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Abstract

In this paper we propose a general method for the approximation of an arbitrary fuzzy

number. This method, which is constructive, recovers and properly extends some well-known

approximations such as those obtained in terms of polygonal fuzzy numbers or simple fuzzy

numbers. We prove the convergence of the general method and study the properties of the

approximation operator, such as its compatibility with arithmetic operations of fuzzy num-

bers and with some of their important characteristics. In addition to this, we illustrate the

method with some particularly interesting cases by providing algorithms, of great simplicity

for practical use and apply them to some numerical examples. Furthermore, the approxi-

mations we construct are particularly simple from the point of view of fuzzy arithmetic and

preserve some of their most important characteristics.

2010 Mathematics Subject Classification: 03E72, 46B15, 65D15.
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1 Introduction

The study of fuzzy sets and in particular of the subset of fuzzy numbers has aroused enormous

interest in scientific literature in recent decades due to the power that these numbers have to

model uncertainty situations in many di↵erent fields of research.

The di�culty of extending real models to models with uncertainty using fuzzy numbers,

as well as the complexity of fuzzy number calculations, has led to the development of a large

number of techniques to approximate arbitrary fuzzy numbers by means of simpler ones.

Fuzzy number approximation has been approached over the years from several perspectives,
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depending on the intended use of the approximation.

The introductions of papers [11] and [28] provide a good review of the state of the art.

Several papers focus on the approximation of fuzzy numbers by means of simpler ones such as

intervals or triangular, trapezoidal, hexagonal... fuzzy numbers, so that both their description

and the operations between them are reduced to a finite number of parameters (see [3, 4, 7, 10, 19,

20, 35]). These simplifications, operational from the point of view of fuzzy number computation,

present the problem of the loss of information involved in the proposed approximation. To

solve this problem, di↵erent modifications of the aforementioned methods have been proposed,

preserving some important characteristics of fuzzy numbers. We can mention, without being

overly exhaustive, the following: [4, 5, 9, 11, 12, 20, 21, 22, 23, 33, 34, 36].

Some other authors propose approximations by means of polynomial interpolation tech-

niques or splines, attempting to ensure that the interpolant maintains di↵erent properties of

shape when combined with the operations of the fuzzy numbers (see [8, 24, 25, 32]).

In most of these papers, the initial idea is to fix a finite number of ↵-levels and obtain the

best approximation, for a suitable metric, in the set of fuzzy numbers of a certain type associated

with these ↵-levels, sometimes preserving some of the characteristics, such as the core, the

expected interval, etc. In this paper, however, we remove the initial restriction of fixing a priori

the starting ↵-levels. In addition, we construct a sequence of approximating projections which,

when applied to a fuzzy number, converges to it for a suitable family of metrics, which includes

those classically used. The sequence of approximations thus generated for a fuzzy number is

compatible with fuzzy arithmetic as well as with the convergence of the main characteristics

associated with that metric. In this paper, we deal with several aspects of fuzzy numbers, all of

them related to the approximation of fuzzy numbers by means of computationally easy-to-handle

fuzzy numbers, described by simple algorithms and encompassing the two previous perspectives.

These ideas, which constitute the contributions of this paper, are developed in more detail

below.

First, we introduce a family of metrics d(·)
X

in the set FX of fuzzy numbers u such that its

lower and upper branches u and u are in a space X of real functions defined on [0, 1]. Such a

family encompasses directly, or except equivalences, to the most usual ones, such as the fuzzy

Hausdor↵ distance ([26]) or the Euclidean distance (see, in essence, [18]). In particular, all the

approximation results we obtain for this family of distances apply to all the usual ones.

Next, we focus on obtaining the fundamental result, Theorem 4.3, in which we approximate

the fuzzy numbers in a metric space (FX , d
(·)
X
) by means of others in that space that are simpler,

using as a fundamental tool Schauder bases. These bases have been successfully used in another
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uncertainty context (see [2]). More precisely, given a fuzzy number u 2 F we construct a sequence

of simple fuzzy numbers that always converges to u. Our approach avoids the possible ill-

conditioned problems of some of the best approximation methods that start from a closed convex

subset. Moreover, it allows us to approximate any fuzzy number, and establish convergence

statements for all types of fuzzy numbers, unlike the results obtained in the above works.

For example, when X = Lp[0, 1], then FX coincides with F and we are able to approximate

any fuzzy number by means of another simple fuzzy number, in the sense that it is obtained as

a limit of a sequence of simple fuzzy numbers. Moreover, we give an explicit algorithm for the

approximation of an arbitrary fuzzy number by means of an arbitrary simple fuzzy number, which

is straightforward and for which no additional computation is required, and in which the passage

from an n
th approximation to the (n+1)th approximation is done by simply adding an additional

term consisting of a step fuzzy number, unlike in other works, in which the computation has to

be redone.

Another application of Theorem 4.3 is given for the set FC[0,1] endowed with the fuzzy

Hausdor↵ distance, in which a fuzzy number u with continuous branches, is obtained as the

limit of a sequence of very simple fuzzy numbers, the so–called polygonal ones (see [3]). The

corresponding algorithm has the same characteristics as those for arbitrary fuzzy numbers.

We should also note, with respect to the above algorithms for F in general and for FC[0,1],

that they are compatible with the arithmetic of fuzzy numbers –in particular, with the opera-

tions of addition, product by scalars and generalised Hukuhara di↵erence– in the sense that the

approximation of the operation coincides with the operation of the approximation. Moreover,

we are able to control the distance of a particular operation to its approximation as a function

of the elements of the operation and its approximation.

Finally, we generalise the convergence results of the approximations obtained in regard to

the usual parameters of a fuzzy number, such as value, ambiguity, expected interval and expected

value.

The paper is structured as follows. In Section 2 we compile the fundamental concepts and

results related to the fuzzy numbers that we use. Section 3 focuses on introducing a family of

metrics in the set of fuzzy numbers including, among others, the classical Haussdorf distance or

the Euclidean distance. Section 4 is devoted to describing the proposed approximation method,

including some numerical examples. Moreover, we study the properties of the method in Section

5 and end with some conclusions in Section 6.
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2 Basic fuzzy concepts

We start by recalling the classical concept of a fuzzy number. We should first mention that, in

relation to what follows, given a subset A of a topological space, we write cl (A) for its closure.

In addition, we consider in R only its usual topology. A fuzzy number (see, e.g., [6]) is a mapping

u : R �! [0, 1] that is

i) normal, i.e., there exists x0 2 R such that u(x0) = 1,

ii) upper semi-continuous,

iii) fuzzy-convex, that is, u(�x+ (1� �)y) � min{u(x), u(y)}, x, y 2 R, � 2 [0, 1],

iv) and compactly supported, in the sense that cl {x 2 R : u(x) > 0} is compact.

We denote the set of all fuzzy numbers by F.

Note that fuzzy-convexity is nothing more than quasi-concavity, a basic notion in other

contexts such as convex analysis.

We recall an important type of fuzzy number that illustrates the above definition. A fuzzy

number u 2 F is said to be a simple fuzzy number ([35]) provided that there exist m,n � 2,

r1, . . . , rm�1, s1, . . . , sn�1 2 (0, 1) and a1, . . . , am, b1, . . . , bn 2 R with

r1 < · · · < rm�1, s1 < · · · < sn�1 and a1 < am  bn < · · · < b1,

and in such a way that

u(x) =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

r1, if x 2 [a1, a2)

r2, if x 2 [a2, a3)
...

...

rm�1, if x 2 [am�1, am)

1, if x 2 [am, bn]

sn�1, if x 2 (bn, bn�1]
...

...

s2, if x 2 (b3, b2]

s1, if x 2 (b2, b1]

0, if x /2 [a1, b1]

.

A related fuzzy number concept is now given: For a fuzzy number u and a real 0  ↵  1,

the ↵-level set of u (see, e.g., [6]) is

[u]↵ := {x 2 R : u(x) � ↵}
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whenever 0 < ↵  1, while

[u]0 := cl {x 2 R : u(x) > 0}.

The 1-level set [u]1 = {x 2 R : u(x) � 1} is called the core of u.

The versatility of the level sets is given by this result which, in essence, guarantees that a

fuzzy number is uniquely determined by its level sets:

Theorem 2.1 ([29]) Let u 2 F and for each 0  ↵  1, let [u]↵ be its ↵-level set. Then

i) for any ↵ 2 [0, 1], [u]↵ is a closed interval of R, [u]↵ = [u↵, u↵] ,

ii) [u]↵2 ⇢ [u]↵1 provided that 0  ↵1  ↵2  1,

iii) for each sequence {↵n}n�1 in [0, 1] that converges from below to ↵ 2 (0, 1] we have that

1\

n=1

[u]↵n = [u]↵,

iv) and for any sequence {↵n}n�1 in [0, 1] that converges from above to 0 there holds

cl

 1[

n=1

[u]↵n

!
= [u]0.

And conversely, given a family {[u]↵ : ↵ 2 [0, 1]} of subsets of R fulfilling conditions i) to

iv), there exists a unique u 2 F such that for any ↵ 2 [0, 1], [u]↵ is its ↵-level set.

A typical example of the use of the above result is the following notion: For an m � 2

and a partition 0 = ↵1 < ↵2 < · · · < ↵m = 1 of the interval [0, 1], a fuzzy number u 2 F is a

polygonal fuzzy number associated with such a partition ([3]) provided that

i = 1, . . . ,m, ↵i < ↵  ↵i+1 ) [u]↵ =

✓
1� ↵� ↵i

↵i+1 � ↵i

◆
[u]↵i +

↵� ↵i

↵i+1 � ↵i

[u]↵i+1 .

This concept of polygonal fuzzy numbers includes to that of trapezoidal fuzzy numbers

and thus that of triangular fuzzy numbers ([6]).

The relationship between fuzzy numbers and the intervals established in Theorem 2.1

allows us to o↵er another representation of a fuzzy number as a pair of functions with some

suitable properties.
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Theorem 2.2 ([17]) Let u be a fuzzy number with level sets [u]↵ = [u↵, u↵], 0  ↵  1. Then,

the functions u, u : [0, 1]! R, defined at each 0  ↵  1 as the endpoints of the ↵-level set [u]↵,

u(↵) := u↵, and u(↵) := u↵,

satisfy the following properties::

i) u is bounded, non-decreasing, left-continuous in (0, 1] and right-continuous at 0,

ii) u is a bounded, non-increasing, left-continuous in (0, 1] and right-continuous at 0,

iii) and u(1)  u(1).

And conversely, given two functions u, u : [0, 1] ! R that satisfy the above conditions i) to iii),

there is a unique fuzzy number u 2 F with u and u as its endpoints of its ↵-level sets [u]↵.

Moreover, u is explicitly determined at each x 2 [0, 1] by the expression

u(x) =

(
0, if x /2 [u]0

sup{↵ 2 [0, 1] : x 2 [u]↵}, if x 2 [u]0
.

The representation of a fuzzy number u in terms of the functions u and u is called the LU

representation and we refer to u and u as the lower and upper branches of u, respectively.

For instance, an equivalent definition of a polygonal fuzzy number in terms of lower and

upper branches can be found in [11].

Now we deal with a di↵erent issue: we collect the most important indices related to a fuzzy

number, i.e., those real numbers that capture some information contained in a fuzzy number in

order to simplify the task of representing and handling it (see [13, 14]). Let u 2 F:

i) If c : [0, 1] �! [0, 1] is a reducing function, that is, a non-decreasing function with c(0) = 0

and c(1) = 1, then the ambiguity of u related to c is given by

Ambc(u) :=

Z 1

0
c(↵)(u(↵)� u(↵)) d↵,

while the value of u with respect to c is the real number

Valc(u) :=

Z 1

0
c(↵)(u(↵) + u(↵)) d↵.

When, for any ↵ 2 [0, 1], c(↵) = 1, we simply write Amb and Val instead of Ambc and

Valc, respectively.
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ii) The expected interval of the fuzzy number u is the compact interval

EI(u) :=

Z 1

0
u(↵) d↵,

Z 1

0
u(↵) d↵

�
,

and the expected value of u is the middle of the previous interval, i.e.,

EV(u) :=
1

2

Z 1

0
(u(↵) + u(↵)) d↵.

Thus, the ambiguity of u 2 F can be seen as a measure of its vagueness, its value as a

characteristic value of u, its expected interval as an interval containing other significant value of

u, its integral, and finally, the expected value of u as a representative value of such an interval.

We conclude this section by presenting some elementary aspects of the arithmetic of fuzzy

numbers, which essentially reduces them to that of real compact intervals (see, for instance, [6]).

So we start with the latter: interval addition, scalar-interval multiplication and (generalized

Hukuhara) interval di↵erence. Let A = [a, a] and B = [b, b] be two real compact intervals and

� 2 R. Let us recall that the addition of A and B, denoted by A+B, is the interval

A+B := [a+ b, a+ b]

and the scalar multiplication of � and A is defined as

�A := {�a : a 2 A} = [min{�a,�a},max{�a,�a}] .

With regard to the interval subtraction, there are several definitions in the literature. One of

the most popular is the generalized Hukuhara di↵erence (gH-di↵erence, for short), see [31]. The

gH-di↵erence of A and B works like this:

A gH B = C ()
(

(a) A = B + C,

or (b) B = A+ (�1)C.

Clearly, A gH A = [0, 0] and furthermore, the gH-di↵erence of two intervals always exists and

A gH B = [min{a� b, a� b},max{a� b, a� b}].

We recall the definition of the addition, the scalar-fuzzy number multiplication and the

gH-di↵erence of fuzzy numbers. As previosly mentioned, it is a matter of translating interval

arithmetic by means of the interval representation of fuzzy numbers given by the level sets.

Specifically, if u, v 2 F and � 2 R, then the addition of u and v, u+ v, the scalar-fuzzy number

multiplication of � and u, �u, and, when it exists, the gH-di↵erence of u and v, u  gH v, are

defined as those fuzzy numbers whose ↵-level sets, for each ↵ 2 [0, 1], are, respectively,

[u+ v]↵ := [u]↵ + [v]↵ = [u↵ + v↵ , u↵ + v↵] ,

7
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[�u]↵ := �[u]↵ = [min{�u↵,�u↵},max{�u↵,�u↵}]

and

[u gH v]↵ := [u]↵  gH [v]↵ = [min{u↵ � v↵, u↵ � v↵},max{u↵ � v↵, u↵ � v↵}] .

Let us recall that the gH-di↵erence of two fuzzy numbers u, v, is the fuzzy number w, if it exists,

such that

u gH v = w ,
(

(i) u = v + w,

or (ii) v = u+ (�1)w
.

3 Metrics in the space of fuzzy numbers

Our purpose in this section is to provide a unified treatment of the usual metrics in the space of

fuzzy numbers introducing suitable normed spaces. Moreover, we also provide a large family of

metrics for F and even for some relevant subsets of it.

In the literature, several metrics are considered in the set F of fuzzy numbers. The best

known and most commonly used metric on that set F is the Hausdor↵ distance (see, e.g. [26, 15]),

which is derived from the classical Hausdor↵–Pompeiu distance between compact and convex

subsets of Rn, in particular, for compact intervals A = [a, a], B = [b, b]:

dH(A,B) := max{|a� b|, |a� b|}.

The fuzzy Hausdor↵ distance D1 : F⇥ F �! R is defined for each u, v 2 F as

D1(u, v) := sup
↵2[0,1]

max{|u↵ � v↵|, |u↵ � u↵|}.

Thus, D1(u, v) is a uniform version of dH when applied to the level sets of u and v:

D1(u, v) = sup
↵2[0,1]

{dH([u]↵, [v]↵)}.

Other interesting metrics have been introduced in F for di↵erent purposes. We highlight,

on the one hand, the Euclidean distance d2 defined at each u, v 2 F by

d2(u, v) :=

sZ 1

0
(u(↵)� v(↵))2d↵+

Z 1

0
(u(↵)� v(↵))2d↵,

which has been used in [35] to show that the space of simple fuzzy numbers is dense in the space

of fuzzy numbers with regard to that metric. Here we also consider the wider family for each

1  p <1

dp(u, v) :=

✓Z 1

0
|u(↵)� v(↵)|pd↵+

Z 1

0
|u(↵)� v(↵)|pd↵

◆1/p

,
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whenever u, v 2 F.

On the other hand, we also highlight the distance ⇢p : F⇥F �! R, 1  p <1, introduced

in [18], where the author introduces a fuzzy number ranking method based on it:

⇢p(u, v) := max

(✓Z 1

0
|u(↵)� v(↵)|p d↵

◆1/p

,

✓Z 1

0
|u(↵)� v(↵)|p d↵

◆1/p
)
, (u, v 2 F).

Now we proceed to provide the above-mentioned unified treatment by introducing an ap-

propriate normed space, because the constructive approximation method we will design is based

on the use of suitable Schauder bases in certain Banach spaces. Thus, let X ⇢ R[0,1] and let

FX := {u 2 F : u, u 2 X}.

For example, FC[0,1] corresponds to the set of those fuzzy numbers u 2 F with u, u 2 C[0, 1].

There is an important consideration to be taken into account regarding this set: the fact that

a fuzzy number u 2 F is continuous has nothing to do with the continuity of u and u, that

u 2 C(R) is independent of u 2 FC[0,1]. Indeed, if u 2 FC[0,1] and u (or u) is constant on a proper

subinterval of [0, 1], then u /2 C(R), and a similar argument works in the opposite direction.

It should also be noted that for any u 2 F we have that u, u 2 L1[0, 1]: u, u are measurable

because they are monotone, and furthermore, making use of monotonicity again, we have that

min{u(0), u(1)}  u, u  max{u(0), u(1)}.

Therefore,

FL1[0,1] = F,

and since for any 1  p  1, L1[0, 1] ⇢ Lp[0, 1], then

FLp[0,1] = F.

We now consider specific X sets, real normed spaces of real-valued functions defined on

[0, 1]. In addition, let k · k(·) be a norm in R2 satisfying the monotonicity property

0  x1  x
0
1, 0  x2  x

0
2 ) k(x1, x2)k(·)  k(x01, x02)k(·). (3.1)

Proposition 3.1 Assume that X is a real normed space of real-valued functions defined on

[0, 1], endowed with its norm k · k, and that k · k(·) is a norm in R2 fulfilling the monotonicity

condition (3.1). Then the mapping d
(·)
X

: FX ⇥ FX �! R given by

d
(·)
X
(u, v) := k (ku� vk, ku� vk) k(·), (u, v 2 FX), (3.2)

defines a distance in the set FX .
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Proof. The non-negativeness, non-degeneracy and symmetry of d(·)
X

are clearly satisfied, so it

su�ces to prove the triangle inequality, thus let us fix u, v, w 2 FX . Then, in view of the triangle

inequality for the norms k · k and k · k(·), the condition (3.1) and the definition (3.2), we arrive at

d
(·)
X
(u,w) = k (ku� wk, ku� wk) k(.)

 k (ku� vk+ kv � wk, ku� vk+ kv � wk) k(.)

= k (ku� vk, ku� vk) + (kv � wk, kv � wk) k(.)

 k (ku� vk, ku� vk) k(.) + k (kv � wk, kv � wk) k(.)

= d
(·)
X
(u, v) + d

(·)
X
(v, w).

⇤

The norms k · k(.) to be used in this paper will satisfy the condition (3.1). In particular,

the following ones will be useful for our purposes: for (x1, x2) 2 R2,

k(x1, x2)k(1) := max{|x1|, |x2|},

and if 1  p <1,

k(x1, x2)k(p) := (xp1 + x
p

2)
1
p .

Remark 3.2 The condition (3.1) is essential for
⇣
FX , d

(·)
X

⌘
to be a metric space and it is worth

noting that not all norms of R2 verify it. For example, if “co” denotes “convex hull”, let

C := co{±(2, 2),±(0, 1)} and k · k(·) be its associated Minkowski functional, i.e.,

k(x, y)k(·) = inf{t > 0 : (x, y) 2 tC}, ((x, y) 2 R2).

Then,

k(2, 2)k(·) = 1 but k(0, 3/2)k(·) = 3/2.

Regarding the notation in Proposition 3.1, wherein some confusion can be derived from

the use of di↵erent norms in X, we can specify a concrete one k · k for the distance by writing

d
(·)
(X,k·k) instead of d(·)

X
.

Hereinafter, the real normed spacesX of real-valued functions defined on [0, 1] will typically

be the Banach space C[0, 1], endowed with its usual sup-norm k·k1, or the Banach space Lp[0, 1],

(1  p  1), with its usual norm k · kp, or even the normed space C[0, 1] with the norm k · kp.
In this last case, we denote the corresponding distance associated with a suitable norm k · k(·) in
R2 by d

(·)
(C[0,1],k·kp).
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The norms commonly used in the literature, and mentioned earlier in this section, belong

to the family of distances d(·)
X

in F (recall that F = FLp[0,1], for 1  p  1) defined in (3.2):

D1 = d
(1)
L1[0,1]

and for 1  p <1,

⇢p = d
(1)
Lp[0,1]

and dp = d
(p)
Lp[0,1]

.

Moreover, their inherit distances in FC[0,1] are, respectively,

D1 = d
(1)
C[0,1]

and if 1  p <1,

⇢p = d
(1)
(C[0,1],k·kp) and dp = d

(p)
(C[0,1],k·kp).

Remark 3.3 We note that for a given 1  p < 1, the distances d
(p)
Lp[0,1]

and d
(1)
Lp[0,1]

in F are

equivalent, since any two norms in R2 are. On the other hand, the distance Dp, defined at each

u, v 2 F as

Dp(u, v) :=

✓Z 1

0
dH([u]↵, [v]↵)p d↵

◆ 1
p

=

✓Z 1

0
max{|u↵ � v↵|, |u↵ � u↵|}p d↵

◆ 1
p

(see [6]), is not of the type d
(·)
X
. However, there holds

d
(1)
Lp[0,1]

(u, v)  Dp(u, v)  2
1
pd

(1)
Lp[0,1]

(u, v).

Therefore, for a fixed 1  p < 1, the topological properties that we establish below in terms

of d(1)
Lp[0,1]

or d(p)
Lp[0,1]

, specifically, the convergence of certain sequences, are equally applicable to

Dp.

Remark 3.4 Even ifX is a Banach space, the metric space
⇣
FX , d

(·)
X

⌘
is not complete in general.

For example, (F, d(1)
L1[0,1]) is (see [15]), unlike (F, d(p)

Lp[0,1]
) which is not (see [6]). Note that we are

making use of equality FLp[0,1] = F.

4 Approximation of a fuzzy number

In this section we compile our main results of the approximation of fuzzy numbers. To do so, we

recall some basic analytical concepts and results.
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A sequence {sn}n�1 in a real Banach space X is a Schauder basis provided that for any

element x there exists a unique sequence of real numbers {�n}n�1 such that

x =
1X

n=1

�nsn.

For each n 2 N, we denote by Pn : X �! X the n
th-basis projection, defined at such an x 2 X

as

Pn

 1X

k=1

�ksk

!
:=

nX

k=1

�ksk,

and by s
⇤
n : X �! R the n

th-coordenate functional, given at such an x 2 X by

s
⇤
n

 1X

n=1

�nsn

!
:= �n.

For any n 2 N, both Pn and s
⇤
n are continuous (see, for instance, [1]), and so, as a consequence,

for all x 2 X,

lim
n!1

kPn(x)� xk = 0.

Moreover, there holds

1  inf
n2N
kPnk  sup

n2N
kPnk <1

(once again, [1] is a suitable reference for this fact). The real number

sup
n2N
kPnk 2 [1,+1)

is known as the basic constant of the Schauder basis {sn}n�N and when it is 1, the basis is said

to be monotone. For example, in a separable (any space with a base must be clearly separable)

Hilbert space, every orthogonal basis is a Schauder basis, which is monotone when, in addition,

the basis is orthonormal. Although not all Banach spaces have a Schauder basis (see [16]), every

separable classical Banach space, as well as any separable Sobolev space, have a Schauder basis

([27, 30]). Because of their importance in what follows, we highlight two of these bases: the so-

called Haar and Faber–Schauder systems, which are the classical Schauder bases in the spaces

Lp[0, 1], (1  p <1), and C[0, 1], respectively.

Example 4.1 Let t0 = 0, t1 = 1 and for n > 1, write n = 2i + k with 0  i and 1  k  2i, and

define tn = 2k�1
2i+1 . The Haar functions on [0, 1] are defined as

h1(t) := 1, (0  t  1),
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and for n � 2, with i, k and n as we have just indicated,

hn(t) :=

8
>>>>>>>><

>>>>>>>>:

1, if
2k � 2

2i+1
 t <

2k � 1

2i+1

�1, if
2k � 1

2i+1
 t  2k

2i+1

0, otherwise

.

h1 h2 h3

h4 h5 h6

Figure 1: First functions of the Haar system.

We show some of these functions in Figure 1.

The Haar system {hn}n�1 is a monotone Schauder basis in Lp[0, 1], for 1  p <1, and it

is easy to check that if n � 1, then the n
th-coordenate functional is given, at any y 2 Lp[0, 1], as

h
⇤
n(y) =

Z 1

0
y(t)hn(t) dt

Z 1

0
hn(t)hn(t) dt

.

In order to describe its sequence of projections, let us first recall that the characteristic function

1A : X �! R of a non-empty subset A of a set X is given by

1A(x) :=

(
1, if x 2 A

0, if x 2 X\A
.

Then, for any y 2 Lp[0, 1] and n � 1, the projections adopt the alternative form

Pn(y) =
nX

j=1

h
⇤
j (y)hj =

nX

j=1

 
|Ij |�1

Z

Ij

y(t) dt

!
1Ij , (4.3)
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with Ij = [t0
j�1, t

0
j
], where t00, t

0
1, . . . , t

0
n is the increasing rearrangement of the set {t0, . . . , tn} (see

[30]).

Example 4.2 Let {tn}n�1 be a dense sequence in [0, 1] with t1 = 0 and t2 = 1. Let

f1(t) := 1, (0  t  1),

and for n � 2, let fn be the piecewise linear continuous function on [0, 1] with nodes at {tm :

1  m  n}, uniquely determined by the relations

fn(tn) = 1 and fn(tm) = 0, for m < n.

The sequence {fn}n�1 is known as the Faber–Schauder system in C[0, 1], and it is easy to check

that it is a monotone Schauder basis and that for each y 2 C[0, 1], the coordenate functionals

are

f
⇤
1 (y) = y(t1)

and for all n � 2,

f
⇤
n(y) = y(tn)�

n�1X

m=1

f
⇤
m(y)fm(tn).

It is worth mentioning that this Schauder basis is interpolatory, in the sense that

y 2 C[0, 1], n 2 N, m  n ) Pn(y)(tm) = y(tm).

For example, for a dyadic distribution of points {tn}n�1 in [0,1], with t1 = 0 and t2 = 1 the first

functions of the Faber–Schauder are collected in Figure 2.

Our objective is to use the Schauder bases as a tool to approximate fuzzy numbers. The

following result establishes conditions in the Schauder bases that allow us to approximate a fuzzy

number.

Theorem 4.3 Let {en}n�1 be a Schauder basis in a real Banach space (X, k · k) of real-valued
functions defined on [0, 1], whose sequence of associated projections we denote by {Pn}n�1, in

such a way that

i) given n 2 N, the function en is bounded, left-continuous on (0, 1] and right-continuous at

0;

ii) if g 2 X is non-increasing and g(1) � 0, then

0  inf
n�1

Pn(g)(1);
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f1 f2 f3

f4 f5 f6

Figure 2: First functions of the Faber-Schauder system on the set of dyadic nodes.

iii) and when g 2 X is a non-decreasing function and n 2 N, Pn(g) is also non-decreasing.

Let us suppose further that k · k(·) is a norm in R2 fulfilling the monotonicity condition (3.1) and

that FX is endowed with the distance d
(·)
X

defined by (3.2). Then:

a) For each u 2 FX and n 2 N, Pn(u) and Pn(u) define the lower and upper branches of a

fuzzy number Pn(u) 2 FX , that is, for any ↵ 2 [0, 1],

Pn(u)(↵) = Pn(u)(↵) and Pn(u)(↵) = Pn(u)(↵).

b) If u 2 FX , then the sequence {Pn(u)}n�1 approximates u in the sense of the metric d
(·)
X
,

i.e.,

lim
n!1

d
(·)
X
(u,Pn(u)) = 0.

c) For any n 2 N, the mapping Pn : FX �! FX is a Lipschitz continuous projection. More

specifically,

Pn �Pn = Pn

and if u, v 2 FX , then

d
(·)
X
(Pn(u),Pn(v)) Md

(·)
X
(u, v),

where M is the basic constant of the basis {en}n�1. In particular, if {en}n�1 is monotone,

then Pn is non-expansive.
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Proof. In order to establish the validity of a), we check the hypotheses of Theorem 2.2. Thus,

let u 2 FX and n 2 N. As Pn(u), Pn(u) 2 span {e1, . . . , en} and, in view of hypothesis i), the

functions e1, . . . , en are bounded, left-continuous on (0, 1] and right-continuous at 0, so are Pn(u)

and Pn(u). Furthermore,

Pn(u)(1)  Pn(u)(1),

since u�u is non-increasing and (u�u)(1) � 0, so, according to our assumption ii), Pn(u�u)(1) �
0 and the linearity of Pn yields the above inequality. And, in view of iii) and the linearity of Pn,

Pn(u) is non-decreasing and Pn(u) is non-increasing.

Moreover, we fix u 2 FX and we must prove that

lim
n!1

d
(·)
X
(u,Pn(u)) = 0,

so, let " > 0. The fact that {en}n�1 is a Schauder basis in X provides us with an n0 2 N such

that, for all n � n0,

max {ku� Pn(u)k, ku� Pn(u)k} <
"

k(1, 1)k(·)
,

and then
d
(·)
X
(u,Pn(u)) = k(ku� Pn(u)k, ku� Pn(u)k)k(·)

<

����

✓
"

k(1, 1)k(·)
,

"

k(1, 1)k(·)

◆����
(·)

=
"

k(1, 1)k(·)
k(1, 1)k(·)

= ",

which all together gives us the proof of b).

And finally, given n 2 N, it is clear that Pn is a projection in FX , according to i) and the

fact that Pn is a projection in X. In addition, let M be the basic constant of {en}n�1. Then

kPn(u)� Pn(v)k Mku� vk

and

kPn(u)� Pn(v)k Mku� vk,

hence

d
(·)
X
(Pn(u),Pn(v)) =

���
⇣
kPn(u)�Pn(u)k, kPn(u)�Pn(u)k

⌘���
(·)

 k(Mku� vk,Mku� vk)k(·)

 Mk(ku� vk, ku� vk)k(·)

= Md
(·)
X
(u, v),

which states the M -Lipschitz continuity of Pn mentioned in c). ⇤
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In Section 5 we will analyse the properties of the proposed approximations for a given

fuzzy number u 2 FX , the sequence of projections {Pn}n�1, their arithmetic and some of their

advantages.

The next two subsections deal with the respective algorithms to approximate, on the one

hand, an arbitrary fuzzy number using a suitable modification of the Haar system, and on the

other hand, any fuzzy number in FC[0,1] from the Faber–Schauder system.

4.1 Approximation of an arbitrary fuzzy number

We proceed to approximate an arbitrary fuzzy number from Theorem 4.3. As we mentioned

in Section 3, given any fuzzy number u 2 F, its functions u, u belong to Lp[0, 1], with p 2
[1,1]. Therefore, in the separable case (1  p <1) we can consider the approximations Pn(u)

generated from the Haar system, although we must modify that Schauder basis in order that the

functions chosen verify the condition i) of Theorem 4.3. As for the Haar system, we fix t0 = 0,

t1 = 1 and for n > 1, as n = 2i + k for some 0  i and some 1  k  2i, we take tn = 2k�1
2i+1 . The

modified Haar system consists of those functions on [0, 1] that are defined as

ĥ1(t) := 1, (0  t  1), (4.4)

and if n � 2, then

ĥ2i+1(t) :=

8
>>>>>>>><

>>>>>>>>:

1, if 0  t  1

2i+1

�1, if
1

2i+1
< t  2

2i+1

0, otherwise

, (4.5)

while for 2  k  2i,

ĥ2i+k(t) :=

8
>>>>>>>><

>>>>>>>>:

1, if
2k � 2

2i+1
< t  2k � 1

2i+1

�1, if
2k � 1

2i+1
< t  2k

2i+1

0, otherwise

. (4.6)

It is clear that the slight modification we have made to the original Haar system determines

a Schauder basis in Lp[0, 1], since each new function ĥn is equal almost everywhere to the

corresponding hn of the Haar system, but verifying the conditions i), ii) and iii) of Theorem 4.3:
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i) It is obvious that each basis function ĥn is bounded, left-continuous in (0, 1] and right-

continuous at 0.

ii) Suppose that g 2 Lp[0, 1] is non-increasing and that g(1) � 0. Then, given n 2 N,
according to the description of the projection Pn in (4.3) (it is defined in the same way

almost everywhere as for the Haar system), and maintaining its notation, we have that

Pn(g)(1) = |In|�1
Z

In

g(t) dt,

therefore Pn(g)(1) � 0.

iii) Let g 2 Lp[0, 1] be a non-decreasing function, n 2 N and t, t̃ 2 [0, 1] with t  t̃. Making

use again of the expression of Pn in (4.3), let us initially consider that t and t̃ are in the

same subinterval Ij . In such a case, it is clear that Pn(g)(t) = Pn(g)(t̃). If, on the other

hand, t and t̃ belong to di↵erent subintervals, let us say t 2 Ii and t̃ 2 Ik, then i < k and

Pn(g)(t) = |Ii|�1
Z

Ii

g(⇠) d⇠

 Pn(g)(t̃)

= |Ik|�1
Z

Ik

g(⇠) d⇠,

since the projections are the average values of the function in the respective intervals.

Let us observe that the modified Haar system {ĥn}n�1 is a monotone Schauder basis, since

the Haar system is, and so, the generated projections Pn are non-expansive, thanks to Theorem

4.3.

We set the modified Haar system {ĥn}n�1 defined in (4.4), (4.5) and (4.6) as the Schauder

basis. Therefore, in view of Theorem 4.3, for an arbitrary u 2 F (let us recall that F = FLp[0,1]),

the sequence of approximations {Pn(u)}n�1 converges to u, which extends the previously stated

result in [35], where the convergence of the sequence of approximations is proven only when the

fuzzy number is in FC[0,1].

We describe below an easy algorithm to approximate an arbitrary fuzzy number u 2 F
by means of a simple fuzzy number. The distance d fixed in the algorithm can be any of those

described previously such as d(·)
Lp[0,1]

with p 2 [1,1).

Approximation algorithm of an arbitrary fuzzy number
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Input: Functions u and u, dyadic nodes {tn}n�0, modified Haar system {ĥn}n�1, distance

d, tolerance " > 0.

Set a1  
Z 1

0
u(↵) d↵, b1  

Z 1

0
u(↵) d↵

Set a2  
Z 1

0
u(↵)ĥ2(↵) d↵, b2  

Z 1

0
u(↵)ĥ2(↵) d↵

Set P (u) a1ĥ1 + a2ĥ2, P (u) b1ĥ1 + b2ĥ2

Set µ1  a1 + a2, µ2  a1 � a2, ⌘1  b1 + b2, ⌘2  b1 � b2

for i = 1, 2, . . .

for k = 1, 2, . . . , 2i

Set n 2i + k

Set

an  

Z 1

0
u(↵)ĥn(↵) d↵

Z 1

0
ĥn(↵)ĥn(↵) d↵

bn  

Z 1

0
u(↵)ĥn(↵) d↵

Z 1

0
ĥn(↵)ĥn(↵) d↵

for j = n, n� 1, . . . , 2k + 1

Set µj = µj�1, ⌘j = ⌘j�1

end (for)

Set µ2k  µ2k�1 � an, ⌘2k  ⌘2k�1 � an

Set µ2k�1  µ2k�1 + an, ⌘2k�1  ⌘2k�1 + an

Set P (u) P (u) + anĥn, P (u) P (u) + bnĥn

Calculate d(Pn(u), u)

if d(Pn, u) < "

Set i0  i

Set k0  k

Set N  n

stop

end (for)

end (for)

Output: i0, k0, N , {aj}Nj=1, {bj}Nj=1, {µj}Nj=1, {⌘j}Nj=1, P (u), P (u).

Once we have finished the algorithm, we obtain the coe�cients {aj}Nj=1, {bj}Nj=1, of the

projections PN (u) and PN (u), respectively, in the modified Haar basis, as well as the coe�cients,

{µj}Nj=1, {⌘j}Nj=1, which allow us to rewrite the projections and recover the simple fuzzy number

PN(u) explicitly. For this, we note by {t0
j
}N+1
j=0 the rearrangement of {tj}N+1

j=0 in increasing order,
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and so we have that

PN (u)(↵) =
NX

j=1

µj1Ij (↵), PN (u)(↵) =
NX

j=1

⌘j1Ij (↵), (↵ 2 [0, 1]),

where I1 = [t00, t
0
1] and, for j = 2, 3, . . . N , Ij = (t0

j�1, t
0
j
]. The simple fuzzy number PN(u)(x) is

then

PN(u)(x) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

0, if x < µ1

j

2i0+1
, if µj  x < µj+1, j = 1, 2, . . . , 2k0 � 1

i� k0

2i0
, if µi  x < µi+1, i = 2k0, 2k0 + 1, . . . , N � 1

1, if µN  x  ⌘N

N�k0�i

2i0
, if ⌘N�i+1 < x  ⌘N�i, i = 1, 2, . . . , N � 2k0 � 1

N � j

2i0+1
, if ⌘N�i+1 < x  ⌘N�i, j = N � 2k0, . . . , N � 1

0, if x > ⌘1

.

Let us observe that the simple fuzzy number PN(u) given in Theorem 4.3 is obtained for

approximating any fuzzy number u 2 F, unlike that which can be found in other papers, where

some additional conditions are assumed, such as the strict monotonicity of u and u ([35]).

Example 4.4 Let us consider the fuzzy number

u(x) =

8
>>>>>>>>><

>>>>>>>>>:

0, x < 0
x
2

4 , 0  x < 1
1
4 , 1  x < 2
3x
4 �

5
4 , 2  x  3

1� 1
4(x� 3)2, 3 < x  5

0, x > 5

.

We approximate u for the cases N = 4 and N = 16 using the Haar system, we obtain

d
(2)
L2[0,1]

(u,P4(u)) = 0.204578

and

d
(2)
L2[0,1]

(u,P16(u)) = 0.0592643.

In Figure 3, we show the graphs of u, u, PN (u) and PN (u) for N = 4 and N = 16, as well as

the fuzzy number u and the approximations above.
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u and P4(u) u, u, P4(u) and P4(u)

u and P16(u) u, u, P16(u) and P16(u) ,

Figure 3

4.2 Approximation of a fuzzy number in FC[0,1]

We now focus on the approximation of a fuzzy number that satisfies an additional condition, its

lower and upper branches being continuous, that is, a fuzzy number u 2 FC[0,1]. Then, we can

consider the approximation Pn(u) obtained by means of the Faber–Schauder system {fn}n�1

associated with the nodes {tn}n�1, since such a Schauder basis clearly satisfies the hypotheses

of Theorem 4.3: taking into account that Pn(u) and Pn(u) are the continuous piecewise linear

functions that interpolate u and u, respectively, at nodes {ti}ni=1, so that, Pn(u) is a polygonal

fuzzy number. In particular, as this Schauder basis is monotone, it follows from Theorem 4.3

the non-expansiveness of each projection Pn.

All this is compiled in the following easy algorithm, where the goodness of approximation

is measured with the fuzzy Hausdor↵ distance d
(1)
C[0,1], which will be denoted, for the sake of

simplicity, by d.

Approximation algorithm of a fuzzy number in FC[0,1]
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Input: Functions u and u, {tn}n�1 dense sequence in [0, 1] with t1 = 0, and t2 = 1,

Faber–Schauder system associated with {tn}n�1, distance d, tolerance " > 0.

Set a1  u(t1), b1  u(t1),

Set P (u) a1f1, P (u) b1f1

for i = 2, 3 . . .

Set ai  u(ti)�
i�1X

j=1

ajfj(ti), bi  u(ti)�
i�1X

j=1

bjfj(ti)

Set P (u) P (u)(x) + aifi, P (u) P (u) + bifi

Calculate d(Pi(u), u)

if d(Pi(u), u) < "

Set N  i

stop

end (for)

Output: N, {aj}Nj=1, {bj}Nj=1, P (u), P (u).

Remark 4.5 When a fuzzy number u 2 FC[0,1] additionally satisfies that u, u are Lipschitz

continuous, with Lipschitz constant L and L, respectively, then clearly

ku� Pn(u)k  2L max
i=2,...,n

(ti � ti�1) and ku� Pn(u)k  2L max
i=2,...,n

(ti � ti�1),

so, not only d
(1)
C[0,1](u,Pn(u))! 0 as n!1, as stated in Theorem 4.3, but also

d
(1)
C[0,1](u,Pn(u))  2max{L,L} max

i=2,...,n
(ti � ti�1).

Obviously, we could consider other metrics, for instance, d(2)(C[0,1],k·k2) thus recovering [11, Propo-

sition 1].

Example 4.6 Consider a fuzzy number v 2 FC[0,1] defined as

v(x) =

(
1

2+x2 , �2  x  2

0, x  �2 or 2  x
.

We use the Faber-Schauder system over the dyadic partition to approximate v considering N = 4

and 16 and we obtain

d
(1)
C[0,1](v,P4(v)) = 0.214359
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u and P4(u) u, u, P4(u) and P4(u)

u and P16(u) u, u, P16(u) and P16(u) ,

Figure 4

and

d
(1)
C[0,1](v,P16(v)) = 0.0614435.

The graphs associated with these approximations are shown in Figure 4.

5 Arithmetic and properties of the approximations

In this section, we focus our attention on the study of the compatibility between the approxima-

tions obtained in Theorem 4.3 for a fuzzy number and the usual operations of fuzzy arithmetic.

We also analyse how such approximations allow us to obtain easy approximations for the ambi-

guity, value, expected interval and expected value of any fuzzy number. We begin with the first

of these issues. The obtained result generalises [35, Theorem 6] and [3, Proposition 21].

Proposition 5.1 With the notation and, under the assumptions of Theorem 4.3, let u, v 2 FX ,

� 2 R and n 2 N. Then, we have that

i)

Pn(u+ v) = Pn(u) +Pn(v)
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and

d
(·)
X
(u+ v,Pn(u+ v))  d

(·)
X
(u,Pn(u)) + d

(·)
X
(v,Pn(v)).

In particular,

Pn(u+ �) = Pn(u) + �

and

d
(·)
X
(u+ �,Pn(u+ �))  d

(·)
X
(u,Pn(u)).

ii)

Pn(�u) = �Pn(u)

and

d
(·)
X
(�u,Pn(�u)) = |�|d(·)

X
(u,Pn(u)).

iii) Suppose that u gH v exists. Then Pn(u) gH Pn(v) exists,

Pn(u) gH Pn(v) = Pn(u gH v)

and

d
(·)
X
(u gH v,Pn(u gH v))  d

(·)
X
(u,Pn(u)) + d

(·)
X
(v,Pn(v)).

Proof. Let u, v 2 FX , � 2 R and n 2 N.

First of all, we deal with the addition. The additivity of Pn, Pn(u+ v) = Pn(u) +Pn(v),

follows from that of the projection Pn, theorem 4.3 a) and the definition of the interval sum,

which equivalently yield

↵ 2 [0, 1] ) [Pn(u+ v)]↵ = [Pn(u)]
↵ + [Pn(v)]

↵
.

As a consequence, and taking into account the monotonicity condition (3.1), we arrive at

d
(·)
X
(u+ v,Pn(u+ v)) =

���
⇣
ku+ v �Pn(u)�Pn(v)k, ku+ v �Pn(u)�Pn(v)k

⌘���
(·)


���
⇣
ku�Pn(u)k+ kv �Pn(v)k, ku�Pn(u)k+ kv �Pn(v)k

⌘���
(·)

 d
(·)
X
(u,Pn(u)) + d

(·)
X
(v,Pn(v)).

The other statement is obvious, since Pn(�) = �.

Regarding the scalar-fuzzy number multiplication, Pn(�u) = �Pn(u), that is,

↵ 2 [0, 1] ) [Pn(�u)]
↵ = �Pn(u)]

↵
,
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it is fulfilled, because, due to the homogeneity of Pn,

[Pn(�u)]↵ = [Pn(�u)(↵),Pn(�u)(↵)]

= [min{�Pn(u)(↵),�Pn(u)(↵)},max{�Pn(u)(↵),�Pn(u)(↵)}]
= �[min{Pn(u)(↵),Pn(u)(↵)},max{Pn(u)(↵),Pn(u)(↵)}]
= �[Pn(u)]↵.

And as a result,

d
(·)
X
(�u,Pn(�u)) =

���
⇣
k�u� �Pn(u)k, k�u� �Pn(u)k

⌘���
(·)

= |�|
���
⇣
ku�Pn(u)k, ku�Pn(u)k

⌘���
(·)

= |�|d(·)
X
(u,Pn(u)).

And finally, for the gH-di↵erence of the fuzzy numbers u and v, we assume that it exists

and write w := u  gH v. Then, if u = v + w, by i), Pn(u) = Pn(v) + Pn(w), while when

v = u+ (�1)w, i) and ii) imply that

Pn(v) = Pn(u) + (�1)Pn(w).

Therefore, Pn(u) gH Pn(v) exists and

Pn(u) gH Pn(v) = Pn(u gH v).

To conclude, we prove the validity of the preciously mentioned control of the distance between

u  gH v and Pn(u  gH v), and, as we have just done, we make a distinction according to the

form taken by the gH-di↵erence w. Thus, on the one hand, if u = v+w, then, for any ↵ 2 [0, 1],

there holds

[u]↵ = [v]↵ + [w]↵,

and so,

[Pn(u)]
↵ = [Pn(v)]

↵ + [Pn(w)]
↵
,

which implies

w(↵) = u(↵)� v(↵) and w(↵) = u(↵)� v(↵),

and

Pn(w)(↵) = Pn(u)(↵)�Pn(v)(↵) and Pn(w)(↵) = Pn(u)(↵)�Pn(v)(↵),

respectively. Hence,

d
(·)
X
(u gH v,Pn(u gH v)) =

���
⇣
ku gH v �Pn(u gH v)k, ku gH v �Pn(u gH v)k

⌘���
(·)

=
���
⇣
ku� v �Pn(u) +Pn(v)k, ku� v �Pn(u) +Pn(v)k

⌘���
(·)


���
⇣
ku�Pn(u)k+ kv �Pn(v)k, ku�Pn(u)k+ kv �Pn(v)k

⌘���
(·)

=
���
⇣
ku�Pn(u)k, ku�Pn(u)k

⌘
+
⇣
kv �Pn(v)k, kv �Pn(v)k

⌘���
(·)

 d
(·)
X
(u,Pn(u)) + d

(·)
X
(v,Pn(v)).
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On the other hand, suppose that v = u + (�1)w and let bw := (�1)w. Then v = u + bw, hence
v gH u = bw and so v gH u = (�1)(u gH v). Thus, it follows from ii) and the above reasoning

that
d
(·)
X
(u gH v,Pn(u gH v)) = d

(·)
X
((�1)(u gH v),Pn((�1)(u gH v))

= d
(·)
X
(v  gH u,Pn(v  gH u))

 d
(·)
X
(v,Pn(v)) + d

(·)
X
(u,Pn(u)).

⇤

The operations of fuzzy addition, scalar-fuzzy number multiplication and gH-di↵erence of

fuzzy numbers are, in general, impossible to compute explicitly. Proposition 5.1 is particularly

interesting in this respect, since, when an arbitrary fuzzy number u 2 F is approximated by

means of Pn(u), obtained from the Haar system, the arithmetic of these approximations is

extremely easy, since it reduces to that of simple fuzzy numbers. For the same reason, it makes

the approximations of the fuzzy numbers in FC[0,1], from the Faber–Schauder system, particularly

suitable for approximating the arithmetic in that metric space.

We have previously commented that, in the study of fuzzy numbers, it is useful to work

with di↵erent parameters associated with them, such as the core, value, ambiguity, expected

interval and expected value. We now prove that the approximations introduced in this paper

work well with these parameters and, in particular, Proposition 5.4 extends the related result

presented in [11].

Taking into account that the core of u and Pn(u) are explicitly described as [u]1 =

[u(1), u(1)] and [Pn(u)]1 = [Pn(u)(1), Pn(u)(1)], in the case presented in section 4.1, if u 2 F,
then,

[u]1 = lim
n!1

[Pn(u)]
1
,

where the limit is understood in terms of the Haussdor↵ distance. To illustratethis statement,

it is su�cient to note that, with the notation of Example 4.1, for n 2 N

Pn(u)(1) = |In|�1
Z

In

u(t) dt, and Pn(u)(1) = |In|�1
Z

In

u(t) dt,

with In = [t0
n�1, 1]. Since the sequences {Pn(u)(1)}n2N and {Pn(u)(1)}n2N are bounded and, if

n < m, then t
0
n�1  t

0
m�1, and from the monotony and left-continuity at 1 of u and u, we deduce

the above claim.

On the other hand, in the case described in section 4.2, the approximations Pn(u) preserve

the core, i.e., if u 2 FC[0,1] and n 2 N, then

[u]1 = [Pn(u)(1), Pn(u)(1)] = [Pn(u)]
1
,
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because of the interpolation property of the Faber–Schauder basis.

In the following results, the limit of the expected interval is understood in terms of the

Hausdor↵ distance, that is, convergence of the extremes of the intervals to those of the limit

interval.

Proposition 5.2 Let u 2 F and suppose that {Pn(u)}n�1 is the sequence of approximations

associated with a norm in R2 satisfying (3.1) and a Schauder basis in (Lp[0, 1], k · kp), p 2 [1,1),

under the assumptions of Theorem 4.3. Then,

lim
n!1

EI(Pn(u)) = EI(u) and lim
n!1

EV(Pn(u)) = EV(u).

If, in addition, c : [0, 1] �! [0, 1] is a reducing function, then

lim
n!1

Valc(Pn(u)) = Valc(u) and lim
n!1

Ambc(Pn(u)) = Ambc(u).

Proof. Given 1  p <1, we can observe, on the one hand, that for any u 2 F,

lim
n!1

ku� Pn(u)kp = 0 = lim
n!1

ku� Pn(u)kp,

and, on the other hand, that if c 2 L1[0, 1], then the functional � : (Lp[0, 1], k · kp) �! R defined

at each u 2 F by

�(u) :=

Z 1

0
cu,

is well-defined and continuous (Hölder inequality). ⇤

Remark 5.3 When the considered Schauder basis in Lp[0, 1] is the modified Haar system, a

direct application of its expression of the projections given in (4.3) – is the same as for the Haar

system– it yields for each n 2 N

EI(Pn(u)) = EI(u), EV(Pn(u)) = EV(u), Val(Pn(u)) = Val(u)

and

Amb(Pn(u)) = Amb(u).

The continuous counterpart of Proposition 5.2 reads as follows:
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Proposition 5.4 Assume that, for a given norm in R2, fulfilling (3.1), a Schauder basis in

(C[0, 1], k · k1) satisfying the assumptions in Theorem 4.3, and a fuzzy number u 2 F, {Pn(u)}n�1

is the corresponding sequence of approximations of u. Then,

lim
n!1

EI(Pn(u)) = EI(u) and lim
n!1

EV(Pn(u)) = EV(u).

Furthermore,

lim
n!1

Valc(Pn(u)) = Valc(u) and lim
n!1

Ambc(Pn(u)) = Ambc(u),

whenever c : [0, 1] �! [0, 1] is a reducing function.

Proof. It is su�cient to apply arguments similar to those used in the previous proof in the

continuous case. ⇤

Remark 5.5 The validity of the results in the two previous propositions is also guaranteed, in

a more general way, when considering the set FX , where X is a Banach space of real-valued

functions on [0, 1] such that the functional � : X �! R given at each u 2 FX by

�(u) :=

Z 1

0
cu,

is well-defined and continuous.

It is worth mentioning that the calculations of the approximations for each of these numbers

and the expected interval are immediate when c is not complicated and either the Haar or the

Faber-Schauder system is considered.

6 Conclusions

In this paper we propose a general method that, given an arbitrary fuzzy number u, allows us

to obtain another fuzzy number Pn(u) which is simpler and as close as we want to the number

u, in the sense of a wide family of distances including those defined in the literature.

This general method provides us with a wide range of concrete methods that verify, among

other things, the good properties requested in [12]. In particular, the approximations proposed

in sections 4.1 and 4.2, for example, verify that Pn(u) is an easy–to–handle fuzzy number. In

addition, by its very construction, the sequence {Pn(u)}n�1 converges to u in the appropriate

metrics for each problem, including those most commonly used in the literature on the subject.
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Moreover, when dealing with the space F in section 4.1, we assume no additional hypotheses on

u in order to guarantee the convergence of {Pn(u)}n�1, unlike taht which is done in [35].

As for the third property, as proved in propositions 5.2 and 5.4, the convergence of im-

portant characteristics of fuzzy numbers is also given, not only for FC[0,1], as it is stated in

[11].

We also note that the proposed approximations work well with arithmetic operations, which

is certainly a very good property to add to the above list. In particular, we prove, in proposition

5.1, that Pn(u)+Pn(v), �Pn(u) and Pn(u) gHPn(v) provide good approximations of u+v, �u

and u gH v respectively. In addition to this, we should also add that the arithmetic operations

between the projections are reduced to simple operations between the coe�cients (real numbers)

of the projections.

Acknowledgement

Research partially supported by Junta de Andalućıa Project FQM359 and by “Maria de Maeztu”
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