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The Wilson-Cowan model constitutes a paradigmatic approach to understanding the collective dynamics of
networks of excitatory and inhibitory units. It has been profusely used in the literature to analyze the possible
phases of neural networks at a mean-field level, e.g., assuming large fully connected networks. Moreover,
its stochastic counterpart allows one to study fluctuation-induced phenomena, such as avalanches. Here we
revisit the stochastic Wilson-Cowan model paying special attention to the possible phase transitions between
quiescent and active phases. We unveil eight possible types of such transitions, including continuous ones with
scaling behavior belonging to known universality classes—such as directed percolation and tricritical directed
percolation—as well as six distinct ones. In particular, we show that under some special circumstances, at a
so-called “Hopf tricritical directed percolation” transition, rather unconventional behavior is observed, including
the emergence of scaling breakdown. Other transitions are discontinuous and show different types of anomalies
in scaling and/or exhibit mixed features of continuous and discontinuous transitions. These results broaden our
knowledge of the possible types of critical behavior in networks of excitatory and inhibitory units and are, thus, of
relevance to understanding avalanche dynamics in actual neuronal recordings. From a more general perspective,
these results help extend the theory of nonequilibrium phase transitions into quiescent or absorbing states.
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I. INTRODUCTION

A large variety of natural systems exhibit a continuous
(second-order) phase transition between an active phase and
a quiescent (or absorbing) one where all activity ceases [1–5].
This phase transition is often associated with scaling behav-
ior and is typically described by the directed percolation
universality class, as originally conjectured by Janssen and
Grassberger [6,7]. Actually, directed percolation (DP) is one
of the most robust classes of universal critical behavior away
from thermal equilibrium [1–5,8], as it describes all possible
phase transitions into an absorbing state in the absence of
additional symmetries or conservation laws, even for mul-
ticomponent systems [1,3–5,9,10]. Moreover, some of the
representative models of this class, such as the branching
process and the contact process [11,12], have been broadly
studied in a large variety of contexts, including countless
applications in materials science, turbulence, epidemics, the-
oretical ecology, social sciences, and neuroscience.

Conversely, under some circumstances, phase transitions
into quiescent states occur in a discontinuous (or first-order)
rather than continuous manner. This is often the case when
higher-order reactions are considered, e.g., where more than
one active unit is required to activate the third one [5,13,14].
This situation usually involves a bistable regime with phase
coexistence and hysteresis. There are also well-studied sys-
tems that include both types of transitions, continuous and
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discontinuous, as well as a tricritical point with a scaling
behavior that differs from DP and is described by the so-called
tricritical directed percolation (TDP) universality class (see
e.g., a modified contact process [13,15]).

In the context of neuronal systems, the experimental work
by Beggs and Plenz reported on the existence of neuronal
avalanches (i.e., outbursts of neuronal activity between qui-
escent periods). These exhibited highly variable sizes and
durations, which were both distributed as power laws. More-
over, the associated exponents were found to be consistent
with those of critical systems in the mean-field DP univer-
sality class [16], suggesting that brain dynamics could be
poised near the edge of a phase transition [17–22]. Further
experimental works reported evidence of scaling exponents
deviating from DP [23,24], so that the interpretation of the
scaling behavior in terms of universality classes remains a cur-
rent matter of debate [19]. In particular, the possible departure
from the standard DP class (together with the possible exis-
tence of discontinuous transitions in brain dynamics [25–27])
raises a number of questions from a theoretical point of view.
For example, the fact that neuronal networks include in-
hibitory units—which hinder activity propagation and are not
usually included in simple models in the DP class, such as the
standard branching process—triggered a renewed interest in
the scrutiny of novel types of phase transitions in networks of
excitatory and inhibitory units [28–36]. Do different types of
quiescent to active phase transitions emerge in simple models
of activity propagation once inhibitory effects are considered?

Here, to further advance our knowledge along these lines,
we revisit one of the most broadly studied parsimonious
models in neuroscience: the Wilson-Cowan model [37] as
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well as its stochastic counterpart [28,36]. We systematically
analyze the resulting phase diagram, carefully analyzing all
the possible phases and phase transitions. In particular, we
reveal that, depending on the relative strengths of excitatory
and inhibitory couplings, there can be up to eight different
types of phase transitions into quiescence. Some of them
exhibit well-known scaling behavior (such as DP or TDP),
while others are discontinuous or show different types of
anomalies in scaling or even mixed features of continuous
and discontinuous transitions. Finally, we elucidate a unique
type of phase transition that is highly nontrivial, exhibiting
unconventional behavior and breakdown of scaling.

Our results help rationalize and categorize the possible
types of criticality in networks of excitatory and inhibitory
units, contributing to the advance of the brain-criticality hy-
pothesis and of the general theory of nonequilibrium phase
transitions [4].

II. THE WILSON-COWAN MODEL
AND ITS STOCHASTIC COUNTERPART

In its original formulation, the Wilson-Cowan model de-
scribes the collective deterministic (or “mean-field”) behavior
of a local population of both excitatory and inhibitory neu-
rons by means of two coupled differential equations [37].
Such equations reproduce—as a function of a set of coupling-
strength parameters—a variety of possible dynamical regimes
(all of which have counterparts in actual neuronal systems
[33,38–40]) that are delimited by phase transitions (bifurca-
tion lines) [41,42].

To go beyond this deterministic or mean-field picture, Be-
nayoun et al. [28] proposed a microscopic version of the
Wilson-Cowan model in the form of a Markovian process
for a population of coupled excitatory and inhibitory indi-
vidual binary neurons that can be either active or inactive
[43]. In the so-called stochastic Wilson-Cowan (SWC) model,
the state of each unit � at a given time t—which can be
either excitatory (E) or inhibitory (I)—is given by σ

E/I
� (t ) =

1 for active neurons and σ
E/I
� (t ) = 0 for inactive ones.

These discrete state variables change according to a master
equation specified by transition rates, which are defined as
follows.

Each active neuron, regardless of its type, shifts from the
active to the quiescent state, 1 → 0, at a constant decay rate
α. The reverse transition (activation), 0 → 1, occurs at rate
�(s�), defined as

�(s�) =
{

tanh(s�), if s� > 0

0, otherwise
, (1)

where the input s� to neuron, � is

s� =
∑

m

w�mσm + h, (2)

w�m is the synaptic weight from neuron m to neuron �, and
h is a constant external input. Observe that the form of the
response function, �(s�), in Eq. (1) enforces the nonnega-

FIG. 1. (a) Sketch of the Wilson-Cowan model, including both
excitatory and inhibitory populations and synaptic couplings be-
tween them. (b) Owing to the piecewise definition of the response
function � in Eq. (1), there are three different regions in the state
space depending on the total input s on excitatory and inhibitory
populations, respectively. In particular, in region I, sE and sI are both
positive; in region II, sE is negative and sI is positive; and, finally,
in region III, sE and sI are both negative (the figure illustrates these
three regions for wEE = 2.5, wEI = 1.5, wIE = 1.5, wII = 0.5, and
h = 0). Observe that when wEE /wEI > wIE /wII , the lines sE = 0
and sI = 0 switch position, and region II then shows sE > 0 and
sI < 0 (a condition that is not explicitly explored here). The trajec-
tories (red-dashed arrows) show how the system is attracted either
to the origin (quiescent state) or to a nontrivial active state or fixed
point (FP). As discussed in Sec. IV, initial conditions in region I that
are close to the switching manifold sE = 0 can cross over to region
II. In this case, regions II and III are trapping ones: once trajectories
cross the switching manifold, they are unable to return to region I
(see Appendix C for a more detailed explanation).

tivity of the transition rates. In what follows, the synaptic
weights are chosen to depend only on the type (excitatory
or inhibitory) of both the presynaptic and the postsynaptic
neuron, leaving [as sketched in Fig. 1(a)] only four free pa-
rameters: w�m ∈ {wEE ,wIE ,wIE ,wII} ∀�, m, where, e.g., wIE

is the excitatory coupling strength to inhibitory neurons, and
so forth. Previous works on this model have often employed
symmetric weights—common excitatory (wE ≡ wEE = wIE )
and inhibitory (wI ≡ wII = wEI ) inputs [28,33,44]— as a
way to reduce the dimensionality of the phase diagram. In
order to systematically explore the full set of possible phase
transitions, here we do not impose such constraints.

This stochastic process can be implemented on different
types of networks, as specified by a connectivity matrix.
As a first approach, one can assume a large fully con-
nected network of size N . Indeed, performing a standard
size expansion [45,46], one recovers (up to leading-order)
the well-known Wilson-Cowan equations [28] (see Fig. 1)
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written as

Ė = −αE + (1 − E )�(wEE E − wEI I + h), (3)

İ = −αI + (1 − I )�(wIE E − wII I + h), (4)

where E and I are the densities of active excitatory and
inhibitory neurons, respectively [28] and the coupling con-
stants are defined including a rescaling with the network size.
Similarly, by adding next-to-leading corrections, one obtains
a set of two Langevin equations which we do not write ex-
plicitly here (we just remark that they include square-root
noise following the lead of DP and TDP classes [1,3–5]). The
pair of coupled stochastic equations allows one to describe
fluctuation effects in finite-size (fully connected) networks
[28,45,47]. Nevertheless, let us stress that the forthcoming
computational analyses refer to simulations of the full micro-
scopic model.

Observe that, owing to the discontinuous derivative of �

at zero, Eq. (3) and Eq. (4) are piecewise smooth differential
equations [48–50]—i.e., they are smooth everywhere except
at switching manifolds, which are defined by the conditions of
vanishing input in the response function in the previous equa-
tions: sE ≡ wEE E − wEI I + h = 0 and sI ≡ wIE E − wII I +
h = 0. These two conditions divide the state space into three
regions: I, II, and III, as illustrated in Fig. 1(b) (for h = 0):

(1) In region II, the input to excitatory populations is neg-
ative, so that Eq. (3) becomes Ė = −αE and trajectories in
this region decay exponentially fast to the quiescent phase
(either crossing to region III or not; see Appendix C for a more
detailed explanation).

(2) Similarly, in region III, the input to both excitatory and
inhibitory populations is negative, so that Ė = −αE and İ =
−αI , leading to an even faster decay to quiescence.

(3) Conversely, in region I, the total input does not vanish
for either subpopulation and the dynamics can be more com-
plex, possibly reaching nontrivial (active) fixed points.

Inspection of Eq. (3) and Eq. (4) readily reveals that trajec-
tories starting in regions II and III do not cross over to region
I (as excitation always diminishes in these regimes), but the
opposite can happen (see, e.g., the central trajectory shown in
Fig. 1 as well as Appendix C).

In the next sections, we explore in detail, both analytically
and numerically, the features of each of the possible phase
diagrams as well as all the possible phase transitions between
quiescent and active states.

III. MEAN-FIELD PHASE DIAGRAMS: GENERAL
AND SPECIFIC FEATURES

To avoid confusion, let us first underline that in what
follows we refer indistinctly to phase transitions or to bi-
furcations, as the present focus is on the description of
fully connected networks (i.e., mean-field systems). Thereby,
DP transitions correspond to transcritical bifurcations, dis-
continuous transitions to saddle-node bifurcations, tricritical
points to saddle-node-transcritical (codimension-2) bifurca-
tions [51,52], and so forth.

In the absence of any external driving force (h = 0), the
steady-state conditions for Eq. (3) and Eq. (4) always admit
a trivial solution E∗ = I∗ = 0, which defines the quiescent

phase as well as, possibly, some nontrivial solutions (E∗ > 0
and I∗ > 0) of the following equations:

E∗ = 1

wIE

[
wII I

∗ + �−1

(
αI∗

1 − I∗

)]
, (5)

I∗ = 1

wEI

[
wEE E∗ − �−1

(
αE∗

1 − E∗

)]
, (6)

which define the active phase. Observe that Eq. (5) and Eq. (6)
are well-defined only as long as �−1 exists, i.e., in region I
[Fig. 1(b)], so that nontrivial solutions exist only inside said
region.

In what follows, we analyze the overall phase diagram,
describing the stable phases as a function of the model pa-
rameters. In particular, without loss of generality, we keep
the activity-decay rate α �= 0 and the self-inhibition weight
wII � 0 fixed. Choosing wEE and wEI as control parameters,
the system may display three qualitatively different types of
phase diagrams in the (wEE ,wEI ) plane depending on the
value of the remaining free parameter, wIE , as illustrated in
Fig. 3. Other parameter choices are possible, but the system is
always described by one of these three qualitatively different
types of phase diagrams.

A. Quiescent phase and its stability limits

First of all, let us stress that the quiescent state is always
stable (and is the only stable state) with respect to the intro-
duction of inhibition-dominated perturbations (i.e., for initial
conditions in regions II and III); in other words, activation of
inhibitory neurons does not allow the system to escape from
the quiescent state. Therefore, in what follows, we focus on
its stability and the resulting phase diagram as a result of
excitation-dominated perturbations.

Importantly, there are two different types of quiescent
phases: The first one is a standard quiescent phase, i.e.,
a regime in which the quiescent phase is locally stable to
excitation-dominated perturbations [Fig. 2(a)]. This occurs
if the eigenvalues of the associated stability matrix, as
specified by

λ± = wEE − 2α − wII ±
√

(wEE + wII )2 − 4wEIwIE

2
, (7)

have negative real parts (white zone in the diagrams of Fig. 3).
Alternatively, if the eigenvalues have positive real parts

and an imaginary component, then, in principle, one could
expect oscillations away from quiescence to emerge. How-
ever, given the nonsmooth piecewise dynamics, the resulting
“curvy” trajectories end up crossing over to region II, where
the dynamics follow the equation Ė = −αE and the quiescent
state is the only attractor. Therefore, in this regime, small
excitatory perturbations to the quiescent state may give rise
to large trajectories in state space before returning to qui-
escence (see Fig. 2(b) and [28,36]). This property is called
“excitability” [53] (or “reactivity” [54]) and the corresponding
quiescent state is called “excitable quiescent.” Observe that,
inside the excitable quiescent phase, there is a region where
the eigenvalues are both real and positive. The trajectories
continue to fall into regions II and/or III, therefore, the phase
remains the same. When in the standard quiescent phase, the
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FIG. 2. Two different types of quiescent phases. Time series to-
wards the absorbing state of trajectories (a) on the standard quiescent
phase (wEE = 1.2 and wIE = 0.2) and (b) on the excitable quiescent
phase (wEE = 2.2 and wIE = 1.0). Observe the nonmonotonicity in
the second case, which is a manifestation of the excitability of the
quiescent state: perturbations can be amplified before trajectories
finally decay to quiescence. The insets show the phase space for
these two cases, respectively, as well as the corresponding switch-
ing manifolds and some sample trajectories (arrows). In the second
case, trajectories cross the switching manifold. Parameter values are
α = 1.0, wII = 0.2, and wEI = 2.0.

quiescent state loses its local stability when the real part of the
largest eigenvalue becomes positive. First, considering a real
eigenvalue, it occurs at

wT
EE = α + wEIwIE

α + wII
(8)

as can be easily seen from Eq. (7); note that this condition
corresponds to the diagonal blue dashed line in all the plots in

Fig. 3, representing a line of transcritical bifurcations (as well
as its continuation to the right).

Not surprisingly, separating the previous two phases (stan-
dard quiescent and excitable quiescent), there is a line of
(supercritical) Hopf bifurcations (dot-dashed vertical lines in
Fig. 3) occurring at

wH
EE = 2α + wII , (9)

which exist only when there is a nonvanishing imaginary part,
i.e., from Eq. (7), at

(wEE + wII )2 − 4wEIwIE < 0, (10)

so that the Hopf bifurcation is defined only above the Hopf-
transcritical point, i.e., above the diagonal blue line in all the
phase diagrams in Fig. 3.

Summing up, there are two types of quiescent phases,
separated by a line of Hopf bifurcations:

(1) A standard quiescent phase, which is represented by a
locally stable fixed point (upper left regions in Fig. 3)

(2) An excitable quiescent phase, in which local stability
is lost, but the origin remains globally stable because the
trajectories cross to trapping regions (upper right regions in
Fig. 3).

Finally, let us note that the excitable-quiescent state may
lose its global stability (in favor of a nontrivial active state, as
described below) at a transition line that needs to be numeri-
cally determined (black dashed line in Fig. 3), beyond which
trajectories flow to the alternative active state.

FIG. 3. Different phase diagrams of the model [Eq. (3) and Eq. (4)], with excitation-dominated initial conditions and parameter values:
α = 1, wII = 0, and wIE = 3 (Case A), wIE = 1 (Case B), and wIE = 0.8 (Case C). In all cases, the (vertical dot-dashed) line of Hopf
bifurcations separates the standard quiescent phase from the excitable quiescent one. (a) In case A, the Hopf line collides with the (blue
dashed) transcritical line to the right of the tricritical point (black dot), within a region of bistability. (c) In case C, on the contrary, the
intersection of the Hopf line with the diagonal line occurs to the left of the tricritical point. (b) Between the previous two cases, case B (for
which fine-tuning a third parameter, wIE = 1, is needed) the Hopf line collides with the transcritical one at a codimension 3 bifurcation point
that we call Hopf-tricritical point [Hopf saddle-node-transcritical bifurcation that corresponds to, as we called it, the Hopf tricritical directed
percolation (H+TDP) point]. In all cases, the standard quiescent phase loses its stability at a line of transcritical bifurcations (blue dashed
lines), while the excitable phase loses its global stability from below (i.e., as wEI decreases) at the black dashed line—that may be very close to
(or coincide with) the (orange) line of saddle-node bifurcations. Finally, the horizontal black segments T1, . . . , T8 represent eight qualitatively
different ways to transition from a quiescent to an active state as the control parameter, wEE , increases.
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B. Active phase and its stability limits

The active state or phase (with E∗ �= 0 and I∗ �= 0) be-
comes a stable solution either at (1) a transcritical bifurcation
(i.e., it emerges continuously once the quiescent phase loses
its stability in a DP transition), which occurs at Eq. (8) as
represented by the blue dashed lines in Fig. 3; (2) a saddle-
node (SN) bifurcation, i.e, emerging discontinuously (orange
solid line in Fig. 3) at

wSN
EE = min

E∗

[
wEI I∗(E∗)

E∗ + 1

E∗ �−1

(
αE∗

1 − E∗

)]
, (11)

where E∗ and I∗ are solutions of Eq. (5) and Eq. (6) that can be
solved numerically; or (3) at a tricritical point, where (if) the
previous two lines meet (black dot in Fig. 3), to which one can
also refer as “saddle-node-transcritical” (SNT) point [its loca-
tion (wSNT

EE ,wSNT
EI ) in the phase diagram is explicitly derived

in Appendix B; see, in particular, Eq. (B3) and Eq. (B4)].
Let us emphasize that, even if for the naked eye, the saddle-

node (orange) curve in all the plots in Fig. 3 seems to be a
continuation of the transcritical (blue dashed) line, parallel to
it, that is not exactly the case; the mathematical conditions for
both are different.

C. Relative location of the line of Hopf bifurcations

Observe that the line of Hopf bifurcations—which as
shown in Fig. 3(a) is always vertical in the (wEE ,wEI )
plane—collides with the line of transcritical bifurcations at
a special point [here named, in general, Hopf-transcritical
(HT) bifurcation, which is marked with an empty circle in the
different panels of Fig. 3]. From Eq. (8) and Eq. (9), one can
easily derive the conditions for the HT point:

wHT
EI = (α + wII )2

wIE
, (12)

wHT
EE = 2α + wII . (13)

The key aspect distinguishing the three possible topologies
of the phase diagram (A/B/C in Fig. 3) is whether this HT
point lies to the right (case A), left (case C), or on top of the
tricritical (SNT) point (case B) in phase space:

(1) Case A: wSNT
EE < wHT

EE ,

(2) Case B: wSNT
EE = wHT

EE ,

(3) Case C: wSNT
EE > wHT

EE .
As already mentioned, these three possibilities are illus-

trated in Fig. 3, in which the value of wIE is changed (from
3, to 1, and 0.8) to switch between regimes. Also, note that
case B requires a higher level of fine-tuning than the other
two cases, which appear in broad regions of parameter space.
From here on, one needs to separately discuss the three
aforementioned possible structures of the phase diagram and
carefully classify the diverse types of phase transition emerg-
ing in each of them.

1. Case A: Left panel in Fig. 3

In this case, the HT point lies to the right of the tricritical
point. Visual inspection of Fig. 3(a) reveals that there are four
different ways to go from a quiescent phase (either standard
or excitable) to the active one. These are labeled as: T1, for

the transcritical bifurcation from the standard quiescent; T2,
for a standard tricritical transition; T3, for a transition through
a bistable regime (saddle-node bifurcation with coexistence
between the standard quiescent and the active phase); and T4,
also for a discontinuous transition with bistability, although
in this case, between the excitable quiescent phase and the
active one.

2. Case B: Central panel in Fig. 3

Here the HT point lies exactly on top of the tricritical
point. This structure leads to only three possible types of
transitions: T1 and T4 (as described above), and a transition
labeled T5, which occurs through the tricritical (SNT) point
that coincides with the special HT point in a codimension 3
bifurcation corresponding to a transition that we call Hopf
tricritical directed percolation (H+TDP) transition.

3. Case C: Right panel in Fig. 3

In case C, the HT point lies to the left of the tricritical point
and there are five types of transitions, including the standard
transcritical (T1) and saddle-node (T4) ones, as well as three
unique ones: T6, a transition through the special HT point;
T7, a transcritical bifurcation but into the excitable quiescent
phase; and, finally, T8, a tricritical (or SNT) transition into the
excitable quiescent phase.

In the next section, we analyze these eight types of phase
transitions (or bifurcations)—from T1 to T8—scrutinizing the
corresponding peculiarities for each of them.

IV. SCALING PROPERTIES AT THE DIFFERENT
TYPES OF TRANSITIONS

Standard linear stability analysis of the fixed points of the
(mean-field) dynamics [Eq. (3) and Eq. (4)] allows one to
study the nature of bifurcations and make analytical predic-
tions for the scaling behavior [1,4,55]. In particular, a linear
approximation of Eq. (5) around the quiescent solution yields
a value of I∗ proportional to the density of active excitatory
neurons E∗, hence in what follows we employ indistinctly
either the latter or the sum of both as an order parameter.

In all cases, and for all possible types of transitions, we
compute the usual quantities and scaling exponents (as long
as they are well defined) customarily employed in the analysis
of quiescent-active phase transitions. Even if, generally, three
independent exponent values suffice to fully determine the
universality class [55,56], here, for the sake of completeness,
we determine a larger number of them, which also allows
us to check for consistency. In particular, we compute the
following:

“Static exponents” such as: (1) β, the control parameter
one (E∗ ∝ �β), where � = wEE − w∗

EE is the distance to the
transition point and w∗

EE stands, generically, for the value of
wEE at the specified bifurcation and (2) δh, defined by E∗ ∝
h1/δh , representing the response to a constant external field h
at criticality.

“Correlation exponents” (ν) such as: the one for (3) the
correlation length, ξ⊥, ξ⊥ ∝ �ν⊥ , and for (4) the correlation
time, ξ‖, ξ‖ ∝ �ν‖ .
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“Dynamic exponents” such as: (5) θ , that governs the time
decay of the order parameter E (t ) ∝ t−θ .

“Spreading exponents” such as those describing: (6) the
total number of active sites, N (t ) ∝ tη; (7) the mean-squared
radius in surviving runs R2(t ) ∝ t z; and (8) the survival prob-
ability Ps(t ) ∝ t−δ [1].

“Avalanche exponents” defined by: (9) P(S) ∼ S−τ , for the
distribution of avalanche sizes, S; (10) P(T ) ∼ T −τt , for du-
rations, T ; and (11) S ∼ T γ linking durations with averaged
sizes, S(T ).

Note that these last exponents (the spreading and avalanche
ones) are not independent of each other, but related through
scaling relations as derived in, e.g., [55]

τ = 1 + η + 2δ

1 + η + δ
, (14)

τt = 1 + δ, (15)

γ = τt − 1

τ − 1
= 1 + δ + η, (16)

where the last one describes the “crackling noise” scaling
relation [57]. Other scaling relations can be found in [4,5,55],
in particular,

θ = β/ν‖, (17)

relates static and dynamic exponents. Importantly, for stan-
dard processes with absorbing states (e.g., DP and TDP), the
averaged shape of avalanches with different durations and
sizes (or “mean temporal profile of avalanches”) collapses
onto a universal curve that typically has a symmetric inverted
parabolic form (see Sec. V) [58,59].

It is noteworthy that there is a set of exponents that can
be argued to remain unchanged across transition types (a fact
that is also confirmed numerically [60]). This is due to the
mean-field and diffusive character shared by all the transitions
discussed here. In particular, owing to the diffusive nature
of the system in all continuous transitions, correlations (ξ )
should diverge at the critical point with the well-known mean-
field exponents [1,4,5] as follows: ξ⊥ ∝ �ν⊥ with ν⊥ = 1/2,
for the correlation length; and ξ‖ ∝ �ν‖ with ν‖ = 1, for the
time correlation. From this, given that [55] z = 2ν⊥/ν‖ =
1, z = 1 for all continuous transitions here. Similarly, the
survival probability exponent (whose scaling behavior was
determined in [61]) always takes a value δ = 1 for all the
continuous transitions studied here, implying that τt = 2 [see
Eq. (15)] is conserved across transitions. Finally, the exponent
η is expected to vanish for all mean-field transitions (for which
there is no “anomalous dimension” [3]). However, remark-
ably, here we report on a possible exception to this general rule
(η = 2) for some of the “anomalous” transitions (see below).

Finally, it is worth stressing that many aspects of the
transitions, especially those related to discontinuous or
hybrid-type transitions, are not expected to exhibit universal
features.

A. T1: Directed percolation (transcritical bifurcation)

T1 corresponds to a transcritical bifurcation, describing
a continuous transition between the standard quiescent and
active phases. As discussed in Sec. I, guided by universality

principles, one expects it to lie in the usual (mean-field)
directed percolation universality class (DP) [1,3,4,6,7].
Indeed, this is the case, as explicitly shown in what follows.

Transcritical bifurcations occur when the quiescent steady
state loses its local stability, i.e., Eq. (8). Expanding
Eq. (3) and Eq. (4) in power series of E∗ and I∗, one
finds

E∗(�; h = 0) = (α + wII )3

(α + wII )3 − wEIw
2
IE

� + O(�2), (18)

from which β = 1 follows (see Fig. 4). The introduction of an
external field h smooths out the transition [as illustrated with
dashed lines in Fig. 4(a)]. Hence, expanding the fixed point in
powers of h, at � = 0, yields

E∗(h; � = 0) =
√

(α + wII )2(wEI − α)h

α
[
wIEw2

EI − (wII + α)3
] + O(h), (19)

so that δh = 2 [see Fig. 5(a)].
Similarly, one can derive the solution for I (t ) and, by

expanding it in a power series, obtain I (t ) ≈ [wIE/(wII +
α)]E (t ). It is, thus, convenient to define two new variables:
� and �, as the weighted linear combinations:

2� = wIE E + (wII + α)I, (20)

2� = wIE E − (wII + α)I, (21)

in terms of which the mean-field dynamics [Eq. (3) and
Eq. (4)] take a simpler form:

2�̇ ≈ �� + (2wEE + 2wII + �)� + O, (22)

2�̇ ≈ �� − [2(wEE + wII − 2α) + �]� + O, (23)

where O = O(�2,�2, ��, . . .) stands for higher-order
terms. Observe that, right at the transition (� = 0), the sta-
bility matrix around the origin is

A =
(

0 wT
EE + wII

0 wT
EE − wII − 2α

)
, (24)

which has a vanishing eigenvalue, while the second one is
strictly negative at criticality for T1 transitions. This means
that � decays exponentially fast; therefore, it is an irrelevant
field for scaling. Only one “slow mode” or “relevant field”
exists, �, and—as theoretically predicted in Grinstein et al.
[10] for these conditions—the scaling behavior should coin-
cide with standard DP.

In particular, at the transition point—where the linear
term of Eq. (22) vanishes—the quadratic term dominates
and therefore �(t ) ∝ t−1, so that θ = 1 [as numerically
confirmed in Fig. 6(a)]. Considering the previous three in-
dependent exponent values, one can already conclude that
the T1 transition actually belongs in the DP universality class
(see Table I). Nevertheless, for the sake of completeness,
the survival probability and the total number of particles,
at � = 0, are numerically verified to scale with spreading-
exponent values δ = 1 [Fig. 7(a)] and η = 0 [Fig. 8(a)],
respectively, as expected for the DP class. We have also
confirmed the consistency with DP by numerically analyzing
the statistics of avalanches at the transition, revealing ex-
ponent values compatible with the DP predictions τ = 3/2,
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FIG. 4. Order parameter as a function of the control parameter, � = wEE − w∗
EE , across the eight possible types of transitions as repre-

sented in Fig 3. In all plots revealing continuous transitions, the dot-dashed blue curves correspond to asymptotic behavior E∗(�; h = 0) ∼ �β ,
with the corresponding values of the β exponent. The shaded gray areas correspond to bistability between active and standard quiescent phases
and the pink shaded area between active and excitable quiescent phases. The green shaded areas represent the excitable quiescent phase
(same colors as Fig. 3). (a) At T1 (wIE = 3), the system exhibits a second-order transition from the standard quiescent to the active phase,
consistently with the directed-percolation (DP) universality class (E∗ ∼ �1 for � � 0). (b) T2 (wIE = 3) is also a continuous phase transition
occurring through a tricritical point and is consistent with the tricritical directed percolation (TDP) universality class (E∗ ∼ �1/2). (c, d) In
contrast, T3 and T4 are first-order or discontinuous phase transitions with coexistence between an active phase and one of two possible kinds of
quiescence (wIE = 3): first, a standard quiescent state (gray shaded area) and, second, an excitable quiescent state (pink shaded areas). (e) Case
B (wIE = 1) allows for a special tricritical transition (T5) occurring through a Hopf-tricritical point (E∗ ∼ �1/2). (f–h) In case C (wIE = 0.8),
both T6 and T7 are continuous phase transitions when h = 0, with E∗ ∼ �1 and T8, E∗ ∼ �1/2, respectively. However, once a nonvanishing
external field h �= 0 is introduced (dash-dotted and dashed lines), there is bistability driven by the external field [for more details see gray
shaded areas in Figs. 5(f)–5(h)]. Parameter values are set as in Fig 3.

FIG. 5. Order parameter as a function of the external field right at the transition (� = 0). Observe that three out of the eight types of
transitions described here exhibit power-law scaling with the external field, i.e., E∗(h; � = 0) ∼ h1/δh . (a) For T1, δh = 2, consistently with
the DP universality class. (b) For T2, δh = 3, consistently with TDP. (c, d) For T3 and T4, the order parameter’s response to an external field
shows bistability (shaded area). (e) Transition T5 (H+TDP), differently from the usual tricritical transition (TDP), scales with δh = 2. (f)–(h)
Remarkably, for T6, T7, and T8, contrary to the behavior with h = 0, the order parameter becomes bistable (shaded area) as the external field
increases. Parameter values as in Fig. 3.
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FIG. 6. Order parameter time series for the eight types of transitions. Observe that only three of them exhibit dynamical scaling E (t ) ∝ t−θ .
(a) T1 exhibits an asymptotic power-law decay with the expected DP value θ = 1. (b) T2 shows a slower asymptotic time decay in the TDP
class, θ = 1/2. (c) For T3, the saddle-node bifurcation gives rise to bistability between an active and a quiescent phase. (d) T4 behaves very
similarly to T3 but frustrated oscillations drive the system more easily to regions II and III, so the bistability is between active and excitable
quiescent phases. (e) T5 is a genuine second-order phase transition with θ = 1. (f)–(h) T6, T7, and T8 are not genuine continuous transitions and
show no signatures of dynamic scaling, but rather an exponential decay to quiescence. Parameter sets as in Fig. 3.

τt = 2, and γ = 2 [see the distributions of sizes S, du-
rations T , and average sizes as a function of durations
in Figs. 9(a), 9(d), and 9(g), respectively]. Moreover, the
averaged avalanche shape is approximately an inverted
parabola throughout the T1 line [Figs. 10(a) and 10(b)], col-
lapsing for different durations with γ = 2, even if with some
asymmetry (see Sec. V for a more in-depth discussion on
avalanche shapes).

Thus, in summary, at the line of transcritical bifurcations
(T1) separating a standard quiescent from the active phase,
the Wilson-Cowan stochastic model exhibits a genuine critical
point in the DP class, a result that is consistent with recent
analyses of de Candia et al. [33] for their specific choice of
parameter values.

TABLE I. Summary of mean-field exponents for the discussed
continuous phase transitions [13,55].

DP TDP H+TDP

Codim. 1 2 3

β 1 1/2 1/2
δh 2 3 2
θ 1 1/2 1
δ 1 1 1
η 0 0 2
ν‖ 1 1 1
τ 3/2 3/2 5/4
τt 2 2 2
γ 2 2 4

B. T2: Tricritical directed percolation
(saddle-node-transcritical bifurcation)

The tricritical point in case A [see Fig. 3(a)] corresponds
to a saddle-node transcritical (SNT) bifurcation—i.e., where
the lines of transcritical and saddle-node bifurcations intersect
without further degeneracies [62,63]. Thus, in order to tune
to this transition point one needs to set two parameters in
the phase diagram (wEE , wEI ), as explicitly calculated in
Appendix B. An analysis in terms of the fields � and �

(analogously to the previous case) shows that there is only one
vanishing eigenvalue at the transition, and, thus, the second
field is irrelevant for scaling. Therefore, T2 is expected to
be described by the mean-field tricritical directed percolation
universality class (TDP) [13]. Indeed, considering the leading-
order terms in a power expansion in both � and h, one has

E∗(�, h = 0) ≈
√

�

wIE
+ O(�), (25)

E∗(h,� = 0) ≈
[

3
[
w2

IE − (α + wII )2
]
h

w2
IE [(α2 − 3)wIE − (α2 + 3)α]

] 1
3

+ O(h
1
2 ), (26)

from where β = 1/2 [Fig. 4(b)] and δh = 3 [Fig. 5(b)], as
expected for the TDP universality class.

At the transition, the lowest order correction of Eq. (22)
in � is O(�3), so that asymptotically � ∝ t−1/2 and, hence,
θ = 1/2, as numerically confirmed in Fig. 6(b). Once again,
considering the linear relationship between E (t ) and I (t ), both
densities share this scaling.
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FIG. 7. Survival probability as a function of time. The survival probability at second-order phase transitions scales as Ps(t ) ∝ t−δ . Black
dots stand for the numerical simulations (for the same parameters as Fig. 3 and N = 108) and dashed lines show the corresponding exponent
value. (a) T1 belongs to the DP universality class, i.e., δ = 1. (b) T2 belongs to TDP so that δ = 1 (the same as DP). (c), (d) For the first-order
phase transitions, the system’s survival probability converges to a nonvanishing value as t → ∞ due to the possibility of being attracted to the
active phase. (e) For T5, δ = 1 as in the previous continuous transitions, but with stronger finite-size effects. (f) For T6, the system shows a
behavior similar to T5: a decay with δ = 1 and strong finite-size effects. (g), (h) The survival probability shows a peculiar behavior of several
sharp decays with some small plateaus, which stem from the excitability of the quiescent phase.

Finally, the exponent for the survival probability re-
mains δ = 1 [see Fig. 7(b)], η = 0 [see Fig. 8(a)], τ = 3/2
[Fig. 9(b)], τt = 2 [Fig. 9(e)], and γ = 2 [Fig. 9(h)], all of
which are consistent with the expected values in the TDP class
(see Table I).

C. T3: Standard discontinuous transition
(saddle-node bifurcation)

The line of saddle-node bifurcations [see Fig. 3; Eq. (11)]
defines the third type of transition, T3, to go from a standard
quiescent state to the active phase. This type of transition is

FIG. 8. Mean number of particles N (t ) in spreading experiments
in bona fide continuous phase transitions (i.e., T1, T2, and T5), at
which one expects N (t ) ∼ tη. Simulations with the same parameters
as Fig. 3 with N = 108 (a) and N = 108 and N = 1010 (b). (a) For
T1 and T2, we obtain results compatible with η = 0, as expected for
DP and TDP as well as, in general, for mean-field theories. (b) On
the other hand, for T5 we obtain the unusual result η = 2, with strong
finite-size effects.

characterized by a discontinuous jump in the order parameter
and includes an intermediate regime of bistability, where both
the active and the standard quiescent state are stable [see
Figs. 3(a) and 4(c)]. The regime of coexistence lasts until, at a
second bifurcation, the quiescent phase loses its local stability.
Given that the transition is discontinuous, the exponents β

and δh are not properly defined [Fig. 5(c)]. Similarly, neither
the activity nor the survival probability decay to 0 for initial
conditions in the basin of attraction of the active phase [see
Figs. 6(c) and 7(c)], so that the exponents θ and δ are not well
defined either.

Thus, in summary, the T3 transition is a standard first-
order or discontinuous transition into a quiescent or absorbing
state [5,13].

D. T4: Discontinuous transition from an excitable
quiescent state (saddle-node bifurcation)

A scenario very similar to T3 occurs at T4, which appears
in all three possible phase diagrams (A, B, and C; see Fig. 3).
Transition T4 is also discontinuous with phase coexistence, but
it differs from T3 in the fact that—as illustrated in Fig. 4(d)—
the quiescent phase that coexists with the active one in the
regime of bistability is of the excitable type, rather than the
standard one. The bistability regime ends where the excitable
quiescent phase loses its global stability in favor of the active
one, at a discontinuity-induced transition (black-dashed line
in Fig. 3). For the same reasons as in T3, none of the critical
exponents is well defined [see Figs. 5(d), 6(d), and 7(d)].

Thus, in summary, T4 is a discontinuous transition with
bistability, but with the peculiarity of having an excitable
quiescent state coexisting with the active one.
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FIG. 9. Avalanche analysis. Simulations using Gillespie’s algorithm for the same parameters as in Fig. 3 and network size N = 108. In this
case, we report results only for true (or bona fide) continuous phase transitions, for which scale-free avalanches emerge, i.e., T1, T2, and T5. For
the T1 transition, one obtains results as expected for DP: (a) τ ≈ 3/2, (d) τt ≈ 2, and (g) γ ≈ 2. For T2, the system behaves consistently with
TDP: (b) τ ≈ 3/2, (e) τt ≈ 2, and (h) γ ≈ 2, i.e., TDP and DP share the same avalanche exponents. Finally, for the T5 transition, (c) τ ≈ 5/4,
(f) τt ≈ 2, and (i) γ ≈ 4. The exponents τ and τt were obtained with the Maximum Likelihood Estimator (MLE) method [69].

E. T5: Hopf tricritical directed percolation
(Hopf saddle-node-transcritical bifurcation)

As illustrated in Fig. 3(b), Case B exhibits a codimension 3
bifurcation point at which the tricritical point (codimension 2)
and the line of Hopf bifurcations meet. This transition occurs
only in case B, for the particular choice of parameters for
which the vertical line of Hopf bifurcations ends up exactly at
the tricritical point, w∗

IE = α + wII , as derived from Eq. (12)
and Eq (B3) in Appendix B. Using this constraint, one can
easily find that the location of the T5 point is specified by
the following set of conditions (see Appendix B): wEE =
2α + wII and wEI = wIE .

Let us first write the stationary solutions of the dynamical
equations (3) and (4) up to leading order in � at vanishing h
and, also, up to leading order in h at vanishing �,

E∗(�; h = 0) ≈
√

�

α + wII
+ O(�), (27)

E∗(h; � = 0) ≈
√

h

3(α + wII )2
+ O(h). (28)

These imply β = 1/2 [as illustrated in Fig. 4(e)] and δh = 2
[see Fig. 5(e)]. Note that β coincides with its counterpart for
TDP (as expected for a tricritical-like point) but, curiously

enough, δh does not; it instead coincides with its value in the
DP class. Therefore, the static exponents at T5 do not fully
comply with either of the well-known universality classes.

To make further progress, it is convenient to introduce, as
before, the equations for �(t ) and �(t ), as defined in Eq. (22)
and Eq. (23):

2�̇(t ) = �(� + �) + 4(wII + α)� − 2α

wII + α
�2 − 4��

− 2α

wII + α
�2 + O, (29)

2�̇(t ) = �(� + �) − 4�2 − 4α

wII + α
�� + O, (30)

where O ≡ O(�3, �2�,��2,�3,��2, . . .) stands for
higher-order terms and time dependences have been omitted
for simplicity. Moreover, right at the transition point (� = 0),
the dynamics simplifies to

�̇(t ) = 2(wII + α)� − α

(wII + α)
�2 + O, (31)

�̇(t ) = −2�2 − 2α

wII + α
�� + O, (32)

where the consistency of the truncation of higher-order terms
will be justified a posteriori.
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FIG. 10. Skewness and mean temporal profile of avalanches. Enlargements of Fig. 3 illustrate the excursion in parameter space (a) along
a transcritical line to a tricritical point and (d) along a tricritical line to a Hopf-tricritical point (by decreasing the parameter wIE , the phase
diagram goes from case A to case B, which is illustrated in the inset). Panels (b) and (e) show the corresponding rescaled mean temporal
profiles (avalanche shape collapses). (c) The skewness of the previous curves (b) slightly decreases as the tricritical point is approached (i.e.,
as the difference wEI − wIE increases). (e) As the system approaches the H+TDP transition, the curves of the mean temporal profile become
progressively less symmetrical, as assessed by the skewness of the curves (f). Simulations with the same parameters as Fig. 3 and N = 108.

In particular, observe that the stability matrix around the
origin becomes

A ∝
(

0 wII + α

0 0

)
(33)

so that the null eigenvalue is degenerate and, thus, an anoma-
lous type of scaling is to be expected. Indeed, the previous
matrix is characteristic of the normal form of a Bogdanov-
Takens bifurcation [51], which has been already discussed in
the context of Wilson-Cowan models [36,40] and, more in
general, in the analysis of nonnormal or nonreciprocal phase
transitions [64].

It is important to observe that the only linear term in the
first equation, Eq. (31), 2(wII + α)�(t ), has a positive coef-
ficient. This implies that at criticality �(t ) needs to decay to
zero faster than �(t ) as otherwise the overall right-hand side
would be positive asymptotically in time (which cannot possi-
bly happen at criticality). Therefore, given that �(t ) needs to
decay slower than �, the slowest-decaying nonlinear term in
Eq. (31) is the one proportional to −�2. Knowing that asymp-
totically, �̇ ∝ −b�2, with b = α/(wII + α) one readily finds
that � ∼ t−1/b and, therefore, θ = 1 [as numerically verified;
see Fig. 6(e)]. Finally, plugging this result into the second
equation, Eq. (32), comparing constants and exponents, one
readily finds that � ∼ t−2. Observe that, indeed, as antici-
pated, �(t ) decays faster than �(t ): � ∼ �2, which justifies
the truncation of higher-order terms in the previous equations.

Using these observations one concludes that, right at the
transition point � = 0, the dynamical scaling is consistent
with DP because, since � decays faster, it does not influence
the decay of � (dominated by a quadratic term). This result is
surprising as we are dealing with a tricritical point so, a priori,
one would expect TDP-like scaling.

The situation is different away from the critical point (� >

0). In this case, it is convenient to focus on the equation for �̇,
Eq. (30). At stationarity, the linear positive term (proportional
to �) needs to cancel with the leading nonlinear one. A priori,
the linear positive term is either the one proportional to ��

or the one proportional to ��, depending on the scaling
dimensions of � and �. Note that both yield that � scales
as � ∝ �. Now, focusing on the first equation [Eq. (29)],
the leading positive term is 4(wII + α)� (which scales as �,
while �(� + �) is a higher-order contribution). This leading
term needs to be comparable with the leading negative term,
which is the one proportional to −�2 (note that the other
possibility, −4��, leads to a fixed value of � that does not
change or scale with � and, therefore, it is not a solution).
The resulting scaling renders � ∼ �2, which is consistent
with the temporal scaling. And, then, one derives � ∼
�1/2 ∼ �1/2, i.e., β = 1/2 (while the field � scales with an
exponent β� = 1).

Therefore, since (1) the order-parameter exponent is that of
the TDP class, β = 1/2, (2) the time-decay exponent θ = 1
differs from its TDP value, and (3) ν‖ = 1 (as it is the case for
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FIG. 11. Conditional probability of avalanche sizes given durations, P(S|T ), in bona fide continuous phase transitions (i.e., T1, T2, and
T5). Numerical results obtained with Gillespie’s algorithm for the same parameters as Fig. 3; for (a) and (b), the system is poised at T5 with a
network size of N = 108; for (c) each transition is simulated for sizes N = 104, 105, 106, 107, and 108. (a) P(S|T ) collapses into a single curve
when one sets γ = 4. (b) In contrast, for γ = 2 there is no curve collapse. Furthermore, in the inset, one observes that the peaks of P(S|T )
(S∗) scale with S∗ ∼ T γ , with γ = 4. (c) Cutoff for size and duration distributions; one scales as a power of the other with the corresponding
value of the exponent γ [67,68].

all mean-field transitions), then it follows that

θ �= β/ν‖, (34)

which violates one of the basic scaling relations in systems
with quiescent states, i.e., Eq. (17).

Let us remark that a similar violation of scaling was found
by Noh and Park [65] in a model with quiescent states and
two relevant fields: an “excitatory” and a “repressing” one. In
both cases—here and [65]—the breakdown of scaling stems
from the nontrivial interplay between these two fields with
opposing effects.

Similarly to the other transitions, the survival probability
decays with an exponent δ = 1, albeit with a higher sensitivity
to system size [see Fig. 7(e)]. Also, consistently with the
scaling relation τt = δ + 1 [55], the avalanche distribution of
durations scales with the same exponent as in DP and TDP,
τt ≈ 2 [Fig. 9(f)].

In contrast with the rest of the second-order phase tran-
sitions [see Fig. 8(a)], the growth of the total activity in
spreading experiments right at criticality is N (t ) ∼ t2, yield-
ing η = 2 [Fig. 8(b)]. This observation is rather surprising for
a mean-field model as most mean-field universality classes
are characterized by η = 0 (i.e., absence of an “anomalous
dimension” [3,8]).

In order to shed some light on this result, let us observe
that the linearized dynamics at criticality—controlled by the
normal form of a Bogdanov-Takens bifurcation [Eq. (33)]—is
such that a small initial perturbation can be largely amplified
before decaying back to quiescence, i.e., around the fixed
point the system is excitable. In particular, if the perturbation
consists of a single seed (as in spreading experiments), the
number of active sites in surviving runs grows in a deter-
ministic way until a maximum size is reached, and, then, the
asymptotic decay toward the quiescent state (controlled by the
exponent θ ) begins. This initial deterministic growth—which
does not occur in the DP nor TDP classes—is expected to be
responsible for the anomalous value of η.

More specifically, observe that, in Eq. (31) and Eq. (32),
the density � at first grows linearly as �̇ ∝ � and � can

be approximately taken as a constant because its negative
eigenvalue vanishes. Furthermore, the total number of
active sites N (t ) is equal to the density times an additional
“volume factor,” which, owing to the deterministic expansion,
grows linearly in time. Therefore, one concludes that
N (t ) ∼ �(t )t ∼ t2, which yields η = 2.

Given this anomalous value and using the general scaling
relations described before, one can infer other exponent val-
ues. In particular, Eq. (14) predicts τ = 5/4 and Eq. (16) leads
to γ = 4, which are both unusual or anomalous exponents
in mean-field theories. We numerically verified both of these
results; scaling compatible with τ ≈ 5/4 can be observed in
Fig. 9(c), and with γ ≈ 4 in Fig. 9(i). This latter value also
gives an excellent data collapse for P(S|T ) [Figs. 11(a) and
11(b)] and is consistent with the scaling relation between size
and duration cutoffs [Fig. 11(c)] [66–68].

In summary, the T5 transition defines a thus far unknown
universality class, which we named Hopf tricritical directed
percolation (H+TDP). In its mean-field variant, it has a set of
exponents that do not match either DP or TDP universality
classes (Table I), violates at least one scaling relation, in-
cludes some anomalous exponent values, and produces highly
asymmetrical avalanche shapes, as we shall show in a separate
section.

A more systematic and rigorous derivation of these results,
together with a field-theoretic discussion of this universality
class will be presented elsewhere.

F. T6: Hopf-transcritical bifurcation

This type of continuous transition [see Fig. 4(f)] occurs
when the line of Hopf bifurcations collides with the tran-
scritical line [see Fig. 3(c)] and appears only in case C.
This transition is peculiar in that at the critical point—
independently of the initial conditions—the trajectories are
attracted to region II [and, possibly, III; see Fig. 1(b)]. This
occurs because the Hopf bifurcation overrides the transcritical
bifurcation, and the elicited frustrated oscillations drive the
system toward the switching manifold and, thus, into region II.
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Once in region II, the excitatory density decays exponentially
fast, dragging down the system without signatures of scaling;
e.g., the time-decay exponent θ is not defined for T6 [see
Fig. 6(f)].

At the transition point [as specified by Eq. (12) and
Eq. (13)], one can rewrite Eq. (18) and Eq. (19) as

E∗(�; h = 0) ≈ α + wII

(α + wII − wIE )
� + O(�2), (35)

E∗(h; � = 0) ≈
√

[(wII + α)2 − αwIE ]h

αwIE [wIE − wII − α]
+ O(h). (36)

On the one hand, Eq. (35) holds because, for h = 0, there is
a stable equilibrium in region I for � � 0, which attracts the
trajectories, preventing them from falling into region II. Ob-
serve that in case C, wIE < wII + α—as the condition at the
interface between case A and case C is wIE = wII + α—and,
therefore, while Eq. (35) is valid and yields β = 1, Eq. (36)
is misleading since the denominator is negative inside the
square root so that it does not correspond to a real solution.
The reason is that the previous equations are based on the
naive linearization of the dynamical equations, assuming the
nonvanishing part of the response function �. However, this
assumption is invalid in the present case. Thus, for Eq. (36)
and � = 0, since trajectories fall into region II and E decays
to zero exponentially fast, the absorbing state remains globally
stable even as h increases from zero. Therefore, the exponent
δh is not well defined for T6. Nevertheless, further increasing
the external field h eventually leads to a saddle-node bifurca-
tion and a discontinuity in the order parameter [Fig. 5(f)].

Regarding spreading exponents, we have verified that
the system’s survival probability decays in time with δ = 1
[Fig. 7(f)] as in all other transitions—even if, similarly to T5,
with strong finite-size effects. Also, for the same reasons as
T5, the growth of active sizes follows η = 2 in this case.

In conclusion, T6 exhibits a mixture of signatures of both
continuous and discontinuous transitions and, thus, does not
belong to any standard type of quiescent-active universality
class.

G. T7 and T8: Continuous transitions from
quiescent-excitable to active states

The transitions represented by T7 and T8 happen between
the quiescent excitable state and the active state [only in
case C, as illustrated in Fig. 3(c)]. The first occurs through a
discontinuity-induced transition (black dashed lines in Fig. 3)
and the second through a tricritical point, so that they are the
counterparts of T1 and T2, respectively, for excitable—rather
than standard—quiescent states.

Let us recall that, as explained above, a naive lineariza-
tion of the quiescent excitable state (assuming � > 0) yields
eigenvalues with a nonvanishing imaginary part; in any case,
the quiescent state remains stable due to frustrated oscillations
that draw the system into the regions II and, possibly, III
[Fig. 1(b)].

Observe that Eq.(18) and Eq. (25) remain unchanged for T7

and T8, respectively. Therefore, the order parameter changes
continuously with the control parameter with β = 1 and β =
1/2, respectively [Figs. 4(g) and 4(h)]. However, similarly

to transition T6, the denominators of Eq. (19) and Eq. (26),
governing the response to an external field h at the transition
point, are negative and the system asymptotically reaches
region II, i.e., converges quickly to quiescence. Thus, the
response to an external field coincides with that of T6, and
the exponent δh is not well defined for either T7 or T8 as there
is a discontinuous jump in the order parameter [see Figs. 4(g)
and 4(h) as well as Figs. 5(g) and 5(h)].

On the one hand, also as in T6, the asymptotic dynamics of
the order parameter in the T7 and T8 transitions exhibit an ex-
ponential time decay [Figs. 6(g) and 6(h)]. On the other hand,
the overall behavior of the survival probability, for T7 and
T8, shows an intermediate plateau, as opposed to the smooth
decay to zero observed for T6 [Figs. 7(f)–7(h)]. These plateaus
stem from the fact that the excitable quiescent phase is well
established before the transitions take place (in opposition to
what happens in T6).

Thus, in summary, the T7 and T8 transitions also exhibit
a mixture of features of continuous and discontinuous phase
transitions.

V. THE AVERAGE SHAPE OF AVALANCHES

The scaling of the mean avalanche shape (also called
“mean temporal profile”)—i.e., the fact that the averaged
shape of avalanches with different sizes and durations can
be collapsed into a single curve by using the adequate value
of critical exponents—has been used as a signature of criti-
cality in nonequilibrium systems with absorbing states [70].
As already mentioned, the DP and TDP universality classes
are known to typically have symmetric inverted parabo-
las mean-temporal profiles of avalanches, a consequence of
time-reversal symmetry [71]. The asymmetry in the mean
temporal profile, when found, reflects a break in such a
symmetry [36,72].

In the present Wilson-Cowan model, we observed that,
when the transition to quiescence occurs in the neighborhood
of T5 (or H+TDP) point in parameter space, avalanche shapes
exhibit a nontrivial behavior. In particular, as illustrated in
Fig. 10(a), when one follows the DP (T1) line towards the
TDP (T2) point in case A, the mean temporal profile of
avalanches acquires only a slight asymmetry [Fig. 10(b)] as
quantified by the increase in the absolute value of its skew-
ness [Fig. 10(c)]. This observation agrees with recent results
that show that the introduction of an inhibitory population
causes a small tilt on the mean temporal profile at the DP
transition [33,34,36].

However, remarkably, studying the system at the TDP tran-
sition as the overall parameters transition from case A to case
B [Fig. 10(d)], the avalanche mean temporal profile becomes
progressively more and more asymmetric, with its skewness
reaching a maximal absolute value—i.e., maximal asymme-
try as illustrated in Fig. 10(f)—at the H+TDP transition
[Fig. 10(e)]. This type of asymmetric or skewed avalanche
shape has also been found in other studies. However, the
sign of the skewness, i.e., whether the shapes are left- or
right-skewed, does not seem to be a universal feature as it
may depend on model details and parameter values [36]. A
more general and systematic study of such asymmetries is left
for future work.
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VI. CONCLUSIONS

By means of detailed scaling analyses as well as extensive
numerical simulations, we have thoroughly analyzed all pos-
sible types of phase transitions between active and quiescent
phases that the stochastic Wilson-Cowan model exhibits.

On the one hand, under some conditions, the model ex-
hibits the standard phenomenology of systems with quiescent
or absorbing states, i.e., two phases (active and quiescent) as
well as a phase transition separating them. This transition can
be a continuous one (in the mean-field directed-percolation
class), a discontinuous one with hysteresis, or a tricritical tran-
sition in the tricritical-directed-percolation class, at the point
where the previous two types of transitions meet [4,5,13].

On the other hand, a key feature of the mean-field Wilson-
Cowan model is that—in addition to the standard active
and quiescent phases—there is another “excitable quiescent”
phase. In particular, the phase diagram describing the model
at a mean-field level exhibits a line of Hopf bifurcations to
the left of which there is a standard quiescent state, while,
to the right of it, the convergence towards the quiescent state
occurs in an oscillatory way (involving complex eigenvalues).
Such pseudo-oscillations are nevertheless“frustrated” as the
system enters inhibition-dominated regions of the state space
(region II or region III in Fig. 1) and, then, activity decays
exponentially fast to zero. Observe that in this regime, ow-
ing to the nonnormality of the stability matrix (see below),
small perturbations to quiescence can be transiently ampli-
fied, before decaying back again to quiescence, hence the
name “excitable quiescent” phase (or also, possibly “reactive”
phase, see [28,36,54,73,74]).

Both of the previous features—i.e., the presence of a line of
Hopf bifurcations and of an excitable-quiescent phase—stem
from the existence of an inhibitory population or field and
cannot possibly appear in simpler models for activity prop-
agation, such as directed percolation or the contact process
which include only one field, describing the excitatory activ-
ity. These two ingredients are at the root of the enriched set
of possible phase transitions that the system can exhibit with
respect to standard ones.

Our analyses reveal that the Wilson-Cowan model can ex-
hibit three possible types of (bidimensional) phase diagrams
(as illustrated in Fig. 3) that can be viewed as sections of a
larger (three-dimensional) phase diagram. These three cases
(A, B, and C) differ from one another in the relative position
of the (vertical) line of Hopf bifurcations with respect to the
tricritical point (and are controlled by a single parameter, wIE

in Fig. 3). Careful inspection of the three of them reveals the
existence of eight different types of phase transitions, labeled
T1, T2, . . ., and T8, respectively.

Three of them are usual ones separating active from stan-
dard quiescent phases and are well known from the theory
of phase transitions: (1) a (mean-field) directed-percolation
(DP), continuous transition (T1); (2) a (mean-field) tricriti-
cal directed-percolation (TDP) (T2); and (3) a (mean-field)
discontinuous transition with bistability and hysteresis (T3).
These three cases correspond to transcritical, saddle-node-
transcritical, and saddle-node bifurcations, respectively and
exhibit the expected features for their corresponding well-
known universality classes.

In particular, let us remark that our results for the DP
case (T1) are consistent with those recently reported by de
Candia et al. [33]. These authors chose to study the case
where wE ≡ wEE = wIE and wI ≡ wEI = wII ; for this choice
of parameters, one is in the T1 case [actually, Eq. (8) becomes
wE − wI = α, which is the condition for criticality in [33]].
Similarly, for T2 our results reproduce the TDP class as first
described in [13] (note that recent research has also consid-
ered the possibility of a tricritical point in neuronal models
with a population of inhibitory units [36,75]). Finally, for T3,
we observe the standard features from discontinuous phase
transitions into absorbing states, such as hysteresis [13,15].

Each of the previous three transitions has a counterpart
in which the quiescent phase is not a standard one but a
quiescent-excitable one: the twin of T1 is a transcritical bifur-
cation from the quiescent excitable state (labeled T7), the twin
of the tricritical T2 is T8, and the twin of T3 is a discontinuous
transition, which exhibits bistability between the active and
the quiescent-excitable states (labeled T4). A peculiar feature
of the continuous ones, i.e., T7 and T8, is that their response
to an external field is anomalous: even if they are contin-
uous transitions, once the field is introduced they become
discontinuous. In other words, the addition of a small exter-
nal field drives slightly active states to become quiescent (a
phenomenon that stems from the excitability of the quiescent
state). As a consequence, critical exponents such as δh are not
well defined, so T7 and T8 share features of both continuous
and discontinuous phase transitions.

The remaining transitions are unusual and involve entering
the active phase right at the point where a Hopf bifurcation
also occurs (i.e., they correspond to higher-codimension bi-
furcations). In particular, T6 describes the situation in which
the Hopf bifurcation falls on top of a transcritical bifurcation,
whereas T5 occurs at the special point in which the Hopf
bifurcation falls exactly on top of the tricritical (or SNT) point,
which is possible only in case B.

For T6, the transition is adjacent to the excitable-quiescent
phase, and, thus, one observes the same phenomenon as for T7

and T8, when introducing an external field. Even if the transi-
tion (T6) is continuous, the response to a small external field
is anomalous, giving rise to a discontinuity and preventing the
exponent δh to be well defined, so again, T6 exhibits features
of both continuous and discontinuous phase transitions.

Finally, T5 is by far the most interesting and less trivial
transition. We have named it Hopf-tricritical directed perco-
lation (H+TDP) transition as it occurs when the Hopf line
collides with the tricritical point, giving rise to a codimension
3 transition. In this case, both eigenvalues of the stability
matrix vanish at the transition point, so that the matrix has
the normal form of a Bogdanov-Takens bifurcation. From the
point of view of power-counting and dimensionality analyses,
this fact has important implications, as carefully discussed
above. In particular, a key aspect is that the scaling features
are controlled by different terms (1) right at criticality and
(2) slightly in the active phase. This dichotomy entails a
remarkable and surprising violation of some well-established
scaling laws. It is noteworthy, though, that a breakdown of
scaling in a somehow similar model—including also a second
inhibitory-like field—has been recently reported by Noh and
Park [65].
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Another anomalous feature of T5 is that the exponent
controlling the growth of the total number of particles in
spreading experiments, η, does not vanish, i.e., η = 2, as
opposed to what happens in (mean-field) DP and most
other mean-field phase transitions (as it is related with
perturbative corrections to mean-field behavior [61]). More-
over, the scaling anomaly of the H+TDP transition is also
reflected in its avalanche exponents: while the duration
exponent τt = 2 is consistent with DP and TDP, the size-
distribution exponent τ = 5/4 and crackling noise exponent
γ = 4 are different from the usual ones (τ = 3/2 and γ = 2,
respectively).

A more systematic field-theoretical analysis of the
H+TDP universality class—as well as its implementation in
finite-dimensional substrates—is left for future work.

A relevant hallmark of standard models in the DP class
is the symmetry in the mean temporal profile of avalanches,
which reveals time-reversal invariance [71,72]. On the con-
trary, the mean temporal profile in T5 shows a strong
asymmetry that we have quantified in terms of negative
skewness. Previous work has shown that the introduction of
inhibition tilts the once symmetric inverted parabolas pro-
duced by models in the DP universality class [34,36]. We
further propose that not only the strength of the inhibitory
coupling slightly tilts the mean temporal profiles, but that
the combination of the proximity to the excitable quiescent
phase and to the onset of frustrated oscillations promotes
even greater distortions. Considering the inherent difficulties
in assessing avalanche exponents from experimental data, the
asymmetry in the avalanche shape collapse may turn out to be
a useful additional tool to more directly reveal proximity to
this anomalous transition.

Last but not least, it is also worth stressing that the nature
of the phase diagram and phase transitions that we have re-
ported for the mean-field Wilson-Cowan model may change
when sparse networks are considered [76]. In particular, the
presence of enhanced stochastic effects, stemming from the
finite connectivity of each unit, can significantly alter the
dynamics and induce novel phenomena [36]. The study of
the interplay between the transitions discussed here and such
additional stochastic effects remains to be pursued. Similarly,
the effect of structural heterogeneity, e.g. the presence of local
excitation or inhibition imbalances, that could potentially lead
to extended critical (Griffiths) phases [77–79], remains as an
open challenge for future work.
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APPENDIX A: GILLESPIE’S ALGORITHM

The stochastic version of the Wilson-Cowan model [28]
was simulated using Gillespie’s algorithm [80,81], following
these steps:

Step 0. Initialize the system; for spreading experiments and
avalanche analyses, only an excitatory site is active at t = 0

Step 1. At each time step, calculate the transition rates
for each neuron—if active, �(si), and otherwise, α—and add
these rates, r = ∑

i ri

Step 2. The time step is chosen from an exponential distri-
bution with rate r and added to the total-time counter and

Step 3. The site to be updated is chosen with probability
ri/r, where ri is the transition rate of the neuron.

The size (duration) of an avalanche is counted as the total
number of activations (total time) of a single instance of
the simulation starting from just one excitatory activated site
before returning to quiescence.

APPENDIX B: MATHEMATICAL CONDITIONS
FOR THE BIFURCATION LINES AND POINTS

The mathematical condition for the tricritical point is de-
rived from a standard linear-stability analysis of the stationary
solution around zero. First of all, observe that Eq. (5) and
Eq. (6) have positive solutions. One can express wEE as a
function of the fixed-point solution (E∗, I∗) as specified by
Eq. (11):

wEE = 1

E∗

[
wEI I

∗ + �−1

(
αE∗

1 − E∗

)]
. (B1)

Expanding in power series around the origin one can readily
verify the emergence of an active-state solution at the value
of wT

EE , specified in Eq. (8). For values wEE > wT
EE , the

origin loses stability to a positive solution in a transcritical
bifurcation. Defining the distance to the critical value of the
control parameter, � = wEE − wT

EE , the value of this nontriv-
ial solution scales linearly with � as

E∗ ∼ I∗ ∼ [
(α + wII )3 − wEIw

2
IE

]−1
�. (B2)

Since � � 0, this solution is positive for (α + wII )3 −
wEIw

2
IE > 0.

Observe that, for (α + wII )3 − wEIw
2
IE = 0, Eq. (B2) di-

verges, marking where the saddle-node and transcritical
bifurcations collide into a saddle-node transcritical (SNT)
bifurcation or tricritical point [62,63]. The tricritical point is
represented in Fig. 3 a black circle for all cases (i.e., T2, T5,
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and T8). In cases A and C, this bifurcation has codimension 2
and occurs at

wSNT
EI = (α + wII )3

w2
IE

, (B3)

wSNT
EE = α + (α + wII )2

wIE
. (B4)

The nontrivial solution emerges from the trivial solution with
wEE , and it scales with the distance to the critical value, �, as
E∗ ∝ I∗ ∝ �1/2.

Finally, in Fig. 3 case B, a codimension 3 bifurcation
emerges from an extra fine-tuning of the parameters when
wIE = α + wII . For this choice of parameters, at wEI = wIE ,
the saddle-node transcritical collides with the Hopf right at
the tricritical point, T5. Combining Eq. (12) and Eq. (B3), the
values of the control parameters, for this bifurcation, are

wEI = α + wII , (B5)

wEE = 2α + wII . (B6)

APPENDIX C: DO TRAJECTORIES CROSS OR SLIDE
ONTO THE SWITCHING MANIFOLDS?

Piecewise continuous dynamics have two possible behav-
iors at the switching manifolds: sliding or crossing [48]. To
determine the behavior of the Wilson-Cowan model system,
we consider the Heaviside function (1) in Eq. (3) and Eq. (4):

ẋ =

⎧⎪⎨
⎪⎩

f +
x ≡ −αx + (1 − x) tanh(wix − w jy),

if s ≡ wix − w jy > 0

f −
x ≡ −αx, if s < 0

, (C1)

where f +
x ( f −

x ) is evaluated to the right (left) of the switching
manifold, s = 0.

Let us consider the switching manifold sE = 0, where E =
(wEI/wEE )I [Fig. 1(a)]. One can then write

�∇sE =
(

∂
∂E sE

∂
∂I sI

)
=

(
wEE

−wEI

)
, (C2)

�f + =
(

−αE + (1 − E ) tanh (wEE E − wEI I )

−αI + (1 − I ) tanh (wIE E − wII I )

)T

, (C3)

�f − =
(

−αE

−αI + (1 − I ) tanh (wIE E − wII I )

)T

. (C4)

When the system reaches the switching manifold, the trajec-
tories will cross it or slide on it depending on the sign of
( �f + · �∇sE )( �f − · �∇sE ) at the switching manifold:

�f + · �∇sE = − α(wEE E − wEI I )

+ wEE (1 − E ) tanh (wEE E − wEI I )

− wEI (1 − I ) tanh (wIE E − wII I ), (C5)

�f − · �∇sE = − α(wEE E − wEI I )

− wEI (1 − I ) tanh (wIE E − wII I ). (C6)

Given that at the switching manifold, wEE E = wEI I:

�f + · �∇sE = − wEI (1 − I )

× tanh

(
wIE (wEI − wII )

wEE
I

)
, (C7)

�f − · �∇sE = − wEI (1 − I )

× tanh

(
wIE (wEI − wII )

WEE
I

)
, (C8)

( �f + · �∇sE )( �f − · �∇sE ) = [wEI (1 − I )

× tanh

(
wIE (wEI − wII )

wEE
I

)]2

.

(C9)

For ( �f + · �∇sE )( �f − · �∇sE ) > 0, the trajectories cross the
switching manifold and cannot cross back. Observe that,
when wEE/wEI < wIE/wII , the flow points to region II, mak-
ing it a trapping region. This condition is always satisfied
for the parameters we explored in our simulations. When
wEE/wEI > wIE/wII , region II amounts to sE > 0 and sI < 0
and the calculations are analogous. However, the flow can
be reversed, so that a trajectory beginning in region II may
cross to region I, and the latter becomes the trapping region
instead.
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