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Abstract. The quality of the input data is amongst the decisive factors affecting the speed and ef-
fectiveness of recurrent neural network (RNN) learning. We present here a novel methodology to
select optimal training data (those with the highest learning capacity) by approaching the problem
from a decision making point of view. The key idea, which underpins the design of the mathematical
structure that supports the selection, is to define first a binary relation that gives preference to inputs
with higher estimator abilities. The Von Newman Morgenstern theorem (VNM), a cornerstone of
decision theory, is then applied to determine the level of efficiency of the training dataset based on
the probability of success derived from a purpose-designed framework based on Markov networks.
To the best of the author’s knowledge, this is the first time that this result has been applied to data
selection tasks. Hence, it is shown that Markov Networks, mainly known as generative models, can
successfully participate in discriminative tasks when used in conjunction with the VNM theorem.

The simplicity of our design allows the selection to be carried out alongside the training. Hence,
since learning progresses with only the optimal inputs, the data noise gradually disappears: the result
is an improvement in the performance while minimising the likelihood of overfitting.
Key words: data selection, prior probability, Markov networks, Von Neumann-Morgenstern
Expected Utility theorem.

1. Introduction

The superiority of artificial neural networks (ANNs) in various tasks (classification, pat-
tern identification, prediction, etc.) has led researchers to focus much of their efforts on the
study of the functioning of their components from a theoretical perspective, see Higham
and Higham (2019), Smale et al. (2010). It is well known that ANNs have a high capac-
ity for learning, the effectiveness of which depends on many factors. Amongst them, the
problem complexity influences to a high degree the ANN performance, which depends
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not only on the ANN architecture, but also on the accurate and sufficient training data and
the efficiency that datasets show throughout the process. Training in recurrent neural net-
works (RNNs) – ANNs that stand out for their high capacity for learning and recognition
of temporal patterns – depends to a large extent on size, type and structure of the selected
training sets (Chen, 2006; Zhang and Suganthan, 2016; Zapf and Wallek, 2021): this is
such a central point that decisively influences both the speed and the ability to learn. Dur-
ing the training phase, where the unknown parameters are to be determined, the quality
and learning capacity of the selected training datasets are of key importance (Mirjalili et
al., 2012).

The main objective of this paper is to provide a robust methodology to select optimal
training datasets (those with the highest learning capacity) that can be used in any context
to maximise the performance of the trained models. This methodology has been designed
to run in parallel with RNN learning so that, while the RNN learning evolves progres-
sively only with the optimal training inputs, the data noise gradually disappears. This has
a positive impact on the quality of the RNN results while minimising the likelihood of
occurrence of overfitting.1 The key idea in the design of the mathematical structure that
supports this selection is to define a binary relation that gives preference to those datasets
with higher estimator abilities by using Utility theory. A second contribution of our work
is to have designed our methodology based on tools that have not been used previously
for this. This novelty lies in showing Markov Networks (MNs), widely known as genera-
tive models (Gordon and Hernandez-Lobato, 2020), as models with a real discriminative
capacity when used in conjunction with the Von Newman Morgenstern theorem (VNM
theorem), a cornerstone of Game Theory with an extensive background also in Decision
Theory (Machina, 1982; Delbaen et al., 2011). In order to faithfully model the RNN re-
ality, we have used the dynamic version of the MNs (TD-MRFs). It is worth noting the
versatility of our proposal, which can be also applied to other data-driven methodologies
provided that they are regulated by dynamical systems.

Markov Random Fields (MRFs) are also known as Markov Networks (MNs) in those
contexts that require highlighting the undirected graph condition (Dynkin, 1984). MRF-
type graphical models have experienced a resurgence in recent years. In its origins, they
exclusively performed functions related to image processing such as restoration or recon-
structing. Later works such as García Cabello (2021) or Wang et al. (2022) have acknowl-
edged their high predictive capability due to the equivalence between MRFs and Gibbs
distributions, which provides an explicit expression of the prior likelihood after appro-
priate choice of the energy functions. MRF solutions are widely regarded as generative
models as opposed to discriminative approaches, more related to tasks which involve clas-
sification.

Regarding the literature review, the selection of optimal training sets has not been stud-
ied in a general framework so far. To this author’s knowledge, this is the first analysis that
aims to provide guidance for a general context. Published papers have studied this issue

1Overfitting in data-driven learning models (which extract a predictive model from a data set) is the flaw
of failing to generalise the features/patterns present in the training dataset. It occurs in models which extract
features from datasets having too much noise.
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either only in contexts of ANN classification tasks or in very precise scenarios (electrical,
financial or chemical engineering) taking advantage of their specific techniques. Within
the first category, the genetic algorithm (GA) is widely used as a tool to create high-quality
training sets as a the first step in designing robust ANN classifiers, see Reeves and Taylor
(1998), Reeves and Bush (2001) or more recently, the paper (Nalepa et al., 2018). Disad-
vantages of using GA, apart from slowness, include that it is computationally expensive
and too sensitive to the initial conditions. In our proposal, however, the calculation of the
probabilities associated with the utility (i.e. efficiency as estimators) of the inputs is very
simple and therefore does not add computational cost.

Within the second category, in the paper (Zapf and Wallek, 2021), the authors made a
comparison between existing methods in the area of chemical process modelling in order
to split a training set from a given data set. In Wong et al. (2016), the authors proposed
a data selection for statistical machine translations, based on recursive neural networks
which can learn representations of bilingual sentences. The paper (Fernandez Anitzine
et al., 2012) analyses through a very context-specific instrument (ray-tracing) the ANN
optimal selection of training set in the context of predicting the received power/path loss
in both outdoor and indoor links. In Kim (2006), authors propose a GA approach for ANN
instance selection for financial data mining.

As for the use of MNs/MRFs (prior probability) for problems which involve proba-
bility a posteriori, in the literature the terms “MNs/MRFs” and “discriminative” appear
together only and exclusively to refer to discriminative random fields (DRFs) or equiv-
alently conditional random fields (CRFs), both type of random fields which provide by
definition a posterior probability.

The rest of the paper is structured as follows: preliminaries of Section 2 include ba-
sic knowledge on preference relations and VNM theorem, MNs and RNN functioning.
Section 3 structures the steps to be followed to reach a solution to the proposed problem.
The design of an abstract TD-MRF-based framework is performed in Section 4 which
will subsequently allow the computation of prior probabilities associated with the VNM
theorem. A TD-MRF structure for the input sets is also provided here. In Section 5, the
expected utility theorem is applied after proving that the conditions for doing so are met.
Section 6 highlights (and proves) the main results of our work. In Section 7, an example
of the method application is developed. Section 8 finally concludes the paper.

2. Preliminaries

2.1. The Von Neumann-Morgenstern Theorem

When facing a situation of uncertainty (known as lottery), there is a set X which con-
tains all possible outcomes (results) after the process has been completed. Each of these
has associated a probability p of occurrence. The tools for managing the idea of “prefer-
ring” one outcome over another and the “benefit associated with a preference” are related
to the definition of preference relation (see Jiang and Liao, 2022) and utility functions
respectively.
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Mathematically, a preference relation is a binary relation � in a set X of possible
outcomes, such which is rational, i.e. that it satisfies the following properties:

• completeness: for all xi, xj ∈ X, either xi � xj or xj � xi or xi ∼ xj (indifference)
and

• transitivity: for all xi, xj , xl ∈ X if xi � xj and xj � xl , thus xi � xl .

The instrument that allows to quantify the benefit of each possible scenario is the util-
ity function u: they assign a numerical label to each outcome so that outcomes can be
compared to make a decision.

The Von Neumann-Morgenstern expected utility theorem (VNM theorem), (Yang and
Qiu, 2005; Pollak, 1967) is a simple and very efficient result in Decision Theory which
allows to compare numerically (through a utility function) the possible outcomes resulting
from a process under uncertainty (Van Den Brink and Rusinowska, 2022). Under some
axioms the ordinal preference relation is representable by a cardinal (expected) utility
function, known as VNM utility function. Moreover, the VNM theorem shows that the
expected utility of a lottery can be computed as a linear combination of the corresponding
utilities by using the probabilities as linear coeficients:

Theorem 2.1 (VNM Expected Utility). Let X be a set of outcomes and a preference
relation � on X that satisfies the hypothesis of

• Continuity. The following formulations of continuity are equivalent:
– if each element xn of a sequence of outcomes is xn � x, thus limn→∞ xn � x,
– ∀x1, x2, x3 ∈ X with x1 � x2 � x3 =⇒ ∃p ∈ [0, 1] � x2 ∼ [p : x1; 1 − p : x3],
– ∀x1, x2, x3 ∈ X with x1 � x2 � x3 =⇒ ∃p ∈ [0, 1] such that x2 ∼ px1 +(1−p)x3;

• Independence (convex combination): xi � xj ⇔ αxi + (1 − α)xl � αxj + (1 − α)xl ,
∀α ∈ (0, 1] and ∀xl ∈ X.

Thus, there exists a continuous (utility) function u : X → [0, 1] with the following prop-
erties:

1. x1 � x2 iff u(x1) � u(x2);
2. u([p1 : x1; p2 : x2; . . . ; pm : xm]) = ∑m

j=1 pju(xj ).

Many authors have shown, however, that in practice the axiom of independence is not
fulfilled (the top paper (Machina, 1982) talks about a “systematic violation in practice” of
the axiom of independence, with the famous “Allais Paradox” as example).

In the paper (Machina, 1982), it is also shown that there are weaker conditions that lead
to the same results as those stated in the VNM theorem. There, continuity is replaced by the
weak convergence topology, which is the weakest topology for which the expected utility
functional is continuous (see also Delbaen et al., 2011). On the other hand, the axiom of
independence is replaced by the Fréchet differentiable condition on the functional form
which defines the preferences (Machina, 1982).
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2.2. Basic Knowledge of Markov Networks MRFs

Let X = {Xsi |si ∈ S, i ∈ N} be a set of random variables which take Xsi for any site2

si ∈ S. X is known as a stochastic process or a graphical model GM with underlying set
of sites S. Both X and S are used interchangeably to represent a GM.

Graphical Models are commonly used to visually describe the probabilistic relation-
ships amongst stochastic variables. Basic knowledge on GMs comprises the concepts of
neighbourhood of a site and clique: sites si and sj are adjacent, si ∼ sj , if there is at least
one edge that links them. GMs are called connected if for any two sites there is a path –a
sequence of edges–, which connect them. Neighbourhood of a site si , denoted by N (si), is
the set of sites which are adjacent to si : N (si) = {sj ∈ S|sj ∼ si}. Cliques are maximally
connected subgraphs of the underlying graph S in the usual topological sense: they are
connected and no more sites can be added and still be connected. Markov random fields
(MRF’s) are GMs whose underlying graph is undirected.

Dynamic graphical models (DGMs) are the time-varying version of GMs. The set of
dynamic stochastic variables will be denoted by Xt = {Xt

si
|si ∈ S, i ∈ N}: these are

node-dynamic graphs (the ones considered here) although edge-dynamic graphs could be
also taken into account or even the possibility of both S and E varying over time. TD-
MRFs are defined from a generalization of the usual markovian property. It states that the
global probability of occurrence may be deduced from a local probability, when “local”
refers to the neighbouring system: Xt is said to be a TD-MRF if

P
[
Xt

si
= xsi

∣∣Xt
S−{si } = x

] = P
[
Xt

si
= xsi

∣∣Xt
N (si )

= x
]
,

where P [Xt ] = P [{Xt
si
|si ∈ S, i ∈ N}] = {P [Xt

si
= xsi ]|si ∈ S, i ∈ N} denote the joint

distribution of Xt . The Hammersley-Clifford theorem, under the “positivity condition”,
sets the equivalence between MRF and Gibbs distribution, i.e. a joint distribution function
which may be expressed in terms of functions ψ of Xt = {Xt

si
|si ∈ S, i ∈ N}, which takes

values only on the cliques C, written as ψC(Xt). The energy functions ψC(Xt) determine
in a clear-cut manner the joint distribution:

P
[
Xt

] = 1

Z
exp

[
−

∑
cliques C

ψC

(
Xt

)] = exp

[
−

∑
cliques C

ψC

(
Xt

) − ln Z

]
,

such that all ψC depend on the clique C but have a common domain. When former ex-
pression is transformed into

P
[
Xt

] = 1

Z

∏
cliques C

exp
[−ψC

(
Xt

)]
, (1)

2We are using the term “site” instead of node for its additional connotation of location, which allows us
to simulate that each of the nodes is a different geographical place that could generate its own estimate of the
variable as explained below, in Proposition 4.7.
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energy functions ψC(Xt) are called clique potentials when viewed as factors
(exp[−ψC(Xt)]). The function Z is known as “the partition function” which acts as a
normalizing constant to ensure that the distribution sums up to 1. We shall refer to (1) as
a Gibbs distribution.

2.3. Functioning of Recurrent Neural Networks RNNs

Neural networks (NNs) have a general functional definition as composition of parametric
functions which disaggregates the linear component of the non-linear activation function
(see García Cabello, 2023). Recurrent Neural networks, RNNs (Chou et al., 2022; Zhang
et al., 2014), are a particular case of NNs which operate on time sequences and exhibit a
special ability for learning lengthy-time period dependencies. Their functioning lies in an
intermediary layer h = (h0, . . . , hT ) of hidden states ht in such a way that the data cycle
through a loop to this layer. The output is reached by recursive applying the following
functions:

h1 = σ
(
Wxhx1 + Whhh0 + bh

)
...

...

ht = σ
(
Wxhxt + Whhht−1 + bh

)
zt = σ̃

(
Whzht + bz

)
(2)

for weighted matrices, Wxh,Whh,Whz, and bias vectors, bh, bz, and where zt is the fi-
nal output and σ, σ̃ are point-wise nonlinearities (activation functions which are applied
component-wise). In RNNs, activation σ̃ is the sigmoid, monotonically increasing with
range (0, 1). For any RNN input xt , its corresponding output is z[xt ] ∈ (0, 1), denoted as
zt for simplicity.

The loss function loss is chosen depending on the RNN task: usually it is Mean Square
Error MSE = 1

n

∑n
i=1(zi − yi)

2, often used as SE = 1
2n

∑n
i=1(zi − yi)

2 for cancelling
the constant when computing the gradient, where zi and yi represent the RNN output and
the target value respectively. RNN functioning is shown in Fig. 1.

Fig. 1. RNN learning process.
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3. Problem Formulation

In this section we will develop the theoretical framework that will capacitate Markov
Network-methodology to perform discriminative tasks based on prior probability and the
VNM Theorem 2.1. Specifically, our aim is to design a mathematical model which enables
MNs to identify the optimal RNN training sets, i.e. those that produce better estimates in
forecasting taks. For a better understanding, we will make reference to a real example of
a RNN forecasting process:

Objective
To discriminate/select which RNN training sets will produce better estimates.

Example of RNN learning process
Let us suppose that we have to forecast the electrity price 1 month ahead (t = +1) and
as training data we have the data of the previous 10 months (t = −9, . . . ,−2,−1, 0).

Recall that, in the networks as a whole, Recurrent Neural Networks, RNNs, stand out
for their predictive abilities based on their potential in processing temporal data. Thus, we
are facing some time-dependent learning process by using RNNs where the superscript t

denotes time in all cases (no distinction will be made between matrices and their transpose
in order to avoid confusion between t transpose and t time).

As is well known, in RNN prediction tasks, training sets are fed with temporal se-
quences composed with pairs of previous data of the form (input, labels) with the objective
of predicting the future, referred to as future target value, y. Thus, Xt is the time-varying
variable which needs to be estimated, Zt is the set of RNN outputs and Y t the set of la-
bels (i.e. past target values for training). In terms of the illustrative example: to predict
the electrity price one month ahead (target value y, t = +1), the training sets are made
up of temporal sequences (xt

i , y
t
i ) whose first component contains different factors that

influence electricity prices (fuel prices, transmission and distribution costs, weather con-
ditions, etc.) and whose second component is the electrity price, both xt

i , yt
i in site i and

prior to present time (t = −9, . . . ,−2,−1, 0).
Let In be the (time-dependent) input RNN dataset formed by n vectors:

In = {
xt
i = (

x
1,t
i , x

2,t
i , . . . , x

d,t
i

)
, i = 1, . . . , n

}
,

each of them contains d features: x
j,t
i ∈ R, i = 1, . . ., n; j = 1, . . . , d:

RNN input RNN output Labels Training set Tr
xt
i zt

i yt
i {(xt

i , y
t
i ); i = 1, . . . , D}

Zt [In] will stand for the set of outputs which is generated after the completed RNN process
corresponding the the set of inputs In.

The objective is to select from the n inputs in In, D < n vectors that will make up the
training set: the selection criterion is to choose those which produce the best estimates in
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the RNN learning process. The choice will be conducted by only using prior probability
–instead of posterior– and the VNM Theorem 2.1.

We will list the steps to be taken:

• Main lottery (in In). The key idea is to adapt the scenario of the RNN learning pro-
cess (inputs, outputs, labels, target value) to the situation described in the VNM-
Theorem 2.1, and to rely on the TD-MRF methodology for computing the probabil-
ities. To do so, we consider the process of selecting D < n vectors as a lottery whose
outcomes are the D vectors we have chosen for the training set (main lottery). Each of
these D vectors has its own likelihood of being chosen.

• Consider the RNN process as composed by several uncertain processes, RNNi , one for
each of the input vectors xt

i that make up the set In, i = 1, . . . , n (Fig. 1). After the RNN
learning is completed, a set of n outputs Zt [In] is generated. Note that, since RNN is
deterministic (the same set of inputs will produce the same set of outputs), input xt

i has
a uniquely associated output zt

i .
• Secondary lottery (for each zt

i ∈ Zt [In]). A second lottery arises for each output zt
i ∈

Zt [In] when the selection criterion is applied: how good the estimate zt
i is. If M denotes

the threshold below which the loss function is considered acceptable, the secondary
lottery is whether the loss function loss(zt

i ) < M or not.
To ensure that our selection rule is applied, we define a preference relation on In =

{xt
i , i = 1, . . . , n}. Due to the unique existing direction from input xt

i to RNN output
zt
i , the preference relation can be considered defined on both the set of inputs In and

the set of outputs Zt [In]. Moreover, for the evident bidirection between outcome zt
i

and associated loss loss(zt
i ), the distinction that many authors make between defining a

preference relation on the set of outcomes X or defining it on the set of lotteries over X,
named �X, does not apply in our case:

Definition 3.1. For zt
i , z

t
j ∈ Zt [In], zt

i ≺ zt
j ⇔ loss(zt

j ) < loss(zt
i ), i.e. zt

j is preferred
to zt

i if zt
j is a better estimate (smaller associated loss). Indifference comes with the

equality: for zt
i , z

t
j ∈ Zt [In] zt

i ∼ zt
j ⇔ loss(zt

i ) = loss(zt
j ).

In later sections we will show that this preference relation verifies the properties nec-
essary for the application of the VNM theorem.

• We thus apply Theorem 2.1 for the main lottery: the expected utility of training set Tr
is given by

u[Tr] = u
[{

xt
1, . . . , x

t
D

}] =
D∑

i=1

po
[
Xt = xt

i

] · u
(
xt
i

)
. (3)

• In order to compute the (prior) probabilities po[Xt = xt
i ], we shall equip the initial

RNN data set with an undirected graph structure –with appropriate node and edge
definitions– which will later be shown to be an MRF by application of central Theo-
rem 4.4. This will be the development of Section 4.

• In order to compute the utility u(xt
i ), we shall apply again Theorem 2.1 for the secondary

lottery. This will be performed in Sections 5 and 6.
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4. The Abstract TD-MRF-Based Framework

Here, we first design an abstract graph-based framework that shall provide a model for a
dynamic context of k sites and r filters for data discrimination (corresponding to r cliques)
for which it will be shown that it is an TD-MRF under certain mild conditions. Such TD-
MRF will be the core in the computation of prior probabilities po[Xt = xt

i ] of the VMN
Theorem 2.1.

Let S be a set of k sites si , S = {si |i = 1, 2, . . . , k} such that the variable may
take different values depending on the site, Xt

si
. For each site si , the variable Xt

si
can be

disaggregated into a set of d characteristics which fully describes Xt
si

in the instant of
time t : Xt

si
= (X

1,t
si , X

2,t
si , . . . , X

d,t
si ), with lower case xt

si
= (x

1,t
si , x

2,t
si , . . . , x

d,t
si ) for the

feature vector (i.e. a numerical vector corresponding to a realisation of the variable). We
shall use indistinctly xt

si
= (x

1,t
si , x

2,t
si , . . . , x

d,t
si ) or xt

i = (x
1,t
i , x

2,t
i , . . . , x

d,t
i ) either for

upper and lower case. In a compact form, x
j,t
i ∈ R, i = 1, . . . , k; j = 1, . . . , d .

Remember that two random variables are equivalent if they have identical distribution.
Then, we will define the edges by equivalently defining the neighbourhood N of a site:
N (Xt

si
) = {Xt

sj
| Xt

sj
, Xt

si
are equivalent} = {Xt

sj
|P [Xt

sj
� x] = P [Xt

si
� x] ∀x}.

Definition 4.1 (TD-DGM). A DGM (S t ,N t ) is defined as follows: sites are the ele-
ments of the set S t through the identification st

i ∼ Xt
si

. Edges are defined through the
neighbourhood N of a site st

i as N (Xt
si
) = {Xt

sj
|P [Xt

sj
� x] = P [Xt

si
� x] ∀x}.

Remark 4.2 (Clean data). It is worth highlighting that Definition 4.1 (that makes equal all
random variables with identical probability distribution) avoids duplicates. This is partic-
ularly important when applied to the graphical model resulting from an RNN input dataset
(clean data).

Recall that marginal distribution is also known as prior probability in contrast with the
posterior distribution (the conditional one). From the former definition, sites in the same
neighbourhood have the same prior probability. Moreover,

Proposition 4.3. Sites which belong to the same neighbourhood have identical probabil-
ity a posteriori.

Proof. Let si , sj be two sites which belong to the same neighbourhood. From the Bayes’s
theorem, one has

P
[
Xt

si
|Xt

sj

] = P [Xt
sj

|Xt
si
] ·����P [Xt

si
]

����P [Xt
sj

] = P
[
Xt

sj
|Xt

si

]
.

The following theorem proves then that the DGM defined in Definition 4.1 is a TD-
MRF by equivalently showing that the Markov condition:

Theorem 4.4 (The TD-MRF model). DGMs as in Definition 4.1 are TD-MRFs.
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Proof. We shall prove that the local dynamic Markov property is verified, i.e. the prob-
ability of Xsi conditioned to the remaining random variables, Xsj , j �= i, is equal to the
probability of Xsi conditioned to the random variables in the same neighbouring system
XN (si ). The following development is considered in a specific time instant t0. By assum-
ing that the si-site estimation takes value x

t0
si while the rest does not (thus, their estimation

is some x �= x
t0
si ), we partition the set S as S − {si} = N (si) − {si} ∪ Not (si), where

Not (si) denotes those sites which are not in N (si). Thus,

P
[
Xt0

si
= xt0

si

∣∣Xt0
S−{si } = x �= xt0

si

] = P [(Xt0
si = x

t0
si ) ∩ (X

t0
S−{si } = x �= x

t0
si )]

P [Xt0
S−{si } = x �= x

t0
si ]

=

=
P [(Xt0

si = x
t0
si ) ∩ (X

t0

N (x
t0
si

)
= x �= x

t0
si )]

P [Xt0

N (x
t0
si

)
= x �= x

t0
si ]

=

= P
[
Xt0

si
= xt0

si

∣∣Xt0

N (x
t0
si

)
= x �= xt0

si

]
.

Insofar as the distribution function is the tool used to make estimates, previous Theo-
rem 4.4 provides a joint measure of how close the variable is to taking a particular value.

Corollary 4.5. The corresponding Gibbs (joint) probability distribution at a time in-
stant t provides that the likelihood of reaching a concrete value x is P [Xt = x] =
1
Z

∏r
cliques Cj

j = 1
e−ψC(Xt=x).

Remark 4.6. Under Definition 4.1, neighbours and cliques are essentially the same and
equal to the set of random variables with identical prior distribution. Moreover, according
to Proposition 4.3, variables in a clique have also the same posterior distribution.

Each clique has its own common estimation function:

Proposition 4.7 (The cliques). Each clique of the TD-MRF has its own estimation
function given by the clique potentials e

−ψCj
([.])

, j = 1, . . . , r: PCj
[Xt = x] =

1
Z

e
−ψCj

(Xt=x).

Proof. It is straightforward from definition of clique.

In discrimination/classification works, the commonly used probability is the condi-
tional or posterior probability P [Xt = x|y] = 1

Z

∏r
cliques Cj

j = 1
e−ψC(Xt=x|y) where x stands

for RNN input, y represents the corresponding target value and ψC(Xt = x|y) means that
the energy function ψC only assigns to those inputs x that correspond to y.

4.1. Visual Flowchart of the TD-MRF Operational Process

Inputs for a TD-MFRs are specific values of the stochastic variable Xt in a particular time
instant t and a site si , xt

si
. Depending on the context, Xt can be considered as disaggre-
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Fig. 2. TD-MRF operational process.

gated into a set of d features for each site si . Thus, each input is xt
i = (x

1,t
i , x

2,t
i , . . . , x

d,t
i ),

x
j,t
i ∈ R, i = 1, . . . , k, j = 1, . . . , d such that each univariate component xj,t

i ∈ R can be
regarded as input of a single-variable for d processes. The TD-GDM operational process is
as follows: by assuming there are r cliques, C1, . . . , Cr , each input is processed in a clique
Cj , j = 1, . . . , r , through the corresponding clique potential e

−ψCj
([.])

, j = 1, . . . , r ,
such that the output is the estimate made by the corresponding clique (according to Propo-
sition 4.7). Each of these is thus aggregated in a final output by means of the expression
given in Corollary 4.5. If, on the other hand, the variable is not considered disaggregated,
multivariate energy functions will process the information in a single multivariate execu-
tion.

Figure 2 provides a visual representation of a TD-MRF operation in the univariate
scenario, where the energy functions ψ are of Gaussian type, i.e. ψCj

= ([.]−μj )2

σ 2
j

, j =
1, . . . , r . Note that for xt

i = (x
1,t
i , x

2,t
i , . . . , x

d,t
i ), the corresponding probability po[xt

i ]
is po[xt

i ] = (po[x1,t
i ], po[x2,t

i ], . . . , po[xd,t
i ]).
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Moreover, the operation of an MRF is equally applied in the calculation of following
probabilities:

PCj

[
Xt � xt

] =
∑
x�xt

P
[
Xt = x

]
,

PCj

[
xpr < Xt � xim

] =
∑

x�xim

P
[
Xt = x

] −
∑

i�xpr

P
[
Xt = x

]
,

PCj

[
Xt > xt

] = 1 − PCj

[
Xt � xt

] = 1 −
∑
x�xt

P
[
Xt = x

]
.

4.2. TD-MRF Structure for the RNN Input Set

Our goal here is to provide a graph-structure (which will become TD-MRF structure ac-
cording to Theorem 4.4) for the set In of RNN inputs In = {xt

i = (x
1,t
i , x

2,t
i , . . . , x

d,t
i ), i =

1, . . . , n}, each x
j,t
i ∈ R, i = 1, . . . , n; j = 1, . . . , d .

To achieve this, the steps to follow are listed below:

1. The pre-processing phase. Before training/testing an RNN, data must suffer some
preprocessing steps for removing duplicates, unnecessary information and simulating
missing data. Depending on the context, data must also be normalised with feature
scaling. We shall assume that RNN input datasets have completed this phase.

2. The input set graph structure. We endow the RNN data set with an undirected graph
structure, according to Definition 4.1, where k = D:

• sites st
i are the local version of the random variable Xt , i.e. the random variable Xt

i

for which the set of inputs xt
i are a realisation of it: st

i = Xt
si

.
• The neighbourhood of a site is defined as

N
(
Xt

si

) = {
Xt

sj

∣∣Xt
sj

, Xt
si

are equivalent
}

= {
Xt

sj

∣∣P [
Xt

sj
� x

] = P
[
Xt

si
� x

]∀x
}
.

in the sense of Definition 4.1. According to Remark 4.2, this definition is intended
for discarding duplicates in the datasets.

3. The corresponding Gibbs distribution. According to Theorem 4.4, the graphical
model formed by the RNN input data viewed as a time varying random variable Xt

is TD-MRF, with a Gibbs distribution P [Xt ] = 1
Z

∏
cliques C exp[−ψC(Xt)].

4. Likelihood of occurrence of an output. Recall that from Definition 4.1, neighbours
are equal to cliques and both consist of those random variables which have equal prior
distributions (and identical posterior distribution in consequence). Hence, a probability
po[Xt = xt

i ] is biunivocally determined for each input xt
i . We also refer to Fig. 2 to

reproduce the operation of an TD-MRF in a single multivariate execution.
Note that the deterministic nature of RNN, which always assigns the same zt

i to the
same xt

i , allows also defining the probability of occurrence of an RNN output po[zt
i ]



A New Decision Making Method for Selection of Optimal Data Using the VNM Theorem 783

as

po
[
zt
i

] := po
[
Xt = xt

i

]
.

5. Application of the VNM Utility Theorem

In this section, we will further develop equation (3),

u[Tr] = u
[{

xt
1, . . . , x

t
D

}] =
D∑

i=1

po
[
Xt = xt

i

] · u
(
xt
i

)
,

by giving the explicit calculation of u(xt
i ), ∀i, t . To do so, we will again apply the VMN

theorem to the secondary lottery.
Recall that in the preceding sections we have considered a second lottery which arises

naturally when we test how good the ouput zt
i ∈ Zt [In] is as estimate. If M is the threshold

below which the loss function is considered acceptable, the secondary lottery is whether
the loss function loss(zt

i ) < M or not. With the intuitive notation of the paper (Machina,
1982), our secondary lottery is a probability distribution function over the interval [0,M]
(the set of all lotteries over [0,M] is denoted in Machina (1982) by D[0,M]) and the
preference functional V (·) on D[0,M] in our case is loss(·). Note that Definition 3.1 of
preference over the set Zt [In] can be additionally considered over In for the deterministic
assignment xt

i → zt
i : for xt

i , x
t
j ∈ In

xt
i ≺ xt

j ⇔ zt
i ≺ zt

j ⇔ loss
(
zt
j

)
< loss

(
zt
i

)
,

where the loss function is considered in a squared-form, loss(zt
i ) = (zt

i − yi)
2 which in

the context or real positive numbers is equivalent to loss(zt
i ) = |zt

i − yi |. The objective
here is to prove that this binary relation satisfies the necessary conditions that enable the
application of the Von Neumann-Morgenstern (VNM) theorem.

First of all, it has to be shown that it is a preference relation:

Proposition 5.1. The relation defined in Definition 3.1 is a preference relation.

Proof. The standard axiom for a preference relation is rationality which includes both
completeness and transitivity.

• Completeness: for all zt
i , z

t
j ∈ Zt [In], either zt

i � zt
j or zt

i � zt
j . This property comes

from the fact that R has a total order when applying to |zt
i − yi |, |zt

j − yi | ∈ R.
• Transitivity: for all zt

i , z
t
j , z

t
l ∈ Zt [In], if zt

i � zt
j and zt

j � zt
l , thus zt

i � zt
l . This

property holds by the transitivity in the order of R: |zt
i − yi | � |zt

j − yi | � |zt
l − yi |

⇒ |zt
i − yi | � |zt

l − yi |.
Moreover, former preference relation satisfies the following conditions:
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Proposition 5.2. The preference relation in Definition 3.1 satisfies:

• Continuity: if zt
n of a sequence of outcomes with zt

n � z, thus limn→∞ zt
n � z.

• Fréchet differentiable: the functional form which defines de preferences (the loss func-
tion) must be Fréchet differentiable.

Proof. Continuity: let us prove that if each element zt
n of a sequence of outcomes is zt

n � z,
thus it must be limn→∞ zt

n � z. First, we have that

(
zt
n − yn

)2 = (
zt
n

)2 − 2zt
n · yn + y2

n ⇒
lim

n→∞
(
zt
n − yn

)2 = lim
n→∞

(
zt
n

)2 − lim
n→∞

(
2zt

n · yn

) + lim
n→∞ y2

n =
= lim

n→∞
(
zt
n

)2 − 2 lim
n→∞ zt

n · lim
n→∞ yn + lim

n→∞ y2
n =

= (
lim

n→∞ zt
n − lim

n→∞ yn

)2
.

Let us suppose that zt
n is a sequence of outcomes such that zt

n � z, that is, output z

is preferred to outputs zt
n. That means that (z − y)2 < (zt

n − yn)
2 where y, yn are the

corresponding target values for the inputs that correspond to z and zt
n, respectively.

By assuming that both limits exist, the inequality (z − y)2 < (zn − yn)
2 is preserved

in “less than or equal” form: limn→∞(z − y)2 = (z − y)2 � limn→∞(zt
n − y)2. Hence,

(z − y)2 � lim
n→∞

(
zt
n − y

)2 =
(

lim
n→∞ zt

n − lim
n→∞ yn

)2 ⇒ lim
n→∞ zt

n � z.

Fréchet differentiable. Recall that the Fréchet derivative in finite-dimensional spaces is
the usual derivative. Thus, the loss function loss(zt

i ) = (zt
i − y)2 verifies this hypothesis.

Therefore, the preference relation stated in Definition 3.1 verifies the conditions re-
quired for the application of the VNM Theorem 2.1. Thus, there exists an utility function
u : In → [0, 1] which quantifies the preferences: xt

1 � xt
2 iff u(xt

1) � u(xt
2). Moreover,

the Von Neumann-Morgenstern Expected Utility theorem also provides guidance for com-
puting the utility of the set of inputs through the explicit formula given in equation (3):

u[ii] = u
[{

xt
1, . . . , x

t
D

}] =
D∑

i=1

po
[
Xt = xt

i

] · u
(
xt
i

)
.

6. Main Results

The objective of this section is to highlight (after proving) the main results of our pro-
posal. First of all, we define the level of efficiency of an input set In, Eff[In]. Thus, next
Theorem 6.2 proves the existence of a formula for determining the efficiency of a training
set while Theorem 6.3 gives an explicit expression for computing Eff[In].
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Definition 6.1. We define the level of efficiency of an input set In, Eff[In] as the expected
utility of training set Tr: Eff[In] := u[{xt

1, . . . , x
t
D}] = ∑D

i=1 po[Xt = xt
i ] · u(xt

i ).

Theorem 6.2 (Existence). For any input set In, there exists an utility function u : In →
[0, 1] which allows to quantify its level of efficiency Eff[In] such that this can be computed
as

Eff[In] =
D∑

i=1

po
[
Xt = xt

i

] · u
(
xt
i

)
.

Proof. Following Proposition 5.2, the preference relation stated in Definition 3.1 verifies
the necessary conditions for applying the VNM Theorem 2.1. According to this, there
exists an utility function u : In → [0, 1], which quantifies the preferences over input
vectors: xt

1 � xt
2 iff u(xt

1) � u(xt
2).

Theorem 6.3 (How to compute the level of efficiency of In). We assume that all inputs are
equally distributed. Thus, for any RNN input set In, its level of efficiency can be explicitely
computed as

Eff[In] = p ·
D∑

i=1

po
[
Xt = xt

i

]
, where p is the probability that |zt

i − y| < M, ∀zt
i .

Proof. We start from expression Eff[In] = ∑D
i=1 po[Xt = xt

i ] · u(xt
i ) derived from The-

orem 6.2. On one hand, the explicit computation of probabilities {po[Xt = xt
i ]}Di=1 is

given by the TD-MRF operational process defined in Section 4 (see Fig. 2, which visually
describes this). On the other hand, in order to compute the utilities {u(xt

i )]}Di=1, we shall
apply again the VNM Theorem 2.1 for the secondary lottery. Recall that the secondary
lottery for each zt

i is whether the loss function |zt
i − y| < M or not, for a given threshold

M below which the loss function is considered acceptable. Recall also that the probabil-
ity of occurrence of an RNN output po[zt

i ] is po[zt
i ] = po[Xt = xt

i ]. To overcome a
continuous space of outcomes {|zt

i − y| ∈ R}Di=1 for the lottery associated to each zt
i , we

represent it in a binary form:

{
outcome 1 if |zt

i − y| < M,

outcome 0 if |zt
i − y| � M.

Since the utility function u represents a set of outcomes in the sense of VNM-theorem 2.1
(x1 � x2 iff u(x1) � u(x2)), we can conclude that

{
outcome 1 if |zt

i − y| < M ⇒ u(1) = 1,

outcome 0 if |zt
i − y| � M ⇒ u(0) = 0.
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Then, by application of VNM-Theorem 2.1 on each secondary lottery, one has that

u
(
xt
i

) = u
(
zt
i

)
=

2∑
i=1

p[outcomei] · u(outcomei ) = p[outcome 1] · 1 = p[outcome 1],

∀i = 1, . . . , D.

The formula comes then by substituting:

Eff[In] =
D∑

i=1

po
[
Xt = xt

i

] · u
(
xt
i

) =

=
D∑

i=1

po
[
Xt = xt

i

] · p[outcome 1] =

= p[outcome 1] ·
D∑

i=1

po
[
Xt = xt

i

] =

= p ·
D∑

i=1

po
[
Xt = xt

i

]
.

7. A Case Application

This section is aimed at developing an example of the method application. In order to make
a choice between two real data sets, their level of efficiency will be computed. As stated in
Definition 6.1, the level of efficiency of an input set Eff[In] measures the learning capacity
of its inputs on the basis of the preference relation of Definition 3.1 that prioritises those
inputs whose outputs have a lower associated loss (better estimates). To compute Eff[In]
we shall apply the formula proved in Theorem 6.3 which follows from Theorem 6.2, in
which the existence of an utility function u which quantifies the preference relation was
proved. This is

Eff[In] =
D∑

i=1

po
[
Xt = xt

i

] · u
(
xt
i

) = p ·
D∑

i=1

po
[
Xt = xt

i

]
,

where p is the probability that |zt
i − y| < M,∀zt

i for a given threshold M below which
the loss function is considered acceptable.

The data sets we shall use here contain prices (e/1 kg) over time for the most common
olive oil varieties. These data are available on the websites of the Government of Spain:
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-
aceituna-mesa/Evolucion_precios_AO_vegetales.aspx,

https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/Evolucion_precios_AO_vegetales.aspx
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where prices are published on a weekly basis. Specifically, we will consider data sets cor-
responding to weeks 28/2023 and 39/2022 (the reasons for this choice will be explained
later). We shall thus apply the above formula taking into account the following consider-
ations. On one hand, note that the choice of the threshold M will depend on the context.
In the olive oil market scenario, assuming a deviation from the olive oil price of 10% is
acceptable. Hence, M = 0.5. On the other hand, the value of the parameter p will depend
on several market features which vary over time depending on physical (rainfall, pollen
levels. . . ) and socio-economic (Government regulations) circumstances. When real prices
are subject to unusual fluctuations (due to changes in the aforementioned circumstances),
such prices used in training tasks will deviate more from the real ones. In consequence,
the probability p, such that |zt

i − y| < M,∀zt
i , will decrease. Either way, it should be

noticed that p is known as soon as the value of M is fixed, but it is not the same for all
input sets.

From the above formula, since M is known (and therefore so is p), we must focus
on computing po[Xt = xt

i ] for each input xt
i . To that end, we will follow Fig. 2 of

the TD-MRF operational process given in Section 4.1. Since each input xt
i may be dis-

aggregated into d features x
k,t
i (k = 1, . . . , d), xt

i = (x
1,t
i , x

2,t
i , . . . , x

d,t
i ), the same

is true for the corresponding probability po[Xt = xt
i ] = po[xt

i ], which is po[xt
i ] =

(po[x1,t
i ], po[x2,t

i ], . . . , po[xd,t
i ]).

We assume that the energy functions ψ corresponding to the r cliques are of Gaussian
type, i.e. ψCj

= ([.]−μj )2

σ 2
j

, j = 1, . . . , r , since Gaussian distributions are suitable in
the olive oil scenario. Actually, given that Gaussian distributions portray those data sets
whose majority of elements revolves around the centre, energy functions of Gaussian type
are particularly suited for goods whose price takes values in an interval of small length
and do not suffer very sharp price variations.

In order to achieve our goal, each input xt
i must be first processed in each clique Cj , j =

1, . . . , r , through the corresponding clique potential, whose result is

PCj

[
Xt = xt

i

] = 1

Z
e
− (xt

i
−μj )2

σ2
j ⇒ PCj

[
Xt = xt

i

] = e
− (xt

i
−μj )2

σ2
j , when Z = 1.

Once the processing in the cliques has been completed, the required probability is obtained
as

po
[
xt
i

] = P
[
Xt = xt

i

] = 1

Z

r∏
j

PCj

[
Xt = xt

i

] ⇒ P
[
Xt = xt

i

] =
r∏
j

e
− (xt

i
−μj )2

σ2
j ,

when Z = 1.

The computation of “the partition function” Z entails certain difficulties in practice. For
this reason, we shall adopt the view commonly taken in the literature that Z = 1.

From the TD-MRF structure proved in Theorem 4.4, cliques gather those random
variables with identical prior and posterior distribution (see Remark 4.6). This theoret-
ical description fits with the specialist major retailers in the olive oil context. In this
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Table 1
In1: Processing in the clique C1.

xt
i

(xt
i
− 3.988) (xt

i
− 3.988)2 (xt

i
−3.988)2

0.172 − (xt
i
−3.988)2

0.172 e
− (xt

i
−3.988)2

0.172

3.16 −0.828 0.685584 3.985953488 −3.985953488 0.018574725
5.92 1.932 3.732624 2.86683871 −2.86683871 0.056878452
6.26 2.272 5.161984 3.96465745 −3.96465745 0.018974535
6.52 2.532 6.411024 4.923981567 −4.923981567 0.007270127
7.1 3.112 9.684544 7.438205837 −7.438205837 0.00058834

Table 2
In1: Processing in the clique C2.

xt
i

(xt
i
− 3.884) (xt

i
− 3.884)2 (xt

i
−3.884)2

0.156 − (xt
i
−3.884)2

0.156 e
− (xt

i
−3.884)2

0.156

3.16 −0.724 0.524176 3.360102564 −3.360102564 0.034731697
5.92 2.036 4.145296 26.57241026 −26.57241026 2.88236E−12
6.26 2.376 5.645376 36.18830769 −36.18830769 1.9214E−16
6.52 2.636 6.948496 44.54164103 −44.54164103 4.52701E−20
7.1 3.216 10.342656 66.29907692 −66.29907692 1.60945E−29

practical case, the level of efficiency shall be computed through PCj
[Xt = xt

i ] of
cliques Cj , j = 1, . . . , 7 supported by the information given in Table 8 below (source:
https://www.olimerca.com/precios/tipoInforme/3).

As discussed before, there are multiple factors (physical and socio-economic) that
influence the price. Such factors are the features x

k,t
i (k = 1, . . . , d) of each input

xt
i = (x

1,t
i , x

2,t
i , . . . , x

d,t
i ). For simplicity, we focus on just one of them in order to choose

the two input sets In1, In2: the hydrographic index, which shows the average rainfall over
a certain period of time. In this line, In1 is an input set of prices (e/1 kg) under severe
drought conditions (and therefore, with unusual fluctuations in price as product shortages
raise the prices3) while In2 is an input set of prices which correspond to a usual period of
rainfall:

In1 = {3.16, 5.92, 6.26, 6.52, 7.10}, p = 0.23, week 28/2023,

In2 = {2.71, 3.78, 3.80, 3.86, 3.96}, p = 0.57, week 39/2022.

With this choice of In1 and In2, it is to be expected that the inputs in In1 will produce
worse estimators (higher associated loss) since such inputs reflect prices with unusual
fluctuations (therefore with higher deviation from the mean). Hence, it is is to be expected
that Eff[In2] > Eff[In1].

The computation of level of efficiency In1 is supported by the information provided in
Tables 1–7.

From the information provided by the above tables, finally the required probability is
computed (see Table 9).

3In dry seasons, water shortages lead to a drop in the olive production and, therefore, in the olive oil pro-
duction. Hence, under severe drought conditions, olive oil prices skyrocket.

https://www.olimerca.com/precios/tipoInforme/3
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Table 3
In1: Processing in the clique C3.

xt
i

(xt
i
− 3.851) (xt

i
− 3.851)2 (xt

i
−3.851)2

0.143 − (xt
i
−3.851)2

0.143 e
− (xt

i
−3.851)2

0.143

3.16 −0.691 0.477481 3.339027972 −3.339027972 0.03547142
5.92 2.069 4.280761 29.93539161 −29.93539161 9.98216E−14
6.26 2.409 5.803281 40.58238462 −40.58238462 2.37298E−18
6.52 2.669 7.123561 49.81511189 −49.81511189 2.32045E−22
7.1 3.249 10.556001 73.81818881 −73.81818881 8.73309E−33

Table 4
In1: Processing in the clique C4.

xt
i

(xt
i
− 3.858) (xt

i
− 3.858)2 (xt

i
−3.858)2

0.108 − (xt
i
−3.858)2

0.108 e
− (xt

i
−3.858)2

0.108

3.16 −0.698 0.487204 4.511148148 −4.511148148 0.01098584
5.92 2.062 4.251844 39.36892593 −39.36892593 7.98533E−18
6.26 2.402 5.769604 53.42225926 −53.42225926 6.29517E−24
6.52 2.662 7.086244 65.61337037 −65.61337037 3.19503E−29
7.1 3.242 10.510564 97.32003704 −97.32003704 5.42556E−43

Table 5
In1: Processing in the clique C5.

xt
i

(xt
i
− 4.343) (xt

i
− 4.343)2 (xt

i
−4.343)2

0.472 − (xt
i
−4.343)2

0.472 e
− (xt

i
−4.343)2

0.472

3.16 −1.183 1.399489 2.965019068 −2.965019068 0.051559486
5.92 1.577 2.486929 5.268917373 −5.268917373 0.005149182
6.26 1.917 3.674889 7.78578178 −7.78578178 0.000415602
6.52 2.177 4.739329 10.04095127 −10.04095127 4.35783E−05
7.1 2.757 7.601049 16.10391737 −16.10391737 1.01428E−07

Table 6
In1: Processing in the clique C6.

xt
i

(xt
i
− 3.878) (xt

i
− 3.878)2 (xt

i
−3.878)2

0.134 − (xt
i
−3.878)2

0.134 e
− (xt

i
−3.878)2

0.134

3.16 −0.718 0.515524 3.84719403 −3.84719403 0.021339531
5.92 2.042 4.169764 31.11764179 −31.11764179 3.06041E−14
6.26 2.382 5.673924 42.34271642 −42.34271642 4.08124E−19
6.52 2.642 6.980164 52.09077612 −52.09077612 2.38376E−23
7.1 3.222 10.381284 77.47226866 −77.47226866 2.26059E−34

Table 7
In1: Processing in the clique C7.

xt
i

(xt
i
− 3.916) (xt

i
− 3.916)2 (xt

i
−3.916)2

0.117 − (xt
i
−3.916)2

0.117 e
− (xt

i
−3.916)2

0.117

3.16 −0.756 0.571536 4.884923077 −4.884923077 0.007559705
5.92 2.004 4.016016 34.32492308 −34.32492308 1.23844E−15
6.26 2.344 5.494336 46.96013675 −46.96013675 4.03155E−21
6.52 2.604 6.780816 57.95569231 −57.95569231 6.76336E−26
7.1 3.184 10.137856 86.64834188 −86.64834188 2.33939E−38
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Table 8
Mean and variance of cliques C1 − C7.

Mean, Variance C1 Ahorramas C2 Alcampo C3 Carrefour C4 Dia C5 Hipercor C6 Lidl C7 Mercadona
μi 3.988 3.884 3.851 3.858 4.343 3.878 3.916
σ 2
i

0.172 0.156 0.143 0.108 0.472 0.134 0.117

Table 9
Aggregated probability for In1.

po[Xt = 3.16] po[Xt = 5.92] po[Xt = 6.26] po[Xt = 6.52] po[Xt = 7.10]
PC1 [Xt = −] 0.018574725 0.056878452 0.018974535 0.007270127 0.00058834
PC2 [Xt = −] 0.034731697 2.88236E−12 1.9214E−16 4.52701E−20 1.60945E−29
PC3 [Xt = −] 0.03547142 9.98216E−14 2.37298E−18 2.32045E−22 8.73309E−33
PC4 [Xt = −] 0.01098584 7.98533E−18 6.29517E−24 3.19503E−29 5.42556E−43
PC5 [Xt = −] 0.051559486 0.005149182 0.000415602 4.35783E−05 1.01428E−07
PC6 [Xt = −] 0.021339531 3.06041E−14 4.08124E−19 2.38376E−23 2.26059E−34
PC7 [Xt = −] 0.007559705 1.23844E−15 4.03155E−21 6.76336E−26 2.33939E−38∏7

i PCi
[Xt = −] 2.09102E−12 2.55039E−74 3.7242E−101 1.7143E−124 2.4066E−185

Table 10
In2: Processing in the clique C1.

xt
i

(xt
i
− 3.988) (xt

i
− 3.988)2 (xt

i
−3.988)2

0.172 − (xt
i
−3.988)2

0.172 e
− (xt

i
−3.988)2

0.172

2.71 −1.278 1.633284 9.495837209 −9.495837209 7.51641E−05
3.78 −0.208 0.043264 0.251534884 −0.251534884 0.777606331
3.8 −0.188 0.035344 0.205488372 −0.205488372 0.814249563
3.86 −0.128 0.016384 0.095255814 −0.095255814 0.909140334
3.96 −0.028 0.000784 0.00455814 −0.00455814 0.995452233

Table 11
In2: Processing in the clique C2.

xt
i

(xt
i
− 3.884) (xt

i
− 3.884)2 (xt

i
−3.884)2

0.156 − (xt
i
−3.884)2

0.156 e
− (xt

i
−3.884)2

0.156

2.71 −1.174 1.378276 8.835102564 −8.835102564 0.000145534
3.78 −0.104 0.010816 0.069333333 −0.069333333 0.933015623
3.8 −0.084 0.007056 0.045230769 −0.045230769 0.955776892
3.86 −0.024 0.000576 0.003692308 −0.003692308 0.9963145
3.96 0.076 0.005776 0.037025641 −0.037025641 0.963651426

Eff[In1] = p · (po[Xt = 3.16] + po[Xt = 5.92] + po[Xt = 6.26] + po[Xt =
6.52] + po[Xt = 7.10]) = 0.23 · (2.09102E−12 + 2.55039E−74 + 3.7242E−101 +
1.7143E−124 + 2.4066E−185) = 0.23 · 2.09102E−12 = 4.80935E–13

Similarly, the computation of In2 is supported by the information provided in Ta-
bles 10–16.

Finally, the required probability is computed (see Table 17).
Eff[In2] = p · (po[Xt = 2.71] + po[Xt = 3.78] + po[Xt = 3.80] + po[Xt = 3.86] +
po[Xt = 3.96]) = 0.57(3.24825E−30 + 0.268808808 + 0.337851876 + 0.53631732 +
0.549630567 + 1.692608571) = 0.964786886 .
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Table 12
In2: Processing in the clique C3.

xt
i

(xt
i
− 3.851) (xt

i
− 3.851)2 (xt

i
−3.851)2

0.143 − (xt
i
−3.851)2

0.143 e
− (xt

i
−3.851)2

0.143

2.71 −1.141 1.301881 9.104062937 −9.104062937 0.000111213
3.78 −0.071 0.005041 0.035251748 −0.035251748 0.965362357
3.8 −0.051 0.002601 0.018188811 −0.018188811 0.981975607
3.86 0.009 8.1E−05 0.000566434 −0.000566434 0.999433727
3.96 0.109 0.011881 0.083083916 −0.083083916 0.920273918

Table 13
In2: Processing in the clique C4.

xt
i

(xt
i
− 3.858) (xt

i
− 3.858)2 (xt

i
−3.858)2

0.108 − (xt
i
−3.858)2

0.108 e
− (xt

i
−3.858)2

0.108

2.71 −1.148 1.317904 12.20281481 −12.20281481 5.01632E−06
3.78 −0.078 0.006084 0.056333333 −0.056333333 0.945224009
3.8 −0.058 0.003364 0.031148148 −0.031148148 0.969331958
3.86 0.002 4E−06 3.7037E−05 −3.7037E−05 0.999962964
3.96 0.102 0.010404 0.096333333 −0.096333333 0.908161245

Table 14
In2: Processing in the clique C5.

xt
i

(xt
i
− 4.343) (xt

i
− 4.343)2 (xt

i
−4.343)2

0.472 − (xt
i
−4.343)2

0.472 e
− (xt

i
−4.343)2

0.472

2.71 −1.633 2.666689 5.649764831 −5.649764831 0.003518344
3.78 −0.563 0.316969 0.671544492 −0.671544492 0.510918858
3.8 −0.543 0.294849 0.624680085 −0.624680085 0.535432694
3.86 −0.483 0.233289 0.494256356 −0.494256356 0.61002438
3.96 −0.383 0.146689 0.31078178 −0.31078178 0.732873786

Table 15
In2: Processing in the clique C6.

xt
i

(xt
i
− 3.878) (xt

i
− 3.878)2 (xt

i
−3.878)2

0.134 − (xt
i
−3.878)2

0.134 e
− (xt

i
−3.878)2

0.134

2.71 −1.168 1.364224 10.18077612 −10.18077612 3.78918E−05
3.78 −0.098 0.009604 0.071671642 −0.071671642 0.930836493
3.8 −0.078 0.006084 0.045402985 −0.045402985 0.955612307
3.86 −0.018 0.000324 0.00241791 −0.00241791 0.99758501
3.96 0.082 0.006724 0.050179104 −0.050179104 0.95105907

Table 16
In2: Processing in the clique C7.

xt
i

(xt
i
− 3.916) (xt

i
− 3.916)2 (xt

i
−3.916)2

0.117 − (xt
i
−3.916)2

0.117 e
− (xt

i
−3.916)2

0.117

2.71 −1.206 1.454436 12.43107692 −12.43107692 3.99256E−06
3.78 −0.136 0.018496 0.15808547 −0.15808547 0.853776806
3.8 −0.116 0.013456 0.115008547 −0.115008547 0.891358525
3.86 −0.056 0.003136 0.026803419 −0.026803419 0.973552605
3.96 0.044 0.001936 0.016547009 −0.016547009 0.983589141
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Table 17
Aggregated probability for In2.

po[Xt = 2.71] po[Xt = 3.78] po[Xt = 3.80] po[Xt = 3.86] po[Xt = 3.96]
PC1 [Xt = −] 7.51641E−05 0.777606331 0.814249563 0.909140334 0.995452233
PC2 [Xt = −] 0.000145534 0.933015623 0.955776892 0.9963145 0.963651426
PC3 [Xt = −] 0.000111213 0.965362357 0.981975607 0.999433727 0.920273918
PC4 [Xt = −] 5.01632E−06 0.945224009 0.969331958 0.999962964 0.908161245
PC5 [Xt = −] 0.003518344 0.510918858 0.535432694 0.61002438 0.732873786
PC6 [Xt = −] 3.78918E−05 0.930836493 0.955612307 0.99758501 0.95105907
PC7 [Xt = −] 3.99256E−06 0.853776806 0.891358525 0.973552605 0.983589141∏7

i PCi
[Xt = −] 3.24825E−30 0.268808808 0.337851876 0.53631732 0.549630567

Hence, as expected (since the inputs of In1 reflect prices with unusual fluctuations and
therefore with higher deviation from the mean) Eff[In2] > Eff[In1].

8. Conclusions

This paper deals with the selection of optimal training sets (those that have a higher capac-
ity as estimators) in Recurrent Neural Networks under prediction tasks (or pattern recog-
nition with time series as inputs), although this may also apply to other data-driven models
regulated by dynamic systems. Our objective is to fill the existing gap of clear guidelines
to follow for selecting optimal training sets in a general context.

We design here a novel methodology to select optimal training data sets that can be
used in any context. The key idea, which underpins the design of the mathematical struc-
ture that supports the selection, is a binary relation that gives preference to inputs with
higher estimator abilities. A second novelty of our approach is to use dynamic tools that
have not been used previously for this purposes: dynamic Markov Networks, which are
widely regarded as generative models, successfully compute the prior probabilities in-
volved in the formula for calculating the degree of efficiency of the training set (Theo-
rem 6.3), derived from application of the Von Neumann-Morgenstern Theorem 2.1. It is
precisely the VMN theorem the instrument that confers discriminative capacity to the
MNs: in this work we show that the preference relation that we define between inputs of a
training set (inputs with higher learning capacities are preferred in the sense that the error
function takes lower values) fulfils the necessary hypotheses to derive the existence of a
simple formula for the calculation of the utility (efficiency) of a training set.

The simplicity of this calculation allows it to be carried out in parallel with the learn-
ing process without adding computational cost. Thus the optimal sets are selected as the
learning process evolves, therefore the data noise gradually disappears which decreases
the likelihood of overfitting occurring.
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