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1. Introduction

This paper deals with the study of scalar equilibria under certain weak topological
and convex assumptions. To be more precise, let α ∈ R, X and Y be nonempty sets,
f : X×Y −→ R, and let us consider the so-called equilibrium problem:

there exists x0 ∈ X : α ≤ inf
y∈Y

f (x0, y), (1)

or, in a more general way, this weak equilibrium inequality:

α ≤ sup
x∈X

inf
y∈Y

f (x, y). (2)

Although easy examples show that (1) is stronger than (2), when X is compact and f is upper
semicontinuous on X, they are equivalent problems. Indeed, our main result—Theorem 1—
establishes, among other things, the equivalence of (1) and (2) under less restrictive conditions.
The study of equilibrium problems can be traced back to the K. Fan minimax inequality [1],
although the nomenclature is adopted from L.D. Muu and W. Oettli in [2]. Most results
guaranteeing the existence of equilibrium for a scalar function assume topological hypotheses
on one variable, and in addition, either convexity or concavity conditions on the other or
concavity–convexity assumptions on both variables [3–10].

This kind of problem comprises the study of the celebrated Nash equilibrium [11–14] and
the existence of saddle points or, more generally, the validity of the minimax inequality [15–21],
to name only a few.

In Section 2, we state our main result, the aforementioned Theorem 1, where we
provide not only the equivalence between the equilibrium problem (1) and the weak
equilibrium inequality (2) under suitable conditions, but also a condition in terms of finite
subsets that characterizes the existence of a solution for (1). Although it is a result of
a topological nature, in order to derive applicable results we introduce in Definition 1
a convexity concept that is necessary for the existence of equilibrium. In Section 3, we
obtain some consequences on game theory (Nash equilibrium and minimax inequalities),
extending some known results in [22]. We finish with some conclusions.
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2. A Discrete Characterization of Equilibrium

In this section, we assume certain topological hypotheses: X is a nonempty and
compact topological space and f satisfies a not very restrictive continuity condition, the
so-called α-transfer upper semicontinuity on X, more general than upper semicontinuity.
Under them, we prove that the equilibrium problem (1) admits a solution when the weak
equilibrium inequality (2) is valid and state a characterization of its solvability in terms of
some finite subsets of Y, which leads to a quite general result on the existence of equilibrium.

Let us recall ([23], Definition 8) that if α ∈ R, X is a nonempty topological space,
x0 ∈ X and Y is a nonempty set, then a function f : X × Y −→ R is α-transfer upper
semicontinuous in x0 provided that

(x0, y0) ∈ X×Y
f (x0, y0) < α

}
⇒ there exist y1 ∈ Y and a neighborhood U of x0 : x ∈ U ⇒ f (x, y1) < α.

In addition, f is said to be α-transfer upper semicontinuous on X when it is at each x0 ∈ X. A
function is α-transfer upper semicontinuous on X as soon as it is upper semicontinuous on
X, although the converse is not true:

Example 1. Let 0 < α < 1, 0 < x1 < x2 < 1 and let f : [0, 1]× {0, 1} −→ R be the function
given for any 0 ≤ x ≤ 1 by

f (x, 0) =
{

0, if 0 ≤ x ≤ x1
1, otherwise

and

f (x, 1) =
{

0, if 0 ≤ x < x2
1, otherwise

.

Then f is α-transfer upper semicontinuous on [0, 1], since for (x0, y0) ∈ [0, 1] × {0, 1} with
f (x0, y0) < α we take y1 := 1 and U := [0, x2) to arrive at

x ∈ U ⇒ f (x, y1) < α.

However,
{x ∈ [0, 1] : α ≤ f (x, 0)} = (x1, 1]

is not closed, hence f is not upper semicontinuous on [0, 1].

It is a well-known fact (see [23], Remark 7) that f is α-transfer upper semicontinuous
on X if, and only if,⋂

y∈Y
{x ∈ X : α ≤ f (x, y)} =

⋂
y∈Y

cl({x ∈ X : α ≤ f (x, y)}), (3)

where “cl” stands for “closure”.
The next result is a first version of the discrete characterization of the solvability of the

equilibrium problem (1).

Lemma 1. Suppose that X is a nonempty and compact topological space, Y is a nonempty set,
α ∈ R and f : X×Y −→ R is α-transfer upper semicontinuous on X. Then

there exists x0 ∈ X : α ≤ inf
y∈Y

f (x0, y)

if, and only if, there exists a finite subset Y1 of Y such that

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒

⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅. (4)
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Proof. The existence of x0 ∈ X satisfying

α ≤ inf
y∈Y

f (x0, y)

implies the other condition with Y1 = ∅, since for each nonempty and finite subset Y0 of Y
we have that

α ≤ inf
y∈Y

f (x0, y)

≤ min
y∈Y0

f (x0, y),

so ⋂
y∈Y0

{x ∈ X : α ≤ f (x, y)} 6= ∅

and then (4) holds.
Conversely, let Y1 be a finite subset of Y in such a way that

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒

⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅.

The compactness of X implies that⋂
y∈Y

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅

and the α-transfer upper semicontinuity of f on X and (3) that⋂
y∈Y
{x ∈ X : α ≤ f (x, y)} 6= ∅,

i.e., for some x0 ∈ X,
α ≤ inf

y∈Y
f (x0, y).

The next result provides us with a discrete weak equilibrium inequality implying the
condition

⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅:

Lemma 2. If X is a nonempty and compact topological space, Y0 is a nonempty and finite set,
f : X×Y0 −→ R and α ∈ R satisfy

α ≤ sup
x∈X

min
y∈Y0

f (x, y),

and

there exists δ > 0 : β ∈ [α− δ, α] ⇒ f is β-transfer upper semicontinuous on X, (5)

then ⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅.

Proof. Let us proceed by contradiction, so, let us assume that⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) = ∅,
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i.e.,
x0 ∈ X ⇒ there exists yx0 ∈ Y0 : x0 /∈ cl({x ∈ X : α ≤ f (x, yx0)}),

in particular, there exists 0 < δx0 < δ, with

f (x0, y0) < α− δx0 .

Therefore, according to the α− δx0 transfer upper semicontinuity of f on X, there exists a
yx0 ∈ Y0 and a neighborhood Ux0 of x0 such that

x ∈ Ux0 ⇒ f (x, yx0) < α− δx0 .

Then
X =

⋃
x∈X

Ux

and, by compactness, there exist x1, . . . , xn ∈ X with

X =
n⋃

i=1

Uxi .

Given x ∈ X, let i ∈ {1, . . . , n} such that x ∈ Uxi , so

f (x, yxi ) < α− δxi

and thus, if we set δ := min{δx1 , . . . , δxn} > 0, then

min
y∈Y0

f (x, y) < α− δ

and the arbitrariness of x ∈ X yields

sup
x∈X

min
y∈Y0

f (x, y) ≤ α− δ,

in particular,
sup
x∈X

min
y∈Y0

f (x, y) < α,

which contradicts the hypothesis.

A first consequence of the previous lemmas is the equivalence of the solvability of the
equilibrium problem (1) and its weak inequality (2) with the topological conditions under
consideration:

Corollary 1. Assume that X is a nonempty and compact topological space, Y is a nonempty set,
α ∈ R and that f : X×Y −→ R satisfies condition (5). If in addition

α ≤ sup
x∈X

inf
y∈Y

f (x, y),

then
there exists x0 ∈ X : α ≤ inf

y∈Y
f (x0, y).

Proof. Given a nonempty and finite subset Y0 of Y, the weak equilibrium inequality yields

α ≤ sup
x∈X

inf
y∈Y

f (x, y)

≤ sup
x∈X

min
y∈Y0

f (x, y),
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and therefore, it follows from Lemma 2 that⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅.

Now Lemma 1 applies with Y1 = ∅, and we are done.

We are in a position to establish our main result:

Theorem 1. Let X be a nonempty and compact topological space, Y be a nonempty set, α ∈ R and
f : X×Y −→ R be a function satisfying condition (5). Then, the following are equivalent:

(i) The weak equilibrium inequality (2) holds, that is,

α ≤ sup
x∈X

inf
y∈Y

f (x, y).

(ii) f admits an equilibrium (1), i.e.,

there exists x0 ∈ X : α ≤ inf
y∈Y

f (x0, y).

(iii) There exists a finite subset Y1 of Y such that

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒

⋂
y∈Y0

{x ∈ X : α ≤ f (x, y)} 6= ∅,

or, in other words,

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒ there exists x0 ∈ X : α ≤ min

y∈Y0
f (x, y).

(iv) For some finite subset Y1 of Y there holds

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒ α ≤ sup

x∈X
min
y∈Y0

f (x, y).

(v) There exists a finite subset Y1 of Y such that

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒

⋂
y∈Y0

cl({x ∈ X : α ≤ f (x, y)}) 6= ∅.

Proof. The equivalence (i) ⇔ (ii) is Corollary 1, the implications (ii) ⇒ (iii) ⇒ (iv) are
clear, (iv)⇒ (v) is Lemma 2 and (v)⇒ (ii) is Lemma 1.

It is worth mentioning that the equivalence (ii) ⇔ (iii) with Y1 = ∅ was stated in
([13], Theorem 3.1), but the fact that Y1 can be nonempty is a useful extension of such a
result, as we will show in Example 3. Let us also point out that the equivalence (i)⇔ (iv)
is an extension of ([24], Lemma 2.8).

In view of assertions (iii) and (v) in Theorem 1, one could expect that, under the
compactness of X and the condition (5), for a nonempty and finite subset Y0 of Y there holds⋂

y∈Y0

{x ∈ X : α ≤ f (x, y)} =
⋂

y∈Y0

cl({x ∈ X : α ≤ f (x, y)}).

However, that is not the case:
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Example 2. Let f : [0, 1]× [0, 1] −→ R be the function defined as

(x, y) 7→
{

1, if y < x or (x, y) = (1, 1)
0, otherwise

,

and let 0 < α < 1. Given 0 < δ < α, β ∈ [α− δ, α] and y ∈ [0, 1),

{x ∈ [0, 1] : β ≤ f (x, y)} = (y, 1],

and
{x ∈ [0, 1] : β ≤ f (x, 1)} = {1},

so, for any y ∈ [0, 1]
cl({x ∈ [0, 1] : β ≤ f (x, y)}) = [y, 1].

In particular, f is β-transfer upper semicontinuous on [0, 1], because⋂
y∈Y
{x ∈ X : β ≤ f (x, y)} = {1}

=
⋂

y∈Y
cl({x ∈ X : β ≤ f (x, y)}),

but for any nonempty and finite subset Y0 of [0, 1] not containing {1}, let us say Y0 = {y1, . . . , ym}
with 0 ≤ y1 < · · · < ym < 1, we have that⋂

y∈Y0

{x ∈ [0, 1] : α ≤ f (x, y)} = (ym, 1],

while ⋂
y∈Y0

cl({x ∈ [0, 1] : α ≤ f (x, y)}) = [ym, 1].

A useful way to handle Theorem 1 is given below. We first introduce an equilibrium
concept of convexity. As usual, given m ≥ 1, ∆m stands for the unit simplex of Rm:

∆m :=

{
t ∈ Rm : 0 ≤ t1, . . . , tm and

m

∑
j=1

tj = 1

}
.

Definition 1. Given α ∈ [−∞,+∞] and X and Y nonempty sets, a function f : X×Y −→ R is
said to be α-convex on Y provided that

m ≥ 1, t ∈ ∆m
y1, . . . , ym ∈ Y

}
⇒ α ≤ sup

x∈X

m

∑
j=1

tj f (x, yj).

And dually, if ω ∈ [−∞,+∞], then f is ω-concave on X when

n ≥ 1, s ∈ ∆n
x1, . . . , xn ∈ X

}
⇒ inf

y∈Y

n

∑
i=1

si f (xi, y) ≤ ω.

When α = infy∈Y supx∈X f (x, y) (respectively, ω = supx∈X infy∈Y f (x, y)), this notion
of convexity (respectively, concavity) coincides with that of infsup-convexity on Y (respectively,
supinf-concavity on X), a generalization of convexlikeness (or Fan’s convexity) on Y ([15] p. 42)
which was considered for the first time in ([16], Corollary 3.1) and arose naturally when
dealing with equilibrium and minimax problems (see, for instance, [16,20,25]). Moreover,
when X = Y and α = infx∈X f (x, x), α-convexity on Y is nothing more than the so-called inf-
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diagonal convexity on the second variable ([26], Definition 2.1), which extends, for instance,
the concept of diagonal convexity when X is a nonempty subset of a vector space ([27]
Definition 2.5).

Let us notice that α-convexity is a necessary condition in order that problem (1) admits
a solution, and even that (2) holds. Indeed, if (2) is valid, then for any m ≥ 1, t ∈ ∆m and
y1, . . . , ym ∈ Y,

α ≤ sup
x∈X

inf
y∈Y

f (x, y)

≤ sup
x∈X

m

∑
j=1

tj f (x, yj).

Although easy examples show that the converse is not true, under some additional
hypotheses we can state this equilibrium result:

Corollary 2. Let X be a nonempty and compact topological space, Y be a nonempty set, f :
X×Y −→ R and α ∈ R. Let us also assume that f satifies condition (5) and is α-convex on Y, and
that there exists a finite subset Y1 of Y such that

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒ f |X×Y0 is supinf-concave on X.

Then, the equilibrium problem admits a solution, i.e., there exists x0 ∈ X such that

α ≤ inf
y∈Y

f (x0, y).

Proof. Let Y0 = {y1, . . . , ym} be a nonempty and finite subset of Y and containing Y1. The
supinf-concavity of f |X×Y0 on X guarantees, thanks to [25] Theorem 2.6, the existence of
t ∈ ∆m such that

sup
x∈X

min
j=1,...,m

f (x, yj) = sup
x∈X

m

∑
j=1

tj f (x, yj),

which, together with the α-convexity of f on Y, implies

α ≤ sup
x∈X

min
j=1,...,m

f (x, yj).

Finally, the existence of an equilibrium x0 for f follows from the equivalence (ii)⇔ (iv) of
Theorem 1.

The following example proves that the finite set Y1 in the corollary above is not
necessarily empty. So, by the way, we show that checking condition (iv) in Theorem 1 for a
nonempty set Y1, allows us to apply it for more general equilibria:

Example 3. Let function f : {0, 1} × [0, 1] −→ R given by

f (0, y) :=
{

1, if 0 ≤ y < 0.5
0, if 0.5 ≤ y ≤ 1

,

f (1, y) :=
{

0, if 0 ≤ y ≤ 0.5
1, if 0.5 < y ≤ 1

,

which is continuous on the compact set {0, 1} (discrete topology) and admits the equilibrium

0 ≤ inf
y∈[0,1]

f (0, y),

therefore, it is 0-convex. Despite the fact that for some nonempty subset Y0 of [0, 1], the restriction
of f to {0, 1} ×Y0 is not supinf-concave on {0, 1} (Y0 := {0, 1}), there exists a finite subset Y1 of
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[0, 1] in such a way that for any nonempty and finite subset of [0, 1] with Y1 ⊂ [0, 1] we have that
f |{0,1}×Y0

is supinf-concave on {0, 1}: it suffices to take Y1 = {0.5}.

The convexity conditions considered in the above corollary are different from the
concept of α-transfer quasiconvexity considered in [13,28]: if X is a nonempty and convex
subset of a linear space and Y is a nonempty set, f : X×Y → R is α-transfer quasiconvex on
Y if given m ≥ 1 and y1, . . . , ym in Y, there exists x1, . . . , xm in X such that

1 ≤ k ≤ m, t ∈ ∆k
{i1, . . . , ik} ⊂ {1, . . . , m}

}
⇒ α ≤ max

j=1,...,k
f
( k

∑
j=1

tij xij , yij

)
.

The notion of α-transfer quasiconvexity requires that the set X be convex, while this strong
condition is not necessary for the α-convexity. On the other hand, the following example
shows a function which is α-transfer quasiconvex and not α-convex for some α.

Example 4. Let X = [−1, π/2], Y = {0, 1} and let f : [−1, π/2]× {0, 1} −→ R be given for
any −1 ≤ x ≤ π/2 by

f (x, 0) := sin(x− 1),

f (x, 1) := − sin x.

The function is 0-transfer quasiconvex:

• If m = 1 and y1 = 0, we choose x1 ∈ [1, π/2] and then 0 ≤ f (x1, 0).
• If m = 1 and y1 = 1, we choose x1 ∈ [−1, 0] and then 0 ≤ f (x1, 1).
• If m = 2, y1 = 0 and y2 = 1, we choose x1, x2 ∈ (1, π/2] and then for any t ∈ [0, 1] we have

0 ≤ max
i=1,2

f ((1− t)x1 + tx2, yi).

However, f is not 0-convex on {0, 1}, since for m = 2 and t = (1/2, 1/2) we have that

x ∈ [−1, π/2] ⇒ 1
2

f (x, 0) +
1
2

f (x, 1) < − sin 1 < 0.

Let us conclude this section by stressing that Corollary 2 improves the topological
assumptions in the two-function equilibrium result ([22] Theorem 2.7) when the involved
functions are the same.

3. Application to Game Theory: Nash Equilibrium and Minimax Inequalities

Now we focus on deriving some consequences to game theory, and more specifically, to
the existence of Nash equlibria and to establishing the validity of some minimax inequalities,
both from the equilibrium results in Section 2.

We first deal with the existence of certain Nash equilibria. To this end, let us consider
the following noncooperative game in the normal form

G = (Xi, ui)i∈I ,

where I = {1, . . . , n} is the finite set of players, Xi the strategy space of the player i which
is a nonempty subset of a topological space Ei, and ui : X → R is the payoff function of
player i, where X := ∏i∈I Xi.

When the player i chooses a strategy xi ∈ Xi, the situation of the game is described by the
vector x = (x1, . . . , xn) ∈ X. For each player i ∈ I denote by −i := {j ∈ I such that j 6= i}
the set of all players other than player i. Also denote by X−i = ∏j 6=i Xj the Cartesian product
of the sets of strategies of players −i and x−i := (x1, . . . , xi−1, xi+1, . . . , xn). Note that
x = (x1, x−1) = (x2, x−2) = · · · = (xn, x−n) (after rearranging the components if necessary).
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With this notation, a strategy profile x∗ ∈ X is a pure strategy Nash equilibrium of a game
G if

ui(yi, x∗−i) ≤ ui(x∗) ∀i ∈ I, ∀yi ∈ Xi. (6)

We introduce the following topological concept:

Definition 2. Given β ≥ 0, a noncooperative game G is said to be β-diagonally transfer
continuous if

x, y ∈ X
Φ(x, x) < Φ(x, y)

}
⇒ there exist y1 ∈ X and a neighborhood U of x :

z ∈ U ⇒ Φ(z, z) + β < Φ(z, y1),

where Φ : X× X → R is the aggregator function defined at each (x, y) ∈ X× X by

Φ(x, y) :=
n

∑
i=1

ui(x1, . . . , yi, . . . , xn) =
n

∑
i=1

ui(yi, x−i). (7)

We point out that when β = 0 we recover the notion of diagonally transfer continuity in
([29], Definition 1).

In this result, we characterize the existence of Nash equilibrium for certain noncooperative
games:

Theorem 2. Let G = (Xi, ui)i∈I be a noncooperative game such that given i ∈ I, Xi is a nonempty
and compact topological space, and f : X× X → R defined by

f (x, y) := Φ(x, x)−Φ(x, y) =
n

∑
i=1

(ui(x)− ui(yi, x−i)), (x, y ∈ X). (8)

If for some δ > 0, G is β-diagonally transfer continuous for all β ∈ [0, δ], then the following
assertions are equivalent:

(i) The weak equilibrium inequality (2)

0 ≤ sup
x∈X

inf
y∈X

f (x, y)

is valid.
(ii) The game G has a Nash equilibrium.
(iii) For some finite subset X1 of X there holds

X1 ⊂ X0 ⊂ X
∅ 6= X0 finite

}
⇒ there exists x∗ ∈ X : 0 ≤ min

y∈X0
f (x∗, y).

(iv) There exists a finite subset X1 of X such that

X1 ⊂ X0 ⊂ X
∅ 6= X0 finite

}
⇒ 0 ≤ sup

x∈X
min
y∈X0

f (x, y).

(v) We can find a finite subset X1 of X satisfying

X1 ⊂ X0 ⊂ X
∅ 6= X0 finite

}
⇒

⋂
y∈X0

cl({x ∈ X : 0 ≤ f (x, y)}) 6= ∅.

Proof. Note that G being β diagonally transfer continuous is equivalent to the fact that
f is β-transfer upper semicontinuous on the first variable; and the game G has a Nash
equilibrium if, and only if, the function f admits an equilibrium (EP). The proof is a
straighforward consequence of Theorem 1.
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In view of Corollary 2, we deduce:

Corollary 3. Given δ > 0, let us assume that G = (Xi, ui)i∈I is a β-diagonally transfer continuous
noncooperative game for all β ∈ [0, δ], and such that the strategy sets Xi are nonempty and compact
topological spaces. If f defined by (8) is 0-convex on the second variable, and there exists a finite
subset X1 of X such that

X1 ⊂ X0 ⊂ Y
∅ 6= X0 finite

}
⇒ f |X×X0 is supinf-concave on X,

then, the game G has a Nash equilibrium.

To conclude this section we state some minimax results. Let us first recall that by a
minimax inequality one means a result guaranteeing that for a function f : X × Y −→ R
there holds

inf
y∈Y

sup
x∈X

f (x, y) ≤ sup
x∈X

inf
y∈Y

f (x, y),

and therefore, since the reverse inequality is always valid,

inf
y∈Y

sup
x∈X

f (x, y) = sup
x∈X

inf
y∈Y

f (x, y).

It is worth quoting not only the pioneer work of J. von Neumann [30], but also those of
K. Fan [15] and S. Sion [19], where several concepts of weak convexity were considered,
namely, the aforementioned convexlikeness and the well-known quasi convexity. For a survey
on minimax inequalities, we refer interested readers to [31,32].

As a consequence of Corollary 2 we state the following minimax theorem that extends
([24] Theorem 2.1), and even the two-function minimax theorem ([25] Corollary 3.11) when
the two functions coincide:

Corollary 4. Suppose that X is a nonempty and compact topological space, Y is a nonempty set
and f : X × Y −→ R is a function such that α := infy∈Y supx∈X f (x, y) ∈ R. If in addition, f
satisfies condition (5) and for some finite subset Y1 of Y we have that

Y1 ⊂ Y0 ⊂ Y
∅ 6= Y0 finite

}
⇒ f |X×Y0 is supinf-concave on X,

then, f satisfies the minimax inequality if, and only if, it is infsup-convex on Y.

Proof. Apply Corollary 2.

Let us mention another kind of inequality, the one that originated the study of
equilibrium problems. Although it is not strictly of the minimax type, a Fan minimax
inequality for a function f : X× X −→ R is a result stating, under adequate hypotheses, the
validity of the inequality

inf
x∈X

f (x, x) ≤ sup
x∈X

inf
y∈X

f (x, y).

The celebrated result of K. Fan ([1] Theorem 1) is different from the following one, which in
turn extends ([26] Theorem 3.1):

Corollary 5. Let X be a nonempty and compact topological space and f : X× X −→ R a function
such that α := infx∈X f (x, x) ∈ R. If f satisfies condition (5) and there exists a finite subset X1 of
X such that

X1 ⊂ X0 ⊂ X
∅ 6= X0 finite

}
⇒ f |X×X0 is supinf-concave on X,
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then,
inf
x∈X

f (x, x) ≤ sup
x∈X

inf
y∈X

f (x, y),

if, and only if, f is inf-diagonally convex on its second variable.

Proof. It follows from Corollary 2.

4. Conclusions

In this paper, we have established a result that makes equivalent the existence of
equilibrium for a function f : X × Y −→ R and the validity of the corresponding weak
equilibrium inequality: Theorem 1. The topological condition on f that guarantees the
equivalence is the condition (5). Theorem 1 provides not only the equivalence between the
equilibrium problem (1) and the weak equilibrium inequality (2) but also a condition, (4),
in terms of finite subsets that characterize the existence of a solution for (1). In particular,
we obtain a discrete characterisation of the solvability of the equilibrium problem. When
we also include a not very restrictive convexity condition in Definition 1, we obtain the
existence of a solution for more general equilibrium problems than others previously
established in [22]. As an application of all this, we obtain both, two results on the existence
of Nash equilibria, one topological, Theorem 2 the other also convex, Corollary 3 and some
minimax inequalities, Corollaries 4 and 5.
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