix above, normalized by the
total displacement of all residues in the protein. That is,

dfii ¼

XN

j¼1
j�RjjiXN

i¼1

XN

j¼1
j�Rjji

: ð4Þ

In our analysis we use a 2-ns window frame for computing
the covariance matrix of different time intervals of last 6-ns
simulations of the lowest replica, and then compute the dfi
profiles of the residues using each covariance matrix and then
compute the average dfi per position and ranked by convert-
ing to %dfi.

Singular Value Decomposition for Clustering and
Identifying Functionally Important Dynamics

Singular Value Decomposition (SVD) is a multivariate statis-
tical procedure to elucidate the underlying structure of data.
It could be used to increase the signal-to-noise ratio and
reduce the redundancy of data. Similar to Principal
Component Analysis, SVD transforms data to new subspaces
identified by orthonormal bases where the covariance of the
data along different orthonormal bases is minimized. It is a
powerful tool widely used from information science to biol-
ogy (Deerwester et al. 1990; Berry et al. 1995; Keskin et al. 2000;
West et al. 2001; Kluger et al. 2003).

Let X denotes an m�n matrix of interest which contains
the information of n subjects characterized by m attributes.
The row vector ai with n dimension represents the ith attrib-
ute in all n subjects, whereas the column vector bj with m
dimension represents the m attributes for the j subject. In
general, SVD decomposes X into the product of three other
matrices:

X½ �mxn ¼ U½ �mxm �½ �mxn V½ �nxn ð5Þ

such that U and V have orthonormal columns and � is di-
agonal. The columns of U (Allen et al. 2009) are left-singular
vectors and also the eigenvectors of XXT. The columns of V,
{vk}, are right-singular vectors and also the eigenvectors of
XTX. By convention, the diagonal elements of �, called sin-
gular values of X, are sorted in descending order, that is,
� = diag(�1, �2, . . . , �n) (�1� �2 . . .� �n). These diagonal
elements represent the variance along the corresponding left-
singular and right-singular vectors. Those vectors with large
variance are interpreted to be important as they are most
relevant to the main characteristics included in the matrix X.

On one hand, the left-singular vectors can be considered as
the eigenvectors spanning the new subject subspace. If one

wishes to understand the relationship among the subjects, it
is necessary to find out the new coordinates of the subjects in
this left-singular subspace. The original coordinates of subject
j is given by the column vector bj. Referring to the definition in
equation (5), the SVD equation for bj is

bj ¼
Xr

k¼1

vjk�kuk; ð6Þ

which is a linear combination of the left-singular vectors
(Babtie et al. 2010). r denotes the rank of matrix X.
According to equation (6), the jth row of V�, designated
as bj

0 gives the coordinate of the subject j in the left-singular
subspace {uk}. If r<m, the attributes of subject can be cap-
tured with fewer variables by bj

0 instead of bj. Thus, SVD can
be used for purpose of dimensional reduction. In this sub-
space, the distance between two subjects j1 and j2 becomes

dj1 j2 ¼ jxj1 � xj2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

k¼1

vj1k�k � vj2k�k

� �2

s
: ð7Þ

These distances in the subspace provide the basic measure
for clustering the subjects. Additionally, the contribution of
attributes i in the top left-singular vectors {uk} is given by a
weight

wi ¼
Xr

k¼1

�kjuikj: ð8Þ

The weight indicates the significance of the attribute i in
the use of distinguishing all subjects.

On the other hand, the right-singular vectors {vk} can be
viewed as the eigenvectors spanning the new attribute
subspace. The new coordinates of the attributes in this
right-singular subspace reveal the relationship among the at-
tributes. The original coordinates of attribute i are given by
the row vector ai, which can be expressed as a linear combi-
nation of the right-singular vectors {vk}

ai ¼
Xr

k¼1

uik�kvk: ð9Þ

Thus, the ith row of U�, designated as ai
0 gives the coor-

dinate of the attribute i in the right-singular subspace {vk}.
The attributes can be grouped together based on their pair-
wise distance in this subspace, similar to the approach above
used in clustering subjects in the left-singular subspace.

Here, SVD analysis is used to classify �-lactamases by ex-
amining their dynamics profiles (i.e., dfi values) at different
residue sites. The subjects of the study are the four �-lacta-
mases and the attributes are the dfi values. To accommodate
�-lactamases with slightly different length, we focus on the
262 residue sites where each �-lactamases has a residue pre-
sent (i.e., not a gap) in multiple sequence alignment.
Therefore in this application of SVD to �-lactamases, each
column of X, conventionally denoted as xj, is a 262-dimen-
sional vector describing the dynamics profile at those residue
sites of a given �-lactamases j (1� j� 4). We move the origin
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to mean of the data by subtracting the mean of row i from
each element xij. The resulting X matrix eliminates the generic
characteristics of particular residue sites and emphasizes
more clearly the differences among dfi patterns of those �-
lactamases. As we wish to understand the relationship of the
�-lactamases, the signal of interest in this case is the dynamics
profile xj of �-lactamases j. The dynamic profiles are trans-
formed to the left-singular subspace through SVD, where the
modern and ancestral �-lactamases are represented empha-
sizing their differences. The pairwise distance of �-lactamases
in the subspace reveals their dynamics similarities and
differences. Moreover, the residue sites with high weight
and significant contribution to the top left-singular vectors
may account for the major dynamic differences among those
�-lactamases. The mutation occurred at those sites may have
a large impact on the protein dynamics.
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