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Stochastic Pareto diffusion process : Statistical analysis and
computational issues. Simulation and Application
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Abstract. We propose a novel diffusion process having a mean function equal to the Pareto probability
density function up to a constant of proportionality. We examine the probabilistic properties of the pro-
posed model. Then, referring to the problem of statistical inference, we describe the approach employed to
tackle the issue of obtaining parameter estimates by maximizing the likelihood function based on discrete
sampling. This estimation reduces to solving a set of complex equations, that is accomplished using the
simulated annealing algorithm. A simulation study is also given to validate the methodology presented.
Finally, using a real-world example of the Moroccan child mortality rate, we obtain the fits and forecasts by
employing the suggested stochastic process and nonlinear regression model.
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1. Introduction

Stochastic diffusion processes (SDP) are useful tools in the modeling and analysis of phe-
nomena that evolve randomly and continuously in time. Their fields of application range from
traditional applications such as economics, physics, and biology, to news technology and the
emissions of greenhouse gases. Several SDPs have been developed to model a wide range of
problems, such as, Pearson [7]; Weibull [19]; Lomax [17]; Brody [18]; γ-power of the Lundqvist-
Korf [6].

In studies of statistical inference in these processes, if we are confident about the paramet-
ric specification of the model under investigation, then maximum likelihood is the method of
choice, as these estimators offer many desirable properties [27]. However, in most cases the
transition densities of diffusion processes are unknown and as a result, the maximum like-
lihood function is often difficult to implement. Accordingly, estimation methods are often
needed, and in many cases, these are based on approximations of the maximum likelihood.
This theory has been extensively reviewed by [8], [22] and [13], among others.

Many real-world systems depend not only on the previous states of the process but also on
time. For example, stock prices are known to behave differently according to the day of the
week, the month, and the year. Various non-homogeneous stochastic processes, with exoge-
nous factors, have been suggested to depict this sort of time-dependent behavior, such as Log-
normal [25], Gompertz [12], Gamma [11]. In this study, We develop a novel diffusion process
based on the density function of the Pareto distribution as a time inhomogeneous extension of
the lognormal process.
The Pareto distribution arises in many contexts, such as the size of earthquakes [9], disk drive
sector errors [24] among other applications [20]. Furthermore many extensions can be found
throughout the literature, for example, beta-Pareto distribution [1], Weibull-Pareto distribution
[3], Gamma-Pareto distribution [2], among others.
This distribution was originally introduced by Vilfredo Pareto [16], who used it to model the
unequal distribution of wealth. The Pareto distribution which is referred to in the literature
as P(I)(β, α), is characterized by a long right-skewed tail which approaches but never touches
the horizontal axis.
The pdf of a Pareto distribution P(I)(β, α) defined on [β,+∞) is :

f (t) =

{
αβα

tα+1 if t ≥ β

0 if t < β
(1.1)

Examples of (approximate) Pareto distributions in real-life phenomena include the sizes of
human settlements, and the sizes of sand particles [23].

2. The Pareto diffusion process

2.1. The model. The Stochastic Pareto diffusion process (SPDP) is the time dependent diffu-
sion process {y(τ) : τ ∈ [s, T], s > 0} with values on the positive real line R∗

+, and with

M1(τ, y) = −γ

τ
y and M2(τ, y) = ν2y2 , (2.1)
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where ν > 0, γ > 1 are real numbers.
alternatively, the SPDP can be defined by means of Itô’s SDE as follows:

dy(τ) = M1(τ, y)dτ +
√

M2(τ, y)dB(τ) , y(s) = ys , (2.2)

With B(τ) denoting the standard Brownian motion and ys ∈ R∗
+.

2.2. Analytical expression of the process. We can show that ∃K ∈ R∗+, i.e K = |γ|
s + ν, such

that ∀a, y ∈ R+ and τ ∈ [s, T], we have

| M1(τ, a)− M1(τ, y) | + |
√

M2(τ, a)−
√

M2(τ, y) |≤ K | a − y |

| M1(τ, y) |2 + |
√

M2(τ, y) |2≤ K2(1+ | y |2).

Therefore, (2.2) has a strong solution {y(τ) : τ ∈ [s, T], s > 0} that is continuous almost surely,
and which satisfies the initial condition y(s) = ys.
Using the continuity of M1(τ, y) with respect to τ, we deduce that the solution {y(τ) : τ ∈
[s, T], s > 0} is a one-dimensional diffusion process with drift M1(τ, y) and the diffusion
coefficient M2(τ, y) (see [4]), and their expression is obtained by using Itô’s lemma applied to
the time independent transform ξ(τ) = log(y(τ)), then (2.2) is written as follows:

dξ(τ) =

(
−γ

τ
− ν2

2

)
dτ + νdB(τ) , ξ(s) = log(ys).

By integrating and substituting, the strong solution of the SDE (2.2) is expressed as follows:

y(τ) = yζ

(
ζ

τ

)γ

exp
[
−ν2

2
(τ − ζ) + ν (B(τ)− B(ζ))

]
, (2.3)

from which we deduce that

y(τ) | y(ζ) = yζ ∼ Λ
(

log(yζ) + γlog
(

ζ

τ

)
− ν2

2
(τ − ζ) , ν2(τ − ζ)

)
, (2.4)

therefore, the TPDF of the process is given by:

f (y, τ | yζ , ζ) =
1

y
√

2π(τ − ζ)ν2
× exp

−

[
log
(

y
yζ

)
+ γlog

(
τ
ζ

)
+ ν2

2 (τ − ζ)
]2

2ν2 (τ − ζ)

. (2.5)

2.3. Mean functions. Based on the well known Lognormal distribution’s properties, we have:

E(yr | y(ζ) = yζ) = exp
[

r
(

log(yζ) + γlog
(

ζ

τ

)
− ν2

2
(τ − ζ)

)
+

r2

2
ν2(τ − ζ)

]
. (2.6)

The conditional mean function of the process is obtained by setting r in (2.6) to one, i.e:

E(y(τ) | y(ζ) = yζ) = yζ

(
ζ

τ

)γ

. (2.7)

Furthermore, considering that P(y(s) = ys) = 1, the unconditional mean function of the SPDP
is:

E(y(τ)) = ys

( s
τ

)γ
. (2.8)
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We observe that:
• The mean function of the SPDP defined in (2.8) is equal to the Pareto probability density

function (1.1), up to a constant of proportionality.
• On the other hand, when ν = 0, (2.2) reduces to an ordinary differential equation for

which the solution is, y(τ) = yζ(
ζ
τ )

γ, and which is equal to the Pareto (Type I) [16]
density function P(I)(ζ, γ), up to a constant of proportionality.

3. Parameters Estimation

The unknown parameters in the process are estimated by ML method. Therefore, we con-
sider a discrete sampling of the process y(τ1), y(τ2), ..., y(τN) at times τ1, τ2, ..., τN, and we de-
note y(τj) = yj, for j = 1, ..., N in the following. In addition, for simplicity, we suppose that the
time gap between two consecutive observations is constant (i.e., τj − τj−1 = δ, for j = 2, ..., N)
and θ = (γ, ν) is the vector of parameters.
Hereafter, by supposing that P[y(τ1) = yτ1 ] = 1, the corresponding likelihood function l(y; θ)
is:

l(y, θ) =
N

∏
j=2

f (yj, τj | yj−1, τj−1)

=
N

∏
j=2

1

y
√

2πδν2
exp

−

[
log
(

yj
yj−1

)
+ γlog

(
τj

τj−1

)
+ ν2

2 δ
]2

2ν2δ

.

By setting Kj,γ = log

(
yj

yj−1

)
+ γlog

(
τj

τj−1

)
, the log-likelihood function is given by:

log(l(y, θ)) =
N

∑
j=2

−log(yj)−
1
2

log(2πδ)− 1
2

log(ν2)

− 1
2ν2δ

[
log
(

yj

yj−1

)
+ γlog

(
τj

τj−1

)
+

ν2

2
δ

]2

= −N − 1
2

log(ν2)− N − 1
2

log(2πδ)−
N

∑
j=2

[
log(yj) +

1
2ν2δ

(
Kj,γ +

ν2

2
δ

)2
]

.

This function is then differentiated with respect to the vector θ and after several operations
and simplifications, the likelihood equations are:

N

∑
j=2

(
Kj,γ +

ν2δ

2

)
log
(

τj

τj−1

)
= 0 (3.1)

(
N

∑
j=2

K2
j,γ

)
− (N − 1)ν2δ − N − 1

4
ν4δ2 = 0. (3.2)

Note that the trinomial of (3.2) has two roots. Since we know that ν2 corresponds to the non-
negative root, the estimator ν̂2, can be expressed as
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ν̂2 =
2
δ

(1 +
1

N − 1

N

∑
j=2

K2
j,γ

)1/2

− 1

 . (3.3)

After replacing ν2 by ν̂2 in (3.1), the estimator of γ satisfies the following non-linear equation
:

N

∑
j=2

Kj,γ +

(
1 +

1
n − 1

N

∑
j=2

K2
j,γ

)1/2

− 1

 log
(

τj

τj−1

)
= 0. (3.4)

The solution to this equation may be arduous to find, and so this problem is addressed using
numerical resolution methods.

4. Computational aspects

4.1. Approximate likelihood estimators. In the present work, simulated annealing is used to
solve (3.4), as described below.

Simulated annealing is a commonly used random optimization method that converges to
the extremum of a given function using stochastic exploration. In theory, this enables us to
obtain the global extremum of the function, in contrast to most of the classical (deterministic)
methods which are limited to a local extremum. The likelihood of a physical system possessing
an energy E when thermodynamic equilibrium is attained at a temperature T is proportional
to the Boltzmann factor: exp(−E/KT), where K represents the Boltzmann constant. To model
the evolution of a physical system towards thermodynamic equilibrium at a temperature T, we
use the Metropolis algorithm: Starting from an initial configuration of the system, we apply an
elementary modification, if it decreases the energy E, we accept this modification. Otherwise,
if ∆E > 0, we accept the modification with probability exp(−∆E/T). At low temperatures,
only very small increases in energy are accepted. The series of configurations converges to a
state of thermodynamic equilibrium at temperature T. We slightly decrease the temperature
and then re-converge towards thermodynamic equilibrium. If the temperature is lowered too
quickly, convergence is slowed down. When the temperature is close to zero, the energy is
close to a minimum.

Analogically if E is replaced by a cost function, this algorithm allows us to find the global
extremum of this function: When T is high the algorithm can, with a high probability, tem-
porarily accept a value that degrades the cost function, making it possible to escape the local
extremes, when T approaches 0 a degradation is never accepted.

4.2. Estimated mean functions. By substituting the parameters with their estimators in (2.7)
and (2.8), the estimated mean function (EMF) and the estimated conditional mean function
(ECMF) are derived. Thus the EMF is :

Ê(y(τ)) = ys

( s
τ

)γ̂
. (4.1)
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and the ECMF is:

Ê(y(τ) | y(ζ) = xζ) = yζ

(
ζ

τ

)γ̂

. (4.2)

4.3. Goodness of fit. The mean absolute percentage error (MAPE) is a commonly used mea-
sure for assessing the accuracy of the forecasts obtained by a model. The MAPE measures
the average absolute value of percentage errors. Let xi be the observed values, x̂i the model’s
forecasted values, and n and the number of forecasts. Thus, The MAPE is given by:

MAPE =
100
n

n

∑
i=1

| xi − x̂i |
xi

.

Although the MAPE is the most commonly used measure for accuracy, it has several short-
comings [26], [15]. To overcome those problems we consider two additional accuracy measures,
the symmetric mean absolute percentage error (SMAPE) and the mean squared error (MSE),
which are defined as follows:

SMAPE =
100
n

n

∑
i=1

| xi − x̂i |
(| x̂i | + | xi |) /2

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 .

4.4. Confidence interval of the process. As the process is inhomogeneous, it’s not possible to
find the stationary distribution and the asymptotic confidence intervals of the parameters of
the process, for example, in the case of the Gompertz process [10] and others. An alternative
procedure that makes it possible to find bounds that contain almost all the trajectories of the
process is used. The principle of this procedure is to find an estimation of the confidence
interval of the variable y(τ). By using the expression (2.2) and the standard brownian motion
properties, the random variable Z is given by:

Z =
log
(

y(τ)
y(s)

)
− µ(γ, ν2, τ, s)

ν
√

τ − s
∼ N (0, 1).

where µ(γ, ν2, τ, s) = −γlog
(

τ
s
)
+ ν2

2 (τ − s).
An α% confidence interval for z is given by P (| z |≤ zα) = α. From this, we can obtain a

confidence interval of with following form:

yl(τ) = ysexp
[
µ(γ, ν2, τ, s)− zαν

√
τ − s

]
(4.3)

yu(τ) = ysexp
[
µ(γ, ν2, τ, s) + zαν

√
τ − s

]
. (4.4)

With zα = ϕ−1
(

1+α
2

)
and where ϕ denote the cumulative normal standard distribution.

Then, by substituting the parameters by their estimators in (4.3) and (4.4) the estimated
confidence intervals are given by:

ŷl(τ) = ysexp
[
µ(γ̂, ν̂2, τ, s)− zαν̂

√
τ − s

]
. (4.5)
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ŷu(τ) = ysexp
[
µ(γ̂, ν̂2, τ, s) + zαν̂

√
τ − s

]
. (4.6)

5. Simulation

In order to obtain an illustration of the proposed model, we discretize the interval [t, s] with
τj = τj−1 + (j − 1)δ for j = 2, ...., n. Assume (τ1 = t) and a discretization step of δ = s−t

n , where
n is the sample size. Let s = 0.2, t = 0.9, n = 400, and xt = 135.171, twenty-five trajectories of
the process given by (2.2) were simulated.

Figure 1 shows the simulation results, as well as the EMF of the SPDP.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
τ

20

40

60

80

100

120

140

x(
τ)

EMF
Sample paths

Figure 1. Simulated trajectories vs the EMF for γ = 1.1 and ν = 0.2

we obtained the estimators γ̂j and ν̂j
2 of each trajectory i using the SA method to solve (3.4),

with a logarithmic cooling rate, an initial temperature of 1000. We then considered the average
value of each estimator, i.e: γ = 1

25 ∑25
j=1 γ̂j and ν2 = 1

25 ∑25
j=1 ν̂j

2.
The results obtained were : γ = 1.107303765890008 and ν2 = 0.199945288360394. Denoting the
ith sample path by xi, at each time point τj, the simulated trajectories average value (x̄(τj)) was
computed using the fomula x̄(τj) = 1

d ∑25
i=i xi(τj). Figure 2 shows the calculated EMF of the

SPDP and the average value of the of the simulated trajectories.
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Figure 2. EMF vs the average of the simulated sample paths

6. Application

Mortality rates for various age groups are important measures of a country’s health status.
Mortality rates can be used to identify vulnerable populations since data on disease frequency
and severity is often unavailable. Furthermore, these metrics are commonly utilized in world-
wide socioeconomic development comparisons.

For example, statistics on under-five mortality may reflect the consequences of gender dis-
crimination more effectively than newborn mortality statistics, because starvation and medical
interventions have a greater influence on this age group. Under-five mortality rates are greater
for boys than for girls in nations where parental gender preferences are insignificant.

Complete vital registration systems are scarce in developing countries. As a result, estimates
must be produced from sample surveys or registration, census, or survey data using indirect
estimation techniques [5].

In our application of the SPDP described above, we consider the variable x(t) defined as the
under-five mortality rate, i.e. the probability per 1,000 that a newborn baby will die before
reaching the age of five years, if subject to age-specific mortality rates of the specified year.
These data are of annual periodicity and are available on [5]. For Morocco, the average value
in this respect during the period from 1983 to 2014 was 47.4188. The values recorded for this
period along with the EMF and ECMF are shown in Table 1.

6.1. Fits and forecasts using nonlinear regression. The standard strategy to detect the power-
law behaviour in empirical data make use of the fact that if f (x) follows a power law then
log( f (x)) = log(C) − γlog(x). Therefore if we plot the function log( f (x)) on a logarithmic
scale, we would expect to obtain a straight line of slope −γ. In order to apply this method
to the present dataset, we used the linear regression implementation from scikit-learn API
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Table 1. Yearly child mortality rate in Morocco

Year Data EMF ECMF Year Data EMF ECMF
1983 83.2 83.2 83.2 1999 43.5 42.6514 43.454
1984 79.9 79.7844 79.7844 2000 41.7 40.9141 41.7282
1985 76.5 76.5106 76.6215 2001 40 39.2485 40.0023
1986 73.4 73.3728 73.3626 2002 38.5 37.6514 38.3723
1987 70.4 70.365 70.3912 2003 36.9 36.1201 36.9341
1988 67.5 67.4821 67.5156 2004 35.5 34.6517 35.4
1989 64.9 64.7185 64.7358 2005 34 33.2438 34.0576
1990 62.5 62.0695 62.2435 2006 32.7 31.8937 32.6192
1991 60.1 59.5301 59.943 2007 31.3 30.599 31.3726
1992 57.9 57.0959 57.6424 2008 30 29.3575 30.0301
1993 55.6 54.7623 55.5335 2009 28.8 28.167 28.7834
1994 53.5 52.5252 53.3287 2010 27.5 27.0253 27.6327
1995 51.3 50.3805 51.3155 2011 26.3 25.9305 26.3859
1996 49.3 48.3244 49.2064 2012 25.2 24.8804 25.235
1997 47.3 46.3532 47.289 2013 24 23.8734 24.1801
1998 45.3 44.4633 45.3715 2014 22.9 22.9077 23.0291

Table 2. Forecast accuracy for the deterministic Pareto model

Forecast accuracy error measurements Values

MAPE 2.5667282278198185
SMAPE 2.514343279863844

MSE 0.9992024240811666

in Python [21]. The estimate obtained for γ using this method is 81.5907155, and the sum
of squared error is 0.002. A popular approach is to rely on visualizations of the data, as in
Figure 3, where the logarithm of each data point was plotted against the logarithm of time
expressed in years to confirm the linearity of the logarithm of the data and therefore to deduce
the power-law behavior in data.

The results obtained using this nonlinear regression are as follows: the fits and the predic-
tions are illustrated in Figure 4, and the MAPE, SMAPE, and MSE are shown in Table 2.
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Figure 3. Logarithm of the data with linear regression curve
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Figure 4. Real data vs predictions of the deterministic model

6.2. Fits and forecasts using the stochastic Pareto model. A MatLab program was imple-
mented to perform the necessary calculations. The values of the estimators correspond-
ing to parameters γ and ν obtained by the above-described method are γ̂ = 83.18889 and
ν̂2 = 7.52494 × 10−6. It can be seen that ν̂2 > 0, which justifies the choice of a stochastic model
to model these data, because ν ≈ 0 would be proof that a deterministic model would have
been sufficient. Figures 5 and 6 depict the real data with the EMF and the ECMF of the fitted
model respectively.
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Table 3. Forecasting results.

Year Data EMF ECMF Lower bound Upper bound
2015 21.9 21.9814 21.9741 21.3205 22.6577
2016 20.9 21.093 21.0149 20.4491 21.7521
2017 20.1 20.241 20.0557 19.6139 20.8831
2018 19.2 19.4237 19.2885 18.8133 20.0490
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Figure 5. Real data vs EMF
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Figure 6. Real data vs ECMF

The MAPE and the SMAPE for the proposed model are shown in Table 4.
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Table 4. Forecast accuracy for the stochastic Pareto model

Forecast accuracy error measurements Values

MAPE 0.204817854615773
SMAPE 0.204747440507338

MSE 0.0283929225

The MAPE value is less than 10, indicating that the forecasts of the SPD model are ”highly
accurate”[14], in addition, the value of the MSE is very close to 0 which indicated that the
forecast of the model is very accurate. Furthermore, the values of the MAPE, SMAPE, and
MSE obtained using the stochastic model are significantly lower than those obtained using the
deterministic model.

Finally, to demonstrate the predictive capabilities of the model used, we plotted the data
together with the upper bound and lower bound from (4.5) and (4.6), the results of which are
shown in Table 3 and Figure 7.
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Figure 7. Real data vs EMF and upper and lower bounds

Conclusion

We determined the essential probabilistic aspects of the Stochastic Pareto diffusion process
and derived its parameter estimators in this work. We derived a set of non-linear equations
using the maximum likelihood method based on discrete sampling, which was solved using
numerical methods, specifically the simulated annealing method. Finally, the SPDP is used to
fit and forecast under-five mortality in Morocco.
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