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de Murcia 21955/PI/22. The research of Garćıa-Lirola was also supported by DGA project
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196 Page 2 of 16 L. C. Garćıa-Lirola et al. Results Math

1. Introduction

One of the most celebrated and earlier results in Functional Analysis is Krein–
Milman theorem. This result establishes that if K is a compact convex subset
of a locally convex space then K = co(ext (K)), where ext (K) denotes the
set of extreme points of K (see e.g. [16, Theorem 3.22]). An example of ap-
plication is to the unit ball of a dual Banach space X∗, where it yields that
BX∗ = cow∗

(ext (BX∗)). This result is of capital importance because, thanks
to Hahn–Banach theorem, the structure of the geometry of a Banach space X
is determined by the dual unit ball BX∗ . Thus, Krein–Milman theorem tells
us that the set ext (BX∗) codifies all the geometric information of the space.

The identification of the extreme points (and related notions as exposed,
denting, or strongly exposed points) on particular classes of Banach spaces has
attracted the attention of many researchers in functional analysis, especially in
spaces where the definition of the norm is of high complexity, see e.g. [5,17,18]
for duals of spaces of compact operators, [14] for Orlicz–Lorentz spaces, [11] for
Kothe–Bochner spaces, or, more recently, [1–3,8,9] for Lipschitz-free spaces.
In this note, we will focus on projective tensor products. Denoted by X ̂⊗πY ,
the projective tensor product is the completion of the algebraic tensor product
X ⊗ Y endowed with the norm

‖z‖π := inf

{

n
∑

i=1

‖xi‖‖yi‖ : z =
n

∑

i=1

xi ⊗ yi

}

,

where the infimum is taken over all such representations of z. Recall also that
BX ̂⊗πY = co(BX ⊗ BY ).

In the analysis of the extremal structure of the projective tensor product
we distinguish two lines. The first one is the exhaustive analysis of the extreme
points in duals of operators spaces done by Collins and Ruess [5] and by Ruess
and Stegall [18]. They established that, given two Banach spaces X and Y ,
the extreme points of the dual unit ball of the w∗-to-w continuous compact
operators Kw∗(X∗, Y ) are the elements of the form x∗ ⊗y∗, for x∗ ∈ ext (BX∗)
and y∗ ∈ ext (BY ∗). As a consequence of a classical result of tensor product
theory [19, Theorem 5.33], if X∗ or Y ∗ has the Radon–Nikodym property and
X∗ or Y ∗ has the approximation property then

ext
(

BX∗
̂⊗πY ∗

)

= ext (BX∗) ⊗ ext (BY ∗) .

Little is known without the duality assumptions. Indeed, up to our knowledge,
it is an open question whether every extreme point of BX ̂⊗πY must be of the
form x⊗ y for x ∈ BX and y ∈ BY . The situation clarifies for the stronger no-
tions of denting points and strongly exposed points. Ruess and Stegall proved
in [17] that

strexp
(

BX ̂⊗πY

)

= strexp (BX) ⊗ strexp (BY ) .
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Furthermore, if x∗ strongly exposes x in BX and y∗ strongly exposes y in BY ,
then x∗ ⊗ y∗ strongly exposes x ⊗ y in BX ̂⊗πY . For denting points, D. Werner
proved in [20] an analogous result in a more general framework:

dent (co(C ⊗ D)) = dent (C) ⊗ dent (D)

whenever C ⊂ X and D ⊂ Y are closed bounded and absolutely convex
subsets.

Motivated by the above results, in this note we study the notions of
preserved extreme point and weak-strongly exposed point in projective tensor
products. Recall that a point x ∈ C is a preserved extreme point of C (also
called weak*-extreme point) if it is an extreme point of C

w∗
⊂ X∗∗; this is a

stronger notion than being extreme but weaker than being denting (see e.g.
[10]).

With this notation in mind, one of the main results of the present paper
is the following one.

Theorem 1.1. Let X and Y be Banach spaces such that K(X,Y ∗) is separating
for X ̂⊗πY (in particular, if the pair (X,Y ∗) has the CAP). Let C ⊆ X,
D ⊆ Y be bounded closed convex subsets. If z is a preserved extreme point of
co(C ⊗ D) ⊂ X ̂⊗πY then z = x ⊗ y for some x ∈ C and y ∈ D. Moreover, if
z �= 0 then x and y are preserved extreme points of C and D respectively.

As a particular case we get:

Corollary 1.2. Let X and Y be Banach spaces such that K(X,Y ∗) is separating
for X ̂⊗πY (in particular, if the pair (X,Y ∗) has the CAP). If z is a preserved
extreme point of BX ̂⊗πY , then z = x ⊗ y where x and y are preserved extreme
points of BX and BY respectively.

Theorem 1.1 points out that, in order to look for preserved extreme points
in projective tensor products, we only have to pay attention to basic tensors.
We do not know whether the converse holds. However, we will prove a kind of
converse for w-strongly exposed points.

A point x ∈ C is said to be exposed if there exists x∗ ∈ X∗ such that
x∗(x) > x∗(y) for all y ∈ C\{x}. We also say that x∗ exposes x in C. A point
x ∈ C is said strongly exposed (resp. w-strongly exposed) if there exists x∗ ∈ X∗

exposing x and such that for all sequences (xn)n ⊂ C such that x∗(xn) −→
n

x∗(x), it follows that xn −→
n

x (resp. xn
w−→
n

x). Equivalently, the slices of C

produced by x∗ are a neighbourhood basis of x for the norm (resp. weak)
topology in C.1 In this case, we write x ∈ strexp (C) (resp. x ∈ w -strexp (C)).

Theorem 1.3. Let X and Y be Banach spaces such that K(X,Y ∗) is separating
for X ̂⊗πY (in particular, if the pair (X,Y ∗) has the CAP). Let C ⊆ X and

1This notation should not be confused with the one in [17], where a point in BX∗ is called
weak*-strongly exposed if it is strongly exposed by an element of X.
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D ⊆ Y be symmetric, bounded closed convex subsets. Assume that x⊗y �= 0 has
a compact neighbourhood system for the weak topology in co(C ⊗D) ⊂ X ̂⊗πY .
Then the following are equivalent:

(i) x ⊗ y is w-strongly exposed in co(C ⊗ D).
(ii) x and y are w-strongly exposed in C and D, respectively.
In particular, if C ⊗ D is weakly compact, then

w -strexp (co(C ⊗ D)) = w -strexp (C) ⊗ w -strexp (D) .

The assumption that x ⊗ y has a compact neighbourhood system in the
above result might seem to be artificial but, surprisingly or not, it cannot be
removed. Indeed, in Example 3.8 we find a Banach space X which is isomorphic
to �2 satisfying that there exists a w-strongly exposed point x0 ∈ BX and such
that x0 ⊗ x0 is not a w-strongly exposed point of BX ̂⊗πX .

2. Notation and Preliminary Results

Throughout the paper we will only deal with real Banach spaces. Let C be a
bounded subset of a Banach space X. Given x∗ ∈ X∗ and α > 0, we denote

S(C, x∗, α) = {x ∈ C : x∗(x) > supx∗(C) − α}
the (open) slice of C produced by x∗.

We say that x ∈ C is extreme if the condition x = y+z
2 with y, z ∈ C

implies y = z. We write x ∈ ext (C).
A point x ∈ C is a preserved extreme point (or a w∗-extreme point) if x

is an extreme point of C
w∗

. It can be proved that x is a preserved extreme
point if and only if the open slices containing x form a basis for x in the weak
topology induced on C (see [15]). This characterization will be used twice in
the proof of Theorem 1.1 without further mention. Notice that, in particular,
every w-strongly exposed point is a preserved extreme point.

Let us write here the following lemma, which we will use systematically
throughout the text. This is a well-known result (see e.g. [13, Lemma 7.21], a
preprint version of [12]) but we include a proof for completeness.

Lemma 2.1. Let X be a Banach space. Let A be a bounded subset of X and
write C = co(A). Let R := supx∈A ‖x‖. Then, given x∗ ∈ X∗, we have:
(1) supx∈A x∗(x) = supx∈C x∗(x).
(2) Given 0 < ε < 1

2 we have that

S(C, x∗, ε2) ⊆ co(S(A, x∗, ε)) + 4RεBX .

Proof. (1) is clear. Let’s prove (2). First, take an element of S(co(A), x∗, ε2),
which is a (finite) convex combination of the form

∑

n∈N
λnan where an ∈ A

for every n and

supx∗(A) − ε2 <
∑

n

λnx∗(an).
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Put J := {n ∈ N : supx∗(A) − ε < x∗(an)}. Then

supx∗(A) − ε2 <
∑

n∈J

λnx∗(an) +
∑

n/∈J

λnx∗(an)

�
(

∑

n∈J

λn

)

supx∗(A) + (supx∗(A) − ε)
∑

n/∈J

λn

= supx∗(A) − ε
∑

n/∈J

λn

which allows to deduce that
∑

n/∈J λn < ε. Since an ∈ S(A, x∗, ε) for each
n ∈ J , the result follows from the following estimation:

∥

∥

∥

∥

∥

∑

n∈J

(

λn
∑

n∈J λn

)

an −
∑

n∈N

λnan

∥

∥

∥

∥

∥

�
∥

∥

∥

∥

∥

∑

n∈J

(

λn
∑

n∈J λn
− λn

)

an

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

n/∈J

λnan

∥

∥

∥

∥

∥

�
∣

∣

∣

∣

1
∑

n∈J λn
− 1

∣

∣

∣

∣

·
∥

∥

∥

∥

∥

∑

n∈J

λnan

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

n/∈J

λnan

∥

∥

∥

∥

∥

� ε

1 − ε
R + εR =

2ε − ε2

1 − ε
R.

This shows that

S(co A, x∗, ε2) ⊆ S(co A, x∗, ε) +
2ε − ε2

1 − ε
RBX .

Finally,

S(C, x∗, ε2) ⊂ S(co(A), x∗, ε2) ⊂ S(co A, x∗, ε) + 4εRBX

since 2ε−ε2

1−ε < 4ε for ε < 1/2. �

Given two Banach spaces X,Y , we denote L(X,Y ), K(X,Y ) and F (X,Y )
the spaces of linear, compact, and finite-rank operators, respectively. Recall
that (X ̂⊗πY )∗ = L(X,Y ∗) isometrically. We refer the reader to [19] for ba-
sic properties of tensor products. We denote by τc the topology of compact
convergence in L(X,Y ), i.e. the topology of uniform convergence on com-
pact subsets of X. It is well known that X has the approximation property
if F (X,X)

τc = L(X,X), whereas it has the compact approximation property
if K(X,X)

τc = L(X,X). The definition of the approximation property was
extended to pairs of Banach spaces by E. Blonde in [4] as follows: The pair
(X,Y ) is said to have the approximation property if F (X,Y )

τc = L(X,Y ). In
a similar fashion we say that the pair (X,Y ) has the compact approximation
property (CAP for short) if K(X,Y )

τc = L(X,Y ) (see, for instance, [6]). No-
tice that for any set S ⊂ (X ̂⊗πY )∗ = L(X,Y ∗), we have S

τc ⊂ S
w∗

. Since
for a subspace Z ⊆ X∗ to separate points of X is equivalent to the equality
Z

w∗
= X∗, we have the following lemma:
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Lemma 2.2. Let X, Y be two Banach spaces. If the pair (X,Y ∗) has the CAP,
then K(X,Y ∗) separates points of X ̂⊗πY .

We will make use of the previous lemma throughout the text without
further mention. We finish this section by recalling that the pair (X,Y ∗) has
the CAP if and only if the pair (Y,X∗) has the CAP. It is immediate that if X
or Y has the compact approximation property or the approximation property
then the pair (X,Y ∗) has the CAP. As a consequence of [4, Example 4.2], for
every 1 � p < 2 < q < ∞ and every subspaces X ⊂ �q and Y ⊂ �p, the pair
(X,Y ) has the CAP. Nevertheless, there are such subspaces X and Y failing
the compact approximation property.

In order to prove our results about extremal structure, we need the fol-
lowing topological result which is of independent interest.

Theorem 2.3. Let X and Y be two Banach spaces such that K(X,Y ∗) is sepa-
rating for X ̂⊗πY (in particular, if the pair (X,Y ∗) has the CAP). Let C ⊆ X
and D ⊆ Y be two bounded subsets. Then the weak-closure of C ⊗D in X ̂⊗πY
is equal to C

w ⊗ D
w
, that is C ⊗ D

w
= C

w ⊗ D
w
.

Proof. First, given x ∈ C
w
, we have that the operator i : Y → X ⊗Y given by

y 
→ x ⊗ y is continuous. Thus, it is also weak-to-weak continuous, so

{x} ⊗ D
w

= i(D
w
) ⊆ i(D)

w
= {x} ⊗ D

w
.

This shows that C
w ⊗D

w ⊆ C
w ⊗ D

w

. Analogously, we get C
w ⊗D ⊆ C ⊗ D

w

and so

C
w ⊗ D

w ⊆ C ⊗ D
ww

= C ⊗ D
w
.

Now, given z ∈ C ⊗ D
w
, take a net (xs ⊗ ys) in C ⊗ D such that xs ⊗ ys → z

weakly, and let us prove that z = x ⊗ y for certain x ∈ C
w

and y ∈ D
w
.

We denote by C
w∗

and D
w∗

respectively the closure of C and D in the w∗

topology of X∗∗ and Y ∗∗ respectively, which are w∗-compact because they are
bounded.

Since (xs)s ⊂ C
w∗

and (ys)s ⊂ D
w∗

we can assume, up to taking a
suitable subnet, that both xs → x∗∗ in the w∗-topology of X∗∗ and ys → y∗∗

in the w∗-topology of Y ∗∗. �

Claim 2.4. For any compact operator K : X −→ Y ∗, we have that

K(xs)(ys) → K∗∗(x∗∗)(y∗∗).

Proof of the claim. First, recall that K∗∗ : X∗∗ −→ Y ∗∗∗ is a compact opera-
tor which satisfies K∗∗(X∗∗) ⊆ Y ∗. Fix ε > 0. We claim that there exists s0
such that |K(xs)(ys) − K∗∗(x∗∗)(y∗∗)| < ε for every s � s0. Namely, we know
that, since K∗∗ is compact, K∗∗(x∗∗) ∈ Y ∗ and ys → y∗∗ in the w∗-topology,
there exists s0 such that

‖K(xs) − K∗∗(x∗∗)‖ < ε/(2R) and |K∗∗(x∗∗)(ys) − K∗∗(x∗∗)(y∗∗)| < ε/2
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for every s � s0, where R > 0 is such that D ⊂ RBY . Then

|K(xs)(ys) − K∗∗(x∗∗)(y∗∗)| � ‖K(xs) − K∗∗(x∗∗)‖‖ys‖
+ |K∗∗(x∗∗)(ys) − K∗∗(x∗∗)(y∗∗)| < ε

for every s � s0 as desired. �

Now, we claim we can assume x∗∗ �= 0 and y∗∗ �= 0. Indeed, if x∗∗ = 0
this would imply 0 ∈ C

w
. Moreover, since z(K) = (0 ⊗ y∗∗)(K) = 0 holds

for every K ∈ K(X,Y ∗), which is separating for X ̂⊗πY , we would get that
z = 0 so, taking any y ∈ D, we have z = 0 ⊗ y ∈ C

w ⊗ D
w

and the proof
would be finished. Henceforth, we assume x∗∗ �= 0 and y∗∗ �= 0 and, clearly,
the above mentioned equality z(K) = (x∗∗ ⊗ y∗∗)(K) holding true for every
K ∈ K(X,Y ∗) implies z �= 0 too.

Claim 2.5. x∗∗ ∈ X and y∗∗ ∈ Y .

Proof of the claim. Let us prove that x∗∗ is w∗-continuous, the proof for y∗∗

being completely analogous. Take y∗ ∈ SY ∗ such that y∗∗(y∗) �= 0. Now we
have that

x∗∗(x∗) =
(x∗∗ ⊗ y∗∗)(x∗ ⊗ y∗)

y∗∗(y∗)
=

(x∗ ⊗ y∗)(z)
y∗∗(y∗)

∀x∗ ∈ X∗.

Thus, to see that x∗∗ is weak*-continuous it suffices to show that (x∗
s⊗y∗)(z) →

(x∗ ⊗ y∗)(z) whenever x∗
s

w∗
→ x∗. This is a consequence of the fact that the

operator X∗ → L(X,Y ∗) given by x∗ 
→ x∗ ⊗ y∗ is w∗-to-w∗-continuous as
being the adjoint of the operator X ̂⊗πY → X given by x ⊗ y 
→ y∗(y)x. �

At this point we will save notation calling x := x∗∗ ∈ X and y := y∗∗ ∈ Y .
Now we have that K(z) = K(x ⊗ y) holds for every K ∈ K(X,Y ∗). Since
K(X,Y ∗) is separating for X ̂⊗πY , we deduce that z = x ⊗ y. Moreover,
observe that xs → x in the weak topology of X. Since xs ∈ C for every s we
conclude that x ∈ C

w
. Analogously, y ∈ D, so z = x ⊗ y ∈ C

w ⊗ D
w
, which

finishes the proof. �
In spite of the fact that, under the approximation property, the tensor

product of weakly closed sets is weakly closed (see e.g. Theorem 2.3), it is
interesting to notice that if C and D are weakly compact, it does not follow that
C⊗D is weakly compact in X ̂⊗πY (for instance, if we take C = D = B�2 , then
the sequence (en⊗en)n is equivalent to the �1-basis, c.f. e.g. [19, Example 2.10]).

3. Main Results

The aim of this section is to present the proof of Theorems 1.1 and 1.3. We
start with the proof of Theorem 1.1.
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Proof of Theorem 1.1. Since z is a preserved extreme point, there is a neigh-
bourhood basis {Sα} of z for the weak-topology of co(C ⊗ D) so that Sα

is a slice for every α. Now, since Sα is a slice of co(C ⊗ D) we can find
xα ⊗ yα ∈ Sα ∩ (C ⊗ D) for every α. Since Sα is a weak basis for the weak
topology at z we get that z ∈ {xα ⊗ yα}w

, and now Theorem 2.3 and the fact
that C and D are weakly closed imply that z = x ⊗ y for certain x ∈ C and
y ∈ D.

If z �= 0 it is not difficult to prove that x and y are preserved extreme
points of C and D. Indeed, if S(co(C ⊗D), Tα, βα) is a neighbourhood system
of x⊗y for the weak topology in co(C⊗D), then the family of slices S′

α defined
as

S′
α := {x′ ∈ C : Tα(x′)(y) > 1 − βα}

is a neighbourhood system of x for the weak topology of X. �

An immediate consequence of Theorem 1.1 is the following corollary.

Corollary 3.1. Let X and Y be Banach spaces such that K(X,Y ∗) is separating
for X ̂⊗πY (in particular, if the pair (X,Y ∗) has the CAP). Let C ⊆ X and
D ⊆ Y be convex bounded subsets. If z is a w-strongly exposed point of co(C ⊗
D) then z = x ⊗ y for some x ∈ C and y ∈ D. Moreover, if z �= 0 then x and
y are w-strongly exposed points of C and D respectively.

Proof. Theorem 1.1 provides points x ∈ C and y ∈ D such that z = x ⊗ y.
It remains to prove that x and y are w-strongly exposed points if z �= 0. Let
T ∈ L(X,Y ∗) w-strongly exposing x ⊗ y in co(C ⊗ D), and define f ∈ X∗

by f(v) := T (v)(y). It is immediate that f w-strongly exposes x in C. The
argument for y is analogous. �

Now we will analyse a possible converse for Corollary 3.1. The first result
we find is the following.

Proposition 3.2. Let X,Y be Banach spaces. Let C ⊆ X and D ⊆ Y be
bounded and symmetric convex subsets. Let x0 be a strongly exposed point
of C and y0 be a w-strongly exposed point of D. Then x0 ⊗ y0 is a w-strongly
exposed point of co(C ⊗ D).

Proof. By homogeneity, we may assume that C ⊆ BX and D ⊆ BY , so R :=
supz∈C⊗D ‖z‖ � 1. Assume that x∗ strongly exposes x0 in C and y∗ w-strongly
exposes y0 in D. We may also assume that sup x∗(C) = 1 = sup y∗(D). Let
us prove that x∗ ⊗ y∗ w-strongly exposes x0 ⊗ y0 in co(C ⊗ D). To this end,

pick U :=
n
⋂

i=1

S(co(C ⊗ D), Ti, αi) to be a relatively weakly open subset of

co(C ⊗ D) containing x0 ⊗ y0, with ‖Ti‖ = 1 for each i, and let us prove that
S(co(C ⊗ D), x∗ ⊗ y∗, β) ⊆ U for a suitable β. Notice that

(x∗ ⊗ y∗)(x0 ⊗ y0) = x∗(x0)y∗(y0) = 1 = sup
z∈co(C⊗D)

(x∗ ⊗ y∗)(z)
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(here we use Lemma 2.1).
Since x0⊗y0 ∈ U , we have Ti(x0)(y0) > supz∈co(C⊗D) Ti(z)−αi for every

1 � i � n. Thus we can find ε0 > 0 so that Ti(x0)(y0) > supz∈co(C⊗D) Ti(z) −
αi + ε0 for every i.

Since x∗ strongly exposes x0, there is δ′ > 0 such that diam (S(C, x∗, δ′)) <
ε0
4 . Moreover, notice that

y0 ∈
n
⋂

i=1

{

y ∈ D : Ti(x0)(y) > sup
z∈co(C⊗D)

Ti(z) − αi + ε0

}

,

which is a relatively weakly open subset of D containing y0. Since y0 is weakly
exposed by y∗ we can find δ′′ > 0 such that

S(D, y∗, δ′′) ⊆
n
⋂

i=1

{

y ∈ D : Ti(x0)(y) > sup
z∈co(C⊗D)

Ti(z) − αi + ε0

}

.

Take δ := min{δ′, δ′′, ε0/4}. Consider finally the slice S(co(C⊗D), x∗⊗y∗, η2),
where 0 < η < δ/4. Let us prove that the previous slice is contained in U . To
this end, notice that

S(co(C ⊗ D), x∗ ⊗ y∗, η2) ⊆ co(S(C ⊗ D,x∗ ⊗ y∗, η)) + 4ηBX ̂⊗πY

⊆ co(S(C ⊗ D,x∗ ⊗ y∗, δ)) + δBX ̂⊗πY =: A

thanks to Lemma 2.1 and the choice of η. So, it suffices to prove that A ⊆ U . To
this end, pick x⊗y ∈ S(C ⊗D,x∗ ⊗y∗, δ). This means that x∗(x)y∗(y) > 1−δ,
from where x∗(x) > 1−δ � 1−δ′ and y∗(y) > 1−δ � 1−δ′′. By the definition of
δ′ and δ′′ we get that ‖x−x0‖ < ε0

4 and Ti(x0)(y) > supz∈co(C⊗D) Ti(z)−αi+ε0
for every i. Hence

Ti(x)(y) � Ti(x0)(y) − ‖Ti‖‖x − x0‖‖y‖ > sup
z∈co(C⊗D)

Ti(z) − αi + ε0 − ε0
4

= sup
z∈co(C⊗D)

Ti(z) − αi +
3ε0
4

.

An easy convexity argument implies that

Ti(u) > sup
z∈co(C⊗D)

Ti(z) − αi +
3ε0
4

∀u ∈ co(S(C ⊗ D,x∗ ⊗ y∗, δ)).

Now, given u ∈ A, we have u = v + w with v ∈ co(S(C ⊗ D,x∗ ⊗ y∗, δ)) and
‖w‖ � δ � ε0/4. Then,

Ti(u) = Ti(v) + Ti(w) � sup
z∈co(C⊗D)

Ti(z) − αi +
3ε0
4

− ‖w‖

� sup
z∈co(C⊗D)

Ti(z) − αi +
ε0
2

> sup
z∈co(C⊗D)

Ti(z) − αi

for each i. We conclude that u ∈ U , which proves that A ⊆ U and the proof is
finished. �
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Note that in Proposition 3.2 we obtain a compact operator (T : X → Y ∗

given by T (x) = x∗(x)y∗) providing a neighbourhood basis for x0 ⊗ y0 for the
weak topology in co(C ⊗ D). This motivates to consider the following notion.

Definition 3.3. Let X and Y be Banach spaces, and let C ⊆ X, D ⊆ Y
be two subsets. We say that x ⊗ y ∈ C ⊗ D has a compact neighbourhood
system for the weak topology in co(C ⊗ D) if, given any weakly open subset
U containing x0 ⊗ y0, there are slices S(co(C ⊗ D), Ti, αi) given by compact
operators Ti ∈ K(X,Y ∗) such that

x0 ⊗ y0 ∈
n
⋂

i=1

S(co(C ⊗ D), Ti, αi) ⊆ U.

Remark 3.4. (a) The above definition has an easy interpretation in terms of
nets: x ⊗ y has a compact neighbourhood system for the weak topology
in co(C ⊗D) if, and only if, given a net (zα)α ⊂ co(C ⊗D), the condition
T (zα) → T (x ⊗ y) for every T ∈ K(X,Y ∗) implies zα → x ⊗ y in the
weak topology on X ̂⊗πY . Equivalently, x ⊗ y is a point of continuity of
the formal identity

I : (co(C ⊗ D), w) −→ (co(C ⊗ D), σ(X ̂⊗πY,K(X,Y ∗))).

(b) In the case that K(X,Y ∗) is separating for X ̂⊗πY (in particular, if the
pair (X,Y ∗) has the CAP) and C ⊗ D is weakly compact, co(C ⊗ D)
is also weakly compact by Krein–Smulyan theorem (see e.g. [7, Theo-
rem II. 2.11]) and σ(X ̂⊗πY,K(X,Y ∗)) is Hausdorff because K(X,Y ∗)
is separating for L(X,Y ∗). Thus, the identity map I above is a home-
omorphism and so every x ⊗ y ∈ C ⊗ D has a compact neighbourhood
system.

Now we are ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. (i)⇒ (ii) follows from Corollary 3.1.
(ii)⇒(i). Write R := supz∈C⊗D ‖z‖. Take x∗

0 ∈ X∗ and y∗
0 ∈ Y ∗ w-

strongly exposing x0 and y0 in C and D, respectively, with x∗
0(x0) = supx∗

0(C) =
1, and y∗

0(y0) = sup y∗
0(D) = 1. Pick U to be a weak neighbourhood of x0 ⊗ y0

in co(C ⊗ D). By the assumption, we can assume that U =
n
⋂

i=1

S(co(C ⊗
D), Ti, αi) for certain compact operators T1, . . . , Tn : X → Y ∗. Furthermore,
we can assume supco(C⊗D) Ti = 1 for every i. Let η small enough so that
Ti(x0 ⊗ y0) > 1 − αi + η holds for every 1 � i � n. Moreover, observe that

x0 ∈
n
⋂

i=1

{z ∈ C : Ti(z)(y0) > 1 − αi + η}, which is a relatively weakly open

subset of C. Since x∗
0 w-strongly exposes x0 then there exists δ′ > 0 so that

x0 ∈ S(C, x∗
0, δ

′) ⊆
n
⋂

i=1

{z ∈ C : Ti(z)(y0) > 1 − αi + η}.
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Now, for every 1 � i � n, the set Ti(S(C, x∗
0, δ

′)) is a relatively compact subset
of Y ∗. Using the compactness condition on all the T ′

is we can find a finite set
x1, . . . , xm ∈ S(C, x∗

0, δ
′) so that B(Ti(xj), η

8 ), 1 � j � m, is a covering of
Ti(S(C, x∗

0, δ
′)) for every 1 � i � n. Observe that Ti(xj)(y0) > 1−αi +η holds

for every 1 � i � n and 1 � j � m. Consequently,

y0 ∈
n
⋂

i=1

m
⋂

j=1

{y ∈ D : Ti(xj)(y) > 1 − αi + η}.

Since y∗
0 w-strongly exposes y0 we can find δ′′ > 0 so that

y0 ∈ S(BY , y∗
0 , δ

′′) ⊆
n
⋂

i=1

m
⋂

j=1

{y ∈ D : Ti(xj)(y) > 1 − αi + η}.

We claim now that

S(C, x∗
0, δ

′) ⊗ S(D, y∗
0 , δ

′′) ⊂
n
⋂

i=1

S
(

co(C ⊗ D), Ti, αi − η

2

)

.

Indeed, let x ∈ S(C, x∗
0, δ

′) and y ∈ S(D, y∗
0 , δ

′′). We have, for every i ∈
{1, . . . , n}, an index ji ∈ {1, . . . , m} such that ‖Ti(x) − Ti(xji

)‖ < η
2 . On the

other hand, since S(D, y∗
0 , δ

′′) ⊆
n
⋂

i=1

m
⋂

j=1

{y ∈ D : Ti(xj)(y) > 1 − αi + η} we

have that, for every 1 � i � n, Ti(xji
)(y) > 1 − αi + η. Consequently

Ti(x)(y) � Ti(xji
)(y) − ‖Ti(xji

) − Ti(x)‖ > 1 − αi + η − η

2
= 1 − αi +

η

2
.

Take δ := min{δ′, δ′′, η
8 , η

8R} and consider S := S(co(C ⊗D), x∗
0 ⊗ y∗

0 , δ
2).

Observe that x0 ⊗ y0 ∈ S. Moreover,

S ⊆ co(S(C ⊗ D,x∗
0 ⊗ y∗

0 , δ)) + 4RδBX ̂⊗πY

in virtue of Lemma 2.1. Now, given 1 � i � n, since 1−δ > max{1−δ′, 1−δ′′}
we conclude that every element x ⊗ y of S(C ⊗ D,x∗

0 ⊗ y∗
0 , δ) satisfies x∗

0(x) >
1 − δ′ and y∗

0(y) > 1 − δ′′, so Ti(x)(y) > 1 − αi + η
2 . Since Ti is a linear

continuous functional on X ̂⊗πY we conclude that Ti(z) � 1−αi + η
2 holds for

every 1 � i � n and every z ∈ co(S(C⊗D,x∗
0⊗y∗

0 , δ)). Henceforth, given z ∈ S
we can find u ∈ co(S(C ⊗D,x∗

0 ⊗y∗
0 , δ)) and v ∈ BX ̂⊗πY so that z = u+4Rδv.

Now, given 1 � i � n we get

Ti(z) = Ti(u) + 4δRTi(v) � 1 − αi +
η

2
− 4Rδ > 1 − αi,

from where we conclude that z ∈
n
⋂

i=1

S(co(C ⊗ D), Ti, αi) = U . This proves

that S ⊆ U .
Summarising, we have proved that every relatively weakly open subset of

co(C ⊗D) containing x0⊗y0 actually contains a slice S(co(C ⊗D), x∗
0 ⊗y∗

0 , α).
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Moreover,

(x∗
0 ⊗ y∗

0)(x0 ⊗ y0) = supx∗
0(C) sup y∗

0(D) = sup(x∗
0 ⊗ y∗

0)(co(C ⊗ D)).

Thus, x∗
0 ⊗ y∗

0 w-strongly exposes x0 ⊗ y0. �

Remark 3.5. The hypothesis of symmetry of C and D in Theorem 1.3 and
Proposition 3.2 is needed. Indeed, let C ⊆ X be any bounded subset with
more than one point such that 0 is a strongly exposed point of C, and let
D ⊆ Y be a bounded set with a strongly exposed point y ∈ D satisfying
that −y ∈ D too. In spite of 0 and y being strongly exposed, the basic tensor
0 ⊗ y = 0 ∈ co(C ⊗ D) is not an extreme point, since

0 ⊗ y = 0 =
1
2
(x ⊗ y + x ⊗ (−y)),

for any x ∈ C \ {0}. Similarly, the result in [20, Theorem 1] about the denting
points of co(C ⊗ D) does not hold when C or D are non-symmetric.

At this point one can wonder whether the assumption of the existence of
the compact neighbourhood system can be removed in Theorem 1.3. We will
show that the answer is negative. Let us consider first the following example,
where the set is not symmetric.

Example 3.6. Consider X = Y = �2, let K := co{en : n ∈ N} and f :=
∑∞

k=1 2−ke∗
k. It is known that 0 is w-strongly exposed by f in K. Indeed,

assume (xn)∞
n=1 ⊂ K and limn→∞〈f, xn〉 = 0. Since K ⊂ �2, each xn can be

expressed as xn =
∑∞

k=1 an
kek with ak � 0 and

∑∞
k=1 an

k � 1. Therefore

0 = lim
n→∞〈f, xn〉 = lim

n→∞

∞
∑

k=1

2−kan
k � lim

n→∞ 2−kan
k .

This means that limn→∞〈ek, xn〉 = 0 for each k ∈ N and so xn
w→ 0. However,

f ⊗f does not weak-strongly exposes 0 in K⊗K ⊆ �2̂⊗π�2. Even more, 0 is not
weakly strongly exposed in K⊗K, i.e. there is no bilinear form B : �2×�2 → R

such that zk → 0 weakly whenever zk ∈ K ⊗ K satisfies that B(zk) → 0.
In order to prove that, take a bilinear form B. For every n ∈ N, the

sequence {B(en, ek)}k∈N → 0 since ek is weakly null in �2. Thus there is
a subsequence (ekn

)n of (en)n satisfying that B(en, ekn
) → 0. Observe that

en ⊗ ekn
∈ K ⊗ K for every n ∈ N.

However, (en⊗ekn
)n does not converge weakly to 0 since it is isometrically

equivalent to the �1 basis; this follows by the same argument as for the diagonal
en ⊗ en, see e.g. [19, Example 2.10].

Remark 3.7. The above argument also proves that 0 is not weakly strongly
exposed in co(K ⊗ K). It also follows that f ⊗ f exposes 0 in co(K ⊗ K).
Indeed, since f exposes 0 in K we have that, given any z ∈ K, f(z) = 0 if and
only if z = 0. Consequently, given x⊗y ∈ K ⊗K we have that (f ⊗f)(x⊗y) =
f(x)f(y) = 0 implies that either x or y equals 0 and so x ⊗ y = 0. From this,
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and the fact that {en ⊗ em}n,m is a Schauder basis for �2̂⊗π�2, it follows that
(f ⊗ f)(z) = 0 if and only if z = 0 for every z ∈ co(K ⊗ K).

In order to find an example showing that Theorem 1.3 does not hold
without the assumption of the existence of a compact neighbourhood system,
we will use the set K from Example 3.6 to construct an equivalent renorming
| · | on �2 satisfying that the new unit ball B(�2,|·|) has a w-strongly exposed
point x0 such that x0 ⊗ x0 is not w-strongly exposed in B(�2,|·|) ̂⊗π(�2,|·|).

Example 3.8. Set an equivalent norm | · | on �2 so that the new unit ball is
co((K −e1)∪ (−K +e1)∪ 1

8B�2), where K is the set described in Example 3.6.
We claim that −e1 ∈ B(�2,|·|) is w-strongly exposed by f :=

∑∞
k=1 2−ke∗

k.
Observe that f(−e1) = − 1

2 . Call A := K − e1 for simplicity. Since f is linear,
it is clear that

sup
z∈B(�2,|·|)

|f(z)| = sup
z∈A∪−A∪ 1

8B�2

|f(z)|.

Observe that the above supremum equals supz∈A |f(z)| since |f(z)| � 1
8 on

1
8B�2 and by a symmetry argument.

On the other hand, given z ∈ A we have z = v − e1 for v ∈ K. Now
f(v − e1) = − 1

2 + f(v) � − 1
2 since f � 0 on K. This proves that ‖f‖ =

1/2 = |f(−e1)|. Observe, moreover, that f(v − e1) � 0 holds for every v ∈ K.
In order to see that f w-strongly exposes −e1 it remains to prove that if
f(zn) → − 1

2 with (zn)n ⊂ B(�2,|·|) then zn → −e1 weakly. In order to do
so, by a density argument, we can assume with no loss of generality that
zn ∈ co(A ∪ −A ∪ 1

8B�2). For every n, we can write

zn = αnan + βn(−a′
n) + γnxn

for an, a′
n ∈ A, xn ∈ 1

8B�2 and αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1 for
every n.

Observe that

f(zn) = αnf(an) + βnf(−a′
n) + γnf(xn) � αnf(an) + γn(−1/8)

since f(−a′
n) � 0 for every n ∈ N and since |f(xn)| � 1/8. Since f(zn) → −1/2

the unique possibility is that αn → 1 (which implies βn → 0 and γn → 0).
Moreover, it is immediate that f(an) → −1/2. Since f w-strongly exposes −e1
in A we conclude that an → −e1 weakly, so zn → −e1 weakly, as desired.

Finally, if we consider e1 ⊗ e1, we get that it is not w-strongly exposed
in B(�2,|·|) ̂⊗π(�2,|·|). As in Example 3.6, given any bilinear and continuous form
B, we can find a strictly increasing sequence (kn)n such that B(en, ekn

) →
0, so B(−e1 + en,−e1 + ekn

) → B(e1, e1). However, if k1 < k2 < · · · we
have that {en ⊗ ekn

} is equivalent to the �1 basis since (�2, | · |) and �2 are
isomorphic (it follows for instance from [19, Proposition 2.3]) and therefore
((−e1 + en) ⊗ (−e1 + ekn

))n is not weakly convergent to e1 ⊗ e1.

We end the paper with some open questions.
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Question 3.9. Is x ⊗ y a preserved extreme point of BX ̂⊗πY whenever x and y
are preserved extreme points of BX and BY ?

Question 3.10. Is every (preserved) extreme point of BX ̂⊗πY a basic tensor?
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