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Introduccion

El problema de clasificar un objeto matematico aparece en todas
las areas de las Matematicas. Normalmente, la clasificacion se
obtiene de una forma mas sencilla cuando representamos dicho
objeto por uno mas simple; éste es el caso de la teoria de rep-
resentacion de algebras. Muchos de los progresos actuales en
teoria de representacion de algebras (finito dimensionales sobre un
cuerpo algebraicamente cerrado) usan las técnicas teoricas sobre
quivers formuladas por P. Gabriel y su escuela en los afios setenta,
ver por ejemplo las referencias: [ASSO05], [ARS95] y [GR92]. EIl
origen de este método se puede situar en el conocido teorema de
Gabriel: Toda dlgebra basica de dimension finita, sobre un cuerpo
algebraicamente cerrado K, es isomorfa a un cociente KQ/I, donde
KQ es el algebra de caminos del quiver () e I es un ideal admisible
de KQ.

Este resultado nos da una descripcion explicita de no s6lo cual-
quier algebra finito dimensional, y asi como de su categoria de
modulos finitamente generados mediante representaciones lineales
del quiver asociado al algebra.

Sin embargo una importante restriccion condiciona el teorema
anterior: el algebra debe ser de dimension finita. Por tanto, de
manera natural se plantea la siguiente pregunta: +es posible gen-
eralizar este resultado para cualquier algebra (de dimension in-
finita)? Una ligera comprobacion nos convence que no es posible
utilizar la misma demostracion: los vértices del quiver correspon-
den con los idempotentes primitivos del algebra; y si el quiver tiene
un numero infinito de ellos, entonces el algebra de caminos no
tiene elemento unidad.

En este contexto, la teoria de coalgebras aparece en un nivel
intermedio de dificultad. La estructura de coalgebra se obtiene in-
virtiendo las aplicaciones que definen la estructura de algebra, esto
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es, una coalgebra C verifica los siguientes diagramas conmutativos

A
C CxdC 58% CxdC X@J\
A AQT CeK A KeC
cecAcwcec f%\cz
(Coasociatividad) (Counidad)

donde A y € (la comultiplicacion y la counidad, respectivamente)
son aplicaciones lineales que corresponden con las nociones duales
de multiplicacion y unidad en algebras.

Se deberia esperar que el espacio dual de un algebra fuera una
coalgebra y vice-versa. Esto es cierto si los espacios vectoriales
son finito dimensionales (aunque no es cierto en general), por lo
que la categoria de algebras finito dimensionales es equivalente a
la categoria de coalgebras de dimension finita. Por el teorema de
estructura de las coalgebras, toda coalgebra es una union directa
de sus subcoalgebras finito dimensionales, es decir, es una union
directa de algebras de dimension finita. Por lo que la teoria de
representacion de coalgebras podria pensarse como un paso inter-
medio entre el estudio de las algebras de dimension finita y las
algebras de dimension infinita.

La categoria de comodulos sobre una coalgebra es una cate-
goria abeliana localmente finita y, por tanto, es posible utilizar en
ella ciertas herramientas que no son validas en una categoria de
modulos general. En particular, es de tipo finito y entonces se
puede pensar en encontrar una teoria para coalgebras analoga a
la existente para algebras de dimension finita. Este trabajo esta
dedicado a desarrollar este objetivo, es decir, describir coalgebras
y su categoria de comodulos mediante quivers y representaciones
lineales de quivers. Para conseguir este proposito, el primer paso
debe ser obtener una version del teorema de Gabriel, antes men-
cionado, para coalgebras.

Siguiendo esta idea, podemos dotar a un algebra de caminos K@
con una estructura de K-coalgebra graduada con comultiplicacion
inducida por la descomposicion de caminos, esto es, sip = a,, - o
es un camino no trivial desde un vértice ; a un vértice j, entonces

m—1

Alp)=e;@p+p@ei+ Y 1 @ a1 =Y N@T

=1 nT=p
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y A(e;) = €; ® ¢; para un camino trivial ¢;. La counidad de K@ se
define como

e(a) = 1 sia es un vertice,
] 0 siaesun camino no trivial.

Esta coalgebra es conocida como la codlgebra de caminos del quiver
Q.

En [Woo097], el autor demuestra que toda coalgebra punteada
es isomorfa a una subcoalgebra de una coalgebra de caminos.
Ademas, contiene la subcoalgebra generada por todos los vértices
y todas las flechas, esto es, es una subcoalgebra admisible. Mas
tarde, en [SimO1], se define la nocion de coalgebra de caminos de
un quiver con relaciones (@, 2) como el subespacio de K@ dado por

C(Q,Q) = {a € KQ | (a,Q) = 0},

donde (—,—) : KQ x K@) — K es la aplicacion bilinear definida por
(v,w) = d,, (la delta de Kronecker) para cualesquiera dos caminos
v,wen Q.

Una de las razones expuestas en [SimO1] y [SimO05] para es-
cribir una coalgebra basica C' de la forma C(Q,(2) es el hecho de
que, en este caso, existe una equivalencia K-lineal de la categoria
M? de los C-comédulos derecha de dimension finita con la cat-

egoria nilrep%(@, 2) de las representaciones K-lineales nilpotentes
de longitud finita del quiver con relaciones (Q,2) (ver [SimO1, p.
135] y [SimO05, Theorem 3.14]). Entonces, esta definicion es con-
sistente con la teoria clasica y reduce el estudio de la categoria M¢
al estudio de las representaciones lineales del quiver con relaciones
(Q,9).

Asli pues, se plantea el siguiente problema: ges toda codlgebra
basica, sobre un cuerpo algebraicamente cerrado, isomorfa a una
coalgebra de caminos de un quiver con relaciones?

En el Capitulo 2 tratamos este problema. La clase de todas las
subcoalgebras admisibles de una coalgebra de caminos puede di-
vidirse en dos subclases, dependiendo de si la coalgebra esta gen-
erada por caminos o no. Obviamente, la primera clase es facil
de estudiar y entonces en necesario centrarse unicamente en la
segunda. Para ello, establecemos un ambiente mas general con-
siderando la topologia débil* en el algebra dual para tratar el prob-
lema en un contexto elemental. En particular, la coalgebra de
caminos de un quiver con relaciones (Q,{)) es descrita como el
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espacio ortogonal Q+ del ideal 2. Entonces el anterior problema
puede ser formulado como sigue: cexiste para toda subcodlgebra
admisible C' < K@, un ideal con relaciones () del dlgebra K() tal
que Q+ = C? Desgraciadamente, esto no es cierto y mostramos un
ejemplo de una subcoalgebra admisible que no es el espacio ortog-
onal de ningun ideal de K (). Ante esta situacion, se hace necesario
un criterio que permita decidir cuando una subcoalgebra admisi-
ble es la coalgebra de caminos de un quiver con relaciones. En la
ultima seccion del Capitulo 2 probamos el siguiente resultado:

Criterio (2.5.11). Sea C una subcodlgebra admisible de una codlgebra
de caminos K. Entonces C' no es la codlgebra de caminos de
un quiver con relaciones si, y solo si, existe un niumero infinito de
caminos {v; }ien en @ verificando las siguientes condiciones:

(a) Todos tienen mismo origen y mismo final.
(b) Ninguno de ellos pertenece a C'.

(c) Existen escalares a}} € K para todo j,n € N tal que el conjunto
{1 + 225, @7 tnen esta contenido en C.

Es bien conocido que la clase de las algebras de dimension
finita, sobre un cuerpo algebraicamente cerrado, es union disjunta
de dos clases de algebras: las algebras tame y las algebras wild.
Esto se conoce como la dicotomia tame-wild, ver [Dro79]. La idea
de tales clases es que la categoria de modulos finitamente gen-
erados sobre un algebra wild es tan grande que contiene la cate-
goria de modulos finitamente generados de cualquier algebra de di-
mension finita. Por tanto, no es razonable el propoésito de describir
completamente su categoria de modulos y la teoria se restringe
unicamente a coalgebras tame. De forma dual D. Simson define
en [SimO1] y [SimO5] los conceptos analogos para una coalgebra
basica (punteada). Ademas, demuestra la version débil de la di-
cotomia tame-wild (la version completa es todavia un problema
abierto): Sea K un cuerpo algebraicamente cerrado. Entonces toda
K -coadlgebra tame no es wild.

El contraejemplo dado en el Capitulo 2, que muestra que no
toda subcoalgebra admisible es una coalgebra de caminos de un
quiver con relaciones, es una coalgebra wild. Mas aun, por el cri-
terio anterior, una coalgebra con dicha propiedad necesita que el
quiver asociado tenga un numero infinito de caminos entre dos
puntos, y entonces parece cercana a ser wild. Por tanto, debemos
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reformular el problema de la siguiente manera: /toda codlgebra
basica, sobre un cuerpo algebraicamente cerrado, que no es wild, es
isomorfa a una codlgebra de caminos de un quiver con relaciones?.
En caso de ser cierto, esto implicaria que toda codlgebra basica
tame, sobre un cuerpo algebraicamente cerrado, es isomorfa a una
codalgebra de caminos de un quiver con relaciones. Podemos de-
cir mas, puesto que, en tal caso, la demostracion de la dicotomia
tame-wild quedaria reducida a coalgebras de caminos de quivers
con relaciones.

Para atender este problema, en el Capitulo 3 desarrollamos la
nocion de localizacion en coalgebras. La categoria de comodulos
a derecha M sobre una coalgebra C' es una categoria de Gro-
thendieck localmente finita en la que la teoria de localizacion de-
scrita por Gabriel en [Gab62] puede ser aplicada. La idea prin-
cipal es que, para cualquier subcategoria densa 7 C MY, pode-
mos construir una categoria cociente, M¢/7, y un funtor exacto,
T: MY — MY/T, verificando una propiedad universal. En [Gab72]
se prueba que la categoria cociente es de nuevo una categoria de
comodulos. Si el funtor 7' tiene un adjunto por la derecha, S, en-
tonces se dice que la subcategoria es localizante. Dualmente, una
categoria se dice colocalizante si 7' tiene un adjunto por la izquierda
H. Los funtores S'y H son un embebimiento exacto a izquierda y un
embebimiento exacto a derecha, respectivamente, por lo que parece
factible una relacion entre el tipo de comodulos de la coalgebra C
y de la categoria cociente.

La version para coalgebras esta desarrollada principalmente en
[Gre76], [Lin75], [NT94] y [NT96]. En estos articulos son estudi-
adas las subcategorias localizantes y las relaciones existentes con
otros conceptos como coalgebras coidempotentes, comodulos in-
yectivos o comodulos simples. En [CGTO02] y [JMNRO6], se define
una correspondencia biyectiva entre la subcategorias localizantes
y las clases de equivalencia de elementos idempotentes del algebra
dual. Este hecho nos permite describir la categoria cociente como
la categoria de comodulos sobre la coalgebra eCe cuya estructura
viene dada por

Acce(exe) Z exye @ ez V  €celere) = ec(x)
para todo = € C, donde Ac(z) = >, za) ® z(2), con la notacion de

[Swe69]. También se prueba que los funtores asociados a la local-
izacion son T' = e(—) = —OceC = Cohome(Ce, —), S = —O.c.Ce and
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H = Cohomc.(eC,—). Esto es usado frecuentemente en la ultima
seccion del Capitulo 3 para describir la localizacion de subcoalgebras
admisibles de una coalgebra de caminos. En esta direccion, defin-
imos las células y las colas y probamos lo siguiente:

Teorema (3.6.3 y 3.6.9). Sea C' una subcodalgebra admisible de una
codlgebra de caminos K () de un quiver (). Sea e un elemento idem-
potente de C* asociado a un conjunto de vértices X C )y. Entonces:

(a) La codlgebra localizada eC'e es una subcodlgebra admisible de la
coalgebra de caminos KQ°, donde Q)¢ es el quiver cuyo conjunto
de vértices es (Q°)y = X, y el niumero de flechas de un vértice x
a un vértice y es dimKKCellg(:v, y) N C para todo z,y € X.

(b) La subcategoria localizante Tx de M es colocalizante si, y sélo
si, dimx KT ail%(z) N C es finita para todo z € X.

En cualquier caso, puesto que tratamos de relacionar las teoria
de representacion de una coalgebra y sus coalgebras localizadas,
el Capitulo 3 esta dedicado principalmente a estudiar el compor-
tamiento, a través de los funtores de localizacion, de ciertas clases
de comodulos como simples, inyectivos, indescomponibles y fini-
tamente generados. Para ello, una gran cantidad de propiedades
y ejemplos son expuestos. Estos seran utilizados para obtener al-
gunos resultados inesperados en la Seccion 5 del Capitulo 3. El
mas importante de ellos describe las subcategorias estables desde
diferentes puntos de vista. En particular, se demuestra que las cat-
egorias estables corresponden con los idempotentes semicentrales
a derecha definidos por Birkenmeier en [Bir83].

Teorema (3.5.2). Sea C una codlgebra y 7T, C M una subcategoria
localizante asociada a un elemento idempotente ¢ € C*. Las sigu-
ientes condiciones son equivalentes:

(a) 7. es una subcategoria estable.

E, sizel,

(b) T(E.) = { 0 siz¢l,.
(¢) No existen flechas S, — S, enl'¢ tales queT(S,) = S, yT(S,) =0.

(d) e es un idempotente semicentral a derecha en C*.

SiT. es una subcategoria colocalizante, estas condiciones son equiv-
alentes a:
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(e) H(S;) =S, paratodo z € I..

En el Capitulo 4, conjugamos los resultados obtenidos en los
capitulos anteriores, para demostrar la version aciclica del teorema
de Gabriel anteriormente expuesto:

Teorema (4.4.3). Sea () un quiver aciclico. Entonces toda subcoalge-
bra admisible tame de K () es la codlgebra de caminos de un quiver
con relaciones.

Para probar este resultado, primero necesitamos relacionar la
propiedad de ser tame, o wild, de una coalgebra, con sus coalgebras
localizadas. El inconveniente a la hora de estudiar la localizacion
de coalgebras tame radica en el hecho de que el funtor seccion no
preserva comomulos de dimension finita, o equivalentemente, la
imagen de un simple no es necesariamente un comodulo finito di-
mensional. Por tanto, siguiendo este camino, no aparece, de forma
natural, ningtin funtor entre las categorias de comodulos finita-
mente generados. Una vez que asumimos esta condicion en S, la
pregunta que se plantea es si el proceso de localizacion preserva
coalgebras tame. Para analizar este problema es conveniente em-
pezar con un caso sencillo. Supongamos que S preserva comodulos
simples. Es facil de provar que, en tal caso, para un eCe-comodulo
N tal que length N = v = (v;);¢1,, se verifica que

length S(N) = 7 = { 8 2 : g %C\Ie

y entonces el hecho de que C' sea tame para el vector v implica que
eCe es tame para el vector v. Sin embargo, este resultado puede
generalizarse. El razonamiento propuesto en la demostracion parte
de la idea de que al ser posible controlar los C'-comodulos cuya
longitud esta asociada a v mediante S, entonces es posible contro-
lar los eCe-comodulos cuya longitud es v. Obviamente, el prob-
lema apareceria si existe un numero infinito de eCe-comodulos
{N;}ier, con longitud v, tales que length S(V;) # length S(N;) para
i # j. En ese caso, el numero de K|[t]-eCe-bimddulos que se ob-
tienen de ser C tame podria ser infinito. Por tanto, si suponemos
que 2, = {length S(V), donde N es tal que length N = v} es un con-
junto finito, es posible utilizar la misma demostracion. Pero esto
se verifica si S preserva comodulos de dimension finita; entonces
obtenemos los siguiente:
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Teorema (4.2.10). Sea C' una codlgebra y e € C* un elemento idem-
potente tal que el funtor secciéon preserva comédulos de dimension
finita. Si C' es tame entonces eC'e es tame.

En particular, S preserva comodulos finito dimensionales para
cualquier idempotente, si C' es pura semisimple a derecha.

Teorema (4.2.11). Sea C' una codlgebra tame pura semisimple a
derecha. Entonces eCe es tame para cualquier idempotente e € C*.

El estudio de las coalgebras wild es bastante mas complicado.
El problema proviene del hecho de que, a priori, no existen funtores
exactos de M°“® a M. Entonces tenemos que suponer que el fun-
tor seccion o el funtor colocalizacion son exactos, esto es, la subcat-
egoria (co)localizante es (co)localizante perfecta. Un caso particular
es estudiado. Cuando la coalgebra eCe es una subcoalgebra de C.
En este caso probamos que esta situacion corresponde con la lo-
calizacion por un idempotente escindido (ver [Lam]). Entonces se
hace necesario estudiar una descripcion de dichos idempotentes.
De hecho, probamos el siguiente resultado para coalgebras pun-
teada:

Proposicion (4.3.6). Sea () un quiver y C' una subcodlgebra admis-
ible de K(Q). Sea e € C* un elemento idempotente asociado a un
conjunto de vértices X C (). Entonces e es escindido en C* si, y sélo
si, I, C X para cualquier camino p en PSupp(eCe).

Finalmente, el Capitulo 5 esta dedicado a presentar ejemplos
relacionados con los conceptos de los capitulos previos. Para este
proposito se analizan ciertas clases de coalgebras cuya existencia
viene motivada por el concepto analogo en la categoria de algebras
finito dimensionales. El ejemplo central son las coalgebras heredi-
tarias. Esta es una clase de coalgebras bien conocida y que ha sido
estudiada en diferentes articulos con resultados satisfactorios, ver
[Chi02], [JLMSO06], [JMNRO6] y [NTZ96]. El caso de las coalgebras
punteadas hereditarias, es decir, coalgebras de caminos de un
quiver, es estudiado exhaustivamente. En particular, describimos
la localizacion de coalgebras de caminos mediante células y colas.
Para terminar, presentamos una clase de coalgebras intimamente
relacionada con las coalgebras hereditarias: las coalgebras local-
mente hereditarias. Estas coalgebras vienen definidas por la pro-
piedad de que todo morfismo no nulo entre injectivos indescom-
ponibles es sobreyectivo y ,por tanto, constituyen una general-
izacion de las coalgebras hereditarias.



Introduction

The problem of classifying a mathematical object appears in all ar-
eas of mathematics. Commonly, the classification is eased by rep-
resenting that object by a simpler one; that is the case of the rep-
resentation theory of algebras. Many of the present developments
of the representation theory of finite dimensional algebras over an
algebraically closed field use the quiver-theoretical techniques for-
mulated by P. Gabriel and his school in the seventies, see for ex-
ample [ASSO05], [ARS95] and [GR92]. The well-known Gabriel’s the-
orem can be considered as the origin of that method: every basic
finite dimensional algebra A, over an algebraically closed field K,
is isomorphic to a quotient KQ /I, where K(Q is the path algebra of
the quiver () and I is an admissible ideal of K(). This result allows
us to give an explicit description of not only any finite dimensional
algebra but also of the category of its finitely generated modules
by means of linear representations of the quiver associated to the
algebra.

Nevertheless an important restriction appears in the former the-
orem: the algebra must be of finite dimension. Therefore a natural
question is raised: is it possible to generalized this result to any
(infinite dimensional) algebra? With a quick look at the proof one
is convinced that it is not possible to do it directly: the vertices
of the quiver correspond to the primitive idempotents of the alge-
bra; hence if the quiver has an infinite number of them, the path
algebra has no identity.

In this framework the theory of coalgebras appears in a middle
state of difficulty. The coalgebra structure is obtained by reversing
the maps in the algebra structure, that is, in a coalgebra C' the
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following diagrams are commutative

A

C CeC i@y CeC 6\@
A AQI CeK A KeC
cocicecac JEaN C —
(Coassociativity) (Counit)

where A and e are linear maps which correspond to the dual notion
of multiplication and unit in algebras (the comultiplication and the
counit, respectively). Then one should expect that the dual space
of a coalgebra is an algebra and vice versa. This is true if the vector
spaces are finite dimensional (although it is not in general), so the
category of finite dimensional algebras and the category of finite
dimensional coalgebras are equivalent. Now, by the Fundamental
Coalgebra Structure Theorem, any coalgebra is a directed union
of its finite dimensional subcoalgebras, i.e., it is a directed union
of finite dimensional algebras. Thus the representation theory of
coalgebras could be expected to be an intermediate step between
the study of finite dimensional algebras and infinite dimensional
algebras.

The category of comodules over a coalgebra is a locally finite
abelian category and therefore it has many more useful properties
than a module category. In particular, it is of finite type and then it
is conceivable that one can find a theory for coalgebras analogous
to the one for of finite dimensional algebras. This work is devoted to
developing that aim, i.e., to describe coalgebras and their comodule
category by means of quivers and representations of quivers. In
this context, the first step must be to obtain a version of Gabriel's
theorem for coalgebras.

Following this idea, one can endow the path algebra K@ a struc-
ture of graded K-coalgebra with comultiplication induced by the
decomposition of paths, that is, if p = a,, - - - @1 is a non-trivial path
from a vertex i to a vertex j, then

m—1
=1 nr=p

and A(e;) = e; ® ¢; for a trivial path e;. The counit of K@ is defined
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by the formula

{ 1 if o is a vertex,
c(a) =

0 if o is a non-trivial path.

This coalgebra is called the path coalgebra of the quiver Q).

In [Wo097], the author proves that every pointed coalgebra is
isomorphic to a subcoalgebra of a path coalgebra (the path coalge-
bra of its Gabriel quiver). Furthermore, it contains the subcoalge-
bra generated by all vertices and all arrows, that is, it is an admis-
sible subcoalgebra. Later, in [SimO01], it is introduced the notion of
path coalgebra of a quiver with relations (@, ) as the subspace of
K@ given by

C(Q.Q) = fa € KQ | (a,2) = 0},

where (—, —) : KQ x KQQ — K is the bilinear map defined by (v, w) =
0y (the Kronecker delta) for any two paths v, w in Q.

One of the main motivations given in [SimO1] and [SimO5] for
presenting a basic coalgebra C in the form C(Q, ?) is the fact that,
in this case, there is a K-linear equivalence of the category /\/l? of

finite dimensional right C-comodules with the category nilrep’/(Q, Q)
of nilpotent K-linear representations of finite length of the quiver
with relations (Q,€2) (see [SimO1l, p. 135] and [Sim05, Theorem
3.14]). Then that definition is consistent with the classical theory
and reduces the study of the category M to the study of linear
representations of a bound quiver (Q, ().

Therefore the following question is raised: is any basic coalge-
bra, over an algebraically closed field, isomorphic to the path coal-
gebra of a quiver with relations?

In Chapter 2 we consider this problem. We separate the admis-
sible subcoalgebras of a path coalgebra into two classes depending
on whether the coalgebra is generated by paths or not. Obviously
the first class is easy to study and we focus our efforts on the sec-
ond one. For this purpose, we establish a general framework using
the weak* topology on the dual algebra to treat the problem in an
elementary context. In particular, we describe the path coalgebra
of a quiver with relations (Q, ) as the orthogonal space Q* of the
ideal Q2. Then the former problem may be rewritten as follows: for
any admissible subcoalgebra C < K(), is there a relation ideal §) of
the algebra K@ such that Q+ = C'? Unfortunately, this is not true
and we show an example of an admissible subcoalgebra which is
not the orthogonal of an ideal of K. Then, one should ask for a
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criterion to decide whether or not an admissible subcoalgebra is
the path coalgebra of a quiver with relations. In the last section of
Chapter 2 we prove the following result:

Criterion (2.5.11). Let C' be an admissible subcoalgebra of a path
coalgebra K@Q. Then C is not the path coalgebra of a quiver with
relations if and only if there exist infinite different paths {v;}ien in Q
such that:

(a) All of them have common source and common sink.
(b) None of themis in C.

(¢) There exist elements aj € K for all j,n € N such that the set
{7+ Zj>n a%v; fnen is contained in C.

It is well known that the category of finite dimensional alge-
bras over an algebraically closed field is the disjoint union of two
classes: the class of all tame algebras and the class of all wild alge-
bras. This is known as the tame-wild dichotomy, see [Dro79]. The
idea of such classes is that the category of finitely generated mod-
ules over a wild coalgebra is so large that it contains the category
of finite dimensional modules over any finite dimensional algebra.
Therefore it is not a realistic aim to get a description of its repre-
sentation theory. Hence we exclude them from our study and the
theory is restricted only to tame algebras. Symmetrically, Simson
defines in [SimO1] and [Sim05] the analogous concepts for a basic
(pointed) coalgebra. Moreover, he proves the weak version of the
tame-wild dichotomy (the full version is still an open problem): let
K be an algebraically closed field. Then every K -coalgebra of tame
comodule type is not of wild comodule type.

In order to show that not every admissible coalgebra is a path
coalgebra of a quiver with relations, the example we give is of wild
comodule type. Furthermore, by the above criterion, a coalge-
bra with such property needs that its quiver have infinite paths
between two vertices and then it seems close to be wild. Conse-
quently, we should reformulate the problem as the following ques-
tion: is every basic non-wild coalgebra, over an algebraically closed
field, isomorphic to the path coalgebra of a quiver with relations?
In particular, this implies that every basic tame coalgebra, over an
algebraically closed field, is isomorphic to the path coalgebra of a
quiver with relations. Moreover, if the statement holds, this will
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reduce the proof of the tame-wild dichotomy to path coalgebras of
quivers with relations.

In order to attempt this problem, in Chapter 3 we develop the
notion of localization in coalgebras. The category M of right co-
modules over a coalgebra C' is a locally finite Grothendieck cate-
gory in which the theory of localization as described by Gabriel in
[Gab62] can be applied. The main thought is that, for any dense
subcategory 7 C MY, we can consider a quotient category M /T
and an exact functor 7' : M® — MY /T verifying a universal condi-
tion. It is proved in [Gab72] that the quotient category is again a
category of comodules. If the functor 7" has a right adjoint functor
S then the subcategory is called localizing. Dually, the subcategory
is said to be colocalizing if 7" has a left adjoint functor H. The func-
tors S and H are a left exact embedding and a right exact embed-
ding, respectively, so one can imagine the possibility of a relation
between the comodule type of C' and of the quotient category.

The version for coalgebras is developed mainly in [Gre76], [Lin75],
[NT94] and [NT96]. In these references, there is a very well founded
theory about the localizing subcategories and the existing relation-
ships with other concepts as coidempotent coalgebras, injective co-
modules or simple comodules. Following [CGT02] and [JMNRO6],
we found a bijective correspondence between localizing subcate-
gories of M® and equivalence classes of idempotent elements of
the dual algebra. That fact allows us to describe the quotient ca-
tegory as the category of comodules over the coalgebra eC'e whose
structure is given by

Acce(eze) = Z exme ®expe and  ece(exe) = ec(w)
(2)

for any = € C, where Ac(z) = >, zq) ® z(), using the sigma-
notation of [Swe69]. It is also proved that the functors of the lo-
calization are 7' = e(—) = —geC = Cohom¢(Ce, —), S = —0.c.Ce and
H = Cohom,c.(eC, —). That is used frequently in the last section of
Chapter 3 in order to describe the localization of admissible sub-
coalgebras of a path coalgebra. In this direction, we introduce cells
and tails of a quiver and prove the following:

Theorem (3.6.3 y 3.6.9). Let C' be an admissible subcoalgebra of a
path coalgebra K@ of a quiver (). Let e be the idempotent element
of C* associated to a subset of vertices X . The following statements
hold:
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(a) The localized coalgebra eCe is an admissible subcoalgebra of
the path coalgebra KQ°, where Q)¢ is the quiver whose vertices
(Q°)o = X and the number of arrows from a vertex = to a vertexy
is dimKKCell?((:C, y)NC forallz,y € X.

(b) The localizing subcategory Ty of M€ is colocalizing if and only if
dimg KT ail%(z) N C is finite for all z € X.

Anyhow, since we wish to relate the representation theory of a
coalgebra and its localized coalgebras, Chapter 3 is mainly devoted
to the study of the behavior, through the localization functors, of
some classes of comodules as simple, injective, indecomposable
and finitely generated. Many properties and examples are given
there. From these we obtain in Section 5 of Chapter 3 some un-
expected results. The main of them describes stable subcategories
from different points of view. In particular, it asserts that stable
subcategories correspond with the left semicentral idempotents in
the dual algebra introduced by Birkenmeier in [Bir83].

Theorem (3.5.2). Let C be a coalgebra and T, C M be a localiz-
ing subcategory associated to an idempotent element e € C*. The
following conditions are equivalent:

(a) 7. is a stable subcategory.

Ty ={ g e

(c) K={S € (Tc)|eS =S} isaright link-closed subset of (I'c)o, Le.,
there is no arrow S, — S, inT'¢, where T'(S,) = S, and T'(S,) = 0.

(d) e is a left semicentral idempotent in C*.
If T, is a colocalizing subcategory these are also equivalent to
(e) H(S;) =S, forany z € I..

In Chapter 4 we conjugate the results obtained in the previous
chapters in order to prove the acyclic version of Gabriel’'s theorem
for coalgebras:

Theorem (4.4.3). Let (Q be an acyclic quiver. Then any tame ad-
missible subcoalgebra of K() is the path coalgebra of a quiver with
relations.
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In order to do that, first we need to relate the tameness and
wildness of a coalgebra and its localized coalgebras. The drawback
of treating the tameness from a general point of view lies in the
fact that the section functor does not preserve finite dimensional
comodules, or equivalently, see Lemma 4.2.9, it does not preserve
the finite dimension of the simple comodules. Therefore there are
no functors between the categories of finite dimensional comodules
defined in a natural way. Once we assume the above condition for
S, the question is whether the localization process preserves tame-
ness. We start with a simple case and suppose that S preserves
simple comodules. It is easy to prove that, in such a case, for an
eCe-comodule N such that length N = v = (v;);¢7,, then

length S(N) = 7 — { ) E 5 f;c\[e

and therefore the tameness of C' in v implies the tameness of eCe
in v. Nevertheless that result can be generalized. The underly-
ing idea of the proof is that if we control the C'-comodules whose
length vector is associated to v through S, then we can control
the eCe-comodules of length v. Obviously, the problem appears
when there are infinite eCe-comodules {N;},c; with length v such
that length S(N;) # length S(N;) for i # j. In that case, the number
of KJt]-eCe-bimodules obtained from the tameness of C' could be
infinite. Therefore if €2, = {length S(N) such that length N = v} is a
finite set, we may use the same proof. But this holds if S preserves
finite dimensional comodules, so we obtain the following:

Theorem (4.2.10). Let C' be a coalgebra and e € C* an idempotent
element such that S preserves finite dimensional comodules. If C is
tame then eCe is tame.

In particular this is verified for any idempotent if C' is right pure
semisimple.

Theorem (4.2.11). Let C be a right pure semisimple coalgebra of
tame comodule type. Then eCe is of tame comodule type for each
idempotent e € C*.

Wildness is much more complicated to study. The problem
comes from the fact that, a priori, there is no exact functor from
MeCe to M. Therefore we have to assume that the section functor
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or the colocalizing functor are exact, that is, the (co)localizing sub-
category is also perfect (co)localizing. A particular case is studied.
When the coalgebra eCe is a subcoalgebra of C. We prove that the
situation corresponds to the localization by a split idempotent (see
[Lam]). Therefore we attempt the description of that kind of idem-
potents. In fact we prove the following result in pointed coalgebras.

Proposition (4.3.6). Let Q be a quiver and C' be an admissible sub-
coalgebra of K(@). Let e € C* be the idempotent element associated to
a subset of vertices X. Then e is split in C* if and only if I, C X for
any path p in PSupp(eCe).

Finally, Chapter 5 is devoted to the presentation of examples re-
lated to the topics considered in the previous chapters. To that end
we use some classes of coalgebras whose existence are motivated
by the analogous classes in the category of finite dimensional alge-
bras. The main example for us shall be the hereditary coalgebras.
This is a well-known kind of coalgebras which have been studied
with satisfactory results in many papers, see [ChiO2], [JLMSO06],
[JMNROG6] and [NTZ96]. The case of a pointed hereditary coalge-
bra, that is, a path coalgebra of a quiver, is studied extensively.
In particular we describe the localization of a path coalgebra by
means of the cells and tails of its quiver. Lastly, we also introduce
a class of coalgebras related to the hereditary coalgebras: the lo-
cally hereditary coalgebras. That kind of coalgebras can be defined
by the property that every non-zero morphism between indecom-
posable injective comodules is surjective, and thus, these are a
generalization of the hereditary case.



Chapter 1

Preliminaries

This chapter contains some of the background material that will
be used throughout this work. Namely, after a few categorical re-
marks, we introduce the notation and terminology on coalgebras
and we recall some basic facts about their representation theory.
We assume that the reader is familiar with elementary category
theory and ring theory, and some homological concepts such as in-
jective and projective objects; anyhow we refer to [AF91], [Mac71],
[Pop73] and [Wis91] for questions on these subjects. All rings con-
sidered have identity and modules are unitary. By a field we will
mean a commutative division ring.

1.1 Some categorical remarks

This section is devoted to establish some categorical definitions and
properties which we will assume for a category of comodules in
what follows. For further information see, for example, [Mac71],
[Pop73] or [Wis91].

A category C is said to be abelian if the following conditions are
satisfied:

(a) There exists the direct sum of any finite set of objects of C.
(b) For each pair of objects X and Y of C, the set Hom¢(X,Y) is
equipped with an abelian group structure such that the com-

position of morphisms in C is bilinear.

(¢) C has a zero object.
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(d) Each morphism f: X — Y in C admits a kernel (Ker f,u) and a

cokernel (Coker f,p), and the unique morphism f making com-
mutative the diagram

KGI‘ f u X f Y p

]

Coker u I Ker P

Coker f

is an isomorphism.

Throughout this work we fix a field K. We say that C is a K-
category if, for each pair of objects X and Y of C, the set Hom.(X,Y)
is equipped with a K-vector space structure such that the compo-
sition of morphisms in C is a K-bilinear map.

An abelian category is said to be a Grothendieck category if it
has arbitrary direct sums, a set of generators and direct limits are
exact. Moreover, if each object of the set of generators has finite
length then C is known as a locally finite category.

Proposition 1.1.1. [Gab62] LetC be a locally finite abelian K -category.
Then it verifies the following assertions:

(a) C has injective envelopes.
(b) The direct sum of injective objects is injective.

(c) Each object of C is an essential extension of its socle (the sum of
all its simple subobjects).

(d) Aninjective object E of C is indecomposable if and only if its socle
is simple.

(e) If {S;}icr is a complete set of isomorphism classes of simple ob-
jects of C and E; is the injective envelope of S; for eachi € I, then
{E;}icr is a complete set of indecomposable injective objects of C.

(f) Each injective object E of C is isomorphic to a direct sum &, ., £},
where each «; is a non-negative integer. Furthermore, this sum
is uniquely determined by the set {«a;}c;.

(9) £ =&, £ is an injective cogenerator of C if and only if o;; > 0
Soralli e 1.
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Let C be a locally finite abelian K-category. We say C is of finite
type if, for each pair of objects X and Y of finite length of C, the
vector space Hom¢(X,Y') has finite dimension over K.

Proposition 1.1.2. [Tak77] LetC be a locally finite abelian K -category.
The following conditions are equivalent:

(a) C is of finite type.

(b) For each simple object S of C, the vector space Hom¢(S, S) is finite
dimensional over K.

An object F' of an abelian K-category of finite type C is said to
be quasi-finite if, for each object X of finite length, the vector space
Hom¢ (X, F') has finite dimension over K.

Proposition 1.1.3. [Tak77] Let C be an abelian K -category of finite
type and F' be an object of C. The following sentences are equivalent:

(a) F is quasi-finite.

(b) For each simple object S of C, the space Hom(S, F) is finite di-
mensional over K.

(c) The socle of F is isomorphic to @, ; S;" where the non-negative
integers «; are finite for alli € 1.

Corollary 1.1.4. [Tak77] Let C be an abelian K -category of finite
type then @, E; is a quasi-finite injective cogenerator of C.

1.2 The category of comodules

Let us now define the main object of our study, that is, coalgebras
and their category of comodules. Recall that the category of comod-
ules of a coalgebra is a particular case of a category of finite type
so all definitions and results of the last section are valid here.
Following [Abe77] and [Swe69], by a K-coalgebra we mean a
triple (C, A, ¢), where C is a K-vector space and A : ' — C' ® C and
¢ : C' — K are linear maps, called comultiplication and counit, such
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that the following diagrams commute:

A

C C®C j‘@% C®C 6\@
A ARI CeK A KeC
cCoc®ogcec T C —=
(Coassociativity) (Counit)

In what follows we shall refer the coalgebra (C, A, ¢) simply by C.

A K-vector subspace V of C'is a subcoalgebra of C if A(V) CV®
V. Itis a right (resp. left) coideal if A(V) C V®C (resp. A(V) C C®V)
and it is a coideal if A(V) CV ®C+ C®V and ¢(V) = 0. Note that
a right and left coideal is not a coideal but a subcoalgebra. If S
is a subset of a coalgebra, the subcoalgebra generated by S is the
intersection of all subcoalgebras containing S.

Theorem 1.2.1. [Swe69]

(a) The intersection of subcoalgebras is again a subcoalgebra.

(b) A subcoalgebra generated by a finite set is finite dimensional.
(c) A simple subcoalgebra of a coalgebra is finite dimensional.

Given two K-coalgebras C' and D, a morphism of K-coalgebras
f : C — D is a linear map such that the following diagrams are
commutative:

C D C

f f D
Acl lAD \ %
fef K

CeC——=D®D

If f: C — D is a morphism of coalgebras, it is easy to prove that
Ker f is a coideal of C' and Im f is a subcoalgebra of D.

The following result is often called the Fundamental Coalgebra
Structure Theorem and it show us the locally finite nature of a coal-
gebra, see [Mon93] and [Swe69].

Theorem 1.2.2. Any K-coalgebra is a directed union of its finite
dimensional subcoalgebras.
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Let C be a K-coalgebra. A right C-comodule is a pair (M,w)
where M is a K-vector space and w : M — C'® M is a linear map
making commutative the following diagrams:

M et M®C M—>MxC
wi iw@] ~ l[@e
MeC 22 MeceC M®K

In what follows we shall refer the right C-comodule (M,w) simply
by M, or by M.

Given two right C-comodules M and N, a morphism of right
C-comodules f : M — N is a linear map such that the following
diagram is commutative:

M N

/
le J/wN
el

M@C—Nx(C

From now on we will identify every comodule with the identity
map defined on it, so we will use the notation f®M, f®1,, or simply
f ® I, it doesn’'t matter which. We will denote by M the category
of right C-comodules and morphisms of right C-comodules and by
M, and M¢ the full subcategories of M whose objects are the
quasi-finite right C'-comodules and the finite dimensional right C-
comodules, respectively. Analogously we may define and denote
the category of left C-comodules.

Example 1.2.3. Let C' be a coalgebra, V be a vector space and M
be a right C-comodule. Then V ® M has an structure of right C'-
comodule with comultiplication I ® wy,. It is easy to prove that we
have an isomorphism Hom¢(V ® M, N) = Homg(V, Homa(M, N)) for
any right C-comodule N.

Let C and D be K-coalgebras. A (C, D)-bicomodule is a K-vector
space M with an structure of left C-comodule (M,w) and an struc-
ture of right D-comodule (), p) verifying a property of compatibility
between both given by the commutativity of the following diagram

M Y >CM

wRI

MD—C®M®®D
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The reader should note that this means that p is a morphism
of left C-modules, or equivalently, w is a morphism of right D-
modules.

Here we list some important properties of the category of comod-
ules in the sense of the last section, see [Mon93] and [Swe69] for
details.

Proposition 1.2.4. Let C be a K -coalgebra. Then:

(a) MC is a abelian K -category of finite type.

(b) M? is a skeletally small abelian Krull-Schmidt K -category.
(¢) M has enough injective objects.
)

(d) The coalgebra C, viewed as a right C-comodule, is a quasi-finite
injective cogenerator in M°.

(e) A direct sum of indecomposable right C'-comodules is injective if
and only if each direct sumumand is injective.

(f) Every right C'-comodule is the directed union of its finite dimen-
sional subcomodules.

(9) Each simple right C-comodule has finite dimension.

Remark. In general, the category M® has no enough projectives
and sometimes it has no non-zero projective objects.

Throughout we denote by {5, },c;. @ complete set of pairwise non-
isomorphic simple right C-comodules and by {E;},c;. a complete
set of pairwise non-isomorphic indecomposable injective right C-
comodules.

Let (M, p) be a right C-comodule. There exists a unique minimal
subcoalgebra cf(M) of C' such that p(M) C M ® cf(M), that is, such
that M is a right cf(M)-comodule. This coalgebra cf(M) is called
the coefficient space of M.

Proposition 1.2.5. [Gre76] Let C' be a coalgebra and m; = dimg.S;
Joranyi € Io. Then:

(a) Each simple subcoalgebra of C' is isomorphic to cf(S;) for some
1€ Io.

(b) cf(S;)) =S ®---®S; =95 foreachi e Ic.
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(c) Corad(C) = Cy = ®jer.cf(S;) = ®ierS; -

We finish this section giving an important characterization of
the categories of comodules.

Theorem 1.2.6. [Tak77] Let C be an abelian K-category. C is K-
linearly equivalent to M® for some K -coalgebra C if and only if C is

of finite type.

1.3 Cotensor product

Let A and B be two abelian K-categories. A functor 7' : A — B is
said to be K-linear if the map T'xy : Hom4(X,Y) — Homg(T(X),T(Y))
defined by Tx y(f) = T(f) is linear for any objects X and Y of A.

Let now S: A— Band T : B — A be two functors. We say that S
is left adjoint to T or T is right adjoint to S if there exists a natural
isomorphism Hom4(S(—),—) v Homg(—,7(—)). In this case, S is
right exact and preserves colimits and 7' is left exact and preserves
limits.

In the particular case of categories of modules over a K-algebra,
we have an important example of adjoint functors: the tensor func-
tor and the Hom functor.

Suppose R is a K-algebra, M is a right R-module and N is a left
R-module. Then we may introduce the tensor product Mz ®r g N as
the cokernel of the maps

par &I

MRk Ry N Tonn

where 1), and py are the structure maps of M and N as R-modules.
Furthermore, if S is other K-algebra and N is a R-S-bimodule then
M ®gr N has an structure of right S-module. Thus we can define a
functor — ®z N : Modr — Modg which is left adjoint to Homg(N, —),
that is, Homg(M,Homg(N,T)) v« Homg(M ®gr N,T) for any right R-
module M and any right S-module T'.

Let us come back to coalgebras. We would like to obtain a situ-
ation similar to above, i.e., a functor between categories of comod-
ules over different coalgebras with adjoint properties. Let C be a
K-coalgebra, M be a right C'-comodule and N be a left C-comodule.
Then we may define the cotensor product of M and N, McOccN, as
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the kernel of the maps

wj\4®[

M Rk C®k N,

I®wn

where w;; and wy are the structure maps of M and N as right C-
comodule and left C'-comodule, respectively.
We collect here some properties of the cotensor product.

Proposition 1.3.1. [Tak77] Let C be a coalgebra, M be a right C-
comodule and N be a left C-comodule. Then:

(a) IfC = K then MOcN = M ®k N.
(b) The cotensor product is associative.

(¢) The functors MOc— and —OcN are left exact and preserve direct
sums.

(d) We have MUOx(N @ W) = (MOcN) @x W and (W @k M)OcN =
W @k (MOeN) for any K -vector space W .

(e) The functor MOqc— (resp. —O¢N) is exact if and only if M (resp.
N) is an injective right (resp. left) C'-comodule .

(f) MOcC = M and COcN 2 N.

Let now D and E be two coalgebras, M be a (£, C)-bicomodule
and N be a (C, D)-bicomodule. Then MO-N acquires a structure of
(E, D)-bicomodule with structure maps

pmI : MOeN — (E @k M)OcN = E QK (MOeN)
and

[DpN . Mlch — MDO<N KK D) = (MDON> RK D.
Therefore we may consider a functor —O¢cN : MY — MP. Unfortu-

nately, in general, -~ N does not have a left adjoint functor.

Theorem 1.3.2. [Tak77] Let C and D be two coalgebras and M be a
(D, C)-bicomodule. Then the functor —p M has a left adjoint_functor
if and only if M is a quasi-finite right C-comodule.

If M is a quasi-finite right C'-comodule, we will denote the left ad-
joint functor of —0p M by Cohom¢ (M, —). The functor Cohom¢ (M, —)
has a behavior similar to the usual Hom functor of algebras.
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Proposition 1.3.3. [Tak77] Let C, D and E be three coalgebras. Let
M and N be a (D, C)-bicomodule and a (FE,C)-bicomodule, respec-
tively, such that M is quasi-finite as right C'-comodule. Then:

(a) We have Cohomc (M, N) = limHomc(Ny, M)*, where N = lim N
with {N,}, the set of finite dimensional subcomodules of N.

(b) The vector space Cohom¢ (M, N) is a (E, D)-bicomodulle.
(¢) The functor Cohome (M, —) is right exact and preserves direct sums.

(d) The functor Cohom¢ (M, —) is exact if and only if M is injective as
right C-comodule.

Remark. The set Coendo(M) = Cohomq (M, M) has an structure
of K-coalgebra and then M becomes a (Coendq (M), C')-bicomodule,
see [Tak77] for details.

Symmetrically, pMqs is quasi-finite as left D-comodule if and
only if the functor MUz~ :“M —PM has a left adjoint functor. In
this case we denote by Cohomp(—, M) that functor.

As a consequence we may prove the Krull-Remak-Schmidt-Azumaya
theorem for comodules. Before we need the following lemmata:

Lemma 1.3.4. Let £’ be an indecomposable injective right C'-comodule.
Then Hom¢(FE, E) = End¢(F) is a local ring.

Proof. Let f € End¢(E). It holds that Ker f N Ker (idg — f) = 0. Since
E is indecomposable, Ker f = 0 or Ker (idg — f) = 0.
If f is injective then there exists a map g such that

f

HE

E
id s
|
E

is commutative and then E*f> E —— Coker f splits. Therefore
E = E @ Coker f. Thus Coker f =0 and f is bijective.

On the other case, proceeding as before, idg — f is bijective so it
is quasi-regular. Then f is in the radical. This proves that End¢(FE)
is local. ]

Let M be a quasi-finite right C-comodule we denote by add M
the category of direct summands of arbitrary direct sums of copies
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of M. Let us consider the coalgebra D = Cohom¢ (M, M). Then
the functor Cohom and the cotensor functor can be restricted to
Cohome (M, —) : add M — add D and —OpM : add D — add M

Lemma 1.3.5. [CKQO2] Let M be a quasi-finite right C'-comodule
and let D be the coalgebra Cohom¢ (M, M). Then the functors

Cohom¢g (M,—)

add M add D

O D
are inverse equivalences of categories.

Corollary 1.3.6. Let M be a quasi-finite indecomposable right C-
comodule then End¢(M) is a local ring.

Proof. By Lemma 1.3.5, Cohom¢ (M, —) : add M — add D is an equiv-
alence. Since D is quasi-finite then add D = ZP, the category of
quasi-finite injective right D-comodules. Therefore it is enough to
prove it for injective indecomposable comodules. But this is exactly
Lemma 1.3.4. ]

Theorem 1.3.7 (Krull-Remak-Schmidt-Azumaya Theorem). Let C

be a coalgebra and M be a quasi-finite right C'-comodule. Then

two decompositions of M as direct sum of indecomposable right C-

comodules are essentially the same, thatis, f M = @,.; M; = D, ; N;,
where all M;s and Ns are indecomposable right C-comodules, then

I = J and there exists a bijective correspondence o : I — J such that

M; = Ny foralli € I.

Proof. See [Gab62, 1.6, Theorem 1]. O

1.4 Equivalence between categories of co-
modules

Let C' and D be two coalgebras and M and N be a (C, D)-bicomodule
and a (D, C')-bicomodule, respectively. Suppose f : C — MOpN and
g: D — NOcM are two bicomodule maps. We say that (C, D, M, N, f, g)
is a Morita-Takeuchi context if the following diagrams commute:

o o

M

MUOpD N

NOC

[

10g = naf

coeM 225 yopNOeM pOpN 225 NO MO, N
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The Morita-Takeuchi context (C, D, M, N, f, g) is said to be injective
if f is injective. If f and ¢ are isomorphisms then we say that C'
and D are Morita-Takeuchi equivalent.

Proposition 1.4.1. [Tak77]Let (C, D, M, N, f, g) be an injective Morita-
Talkeuchi context. Then:

(a) f is an isomorphism.

(b) Mp and pN are quasi-finite and injective.
(¢) ¢M and N¢ are cogenerators.
)

(d) Cohomp(M,D) = N as (D,C)-bicomodules and Cohomp(N, D) =
M as (C, D)-bicomodules.

(e) Coendp(M) = C and Coendp(N) = C as coalgebras.

Example 1.4.2. Suppose D is a coalgebra and M is a quasi-finite
right D-comodule. Denote by C' the coalgebra Coendp(M) and by
N the (D, C)-bicomodule Cohomp(M, D). Then we have the adjoint
equivalence Homp(D, NOsM) ~ Homg (N, N). Now, considerg: D —
NOecM the associated morphism to idy via the equivalence, and let
f be the morphism

f: C = Cohomp(M, MOpD) — MOpCohomp (M, D) = MOpN.

Then (C,D, XY, f,q) is a Morita-Takeuchi context which is usually
known as the Morita-Talkeuchi context associated to Mp,.

Clearly, f is injective if and only if M, is injective and g is injective
if and only if Mp is a cogenerator.

Proposition 1.4.3. [Tak77] Let M be a quasi-finite D-comodule and
let (C,D,X,Y, f,g) be the Morita-Takeuchi context associated to M.
Then C and D are Morita-Takeuchi equivalent if and only if M is an
injective cogenerator of the category MP”.

We may use Morita-Takeuchi contexts in order to know when-
ever two categories of comodules are equivalent.

Theorem 1.4.4. [Tak77] Let M be a (C, D)-bicomodule which is quasi-
finite as right D-comodule. The following conditions are equivalent:

(a) The functor —OcM : MY — MP is an equivalence of categories.

(b) The functor MOp— :PM —CM is an equivalence of categories.
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(¢) Mp is a quasi-finite injective cogenerator and Coendp(M) = C' as
coalgebras.

(d) ¢M is a quasi-finite injective cogenerator and Coendc(M) = D as
coalgebras.

(e) There exists a Morita-Takeuchi context (C, D, M, N, f,g), where f
and g are injective.

(f) There exists a Morita-Takeuchi context (D,C,N', M, f'. ¢'), where
f/and ¢’ are injective.

If these conditions hold, there is an isomorphism between the (C, D)-
bicomodules Cohomp (M, D) and Cohom¢ (M, C). If we denote it by N
then —p N and NUg— are the quasi-inverse functors of —-M and
MUOp—, respectively.

Corollary 1.4.5. Two coalgebras are Morita-Takeuchi equivalent if
and only if their categories of right comodules are equivalent.

The reader could ask about what happen when two categories of
comodules are equivalent but the functor is not of the form —O-M
where M is a bicomodule. The answer is simple: that situation
cannot appear.

Theorem 1.4.6. [Tak77] Let T : M®¢ — MP be a K-linear functor.
If T is left exact and preserves direct sums then there is a (C, D)-
bicomodule M such thatT = —-M.

We have seen that quasi-finite injective cogenerators play an
important role on equivalence between categories of comodules. We
recall from Section 1.1 that this kind of comodules has an easy
description.

Proposition 1.4.7. Let C be a coalgebra and {E;},c;. be a com-
plete set of pairwise non-isomorphic indecomposable injective right
C-comodules. A right C-comodule FE is a quasi-finite injective cogen-
erator of M° ifand only if E = @, , E{, where «; is a finite cardinal
number greater than zero for alli € I.

1.5 Basic and pointed coalgebras

Any coalgebra C is a quasi-finite injective cogenerator of its ca-
tegory MY of right C-comodules. Then, by the last section, C' =
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Dic1. L' where each o; is a finite positive integer, that is, its socle
Soc C' = @y, Si- The coalgebra C is called basic if «; = 1 for all
1 € I, ie., if Soc C = EBZ.GIC Si, where S; 2 S; for i # j. Following this

definition, we may obtain an immediate consequence:
Proposition 1.5.1. The following conditions are equivalent:
(a) C is basic.

(b) C= @ie]c E;.

(¢) C is a minimal injective cogenerator of the category M.

The main reason to study basic coalgebras comes from the fact
that in order to classify coalgebras by means of its category of co-
modules it is enough to consider only this kind of coalgebras, see
for example [SimO1].

Theorem 1.5.2. Let C be a coalgebra then there exits an unique (up
to isomorphism) basic coalgebra D such that M = MP,

Proof. Suppose that C = P, E;". We consider the comodule £ =
®D,c;. Ei- By Proposition 1.4.7, E is a quasi-finite injective cogen-
erator and, by Theorem 1.4.4, the functor —p E defines an equiva-
lence between the categories M” and M¢, where D = Cohom¢(E, E).
Thus we only need to prove that D is a basic coalgebra.

Let {E!}.c1, be a complete set of indecomposable injective right
D-comodules. Since —[pFE is an equivalence, we may number
them in order to do that ElJpF = F; for all i € I = Ip. Now,
suppose that D = @,., E;". Then E = DOpE =~ @, E/'OpE =
Dicr, (EOpE)" = Dy, E} and therefore, by Krull-Remak-Schmidt-
Azumaya Theorem, ¢t; = 1 for all i € I¢.

Let now H be another basic coalgebra such that M¢ = M%7,
Then there exists an equivalence —ppQy : MP — MH, where @
is a quasi-finite injective cogenerator of M. Since the equiva-
lences preserve the minimal quasi-finite injective cogenerator then
@ = DUOpQ@ = H because D and H are basic. Then, by Theorem
1.4.4, Cohomy(H, H) = D as coalgebras. Consider the inverse equiv-
alence and we obtain Cohomp(D,D) = H. Finally, if D = lim D,,
where {D,}, is the set of its finite dimensional subcoalgebras, then
H = Cohomp(D,D) = limHomp(D,,D)* = limHomy(D,UpH, H)* =
Cohompy(H, H) = D. O
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Corollary 1.5.3. Any coalgebra is Morita-Takeuchi equivalent to a
basic coalgebra.

If K is an algebraically closed field we can say more. Suppose
that S is a simple right C-comodule. Then S has finite dimension
as K-vector space. A coalgebra is said to be pointed if every simple
comodule is one dimensional.

Proposition 1.5.4. Every pointed coalgebra is basic.

Proof. Let C be a coalgebra such that SocC = ,;. Sti. Since
S = Homg (S;, K) = Home(S;, C) = Home(S;, Soc C') = Home(S;, S;)' =
EDdc(Si)ti then dlITlKSz = dlmKSZ* =1 dlmKEIldc(SZ) because dlITlKSz
is finite. Therefore ¢; = ﬁ%. Now, if C is pointed then

Corollary 1.5.5. Let K be an algebraically closed field and C be a
K-coalgebra. Then C' is basic if and only if C' is pointed.

Proof. 1If C is basic then t; = 1. Now, every K-division algebra is one
dimensional so dimgEnd¢(S;) = 1. Thus dimgS; = 1. O

Corollary 1.5.6. Every coalgebra over an algebraically closed field
is Morita-Takeuchi equivalent to a pointed coalgebra.

1.6 Path coalgebras

In representation theory of coalgebras, an important role is played
by path coalgebras. This is the analogous case to the path alge-
bra associated to a quiver (see [ASSO05], [ARS95] and [GR92]). In
this section we will give a brief approach to them and they will be
studied deeper in the next chapters.

Following [Gab72], by a quiver, (), we mean a quadruple (Q, @1, s, 1),
where () is the set of vertices (or points), @, is the set of arrows and,
for each arrow «a € @), the vertices s(«) and t(«) are the source (or
start point or origin) and the sink (or end point or tail) of «, respec-
tively. We denote an arrow a such that s(a) = i and t(a) = j as
a:i—jor ——=j.If i =j we say that « is a loop.

If i and j are vertices, an (oriented) path in @ of length m from i
to j is a formal composition of arrows

P = CQm G20,
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where s(a;) =1, t(a,,) = j and t(ag_1) = s(ay) for k =2,...,m. To any
vertex i € ()y, we attach a trivial path of length O, say e; or simply
i, starting and ending at i such that ae; = o (resp. ¢;8 = ) for any
arrow « (resp. () with s(a) =i (resp. t(3) = 7). We identify the set of
vertices and the set of trivial paths. A cycle is a path which starts
and ends at the same vertex.

Let K@ be the K-vector space generated by the set of all paths
in Q. Then K@ can be endowed with a structure of (non necessarily
unitary) K-algebra with multiplication induced by the concatena-
tion of paths, that is,

0 otherwise;

(O -+~ az00) (B - - - PafBy) = { U -1 By -+ BBy i H(B,) = s(an),

K@ is the path algebra of the quiver ). The algebra K() can be
graded by
KQ=KQ o KQi® - - DKQpn®---,

where (), is the set of all paths of length m; @), is a complete set of
primitive orthogonal idempotents of K. If Q) is finite then K(Q is
unitary and it is clear that K@ has finite dimension if and only if Q)
is finite and has no cycles.

An ideal 2 C K(Q is called an ideal of relations or a relation ideal
fQCKQdKQs®--- = KQ>2. An ideal 2 C K(Q is admissible if it
is a relation ideal and there exists a positive integer, m, such that

By a quiver with relations we mean a pair (Q,(), where @ is
a quiver and 2 a relation ideal of K(@Q. If © is admissible then
(@Q,Q) is said to be a bound quiver (for more details see [ASSO5]
and [ARS95]).

The path algebra K() can be viewed as a graded K-coalgebra
with comultiplication induced by the decomposition of paths, that
is, if p = a,, - - -y is a path from the vertex i to the vertex j, then

m—1

A(p):ej®p+p®ei+Zam"'ai+l®ai"‘a1: 277@)7'

=1 nT=p
and for a trivial path, ¢;, we have A(e;) = ¢; ® ¢;. The counit of KQ
is defined by the formula

(a) . 1 ifae Qo,
| 0 if ais a path of length > 1.

€

The coalgebra (K@, A, ¢) is the path coalgebra of the quiver Q).
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Proposition 1.6.1. Let () be a quiver and K () be the associated path
coalgebra. Then:

(a) KQ=KQyd KQ1®---® KQ, ®--- is agraded K -coalgebra.

(b) The subcoalgebras KQy C KQo® KQ; C KQo & KQ,1 ® KQ2 C ---
give the coradical filtration of KQ.

(¢c) Every simple right K()-comodule is isomorphic to Ke; for some
trivial path e;.

(d) KQ is pointed.

(e) Soc(KQ) = Dicq, Kei-

(f) For each i € ), the injective envelope of S; is generated by the
set of all paths ending at e;.

We introduce path coalgebras in another way which allow us to
relate any pointed coalgebra with a path coalgebra.

Following [Nic78], let C be a coalgebra and M be a (C, C')-bicomodule.
Then we may construct the cotensor coalgebra

CTe(M)=C & M & MOcM & MOMOM & - -

Since the cotensor product of M n-times is usually denoted by M,
then we shall write CTo(M) = @, M"".
We may define a comultiplication in C'7-(M) given by

Almy @me® -+ @my) =w(m) @my ® -+ @ mp+
n—1
+Z(m1®"'®mi)®(mi—i-l®"'®mn)+m1®"'®mn—1®Wr(mn>
=1

where ! and w" are the structure maps of M as left and right C-

comodule; and a counit given by ¢ = ¢c o ™ where 7 is the projection
onto C.

Example 1.6.2. Let () be a quiver. Then it is easy to prove from the
definition that KQ = CTyq,(KQ:). Furthermore, each piece (KQ,)"" =
KQ,.

An element z € C is said to be a group-like element if Ag(x) =
r ® x. It is not hard to prove that the set of group-like elements,
G(C), is bijective with the set of one dimensional subcoalgebras
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(which are simple) by the map = — Kz. If C is pointed then all
simple subcoalgebras are 1-dimensional so the group-like elements
generate the coradical.

Let x and y be two group-like elements. We say that c € C is a
(z,y)-primitive element if Ax(c) =y ® ¢ + ¢ ® z. We denote the vector
space of (r,y)-primitive elements of C' by P{,. Note that the vector
space T}, = K(z —y) C PS,. These elements are called the trivial
(z,y)-primitive elements. We will denote the vector space formed by
the non-trivial (z, y)-primitive elements P{, /T, by P),.

Lemma 1.6.3. [Mon93] Let C' be a pointed coalgebra and
CoCCiCC,C---CC,C -

be its coradical filtration. Then C; = EBWGQ(C) Pfy. Consequently,
C1/Co =D, yegcy Pry-

Observe that () is a coalgebra and C/Cj is a (Cy, Cp)-bicomodule
with structure maps w'(c) = y ® c and w"(a) = ¢ ® = for each ¢ € P)S.
Thus, for each coalgebra C, we may associate its cotensor coalgebra
CTe, (C1/C).

Proposition 1.6.4. Every pointed coalgebra is a subcoalgebra of its
cotensor coalgebra.

Proof. By [Nic78], a cotensor coalgebra CT¢,(C;/Cy) verifies that if
(" is a coalgebra, h: " — Cy and ¢ : C — (' are coalgebras maps,
and f : C — (C/Cy is a (C,C)-bicomodule map with f(SocC) = 0
then there exists a unique coalgebra map F : C — CT¢,(Cy/C)
such that the diagrams

CTe(M) <2y CTe(M)
| T
o R M~ "

are commutative, where 7 and p are projections. Furthermore, the
map F is exactly hog+ > o, Tn(f)An_1.

In this case, we choose C' = Cy, h = id, q the projection from C =
Co®IontoCyand f:C =Cy® I — C1/C, the linear projection from
I to C,/Cy extended to C, taking f(Cy) = 0. Then F|¢, = id and thus
F is injective (see [Nic78], [Rad78] and [Mon93] for details). [l
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Given a pointed coalgebra, ', we can construct a quiver @ in
the following way: @), will be the set of group-like elements and, for
each z,y € @)y, the number of arrows from x to y equals dz’mKPfy.
This quiver is called the Gabriel quiver of C. Also it is known as the
Ext-quiver of C because of the vector space P, = Ext{,(Kz, Ky).

Lemma 1.6.5. Let C be pointed coalgebra and () be the quiver as-
sociated to C. Then CT¢,(C,/Cy) = KQ.

Proof. We have that K@), = C, as coalgebras and K@, = C,/C, as
(Co, Cp)-bicomodules. Thus CT¢,(C1/Cy) = CTke,(KQ1) = KQ. O

As a consequence of Proposition 1.6.4 and Lemma 1.6.5, we
obtain the main result of this section.

Theorem 1.6.6. [Wo097] Let C be a pointed coalgebra. Then C' is
isomorphic to a subcoalgebra of the path coalgebra of its Gabriel
quiver. Furthermore, C contains the subcoalgebra generated by all
vertices and all arrows.

A subcoalgebra of a path coalgebra is said to be admissible if
it contains the subcoalgebra generated by all vertices and all ar-
rows, that is, KQ, ® KQ; (see [Wo097]). A subcoalgebra C of a path
coalgebra K( is called a relation subcoalgebra (see [SimO05]) if C'
satisfies the following conditions:

(a) C is admissible.

(b) C = @z,yer CNKQ(x,y), where KQ(z,y) is the subspace gener-
ated by all paths starting at  and ending at y.



Chapter 2

Path Coalgebras of Quivers
with Relations

Path algebras of bound quivers are one of the major tools in the
representation theory of finite dimensional algebras. Indeed, a very
well-known result of Gabriel (see for instance [ASS05], [ARS95],
[GRI92] and the references given there) asserts that any finite di-
mensional basic algebra is isomorphic to a quotient of the path
algebra of its Gabriel quiver modulo an admissible ideal. The main
aim of this chapter is to study the possibility of an analogous result
for coalgebras, through the notion of the path coalgebra of a quiver
with relations defined by Simson in [SimO1]. For this purpose we
establish a general framework using the weak* topology on the dual
algebra to treat the problem in an elementary context. Next, a re-
sult of [JMR] allows us to obtain a more manageable basis of a
relation coalgebra which we use in order to give a criterion for de-
ciding whether or not a relation subcoalgebra is the path coalgebra
of a quiver with relations.

2.1 Duality

One can see from the definition of the coalgebra structure that
there should be some kind of duality between algebras and coal-
gebras (the structure of coalgebra is obtained reversing the maps
in the algebra structure). The aim of this section is to recall this
duality and some known facts involving it in order to apply them
throughout this work.

Let (C,A,¢) be a K-coalgebra, then we equip the dual K-vector
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space C* = Homg (C, K) with a K-algebra structure in the following
way:

e The product m is the composition of the maps

Cr @~ (C o0y 25 0,
M

m

where p is defined by p(f ® g)(v®@w) = f(v)g(w) for any f,g € C*
and u,v € C. That is, for each f,g € C*, m(f ® g) = (f ® g) o A.
This product is known as the convolution product. We shall
denote m(f ® g) by f * g or simply by fg.

e The unitis u=¢€¢": K — C*.

Proposition 2.1.1. [Tak77] (C*,m,u) is a K -algebra called the dual
algebra of C.

We can relate the subspaces of C' and its dual algebra. Let c € C.
The orthogonal space to c is the vector space ¢t = {f € C* | f(c) = 0}.
More generally, for any subset S C C, we may define the orthogonal
space to S to be the space

St={feC" | f(S)=0}

On the other hand, for any subset 7' C C*, the orthogonal space
to 7" in C' is defined by the formula

T+ ={ceC| flcy=0forall feT}
We say that T' C C* is closed if T++ =T.
Proposition 2.1.2. [Swe69]
(a) If D C C is a subcoalgebra then Dt is an ideal of C*.
(b) IfI C C* is an ideal then I+ is a subcoalgebra of C.

(¢) D C C is a subcoalgebra if and only if D+ is an ideal of C*. In
this case C*/D+ = D* as algebras.

Proposition 2.1.3. [Swe69]

a C C is a right (left) coideal then is a right (left) ideal of C*.
IfJcc ht (left) coideal then J+ ht (left) ideal of C
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(b) IfI C C* is aright (left) ideal then I+ is a right (left) coideal of C.

(¢) J C C is aright (left) coideal if and only if J* is a right (left) ideal
of C*.

Proposition 2.1.4. (a) If J C C is a coideal then D+ is a subalgebra
of C*.

(b) IfI C C* is a subalgebra then I+ is a coideal of C.
(¢) J C C is a coideal if and only if D* is a subalgebra of C*.

In general, if (A, m,u) is a K-algebra then its dual vector space,
A*, does not have to be a K-coalgebra. That fact comes true if A is
finite dimensional since, in that case, the map p defined above is bi-
jective. Therefore we take A = p~! om* and € = v* and then (A*, A ¢)
is a coalgebra. Thus we get an equivalence between the category of
finite dimensional coalgebras and finite dimensional algebras over
a field.

*

FinDimAlgy

Now, we know that every coalgebra is direct limit of its finite di-
mensional subcoalgebras so we can see a coalgebra as direct limit
of finite dimensional algebras. For that reason coalgebras might
be considered as an intermediate structure between finite dimen-
sional and infinite dimensional algebras.

A coalgebra C can be endowed with a right and left C*-module
structure using the actions «— and — defined by

c—f=) flewlew and f—c=3 flee)en,
© ©

FinDimCoal gk

where f € C* and c € C such that A(c) = ) ¢1)®c(2) using the sigma-
notation of Sweedler (see [Swe69]). For simplicity we will write cf
and fcinstead of ¢ — f and f — c.

A right C-comodule (M,w) can acquire a structure of left C*-
module (M, p) (which is called the rational C* structure) where p is
the composition

I®w T&l I®e ~
C*OM—C*"IMC—MeC"0C—Me K =M,
where 7' : C*®@ M — M®C* is the flip map defined by T'(f@m) = m® f
for any f € C* and m € M, and e is the evaluation map. That is,

using the sigma-notation
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fm=p(f @m) = Zf

where f € C* and m € M such that w( ) = >_m ® m(). Observe
that if M = C, we obtain the structure defined above Analogously,
for a left C-comodule we can define a right C*-module structure.

The reader should consider the question of which modules arise
in the above fashion from comodules. The solution comes from the
so-called rational modules (or discrete modules in the terminology
of [SimO01]).

Let (M, p) be a left C*-module and w : M — Hom¢-(C*, M) be the
linear map defined by w(m)(f) = p(f ® m) for any f € C* and m € M.
There exist the following injective maps:

M ®C—= M ® C* —L Home-(C*, M)

m® c——m @ c* ——— fge= : CF M

¢ fmge(c") = ¢ (c")m
Then a C*-module is called rational if w(M) C M @ C.

Proposition 2.1.5. Let (M, p) be a rational left C*-module. Then
(M,w) is a right C-comodule.

This produces an equivalence of categories, M® = Rat(C*), be-
tween the category of right C-comodules and the category of ratio-
nal left C*-modules.

2.2 Pairings and weak* topology

This is a technical section devoted to developing some basic facts
on topologies induced by pairing of vector spaces which will be
useful in what follows. For further information see [Abe77], [HR73],
[Rad74a] and [Rad74Db].

Let V and W be vector spaces over a field K. A pairing (V, W) of
V and W is a bilinear map (—,—) : V. x W — K.

A pairing (—, —) is non degenerate if the following properties hold

if (v,w) =0 for all v eV, then w =0,
if (v,w) =0 for all w € W, then v = 0.
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This means that the linear maps o : V — W*and 7: W — V*
defined by o(v)(w) = (v,w) and 7(w)(v) = (v,w) for all v € V and
w € W are injective.

Throughout this section all pairings will be non-degenerate.

A well-known example of a non degenerate pairing is the dual
pairing, (V,V*), given by the evaluation map (v, f) = f(v) for all
veV, feV*.

Given a pairing, (V,W), we can relate subspaces of V and W
through the dual pairing, compare with last section. Let v € V.
The orthogonal complement to v is the set v+ = {f € V* | f(v) = 0}.
More generally, for any subset S C V, we may define the orthogonal
complement to S to be the space

St={fevr|f(s) =0}

Since W can be embebed in V* by the pairing, we may consider the
orthogonal subspace to S in W

Stw = SENW = {we W | (S,w) =0}

On the other hand, for any subset 7" C V*, the orthogonal com-
plement to T in V is defined by the formula

T ={veV | flv)=0forall feT},

and if T C W, then we write TV = {v e V| (v,w) =0 for all w € T}.
For simplicity we write L instead of Ly .
The following diagram summarizes the above discussion:

T+

|
|

[

|

o \ |
[ S+tnw I

[

|

|

|

[

|

|

[

The following lemma gives a neighbourhood subbasis and a
neighbourhood basis of a topology on V*. We call it the weak*
topology on V*, see [Abe77], [Rad74a] and [Rad74b].
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Lemma 2.2.1. Let f be a linear map in V*.

(a) The setUy = { f +v*+ | v €V} is a neighbourhood subbasis of f
Jor a topology on V*.

(b) The sets B, ., = {geV*|g(x;)= f(z;)Vi=1,...,n} C V* for
any zy,...,r, € V and n € N*, form a neighbourhood basis at f
for the topology on V* defined in (a).

Proof. (a) This is straightforward.

(b) The finite intersections of elements of a neighbourhood subba-
sis form a neighbourhood basis and it is easy to check that

frat={geV|g(x) = f(z)},

forany x € V.
O

If we view W as a subspace of the vector space V'*, the induced
topology on W is called the V -topology.

In the next proposition we collect some properties of the weak*
topology which we shall need.

Proposition 2.2.2. Let (V,W) be a pairing of K -vector spaces.

(a) The weak* topology is the wealest topology on V* which makes
continuous the elements of V, that is, it is the initial topology for
the elements of V.

(b) The closed subspaces on the weak* topology are S+, where S is
a subspace of V.

(c) The closure of a subspace T of V* (in the weak* topology) is T++.

(d) The closed subspaces on the V -topology are S+, where S is a
subspace of V.

(e) The closure of a subspace T of W (in the V -topology) is T+w.
(f) Let {Ax}xea be a family of subspaces of V.. Then

(ZAA>L:HA§ and (ZAJLW:QA;W.

A€A AEA A€A A€A
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(9)

Any finite dimensional subspace of W is closed.

Proof. (a) Let 7 be the initial topology for the elements of V, and

(d)

(e)
(f)

W the weak* topology on V*. Let &k € K and ev, € V be the
evaluation on y. Then

(evy) (k) ={f € V" | f(y) = k}.

But given g € (ev,) '(k) we obtain g € g + y* C (ev,) !(k) so
(ev,)"*(k) is an open set in weak* topology and thus 7 C W.
Conversely, given f € V* and = € V, a neighbourhood of f in
weak* topology is f + z* = ev;!(f(z)), which is open in 7 and
thus W C 7.

Let S C V, if f ¢ S+ then there exists z € S such that f(z) # 0.
Thus (f +2t)N St =0 and f ¢ SL. Conversely, let T be a closed
subspace; it suffices to prove that 74+ C T. Fix f € T+ and
v € V;ifz € T+ then f(x) = 0, hence 0 € (f +z-)NT. If, on
the contrary, x ¢ T+ then there exists g € T such that g(z) # 0,

therefore %g € (f+2+)NT. This shows that f € T =1T.

T+ is a closed set satisfying T C T++, therefore T C T++. We
can now proceed analogously to the proof of (b) to show T+ C
T.

The V-topology on W is induced by the weak* topology on V* so

Stw — L AW is closed. If T is closed, then T = T" =T AW =
TH AW =THw,

The proof is straightforward from (d).

We have
Fe()Ax & f(A)=0 VAeA,

AEA
g f(ZAeA AA) = (ia
& fe (ZAGA AA) :

(9) See [Abe77, Chapter 2].

Finally, from the point of view of subspaces of V we have

Lemma 2.2.3. Let (V, W) be a pairing of K -vector spaces.
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(a) Let A be a subspace of V. Then At+ = A.
(b) Let A be a finite dimensional subspace of V. Then AtwL = A,
(¢) Let{T;}.cr be a family of subspaces of V*. Then
1
el el

Proof. (a) f(A) =0 for each f € A+ and so A C A*+. Converselly, let
v¢ AG V. There exists f € V* such that f(A) =0 and f(v) # 0.
By Proposition 2.2.2, At is closed so A1+t = At and therefore,
Vg e V*, g(A) = 0 & g(At+) = 0, which implies that v ¢ A+,

(b) See, for instance, [Abe77, Theorem 2.2.1].

(¢) We have
ve( T & flu)=0 VfeT Viel,

& flu)=0Vfe> T,

S ve (ZE)

il

2.3 Basis of a relation subcoalgebra

The aim of this section is to obtain a more manageable basis for
a relation subcoalgebra of a path coalgebra. For more information
and technical properties of subcoalgebras see [JMR].

Let @ = (Qo, @1) be a quiver and C' a subcoalgebra of K. Fix a
path p = a,a, 1 -+ 1 in Q; a subpath of p is a path, ¢, such that
either ¢ is a vertex of p or ¢ is a non-trivial path a;q;4, - - - «;, where
1<j<i<n.

Lemma 2.3.1. Let C' C K@ be a subcoalgebra, and p be a path in C'.
Then all subpaths of p are in C'.

Proof. See [JMR]. O
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This result could lead the reader to ask if any subcoalgebra
could be generated by a set of paths. Unfortunately this is not
true as the next examples show.

Example 2.3.2. Let () be the quiver

Ty
O
LN
Zy O O Ty
(@]
T3

The subspace generated by {e,,, €,,, €y, €x,, A1, A2, A3, Ay, X207 +g03}
is a subcoalgebra of K@ which cannot be generated by paths.

Example 2.3.3. Let () be the quiver

NG Ty
~_/

NI

The subcoalgebra C' = K{e,,« + [} is not generated by paths.

One may observe that, in the preceding examples, the basic el-
ements which are not paths have the common property of being
a linear combination of paths with the same source and the same
sink. The next proposition asserts that, in general, every subcoal-
gebra of a path coalgebra has this property.

Proposition 2.3.4. Let () be a quiver and C C K@ a subcoalgebra.
Then there exists a K -linear basis of C' such that each basic element
is a linear combination of paths with common source and common
sink.

Proof. See [JMR, Proposition 2.8]. O

Corollary 2.3.5. Any admissible subcoalgebra of a path coalgebra
is a relation subcoalgebra.

Proposition 2.3.4 is the key-tool which allows us to give a more
precise description of the basis of a relation subcoalgebra. Through-
out, we assume that C' is a relation subcoalgebra and B is a K-
linear basis of C as in Proposition 2.3.4. By definition, C' con-
tains the set of all vertices, V = {e;}icq,, and the set of all arrows,
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F = {a}.cq,, therefore we rearrange the elements of the basis B as
follows:

where, for all 7 € Ty;, the element G7; is a K-linear combination of

paths with length greater than one which start at ¢ and end at j.
We now assume that D = {p,}.cx is the set of all paths of length

greater than one in C. Proceeding as before we can be write

B:VUFUDU{RZ|U€U1]and2,jEQ0},

where, for all v € Uj;, the element R}, is a K-linear combination of
at least two paths of length greater than one which start at i and
end at j. Obviously, the paths involved in the linear combinations
R}, are not in C, for any v € Uy; and i, j € Q.

For the convenience we introduce some notation. We denote by
Q=QUQU---UQ,U--- the set of all paths in ). Let a be an
element of KQ. Then we can write a = }_ ,a,p, for some q, € K.
We define the path support of a to be PSupp(a) ={p€ Q| a, #0}. In
this way, for any set S C K@, we define PSupp(S) = |, PSupp(a).

Definition 2.3.6. Let S be a set in K. S is called connected if
PSupp(S1)NPSupp(S2) # 0 for any subsets S1, S, C S such that S1US; =
S and S, NSy = 0. A subset S" C S is a connected component of S
when S’ is connected and PSupp(S’) N PSupp(S\S’) = 0.

Therefore we can break down each set S;; = {R};}.cu,, into its
connected components and then write the basis 5 of C' as

B=VUFUDU[JT,,

ped

where, for any ¢ € ®, the set T, is a connected set of K-linear
combinations of at least two paths such that PSupp(Y,) C KQ>»
and PSupp(Yy,) N PSupp(Yy,) = 0 < ¢1 # ¢o.

As a final reduction, it will be useful to distinguish those sets
T, which are finite. Thus the basis B of C' can be written as

B=VuFupulJmoul]z,

~yel’ BEB

where IL, is a finite set for all v € I and Y3 is infinite for all 3 € B.
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2.4 Path coalgebras of quivers with rela-
tions

In this section we study the notion of the path coalgebra of a quiver
with relations introduced by Simson in [SimO1] and [SimO05]. For
the convenience of the reader we shall denote by C'Q) and by K@
the path coalgebra and the path algebra associated to a quiver @,
respectively (despite that the underlying vector space is the same).

Definition 2.4.1. Let (Q,2) be a quiver with relations. The path
coalgebra of (Q, ?) is defined by the subspace of CQ,

C(Q, Q) ={a e CQ|(a,) =0}

where (—,—) : CQ x KQ — K s the bilinear map defined by (v, w) =
dy.w (the Kronecker delta) for any two paths v, w € Q.

This notion may be reformulated in the notation of the Section
2.2. It is clear that (—, —) is a non-degenerate pairing between C'Q
and K@), therefore we have the following picture:

r———————-———-- 7
| [

. [

I+ ‘ (CQ) !

‘ [

| [

Cd_ : CLQKQ :

\ \ !

| \ |

CTEQ={pe KQ | (C,p) = 0} l l

cQ | KQ :
0+=C(Q,Q) \ !

| [

‘ [

| [

Lo _

First we prove the following result.

Lemma 2.4.2. If () is any quiver, then the injective morphism K@) —
(CQ)* defined by the pairing (—, —) of 2.4.1 is a morphism of algebras.

Proof. Recall that in the dual algebra (CQ)* := Homg(CQ, K) the
(convolution) product is defined by

(f*9)p) = Z f(p2)g(py) for any f,g € (CQ)* and any p € Q.

p=p2p1
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Fix p € Q and let p* : CQ — K be the linear map defined by
p*(q) = 60,, for any ¢ € Q. It is enough to prove that (pq)* = p* * ¢* for
any two paths p,q € Q. To prove this, let » be a path in . Then:

_J 0 ifr#pg
(" *q") Z OprsOq.m _{ 1 ifr=pq

= (pq)*(r),

and so (pq)* = p* * ¢*. H

rT=ra2ri

It may be helpful to point out that the algebra K@ does not
need to have a unit (it has unit if and only if @), is finite) and then
the morphism defined above is an injective morphism of algebras
without unit. Therefore the situation is the following:

KQo— (K@ (CQ)7,
where (KQ), = KQ ® K -1 is the unification of K(Q.

Lemma 2.4.3. K(Q is dense in (CQ)* in the weak* topology on (C'Q)*.
Consequently, K(Q is dense in (KQ), and (KQ), is dense in (CQ)* in
the wealk* topology on (CQ)*.

Proof. This is a particular case of Lemma 2.5.2 that we shall prove
later. It is enough to consider C' = 0, obviously, (KQ)* = 0 and then
0t N KQ = KQ is dense in 0+ = (CQ)*. O

From now on we will make no distinction between elements of
K@ and linear maps f : CQ — K with finite path support, that is,
f(p) =0, for almost all p in Q. On the other hand, it is convenient
to note that any element g € (CQ)* can be written as a formal sum

9=7>_,cop, Where a, = g(p) € K.

Corollary 2.4.4. Let () be a quiver and C' an admissible subcoalge-
bra of CQ. Then C+x< is a relation ideal of KQ.

Proof. Since C* is an ideal of (CQ)*, C+ N KQ = C*x@ is an ideal of
K@ by Lemma 2.4.2. If c € KQy ® K@, then ¢ € C since C is an
admissible subcoalgebra. Therefore (c,C) # 0, so ¢ ¢ C+xe, which
completes the proof. O

The following result, proved in [SimO05], justifies the preceding
definition of the path coalgebra of a quiver with relations.
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Proposition 2.4.5. Let () be a quiver and () a relation ideal of KQ,
then C(Q, Q) = Qt is a relation subcoalgebra of CQ.

A K-linear representation of a quiver () is a system

X = (Xu Soa)iEQo,OéEQN

where X, is a K-vector space and ¢, : X; — X is a K-linear map for
any « : ¢ — j. A morphism f : (X;,v.) — (Yi, %) of representations
of @) is a system f = (f;)icq, of K-linear maps f; : X; — Y; for any
i € Qo such that fjp, = ¢, f; for all o : 7 — j in ;. We denote by
Repy (@) the Grothendieck K-category of K-linear representations
of ). A representation X of () is said to be of finite length if X;
is a finite dimensional vector space for all i € @y and X; = 0 for
almost all indices i, we will denote that subcategory by rep’/(Q). A
representation X is nilpotent if there exists a m > 2 such that the
composed linear map

Pory Pag Pam
Xig—=Xiy —>=Xjy— == - ==X, —>

is zero for any path «a,,a,,—1---aq in @ of length m. We denote by
Rep(Q) 2 Rep? (Q) the full subcategory of Rep, (Q) formed by all
locally and locally nilpotent representations of finite length, respec-
tively, and by nilrepl[’;(Q) the subcategory of all nilpotent represen-
tations of finite length.

Given a quiver with relations (Q,(2), a linear representation of
(Q,9Q) is a linear representation X = (X;, ¢,) of @ which verifies
thatifp=3", Na, ---of isin Q then } 7 | Aiai, Py = 0. Then,
analogously, we may define the categories Rep(Q,Q), rep'(Q, ),
Relenlf(Q, Q), Rep%(@, Q) and nilrep%(@, Q).

Theorem 2.4.6 ([SimO05], Theorem3.5). Let (Q),2) be a quiver with
relations. There are category isomorphisms

MG = nileplf(Q, Q) and M@ = Rep (Q, Q)

Then, this definition is consistent with the representation theory
of algebras and reduces the study of the category M¢ to the study
of linear representations of a quiver with relations.
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2.5 When is a coalgebra a path coalgebra
of a quiver with relations?

It is well-known that, over a algebraically closed field, a finite di-
mensional algebra, A, is isomorphic to KQ /2, where Q)4 is the
Gabiriel quiver of A and (2 is an admissible ideal of K. In [SimO1],
it is suggested, as an open problem, to relate the admissible sub-
coalgebras of a path coalgebra C'Q and the relation ideals of the
path algebra K@, through the above-mentioned notion of path coal-
gebra of a quiver with relations. That is, for any admissible sub-
coalgebra C < CQ, is there a relation ideal 2 < K@ such that
C = C(Q,Q)? In other words, in the notation of Section 2, for any
admissible subcoalgebra C' < C'Q, is there a relation ideal €2 of KQ
such that O+ = C?

Note that if C' has finite dimension, then, by Lemma 2.2.3,
(Ctxe)t = C and the result follows. This yields a reduction of the
problem:

Problem 2.5.1. Verify the relation QO+ = C for the ideal Q) = C+x<,

Lemma 2.5.2. Let () be a quiver and C' a vector subspace of C(Q).
Then the following conditions are equivalent.

(a) There exists a subspace Q2 of KQ such that QO+ = C.
(b) C*+xe is dense in C* in the weak* topology on (CQ)*.
() (Ctrayt =C.

Proof. (a) = (b). Since C = Q+, it follows that C*+ = Q'* is the
closure of 2 in weak* topology by Proposition 2.2.2. Thus Q c C+ N
KQ = C*xe C ¢t and, by Proposition 2.2.3, C = C*++ C (Ctxe)t C
Ot = C. Therefore C = (C+xe)t and thus C*+ = (Ctxe)tt = Clxe,

(b) = (c). Since C*+ = (C*txe)tL, we have C+L = (C1xe)tit and,
by Proposition 2.2.3, C' = (Ctxe)+,

(¢) = (a). It is trivial. O

We now assume that C' is an admissible subcoalgebra of CQ. If
we consider the basis of C,

B=VuFupu|Jm,ul] =,

yel’ BEB

built in Section 3, then we have
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CzKV@KF@KD@(@IﬂL)@(@KEg) (2.1)

~yel BeEB

as K-vector space. Since the subsets into which we have parti-
tioned B have disjoint path supports, it is easily seen that Q+ = C
if and only if each direct summand C; of (2.1) is the orthogonal
complement Q- of a subspace ; and, in this case, Q = (.

There are two trivial cases:

CASE 1. It is immediate that KV = K(Q\V)', KF = K(Q\F)*
and KD = K(Q\D)*.

CASE 2. For each v € I', KII, is a finite dimensional subspace
and so, by Lemma 2.2.3, KL, = ((KIIL,)*x2)*. As a consequence we
get:

Corollary 2.5.3. With the above notation, C = Q' if and only if
Y5 = (Xg)txet for each 3 € B.

In particular, this implies the following proposition proved in
[SimOb5].

Proposition 2.5.4. Let () be a quiver without cycles such that the
set of paths in () from i to j is finite, for all i,j € Q)o. Then the
map C — C+txe define a bijection between the set of all relation
subcoalgebras of C() and the set of all admissible ideals of KQ. The
inverse map is defined by Q) — Qt, for any relation ideal Q2 of KQ.

Therefore, we can reduce Problem 2.5.1 to the situation of a
quiver () with the following structure

At

Q= o n o length(v;)> 1, i € I, I infinite (2.2)

v

Yi

and C' an admissible subcoalgebra generated, as vector space, by
VUFUDUZY, where ¥ is an infinite connected set with PSupp(X) =
{7i}icr- We may assume that +; ¢ C for all i € I. Then the question
is: when the equality ¥ = ¥+xe+ holds?

Let us first show that, at least, there is an example of an admis-
sible subcoalgebra C' C C(Q such that C is not of the form C = Q-+,
where () is a relation ideal of KQ).
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Example 2.5.5. Let () be the quiver
@)

% e} 52 61

% Bn

= o o ¥ = Biq; fOT alli e N (23]

-~ . —

O

oci\sé//ﬁi

and let H be the admissible subcoalgebra of CQ as in (2.2) with
3 = {7 — Yit1 }ien.

Assume that x = 2121 a;y; belongs to H+ and a; = 0 for i > n we
have some n € N. Then (v; — v;y1,2) = a; — a;41 = 0 for alli € N, so
a; = a;11 Jor alli € N. But a, = 0 and it follows that + = 0. Hence
Htxe =0,

By a similar argument H+ = (f), where f(v;) = 1 for all i € N.
Thatis, f = Y., 7. Obviously, H<@ is not dense in H+.

Here we present a positive example

Example 2.5.6. Let () be the quiver of (2.3), and C the admissible
subcoalgebra generated by ¥ = {v2,-1 + Y2n + Yon+1}n>1- A straight-
Jorward calculation shows that QO+ = C, where Q = ({1 — Y2, {7an —

Yont1 + Yont2tn>1))-

We now analyze them deeply to provide a criterium which allows
us to know, when an admissible relation subcoalgebra of C(Q is the
path coalgebra C(Q,?) of a quiver with relations.

First, it is convenient to see Examples 2.5.5 and 2.5.6 from a
more graphic point of view. We write the elements of ¥ in matrix
form. Thus we have the associated infinite matrices

and

Example 255 77 Example 2.5.6

We can observe that Example 2.5.5 has an infinite diagonal of
non zero elements. Let h € H'xe. Then h must have finite path
support, and so, if we want to know h, we only have to solve a finite
linear system of equations with associated matrix
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but zero is the unique solution.
In this way we obtain a class of admissible subcoalgebras which
are not path coalgebras of quivers with relations:

Definition 2.5.7. Let () be a quiver as in (2.2), C be an admissible
subcoalgebra generated by a connected set ¥ with PSupp(X) = {7;}ier
and v; ¢ C for alli € I. We say that C has the infinite diag-
onal property (IDP for short) if there exists a subset >’ C X with
PSupp(Y') = {Vn}nen such that by means of elementary transforma-
tions, ¥’ can be reduced to {v, + )., a7vj}nen, Where a} € K for all
J,m € N.

Proposition 2.5.8. Let () be a quiver as in (2.2) and C be an admis-
sible subcoalgebra generated by a connected set ¥ with PSupp(X) =
{7i}ic1- Suppose that ~; ¢ C, for eachi € I. If C has IDP, then there is
no relation ideal ) C K@ such that C' = C(Q, ).

Proof. Let Y = {7,+_,., a}7;}nen C ¥. Assume that the assertion is
not true, i.e., there is a relation ideal 2 C K@ such that C' = C(Q, Q).
By Lemma 2.5.2, C*x¢ is dense in C*. Since v, ¢ C, there exists
a linear map ¢g € C* such that g(v;) # 0. By the density of Ctxe
in C*, there exists a linear map h with finite path support such
that h(y1) = g(71). Defining z; := h(v;), for any i € N, we obtain that
h(X') = 0 is the infinite system of linear equations {z, +3_,_, a;z; =
0}nen. Since h has finite path support, there exists an integer m
such that z;, = 0, for £ > m. Hence =1, ...x,, satisfy the finite system
of linear equations

T+ atry+ - +alr, =0
T+ 4 a2z, =0

Ty, =0

which has the unique solution z,,, = z,,_1 = --- = 21 = h(y1) = 0, and
we get a contradiction. [
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We claim that Example 2.5.6 does not have IDP. This means
that for any infinite countable subset ¥’ C ¥, the associated matrix
can be reduced to a matrix of a "staircase” form

that is, for any positive integer n, the first n rows have at least n
variables and there is an integer m > n such that the first m rows
have more than m variables. We can prove that for any linear map
f € C* and any finite set {v,...,7,} of paths in @, we obtain a
linear map g € C* such that f(v;) = g(y;) for all i = 1,...,n. That is,
C+xe is dense on C*.

Proposition 2.5.9. Under the assumptions of Proposition 2.5.8, if C
fails IDP, then there exists a relation ideal ) such that C = C(Q, ).

Proof. 1t suffices to show that ¥1#< is dense in X+, that is, given
feXtandqy,...,v, € PSupp(X) there exists h € ¥, with finite path
support, such that h(v;) = f(y;) foralli = 1,...,n. We give the proof
only for n = 1; the general case is analogous and left to the reader.

We know that i(¥X) = 0 produces an infinite system of linear
equations with variables {h(y;) = x;}ic;. We rewrite the system in
the following way:

STEP 1. Fix an equation, say £, such that the coefficient of z; is
not zero. We may assume that it is the only one with this property.
Suppose that

_ 1 1 1
Ei=x+ayry+ - +a, v + 00+ 0,0, =0,

where al,...,al are non zero and z1,...,z,,_; do not appear in any
other equation of the system.

STEP 2. We take now z,,. There is at least one equation, say
E,, different from F;, in which the coefficient of z,, is not zero.
We eliminate it from the remaining equations different from F;.
Choose variables z, .1,...,x,, 1 which only appear in E; or E,, and
the system starts as
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T+ ayTy + - ap Ty o+ Ty =0
Ty 4+ Q2T+ -+ ala = 0.

STEP 3. We do the same with z,, to obtain

xl_'_..._i_a},lxrl+...+ai2$r2+...+a}nl~mzo
xr1+...+a%2xr2+ ...... —|—a12xl:0
3 3 _
xr2+arz+1xr2+1+--~+ahxh—0.

STEP 4. We continue in this fashion. When we finish with the
variables of F;, we proceed with the variables of £, and so on. The
reader should observe that the variables z1,..., 2, , %, 11,...,2, only
appear in the equations Fi, Es, ..., F;,q, for all i € N.

There are two cases to consider:

CASE 1. This process stops after a finite number of steps. Then
we consider z, = 0, for all variables outside the finite subsystem
which we have obtained. Since any equation has at least two vari-
ables, the subsystem has more variables than equations and max-
imal range. This follows that there is a solution for x; = — f(7;).

CASE 2. This process is infinite. Then we stop after finding a
variable z,, where r; is the minimal integer such that r, > n and
rre1 — re > 1 (it is possible because C fails IDP). Roughly speaking,
this means that we stop this process on the first 'step’ (horizontal
segments in (2.4)) after processing the variables of F£;.

We consider z; =0, for alli # 1,...,r,+1, and therefore it suffices
to prove that the finite system of k£ + 1 equations and r; variables

has a solution, where a = —f(v;). But this is clearly true, because
rr > k + 1 and the matrix of coefficients has maximal range. = O

Let @ be a quiver as in (2.2) and C be an admissible subcoalge-
bra as in the assumption of Proposition 2.5.8. Let us suppose that
there exists a subset ¥’ C ¥ such that ¥’ = {y, + >_;., a}7;}nen,
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where o} € K for all jn € N, and v = aa}, ;- aa, for all
i € N. We may consider the subquiver @' = (@, Q}), where Q) =
{t(ad), s(ai) 2], and Qi = {ai}'S] . Then C contains the ad-
missible subcoalgebra of C'Q" generated by Y.

Therefore we turn to the case of a quiver ) with the following

structure:

At
72

Q= o o o length(y)>1,ieN (2.5)

\/

Vi

and C an admissible subcoalgebra of C() generated by an infinite
countable connected set X = {y, +>_,., a}7;}nen, Where a} € K for
all j,n € N. We may suppose that ; ¢ C for all i € N.

Under these conditions, we denote by Hf, the class of admissi-
ble subcoalgebras of C'Q) such that dimg((PSupp(>))/(¥)) = n and
by Hg the class of admissible subcoalgebras of C@) such that the
dimensiondim g ((PSupp(X))/(X2)) = co. Finally, we set

Hy = Ho U | ) Hp,

neN

Theorem 2.5.10. [JMNO5] Let () be any quiver and C' be an admis-
sible subcoalgebra of C(). There exists a relation ideal ) of KQ such
that C' = C(Q, Q) if and only if there is no subquiver I' of ) such that
C contains a subcoalgebra in H*.

Proof. This follows from Proposition 2.5.8 and 2.5.9, and the argu-
ments mentioned above. []

Corollary 2.5.11 (Criterion). Let C be an admissible subcoalgebra
of a path coalgebra C'Q). Then C' is not the path coalgebra of a quiver
with relations if and only if there exist an infinite number of different
paths {v;}ien in Q such that:

(a) All of them have common source and common sink.
(b) None of themis in C.

(c) There exist elements a7 € K for all j,n € N such that the set
{7+ Zj>n a%v;tnen is contained in C.
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Remark. The reader could ask if an admissible subcoalgebra, C,
of CQ¢, which contains a subcoalgebra in H® can be written as
C(Q', ), where ' is a quiver which is not the Gabriel quiver of C.

We know that there exists an injective map f : ¢ — C@Q such

that f|c, = id. If there is a quiver @’ and an inclusion ¢——= CQ’,
the following diagram conmutes:

)y =4 CQ,
. N

7 .
I'%

v
cQy
We need the following lemma to finish our remark.

Lemma 2.5.12. Let f : C — D be a morphism of coalgebras.

(a) If e is a group-likke element of C then f(e) is a group-likke element
of D.

(b) If f is injective and x is a non-trivial (e, d)-primitive element of
C then f(z) is a non-trivial (f(e), f(d))-primitive element of D.

Thus, since C'Q); and C(Q); are generated by the set of all vertices
and arrows of ) and ()’, respectively, using Lemma 2.5.12, we con-
clude that @) is a subquiver of ()’; so it contains some coalgebra in
Hge.

As a consequence, we get a negative answer to the following
open problem considered by Simson in [SimO1] and [SimO05]: Is
any basic coalgebra, over an algebraically closed field, isomorphic
to the path coalgebra of a quiver with relations?






Chapter 3

Localization in Coalgebras

The category M of right comodules over a coalgebra C is a locally
finite Grothendieck category in which the theory of localization de-
scribed by Gabriel in [Gab62] can be applied. The localizing subcat-
egories of M® have been studied in several papers with satisfactory
results, see [Gre76], [Lin75], [NT94] and [NT96]. In this context, the
idempotent elements of the dual algebra play an important role to
permit us to give an explicit description of the elements of a situ-
ation of localization and to characterize some important classes of
localizing subcategories. In particular, we shall consider the sta-
ble localizations of M® and characterize them by left semicentral
idempotent elements. This will be obtained as a consequence of
the study of the behavior of injective and simple comodules under
the action of the localization functors. Lastly, we shall contemplate
the particular case of admissible subcoalgebras of path coalgebras.

3.1 Some categorical remarks about local-
ization

Let C be an abelian category. A full subcategory A of C is said to be
dense if, for each exact sequence 0 - X' - X — X’ — 01in C, we
have that X belongs to A if and only if X’ and X" belong to A.

For any dense subcategory A of C, there exists an abelian ca-
tegory C/A and an exact functor 7' : C — C/A such that T(X) = 0,
for each X € A, satisfying the following universal property: for any
exact functor H : C — C’ such that H(X) = 0 for each X € A, there
exists a unique functor H : C/A — C’ such that H = HT. This cate-
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gory C/A is called the quotient category of C with respect to A. See
[Gab62].

A dense subcategory A of C is called localizing if the quotient
functor T : C — C/A has a right adjoint functor, namely S : /A — C.
The functor S is called the section functor of 7.

Lemma 3.1.1. [Gab62] In the above situation, we have that:

(a) T is an exact functor.

(b) S is a left exact functor.

(c) S is a fully faithful functor.
(d) The equality T'S = 1¢, 4 holds.

Conversely, if 7' : C — (' is an exact functor between abelian
categories and S : ¢’ — C is a full and faithful right adjoint functor
of T, the dense subcategory Ker (7'), whose object class is {X € C |
T(X) = 0}, is a localizing subcategory of C and C’ is equivalent to
C/Ker (T), see [Pop73, 4.4.9].

In the particular case in which C is a Grothendieck category we
can say more.

Proposition 3.1.2. [Gab62] A dense subcategory A of a Grothen-
dieck category C is localizing if and only if it is closed under direct
sums, or equivalently, if each object X € C contains a subobject A(X)
which is maximal among the subobjects of X belonging to A.

We say that a localizing subcategory is perfect localizing if the
composition functor Q = ST : C — C is exact, or equivalently, by
[Gab62, Chapter III, Corollary 3], if the section functor S is exact.

There exists a dual notion of localizing subcategory. Indeed, if
C is an abelian category, a dense subcategory A of C is said to be
colocalizing if the functor 7' : C — C/A has a left adjoint functor
H:C/A— C, see [NT96]. H is called the colocalizing functor.

Lemma 3.1.3. [NT96] Let A be a colocalizing subcategory of a Gro-
thendieck category C. Then A is a localizing subcategory of C.

Lemma 3.1.4. [NT96] Let A be a colocalizing subcategory of C. Then
(a) X € Aifand only if Home(H(Y),X) =0 forany Y € C/A.

(b) The colocalizing functor H is a fully faithful and right exact func-
tor.
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(c) The equality TH = 1¢,4 holds.

A colocalizing subcategory A of C is said to be perfect colocalizing
if the colocalization functor H : C/ A — C is exact.

3.2 Localizing subcategories of a category
of comodules

Let us restrict our attention to the localization of categories of co-
modules. In the literature there is a very well founded theory about
the localizing subcategories and about the relationships that there
exist with other concepts. We recall briefly some of them:

Coidempotent coalgebras. A subcoalgebra A of C is said to be
coidempotent if AN A = A. In [NT94], a bijective correspondence
between localizing subcategories of M® and coidempotent subcoal-
gebras of C is established. Indeed, the authors associate to every
localizing subcategory 7 the subcoalgebra 7 (C) = ), ,., cf(M) and
to every coidempotent subcoalgebra A of C the closed subcategory
T, whose class of objects is {M € MY | cf(M) C A}.

Equivalence classes of injective comodules. From the general
theory of localizing subcategories in a Grothendieck category, C, it
is well known that there exists a bijective correspondence between
localizing subcategories of C and equivalence classes of injective
objects. Two injective objets F; and E, are equivalent if E; can be
embedded in a direct product of copies of E; for i, j € {1,2}. The
above correspondence associates to any injective object E the lo-
calizing subcategory 7z = {M € C | Hom¢(M,E) = 0}. When we
apply this to a comodule category M, for any localizing subcate-
gory 7 of MY, the inverse maps 7 to the injective right C-comodule
E = S(D), where D is an injective cogenerator of M /7.

Sets of indecomposable injective comodules. Since two injec-
tive right C-comodules are equivalent if and only if in their de-
compositions, as a direct sum of indecomposable injective right
C-comodules, appear the same indecomposable injective comod-
ules, maybe with different multiplicity, every equivalence class of
injective right C-comodules is uniquely determined by a set of iso-
morphism classes of indecomposable injective right C'-comodules.

Sets of simple comodules. To any indecomposable injective right
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C-comodule, we can attach a simple right C'-comodule defined by
its socle. Conversely, given a simple comodule, its injective enve-
lope is an indecomposable injective comodule. Therefore we have a
bijective correspondence between sets of indecomposable injective
comodules and sets of simple comodules.

Let us give a description of the localizing functors using Morita-
Takeuchi contexts.

Theorem 3.2.1. [JMNRO6] Let T be a localizing subcategory of M¢
and X be a injective quasifinite right C'-comodule such that 7 =
Tx. Consider the injective Morita-Takeuchi context (D,C, X.Y, f,g)
defined by X. Then the _functors

T=-0Y: M > MPand S=-0pX: MP = M®

define a localization of M with respect to the localizing subcategory
7. In particular, M /T is equivalent to MP.

Proof. Since X is injective and quasifinite, the funtor S = —pX
has an exact left adjoint functor Cohom¢ (X, —). This functor pre-
serves direct sums so, for every N € M, there is an isomorphism
Cohom¢ (X, N) =2 NOxCohome(X,C) = NOcY. Therefore, we obtain
a natural isomorphism Cohom¢(X,—) = —O¢Y = T and thus S is
right adjoint of 7.

Now, we have to show that Ker (T') = 7x. Let us point out that
X = S(D). Then, by the adjunction, for every M € M¢, There is a
bijection Hom¢ (M, X) «— Homp(T (M), D). Thus M € Ty if and only
if Home (M, X) = 0 if and only if Homp(7T(M), D) = 0 if and only if
T(M) = 0. O

Equivalence classes of idempotents of the dual algebra. This is
the most important relation for us and we shall give a complete de-
scription of the elements of a localization, see [CGT02], [JMNROG6]
and [Woo97] for details. Given two idempotent elements f,g € C*,
we say that f is equivalent to g if the injective right C'-comodules
C'f and Cg are equivalent in the sense defined above. On the other
hand, it is easy to see that every injective right C'-comodule F is of
the form E = Ce for some idempotent e € C*. Therefore there exists
a bijective correspondence between equivalence classes of injective
comodules and equivalence classes of idempotent elements of the
dual algebra. Given an idempotent element e € C*, we will de-
note the localizing subcategory associated to e by 7. and by I, C I~
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the indices of the subset of simple (or indecomposable injective)
comodules associated to this idempotent element.

Let e be an idempotent element of C* and 7, be the localizing
subcategory associated to e. From above, M /7, is an abelian ca-
tegory of finite type and therefore M /7, = MP for some coalgebra
D. We may give an explicit description of D.

Let us consider the subspace eCe C C'. Then it can be endowed
with a structure of coalgebra given by

Acce(eze) = Z exme ®expge and  ece(exe) = ec(w)
(x)

for any « € C, where Ac(z) = >, 2(1)®7() using the sigma-notation
of [Swe69].

Lemma 3.2.2. [Woo97] There exists a equivalence between the cat-
egories M /T, and M<°e.

If M is a right C'-comodule, the vector space eM has a natural
structure of right eCe-comodule given by

Weprr(em) = Z emgy ® em(ye,
(m)

for any m € M, where wy(m) = >, mo ® ma) in the sigma-
notation.

There is a natural right eCe-comodule isomorphism eM = MUOceC,
defined by ex — z() ® ex(;). This means that the functor —OceC is
naturally isomorphic to the functor from M® to Me“¢ defined by
M — eM. Observe that when we take M = Ce, we obtain a natural
isomorphism eCe = CeldceC, see [CGTO02] for details.

Since Ce is a quasifinite injective right C-comodule, we may con-
sider the injective Morita-Takeuchi context associated to Ce, which,
by [CGTO02], is (eCe,C,Ce,eC, f,g), where [ : eCe = CeOgeC is the
aforementioned isomorphism and g : ¢ — eCU.c.Ce is defined by
g(z) = exq) ® xze for any = € C. Hence there exist isomorphisms
eC = Cohom¢(Ce, C) and eCe = Coend¢(Ce).

Thus we can rewrite Theorem 3.2.1 as follows:

Theorem 3.2.3. The functors
T = —Dcec = e(_) . MC N Mece and S = _DeCece : MeCe N MC

define a localization of M® with respect to the localizing subcategory
7..
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Corollary 3.2.4. [CGTOZ2] The functor T is equivalent to the functor
Cohomg(Ce, —).

Corollary 3.2.5. A localizing subcategory 7. is perfect localizing if
and only if Ce is an injective left eCe-comodule.

Note that, as a consequence of Theorem 3.2.3, we obtain an
easy description of the localizing subcategory:

T, =Ker (T) = {M € M| MOgeC =0} = {M € M| eM =0}.

Remark. If ¢ € (* is an idempotent element, for a simple right
C-comodule S, we have exactly two possibilities:

(1) eS =0, in this case e - cf(S) = 0 and e g = 0, or
(2) eS =S, in this case e - cf(S) = cf(S) and ejer(s) = €ler(s)-

Thus the class 7, is the localizing subcategory of M¢ determined by
the subset I, = {i € Ic | eS; = S;}. It is not difficult to see that the
coidempotent subcoalgebra determined by 7. is the biggest sub-
coalgebra of C' annihilated by e. (Note that, for any subcoalgebra A
of C, eA = 0 if and only if Ae = 0).

We now turn to colocalizing subcategories. From Theorem 3.2.3
we may deduce easily the following result.

Proposition 3.2.6. Let ¢ € C* be an idempotent element and 7. be
its associated localizing subcategory in M®. Then 7, is a colocalizing
subcategory if and only if eC' is a quasi-finite right eC'e-comodule.

Proof. By Theorem 1.3.2, the functor 7 = —OceC : M® — MeCe
has a left adjoint functor if and only if eC' is quasi-finite as right
eC'e-comodule. ]

In the same direction we may characterize, also in terms of
idempotent elements, perfect colocalizing subcategories.

Proposition 3.2.7. Let ¢ € C* be an idempotent element and let 7,
be the associated localizing subcategory in M¢. Then 7, is a perfect
colocalizing subcategory if and only if eC' is a quasifinite injective
right eC'e-comodule.

Proof. Observe that the left adjoint of T = —OceC : M© — MeC¢ is
H = Cohom,c.(eC, —). By Proposition 1.3.3, H is exact if and only if
eC' is an injective right eC'e-comodule. [
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The reader can compare the last two propositions with [NT96,
Proposition 3.1] and [NT96, Proposition 4.1], where colocalizing
and perfect colocalizing subcategories of M® are characterized in
terms of the biggest subcoalgebra of C' annihilated by e.

Proposition 3.2.8. Let C' be a coalgebra and T be a perfect colocal-
izing subcategory of M. Then T is a perfect localizing subcategory
of MC.

Proof. If T = 7, is a a perfect colocalizing subcategory of M¢, eC
is an quasifinite injective right eCe-comodule. Thus, the functor
—OceC has an exact left adjoint, namely Cohom,c.(eC,—). On the
other hand, since Ce is a quasifinite injective right C'-comodule,
—eceCe admits an exact left adjoint, namely Cohom¢(Ce, —). Then
the composed functor —¢(eCO.c.Ce) = (—OeceCe)o(—OceC) has an
exact left adjoint functor Cohom,c.(eC, —) o Cohom¢(Ce, —). Therefore
eC.c.Ce is an quasifinite injective right C'-comodule and 7; is a a
perfect localizing subcategory of M. O

A symmetric version of all this section may be done for left co-
modules. In particular, the localization by means of idempotents is
described as follows:

For each localizing subcategory 7' of “M, there exists a unique
(up to equivalence) idempotent element e in C* such that the local-
izing functors are equivalent to

T=(—)e=—0cCe
CM CM/T/ ;

S=—[.ceeC

where “M /7" is equivalent to ““°M.

3.3 The Ext-quiver

To any coalgebra C, we may associate a quiver I'c known as the
(right) Ext-quiver of C, see [Mon95]. We recall that the set of ver-
tices of I'c is the set of pairwise non-isomorphic simple right C-
comodules {5, }.,c;. and, for two vertices S, and S,, there exists an
arrow S, — S, if and only if Ext(S,, S,) # 0.

Let us take into consideration some geometric properties of I'c.
Given a vertex S,, we say that the vertex S, is an immediate pre-
decessor (respectively, a predecessor) of S, if there exists an arrow
S, — Sy in I'c (respectively, a path from S, to S, in I'¢).
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Lemma 3.3.1. S, is an immediate predecessor of S, if and only if
S, C Soc (E,/Sy).

Proof. Let us consider the short exact sequence S, — E, — E,/S,.
Then we obtain the exact sequence

0

Homc(Sy, Sw) HOch(Sy, Ea:) -

—— Hom¢ (S, E,/S;) — Ext{(S,, S,) —0

Since Hom¢ (S, S,) = Hom(S,, E,) then Home(S,, E,/S,) = Exty(S,, S,)
and the result follows. O

The following result gives a necessary condition for having an
arrow between two vertices of the Ext-quiver.

Lemma 3.3.2. For each two simple right C-comodules S, and S, if
Home(E,, E,) = 0 then Exts(S,, S,) = 0.

Proof. By the proof of Lemma 3.3.1, Ext}(S;,S,) = Home(S,, E,/S,)
for each simple right comodules S, and S,. Now, since E, is the
injective envelope of S,, for each non-zero morphism f : S, — E,/S,,
there exists a non-zero map g : E,/S, — Ex making commutative
the diagram

S, 1. E,/S,

Then the composition £, —»—= E,/S, —s= E, is a non-zero morphism
in Home(Ey, E,). O

It is easy to see that each morphism f in Homq(E,, E,), obtained
from a nonzero element in Ezt;(S,,S,) by means of the construc-
tion of the former lemma, verifies the following condition: If f de-
composes through two morphisms ¢t : £, — E, and h : £, — FE,,
where E, is an indecomposable injective right C'-comodule, then ¢
is an isomorphism or 4 is an isomorphism. To prove that assume
the contrary and then we have the following commutative diagram

S, !.FE,/S, < E,

SNk

E$<TEZ
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If ¢ is not an isomorphism then it decomposes through the projec-
tion, i.e., we have the diagram

S, ! E,/S, <2 E,

Sl

Furthermore, p*(ht') = ht'p = ht = gp = p*(g) implies, by the injectiv-
ity of p*, that ht' = g and then the diagram is commutative. Now,
since h is not an isomorphism, ~(S,) = 0 and then i = ht'f = 0 and
we get a contradiction.

That property suggests that if we consider the extensions be-
tween simple comodules as arrows, the morphisms between inde-
composable injective comodules should be the paths in the Ext-
quiver. Unfortunately, in general, it is not true.

Example 3.3.3. Let ) be the quiver * —e—Y —p3—2z and C be the
subcoalgebra of K@) generated by {x,vy, z, «, 3}. Then the quiver I'¢ is

Sy — Sy — S,
Obviously, there is a path from S, to S, but any morphism
fiE, =<z,>— FE,=<x>

is zero.
On the other hand, if C is the coalgebra K@, the Ext-quiver I'c is
also the former quiver but, in this case, we may obtain a map

fi B =<z0pa>— FE,=<x>

defined by f(f«a) = = and zero otherwise. Observe that f is the
composition of the morphisms

g: B, =<2z 06,a>— E, =<y, a>
which maps z — 0, f — y and fa — «a, and
h:Ey=<y,a>— FE, =<z >

which maps y — 0 and a — z.
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Remark. Observe that the second coalgebra is a hereditary coal-
gebra (see Chapter 5) and the morphisms between indecomposable
injective comodules are surjective. Hence the composition of two
non-zero morphisms is a non-zero morphism. Thus if there is a
path (non necessarily of length one) in I'c from S, to S,, we obtain
that Hom¢(E,, E,) # 0.

Therefore the Ext-quiver provides us information about the ex-
tension groups of the simple comodules (i.e., the arrows) but it
is not exact at all about the morphisms between the injective en-
velopes (we would like to say “the paths”).

3.4 Injective and simple comodules

Given an arbitrary coalgebra C, many properties of its category of
comodules are given by means of the simple objects or, since it
is a Grothendieck category, their injective envelopes, i.e., the in-
decomposable injective comodules. Therefore we are interested in
knowing how the localizing functors map these classes of comod-
ules.

Let us consider an idempotent element e € C*, 7, its localizing
subcategory and the localizing functors:

T=e(—)=—0ceC

MC MeCe .

S=—0.c.Ce

We recall that there exists a torsion theory on M¢ associated to
the functor 7, where a right C-comodule M is a torsion comodule
if (M) = 0. If M is not torsion, we denote by #()) the torsion
subcomodule of M.

We know that, by the remark of Theorem 3.2.3, for a simple right
C-comodule S,, T'(S,) = S, if x € I, and zero otherwise (therefore
any simple comodule is torsion or torsion-free). From that fact we
obtain the following result:

Lemma 3.4.1. Let M be aright C-comodule then T (Soc M) C Soc T'(M).
Proof. Let us suppose that Soc M = @,¢;5,®(®;e,1;), where S; and 7}

are simple right C-comodules such that 7'(S;) = S; and T'(T;) = 0 for
alli el and j € J. Since Soc M C M, T'(Soc M) = @;e;5; CT(M). O
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Let us study the behavior of the injective comodules under the
action of the section functor. Indeed, we shall prove that S pre-
serves indecomposable injective comodules and, consequently, in-
jective envelopes. In what follows we will denote by {F,}.c;. a com-
plete set of pairwise non-isomorphic indecomposable injective right
eC'e-comodules.

Proposition 3.4.2. In the above situation, the following properties
hold:

(a) The functor S preserves injective comodules.

(b) If N is a quasi-finite indecomposable right eCe-comodule then
S(N) is indecomposable.

(c) The functor S preserves indecomposable injective comodules.

d) If S, is a simple eC'e-comodule then Soc S(S,) = S,.

f) We have S(E,) = E, forallx € I..

)
(d)
(e) If S, is a simple eCe-comodule then S(S,) is torsion-free.
)
) The functor S preserves quasi-finite comodules.

)

(

(9

(h) The functor S : M¢“c — M restricts to a fully faithful functor
S Mg?e — /\/quf between the categories of quasi-finite comod-

ules which preserves indecomposables comodules and respects
isomorphism classes.

Proof. (a) The functor T is exact and left adjoint of S so, by [Ste75,
Proposition 9.5], the result follows.

(b) If N is quasi-finite and indecomposable then the ring of endo-
morphism End.c.(N) = End¢(S(N)) is a local ring. Thus S(N) is
indecomposable.

(c) It follows from (a) and (b).

(d) Suppose that Soc S(S,) = ®icr1S; ® (Bjes1;), where S; and T} are
simple right C-comodules such that 7'(S;) = S; and T'(7;) = 0 for
all i € [ and j € J. By Lemma 3.4.1, ®;c;S; = T(Soc S(S;)) C
Soc T'S(S,;) = Soc S, = S,. Since S is left exact and preserves in-
decomposable injective comodules, S, C Soc S(S,) C Soc S(E,) =
Sy. Then S, = S, = Soc S(S,).
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(e) If M C S(S,) is a non-zero torsion subcomodule of S(S,) then
there exists a simple C'-comodule R contained in M such that
T(R) = 0. But Soc S(S,) = S, so S, = R and we get a contradic-
tion.

(f) Itis easy to see from (c¢) and (d).

(9) Let M be a quasi-finite right eCe-comodule. The injective enve-
lope of M is a quasi-finite injective comodule M. . F = @FZ*
Since S is left exact then S(M)y ~S(FE) = ®E?*. Thus S(M) is
quasi-finite.

(h) It is a consequence of the above assertions and the equality
TS - 1MeC’e.
O

Corollary 3.4.3. S preserves injective envelopes.

After proving Proposition 3.4.2, one should ask if the behavior of
the simple comodules is analogous to the injective ones, that is, if
S preserves simple comodules and, consequently, in view of Propo-
sition 3.4.2(c), S(S,) = S, for all x € I.. Unfortunately, in general,
this is not true and we can only say that S(S,) is a subcomodule of
E, which contains S,.

Example 3.4.4. This example shows that S(S,) does not have to be
S, for every x € I.. Consider the quiver Q)

«
O —> 0,
) x

C = K@ and the idempotent e € C* associated to the set = {y}. Then,
the localized coalgebra eCe is S, and

S(S:) = S:0cceCe = eCellyc.Ce = Ce =< x,a0 ># S,

The reader should observe that 5(S,) could be an infinite di-
mensional right C-comodule. Therefore, in general, S cannot be
restricted to a functor between the categories of finite dimensional
comodules.

Example 3.4.5. Consider the quiver ()

Qnp+1 Qn Qn—1 a2 aq
. o o O—:+:++—0—>0—=>0,

n+1 n n—1 3 2 1
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C = K@ and the idempotent e € C* associated to the set = {1}. Then
the localized coalgebra eCe is S; and

S(S1) = S10cceCe = eCellec.Ce = Ce =< x, {og -+ - Q10 }>1 > .

In order to characterize the simple comodules invariant under
the functor S we need the following technical lemma. It asserts
that the torsion predecessors of a torsion-free vertex S, in ' are
the simple C'-comodules contained in the socle of S(S,)/S,. In the
following picture the torsion-free vertices are represented by white
points.

-1

-
Ez/S:Jc I o I
|

N

/{‘NOHO Sx
S(Sz)/Sz \ O/
|
|

I
I
L _

Lemma 3.4.6. Let S, be a simple C-comodule. Then we have that
S, C Soc (S(Sy)/Sz) if and only if S, C Soc (E,/S,) and T(S,) = 0.

Proof. Consider the short exact sequence
Sy S(Sy) —+ S(S:)/ Sz (3.1)

Since S, = T(S,) = TS(S:), S(Sz)/S. is a torsion subcomodule of
E./S,. Therefore if S, C Soc (S(S,)/S.) then S, C Soc (E,/S,) and
T(S,) = 0.

For the converse, first we prove that Exty(S,,S(S,)) = 0. We
apply the functor S to the exact sequence

Se —=EB, —>E,/S,
and we obtain the following commutative (and exact) diagram:

S(p)

S(S,) ——E,

E./5(5:)

S(E,/S,) — Coker

0
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Therefore we have that Homc(S,, E,/S(S;)) is included the set of
morphisms Hom¢(S,, S(E,/S:)) = Homece(T(S,), E,/S:) = 0. Con-
sider now the short exact sequence

S(S)—= E, — E,/S(S:)
which produces the exact sequence
0 = Homg(S,, E,) — Home(S,, E./S(S.)) — Ext?(S,, S(S,)) — 0

and then 0 = Homq(S,, E,/S(S,)) = Ext{ (S, S(S,)).
Let us now apply the functor Hom«(S,, —) to (3.1) and we obtain
the exactness of the sequence

Home(Sy, S(S,)/S,) — ExtS(S,, S,) # 0 — Ext{ (S, S(S,)) =0 .

Then the result follows. ]

Corollary 3.4.7. Let S, be a simple eCe-comodule. The following
conditions are equivalent:

(a) E./S, is torsion-free.
(b) There is no arrow in I'c _from a torsion vertex S, to S,.
(¢) S(S;) = S;.

Let us now analyse the quotient functor. We start with an ex-
ample which shows that, in general, 7" does not preserve injective
comodules.

Example 3.4.8. Let () be the quiver

C' be the subcoalgebra of K@ generated by {z,y,z «,3} and I, =
{z,y}. The injective right C-comodule E, is generated by < z, 5 > and
T(E.) =< p>=95,#E,.

Proposition 3.4.9. The following statements hold:
(a) T(E,) = E, forany z € I..

(b) If E is an injective torsion-free right C-comodule then T(E) is an
injective right eC'e-comodule.
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(¢) If M is a torsion-free right C-comodule then Soc M = SocT(M) =
T(Soc M).

(d) The functor T : M® — M<C* restricts to a functor T : M$; — MG
and a functor T : MJ(Z — Mjcce between the categories of quasi-
finite and finite dimensional comodules, respectively.

Proof. (a) By Proposition 3.4.2, E, = S(E,) for any x# € I.. Then
T(E,) =TS(E,) = E,.

(b) It follows from (a).

(¢c) Consider the chain @,c;S, = SocM C M C E(M) = ®uerE,.
Since M is torsion-free then I C I.. Therefore Soc M = &,¢;S, =
and the result follows.

(d) It is easy to see.

O
Example 3.4.10. In general, the functor T is not full. Let () be the
quiver
o *a> O’
x Y

C = KQ and e € C* be the idempotent associated to the set {z}. Then
dimgHome (S, C) = dimgEnd(S,) = 1 and dimgHom.ce(S,,eC) = 2.
Therefore the map T, - cannot be surjective.

Example 3.4.11. In general, the functor T' does not preserve inde-
composable comodules. Let K@) be the path coalgebra of the quiver

and e € C* be the idempotent associated to the set {z,y}. Then T
maps the indecomposable injective right C-comodule E, =< z,«a, 3 >
to the right eCe-comodule S, @ S,,.

Nevertheless, it is easy to see that T preserves indecomposable
torsion-free comodules. Since 7(S,) = 0 for each torsion simple
C-comodule, one could expect the analogous property for their in-
jective envelopes.
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Example 3.4.12. In general, it is not true that T(E,) = 0 for any
x ¢ I,. Let KQ be the path coalgebra of the quiver

o—% o o,

x Yy
C = KQ and e € C* be the idempotent associated to the set {z}. Then
TE,) =T(<ya>)=5,#0.

Proposition 3.4.13. Let E, be an indecomposable injective C'-comodule
withy ¢ I.. We have T'(E,) = 0 if and only if Hom¢(E,, E,) = 0 for all
x € l.

Proof. =) Since S is left adjoint to 7' then we have the following
Home(E,, E,) = Home(E,, S(E,)) = Hom.c.(T(E,),E,) = 0 for all = €
I..

<) By hypothesis, for all € I, 0 = Hom¢(E,, E,) = Homg(E,, S(E,)) =
Homc.(T(E,), E;). Then Hom.c.(T(E,),eCe) = 0 and thus T(E,) =
0 []

Let us finish the study of the quotient functor by giving an ap-
proach to the image of an indecomposable injective comodule as-
sociated to a torsion simple comodules.

Lemma 3.4.14. Let S, be a torsion simple right C-comodule and
{52, T.}se1,.c5 be the set of all immediate predecessors of S, in I'c,
where S, is torsion-free for all x € I and T, is torsion for all z € J.

Then
Soc T(E,) € (D S.) EP(EP Soc T(E.)).

zel zed

Proof. By Lemma 3.3.1, Soc (E,/S,) = (®4e15:) @ ($.e,1.) and, con-
sequently, E,/S, C (®se1Es) ® (2esE.). Then T(E,) = T(E,/S,) C
(BrerEy)®(@.esT(E,)) and then Soc T(E,) C (BuerS:)B(PresS0c T(EL)).

O

It is not possible to prove the equality of Lemma 3.4.14. Con-
sider the quiver of Example 3.4.8, the coalgebra generated by the
set < z,y,z,a,06 > and I, = {z}. Then SocT(E,) = 0 and Soc T'(E,) =
Sy

Until the end of the section we assume that 7, is a colocalizing
subcategory of M®. Then the quotient functor T has a left adjoint
functor H : M“¢ — M.

Proposition 3.4.15. Under the above conditions, we have that:
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(a) H preserves projective comodules.

(
(c
(d) The functor H : M — MC restricts to a fully faithful functor

H ./\/ljcce — M]Cf between the categories of finite-dimensional

comodules which preserves indecomposable comodules and re-
spects isomorphism classes.

)

b) H preserves finite dimensional comodules.
) H preserves finite dimensional indecomposable comodules.
)

Proof. (a) It is symmetric to the proof of Proposition 3.4.2(a) .

(b) Let N be a finite dimensional right eCe-comodule. Then H(N) =
Cohomc.(eC, N) = li_n>1HomeCe(N,\, eC)* = Homgc.(N,eC)*. Now,
since eC is a quasi-finite right eCe-comodule, Hom.¢.(N, eC') has
finite dimension.

(c) Let N be a finite dimensional indecomposable right eCe-comodule.
Since H is fully faithful then End.c.(NV) = Ende(S(V)) is a local
ring. Now, by (b), S(V) is finite dimensional and then S(N) is
indecomposable.

(d) It is straightforward from (b), (¢) and the equality TH = 1 cce.
O

Analogously to the study of the section functor, let us charac-
terize the simple comodules which are invariant under the functor
H. For that purpose we need the following lemma:

Lemma 3.4.16. Let S, be a simple eCe-comodule. Then H(S,) = S,
if and only if Hom.c.(S,, T(E,)) =0 forally ¢ I..

Proof. We have that H(S,) = Cohom.c.(eC,S,) = Cohom,c.(eCe, S,) ®
Cohomece(eC(1 —e),S;) = S, & Cohomece(eC(1 —¢),S,) and therefore

H(S;) =S5, < Cohom.c.(eC(1—e),S,)
< Homece(Sy,eC(1 —e)) =
< Homece (e, Byer T(Ey))
& Dygr.Homece (Sz, T(Ey))
< Homece(S;, T(E,)) =0 for all y ¢ L.

|| ©||

]

Corollary 3.4.17. Let E, be an indecomposable injective C'-comodule
withz € I.. If Hom¢(E,, E,) =0 forally ¢ I, then H(S,) = S,.
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Proof. Let us suppose that there exists a nonzero morphism g €
Hom,c.(S,, T(E,)) for some y ¢ I.. Since E, is injective, there ex-
ists a non-zero morphism f that makes commutative the following
diagram

Sx'*i)T(EZ)

£ i

E,
Hence Hom¢(E,, E,) ~ Hom..(T(E,),E,) # 0. The result follows
applying Lemma 3.4.16. []

Proposition 3.4.18. Let S, be a simple eCe-comodule. H(S,) = S,
if and only if Extj(S,,S,) = 0 for ally ¢ I., ie., there is no arrow
Sy, — Sy inT'¢, where S, is a torsion simple C-comodule.

Proof. By Lemma 3.4.16, it is enough to prove that Ext(S,,S,) = 0
for all y ¢ I. if and only if Hom.c.(S5,,T(£,)) =0 for all y ¢ I..

«) Suppose that Extg(S,,S,) # 0 for some y ¢ I.. By Lemma
3.3.1, S; C Soc (E,/S,). Then

Sy =1T(S;) CT(Soc E,/S,) C SocT(E,/S,) = SocT(E,)

and therefore Hom (S, T'(E,)) # 0.

=) For each z ¢ I., we consider the set {S;},ca. of all torsion-free
immediate predecessors in I'c of S,. Then, by Lemma 3.4.14, it is
verified that the simple comodules contained in 7'(E,) are in the set
{Sihren.z¢1. = P forany y ¢ I..

Now, if Ext;(S,,S,) =0forally ¢ I, S, ¢ P and then S, ¢ T(E,)
for any y ¢ I.. Thus Hom.c.(S,, T(E,)) =0 for any y ¢ I.. O

3.5 Stable subcategories

The bijective correspondence between localizing subcategories of
M€ and equivalence classes of idempotent elements in C* is in-
teresting because we may parameterize some classes of localizing
subcategories using well known classes of idempotent elements.

The first interesting case appears when we consider central idem-
potent elements. Which localizing subcategories correspond to cen-
tral idempotent elements?
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The answer to that question is given, for example, in [GJM99]. If
T is a localizing subcategory such that the associated idempotent
element is central, then 7 is closed under left and right links.

Following these ideas, we may consider more general classes
of idempotent elements and the corresponding localizing subcat-
egories. Using the results of the last section we shall deal with
semicentral idempotent elements in C* and see that they define a
special, and well known, class of localizing subcategories.

Let us recall that a localizing subcategory 7 of M® which is
closed for essential extensions is called stable. The first result
we consider on stable localization subcategories appears in [NT94].
There it is proved that the localizing subcategory of M defined by
a coidempotent subcoalgebra A of C is stable if and only if A is an
injective right C'-comodule.

In order to characterize stable localizing subcategories of M in
terms of idempotent elements, first we recall some definitions from
the theory of idempotent elements. Following [Bir83], an idempo-
tent element e of a ring R is said to be left semicentral if (1—e)Re = 0.
Right semicentral idempotents are defined in an analogous way.
The following characterizations of semicentral idempotent are well
known and easy to prove:

e is left semicentral in R < eRe = Re
& ere=reforallr e R
& eRis an ideal of R
& R(1—e)isanideal of R

As a consequence of these equivalences, an idempotent element
e € C* is left semicentral if and only if 1 — e is right semicentral.

Let us give some extra characterizations of a left semicentral
idempotent element in the dual algebra C* of a coalgebra C.

Lemma 3.5.1. Let C be a coalgebra and e be an idempotent element
in C*. The following conditions are equivalent:

(a) e is a left semicentral idempotent in C*.

b) eCe =eC.

)
(b)
(¢c) C(1 —e) is a subcoalgebra of C.
(d) eC is a subcoalgebra of C.

)

(e) eM is a subcomodule of M for every right C'-comodule M.
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Proof. (a) = (b) For any element z € C' and any g € C*, we have
glex) = (g*xe)(x) = (ex g*e)(x) = g(exe). Therefore exe = ex and thus
eCe = eC.

(b) = (a) Given g € C*, we have that for every = € C, (g xe)(z) =
g(ex) = g(exe) = (ex g*e)(x). Therefore ex gxe = g+ e for every g € C*
and e is left semicentral in C*.

(a) & (c) It is easy to see that (C(1 —e))t = eC*, so C(1 —¢) is a
subcoalgebra of C' if, and only if eC* is an ideal of C* if and only if e
is a left semicentral idempotent in C*.

(a) = (e) Let M be a right C-comodule and ¢ an arbitrary element in
C*. Then, for every x € eM, we have gz = g(ex) = (gxe)x = (exg*e)r =
e(g x ex) € eM. Therefore eM is left C*-submodule of M and thus it
is a right C-subcomodule.

(e) = (d) It is trivial

(d) < (a) As before, (eC)t = C*(1 — e), thus eC is a subcoalgebra of
C' if and only if C*(1 — e) is an ideal of C* if and only if e is a left
semicentral idempotent in C*. O

The following theorem is the main result of this section. In it,
we describe stable subcategories from different points of view. A
proof of some equivalences is given in [JMNRO6, Theorem 4.3]. We
recall that, for a subset A of the vertex set (I'¢),, we say that A is
right link-closed if it satisfies that, for each arrow S — T in I'¢, if
SeAthenT € A.

Theorem 3.5.2. Let C be a coalgebra and 7, C MY be a localiz-
ing subcategory associated to an idempotent element e € C*. The
following conditions are equivalent:

(a) 7. is a stable subcategory.
(b) T(E,) =0 forany z ¢ I..

ORISR A

(d) Home(E,, E;) =0 forallz € I, and y ¢ I..

(e) K={S € (I'e)o | eS =S} is aright link-closed subset of (I'c)y, i.e.,
there is no arrow S, — S, inl'c, where T'(S,) = S, and T'(S,) = 0.

(f) There is no path in I'c from a vertex S, to a vertex S, such that
T(S;) =S, and T(S,) = 0.
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(9) e is a left semicentral idempotent in C*.
If T, is a colocalizing subcategory this is also equivalent to
(h) H(S,) =S, forany z € I..

Proof. (a) = (b) = (¢) = (d) = (e) = (f) follows from the definition
and from Proposition 3.4.13.

(f) = (e). Trivial.

(e) = (¢). By hypothesis, the set P defined in the proof of Propo-
sition 3.4.18 is zero. Therefore Soc T(E,) = 0 for all y ¢ I.. Then
T(E,) =0forallt¢I.

(¢c) = (a). Let M be a torsion right C-comodule such that its injec-
tive envelope is ®;c;F;. Then S; C M is torsion for all i € J and, by
hypothesis, T(E;) =0 for all i € J. Thus T(®;c;E;) = 0.

(¢) & (9). We have C = @uc;. B, then T(C) = ®per, Bx ® Byer T(E,).
On the other hand, eCe = &,¢; E,. Therefore if (¢) holds then eCe =
T(C). Conversely, if eCe = T(C) then @®,c;, B, = ®per, B, & Sy, T(E,).
Since eCe is quasi-finite, by Krull-Remak-Schmidt-Azumaya theo-
rem, T'(E,) =0forally ¢ L.

(e) & (h). It is Proposition 3.4.18. O

Then we could say that the vertices which determine a stable
localization are placed “on the right side” of the Ext-quiver. In the
following picture we denote the vertices in K by white points.

.. K |

04>o/ NQ o - l

I'ec - \.% \O/ :
O/ \}\O/’//‘/ \O' :

.%7 | [

As a direct consequence of Theorem 3.5.2, we obtain an alter-
native proof of the following fact:

Corollary 3.5.3. [NT96, 4.6] Any stable localizing subcategory of
M is a perfect colocalizing subcategory

Proof. If the localizing subcategory 7 is stable, 7 is associated to
a left semicentral idempotent element e € C* and hence Ce = eCe
is certainly injective and quasifinite as right eC'e-comodule. There-
fore, by Corollary 3.2.7, 7 is a perfect colocalizing subcategory of
MC. O
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Let us point out the following remarks.

Remark. It is well known that each stable localizing subcategory
7T is a TTF class, that is, the torsion class 7 is the torsionfree class
for another localizing subcategory. If 7. is stable then 7. = F;_.
the torsionfree class associated to the localizing subcategory 7;_..
Indeed, using Theorem 3.5.2 and Lemma 3.5.1, for every right C-
comodule M, we have that eM is a subcomodule of M, therefore
eM is precisely the torsion of M for the localizing subcategory 7;_..
Then M € F,_. if and only if eM = 0 if and only if M € T..

Remark. For an idempotent e € C*, we can consider also the local-
izing subcategory 7. of the category ‘M of left C-comodules, deter-
mined by e, that is, 7/ = {M €“M | Me = 0}. Using Theorem 3.5.2
and its left version, we obtain that the localizing subcategory 7. of
M is stable if, and only if the localizing subcategory 7,_. of M is
stable.

We may find an analogous result to Theorem 3.5.2 for right
semicentral idempotents:

Proposition 3.5.4. Let C be a coalgebra and 7, C M¢ be a local-
izing subcategory associated to an idempotent element e € C*. The
following conditions are equivalent:

(a) T1_. is a stable subcategory.
(b) T(E,) = E, forany z € I,.

(c¢) There is no path in I'c from a vertex S, to a vertex S, such that
T(S;) =S, andT(S,) = 0.

(d) K={S € (I'c)y | eS = S} is a left link-closed subset of (I'c)o, Le.,
there is no arrow S, — S, inT'¢, where T'(S,) = S, and T'(S,) = 0.

(e) e is a right semicentral idempotent in C*.

(f) The torsion subcomodule of a right C'-comodule M is (1 — e)M

(9) S(Sz) =S, forallx € I..

Proof. By the above remarks and Proposition 3.5.2, it is easy to

prove (a) & (b) < (¢) & (d) & (e) & (f). (d) & (g) is Corollary
3.4.7. []
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And now, we could say that the vertices of the localization are
placed “on the left side” of the Ext-quiver.

r---—- - - - - - - -~ 1

: . oHo/O\:\Q—>o

| - \O/ \./’ .
: O/ :\A.A//7 \., , ¢
= :

As a consequence, we get the following immediate result:
Corollary 3.5.5. The following are equivalent:

(a) e is a central idempotent.
(b) For each arrow S, — S, inT'¢, T(S,) =0 if and only if T'(S,) = 0.

(¢) For each connected component of I'¢, either all vertices are tor-
sion or all vertices are torsion-free.

(d) T(E,) =0 forany xz ¢ I. and S(S;) = S, forall x € I..

Corollary 3.5.6. Let ¢ be a central idempotent in C* and {X,, AL} s
be the connected components of I'c, where the vertices of each XL,
are torsion-free and the vertices of each A{, are torsion. Then {¥.},
are the connected components of I'.c..

3.6 Localization in pointed coalgebras

We finish the chapter studying the localization in pointed coalge-
bras. Remember that if the base field is algebraically closed, every
coalgebra is Morita-Takeuchi equivalent to a pointed coalgebra and
therefore this is a very large class of coalgebras.

In order to obtain an easier description of the theory we need
the following notation:

Let @ be a quiver and p = a,a,_1---a; be a path in ). We de-
note by I, the subset of vertices {s(a1), (1), t(a2),...,t(a,)}. Given
a subset of vertices X C )y, we say that p is a cell in @ relative
to X (shortly a cell) if I, N X = {s(p),t(p)} and t(o;) ¢ X for all
i=1,...,n—1. Given z,y € X, we denote by Cell%(z,y) the set of all
cells from x to y. We will denote the set of all cells in ) relative to
X by Cell4.
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Lemma 3.6.1. Let () be a quiver and X C (), a subset of vertices.
Given a path p in () such that s(p) and t(p) are in X, then p has a
unique decomposition p = q, - - - 1, where each ¢, is a cell in () relative
to X.

Proof. 1t is straightforward. O

Let p be a non-trivial path in Q which starts and ends at vertices
in X C @Qy. We shall call the cellular decomposition of p relative to X
to the decomposition given in the above lemma.

By Theorem 1.6.6, every pointed coalgebra (' is isomorphic to a
subcoalgebra of a path coalgebra K@) of a quiver (). Furthermore, C
is an admissible subcoalgebra (contains the subspace generated by
the set of all vertices and all arrows) and then, by Corollary 2.3.5,
it is a relation subcoalgebra in the sense of Simson [Sim05]. Thus
C has a decomposition, as vector space, C = @, ¢, C N KQ(a,b),
where ()(a,b) is the set of all paths in @) from « to b. That is, C' has a
basis in which every basic element is a linear combination of paths
with common source and common sink.

Lemma 3.6.2. Let C' be an admissible subcoalgebra of a path coal-
gebra KQ of a quiver ). There exists a bijective correspondence
between localizing subcategories of M® and subsets of vertices of

Q.

Proof. The set of simple C-comodules is {Kz},cq, and therefore
there is a bijection between the subsets of simple comodules and
the subsets of vertices of (). By the arguments of Section 2, the
result follows. O

Let X be a subset of vertices of (). We will denote by 7y the
localizing subcategory of M associated to X.

Given an admissible subcoalgebra C of K(), we can say more
about the idempotent elements of its dual algebra and the bijection
between them and the vertices of the quiver. For any idempotent
element e in C* and any vertex z in (), we have that either e(x) =0
or e(x) = 1. Hence two idempotent elements e, f € C* are equiv-
alent if and only if ¢, = f,- In this way, we obtain that every
localizing subcategory of MY is associated to an idempotent ele-
ment e € C* such that e(p) = 0 for any non trivial path p. Therefore,
for an idempotent ¢ € C*, we may consider the subset of vertices
{z € Qo such that e(z) = 1} and, conversely, for a subset of vertices
X, it is associated the idempotent e € C* such that e(z) = 1 if z € X,
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and zero otherwise. In what follows, by the idempotent associated
to a subset of vertices, we shall mean the idempotent described
above.

For an idempotent element e € C*, the localized coalgebra eCe
has a decomposition eCe = P, , x CNKQ(a,b), that is, the elements
of eCe are linear combinations of paths which start and end at
vertices in the set of vertices associated to e. Also we have that eCe
is a pointed coalgebra so, by Theorem 1.6.6, there exists a quiver
Q¢ such that eCe is an admissible subcoalgebra of KQ°. Let us
analyze the elements of the quiver Q°:

Vertices. We know that (), equals the set of group-like elements
G(C) of C, therefore (Q°)y = G(eCe) = eG(Ce = eQpe = X.

Arrows. Let r and y be vertices in X. An element p € eCe
is a non-trivial (z,y)-primitive element if and only if p ¢ KX and
Acce(p) = y @ p+ p ® z. Without loss of generality we may assume
thatp =", \ips is an element in eCe such that each path p; is not
trivial, and p; = o}, ---a4af and p; = ¢, - - - ¢ are the decomposition
of p; in arrows of Q and the cellular decompos1t10n of p; relative to
X, respectively, for all i = 1,...,n. Then

:Z)\ipi®h(pi)+Z)\i5(pi)®pi+z)\izla; @y a)
i=1 i=1 =1 j=2

and therefore,

Acce(p) = Z Xi(epie ® eh(pi)e) + Z Ai(es(pi)e®ep;ie)+

+Z)\Z at)e®@e(al_y---afe.

We have that, for each path ¢ in Q, eqe = ¢ if ¢ starts and ends at
vertices in X, and zero otherwise. Thus,

Acce(p ZA (pi @ h(p:)) +Z/\ s(pi) ® pi)+

+ZAiZqZ---Q§®Q§_1---q’i-
=1 =2

Now, this is a linear combination of linearly independent vectors of
the vector space eCe ® eCe, so A.ce(p) = y ® p + p ® « if and only if
we have that
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(a) h(p;) =z foralli=1,...,n;
(b) s(pi) =yforalli=1,...,n;

(€) Nl i @ gy - df = 0.

Condition (c) is satisfied if and only if r;, = 1 for all i = 1,... n.
Therefore A.c.(p) = y ® p+ p ® z if and only if p; is a cell from z to
y for all i = 1,...,n. Thus the vector space of all non-trivial (z,y)-
primitive elements is KCell$ (z,y) N C.

Proposition 3.6.3. Let C' be an admissible subcoalgebra of a path
coalgebra K@ of a quiver (). Let e be the idempotent element of C*
associated to a subset of vertices X. Then the localized coalgebra
eCe is an admissible subcoalgebra of the path coalgebra K ()¢, where
Q)¢ is the quiver whose set of vertices is (Q°)y = X and the number of
arrows from x to y is dimy KCell% (x,y) N C forall z,y € X.

Corollary 3.6.4. Let () be a quiver and e be the idempotent element
of (KQ)* associated to a subset of vertices X. Then the localized
coalgebra e(K(Q))e is an admissible subcoalgebra of the path coalge-
bra KQ°, where Q° = (X, Cellg).

If C'is a path coalgebra then we can say more:

Proposition 3.6.5. Let () be a quiver and e be the idempotent el-
ement of (KQ)* associated to a subset of vertices X. Then the lo-
calized coalgebra e¢(KQ)e is isomorphic to the path coalgebra KQ°,
where Q° = (X, Cell?).

Proof. Consider the morphism of coalgebras f : ¢(KQ)e — KQ° de-
fined in the following way: f(z) = x for any vertex x € X, and for any
non-trivial path p = «,, ---«; such that s(o),t(a,) € X, we choose
f(p) = p,---p1, where p, - - - p; is the cellular decomposition of p. This
is a bijective morphism of coalgebras. ]

Examples of the former proposition are given in Section 1 of
Chapter 5. Nevertheless, these are not the unique examples of
localized coalgebras which are path coalgebras as we show in the
following example:
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Example 3.6.6. Let () be the quiver
Zy O / X O Ty
A

and C be the admissible subcoalgebra generated by asay + ayas. Let
us consider X = {x,z3,24}. Then eCe is the path coalgebra of the
quiver

Q° = 0B Ho 0o
Here, the element oy + aya3 corresponds to the composition of the
arrows az and az of QQ°.
On the other hand, if C' = K@, the quiver Q. is the following

And asa; + ayag corresponds to the element (5 + @y asz.

As in the previous example, it is worth pointing out that if C'
is a proper admissible subcoalgebra of a path coalgebra K (), then
we may consider two quivers: the quiver )¢ defined above and the
quiver ). such that e(KQ)e = KQ.. Clearly ¢ is a subquiver of
Q. (differences are in the set of arrows). Then we may relate both
quivers by means of a morphism ¢ : KQ° — K. defined in the
following way: we choose ¢g(z) = z, for any element z € X, and
given an arrow [ € (Q°); from z to y, § corresponds to a basic
element of KCellg(x, y)NC, p=>"", \ip;, where p; is a cell from z to
y, then we define ¢g(5) = p. By [Nic78, Proposition 1.4.2], g extend
to a morphism of coalgebras and by [Mon93, Theorem 5.3.1], ¢ is
injective.

Thus eCe can be viewed as an admissible subcoalgebra of K (..
We denote by F' the composition eCe —r> KQ°—9> K(Q., where h
is the inclusion.

Corollary 3.6.7. I'(eCe) is a subcoalgebra of K(). isomorphic to eCe
such that each element z € F(eCe) can be written as ;" | \icl. - - i,
where any ¢, € F(eCe) and it is a linear combination of cells with
common source and common sink.
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Remark. The reader should observe that we have the following

diagram:
eCet—=e(KQ)e —~ KQ,
x /

KQ°

where : is the inclusion. This diagram is not always commutative
although F' equals f in (eCe); (compare with [Woo97, 4.1]). Con-
sider Example 3.6.6, then F(asas+agas) = a3 a3 and f(asas+ayasz) =
oy a3 + 3.

Let us now restrict our attention to the colocalizing subcate-
gories of M. For the convenience of the reader we introduce the
following notation:

We say p = oy, - - ey is a s(p)-tail in @ relative to X if [, N X =
{s(p)} and t(a;) ¢ X for all i = 1,...,n. If there is no confusion
we simply say that p is a tail. Given a vertex x € X we denote by
Tail? () the set of all z-tails in Q relative to X.

Lemma 3.6.8. Let () be a quiver and X C (), be a subset of vertices.
Given a path p in @) such that s(p) € X and t(p) ¢ X, then p has a
unique decomposition p = cq, - - - q1, Where ¢, q, . .., q, are subpaths of
p such that ¢ € Tail%(s(c)) and ¢; € Cell? foralli =1,...,r.

Proof. 1t is straightforward. O

Let p be a path in @ such that s(p) € X C @y and t(p) ¢ X, we
shall call the tail decomposition of p relative to X to the decomposi-
tion given in the above lemma. We say that c is the tail of p relative
to X if p = ¢q, - - - 1 is the tail decomposition of p relative to X.

Let {S.}.cq, be a complete set of pairwise non isomorphic in-
decomposable simple right C-comodules. We know that a right
C-comodule M is quasifinite if and only if Homq(S,, M) has finite
dimension for all z € @,. Let x € @y and f be a linear map in
Home(S,, M). Then pyo f = (f ® I) o ps,, where py; and pg, are the
structure maps of M and S, as right C-comodules, respectively. In
order to describe f, since S, = Kz, it is enough to choose an image
for z. Suppose that f(x) =m € M. Since (pupf)(z) = ((f @ I)ps,)(x),
we obtain that py/(m) = m ® x. Therefore

Home (S, M) = {m € M such that py;(m) =m®x} = M,,
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as K-vector spaces, and M is quasifinite if and only if M, has finite
dimension for all z € Q.

Our aim now is to establish when a localizing subcategory 7.
is colocalizing, or equivalently, by Proposition 3.2.6, when eC is
a quasifinite right eCe-comodule. Following the sigma-notation
of [Swe69], the structure of eC as right eCe-comodule is given by
pec(p) = Z(p) epy ®epeye if Axg(p) = Z(p) Py ®@p2), for all p € eC'. Itis
easy to see that eC has a decomposition eC' = P, x 4co, C N KQ(a,b),
as vector space, that is, the elements of eC' are linear combinations
of paths which start at vertices in X.

Proposition 3.6.9. Let C' be an admissible subcoalgebra of a path
coalgebra K(@). Let e be an idempotent element in C* associated to a
subset of vertices X . The following conditions are equivalent:

(a) The localizing subcategory Tx of M€ is colocalizing.
(b) eC' is a quasifinite right eCe-comodule.

(¢) dimg KT ail%(x) N C is finite for all z € X.

Proof. By the arguments mentioned above, it is enough to prove
that (eC), = KT ail(z) N C.

Let p = >, Mic; € C be a K-linear combination of z-tail such
that ¢; = o ---a} ends at y; for all i = 1,...n. Then,

Akq(p) :p®$+zyi®)\ici+Z)\izaii"'a§®C¥;~_1---ai,
i=1 i=1  j=2
and then,

pec(p) = ep®e:ve+2)\ieyi®ecie+
i=1

PSS el ) @ ol ol = p &
=1 j=2

because a; ends at a pointnotin X forallj=1,...,r,and:=1,...n.
Thus p € (eC),.

Conversely, consider an element p ="' | Aipi+> o, tikgr € (eC)y,
where t(p;) € X foralli =1,...,n, and t(¢x) ¢ X forall k = 1,...,m.
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Moreover, let us suppose that p; = .. - - -} is the cellular decompo-
sition of p; relative to X forall i = 1,...,n, and ¢, = g~ _---q} is the
tail decomposition of g, relative to X for all £k =1,...,m. Then,

pec(®) =D A ZZJ_?Z!Z. CDSRDY D Y At (0) @it > Aipi @s(pi)+
=1 j=2

i=1 i=1

m m Sk m
+ Z,Ukckz @ qr + ZMZC@Z GO T T Zﬂkaz ® 5(qk)-
k=1 k=1 1=2 k=1

A straightforward calculation proves that if p.c(p) = p®x then n = 0,
s(qgr) =z and s, = 0 for all k = 1,...,m. Therefore p € KT ail%(z)NC
and the proof is finished. O

Corollary 3.6.10. Let () be a quiver and e be the idempotent ele-
ment in (KQ)* associated to a subset X C o. Then the following
conditions are equivalent:

(a) The localizing subcategory Tx of M€ is colocalizing.

(b) Tail%(x) is a finite set for all x € X. That is, roughly speaking,
there are at most a finite number of paths starting at the same
point whose only vertex in X is the first one.

Example 3.6.11. Consider the quiver ()

T\ « :
\\j where i € N

and the idempotent ¢ € (KQ)* associated to the subset X = {z}.
Then Tail%(z) = {a;}ien is an infinite set and the localizing subcate-
gory Tx is not colocalizing.

Remark. Observe that if the set Q)y\ X is finite and @ has no cycles,
or if C' is finite dimensional, then every localizing subcategory is
colocalizing.



Chapter 4

Tame and Wild Coalgebras

In the category of coalgebras, over a fixed algebraically closed field,
we may distinguish between two disjoint classes: the tame coalge-
bras and the wild coalgebras, see [Sim05]. The idea of such classes
is that the category of comodules over a wild coalgebra is so large
that it contains the representation theory of any finite dimensional
algebra. Therefore it is not a realistic aim to get a description of
all its comodules and we exclude it from our study. Moreover, it
is expected that each coalgebra is either tame or wild (tame-wild
dichotomy) and hence, from that point of view, we should restrict
the theory to tame coalgebras.

In Chapter 2, we saw that there exist admissible subcoalgebras
which are not path coalgebras of a quiver with relations and then
we cannot find, in this way, an analogous result for coalgebras
of the famous Gabriel's Theorem: every basic finite dimensional
algebra, over an algebraically closed field, is the path algebra of
a quiver with relations. Nevertheless these examples are of wild
comodule type and, furthermore, a coalgebra with such property
seems closed to be wild. Therefore the problem should be reformu-
lated as the following question: is any basic tame coalgebra, over
an algebraically closed field, isomorphic to the path coalgebra of a
quiver with relations?.

In this chapter we consider this problem. In particular, after re-
lating tameness and wildness of a coalgebra and its localized coal-
gebras, we shall prove the following theorem: "Let ) be an acyclic
quiver. Then any tame admissible subcoalgebra of K () is the path
coalgebra of a quiver with relations”.
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4.1 Comodule types of coalgebras

Throughout this chapter we shall assume that K is an algebraically
closed field. It is well known that the category of finite dimen-
sional K-algebras is the disjoint union of two classes: tame alge-
bras and wild algebras. This is known as the tame-wild dichotomy,
see [Dro79] or [Sim92]. The idea of such classes is that the cate-
gory of finite dimensional modules over a wild algebra is so large
(because it contains the finite dimensional modules over the poly-
nomial algebra of two non-commuting variables) that it is not a
realistic aim to study its representation theory. Therefore the the-
ory is restricted to tame algebras. In this section we recall from
[SimO1] and [SimO05] the analogous concepts for a basic (pointed)
coalgebra.

Let C' be a basic coalgebra such that Cy = ®,¢;.S;. For every
finite dimensional right C-comodule M we may consider the length
vector of M, length M = (m;);c;. € Z'e, where m; € N is the number of
simple composition factors of M isomorphic to S;. In [SimO1] it is
proved that the map M — length M extends to a group isomorphism
Ko(C) — Z'c, where K,(C) is the Grothendieck group of C. Recall
that the Grothendieck group of a coalgebra (or of the category M?]
is the quotient of the free abelian group generated by the set of iso-
morphism classes [M] of modules M in M§ modulo the subgroup
generated by the elements [M] — [N] — [L] corresponding to all exact
sequence 0 — L — M — N — 0 in M¢.

Let R be a K-algebra. By a R-C-bimodule we mean a K-vector
space L endowed with a left R-module structure - : R® L — L and a
right C-comodule structure p : L — L®C such that p(r-z) = r-pp(x),
i.e., the following diagram is commutative

R®L

L

I®pr PL

ReLeC-~LgC
We denote by M the category of R-C-bimodules.

Example 4.1.1. Let L be a R-C-bimodule and e be an idempotent
element in € C*. Then el is a R-eCe-bimodule. That is, we have a

Jfunctor
T = 6(—) IRMC —>RM606.
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From the above diagram we obtain the following equalities:

D (@)@ (r-a)ay = pu(r-z) =r-pr(e Zr Ty @z, (4.1)
(ra)

Jor each element r € R and = € L. Now, we have that

re(e-z) =1 (X roelra)))
Z(z)r zoye(z))
(1®6)(Z<I>T To) ® )  (41)
= (1%6)9>L(T )

Then el has an structure of left R-module and right eCe-comodule.
Let us see the compatibility property.

- per(€ - x) 7’~(Z()e Ty ®e-xq)-e)
=2 " (e zo)®e-zq)-e
=2 e (r-zo)®e-zqy-e  (41)
=D € (M- T)oy®e-(r-z)u-e
= per(e - (r-x))
= per(r - (e 2))

Following [SimO1] and [SimO05], let us recall that a K-coalgebra
C' is said to be of tame comodule type (tame for short) if for ev-
ery v € Ky(C) there exist K[t]-C-bimodules LV, ... L), which are
finitely generated free K[t|-modules, such that all but finitely many
indecomposable right C-comodules M with length M = v are of the
form M = K} @gp L', where s <r,, K} = K[t]/(t—)) and X € K. If
there is a common bound for the numbers r, for all v € Ky(C), then
C' is called domestic.

If C is a tame coalgebra then there exists a growth function u}, :
Ko(C) — N defined as p(v) to be the minimal number r, of K[t]-
C-bimodules LY, ... L) satisfying the above conditions, for each
v € Ko(C). C is said to be of polynomial growth if there exists a
formal power series

vmth = (t;);e1, and non-negative coefficients g;, ;. € Z such that
p&(v) < Gv) for all v = (v(§))jer. € Ko(C) = ZUS) such that [jv]| =
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dier Vi) = 2. L G(t) = > ¢, 95t where g; € N, then C' is called of
linear growth. If p}. is zero we say that C is of discrete comodule
type. Observe that domestic coalgebras are of linear growth.

Let @) be the quiver o == o, K () the path algebra of the quiver @
and /\/lf@ the category of finite dimensional right K@-comodules.
A K-coalgebra C' is of wild comodule type(wild for short) if there
exists an exact and faithful K-linear functor F : M{(Q — M that
respects isomorphism classes and carries indecomposables right
K@-modules to indecomposable right C-comodules. If, in addition,
the functor F is fully faithful, we will say that C is of fully wild
comodule type. This definition can be done in an equivalent way if
we take the quiver ) consisting on one vertex and two loops.

Let us collect from [SimO1] and [SimO05] some properties of wild
and tame comodule type.

Proposition 4.1.2. (a) The tame, polynomial growth, linear growth,
discrete, domestic and wild comodule type are invariant under
Morita-Takeuchi equivalence of coalgebras.

(b) The notion of wild comodule type is left-right symmetric.

(c¢) If there exist a pair S, S’ of simple right C-comodules such that
dimgExt5 (S, S") > 3 then C is of wild comodule type.

(d) The following conditions are equivalent:

(1) C is of wild comodule type.

(1i) There exists a finite dimensional subcoalgebra H of C of
wild comodule type.

(1i1) The coalgebra C' is a direct union of finite dimensional sub-
coalgebras of wild comodule type.

(e) If C is tame then each finite dimensional subcoalgebra of C is
also tame.

Corollary 4.1.3. Let C be a K-coalgebra and D be a subcoalgebra
of C of wild comodule type. Then C' is of wild comodule type.

As a consequence of the former proposition, Simson proves in
[SimO5] the weak tame-tild dichotomy for coalgebras.

Corollary 4.1.4 (Weak tame-wild dichotomy for coalgebras). Let K
be an algebraically closed field. Then every K-coalgebra of tame
comodule type is not of wild comodule type.
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We hope that the following tame-wild dichotomy holds.

Conjecture 4.1.5. [SimO5][Tame-wild dichotomy for coalgebras] Let
K be an algebraically closed field and C' be a K -coalgebra. Then C
is either of tame comodule type, or of wild comodule type, and these
types are mutually exclusive.

4.2 Localization and tame comodule type

This section and the subsequent one are devoted to study the re-
lation between the comodule type of a coalgebra and its localized
coalgebras.

Let us analyze the behavior of the length vector under the action
of the quotient functor.

Lemma 4.2.1. Let C be a coalgebra and e¢ € C* be the idempotent
element associated to a set of simple right C'-comodules K = {S;};cy. -
Let L be a finite dimensional right C-comodule, then (length L); =
(length eL); for alli € I..

Proof. let0OC Ly C L, C---C L, C L, be a composition series for
L. Then, we obtain the inclusions 0 C el; Cely C --- CelL,_; Cel,.
Since e(—) is an exact functor, eL;/eL; 1 = e(L;/L;_;) = eS;, where
S; is a simple C'-comodule for all j =1,...,n. ButeS; = 5, if §; € K
and zero otherwise. Thus (length L); = (length eL); for all i € I.. O

Corollary 4.2.2. ((eM) = } ;. (lengtheM); < > ., (length M); =
((M).

Therefore the following diagram is commutative

C e(-) eCe
Mf Mf

lengthl l length

Ko(C) —L= Ko(eCe)

where f is the projection from K,(C) = Zc onto Ky(eCe) = Z-.

Let us now consider the opposite direction, that is, if /V is a right
eC'e-comodule whose length vector is known, which is the length
vector of S(N)? In general, S does not preserve finite dimensional
comodules and then we have to assume some conditions. We start
with a simple case.
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Lemma 4.2.3. Let N be a finite dimensional right eC'e-comodule with
length N = (v;);er.. Suppose that S(S;) = S; for all i € I, such that
Vi 7é 0. Then
_ Vi ':fZ € Ie
length S(N) = { 0. ific AL

Proof. Let 0 ¢ Ny C Ny C --- C N,_; C N, = N be a composition
series for N. Since S is left exact, we have the chain of right C-
comodules

0C S(Ny) C S(Ny) C---CS(Ny—y1) CS(N,) =S(N).

Now, for all j =0,...,n—1, we consider the short exact sequence

0 Nj 1> Ny —2> Sj11 —=0
and applying the functor S we have

S(i S
0 S(N;) 2 S(Nj1) 22 5(811) = Sy

This sequence is exact since S(p) is non-zero (otherwise S(i) is bi-
jective and then so is ¢). Thus S(N;;1)/S(VN;) = S;1; and the chain
is a composition series of S(NV). O

Lemma 4.2.4. Let C be a K-coalgebra and R be a K -algebra. Sup-
pose that N is a R-C-bimodule, M is a right R-module and f is an
idempotent element in C*. Then f(M ®zr N) = M Qg fN.

Proof. Let us suppose that the right C-comodule structure of N is
given by the map py. Then M ®z N is endowed with a structure of
right C'-comodule given by the map I ®rpy : M @p N - M @r N ®C
defined as

m@grn—mg Zn(o) naqy | = Z(m ®r () © N(1))
(n) (n)

forall me M and n € N.

Therefore f-(m®grn) = 3,y m@rn©®@f(na)) = 3, m@rno)f(na) =
m ®r o) f(na) = m®pg f-nforallm € M and n € N. Thus
f(M®r N) =M ®g fN. O
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Proposition 4.2.5. Let v = (v;);c;, € Ko(eCe) such that S(S;) = S; for
alli € I, withv; # 0. If C' satisfies the tameness condition for

o= Vi, l:fie[e
T 0, ifiel\l

then eCe satisfies the tameness condition for v.

Proof. By hypothesis, there exist K [t]-C-bimodules L") L) ... L),
which are finitely generated free K|[t]-modules, such that all but
finitely many indecomposable right C-comodules M with length M =
v are of the form M = K} @xy L, where s < ry, K} = K[t]/(t — \)
and A\ € K. Consider the K[t|]-eCe-bimodules eL®, ... eL(™), Ob-
viously, they are finitely generated free as left K[t]-modules. Let
now N be a right eCe comodule with length N = v. By Lemma 4.2.3,
length S(N) = v and therefore S(N) = K} @k L) for some s < ry
and some A\ € K (since S is an embedding, there are only finitely
many eCe-comodules N such that S(V) is not of the above form).
Then, by the previous lemma, eS(N) = N = K} ®p; eL®). Thus eCe
satisfies the tameness condition for v. O

Corollary 4.2.6. Under the conditions of Proposition 4.2.5, we have
that jite, (v) < pl(v).

Corollary 4.2.7. Let C be a coalgebra and e € C* be a right semicen-
tral idempotent. If C is tame (of polynomial growth, of linear growth,
domestic, discrete) then eCe is tame (of polynomial growth, of linear
growth, domestic, discrete).

Proof. It is clear from Proposition 3.5.4 and the above results. [

The underlying idea of the proof of Proposition 4.2.5 is that if
we control the C-comodules whose length vector is obtained from v
under the action of S (in Proposition 4.2.5 there is only one vector),
then we may control the eCe-comodules of length v. Obviously,
a problem appears if there are infinite eCe-comodules {N,};c; with
length v such that length S(N;) # length S(N;) for i # j. Then, the
number of K|t]-eCe-bimodules obtained could be infinite. Therefore
the result may be generalized using that method. For the conve-
nience of the reader we introduce the following notation.

To any vector v € Ky(eCe) = Z! we shall associate the set Q, =
{vs}sep of all vectors in Ky(C) = Z'c such that each vz = length S(NV)
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for some eCe-comodule N such that length N = v.

Proposition 4.2.8. Let v € Ky(eCe) such that (2, is finite. If C sat-
isfies the tameness condition for each vg € (2, then eCe satisfies the
tameness condition for v.

Proof. Consider the set of all K [t]-C-bimodules associated to all vec-

,,,,,

finite set and then so is 7'(£). We proceed analogously to Proposi-
tion 4.2.5 and the result follows. O

Given two vectors v = (v;)ier., w = (w;)ier, € Ko(C), we will say
that v <w if v; <w; for all ¢ € I..

Lemma 4.2.9. Let v = (v;);e1. € Ko(eCe) which verifies that S(S;) is
a finite dimensional right C-comodule for all i € I. such that v; # 0.
Then 2, is a finite set.

Proof. Let N be a right eCe-comodule such that length N = v. Con-
sider a composition series for N,0 C Ny C No C--- C N,_1 C N, = N.
Since S is left exact, we have the chain of right C-comodules

0C S(N;) C S(Ng) C---CS(Npq) € S(N,) = S(N).
Then, for each j =1,...,n, we have a sequence
0 —=S(Nj1) —= S(N;) —= 5(5;) ,
where §; is a simple eCe-comodule.
Since S(S;) is finite dimensional, it has a composition series
0CS; CS(Sj)2 C--- C S(S)r—1 C S(S;). Then we can complete

the following commutative diagram taking the pullback P, for i =
1,...,r—1.
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=2
=
~

S(N;) Py S(Sj)2

Coker

S(N;) +——PF._1 ——= S(S;),-1 — Coker

S(Nj) = S(Nj11) S(55) Coker

Consider two consecutive rows and their quotient sequence
S(N;) P, Sj)t — Coker

gt S(
T

i Im g,

S(Nj) +— Pip s d S(8S;)e+1 — Coker

0*>R5+1/Pt Sk S(Sj)t+1/S(Sj)t

\ v /
Im g;/Im g1 Tm g — 0

Suppose that P, # P, then P, /P, 2 Im g — Sy, and thus P, /P, =
Sh.
Hence we have obtained a chain

0CP C--CP =SMN)C-CSNyq)SPFC---C P =S(N),

where the quotient of two consecutive comodules is zero or a simple
comodule.

Therefore length S(N) < 377, length S(S;) for any right eCe-comodule
N whose length N = v. Thus 2, is a finite set. O

Theorem 4.2.10. Let C' be a coalgebra and e € C* be an idempotent
element such that S(S;) is a finite dimensional right C'-comodule for
alli € 1. If C is tame then eCe is tame.
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Proof. 1t is straightforward from the above results. O

In particular, the conditions of Theorem 4.2.10 are satisfied for
any idempotent if C' is pure semisimple or, moreover, if it is left
semiperfect. A coalgebra is said to be right pure semisimple if ev-
ery indecomposable right comodule is finite dimensional. It is left
semiperfect if every finite dimensional left comodule has a finite di-
mensional projective cover, or equivalently, if any indecomposable
injective right comodule is finite dimensional.

Corollary 4.2.11. Let C be a right pure semisimple or a left semiper-
Ject coalgebra and e € C* be an idempotent element. If C' is of tame
comodule type then eCe is of tarmme comodule type.

Unfortunately, the proof is not valid in the general case and is
still an open problem.

Problem 4.2.12. Let C' be a coalgebra of tame comodule type and e
be an idempotent element in C*. Then eCe is of tarme comodule type.

It is also interesting to study if the localization process preserves
polynomial growth, linear growth, discrete comodule type or do-
mestic coalgebras. It is clear that the converse result is not true as
the following example shows.

Example 4.2.13. Let us consider the quiver

o}

|

Q: O——0—->0—0—>0—0—>0—>0—>0

Since its underlying graph is neither a Dynkin diagram nor an Eu-
clidean graph then K@ is wild, see for example [ASSO5]. But it is
easy to see that eCe is of finite representation type for each non-
trivial idempotent element e € C*.

4.3 Split idempotents

Let us study the wildness of a coalgebra and its localized coal-
gebras. Directly from the definition we may prove the following
proposition.

Proposition 4.3.1. Let C' be a coalgebra and e € C* be an idem-
potent element which defines a perfect colocalization. If eCe is wild
then C' is wild.
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Proof. By hypothesis, there is an exact and faithful functor F :
MQQ — /\/l;ice, where () is the quiver formed by two points and three
arrows between them, which respects isomorphism classes and
preserves indecomposables. Consider the restriction to finite di-
mensional comodules of the colocalization functor H : M;Ce — MY,

by Proposition 3.4.15, the composition H F': M};Q — M? is an exact
and faithful functor that preserves indecomposables and respects
isomorphism classes. Thus C is wild. O

An analogous result can be obtained using the section func-
tor if the subcategory is perfect localizing and S preserves finite
dimensional comodules. For example, if C' is pure semisimple or
semiperfect.

Proposition 4.3.2. Let C be a right pure semisimple or a left semiper-
fect coalgebra and e € C* be an idempotent element which defines a
perfect localization. If eCe is wild then C' is wild.

Proof. It is similar to the former proposition. We only have to prove
that if C is left semiperfect then S preserves finite dimensional
comodules. Let M be a finite dimensional right eCe-comodule.
Then Soc M C M is finite dimensional. Suppose that Soc M =
S\®---®S,, then E,@---®E, is the injective envelope of M. Therefore
E, & --- & E, = F is the injective envelope of S(M). By hypothesis,
F is finite dimensional and thus so is S(M). O

Let us now consider the following question: when is the coalge-
bra eCe a subcoalgebra of C? This is interesting for us because, by
Corollary 4.1.3, in such a case, we have the following.

Proposition 4.3.3. Let C be a coalgebra and e € C* be an idempo-
tent such that eCe is a subcoalgebra of C. If eCe is wild then C' is
wild.

In general, we always have the inclusion eCe C C, nevertheless
the structures may be different. This is not the case if, for instance,
e is a left semicentral idempotent. In that case, by [JMNRO6], eC' =
eCe is a subcoalgebra of C. The same result holds if e is a right
semicentral or a central idempotent.

An idempotent element ¢ € C* is said to be split if in the de-
composition C* = eC*e ® eC*f & fC*e @ fC*f, where e + f = 1, the
direct summand H, :=eC*f @ fC*e @ fC* f is a twosided ideal of C*.
These elements were used by Lam in [Lam]. The main result there,
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see [Lam, Theorem 4.5], assures that the following statements are
equivalent:

(a) H,.is a twosided ideal of C*.
(b) e(C*fC*)e = 0.
(c) exeye = exye for any z, y € C*.

As a consequence, every left or right semicentral idempotent ele-
ment in C* is split. Let us characterize when eCe is a subcoalgebra
of C.

Theorem 4.3.4. Let ¢ be an idempotent element in C*. Then the
Jollowing statements are equivalent.

(a) e is a split idempotent in C*.
(b) eCe is a subcoalgebra of C'.

Proof. Let us denote f = 1 — e. By Proposition 2.1.2, for any sub-
space V C (, V is a subcoalgebra of C if and only if V' is a twosided
ideal of C*. Then we proceed as follows in order to compute the or-
thogonal of eCe.

(eCe)t = (eC'NCe)t
= (eC)t + (Ce)t
= C*f+ fC*
= eC"f+ fC*f+ fC*e+ fC*f
= eC"f+ fCre+ fC*f
= He

Thus eCe is a subcoalgebra of C' if and only if H, is a twosided ideal
of C* if and only if e is a split idempotent in C*. O

Let us give a description of the split idempotents. Suppose that
C' is a pointed coalgebra, that is, C' is an admissible subcoalgebra
of a path coalgebra. We recall from Theorem 3.5.2 and Proposition
3.5.4 that the left (right) may be described as follows:

Proposition 4.3.5. Let C' be an admissible subcoalgebra of a path
coalgebra K@ and e be an idempotent element in (KQ)* associated
to a subset X C (Qg. Then:

(a) e is left semicentral if and only if there is no arrow y — z in @
such thaty ¢ X and z € X.
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(b) e is right semicentral if and only if there is no arrow * — y in @
suchthaty ¢ X and x € X.

We want to give a geometric description of split idempotents in
similar a way. In order to do this, we start giving an approach by
means of path coalgebras.

Lemma 4.3.6. Let ) be a quiver and e € (K(Q)* be the idempotent
element associated to a subset of vertices X. Then e is split in (KQ)*
if and only if I, C X for any path p in e(KQ)e, i.e., there is no cell of
length greater than one.

Proof. We have that ¢(K(Q)e is a subcoalgebra of K@ if and only if
A(p) € e(KQ)e ® e(KQ)e for any path p in e(KQ)e.
Letp=a, - a1 € e(KQ)e, A(p) € e(KQ)e ® e(KQ)e if and only if

Zan ;@i ar € e(KQ)e®e(KQ)e.
j=2
Since all summands are linearly independent, this happens if and

only if s(a;) € X for all i = 2,...n. Thatis, ifand only if /, C X. O

Therefore the subset of vertices X is a convex set in the quiver Q.
In the following picture we show an example of a set X of vertices
associated to a split idempotent, denoted by the white points.

./'\.
0 A U
”./ X/O/X\O\/ \.7
\./IW \O/ \:\./
”./ \,\O/ \O/ \.”
\.)]\\\o/t/s\./
\.%v&./’
~.

The former proof can be easily generalized to pointed coalgebras.
Recall that we denote by Q the set of all paths in Q.

Lemma 4.3.7. Let () be a quiver and C' be an admissible subcoal-
gebra of K(Q). Let e € C* be the idempotent element associated to a
subset of vertices X. Thene is split in C* if and only if I, C X for any
path p in PSupp(eCe).
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The reader might wonder if it is possible a generalization of the
previous lemma to any coalgebra considering the Ext-quiver, i.e.,
if an idempotent e associated to a set of simple comodules £ is
split in C* if and only if, for each path in the Ext-quiver S| — --- —
Sp_1— S,, £S5, S, e Lthen S; € K foralli =2,...,n—1. The answer
is negative.

Example 4.3.8. Let () be the quiver

a 2 B 3
o o

1
O — 0 ——>

and C' be the admissible subcoalgebra of K () generated by {1, 2,3, «, 3}.
Then the quiver I'¢ is

Sl —>SQ —>53.

But e = {1,3} is a split idempotent because eCe = S; @ S3 is a sub-
coalgebra of C.

Following the idea of the Section 3 of Chapter 3 we hope that
the following conjecture holds.

Conjecture 4.3.9. The following are equivalent:
(a) The idempotent e is split in C*.

(b) For each non-zero morphism between indecomposable injective
right C-comodules f : E; — E; such that f is the composition of
g: E; —» Ex and h : E;, — E; for some indecomposable injective
right C-comodule Ey, ifi,j € I, thenk € I..

Let us finish the section with an open problem for further devel-
opment of representation theory of coalgebras.

Problem 4.3.10. Let C' be a coalgebra and e € C* be an idempotent
element. If eCe is of wild comodule type then C' is of wild comodule

type.

Obviously, Problem 4.2.12 and Problem 4.3.10 are equivalent if
the tame-wild dichotomy for coalgebras, conjectured by Simson in
[SimO0b], is true.
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4.4 A Gabriel’'s theorem for coalgebras

We have seen in Chapter 2 that there are examples of admissible
subcoalgebras which are not path coalgebras of a quiver with re-
lations (in fact, we have obtained a criterion to know when this
occurs). Therefore we cannot describe all pointed coalgebras fol-
lowing that method. Nevertheless, the main aim of the represen-
tation theory of coalgebras is to classify all coalgebras by means
of their category of comodules, and we know now that wild coal-
gebras are really difficult to describe in this way. Then we should
discard them and reformulate the problem as the following state-
ment: every basic non-wild coalgebra, over an algebraically closed
field, is isomorphic to the path coalgebra of a quiver with relations.
In particular, this implies that every basic tame coalgebra, over an
algebraically closed field, is isomorphic to the path coalgebra of a
quiver with relations. Moreover, if this result holds, this would re-
duce the proof of the tame-wild dichotomy to path coalgebras of
quivers with relations. In this section we will use some results of
localization obtained in the present and the previous chapters in
order to solve the above-mentioned problem for acyclic quivers.

Firstly, we check that the coalgebra of Example 2.5.5 is of wild
comodule type.

Example 4.4.1. Consider the coalgebra of Example 2.5.5, that is,
let () be the quiver

z o o v =pfia; foralli e N

and let H be the admissible subcoalgebra of K() generated by the
set X = {7; — Vi+1}tien- It is proved in Example 2.5.5 that H is not the
path coalgebra of a quiver with relations. Nevertheless, H is of wild
comodule type, as it contains the path coalgebra of the quiver

O —20
014 $o

Since KT is a finite dimensional coalgebra, we have an algebra iso-
morphism (KT')* = KT and there exists an equivalence between the
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categories M1 and MT. But it is well known that KT is a wild
algebra and hence KT is a wild coalgebra. By Corollary 4.1.3, this
proves that H is wild.

Theorem 4.4.2. Let () be an acyclic quiver and C' be an admissible
subcoalgebra of K@ which is not the path coalgebra of a quiver with
relations. Then C' is of wild comodule type.

Proof. By Corollary 2.5.11, since C' is not the path coalgebra of a
quiver with relations, there exist an infinite number of paths {7;},.en
in () between two vertices r and y such that:

e None of them is in C.

e (' contains a set ¥ = {¥, },eny such that ¥, = 4, + Zj>n a%vy,
where o} € K for all j,n € N.

(@)
< O

Consider PSupp(X; U X UX3) = {71,7,...,%} and T the finite sub-
quiver of () formed by the paths ~,; fori=1,...t.

Then D = KI'N C is a finite dimensional subcoalgebra of C' (and
an admissible subcoalgebra of KT) which contains the elements ¥,
Yy and 3. It is enough to prove that D is wild.

Consider the idempotent element e € D* such that e(z) = e(y) = 1
and zero otherwise, i.e., its associated subset of vertices is X =
{z,y}. Then, by Lemma 3.6.3, each ¥, corresponds to an arrow
from = to y in the quiver I'°, that is, I'* contains the subquiver
o ==o and then dimgExt., (S,,S,) > 3. Thus eDe = KT* is wild by
[SimO05, Corollary 5.5]. Note also that the quiver ' is of the form

«aq

o : o
T —W Y
an then the simple right eDe-comodule S, is injective.

Let us prove that the localizing subcategory 7, of M? is perfect
colocalizing.

Since T is finite and without cycles then dimg K7 ail% () is finite
and dimg KT ail’; (y) = 0 so, by Proposition 3.6.9, the subcategory 7,

is colocalizing.
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Let now g be an element in eC(1 — e). Then g is a linear combi-
nation of tails starting at =+ and then p.c(1-)(g) = g®@ (see the proof
of Proposition 3.6.9). Therefore < g >= S, as right eC'e-comodules.
Suppose that m = dimgeC(1 —e). Hence eC = eCe @ eC(1 — e) =
eCe ® S' and eC is an injective right eCe-comododule. Thus the
colocalization is perfect and, by Corollary 4.3.1, D is wild. ]

Corollary 4.4.3 (Acyclic Gabriel’s theorem for coalgebras). Let () be
an acyclic quiver. Then any tame admissible subcoalgebra of KQ is
the path coalgebra of a quiver with relations.

Proof. 1t follows from Theorem 4.4.2 and the weak tame-wild di-
chotomy. ]

Remark. From the proof of Theorem 4.4.2, we have that if @ is
acyclic then a basis of a tame admissible subcoalgebra C' cannot
contain three linearly independent linear combinations of paths
with common source and common sink. Then C' = KQo D D, .,co, Cry
with dimxC,, < 2 for all z,y € ),. Nevertheless, this fact does not
imply that the quiver is intervally finite (the number of paths be-
tween two vertices is finite). It is enough to consider the quiver

and the admissible coalgebra C' = C(Q,{2), where
Q=KQ:PKQ:3D-- - DKQ,D---.

C'is a string coalgebra and then it is tame (see [SimO05, Section 6]).






Chapter 5
Hereditary Coalgebras

This final chapter is devoted to the presentation of examples related
to the topics considered in the previous chapters. To that end we
use some classes of coalgebras whose existence are motivated by
the analogous classes in the category of finite dimensional alge-
bras. The main example for us will be the hereditary coalgebras.
This is a well-known kind of coalgebras which has been studied
with satisfactory results in many papers, see [Chi02], [JLMSO06],
[JMNROG6] and [NTZ96]. The case of a pointed hereditary coalge-
bra, that is, a path coalgebra of a quiver, is studied extensively.
In particular, as a consequence of the results of Chapter 3, we de-
scribe the localization of a path coalgebra by means of the cells and
tails of its Gabriel quiver. Lastly, we introduce a class of coalgebras
close to be hereditary: locally hereditary coalgebras. That kind of
coalgebras can be defined by the property that every non-zero mor-
phism between indecomposable injective comodules is surjective,
and thus, they are a generalization of the hereditary case.

5.1 Hereditary coalgebras

A coalgebra C is said to be right hereditary if, for each subcomod-
ule N of an injective right C-comodule FE, the quotient F/N is an
injective right C-comodule.

We collect here some known characterizations of a right heredi-
tary coalgebra, see [ChiO2], [JLMSO06] and [NTZ96].

Theorem 5.1.1. Let C be a coalgebra. The following conditions are
equivalent:
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(a) C is right hereditary.
(b) The global dimension of C' is less or equal than one.

(c) The injective dimension of any simple right C-comodule is less or
equal than one.

(d) C'/N is an injective right C'-comodule for each right coideal N.

(e) C/S is aninjective right C-comodule for any simple right C'-comodule
S.

(f) C is left hereditary.

If the coradical Cy of C' is coseparable, these conditions are also
equivalent to

(9) C is_formally smooth.

(h) The global dimension of the enveloping coalgebra C' @ CP is less
or equal than 1.

(i) Coker A is an injective (C, C')-bicomodule, where A is the comulti-
plication of C.

(j) C is isomorphic to the tensor coalgebra T¢,(N), where N is the
injective (C, C)-bicomodule <<,

Furthermore, if C' is pointed then these conditions are equivalent to
(k) C is isomorphic to the path coalgebra K@ of a quiver Q).

Proof. (a) & (b) & (¢) & (d) & (e) < (f) can be found in [NTZ96].
(a) & (g9) & (h) < (i) & (j) is proved in [JLMSO06]. Finally, (a) < (k)
appears in [ChiO2]. [

Corollary 5.1.2. The notion of hereditary coalgebra is left-right sym-
metric.

Let C be a coalgebra. A right C-comodule M is called colocal if
Soc (M) is a simple right C'-comodule. Let us now give more char-
acterizations of a hereditary coalgebra.

Proposition 5.1.3. Let C be a coalgebra. The following conditions
are equivalent:
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(@) C/D is an injective right C'-comodule for any colocal right coideal
D of C.

(b) Every quotient of an indecomposable injective right C'-comodule
is injective.

(c) Every quotient of an injective right C'-comodule by a colocal sub-
comodule is injective.

(d) Every quotient of an indecomposable injective right C'-comodule
by its socle is injective.

(e) C/S is an injective right C-comodule for any simple right C'-comodule
S.

(f) C is right hereditary.

Proof. (a) = (b). Let E; be an indecomposable injective right C-
comodule and N be a subcomodule of F;. Since Soc N C Soc E; = S;
then N is a colocal right coideal of C'. Therefore C/N = E;/N &
(®r.iEy) is injective and thus so is E;/N.

(b) = (¢). Let F be an injective right C-comodule and N be a
colocal subcomodule of £. Then Soc N = S; and N have the same
injective envelope, say FE;, and there exists a monomorphism f :
E; — E. Now, the exact sequence E; —f= F —r—> E/E; = E' splits so
FE =E; ® E' and F’ is injective. Thus F/N = E;/N & FE’ is injective.

(¢) = (d). Trivial.

(d) = (e). Let S; be a simple C-comodule and E; be its injec-
tive envelope, that is, E; is an indecomposable injective right C'-
comodule and Soc E; = S;. Then C/S; = E;/Soc E; & (®,;4E;) and
thus C/S; is a direct sum of injective right C-comodules.

(e) = (f). It is proved in Proposition 5.1.1.

(f) = (a). Trivial O

Let us now suppose that either the field K is algebraically closed
or C'is a pointed coalgebra. Then, by Corollary 1.5.5 and Theorem
5.1.1, we may assume that C is the path coalgebra of a quiver Q.
We recall from Chapter 3 that, for any idempotent element in (KQ)*
associated to a subset of vertices X C )y, the localized coalgebra
e(KQ)e is the path coalgebra of the quiver Q¢ = (X, Cell$).
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Example 5.1.4. Let K(Q the path coalgebra of the quiver () given by
B

AN
SN A

H2

and X be the subset of vertices formed by the white points. Then,
the set of cells is {«,n, p,001,002, 117, p2y}. Therefore the quiver Q¢ is
the following:

where the dashed arrows are the cells of length greater than one.

Example 5.1.5. Let K@ be the path coalgebra of the quiver )

and X be the set of vertices formed by the only white point. Then the
set of cells is {fa}, that is, the quiver ()¢ is

Ba

f

and e(KQ)e = K|[fa].

We apply this idea in order to obtain a description of the quo-
tient functor T : MK? — MK@Q Recall that the category of right
K@Q-comodules is equivalent to the category Replﬁlf (Q) of locally

nilpotent representation of finite length of the quiver Q.

Proposition 5.1.6. Let K() be a path coalgebra and e € (KQ)* be
the idempotent element associated to a subset of vertices X. Then,
the functor T : Rep™/(Q) — Rep™7(Q°) maps the representation

(Vies 0a)ze0nacq, Of Q into the representation (Vy,@g)yeXﬁeCe”g of Q°
given by:
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V, =V, forevery r € X.

® O3 = Qq, Yo, JOr each € Cellg such that § = o, a1 -+ In

O

In Chapter 3 we proved that, for a subset of vertices X of a
quiver @, the localizing subcategory 7x is is colocalizing if and and
if Tail(x) is a finite set for each z € X. Let us now prove that, un-
der this conditions, the colocalizing subcategories are also perfect
colocalizing.

Theorem 5.1.7. Let () be a quiver and e be the idempotent element
in (KQ)* associated to a subset X C ()y. Then

@ —Card ’Tale (z))+

zeX

as right KQ¢-comodules, where {E,},cx is a complete set of pairwise
non-isomorphic indecomposable injective right K ()°-comodules.

Proof. The right K(Q°-comodule ¢(K()) may be decomposed as e(KQ)
e(KQ)e @ e(KQ)(1 —e). Since there are isomorphisms e(KQ)e =
KQ* =@, .y L. it is enough to prove that

(KQ 1 o € @ ECard('Tazl

zeX

as right KQ°-comodules.
Let us assume that, for each » € X, we have

Tail}(x) = {7 }ies.-

The K-vector space e(KQ)(1 —e) is generated by the set of all paths
starting at vertices in X and ending at vertices which do not belong
to X. Then, for any path p € e(KQ)(1 — ), there exists a unique
tail decomposition p = 7ip, ---p; for some 77 € Tail%(z), where z =
t(pn) € X.
We consider the linear map

fre(EQ)(1 —e) — EDEDE.)

zeX i€J,

defined by f(7ip, - p1) =pn---p1 € E,; forall p=7ip, - p; € e(KQ).
Clearly f is well defined and it is a e¢(K@Q)e-comodule map. Since
E, is generated by the set of all paths in Q¢ which end at z, f is
bijective. [
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Corollary 5.1.8. Let () be a quiver and e be the idempotent element
in (KQ)* associated to a subset X C g. Then e(K(Q) is an injective
right K(Q°¢-comodule.

Theorem 5.1.9. Let () be a quiver and e be the idempotent element
in (KQ)* associated to a subset X C (),. The following conditions are
equivalent:

(a) The localizing subcategory Tx of MX€© is colocalizing.
The localizing subcategory Tx o is perfect colocalizing.
b) The local b Tx of MKQ rfe local

(¢) T az’l?((x) is a finite set for all + € X. That is, roughly spealking,
there are at most a finite number of paths starting at the same
point whose only vertex in X is the first one.

We remark that since any path coalgebra is hereditary, the equiv-
alence between (a) and (b) in the previous Theorem can be obtained
from [NT96]. This is not true for any pointed coalgebra.

Example 5.1.10. Let us consider the quiver () and the coalgebra C
defined on Example 3.6.6, and the subset of vertices X = {x1,xs,x3}.
Then, eCe is the path coalgebra of the quiver

Q= o e . TS
and then, the indecomposable injective right eC'e-comodules are F, =
K<z > FEy=K <uz9,01 >and E3 = K < x3,a3 >. IfeC(1 —¢) =
K < ao,a4,a00q + g3 > were injective then it would be a sum of
indecomposable injective right eC'e-comodules. Since eC(1 — e) has
dimension 3, thus it would be isomorphic to E, & E, ® E4, or B, & E5 or
E, & E5. A straightforward calculation proves that it is not possible.

By [Gab72, Chapter III, Proposition 7], any localizing subcate-
gory of a category of comodules over a path coalgebra is perfect
localizing. Then, from the above results and the results obtained
in Chapter 4, we have the following:

Proposition 5.1.11. Let (Q be a quiver and e be an idempotent ele-
ment of (KQ)* such that 7. is a colocalizing subcategory of M @ If
KQ° is wild then K(Q is wild.

Proposition 5.1.12. Let () be a quiver and e be an idempotent ele-
ment of (KQ)* such that the section functor S : M%9° — MXQ pre-
serves finite dimensional comodules. If KQ° is wild then K@ is wild.



5.1 Hereditary coalgebras 95

Following [SimO1], we finish the section giving a complete de-
scription of all tame path coalgebras. First we recall some special
kinds of graphs.

Dynkin diagrams

A, : 0O—0—0—+++—0—0—0 n veértices, n > 1
o

D, : 0—0—0—+++—0—0—0 n veértices, n > 4
o

Eg : 0O—O0—0—0—0
o

E;: 0—0—0—0—0—0
o

Eg : O—0—0—0—0—0—0

Euclidean graphs

A, : 0=—0—=-+—o0—0 n + 1 vértices, n > 3
O (0]
D,: ©o—o—o—---—0o—o0—o0 n+1vértices, n>4
O O
@)
Eﬁ: T
O—O0—0—0—0
O
[E7; 0O—0—0—0—0——0—0

o

ES: o—O0—O0—1FO0—1 O0— 00— 0—0
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Infinite locally Dynkin diagrams

Ay O—O0—0—+++—0—0—0 —

Y\ —0—0—0—+++—0—0— 0 —
o

Dy 0O—0—0 — —0—0—0—

Theorem 5.1.13. [SimO1] Let (Q be a quiver and K( be the path
coalgebra of (). The following conditions are equivalent:

(a) KQ is of tame comodule type.
(b) KQ is domestic of tame comodule type.

(¢) The underlying graph of ) is a Dynkin diagram, or a Euclidean
graph or a infinite locally Dynkin diagram.

(d) K@ is not of wild comodule type.

Therefore the tame-wild dichotomy holds for this kind of coalge-
bras.

5.2 Locally hereditary coalgebras

In this section we introduce locally hereditary (or L-hereditary)
coalgebras. These compose a class of coalgebras which contains
all hereditary coalgebras and whose non-hereditary objects share
properties with them.

Locally hereditary algebras were introduced by Simson in the
Representation Theory seminar of the Nikotaja Kopenika University
of Torun in 1977. In [LesO4], Leszczynski gave description of all
tame locally hereditary algebras of finite dimension. An algebra A
is said to be right L-hereditary, or right locally hereditary, if any
local right ideal of A is projective.

Theorem 5.2.1. [LesO4] Let A be a finite dimensional algebra. The
JSollowing conditions are equivalent:

(a) A is right L-hereditary.

(b) Any local submodule of a projective right A-module is projective.
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(¢) Any nonzero morphism between indecomposable projective right
A-modules is a monomorphism.

(d) A is left L-hereditary.

(e) A is isomorphic to

F
Al _ 2M1 F2 0
an nMQ Fn

where (F;,;M;) is a K-species such that there exist F;-F;- homo-
morphisms cyjy, : {M; @, ;M — ;M) verifying that c;.(x @ y) = 0 if
andonlyift=0ory =0 foralli,j,k=1,...,n.

Let us turn to the case of coalgebras.

Definition 5.2.2. A coalgebra C' is said to be right L-hereditary or
right locally hereditary if, for any right coideal N such that C/N is
colocal, the quotient C'//N is injective.

The following lemma shows that there are many examples of
locally hereditary coalgebras.

Lemma 5.2.3. Any hereditary coalgebra is right and left locally
hereditary.

Let us give different characterizations of a locally hereditary
coalgebra in the same way that Theorem 5.2.1.

Proposition 5.2.4. Let C be a coalgebra. The following conditions
are equivalent:

(a) For any subcomodule N of a injective right C-comodule E such
that E/N is colocal, the quotient E/N is an injective right C-
comodule.

(b) For any nonzero morphism f : E — F, where E and F are right
C-comodules such that F is injective and F is colocal, Im f is an
injective right C'-comodule.

(c) Every nonzero morphism between indecomposable injective right
C-comodules is surjective.

(d) C is right locally hereditary.
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(e) For any subcomodule N of an indecomposable injective right C-
comodule E; such that E;/N is colocal, the quotient E;/N is an
injective right C'-comodule.

Proof. (a) = (b). We have E/Ker f = Im f and Soc (Im f) C Soc F.
Therefore Soc (Im f) is simple and, by hypothesis, Im f is injective.

(b) = (¢). Let f: E; — E; be a nonzero morphism between in-
decomposable injective right C'-comodules. Since Soc E; is simple,
Im f is injective. Therefore, the short exact sequence

0 Im f E; E;/Im f —0

splits and E; =Im f @ E;/Im f. Since E; is indecomposable and f is
nonzero, we deduce E;/Im f = 0.

(¢) = (d). Let N be a right coideal such that Soc (C/N) = S is
simple. Let E be the injective envelope of S. Then f: C/N — FE is
also the injective envelope of C'//N. Therefore, there exists an index
k € Ic such that the composition E,—i—C = ®c; F; —r— C/N is
nonzero, where ¢ is the inclusion and p is the projection. Then fpi
is surjective and so is f.

(d) = (e). Let N < E; such that Soc (E;/N) is simple. Let us
consider the right coideal N' = N & (®,4E;). Then C/N' = E;/N has
simple socle and thus E;/N is injective.

(¢) = (a). It is similar to the proof of (¢) = (d).

() = (c¢). Let f : E; — E; be a nonzero morphism. We have
Im f = E;/Ker f. Since Im f has simple socle, by hypothesis, it is
injective and the result follows as in (b) = (c). O

Problem 5.2.5. Is the notion of locally hereditary left-right symmet-
ric?

Let us show that locally hereditary coalgebras are a generaliza-
tion of finite dimensional locally hereditary algebras.

Lemma 5.2.6. If R is a finite dimensional right locally hereditary
algebra then R* is a right locally hereditary coalgebra. Conversely,
if C is a right locally hereditary coalgebra of finite dimension, C* is a
locally hereditary algebra.

Proof. Let f : E; — E; be a nonzero morphism between indecompos-
able injective right R*-comodules. The dual morphism f*: E; — E}
is a non-zero morphism between indecomposable projective right
R-modules. By hypothesis, f* is a monomorphism and then f is
surjective. The converse result is similar. [
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The following example shows that there exist locally hereditary
coalgebras which are not hereditary coalgebras.

Example 5.2.7. Let () be the quiver
oy Zg Qg
s
and C' be the coalgebra generated by the set

{xly Lo, T3, Ty, 01, O, A3, Og, Qo] + 044053}.

The indecomposable injective right C'-comodules are £, =< x; >,
By, =< To, 1 >, FEi =< X3, ug > and E, =< Ty, Qg Olg, Oia(¥] + Olgl3 >. We
consider the subcomodule A =< z, > of E, and therefore E,/A =<
0, 0, oy + a3 >. It is easy to see that Soc (Ey/A) = Sy & S3 and
then the injective envelope E(E,/A) = Ey ® E3 # E4/A. Thus E4/A is
not injective and C' is not hereditary. Nevertheless, a straightforward
calculation proves that C' is locally hereditary. We sum it up in the
Jollowing table:

subcomodules with colocal quotient | quotient

Ey 0 —
FEs < X9 > E;
Es < T3 > E

FE, <47052 >, <4,0é4 >, <4,042,0é4> Eg, E,, Fy

Example 5.2.8. The last example may be extended to an infinite
dimensional coalgebra. Let () be the quiver

o
o a2
/ \ 2% V2 V3
o o o o
PR

and C' be the subcoalgebra of K () generated by the set of vertices, the
set of arrows and {v, - - - y1 (a1 +5251) fnz0 {1 - M2 tnz1, {0 - M1 B2 }nz1
and {v;---v;}i~;>1. Proceeding as above, we may prove that C' is a
locally hereditary coalgebra. On the other hand, since C' is not a
path coalgebra, C' is not hereditary (see [JLMSO06]).
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Example 5.2.9. Consider the quiver ()
@)

% le) 52 ﬁl

% ﬁn

= o o ¥ = Biq; for alli e N

-~ . —

O

~

oci\sé//ﬁi

and let H be the admissible subcoalgebra of K() generated by the
set ¥ = {v; — Vi+1}i>1. Then H is a locally hereditary non-hereditary
coalgebra.

From the above example, one may deduce that not every locally
hereditary coalgebra is the path coalgebra of a quiver with rela-
tions.

Let C be a coalgebra and e € C* be an idempotent element. Then
we can consider the functors associated to the localization

T=e(—)=—0ceC

MC MeCe .

S=—0.c.Ce

Let us prove that the localization process preserves locally hered-
itary coalgebras.

Theorem 5.2.10. If C is a right locally hereditary coalgebra then
eCe is a right locally hereditary coalgebra.

Proof. Let f : E; — E; be a nonzero morphism between indecompos-
able injective right eCe-comodules. Then S(f) : £; — E; is a nonzero
morphism between indecomposable injective right C'-comodules.
By hypothesis, S(f) is surjective and since 7 is exact, T'S(f) = f
is surjective. O

Unlike it happens with hereditary coalgebras, not every colocal-
izing subcategory of the category of right comodules over a locally
hereditary coalgebra is perfect colocalizing.

Example 5.2.11. Let () be the quiver
.
N / XO }
A

3
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and C be the admissible subcoalgebra generated by asay + ayas. Let
us consider X = {x,z3,24}. Then eCe is the path coalgebra of the
quiver

and then, the indecomposable injective right eC'e-comodules are F, =
K <z >, E :K<ZL’2,0./1 > andE3 :K<I3,0z3 >. UGC(]_—@) =
K < as,a4,a50q + gz > were injective then it would be a sum of
indecomposable injective right eCe-comodules. Since eC(1 — e¢) has
dimension 3, it would be isomorphic to E; & F, ® E, or F, ® Ey or
E1 & E5. A straightforward calculation proves that it is not possible.

Let us assume that C' is a right pure semisimple or a left semiper-
fect coalgebra.

Lemma 5.2.12. Let C be a locally hereditary coalgebra and E; be
an indecomposable injective right C'-comodule. Then F; = End¢(E;) is
a division K -algebra.

Proof. Let f be a non-zero element of F;. Then f is surjective. Now,
since F; is finite dimensional, f is bijective. ]

Lemma 5.2.13. Let C be a locally hereditary coalgebra and, E; and
E; be two non-isomorphic indecomposable injective right C-comodules.
If Home(E;, E;) # 0 then Home (E;, E;) =0

Proof. Let f and g be two nonzero morphisms (thus surjective) in
Home(E;, E;) and Home(Ej, E;), respectively. The composition ¢f €
Endc(E;) is a nonzero morphism so it is bijective and therefore so
is f. Thus E; = E; and we get a contradiction. O

For any two non-isomorphic indecomposable injective right C-
comodules F; and E;, we may consider the set RadZ(E;, E;) formed
by all morphisms f € Hom¢(E;, E;) such that f decomposes as
f = gh, where h € Hom¢(E;, E}) and g € Hom¢(Ey, E;) are not isomor -
phisms, for some indecomposable injective F;. Therefore, to any
pure semisimple locally hereditary coalgebra, there is associated a
K-species (Fj,; Mj); jer.» defined by ;M; = Home(E;, E;)/Radz(E;, Ej)
for any i,j € Io, such that if ;M; # 0 then ;M; = 0. Moreover, we
may consider the Fj-F;-homomorphisms cijp, : ;M; ®p, j My, — ;M;, de-
fined by the composition of morphisms, and then, it is verified that
cir(r®@y)=0ifand onlyif t =0 or y =0 for all ¢, j,k € I¢.
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5.3 Other examples

Following [SimO05], a string coalgebra is a path coalgebra C' = C(Q, )
of a quiver with relations (Q, ?) which satisfies the following prop-
erties:

(a) Each vertex of () is the source of at most two arrows and the
sink of at most two arrows.

(b) The ideal (2 is generated by a set of paths.

(c) Given an arrow ; —3—j in (), there is at most one arrow j —a—
in @ and at most one arrow |——; in ) such that af € C' and

By e C.

In [SimO5], it is proved that every string coalgebra is of tame
comodule type. Let us show that the localization process preserves
string coalgebras.

Theorem 5.3.1. Let C' = C(Q,?) be a string coalgebra and e € C*
be an idempotent element. Then, the localized coalgebra eCe is the
string coalgebra C(Q¢,)¢), where Q¢ = eQe N KQ°.

Proof. Since (2 is generated by paths, K(Q) = C®(2 as K-vector space.
Then KQ. = e(KQ)e = eCe @ eQ2e and therefore KQ° = KQ.N KQ° =
eCe @ (efQ2e N KQ°). It is easy to see that ()¢ is generated by paths in
Q¢ of length greater than one.

Let us suppose that there is a vertex i € (Q°), which is the source
of three different arrows «, 3,7 € (Q°€);. Then there exist three dif-
ferent paths p, = o, a1, pg = G- b1,y =M1 € Cellg N C such
that their cellular decompositions are «, § and ~, respectively. We
have that o4, #; and 7, are three arrows in () starting at  and, since
C' is string, at least two of them are the same. For instance, sup-
pose that oy = ;. Furthermore, p, # pg so there exists an integer s
such that a,---a; = 8-+ 41 and a, 10, - # Bes1fs -+ r.

o

a1=02 as=P0s ay
a1=51 O——— - O —>0
7 A

le) s+1 O ~ e~~~ O

BN

O ~~

o

(0]

By the condition (c¢) in the definition of string coalgebra, §,,15; ¢ C
or a1 ¢ C and then p, ¢ C or pg ¢ C. We get a contradiction. We
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may proceed analogously if there are three different arrows ending
at i.

Let j—a=j, {—8=Fk and ;——| be three arrows in Q¢ such
that fa € eCe and ya € eCe. As above, there exist three different
paths p, = o --0q,p8 = B B1,0y = %M1 € Cellg N C such that
their cellular decompositions are «, $ and v, respectively. Since
pg # p,, there exists an integer s such that v,---v; = 3;--- 3, and

Vs+1Vs V1 7& 654—165 e 61-

ﬁs+1
Qn 61:71 /63:'73 /
O——0——> " O—>0
WH\lx

If s > 1 then §,.106, ¢ C or v,417s ¢ C and then pg ¢ C or p, ¢ C.
This is a contradiction, so s = 0. But in that case, since C is string,
pray, ¢ C or oy, ¢ C and then fa ¢ eCe or ya ¢ C. The dual case is
similar and the proof follows. O

O ~ e~~~ O

o

(0]

(0]

Definition 5.3.2. A coalgebra is said to be gentle if it is a string
coalgebra C(Q, ) which satisfies the following extra statement:

(d) Given an arrow ; —3—j in(, thereis at most one arrow j —o—
in Q an at most one arrow | ——; in @ such that af ¢ C and

By¢C

Unlike it happens with string coalgebras, the localized coalgebra
of a gentle coalgebra does not have to be gentle.

Example 5.3.3. Let us consider the quiver

B2

8 _0——>0
o*a>o/
N

o

and C' the gentle coalgebra generated by all arrows and all vertices,
and the paths (3,3, and pia. Let e be the idempotent element as-
sociated to the subset of vertices X = (Qo\s(B2). Then eCe is the
admissible subcoalgebra of the path coalgebra of the quiver

generated by the set of vertices and the set of arrows. Obviously eCe
is not a gentle coalgebra.
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Following [CGTO04], every right C-comodule M has a filtration
0 C Soc (M) C Soc*(M)C ---C M

called the Loewy series, where, for n > 1, Soc"(M) is the unique
submodule of M satisfying that Soc "~*(M) C Soc "(M) and

Soc (M /Soc™ (M) = Soc™(M)/Soc "1 (M).

A right comodule is called uniserial if its Loewy series is a com-
position series. Furthermore, C' is said to be right (left) serial if its
indecomposable injective right (left) comodules are uniserial. We
shall call it serial if it is left and right serial.

Let us suppose that C is a serial coalgebra. Soc*(E;)/Soc (E;) =
Soc (E;/S;) is a simple right comodule for all i € I, and then, S;
has a unique predecessor in the Ext-quiver ['¢ for all i € . Fur-
thermore, consider the left version of this property, then each ver-
tex of the left Ext-quiver of C' has a unique predecessor, that is,
each vertex of the right Ext-quiver I'c has a unique successor. A
straightforward calculation proves the following result:

Proposition 5.3.4. Let C' be an indecomposable serial coalgebra.
Then I'¢ is one of the following quivers:

(a) oo 0 >0 —>0—>0—>0
(b) AOOI O—0—0—>0—>0 —>0 -
(C) OOAZ 0 =—>=0 —>0—>0—>0—>0
(d) Ani O—0—>0—:"+—0—>0—>0 n>1
o
(e) l&n: 0/ \o n>1
\ /
O —=> 0 oo (o]

Corollary 5.3.5. Any serial coalgebra over an algebraically closed
field is of tame comodule type.

Proof. By the former proposition, the Ext-quiver must be one of the
above list and it is easy to see that the Gabriel quiver of C' must also
be one of them. The path coalgebra of any of this quiver is of tame
comodule type, then any subcoalgebra is also of tame comodule

type. O]
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