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ARTICLE INFO ABSTRACT

Keywords: While research in the area of imbalance, which is understood as classes that are not equally represented,
Imbalanced regression is mainly addressed in classification, it has hardly been studied in regression, where data maldistribution, or
Multi-objective evolutionary algorithms imbalance, can be defined as the existence of some specific subdomains of the output variable misrepresented in

Fuzzy rule-based systems the training data set, resulting in low accuracy for new instances within these subdomains. The small amount of

state-of-the-art techniques are “passive”, meaning they are only applied in preprocessing. In this contribution,
we propose two new specific evolutionary algorithms based on fuzzy rules to “actively” address imbalanced
regression problems and improve the overall performance of the algorithms instead of just addressing the
imbalance problem. The results obtained after applying statistical tests to 32 regression datasets that handle
more than 3000 partitions show the effectiveness of the proposed methods when compared to the best
previous proposal, a passive method called SMOGN. We can conclude: (1) we cannot affirm, since the equality
hypotheses have not been rejected, that there are significant performance differences between using stratified
and non-stratified data, thus we will use stratification to preserve a minimum representation of the minority
set, (2) both fuzzy rule-based methods obtain better results in terms of the imbalance metric when using
SMOGN, but in both methods this incurs a cost in accuracy (with confidence scores of over 99.0%), and (3)
the proposed methods outperform those using SMOGN as they get slightly better results in the imbalance
metric, with better average ranks in both proposals, and obtain significantly better results in global accuracy,
that is, all the performance metrics studied improve statistically with a confidence score of over 99.0%, with
the exception of one metric, which scores above 90.0%.

1. Introduction The problem of imbalanced domains has been widely addressed in
supervised machine learning for classification problems, where the aim

Datasets available to solve real-world problems frequently present is to predict a class, i.e., a nominal variable (Juez-Gil et al., 2021; Singh
some level of imbalance in the obtained data due to the particularities & Purohit, 2015; Yan et al., 2022). In fact, this called imbalanced clas-
of each application or problem, i.e., difficult measurement of some sification and is a particularly well-known type of application, (Wang
types of relevant cases, the existence of only a few numbers of cases et al., 2021). Therefore, we can find many application examples involv-

ing imbalanced classification, such as cancer detection (Ranjbarzadeh
et al., 2021, 2023) (a few cases with cancer compared to many healthy
ones), multi-oriented and curved text detection (Ranjbarzadeh et al.,
2022) (character frequencies are quite different), etc. Data imbalance,
however, has been rarely identified for regression problems, which
is the other large research area within supervised machine learning,
where the variable to predict is in a continuous domain and there are
only a few solutions (Branco et al., 2015, 2017). This is mainly due to

(usually the most relevant ones), etc. Generally, the imbalance prob-
lem is present in real-world datasets in which a subdomain of the
output variable is underrepresented. The existence of a relatively high
level of imbalance in the data must be treated since, in most of the
cases, it severely affects the predictive modeling ability, that is, we
obtain high degradation in the performance of predictive models in
general, and poor or non-existent model representation in particular
underrepresented classes or data subdomains.
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Fig. 1. Yacht Hydrodynamics dataset data distribution.

the fact that in the imbalance problem for regression tasks we find the
following three differential factors:

« It is easy to identify minority groups (minority classes in classifi-
cation) when they are present, but as nobody has ever considered
the possibility of the problem of a complete representation of a
continuous output variable domain, it has rarely been considered.

» User preferences in the variable domain, where we can find sub-
domains of the output variable that are more relevant than others,
are not uniform.

« There is poor representation of the user relevant instances in the
domain of the variable.

We can also find, however, very interesting regression problems
involving some kind of imbalance in the output data distribution
such as, for example, building energy load prediction (Zhang et al.,
2021), where there may be much less data available for some condi-
tions than for other conditions, or statistical downscaling of precipi-
tation (Steininger et al., 2021), since in most locations there are far
fewer rainy days than dry days. Let us focus on analyzing the Yacht
Hydrodynamics dataset (Gerritsma et al., 2013) as a real-life represen-
tative problem. In this example, the experts try to predict the residuary
resistance per unit displacement weight of sailing yachts based on var-
ious hydrodynamic characteristics. Predicting the resistance of yachts
during the initial design stage holds significant importance in evaluat-
ing ship performance and estimating the necessary propulsive power in
order to avoid wasting time and money. The main problem is that low
resistance values with small non-relevant differences are easily mea-
sured and do not represent a problem for the production line, whereas
a small subset of yachts was available to include high resistance values,
just which we would like to predict before production. In this case,
the designers are interested in high resistance values, since they are an
early indication that the yacht should be redesigned and not moved to a
later production phase. This represents a clear example of imbalanced
regression, where user-relevant data are present in underrepresented
sub-domains of the continuous output variable. See Fig. 1 for a graph-
ical representation of the instances of this problem (Gerritsma et al.,
2013) per resistance values.

Classical prediction algorithms, as well as classical evaluation mea-
sures, focus on the set of instances with the greatest representation,
which leads to a degradation of the subset of user-relevant data that
are underrepresented. In the example described above, these would
be sailing yachts with bad or high resistance values, resulting in poor
design and a waste of time and money.

The Abalone dataset (Nash et al.,, 1994) is also an interesting
example dataset since it usually is prone to overfitting (taking into
account our previous experience (Gacto et al., 2019) with this dataset).
The objective of the Abalone dataset is to predict the age of abalones
(i.e., number of rings in the shell') using physical measurements. This
problem has been approached from either a regression or classification
point of view; the latter involves grouping the data into three classes
(“young” < 6 rings, “adult” 6 to 13 rings, “old” > 13 rings). An analysis
of the data shows that there is a large imbalance in the output variable
(Rings), since there are actually a few number of values for the extreme
cases (low or high number of rings). This makes it difficult to correctly
predict the extreme values, which are underrepresented but still very
important. For a graphical representation of the distribution of the
instances of the Abalone problem (Nash et al.,, 1994) per number of
rings, see Fig. 2.

Both types of datasets (with poor representation of relevant in-
stances in the domain of the target variable) should be analyzed
through imbalanced regression techniques. Otherwise, the models ob-
tained from general-purpose regression techniques will only or mainly
focus on minimizing error in high-density (overrepresented) domain
regions, and this could lead to completely overlooking low-density
(underrepresented) regions. Of course, just as in the case of classifi-
cation, where minority classes representing more than the 20 or 25%
of the total data are not a problem, in the case of regression we are
also talking about problems involving underrepresented data with a
significant imbalance ratio, so that even the most accurate learning
approaches will favor significantly better modeling of high-density
regions with respect to the low-density ones.

Having defined this, most of the limited number of current propos-
als for imbalanced regression tasks are mainly designed for solutions
focused on data preprocessing techniques (Branco et al., 2015, 2017;
Murphey et al., 2004; Torgo et al., 2013), which could be considered
“passive” techniques from the learning process point of view. These
techniques can be considered to be passive since they directly affect the
data distribution and do not directly affect the learning process. These
passive preprocessing proposals have been validated in the specialized
literature via an analysis of their effect in the efficiency of different
learning algorithms as Support Vector Machines (SVMs), Random Forest,
Multivariate Adaptive Regression Splines and Neural Networks (NNs) (Mur-
phey et al.,, 2004); where, although SVMs, Random Forest and the

1 The age of the abalone is determined by cutting the shell through the
cone, staining it, counting the number of rings through a microscope and
adding +1.5.
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Fig. 2. Abalone dataset data distribution.

advanced NNs have shown excellent performance in many regression
applications (see the experimental study on 164 regression algorithms
in Gacto et al., 2019), they can further improve their performance in
the imbalanced regions as shown in Branco et al. (2017) and Murphey
et al. (2004).

In contrast to the use of data preprocessing techniques, the so-
called learning models for a specific purpose or algorithmic-based
techniques can be considered “active” from a learning process point
of view, since the learning algorithm itself is designed to address
the imbalance problem. With respect to these types of techniques
for imbalanced regression, there is only one somewhat “related” pro-
posal (Torgo & Ribeiro, 2007) based on a utility metric that considers
any ad-hoc user-defined relevance function. Since this proposal does not
consider the well-defined metrics specifically designed for imbalanced
regression (Torgo & Ribeiro, 2009), imbalanced regression is not auto-
matically addressed, and it relies on the user’s ability for each particular
dataset. It was only tested in one dataset and applied to three methods
available in the R packages rpart, nnet and e1071 (SVMs). In fact, and
although there are many proposals in the classification framework, as
stated in a recent review of the state-of-the-art in imbalanced scenar-
ios (Krawczyk, 2016): “The research community has only taken its first
step into the problem of imbalanced regression and further works on
this topic are of vital importance” since “so far little attention has been
paid to it” in the regression framework.

For the first-time, this paper will “actively” address the problem of
imbalanced regression by focusing on fuzzy rule-based models that can
be interpreted by humans (Barredo Arrieta et al., 2020) and therefore
could be very useful in real-world applications. Rule-based learners and
fuzzy logic-based models are considered interpretable approaches by
the research community since they are supposed to be “transparent ma-
chine learning models that can be understood by themselves” (Barredo
Arrieta et al., 2020). These rule-based predictive models allow for
an easy and natural representation of the results (a necessary and
even essential characteristic in certain fields such as medicine Kaieski
et al., 2020, market prediction Goli et al., 2021, finance Ghorbani
& Korzeniowski, 2020; Korzeniowski & Ghorbani, 2021; Pena et al.,
2021, economy Ahmadi, 2021, etc.) Considering that the imposition
of a rule structure implies fewer degrees of freedom than in the case
of black boxes with obviously better predictive performance, we think
that these models will be even more sensitive to the imbalance problem.
Therefore, designing solutions to the imbalance problem for this type of
descriptive modeling is of special interest to us, although the design of
active techniques for other types (as SVMs, Random Forest, NNs, etc.)
is still an open issue in the regression framework.

The main points that will be covered in this paper are:

First, we will analyze the evolution of published metrics and tech-
niques currently published to address the problem of prediction in
imbalanced regression, which can model the importance of some
of the data.

We will perform a selection of datasets to consider only those that
will allow us to reliably evaluate the performance of methods in
imbalanced regression. We will then carry out a study on widely
recognized datasets, evaluating the imbalance (in percentage)
present, and selecting those that will allow the methods to be
analyzed in a wide range of cases (dimensionality, size...).

We will analyze the study of the behavior of the current algo-
rithms based on fuzzy rules. To this end, we will carry out a new
experimental and statistical study in which we will analyze and
compare the behavior of “passive” techniques that currently exist
in the literature for problems of imbalanced regression (Torgo
et al., 2013) in order to discover which techniques best adapt to
imbalanced regression problems.

Finally, we will present the first two “active” proposals and make
a comparison with the current literature. We will define two new
versions of evolutionary algorithms based on fuzzy rules, so that
they focus on obtaining good results for imbalanced regression
problems. In order to do this, as we are dealing with genetic
algorithms, we have proposed an adaptation that provides us with
a way to tackle the imbalance problem and, consequently, be able
to improve the evaluation metrics in imbalanced continuous do-
mains (Torgo & Ribeiro, 2009) as well as the global Mean Square
Error (MSE), i.e., always seeking to maintain a balance between
performance in the relevant subset of data and performance in
the total set.

We have statistically tested the first two “active” algorithms pro-
posed for imbalanced regression on 32 regression datasets with dif-
ferent complexities (from 2 to 58 variables and 159 to 22784 in-
stances) and with different imbalance percentages (from 4.12% to
20.6% imbalance). The results obtained show the effectiveness of the
proposed methods on accuracy (M SE, R*>, M AE-Mean Absolute Er-
ror and M APE-Mean Absolute Percentage Error) and F1 (imbalance
metric) by applying Wilcoxon’s tests (Sheskin, 2007; Wilcoxon, 1945)
compared to the best previous proposal, the “passive” technique for
preprocessing SMOGN. Both proposals get better rankings in the imbal-
ance metric, but also significant improvements in the global accuracy,
that is, all the performance metrics are statistically improved.

As a result, one of the main conclusions of this contribution is that
active imbalanced regression techniques become a promising new line
of research with respect to passive ones. Since both methods proposed
in this contribution represent the first attempts at active imbalanced



M. Arteaga et al.

regression techniques, future work could focus on designing more
advanced active techniques.

This contribution is organized as follows. The state of the art
in the imbalanced regression problem is shown in Section 2. The
main concepts and the particular evaluation metrics for imbalanced
regression are formulated in Section 3. Section 4 introduces two fuzzy
evolutionary algorithms that will form the basis of the proposed active
techniques in the imbalanced regression problem. Section 5 presents
two specific “active” algorithms for fuzzy imbalance regression prob-
lems, trying to improve the overall performance of the algorithms
beyond simply addressing the imbalance. In Section 6, the structure of
the experimental study considered in this contribution is detailed. Sec-
tion 7 includes a statistical initial study in which we will show the
behavior of the currently existent passive techniques for problems of
imbalanced regression and a comparison with our new active pro-
posals to treat the problem of imbalance. Finally, in Section 8 some
conclusions are drawn.

2. State-of-the-art in imbalanced regression

In this section, we will delve into the existing proposals for dealing
with imbalanced regression problems in the current literature, ana-
lyzing the different types of existing solutions and evaluating these
techniques so as to obtain a general overview. Currently, as explained
in Krawczyk (2016), only a few techniques have been developed in the
field of regression. They can be categorized into two main types as used
in the field of classification research (Krawczyk, 2016):

» Preprocessing: These could be considered as “passive” techniques
from a learning point of view.

+ Learning models for a specific purpose or algorithmic approaches:
These, on the other hand, could be considered “active” techniques
since they actively address the imbalance problem within the
learning process itself.

In this contribution, we introduce this particular consideration (pas-
sive vs. active) in order to highlight how both types of techniques
contribute to the performance of the model obtained. We will look at
each of them in detail in the following subsections.

2.1. Preprocessing or passive techniques

The main purpose of the existing preprocessing techniques for im-
balanced data is to change its distribution, so that standard regression
models focus on the instances that are most relevant to the user.
These techniques are considered to be passive proposals, since they
are applied only and exclusively during preprocessing, i.e. they do not
directly affect the learning process. The main advantage of this strategy
is that it can be applied to any existing learning model in regression
problems without the need for any specific changes. However, trans-
forming the distribution of the original dataset to a new distribution
that emphasizes user preferences is not an easy task, and is dependent
on the problem.

The main type of preprocessing strategy and the only one where
imbalanced regression techniques have been applied is Re-sampling,
which mainly changes the distribution of data by forcing the future
model to focus on underrepresented data. In the re-sampling techniques
for regression, the problem of the definition of the concept of the
“minority class” belonging to the scope of classification arises once
again. This regression concept consists, as previously mentioned, of a
specific subdomain of the output variable.

Within these techniques, we found a proposal called SMOTE for
regression (Torgo et al., 2013), which is based on the SMOTE method
(Chawla et al., 2002) for classification and consists of the generation
of synthetic instances combining over-sampling techniques in the “mi-
nority class” and under-sampling in the “majority class”. To apply this
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proposal to regression, a relevance function was implemented and a
t, threshold was set on the relevance values (defined by the user)
to discern between the relevant data. The algorithm performs over-
sampling on the subset D, of relevant data (i.e. those instances with a
relevance value above 7,). Under-sampling, however, will be performed
on the subset D, of non-relevant data (those with relevance values less
than or equal to #,). The main problem with this technique is that it
performs under-sampling and over-sampling processes randomly.

Subsequently, a new proposal arises when trying to solve this prob-
lem by means of an algorithm with more information obtained from
the domain called SMOGN (Branco et al., 2017). This method is based
on the combination of the above-mentioned technique of SMOTE for
regression with the introduction of Gaussian noise. The under-sampling
process does not change with respect to the method SMOTE for regres-
sion. New synthetic instances are produced for each case within the
D, set (called “seed”) in the over-sampling process. SMOGN will use
SMOTE for regression or Gaussian noise as a function of the distance
between the “seed” and k chosen nearby neighbor. The concept of a
“safe zone” is defined, where the selected neighbor is in a safe zone
if it is at a considerable distance to perform the interpolation using
SMOTE for regression. If it is not within this zone, this means that it is far
away enough to perform an interpolation, and thus it would be better
to generate the synthetic instance by introducing Gaussian noise. This
threshold depends on the distance between the “seed” and the k closest
neighbors, so the threshold is defined as the median of the distances
between both of them. The objective of this method is to limit the risks
of SMOTE for regression by performing interpolations with neighbors
that are very far away from each other, and to increase the diversity of
the new synthetic instances generated by over-sampling.

2.2. Specific purpose or active learning techniques

There are other types of solutions, called specific purpose learning
techniques, that actively address learning in imbalanced scenarios.
They can also be used for specific purposes as they actively affect the
learning model (they are direct modifications of the learning process),
thus making them more powerful. These solutions modify the existing
prediction algorithms for regression so that they fit better in imbal-
anced domains. The main difficulty of these types of solutions is the
specific knowledge of the data domain and the specific algorithm to
be modified, since the weak points of the algorithm must be identified
when dealing with imbalanced problems.

Very few studies have been carried out regarding these types of
solutions for regression problems, and currently there is only one
related proposal based solely on density distributions, i.e., it does not
consider the well-defined metrics specifically designed for imbalanced
regression (Torgo & Ribeiro, 2009). It is called Utility Based Regres-
sion (Torgo & Ribeiro, 2007), and is a proposal that tries to obtain
models guided by a utility metric considering any ad-hoc user-defined
relevance functions. Therefore, imbalanced regression data are not
automatically addressed and their consideration would depend on the
user ability and particular deep knowledge of the data. It was only
tested on one dataset and applied to three methods available in the
R software environment in the packages rpart, nnet and e1071 (svm).

3. Formal definition of the main concepts and metrics of the
problem

In this section, we formally define the main concepts of the im-
balanced regression problem. Then, we present the particular eval-
uation metrics that are typically applied in imbalanced continuous
domains. The prediction task applied to datasets for regression prob-
lems (Branco et al., 2015, 2017) consists in giving an unknown function
f(X;, X5, ..., X,), (p being the number of predictor variables) providing
an approximation that is as accurate and close as possible to the
function that defines the output variable. In the case of supervised
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learning for regression problems, we have a set of training data from
which we will obtain our approximate function F. This training set is
defined as D = {(x;, y¥ where x are the input variables, y is the
output variable and » is the size of the dataset.

3.1. Main concepts: Relevance distribution function, relevant data and
non-relevant data

As we have seen, the main problem of regression with imbalanced
distribution is that the user assigns a greater importance to the per-
formance of a given subset of the output variable. The distinction
between this subset of our data is represented (Branco et al., 2015) by
a relevance function @(Y) (Torgo & Ribeiro, 2007), which defines the
importance range of a certain value of the output variable (Y), where
Y is the domain of Y, 0 implies no relevance and 1 the maximum
relevance:

oY) : Y- [0,1] @

Once we have defined a function to model user relevance in the
domain of the output variable, our dataset is gradually divided into a
dataset that is relevant to the user, and other datasets that are not. This
is where the concept of a relevance threshold (z,) appears, which is a
set evaluated according to user distinction that allows us to subdivide
our dataset by discriminating between relevant and non-relevant data.

Then, we define D, € D as a data subset whose relevance function
that is applied to the output variable is greater than ¢,, shown as
follows:

D, = {(xl-,yy> €D :dD(y)>t.} 2

We define the subset of non-relevant or normal data denoted D,
as the difference between D and D,, D, = D\ D,. It is formulated as
follows:

D, ={(x;.y,) €D : ®(y) <1,} 3

Once we have a formal definition of the user distinction in imbal-
anced problems, we can formally define the existing problems in the
previously mentioned imbalanced regression as follows:

« @(Y) is not uniform in D(Y).
» The number of instances in the D, dataset is much less than in
D,.
Once these concepts have been defined, we must take into account
that the standard evaluation measures assume that the relevance distri-
bution given by the @(Y) function is uniform, thus they are not sensitive
to the imbalance defined by @(Y). Therefore, we need to consequently
define appropriate evaluation metrics so that they are sensitive to
this imbalance. In the following, we present the current status of the
existing evaluation measures for continuous output domains, i.e., for
regression.

3.2. Evaluation metrics

As already mentioned, standard evaluation measures focus on the
most common instances, so it is necessary to develop new evaluation
metrics in imbalanced domains in order to compare models according
to user preferences (Krawczyk, 2016).

In addition, such metrics cannot only be used to evaluate the
models, but can also be used to guide the learning of these models so
that solutions can be generated that are cost sensitive and capable of
adapting a penalty for the degree of relevance assigned to the D, set.

In the specialized literature, scarce attention has been paid to the
development of evaluation metrics for regression in imbalanced do-
mains. The most common measure used for the evaluation of regression
models is M SE:

1% o
MSE =~ 3 (= 9) )
i=1
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where y is the known desired output, ¥ is the output obtained, and n is
the size of the dataset.

This measure is not adequate because it assumes a uniform distri-
bution of relevance in the output variable. The initial approximations
proposed to solve this problem consist in the introduction of weights
in the prediction, which establish a cost, such as the lost function
LIN-LIN (Granger, 1969):

axly =yl if G;=9)>0
L(y; - 3’\,) = b |yi - 5’\,| if (yi - 5’\,) <0 5)
0 if y=%
where a and b are parameters selected by the user, i.e. if g =2

that means that the loss associated with a positive error is twice the
loss associated with a negative error of the same magnitude. The
main problem with this type of solution is that it can only distinguish
between over- and under-predictions, while the imbalance problem
occurs in a specific range of continuous values.

Further proposals that try to alleviate this problem have emerged,
such as the adaptation of the notion of the ROC curves that are
based on asymmetric loss present in regression problems, where the
overestimates and underestimates have different costs. One of these
proposals is ROC space for regression (RROC) (Hernandez-Orallo, 2013),
where this curve is defined as the representation of the total overes-
timation on the X-axis, and the total underestimation on the Y-axis.
From this new proposition the metric of the area under the RROC
curve emerges, which is equivalent to the error variance (but only
distinguishes between over- and under-predictions). In order to solve
this problem within the ROC metrics, new metrics have arisen such as
Regression Error Characteristic (REC curve) (Bi & Bennett, 2003), which
is mainly based on the use of the cumulative distribution function of
the error obtained. In this way, the error obtained in the prediction is
modeled by a lost function L(3,y), and the relevance by the function
d(Y).

Leaving aside the metrics based on the idea of ROC curves, new
propositions based on the concept of utility have arisen that try to
establish a relationship between the error obtained by the prediction,
and the concept of relevance, which is non-uniformly distributed over
the domain of the output variable. Within this previously defined
framework, the Recall, Precision and F-measure approach can be applied
for some metrics (Torgo & Ribeiro, 2009).

Torgo et al. in Torgo and Ribeiro (2009) defines the function
of relevance @(Y), based on the concept of extreme Y values. This
relevance function is established in the following sigmoid function:

1
DoY) = Tre 0o (6)
where ¢ is the center of the sigmoid, that is, the value where ®(Y) = 0.5
and s is the shape of the sigmoid.

In addition, they differentiate between low extreme values and high
extreme values, so that if both exist, @(Y) is defined with two different
sigmoid functions.

In this way, they establish the measurements of Recall and Precision
as:

Loz, @5y = PG
Zowys, POY)

where a(3;,y;) is defined as an indicator function I(), given as 1 if
its argument is true and O otherwise, as it is based on checking the
precision of the error of a prediction with a lost function (L), where,
in order for it to be considered an admissible error, they focus on a
threshold 7, that is dependent on the domain of the output variable:
where I() is the indicator function given as 1 if its argument is true and
0 otherwise,

a(;y) = I(LGy) < 1) (8)

Thus, like the concept of Recall in classification ( Tf; < where TP

is True Positives and FN is False Negatives), they establish a connection

Recall = @
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between those examples that have an acceptable error (well classified
in classification problems) and their relevance so that they further
penalize those relevant bad predictions.

Similar to the concept of Precision in classification (5 PT+ P +5 Where FP
are False Positives), Precision focuses on the relevance of the prediction.
Therefore, the concept of Precision that they propose in Torgo and
Ribeiro (2009) is as follows:

Zw(ﬁ,)zr, a(3;,y;) * D)
Precision = — (©)]
Zlb(ﬁ,)Ztr D(y;)

Once these two metrics have been defined, the researchers (Torgo &
Ribeiro, 2009) propose the metric F-Measure to be the harmonic mean
between Precision and Recall as follows:

Fe (B% + 1) = Precision * Recall (10)
f? * Precision + Recall

where 0 < # < 1 controls the relative importance assigned by the user
to Recall and Precision, so a value of § = 1 means equal importance.

This combination of metrics allows models to be compared in a
single score. In this contribution, one of the performance measures
considered is the F1 metric, i.e. F-measure with § = 1, in order to
generate and/or evaluate the models learned in this paper considering
the data imbalance.

4. Algorithms applied to the problem

Once the possible evaluation metrics for the treatment of regression
problems in imbalanced continuous domains have been defined, new
specific strategies need to be established to solve this problem. In this
section, we briefly describe two state-of-the-art evolutionary algorithms
based on fuzzy rules, as they are tested in combination with prepro-
cessing techniques and then further extended for active imbalanced
regression. The two algorithms are as follows: a linguistic algorithm
called FSMOGFS°+TUN¢® (Alcala et al.,, 2011) and an approximate
algorithm called METSK-HD¢ (Gacto et al., 2014). Both are used to
learn fuzzy rules, ranked from more to less descriptive (linguistic vs.
free fuzzy variables).

As of yet, no study has evaluated the effectiveness of these (not
purely approximate) methods with preprocessing solutions such as
SMOGN (Branco et al.,, 2017). It has only been studied in purely
approximate algorithms such as Multivariate Adaptive Regression Splines,
Support Vector Machines, Random Forests and Neural Networks (Murphey
et al., 2004). For this reason, we think it could be of interest to study
the behavior of the aforementioned preprocessing method (SMOGN)
toward these types of techniques in order to learn fuzzy rules, which
unlike the methods already studied, would enable us to achieve greater
readability. In addition, we will also compare the effectiveness of
SMOGN when applied to the two rule-based algorithms, versus the
effectiveness obtained when only using stratified partitioning of the
data, in order to see if we really achieve a significant improvement
when SMOGN is applied to these methods.

The reason that this contribution has been conducted is that in
many predictive modeling domains, e.g. medicine, there is a need
not only to understand the predictions, but also the reasons behind
them and the deductions that have led to them. Applying FRBSs to
imbalanced regression problems is new in the literature and will allow
users who face these problems to be able to check/read the reasoning
of the prediction made and understand its effectiveness. A current real-
life example of the importance of the possibility to understand/read
the model is the rise of the Internet of Things (IoT) and artificial
intelligence. In many scientific fields, understanding the behavior of the
obtained predictors is vital, and as explained in the scientific journal
Nature (Castelvecchi, 2016), in many of today’s models, knowledge is
integrated into the model, rather than into us.

Now, let us very briefly describe the algorithms we will use to study
the effectiveness of the imbalance treatment techniques for regression
problems.
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Fig. 3. Lateral displacement in [-0.1, 0.1] of the whole linguistic partition S =
{50, 81,55, 53,54} (Alcald et al., 2007).

4.1. FSMOGFS¢+TUN¢®

This method is a fuzzy evolutionary algorithm based on linguistic
rules designed to deal with regression problems when the number of
variables and/or instances becomes too high. The method, called Fast
and Scalable Multi-Objective Genetic Fuzzy System (FSMOGFS®+TUN¢®)
(Alcala et al., 2011), consists of two well-defined separate stages: A first
stage of learning, followed by a second stage for tuning the membership
function parameters and rule selection.

4.1.1. First stage

Let us define the concepts of Data Base (DB), Rule Base (RB) and
Knowledge Base (KB) in the context of FRBSs. A DB is composed of the
sematic concepts (only for linguistic models), and the corresponding
parameters defining the membership functions giving meaning to them
(both linguistic and approximate models). An RB is composed of a set
of rules, i.e., the implication relationships between input variables and
the outcome considering the existing membership functions. Finally, a
KB is composed of a DB together with the corresponding RB, i.e., the
whole FRBS model.

This first stage learns the embedded genetic DB and uses the lateral
tuning (Alcala et al.,, 2007) of the fuzzy partitions (Fig. 3); i.e. a
reduced lateral displacement of the fuzzy partitions that helps reduce
the search space. This form of representation allows us to consider a
single parameter per label (slight displacements to the left/right of the
original membership functions) instead of the three parameters that are
usually considered per label in classical tuning.

It is based on an improved Multi-Objective Evolutionary Algorithm
(MOEA) (enhanced version of SPEA2 (Zitzler et al., 2001)) that was de-
signed to efficiently select the relevant variables while learning the ap-
propriate granularity (number of linguistic labels) and their associated
displacement parameters. The well-known Wang and Mendel (Wang &
Mendel, 1992) algorithm is applied to obtain the complete KB, which
includes a rule cropping mechanism to avoid unnecessary computing
time when the obtained rule base is too large for each of the DBs
provided by MOEA. The two objectives to be minimized by the MOEA
are the mean square error divided by 2 (M SE /2) and the number of
rules.

The chromosome includes a double coding scheme; the granularity
C; (the number of labels of each variable) together with the dis-
placements C; of the corresponding linguistic partition, both jointly
encoding a whole DB.

The crossover operator depends on the part of the chromosome
to which it is applied. The Parent Centric BLX (PCBLX) crossover
operator (Lozano et al., 2004), which is based on BLX-a, is applied
to the C; part (real coding). A crossover point is randomly generated
and the classical crossover operator is applied to this point for the C,;
part (integer coding). The mutation operator is applied with a certain
probability and consists of either decreasing the granularity in a gene g
selected at random by 1, or randomly determining a higher granularity
with the same probability in C;. The same gene g is also changed at
random in C;.

This algorithm also includes an incest prevention mechanism and
a restarting mechanism in order to promote a better balance between
exploration and exploitation (Eshelman, 1991).
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Fig. 4. FSMOGFS‘+TUN¢ algorithm scheme.

4.1.2. Second stage

The second post-processing stage consists of an evolutionary process
that is applied to the final KB obtained in the first stage (the most
accurate one). It performs a classical tuning of the three points of the
DB’s membership functions together with rule selection, which present
positive synergy when considered within the same process.

This stage is based on SPEA2gp (Zitzler et al., 2001), which is an
efficient MOEA designed particularly for the learning/tuning of systems
based on fuzzy rules. Similar to the evolutionary process carried out in
the first phase, incest prevention is also included along with a modified
parent selection scheme that progressively focuses on the most accurate
Pareto front solutions, so that it combines exploration with periods of
exploitation from each restart point to the next point. The M SE,, and
the number of rules are used as objectives in this second phase for the
evaluation of the chromosomes.

The diagram in Fig. 4 summarizes the processes performed during
the first stage of learning and the second stage of tuning and rule
selection. As we can see, the method’s first phase is used for learning,
as well as implementing the mechanisms mentioned above to make
learning faster. Once the RB and the DB are obtained, they are used
as input for the second tuning and rule selection phase. Please, see Al-
cald et al. (2011) for a more detailed explanation of the complete
FSMOGFS°+TUN¢ method, as well as the appropriate justification of
its main components.

4.2. METSK-HD®

This algorithm called METSK-HD¢ (Gacto et al., 2014) consists of a
two-stage method for accurate fuzzy modeling in high-dimensionality
regression problems to learn accurate Takagi-Sugeno—Kang (TSK) fuzzy
systems (Sugeno & Kang, 1988; Takagi & Sugeno, 1985). In the first
stage, a learning of the evolutionary DB together with an embedded
learning of the RB within the same process is carried out. The second
stage is a post-processing stage, in which rule selection and tuning of
the membership functions are performed to a further refinement of
the solutions learned. In addition, the second stage incorporates an
efficient Kalman filter (Kalman, 1960) to learn the coefficients of the
consequent polynomial function of the TSK rules. Both stages include
mechanisms that significantly improve the model accuracy and ensure
a rapid convergence in large-scale and high-dimensional regression
datasets. In the following subsections, we will briefly introduce the
main parts of the algorithm.

4.2.1. First stage

This first stage consists of using an MOEA to learn the initial KB.
This method is based on the integrated genetic learning of the DB
(including variables, granularities and slight lateral displacements of
fuzzy partitions) which allows the algorithm to learn quickly upfront,
reducing the dimensionality and making use of effective mechanisms
that ensure rapid convergence in domains of regression with high
dimensionality.

The integrated genetic learning of the DB is based on an evolution-
ary process that encodes and evolves different DBs, which are evaluated
by applying a fast inductive rule generation method and calculating the
system error based on the fuzzy rules thus obtained. The components
required to implement this stage of the algorithm are explained in
depth below:

1. A double coding scheme (Cg; y C;) to represent both the gran-
ularity and lateral displacement parameters (two linguistic tu-
ples Alcal4 et al., 2007 in Fig. 3).

. The three objectives of this algorithm are:

» Minimize the MSE 1 (Main objective).

+ Minimize the number of rules.

» Maximize the coverage degree of the examples or in-
stances.

. Initial population: The initial population is divided into two
subsets of individuals. In the first set, each chromosome has the
same number of labels for all the input variables in the system.
To provide diversity in the set of labels, these solutions have
been generated by considering all possible combinations of the
input variables, i.e., from 2 labels to 7 labels. In addition, for
each of these combinations, two copies with different values are
included in the lateral displacements part. Finally, in the second
subset, the population is filled with random solutions.

. Crossover and mutation operators are the same as those used
for the FSMOGFS*+TUN’ method and are explained in Sec-
tion 4.1.1.

. Finally, in order to prevent incest, the corresponding concept
from CHC (Eshelman, 1991) is used to maintain population
diversity and avoid premature convergence. With respect to the
stop condition, the algorithm ends when the maximum number
of evaluations is reached.

4.2.2. Second stage

Once the KB obtained in the first stage has been generated, a
post-processing stage is carried out. An MOEA is applied to perform
tuning of the membership functions and rule selection, which will
help to significantly improve the accuracy of the model. This stage
of the algorithm considers the same three objectives presented above.
However, since they are performing a rule selection, to ensure the full
coverage of the training examples they apply a penalty to the MSE,
value if any rule does not cover all examples in the training set. In this
case, once they calculate the MSE,, associated with this unwanted
solution, they add the MSE,, from the initial solution as a penalty.
This ensures that the most accurate solution obtained through evolution
always covers all training examples.

The diagram in Fig. 5 summarizes the processes performed during
the first stage of learning and the second stage of tuning and rule selec-
tion. As we can see, the method’s first phase is used for learning, as well
as implementing the mechanisms mentioned above to make learning
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Fig. 5. METSK-HD¢ algorithm scheme.
faster. Once the RB and the DB are obtained, they are used as input for 1. The main objective: maximize the performance obtained in the
the second tuning and rule selection phase, where the corresponding set of relevant data D, (guided by the relevance function),
genetic algorithm together with the Kalman filter are applied. Please, without unbalancing the performance that we obtain in the rest
see Gacto et al. (2014) for a more detailed explanation of the complete of the data D, (guided by MSE /2),
METSK-HD¢ method, as well as the appropriate justification of its main 2. Minimize the number of rules required for the construction of
components. the model.
. . 3. Maximize the coverage degree of the examples (in the case of

5. Fuzzy rule-based systems for imbalanced regression the TSK-IR method).

The main problem our model has with classic prediction algorithms
for regression is that, when working on imbalanced sets, it does not 5.1. Metric used to guide the algorithm
represent knowledge concerning the importance that the user gives
to the set of relevant values D,, since, as this set is a minority, the In order to solve the described problem, and respect the conditions
algorithm is focused on optimizing predictions for the examples that that balance the performance, a new metric has been established that
are mostly found in D,,. enables the algorithms to be guided more efficiently: Weighted Mean

On the other hand, we have already seen that the current effec- Square Error (M SEY)), according to the relevance of the individual.
tive measures in the state of the art consist of passive preprocessing To do this, we will divide the weighted quadratic error by the sum of
measures, which generally improve the performance of the models the number of non-relevant elements |D,| plus the number of relevant
In 1ml?a1anced problem.s. However, they do not directly attack the elements weighted by their relevance, and add the constant a (exper-
behavior of the models in the learning phase performed on the dataset, imentally this value is set at 5, since it is the one that obtained the

and thus only the training set is modified without affecting the learning
model. This, therefore, will always mean that performance will be
worse than when defining specific learning models that are optimized "~
to \glork in 1mbz.ilanced regression problems. . . d, = ( ( Z a+d(p) + | Dn|) an
n this section, we are going to propose two active algorithms
based on the adaptation of METSK-HD¢ and FSMOGFS°+TUNF® to treat
imbalanced regression. As we have seen, both proposals are evolu-
tionary algorithms, with two clearly defined phases: a first phase of
learning a KB followed by a second phase of tuning and rule selection
to improve performance. Both evolutionary algorithms are guided by
objective functions in each phase. In the case of the linguistic algorithm

best results), defining the denominator (d,,) for the weighted average
as follows:

i=1

As such, once the denominator d,, is defined for the weighted
average, M.S E}"z’ for a given individual/model j is defined by a function
in parts, where, depending on the relevance of the instances, MSE or
relevance-weighted MSE will be applied:

ID,| . . . .
(FSMOGFS¢+TUN¢) there are two objectives (M SE/, and number of 2 (F(&x) - VP (F() = y') * (a+@(3)
rules) and in the case of the approximate algorithm (METSK-HD¢), W 1 if o(y;) > 1,
. . . MSE S e ID,| X .
the three objectives (M SE /25 number of rules and maximize the de- 277 d, %2 3 "(F(x') - y)?
i=
gree of coverage of the examples). We refer these two new methods if d(y) <1
of Evolutionary Fuzzy Rule-Based Systems for imbalanced regression e
problems as Linguistic-IR (Linguistic model for Imbalanced Regression), (12)

which is based on FSMOGFS¢+TUN¢ (Alcalé et al., 2011), and TSK-IR

(Approximate TSK model for Imbalanced Regression), which is based . . . . .
on METSK-HD® (Gacto et al., 2014) In this equation, we multiply d,, by 2 following the same philosophy

as the MSE,, equation. In a more intelligible way, we can define
M SE}"Z’ based on the membership of the instance (x;, y;) to D, and D,
sets, applying an error weighting by means of its relevance in the first

Unlike other techniques, the flexibility of evolutionary algorithms
enables them to adapt to specific problems in a versatile manner
(e.g., monotonic regression Alcald-Fdez et al., 2017). Based on this

feature, we propose a solution that allows algorithms to be guided case and M SE in the second:
toward results that take imbalance into account by means of a more .
" . . . . . 1 MSE+ MSE x (a+®(y;) if(x;,y;) €D

specific evaluation function with more information. MS E}"z’ j=— { i s r

Formally, the representation of imbalance in a regression dataset dyp 2 MSE if (x;,y;) € D,
uses the concept of relevance (Eq. (1)). Taking this concept into ac- 13)
count, the idea is to define a multi-objective function that establishes
a balance between performance in the subsets D, and D, respectively, Our evolutionary algorithms are implemented using the defined
fulfilling the following conditions: metrics.
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5.2. Linguistic-IR

This section presents the modifications made to the learning model
of our algorithm so that it adapts effectively to imbalanced problems.
This proposal is based on the FSMOGFS¢+TUN¢ (Alcala et al., 2011)
algorithm (explained previously in Section 4.1) and it is structured in
two different stages: a first stage where the KB (variables, granularities
and number of rules) is learnt and a second phase of tuning and rule
selection that uses a multiobjective evolutionary process that seeks to
minimize the error and the number of rules obtained.

In this active proposal, the objective of the evolutionary algorithm
in the second phase has been modified in order to minimize the new
metric proposed in the previous section (M SE"g). As a result, we get
an algorithm that is based on two phases, and whose objectives differ
from the objectives of the FSMOGFS°+TUN¢ algorithm:

1. The goal of the first phase is to classically optimize the M.SE
without taking the dataset imbalance into account.

2. In the second phase of tuning and rule selection, once the KB is
obtained, the rules are optimized to adjust the M SEVg as much
as possible using the relevance as measure of information for the
objective function, so that performance is increased and focused
on the data belonging to D,.

The use of the two measures M SE,, and M S E"‘z’ in the two phases,
respectively, enables the model to increase the diversity of the solutions
obtained in such a way that the learning is not solely focused on the
relevant data, but rather the search space is balanced by first obtaining
a more general KB and then by being adjusted to the performance in
the relevant dataset in the second phase.

5.3. TSK-IR

The second algorithm developed is TSK-IR, which is based on
METSK-HD?¢ (Gacto et al., 2014). As we show in Section 4.2, it is a
two-stage algorithm for fuzzy modeling in high dimensionality regres-
sion problems using Approximate TSK Fuzzy Rule-Based Systems. The
structure of TSK-IR is also divided into two clearly defined stages, both
employing evolutionary models: a first stage of learning the KB, and a
second stage of processing in order to refine the learned solutions by
incorporating a Kalman filter, which also includes rule selection and
the genetic tuning of the DB.

Similar to that used in Linguistic-IR, the idea is to modify the
evaluation function in this second stage of tuning and rule selection so
that it is carried out by weighting those predictions considered relevant,
or, belonging to D,.

1. The first stage, where genetic learning is mainly guided by
MSE,, in addition to minimizing the number of rules and
maximizing the degree of coverage.

2. The second stage of tuning and rule selection is modified so
that the objective is to get the number of rules, the degree of
coverage and, the M SE" metric (instead of M SE /2) to focus on

2
refinement in the relevant set, thus improving its performance.

As such, and similarly to Linguistic-IR, we diversified the search
space to obtain a balance between MSE,, and F1 (defined in 3.2),
that is, first we performed an exploration phase, which was followed
by an exploitation phase in order to focus on performance in D,.

6. Experimental study

Once the proposals for the treatment of imbalance in regression
problems and the corresponding evaluation metrics have been ana-
lyzed, our main objective is to carry out an experimental study (sup-
ported by statistical tests) of the effectiveness of the current methods
for the treatment of imbalance in regression problems on the two
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fuzzy evolutionary algorithms based on competitive fuzzy rules. This
experiment, framed within the imbalanced regression, involves new
difficulties that should be taken into account in order to ensure the
effectiveness and validity of our results:

+ Datasets: The choice of the dataset is not trivial, as it is necessary
to analyze each dataset independently in order to guarantee the
presence of imbalance in the output variable to be predicted.
Selection of metrics: It is important to select evaluation metrics
that enable the performance of the models on the imbalanced
data to be evaluated. It is also important to use aggregated
classical measures to observe the evolution at both a specific level
(imbalanced metrics) and at a global level (classic metrics).
Models used: Explanation of the methods used in the experiment,
presentation of the stratification process and the parameters used
by the SMOGN (Branco et al., 2017) method.

Evaluation: We need to establish a way to evaluate the results
of the performance metrics on the datasets and ensure that the
partitions that the model will train and test are independent.
Once we obtain the results, we will carry out a statistical study
to support our conclusions.

In this section, we will deal with these points describing each one
of them in detail. After this, we will draw conclusions from the results
analysis obtained, and observe their effectiveness. We will also present
our reasoning and make comparisons of the values obtained in those
algorithms that rely on statistical analysis.

6.1. Datasets

To evaluate the effectiveness of the imbalance treatment strategies
on the algorithms, an experimental framework was designed consisting
of 32 regression datasets from different domains. In order to select the
datasets, a study must to be carried out on each one independently
in order to see whether they contain imbalance or not. Furthermore,
the selection must guarantee the diversity of datasets in both size and
dimensionality. Focusing on the imbalance, we are going to use the
previously mentioned concept of relevance, so that we can identify the
two existing subsets in each dataset: the relevant set (D, in Eq. (2)),
and the non-relevant or “normal” set (D, in Eq. (3)).

To do so, we will use the method proposed by Ribeiro (Torgo &
Ribeiro, 2007). In this method, the quartiles and the interquartile range
of the distribution of the output variable in the dataset are used to
assign greater relevance to the extreme high and low values of the
output variable. Therefore, the considered datasets will have either
one extreme (in the high or low values of the output variable) or two
extremes (high and low extremes of the output variable).

It is also necessary to establish the relevance threshold ¢,, therefore,
the dataset is bisected into a relevant and non-relevant set, using
instances that have a relevance threshold value higher or lower than 7,,
respectively. Once this is established, we can now effectively measure
the imbalance in our datasets, so that, given the sizes of the relevant
set versus the total number of sets, we can also calculate the imbalance
percentage of the dataset by dividing the number of instances of the D,
subset by the total number of instances.

The selected datasets come from “Irvine Machine Learning Reposi-
tory” (UCI) (Dua & Graff, 2017), “Knowledge Extraction based on Evolu-
tionary Learning” (KEEL) (Triguero et al., 2017), “Dataset Collections of
Weka” (WEKA) (Witten et al., 2016), “Delve Datasets” (DELVE) (Aku-
juobi & Zhang, 2017), “Luis Torgo Repository” (LTR) (Torgo, 2023)
and from “Journal of Statistics Education Data Archive” (JSE) (JSE,
2023). These repositories are high quality, certified and supported by
many other studies. Table 1 summarizes the main characteristics of the
datasets, where Name is the short name, Acro is the acronym, Var is
the number of input variables, Instances is the number of examples or
instances, and % Imb is the imbalance percentage, which is calculated
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Table 1
Datasets considered in this contribution: First, those with less than 5000 instances and,
second, those with more than 5000.

Name Acro Var Instances % Imb
Abalone ABA 8 4177 16.25
Airfoil Self-Noise AIR 5 1503 4.12
Anacalt ANA 7 4052 20.60
Baseball BAS 16 337 4.15
Boston housing BOS 13 506 12.84
Concrete Compressive Strength CON 8 1030 5.33
Machine CPU CPU 6 209 16.26
Electrical Length ELE1 2 495 8.08
Electrical Maintenance ELE2 4 1056 10.41
Facebook Measures FAC 17 495 12.32
Forest Fires FOR 12 517 15.28
Laser generated LAS 4 993 8.55
Mortgage MOR 15 1049 10.10
AutoPrice PRI 15 159 8.17
Quake QUA 3 2178 5.41
Servo SER 4 167 20.35
Strikes STR 6 625 12.96
Treasury TRE 15 1049 10.39
Triazines TRI 58 186 10.75
Yacht Hydrodynamics YH 6 308 16.88
Add10 ADD 10 9792 4.47
Ailerons AIL 40 13750 6.95
Bank32 BK32 32 8192 14.03
Bank8 BK8 8 8192 6.40
Computer activity CA 21 8192 8.70
California CAL 8 20640 8.82
Cpusmall CPS 12 8192 8.70
Deltaail DAIL 5 7129 6.31
Deltaelv DELV 6 9517 11.65
Housel6 H16 16 22784 12.61
House8 H8 8 22784 12.61
Puma32 PUM 32 8192 10.46

using the following equation: 100 x (number of instances with &(Y)
> 0.8)/number _of_instances. As we can see, the selected datasets vary
from a minimum of 4.12% imbalance to a maximum of 20.6%. In
addition, the dimensionality and size of the datasets have also been
selected so that we can see the effectiveness of the methods with both
a small and large number of instances, and with higher and lower
dimensionality.

In addition, we will carry out the evaluation in the 32 datasets
described independently: first, without any preprocessing to treat the
imbalance; then, with a developed stratification strategy; and after that,
we will apply SMOGN to treat the imbalance. As such, the method is
compared with a stratification strategy in order to see if it performs
better than simpler methods. Moreover, we can see how the application
of SMOGN as a preprocessing technique affects the process and whether
the results improve.

6.2. Selection of metrics

To correctly carry out the study, it is necessary to establish what
metrics need to be obtained in order to efficiently evaluate the two
algorithms. To do so, we will use a metric that allows us to evaluate
the treatment of imbalance using our method: F1, and on the other
hand, a classical one such as MSE that allows us to maintain an
equilibrium and observe if the algorithm does not focus solely and
exclusively on the relevant subset of data D, with a total contempt
of D,. Furthermore, as we have seen in the Preliminaries section,
METSK-HD¢ and FSMOGFS®+TUN¢ are methods that deal with high-
dimensionality problems correctly, so we will also take the number
of rules and variables that the model uses into account. The selected
performance metrics are:

» F1: We will use the most recent metrics proposed by Torgo (Torgo
& Ribeiro, 2009) for the evaluation of the models in the imbal-
anced set. We will use F — § (Eq. (10)), which is based on the

Expert Systems With Applications 234 (2023) 121011

concept of classification, using the harmonic mean of Precision
and Recall that has been adapted for regression. In our case,
we will use g = 1, thus we must weigh the measures (Recall
and Precision) in the same way. In the package implemented in
R (Branco, 2019), specific metrics are developed for imbalanced
datasets (Torgo & Ribeiro, 2009) as well as for the SMOGN
method (Branco et al., 2017). We will use it to calculate the F1
values for our algorithms.

Mean Square Error: MSE is used to avoid focusing solely on

the imbalance so that the behavior of the complete dataset can
be observed.

Number of rules: Both algorithms used in the study try to mini-
mize the number of rules, so it would also be useful to know the
number of rules obtained.

These metrics have been selected with the aim of observing the
evolution and performance of the models in the most relevant subsets
(D,); we can also obtain a global view of the values in general by means
of classic measures, such as MSE. This is required because it is possible
that our model might only focus on the D, subset, while neglecting
the rest of the set. As such, we would get a very small error in F1 but a
very high MSE, which would not solve any of the problems. Besides, the
number of rules enables us to quickly see the complexity of the model
obtained proportionally, that is, the more rules obtained, the greater
the complexity, while the smaller the number, the less complexity we
obtain.

Additionally, we consider two well-known and strong global accu-
racy metrics to compare our two active proposals with the previous
passive state-of-the-art, SMOGN. They are:

* R?: The coefficient of determination helps to assess the accuracy
of a model. It is an absolute value that takes a value of 1 when
the model gets to perfectly explains all the data, and O when none
of the data variability is explained by the model. Thus, the higher
R?, the better the accuracy.

Mean Absolute Error: M AE is the average of the absolute differ-
ences between the actual output values and their corresponding

predicted ones. Since it represents an error, the lower MAE, the
better accuracy.

6.3. Models used

To carry out the experimentation it is necessary to create a work
ecosystem where we have previously presented algorithms, metrics
and techniques to treat the imbalance. In order to do this, we will
evaluate the performance of the current best preprocessing proposal,
SMOGN (Branco et al., 2017) on the selected datasets. In addition, we
will perform the comparison to evaluate performance in three different
cases:

1. Not employing any imbalance processing, i.e., executing our two
algorithms on our datasets without any specific preprocessing.

2. Using stratification in the dataset at the time of validation, so
that in each partition we have equitable samples of all ranges of
our dataset. In this way, we ensure that the original diversity of
our dataset is maintained when evaluating.

3. Using the SMOGN imbalance treatment technique in our dataset
before the model learns.

Once the experiments to be carried out have been defined, the
parameters of each algorithm are shown in the following subsections.



M. Arteaga et al.

6.3.1. Stratification process

Although the process of stratification in regression problems is
widely known, there are some details, like how it is used and applied in
certain problems, that are missing. Specifically, the stratification that
will be used in the evaluation of the models when carrying out the
corresponding data partitions consists of a discretization of the output
or objective variable in a total of ¢ cuts, ¢ being the result of dividing
the total number of examples of our dataset (|D|) by the number of
desired partitions (np):

_ 1ol

p

Once discretized, the instances belonging to each cut are randomly
and proportionally distributed among the desired partitions. This is an
attempt to minimize the loss of diversity incurred when partitioning
the dataset during the evaluation.

c 14

6.3.2. SMOGN parameters

SMOGN makes use of the necessary parameters to set the relevance
of each attribute so that it can make the distinction between D, and
D,. The method considers three issues: The first is the parameters
needed to establish the relevance function. If the user does not set the
values manually, it can be calculated using the “extremes” method,
based on the density function of the output variable: when using the
Boxplot, a matrix is derived with the interpolation points required for
the relevance function. The second is concerned with the binary loss
function used in the relevance function as seen above in Eq. (5). The
third is that it is necessary to set the relevance threshold starting at
the point at which the separation of D, and D, is performed. For our
case we will use a value of 0.8, so that higher values will be considered
relevant, and the lower values, normal. We have chosen this value after
experimentally and empirically testing different values, and 0.8 was the
one with the best results.

As we can see, the issues related to the relevance function are
domain-dependent, because they are mainly based on the density distri-
bution of the output variable. SMOGN, at the time of evaluation, will be
executed only on the training dataset of our two models, so the output
is what the METSK-HD¢ and FSMOGFS¢+TUN¢ methods learn the test
dataset. For this reason, the relevance issues must come only from our
training set, since if we used those taken directly from the total dataset
(training + test) we would be providing information to SMOGN that
does not belong exclusively to the training set, and it would not be
valid in the evaluation.

6.4. Evaluation

Once the datasets and the metrics have been selected and the
imbalance methods have been defined, a reliable and representative
method to evaluate the models needs to be defined.

Error estimation tends to be quite variable, depending on which
data from the set are in the learning partition (where our models will
be trained) and which are in the test partition (where our models will
predict). For this reason, in order to alleviate this error overestimation
as much as possible, we will use a Cross Validation (CV) mechanism
with 10 partitions. As such, we will take the original data from the
dataset and create ten partitions with two separate sets in each parti-
tion: a first training set, and a second validation set (independent in the
10 partitions). In addition, we will repeat the process twice in order to
further reduce random bias.

As previously mentioned, in the partitioning process we will al-
ternate between two partitioning processes: a simple random sam-
pling (setting the random seed to 3), and using the stratification tech-
nique described above to carry out the partitioning. Furthermore, our
study will be carried out twice, first without applying the imbalance
treatment technique (SMOGN), and then applying it the second time.

This will give us a total of 5 files per partition (fold). First, we will
carry out a simple cross validation using random sampling:
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* Train: Training partition obtained with random sampling.
« Test: Test partition obtained with random sampling.

Second, another cross validation will be carried out, partitioning
the data using the stratification strategy described above. As such, we
would get three other files:

+ Train Strat.: Training partition obtained with stratified sampling.

« Test Strat.: Test partition obtained with stratified sampling.

* Train Strat. with SMOGN: Partition “Train Strat.” after applying
SMOGN.

In total, there will be a total of 5 files x 10 partitions x 2 CV x
32 datasets, i.e. 3200 partition files for our experimental study. As
such, we will observe the behavior of the models according to the
partitioning performed, and see how it affects the complete imbalanced
regression problem.

As we have already seen, F1 requires both relevance and loss
function arguments, and these arguments are totally dependent on our
dataset’s output variable domain. As we are evaluating the models, the
arguments of relevance and loss function will be calculated on all of
the set without partitioning, since our model does not have all the
information at the time of learning, and in order for us to be able
to evaluate its performance in F1, all the real information from our
problem must be used (Figs. 6 and 7). In this way, we would get the
training error (T'R;) and test error (T'S;) of the corresponding partition,
and validate the imbalance treatment by using F1 on the whole dataset
(DS).

Fig. 6 presents the scheme for normal validations without SMOGN.
In this case, the algorithms are executed directly on TR; and TS;,
without any preprocessing, and F1 is evaluated using the whole dataset
in the same way.

Fig. 7 shows the scheme for validations with SMOGN. In this case,
the regression algorithms are executed on the preprocessed partition
and F1 is evaluated using the whole dataset.

7. Results and discussion

In this section, we will evaluate the results obtained in our ex-
perimental framework and compare the results obtained by the two
algorithms: FSMOGFS*+TUN¢ (Alcald et al., 2011) (Linguistic) and
METSK-HD¢ (Gacto et al., 2014) (TSK), and the results obtained with
our two new proposed techniques: Linguistic-IR and TSK-IR. In order
to evaluate the behavior of the methods, we have performed statistical
studies by means of Wilcoxon tests (Sheskin, 2007; Wilcoxon, 1945),
establishing the equality of the methods in the null hypothesis, and we
will see if the analyzed methods provide any statistical evidence.

We will obtain results from the F1 and M S E performance measures
from the measures corresponding to the number of rules used by the
algorithm (since they are rules-based algorithms) and the number of
variables used by the algorithm. Additionally, for the comparison with
our two new proposals we also consider R?> and M AFE as performance
measures (plus M APE for the last statistical comparison).

This section is organized as follows:

* Section 7.1 compares algorithms with and without stratification.

* Section 7.2 shows the comparison made between methods con-
sidering SMOGN.

+ Section 7.3 presents the comparison made with our new propos-
als.

7.1. Comparison between algorithms with and without stratification

In this section, we will first begin the study by comparing the use
of the designed stratification explained above in our algorithms in
imbalanced datasets. We execute the two algorithms by first performing
2x10CV on the original dataset without stratifying, and then on the
stratified one, obtaining the following results shown in Table 2.
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Fig. 6. Scheme for normal validations without preprocessing, using the original TR, to build the regressor.
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Fig. 7. Application of the SMOGN method to obtain a balanced set .S; that will be used consequently to build the regressor.

Table 2
Results comparing methods with vs without stratification.

Dataset Linguistic TSK

- Stratification - Stratification

#R#V) MSEp, ,, F1,, #R(#V) MSE), Fl,, DIFF, DIFF,, #R(#V) MSEp, ,, F1,, #R(#V) MSEp, ,, 1, DIFF g DIFF,,
ABA 8.05(3.35) 2.480 0.715 9.5(3.1) 2.472 0.715 0.003 0.000 20(3.45) 2.410 0.718 21.85(3.4) 2413 0.714 —0.001 —0.004
AR 24.45(3.85) 7.118 0.165 23.8(3.85) 7.128 0.191 ~0.001 0.026 47.9(4.75) 5178 0.156 45.75(4.65) 5.160 0129 0.003 ~0.027
ANA 8.95(2.65) 3.11E-03 0.530 89(27) 3.308-03 0.513 ~0.056 -0.017 12.9(4.75) 1.29E-01 0.480 12.45(4.65) 1.17E-01 0.478 0.09% —~0.001
BAS 14.7(6.15) 216887 0.280 16.3(5.9) 243270 0.346 —-0.108 0.066 59.05(6.95) 317448 0.388 57.3(7.10) 322466 0.373 -0.016 -0.015
BOS 22.8(4.35) 9.259 0.865 23.9(4.3) 8.404 0.885 0.092 0.019 47.2(5.8) 9.269 0.852 49.35 (5.85) 9.307 0.890 -0.004 0.038
co 16.85(3.55) 35.389 0.777 15.4(3.45) 34.528 0.773 0.024 —0.004 51.4(4.2) 22.104 0.893 49.4 (4.3) 25.363 0.859 -0.129 —0.034
CPU 16.3(4) 1914 0.703 15.6(3.90) 1928 0.731 —0.008 0.027 31.45(4.8) 3020 0.688 33.3 (4.85) 3697 0.615 -0.183 -0.073
ELE1 8.85(2) 211214 0.739 8.4(2) 214443 0.746 -0.015 0.007 14.3(2) 228610 0.723 13.55 (2) 211702 0.743 0.074 0.020
ELE2 83(2) 11047 0.978 9.4(2) 11265 0.979 ~0.019 0.001 41.25(3.95) 4882 0.274 422 (3.95) 4329 0.343 0.113 0.068
FAC 4.6(2.2) 22426 0.907 4.4(2.25) 17743 0.920 0.209 0.012 5.05(2.35) 28758 0.932 5.05 (2.25) 29085 0.938 -0.011 0.007
FOR 12.58(3.6) 2427 0.345 13.3(3.65) 2736 0.332 -0.113 -0.014 33.55(4.65) 4336 0.347 37.35 (4.7) 4898 0.333 -0.115 -0.014
LAS 19.8(3.05) 42.580 0.956 18.8(3) 43.156 0.951 -0.013 -0.005 56(4) 40.281 0.964 55.55 (4) 35.641 0.963 0.115 -0.001
MOR 6.35(2.05) 0.017 0.985 6(2.2) 0.018 0.985 —0.037 0.000 13.05(2.25) 0.014 0.9867 12.65 (2.1) 0.016 0.9872 —0.144 0.001
PRI 23.6(5.35) 3007102 0.513 24.9(4.85) 3179709 0.446 —-0.054 —0.068 48.8(8.05) 5269901 0.380 46.65 (8.35) 4754469 0.436 0.098 0.056
Qua 3.3(1.4) 1.79E-02 0.000 3.3(1.15) 1.78E-02 0.000 0.002 0.000 28.9(3) 5.92E-02 0.056 28.35 (2.95) 6.616-02 0.000 -0.104 ~0.056
SER 15.9(3.2) 0.191 0789 17.6(3.05) 0.168 0.774 0.120 -0.015 65.95(4) 0.217 0.637 64.35 (4) 0.277 0.646 -0.217 0.009
STR 16.1(3.55) 171386 0.524 18.2(3.7) 182971 0.556 —-0.063 0.032 45.1(5) 184951 0.546 44.5(5) 183881 0.553 0.006 0.008
TRE 7.1(2.6) 0.041 0.977 7.5(2.75) 0.047 0.977 -0.131 0.000 11.95(2.45) 0.043 0.974 12.75 (2.55) 0.036 0.979 0.169 0.005
TRI 27.65(9.8) 0.012 0.145 28.6(10.1) 0.014 0.116 -0.172 -0.029 76(11.3) 0.014 0.128 77.8 (11.8) 0.013 0.115 0.135 -0.013
YH 12.15(2.1) 1.055 0.957 13.6(2.05) 1.160 0.950 —0.090 —0.006 13.1(2.75) 1.301 0.818 12.75 (2.85) 1.302 0.841 —0.001 0.023
ADD 26.65(3.35) 2715 0.155 28.5(3.45) 2.627 0.321 0.033 0.165 51.9(3.85) 1.934 0.308 55.65 (3.9) 1.863 0.435 0.037 0.127
AIL 17.9(3.75) 2.031E-08 0.115 17.6(3.85) 2.029E-08 0.109 0.001 —0.006 39.05(4.7) 1.46E-08 0.121 38.95 (5.05) 1.43E-08 0.123 0.027 0.002
BK32 4.35(3) 3.88E-03 0.688 43(3) 3.85E-03 0.690 0.008 0.002 15.15(3.3) 3.79E-03 0.693 217 (3.2) 3.76E-03 0.697 0.008 0.003
BKS 4.95(2) 7.506-04 0.944 4.35(2.05) 7.41E-04 0.947 0.012 0.003 8.95(2) 6.95E-04 0.952 11.25 (2) 7.06E-04 0.951 ~0.016 —~0.001
CA 13.25(5.05) 5.349 0.582 12.1(4.9) 5.222 0.590 0.024 0.008 30.6(5) 5.323 0.608 27.95 (4.65) 5.391 0.618 -0.012 0.010
CAL 7.2(2.8) 3.02E+09 0.799 8.6(3.25) 2.98E+09 0.840 0.011 0.042 43.75(4.6) 2.79E+09 0.812 43.85 (4.95) 2.68E+09 0.856 0.039 0.044
CPS 10.35(4.6) 6.043 0.582 12.8(4.75) 6.075 0.592 —0.005 0.010 30.55(5.35) 5.742 0.619 33.9 (5.4) 5.781 0.644 -0.007 0.026
DAIL 5.5(2.55) 1.54E-08 0.729 5.1(2.3) 1.55E-08 0.739 —0.005 0.010 36.3(5) 1.36E-08 0.740 36.9 (4.9) 1.35E-08 0.748 0.008 0.009
DELV 7.4(2.6) 1.09E-06 0.634 7(2.75) 1.08E-06 0.708 0.007 0.074 39.45(3.9) 1.02E-06 0.641 30.55 (3.55) 1.04E-06 0.722 -0.017 0.081
H16 104.6) 9.42E+08 0.592 10.9(5.05) 9.31E+08 0.595 0.012 0.003 30.6(4.3) 8.77E+08 0.611 304 (4.0) 8.82E+08 0.607 ~0.006 -0.004
H8 13.95(3.25) 6.16E+08 0.651 14(3.85) 6.19E+08 0.650 ~0.005 ~0.001 32.55(4.45) 5.46E+08 0.670 35.25 (45) 5.57E+08 0.666 -0.020 ~0.004
PUM 15.4(2) 2.90E-05 0.947 14.1(2) 2.90E-05 0.948 0.000 0.001 29.5(2) 2.90E-05 0.946 285 (2) 2.90E-05 0.945 0.000 —-0.001
Average 12.98 (3.45) 0.633 13.31 (3.47) 0.644 34.73 (4.34) 0.614 34.93 (4.36) 0.623
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Table 3
Wilcoxon test in order to compare methods without (R*) and with stratification (R”) in MSE, ,, and F1,.
Methods analyzed Comparison R* R~ Hypothesis (a = 0.1) p-value
Linguistic without Strat. vs. Linguistic with Strat. MSE), 281 184 Accepted 0.324
Linguistic without Strat. vs. Linguistic with Strat. Fl,, 169 327 Accepted 0.124
TSK without Strat. vs. TSK with Strat. MSE 263 233 Accepted 0.776
TSK without Strat. vs. TSK with Strat. F1,, 222 274 Accepted 0.617

In Table 2 algorithms with and without stratification are grouped in
columns, and the average of the results obtained by each algorithm in
all the studied datasets are shown. For each algorithm, the first column
shows the average number of both the number of rules (#R) and the
used variables (#V). The second and third columns show the average
MSE 2 and F1 in the test data (Tst.) The fourth and fifth columns
show the differences (DIFF) between the metrics obtained by the two
methods analyzed (in this case with and without stratification). Finally,
the last row of the table shows the global average values (Average).
Moreover, the best result (in both F1 and M SE /2) for each dataset is
shown in boldface.

As we can see in this table, the mean results of F1, as well as
the differences (DIFF) between metrics obtained without using strat-
ification (random sampling) and those obtained using the designed
stratification, are quite similar. The results stay the same for M.SE,.
We performed a statistical test to verify if there was any statistical
evidence that was different or not. Table 3 presents the results of the
Wilcoxon test (Sheskin, 2007; Wilcoxon, 1945) for the method with
and without stratification. The results show that both methods with and
without stratification are almost equivalent, or slightly better only in
F1 for the stratification with the linguistic approach.

The application of stratification in the partitioning of our dataset is
necessary, since, as in classification, it is possible that when partitioning
random data for evaluation, and taking into account that the set D, is
small compared to D,, D, might not be represented in the training set
or in the test set, and this would make the evaluation of our methods
unrepresentative and dependent on randomness. Therefore, the use of
stratification for evaluation in imbalanced problems is almost manda-
tory in order to preserve a minimum representation of the minority set,
and is relevant to the user in the partitions. Furthermore, there is also
statistical evidence that they are almost equivalent; from now on, we
will consider only stratified methods in the rest of the study.

This preliminary study helps us to demonstrate that the need for a
simple stratification of the dataset at the time of making the partition-
ing to evaluate does not improve the performance of the algorithms in
imbalanced problems, suggesting that imbalance treatment techniques
are required.

7.2. Comparison between methods considering SMOGN

Once the study of the behavior of a stratified model was carried
out, and in view of the need to use stratification when evaluating the
two algorithms, we then studied, for the first time ever, the behavior
of the most current passive technique SMOGN (Branco et al., 2017)
on two evolutionary algorithms based on fuzzy rules, Linguistic and
TSK. As such, we have studied how effective it is to apply this passive
preprocessing technique to rule-based algorithms so that users can
choose the correct technique for treating imbalance.

Table 4 uses the same terminology as Table 2, but in this case,
the comparison is made between methods using stratification with and
without SMOGN. As we can see in this table, the results obtained
for both algorithms using SMOGN (a passive imbalance preprocessing
technique) are better for F1, so the SMOGN proposal is ranked higher
than the Linguistic and TSK algorithms without imbalance treatment.

These results show that using the technique improves the perfor-
mance of the algorithms in the relevant set D,, which means that it
is not neglecting the user-relevant values. On the other hand, if we
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look at the results obtained for M SE,, we see that the use of SMOGN
produces a cost in this metric, which makes it worse than not using
preprocessing.

A statistical analysis obtained using the Wilcoxon test for the
method with and without SMOGN is shown in Table 5. On the one
hand, looking at the F1 metric, the both methods reject the equality
hypothesis (with confidence of 99.0%). It shows that algorithms that
use SMOGN as a passive imbalance treatment strategy outperform the
original algorithms in F1, meaning that this method focuses on the
relevant set. On the other hand, we can observe that M SE,, worsens
when using SMOGN. Both the TSK and Linguistic methods reject the
equality hypothesis with a p-value much lower than 0.01. This means
that with a confidence of 99.0%, we can affirm that there is statistical
evidence that shows that using this passive technique to treat imbalance
substantially worsens M.SE ;.

7.3. Comparison with our new proposals

Previously, in Section 7.2, we conducted a comprehensive and in-
depth study of SMOGN'’s behavior in our two fuzzy rule-based methods,
which is state of the art and has never been performed before on this
type of algorithm. The final study carried out consists of the evaluation
of our first active proposal, which aims to become state of the art, as
compared to the current passive SMOGN proposal. Table 6 (which uses
the same terminology as the previous tables but includes R*> and M AE)
shows the results obtained when using SMOGN as a preprocessing
technique before using Linguistic and TSK, and the results obtained with
our proposals Linguistic-IR and TSK-IR (presented in Sections 5.2 and
5.3, respectively) without using SMOGN as a preprocessing technique.
The partitions are stratified in both cases.

As we can see in Figs. 8 and 9, the results obtained in F1 by our
proposals without using SMOGN are slightly better to those obtained
when we use SMOGN preprocessing. That is, our active proposals
Linguistic-IR and TSK-IR obtain similar results without preprocessing,
and even higher than average results (Linguistic-IR method) than those
obtained using SMOGN (the best current passive preprocessing tech-
nique); therefore, our two active proposals are efficient in treating
imbalanced regression. In addition, we can observe that our active
proposals obtain much better results in global accuracy than those
obtained when using SMOGN. Both proposals perform much better in
M SE, obtaining a balance in performance on the relevant dataset D,
and the remaining data D,,. Similar behavior can be observed in Table 6
for R? and M AE, where both proposals outperform their respective
proposals when SMOGN is used in most of the datasets.

Table 7 shows the results of the Wilcoxon statistical test to support
the following statements. Here, we also consider the M APE metric
(Mean Absolute Percentage Error, i.e., the mean absolute percentage
difference between the actual and the predicted value). MAPE is con-
sidered only with statistical comparative purposes in order to keep the
previous table readable.

In F1, the null hypothesis is accepted, which allows us to affirm that
there is statistical evidence to prove that they perform similarly, as both
algorithms-IR obtain better ranking (R*, R™) in both cases with respect
to the methods with SMOGN. In fact, in the case of Linguistic-IR, we
have a confidence of almost 85% to reject the equality hypothesis in
our favor, so that we could even say that we outperform the use of
SMOGN in F1 with the linguistic approach. On the other hand, we
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Fig. 8. SMOGN+Linguistic vs. Linguistic-IR F1.
Table 4
Results comparing methods on the stratified 10-folds with vs without SMOGN.
Dataset Linguistic with stratification TSK with stratification
Linguistic SMOGN-+Linguistic TSK SMOGN+TSK
#R(#V) MSEp, Fl,, #R(#V) MSEp, Fl,, DIFF s, DIFF,, #R(#V) MSE, Fl,, #R(#V) MSEp, Fl,, DIFF,,s; DIFF,,
ABA 9.5 (31) 2.472 0.715 8 (235) 3.750 0.720 —0.341 0.005 21.85 ( 34) 2.413 0.714 2285 ( 3.25 ) 3.633 0.727 —0.336 0.013
AIR 23.8 ( 3.85) 7.128 0.191 24.05 ( 345 ) 8.043 0.229 -0.114 0.038 45.75 ( 4.65 ) 5.160 0.129 44.75 ( 4.70 ) 7.393 0.270 -0.302 0.141
ANA 89 (27) 3.30E-03 0.513 114 ( 28 ) 3.79E-03 0.392 -0.128 -0.121 1245 ( 4.65 ) 1.17E-01 0.478 27.10 ( 4.65 ) 2.00E-01 0.363 -0.419 -0.116
BAS 16.3 ( 5.9 ) 243270 0.346 20.75 ( 5.7 ) 343971 0.612 -0.293 0.267 57.3 ( 7.10 ) 322466 0.373 20.75 ( 5.70 ) 343971 0.542 —0.063 0.170
BOS 239 (43) 8.404 0.885 21.25 ( 41) 11170 0.867 —0.248 -0.017 49.35 ( 5.85 ) 9.307 0.890 46.40 ( 520 ) 9.267 0.887 0.004 -0.003
co 15.4 ( 3.45) 34.528 0.773 17.9 (37 ) 66.001 0.842 —-0.477 0.069 49.4 (143) 25.363 0.859 43.35 ( 445 ) 50.536 0.865 -0.498 0.006
CPU 15.6 ( 3.90 ) 1928 0.731 17.15 ( 3.75 ) 1957 0.739 —-0.015 0.008 333 ( 485) 3697 0.615 35.90 ( 4.85 ) 3354 0.625 0.093 0.009
ELE1 84 (2) 214443 0.746 1215 ( 2) 301952 0.756 —-0.290 0.010 1355 ( 2) 211702 0.743 16.20 ( 2.00 ) 275725 0.748 -0.232 0.005
ELE2 94 (2) 11265 0.979 11.75 ( 2) 11045 0.982 0.020 0.003 422 ( 3.95) 4329 0.343 42.10 ( 3.90 ) 7567 0.936 —0.428 0.594
FAC 44 (225) 17743 0.920 5(23) 23523 0.916 —0.246 —0.004 5.05 ( 225) 29085 0.938 5.15 ( 225 ) 33235 0.929 —0.125 —0.009
FOR 13.3 ( 3.65 ) 2736 0.332 1295 ( 3.95 ) 4129 0.356 —0.338 0.024 37.35 (47 ) 4898 0.333 40.95 ( 4.75 ) 7192 0.309 -0.319 —0.024
LAS 188 ( 3) 43.156 0.951 21.3 ( 3.05 ) 56.675 0.961 —0.239 0.010 55.55 ( 4 ) 35.641 0.963 52.40 ( 4.00 ) 63.409 0.961 —0.438 —0.002
MOR 6 (22) 0.018 0.985 6.65 ( 2.3 ) 0.022 0.983 —0.187 —0.001 12.65 ( 21 ) 0.016 0.987 1295 ( 215 ) 0.015 0.987 0.096 0.000
PRI 24.9 ( 4.85) 3179709 0.446 2375 ( 5.55 ) 3496691 0.667 —0.091 0.221 46.65 ( 8.35 ) 4754469 0.436 33.30 ( 6.70 ) 5501181 0.437 -0.136 0.001
QUA 3.3 ( 1.15) 1.78E-02 0.000 3.45 ( 145 ) 4.47E-02 0.566 —0.601 0.566 28.35 (295 ) 6.61E-02 0.000 41.50 ( 3.00 ) 6.87E-02 0.587 -0.037 0.587
SER 17.6 ( 3.05 ) 0.168 0.774 15 (3) 0.240 0.780 —-0.298 0.007 64.35 (4 ) 0.277 0.646 76.65 ( 4.00 ) 0.574 0.586 -0.517 -0.059
STR 182 ( 37 ) 182971 0.556 21.1 ( 355 ) 292993 0.553 —-0.376 —0.003 445 (5) 183881 0.553 49.00 ( 4.85 ) 352234 0.583 -0.478 0.030
TRE 75 (275) 0.047 0.977 7.1 (295 ) 0.042 0.979 0.098 0.002 12.75 ( 255 ) 0.036 0.979 11.85 ( 2.20 ) 0.041 0.972 -0.121 -0.007
TRI 286 (101 ) 0.014 0.116 29.40 ( 10.05 ) 0.015 0.111 -0.057 —-0.005 77.8 ( 11.8 ) 0.013 0.115 60.50 ( 11.85 ) 0.020 0.166 —0.360 0.051
YH 13.6 ( 2.05 ) 1.160 0.950 7.85 ( 215 ) 1.257 0.950 —0.078 0.000 12.75 ( 285 ) 1.302 0.841 16.35 ( 3.00 ) 1.143 0.833 0.122 —0.007
ADD 28.5 ( 3.45 ) 2.627 0.321 22 (36 ) 5.536 0.369 —0.526 0.048 55.65 ( 3.9 ) 1.863 0.435 49.7 (3) 4.058 0.479 —0.541 0.044
AIL 17.6 ( 3.85 ) 2.029E-08 0.109 11.89 ( 4.85 ) 2.72E-08 0.122 —0.255 0.013 38.95 ( 5.05 ) 1.43E-08 0.123 36.8 (5) 2.13E-08 0.126 -0.331 0.003
BK32 43 (3) 3.85E-03 0.690 47 (31) 5.53E-03 0.716 —0.304 0.026 217 (32) 3.76E-03 0.697 16.8 ( 3.15 ) 5.47E-03 0.713 -0.312 0.016
BK8 4.35 ( 2.05) 7.41E-04 0.947 1125 (2) 7.93E-04 0.950 —0.066 0.003 11.25 (1 2) 7.06E-04 0.951 21.05 ( 2.05 ) 7.32E-04 0.948 -0.036 -0.002
CA 121 ( 49) 5.222 0.590 1315 ( 5.2 ) 6.036 0.588 —-0.135 —0.002 27.95 ( 4.65 ) 5.391 0.618 30.6 ( 535 ) 5.666 0.613 -0.049 -0.005
CAL 86 (325) 2.98E+09 0.840 8.65 ( 2.6 ) 4.72E+09 0.828 —0.368 -0.012 43.85 ( 4.95 ) 2.68E+09 0.856 26.75 ( 4.2 ) 4.25E+09 0.840 —0.368 -0.016
CPS 128 ( 475 ) 6.075 0.592 126 ( 5.2 ) 7.008 0.596 —-0.133 0.003 339 ( 54 ) 5.781 0.644 40.65 ( 4.8 ) 6.581 0.610 -0.122 -0.035
DAIL 51 (23) 1.55E-08 0.739 12.95 ( 29) 3.52E-08 0.740 —0.560 0.001 369 (49 ) 1.35E-08 0.748 31.95 ( 46 ) 2.90E-08 0.750 -0.533 0.002
DELV 7 (275) 1.08E-06 0.708 129 ( 29) 1.91E-06 0.749 —0.433 0.040 30.55 ( 3.55 ) 1.04E-06 0.722 316 ( 3) 1.86E-06 0.753 —0.439 0.030
H16 10.9 ( 5.05 ) 9.31E+08 0.595 132 ( 475 ) 1.42E+09 0.612 —0.342 0.017 304 ( 41) 8.82E+08 0.607 132 ( 475 ) 1.42E+09 0.612 —0.376 0.005
H8 14 ( 3.85) 6.19E+08 0.650 142 ( 35) 7.84E+08 0.657 —0.210 0.007 35.25 ( 45) 5.57E+08 0.666 29.05 ( 4.35 ) 7.01E+08 0.669 —0.206 0.003
PUM 141 (2) 2.90E-05 0.948 14.15 ( 2.05 ) 3.60E-05 0.944 —0.194 —0.004 285 (2) 2.90E-05 0.945 296 ( 21) 3.30E-05 0.944 -0.121 0.000
Average 1331 ( 347 ) 0.644 14.05 ( 3.53 ) 0.682 3493 ( 4.36 ) 0.623 33.05 ( 418 ) 0.668
Table 5
Wilcoxon test to compare methods with stratification without (R*) and with SMOGN (R7) in MSE, ,, and F1,,.
Methods analyzed Comparison Rt R Hypothesis (« = 0.1) p-value
Linguistic vs. SMOGN+Linguistic MSE), 520 8 Rejected 1.16e-08
Linguistic vs. SMOGN+Linguistic Fl,, 119 409 Rejected 5,71E-03
TSK vs. SMOGN+TSK MSE, 506 22 Rejected 2,50E-07
TSK vs. SMOGN+TSK Fl,, 52 476 Rejected 1,80E-05
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Table 6
Results comparing methods with SMOGN vs new proposals (without using SMOGN) on the stratified 10-folds.
Dataset Linguistic with stratification
SMOGN-Linguistic Linguistic-IR
#R(#V) MSE, F1,, R MAE #R(#V) MSE, F1,, R MAE DIFF, g DIFF,, DIFF DIFF,, -
ABA 8 ( 2.35) 3.750 0.720 0.274 2182 945 ( 3.1) 3.507 0.725 0.323 2.100 0.065 0.005 0.048 0.038
AIR 24.05 ( 3.45) 8.043 0.229 0.660 3.062 23.5 ( 3.85) 7.470 0.238 0.684 2.964 0.071 0.009 0.025 0.032
ANA 114 ( 28 ) 3.79E-03 0.392 0.974 0.029 7.85 (27 ) 3.96E-03 0.469 0.973 0.035 —0.044 0.077 —0.001 -0.185
BAS 20.75 ( 5.7 ) 343971 0.612 0.553 532.20 159 ( 59) 268351 0.511 0.644 475.628 0.220 -0.101 0.091 0.106
BOS 21.25 ( 4.1) 11.170 0.867 0.722 3.192 21.95 ( 43) 10.245 0.870 0.749 3.003 0.083 0.003 0.027 0.059
co 179 ( 3.7 ) 66.001 0.842 0.523 8.874 13.75 ( 3.45) 39.990 0.869 0.709 6.974 0.394 0.027 0.187 0.214
CPU 17.15 ( 3.75) 1957 0.739 0.760 31.974 153 ( 39) 2103 0.728 0.762 31.908 -0.070 -0.011 0.002 0.002
ELE1 1215 ( 2) 301952 0.756 0.522 519.22 8.05 (2) 251168 0.775 0.597 472 0.168 0.019 0.075 0.091
ELE2 11.75 ( 2 ) 11045 0.982 0.9934 109.70 9.45 ( 2) 11168 0.981 0.9933 110 -0.011 -0.001 0.000 —-0.006
FAC 5(23) 23523 0.916 0.902 25.347 4.3 ( 2.25) 18367 0.917 0.941 23.970 0.219 0.001 0.038 0.054
FOR 12.95 ( 3.95) 4129 0.356 0.001 38.584 11.25 ( 3.65) 3035 0.353 0.000 35.988 0.265 —0.003 —0.001 0.067
LAS 21.3 ( 3.05) 56.675 0.961 0.948 6.075 18.25 ( 3) 49.687 0.954 0.954 5.989 0.123 -0.007 0.006 0.014
MOR 6.65 ( 2.3) 0.022 0.983 0.995 0.146 585 ( 22) 0.019 0.984 0.996 0.142 0.108 0.001 0.000 0.029
PRI 23.75 ( 5.55) 3496691 0.667 0.754 1825 22.85 ( 4.85) 3021332 0.576 0.808 1555 0.136 -0.091 0.054 0.148
QUA 3.45 ( 1.45) 4.47E-02 0.566 0.000 0.267 2.7 ( 1.15) 2.23E-02 0.000 0.000 0.183 0.500 —0.566 0.000 0.316
SER 15 (3) 0.240 0.780 0.768 0.350 14.4 ( 3.05) 0.188 0.756 0.828 0.342 0.217 -0.024 0.060 0.023
STR 21.1 ( 3.55) 292993 0.553 0.012 450 15.65 ( 3.7 ) 246721 0.580 0.010 420 0.158 0.027 -0.002 0.068
TRE 7.1 ( 2.95) 0.042 0.979 0.993 0.183 7.95 ( 2.75) 0.045 0.977 0.992 0.188 —0.063 —0.002 0.000 —0.025
TRI 29.40 ( 10.05) 0.015 0.111 0.147 0.126 26.1 ( 10.1) 0.016 0.143 0.069 0.131 -0.069 0.032 -0.078 -0.037
YH 7.85 ( 2.15) 1.257 0.950 0.9882 1.005 13.7 ( 2.05) 1.252 0.951 0.9884 0.998 0.004 0.001 0.000 0.007
ADD 22 (36) 5.536 0.369 0.551 2.614 26.7 ( 3.45) 2.868 0.371 0.767 1.920 0.482 0.002 0.216 0.266
AIL 11.89 ( 4.85) 2.72E-08 0.122 0.673 1.73E-04 17.25 ( 3.85) 2.25E-08 0.121 0.730 1.59E-04 0.175 -0.001 0.056 0.081
BK32 47 (31) 5.53E-03 0.7158 0.250 7.96E-02 41 (3) 5.49E-03 0.7164 0.254 7.95E-02 0.006 0.001 0.004 0.001
BK8 11.25 ( 2 ) 7.93E-04 0.950 0.931 0.0291 4.75 ( 2.05) 7.82E-04 0.952 0.932 0.0290 0.014 0.002 0.001 0.002
CA 13.15 ( 5.2 ) 6.036 0.588 0.964 2.545 12.55 ( 49 ) 5.545 0.590 0.967 2.460 0.081 0.003 0.003 0.033
CAL 8.65 ( 26 ) 4.72E+09 0.828 0.291 78530 7.65 ( 3.25) 3.76E+09 0.840 0.434 69210 0.203 0.011 0.144 0.119
CPS 126 ( 52) 7.008 0.596 0.958 2.777 11.8 ( 4.75) 6.858 0.602 0.959 2717 0.021 0.006 0.001 0.022
DAIL 1295 ( 29 ) 3.52E-08 0.740 0.228 2.10E-04 515 ( 23 ) 2.00E-08 0.747 0.563 1.49E-04 0.433 0.007 0.335 0.290
DELV 129 ( 29) 1.91E-06 0.749 0.321 1.59E-03 6.85 ( 2.75) 1.40E-06 0.753 0.501 1.32E-03 0.265 0.004 0.181 0.168
H16 13.2 ( 4.75) 1.42E+09 0.612 0.038 37721 9.35 ( 5.05) 1.26E+09 0.622 0.100 35172 0.109 0.009 0.062 0.068
H8 142 ( 35) 7.84E+08 0.6567 0.437 26466 13.95 ( 3.85) 7.69E+08 0.6572 0.446 26578 0.018 0.000 0.008 —0.004
PUM 14.15 ( 2.05) 3.60E-05 0.944 0.922 6.69E-03 142 (2) 3.00E-05 0.947 0.935 6.15E-03 0.167 0.003 0.013 0.081
Average 14.05 ( 3.53) 0.682 0.595 1258 ( 3.47 ) 0.665 0.644
Dataset TSK with stratification
SMOGN+TSK TSK-IR
ABA 2285 ( 325 ) 3.633 0.727 0.313 2113 19.6 ( 3.35 ) 3.219 0.730 0.378 1.977 0.114 0.003 0.064
AIR 44.75 ( 47 ) 7.393 0.270 0.901 2.573 53.6 ( 4.95 ) 5.149 0.148 0.782 2.427 0.303 -0.122 0.057
ANA 27.1 ( 4.65) 0.200 0.363 0.019 0.571 241 ( 32) 0.004 0.739 0.971 0.030 0.979 0.376 0.947
BAS 20.75 ( 5.7 ) 343971 0.542 0.553 532 57.05 ( 6.95 ) 367365 0.193 0.530 525 -0.064 -0.349 0.013
BOS 46.4 ( 52) 9.267 0.887 0.787 2876 53.5 ( 5.6 ) 9.155 0.837 0.774 2738 0.012 —-0.051 0.048
co 43.35 ( 445 ) 50.536 0.865 0.654 7.194 472 (4) 26.743 0.402 0.807 5.505 0.471 —0.463 0.235
CPU 35.90 ( 4.85 ) 3354 0.625 0.662 34.670 31.9 ( 4.95 ) 3474 0.561 0.615 36.083 -0.035 -0.064 -0.039
ELE1 162 (2) 275725 0.748 0.570 485 1335 ( 2) 249739 0.720 0.603 462 0.094 —-0.028 0.048
ELE2 421 (39) 7567 0.936 0.996 87.526 33.55 ( 3.7 ) 4363 0.943 0.997 69.591 0.424 0.007 0.205
FAC 5.15 ( 2.25 ) 33235 0.929 0.845 29.462 49 (22) 29719 0.931 0.905 23.056 0.106 0.002 0.217
FOR 40.95 ( 4.75 ) 7192 0.309 0.000 44.534 41.8 ( 4.45 ) 5589 0.341 0.009 35.414 0.223 0.032 0.205
LAS 5240 ( 4) 63.409 0.961 0.942 4.261 56.4 (14) 44.888 0.913 0.960 3.890 0.292 —-0.048 0.087
MOR 1295 ( 215 ) 0.015 0.987 0.9970 0.127 16.25 ( 2.3 ) 0.013 0.986 0.9972 0.116 0.120 -0.001 0.090
PRI 333 (6.7 ) 5501181 0.437 0.693 1996 75.4 ( 835 ) 7750072 0.330 0.531 2212 -0.290 -0.106 -0.098
QUA 415 ( 3) 0.069 0.587 0.309 0.263 11.6 ( 275 ) 0.022 0.147 0.000 0.179 0.675 -0.439 0.320
SER 76.65 ( 4) 0.574 0.586 0.515 0.546 7265 (4) 0.428 0.566 0.613 0.437 0.255 -0.020 0.199
STR 49 ( 485) 352234 0.583 0.014 381 422 (4) 233178 0.586 0.029 343 0.338 0.003 0.099
TRE 11.85 ( 22 ) 0.041 0.972 0.993 0.180 103 ( 2) 0.035 0.979 0.994 0.169 0.134 0.007 0.064
TRI 60.5 ( 11.85 ) 0.020 0.166 0.198 0.147 84.85 ( 11.5 ) 0.012 0.218 0.143 0.110 0.389 0.052 0.247
YH 16.35 ( 3) 1.143 0.833 0.989 0.784 77 (49) 8.423 0.872 0.904 1.788 -0.864 0.039 —-0.561
ADD 49.7 ( 3) 4.058 0.479 0.672 2.285 553 ( 3.7 ) 2.103 0.499 0.830 1.658 0.482 0.020 0.157 0.274
AIL 368 (5) 2.13E-08 0.126 0.744 1.53E-04 46.65 ( 4.45 ) 1.64E-08 0.130 0.802 1.33E-04 0.233 0.005 0.058 0.131
BK32 16.8 ( 3.15 ) 5.47E-03 0713 0.258 0.077 24.25 (1 33) 5.36E-03 0.712 0.273 0.075 0.020 —-0.001 0.015 0.019
BK8 21.05 ( 2.05 ) 7.32E-04 0.948 0.936 0.027 9.35 ( 2.05) 7.31E-04 0.952 0.937 0.028 0.001 0.003 0.000 -0.021
CA 30.6 ( 5.35) 5.666 0.613 0.967 2.386 30.55 ( 4.85 ) 5.799 0.623 0.967 2.401 -0.023 0.009 0.000 —0.006
CAL 26.75 ( 4.2) 4.25E+09 0.840 0.362 73023 49.3 ( 46) 2.30E+09 0.866 0.654 50182 0.458 0.026 0.292 0.313
CPS 40.65 ( 4.8 ) 6.581 0.610 0.962 2.589 27.7 (475 ) 7.045 0.617 0.960 2.650 —-0.066 0.008 -0.002 -0.023
DAIL 31.95 ( 4.6 ) 2.90E-08 0.750 0.364 1.81E-04 29.05 ( 49 ) 1.69E-08 0.763 0.631 1.30E-04 0.417 0.013 0.267 0.282
DELV 316 (3) 1.86E-06 0.753 0.339 0.002 3275 ( 375 ) 1.33E-06 0.758 0.528 0.001 0.285 0.005 0.189 0.180
H16 13.2 ( 475) 1.42E+09 0.612 0.038 37721 27.25 (1 39) 1.23E+09 0.622 0.130 33576 0.133 0.009 0.092 0.110
H8 29.05 ( 4.35 ) 7.01E+08 0.669 0.495 24040 33.55 ( 4.55 ) 6.86E+08 0.678 0.505 23837 0.022 0.008 0.011 0.008
PUM 296 ( 21) 3.30E-05 0.944 0.928 6.44E-03 26.45 ( 2) 2.90E-05 0.950 0.937 6.03E-03 0.121 0.005 0.009 0.062
Average 33.05 ( 418 ) 0.668 0.594 38.1 ( 4.25) 0.635 0.647
Table 7
Wilcoxon test to compare our new proposals (R*) vs methods with SMOGN (R") in MSE, ,,, Fl,y, R?, MAE and MAPE.
Methods analyzed Comparison R* R~ Hypothesis (« = 0.1) p-value
Linguistic-IR vs. SMOGN+Linguistic MSE; 486 42 Rejected 5.25E-06
Linguistic-IR vs. SMOGN+Linguistic Fl,, 341 187 Accepted 0.154
Linguistic-IR vs. SMOGN+Linguistic RrR? 445 51 Rejected 1.18E-04
Linguistic-IR vs. SMOGN+Linguistic MAE 465 63 Rejected 6.03E-05
Linguistic-IR vs. SMOGN+Linguistic MAPE 422 106 Rejected 2.39E-03
TSK-IR vs. SMOGN+TSK MSE, 446 82 Rejected 3.65E-04
TSK-IR vs. SMOGN+TSK Fl,, 268 260 Accepted 0.949
TSK-IR vs. SMOGN+TSK R? 339 157 Rejected 0.076
TSK-IR vs. SMOGN+TSK MAE 461 67 Rejected 9.05E-05
TSK-IR vs. SMOGN+TSK MAPE 423 105 Rejected 2.23E-03
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Fig. 9. SMOGN+TSK vs. TSK-IR F1.

can see that in MSE, R>, MAE and MAPE the null hypothesis is
rejected in both cases (Linguistic and TSK) with 99.99% confidence
(but in one with 90.0%), which means that there is clear statistical
evidences showing that our proposals greatly improve the methods with
SMOGN in all the accuracy metrics, without preprocessing, and perform
equally (or slightly better) with statistical evidence in F1 (our proposals
outperform the methods with SMOGN in the ranking). This means
that Linguistic-IR and TSK-IR perform well with the imbalance metric,
demonstrating that our algorithms are actively adapted to work in
imbalanced sets, regardless of their origin. In addition, unlike SMOGN,
they obtain better results in M SE, R?, MAE and M APE as compared
to the current state of the art; they obtain a balance between the
performance in D, and D,, so that a much better MSE, R?, MAE and
M APE are achieved than when using SMOGN. This is also important,
because although our main interest is that our algorithms perform well
in the minority and relevant data subset for the user D,, obtaining a
balance in the predictions outside that subset is also of importance,
since focusing only and exclusively on the relevant data is deemed
useless as it disregards the performance of the non-relevant data.
Graphically, Figs. 10 and 11 show how M SE is significantly improved
in both proposals as compared to methods with SMOGN.

Our active proposals Linguistic-IR and TSK-IR improve the best
current passive proposal: SMOGN (Branco et al., 2017) (evolution
of SMOTEReg Torgo et al., 2013). The proposed methods produce
good results in the relevant values while obtaining a balance in the
performance in the rest of the dataset.

8. Conclusions and future work

This contribution is focused on the importance of addressing an
issue scarcely tackled to date, imbalance in regression, in order to
obtain good performance on the relevant and less represented data
without impairing the overall performance of the obtained models.

In this contribution we have verified that traditional performance
evaluation measures for regression problems do not accurately repre-
sent their performance in imbalanced regression problems since they
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focus on the most frequent instances and therefore, underestimate the
underrepresented/relevant subset. Consequently, to evaluate models
in imbalanced domains and compare them in accordance with user
preferences, specific metrics must be used. We propose using F1 as an
imbalance metric, which enables the evaluation of the overall perfor-
mance and prioritizes the predictions made by the model according to
the relevance of the instance to be predicted.

We have seen that the use of F1 in combination with classic metrics,
for instance MSE, R?, MAE and MAPE, provides us a balanced
evaluation of imbalance sets, since F1 reports on performance while
considering the relevant predictions and MSE provides a more global
view of performance. That is why improving both F1 and MSE together
allows us to focus on the relevant instances without compromising
performance in the remaining instances.

By utilizing existing techniques, we have been able to evaluate
the effectiveness of current proposals for treating imbalance in fuzzy
rule-based algorithms for regression problems, both linguistically and
approximately. The main conclusions are:

+ There is no significant difference in the performance when using
stratified and non-stratified data (F1 and MSE are equivalent).
Nevertheless, stratification is necessary to preserve a minimum
representation of these ranges of values of output values. Other-
wise, when partitioning random data for evaluation, that minority
set might not be represented in the training or in the test set.
Recent previous proposals (passive in any case) seem to sta-
tistically improve the performance on the relevant data subset,
but worsen the error produced for the rest of the data. While
these data are frequently represented and less significant from
the point of view of imbalanced regression, they are still part
of the dataset problem. In particular, the current best passive
approach (SMOGN) applied to the two current fuzzy rule-based
competitive algorithms improves performance on the imbalanced
relevant data subsets (F1 improves) at the cost of producing worse
estimates for the remaining problematic data (MSE’s performance
deteriorates for both).
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Fig. 10. Linguistic-IR vs. SMOGN+Linguistic MSE.

» We have developed two proposals, Linguistic-IR and TSK-IR, to
tackle the challenge of enhancing overall performance while
maintaining performance in the imbalanced dataset. Compared
to the available state-of-the-art passive proposals, SMOGN, it
has been demonstrated that our active proposals achieve supe-
rior performance since they statistically perform similarly, or
even slightly better, in F1 (as both proposals obtain better rank-
ings with respect to the methods with SMOGN) and statistically
outperform in MSE, R?>, MAE and M APE.

In conclusion, our proposals were intended to address imbalance

in regression and, in fact, outperform the application of the best
state-of-the-art passive technique, SMOGN. These new active proposals
(i.e. they do not imply preprocessing) have proven that it is not neces-
sary to sacrifice overall performance to improve the performance of the
model in the relevant data subset, since they do not only statistically
equalize performance on underrepresented data, but also statistically
improve overall model performance on imbalanced regression datasets.
Thus, they represent a remarkable alternative in the scarcely tackled
imbalanced regression problem.

These types of active techniques are particularly suitable for regres-
sion problems with imbalanced data, since we have easily demonstrated
that we can even improve the overall performance of the algorithms
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beyond simply dealing with imbalance. Future work will be directed
toward finding new, more advanced active techniques, specifically
designed to address the problem of imbalanced regression. In fact,
although the proposed algorithms have been shown to be highly effec-
tive, they represent only two relatively simple initial attempts at active
techniques for imbalanced regression. Consequently, we believe that
there is still much room for improvement, making it a promising new
line of research. Three promising initial are suggested in the following:

We have proposed M SE“Z’ as M SE or relevance weighted M.SE
depending on the relevance of the data, thus integrating both

concepts (global error and imbalance penalization) in a single
index. Even though that MOEAs suffer as more objectives are
considered, it would be very interesting to consider M.SE and
F1 separately to find different trade-offs among both desired
and (somehow) contradictory properties. It would probably allow
obtaining a set of Pareto-optimal solutions to be obtained that
users could check for the most interesting trade-off.

Another problem to be faced is the computational time that F1
or the interest function takes. Reducing the time required to
compute M SE”Z’ or F1 by proposing other metrics or simpler
estimations would allow for much faster algorithms that could
be easily applied to problems with a much larger number of
instances.
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Fig. 11.

» Integrating linguistic interpretability metrics to the optimization
process would be of interest in order to actually learn inter-
pretable models. Some metrics and/or algorithms, such as the
one in Biedma-Rdguez et al. (2022), could be considered together
with data imbalance to obtain more reliable and robust models.

CRediT authorship contribution statement

Maria Arteaga: Investigation, Software, Formal analysis, Data cu-
ration, Validation, Writing — original draft, Writing — review & editing.
Maria José Gacto: Conceptualization, Methodology, Formal analy-
sis, Investigation, Software, Supervision, Resources, Writing — orig-
inal draft, Writing — review & editing. Marta Galende: Resources,
Writing — review & editing, Validation, Visualization, Software. Jests
Alcaléa-Fdez: Methodology, Formal analysis, Writing — review & edit-
ing, Project administration, Funding acquisition. Rafael Alcala: Con-
ceptualization, Methodology, Formal analysis, Writing — review & edit-
ing, Supervision, Project administration, Funding acquisition.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

TSK-IR vs. SMOGN+TSK MSE.

Data availability
Datasets are available at public repositories.
Acknowledgments

This paper has been supported in part by the ERDF A way of
making Europe/Health Institute Carlos III/Spanish Ministry of Sci-
ence, Innovation and Universities (grant number P120/00711), by
the ERDF A way of making Europe/Regional Government of Andalu-
sia/Ministry of Economic Transformation, Industry, Knowledge and
Universities (grant numbers P18-RT-2248 and B-CTS-536-UGR20) and
by the MCIN/AEI/10.13039/50110001103 (grant numbers PID2019-
107793GB-100 and PID2020-119478GB-100). Funding for open access
charge: Universidad de Granada / CBUA.

References

Ahmadi, M. (2021). A computational approach to uncovering economic growth factors.
Computational Economics, 58(4), 1051-1076.

Akujuobi, U., & Zhang, X. (2017). Delve: A dataset-driven scholarly search and analysis
system. SIGKDD Explorations Newsletters, 19(2), 3646, http://www.cs.toronto.edu/
~delve/data/datasets.html.


http://refhub.elsevier.com/S0957-4174(23)01513-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb1
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb1
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html

M. Arteaga et al.

Alcal4, R., Alcala-Fdez, J., & Herrera, F. (2007). A proposal for the genetic lateral tuning
of linguistic fuzzy systems and its interaction with rule selection. IEEE Transactions
on Fuzzy Systems, 15(4), 616-635.

Alcal4, R., Gacto, M. J., & Herrera, F. (2011). A fast and scalable multi-objective genetic
fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems.
IEEE Transactions on Fuzzy Systems, 19(4), 666-681.

Alcala-Fdez, J., Alcala, R., Gonzalez, S., Nojima, Y., & Garcia, S. (2017). Evolutionary
fuzzy rule-based methods for monotonic classification. IEEE Transactions on Fuzzy
Systems, 25(6), 1376-1390.

Barredo Arrieta, A., Diaz-Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,
Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020).
Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible Al Information Fusion, 58, 82-115.

Bi, J., & Bennett, K. P. (2003). Regression error characteristic curves. In Proceedings of
the twentieth international conference on international conference on machine learning
(pp. 43-50). AAAI Press.

Biedma-Rdguez, C., Gacto, M. J., Anguita-Ruiz, A., Alcala-Fdez, J., & Alcala, R. (2022).
Transparent but accurate evolutionary regression combining new linguistic fuzzy
grammar and a novel interpretable linear extension. International Journal of Fuzzy
Systems, 24(7), 3082-3103.

Branco, P. (2019). An r package for utility-based learning. https://github.com/
paobranco/UBL.

Branco, P., Torgo, L., & Ribeiro, R. P. (2015). A survey of predictive modelling under
imbalanced distributions, CoRR. arXiv:1505.01658.

Branco, P., Torgo, L., & Ribeiro, R. P. (2017). SMOGN: a pre-processing approach for
imbalanced regression. In L. s Torgo, B. Krawczyk, P. Branco, & N. Moniz (Eds.),
Proceedings of machine learning research: vol.74, Proceedings of the first international
workshop on learning with imbalanced domains: theory and applications (pp. 36-50).
ECML-PKDD, Skopje, Macedonia: PMLR.

Castelvecchi, D. (2016). Can we open the black box of AI? Nature, 538, 20-23.

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research (JAIR),
16, 321-357.

Dua, D., & Graff, C. (2017). UCI machine learning repository. University of California,
Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/ml.

Eshelman, L. J. (1991). The CHC adaptive search algorithm: how to have safe search
when engaging in nontraditional genetic recombination. In G. J. Rawlins (Ed.),
Foundations of genetic algorithms: vol. 1, FOGA (pp. 265-283). Elsevier.

Gacto, M., Galende, M., Alcald, R., & Herrera, F. (2014). METSK-HDe: A multiobjective
evolutionary algorithm to learn accurate TSK-fuzzy systems in high-dimensional
and large-scale regression problems. Information Sciences, 276, 63-79.

Gacto, M. J., Soto-Hidalgo, J. M., Alcala-Fdez, J., & Alcala, R. (2019). Experimental
study on 164 algorithms available in software tools for solving standard non-linear
regression problems. IEEE Access, 7, 108916-108939.

Gerritsma, J., Onnink, R., & Versluis, A. (2013). Yacht hydrodynamics. uci machine
learning repository. http://dx.doi.org/10.24432/C5XG7R.

Ghorbani, N., & Korzeniowski, A. (2020). Adaptive risk hedging for call options under
cox-ingersoll-ross interest rates. Journal of Mathematical Finance, 10(4), 697-704.

Goli, A., Khademi-Zare, H., Tavakkoli-Moghaddam, R., Sadeghieh, A., Sasanian, M.,
& Kordestanizadeh, R. M. (2021). An integrated approach based on artificial
intelligence and novel meta-heuristic algorithms to predict demand for dairy
products: a case study. Network. Computation in Neural Systems, 32(1), 1-35, PMID:
33390063.

Granger, C. W. J. (1969). Prediction with a generalized cost of error function.
Operational Research Quarterly, 20(2), 199-207.

Hernandez-Orallo, J. (2013). ROC curves for regression. Pattern Recognition, 46(12),
3395-3411.

JSE (2023). Journal of Statistics Education Data Archive, https://jse.amstat.org/jse_data_
archive.htm. (Last Accessed 7 July 2023).

Juez-Gil, M., Arnaiz-Gonzilez, A., Rodriguez, J. J., & Garcia-Osorio, C. (2021).
Experimental evaluation of ensemble classifiers for imbalance in big data. Applied
Soft Computing, 108, Article 107447, URL https://www.sciencedirect.com/science/
article/pii/S1568494621003707.

Kaieski, N., da Costa, C. A., da Rosa Righi, R., Lora, P. S., & Eskofier, B. (2020).
Application of artificial intelligence methods in vital signs analysis of hospitalized
patients: A systematic literature review. Applied Soft Computing, 96, Article 106612,
URL https://www.sciencedirect.com/science/article/pii/S1568494620305500.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Journal of Fluids Engineering, 82(1), 35-45.

Korzeniowski, A., & Ghorbani, N. (2021). Put options with linear investment for
hull-white interest rates. Journal of Mathematical Finance, 11(1), 152-162.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future
directions. Progress in Artificial Intelligence, 5, 221-232.

Lozano, M., Herrera, F., Krasnogor, N., & Molina, D. (2004). Real-coded memetic
algorithms with crossover hill-climbing. Evolutionary Computation, 12(3), 273-302.

19

Expert Systems With Applications 234 (2023) 121011

Murphey, Y., Guo, H., & Feldkamp, L. (2004). Neural learning from unbalanced data:
Special issue: Engineering intelligent systems (guest editor: Laszl6 monostori).
Applied Intelligence, 21, 117-128.

Nash, W., Sellers, T., Talbot, S., Cawthorn, A., & Ford, W. (1994). The population
biology of abalone (haliotis species) in tasmania. i. blacklip abalone (h. rubra) from
the north coast and islands of bass strait. Sea fisheries division, Technical report No.
48.

Pena, A., Patino, A., Chiclana, F., Caraffini, F., Gongora, M., Gonzalez-Ruiz, J. D., &
Duque-Grisales, E. (2021). Fuzzy convolutional deep-learning model to estimate
the operational risk capital using multi-source risk events. Applied Soft Comput-
ing, 107, Article 107381, URL https://www.sciencedirect.com/science/article/pii/
$1568494621003045.

Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., Anari, S., Naseri, M.,
& Bendechache, M. (2021). Brain tumor segmentation based on deep learning and
an attention mechanism using MRI multi-modalities brain images. Scientific Reports,
11(1), 10930.

Ranjbarzadeh, R., Caputo, A., Tirkolaee, E. B., Jafarzadeh Ghoushchi, S., & Ben-
dechache, M. (2023). Brain tumor segmentation of MRI images: A comprehensive
review on the application of artificial intelligence tools. Computers in Biology and
Medicine, 152, Article 106405, URL https://www.sciencedirect.com/science/article/
pii/S0010482522011131.

Ranjbarzadeh, R., Jafarzadeh Ghoushchi, S., Anari, S., Safavi, S., Tataei Sarshar, N.,
Babaee Tirkolaee, E., & Bendechache, M. (2022). A deep learning approach for
robust, multi-oriented, and curved text detection. Cognitive Computation.

Sheskin, D. J. (2007). Handbook of parametric and nonparametric statistical procedures
(4th ed.). Chapman & Hall/CRC.

Singh, A., & Purohit, A. (2015). A survey on methods for solving data imbalance
problem for classification. International Journal of Computer Applications, 127(15),
37-41.

Steininger, M., Kobs, K., Davidson, P., Krause, A., & Hotho, A. (2021). Density-based
weighting for imbalanced regression. Machine Learning, 110(8), 2187-2211.

Sugeno, M., & Kang, G. (1988). Structure identification of fuzzy model. Fuzzy Sets and
Systems, 28(1), 15-33.

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications
to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-15(1), 116-132.

Torgo, L. (2023). Luis torgo repository. https://www.dcc.fc.up.pt/~Itorgo/Regression/
DataSets.html. (Last Accessed 7 July 2023).

Torgo, L., & Ribeiro, R. (2007). Utility-based regression. In J. N. Kok, J. Koronacki,
R. Lopez de Mantaras, S. Matwin, D. Mladeni¢, & A. Skowron (Eds.), Knowledge
discovery in databases: PKDD 2007 (pp. 597-604). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Torgo, L., & Ribeiro, R. (2009). Precision and recall for regression. In J. a. Gama, V.
S. Costa, A. M. Jorge, & P. B. Brazdil (Eds.), Discovery science (pp. 332-346). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Torgo, L., Ribeiro, R. P., Pfahringer, B., & Branco, P. (2013). SMOTE for regression.
In L. Correia, L. P. Reis, & J. Cascalho (Eds.), Progress in artificial intelligence (pp.
378-389). Berlin, Heidelberg: Springer Berlin Heidelberg.

Triguero, I., Gonzalez, S., Moyano, J. M., Garcia, S., Alcala-Fdez, J., Luengo, J.,
Fernandez, A., del Jests, M., Sanchez, L., & Herrera, F. (2017). KEEL 3.0: An
open source software for multi-stage analysis in data mining. International Journal
of Computational Intelligence Systems, 10, 1238-1249, http://www.keel.es.

Wang, L., Han, M., Li, X., Zhang, N., & Cheng, H. (2021). Review of classification
methods on unbalanced data sets. IEEE Access, 9, 64606-64628.

Wang, L., & Mendel, J. M. (1992). Generating fuzzy rules by learning from examples.
IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414-1427.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,
1(6), 80-83.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining, fourth edition:
practical machine learning tools and techniques (4th ed.). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., http://www.cs.waikato.ac.nz/ml/weka/.

Yan, Y., Jiang, Y., Zheng, Z., Yu, C., Zhang, Y., & Zhang, Y. (2022). LDAS: Local
density-based adaptive sampling for imbalanced data classification. Expert Systems
with Applications, 191, Article 116213.

Zhang, C., Li, J., Zhao, Y., Li, T., Chen, Q., Zhang, X., & Qiu, W. (2021). Problem of
data imbalance in building energy load prediction: Concept, influence, and solution.
Applied Energy, 297, Article 117139, URL https://www.sciencedirect.com/science/
article/pii/S0306261921005791.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In Proc. evolutionary methods
for design, optimization and control with app. to industrial problems (pp. 95-100).
Barcelona, Spain.


http://refhub.elsevier.com/S0957-4174(23)01513-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb4
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb5
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb6
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb7
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb8
https://github.com/paobranco/UBL
https://github.com/paobranco/UBL
https://github.com/paobranco/UBL
http://arxiv.org/abs/1505.01658
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb11
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb12
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb13
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb13
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb15
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb16
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb17
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb17
http://dx.doi.org/10.24432/C5XG7R
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb19
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb20
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb21
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb22
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb22
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb22
https://jse.amstat.org/jse_data_archive.htm
https://jse.amstat.org/jse_data_archive.htm
https://jse.amstat.org/jse_data_archive.htm
https://www.sciencedirect.com/science/article/pii/S1568494621003707
https://www.sciencedirect.com/science/article/pii/S1568494621003707
https://www.sciencedirect.com/science/article/pii/S1568494621003707
https://www.sciencedirect.com/science/article/pii/S1568494620305500
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb26
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb27
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb28
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb29
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb30
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb31
https://www.sciencedirect.com/science/article/pii/S1568494621003045
https://www.sciencedirect.com/science/article/pii/S1568494621003045
https://www.sciencedirect.com/science/article/pii/S1568494621003045
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb33
https://www.sciencedirect.com/science/article/pii/S0010482522011131
https://www.sciencedirect.com/science/article/pii/S0010482522011131
https://www.sciencedirect.com/science/article/pii/S0010482522011131
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb35
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb36
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb37
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb38
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb38
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb38
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb39
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb40
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb42
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb43
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb44
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb44
http://www.keel.es
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb46
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb47
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb47
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb47
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb48
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb48
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb48
http://www.cs.waikato.ac.nz/ml/weka/
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb50
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb50
https://www.sciencedirect.com/science/article/pii/S0306261921005791
https://www.sciencedirect.com/science/article/pii/S0306261921005791
https://www.sciencedirect.com/science/article/pii/S0306261921005791
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52
http://refhub.elsevier.com/S0957-4174(23)01513-0/sb52

	Enhancing soft computing techniques to actively address imbalanced regression problems
	Introduction
	State-of-the-art in imbalanced regression
	Preprocessing or passive techniques
	Specific purpose or active learning techniques

	Formal definition of the main concepts and metrics of the problem
	Main concepts: Relevance distribution function, relevant data and non-relevant data
	Evaluation Metrics

	Algorithms applied to the problem
	FSMOGFSe+TUNe
	First stage
	Second stage

	METSK-HDe
	First stage
	Second stage


	Fuzzy Rule-Based Systems for imbalanced regression
	Metric used to guide the algorithm
	Linguistic-IR
	TSK-IR

	Experimental study
	Datasets
	Selection of metrics
	Models used
	Stratification process
	SMOGN parameters

	Evaluation

	Results and Discussion
	Comparison between algorithms with and without stratification
	Comparison between methods considering SMOGN
	Comparison with our new proposals

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


