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Introducción

El problema de clasificar un objeto matemático aparece en todas
las áreas de las Matemáticas. Normalmente, la clasificación se
obtiene de una forma más sencilla cuando representamos dicho
objeto por uno más simple; éste es el caso de la teorı́a de rep-
resentación de álgebras. Muchos de los progresos actuales en
teorı́a de representación de álgebras (finito dimensionales sobre un
cuerpo algebraicamente cerrado) usan las técnicas teóricas sobre
quivers formuladas por P. Gabriel y su escuela en los años setenta,
ver por ejemplo las referencias: [ASS05], [ARS95] y [GR92]. El
origen de este método se puede situar en el conocido teorema de
Gabriel: Toda álgebra basica de dimensión finita, sobre un cuerpo
algebraicamente cerrado K, es isomorfa a un cociente KQ/I, donde
KQ es el álgebra de caminos del quiver Q e I es un ideal admisible
de KQ.

Este resultado nos da una descripción explı́cita de no sólo cual-
quier álgebra finito dimensional, y ası́ como de su categorı́a de
módulos finitamente generados mediante representaciones lineales
del quiver asociado al álgebra.

Sin embargo una importante restricción condiciona el teorema
anterior: el álgebra debe ser de dimensión finita. Por tanto, de
manera natural se plantea la siguiente pregunta: +es posible gen-
eralizar este resultado para cualquier álgebra (de dimensión in-
finita)? Una ligera comprobación nos convence que no es posible
utilizar la misma demostración: los vértices del quiver correspon-
den con los idempotentes primitivos del álgebra; y si el quiver tiene
un número infinito de ellos, entonces el álgebra de caminos no
tiene elemento unidad.

En este contexto, la teorı́a de coalgebras aparece en un nivel
intermedio de dificultad. La estructura de coálgebra se obtiene in-
virtiendo las aplicaciones que definen la estructura de álgebra, esto
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es, una coálgebra C verifica los siguientes diagramas conmutativos

C
∆ //

∆

��

C ⊗ C

∆⊗I

��

C ⊗ C
I⊗ε
uullllll ε⊗I

))RRRRRR

C ⊗K K ⊗ C

C ⊗ C I⊗∆ // C ⊗ C ⊗ C C
∼=

iiRRRRRRRRR

∆

OO

∼=

55lllllllll

(Coasociatividad) (Counidad)

donde ∆ y ε (la comultiplicación y la counidad, respectivamente)
son aplicaciones lineales que corresponden con las nociones duales
de multiplicación y unidad en álgebras.

Se deberı́a esperar que el espacio dual de un álgebra fuera una
coálgebra y vice-versa. Esto es cierto si los espacios vectoriales
son finito dimensionales (aunque no es cierto en general), por lo
que la categorı́a de álgebras finito dimensionales es equivalente a
la categorı́a de coálgebras de dimensión finita. Por el teorema de
estructura de las coálgebras, toda coálgebra es una unión directa
de sus subcoálgebras finito dimensionales, es decir, es una unión
directa de álgebras de dimensión finita. Por lo que la teorı́a de
representación de coálgebras podrı́a pensarse como un paso inter-
medio entre el estudio de las álgebras de dimensión finita y las
álgebras de dimensión infinita.

La categorı́a de comódulos sobre una coálgebra es una cate-
gorı́a abeliana localmente finita y, por tanto, es posible utilizar en
ella ciertas herramientas que no son validas en una categorı́a de
módulos general. En particular, es de tipo finito y entonces se
puede pensar en encontrar una teorı́a para coálgebras análoga a
la existente para álgebras de dimensión finita. Este trabajo está
dedicado a desarrollar este objetivo, es decir, describir coálgebras
y su categorı́a de comódulos mediante quivers y representaciones
lineales de quivers. Para conseguir este propósito, el primer paso
debe ser obtener una versión del teorema de Gabriel, antes men-
cionado, para coálgebras.

Siguiendo esta idea, podemos dotar a un álgebra de caminos KQ
con una estructura de K-coálgebra graduada con comultiplicación
inducida por la descomposición de caminos, esto es, si p = αm · · ·α1

es un camino no trivial desde un vértice i a un vértice j, entonces

∆(p) = ej ⊗ p+ p⊗ ei +
m−1∑
i=1

αm · · ·αi+1 ⊗ αi · · ·α1 =
∑
ητ=p

η ⊗ τ
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y ∆(ei) = ei ⊗ ei para un camino trivial ei. La counidad de KQ se
define como

ε(α) =

{
1 si α es un vértice,
0 si α es un camino no trivial.

Esta coálgebra es conocida como la coálgebra de caminos del quiver
Q.

En [Woo97], el autor demuestra que toda coálgebra punteada
es isomorfa a una subcoálgebra de una coálgebra de caminos.
Además, contiene la subcoálgebra generada por todos los vértices
y todas las flechas, esto es, es una subcoálgebra admisible. Más
tarde, en [Sim01], se define la noción de coálgebra de caminos de
un quiver con relaciones (Q,Ω) como el subespacio de KQ dado por

C(Q,Ω) = {a ∈ KQ | 〈a,Ω〉 = 0},

donde 〈−,−〉 : KQ×KQ −→ K es la aplicación bilinear definida por
〈v, w〉 = δv,w (la delta de Kronecker) para cualesquiera dos caminos
v, w en Q.

Una de las razones expuestas en [Sim01] y [Sim05] para es-
cribir una coálgebra básica C de la forma C(Q,Ω) es el hecho de
que, en este caso, existe una equivalencia K-lineal de la categorı́a
MC

f de los C-comódulos derecha de dimensión finita con la cat-
egorı́a nilreplf

K(Q,Ω) de las representaciones K-lineales nilpotentes
de longitud finita del quiver con relaciones (Q,Ω) (ver [Sim01, p.
135] y [Sim05, Theorem 3.14]). Entonces, esta definición es con-
sistente con la teorı́a clásica y reduce el estudio de la categorı́aMC

al estudio de las representaciones lineales del quiver con relaciones
(Q,Ω).

Ası́ pues, se plantea el siguiente problema: ¿es toda coálgebra
básica, sobre un cuerpo algebraicamente cerrado, isomorfa a una
coálgebra de caminos de un quiver con relaciones?

En el Capı́tulo 2 tratamos este problema. La clase de todas las
subcoálgebras admisibles de una coálgebra de caminos puede di-
vidirse en dos subclases, dependiendo de si la coálgebra está gen-
erada por caminos o no. Obviamente, la primera clase es fácil
de estudiar y entonces en necesario centrarse únicamente en la
segunda. Para ello, establecemos un ambiente más general con-
siderando la topologı́a débil* en el álgebra dual para tratar el prob-
lema en un contexto elemental. En particular, la coálgebra de
caminos de un quiver con relaciones (Q,Ω) es descrita como el
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espacio ortogonal Ω⊥ del ideal Ω. Entonces el anterior problema
puede ser formulado como sigue: ¿existe para toda subcoálgebra
admisible C ≤ KQ, un ideal con relaciones Ω del álgebra KQ tal
que Ω⊥ = C? Desgraciadamente, esto no es cierto y mostramos un
ejemplo de una subcoálgebra admisible que no es el espacio ortog-
onal de ningún ideal de KQ. Ante esta situación, se hace necesario
un criterio que permita decidir cuando una subcoálgebra admisi-
ble es la coálgebra de caminos de un quiver con relaciones. En la
última sección del Capı́tulo 2 probamos el siguiente resultado:

Criterio (2.5.11). Sea C una subcoálgebra admisible de una coálgebra
de caminos KQ. Entonces C no es la coálgebra de caminos de
un quiver con relaciones si, y sólo si, existe un número infinito de
caminos {γi}i∈N en Q verificando las siguientes condiciones:

(a) Todos tienen mismo origen y mismo final.

(b) Ninguno de ellos pertenece a C.

(c) Existen escalares an
j ∈ K para todo j, n ∈ N tal que el conjunto

{γn +
∑

j>n a
n
j γj}n∈N está contenido en C.

Es bien conocido que la clase de las álgebras de dimensión
finita, sobre un cuerpo algebraicamente cerrado, es unión disjunta
de dos clases de álgebras: las álgebras tame y las álgebras wild.
Esto se conoce como la dicotomı́a tame-wild, ver [Dro79]. La idea
de tales clases es que la categorı́a de módulos finitamente gen-
erados sobre un álgebra wild es tan grande que contiene la cate-
gorı́a de módulos finitamente generados de cualquier álgebra de di-
mensión finita. Por tanto, no es razonable el propósito de describir
completamente su categorı́a de módulos y la teorı́a se restringe
únicamente a coálgebras tame. De forma dual D. Simson define
en [Sim01] y [Sim05] los conceptos análogos para una coálgebra
básica (punteada). Además, demuestra la versión débil de la di-
cotomı́a tame-wild (la versión completa es todavı́a un problema
abierto): Sea K un cuerpo algebraicamente cerrado. Entonces toda
K-coálgebra tame no es wild.

El contraejemplo dado en el Capı́tulo 2, que muestra que no
toda subcoálgebra admisible es una coálgebra de caminos de un
quiver con relaciones, es una coálgebra wild. Más aún, por el cri-
terio anterior, una coálgebra con dicha propiedad necesita que el
quiver asociado tenga un número infinito de caminos entre dos
puntos, y entonces parece cercana a ser wild. Por tanto, debemos
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reformular el problema de la siguiente manera: ¿toda coálgebra
básica, sobre un cuerpo algebraicamente cerrado, que no es wild, es
isomorfa a una coálgebra de caminos de un quiver con relaciones?.
En caso de ser cierto, esto implicarı́a que toda coálgebra básica
tame, sobre un cuerpo algebraicamente cerrado, es isomorfa a una
coálgebra de caminos de un quiver con relaciones. Podemos de-
cir más, puesto que, en tal caso, la demostración de la dicotomı́a
tame-wild quedarı́a reducida a coálgebras de caminos de quivers
con relaciones.

Para atender este problema, en el Capı́tulo 3 desarrollamos la
noción de localización en coálgebras. La categorı́a de comódulos
a derecha MC sobre una coálgebra C es una categorı́a de Gro-
thendieck localmente finita en la que la teorı́a de localización de-
scrita por Gabriel en [Gab62] puede ser aplicada. La idea prin-
cipal es que, para cualquier subcategorı́a densa T ⊆ MC, pode-
mos construir una categorı́a cociente, MC/T , y un funtor exacto,
T :MC →MC/T , verificando una propiedad universal. En [Gab72]
se prueba que la categorı́a cociente es de nuevo una categorı́a de
comódulos. Si el funtor T tiene un adjunto por la derecha, S, en-
tonces se dice que la subcategorı́a es localizante. Dualmente, una
categorı́a se dice colocalizante si T tiene un adjunto por la izquierda
H. Los funtores S y H son un embebimiento exacto a izquierda y un
embebimiento exacto a derecha, respectivamente, por lo que parece
factible una relación entre el tipo de comódulos de la coálgebra C
y de la categorı́a cociente.

La versión para coálgebras está desarrollada principalmente en
[Gre76], [Lin75], [NT94] y [NT96]. En estos artı́culos son estudi-
adas las subcategorı́as localizantes y las relaciones existentes con
otros conceptos como coálgebras coidempotentes, comódulos in-
yectivos o comódulos simples. En [CGT02] y [JMNR06], se define
una correspondencia biyectiva entre la subcategorı́as localizantes
y las clases de equivalencia de elementos idempotentes del álgebra
dual. Este hecho nos permite describir la categorı́a cociente como
la categorı́a de comódulos sobre la coálgebra eCe cuya estructura
viene dada por

∆eCe(exe) =
∑
(x)

ex(1)e⊗ ex(2)e y εeCe(exe) = εC(x)

para todo x ∈ C, donde ∆C(x) =
∑

(x) x(1) ⊗ x(2), con la notación de
[Swe69]. También se prueba que los funtores asociados a la local-
ización son T = e(−) = −�CeC = CohomC(Ce,−), S = −�eCeCe and
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H = CohomeCe(eC,−). Esto es usado frecuentemente en la última
sección del Capı́tulo 3 para describir la localización de subcoálgebras
admisibles de una coálgebra de caminos. En esta dirección, defin-
imos las células y las colas y probamos lo siguiente:

Teorema (3.6.3 y 3.6.9). Sea C una subcoálgebra admisible de una
coálgebra de caminos KQ de un quiver Q. Sea e un elemento idem-
potente de C∗ asociado a un conjunto de vértices X ⊆ Q0. Entonces:

(a) La coálgebra localizada eCe es una subcoálgebra admisible de la
coálgebra de caminos KQe, donde Qe es el quiver cuyo conjunto
de vértices es (Qe)0 = X, y el número de flechas de un vértice x
a un vértice y es dimKKCellQX(x, y) ∩ C para todo x, y ∈ X.

(b) La subcategorı́a localizante TX deMC es colocalizante si, y sólo
si, dimKKT ailQX(x) ∩ C es finita para todo x ∈ X.

En cualquier caso, puesto que tratamos de relacionar las teorı́a
de representación de una coálgebra y sus coálgebras localizadas,
el Capı́tulo 3 está dedicado principalmente a estudiar el compor-
tamiento, a través de los funtores de localización, de ciertas clases
de comódulos como simples, inyectivos, indescomponibles y fini-
tamente generados. Para ello, una gran cantidad de propiedades
y ejemplos son expuestos. Estos serán utilizados para obtener al-
gunos resultados inesperados en la Sección 5 del Capı́tulo 3. El
más importante de ellos describe las subcategorı́as estables desde
diferentes puntos de vista. En particular, se demuestra que las cat-
egorı́as estables corresponden con los idempotentes semicentrales
a derecha definidos por Birkenmeier en [Bir83].

Teorema (3.5.2). Sea C una coálgebra y Te ⊆MC una subcategorı́a
localizante asociada a un elemento idempotente e ∈ C∗. Las sigu-
ientes condiciones son equivalentes:

(a) Te es una subcategorı́a estable.

(b) T (Ex) =

{
Ex si x ∈ Ie,
0 si x /∈ Ie.

(c) No existen flechas Sx → Sy en ΓC tales que T (Sx) = Sx y T (Sy) = 0.

(d) e es un idempotente semicentral a derecha en C∗.

Si Te es una subcategorı́a colocalizante, estas condiciones son equiv-
alentes a:
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(e) H(Sx) = Sx para todo x ∈ Ie.

En el Capı́tulo 4, conjugamos los resultados obtenidos en los
capı́tulos anteriores, para demostrar la versión acı́clica del teorema
de Gabriel anteriormente expuesto:

Teorema (4.4.3). Sea Q un quiver acı́clico. Entonces toda subcoalge-
bra admisible tame de KQ es la coálgebra de caminos de un quiver
con relaciones.

Para probar este resultado, primero necesitamos relacionar la
propiedad de ser tame, o wild, de una coálgebra, con sus coálgebras
localizadas. El inconveniente a la hora de estudiar la localización
de coálgebras tame radica en el hecho de que el funtor sección no
preserva comómulos de dimensión finita, o equivalentemente, la
imagen de un simple no es necesariamente un comódulo finito di-
mensional. Por tanto, siguiendo este camino, no aparece, de forma
natural, ningún funtor entre las categorı́as de comódulos finita-
mente generados. Una vez que asumimos esta condición en S, la
pregunta que se plantea es si el proceso de localización preserva
coálgebras tame. Para analizar este problema es conveniente em-
pezar con un caso sencillo. Supongamos que S preserva comódulos
simples. Es fácil de provar que, en tal caso, para un eCe-comódulo
N tal que length N = v = (vi)i∈Ie, se verifica que

length S(N) = v =

{
vi, si i ∈ Ie
0, si i ∈ IC\Ie

y entonces el hecho de que C sea tame para el vector v implica que
eCe es tame para el vector v. Sin embargo, este resultado puede
generalizarse. El razonamiento propuesto en la demostración parte
de la idea de que al ser posible controlar los C-comódulos cuya
longitud está asociada a v mediante S, entonces es posible contro-
lar los eCe-comódulos cuya longitud es v. Obviamente, el prob-
lema aparecerı́a si existe un número infinito de eCe-comódulos
{Ni}i∈I, con longitud v, tales que length S(Ni) 6= length S(Nj) para
i 6= j. En ese caso, el número de K[t]-eCe-bimódulos que se ob-
tienen de ser C tame podrı́a ser infinito. Por tanto, si suponemos
que Ωv = {length S(N), donde N es tal que length N = v} es un con-
junto finito, es posible utilizar la misma demostración. Pero esto
se verifica si S preserva comódulos de dimensión finita; entonces
obtenemos los siguiente:
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Teorema (4.2.10). Sea C una coálgebra y e ∈ C∗ un elemento idem-
potente tal que el funtor sección preserva comódulos de dimensión
finita. Si C es tame entonces eCe es tame.

En particular, S preserva comódulos finito dimensionales para
cualquier idempotente, si C es pura semisimple a derecha.

Teorema (4.2.11). Sea C una coálgebra tame pura semisimple a
derecha. Entonces eCe es tame para cualquier idempotente e ∈ C∗.

El estudio de las coálgebras wild es bastante más complicado.
El problema proviene del hecho de que, a priori, no existen funtores
exactos deMeCe aMC. Entonces tenemos que suponer que el fun-
tor sección o el funtor colocalización son exactos, esto es, la subcat-
egorı́a (co)localizante es (co)localizante perfecta. Un caso particular
es estudiado. Cuando la coálgebra eCe es una subcoálgebra de C.
En este caso probamos que esta situación corresponde con la lo-
calización por un idempotente escindido (ver [Lam]). Entonces se
hace necesario estudiar una descripción de dichos idempotentes.
De hecho, probamos el siguiente resultado para coálgebras pun-
teada:

Proposición (4.3.6). Sea Q un quiver y C una subcoálgebra admis-
ible de KQ. Sea e ∈ C∗ un elemento idempotente asociado a un
conjunto de vértices X ⊆ Q0. Entonces e es escindido en C∗ si, y sólo
si, Ip ⊆ X para cualquier camino p en PSupp(eCe).

Finalmente, el Capı́tulo 5 está dedicado a presentar ejemplos
relacionados con los conceptos de los capı́tulos previos. Para este
propósito se analizan ciertas clases de coálgebras cuya existencia
viene motivada por el concepto análogo en la categorı́a de álgebras
finito dimensionales. El ejemplo central son las coálgebras heredi-
tarias. Esta es una clase de coálgebras bien conocida y que ha sido
estudiada en diferentes artı́culos con resultados satisfactorios, ver
[Chi02], [JLMS06], [JMNR06] y [NTZ96]. El caso de las coálgebras
punteadas hereditarias, es decir, coálgebras de caminos de un
quiver, es estudiado exhaustivamente. En particular, describimos
la localización de coálgebras de caminos mediante células y colas.
Para terminar, presentamos una clase de coálgebras ı́ntimamente
relacionada con las coálgebras hereditarias: las coálgebras local-
mente hereditarias. Estas coálgebras vienen definidas por la pro-
piedad de que todo morfismo no nulo entre injectivos indescom-
ponibles es sobreyectivo y ,por tanto, constituyen una general-
ización de las coálgebras hereditarias.



Introduction

The problem of classifying a mathematical object appears in all ar-
eas of mathematics. Commonly, the classification is eased by rep-
resenting that object by a simpler one; that is the case of the rep-
resentation theory of algebras. Many of the present developments
of the representation theory of finite dimensional algebras over an
algebraically closed field use the quiver-theoretical techniques for-
mulated by P. Gabriel and his school in the seventies, see for ex-
ample [ASS05], [ARS95] and [GR92]. The well-known Gabriel’s the-
orem can be considered as the origin of that method: every basic
finite dimensional algebra A, over an algebraically closed field K,
is isomorphic to a quotient KQ/I, where KQ is the path algebra of
the quiver Q and I is an admissible ideal of KQ. This result allows
us to give an explicit description of not only any finite dimensional
algebra but also of the category of its finitely generated modules
by means of linear representations of the quiver associated to the
algebra.

Nevertheless an important restriction appears in the former the-
orem: the algebra must be of finite dimension. Therefore a natural
question is raised: is it possible to generalized this result to any
(infinite dimensional) algebra? With a quick look at the proof one
is convinced that it is not possible to do it directly: the vertices
of the quiver correspond to the primitive idempotents of the alge-
bra; hence if the quiver has an infinite number of them, the path
algebra has no identity.

In this framework the theory of coalgebras appears in a middle
state of difficulty. The coalgebra structure is obtained by reversing
the maps in the algebra structure, that is, in a coalgebra C the
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following diagrams are commutative

C
∆ //

∆

��

C ⊗ C

∆⊗I

��

C ⊗ C
I⊗ε
uullllll ε⊗I

))RRRRRR

C ⊗K K ⊗ C

C ⊗ C I⊗∆ // C ⊗ C ⊗ C C
∼=

iiRRRRRRRRR

∆

OO

∼=

55lllllllll

(Coassociativity) (Counit)

where ∆ and ε are linear maps which correspond to the dual notion
of multiplication and unit in algebras (the comultiplication and the
counit, respectively). Then one should expect that the dual space
of a coalgebra is an algebra and vice versa. This is true if the vector
spaces are finite dimensional (although it is not in general), so the
category of finite dimensional algebras and the category of finite
dimensional coalgebras are equivalent. Now, by the Fundamental
Coalgebra Structure Theorem, any coalgebra is a directed union
of its finite dimensional subcoalgebras, i.e., it is a directed union
of finite dimensional algebras. Thus the representation theory of
coalgebras could be expected to be an intermediate step between
the study of finite dimensional algebras and infinite dimensional
algebras.

The category of comodules over a coalgebra is a locally finite
abelian category and therefore it has many more useful properties
than a module category. In particular, it is of finite type and then it
is conceivable that one can find a theory for coalgebras analogous
to the one for of finite dimensional algebras. This work is devoted to
developing that aim, i.e., to describe coalgebras and their comodule
category by means of quivers and representations of quivers. In
this context, the first step must be to obtain a version of Gabriel’s
theorem for coalgebras.

Following this idea, one can endow the path algebra KQ a struc-
ture of graded K-coalgebra with comultiplication induced by the
decomposition of paths, that is, if p = αm · · ·α1 is a non-trivial path
from a vertex i to a vertex j, then

∆(p) = ej ⊗ p+ p⊗ ei +
m−1∑
i=1

αm · · ·αi+1 ⊗ αi · · ·α1 =
∑
ητ=p

η ⊗ τ

and ∆(ei) = ei ⊗ ei for a trivial path ei. The counit of KQ is defined
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by the formula

ε(α) =

{
1 if α is a vertex,
0 if α is a non-trivial path.

This coalgebra is called the path coalgebra of the quiver Q.
In [Woo97], the author proves that every pointed coalgebra is

isomorphic to a subcoalgebra of a path coalgebra (the path coalge-
bra of its Gabriel quiver). Furthermore, it contains the subcoalge-
bra generated by all vertices and all arrows, that is, it is an admis-
sible subcoalgebra. Later, in [Sim01], it is introduced the notion of
path coalgebra of a quiver with relations (Q,Ω) as the subspace of
KQ given by

C(Q,Ω) = {a ∈ KQ | 〈a,Ω〉 = 0},
where 〈−,−〉 : KQ×KQ −→ K is the bilinear map defined by 〈v, w〉 =
δv,w (the Kronecker delta) for any two paths v, w in Q.

One of the main motivations given in [Sim01] and [Sim05] for
presenting a basic coalgebra C in the form C(Q,Ω) is the fact that,
in this case, there is a K-linear equivalence of the category MC

f of
finite dimensional right C-comodules with the category nilreplf

K(Q,Ω)
of nilpotent K-linear representations of finite length of the quiver
with relations (Q,Ω) (see [Sim01, p. 135] and [Sim05, Theorem
3.14]). Then that definition is consistent with the classical theory
and reduces the study of the category MC to the study of linear
representations of a bound quiver (Q,Ω).

Therefore the following question is raised: is any basic coalge-
bra, over an algebraically closed field, isomorphic to the path coal-
gebra of a quiver with relations?

In Chapter 2 we consider this problem. We separate the admis-
sible subcoalgebras of a path coalgebra into two classes depending
on whether the coalgebra is generated by paths or not. Obviously
the first class is easy to study and we focus our efforts on the sec-
ond one. For this purpose, we establish a general framework using
the weak* topology on the dual algebra to treat the problem in an
elementary context. In particular, we describe the path coalgebra
of a quiver with relations (Q,Ω) as the orthogonal space Ω⊥ of the
ideal Ω. Then the former problem may be rewritten as follows: for
any admissible subcoalgebra C ≤ KQ, is there a relation ideal Ω of
the algebra KQ such that Ω⊥ = C? Unfortunately, this is not true
and we show an example of an admissible subcoalgebra which is
not the orthogonal of an ideal of KQ. Then, one should ask for a
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criterion to decide whether or not an admissible subcoalgebra is
the path coalgebra of a quiver with relations. In the last section of
Chapter 2 we prove the following result:

Criterion (2.5.11). Let C be an admissible subcoalgebra of a path
coalgebra KQ. Then C is not the path coalgebra of a quiver with
relations if and only if there exist infinite different paths {γi}i∈N in Q
such that:

(a) All of them have common source and common sink.

(b) None of them is in C.

(c) There exist elements an
j ∈ K for all j, n ∈ N such that the set

{γn +
∑

j>n a
n
j γj}n∈N is contained in C.

It is well known that the category of finite dimensional alge-
bras over an algebraically closed field is the disjoint union of two
classes: the class of all tame algebras and the class of all wild alge-
bras. This is known as the tame-wild dichotomy, see [Dro79]. The
idea of such classes is that the category of finitely generated mod-
ules over a wild coalgebra is so large that it contains the category
of finite dimensional modules over any finite dimensional algebra.
Therefore it is not a realistic aim to get a description of its repre-
sentation theory. Hence we exclude them from our study and the
theory is restricted only to tame algebras. Symmetrically, Simson
defines in [Sim01] and [Sim05] the analogous concepts for a basic
(pointed) coalgebra. Moreover, he proves the weak version of the
tame-wild dichotomy (the full version is still an open problem): let
K be an algebraically closed field. Then every K-coalgebra of tame
comodule type is not of wild comodule type.

In order to show that not every admissible coalgebra is a path
coalgebra of a quiver with relations, the example we give is of wild
comodule type. Furthermore, by the above criterion, a coalge-
bra with such property needs that its quiver have infinite paths
between two vertices and then it seems close to be wild. Conse-
quently, we should reformulate the problem as the following ques-
tion: is every basic non-wild coalgebra, over an algebraically closed
field, isomorphic to the path coalgebra of a quiver with relations?
In particular, this implies that every basic tame coalgebra, over an
algebraically closed field, is isomorphic to the path coalgebra of a
quiver with relations. Moreover, if the statement holds, this will
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reduce the proof of the tame-wild dichotomy to path coalgebras of
quivers with relations.

In order to attempt this problem, in Chapter 3 we develop the
notion of localization in coalgebras. The category MC of right co-
modules over a coalgebra C is a locally finite Grothendieck cate-
gory in which the theory of localization as described by Gabriel in
[Gab62] can be applied. The main thought is that, for any dense
subcategory T ⊆ MC, we can consider a quotient category MC/T
and an exact functor T :MC →MC/T verifying a universal condi-
tion. It is proved in [Gab72] that the quotient category is again a
category of comodules. If the functor T has a right adjoint functor
S then the subcategory is called localizing. Dually, the subcategory
is said to be colocalizing if T has a left adjoint functor H. The func-
tors S and H are a left exact embedding and a right exact embed-
ding, respectively, so one can imagine the possibility of a relation
between the comodule type of C and of the quotient category.

The version for coalgebras is developed mainly in [Gre76], [Lin75],
[NT94] and [NT96]. In these references, there is a very well founded
theory about the localizing subcategories and the existing relation-
ships with other concepts as coidempotent coalgebras, injective co-
modules or simple comodules. Following [CGT02] and [JMNR06],
we found a bijective correspondence between localizing subcate-
gories of MC and equivalence classes of idempotent elements of
the dual algebra. That fact allows us to describe the quotient ca-
tegory as the category of comodules over the coalgebra eCe whose
structure is given by

∆eCe(exe) =
∑
(x)

ex(1)e⊗ ex(2)e and εeCe(exe) = εC(x)

for any x ∈ C, where ∆C(x) =
∑

(x) x(1) ⊗ x(2), using the sigma-
notation of [Swe69]. It is also proved that the functors of the lo-
calization are T = e(−) = −�CeC = CohomC(Ce,−), S = −�eCeCe and
H = CohomeCe(eC,−). That is used frequently in the last section of
Chapter 3 in order to describe the localization of admissible sub-
coalgebras of a path coalgebra. In this direction, we introduce cells
and tails of a quiver and prove the following:

Theorem (3.6.3 y 3.6.9). Let C be an admissible subcoalgebra of a
path coalgebra KQ of a quiver Q. Let e be the idempotent element
of C∗ associated to a subset of vertices X. The following statements
hold:
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(a) The localized coalgebra eCe is an admissible subcoalgebra of
the path coalgebra KQe, where Qe is the quiver whose vertices
(Qe)0 = X and the number of arrows from a vertex x to a vertex y
is dimKKCellQX(x, y) ∩ C for all x, y ∈ X.

(b) The localizing subcategory TX ofMC is colocalizing if and only if
dimKKT ailQX(x) ∩ C is finite for all x ∈ X.

Anyhow, since we wish to relate the representation theory of a
coalgebra and its localized coalgebras, Chapter 3 is mainly devoted
to the study of the behavior, through the localization functors, of
some classes of comodules as simple, injective, indecomposable
and finitely generated. Many properties and examples are given
there. From these we obtain in Section 5 of Chapter 3 some un-
expected results. The main of them describes stable subcategories
from different points of view. In particular, it asserts that stable
subcategories correspond with the left semicentral idempotents in
the dual algebra introduced by Birkenmeier in [Bir83].

Theorem (3.5.2). Let C be a coalgebra and Te ⊆ MC be a localiz-
ing subcategory associated to an idempotent element e ∈ C∗. The
following conditions are equivalent:

(a) Te is a stable subcategory.

(b) T (Ex) =

{
Ex if x ∈ Ie,
0 If x /∈ Ie.

(c) K = {S ∈ (ΓC)0 | eS = S} is a right link-closed subset of (ΓC)0, i.e.,
there is no arrow Sx → Sy in ΓC, where T (Sx) = Sx and T (Sy) = 0.

(d) e is a left semicentral idempotent in C∗.

If Te is a colocalizing subcategory these are also equivalent to

(e) H(Sx) = Sx for any x ∈ Ie.

In Chapter 4 we conjugate the results obtained in the previous
chapters in order to prove the acyclic version of Gabriel’s theorem
for coalgebras:

Theorem (4.4.3). Let Q be an acyclic quiver. Then any tame ad-
missible subcoalgebra of KQ is the path coalgebra of a quiver with
relations.
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In order to do that, first we need to relate the tameness and
wildness of a coalgebra and its localized coalgebras. The drawback
of treating the tameness from a general point of view lies in the
fact that the section functor does not preserve finite dimensional
comodules, or equivalently, see Lemma 4.2.9, it does not preserve
the finite dimension of the simple comodules. Therefore there are
no functors between the categories of finite dimensional comodules
defined in a natural way. Once we assume the above condition for
S, the question is whether the localization process preserves tame-
ness. We start with a simple case and suppose that S preserves
simple comodules. It is easy to prove that, in such a case, for an
eCe-comodule N such that length N = v = (vi)i∈Ie, then

length S(N) = v =

{
vi, if i ∈ Ie
0, if i ∈ IC\Ie

and therefore the tameness of C in v implies the tameness of eCe
in v. Nevertheless that result can be generalized. The underly-
ing idea of the proof is that if we control the C-comodules whose
length vector is associated to v through S, then we can control
the eCe-comodules of length v. Obviously, the problem appears
when there are infinite eCe-comodules {Ni}i∈I with length v such
that length S(Ni) 6= length S(Nj) for i 6= j. In that case, the number
of K[t]-eCe-bimodules obtained from the tameness of C could be
infinite. Therefore if Ωv = {length S(N) such that length N = v} is a
finite set, we may use the same proof. But this holds if S preserves
finite dimensional comodules, so we obtain the following:

Theorem (4.2.10). Let C be a coalgebra and e ∈ C∗ an idempotent
element such that S preserves finite dimensional comodules. If C is
tame then eCe is tame.

In particular this is verified for any idempotent if C is right pure
semisimple.

Theorem (4.2.11). Let C be a right pure semisimple coalgebra of
tame comodule type. Then eCe is of tame comodule type for each
idempotent e ∈ C∗.

Wildness is much more complicated to study. The problem
comes from the fact that, a priori, there is no exact functor from
MeCe toMC. Therefore we have to assume that the section functor
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or the colocalizing functor are exact, that is, the (co)localizing sub-
category is also perfect (co)localizing. A particular case is studied.
When the coalgebra eCe is a subcoalgebra of C. We prove that the
situation corresponds to the localization by a split idempotent (see
[Lam]). Therefore we attempt the description of that kind of idem-
potents. In fact we prove the following result in pointed coalgebras.

Proposition (4.3.6). Let Q be a quiver and C be an admissible sub-
coalgebra of KQ. Let e ∈ C∗ be the idempotent element associated to
a subset of vertices X. Then e is split in C∗ if and only if Ip ⊆ X for
any path p in PSupp(eCe).

Finally, Chapter 5 is devoted to the presentation of examples re-
lated to the topics considered in the previous chapters. To that end
we use some classes of coalgebras whose existence are motivated
by the analogous classes in the category of finite dimensional alge-
bras. The main example for us shall be the hereditary coalgebras.
This is a well-known kind of coalgebras which have been studied
with satisfactory results in many papers, see [Chi02], [JLMS06],
[JMNR06] and [NTZ96]. The case of a pointed hereditary coalge-
bra, that is, a path coalgebra of a quiver, is studied extensively.
In particular we describe the localization of a path coalgebra by
means of the cells and tails of its quiver. Lastly, we also introduce
a class of coalgebras related to the hereditary coalgebras: the lo-
cally hereditary coalgebras. That kind of coalgebras can be defined
by the property that every non-zero morphism between indecom-
posable injective comodules is surjective, and thus, these are a
generalization of the hereditary case.



Chapter 1

Preliminaries

This chapter contains some of the background material that will
be used throughout this work. Namely, after a few categorical re-
marks, we introduce the notation and terminology on coalgebras
and we recall some basic facts about their representation theory.
We assume that the reader is familiar with elementary category
theory and ring theory, and some homological concepts such as in-
jective and projective objects; anyhow we refer to [AF91], [Mac71],
[Pop73] and [Wis91] for questions on these subjects. All rings con-
sidered have identity and modules are unitary. By a field we will
mean a commutative division ring.

1.1 Some categorical remarks

This section is devoted to establish some categorical definitions and
properties which we will assume for a category of comodules in
what follows. For further information see, for example, [Mac71],
[Pop73] or [Wis91].

A category C is said to be abelian if the following conditions are
satisfied:

(a) There exists the direct sum of any finite set of objects of C.

(b) For each pair of objects X and Y of C, the set HomC(X, Y ) is
equipped with an abelian group structure such that the com-
position of morphisms in C is bilinear.

(c) C has a zero object.
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(d) Each morphism f : X → Y in C admits a kernel (Ker f, u) and a
cokernel (Coker f, p), and the unique morphism f making com-
mutative the diagram

Ker f u // X
f //

��

Y
p // Coker f

Coker u
f // Ker p

OO

is an isomorphism.

Throughout this work we fix a field K. We say that C is a K-
category if, for each pair of objects X and Y of C, the set HomC(X,Y )
is equipped with a K-vector space structure such that the compo-
sition of morphisms in C is a K-bilinear map.

An abelian category is said to be a Grothendieck category if it
has arbitrary direct sums, a set of generators and direct limits are
exact. Moreover, if each object of the set of generators has finite
length then C is known as a locally finite category.

Proposition 1.1.1. [Gab62] Let C be a locally finite abelianK-category.
Then it verifies the following assertions:

(a) C has injective envelopes.

(b) The direct sum of injective objects is injective.

(c) Each object of C is an essential extension of its socle (the sum of
all its simple subobjects).

(d) An injective object E of C is indecomposable if and only if its socle
is simple.

(e) If {Si}i∈I is a complete set of isomorphism classes of simple ob-
jects of C and Ei is the injective envelope of Si for each i ∈ I, then
{Ei}i∈I is a complete set of indecomposable injective objects of C.

(f) Each injective object E of C is isomorphic to a direct sum
⊕

i∈I E
αi
i ,

where each αi is a non-negative integer. Furthermore, this sum
is uniquely determined by the set {αi}i∈I .

(g) E =
⊕

i∈I E
αi
i is an injective cogenerator of C if and only if αi > 0

for all i ∈ I.
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Let C be a locally finite abelian K-category. We say C is of finite
type if, for each pair of objects X and Y of finite length of C, the
vector space HomC(X, Y ) has finite dimension over K.

Proposition 1.1.2. [Tak77] Let C be a locally finite abelianK-category.
The following conditions are equivalent:

(a) C is of finite type.

(b) For each simple object S of C, the vector space HomC(S, S) is finite
dimensional over K.

An object F of an abelian K-category of finite type C is said to
be quasi-finite if, for each object X of finite length, the vector space
HomC(X,F ) has finite dimension over K.

Proposition 1.1.3. [Tak77] Let C be an abelian K-category of finite
type and F be an object of C. The following sentences are equivalent:

(a) F is quasi-finite.

(b) For each simple object S of C, the space HomC(S, F ) is finite di-
mensional over K.

(c) The socle of F is isomorphic to
⊕

i∈I S
αi
i where the non-negative

integers αi are finite for all i ∈ I.

Corollary 1.1.4. [Tak77] Let C be an abelian K-category of finite
type then

⊕
i∈I Ei is a quasi-finite injective cogenerator of C.

1.2 The category of comodules

Let us now define the main object of our study, that is, coalgebras
and their category of comodules. Recall that the category of comod-
ules of a coalgebra is a particular case of a category of finite type
so all definitions and results of the last section are valid here.

Following [Abe77] and [Swe69], by a K-coalgebra we mean a
triple (C,∆, ε), where C is a K-vector space and ∆ : C → C ⊗ C and
ε : C → K are linear maps, called comultiplication and counit, such
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that the following diagrams commute:

C
∆ //

∆

��

C ⊗ C

∆⊗I

��

C ⊗ C
I⊗ε
uullllll ε⊗I

))RRRRRR

C ⊗K K ⊗ C

C ⊗ C I⊗∆ // C ⊗ C ⊗ C C
∼=

iiRRRRRRRRR

∆

OO

∼=

55lllllllll

(Coassociativity) (Counit)

In what follows we shall refer the coalgebra (C,∆, ε) simply by C.
A K-vector subspace V of C is a subcoalgebra of C if ∆(V ) ⊆ V ⊗

V . It is a right (resp. left) coideal if ∆(V ) ⊆ V ⊗C (resp. ∆(V ) ⊆ C⊗V )
and it is a coideal if ∆(V ) ⊆ V ⊗ C + C ⊗ V and ε(V ) = 0. Note that
a right and left coideal is not a coideal but a subcoalgebra. If S
is a subset of a coalgebra, the subcoalgebra generated by S is the
intersection of all subcoalgebras containing S.

Theorem 1.2.1. [Swe69]

(a) The intersection of subcoalgebras is again a subcoalgebra.

(b) A subcoalgebra generated by a finite set is finite dimensional.

(c) A simple subcoalgebra of a coalgebra is finite dimensional.

Given two K-coalgebras C and D, a morphism of K-coalgebras
f : C → D is a linear map such that the following diagrams are
commutative:

C
f //

∆C

��

D

∆D

��
C ⊗ C f⊗f // D ⊗D

C
f //

εC ��?
??

??
??

? D

εD����
��

��
��

K

If f : C → D is a morphism of coalgebras, it is easy to prove that
Ker f is a coideal of C and Im f is a subcoalgebra of D.

The following result is often called the Fundamental Coalgebra
Structure Theorem and it show us the locally finite nature of a coal-
gebra, see [Mon93] and [Swe69].

Theorem 1.2.2. Any K-coalgebra is a directed union of its finite
dimensional subcoalgebras.
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Let C be a K-coalgebra. A right C-comodule is a pair (M,ω)
where M is a K-vector space and ω : M → C ⊗M is a linear map
making commutative the following diagrams:

M
ω //

ω

��

M ⊗ C
ω⊗I

��

M

∼= ##G
GGGGGGGG

ω //M ⊗ C
I⊗ε

��
M ⊗ C I⊗∆ //M ⊗ C ⊗ C M ⊗K

In what follows we shall refer the right C-comodule (M,ω) simply
by M , or by MC.

Given two right C-comodules M and N , a morphism of right
C-comodules f : M → N is a linear map such that the following
diagram is commutative:

M
f //

ωM

��

N

ωN

��
M ⊗ C f⊗I // N ⊗ C

From now on we will identify every comodule with the identity
map defined on it, so we will use the notation f⊗M , f⊗1M or simply
f ⊗ I, it doesn’t matter which. We will denote by MC the category
of right C-comodules and morphisms of right C-comodules and by
MC

qf and MC
f the full subcategories of MC whose objects are the

quasi-finite right C-comodules and the finite dimensional right C-
comodules, respectively. Analogously we may define and denote
the category of left C-comodules.

Example 1.2.3. Let C be a coalgebra, V be a vector space and M
be a right C-comodule. Then V ⊗ M has an structure of right C-
comodule with comultiplication I ⊗ ωM . It is easy to prove that we
have an isomorphism HomC(V ⊗ M,N) ∼= HomK(V,HomC(M,N)) for
any right C-comodule N .

Let C and D be K-coalgebras. A (C,D)-bicomodule is a K-vector
space M with an structure of left C-comodule (M,ω) and an struc-
ture of right D-comodule (M,ρ) verifying a property of compatibility
between both given by the commutativity of the following diagram

M
ω //

ρ

��

C ⊗M
I⊗ρ

��
M ⊗D ω⊗I// C ⊗M ⊗D
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The reader should note that this means that ρ is a morphism
of left C-modules, or equivalently, ω is a morphism of right D-
modules.

Here we list some important properties of the category of comod-
ules in the sense of the last section, see [Mon93] and [Swe69] for
details.

Proposition 1.2.4. Let C be a K-coalgebra. Then:

(a) MC is a abelian K-category of finite type.

(b) MC
f is a skeletally small abelian Krull-Schmidt K-category.

(c) MC has enough injective objects.

(d) The coalgebra C, viewed as a right C-comodule, is a quasi-finite
injective cogenerator inMC.

(e) A direct sum of indecomposable right C-comodules is injective if
and only if each direct summand is injective.

(f) Every right C-comodule is the directed union of its finite dimen-
sional subcomodules.

(g) Each simple right C-comodule has finite dimension.

Remark. In general, the category MC has no enough projectives
and sometimes it has no non-zero projective objects.

Throughout we denote by {Si}i∈IC
a complete set of pairwise non-

isomorphic simple right C-comodules and by {Ei}i∈IC
a complete

set of pairwise non-isomorphic indecomposable injective right C-
comodules.

Let (M,ρ) be a right C-comodule. There exists a unique minimal
subcoalgebra cf(M) of C such that ρ(M) ⊆ M ⊗ cf(M), that is, such
that M is a right cf(M)-comodule. This coalgebra cf(M) is called
the coefficient space of M .

Proposition 1.2.5. [Gre76] Let C be a coalgebra and mi = dimKSi

for any i ∈ IC. Then:

(a) Each simple subcoalgebra of C is isomorphic to cf(Si) for some
i ∈ IC.

(b) cf(Si) = Si ⊕ · · · ⊕ Si = Smi
i for each i ∈ IC.
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(c) Corad(C) = C0 = ⊕i∈IC
cf(Si) = ⊕i∈IC

Smi
i .

We finish this section giving an important characterization of
the categories of comodules.

Theorem 1.2.6. [Tak77] Let C be an abelian K-category. C is K-
linearly equivalent to MC for some K-coalgebra C if and only if C is
of finite type.

1.3 Cotensor product

Let A and B be two abelian K-categories. A functor T : A → B is
said to be K-linear if the map TX,Y : HomA(X, Y )→ HomB(T (X), T (Y ))
defined by TX,Y (f) = T (f) is linear for any objects X and Y of A.

Let now S : A → B and T : B → A be two functors. We say that S
is left adjoint to T or T is right adjoint to S if there exists a natural
isomorphism HomA(S(−),−) w HomB(−, T (−)). In this case, S is
right exact and preserves colimits and T is left exact and preserves
limits.

In the particular case of categories of modules over a K-algebra,
we have an important example of adjoint functors: the tensor func-
tor and the Hom functor.

Suppose R is a K-algebra, M is a right R-module and N is a left
R-module. Then we may introduce the tensor product MR⊗R RN as
the cokernel of the maps

M ⊗K R⊗K N
µM⊗I //

I⊗µN

//M ⊗K N //______ M ⊗R N,

where µM and µN are the structure maps of M and N as R-modules.
Furthermore, if S is other K-algebra and N is a R-S-bimodule then
M ⊗R N has an structure of right S-module. Thus we can define a
functor − ⊗R N : ModR → ModS which is left adjoint to HomS(N,−),
that is, HomR(M,HomS(N, T )) w HomS(M ⊗R N, T ) for any right R-
module M and any right S-module T .

Let us come back to coalgebras. We would like to obtain a situ-
ation similar to above, i.e., a functor between categories of comod-
ules over different coalgebras with adjoint properties. Let C be a
K-coalgebra, M be a right C-comodule and N be a left C-comodule.
Then we may define the cotensor product of M and N , MC�CCN , as
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the kernel of the maps

M�CN //______ M ⊗K N
ωM⊗I //

I⊗ωN

//M ⊗K C ⊗K N,

where ωM and ωN are the structure maps of M and N as right C-
comodule and left C-comodule, respectively.

We collect here some properties of the cotensor product.

Proposition 1.3.1. [Tak77] Let C be a coalgebra, M be a right C-
comodule and N be a left C-comodule. Then:

(a) If C = K then M�CN = M ⊗K N .

(b) The cotensor product is associative.

(c) The functors M�C− and −�CN are left exact and preserve direct
sums.

(d) We have M�C(N ⊗K W ) ∼= (M�CN) ⊗K W and (W ⊗K M)�CN ∼=
W ⊗K (M�CN) for any K-vector space W .

(e) The functor M�C− (resp. −�CN ) is exact if and only if M (resp.
N ) is an injective right (resp. left) C-comodule .

(f) M�CC ∼= M and C�CN ∼= N .

Let now D and E be two coalgebras, M be a (E,C)-bicomodule
and N be a (C,D)-bicomodule. Then M�CN acquires a structure of
(E,D)-bicomodule with structure maps

ρM�I : M�CN → (E ⊗K M)�CN ∼= E ⊗K (M�CN)

and
I�ρN : M�CN →M�C(N ⊗K D) ∼= (M�CN)⊗K D.

Therefore we may consider a functor −�CN :MC →MD. Unfortu-
nately, in general, −�CN does not have a left adjoint functor.

Theorem 1.3.2. [Tak77] Let C and D be two coalgebras and M be a
(D,C)-bicomodule. Then the functor −�DM has a left adjoint functor
if and only if M is a quasi-finite right C-comodule.

If M is a quasi-finite right C-comodule, we will denote the left ad-
joint functor of −�DM by CohomC(M,−). The functor CohomC(M,−)
has a behavior similar to the usual Hom functor of algebras.
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Proposition 1.3.3. [Tak77] Let C,D and E be three coalgebras. Let
M and N be a (D,C)-bicomodule and a (E,C)-bicomodule, respec-
tively, such that M is quasi-finite as right C-comodule. Then:

(a) We have CohomC(M,N) = lim−→HomC(Nλ,M)∗, where N = lim−→Nλ

with {Nλ}λ the set of finite dimensional subcomodules of N .

(b) The vector space CohomC(M,N) is a (E,D)-bicomodule.

(c) The functor CohomC(M,−) is right exact and preserves direct sums.

(d) The functor CohomC(M,−) is exact if and only if M is injective as
right C-comodule.

Remark. The set CoendC(M) = CohomC(M,M) has an structure
of K-coalgebra and then M becomes a (CoendC(M), C)-bicomodule,
see [Tak77] for details.

Symmetrically, DMC is quasi-finite as left D-comodule if and
only if the functor M�C− :CM →DM has a left adjoint functor. In
this case we denote by CohomD(−,M) that functor.

As a consequence we may prove the Krull-Remak-Schmidt-Azumaya
theorem for comodules. Before we need the following lemmata:

Lemma 1.3.4. Let E be an indecomposable injective right C-comodule.
Then HomC(E,E) = EndC(E) is a local ring.

Proof. Let f ∈ EndC(E). It holds that Ker f ∩Ker (idE − f) = 0. Since
E is indecomposable, Ker f = 0 or Ker (idE − f) = 0.

If f is injective then there exists a map g such that

E

idE

��

f // E

g
��~

~
~

~

E

is commutative and then E
f // E // Coker f splits. Therefore

E = E ⊕ Coker f . Thus Coker f = 0 and f is bijective.
On the other case, proceeding as before, idE − f is bijective so it

is quasi-regular. Then f is in the radical. This proves that EndC(E)
is local.

Let M be a quasi-finite right C-comodule we denote by addM
the category of direct summands of arbitrary direct sums of copies
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of M . Let us consider the coalgebra D = CohomC(M,M). Then
the functor Cohom and the cotensor functor can be restricted to
CohomC(M,−) : addM → addD and −�DM : addD → addM

Lemma 1.3.5. [CKQ02] Let M be a quasi-finite right C-comodule
and let D be the coalgebra CohomC(M,M). Then the functors

addM
CohomC(M,−)//

addD
−�DM

oo

are inverse equivalences of categories.

Corollary 1.3.6. Let M be a quasi-finite indecomposable right C-
comodule then EndC(M) is a local ring.

Proof. By Lemma 1.3.5, CohomC(M,−) : addM → addD is an equiv-
alence. Since D is quasi-finite then addD = ID, the category of
quasi-finite injective right D-comodules. Therefore it is enough to
prove it for injective indecomposable comodules. But this is exactly
Lemma 1.3.4.

Theorem 1.3.7 (Krull-Remak-Schmidt-Azumaya Theorem). Let C
be a coalgebra and M be a quasi-finite right C-comodule. Then
two decompositions of M as direct sum of indecomposable right C-
comodules are essentially the same, that is, ifM =

⊕
i∈I Mi =

⊕
j∈J Nj,

where all M ′
is and N ′

js are indecomposable right C-comodules, then
I = J and there exists a bijective correspondence σ : I → J such that
Mi
∼= Nσ(i) for all i ∈ I.

Proof. See [Gab62, I.6, Theorem 1].

1.4 Equivalence between categories of co-
modules

Let C and D be two coalgebras and M and N be a (C,D)-bicomodule
and a (D,C)-bicomodule, respectively. Suppose f : C →M�DN and
g : D → N�CM are two bicomodule maps. We say that (C,D,M,N, f, g)
is a Morita-Takeuchi context if the following diagrams commute:

M
∼= //

∼=

��

M�DD

I�g

��

N
∼= //

∼=

��

N�CC

I�f

��
C�CM

f�I //M�DN�CM D�DN
g�I // N�CM�DN
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The Morita-Takeuchi context (C,D,M,N, f, g) is said to be injective
if f is injective. If f and g are isomorphisms then we say that C
and D are Morita-Takeuchi equivalent.

Proposition 1.4.1. [Tak77] Let (C,D,M,N, f, g) be an injective Morita-
Takeuchi context. Then:

(a) f is an isomorphism.

(b) MD and DN are quasi-finite and injective.

(c) CM and NC are cogenerators.

(d) CohomD(M,D) ∼= N as (D,C)-bicomodules and CohomD(N,D) ∼=
M as (C,D)-bicomodules.

(e) CoendD(M) ∼= C and CoendD(N) ∼= C as coalgebras.

Example 1.4.2. Suppose D is a coalgebra and M is a quasi-finite
right D-comodule. Denote by C the coalgebra CoendD(M) and by
N the (D,C)-bicomodule CohomD(M,D). Then we have the adjoint
equivalence HomD(D,N�CM) ' HomC(N,N). Now, consider g : D −→
N�CM the associated morphism to idY via the equivalence, and let
f be the morphism

f : C ∼= CohomD(M,M�DD)→M�DCohomD(M,D) = M�DN.

Then (C,D,X, Y, f, g) is a Morita-Takeuchi context which is usually
known as the Morita-Takeuchi context associated to MD.

Clearly, f is injective if and only if MD is injective and g is injective
if and only if MD is a cogenerator.

Proposition 1.4.3. [Tak77] LetMD be a quasi-finiteD-comodule and
let (C,D,X, Y, f, g) be the Morita-Takeuchi context associated to M .
Then C and D are Morita-Takeuchi equivalent if and only if M is an
injective cogenerator of the categoryMD.

We may use Morita-Takeuchi contexts in order to know when-
ever two categories of comodules are equivalent.

Theorem 1.4.4. [Tak77] LetM be a (C,D)-bicomodule which is quasi-
finite as right D-comodule. The following conditions are equivalent:

(a) The functor −�CM :MC →MD is an equivalence of categories.

(b) The functor M�D− :DM→CM is an equivalence of categories.
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(c) MD is a quasi-finite injective cogenerator and CoendD(M) ∼= C as
coalgebras.

(d) CM is a quasi-finite injective cogenerator and CoendC(M) ∼= D as
coalgebras.

(e) There exists a Morita-Takeuchi context (C,D,M,N, f, g), where f
and g are injective.

(f) There exists a Morita-Takeuchi context (D,C,N ′,M, f ′, g′), where
f ′ and g′ are injective.

If these conditions hold, there is an isomorphism between the (C,D)-
bicomodules CohomD(M,D) and CohomC(M,C). If we denote it by N
then −�DN and N�C− are the quasi-inverse functors of −�CM and
M�D−, respectively.

Corollary 1.4.5. Two coalgebras are Morita-Takeuchi equivalent if
and only if their categories of right comodules are equivalent.

The reader could ask about what happen when two categories of
comodules are equivalent but the functor is not of the form −�CM
where M is a bicomodule. The answer is simple: that situation
cannot appear.

Theorem 1.4.6. [Tak77] Let T : MC → MD be a K-linear functor.
If T is left exact and preserves direct sums then there is a (C,D)-
bicomodule M such that T ∼= −�CM .

We have seen that quasi-finite injective cogenerators play an
important rôle on equivalence between categories of comodules. We
recall from Section 1.1 that this kind of comodules has an easy
description.

Proposition 1.4.7. Let C be a coalgebra and {Ei}i∈IC
be a com-

plete set of pairwise non-isomorphic indecomposable injective right
C-comodules. A right C-comodule E is a quasi-finite injective cogen-
erator ofMC if and only if E =

⊕
i∈I E

αi
i , where αi is a finite cardinal

number greater than zero for all i ∈ I.

1.5 Basic and pointed coalgebras

Any coalgebra C is a quasi-finite injective cogenerator of its ca-
tegory MC of right C-comodules. Then, by the last section, C =
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⊕
i∈IC

Eαi
i , where each αi is a finite positive integer, that is, its socle

Soc C =
⊕

i∈IC
Sαi

i . The coalgebra C is called basic if αi = 1 for all
i ∈ IC, i.e., if Soc C =

⊕
i∈IC

Si, where Si � Sj for i 6= j. Following this
definition, we may obtain an immediate consequence:

Proposition 1.5.1. The following conditions are equivalent:

(a) C is basic.

(b) C =
⊕

i∈IC
Ei.

(c) C is a minimal injective cogenerator of the categoryMC.

The main reason to study basic coalgebras comes from the fact
that in order to classify coalgebras by means of its category of co-
modules it is enough to consider only this kind of coalgebras, see
for example [Sim01].

Theorem 1.5.2. Let C be a coalgebra then there exits an unique (up
to isomorphism) basic coalgebra D such thatMC ∼=MD.

Proof. Suppose that C =
⊕

i∈IC
Eαi

i . We consider the comodule E =⊕
i∈IC

Ei. By Proposition 1.4.7, E is a quasi-finite injective cogen-
erator and, by Theorem 1.4.4, the functor −�DE defines an equiva-
lence between the categoriesMD andMC, where D = CohomC(E,E).
Thus we only need to prove that D is a basic coalgebra.

Let {E ′
i}i∈ID

be a complete set of indecomposable injective right
D-comodules. Since −�DE is an equivalence, we may number
them in order to do that E ′

i�DE = Ei for all i ∈ IC = ID. Now,
suppose that D =

⊕
i∈ID

E ′
i
ti. Then E ∼= D�DE ∼=

⊕
i∈ID

E ′
i
ti�DE ∼=⊕

i∈ID
(E ′

i�DE)ti =
⊕

i∈ID
Eti

i and therefore, by Krull-Remak-Schmidt-
Azumaya Theorem, ti = 1 for all i ∈ IC.

Let now H be another basic coalgebra such that MC ∼= MH.
Then there exists an equivalence −�DDQH : MD → MH, where Q
is a quasi-finite injective cogenerator of MH. Since the equiva-
lences preserve the minimal quasi-finite injective cogenerator then
Q ∼= D�DQ = H because D and H are basic. Then, by Theorem
1.4.4, CohomH(H,H) ∼= D as coalgebras. Consider the inverse equiv-
alence and we obtain CohomD(D,D) ∼= H. Finally, if D = lim−→Dγ,
where {Dγ}γ is the set of its finite dimensional subcoalgebras, then
H ∼= CohomD(D,D) = lim−→HomD(Dγ, D)∗ ∼= lim−→HomH(Dγ�DH,H)∗ =
CohomH(H,H) ∼= D.
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Corollary 1.5.3. Any coalgebra is Morita-Takeuchi equivalent to a
basic coalgebra.

If K is an algebraically closed field we can say more. Suppose
that S is a simple right C-comodule. Then S has finite dimension
as K-vector space. A coalgebra is said to be pointed if every simple
comodule is one dimensional.

Proposition 1.5.4. Every pointed coalgebra is basic.

Proof. Let C be a coalgebra such that Soc C =
⊕

i∈IC
Sti

i . Since
S∗i = HomK(Si, K) ∼= HomC(Si, C) ∼= HomC(Si, Soc C) ∼= HomC(Si, Si)

ti ∼=
EndC(Si)

ti then dimKSi = dimKS
∗
i = ti dimKEndC(Si) because dimKSi

is finite. Therefore ti = dimKSi

dimKEndC(Si)
. Now, if C is pointed then

dimKSi = 1 and thus dimKEndC(Si) = ti = 1.

Corollary 1.5.5. Let K be an algebraically closed field and C be a
K-coalgebra. Then C is basic if and only if C is pointed.

Proof. If C is basic then ti = 1. Now, every K-division algebra is one
dimensional so dimKEndC(Si) = 1. Thus dimKSi = 1.

Corollary 1.5.6. Every coalgebra over an algebraically closed field
is Morita-Takeuchi equivalent to a pointed coalgebra.

1.6 Path coalgebras

In representation theory of coalgebras, an important rôle is played
by path coalgebras. This is the analogous case to the path alge-
bra associated to a quiver (see [ASS05], [ARS95] and [GR92]). In
this section we will give a brief approach to them and they will be
studied deeper in the next chapters.

Following [Gab72], by a quiver, Q, we mean a quadruple (Q0, Q1, s, t),
where Q0 is the set of vertices (or points), Q1 is the set of arrows and,
for each arrow α ∈ Q1, the vertices s(α) and t(α) are the source (or
start point or origin) and the sink (or end point or tail) of α, respec-
tively. We denote an arrow α such that s(α) = i and t(α) = j as
α : i→ j or i

α // j . If i = j we say that α is a loop.
If i and j are vertices, an (oriented) path in Q of length m from i

to j is a formal composition of arrows

p = αm · · ·α2α1,
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where s(α1) = i, t(αm) = j and t(αk−1) = s(αk) for k = 2, . . . ,m. To any
vertex i ∈ Q0, we attach a trivial path of length 0, say ei or simply
i, starting and ending at i such that αei = α (resp. ejβ = β) for any
arrow α (resp. β) with s(α) = i (resp. t(β) = i). We identify the set of
vertices and the set of trivial paths. A cycle is a path which starts
and ends at the same vertex.

Let KQ be the K-vector space generated by the set of all paths
in Q. Then KQ can be endowed with a structure of (non necessarily
unitary) K-algebra with multiplication induced by the concatena-
tion of paths, that is,

(αm · · ·α2α1)(βn · · · β2β1) =

{
αm · · ·α2α1βn · · · β2β1 if t(βn) = s(α1),
0 otherwise;

KQ is the path algebra of the quiver Q. The algebra KQ can be
graded by

KQ = KQ0 ⊕KQ1 ⊕ · · · ⊕KQm ⊕ · · · ,
where Qm is the set of all paths of length m; Q0 is a complete set of
primitive orthogonal idempotents of KQ. If Q0 is finite then KQ is
unitary and it is clear that KQ has finite dimension if and only if Q
is finite and has no cycles.

An ideal Ω ⊆ KQ is called an ideal of relations or a relation ideal
if Ω ⊆ KQ2 ⊕KQ3 ⊕ · · · = KQ≥2. An ideal Ω ⊆ KQ is admissible if it
is a relation ideal and there exists a positive integer, m, such that
KQm ⊕KQm+1 ⊕ · · · = KQ≥m ⊆ Ω.

By a quiver with relations we mean a pair (Q,Ω), where Q is
a quiver and Ω a relation ideal of KQ. If Ω is admissible then
(Q,Ω) is said to be a bound quiver (for more details see [ASS05]
and [ARS95]).

The path algebra KQ can be viewed as a graded K-coalgebra
with comultiplication induced by the decomposition of paths, that
is, if p = αm · · ·α1 is a path from the vertex i to the vertex j, then

∆(p) = ej ⊗ p+ p⊗ ei +
m−1∑
i=1

αm · · ·αi+1 ⊗ αi · · ·α1 =
∑
ητ=p

η ⊗ τ

and for a trivial path, ei, we have ∆(ei) = ei ⊗ ei. The counit of KQ
is defined by the formula

ε(α) =

{
1 if α ∈ Q0,
0 if α is a path of length ≥ 1.

The coalgebra (KQ,∆, ε) is the path coalgebra of the quiver Q.
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Proposition 1.6.1. Let Q be a quiver and KQ be the associated path
coalgebra. Then:

(a) KQ = KQ0 ⊕KQ1 ⊕ · · · ⊕KQn ⊕ · · · is a graded K-coalgebra.

(b) The subcoalgebras KQ0 ⊆ KQ0 ⊕KQ1 ⊆ KQ0 ⊕KQ1 ⊕KQ2 ⊆ · · ·
give the coradical filtration of KQ.

(c) Every simple right KQ-comodule is isomorphic to Kei for some
trivial path ei.

(d) KQ is pointed.

(e) Soc(KQ) =
⊕

i∈Q0
Kei.

(f) For each i ∈ Q0, the injective envelope of Si is generated by the
set of all paths ending at ei.

We introduce path coalgebras in another way which allow us to
relate any pointed coalgebra with a path coalgebra.

Following [Nic78], let C be a coalgebra and M be a (C,C)-bicomodule.
Then we may construct the cotensor coalgebra

CTC(M) = C ⊕M ⊕M�CM ⊕M�CM�CM ⊕ · · ·

Since the cotensor product of M n-times is usually denoted by M�n,
then we shall write CTC(M) =

⊕
nM

�n.
We may define a comultiplication in CTC(M) given by

∆(m1 ⊗m2 ⊗ · · · ⊗mn) = ωl(m1)⊗m2 ⊗ · · · ⊗mn+

+
n−1∑
i=1

(m1 ⊗ · · · ⊗mi)⊗ (mi+1 ⊗ · · · ⊗mn) +m1 ⊗ · · · ⊗mn−1 ⊗ ωr(mn)

where ωl and ωr are the structure maps of M as left and right C-
comodule; and a counit given by ε = εC ◦ π where π is the projection
onto C.

Example 1.6.2. Let Q be a quiver. Then it is easy to prove from the
definition thatKQ ∼= CTKQ0(KQ1). Furthermore, each piece (KQ1)

�n ∼=
KQn.

An element x ∈ C is said to be a group-like element if ∆C(x) =
x ⊗ x. It is not hard to prove that the set of group-like elements,
G(C), is bijective with the set of one dimensional subcoalgebras
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(which are simple) by the map x 7→ Kx. If C is pointed then all
simple subcoalgebras are 1-dimensional so the group-like elements
generate the coradical.

Let x and y be two group-like elements. We say that c ∈ C is a
(x, y)-primitive element if ∆C(c) = y ⊗ c+ c⊗ x. We denote the vector
space of (x, y)-primitive elements of C by PC

x,y. Note that the vector
space TC

x,y = K(x − y) ⊆ PC
x,y. These elements are called the trivial

(x, y)-primitive elements. We will denote the vector space formed by
the non-trivial (x, y)-primitive elements PC

x,y/T
C
x,y by P ′C

x,y.

Lemma 1.6.3. [Mon93] Let C be a pointed coalgebra and

C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cn ⊆ · · ·

be its coradical filtration. Then C1 =
⊕

x,y∈G(C) P
C
x,y. Consequently,

C1/C0 =
⊕

x,y∈G(C) P
′C
x,y.

Observe that C0 is a coalgebra and C1/C0 is a (C0, C0)-bicomodule
with structure maps ωl(c) = y ⊗ c and ωr(α) = c⊗ x for each c ∈ P ′C

x,y.
Thus, for each coalgebra C, we may associate its cotensor coalgebra
CTC0(C1/C0).

Proposition 1.6.4. Every pointed coalgebra is a subcoalgebra of its
cotensor coalgebra.

Proof. By [Nic78], a cotensor coalgebra CTC0(C1/C0) verifies that if
C ′ is a coalgebra, h : C ′ → C0 and q : C → C ′ are coalgebras maps,
and f : C → C1/C0 is a (C,C)-bicomodule map with f(Soc C) = 0
then there exists a unique coalgebra map F : C → CTC0(C0/C1)
such that the diagrams

CTC(M)

π

��

D′Foo

q

��

CTC(M)

p

��
C C ′hoo M D′

F
ddIIIIIIIII

foo

are commutative, where π and p are projections. Furthermore, the
map F is exactly h ◦ q +

∑
n≥0 Tn(f)∆n−1.

In this case, we choose C ′ = C0, h = id, q the projection from C =
C0 ⊕ I onto C0 and f : C = C0 ⊕ I → C1/C0 the linear projection from
I to C1/C0 extended to C0 taking f(C0) = 0. Then F |C1 = id and thus
F is injective (see [Nic78], [Rad78] and [Mon93] for details).
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Given a pointed coalgebra, C, we can construct a quiver Q in
the following way: Q0 will be the set of group-like elements and, for
each x, y ∈ Q0, the number of arrows from x to y equals dimKP

′C
x,y.

This quiver is called the Gabriel quiver of C. Also it is known as the
Ext-quiver of C because of the vector space P ′C

x,y
∼= Ext1C(Kx,Ky).

Lemma 1.6.5. Let C be pointed coalgebra and Q be the quiver as-
sociated to C. Then CTC0(C1/C0) ∼= KQ.

Proof. We have that KQ0
∼= C0 as coalgebras and KQ1

∼= C1/C0 as
(C0, C0)-bicomodules. Thus CTC0(C1/C0) ∼= CTKQ0(KQ1) ∼= KQ.

As a consequence of Proposition 1.6.4 and Lemma 1.6.5, we
obtain the main result of this section.

Theorem 1.6.6. [Woo97] Let C be a pointed coalgebra. Then C is
isomorphic to a subcoalgebra of the path coalgebra of its Gabriel
quiver. Furthermore, C contains the subcoalgebra generated by all
vertices and all arrows.

A subcoalgebra of a path coalgebra is said to be admissible if
it contains the subcoalgebra generated by all vertices and all ar-
rows, that is, KQ0⊕KQ1 (see [Woo97]). A subcoalgebra C of a path
coalgebra KQ is called a relation subcoalgebra (see [Sim05]) if C
satisfies the following conditions:

(a) C is admissible.

(b) C =
⊕

x,y∈Q0
C ∩KQ(x, y), where KQ(x, y) is the subspace gener-

ated by all paths starting at x and ending at y.



Chapter 2

Path Coalgebras of Quivers
with Relations

Path algebras of bound quivers are one of the major tools in the
representation theory of finite dimensional algebras. Indeed, a very
well-known result of Gabriel (see for instance [ASS05], [ARS95],
[GR92] and the references given there) asserts that any finite di-
mensional basic algebra is isomorphic to a quotient of the path
algebra of its Gabriel quiver modulo an admissible ideal. The main
aim of this chapter is to study the possibility of an analogous result
for coalgebras, through the notion of the path coalgebra of a quiver
with relations defined by Simson in [Sim01]. For this purpose we
establish a general framework using the weak* topology on the dual
algebra to treat the problem in an elementary context. Next, a re-
sult of [JMR] allows us to obtain a more manageable basis of a
relation coalgebra which we use in order to give a criterion for de-
ciding whether or not a relation subcoalgebra is the path coalgebra
of a quiver with relations.

2.1 Duality

One can see from the definition of the coalgebra structure that
there should be some kind of duality between algebras and coal-
gebras (the structure of coalgebra is obtained reversing the maps
in the algebra structure). The aim of this section is to recall this
duality and some known facts involving it in order to apply them
throughout this work.

Let (C,∆, ε) be a K-coalgebra, then we equip the dual K-vector
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space C∗ = HomK(C,K) with a K-algebra structure in the following
way:

• The product m is the composition of the maps

C∗ ⊗ C∗ ρ //

m

44(C ⊗ C)∗ ∆∗
// C∗,

where ρ is defined by ρ(f ⊗ g)(v⊗w) = f(v)g(w) for any f, g ∈ C∗

and u, v ∈ C. That is, for each f, g ∈ C∗, m(f ⊗ g) = (f ⊗ g) ◦∆.
This product is known as the convolution product. We shall
denote m(f ⊗ g) by f ∗ g or simply by fg.

• The unit is u = ε∗ : K → C∗.

Proposition 2.1.1. [Tak77] (C∗,m, u) is a K-algebra called the dual
algebra of C.

We can relate the subspaces of C and its dual algebra. Let c ∈ C.
The orthogonal space to c is the vector space c⊥ = {f ∈ C∗ | f(c) = 0}.
More generally, for any subset S ⊆ C, we may define the orthogonal
space to S to be the space

S⊥ = { f ∈ C∗ | f(S) = 0}.

On the other hand, for any subset T ⊆ C∗, the orthogonal space
to T in C is defined by the formula

T⊥ = { c ∈ C | f(c) = 0 for all f ∈ T}.

We say that T ⊆ C∗ is closed if T⊥⊥ = T .

Proposition 2.1.2. [Swe69]

(a) If D ⊆ C is a subcoalgebra then D⊥ is an ideal of C∗.

(b) If I ⊆ C∗ is an ideal then I⊥ is a subcoalgebra of C.

(c) D ⊆ C is a subcoalgebra if and only if D⊥ is an ideal of C∗. In
this case C∗/D⊥ ∼= D∗ as algebras.

Proposition 2.1.3. [Swe69]

(a) If J ⊆ C is a right (left) coideal then J⊥ is a right (left) ideal of C∗.
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(b) If I ⊆ C∗ is a right (left) ideal then I⊥ is a right (left) coideal of C.

(c) J ⊆ C is a right (left) coideal if and only if J⊥ is a right (left) ideal
of C∗.

Proposition 2.1.4. (a) If J ⊆ C is a coideal then D⊥ is a subalgebra
of C∗.

(b) If I ⊆ C∗ is a subalgebra then I⊥ is a coideal of C.

(c) J ⊆ C is a coideal if and only if D⊥ is a subalgebra of C∗.

In general, if (A,m, u) is a K-algebra then its dual vector space,
A∗, does not have to be a K-coalgebra. That fact comes true if A is
finite dimensional since, in that case, the map ρ defined above is bi-
jective. Therefore we take ∆ = ρ−1 ◦m∗ and ε = u∗ and then (A∗,∆, ε)
is a coalgebra. Thus we get an equivalence between the category of
finite dimensional coalgebras and finite dimensional algebras over
a field.

FinDimAlgK
(−)∗ // FinDimCoalgK

oo

Now, we know that every coalgebra is direct limit of its finite di-
mensional subcoalgebras so we can see a coalgebra as direct limit
of finite dimensional algebras. For that reason coalgebras might
be considered as an intermediate structure between finite dimen-
sional and infinite dimensional algebras.

A coalgebra C can be endowed with a right and left C∗-module
structure using the actions ↼ and ⇀ defined by

c ↼ f =
∑
(c)

f(c(1))c(2) and f ⇀ c =
∑
(c)

f(c(2))c(1),

where f ∈ C∗ and c ∈ C such that ∆(c) =
∑
c(1)⊗c(2) using the sigma-

notation of Sweedler (see [Swe69]). For simplicity we will write cf
and fc instead of c ↼ f and f ⇀ c.

A right C-comodule (M,ω) can acquire a structure of left C∗-
module (M,ρ) (which is called the rational C∗ structure) where ρ is
the composition

C∗ ⊗M I⊗ω // C∗ ⊗M ⊗ C T⊗I //M ⊗ C∗ ⊗ C I⊗e //M ⊗K ∼= M,

where T : C∗⊗M →M⊗C∗ is the flip map defined by T (f⊗m) = m⊗f
for any f ∈ C∗ and m ∈ M , and e is the evaluation map. That is,
using the sigma-notation
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fm = ρ(f ⊗m) =
∑
(m)

f(m(1))m(0),

where f ∈ C∗ and m ∈ M such that ω(m) =
∑
m(0) ⊗m(1). Observe

that if M = C, we obtain the structure defined above. Analogously,
for a left C-comodule we can define a right C∗-module structure.

The reader should consider the question of which modules arise
in the above fashion from comodules. The solution comes from the
so-called rational modules (or discrete modules in the terminology
of [Sim01]).

Let (M,ρ) be a left C∗-module and ω : M → HomC∗(C∗,M) be the
linear map defined by ω(m)(f) = ρ(f ⊗m) for any f ∈ C∗ and m ∈M .
There exist the following injective maps:

M ⊗ C //M ⊗ C∗∗ f // HomC∗(C∗,M)

m⊗ c � //m⊗ c∗∗ � // fm⊗c∗∗ : C∗∗ //M

c∗
� // fm⊗c∗∗(c

∗) = c∗∗(c∗)m

Then a C∗-module is called rational if ω(M) ⊆M ⊗ C.

Proposition 2.1.5. Let (M,ρ) be a rational left C∗-module. Then
(M,ω) is a right C-comodule.

This produces an equivalence of categories, MC ∼= Rat(C∗), be-
tween the category of right C-comodules and the category of ratio-
nal left C∗-modules.

2.2 Pairings and weak* topology

This is a technical section devoted to developing some basic facts
on topologies induced by pairing of vector spaces which will be
useful in what follows. For further information see [Abe77], [HR73],
[Rad74a] and [Rad74b].

Let V and W be vector spaces over a field K. A pairing (V,W ) of
V and W is a bilinear map 〈−,−〉 : V ×W → K.

A pairing 〈−,−〉 is non degenerate if the following properties hold{
if 〈v, w〉 = 0 for all v ∈ V , then w = 0,
if 〈v, w〉 = 0 for all w ∈ W , then v = 0.
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This means that the linear maps σ : V −→ W ∗ and τ : W −→ V ∗

defined by σ(v)(w) = 〈v, w〉 and τ(w)(v) = 〈v, w〉 for all v ∈ V and
w ∈ W are injective.

Throughout this section all pairings will be non-degenerate.
A well-known example of a non degenerate pairing is the dual

pairing, (V, V ∗), given by the evaluation map 〈v, f〉 = f(v) for all
v ∈ V , f ∈ V ∗.

Given a pairing, (V,W ), we can relate subspaces of V and W
through the dual pairing, compare with last section. Let v ∈ V .
The orthogonal complement to v is the set v⊥ = {f ∈ V ∗ | f(v) = 0}.
More generally, for any subset S ⊆ V , we may define the orthogonal
complement to S to be the space

S⊥ = { f ∈ V ∗ | f(S) = 0}.

Since W can be embebed in V ∗ by the pairing, we may consider the
orthogonal subspace to S in W

S⊥W = S⊥ ∩W = {w ∈ W | 〈S,w〉 = 0}.

On the other hand, for any subset T ⊆ V ∗, the orthogonal com-
plement to T in V is defined by the formula

T⊥V = { v ∈ V | f(v) = 0 for all f ∈ T},

and if T ⊆ W , then we write T⊥V = { v ∈ V | 〈v, w〉 = 0 for all w ∈ T}.
For simplicity we write ⊥ instead of ⊥V .
The following diagram summarizes the above discussion:

_________

�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�
�
�
�
�
�
�

V ∗
T⊥

ww S⊥∩W



V
S⊥W ={w ∈ W | 〈S, w〉 = 0} //

S⊥

00

W
T⊥={v ∈ V | 〈v, T 〉 = 0}

oo

The following lemma gives a neighbourhood subbasis and a
neighbourhood basis of a topology on V ∗. We call it the weak*
topology on V ∗, see [Abe77], [Rad74a] and [Rad74b].
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Lemma 2.2.1. Let f be a linear map in V ∗.

(a) The set Uf = { f + v⊥ | v ∈ V } is a neighbourhood subbasis of f
for a topology on V ∗.

(b) The sets Bf
x1,...,xn

= {g ∈ V ∗ | g(xi) = f(xi) ∀i = 1, . . . , n} ⊆ V ∗, for
any x1, . . . , xn ∈ V and n ∈ N∗, form a neighbourhood basis at f
for the topology on V ∗ defined in (a).

Proof. (a) This is straightforward.

(b) The finite intersections of elements of a neighbourhood subba-
sis form a neighbourhood basis and it is easy to check that

f + x⊥ = {g ∈ V ∗ | g(x) = f(x)},

for any x ∈ V .

If we view W as a subspace of the vector space V ∗, the induced
topology on W is called the V -topology.

In the next proposition we collect some properties of the weak*
topology which we shall need.

Proposition 2.2.2. Let (V,W ) be a pairing of K-vector spaces.

(a) The weak* topology is the weakest topology on V ∗ which makes
continuous the elements of V , that is, it is the initial topology for
the elements of V .

(b) The closed subspaces on the weak* topology are S⊥, where S is
a subspace of V .

(c) The closure of a subspace T of V ∗ (in the weak* topology) is T⊥⊥.

(d) The closed subspaces on the V -topology are S⊥W , where S is a
subspace of V .

(e) The closure of a subspace T of W (in the V -topology) is T⊥⊥W .

(f) Let {Aλ}λ∈Λ be a family of subspaces of V . Then(∑
λ∈Λ

Aλ

)⊥

=
⋂
λ∈Λ

A⊥
λ and

(∑
λ∈Λ

Aλ

)⊥W

=
⋂
λ∈Λ

A⊥W
λ .
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(g) Any finite dimensional subspace of W is closed.

Proof. (a) Let T be the initial topology for the elements of V , and
W the weak* topology on V ∗. Let k ∈ K and evy ∈ V be the
evaluation on y. Then

(evy)
−1(k) = {f ∈ V ∗ | f(y) = k}.

But given g ∈ (evy)
−1(k) we obtain g ∈ g + y⊥ ⊆ (evy)

−1(k) so
(evy)

−1(k) is an open set in weak* topology and thus T ⊆ W.
Conversely, given f ∈ V ∗ and x ∈ V , a neighbourhood of f in
weak* topology is f + x⊥ = ev−1

x (f(x)), which is open in T and
thus W ⊆ T .

(b) Let S ⊆ V , if f /∈ S⊥ then there exists x ∈ S such that f(x) 6= 0.
Thus (f + x⊥) ∩ S⊥ = ∅ and f /∈ S⊥. Conversely, let T be a closed
subspace; it suffices to prove that T⊥⊥ ⊆ T . Fix f ∈ T⊥⊥ and
x ∈ V ; if x ∈ T⊥ then f(x) = 0, hence 0 ∈ (f + x⊥) ∩ T . If, on
the contrary, x /∈ T⊥ then there exists g ∈ T such that g(x) 6= 0,
therefore f(x)

g(x)
g ∈ (f + x⊥) ∩ T . This shows that f ∈ T = T .

(c) T⊥⊥ is a closed set satisfying T ⊆ T⊥⊥, therefore T ⊆ T⊥⊥. We
can now proceed analogously to the proof of (b) to show T⊥⊥ ⊆
T .

(d) The V -topology on W is induced by the weak* topology on V ∗ so
S⊥W = S⊥ ∩W is closed. If T is closed, then T = T

W
= T ∩W =

T⊥⊥ ∩W = T⊥⊥W .

(e) The proof is straightforward from (d).

(f) We have
f ∈

⋂
λ∈Λ

A⊥
λ ⇔ f(Aλ) = 0 ∀λ ∈ Λ,

⇔ f(
∑

λ∈ΛAλ) = 0,

⇔ f ∈
(∑

λ∈ΛAλ

)⊥
.

(g) See [Abe77, Chapter 2].

Finally, from the point of view of subspaces of V we have

Lemma 2.2.3. Let (V,W ) be a pairing of K-vector spaces.
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(a) Let A be a subspace of V . Then A⊥⊥ = A.

(b) Let A be a finite dimensional subspace of V . Then A⊥W⊥ = A.

(c) Let {Ti}i∈I be a family of subspaces of V ∗. Then(∑
i∈I

Ti

)⊥

=
⋂
i∈I

T⊥i .

Proof. (a) f(A) = 0 for each f ∈ A⊥ and so A ⊆ A⊥⊥. Converselly, let
v /∈ A  V . There exists f ∈ V ∗ such that f(A) = 0 and f(v) 6= 0.
By Proposition 2.2.2, A⊥ is closed so A⊥⊥⊥ = A⊥ and therefore,
∀g ∈ V ∗, g(A) = 0⇔ g(A⊥⊥) = 0, which implies that v /∈ A⊥⊥.

(b) See, for instance, [Abe77, Theorem 2.2.1].

(c) We have

v ∈
⋂
i∈I

T⊥i ⇔ f(v) = 0 ∀f ∈ Ti ∀i ∈ I,

⇔ f(v) = 0 ∀f ∈
∑
i∈I

Ti,

⇔ v ∈

(∑
i∈I

Ti

)⊥

.

2.3 Basis of a relation subcoalgebra

The aim of this section is to obtain a more manageable basis for
a relation subcoalgebra of a path coalgebra. For more information
and technical properties of subcoalgebras see [JMR].

Let Q = (Q0, Q1) be a quiver and C a subcoalgebra of KQ. Fix a
path p = αnαn−1 · · ·α1 in Q; a subpath of p is a path, q, such that
either q is a vertex of p or q is a non-trivial path αiαi+1 · · ·αj, where
1 ≤ j ≤ i ≤ n.

Lemma 2.3.1. Let C ⊆ KQ be a subcoalgebra, and p be a path in C.
Then all subpaths of p are in C.

Proof. See [JMR].
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This result could lead the reader to ask if any subcoalgebra
could be generated by a set of paths. Unfortunately this is not
true as the next examples show.

Example 2.3.2. Let Q be the quiver

x1 ◦

◦tttttttt

::
α1

◦
JJJJJJJJ

$$

α2

◦

◦
JJJJJJJJ

$$α3

◦tttttttt

::

α4

x2

x3

x4

The subspace generated by {ex1 , ex2 , ex3 , ex4 , α1, α2, α3, α4, α2α1+α4α3}
is a subcoalgebra of KQ which cannot be generated by paths.

Example 2.3.3. Let Q be the quiver

◦◦<< ◦◦ bbα β
x

The subcoalgebra C = K{ex, α+ β} is not generated by paths.

One may observe that, in the preceding examples, the basic el-
ements which are not paths have the common property of being
a linear combination of paths with the same source and the same
sink. The next proposition asserts that, in general, every subcoal-
gebra of a path coalgebra has this property.

Proposition 2.3.4. Let Q be a quiver and C ⊆ KQ a subcoalgebra.
Then there exists a K-linear basis of C such that each basic element
is a linear combination of paths with common source and common
sink.

Proof. See [JMR, Proposition 2.8].

Corollary 2.3.5. Any admissible subcoalgebra of a path coalgebra
is a relation subcoalgebra.

Proposition 2.3.4 is the key-tool which allows us to give a more
precise description of the basis of a relation subcoalgebra. Through-
out, we assume that C is a relation subcoalgebra and B is a K-
linear basis of C as in Proposition 2.3.4. By definition, C con-
tains the set of all vertices, V = {ei}i∈Q0, and the set of all arrows,
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F = {α}α∈Q1, therefore we rearrange the elements of the basis B as
follows:

B = V ∪ F ∪ {Gτ
ij | τ ∈ Tij and i, j ∈ Q0},

where, for all τ ∈ Tij, the element Gτ
ij is a K-linear combination of

paths with length greater than one which start at i and end at j.
We now assume that D = {pλ}λ∈Λ is the set of all paths of length

greater than one in C. Proceeding as before we can be write

B = V ∪ F ∪D ∪ {Rυ
ij | υ ∈ Uij and i, j ∈ Q0},

where, for all υ ∈ Uij, the element Rυ
ij is a K-linear combination of

at least two paths of length greater than one which start at i and
end at j. Obviously, the paths involved in the linear combinations
Rυ

ij are not in C, for any υ ∈ Uij and i, j ∈ Q0.
For the convenience we introduce some notation. We denote by

Q = Q0 ∪ Q1 ∪ · · · ∪ Qn ∪ · · · the set of all paths in Q. Let a be an
element of KQ. Then we can write a =

∑
p∈Q app, for some ap ∈ K.

We define the path support of a to be PSupp(a) = {p ∈ Q | ap 6= 0}. In
this way, for any set S ⊆ KQ, we define PSupp(S) =

⋃
a∈S PSupp(a).

Definition 2.3.6. Let S be a set in KQ. S is called connected if
PSupp(S1)∩PSupp(S2) 6= ∅ for any subsets S1, S2 ⊆ S such that S1∪S2 =
S and S1 ∩ S2 = ∅. A subset S ′ ⊂ S is a connected component of S
when S ′ is connected and PSupp(S ′) ∩ PSupp(S\S ′) = ∅.

Therefore we can break down each set Sij = {Rυ
ij}υ∈Uij

into its
connected components and then write the basis B of C as

B = V ∪ F ∪D ∪
⋃
φ∈Φ

Υφ,

where, for any φ ∈ Φ, the set Υφ is a connected set of K-linear
combinations of at least two paths such that PSupp(Υφ) ⊂ KQ≥2

and PSupp(Υφ1) ∩ PSupp(Υφ2) = ∅ ⇔ φ1 6= φ2.
As a final reduction, it will be useful to distinguish those sets

Υφ which are finite. Thus the basis B of C can be written as

B = V ∪ F ∪D ∪
⋃
γ∈Γ

Πγ ∪
⋃
β∈B

Σβ,

where Πγ is a finite set for all γ ∈ Γ and Σβ is infinite for all β ∈ B.
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2.4 Path coalgebras of quivers with rela-
tions

In this section we study the notion of the path coalgebra of a quiver
with relations introduced by Simson in [Sim01] and [Sim05]. For
the convenience of the reader we shall denote by CQ and by KQ
the path coalgebra and the path algebra associated to a quiver Q,
respectively (despite that the underlying vector space is the same).

Definition 2.4.1. Let (Q,Ω) be a quiver with relations. The path
coalgebra of (Q,Ω) is defined by the subspace of CQ,

C(Q,Ω) = {a ∈ CQ | 〈a,Ω〉 = 0}

where 〈−,−〉 : CQ×KQ −→ K is the bilinear map defined by 〈v, w〉 =
δv,w (the Kronecker delta) for any two paths v, w ∈ Q.

This notion may be reformulated in the notation of the Section
2.2. It is clear that 〈−,−〉 is a non-degenerate pairing between CQ
and KQ, therefore we have the following picture:

_____________
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�
�
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�
�
�
�
�
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�
�
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�

_ _ _ _ _ _ _ _ _ _ _ _ _

�
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�
�
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�
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�
�
�
�
�
�
�
�

CQ KQ
C
⊥KQ={p ∈ KQ | 〈C, p〉 = 0} //

KQCQ
Ω⊥=C(Q,Ω)

ooCQ

C⊥

33
I⊥

zz

KQ

C⊥∩KQ

��

(CQ)∗

First we prove the following result.

Lemma 2.4.2. If Q is any quiver, then the injective morphism KQ ↪→
(CQ)∗ defined by the pairing 〈−,−〉 of 2.4.1 is a morphism of algebras.

Proof. Recall that in the dual algebra (CQ)∗ := HomK(CQ,K) the
(convolution) product is defined by

(f ∗ g)(p) =
∑

p=p2p1

f(p2)g(p1) for any f, g ∈ (CQ)∗ and any p ∈ Q.
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Fix p ∈ Q and let p∗ : CQ → K be the linear map defined by
p∗(q) = δp,q for any q ∈ Q. It is enough to prove that (pq)∗ = p∗ ∗ q∗ for
any two paths p, q ∈ Q. To prove this, let r be a path in Q. Then:

(p∗ ∗ q∗)(r) =
∑

r=r2r1

δp,r2δq,r1 =

{
0 if r 6= pq
1 if r = pq

= (pq)∗(r),

and so (pq)∗ = p∗ ∗ q∗.

It may be helpful to point out that the algebra KQ does not
need to have a unit (it has unit if and only if Q0 is finite) and then
the morphism defined above is an injective morphism of algebras
without unit. Therefore the situation is the following:

KQ � � // (KQ)1
� � // (CQ)∗,

where (KQ)1 = KQ⊕K · 1 is the unification of KQ.

Lemma 2.4.3. KQ is dense in (CQ)∗ in the weak* topology on (CQ)∗.
Consequently, KQ is dense in (KQ)1 and (KQ)1 is dense in (CQ)∗ in
the weak* topology on (CQ)∗.

Proof. This is a particular case of Lemma 2.5.2 that we shall prove
later. It is enough to consider C = 0, obviously, (KQ)⊥ = 0 and then
0⊥ ∩KQ = KQ is dense in 0⊥ = (CQ)∗.

From now on we will make no distinction between elements of
KQ and linear maps f : CQ → K with finite path support, that is,
f(p) = 0, for almost all p in Q. On the other hand, it is convenient
to note that any element g ∈ (CQ)∗ can be written as a formal sum
g =

∑
p ∈ Q app, where ap = g(p) ∈ K.

Corollary 2.4.4. Let Q be a quiver and C an admissible subcoalge-
bra of CQ. Then C⊥KQ is a relation ideal of KQ.

Proof. Since C⊥ is an ideal of (CQ)∗, C⊥ ∩KQ = C⊥KQ is an ideal of
KQ by Lemma 2.4.2. If c ∈ KQ0 ⊕ KQ1, then c ∈ C since C is an
admissible subcoalgebra. Therefore 〈c, C〉 6= 0, so c /∈ C⊥KQ, which
completes the proof.

The following result, proved in [Sim05], justifies the preceding
definition of the path coalgebra of a quiver with relations.
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Proposition 2.4.5. Let Q be a quiver and Ω a relation ideal of KQ,
then C(Q,Ω) = Ω⊥ is a relation subcoalgebra of CQ.

A K-linear representation of a quiver Q is a system

X = (Xi, ϕα)i∈Q0,α∈Q1 ,

where Xi is a K-vector space and ϕα : Xi → Xj is a K-linear map for
any α : i → j. A morphism f : (Xi, ϕα) → (Yi, ψα) of representations
of Q is a system f = (fi)i∈Q0 of K-linear maps fi : Xi → Yi for any
i ∈ Q0 such that fjϕα = ψαfi for all α : i → j in Q1. We denote by
RepK(Q) the Grothendieck K-category of K-linear representations
of Q. A representation X of Q is said to be of finite length if Xi

is a finite dimensional vector space for all i ∈ Q0 and Xi = 0 for
almost all indices i, we will denote that subcategory by replf

K(Q). A
representation X is nilpotent if there exists a m ≥ 2 such that the
composed linear map

Xi0

ϕα1 // Xi1

ϕα2 // Xi2
//___ · · · //___ Xim−1

ϕαm // Xim

is zero for any path αmαm−1 · · ·α1 in Q of length m. We denote by
Replf

K(Q) ⊇ Replnlf
K (Q) the full subcategory of RepK(Q) formed by all

locally and locally nilpotent representations of finite length, respec-
tively, and by nilreplf

K(Q) the subcategory of all nilpotent represen-
tations of finite length.

Given a quiver with relations (Q,Ω), a linear representation of
(Q,Ω) is a linear representation X = (Xi, ϕα) of Q which verifies
that if p =

∑n
i=1 λiα

i
mi
· · ·αi

1 is in Ω then
∑n

i=1 λiϕαi
mi
· · ·ϕαi

1
= 0. Then,

analogously, we may define the categories RepK(Q,Ω), replf
K(Q,Ω),

Replnlf
K (Q,Ω), Replf

K(Q,Ω) and nilreplf
K(Q,Ω).

Theorem 2.4.6 ([Sim05], Theorem3.5). Let (Q,Ω) be a quiver with
relations. There are category isomorphisms

MC(Q,Ω)
f

∼= nilreplf
K(Q,Ω) and MC(Q,Ω) ∼= Replnlf

K (Q,Ω)

Then, this definition is consistent with the representation theory
of algebras and reduces the study of the category MC to the study
of linear representations of a quiver with relations.
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2.5 When is a coalgebra a path coalgebra
of a quiver with relations?

It is well-known that, over a algebraically closed field, a finite di-
mensional algebra, A, is isomorphic to KQA/Ω, where QA is the
Gabriel quiver of A and Ω is an admissible ideal of KQ. In [Sim01],
it is suggested, as an open problem, to relate the admissible sub-
coalgebras of a path coalgebra CQ and the relation ideals of the
path algebra KQ, through the above-mentioned notion of path coal-
gebra of a quiver with relations. That is, for any admissible sub-
coalgebra C ≤ CQ, is there a relation ideal Ω ≤ KQ such that
C = C(Q,Ω)? In other words, in the notation of Section 2, for any
admissible subcoalgebra C ≤ CQ, is there a relation ideal Ω of KQ
such that Ω⊥ = C?

Note that if C has finite dimension, then, by Lemma 2.2.3,
(C⊥KQ)⊥ = C and the result follows. This yields a reduction of the
problem:

Problem 2.5.1. Verify the relation Ω⊥ = C for the ideal Ω = C⊥KQ.

Lemma 2.5.2. Let Q be a quiver and C a vector subspace of CQ.
Then the following conditions are equivalent.

(a) There exists a subspace Ω of KQ such that Ω⊥ = C.

(b) C⊥KQ is dense in C⊥ in the weak* topology on (CQ)∗.

(c) (C⊥KQ)⊥ = C.

Proof. (a) ⇒ (b). Since C = Ω⊥, it follows that C⊥ = Ω⊥⊥ is the
closure of Ω in weak* topology by Proposition 2.2.2. Thus Ω ⊂ C⊥ ∩
KQ = C⊥KQ ⊂ C⊥ and, by Proposition 2.2.3, C = C⊥⊥ ⊂ (C⊥KQ)⊥ ⊂
Ω⊥ = C. Therefore C = (C⊥KQ)⊥ and thus C⊥ = (C⊥KQ)⊥⊥ = C⊥KQ.

(b) ⇒ (c). Since C⊥ = (C⊥KQ)⊥⊥, we have C⊥⊥ = (C⊥KQ)⊥⊥⊥ and,
by Proposition 2.2.3, C = (C⊥KQ)⊥.

(c)⇒ (a). It is trivial.

We now assume that C is an admissible subcoalgebra of CQ. If
we consider the basis of C,

B = V ∪ F ∪D ∪
⋃
γ∈Γ

Πγ ∪
⋃
β∈B

Σβ,

built in Section 3, then we have
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C = KV ⊕KF ⊕KD ⊕

(⊕
γ∈Γ

KΠγ

)
⊕

(⊕
β∈B

KΣβ

)
(2.1)

as K-vector space. Since the subsets into which we have parti-
tioned B have disjoint path supports, it is easily seen that Ω⊥ = C
if and only if each direct summand Ci of (2.1) is the orthogonal
complement Ω⊥

i of a subspace Ωi and, in this case, Ω =
⋂

Ωi.
There are two trivial cases:
CASE 1. It is immediate that KV = K(Q\V )⊥, KF = K(Q\F )⊥

and KD = K(Q\D)⊥.
CASE 2. For each γ ∈ Γ, KΠγ is a finite dimensional subspace

and so, by Lemma 2.2.3, KΠγ = ((KΠγ)
⊥KQ)⊥. As a consequence we

get:

Corollary 2.5.3. With the above notation, C = Ω⊥ if and only if
Σβ = (Σβ)⊥KQ⊥ for each β ∈ B.

In particular, this implies the following proposition proved in
[Sim05].

Proposition 2.5.4. Let Q be a quiver without cycles such that the
set of paths in Q from i to j is finite, for all i, j ∈ Q0. Then the
map C 7−→ C⊥KQ define a bijection between the set of all relation
subcoalgebras of CQ and the set of all admissible ideals of KQ. The
inverse map is defined by Ω 7−→ Ω⊥, for any relation ideal Ω of KQ.

Therefore, we can reduce Problem 2.5.1 to the situation of a
quiver Q with the following structure

Q ≡ ◦ ◦◦

γ1

  
◦◦

γ2

&& ◦◦γn // ◦
γi

88 length(γi)> 1, i ∈ I, I infinite (2.2)

and C an admissible subcoalgebra generated, as vector space, by
V ∪ F ∪D ∪Σ, where Σ is an infinite connected set with PSupp(Σ) =
{γi}i∈I. We may assume that γi /∈ C for all i ∈ I. Then the question
is: when the equality Σ = Σ⊥KQ⊥ holds?

Let us first show that, at least, there is an example of an admis-
sible subcoalgebra C ⊆ CQ such that C is not of the form C = Ω⊥,
where Ω is a relation ideal of KQ.



34 Chapter 2. Path Coalgebras of Quivers with Relations

Example 2.5.5. Let Q be the quiver

◦

◦rrrrrrrrrrr

99
α1

◦
LLLLLLLLLLL

%%

β1◦iiiiiiiiii

44α2

◦UUUUUUUUUU

**

β2

◦//αn ◦//βn

◦UUUUU

**αi

◦iiiii

44

βi

◦
◦
◦

γi = βiαi for all i ∈ N (2.3)

and let H be the admissible subcoalgebra of CQ as in (2.2) with
Σ = {γi − γi+1}i∈N.

Assume that x =
∑

i≥1 aiγi belongs to H⊥ and ai = 0 for i ≥ n we
have some n ∈ N. Then 〈γi − γi+1, x〉 = ai − ai+1 = 0 for all i ∈ N, so
ai = ai+1 for all i ∈ N. But an = 0 and it follows that x = 0. Hence
H⊥KQ = 0.

By a similar argument H⊥ = 〈f〉, where f(γi) = 1 for all i ∈ N.
That is, f ≡

∑
i≥1 γi. Obviously, H⊥KQ is not dense in H⊥.

Here we present a positive example

Example 2.5.6. Let Q be the quiver of (2.3), and C the admissible
subcoalgebra generated by Σ = {γ2n−1 + γ2n + γ2n+1}n≥1. A straight-
forward calculation shows that Ω⊥ = C, where Ω = 〈{γ1 − γ2, {γ2n −
γ2n+1 + γ2n+2}n≥1}〉.

We now analyze them deeply to provide a criterium which allows
us to know, when an admissible relation subcoalgebra of CQ is the
path coalgebra C(Q,Ω) of a quiver with relations.

First, it is convenient to see Examples 2.5.5 and 2.5.6 from a
more graphic point of view. We write the elements of Σ in matrix
form. Thus we have the associated infinite matrices


1

1
1

1
1

1
1

1

-1
-1

-1
-1

-1
-1

-1
-1

0
0

0
0

0
0

0
0

JJJJJJJJJJJJJJJJJJJ

0

 and


1 1

1
1

1
1

1
1

1
1 1

1 1
1 1

1 1
1 1

0
0

0
0

GG
JJJ

JJJ
JJJ

JJJ
JJJ

GGG
GG

JJ
0


Example 2.5.5 Example 2.5.6

We can observe that Example 2.5.5 has an infinite diagonal of
non zero elements. Let h ∈ H⊥KQ. Then h must have finite path
support, and so, if we want to know h, we only have to solve a finite
linear system of equations with associated matrix
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1

1
1

1
1

1
1

1

-1
-1

-1
-1

-1
-1

-1
-1

0
0

0
0

0
0

0
0

JJJJJJJJJJJJJJJJJJJ

0
_____

_____�
�
��
�
� �

�
��
�
�

 22ddddddddd


1

1
1

1

1
1

-1
-1

-1
-1

-1

0
0

0
0

0
GGGGGGGGGGGGGGGGGG

0


but zero is the unique solution.

In this way we obtain a class of admissible subcoalgebras which
are not path coalgebras of quivers with relations:

Definition 2.5.7. Let Q be a quiver as in (2.2), C be an admissible
subcoalgebra generated by a connected set Σ with PSupp(Σ) = {γi}i∈I

and γi /∈ C for all i ∈ I. We say that C has the infinite diag-
onal property (IDP for short) if there exists a subset Σ′ ⊆ Σ with
PSupp(Σ′) = {γn}n∈N such that by means of elementary transforma-
tions, Σ′ can be reduced to {γn +

∑
j>n a

n
j γj}n∈N, where an

j ∈ K for all
j, n ∈ N.

Proposition 2.5.8. Let Q be a quiver as in (2.2) and C be an admis-
sible subcoalgebra generated by a connected set Σ with PSupp(Σ) =
{γi}i∈I . Suppose that γi /∈ C, for each i ∈ I. If C has IDP, then there is
no relation ideal Ω ⊆ KQ such that C = C(Q,Ω).

Proof. Let Σ′ = {γn+
∑

j>n a
n
j γj}n∈N ⊆ Σ. Assume that the assertion is

not true, i.e., there is a relation ideal Ω ⊆ KQ such that C = C(Q,Ω).
By Lemma 2.5.2, C⊥KQ is dense in C⊥. Since γ1 /∈ C, there exists
a linear map g ∈ C⊥ such that g(γ1) 6= 0. By the density of C⊥KQ

in C⊥, there exists a linear map h with finite path support such
that h(γ1) = g(γ1). Defining xi := h(γi), for any i ∈ N, we obtain that
h(Σ′) = 0 is the infinite system of linear equations {xn +

∑
j>n ajxj =

0}n∈N. Since h has finite path support, there exists an integer m
such that xk = 0, for k ≥ m. Hence x1, . . . xm satisfy the finite system
of linear equations

x1 + a1
2x2 + · · ·+ a1

mxm = 0
x2 + · · ·+ a2

mxm = 0
...

xm = 0

which has the unique solution xm = xm−1 = · · · = x1 = h(γ1) = 0, and
we get a contradiction.
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We claim that Example 2.5.6 does not have IDP. This means
that for any infinite countable subset Σ′ ⊆ Σ, the associated matrix
can be reduced to a matrix of a ”staircase” form

???

??
??

?

???

???

???

???

???

???

???

0


(2.4)

that is, for any positive integer n, the first n rows have at least n
variables and there is an integer m > n such that the first m rows
have more than m variables. We can prove that for any linear map
f ∈ C⊥ and any finite set {γ1, . . . , γn} of paths in Q, we obtain a
linear map g ∈ C⊥ such that f(γi) = g(γi) for all i = 1, . . . , n. That is,
C⊥KQ is dense on C⊥.

Proposition 2.5.9. Under the assumptions of Proposition 2.5.8, if C
fails IDP, then there exists a relation ideal Ω such that C = C(Q,Ω).

Proof. It suffices to show that Σ⊥KQ is dense in Σ⊥, that is, given
f ∈ Σ⊥ and γ1, . . . , γn ∈ PSupp(Σ) there exists h ∈ Σ⊥, with finite path
support, such that h(γi) = f(γi) for all i = 1, . . . , n. We give the proof
only for n = 1; the general case is analogous and left to the reader.

We know that h(Σ) = 0 produces an infinite system of linear
equations with variables {h(γi) = xi}i∈I. We rewrite the system in
the following way:

STEP 1. Fix an equation, say E1, such that the coefficient of x1 is
not zero. We may assume that it is the only one with this property.
Suppose that

E1 ≡ x1 + a1
2x2 + · · ·+ a1

r1
xr1 + · · ·+ a1

mxm = 0,

where a1
2, . . . , a

1
m are non zero and x1, . . . , xr1−1 do not appear in any

other equation of the system.
STEP 2. We take now xr1. There is at least one equation, say

E2, different from E1, in which the coefficient of xr1 is not zero.
We eliminate it from the remaining equations different from E1.
Choose variables xr1+1, . . . , xr2−1 which only appear in E1 or E2, and
the system starts as
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x1 + a1
2x2 + · · ·+ a1

r1
xr1 + · · ·+ a1

mxm = 0
xr1 + · · ·+ a2

mxm + · · ·+ a2
l xl = 0.

STEP 3. We do the same with xr2 to obtain

x1 + · · ·+ a1
r1
xr1 + · · ·+ a1

r2
xr2 + · · ·+ a1

mxm = 0
xr1 + · · ·+ a2

r2
xr2 + · · · · · ·+ a2

l xl = 0
xr2 + a3

r2+1xr2+1 + · · ·+ a3
hxh = 0.

STEP 4. We continue in this fashion. When we finish with the
variables of E1, we proceed with the variables of E2 and so on. The
reader should observe that the variables x1, . . . , xr1 , xr1+1, . . . , xri

only
appear in the equations E1, E2, . . . , Ei+1, for all i ∈ N.

There are two cases to consider:
CASE 1. This process stops after a finite number of steps. Then

we consider xα = 0, for all variables outside the finite subsystem
which we have obtained. Since any equation has at least two vari-
ables, the subsystem has more variables than equations and max-
imal range. This follows that there is a solution for x1 = −f(γ1).

CASE 2. This process is infinite. Then we stop after finding a
variable xrk

where rk is the minimal integer such that rk > n and
rk+1 − rk > 1 (it is possible because C fails IDP). Roughly speaking,
this means that we stop this process on the first ’step’ (horizontal
segments in (2.4)) after processing the variables of E1.

We consider xi = 0, for all i 6= 1, . . . , rk+1, and therefore it suffices
to prove that the finite system of k + 1 equations and rk variables

??
??

?

??
??

??
??

?

??
??

?

??
??

?

_____________
�
�
�
�
�
�
�
�
�
�

a1
2x2+ +a1

mxm α

0

0

0


has a solution, where α = −f(γ1). But this is clearly true, because
rk ≥ k + 1 and the matrix of coefficients has maximal range. �

Let Q be a quiver as in (2.2) and C be an admissible subcoalge-
bra as in the assumption of Proposition 2.5.8. Let us suppose that
there exists a subset Σ′ ⊆ Σ such that Σ′ = {γn +

∑
j>n a

n
j γj}n∈N,
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where an
j ∈ K for all j, n ∈ N, and γi = αi

ni
αi

ni−1 · · ·α2α1, for all
i ∈ N. We may consider the subquiver Q′ = (Q′

0, Q
′
1), where Q′

0 =
{t(αi

j), s(α
i
j)}i∈N

j=1,...,ni
and Q′

1 = {αi
j}i∈N

j=1,...,ni
. Then C contains the ad-

missible subcoalgebra of CQ′ generated by Σ′.
Therefore we turn to the case of a quiver Q with the following

structure:

Q ≡ ◦ ◦◦

γ1

  
◦◦

γ2

&& ◦◦γn // ◦
γi

88 length(γi)> 1, i ∈ N (2.5)

and C an admissible subcoalgebra of CQ generated by an infinite
countable connected set Σ = {γn +

∑
j>n a

n
j γj}n∈N, where an

j ∈ K for
all j, n ∈ N. We may suppose that γi /∈ C for all i ∈ N.

Under these conditions, we denote by Hn
Q the class of admissi-

ble subcoalgebras of CQ such that dimK(〈PSupp(Σ)〉/〈Σ〉) = n and
by HQ the class of admissible subcoalgebras of CQ such that the
dimensiondimK(〈PSupp(Σ)〉/〈Σ〉) =∞. Finally, we set

H∞
Q = HQ ∪

⋃
n∈N

Hn
Q

Theorem 2.5.10. [JMN05] Let Q be any quiver and C be an admis-
sible subcoalgebra of CQ. There exists a relation ideal Ω of KQ such
that C = C(Q,Ω) if and only if there is no subquiver Γ of Q such that
C contains a subcoalgebra in H∞

Γ .

Proof. This follows from Proposition 2.5.8 and 2.5.9, and the argu-
ments mentioned above.

Corollary 2.5.11 (Criterion). Let C be an admissible subcoalgebra
of a path coalgebra CQ. Then C is not the path coalgebra of a quiver
with relations if and only if there exist an infinite number of different
paths {γi}i∈N in Q such that:

(a) All of them have common source and common sink.

(b) None of them is in C.

(c) There exist elements an
j ∈ K for all j, n ∈ N such that the set

{γn +
∑

j>n a
n
j γj}n∈N is contained in C.
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Remark. The reader could ask if an admissible subcoalgebra, C,
of CQC, which contains a subcoalgebra in H∞

Γ can be written as
C(Q′,Ω′), where Q′ is a quiver which is not the Gabriel quiver of C.

We know that there exists an injective map f : C −→ CQ such

that f |C1 = id. If there is a quiver Q′ and an inclusion C
� � i // CQ′ ,

the following diagram conmutes:

C1 � p

i

!!D
DD

DD
DD

D
oo id // CQ1� _

i
���
�
�

CQ′
1

We need the following lemma to finish our remark.

Lemma 2.5.12. Let f : C → D be a morphism of coalgebras.

(a) If e is a group-like element of C then f(e) is a group-like element
of D.

(b) If f is injective and x is a non-trivial (e, d)-primitive element of
C then f(x) is a non-trivial (f(e), f(d))-primitive element of D.

Thus, since CQ1 and CQ′
1 are generated by the set of all vertices

and arrows of Q and Q′, respectively, using Lemma 2.5.12, we con-
clude that Q is a subquiver of Q′; so it contains some coalgebra in
H∞

Γ .
As a consequence, we get a negative answer to the following

open problem considered by Simson in [Sim01] and [Sim05]: Is
any basic coalgebra, over an algebraically closed field, isomorphic
to the path coalgebra of a quiver with relations?





Chapter 3

Localization in Coalgebras

The categoryMC of right comodules over a coalgebra C is a locally
finite Grothendieck category in which the theory of localization de-
scribed by Gabriel in [Gab62] can be applied. The localizing subcat-
egories ofMC have been studied in several papers with satisfactory
results, see [Gre76], [Lin75], [NT94] and [NT96]. In this context, the
idempotent elements of the dual algebra play an important rôle to
permit us to give an explicit description of the elements of a situ-
ation of localization and to characterize some important classes of
localizing subcategories. In particular, we shall consider the sta-
ble localizations of MC and characterize them by left semicentral
idempotent elements. This will be obtained as a consequence of
the study of the behavior of injective and simple comodules under
the action of the localization functors. Lastly, we shall contemplate
the particular case of admissible subcoalgebras of path coalgebras.

3.1 Some categorical remarks about local-
ization

Let C be an abelian category. A full subcategory A of C is said to be
dense if, for each exact sequence 0 → X ′ → X → X ′′ → 0 in C, we
have that X belongs to A if and only if X ′ and X ′′ belong to A.

For any dense subcategory A of C, there exists an abelian ca-
tegory C/A and an exact functor T : C → C/A such that T (X) = 0,
for each X ∈ A, satisfying the following universal property: for any
exact functor H : C → C ′ such that H(X) = 0 for each X ∈ A, there
exists a unique functor H : C/A → C ′ such that H = HT . This cate-
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gory C/A is called the quotient category of C with respect to A. See
[Gab62].

A dense subcategory A of C is called localizing if the quotient
functor T : C → C/A has a right adjoint functor, namely S : C/A → C.
The functor S is called the section functor of T .

Lemma 3.1.1. [Gab62] In the above situation, we have that:

(a) T is an exact functor.

(b) S is a left exact functor.

(c) S is a fully faithful functor.

(d) The equality TS = 1C/A holds.

Conversely, if T : C → C′ is an exact functor between abelian
categories and S : C ′ → C is a full and faithful right adjoint functor
of T , the dense subcategory Ker (T ), whose object class is {X ∈ C |
T (X) = 0}, is a localizing subcategory of C and C ′ is equivalent to
C/Ker (T ), see [Pop73, 4.4.9].

In the particular case in which C is a Grothendieck category we
can say more.

Proposition 3.1.2. [Gab62] A dense subcategory A of a Grothen-
dieck category C is localizing if and only if it is closed under direct
sums, or equivalently, if each object X ∈ C contains a subobject A(X)
which is maximal among the subobjects of X belonging to A.

We say that a localizing subcategory is perfect localizing if the
composition functor Q = ST : C → C is exact, or equivalently, by
[Gab62, Chapter III, Corollary 3], if the section functor S is exact.

There exists a dual notion of localizing subcategory. Indeed, if
C is an abelian category, a dense subcategory A of C is said to be
colocalizing if the functor T : C → C/A has a left adjoint functor
H : C/A → C, see [NT96]. H is called the colocalizing functor.

Lemma 3.1.3. [NT96] Let A be a colocalizing subcategory of a Gro-
thendieck category C. Then A is a localizing subcategory of C.

Lemma 3.1.4. [NT96] Let A be a colocalizing subcategory of C. Then

(a) X ∈ A if and only if HomC(H(Y ), X) = 0 for any Y ∈ C/A.

(b) The colocalizing functor H is a fully faithful and right exact func-
tor.
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(c) The equality TH = 1C/A holds.

A colocalizing subcategory A of C is said to be perfect colocalizing
if the colocalization functor H : C/A → C is exact.

3.2 Localizing subcategories of a category
of comodules

Let us restrict our attention to the localization of categories of co-
modules. In the literature there is a very well founded theory about
the localizing subcategories and about the relationships that there
exist with other concepts. We recall briefly some of them:

Coidempotent coalgebras. A subcoalgebra A of C is said to be
coidempotent if A ∧ A = A. In [NT94], a bijective correspondence
between localizing subcategories ofMC and coidempotent subcoal-
gebras of C is established. Indeed, the authors associate to every
localizing subcategory T the subcoalgebra T (C) =

∑
M∈T cf(M) and

to every coidempotent subcoalgebra A of C the closed subcategory
TA whose class of objects is {M ∈MC | cf(M) ⊆ A}.

Equivalence classes of injective comodules. From the general
theory of localizing subcategories in a Grothendieck category, C, it
is well known that there exists a bijective correspondence between
localizing subcategories of C and equivalence classes of injective
objects. Two injective objets E1 and E2 are equivalent if Ei can be
embedded in a direct product of copies of Ej for i, j ∈ {1, 2}. The
above correspondence associates to any injective object E the lo-
calizing subcategory TE = {M ∈ C | HomC(M,E) = 0}. When we
apply this to a comodule category MC, for any localizing subcate-
gory T ofMC, the inverse maps T to the injective right C-comodule
E = S(D), where D is an injective cogenerator ofMC/T .

Sets of indecomposable injective comodules. Since two injec-
tive right C-comodules are equivalent if and only if in their de-
compositions, as a direct sum of indecomposable injective right
C-comodules, appear the same indecomposable injective comod-
ules, maybe with different multiplicity, every equivalence class of
injective right C-comodules is uniquely determined by a set of iso-
morphism classes of indecomposable injective right C-comodules.

Sets of simple comodules. To any indecomposable injective right



44 Chapter 3. Localization in Coalgebras

C-comodule, we can attach a simple right C-comodule defined by
its socle. Conversely, given a simple comodule, its injective enve-
lope is an indecomposable injective comodule. Therefore we have a
bijective correspondence between sets of indecomposable injective
comodules and sets of simple comodules.

Let us give a description of the localizing functors using Morita-
Takeuchi contexts.

Theorem 3.2.1. [JMNR06] Let T be a localizing subcategory ofMC

and X be a injective quasifinite right C-comodule such that T =
TX . Consider the injective Morita-Takeuchi context (D,C,X, Y, f, g)
defined by X. Then the functors

T = −�CY :MC →MD and S = −�DX :MD →MC

define a localization ofMC with respect to the localizing subcategory
T . In particular,MC/T is equivalent toMD.

Proof. Since XC is injective and quasifinite, the funtor S = −�DX
has an exact left adjoint functor CohomC(X,−). This functor pre-
serves direct sums so, for every N ∈ MC, there is an isomorphism
CohomC(X,N) ∼= N�CCohomC(X,C) = N�CY . Therefore, we obtain
a natural isomorphism CohomC(X,−) ∼= −�CY = T and thus S is
right adjoint of T .

Now, we have to show that Ker (T ) = TX. Let us point out that
X = S(D). Then, by the adjunction, for every M ∈ MC, There is a
bijection HomC(M,X)←→ HomD(T (M), D). Thus M ∈ TX if and only
if HomC(M,X) = 0 if and only if HomD(T (M), D) = 0 if and only if
T (M) = 0.

Equivalence classes of idempotents of the dual algebra. This is
the most important relation for us and we shall give a complete de-
scription of the elements of a localization, see [CGT02], [JMNR06]
and [Woo97] for details. Given two idempotent elements f, g ∈ C∗,
we say that f is equivalent to g if the injective right C-comodules
Cf and Cg are equivalent in the sense defined above. On the other
hand, it is easy to see that every injective right C-comodule E is of
the form E = Ce for some idempotent e ∈ C∗. Therefore there exists
a bijective correspondence between equivalence classes of injective
comodules and equivalence classes of idempotent elements of the
dual algebra. Given an idempotent element e ∈ C∗, we will de-
note the localizing subcategory associated to e by Te and by Ie ⊆ IC
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the indices of the subset of simple (or indecomposable injective)
comodules associated to this idempotent element.

Let e be an idempotent element of C∗ and Te be the localizing
subcategory associated to e. From above, MC/Te is an abelian ca-
tegory of finite type and thereforeMC/Te

∼=MD for some coalgebra
D. We may give an explicit description of D.

Let us consider the subspace eCe ⊆ C. Then it can be endowed
with a structure of coalgebra given by

∆eCe(exe) =
∑
(x)

ex(1)e⊗ ex(2)e and εeCe(exe) = εC(x)

for any x ∈ C, where ∆C(x) =
∑

(x) x(1)⊗x(2) using the sigma-notation
of [Swe69].

Lemma 3.2.2. [Woo97] There exists a equivalence between the cat-
egoriesMC/Te andMeCe.

If M is a right C-comodule, the vector space eM has a natural
structure of right eCe-comodule given by

ωeM(em) =
∑
(m)

em(0) ⊗ em(1)e,

for any m ∈ M , where ωM(m) =
∑

(m)m(0) ⊗ m(1) in the sigma-
notation.

There is a natural right eCe-comodule isomorphism eM ∼= M�CeC,
defined by ex 7→ x(0) ⊗ ex(1). This means that the functor −�CeC is
naturally isomorphic to the functor from MC to MeCe defined by
M 7→ eM . Observe that when we take M = Ce, we obtain a natural
isomorphism eCe ∼= Ce�CeC, see [CGT02] for details.

Since Ce is a quasifinite injective right C-comodule, we may con-
sider the injective Morita-Takeuchi context associated to Ce, which,
by [CGT02], is (eCe, C,Ce, eC, f, g), where f : eCe ∼= Ce�CeC is the
aforementioned isomorphism and g : C → eC�eCeCe is defined by
g(x) =

∑
ex(1) ⊗ x(2)e for any x ∈ C. Hence there exist isomorphisms

eC ∼= CohomC(Ce,C) and eCe ∼= CoendC(Ce).
Thus we can rewrite Theorem 3.2.1 as follows:

Theorem 3.2.3. The functors

T = −�CeC = e(−) :MC →MeCe and S = −�eCeCe :MeCe →MC

define a localization ofMC with respect to the localizing subcategory
Te.



46 Chapter 3. Localization in Coalgebras

Corollary 3.2.4. [CGT02] The functor T is equivalent to the functor
CohomC(Ce,−).

Corollary 3.2.5. A localizing subcategory Te is perfect localizing if
and only if Ce is an injective left eCe-comodule.

Note that, as a consequence of Theorem 3.2.3, we obtain an
easy description of the localizing subcategory:

Te = Ker (T ) = {M ∈MC | M�CeC = 0} = {M ∈MC | eM = 0}.

Remark. If e ∈ C∗ is an idempotent element, for a simple right
C-comodule S, we have exactly two possibilities:

(1) eS = 0, in this case e · cf(S) = 0 and e|cf(S) = 0, or

(2) eS = S, in this case e · cf(S) = cf(S) and e|cf(S) = ε|cf(S).

Thus the class Te is the localizing subcategory ofMC determined by
the subset Ie = {i ∈ IC | eSi = Si}. It is not difficult to see that the
coidempotent subcoalgebra determined by Te is the biggest sub-
coalgebra of C annihilated by e. (Note that, for any subcoalgebra A
of C, eA = 0 if and only if Ae = 0).

We now turn to colocalizing subcategories. From Theorem 3.2.3
we may deduce easily the following result.

Proposition 3.2.6. Let e ∈ C∗ be an idempotent element and Te be
its associated localizing subcategory inMC. Then Te is a colocalizing
subcategory if and only if eC is a quasi-finite right eCe-comodule.

Proof. By Theorem 1.3.2, the functor T = −�CeC : MC → MeCe

has a left adjoint functor if and only if eC is quasi-finite as right
eCe-comodule.

In the same direction we may characterize, also in terms of
idempotent elements, perfect colocalizing subcategories.

Proposition 3.2.7. Let e ∈ C∗ be an idempotent element and let Te

be the associated localizing subcategory inMC. Then Te is a perfect
colocalizing subcategory if and only if eC is a quasifinite injective
right eCe-comodule.

Proof. Observe that the left adjoint of T = −�CeC : MC → MeCe is
H = CohomeCe(eC,−). By Proposition 1.3.3, H is exact if and only if
eC is an injective right eCe-comodule.
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The reader can compare the last two propositions with [NT96,
Proposition 3.1] and [NT96, Proposition 4.1], where colocalizing
and perfect colocalizing subcategories of MC are characterized in
terms of the biggest subcoalgebra of C annihilated by e.

Proposition 3.2.8. Let C be a coalgebra and T be a perfect colocal-
izing subcategory ofMC. Then T is a perfect localizing subcategory
ofMC.

Proof. If T = Te is a a perfect colocalizing subcategory of MC, eC
is an quasifinite injective right eCe-comodule. Thus, the functor
−�CeC has an exact left adjoint, namely CohomeCe(eC,−). On the
other hand, since Ce is a quasifinite injective right C-comodule,
−�eCeCe admits an exact left adjoint, namely CohomC(Ce,−). Then
the composed functor −�C(eC�eCeCe) = (−�eCeCe)◦(−�CeC) has an
exact left adjoint functor CohomeCe(eC,−)◦CohomC(Ce,−). Therefore
eC�eCeCe is an quasifinite injective right C-comodule and Te is a a
perfect localizing subcategory ofMC.

A symmetric version of all this section may be done for left co-
modules. In particular, the localization by means of idempotents is
described as follows:

For each localizing subcategory T ′ of CM, there exists a unique
(up to equivalence) idempotent element e in C∗ such that the local-
izing functors are equivalent to

CM
T=(−)e=−�CCe // CM/T ′

S=−�eCeeC
oo ,

where CM/T ′ is equivalent to eCeM.

3.3 The Ext-quiver

To any coalgebra C, we may associate a quiver ΓC known as the
(right) Ext-quiver of C, see [Mon95]. We recall that the set of ver-
tices of ΓC is the set of pairwise non-isomorphic simple right C-
comodules {Sx}x∈IC

and, for two vertices Sx and Sy, there exists an
arrow Sx → Sy if and only if Ext1

C(Sx, Sy) 6= 0.
Let us take into consideration some geometric properties of ΓC.

Given a vertex Sx, we say that the vertex Sy is an immediate pre-
decessor (respectively, a predecessor) of Sx if there exists an arrow
Sy → Sx in ΓC (respectively, a path from Sy to Sx in ΓC).
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Lemma 3.3.1. Sy is an immediate predecessor of Sx if and only if
Sy ⊆ Soc (Ex/Sx).

Proof. Let us consider the short exact sequence Sx ↪→ Ex → Ex/Sx.
Then we obtain the exact sequence

0 // HomC(Sy, Sx) // HomC(Sy, Ex) //

// HomC(Sy, Ex/Sx) // ExtC
1 (Sy, Sx) // 0

Since HomC(Sy, Sx) ∼= HomC(Sy, Ex) then HomC(Sy, Ex/Sx) ∼= Ext1
C(Sy, Sx)

and the result follows.

The following result gives a necessary condition for having an
arrow between two vertices of the Ext-quiver.

Lemma 3.3.2. For each two simple right C-comodules Sx and Sy, if
HomC(Ey, Ex) = 0 then Ext1

C(Sx, Sy) = 0.

Proof. By the proof of Lemma 3.3.1, Ext1C(Sx, Sy) ∼= HomC(Sx, Ey/Sy)
for each simple right comodules Sx and Sy. Now, since Ex is the
injective envelope of Sx, for each non-zero morphism f : Sx ↪→ Ey/Sy,
there exists a non-zero map g : Ey/Sy → EX making commutative
the diagram

Sx� _

i
��

� � f // Ey/Sy

g
{{x

x
x

x

Ex

Then the composition Ey p // Ey/Sy g // Ex is a non-zero morphism
in HomC(Ey, Ex).

It is easy to see that each morphism f in HomC(Ey, Ex), obtained
from a nonzero element in Ext1C(Sx, Sy) by means of the construc-
tion of the former lemma, verifies the following condition: If f de-
composes through two morphisms t : Ey → Ez and h : Ez → Ex,
where Ez is an indecomposable injective right C-comodule, then t
is an isomorphism or h is an isomorphism. To prove that assume
the contrary and then we have the following commutative diagram

Sx
� � f //� q

i ""F
FF

FF
FF

FF
Ey/Sy

g

��

Ey
poo

t
��

Ex Ezh
oo
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If t is not an isomorphism then it decomposes through the projec-
tion, i.e., we have the diagram

Sx
� � f //� q

i ""F
FF

FF
FF

FF
Ey/Sy

g

��

t′

##F
FFFFFFF
Ey

poo

t
��

Ex Ezh
oo

Furthermore, p∗(ht′) = ht′p = ht = gp = p∗(g) implies, by the injectiv-
ity of p∗, that ht′ = g and then the diagram is commutative. Now,
since h is not an isomorphism, h(Sx) = 0 and then i = ht′f = 0 and
we get a contradiction.

That property suggests that if we consider the extensions be-
tween simple comodules as arrows, the morphisms between inde-
composable injective comodules should be the paths in the Ext-
quiver. Unfortunately, in general, it is not true.

Example 3.3.3. Let Q be the quiver x α // y β // z and C be the
subcoalgebra of KQ generated by {x, y, z, α, β}. Then the quiver ΓC is

Sx −→ Sy −→ Sz.

Obviously, there is a path from Sx to Sz but any morphism

f : Ez =< z, β >−→ Ex =< x >

is zero.
On the other hand, if C is the coalgebra KQ, the Ext-quiver ΓC is

also the former quiver but, in this case, we may obtain a map

f : Ez =< z, β, βα >−→ Ex =< x >

defined by f(βα) = x and zero otherwise. Observe that f is the
composition of the morphisms

g : Ez =< z, β, βα >−→ Ey =< y, α >

which maps z 7→ 0, β 7→ y and βα 7→ α, and

h : Ey =< y, α >−→ Ex =< x >

which maps y 7→ 0 and α 7→ x.
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Remark. Observe that the second coalgebra is a hereditary coal-
gebra (see Chapter 5) and the morphisms between indecomposable
injective comodules are surjective. Hence the composition of two
non-zero morphisms is a non-zero morphism. Thus if there is a
path (non necessarily of length one) in ΓC from Sx to Sy, we obtain
that HomC(Ey, Ex) 6= 0.

Therefore the Ext-quiver provides us information about the ex-
tension groups of the simple comodules (i.e., the arrows) but it
is not exact at all about the morphisms between the injective en-
velopes (we would like to say “the paths”).

3.4 Injective and simple comodules

Given an arbitrary coalgebra C, many properties of its category of
comodules are given by means of the simple objects or, since it
is a Grothendieck category, their injective envelopes, i.e., the in-
decomposable injective comodules. Therefore we are interested in
knowing how the localizing functors map these classes of comod-
ules.

Let us consider an idempotent element e ∈ C∗, Te its localizing
subcategory and the localizing functors:

MC
T=e(−)=−�CeC //

MeCe

S=−�eCeCe
oo .

We recall that there exists a torsion theory on MC associated to
the functor T , where a right C-comodule M is a torsion comodule
if T (M) = 0. If M is not torsion, we denote by t(M) the torsion
subcomodule of M .

We know that, by the remark of Theorem 3.2.3, for a simple right
C-comodule Sx, T (Sx) = Sx if x ∈ Ie and zero otherwise (therefore
any simple comodule is torsion or torsion-free). From that fact we
obtain the following result:

Lemma 3.4.1. LetM be a right C-comodule then T (SocM) ⊆ Soc T (M).

Proof. Let us suppose that SocM = ⊕i∈ISi⊕(⊕j∈JTj), where Si and Tj

are simple right C-comodules such that T (Si) = Si and T (Tj) = 0 for
all i ∈ I and j ∈ J. Since SocM ⊆M , T (SocM) = ⊕i∈ISi ⊆ T (M).
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Let us study the behavior of the injective comodules under the
action of the section functor. Indeed, we shall prove that S pre-
serves indecomposable injective comodules and, consequently, in-
jective envelopes. In what follows we will denote by {Ex}x∈Ie a com-
plete set of pairwise non-isomorphic indecomposable injective right
eCe-comodules.

Proposition 3.4.2. In the above situation, the following properties
hold:

(a) The functor S preserves injective comodules.

(b) If N is a quasi-finite indecomposable right eCe-comodule then
S(N) is indecomposable.

(c) The functor S preserves indecomposable injective comodules.

(d) If Sx is a simple eCe-comodule then Soc S(Sx) = Sx.

(e) If Sx is a simple eCe-comodule then S(Sx) is torsion-free.

(f) We have S(Ex) = Ex for all x ∈ Ie.

(g) The functor S preserves quasi-finite comodules.

(h) The functor S : MeCe → MC restricts to a fully faithful functor
S : MeCe

qf → MC
qf between the categories of quasi-finite comod-

ules which preserves indecomposables comodules and respects
isomorphism classes.

Proof. (a) The functor T is exact and left adjoint of S so, by [Ste75,
Proposition 9.5], the result follows.

(b) If N is quasi-finite and indecomposable then the ring of endo-
morphism EndeCe(N) ∼= EndC(S(N)) is a local ring. Thus S(N) is
indecomposable.

(c) It follows from (a) and (b).

(d) Suppose that Soc S(Sx) = ⊕i∈ISi ⊕ (⊕j∈JTj), where Si and Tj are
simple right C-comodules such that T (Si) = Si and T (Tj) = 0 for
all i ∈ I and j ∈ J. By Lemma 3.4.1, ⊕i∈ISi = T (Soc S(Sx)) ⊆
Soc TS(Sx) = Soc Sx = Sx. Since S is left exact and preserves in-
decomposable injective comodules, Sx ⊆ Soc S(Sx) ⊆ Soc S(Ex) =
Sy. Then Sy = Sx = Soc S(Sx).
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(e) If M ⊆ S(Sx) is a non-zero torsion subcomodule of S(Sx) then
there exists a simple C-comodule R contained in M such that
T (R) = 0. But Soc S(Sx) = Sx so Sx = R and we get a contradic-
tion.

(f) It is easy to see from (c) and (d).

(g) Let M be a quasi-finite right eCe-comodule. The injective enve-
lope of M is a quasi-finite injective comodule M� � //E = ⊕Enx

x .
Since S is left exact then S(M)�

� //S(E) = ⊕Enx
x . Thus S(M) is

quasi-finite.

(h) It is a consequence of the above assertions and the equality
TS = 1MeCe.

Corollary 3.4.3. S preserves injective envelopes.

After proving Proposition 3.4.2, one should ask if the behavior of
the simple comodules is analogous to the injective ones, that is, if
S preserves simple comodules and, consequently, in view of Propo-
sition 3.4.2(c), S(Sx) = Sx for all x ∈ Ie. Unfortunately, in general,
this is not true and we can only say that S(Sx) is a subcomodule of
Ex which contains Sx.

Example 3.4.4. This example shows that S(Sx) does not have to be
Sx for every x ∈ Ie. Consider the quiver Q

◦ α // ◦,
y x

C = KQ and the idempotent e ∈ C∗ associated to the set ≡ {y}. Then,
the localized coalgebra eCe is Sx and

S(Sx) = Sx�eCeCe = eCe�eCeCe ∼= Ce ∼=< x, α >6= Sx.

The reader should observe that S(Sx) could be an infinite di-
mensional right C-comodule. Therefore, in general, S cannot be
restricted to a functor between the categories of finite dimensional
comodules.

Example 3.4.5. Consider the quiver Q

· · · αn+1 // ◦ αn // ◦ αn−1 // ◦ − · · · − ◦ α2 // ◦ α1 // ◦,
123n− 1nn + 1
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C = KQ and the idempotent e ∈ C∗ associated to the set ≡ {1}. Then
the localized coalgebra eCe is S1 and

S(S1) = S1�eCeCe = eCe�eCeCe ∼= Ce ∼=< x, {α1 · · ·αn−1αn}n≥1 > .

In order to characterize the simple comodules invariant under
the functor S we need the following technical lemma. It asserts
that the torsion predecessors of a torsion-free vertex Sx in ΓC are
the simple C-comodules contained in the socle of S(Sx)/Sx. In the
following picture the torsion-free vertices are represented by white
points.

◦
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''OOOOOOO
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77ooooooo

•

??���������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

_____

_____

6v6v6v6v6v6v6v

#c
#c

#c
#c

#c
#c

#c
#c

Sx

Ex/Sx

S(Sx)/Sx

Lemma 3.4.6. Let Sy be a simple C-comodule. Then we have that
Sy ⊆ Soc (S(Sx)/Sx) if and only if Sy ⊆ Soc (Ex/Sx) and T (Sy) = 0.

Proof. Consider the short exact sequence

Sx
� � // S(Sx) //| // S(Sx)/Sx (3.1)

Since Sx = T (Sx) = TS(Sx), S(Sx)/Sx is a torsion subcomodule of
Ex/Sx. Therefore if Sy ⊆ Soc (S(Sx)/Sx) then Sy ⊆ Soc (Ex/Sx) and
T (Sy) = 0.

For the converse, first we prove that Ext1
C(Sy, S(Sx)) = 0. We

apply the functor S to the exact sequence

Sx
i // Ex

p // Ex/Sx

and we obtain the following commutative (and exact) diagram:

S(Sx)
i // Ex

S(p) //

Coker i $$I
IIIIIIIII S(Ex/Sx) // Coker

Ex/S(Sx)
* 


88ppppppppppp
// 0
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Therefore we have that HomC(Sy, Ex/S(Sx)) is included the set of
morphisms HomC(Sy, S(Ex/Sx)) ∼= HomeCe(T (Sy), Ex/Sx) = 0. Con-
sider now the short exact sequence

S(Sx) � � // Ex
//| // Ex/S(Sx)

which produces the exact sequence

0 = HomC(Sy, Ex)→ HomC(Sy, Ex/S(Sx))→ ExtC
1 (Sy, S(Sx))→ 0

and then 0 = HomC(Sy, Ex/S(Sx)) ∼= ExtC
1 (Sy, S(Sx)).

Let us now apply the functor HomC(Sy,−) to (3.1) and we obtain
the exactness of the sequence

HomC(Sy, S(Sx)/Sx)
∼= // ExtC

1 (Sy, Sx) 6= 0 // ExtC
1 (Sy, S(Sx)) = 0 .

Then the result follows.

Corollary 3.4.7. Let Sx be a simple eCe-comodule. The following
conditions are equivalent:

(a) Ex/Sx is torsion-free.

(b) There is no arrow in ΓC from a torsion vertex Sy to Sx.

(c) S(Sx) = Sx.

Let us now analyse the quotient functor. We start with an ex-
ample which shows that, in general, T does not preserve injective
comodules.

Example 3.4.8. Let Q be the quiver

◦ α // ◦ β // ◦,
x y z

C be the subcoalgebra of KQ generated by {x, y, z, α, β} and Ie =
{x, y}. The injective right C-comodule Ez is generated by < z, β > and
T (Ez) =< β >∼= Sy 6= Ey.

Proposition 3.4.9. The following statements hold:

(a) T (Ex) = Ex for any x ∈ Ie.

(b) If E is an injective torsion-free right C-comodule then T (E) is an
injective right eCe-comodule.
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(c) If M is a torsion-free right C-comodule then SocM = Soc T (M) =
T (SocM).

(d) The functor T :MC →MeCe restricts to a functor T :MC
qf →MeCe

qf

and a functor T : MC
f → MeCe

f between the categories of quasi-
finite and finite dimensional comodules, respectively.

Proof. (a) By Proposition 3.4.2, Ex = S(Ex) for any x ∈ Ie. Then
T (Ex) = TS(Ex) = Ex.

(b) It follows from (a).

(c) Consider the chain ⊕x∈ISx = SocM ⊆ M ⊆ E(M) = ⊕x∈IEx.
Since M is torsion-free then I ⊆ Ie. Therefore SocM = ⊕x∈ISx =
⊕x∈IT (Sx) = T (SocM) ⊆ T (M) ⊆ T (E(M)) = ⊕x∈IT (Ex) = ⊕x∈IEx

and the result follows.

(d) It is easy to see.

Example 3.4.10. In general, the functor T is not full. Let Q be the
quiver

◦ α // ◦,
x y

C = KQ and e ∈ C∗ be the idempotent associated to the set {x}. Then
dimKHomC(Sx, C) = dimKEnd(Sx) = 1 and dimKHomeCe(Sx, eC) = 2.
Therefore the map TSx,C cannot be surjective.

Example 3.4.11. In general, the functor T does not preserve inde-
composable comodules. Let KQ be the path coalgebra of the quiver

◦ α
))SSSSSSS

◦
◦ β

55kkkkkkk

x

z

y

and e ∈ C∗ be the idempotent associated to the set {x, y}. Then T
maps the indecomposable injective right C-comodule Ez =< z, α, β >
to the right eCe-comodule Sx ⊕ Sy.

Nevertheless, it is easy to see that T preserves indecomposable
torsion-free comodules. Since T (Sy) = 0 for each torsion simple
C-comodule, one could expect the analogous property for their in-
jective envelopes.
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Example 3.4.12. In general, it is not true that T (Ex) = 0 for any
x /∈ Ie. Let KQ be the path coalgebra of the quiver

◦ α // ◦,
x y

C = KQ and e ∈ C∗ be the idempotent associated to the set {x}. Then
T (Ey) = T (< y, α >) ∼= Sx 6= 0.

Proposition 3.4.13. Let Ey be an indecomposable injective C-comodule
with y /∈ Ie. We have T (Ey) = 0 if and only if HomC(Ey, Ex) = 0 for all
x ∈ Ie.

Proof. ⇒) Since S is left adjoint to T then we have the following
HomC(Ey, Ex) = HomC(Ey, S(Ex)) ∼= HomeCe(T (Ey), Ex) = 0 for all x ∈
Ie.
⇐) By hypothesis, for all x ∈ Ie, 0 = HomC(Ey, Ex) = HomC(Ey, S(Ex)) =
HomeCe(T (Ey), Ex). Then HomeCe(T (Ey), eCe) = 0 and thus T (Ey) =
0

Let us finish the study of the quotient functor by giving an ap-
proach to the image of an indecomposable injective comodule as-
sociated to a torsion simple comodules.

Lemma 3.4.14. Let Sy be a torsion simple right C-comodule and
{Sx, Tz}x∈I,z∈J be the set of all immediate predecessors of Sy in ΓC,
where Sx is torsion-free for all x ∈ I and Tz is torsion for all z ∈ J .
Then

Soc T (Ey) ⊆ (
⊕
x∈I

Sx)
⊕

(
⊕
z∈J

Soc T (Ez)).

Proof. By Lemma 3.3.1, Soc (Ey/Sy) = (⊕x∈ISx) ⊕ (⊕z∈JTz) and, con-
sequently, Ey/Sy ⊆ (⊕x∈IEx) ⊕ (⊕z∈JEz). Then T (Ey) ∼= T (Ey/Sy) ⊆
(⊕x∈IEx)⊕(⊕z∈JT (Ez)) and then Soc T (Ey) ⊆ (⊕x∈ISx)⊕(⊕z∈JSoc T (Ez)).

It is not possible to prove the equality of Lemma 3.4.14. Con-
sider the quiver of Example 3.4.8, the coalgebra generated by the
set < x, y, z, α, β > and Ie = {x}. Then Soc T (Ez) = 0 and Soc T (Ey) =
Sx.

Until the end of the section we assume that Te is a colocalizing
subcategory of MC. Then the quotient functor T has a left adjoint
functor H :MeCe →MC.

Proposition 3.4.15. Under the above conditions, we have that:
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(a) H preserves projective comodules.

(b) H preserves finite dimensional comodules.

(c) H preserves finite dimensional indecomposable comodules.

(d) The functor H : MeCe → MC restricts to a fully faithful functor
H : MeCe

f → MC
f between the categories of finite-dimensional

comodules which preserves indecomposable comodules and re-
spects isomorphism classes.

Proof. (a) It is symmetric to the proof of Proposition 3.4.2(a) .

(b) Let N be a finite dimensional right eCe-comodule. Then H(N) =
CohomeCe(eC,N) = lim−→HomeCe(Nλ, eC)∗ = HomeCe(N, eC)∗. Now,
since eC is a quasi-finite right eCe-comodule, HomeCe(N, eC) has
finite dimension.

(c) Let N be a finite dimensional indecomposable right eCe-comodule.
Since H is fully faithful then EndeCe(N) ∼= EndC(S(N)) is a local
ring. Now, by (b), S(N) is finite dimensional and then S(N) is
indecomposable.

(d) It is straightforward from (b), (c) and the equality TH = 1MeCe.

Analogously to the study of the section functor, let us charac-
terize the simple comodules which are invariant under the functor
H. For that purpose we need the following lemma:

Lemma 3.4.16. Let Sx be a simple eCe-comodule. Then H(Sx) = Sx

if and only if HomeCe(Sx, T (Ey)) = 0 for all y /∈ Ie.

Proof. We have that H(Sx) = CohomeCe(eC, Sx) = CohomeCe(eCe, Sx) ⊕
CohomeCe(eC(1− e), Sx) ∼= Sx ⊕ CohomeCe(eC(1− e), Sx) and therefore

H(Sx) = Sx ⇔ CohomeCe(eC(1− e), Sx) = 0
⇔ HomeCe(Sx, eC(1− e)) = 0
⇔ HomeCe(Sx,⊕y/∈IeT (Ey)) = 0
⇔ ⊕y/∈IeHomeCe(Sx, T (Ey)) = 0
⇔ HomeCe(Sx, T (Ey)) = 0 for all y /∈ Ie.

Corollary 3.4.17. Let Ex be an indecomposable injective C-comodule
with x ∈ Ie. If HomC(Ey, Ex) = 0 for all y /∈ Ie then H(Sx) = Sx.
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Proof. Let us suppose that there exists a nonzero morphism g ∈
HomeCe(Sx, T (Ey)) for some y /∈ Ie. Since Ex is injective, there ex-
ists a non-zero morphism f that makes commutative the following
diagram

Sx | //g //
� _

i
��

T (Ey)

f||y
y

y
y

y

Ex

Hence HomC(Ey, Ex) ' HomeCe(T (Ey), Ex) 6= 0. The result follows
applying Lemma 3.4.16.

Proposition 3.4.18. Let Sx be a simple eCe-comodule. H(Sx) = Sx

if and only if Ext1
C(Sx, Sy) = 0 for all y /∈ Ie, i.e., there is no arrow

Sx → Sy in ΓC, where Sy is a torsion simple C-comodule.

Proof. By Lemma 3.4.16, it is enough to prove that Ext1
C(Sx, Sy) = 0

for all y /∈ Ie if and only if HomeCe(Sx, T (Ey)) = 0 for all y /∈ Ie.
⇐) Suppose that Ext1

C(Sx, Sy) 6= 0 for some y /∈ Ie. By Lemma
3.3.1, Sx ⊆ Soc (Ey/Sy). Then

Sx = T (Sx) ⊆ T (Soc Ey/Sy) ⊆ Soc T (Ey/Sy) = Soc T (Ey)

and therefore HomeCe(Sx, T (Ey)) 6= 0.
⇒) For each z /∈ Ie, we consider the set {Sz

λ}λ∈Λz of all torsion-free
immediate predecessors in ΓC of Sz. Then, by Lemma 3.4.14, it is
verified that the simple comodules contained in T (Ey) are in the set
{Sz

λ}λ∈Λz ,z /∈Ie = P for any y /∈ Ie.
Now, if Ext1

C(Sx, Sy) = 0 for all y /∈ Ie, Sx /∈ P and then Sx * T (Ey)
for any y /∈ Ie. Thus HomeCe(Sx, T (Ey)) = 0 for any y /∈ Ie.

3.5 Stable subcategories

The bijective correspondence between localizing subcategories of
MC and equivalence classes of idempotent elements in C∗ is in-
teresting because we may parameterize some classes of localizing
subcategories using well known classes of idempotent elements.

The first interesting case appears when we consider central idem-
potent elements. Which localizing subcategories correspond to cen-
tral idempotent elements?
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The answer to that question is given, for example, in [GJM99]. If
T is a localizing subcategory such that the associated idempotent
element is central, then T is closed under left and right links.

Following these ideas, we may consider more general classes
of idempotent elements and the corresponding localizing subcat-
egories. Using the results of the last section we shall deal with
semicentral idempotent elements in C∗ and see that they define a
special, and well known, class of localizing subcategories.

Let us recall that a localizing subcategory T of MC which is
closed for essential extensions is called stable. The first result
we consider on stable localization subcategories appears in [NT94].
There it is proved that the localizing subcategory ofMC defined by
a coidempotent subcoalgebra A of C is stable if and only if A is an
injective right C-comodule.

In order to characterize stable localizing subcategories ofMC in
terms of idempotent elements, first we recall some definitions from
the theory of idempotent elements. Following [Bir83], an idempo-
tent element e of a ring R is said to be left semicentral if (1−e)Re = 0.
Right semicentral idempotents are defined in an analogous way.
The following characterizations of semicentral idempotent are well
known and easy to prove:

e is left semicentral in R ⇔ eRe = Re
⇔ ere = re for all r ∈ R
⇔ eR is an ideal of R
⇔ R(1− e) is an ideal of R

As a consequence of these equivalences, an idempotent element
e ∈ C∗ is left semicentral if and only if 1− e is right semicentral.

Let us give some extra characterizations of a left semicentral
idempotent element in the dual algebra C∗ of a coalgebra C.

Lemma 3.5.1. Let C be a coalgebra and e be an idempotent element
in C∗. The following conditions are equivalent:

(a) e is a left semicentral idempotent in C∗.

(b) eCe = eC.

(c) C(1− e) is a subcoalgebra of C.

(d) eC is a subcoalgebra of C.

(e) eM is a subcomodule of M for every right C-comodule M .
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Proof. (a) ⇒ (b) For any element x ∈ C and any g ∈ C∗, we have
g(ex) = (g ∗ e)(x) = (e ∗ g ∗ e)(x) = g(exe). Therefore exe = ex and thus
eCe = eC.
(b) ⇒ (a) Given g ∈ C∗, we have that for every x ∈ C, (g ∗ e)(x) =
g(ex) = g(exe) = (e ∗ g ∗ e)(x). Therefore e ∗ g ∗ e = g ∗ e for every g ∈ C∗

and e is left semicentral in C∗.
(a) ⇔ (c) It is easy to see that (C(1 − e))⊥ = eC∗, so C(1 − e) is a
subcoalgebra of C if, and only if eC∗ is an ideal of C∗ if and only if e
is a left semicentral idempotent in C∗.
(a)⇒ (e) Let M be a right C-comodule and g an arbitrary element in
C∗. Then, for every x ∈ eM , we have gx = g(ex) = (g∗e)x = (e∗g∗e)x =
e(g ∗ ex) ∈ eM . Therefore eM is left C∗-submodule of M and thus it
is a right C-subcomodule.
(e)⇒ (d) It is trivial
(d) ⇔ (a) As before, (eC)⊥ = C∗(1 − e), thus eC is a subcoalgebra of
C if and only if C∗(1 − e) is an ideal of C∗ if and only if e is a left
semicentral idempotent in C∗.

The following theorem is the main result of this section. In it,
we describe stable subcategories from different points of view. A
proof of some equivalences is given in [JMNR06, Theorem 4.3]. We
recall that, for a subset Λ of the vertex set (ΓC)0, we say that Λ is
right link-closed if it satisfies that, for each arrow S → T in ΓC, if
S ∈ Λ then T ∈ Λ.

Theorem 3.5.2. Let C be a coalgebra and Te ⊆ MC be a localiz-
ing subcategory associated to an idempotent element e ∈ C∗. The
following conditions are equivalent:

(a) Te is a stable subcategory.

(b) T (Ex) = 0 for any x /∈ Ie.

(c) T (Ex) =

{
Ex if x ∈ Ie,
0 if x /∈ Ie.

(d) HomC(Ey, Ex) = 0 for all x ∈ Ie and y /∈ Ie.

(e) K = {S ∈ (ΓC)0 | eS = S} is a right link-closed subset of (ΓC)0, i.e.,
there is no arrow Sx → Sy in ΓC, where T (Sx) = Sx and T (Sy) = 0.

(f) There is no path in ΓC from a vertex Sx to a vertex Sy such that
T (Sx) = Sx and T (Sy) = 0.
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(g) e is a left semicentral idempotent in C∗.

If Te is a colocalizing subcategory this is also equivalent to

(h) H(Sx) = Sx for any x ∈ Ie.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) follows from the definition
and from Proposition 3.4.13.
(f)⇒ (e). Trivial.
(e) ⇒ (c). By hypothesis, the set P defined in the proof of Propo-
sition 3.4.18 is zero. Therefore Soc T (Ey) = 0 for all y /∈ Ie. Then
T (Ey) = 0 for all t /∈ Ie.
(c) ⇒ (a). Let M be a torsion right C-comodule such that its injec-
tive envelope is ⊕i∈JEi. Then Si ⊆ M is torsion for all i ∈ J and, by
hypothesis, T (Ei) = 0 for all i ∈ J. Thus T (⊕i∈JEi) = 0.
(c) ⇔ (g). We have C = ⊕x∈IC

Ex then T (C) = ⊕x∈IeEx ⊕ ⊕y/∈IeT (Ey).
On the other hand, eCe = ⊕x∈IeEx. Therefore if (c) holds then eCe =
T (C). Conversely, if eCe = T (C) then ⊕x∈IeEx = ⊕x∈IeEx⊕⊕y/∈IeT (Ey).
Since eCe is quasi-finite, by Krull-Remak-Schmidt-Azumaya theo-
rem, T (Ey) = 0 for all y /∈ Ie.
(e)⇔ (h). It is Proposition 3.4.18.

Then we could say that the vertices which determine a stable
localization are placed “on the right side” of the Ext-quiver. In the
following picture we denote the vertices in K by white points.

•
((PPPPPP

• // •oo
((PPPPPP

66nnnnnn ◦
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��
◦

•
((PPPPPP

66nnnnnn ◦
((PPPPPP
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vvnnnnnn
•

66nnnnnn ◦
66nnnnnn ◦

•
66nnnnnn
66nnnnnn
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As a direct consequence of Theorem 3.5.2, we obtain an alter-
native proof of the following fact:

Corollary 3.5.3. [NT96, 4.6] Any stable localizing subcategory of
MC is a perfect colocalizing subcategory

Proof. If the localizing subcategory T is stable, T is associated to
a left semicentral idempotent element e ∈ C∗ and hence Ce = eCe
is certainly injective and quasifinite as right eCe-comodule. There-
fore, by Corollary 3.2.7, T is a perfect colocalizing subcategory of
MC.
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Let us point out the following remarks.

Remark. It is well known that each stable localizing subcategory
T is a TTF class, that is, the torsion class T is the torsionfree class
for another localizing subcategory. If Te is stable then Te = F1−e

the torsionfree class associated to the localizing subcategory T1−e.
Indeed, using Theorem 3.5.2 and Lemma 3.5.1, for every right C-
comodule M , we have that eM is a subcomodule of M , therefore
eM is precisely the torsion of M for the localizing subcategory T1−e.
Then M ∈ F1−e if and only if eM = 0 if and only if M ∈ Te.

Remark. For an idempotent e ∈ C∗, we can consider also the local-
izing subcategory T ′e of the category CM of left C-comodules, deter-
mined by e, that is, T ′e = {M ∈CM | Me = 0}. Using Theorem 3.5.2
and its left version, we obtain that the localizing subcategory T ′e of
CM is stable if, and only if the localizing subcategory T1−e of MC is
stable.

We may find an analogous result to Theorem 3.5.2 for right
semicentral idempotents:

Proposition 3.5.4. Let C be a coalgebra and Te ⊆ MC be a local-
izing subcategory associated to an idempotent element e ∈ C∗. The
following conditions are equivalent:

(a) T1−e is a stable subcategory.

(b) T (Ex) = Ex for any x ∈ Ie.

(c) There is no path in ΓC from a vertex Sy to a vertex Sx such that
T (Sx) = Sx and T (Sy) = 0.

(d) K = {S ∈ (ΓC)0 | eS = S} is a left link-closed subset of (ΓC)0, i.e.,
there is no arrow Sy → Sx in ΓC, where T (Sx) = Sx and T (Sy) = 0.

(e) e is a right semicentral idempotent in C∗.

(f) The torsion subcomodule of a right C-comodule M is (1− e)M

(g) S(Sx) = Sx for all x ∈ Ie.

Proof. By the above remarks and Proposition 3.5.2, it is easy to
prove (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f). (d) ⇔ (g) is Corollary
3.4.7.
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And now, we could say that the vertices of the localization are
placed “on the left side” of the Ext-quiver.
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As a consequence, we get the following immediate result:

Corollary 3.5.5. The following are equivalent:

(a) e is a central idempotent.

(b) For each arrow Sx → Sy in ΓC, T (Sx) = 0 if and only if T (Sy) = 0.

(c) For each connected component of ΓC, either all vertices are tor-
sion or all vertices are torsion-free.

(d) T (Ex) = 0 for any x /∈ Ie and S(Sx) = Sx for all x ∈ Ie.
Corollary 3.5.6. Let e be a central idempotent in C∗ and {Σt

C ,∆
s
C}t,s

be the connected components of ΓC, where the vertices of each Σt
C

are torsion-free and the vertices of each ∆s
C are torsion. Then {Σt

C}t
are the connected components of ΓeCe.

3.6 Localization in pointed coalgebras

We finish the chapter studying the localization in pointed coalge-
bras. Remember that if the base field is algebraically closed, every
coalgebra is Morita-Takeuchi equivalent to a pointed coalgebra and
therefore this is a very large class of coalgebras.

In order to obtain an easier description of the theory we need
the following notation:

Let Q be a quiver and p = αnαn−1 · · ·α1 be a path in Q. We de-
note by Ip the subset of vertices {s(α1), t(α1), t(α2), . . . , t(αn)}. Given
a subset of vertices X ⊆ Q0, we say that p is a cell in Q relative
to X (shortly a cell) if Ip ∩ X = {s(p), t(p)} and t(αi) /∈ X for all
i = 1, . . . , n− 1. Given x, y ∈ X, we denote by CellQX(x, y) the set of all
cells from x to y. We will denote the set of all cells in Q relative to
X by CellQX.
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Lemma 3.6.1. Let Q be a quiver and X ⊆ Q0 a subset of vertices.
Given a path p in Q such that s(p) and t(p) are in X, then p has a
unique decomposition p = qr · · · q1, where each qi is a cell in Q relative
to X.

Proof. It is straightforward.

Let p be a non-trivial path in Q which starts and ends at vertices
in X ⊆ Q0. We shall call the cellular decomposition of p relative to X
to the decomposition given in the above lemma.

By Theorem 1.6.6, every pointed coalgebra C is isomorphic to a
subcoalgebra of a path coalgebra KQ of a quiver Q. Furthermore, C
is an admissible subcoalgebra (contains the subspace generated by
the set of all vertices and all arrows) and then, by Corollary 2.3.5,
it is a relation subcoalgebra in the sense of Simson [Sim05]. Thus
C has a decomposition, as vector space, C =

⊕
a,b∈Q0

C ∩ KQ(a, b),
where Q(a, b) is the set of all paths in Q from a to b. That is, C has a
basis in which every basic element is a linear combination of paths
with common source and common sink.

Lemma 3.6.2. Let C be an admissible subcoalgebra of a path coal-
gebra KQ of a quiver Q. There exists a bijective correspondence
between localizing subcategories of MC and subsets of vertices of
Q.

Proof. The set of simple C-comodules is {Kx}x∈Q0 and therefore
there is a bijection between the subsets of simple comodules and
the subsets of vertices of Q. By the arguments of Section 2, the
result follows.

Let X be a subset of vertices of Q. We will denote by TX the
localizing subcategory ofMC associated to X.

Given an admissible subcoalgebra C of KQ, we can say more
about the idempotent elements of its dual algebra and the bijection
between them and the vertices of the quiver. For any idempotent
element e in C∗ and any vertex x in Q, we have that either e(x) = 0
or e(x) = 1. Hence two idempotent elements e, f ∈ C∗ are equiv-
alent if and only if e|Q0 = f|Q0. In this way, we obtain that every
localizing subcategory of MC is associated to an idempotent ele-
ment e ∈ C∗ such that e(p) = 0 for any non trivial path p. Therefore,
for an idempotent e ∈ C∗, we may consider the subset of vertices
{x ∈ Q0 such that e(x) = 1} and, conversely, for a subset of vertices
X, it is associated the idempotent e ∈ C∗ such that e(x) = 1 if x ∈ X,
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and zero otherwise. In what follows, by the idempotent associated
to a subset of vertices, we shall mean the idempotent described
above.

For an idempotent element e ∈ C∗, the localized coalgebra eCe
has a decomposition eCe =

⊕
a,b∈X C∩KQ(a, b), that is, the elements

of eCe are linear combinations of paths which start and end at
vertices in the set of vertices associated to e. Also we have that eCe
is a pointed coalgebra so, by Theorem 1.6.6, there exists a quiver
Qe such that eCe is an admissible subcoalgebra of KQe. Let us
analyze the elements of the quiver Qe:

Vertices. We know that Q0 equals the set of group-like elements
G(C) of C, therefore (Qe)0 = G(eCe) = eG(C)e = eQ0e = X.

Arrows. Let x and y be vertices in X. An element p ∈ eCe
is a non-trivial (x, y)-primitive element if and only if p /∈ KX and
∆eCe(p) = y ⊗ p + p ⊗ x. Without loss of generality we may assume
that p =

∑n
i=1 λipi is an element in eCe such that each path pi is not

trivial, and pi = αi
ni
· · ·αi

2α
i
1 and pi = qi

ri
· · · qi

1 are the decomposition
of pi in arrows of Q and the cellular decomposition of pi relative to
X, respectively, for all i = 1, . . . , n. Then

∆C(p) =
n∑

i=1

λipi⊗h(pi)+
n∑

i=1

λis(pi)⊗ pi +
n∑

i=1

λi

ni∑
j=2

αi
ni
· · ·αi

j ⊗αi
j−1 · · ·αi

1

and therefore,

∆eCe(p) =
n∑

i=1

λi(e pi e⊗ e h(pi) e) +
n∑

i=1

λi(e s(pi) e⊗ e pi e)+

+
n∑

i=1

λi

ni∑
j=2

e(αi
ni
· · ·αi

j)e⊗ e(αi
j−1 · · ·αi

1)e.

We have that, for each path q in Q, eqe = q if q starts and ends at
vertices in X, and zero otherwise. Thus,

∆eCe(p) =
n∑

i=1

λi(pi ⊗ h(pi)) +
n∑

i=1

λi(s(pi)⊗ pi)+

+
n∑

i=1

λi

ri∑
j=2

qi
ri
· · · qi

j ⊗ qi
j−1 · · · qi

1.

Now, this is a linear combination of linearly independent vectors of
the vector space eCe ⊗ eCe, so ∆eCe(p) = y ⊗ p + p ⊗ x if and only if
we have that
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(a) h(pi) = x for all i = 1, . . . , n;

(b) s(pi) = y for all i = 1, . . . , n;

(c)
∑n

i=1 λi

∑ri

j=2 q
i
ri
· · · qi

j ⊗ qi
j−1 · · · qi

1 = 0.

Condition (c) is satisfied if and only if ri = 1 for all i = 1, . . . , n.
Therefore ∆eCe(p) = y ⊗ p + p ⊗ x if and only if pi is a cell from x to
y for all i = 1, . . . , n. Thus the vector space of all non-trivial (x, y)-
primitive elements is KCellQX(x, y) ∩ C.

Proposition 3.6.3. Let C be an admissible subcoalgebra of a path
coalgebra KQ of a quiver Q. Let e be the idempotent element of C∗

associated to a subset of vertices X. Then the localized coalgebra
eCe is an admissible subcoalgebra of the path coalgebra KQe, where
Qe is the quiver whose set of vertices is (Qe)0 = X and the number of
arrows from x to y is dimKKCellQX(x, y) ∩ C for all x, y ∈ X.

Corollary 3.6.4. Let Q be a quiver and e be the idempotent element
of (KQ)∗ associated to a subset of vertices X. Then the localized
coalgebra e(KQ)e is an admissible subcoalgebra of the path coalge-
bra KQe, where Qe = (X, CellQX).

If C is a path coalgebra then we can say more:

Proposition 3.6.5. Let Q be a quiver and e be the idempotent el-
ement of (KQ)∗ associated to a subset of vertices X. Then the lo-
calized coalgebra e(KQ)e is isomorphic to the path coalgebra KQe,
where Qe = (X, CellQX).

Proof. Consider the morphism of coalgebras f : e(KQ)e → KQe de-
fined in the following way: f(x) = x for any vertex x ∈ X, and for any
non-trivial path p = αn · · ·α1 such that s(α1), t(αn) ∈ X, we choose
f(p) = pr · · · p1, where pr · · · p1 is the cellular decomposition of p. This
is a bijective morphism of coalgebras.

Examples of the former proposition are given in Section 1 of
Chapter 5. Nevertheless, these are not the unique examples of
localized coalgebras which are path coalgebras as we show in the
following example:
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Example 3.6.6. Let Q be the quiver

x1 ◦

•tttttttt

::
α1

◦
JJJJJJJJ

$$

α2

◦

◦
JJJJJJJJ

$$α3

◦tttttttt

::

α4

x2

x3

x4

and C be the admissible subcoalgebra generated by α2α1 +α4α3. Let
us consider X = {x1, x3, x4}. Then eCe is the path coalgebra of the
quiver

Qe ≡ ◦ α3 // ◦ α4 // ◦
x1 x3 x4

Here, the element α2α1 + α4α3 corresponds to the composition of the
arrows α3 and α4 of Qe.

On the other hand, if C = KQ, the quiver Qe is the following

Qe ≡ ◦ α3

//
β≡α2α1

))◦
α4

// ◦
x1 x3 x4

And α2α1 + α4α3 corresponds to the element β + α4 α3.

As in the previous example, it is worth pointing out that if C
is a proper admissible subcoalgebra of a path coalgebra KQ, then
we may consider two quivers: the quiver Qe defined above and the
quiver Qe such that e(KQ)e ∼= KQe. Clearly Qe is a subquiver of
Qe (differences are in the set of arrows). Then we may relate both
quivers by means of a morphism g : KQe → KQe defined in the
following way: we choose g(x) = x, for any element x ∈ X, and
given an arrow β ∈ (Qe)1 from x to y, β corresponds to a basic
element of KCellQX(x, y) ∩C, p =

∑n
i=1 λipi, where pi is a cell from x to

y, then we define g(β) = p. By [Nic78, Proposition 1.4.2], g extend
to a morphism of coalgebras and by [Mon93, Theorem 5.3.1], g is
injective.

Thus eCe can be viewed as an admissible subcoalgebra of KQe.
We denote by F the composition eCe h // KQe g // KQe , where h
is the inclusion.

Corollary 3.6.7. F (eCe) is a subcoalgebra of KQe isomorphic to eCe
such that each element x ∈ F (eCe) can be written as

∑n
i=1 λic

i
ri
· · · ci1,

where any cij ∈ F (eCe) and it is a linear combination of cells with
common source and common sink.
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Remark. The reader should observe that we have the following
diagram:

eCe
� � i //� r

h $$II
III

III
II

e(KQ)e
f // KQe

KQe

g

::ttttttttt

where i is the inclusion. This diagram is not always commutative
although F equals f in (eCe)1 (compare with [Woo97, 4.1]). Con-
sider Example 3.6.6, then F (α2α2+α4α3) = α4 α3 and f(α2α2+α4α3) =
α4 α3 + β.

Let us now restrict our attention to the colocalizing subcate-
gories of MC. For the convenience of the reader we introduce the
following notation:

We say p = αn · · ·α2α1 is a s(p)-tail in Q relative to X if Ip ∩ X =
{s(p)} and t(αi) /∈ X for all i = 1, . . . , n. If there is no confusion
we simply say that p is a tail. Given a vertex x ∈ X we denote by
T ailQX(x) the set of all x-tails in Q relative to X.

Lemma 3.6.8. Let Q be a quiver and X ⊆ Q0 be a subset of vertices.
Given a path p in Q such that s(p) ∈ X and t(p) /∈ X, then p has a
unique decomposition p = cqr · · · q1, where c, q1, . . . , qr are subpaths of
p such that c ∈ T ailQX(s(c)) and qi ∈ CellQX for all i = 1, . . . , r.

Proof. It is straightforward.

Let p be a path in Q such that s(p) ∈ X ⊆ Q0 and t(p) /∈ X, we
shall call the tail decomposition of p relative to X to the decomposi-
tion given in the above lemma. We say that c is the tail of p relative
to X if p = cqr · · · q1 is the tail decomposition of p relative to X.

Let {Sx}x∈Q0 be a complete set of pairwise non isomorphic in-
decomposable simple right C-comodules. We know that a right
C-comodule M is quasifinite if and only if HomC(Sx,M) has finite
dimension for all x ∈ Q0. Let x ∈ Q0 and f be a linear map in
HomC(Sx,M). Then ρM ◦ f = (f ⊗ I) ◦ ρSx, where ρM and ρSx are the
structure maps of M and Sx as right C-comodules, respectively. In
order to describe f , since Sx = Kx, it is enough to choose an image
for x. Suppose that f(x) = m ∈ M . Since (ρMf)(x) = ((f ⊗ I)ρSx)(x),
we obtain that ρM(m) = m⊗ x. Therefore

HomC(Sx,M) ∼= {m ∈M such that ρM(m) = m⊗ x} = Mx,
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as K-vector spaces, and M is quasifinite if and only if Mx has finite
dimension for all x ∈ Q0.

Our aim now is to establish when a localizing subcategory Te

is colocalizing, or equivalently, by Proposition 3.2.6, when eC is
a quasifinite right eCe-comodule. Following the sigma-notation
of [Swe69], the structure of eC as right eCe-comodule is given by
ρeC(p) =

∑
(p) ep(1)⊗ep(2)e if ∆KQ(p) =

∑
(p) p(1)⊗p(2), for all p ∈ eC. It is

easy to see that eC has a decomposition eC =
⊕

a∈X,b∈Q0
C∩KQ(a, b),

as vector space, that is, the elements of eC are linear combinations
of paths which start at vertices in X.

Proposition 3.6.9. Let C be an admissible subcoalgebra of a path
coalgebra KQ. Let e be an idempotent element in C∗ associated to a
subset of vertices X. The following conditions are equivalent:

(a) The localizing subcategory TX ofMC is colocalizing.

(b) eC is a quasifinite right eCe-comodule.

(c) dimKKT ailQX(x) ∩ C is finite for all x ∈ X.

Proof. By the arguments mentioned above, it is enough to prove
that (eC)x = KT ailQX(x) ∩ C.

Let p =
∑n

i=1 λici ∈ C be a K-linear combination of x-tail such
that ci = αi

ri
· · ·αi

1 ends at yi for all i = 1, . . . n. Then,

∆KQ(p) = p⊗ x+
n∑

i=1

yi ⊗ λici +
n∑

i=1

λi

ri∑
j=2

αi
ri
· · ·αi

j ⊗ αi
j−1 · · ·αi

1,

and then,

ρeC(p) = e p⊗ e x e+
n∑

i=1

λie yi ⊗ e ci e+

+
n∑

i=1

λi

ri∑
j=2

e(αi
ri
· · ·αi

j)⊗ e(αi
j−1 · · ·αi

1)e = p⊗ x

because αi
j ends at a point not in X for all j = 1, . . . , ri and i = 1, . . . n.

Thus p ∈ (eC)x.
Conversely, consider an element p =

∑n
i=1 λipi+

∑m
k=1 µkqk ∈ (eC)x,

where t(pi) ∈ X for all i = 1, . . . , n, and t(qk) /∈ X for all k = 1, . . . ,m.
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Moreover, let us suppose that pi = pi
ri
· · · pi

1 is the cellular decompo-
sition of pi relative to X for all i = 1, . . . , n, and qk = ckq

k
sk
· · · qk

1 is the
tail decomposition of qk relative to X for all k = 1, . . . ,m. Then,

ρeC(p) =
n∑

i=1

λi

ri∑
j=2

pi
ri
· · · pi

j⊗pi
j−1 . . . p

i
1+

n∑
i=1

λit(pi)⊗pi+
n∑

i=1

λipi⊗s(pi)+

+
m∑

k=1

µkck ⊗ qk +
m∑

k=1

µk

sk∑
l=2

ckq
k
sk
· · · qk

l ⊗ qk
l−1 . . . q

k
1 +

m∑
k=1

µkqk ⊗ s(qk).

A straightforward calculation proves that if ρeC(p) = p⊗x then n = 0,
s(qk) = x and sk = 0 for all k = 1, . . . ,m. Therefore p ∈ KT ailQX(x) ∩ C
and the proof is finished.

Corollary 3.6.10. Let Q be a quiver and e be the idempotent ele-
ment in (KQ)∗ associated to a subset X ⊆ Q0. Then the following
conditions are equivalent:

(a) The localizing subcategory TX ofMC is colocalizing.

(b) T ailQX(x) is a finite set for all x ∈ X. That is, roughly speaking,
there are at most a finite number of paths starting at the same
point whose only vertex in X is the first one.

Example 3.6.11. Consider the quiver Q

•
◦

α1
88pppppp α2 //

α3
&&NNNNNN

αi
��=

=
=

= •
•
•

x

...

...

where i ∈ N

and the idempotent e ∈ (KQ)∗ associated to the subset X = {x}.
Then T ailQX(x) = {αi}i∈N is an infinite set and the localizing subcate-
gory TX is not colocalizing.

Remark. Observe that if the set Q0\X is finite and Q has no cycles,
or if C is finite dimensional, then every localizing subcategory is
colocalizing.



Chapter 4

Tame and Wild Coalgebras

In the category of coalgebras, over a fixed algebraically closed field,
we may distinguish between two disjoint classes: the tame coalge-
bras and the wild coalgebras, see [Sim05]. The idea of such classes
is that the category of comodules over a wild coalgebra is so large
that it contains the representation theory of any finite dimensional
algebra. Therefore it is not a realistic aim to get a description of
all its comodules and we exclude it from our study. Moreover, it
is expected that each coalgebra is either tame or wild (tame-wild
dichotomy) and hence, from that point of view, we should restrict
the theory to tame coalgebras.

In Chapter 2, we saw that there exist admissible subcoalgebras
which are not path coalgebras of a quiver with relations and then
we cannot find, in this way, an analogous result for coalgebras
of the famous Gabriel’s Theorem: every basic finite dimensional
algebra, over an algebraically closed field, is the path algebra of
a quiver with relations. Nevertheless these examples are of wild
comodule type and, furthermore, a coalgebra with such property
seems closed to be wild. Therefore the problem should be reformu-
lated as the following question: is any basic tame coalgebra, over
an algebraically closed field, isomorphic to the path coalgebra of a
quiver with relations?.

In this chapter we consider this problem. In particular, after re-
lating tameness and wildness of a coalgebra and its localized coal-
gebras, we shall prove the following theorem: ”Let Q be an acyclic
quiver. Then any tame admissible subcoalgebra of KQ is the path
coalgebra of a quiver with relations”.
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4.1 Comodule types of coalgebras

Throughout this chapter we shall assume that K is an algebraically
closed field. It is well known that the category of finite dimen-
sional K-algebras is the disjoint union of two classes: tame alge-
bras and wild algebras. This is known as the tame-wild dichotomy,
see [Dro79] or [Sim92]. The idea of such classes is that the cate-
gory of finite dimensional modules over a wild algebra is so large
(because it contains the finite dimensional modules over the poly-
nomial algebra of two non-commuting variables) that it is not a
realistic aim to study its representation theory. Therefore the the-
ory is restricted to tame algebras. In this section we recall from
[Sim01] and [Sim05] the analogous concepts for a basic (pointed)
coalgebra.

Let C be a basic coalgebra such that C0 = ⊕i∈IC
Si. For every

finite dimensional right C-comodule M we may consider the length
vector of M , lengthM = (mi)i∈IC

∈ ZIc, where mi ∈ N is the number of
simple composition factors of M isomorphic to Si. In [Sim01] it is
proved that the map M 7→ lengthM extends to a group isomorphism
K0(C) −→ ZIC , where K0(C) is the Grothendieck group of C. Recall
that the Grothendieck group of a coalgebra (or of the categoryMC

f )
is the quotient of the free abelian group generated by the set of iso-
morphism classes [M ] of modules M in MC

f modulo the subgroup
generated by the elements [M ]− [N ]− [L] corresponding to all exact
sequence 0→ L→M → N → 0 inMC

f .
Let R be a K-algebra. By a R-C-bimodule we mean a K-vector

space L endowed with a left R-module structure · : R⊗L→ L and a
right C-comodule structure ρ : L→ L⊗C such that ρL(r·x) = r·ρL(x),
i.e., the following diagram is commutative

R⊗ L · //

I⊗ρL

��

L

ρL

��
R⊗ L⊗ C ·⊗I // L⊗ C

We denote by RMC the category of R-C-bimodules.

Example 4.1.1. Let L be a R-C-bimodule and e be an idempotent
element in ∈ C∗. Then eL is a R-eCe-bimodule. That is, we have a
functor

T = e(−) :RMC −→RMeCe.
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From the above diagram we obtain the following equalities:∑
(r·x)

(r · x)(0) ⊗ (r · x)(1) = ρL(r · x) = r · ρL(x) =
∑

x

r · x(0) ⊗ x(1), (4.1)

for each element r ∈ R and x ∈ L. Now, we have that

r · (e · x) = r · (
∑

(x) x(0)e(x(1)))

=
∑

(x) r · x(0)e(x(1))

= (I ⊗ e)(
∑

(x) r · x(0) ⊗ x(1)) (4.1)

= (I ⊗ e)ρL(r · x)
= e · (r · x)

Then eL has an structure of left R-module and right eCe-comodule.
Let us see the compatibility property.

r · ρeL(e · x) = r · (
∑

(x) e · x(0) ⊗ e · x(1) · e)
=
∑

(x) r · (e · x(0))⊗ e · x(1) · e
=
∑

(x) e · (r · x(0))⊗ e · x(1) · e (4.1)

=
∑

(r·x) e · (r · x)(0) ⊗ e · (r · x)(1) · e
= ρeL(e · (r · x))
= ρeL(r · (e · x))

Following [Sim01] and [Sim05], let us recall that a K-coalgebra
C is said to be of tame comodule type (tame for short) if for ev-
ery v ∈ K0(C) there exist K[t]-C-bimodules L(1), . . . , L(rv), which are
finitely generated free K[t]-modules, such that all but finitely many
indecomposable right C-comodules M with lengthM = v are of the
form M ∼= K1

λ ⊗K[t] L
(s), where s ≤ rv, K1

λ = K[t]/(t − λ) and λ ∈ K. If
there is a common bound for the numbers rv for all v ∈ K0(C), then
C is called domestic.

If C is a tame coalgebra then there exists a growth function µ1
C :

K0(C) → N defined as µ1
C(v) to be the minimal number rv of K[t]-

C-bimodules L(1), . . . , L(rv) satisfying the above conditions, for each
v ∈ K0(C). C is said to be of polynomial growth if there exists a
formal power series

G(t) =
∞∑

m=1

∑
j1,...,jm∈IC

gj1,...,jmtj1,...,jm

with t = (tj)j∈IC
and non-negative coefficients gj1,...,jm ∈ Z such that

µ1
C(v) ≤ G(v) for all v = (v(j))j∈IC

∈ K0(C) ∼= Z(IC) such that ‖v‖ :=
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∑
j∈IC

v(j) ≥ 2. If G(t) =
∑

j∈IC
gjtj, where gj ∈ N, then C is called of

linear growth. If µ1
C is zero we say that C is of discrete comodule

type. Observe that domestic coalgebras are of linear growth.
Let Q be the quiver ◦ //

//// ◦ , KQ the path algebra of the quiver Q
and Mf

KQ the category of finite dimensional right KQ-comodules.
A K-coalgebra C is of wild comodule type(wild for short) if there
exists an exact and faithful K-linear functor F : Mf

KQ → MC
f that

respects isomorphism classes and carries indecomposables right
KQ-modules to indecomposable right C-comodules. If, in addition,
the functor F is fully faithful, we will say that C is of fully wild
comodule type. This definition can be done in an equivalent way if
we take the quiver Q consisting on one vertex and two loops.

Let us collect from [Sim01] and [Sim05] some properties of wild
and tame comodule type.

Proposition 4.1.2. (a) The tame, polynomial growth, linear growth,
discrete, domestic and wild comodule type are invariant under
Morita-Takeuchi equivalence of coalgebras.

(b) The notion of wild comodule type is left-right symmetric.

(c) If there exist a pair S, S ′ of simple right C-comodules such that
dimKExt1

C(S, S ′) ≥ 3 then C is of wild comodule type.

(d) The following conditions are equivalent:

(i) C is of wild comodule type.

(ii) There exists a finite dimensional subcoalgebra H of C of
wild comodule type.

(iii) The coalgebra C is a direct union of finite dimensional sub-
coalgebras of wild comodule type.

(e) If C is tame then each finite dimensional subcoalgebra of C is
also tame.

Corollary 4.1.3. Let C be a K-coalgebra and D be a subcoalgebra
of C of wild comodule type. Then C is of wild comodule type.

As a consequence of the former proposition, Simson proves in
[Sim05] the weak tame-tild dichotomy for coalgebras.

Corollary 4.1.4 (Weak tame-wild dichotomy for coalgebras). Let K
be an algebraically closed field. Then every K-coalgebra of tame
comodule type is not of wild comodule type.
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We hope that the following tame-wild dichotomy holds.

Conjecture 4.1.5. [Sim05][Tame-wild dichotomy for coalgebras] Let
K be an algebraically closed field and C be a K-coalgebra. Then C
is either of tame comodule type, or of wild comodule type, and these
types are mutually exclusive.

4.2 Localization and tame comodule type

This section and the subsequent one are devoted to study the re-
lation between the comodule type of a coalgebra and its localized
coalgebras.

Let us analyze the behavior of the length vector under the action
of the quotient functor.

Lemma 4.2.1. Let C be a coalgebra and e ∈ C∗ be the idempotent
element associated to a set of simple right C-comodules K = {Si}i∈Ie.
Let L be a finite dimensional right C-comodule, then (length L)i =
(length eL)i for all i ∈ Ie.

Proof. Let 0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln−1 ⊂ Ln be a composition series for
L. Then, we obtain the inclusions 0 ⊆ eL1 ⊆ eL2 ⊆ · · · ⊆ eLn−1 ⊆ eLn.
Since e(−) is an exact functor, eLj/eLj−1

∼= e(Lj/Lj−1) = eSj, where
Sj is a simple C-comodule for all j = 1, . . . , n. But eSj = Sj if Sj ∈ K
and zero otherwise. Thus (length L)i = (length eL)i for all i ∈ Ie.

Corollary 4.2.2. `(eM) =
∑

i∈Ie
(length eM)i ≤

∑
i∈IC

(lengthM)i =
`(M).

Therefore the following diagram is commutative

MC
f

e(−) //

length

��

MeCe
f

length

��
K0(C)

f // K0(eCe)

where f is the projection from K0(C) ∼= ZIC onto K0(eCe) ∼= ZIe.
Let us now consider the opposite direction, that is, if N is a right

eCe-comodule whose length vector is known, which is the length
vector of S(N)? In general, S does not preserve finite dimensional
comodules and then we have to assume some conditions. We start
with a simple case.
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Lemma 4.2.3. Let N be a finite dimensional right eCe-comodule with
length N = (vi)i∈Ie. Suppose that S(Si) = Si for all i ∈ Ie such that
vi 6= 0. Then

length S(N) =

{
vi, if i ∈ Ie
0, if i ∈ IC\Ie

Proof. Let 0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nn−1 ⊂ Nn = N be a composition
series for N . Since S is left exact, we have the chain of right C-
comodules

0 ⊂ S(N1) ⊂ S(N2) ⊂ · · · ⊂ S(Nn−1) ⊂ S(Nn) = S(N).

Now, for all j = 0, . . . , n−1, we consider the short exact sequence

0 // Nj
i // Nj+1

p // Sj+1
// 0

and applying the functor S we have

0 // S(Nj)
S(i) // S(Nj+1)

S(p) // S(Sj+1) = Sj+1

This sequence is exact since S(p) is non-zero (otherwise S(i) is bi-
jective and then so is i). Thus S(Nj+1)/S(Nj) ∼= Sj+1 and the chain
is a composition series of S(N).

Lemma 4.2.4. Let C be a K-coalgebra and R be a K-algebra. Sup-
pose that N is a R-C-bimodule, M is a right R-module and f is an
idempotent element in C∗. Then f(M ⊗R N) = M ⊗R fN .

Proof. Let us suppose that the right C-comodule structure of N is
given by the map ρN . Then M ⊗R N is endowed with a structure of
right C-comodule given by the map I ⊗R ρN : M ⊗R N →M ⊗R N ⊗C
defined as

m⊗R n 7→ m⊗R

∑
(n)

n(0) ⊗ n(1)

 =
∑
(n)

(m⊗R n(0) ⊗ n(1))

for all m ∈M and n ∈ N .
Therefore f ·(m⊗Rn) =

∑
(n)m⊗Rn(0)⊗f(n(1)) =

∑
(n)m⊗Rn(0)f(n(1)) =

m ⊗R

∑
(n) n(0)f(n(1)) = m ⊗R f · n for all m ∈ M and n ∈ N . Thus

f(M ⊗R N) = M ⊗R fN .
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Proposition 4.2.5. Let v = (vi)i∈Ie ∈ K0(eCe) such that S(Si) = Si for
all i ∈ Ie with vi 6= 0. If C satisfies the tameness condition for

v =

{
vi, if i ∈ Ie
0, if i ∈ IC\Ie

then eCe satisfies the tameness condition for v.

Proof. By hypothesis, there exist K[t]-C-bimodules L(1), L(2), . . . , L(rv),
which are finitely generated free K[t]-modules, such that all but
finitely many indecomposable right C-comodules M with lengthM =
v are of the form M ∼= K1

λ ⊗K[t] L
(s), where s ≤ rv, K1

λ = K[t]/(t − λ)
and λ ∈ K. Consider the K[t]-eCe-bimodules eL(1), . . . , eL(rv). Ob-
viously, they are finitely generated free as left K[t]-modules. Let
now N be a right eCe comodule with length N = v. By Lemma 4.2.3,
length S(N) = v and therefore S(N) ∼= K1

λ ⊗K[t] L
(s) for some s ≤ rv

and some λ ∈ K (since S is an embedding, there are only finitely
many eCe-comodules N such that S(N) is not of the above form).
Then, by the previous lemma, eS(N) ∼= N ∼= K1

λ ⊗K[t] eL
(s). Thus eCe

satisfies the tameness condition for v.

Corollary 4.2.6. Under the conditions of Proposition 4.2.5, we have
that µ1

eCe(v) ≤ µ1
C(v).

Corollary 4.2.7. Let C be a coalgebra and e ∈ C∗ be a right semicen-
tral idempotent. If C is tame (of polynomial growth, of linear growth,
domestic, discrete) then eCe is tame (of polynomial growth, of linear
growth, domestic, discrete).

Proof. It is clear from Proposition 3.5.4 and the above results.

The underlying idea of the proof of Proposition 4.2.5 is that if
we control the C-comodules whose length vector is obtained from v
under the action of S (in Proposition 4.2.5 there is only one vector),
then we may control the eCe-comodules of length v. Obviously,
a problem appears if there are infinite eCe-comodules {Ni}i∈I with
length v such that length S(Ni) 6= length S(Nj) for i 6= j. Then, the
number of K[t]-eCe-bimodules obtained could be infinite. Therefore
the result may be generalized using that method. For the conve-
nience of the reader we introduce the following notation.

To any vector v ∈ K0(eCe) ∼= ZIe we shall associate the set Ωv =
{vβ}β∈B of all vectors in K0(C) ∼= ZIC such that each vβ = length S(N)
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for some eCe-comodule N such that length N = v.

vβ1

T

++

vβ2

  A
AA

AA
AA

AA
vβ3

��

vβb

T
uuv

S

dd
S

``AAAAAAAAA
S

OO

S

HH _____________________

�
�
�

_____________________ �
�
�Ωv

TT

Proposition 4.2.8. Let v ∈ K0(eCe) such that Ωv is finite. If C sat-
isfies the tameness condition for each vβ ∈ Ωv then eCe satisfies the
tameness condition for v.

Proof. Consider the set of all K[t]-C-bimodules associated to all vec-
tors vβ ∈ Ωv, namely L = {L(j)

β }β∈Ωv ,j=1,...,rβ
. By hypothesis, this is a

finite set and then so is T (L). We proceed analogously to Proposi-
tion 4.2.5 and the result follows.

Given two vectors v = (vi)i∈IC
, w = (wi)i∈IC

∈ K0(C), we will say
that v ≤ w if vi ≤ wi for all i ∈ IC.

Lemma 4.2.9. Let v = (vi)i∈Ie ∈ K0(eCe) which verifies that S(Si) is
a finite dimensional right C-comodule for all i ∈ Ie such that vi 6= 0.
Then Ωv is a finite set.

Proof. Let N be a right eCe-comodule such that length N = v. Con-
sider a composition series for N , 0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nn−1 ⊂ Nn = N .
Since S is left exact, we have the chain of right C-comodules

0 ⊂ S(N1) ⊂ S(N2) ⊂ · · · ⊂ S(Nn−1) ⊂ S(Nn) = S(N).

Then, for each j = 1, . . . , n, we have a sequence

0 // S(Nj−1) // S(Nj) // S(Sj) ,

where Sj is a simple eCe-comodule.
Since S(Sj) is finite dimensional, it has a composition series

0 ⊂ Sj ⊂ S(Sj)2 ⊂ · · · ⊂ S(Sj)r−1 ⊂ S(Sj). Then we can complete
the following commutative diagram taking the pullback Pi for i =
1, . . . , r − 1.
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S(Nj) //| // P1

��

−

��

//| // Sj

��

−

��
S(Nj) //| // P2

//

��

−

��

S(Sj)2
//

��

−

��

Coker

...
...

��

−

��

...

��

−

��

...

S(Nj) //| // Pr−1
//

��

−

��

S(Sj)r−1
//

��

−

��

Coker

S(Nj) //| // S(Nj+1) // S(Sj) // Coker

�

�

�

Consider two consecutive rows and their quotient sequence

S(Nj) //| // Pt

i

��

−

��

gt //

))RRRRRRRRRRRR S(Sj)t

i

��

−

��

// Coker

Im gt

55lllllllllll

i

��

−

��

S(Nj) //| //

��

Pt+1
gt+1 //

p

��
−
��

((RRRRRRRRRR S(Sj)t+1
//

p

��
−
��

Coker

Im gt+1

55lllllllll

p

��
−
��

0 // Pt+1/Pt
g //

((RRRRRRRR
Sk

Im gt/Im gt+1

55lllllllllll

�

))SSSSS

0

))SSSSS

0

∼= Im g // 0

∼= S(Sj)t+1/S(Sj)t

Suppose that Pt+1 6= Pt, then Pt+1/Pt
∼= Im g ↪→ Sk, and thus Pt+1/Pt

∼=
Sk.

Hence we have obtained a chain

0 ⊂ P 1
1 ⊆ · · · ⊆ P 1

r1
= S(N1) ⊆ · · · ⊆ S(Nn−1) ⊆ P n

1 ⊆ · · · ⊆ P n
rn

= S(N),

where the quotient of two consecutive comodules is zero or a simple
comodule.

Therefore length S(N) ≤
∑n

j=1 length S(Sj) for any right eCe-comodule
N whose length N = v. Thus Ωv is a finite set.

Theorem 4.2.10. Let C be a coalgebra and e ∈ C∗ be an idempotent
element such that S(Si) is a finite dimensional right C-comodule for
all i ∈ Ie. If C is tame then eCe is tame.
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Proof. It is straightforward from the above results.

In particular, the conditions of Theorem 4.2.10 are satisfied for
any idempotent if C is pure semisimple or, moreover, if it is left
semiperfect. A coalgebra is said to be right pure semisimple if ev-
ery indecomposable right comodule is finite dimensional. It is left
semiperfect if every finite dimensional left comodule has a finite di-
mensional projective cover, or equivalently, if any indecomposable
injective right comodule is finite dimensional.

Corollary 4.2.11. Let C be a right pure semisimple or a left semiper-
fect coalgebra and e ∈ C∗ be an idempotent element. If C is of tame
comodule type then eCe is of tame comodule type.

Unfortunately, the proof is not valid in the general case and is
still an open problem.

Problem 4.2.12. Let C be a coalgebra of tame comodule type and e
be an idempotent element in C∗. Then eCe is of tame comodule type.

It is also interesting to study if the localization process preserves
polynomial growth, linear growth, discrete comodule type or do-
mestic coalgebras. It is clear that the converse result is not true as
the following example shows.

Example 4.2.13. Let us consider the quiver

◦
��

Q : ◦ // ◦ // ◦ // ◦ // ◦ // ◦ // ◦ // ◦ // ◦

Since its underlying graph is neither a Dynkin diagram nor an Eu-
clidean graph then KQ is wild, see for example [ASS05]. But it is
easy to see that eCe is of finite representation type for each non-
trivial idempotent element e ∈ C∗.

4.3 Split idempotents

Let us study the wildness of a coalgebra and its localized coal-
gebras. Directly from the definition we may prove the following
proposition.

Proposition 4.3.1. Let C be a coalgebra and e ∈ C∗ be an idem-
potent element which defines a perfect colocalization. If eCe is wild
then C is wild.
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Proof. By hypothesis, there is an exact and faithful functor F :
Mf

KQ →MeCe
f , where Q is the quiver formed by two points and three

arrows between them, which respects isomorphism classes and
preserves indecomposables. Consider the restriction to finite di-
mensional comodules of the colocalization functor H :MeCe

f →MC
f ;

by Proposition 3.4.15, the composition HF :Mf
KQ →MC

f is an exact
and faithful functor that preserves indecomposables and respects
isomorphism classes. Thus C is wild.

An analogous result can be obtained using the section func-
tor if the subcategory is perfect localizing and S preserves finite
dimensional comodules. For example, if C is pure semisimple or
semiperfect.

Proposition 4.3.2. Let C be a right pure semisimple or a left semiper-
fect coalgebra and e ∈ C∗ be an idempotent element which defines a
perfect localization. If eCe is wild then C is wild.

Proof. It is similar to the former proposition. We only have to prove
that if C is left semiperfect then S preserves finite dimensional
comodules. Let M be a finite dimensional right eCe-comodule.
Then SocM ⊆ M is finite dimensional. Suppose that SocM =
S1⊕· · ·⊕Sn, then E1⊕· · ·⊕En is the injective envelope of M . Therefore
E1 ⊕ · · · ⊕ En = E is the injective envelope of S(M). By hypothesis,
E is finite dimensional and thus so is S(M).

Let us now consider the following question: when is the coalge-
bra eCe a subcoalgebra of C? This is interesting for us because, by
Corollary 4.1.3, in such a case, we have the following.

Proposition 4.3.3. Let C be a coalgebra and e ∈ C∗ be an idempo-
tent such that eCe is a subcoalgebra of C. If eCe is wild then C is
wild.

In general, we always have the inclusion eCe ⊆ C, nevertheless
the structures may be different. This is not the case if, for instance,
e is a left semicentral idempotent. In that case, by [JMNR06], eC =
eCe is a subcoalgebra of C. The same result holds if e is a right
semicentral or a central idempotent.

An idempotent element e ∈ C∗ is said to be split if in the de-
composition C∗ = eC∗e ⊕ eC∗f ⊕ fC∗e ⊕ fC∗f , where e + f = 1, the
direct summand He := eC∗f ⊕ fC∗e⊕ fC∗f is a twosided ideal of C∗.
These elements were used by Lam in [Lam]. The main result there,



82 Chapter 4. Tame and Wild Coalgebras

see [Lam, Theorem 4.5], assures that the following statements are
equivalent:

(a) He is a twosided ideal of C∗.

(b) e(C∗fC∗)e = 0.

(c) exeye = exye for any x, y ∈ C∗.

As a consequence, every left or right semicentral idempotent ele-
ment in C∗ is split. Let us characterize when eCe is a subcoalgebra
of C.

Theorem 4.3.4. Let e be an idempotent element in C∗. Then the
following statements are equivalent.

(a) e is a split idempotent in C∗.

(b) eCe is a subcoalgebra of C.

Proof. Let us denote f = 1 − e. By Proposition 2.1.2, for any sub-
space V ⊆ C, V is a subcoalgebra of C if and only if V ⊥ is a twosided
ideal of C∗. Then we proceed as follows in order to compute the or-
thogonal of eCe.

(eCe)⊥ = (eC ∩ Ce)⊥
= (eC)⊥ + (Ce)⊥

= C∗f + fC∗

= eC∗f + fC∗f + fC∗e+ fC∗f
= eC∗f + fC∗e+ fC∗f
= He

Thus eCe is a subcoalgebra of C if and only if He is a twosided ideal
of C∗ if and only if e is a split idempotent in C∗.

Let us give a description of the split idempotents. Suppose that
C is a pointed coalgebra, that is, C is an admissible subcoalgebra
of a path coalgebra. We recall from Theorem 3.5.2 and Proposition
3.5.4 that the left (right) may be described as follows:

Proposition 4.3.5. Let C be an admissible subcoalgebra of a path
coalgebra KQ and e be an idempotent element in (KQ)∗ associated
to a subset X ⊆ Q0. Then:

(a) e is left semicentral if and only if there is no arrow y → x in Q
such that y /∈ X and x ∈ X.
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(b) e is right semicentral if and only if there is no arrow x → y in Q
such that y /∈ X and x ∈ X.

We want to give a geometric description of split idempotents in
similar a way. In order to do this, we start giving an approach by
means of path coalgebras.

Lemma 4.3.6. Let Q be a quiver and e ∈ (KQ)∗ be the idempotent
element associated to a subset of vertices X. Then e is split in (KQ)∗

if and only if Ip ⊆ X for any path p in e(KQ)e, i.e., there is no cell of
length greater than one.

Proof. We have that e(KQ)e is a subcoalgebra of KQ if and only if
∆(p) ∈ e(KQ)e⊗ e(KQ)e for any path p in e(KQ)e.

Let p = αn · · ·α1 ∈ e(KQ)e, ∆(p) ∈ e(KQ)e⊗ e(KQ)e if and only if

n∑
j=2

αn · · ·αj ⊗ αj−1 · · ·α1 ∈ e(KQ)e⊗ e(KQ)e.

Since all summands are linearly independent, this happens if and
only if s(αi) ∈ X for all i = 2, . . . n. That is, if and only if Ip ⊆ X.

Therefore the subset of vertices X is a convex set in the quiver Q.
In the following picture we show an example of a set X of vertices
associated to a split idempotent, denoted by the white points.

•
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•
66nnnnnn

((PPPPPP ◦
66nnnnnn

((PPPPPP •
((PPPPPP

•
66nnnnnn

((PPPPPP ◦
((PPPPPP

66nnnnnn ◦
((PPPPPP

66nnnnnn •
•

((PPPPPP

66nnnnnn ◦
((PPPPPP

66nnnnnn •
((PPPPPP

66nnnnnn

•
66nnnnnn

((PPPPPP ◦
((PPPPPP

66nnnnnn ◦
((PPPPPP

66nnnnnn •
•

66nnnnnn

((PPPPPP ◦
66nnnnnn

((PPPPPP •
66nnnnnn

•
66nnnnnn

((PPPPPP •
66nnnnnn

•
66nnnnnn

�
�
�
�
�

�
�
�
�
�

O O O O O O

oooooo

n n n n n n

QQQQQQ

X

Q

The former proof can be easily generalized to pointed coalgebras.
Recall that we denote by Q the set of all paths in Q.

Lemma 4.3.7. Let Q be a quiver and C be an admissible subcoal-
gebra of KQ. Let e ∈ C∗ be the idempotent element associated to a
subset of vertices X. Then e is split in C∗ if and only if Ip ⊆ X for any
path p in PSupp(eCe).
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The reader might wonder if it is possible a generalization of the
previous lemma to any coalgebra considering the Ext-quiver, i.e.,
if an idempotent e associated to a set of simple comodules K is
split in C∗ if and only if, for each path in the Ext-quiver S1 → · · · →
Sn−1 → Sn, if S1, Sn ∈ K then Si ∈ K for all i = 2, . . . , n−1. The answer
is negative.

Example 4.3.8. Let Q be the quiver

◦ α // ◦ β // ◦
1 2 3

and C be the admissible subcoalgebra ofKQ generated by {1, 2, 3, α, β}.
Then the quiver ΓC is

S1 −→ S2 −→ S3.

But e ≡ {1, 3} is a split idempotent because eCe = S1 ⊕ S3 is a sub-
coalgebra of C.

Following the idea of the Section 3 of Chapter 3 we hope that
the following conjecture holds.

Conjecture 4.3.9. The following are equivalent:

(a) The idempotent e is split in C∗.

(b) For each non-zero morphism between indecomposable injective
right C-comodules f : Ei → Ej such that f is the composition of
g : Ei → EK and h : Ek → Ej for some indecomposable injective
right C-comodule Ek, if i, j ∈ Ie then k ∈ Ie.

Let us finish the section with an open problem for further devel-
opment of representation theory of coalgebras.

Problem 4.3.10. Let C be a coalgebra and e ∈ C∗ be an idempotent
element. If eCe is of wild comodule type then C is of wild comodule
type.

Obviously, Problem 4.2.12 and Problem 4.3.10 are equivalent if
the tame-wild dichotomy for coalgebras, conjectured by Simson in
[Sim05], is true.
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4.4 A Gabriel’s theorem for coalgebras

We have seen in Chapter 2 that there are examples of admissible
subcoalgebras which are not path coalgebras of a quiver with re-
lations (in fact, we have obtained a criterion to know when this
occurs). Therefore we cannot describe all pointed coalgebras fol-
lowing that method. Nevertheless, the main aim of the represen-
tation theory of coalgebras is to classify all coalgebras by means
of their category of comodules, and we know now that wild coal-
gebras are really difficult to describe in this way. Then we should
discard them and reformulate the problem as the following state-
ment: every basic non-wild coalgebra, over an algebraically closed
field, is isomorphic to the path coalgebra of a quiver with relations.
In particular, this implies that every basic tame coalgebra, over an
algebraically closed field, is isomorphic to the path coalgebra of a
quiver with relations. Moreover, if this result holds, this would re-
duce the proof of the tame-wild dichotomy to path coalgebras of
quivers with relations. In this section we will use some results of
localization obtained in the present and the previous chapters in
order to solve the above-mentioned problem for acyclic quivers.

Firstly, we check that the coalgebra of Example 2.5.5 is of wild
comodule type.

Example 4.4.1. Consider the coalgebra of Example 2.5.5, that is,
let Q be the quiver

◦

◦rrrrrrrrrrr

99
α1

◦
LLLLLLLLLLL

%%

β1◦iiiiiiiiii

44α2

◦UUUUUUUUUU

**

β2

◦//αn ◦//βn

◦UUUUU

**αi

◦iiiii

44

βi

◦
◦
◦

γi = βiαi for all i ∈ N

and let H be the admissible subcoalgebra of KQ generated by the
set Σ = {γi − γi+1}i∈N. It is proved in Example 2.5.5 that H is not the
path coalgebra of a quiver with relations. Nevertheless, H is of wild
comodule type, as it contains the path coalgebra of the quiver

◦ ◦
Γ ≡ ◦

α1 77oooooo α2 //

α3 ''OOOOOO
α4wwoooooo

α5ggOOOOOO ◦
◦ ◦

Since KΓ is a finite dimensional coalgebra, we have an algebra iso-
morphism (KΓ)∗ ∼= KΓ and there exists an equivalence between the
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categories Mf
KΓ and MKΓ

f . But it is well known that KΓ is a wild
algebra and hence KΓ is a wild coalgebra. By Corollary 4.1.3, this
proves that H is wild.

Theorem 4.4.2. Let Q be an acyclic quiver and C be an admissible
subcoalgebra of KQ which is not the path coalgebra of a quiver with
relations. Then C is of wild comodule type.

Proof. By Corollary 2.5.11, since C is not the path coalgebra of a
quiver with relations, there exist an infinite number of paths {γi}n∈N
in Q between two vertices x and y such that:
• None of them is in C.
• C contains a set Σ = {Σn}n∈N such that Σn = γn +

∑
j>n a

n
j γj,

where an
j ∈ K for all j, n ∈ N.

◦ ◦◦

γ1

  
◦◦

γ2

&& ◦◦γn // ◦
γi

88
x y

Consider PSupp(Σ1 ∪ Σ2 ∪ Σ3) = {γ1, γ2, . . . , γt} and Γ the finite sub-
quiver of Q formed by the paths γi for i = 1, . . . , t.

Then D = KΓ ∩ C is a finite dimensional subcoalgebra of C (and
an admissible subcoalgebra of KΓ) which contains the elements Σ1,
Σ2 and Σ3. It is enough to prove that D is wild.

Consider the idempotent element e ∈ D∗ such that e(x) = e(y) = 1
and zero otherwise, i.e., its associated subset of vertices is X =
{x, y}. Then, by Lemma 3.6.3, each Σi corresponds to an arrow
from x to y in the quiver Γe, that is, Γe contains the subquiver
◦ //

//// ◦ and then dimKExt1
eDe(Sx, Sy) ≥ 3. Thus eDe = KΓe is wild by

[Sim05, Corollary 5.5]. Note also that the quiver Γe is of the form

◦
α1 ////

αn
// ◦···x y

an then the simple right eDe-comodule Sx is injective.
Let us prove that the localizing subcategory Te of MD is perfect

colocalizing.
Since Γ is finite and without cycles then dimKKT ailΓX(x) is finite

and dimKKT ailΓX(y) = 0 so, by Proposition 3.6.9, the subcategory Te

is colocalizing.
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Let now g be an element in eC(1 − e). Then g is a linear combi-
nation of tails starting at x and then ρeC(1−e)(g) = g⊗x (see the proof
of Proposition 3.6.9). Therefore < g >∼= Sx as right eCe-comodules.
Suppose that m = dimKeC(1 − e). Hence eC = eCe ⊕ eC(1 − e) =
eCe ⊕ Sm

x and eC is an injective right eCe-comododule. Thus the
colocalization is perfect and, by Corollary 4.3.1, D is wild.

Corollary 4.4.3 (Acyclic Gabriel’s theorem for coalgebras). Let Q be
an acyclic quiver. Then any tame admissible subcoalgebra of KQ is
the path coalgebra of a quiver with relations.

Proof. It follows from Theorem 4.4.2 and the weak tame-wild di-
chotomy.

Remark. From the proof of Theorem 4.4.2, we have that if Q is
acyclic then a basis of a tame admissible subcoalgebra C cannot
contain three linearly independent linear combinations of paths
with common source and common sink. Then C = KQ0

⊕⊕
x 6=y∈Q0

Cxy

with dimKCxy ≤ 2 for all x, y ∈ Q0. Nevertheless, this fact does not
imply that the quiver is intervally finite (the number of paths be-
tween two vertices is finite). It is enough to consider the quiver

· // · //

��

· //

��

· //

�� ��· ·oo ·oo ·oo oo

and the admissible coalgebra C = C(Q,Ω), where

Ω = KQ2 ⊕KQ3 ⊕ · · · ⊕KQn ⊕ · · · .

C is a string coalgebra and then it is tame (see [Sim05, Section 6]).





Chapter 5

Hereditary Coalgebras

This final chapter is devoted to the presentation of examples related
to the topics considered in the previous chapters. To that end we
use some classes of coalgebras whose existence are motivated by
the analogous classes in the category of finite dimensional alge-
bras. The main example for us will be the hereditary coalgebras.
This is a well-known kind of coalgebras which has been studied
with satisfactory results in many papers, see [Chi02], [JLMS06],
[JMNR06] and [NTZ96]. The case of a pointed hereditary coalge-
bra, that is, a path coalgebra of a quiver, is studied extensively.
In particular, as a consequence of the results of Chapter 3, we de-
scribe the localization of a path coalgebra by means of the cells and
tails of its Gabriel quiver. Lastly, we introduce a class of coalgebras
close to be hereditary: locally hereditary coalgebras. That kind of
coalgebras can be defined by the property that every non-zero mor-
phism between indecomposable injective comodules is surjective,
and thus, they are a generalization of the hereditary case.

5.1 Hereditary coalgebras

A coalgebra C is said to be right hereditary if, for each subcomod-
ule N of an injective right C-comodule E, the quotient E/N is an
injective right C-comodule.

We collect here some known characterizations of a right heredi-
tary coalgebra, see [Chi02], [JLMS06] and [NTZ96].

Theorem 5.1.1. Let C be a coalgebra. The following conditions are
equivalent:
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(a) C is right hereditary.

(b) The global dimension of C is less or equal than one.

(c) The injective dimension of any simple right C-comodule is less or
equal than one.

(d) C/N is an injective right C-comodule for each right coideal N .

(e) C/S is an injective right C-comodule for any simple right C-comodule
S.

(f) C is left hereditary.

If the coradical C0 of C is coseparable, these conditions are also
equivalent to

(g) C is formally smooth.

(h) The global dimension of the enveloping coalgebra C ⊗Ccop is less
or equal than 1.

(i) Coker ∆ is an injective (C,C)-bicomodule, where ∆ is the comulti-
plication of C.

(j) C is isomorphic to the tensor coalgebra TC0(N), where N is the
injective (C,C)-bicomodule C0∧C0

C0
.

Furthermore, if C is pointed then these conditions are equivalent to

(k) C is isomorphic to the path coalgebra KQ of a quiver Q.

Proof. (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) can be found in [NTZ96].
(a)⇔ (g)⇔ (h)⇔ (i)⇔ (j) is proved in [JLMS06]. Finally, (a)⇔ (k)
appears in [Chi02].

Corollary 5.1.2. The notion of hereditary coalgebra is left-right sym-
metric.

Let C be a coalgebra. A right C-comodule M is called colocal if
Soc (M) is a simple right C-comodule. Let us now give more char-
acterizations of a hereditary coalgebra.

Proposition 5.1.3. Let C be a coalgebra. The following conditions
are equivalent:
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(a) C/D is an injective right C-comodule for any colocal right coideal
D of C.

(b) Every quotient of an indecomposable injective right C-comodule
is injective.

(c) Every quotient of an injective right C-comodule by a colocal sub-
comodule is injective.

(d) Every quotient of an indecomposable injective right C-comodule
by its socle is injective.

(e) C/S is an injective right C-comodule for any simple right C-comodule
S.

(f) C is right hereditary.

Proof. (a) ⇒ (b). Let Ei be an indecomposable injective right C-
comodule and N be a subcomodule of Ei. Since Soc N ⊆ Soc Ei = Si

then N is a colocal right coideal of C. Therefore C/N ∼= Ei/N ⊕
(⊕k 6=iEk) is injective and thus so is Ei/N .

(b) ⇒ (c). Let E be an injective right C-comodule and N be a
colocal subcomodule of E. Then Soc N = Si and N have the same
injective envelope, say Ei, and there exists a monomorphism f :

Ei → E. Now, the exact sequence Ei f // E p // E/Ei = E ′ splits so
E = Ei ⊕ E ′ and E ′ is injective. Thus E/N ∼= Ei/N ⊕ E ′ is injective.

(c)⇒ (d). Trivial.
(d) ⇒ (e). Let Si be a simple C-comodule and Ei be its injec-

tive envelope, that is, Ei is an indecomposable injective right C-
comodule and Soc Ei = Si. Then C/Si

∼= Ei/Soc Ei ⊕ (⊕j 6=iEj) and
thus C/Si is a direct sum of injective right C-comodules.

(e)⇒ (f). It is proved in Proposition 5.1.1.
(f)⇒ (a). Trivial

Let us now suppose that either the field K is algebraically closed
or C is a pointed coalgebra. Then, by Corollary 1.5.5 and Theorem
5.1.1, we may assume that C is the path coalgebra of a quiver Q.
We recall from Chapter 3 that, for any idempotent element in (KQ)∗

associated to a subset of vertices X ⊂ Q0, the localized coalgebra
e(KQ)e is the path coalgebra of the quiver Qe = (X, CellQX).
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Example 5.1.4. Let KQ the path coalgebra of the quiver Q given by

◦ β1 // •
δ

##H
HHHHH

◦
α
;;vvvvvv

γ ##H
HHHHH ◦ β2

;;vvvvvv
η

##H
HHHHH ◦

•
µ1

;;vvvvvv
µ2

// ◦
ρ

;;vvvvvv

and X be the subset of vertices formed by the white points. Then,
the set of cells is {α, η, ρ, δβ1, δβ2, µ1γ, µ2γ}. Therefore the quiver Qe is
the following:

◦
δβ1

++WWWWWWWWWW

◦
α
;;vvvvvv µ1γ //______

µ2γ ++WWWWWWWWWW ◦
η

##H
HHHHH

δβ2 //______ ◦

◦
ρ

;;vvvvvv

where the dashed arrows are the cells of length greater than one.

Example 5.1.5. Let KQ be the path coalgebra of the quiver Q

•

• ◦

OO

oo

��

α // •
β
oo

•

and X be the set of vertices formed by the only white point. Then the
set of cells is {βα}, that is, the quiver Qe is

◦

βα

��

and e(KQ)e ∼= K[βα].

We apply this idea in order to obtain a description of the quo-
tient functor T : MKQ → MKQe. Recall that the category of right
KQ-comodules is equivalent to the category Replnlf

K (Q) of locally
nilpotent representation of finite length of the quiver Q.

Proposition 5.1.6. Let KQ be a path coalgebra and e ∈ (KQ)∗ be
the idempotent element associated to a subset of vertices X. Then,
the functor T : Replnlf (Q) −→ Replnlf (Qe) maps the representation
(Vx, ϕα)x∈Q0,α∈Q1 of Q into the representation (V̄y, ϕ̄β)y∈X,β∈CellQX

of Qe

given by:
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• V̄x = Vx for every x ∈ X.

• ϕ̄β = ϕαn · · ·ϕα1 for each β ∈ CellQX such that β = αnαn−1 · · ·α1 in
Q.

In Chapter 3 we proved that, for a subset of vertices X of a
quiver Q, the localizing subcategory TX is is colocalizing if and and
if T ailQX(x) is a finite set for each x ∈ X. Let us now prove that, un-
der this conditions, the colocalizing subcategories are also perfect
colocalizing.

Theorem 5.1.7. Let Q be a quiver and e be the idempotent element
in (KQ)∗ associated to a subset X ⊆ Q0. Then

e(KQ) ∼=
⊕
x∈X

E
Card(T ailQX(x))+1

x

as right KQe-comodules, where {Ex}x∈X is a complete set of pairwise
non-isomorphic indecomposable injective right KQe-comodules.

Proof. The right KQe-comodule e(KQ) may be decomposed as e(KQ) =
e(KQ)e ⊕ e(KQ)(1 − e). Since there are isomorphisms e(KQ)e ∼=
KQe ∼=

⊕
x∈X Ex, it is enough to prove that

e(KQ)(1− e) ∼=
⊕
x∈X

E
Card(T ailQX(x))
x

as right KQe-comodules.
Let us assume that, for each x ∈ X, we have

T ailQX(x) = {τ i
x}i∈Jx .

The K-vector space e(KQ)(1− e) is generated by the set of all paths
starting at vertices in X and ending at vertices which do not belong
to X. Then, for any path p ∈ e(KQ)(1 − e), there exists a unique
tail decomposition p = τ i

xpn · · · p1 for some τ i
x ∈ T ail

Q
X(x), where x =

t(pn) ∈ X.
We consider the linear map

f : e(KQ)(1− e) −→
⊕
x∈X

(
⊕
i∈Jx

Ex,i)

defined by f(τ i
xpn · · · p1) = pn · · · p1 ∈ Ex,i for all p = τ i

xpn · · · p1 ∈ e(KQ).
Clearly f is well defined and it is a e(KQ)e-comodule map. Since
Ex is generated by the set of all paths in Qe which end at x, f is
bijective.
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Corollary 5.1.8. Let Q be a quiver and e be the idempotent element
in (KQ)∗ associated to a subset X ⊆ Q0. Then e(KQ) is an injective
right KQe-comodule.

Theorem 5.1.9. Let Q be a quiver and e be the idempotent element
in (KQ)∗ associated to a subset X ⊆ Q0. The following conditions are
equivalent:

(a) The localizing subcategory TX ofMKQ is colocalizing.

(b) The localizing subcategory TX ofMKQ is perfect colocalizing.

(c) T ailQX(x) is a finite set for all x ∈ X. That is, roughly speaking,
there are at most a finite number of paths starting at the same
point whose only vertex in X is the first one.

We remark that since any path coalgebra is hereditary, the equiv-
alence between (a) and (b) in the previous Theorem can be obtained
from [NT96]. This is not true for any pointed coalgebra.

Example 5.1.10. Let us consider the quiver Q and the coalgebra C
defined on Example 3.6.6, and the subset of vertices X = {x1, x2, x3}.
Then, eCe is the path coalgebra of the quiver

Qe ≡ ◦ ◦α1oo α3 // ◦
x2 x1 x3

and then, the indecomposable injective right eCe-comodules are E1 =
K < x1 >, E2 = K < x2, α1 > and E3 = K < x3, α3 >. If eC(1 − e) =
K < α2, α4, α2α1 + α4α3 > were injective then it would be a sum of
indecomposable injective right eCe-comodules. Since eC(1 − e) has
dimension 3, thus it would be isomorphic to E1⊕E1⊕E1, or E1⊕E2 or
E1 ⊕ E3. A straightforward calculation proves that it is not possible.

By [Gab72, Chapter III, Proposition 7], any localizing subcate-
gory of a category of comodules over a path coalgebra is perfect
localizing. Then, from the above results and the results obtained
in Chapter 4, we have the following:

Proposition 5.1.11. Let Q be a quiver and e be an idempotent ele-
ment of (KQ)∗ such that Te is a colocalizing subcategory of MKQ. If
KQe is wild then KQ is wild.

Proposition 5.1.12. Let Q be a quiver and e be an idempotent ele-
ment of (KQ)∗ such that the section functor S : MKQe → MKQ pre-
serves finite dimensional comodules. If KQe is wild then KQ is wild.
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Following [Sim01], we finish the section giving a complete de-
scription of all tame path coalgebras. First we recall some special
kinds of graphs.

Dynkin diagrams

An : ◦ ◦ ◦ − · · · − ◦ ◦ ◦ n vértices, n ≥ 1
◦

Dn : ◦ ◦ ◦ − · · · − ◦ ◦ ◦ n vértices, n ≥ 4
◦

E6 : ◦ ◦ ◦ ◦ ◦
◦

E7 : ◦ ◦ ◦ ◦ ◦ ◦
◦

E8 : ◦ ◦ ◦ ◦ ◦ ◦ ◦

Euclidean graphs

◦
QQQQQQQQQQQ

Ãn : ◦

mmmmmmmmmmm ◦ · · · ◦ ◦ n+ 1 vértices, n ≥ 3

◦ ◦

D̃n : ◦ ◦ ◦ − · · · − ◦ ◦ ◦ n+ 1 vértices, n ≥ 4

◦ ◦
◦

Ẽ6 : ◦

◦ ◦ ◦ ◦ ◦
◦

Ẽ7 : ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

Ẽ8 : ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
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Infinite locally Dynkin diagrams

A∞ : ◦ ◦ ◦ − · · · − ◦ ◦ ◦ · · ·

∞A∞ : · · · ◦ ◦ ◦ − · · · − ◦ ◦ ◦ · · ·
◦

D∞ : ◦ ◦ ◦ − · · · − ◦ ◦ ◦ · · ·

Theorem 5.1.13. [Sim01] Let Q be a quiver and KQ be the path
coalgebra of Q. The following conditions are equivalent:

(a) KQ is of tame comodule type.

(b) KQ is domestic of tame comodule type.

(c) The underlying graph of Q is a Dynkin diagram, or a Euclidean
graph or a infinite locally Dynkin diagram.

(d) KQ is not of wild comodule type.

Therefore the tame-wild dichotomy holds for this kind of coalge-
bras.

5.2 Locally hereditary coalgebras

In this section we introduce locally hereditary (or L-hereditary)
coalgebras. These compose a class of coalgebras which contains
all hereditary coalgebras and whose non-hereditary objects share
properties with them.

Locally hereditary algebras were introduced by Simson in the
Representation Theory seminar of the Nikołaja Kopenika University
of Toruń in 1977. In [Les04], Leszczyński gave description of all
tame locally hereditary algebras of finite dimension. An algebra A
is said to be right L-hereditary, or right locally hereditary, if any
local right ideal of A is projective.

Theorem 5.2.1. [Les04] Let A be a finite dimensional algebra. The
following conditions are equivalent:

(a) A is right L-hereditary.

(b) Any local submodule of a projective right A-module is projective.



5.2 Locally hereditary coalgebras 97

(c) Any nonzero morphism between indecomposable projective right
A-modules is a monomorphism.

(d) A is left L-hereditary.

(e) A is isomorphic to

A′ =


F1

2M1 F2 0
· · · · · ·

nM1 nM2 · · · Fn

 ,

where (Fi, iMj) is a K-species such that there exist Fi-Fj- homo-
morphisms cijk : iMj ⊗Fj jMk → iMk verifying that cijk(x⊗ y) = 0 if
and only if x = 0 or y = 0 for all i, j, k = 1, . . . , n.

Let us turn to the case of coalgebras.

Definition 5.2.2. A coalgebra C is said to be right L-hereditary or
right locally hereditary if, for any right coideal N such that C/N is
colocal, the quotient C/N is injective.

The following lemma shows that there are many examples of
locally hereditary coalgebras.

Lemma 5.2.3. Any hereditary coalgebra is right and left locally
hereditary.

Let us give different characterizations of a locally hereditary
coalgebra in the same way that Theorem 5.2.1.

Proposition 5.2.4. Let C be a coalgebra. The following conditions
are equivalent:

(a) For any subcomodule N of a injective right C-comodule E such
that E/N is colocal, the quotient E/N is an injective right C-
comodule.

(b) For any nonzero morphism f : E → F , where E and F are right
C-comodules such that E is injective and F is colocal, Im f is an
injective right C-comodule.

(c) Every nonzero morphism between indecomposable injective right
C-comodules is surjective.

(d) C is right locally hereditary.
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(e) For any subcomodule N of an indecomposable injective right C-
comodule Ei such that Ei/N is colocal, the quotient Ei/N is an
injective right C-comodule.

Proof. (a) ⇒ (b). We have E/Ker f ∼= Im f and Soc (Im f) ⊆ Soc F .
Therefore Soc (Im f) is simple and, by hypothesis, Im f is injective.

(b) ⇒ (c). Let f : Ei → Ej be a nonzero morphism between in-
decomposable injective right C-comodules. Since Soc Ej is simple,
Im f is injective. Therefore, the short exact sequence

0 // Im f // Ej
// Ej/Im f // 0

splits and Ej = Im f ⊕Ej/Im f . Since Ej is indecomposable and f is
nonzero, we deduce Ej/Im f = 0.

(c) ⇒ (d). Let N be a right coideal such that Soc (C/N) = S is
simple. Let E be the injective envelope of S. Then f : C/N → E is
also the injective envelope of C/N . Therefore, there exists an index
k ∈ IC such that the composition Ek

� �
i // C = ⊕i∈IC

Ei p // C/N is
nonzero, where i is the inclusion and p is the projection. Then fpi
is surjective and so is f .

(d) ⇒ (e). Let N ≤ Ei such that Soc (Ei/N) is simple. Let us
consider the right coideal N ′ = N ⊕ (⊕j 6=iEj). Then C/N ′ ∼= Ei/N has
simple socle and thus Ei/N is injective.

(c)⇒ (a). It is similar to the proof of (c)⇒ (d).
(e) ⇒ (c). Let f : Ei → Ej be a nonzero morphism. We have

Im f ∼= Ei/Ker f . Since Im f has simple socle, by hypothesis, it is
injective and the result follows as in (b)⇒ (c).

Problem 5.2.5. Is the notion of locally hereditary left-right symmet-
ric?

Let us show that locally hereditary coalgebras are a generaliza-
tion of finite dimensional locally hereditary algebras.

Lemma 5.2.6. If R is a finite dimensional right locally hereditary
algebra then R∗ is a right locally hereditary coalgebra. Conversely,
if C is a right locally hereditary coalgebra of finite dimension, C∗ is a
locally hereditary algebra.

Proof. Let f : Ei → Ej be a nonzero morphism between indecompos-
able injective right R∗-comodules. The dual morphism f ∗ : E∗

j → E∗
i

is a non-zero morphism between indecomposable projective right
R-modules. By hypothesis, f ∗ is a monomorphism and then f is
surjective. The converse result is similar.
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The following example shows that there exist locally hereditary
coalgebras which are not hereditary coalgebras.

Example 5.2.7. Let Q be the quiver

x1 ◦

◦tttttttt

::
α1

◦
JJJJJJJJ

$$

α2

◦

◦
JJJJJJJJ

$$α3

◦tttttttt

::

α4

x2

x3

x4

and C be the coalgebra generated by the set

{x1, x2, x3, x4, α1, α2, α3, α4, α2α1 + α4α3}.

The indecomposable injective right C-comodules are E1 =< x1 >,
E2 =< x2, α1 >, E3 =< x3, α3 > and E4 =< x4, α2, α4, α2α1 + α4α3 >. We
consider the subcomodule A =< x4 > of E4 and therefore E4/A =<
α2, α4, α2α1 + α4α3 >. It is easy to see that Soc (E4/A) = S2 ⊕ S3 and
then the injective envelope E(E4/A) = E2 ⊕ E3 6= E4/A. Thus E4/A is
not injective and C is not hereditary. Nevertheless, a straightforward
calculation proves that C is locally hereditary. We sum it up in the
following table:

subcomodules with colocal quotient quotient
E1 ∅ —
E2 < x2 > E1

E3 < x3 > E1

E4 < 4, α2 >, < 4, α4 >, < 4, α2, α4 > E3, E2, E1

Example 5.2.8. The last example may be extended to an infinite
dimensional coalgebra. Let Q be the quiver

◦ α2

&&LLLLLL

◦
α1

88rrrrrr

β1 &&LLLLLL ◦ γ1 // ◦ γ2 // ◦ γ3 // ◦ · · ·

◦ β2

88rrrrrr

and C be the subcoalgebra ofKQ generated by the set of vertices, the
set of arrows and {γn · · · γ1(α2α1+β2β1)}n≥0 {γn · · · γ1α2}n≥1, {γn · · · γ1β2}n≥1

and {γi · · · γj}i>j≥1. Proceeding as above, we may prove that C is a
locally hereditary coalgebra. On the other hand, since C is not a
path coalgebra, C is not hereditary (see [JLMS06]).
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Example 5.2.9. Consider the quiver Q

◦

◦rrrrrrrrrrr

99
α1

◦
LLLLLLLLLLL

%%

β1◦iiiiiiiiii

44α2

◦UUUUUUUUUU

**

β2

◦//αn ◦//βn

◦UUUUU

**αi

◦iiiii

44

βi

◦
◦
◦

γi = βiαi for all i ∈ N

and let H be the admissible subcoalgebra of KQ generated by the
set Σ = {γi − γi+1}i≥1. Then H is a locally hereditary non-hereditary
coalgebra.

From the above example, one may deduce that not every locally
hereditary coalgebra is the path coalgebra of a quiver with rela-
tions.

Let C be a coalgebra and e ∈ C∗ be an idempotent element. Then
we can consider the functors associated to the localization

MC
T=e(−)=−�CeC //

MeCe

S=−�eCeCe
oo .

Let us prove that the localization process preserves locally hered-
itary coalgebras.

Theorem 5.2.10. If C is a right locally hereditary coalgebra then
eCe is a right locally hereditary coalgebra.

Proof. Let f : Ei → Ej be a nonzero morphism between indecompos-
able injective right eCe-comodules. Then S(f) : Ei → Ej is a nonzero
morphism between indecomposable injective right C-comodules.
By hypothesis, S(f) is surjective and since T is exact, TS(f) = f
is surjective.

Unlike it happens with hereditary coalgebras, not every colocal-
izing subcategory of the category of right comodules over a locally
hereditary coalgebra is perfect colocalizing.

Example 5.2.11. Let Q be the quiver

x1 ◦

•tttttttt

::
α1

◦
JJJJJJJJ

$$

α2

◦

◦
JJJJJJJJ

$$α3

◦tttttttt

::

α4

x2

x3

x4
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and C be the admissible subcoalgebra generated by α2α1 +α4α3. Let
us consider X = {x1, x3, x4}. Then eCe is the path coalgebra of the
quiver

Qe ≡ ◦ ◦α1oo α3 // ◦
x2 x1 x3

and then, the indecomposable injective right eCe-comodules are E1 =
K < x1 >, E2 = K < x2, α1 > and E3 = K < x3, α3 >. If eC(1 − e) =
K < α2, α4, α2α1 + α4α3 > were injective then it would be a sum of
indecomposable injective right eCe-comodules. Since eC(1 − e) has
dimension 3, it would be isomorphic to E1 ⊕ E1 ⊕ E1 or E1 ⊕ E2 or
E1 ⊕ E3. A straightforward calculation proves that it is not possible.

Let us assume that C is a right pure semisimple or a left semiper-
fect coalgebra.

Lemma 5.2.12. Let C be a locally hereditary coalgebra and Ei be
an indecomposable injective right C-comodule. Then Fi = EndC(Ei) is
a division K-algebra.

Proof. Let f be a non-zero element of Fi. Then f is surjective. Now,
since Ei is finite dimensional, f is bijective.

Lemma 5.2.13. Let C be a locally hereditary coalgebra and, Ei and
Ej be two non-isomorphic indecomposable injective right C-comodules.
If HomC(Ei, Ej) 6= 0 then HomC(Ej, Ei) = 0

Proof. Let f and g be two nonzero morphisms (thus surjective) in
HomC(Ei, Ej) and HomC(Ej, Ei), respectively. The composition gf ∈
EndC(Ei) is a nonzero morphism so it is bijective and therefore so
is f . Thus Ei

∼= Ej and we get a contradiction.

For any two non-isomorphic indecomposable injective right C-
comodules Ei and Ej, we may consider the set Rad2

C(Ei, Ej) formed
by all morphisms f ∈ HomC(Ei, Ej) such that f decomposes as
f = gh, where h ∈ HomC(Ei, Ek) and g ∈ HomC(Ek, Ej) are not isomor-
phisms, for some indecomposable injective Ek. Therefore, to any
pure semisimple locally hereditary coalgebra, there is associated a
K-species (Fi,iMj)i,j∈IC

, defined by iMj = HomC(Ei, Ej)/Rad2
C(Ei, Ej)

for any i, j ∈ IC, such that if iMj 6= 0 then jMi = 0. Moreover, we
may consider the Fi-Fj-homomorphisms cijk : iMj ⊗Fj jMk → iMk de-
fined by the composition of morphisms, and then, it is verified that
cijk(x⊗ y) = 0 if and only if x = 0 or y = 0 for all i, j, k ∈ IC.
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5.3 Other examples

Following [Sim05], a string coalgebra is a path coalgebra C = C(Q,Ω)
of a quiver with relations (Q,Ω) which satisfies the following prop-
erties:

(a) Each vertex of Q is the source of at most two arrows and the
sink of at most two arrows.

(b) The ideal Ω is generated by a set of paths.

(c) Given an arrow i β // j in Q, there is at most one arrow j α // k

in Q and at most one arrow l γ // i in Q such that αβ ∈ C and
βγ ∈ C.

In [Sim05], it is proved that every string coalgebra is of tame
comodule type. Let us show that the localization process preserves
string coalgebras.

Theorem 5.3.1. Let C = C(Q,Ω) be a string coalgebra and e ∈ C∗

be an idempotent element. Then, the localized coalgebra eCe is the
string coalgebra C(Qe,Ωe), where Ωe = eΩe ∩KQe.

Proof. Since Ω is generated by paths, KQ = C⊕Ω as K-vector space.
Then KQe

∼= e(KQ)e = eCe ⊕ eΩe and therefore KQe = KQe ∩KQe ∼=
eCe⊕ (eΩe ∩KQe). It is easy to see that Ωe is generated by paths in
Qe of length greater than one.

Let us suppose that there is a vertex i ∈ (Qe)0 which is the source
of three different arrows α, β, γ ∈ (Qe)1. Then there exist three dif-
ferent paths pα = αn · · ·α1, pβ = βm · · · β1, pγ = γr · · · γ1 ∈ CellQX ∩C such
that their cellular decompositions are α, β and γ, respectively. We
have that α1, β1 and γ1 are three arrows in Q starting at i and, since
C is string, at least two of them are the same. For instance, sup-
pose that α1 = β1. Furthermore, pα 6= pβ so there exists an integer s
such that αs · · ·α1 = βs · · · β1 and αs+1αs · · ·α1 6= βs+1βs · · · β1.

◦ ///o/o/o/o/o/o/o ◦
◦ α1=β2// ◦ αs=βs // ◦

αs+1 88pppppp

βs+1
&&NNNNNN

◦
α1=β1 88pppppp

γ1 &&NNNNNN ◦ ///o/o/o/o/o/o/o ◦
◦ ///o/o/o/o/o/o/o/o/o/o/o/o ◦

By the condition (c) in the definition of string coalgebra, βs+1βs /∈ C
or αs+1αs /∈ C and then pα /∈ C or pβ /∈ C. We get a contradiction. We
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may proceed analogously if there are three different arrows ending
at i.

Let j α // i , i β // k and i γ // l be three arrows in Qe such
that βα ∈ eCe and γα ∈ eCe. As above, there exist three different
paths pα = αn · · ·α1, pβ = βm · · · β1, pγ = γr · · · γ1 ∈ CellQX ∩ C such that
their cellular decompositions are α, β and γ, respectively. Since
pβ 6= pγ, there exists an integer s such that γs · · · γ1 = βs · · · β1 and
γs+1γs · · · γ1 6= βs+1βs · · · β1.

◦ ///o/o/o/o/o/o/o ◦
◦ ///o/o/o/o/o/o/o ◦ αn // ◦ β1=γ1 // ◦ βs=γs // ◦

βs+1 88pppppp

γs+1 &&NNNNNN

◦ ///o/o/o/o/o/o/o ◦
If s ≥ 1 then βs+1βs /∈ C or γs+1γs /∈ C and then pβ /∈ C or pγ /∈ C.
This is a contradiction, so s = 0. But in that case, since C is string,
β1αn /∈ C or γ1αn /∈ C and then βα /∈ eCe or γα /∈ C. The dual case is
similar and the proof follows.

Definition 5.3.2. A coalgebra is said to be gentle if it is a string
coalgebra C(Q,Ω) which satisfies the following extra statement:

(d) Given an arrow i β // j inQ, there is at most one arrow j α // k

in Q an at most one arrow l γ // i in Q such that αβ /∈ C and
βγ /∈ C

Unlike it happens with string coalgebras, the localized coalgebra
of a gentle coalgebra does not have to be gentle.

Example 5.3.3. Let us consider the quiver

◦ β2 // ◦
◦ α // ◦

β1 66nnnnnn

γ ((PPPPPP

◦
and C the gentle coalgebra generated by all arrows and all vertices,
and the paths β2β1 and β1α. Let e be the idempotent element as-
sociated to the subset of vertices X = Q0\s(β2). Then eCe is the
admissible subcoalgebra of the path coalgebra of the quiver

◦
◦ α // ◦

β 66nnnnnn

γ ((PPPPPP

◦
generated by the set of vertices and the set of arrows. Obviously eCe
is not a gentle coalgebra.
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Following [CGT04], every right C-comodule M has a filtration

0 ⊂ Soc (M) ⊂ Soc 2(M) ⊂ · · · ⊂M

called the Loewy series, where, for n > 1, Soc n(M) is the unique
submodule of M satisfying that Soc n−1(M) ⊂ Soc n(M) and

Soc (M/Soc n−1(M)) = Soc n(M)/Soc n−1(M).

A right comodule is called uniserial if its Loewy series is a com-
position series. Furthermore, C is said to be right (left) serial if its
indecomposable injective right (left) comodules are uniserial. We
shall call it serial if it is left and right serial.

Let us suppose that C is a serial coalgebra. Soc 2(Ei)/Soc (Ei) =
Soc (Ei/Si) is a simple right comodule for all i ∈ IC, and then, Si

has a unique predecessor in the Ext-quiver ΓC for all i ∈ IC. Fur-
thermore, consider the left version of this property, then each ver-
tex of the left Ext-quiver of C has a unique predecessor, that is,
each vertex of the right Ext-quiver ΓC has a unique successor. A
straightforward calculation proves the following result:

Proposition 5.3.4. Let C be an indecomposable serial coalgebra.
Then ΓC is one of the following quivers:

(a) ∞A∞ : ◦ // ◦ // ◦ // ◦ // ◦
(b) A∞ : ◦ // ◦ // ◦ // ◦ // ◦ // ◦
(c) ∞A : ◦ // ◦ // ◦ // ◦ // ◦ // ◦
(d) An : ◦ // ◦ // ◦ − · · · − ◦ // ◦ // ◦ n ≥ 1

◦
uukkkkkkkkk

(e) Ãn : ◦
##G

GG
G ◦

iiSSSSSSSSS
n ≥ 1

◦ // ◦ ◦
;;wwww

Corollary 5.3.5. Any serial coalgebra over an algebraically closed
field is of tame comodule type.

Proof. By the former proposition, the Ext-quiver must be one of the
above list and it is easy to see that the Gabriel quiver of C must also
be one of them. The path coalgebra of any of this quiver is of tame
comodule type, then any subcoalgebra is also of tame comodule
type.
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cellular decomposition, 64
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coidempotent, 43
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linear representation, 31
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