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Abstract: Providing suitable indoor thermal conditions in educational buildings is crucial to ensuring
the performance and well-being of students. International standards and building codes state that
thermal conditions should be considered during the indoor design process and sizing of heating,
ventilation and air conditioning systems. Clothing insulation is one of the main factors influencing
the occupants’ thermal perception. In this context, a field survey was conducted in higher education
buildings to analyse and evaluate the clothing insulation of university students. The results showed
that the mean clothing insulation values were 0.60 clo and 0.72 clo for male and female students,
respectively. Significant differences were found between seasons. Correlations were found between
indoor and outdoor air temperature, radiant temperature, the temperature measured at 6 a.m., and
running mean temperature. Based on the collected data, a predictive clothing insulation model,
based on an artificial neural network (ANN) algorithm, was developed using indoor and outdoor
air temperature, radiant temperature, the temperature measured at 6 a.m. and running mean
temperature, gender, and season as input parameters. The ANN model showed a performance of
R2 = 0.60 and r = 0.80. Fifty percent of the predicted values differed by less than 0.1 clo from the
actual value, whereas this percentage only amounted to 32% if the model defined in the ASHRAE-55
Standard was applied.

Keywords: built environment; educational buildings; thermal environment; clothing insulation;
occupant behaviour; natural ventilation

1. Introduction

The events of the last few years, including the COVID-19 pandemic and changing
climate patterns [1], have increased concern for ensuring that the indoor environment
meets the needs of the building’s occupants. Indoor thermal conditions are considered a
critical variable due to their impact on the occupants’ health and work performance [2].
The importance of thermal conditions in buildings has prompted International Standards to
define specific requirements for indoor thermal environmental parameters [3,4]. However,
maintaining indoor environmental conditions in accordance with the occupant’s thermal
preferences may also lead to a large amount of energy consumption due to the use of
heating, ventilation and air conditioning (HVAC) systems [5]. Indeed, using HVAC systems
is the main type of building energy consumption [6,7]. Therefore, the parameters that influ-
ence the thermal perception of building users deserve special consideration because they
influence indoor environmental conditions and the energy consumption of the building.

This situation is particularly relevant in educational buildings, which represent a large
part of the building stock and account for a high share of the non-industrial energy con-
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sumption of a country [8]. Thewes et al. [9] analysed the energy benchmarks of schools
in European countries. They concluded that the deviations between countries are mostly
not significant and that the electricity consumption values of schools vary from 10 to
30 kWh/(m2a). Part of this energy consumed by educational buildings is used to maintain
adequate indoor environmental conditions in classrooms, which is essential due to the
significant amount of time that students and teachers spend in these buildings [10,11].
Previous research has shown that poor indoor environmental quality triggers sick buildings
syndrome, which leads to poor health conditions, resulting in absenteeism and low produc-
tivity in educational institutes [12,13]. Consequently, since the satisfaction and well-being
of the occupants of educational buildings may be compromised [11,14,15], indoor thermal
conditions are critical factors in these buildings’ design and operational process.

Building codes have defined different thermal comfort ranges in this context accord-
ing to the different climatic zones. International Standards [3,4] state that the criteria for
the thermal environment should be based on the PMV-PPD thermal comfort indices [16].
These parameters are calculated based on environmental parameters (relative humidity,
air temperature, mean radiant temperature and air speed) and individuals’ characteristics
(metabolic rate and clothing insulation). The clothing insulation parameter, which substan-
tially impacts thermal perception, quantifies the amount of thermal insulation a person
wears [3,16]. Therefore, it is necessary to know the evaluation of the thermal characteristics
of a clothing ensemble (i.e., the thermal insulation) when evaluating the degree of comfort
or thermal stress provided by the physical environment according to the standardised
method [17]. According to Standard ISO 7730 [16], clothing insulation could range between
0 and 2 clo. Nevertheless, if more information is unavailable, clothing insulation should be
assumed to be 0.5 clo (e.g., trousers and short sleeves) or 1.0 clo (e.g., trousers, long sleeve
shirt and sweater) for the warm and cold seasons, respectively.

However, individual occupants’ clothing behaviour influences clothing insulation and,
therefore, significantly impacts their thermal comfort. In fact, Newsham [18] investigated
the clothing insulation effect on thermal comfort and energy consumption and concluded
that realistic clothing adjustment is an important variable for assessing thermal comfort in
non-optimal indoor environments. Gauthier and Shipworth [19] concluded that clothing in-
sulation, along with the metabolic rate, were the parameters that most influenced PMV-PPD
calculations. During typical sedentary activities in educational buildings (e.g., attending a
lecture or a class) where 1.2 met can be assumed as a metabolic rate, variations in the level
of clothing insulation affects the optimum operative temperature of approximately 6 ◦C
per clo [3,20].

Therefore, the selection of thermal clothing insulation requires special attention be-
cause it influences the calculation of the occupants’ thermal sensation and, consequently,
the design and sizing of HVAC systems. The two clothing insulation values suggested by
the ISO 7730 Standard for warm and cold seasons tend to oversimplify occupant clothing
behaviour. The clothing behaviour of building occupants is not constant throughout the sea-
sons but varies according to climatic conditions and is not identical for all individuals [21].
This underscores the need to investigate the clothing behaviour of building occupants
and to develop more accurate models. In this context, previous research has analysed
the factors influencing clothing behaviour due to their impact on thermal comfort and
proposed models for more accurate clothing insulation estimation.

De Carli et al. [22] analysed people’s clothing behaviour by investigating the external
parameters (outside temperature, mean weekly outside temperature and latitude) and
indoor parameters (space temperature). They proposed single variable linear regression
models to predict clothing insulation based on the outdoor air temperature measured at
6:00 a.m. Schiavon and Lee [20] developed models to predict clothing insulation based on
observations from the RP-921 and ASHRAE RP-884 databases. The first proposed model
calculated clothing insulation based on the outdoor air temperature measured at 6:00 a.m.,
while the second model used the outdoor air temperature measured at 6:00 a.m. and the
indoor operating temperature. Zhao et al. [23] analysed the clothing adaptation of rural
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residents in the cold region of China. They developed predictive clothing insulation models
based on the operating temperature and a 7-day running mean temperature as predictors.
Rupp et al. [24] analysed the clothing insulation in ASHRAE Global Thermal Comfort
Database I and II. They derived predictive models of ensemble insulation based on indoor
air temperature, the season and the building ventilation type. They also concluded that
PMV predictions were improved by accounting for chair insulation. Wang et al. [25] pro-
posed that a neutral clothing insulation model can be used to determine whether clothing
adjustment can sufficiently offset indoor temperatures in naturally ventilated building
contexts. They found significant differences between the clothing behaviour of male and
female occupants, with female occupants more actively adjusting their clothing. Their
findings also showed that climate, season, building type and indoor/outdoor temperature
variations were the key contextual variables to be considered for understanding occupant
clothing behaviour. The influence of this variable was also pointed out by ASHRAE 55,
which stated that its adapted predictive clothing insulation model might not be appropriate
for all cultures and occupancy types.

In this context, this study aimed to develop a predictive clothing insulation model for
occupants of educational buildings. For this purpose, an artificial neural network (ANN)-
based model was developed based on data collected from field measurement campaigns
conducted in higher education buildings in southern Spain. In addition, the analysis
developed in this study also aims to understand the environmental and individual factors
affecting the clothing behaviour of the occupants of higher educational buildings.

2. Materials and Methods
2.1. Location and Characteristics of the Participants

The data used in this study were collected in educational buildings located in the Campus
Fuentenueva of the University of Granada, Granada, Spain. There were 6593 students on this
campus during the 201/2022 academic year. The climate in Granada is characterised by low
rainfall over the year, a very hot and dry summer and the coldest month averaging above
0 ◦C. Therefore, this climate is classified as Hot-summer Mediterranean (Csa), according to
Köppen and Geiger [26].

A questionnaire survey and field measurements were conducted simultaneously in
classrooms during university lectures. The buildings on the Campus Fuentenueva are
characterised by a concrete frame structure, ceramic façades and aluminium windows.
Regarding the finishing material, the floors are finished with terrazzo or natural stone, the
ceilings with registrable suspended ceiling systems and the walls with gypsum plaster.
The Fuentenueva Campus buildings do not have a mechanical ventilation system, and air
circulation relies on windows and doors opening and closing.

The field measurements were carried out from September 2021 to July 2022 on different
days; each participant only experienced a single condition. The field measurements were
carried out in all months between September and July, except the holiday period in December
and January when the educational buildings were closed. A total of 2022 university students
participated in this study. Table 1 shows the participant’s characteristics and their distribution
by season.

2.2. Data Collection: Questionnaire Survey and Monitoring Equipment

The questionnaire survey and the IEQ monitoring campaign were conducted simul-
taneously during university lectures (1.5–2 h). The students’ characteristics and state of
clothing were collected using paper-based occupant survey questionnaires. The ques-
tionnaire was prepared in Spanish and included questions on personal characteristics
(age and gender) and clothing insulation state. For this purpose, the students were asked
to indicate what clothes they were wearing from a list defined by the ASHRAE [3]. The
questionnaire survey was conducted during the last 15 min of a lecture, and the students
remained seated during the class (this protocol ensures that students had been seated
for at least 1 h and eliminates the influence of short-term thermal history in transitional
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spaces before attending the lecture class). The questionnaires were filled out during
mid-morning or mid-afternoon, not just after arrival or after a lunch break, following
the recommendations stated in UNE EN 16798-2:2019 Annex F [27].

Table 1. Participants’ characteristics.

Variable Number of Respondents (N, %)

Gender
Male 1200 (59%)

Female 822 (41%)

Age
18–24 1741 (86%)
25–30 236 (12%)
>30 45 (2%)

Season

Autumn 707 (35%)
Winter 445 (22%)
Spring 472 (23%)

Summer 398 (20%)

Indoor environmental parameters were measured from the beginning to the end of
the university lectures, where the questionnaire surveys were carried out. These param-
eters included the air temperature (Tair,i), indoor relative humidity (RHi), mean radiant
temperature (Tr,i) and air velocity (vi). The characteristics of the sensors used to collect this
data are detailed in Table 2. The sensors were placed at a height of 0.6 m and separated
>1 m from the surrounding surfaces in the middle of the classrooms. The sensor location
follows the recommendations stated in ASHRAE-55-2020 Standard [3] and UNE EN-ISO
7726:2002 [28]. The logging interval selected to measure all the parameters was 1 min.

Table 2. Sensor characteristics.

Parameter Sensor Range Accuracy

Air temperature FHAD 46-C41A AHLBORN −20 to +80 ◦C
Typical ±0.2 K at 5 to 60 ◦C

Maximum ±0.4 K at 5 to 60 ◦C
Maximum ±0.7 K at −20 to +80 ◦C

Relative humidity FHAD 46-C41A AHLBORN 0 to 98% RH
±2.0% RH in range from 10 to 90% RH
±4.0% RH in range from 5 to 98% RH

Mean radiant
temperature FPA805GTS AHLBORN –50 to 200 ◦C 0.1 ◦C

Air velocity HD403TS2 Delta OHM® 0.05 to 5.00 m/s ±(0.03 m/s + 2% f.s.)

Outdoor weather parameters (air temperature and relative humidity) were also collected
from a meteorological station close to the Fuentenueva Campus, owned by AEMET (the State
Meteorological Agency). These outdoor parameters were continuously measured during the
study period. The running mean outdoor temperature (Trm) was calculated using (1):

Trm = (1− α)
{

Tt−1 + α Tt−2 + α2Tt−3 . . . + αn−1Tt−n

}
(1)

where Trm is the running mean outdoor temperature at time t, n is the previous time
interval, and α is the time constant which reflects the rate at which the effect of any past
temperature decays (0 ≤ α < 1). In this study, the α value selected was 0.8. A greater effect
of outdoor temperatures measured in the previous days is indicated by a higher value of α.

2.3. Data Pre-Processing and ANN-Based Model

The recorded indoor/outdoor environmental values, together with the responses
collected from the questionnaire, were processed and analysed. The clothing insulation
was estimated using the typical clothing insulation values provided by the ASHRAE
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55 Standard [3]. The results were analysed to investigate the relationship between season,
gender, and clothing behaviour.

Subsequently, artificial neural network (ANN) algorithms were used to develop a
model to predict the clothing insulation level. ANN is a machine learning method widely
used in many fields, such as science, engineering, education and other industries [29]. The
performance of an ANN model in determining non-standard non-linear relationships be-
tween independent and dependent variables is much higher than that of a regression model.
For this reason, this mathematical model has been selected. The multilayer perceptron is the
structure most used. This ANN structure usually comprises an input, hidden and output
layers and many interconnected nodes (or neurons). Previous research has shown that a
single hidden layer structure with a sufficient number of neurons can approximate any func-
tion with the desired accuracy—including two hidden layers may introduce a higher risk
of convergence to a local minimum and rarely improves the model [30,31]. Therefore, the
model’s input vector is connected to the input layer. Sigmoid and Levenberg–Marquardt
was the selected activation function and back-propagation algorithm, respectively. The
dataset was segmented: 60% training, 20% validation and 20% testing. Previous studies
have used this procedure to develop ANN-based prediction models [32–35]. The training
set serves the purpose of optimising the ANN model. The validation set, on the other hand,
is utilised to halt the optimisation process. This is achieved by ceasing the training process
when there is no further improvement in the model’s accuracy on the validation set. Lastly,
the test set is employed to evaluate the accuracy of the trained model [36]. The input and
output data were normalised to prevent premature saturation and prevent larger numbers
from overriding smaller ones. Equation (2) shows the normalised method in this study.

xnorm =
x− xmin

xmax − xmin
(2)

xnorm is the normalised value, x is the actual value, xmin is the minimum value of the set
x and xmax is the minimum value of the set x. The performance of the generated models were
evaluated using the mean square error (MSE) and the mean absolute error (MAE) (3) and (4).

MSE =
1
N

n

∑
i

(
yj − zj

)2 (3)

MAE =
1
N

n

∑
i

∣∣yj − zj
∣∣ (4)

Both parameters provide a direct quantification of the predictive error and have been
widely used to evaluate the performance of ANN models. Additionally, the coefficient of
determination (R2) was also calculated.

2.4. Predictive Clothing Insulation Models

The UNE 7730 and ASHRAE 55 standards suggest that clothing insulation can be
assumed as 1.0 clo and 0.5 clo for winter and summer conditions, respectively. However, as
mentioned in Section 1, this method is very inaccurate for estimating clothing insulation.
In addition, another method defined in ASHRAE 55 is the adapted model shown in (5).

Tair(out,6) < −5◦C → IC = 1.00
−5◦C ≤ Tair(out,6) < 5◦C → IC = 0.818− 0.0364 · Tair(out,6)

5◦C ≤ Tair(out,6) < 26◦C → IC = 10(−0.1635−0.0066 · Tair(out,6))

26◦C ≤ Tair(out,6) → IC = 0.46

 (5)

where Tair(out,6) stands for the outdoor air temperature measured at 6:00 a.m.
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3. Results
3.1. Environmental Conditions

As stated in Section 2.1, the climate of Granada is characterised by short, hot and
dry summers and long, cold and partly cloudy winters, while the intermediate seasons
(i.e., spring and autumn) are periods of more moderate temperatures. Table 3 shows
the characteristics of the environmental parameters measured during the data collection
campaign in each season. During the entire study, the outdoor temperature ranged between
0.00 ◦C and 36.5 ◦C, while RHout and vout ranged between 14% and 94% and 0–23 m/s,
respectively. Regarding the outdoor temperature measured at 6:00 a.m., the collected
minimum and maximum values were 0.0 ◦C and 25.6 ◦C, while Trm ranged between 1.8 ◦C
and 14.8 ◦C.

Table 3. Outdoor and indoor environmental parameters.

Outdoor Parameters Indoor Parameters

Tair,out RHout vout Tair (out,6) Trm Tair,in Trad RHin vin

Summer

Mean 23.4 39.9 6.18 14.6 11.0 25.9 26.4 35.4 0.08
SD 5.1 12.9 5.02 2.2 1.2 2.1 1.9 7.5 0.06

Min 18.3 14.0 1.00 11.6 9.5 22.3 23.6 19.6 0.01
Max 33.7 58.0 23.00 20.0 13.1 29.2 29.2 46.0 0.22

Autumn

Mean 11.3 61.1 4.40 6.0 5.3 19.5 19.9 38.6 0.04
SD 6.0 19.1 4.89 4.0 2.4 3.3 3.3 6.7 0.04

Min 2.1 16.0 0.00 0.4 2.6 14.1 14.9 19.6 0.00
Max 30.3 94.0 23.00 14.7 10.4 28.0 28.5 50.1 0.19

Winter

Mean 9.8 63.9 2.61 3.2 3.6 17.7 17.9 38.9 0.01
SD 4.5 17.1 4.10 2.3 1.3 2.3 1.9 4.4 0.02

Min 0.0 40.8 0.00 0.0 1.8 14.5 14.7 32.5 0.00
Max 15.0 91.0 20.36 9.5 6.4 22.2 22.0 47.8 0.08

Spring

Mean 19.6 52.4 2.56 14.1 9.2 23.1 23.1 41.4 0.04
SD 6.5 19.3 3.06 6.1 3.2 3.5 3.5 8.8 0.03

Min 9.0 14.0 0.00 7.6 5.0 18.1 18.5 21.3 0.01
Max 36.5 93.5 15.10 25.6 14.8 28.9 29.6 54.0 0.11

Regarding the indoor environmental parameters, the mean Tair,in ranged between
14.1–29.2 ◦C, similar to the minimum and maximum values of Trad (14.8 ◦C and 29.6 ◦C,
respectively). RHin ranged between 19.6% and 54.0%, and Vi ranged between 0.00 m/s and
0.22 m/s. It should be noted that since the ventilation strategy during this period stated
that classrooms had to be naturally ventilated through windows and doors, no window
adjustments were observed during the field measurement campaign.

Figure 1 shows each season’s outdoor and indoor air conditions during the study
period. As expected, the seasons with the warmer indoor air temperatures were summer
(mean = 25.92 ◦C, SD = 2.10 ◦C) and spring (mean = 23.08 ◦C, SD = 3.57 ◦C), while
the lowest values were recorded during the winter (mean = 17.68 ◦C, SD = 2.25 ◦C).
The recorded outdoor air temperature values were slightly lower than the indoor air
temperature values during the summer. During the other seasons (winter and intermediate
spring, and autumn), a larger variation was observed between indoor and outdoor air
temperature values.

Regarding RH, the outdoor values were higher than those measured indoors, with the
lowest values collected during the summer season (mean RHout = 39.94%; SD RHout = 12.85%;
mean RHin = 35.43%; SD RHin = 7.48%), and the highest values during the winter season
(mean RHout = 63.92%; SD RHout = 17.06%; mean RHin = 38.98%; SD RHin = 4.40%). Similar
trends were also observed for air velocity, with higher values measured outdoors during
all seasons. It is worth noting that there were large variations between the mean values of



Buildings 2023, 13, 1002 7 of 16

outdoor air temperature measured at 6:00 a.m. during the different seasons: the mean values
of Tair (out,6) were 3.20 ◦C and 14.62 ◦C in the winter and summer seasons, respectively.

Figure 1. Variation of the indoor and outdoor environmental parameters by season.

3.2. Clothing Insulation and Gender

Figure 2 shows the collected values of clothing insulation reported by male and female
students. As can be seen, the mean value of clothing insulation reported by male students
(mean = 0.60 clo; SD = 0.29 clo) is lower than that reported by female students (mean = 0.72 clo;
SD = 0.33 clo). In fact, these values have been analysed, and the results obtained after perform-
ing a Kruskal–Wallis test showed that there are statistically significant differences between the
two populations (of male and female students) (χ2 = 60.21; p-value < 0.001). Similar results
were already reported by previous studies conducted in educational buildings [21,37–39].

Figure 2. Clothing insulation level by gender. Whiskers stand for minimum and maximum values.

3.3. Clothing Insulation and Seasons

The relationship between clothing insulation and the seasons was assessed in this study.
Different mean clothing insulation values were obtained for the summer (mean = 0.35 clo, SD
= 0.15 clo), autumn (mean = 0.83 clo; SD = 0.29 clo), winter (mean = 0.73 clo; SD = 0.20 clo),
and spring season (mean = 0.46 clo; SD = 0.26 clo). The results revealed statistically significant
differences between seasons (χ2 = 799.76; p-value < 0.001). Figure 3 shows the clothing
insulation level by season and gender.
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Figure 3. Clothing insulation level by season and gender. M indicates male; F indicates female.
Whiskers stand for minimum and maximum values.

In addition, this study assessed whether there are differences between the level of
clothing insulation of male and female students by season. The obtained values showed
evidence of statistically significant differences for all seasons (Table 4).

Table 4. Results obtained between the clothing insulation level of male and female students for
each season.

χ2 p-Value

Summer 33.554 <0.001
Autumn 27.667 <0.001
Winter 17.646 <0.001
Spring 38.837 <0.001

3.4. Clothing and Environmental Parameters

The results in the previous sections revealed significant differences in the levels of
students’ clothing insulation in the different seasons and by gender. Subsequently, the
relationship between indoor and outdoor environmental parameters and the level of
clothing insulation was examined (Table 5). A strong inverse correlation (ρ < −0.5) was
found between clothing insulation and Tair,out, Tair (out,6), Trm, Tair,in and Trad. Additionally,
the parameters that showed the least correlation were vout (ρ = −0.157), RHin (ρ = −0.187)
and vin (ρ = −0.216). Figures 4 and 5 show the relationship between clothing insulation
and the indoor and outdoor environmental parameters, respectively.

Table 5. Correlation between clothing insulation and environmental parameters.

Outdoor Parameters Indoor Parameters

Tair,out RHout Vout Tair (out,6) Trm Tair,in Trad RHin Vin

Clothing
insulation

ρ * −0.625 −0.458 −0.157 −0.634 −0.655 −0.640 −0.640 −0.187 −0.216
p-value ** ** ** ** ** ** ** ** **

* ρ indicates Spearman coefficient; ** p < 0.01.
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Figure 4. Relationship between outdoor environmental factors and clothing insulation: (a) outdoor air
temperature; (b) outdoor air RH; (c) outdoor air velocity; (d) outdoor air temperature measured at 6:00 a.m.;
(e) outdoor running mean temperature. The red line indicates the curve fit (95% confidence interval).

Figure 5. Relationship between indoor environmental factors and clothing insulation: (a) indoor
air temperature; (b) indoor radiant temperature; (c) indoor RH; (d) indoor air velocity. The red line
indicates the curve fit (95% confidence interval).
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Additionally, to analyse the influence of the variability of indoor and outdoor environ-
mental factors on the variability of the results, univariate feature ranking for regression
using F-tests was used. The method employs an F-test to individually examine the impor-
tance of each predictor. The F-test assesses the hypothesis that the response values, grouped
by predictor variable values, are derived from populations with identical means. The alter-
native hypothesis posits that the population means are not all equal. A small p-value for
the test statistic indicates that the corresponding predictor is significant. Consequently, a
large score value indicates that the corresponding predictor is important.

The score rank (Figure 6) shows the parameters of Tair (out,6), Trm, Trad, Tair,in and
Tair,out as features with the highest importance.

Figure 6. Univariate feature ranking for regression using F-tests.

3.5. ANN-Based Predictive Clothing Insulation Model

The results obtained in the above analysis were used to identify the variables that
influence the level of clothing insulation. This section shows the ANN-based model
developed using individual observations. The selected model’s input variables were Tair,out,
Tair (out,6), Trm, Tair,in, Trad, gender and season. The environmental parameters selected as
input variables were chosen because the previous statistical analyses showed a correlation
with the level of clothing insulation. In addition, the other non-environmental variables (i.e.,
gender and season) were selected due to their influence on the level of clothing insulation
and because of the statistically significant differences found.

The performance of the developed model was evaluated, and the obtained results are
shown in Table 6. The model performance is similar to the training and validation data
(R2 = 0.624 and R2 = 0.630, respectively), with MAE and MSE also being very similar between
both datasets (MAE = 0.083 and MSE = 0.013 for training data and MAE = 0.082, MSE = 0.013 for
validation data). Figure 7 shows the predicted clothing insulation values obtained from the
proposed ANN-based model versus the actual clothing insulation values. The linear regression
shows an R2 of 0.62 between both variables.

Table 6. Performance characteristics of the developed ANN-based predictive clothing insulation model.

Training Validation
MAE MSE R2 MAE MSE R2

Proposed
model 0.083 0.013 0.624 0.082 0.013 0.630
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Figure 7. Relationship between predicted values and actual values of the entire dataset.

The error distribution profile of the developed model is shown in Figure 8. The
accuracy of the predictive model can be assessed by comparing the difference between the
predicted and actual values. Figure 8 shows that 50% of the predictive values differ by
less than 0.1 clo from the actual values. This percentage increases to 76% if the range is
extended from−0.2 clo to +0.2 clo. In contrast, only 11.5% and 12.5% of the predicted values
overestimate or underestimate the clothing insulation by more than ±0.2 clo, respectively.

Figure 8. Error distribution profile of the developed ANN-based model.

4. Discussion

As briefly discussed in the introduction section, the selection of clothing insulation is
a crucial parameter for evaluating the indoor thermal conditions and thermal perception of
buildings’ occupants. In fact, clothing insulation is an input parameter used to calculate
different methods of predicting the general thermal sensation and degree of discomfort,
such as PMV-PPD [16]. International, European, or national regulations establish methods
for their calculation or recommendations, depending on the season. For example, UNE-EN
ISO 7730:2006 provided operative temperature (Top) ranges that should be calculated based
on a clothing insulation value of 0.5 clo during the summer (cooling season) and 1.0 clo
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during the winter (heating season). The Spanish standard (RITE) also defined Top values
(assuming a metabolic activity rate of 1.2 met and the same values of clothing insulation)
that should be applied during the design process of indoor spaces. Other standards, such as
ASHRAE 55-2020 [3], define models for predicting the clothing insulation level as a function
of outdoor air temperature measured at 6 a.m. However, this model was developed based
on a field study and may not be appropriate for different cultures or climate zones.

In this context, the results obtained from our study showed that there are significant
differences in the clothing insulation level between seasons. The mean clothing insulation was
0.35 and 0.73 clo for the summer and winter, respectively, while, for the intermediate seasons,
the observed mean value was 0.83 and 0.46 for the autumn and spring. The lowest mean
value was obtained in the summer, while the highest mean value was observed in the autumn.
Although the insulation value of clothing was expected to be higher in winter, the average
outdoor air temperatures during autumn and winter were very similar (11.28 ◦C and 9.80 ◦C).

Similar clothing insulation values were reported in previous studies; Aguilar [38]
found that the mean values were 0.72 and 0.84 clo during the winter for male and female
students, respectively. Alghamdi et al. [40] assessed the clothing insulation level of higher
university students in Australia and reported a range of values from 0.20 to 0.58 clo for
summer and from 0.40 to 0.85 clo for winter. Hu et al. [41] found values of 1.11 and 1.20 clo
in naturally ventilated university classrooms and 1.11 and 1.16 clo for air-conditioned
classrooms in China (for males and females, respectively). Talukdar et al. [42] conducted
a field study in naturally ventilated university classrooms in Bangladesh. They found
that the mean clothing insulation value was 0.6 clo for male students and 0.65 clo for
female students. Finally, Jowkar et al. [43] conducted a measurement campaign during the
academic year 2017/2018 (October–March). They found that the mean clothing insulation
value was 0.86 clo and 0.92 clo for men and women in England, while slightly lower values
(0.82 clo for men and 0.91 for women) were found in Scotland.

Consequently, it can be observed that the mean clothing insulation values reported by
studies carried out in different locations are not the same. Therefore, the indoor and outdoor
environmental characteristics of each location must be considered for the development of
predictive clothing insulation models. In addition, while the studies mentioned previously
have analysed the thermal perception of university students and reported the observed clothing
insulation values, none of them proposed a model to predict the level of clothing insulation.

In this sense, the results obtained from the model developed in this study have been
compared with those obtained from the model defined in the ASHRAE 55 standard to
assess its performance. Figure 9 shows the relationship between the predicted values
obtained from the ASHRAE 55 model and the actual values. The linear regression between
both variables shows R2 = 0.39 and a Pearson coefficient r = 0.63. These values are lower
than those obtained from the developed model (R2 = 0.62 and Pearson coefficient r = 0.79).
These values show that the performance of the developed model is better than that obtained
by the ASHRAE 55 model.

Figure 10 shows the error distribution profile of the developed ANN-based model
and the ASHRAE 55 model. In general, the results shown in Figure 9 are evidence that the
accuracy of the developed model is higher than that of the ASHRAE 55 model. In fact, only
32% of the predicted values obtained from the ASHRAE 55 model differ from the actual
values by less than 0.1 clo, while this percentage rises to 50% with the developed model.
On the other hand, the ASHRAE model tends to underestimate the clothing insulation
value, as seen in Figure 10, where the positive error distribution is higher.

Nevertheless, it should be noted that ASHRAE 55 pointed out that cultural and climate
conditions influence the clothing insulation level, resulting in the need to generate models
that can predict clothing insulation by considering specific climatic and cultural conditions.
Therefore, the model developed in this study constitutes a tool that can respond to the
needs identified in the standards. It is also worth mentioning that although the developed
model outperforms the adaptive model defined in the ASHRAE-55 standard, it cannot be
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applied as a reliable predictor in other scenarios (i.e., other different activities, climatic
zone, culture conditions, etc.)

Figure 9. Relationship between the predicted values obtained from the ASHRAE 55 model and
actual values.

Figure 10. Comparison of the error distribution profile of the developed ANN-based model and the
ASHRAE model.

5. Research Limitations

In this study, an ANN-based model has been developed to predict the clothing insula-
tion of educational buildings’ occupants. This model is based on data obtained from a field
measurement campaign, including a questionnaire survey and monitoring environmental
variables simultaneously. As a result, the model has a limited range of applicability due
to the measured range of indoor and outdoor environmental variables. Additionally, the
surveyed participants were young university students, and the data collected are represen-
tative of educational buildings where the clothing tends to be informal. As such, the model
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should not be applied to buildings or activities other than lecture classes without further
analysis and verification.

In addition, it is noteworthy that this study did not analyse non-environmental variables
such as building characteristics. Future research is needed to analyse the influence of these
variables on the clothing behaviour of occupants of educational buildings. It is also reasonable
to assume that the clothing insulation level may also be strongly connected with the cultural
and economic characteristics of the population under study or that buildings’ occupants may
be unable to adapt their clothing insulation when dress codes are implemented.

6. Conclusions

The influence of environmental and non-environmental variables on the level of
clothing insulation of students in higher education has been evaluated in this study. The ob-
tained results evidenced a correlation between clothing insulation and Tair,out (ρ = −0.625),
Tair (out,6) (ρ = −0.634), Trm (ρ = −0.665), Tair,in (ρ = −0.640) and Trad (ρ = −0.640). In
addition, statistically significant differences were found between male and female students
and between the seasons. In fact, gender differences in clothing insulation were also found
in all seasons. Female students reported higher clothing insulation than male students,
with the highest values observed in winter.

These results revealed the significance of these factors in determining the level of
clothing insulation, leading to their selection as input variables for developing a clothing
insulation prediction model using ANN. Therefore, the following conclusions have been
drawn based on the obtained results:

- The generated ANN-based model predicts clothing insulation with considerably
high accuracy (R2 = 0.60). The performance of the proposed model is similar to or
better than the individual predictive clothing insulation models generated in previous
research.

- The error distribution profile of the proposed model concentrates 50% in the range
−0.1 to 0.1 clo, in contrast to the method suggested in the ASHRAE 55, which has only
provided 32% of the predictions in the same range.

- The developed model can be used to more accurately predict the individual clothing
insulation and, subsequently, to assess the indoor thermal conditions of educational
buildings based on these results. This information is crucial to the design and size of
HVAC systems and to the definition of management strategies that ensure suitable
indoor thermal environmental conditions for the occupants while minimising the
energy consumption of the building.

Finally, it should be noted that the ASHRAE 55 and ISO 7730 standards concluded that
specific models are needed since factors such as geographic location, climate and cultural
conditions influence the clothing insulation level and the thermal perception of building
occupants. In this sense, this study responds to this need by providing a novel ANN-based
method, which can be used by building managers to obtain more accurate predictions of
the clothing insulation level of students in education in southern Spain.

Author Contributions: A.J.A. and M.L.d.l.H.-T.: conceptualisation, methodology, performed the
experiments, formal analysis, software, validation, writing-original draft preparation; N.C. and P.A.:
conceptualisation, resources and writing-review and editing; M.D.M.-A. and D.P.R.: conceptuali-
sation, resources, project administration, funding acquisition and writing-review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This publication is part of the I + D + i project PID2019-108761RB-I00, funded by MCIN/
AEI/10.13039/501100011033.

Data Availability Statement: Data are provided upon request to the corresponding author.

Acknowledgments: Antonio J. Aguilar and María Luisa de la Hoz-Torres wish to thank the support of
the Ministerio de Ciencia, Innovación y Universidades of Spain under an FPU grant and a Margarita
Salas post-doc contract funded by European Union–NextGenerationEU, respectively.



Buildings 2023, 13, 1002 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nguyen, X.P.; Hoang, A.T.; Ölçer, A.I.; Huynh, T.T. Record decline in global CO2 emissions prompted by COVID-19 pandemic

and its implications on future climate change policies. Energy Sources A Recovery Util. Environ. Eff. 2021. [CrossRef]
2. Geng, Y.; Ji, W.; Lin, B.; Zhu, Y. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ.

2017, 121, 158–167. [CrossRef]
3. ASHRAE 55-2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2020.
4. UNE-EN 16798-1:2020; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input

Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality. Thermal Environment,
Lighting and Acoustics—Module M1-6; UNE: Madrid, Spain, 2019.

5. Che, W.W.; Tso, C.Y.; Sun, L.; Ip, D.Y.; Lee, H.; Chao, C.Y.; Lau, A.K. Energy consumption, indoor thermal comfort and air quality
in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy Build. 2019, 201, 202–215.
[CrossRef]

6. Bienvenido-Huertas, D.; Sánchez-García, D.; Rubio-Bellido, C. Influence of the RCP scenarios on the effectiveness of adaptive
strategies in buildings around the world. Build. Environ. 2022, 208, 108631. [CrossRef]

7. Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R. Optimization of household energy consumption towards day-ahead
retail electricity price in home energy management systems. Sustain. Cities Soc. 2019, 47, 101468. [CrossRef]

8. Barton, R.; Erhorn, H.; Morck, O.; Mroz, T.; Schmidt, F. Retrofitting in Educational Buildings-Energy Concept Adviser for
Technical Retrofit Measures. Tech. Synth. Rep. Annex. 2007, 36. Available online: http://www.annex36.com/eca/uk/06util/pdf/
A36SubtaskC_Report_AuditProcedures.pdf (accessed on 8 April 2023).

9. Thewes, A.; Maas, S.; Scholzen, F.; Waldmann, D.; Zürbes, A. Field study on the energy consumption of school buildings in
Luxembourg. Energy Build. 2014, 68, 460–470. [CrossRef]

10. Pereira, L.D.; Raimondo, D.; Corgnati, S.P.; Da Silva, M.G. Energy consumption in schools–A review paper. Renew. Sustain. Energy
Rev. 2014, 40, 911–922. [CrossRef]

11. Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy
Rev. 2016, 59, 895–906. [CrossRef]

12. Baloch, R.M.; Maesano, C.N.; Christoffersen, J.; Banerjee, S.; Gabriel, M.; Csobod, É.; de Oliveira Fernandes, E.; Annesi-Maesano,
I.; Szuppinger, P.; Prokai, R. Indoor air pollution, physical and comfort parameters related to schoolchildren’s health: Data from
the European SINPHONIE study. Sci. Total Environ. 2020, 739, 139870. [CrossRef] [PubMed]

13. Fu, X.; Norbäck, D.; Yuan, Q.; Li, Y.; Zhu, X.; Hashim, J.H.; Hashim, Z.; Ali, F.; Hu, Q.; Deng, Y. Association between indoor
microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia. Sci. Total Environ. 2021,
753, 141904. [CrossRef] [PubMed]

14. Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical
review of the literature. Indoor Air 2005, 15, 27–52. [CrossRef] [PubMed]

15. Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The impact of classroom design on pupils’ learning: Final results of a holistic,
multi-level analysis. Build. Environ. 2015, 89, 118–133. [CrossRef]

16. ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort
Using Calculation of the Pmv and Ppd Indices and Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.

17. ISO 9920:2007; Ergonomics of the Thermal Environment—Estimation of Thermal Insulation and Water Vapour Resistance of a
Clothing Ensemble. ISO: Geneva, Switzerland, 2008.

18. Newsham, G.R. Clothing as a thermal comfort moderator and the effect on energy consumption. Energy Build. 1997, 26, 283–291.
[CrossRef]

19. Gauthier, S.; Shipworth, D. Predictive thermal comfort model: Are current field studies measuring the most influential variables?
In Proceedings of the 7th Windsor Conference: The Changing Context of Comfort in an Unpredictable World, Cumberland
Lodge, Windsor, UK, 12–15 April 2012; Nicol, F., Roaf, S., Brotas, L., Humphreys, M., Eds.; NCEUB: London, UK, 2012; pp. 1–14.
Available online: https://eprints.soton.ac.uk/378774/ (accessed on 8 April 2023).

20. Schiavon, S.; Lee, K.H. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures.
Build. Environ. 2013, 59, 250–260. [CrossRef]

21. Ngarambe, J.; Yun, G.Y.; Kim, G. Prediction of indoor clothing insulation levels: A deep learning approach. Energy Build. 2019,
202, 109402. [CrossRef]

22. De Carli, M.; Olesen, B.W.; Zarrella, A.; Zecchin, R. People’s clothing behaviour according to external weather and indoor
environment. Build. Environ. 2007, 42, 3965–3973. [CrossRef]

23. Zhao, W.; Chow, D.; Yan, H.; Sharples, S. Influential factors and predictive models of indoor clothing insulation of rural residents:
A case study in China’s cold climate zone. Build. Environ. 2022, 216, 109014. [CrossRef]

24. Rupp, R.F.; Kazanci, O.B.; Toftum, J. Investigating current trends in clothing insulation using a global thermal comfort database.
Energy Build. 2021, 252, 111431. [CrossRef]

https://doi.org/10.1080/15567036.2021.1879969
https://doi.org/10.1016/j.buildenv.2017.05.022
https://doi.org/10.1016/j.enbuild.2019.06.029
https://doi.org/10.1016/j.buildenv.2021.108631
https://doi.org/10.1016/j.scs.2019.101468
http://www.annex36.com/eca/uk/06util/pdf/A36SubtaskC_Report_AuditProcedures.pdf
http://www.annex36.com/eca/uk/06util/pdf/A36SubtaskC_Report_AuditProcedures.pdf
https://doi.org/10.1016/j.enbuild.2013.10.002
https://doi.org/10.1016/j.rser.2014.08.010
https://doi.org/10.1016/j.rser.2016.01.033
https://doi.org/10.1016/j.scitotenv.2020.139870
https://www.ncbi.nlm.nih.gov/pubmed/32544681
https://doi.org/10.1016/j.scitotenv.2020.141904
https://www.ncbi.nlm.nih.gov/pubmed/32890872
https://doi.org/10.1111/j.1600-0668.2004.00320.x
https://www.ncbi.nlm.nih.gov/pubmed/15660567
https://doi.org/10.1016/j.buildenv.2015.02.013
https://doi.org/10.1016/S0378-7788(97)00009-1
https://eprints.soton.ac.uk/378774/
https://doi.org/10.1016/j.buildenv.2012.08.024
https://doi.org/10.1016/j.enbuild.2019.109402
https://doi.org/10.1016/j.buildenv.2006.06.038
https://doi.org/10.1016/j.buildenv.2022.109014
https://doi.org/10.1016/j.enbuild.2021.111431


Buildings 2023, 13, 1002 16 of 16

25. Wang, L.; Kim, J.; Xiong, J.; Yin, H. Optimal clothing insulation in naturally ventilated buildings. Build. Environ. 2019, 154,
200–210. [CrossRef]

26. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z.
2006, 15, 259–263. [CrossRef]

27. UNE-CEN/TR 16798-2:2019; Energy Performance of Buildings—Ventilation for Buildings—Part 2: Interpretation of the Require-
ments in EN 16798-1—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings
Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics (Module M1-6). UNE: Madrid, Spain, 2019.

28. UNE-EN ISO 7726:2002; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. (ISO
7726:1998). UNE: Madrid, Spain, 1998.

29. Kumar, A.; Mor, N. An approach-driven: Use of artificial intelligence and its applications in civil engineering. Artif. Intell. IoT
Smart Converg. Eco-Friendly Topogr. 2021, 85, 201–221. [CrossRef]

30. Tasadduq, I.; Rehman, S.; Bubshait, K. Application of neural networks for the prediction of hourly mean surface temperatures in
Saudi Arabia. Renew. Energy 2002, 25, 545–554. [CrossRef]

31. Panchal, G.; Ganatra, A.; Kosta, Y.; Panchal, D. Behaviour analysis of multilayer perceptrons with multiple hidden neurons and
hidden layersInternational. J. Comput. Theory Eng. 2011, 3, 332–337. [CrossRef]

32. Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.C.; Mandin, C. Machine learning and statistical models for predicting
indoor air quality. Indoor Air 2019, 29, 704–726. [CrossRef] [PubMed]

33. Das, P.; Shrubsole, C.; Jones, B.; Hamilton, I.; Chalabi, Z.; Davies, M.; Mavrogianni, A.; Taylor, J. Using probabilistic sampling-
based sensitivity analyses for indoor air quality modelling. Build. Environ. 2014, 78, 171–182. [CrossRef]

34. Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M. Development and comparison of regression models and feedforward backpropaga-
tion neural network models to predict seasonal indoor PM2. 5–10 and PM2. 5 concentrations in naturally ventilated schools.
Atmos. Pollut. Res. 2015, 6, 1013–1023. [CrossRef]

35. Chaudhuri, T.; Soh, Y.C.; Li, H.; Xie, L. A feedforward neural network based indoor-climate control framework for thermal
comfort and energy saving in buildings. Appl. Energy 2019, 248, 44–53. [CrossRef]

36. Gong, P.; Cai, Y.; Zhou, Z.; Zhang, C.; Chen, B.; Sharples, S. Investigating spatial impact on indoor personal thermal comfort. J.
Build. Eng. 2022, 45, 103536. [CrossRef]

37. De la Hoz-Torres, M.L.; Aguilar, A.J.; Costa, N.; Arezes, P.; Ruiz, D.P.; Martínez-Aires, M.D. Reopening higher education buildings
in post-epidemic COVID-19 scenario: Monitoring and assessment of indoor environmental quality after implementing ventilation
protocols in Spain and Portugal. Indoor Air 2022, 32, e13040. [CrossRef]

38. Aguilar, A.J.; de la Hoz-Torres, M.L.; Martínez-Aires, M.D.; Ruiz, D.P. Thermal perception in naturally ventilated university
buildings in Spain during the cold season. Buildings 2022, 12, 890. [CrossRef]

39. Wang, Z.; de Dear, R.; Luo, M.; Lin, B.; He, Y.; Ghahramani, A.; Zhu, Y. Individual difference in thermal comfort: A literature
review. Build. Environ. 2018, 138, 181–193. [CrossRef]

40. Alghamdi, S.; Tang, W.; Kanjanabootra, S.; Alterman, D. Field investigations on thermal comfort in university classrooms in New
South Wales, Australia. Energy Rep. 2023, 9, 63–71. [CrossRef]

41. Hu, J.; He, Y.; Hao, X.; Li, N.; Su, Y.; Qu, H. Optimal temperature ranges considering gender differences in thermal comfort,
work performance, and sick building syndrome: A winter field study in university classrooms. Energy Build. 2022, 254, 111554.
[CrossRef]

42. Talukdar, M.S.J.; Talukdar, T.H.; Singh, M.K.; Baten, M.A.; Hossen, M.S. Status of thermal comfort in naturally ventilated
university classrooms of Bangladesh in hot and humid summer season. J. Build. Eng. 2020, 32, 101700. [CrossRef]

43. Jowkar, M.; Rijal, H.B.; Montazami, A.; Brusey, J.; Temeljotov-Salaj, A. The influence of acclimatization, age and gender-related
differences on thermal perception in university buildings: Case studies in Scotland and England. Build. Environ. 2020, 179, 106933.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.buildenv.2019.03.029
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1007/978-981-33-6400-4_10
https://doi.org/10.1016/S0960-1481(01)00082-9
https://doi.org/10.7763/IJCTE.2011.V3.328
https://doi.org/10.1111/ina.12580
https://www.ncbi.nlm.nih.gov/pubmed/31220370
https://doi.org/10.1016/j.buildenv.2014.04.017
https://doi.org/10.1016/j.apr.2015.09.001
https://doi.org/10.1016/j.apenergy.2019.04.065
https://doi.org/10.1016/j.jobe.2021.103536
https://doi.org/10.1111/ina.13040
https://doi.org/10.3390/buildings12070890
https://doi.org/10.1016/j.buildenv.2018.04.040
https://doi.org/10.1016/j.egyr.2022.11.156
https://doi.org/10.1016/j.enbuild.2021.111554
https://doi.org/10.1016/j.jobe.2020.101700
https://doi.org/10.1016/j.buildenv.2020.106933

	Introduction 
	Materials and Methods 
	Location and Characteristics of the Participants 
	Data Collection: Questionnaire Survey and Monitoring Equipment 
	Data Pre-Processing and ANN-Based Model 
	Predictive Clothing Insulation Models 

	Results 
	Environmental Conditions 
	Clothing Insulation and Gender 
	Clothing Insulation and Seasons 
	Clothing and Environmental Parameters 
	ANN-Based Predictive Clothing Insulation Model 

	Discussion 
	Research Limitations 
	Conclusions 
	References

