

TERAPIA GÉNICA DEL SÍNDROME DE WISKOTT-ALDRICH EN UN MODELO CELULAR MEDIANTE VECTORES LENTIVIRALES REGULADOS

POR MIGUEL GARCÍA TOSCANO GRANADA, OCTUBRE DE 2005

Editor: Editorial de la Universidad de Granada Autor: Miguel García Toscano D.L.: Gr. 1877 - 2005 ISBN: 84-338-3616-1 Esta tesis ha sido realizada por el que suscribe en la Unidad de Inmunología del Departamento de Bioquímica de la Universidad de Granada y en el Instituto de Parasitología y Biomedicina López Neyra del CSIC.

Fdo. Miguel García Toscano

AUTORIZACIÓN PARA LA PRESENTACIÓN DE LA TESIS

IGNACIO JESÚS MOLINA PINEDA DE LAS INFANTAS, PROFESOR TITULAR DEL DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA CELULAR DE LA UNIVERSIDAD DE GRANADA, Y FRANCISCO MARTÍN MOLINA, CIENTÍFICO RAMÓN Y CAJAL DEL CSIC,

CERTIFICAN: Que la presente tesis titulada TERAPIA GÉNICA DEL SÍNDROME DE WISKOTT-ALDRICH EN UN MODELO CELULAR MEDIANTE VECTORES LENTIVIRALES REGULADOS, de la que es autor MIGUEL GARCÍA TOSCANO, superó el programa de doctorado "Inmunología Celular y Molecular" y que ha sido dirigida bajo su dirección en la Unidad de Inmunología del Departamento de Bioquímica de la Universidad de Granada y en el Instituto de Parasitología y Biomedicina López Neyra del CSIC.

Revisado el presente trabajo, los directores consideran que tiene la calidad científica necesaria para ser defencido ante el Tribunal que se designe al efecto, por lo que:

AUTORIZAN la presentación de la referida Tesis para su defensa y mantenimiento de acuerdo con lo previsto en el Real Decreto 778/1998, de 30 de abril.

Y para que conste y surta sus efectos en el expediente correspondiente, expedimos la presente certificación en Granada, 17 de octubre de 2005.

Dr. Ignacio J. Molina Pineda de las Infantas

Dr. Francisco Martín Molina

INDICE

INTRODUCCIÓN8
1. EL SÍNDROME DE WISKOTT-ALDRICH
1.1 MANIFESTACIONES CLÍNICAS
1.2 MECANISMOS MOLECIILARES DEL SÍNDROME DE WISKOTT
ALDRICH
1.2.1 Regulación de la expresión del gen WASP
1.2.2 Estructura de la proteína WASP
1.2.3 Funciones y regulación de WASP. Consecuencias de su
alteración
1.3 TERAPIA ACTUAL DEL SÍNDROME DE WISKOTT-
ALDRICH14
2. IERAPIA GENICA
2.1 UNA VISION GENERAL
2.2 EATIOS DE LA TERAPIA GENICA
2.5 RIESGUS DE LA TERAFIA GENICA17 2 4 VECTODES DETDOVIDALES 10
2.4 VECTORES RETROVIRALES
2.4.1 Consideraciones principales
2.4.2 Vectores lentivirales: nuevas perspectivas
2.4.5 vectores ientivirales para expresión regulada
2.5 CELULAS DIANA
OBJETIVOS26
MATERIALES Y MÉTODOS28
1 Líneas celulares y medios de cultivo29
2 Plásmidos
3 Producción de vectores31
4 Transducción de células y titulación de los vectores31
5 Inmunotinción y citometría de flujo32

6 Western Blot semicuantitativo y cuantitativo	33
7 Preparación de ADN, PCR y PCR cuantitativa	34
8 Ensayo de proliferación celular	36
9 Preparación y transducción de células dendríticas inmaduras procedent	es de
ratón	35
10 Transducción de células progenitoras hematopoyéticas murinas y ensay	yo de
metil-celulosa	36
11 Transducción de células hematopoyéticas pluripotenciales humanas y en	isayo
en metil-celulosa	36
12 Microscopía electrónica de barrido (Scanning Electron Microscopy—SEM	1).37

RESULTADOS	38
------------	----

1. Las células T inmortalizadas por el Herpesvirus Saimiri (T-HVS) son 2. Las células T-HVS manifiestan una restricción a la transducción con vectores lentivirales......41 3. Las células T-HVS y las células T primarias presentan un grado de restricción 4. Caracterización de vectores lentivirales expresando WASP a través del promotor de WASP y a través de un promotor viral fuerte (SFFV)......44 5. La expresión de WASP dirigida por el vector lentiviral WW está restringida a las células hematopoyéticas......48 6. Niveles fisiológicos de expresión de WASP en células de pacientes transducidas 7. La expresión de WASP aporta ventaja selectiva de crecimiento a las células T de pacientes WAS transducidas con el vector lentiviral WW......52 8. Restauración de los defectos funcionales de las células T de pacientes mediante la transducción con WW......53 9. Restauración de los defectos morfológicos de la superficie celular de las células T WAS transducidas con WW......56 10. Restauración de podosomas de células dendríticas de ratones WASP-KO transducidas con vectores lentivirales WW......58

11.	Transducción	eficiente de	células	progenitoras	con	vectores	lentivirales
con	teniendo el proi	notor proxim	al de WA	SP	•••••	• • • • • • • • • • • • • • •	58
DI	SCUSIÓN	• • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • •			63
CC	NCLUSION	ES			•••••		71
BI	BILIOGRAF	Í A					73
PU	BLICACION	ES			••••		95
CC	MUNICACI	ONES A CO	ONGRE	SOS			

INTRODUCCIÓN

1. EL SÍNDROME DE WISKOTT-ALDRICH

1.1 Manifestaciones clínicas

En 1937, el Dr. Wiskott describió el caso de tres hermanos con plaquetopenia, diarrea sangrante, eczema e infecciones recurrentes en los oídos. Diecisiete años después, los Drs. Aldrich, Steinberg y Campbell demostraron, mediante el estudio de 9 generaciones de una familia de ascendencia holandesa, que este síndrome tenía bases genéticas, heredándose como rasgo ligado al cromosoma X (Aldrich y cols, 1954). En la década de los 60, los síntomas de esta inmunodeficiencia fueron caracterizados en detalle y el Síndrome de Wiskott-Aldrich (WAS) fue añadido a la lista de Inmunodeficiencias Primarias. Los signos más característicos de este síndrome son una profunda y progresiva inmunodeficiencia, manifestada por infecciones oportunistas recurrentes, eczema y micro-trombocitopenia. Otras deficiencias observadas en pacientes con WAS son la depleción de las células T del timo y de las áreas paracorticales de los ganglios linfáticos, defectos en la producción de anticuerpos frente a antígenos polisacáridos y un retardo en las reacciones de hipersensibilidad (revisado por Snapper y Rosen, 1999). El 40% de los varones afectados desarrollan enfermedades autoinmunes, como la anemia hemolítica, vasculitis (cerebral y dérmica) y enfermedades inflamatorias intestinales (Dupuis-Girod y cols, 2003). Los pacientes WAS que padecen dichas manifestaciones autoinmunes son los de mayor riesgo a desarrollar tumores (Sullivan y cols, 1994). Es frecuente encontrar linfomas de células B en la tercera o cuarta década de vida de estos pacientes (Shcherbina y cols, 2003). La enfermedad fue considerada fatal en la primera década de vida de los pacientes debido a las infecciones recurrentes y a las hemorragias, pero las mejoras en su tratamiento han prolongado la esperanza de vida de los pacientes afectados.

1.2 Mecanismos moleculares del Síndrome de Wiskott-Aldrich

En 1994 Derry, Ochs y Francke identificaron en el cromosoma X el gen cuya mutación es responsable de WAS, denominándose *Wiskott-Aldrich Syndrome Protein* (*WASP*). El gen codifica una proteína citoplásmica, rica en residuos de prolina, de 502 aminoácidos y con un peso molecular de 53 kDa (Derry y cols, 1994). Su expresión es específica del tejido hematopoyético y está involucrada de forma crítica en la

integración de las señales extracelulares con la reordenación del citoesqueleto de actina (Symons y cols, 1996; Stewart y cols, 1996; Kolluri y cols, 1996). WASP es el fundador de la familia de proteínas de señalización WASP/WAVE/Scar (Fig. 1) expresadas en diferentes tipos celulares, y que cumplen una función similar enlazando diversas señales extracelulares con la reorganización del citoesqueleto de actina (Thrasher y cols, 1998; Takenawa y Miki, 2001).

Las mutaciones que ocurren en el gen *WASP* pueden provocar la ausencia de la proteína o la existencia de niveles reducidos de la misma (Shcherbina y cols, 1999). En un escaso número de pacientes, además de encontrar niveles reducidos de WASP, la proteína está truncada y se considera que no es funcional (Zhu y cols, 1997). La gravedad de los síntomas de WAS se asocia al tipo de mutación. Los cuadros clínicos más severos son aquellos en los que la mutación provoca la ausencia de la proteína, mientras que mutaciones que ocasionan que haya niveles reducidos de la proteína coincide con los casos clínicos leves o menos graves de WAS (Imai y cols, 2004; Lutskiy y cols, 2005). En dichos casos los pacientes manifiestan los mismos síntomas que se observan en personas con Trombocitopenia ligada al cromosoma X (XLT), inicialmente considerada una enfermedad diferente pero se ha demostrado que es una forma atenuada de WAS (Zhu y cols, 1997).

1.2.1 Regulación de la expresión del gen WASP

Los primeros ensayos de expresión de *WASP* revelaron su presencia en hígado fetal, timo, células sanguíneas mononucleares y plaquetas, además de en líneas celulares hematopoyéticas como HEL (eritroleucemia humana), DS-1 (célula B linfoblástica) y MEG-1 (megacariocítica) (Derry y cols, 1994; Stewart y cols, 1996). Los estudios de Parolini realizados en células hematopoyéticas progenitoras (CD34⁺) confirmaron que la expresión de *WASP* estaba restringida a todas las células del linaje hematopoyético (Parolini y cols, 1997).

La expresión del gen *WASP* está regulada por dos promotores. El primero y mejor caracterizado es el promotor proximal al gen *WASP*, localizado en dirección 5' del gen a partir de la zona de inicio de la transcripción. No contiene ni caja TATA ni sitios de unión para Sp1. Contiene cuatro posibles sitios de unión para factores de transcripción específicos del tejido hematopoyético (dos para Ets-1, uno para c-Rel y otro para PU.1). En experimentos de expresión transitoria *in vitro*, un fragmento de 170

pb era suficiente para otorgar expresión específica de tejido de un gen marcador (Petrella y cols, 1998).

El segundo promotor fue localizado a 6 kb en dirección 5' del sitio de inicio de la transcripción del gen *WASP* (Hagemann y Kwan, 1999). En esta región se identificaron posibles sitios de unión para los factores de transcripción Sp1, Ets-2, PU.1, AP-2 y c-Myb. En ensayos de expresión transitoria *in vitro* en las líneas celulares Jurkat y HEL, la actividad de este promotor alternativo fue menor que la actividad del promotor proximal. Esta región aún no ha sido completamente caracterizada y la existencia de sitios de unión para los factores de transcripción PU.1 y c-Myb, plantea la hipótesis de que su actividad dependa del estadio de desarrollo y diferenciación, posiblemente siendo más activo en el linaje mieloide que en el linfoide (Hromas y cols, 1993; Gonda, 1998).

1.2.2 Estructura de la proteína WASP

WASP es una proteína compuesta por cuatro dominios, tres reguladores y uno efector. Su estructura es indicativa de su implicación en procesos de transducción de señales. La figura 1 representa la estructura de la proteína WASP, las proteínas más importantes que interaccionan con ella, así como otras proteínas humanas de la familia WASP. Las proteínas de esta familia están implicadas en la transducción de señales extracelulares que tienen como fin, la movilización/reorganización del citoesqueleto de actina para permitir la respuesta de la célula (Pollard y Borisy, 2003). La familia WASP (en mamíferos) se compone de cinco miembros: WASP, N-WASP, y tres proteínas WAVE/Scar que comparten el dominio de homología a verprolina (WAVE/Scarproteínas supresoras del receptor de AMPc) (Caron, 2002). En WASP se distinguen los siguientes dominios (Fig.1): el dominio terminal WH1 (WASP Homology 1), también llamado EVH1 (Ena, Vasodilator-stimulated phosphoprotein o VASP-homology 1) (Callebaut y cols, 1998), tras el que hay una región donde existen varias lisinas que le dan un carácter básico. Continúa con un dominio de unión a GTPasas, llamado dominio GBD (GTPase binding domain) o CRIB (Cdc42 Rac interacting binding) (Kolluri y cols, 1996). Le sigue un dominio rico en prolina, donde se encuentran motivos del tipo SH3 (Scr-homolgy-3) (Finan y cols, 1996) y por último el dominio carboxilo, que comprende tres regiones: región V (verprolin homology domain; WASP homology, WH-2); la región de conexión, C (Machesky y Insall, 1998) y la región terminal A, que

contribuye a la unión de actina G y el complejo nucleador de actina, el complejo Arp2/3 (Marchand y cols, 2001).

En condiciones de reposo, WASP se mantiene en una conformación autoinhibida (Fig. 2), esto es, su dominio efector (VCA) está plegado sobre el dominio GBD haciendo imposible la unión al complejo Arp2/3 (Kim y cols, 2000). WIP (WASP-interacting protein), que es altamente expresada en células hematopoyéticas, es una proteína constitutivamente unida a WASP (Ramesh y cols, 1997) a través del dominio WH1 y que estabiliza su conformación autoinhibida. Al dominio rico en prolina de WASP pueden unirse las proteínas Nck (Rivero-Lezcano y cols, 1995), Fyn (Banin y cols, 1999), Btk (Baba y cols, 1999), PSTPIP1 (Badour y cols, 2003), Grb2 (She y cols, 1997), CIP4 (Tian y cols, 2000), CrkL (Oda y cols, 2001) e intersectina 2 (McGavin y cols, 2001) que tienen en común dominios de unión a SH3 haciendo de WASP una proteína integradora de señales de diferente origen. Este dominio determina la localización subcelular de WASP en los lugares donde debe ocurrir la polimerización de actina y la optimización de su actividad (Castellano y cols, 2001; Cannon y cols, 2001; Yarar y cols, 2002).

1.2.3 Funciones y regulación de WASP. Consecuencias de su alteración

Desde el descubrimiento de que *WASP* era el gen mutado en el síndrome de Wiskott-Aldrich, se han descrito más de 300 mutaciones en dicho gen, consistentes en mutaciones puntuales, mutaciones en sitios de 'splicing', inserciones, deleciones y mutaciones complejas. Se encuentran a lo largo de los 12 exones que forman el gen, aunque la mayoría se localizan en los 8 primeros. Se han determinado 5 puntos calientes de mutación, cuya localización se observa en la figura 1, y que afectan a la zona en la que WIP se une con WASP. Todas las mutaciones se encuentran recogidas en este enlace web: <u>http://homepage.mac.com/kohsukeimai/wasp/WASPbase.html</u> (Imai y cols, 2004).

El tipo celular más afectado en WAS son las células T. En estas células, WASP forma parte de la ruta de la transducción de señales procedentes de la estimulación del TCR/CD3, y su papel es fundamental. El mecanismo propuesto de actuación de WASP se observa en la figura 2. La activación del TCR provoca una cascada de fosforilaciones que termina con la unión de WIP a CrkL (1), lo que favorece que WIP sea fosforilado por PKC0. Cuando ocurre esta fosforilación, WASP se separa de WIP, quedando libre en la zona de activación (2). Por otro lado, VAV incorpora un grupo fosfato a Cdc42-GDP, de manera que Cdc42-GTP puede unirse al dominio GTPasa de WASP (3). Esta interacción desestabiliza la conformación autoinhibida de WASP. La unión de Nck con

la región rica en prolina estabiliza la nueva conformación de WASP (4). El dominio WH2/VCA puede unirse al complejo Arp2/3 y a monómeros de actina. El complejo Arp 2/3 inicia la nucleación de filamentos de actina anclando puntos de comienzo de polimerización de los nuevos filamentos de actina a laterales de filamentos preformados, creando así una rígida y ramificada red de actina (5) (Cannon y cols, 2001; Amann y Pollard, 2001; Sasahara y cols, 2002; Zeng y cols, 2003; Barda-Saad y cols, 2005). Por lo tanto, la ausencia de WASP en los linfocitos T provoca defectos relacionados con la activación a través del complejo TCR/CD3. Las células T son incapaces de llevar a cabo la reorganización de su citoesqueleto, manifestando defectos en la proliferación y en la secreción de IL-2 tras la activación por anticuerpos anti-CD3 (Molina y cols, 1993; Snapper y cols, 1998; Zhang y cols, 1999). La observación mediante microscopía de barrido revela que la mayor parte de las células T presentan formas aberrantes con una superficie carente o severamente reducida de microvellosidades (Molina y cols, 1992; Gallego y cols, 1997).

Otros tipos celulares afectados son macrófagos y células dendríticas. Dichas células manifiestan una deficiente formación de podosomas (Linder y cols, 1999), que formados por un cono central de actina y rodeados por un anillo de vinculina (Davies y Stossel, 1977), son estructuras altamente especializadas de adhesión, imprescindibles en el perfecto desarrollo de la respuesta inmune. Los macrófagos, las células dendríticas, los linfocitos B e incluso los progenitores hematopoyéticos comparten defectos celulares relacionados con la quimiotaxis (Zicha y cols, 1998; Badolato y cols, 1998), defectos en el *'homing'* (de Noronha y cols, 2005; Snapper y cols, 2005), y en la maduración (Burns y cols, 2004; Park y cols, 2005).

1.3 Terapia actual del Síndrome de Wiskott-Aldrich

La terapia actual para el Síndrome de Wiskott-Aldrich incluye el tratamiento de las infecciones mediante administración de antibióticos y de IgGs, y la transfusión de plaquetas con el fin de limitar el riesgo de hemorragias. En algunos casos, para evitar este riesgo se procede a realizar una esplenectomía. Sin embargo la extirpación del bazo incrementa el riesgo de infecciones, y por lo tanto se ha de proceder a la administración profiláctica de antibióticos. El eczema puede ser tratado de forma tópica con corticoesteroides. En 1978 se realizó el primer transplante de médula ósea para el tratamiento de un paciente WAS, utilizando un donante haploidéntico para ello (Parkman y cols, 1978). Pero debido al alto grado de fracaso, actualmente se utilizan donantes HLA idénticos. El éxito del transplante incrementa si se realiza dentro de los 5 primeros años de vida del paciente (Filipovich y cols, 2001). Sin embargo, el índice de fracaso de los transplantes HLA-idénticos no relaciones sigue siendo elevado (Lenarsky y Parkman, 1990; Kapoor y cols, 1998).

Puesto que el tratamiento actual no es lo suficientemente eficaz, es necesario plantear otros tratamientos alternativos. La terapia génica ha aparecido como una nueva aproximación para el tratamiento de determinadas enfermedades humanas. Consiste en la introducción de material genético en la célula diana por medio de un vector con un fin terapéutico (Friedmann y Roblin, 1972). Ya se han obtenido éxitos en 2 ensayos clínicos en SCID-X1 y uno en SCID-ADA, realizados mediante la inserción de copias normales de los genes defectuosos, *IL2RG* y *ADA* respectivamente, en las células afectadas (Cavazzana-Calvo y cols, 2000; Aiuti y cols, 2002; Gaspar y cols, 2004). Del mismo modo WAS y otras inmunodeficiencias primarias como las deficiencias en JAK3 y RAG2, son consideradas como enfermedades que podrían ser tratadas por medio de terapia génica (Fischer, 2000; Chinen y Puck, 2004).

2. TERAPIA GÉNICA

2.1 UNA VISIÓN GENERAL

Las tres grandes áreas que están siendo objeto de aplicación de la terapia génica son el cáncer, las enfermedades vasculares (a causa de la alta prevalencia de ambas en la población) y las enfermedades monogénicas (Edelstein y cols, 2004). Como se acaba de mencionar en el apartado anterior, las inmunodeficiencias primarias son candidatas ideales para la terapia génica por dos razones: 1) la alta probabilidad de ventaja selectiva de las células corregidas (Fischer, 2000) y 2) la ausencia teórica de una intensa respuesta inmune frente a los componentes del vector y/o productos del transgén (Bessis y cols, 2004).

La herramienta que se utiliza para introducir el material genético en las células diana se conoce con el nombre de vector de terapia génica, que puede ser de origen viral o no-viral. En teoría, los vectores no-virales serían preferibles por razones de seguridad biológica (Kay y cols, 2001). Sin embargo, la baja eficiencia de los mismos en células primarias y la inestabiliad del transgén limitan su utilización (revisado por Lechardeur y

Lukacs, 2002). En los casos en los que se requiere una expresión estable de la proteína en las células diana y en las de su progenie, los únicos vectores capaces de integrarse de forma estable en el genoma celular son los vectores retrovirales y los vectores asociados a adenovirus (AAV). De entre todos los vectores disponibles, los basados en retrovirus han sido utilizados aproximadamente en el 30% de los ensayos clínicos de terapia génica, los adenovirus en el 26% mientras que los demás vectores virales (Herpesvirus, Poxvirus y AAV) solo ocupan un 13.9%. Esto refleja en buena parte el éxito obtenido por los diferentes vectores en ensayos preclínicos, tanto a nivel de beneficio terapéutico como de seguridad biológica (Edelstein y cols, 2004).

2.2 ÉXITOS DE LA TERAPIA GÉNICA

En 1989, Rosenberg y cols. llevaron a cabo el primer ensayo clínico de terapia génica, mediante la introducción de linfocitos infiltrantes en tumores modificados genéticamente por vectores retrovirales, con objeto de optimizar la terapia antitumoral frente al melanoma (Rosenberg y cols, 1990). Actualmente hay más de 900 ensayos clínicos de terapia génica que están completados, en curso o aprobados a nivel mundial. Con estos ensayos se pretende evaluar los beneficios y los problemas que derivan de su aplicación, antes de ser llevada a la práctica en la clínica (Spink y Geddes, 2004; Edelstein y cols, 2004).

El primer ensayo clínico de terapia génica de inmunodeficiencias realizado con éxito, fue logrado por el grupo del Dr. Alain Fischer en SCID-X1 (Cavazzana-Calvo y cols, 2000). En esta enfermedad los pacientes presentan mutaciones en la cadena γ del receptor de membrana de las interleuquinas 2, 4, 7, 9, 15 y 21. Dicha carencia lleva a la ausencia funcional de las células B y a la ausencia de las células T y NK. Se manifiesta en infecciones recurrentes y severas, resultando fatal en los primeros años de vida. En este ensayo, las células CD34⁺ autólogas fueron modificadas con vectores oncoretrovirales, basados en el virus de la leucemia murina (MoMLV-"*Moloney Murine Leukemia Virus*"), para insertar el gen de la cadena γ del receptor de interleuquina 2. Las células modificadas fueron reinfundidas en los pacientes. El resultado final fue la casi completa repoblación de las células del sistema inmune y la normalización de la mayoría de los parámetros funcionales. Aunque el primer ensayo clínico de terapia génica de inmunodeficiencias fue realizado en SCID-ADA en 1990 (Ferrari y cols, 1991), no ha sido hasta el año 2002 en el que se ha obtenido el primer éxito de la terapia génica en esta inmunodeficiencia (Aiuti y cols, 2002). La SCID-ADA es el resultado de una mutación en el gen de la Adenosín-Deaminasa, que provoca una acumulación de metabolitos tóxicos, a los que las células del sistema inmune son especialmente sensibles. Las células CD34⁺ autólogas (obtenidas de cordón umbilical de niños diagnosticados prenatalmente) fueron modificadas y reinfundidas en los pacientes. Dichos pacientes alcanzaron niveles de reconstitución terapéuticos, observándose la repoblación de los compartimentos mieloides por parte de las células modificadas de hasta un 20%.

Tanto en el caso de SCID-X1 como en SCID-ADA, los autores coinciden en que la clave del éxito residió en la ventaja selectiva de las células genéticamente modificadas con respecto a las células defectuosas. Debido a la expresión de la proteína terapéutica, las células modificadas respondían más adecuadamente a señales de activación, factores de crecimiento y eran más resistentes a la apoptosis que las células defectuosas (Fischer y cols, 2002; Aiuti y cols, 2002).

2.3 RIESGOS DE LA TERAPIA GÉNICA

Los riesgos que se derivan de la aplicación de la terapia génica dependen del tipo de vector utilizado. En el caso de los vectores retrovirales, los principales problemas que se plantean son: a) la formación de partículas replicantes competentes en las células productoras de vectores (los actuales diseños de vectores han disminuido considerablemente este tipo de riesgo) b) la movilización del material genético del vector en el paciente, por medio de un virus salvaje en el cual estuviera basado el vector, c) los posibles errores de la transcriptasa inversa durante la retro-transcripción, d) la expresión ectópica y desregulada del transgén y e) la integración del vector en zonas activas de transcripción de proto-oncogenes (revisado por Baum y cols, 2003).

Todos los agentes terapéuticos tienen una ventana de acción, y un lugar donde ejercer su función. La expresión desregulada y/o ectópica del transgén pueden causar efectos tóxicos y/o deletéreos para la célula diana, o para células que no siendo la célula diana hayan sido modificadas. Estos efectos pueden manifestarse mediante la alteración del programa de 'homing', proliferación o diferenciación de las células modificadas. El problema puede agudizarse cuando las células diana son las células pluripotenciales hematopoyéticas procedentes de médula ósea. Dichas células, cuando se diferencian, dan lugar a todas las estirpes celulares hematopoyéticas, lo cual puede plantear un problema si se requiere la expresión del gen terapéutico sólo en un linaje concreto (Cocault y cols, 1996; Yan y cols, 1999). Más aún, trabajos recientes demuestran que las células pluripotenciales aisladas según los marcadores CD34⁺, Lin⁻, pueden convertirse en tipos celulares distintos al hematopoyético (Lagasse y cols, 2000; Orkin y Zon, 2002; Vassilopoulos y Russell, 2003; Vassilopoulos y cols, 2003). Por lo tanto la modificación genética de los progenitores hematopoyéticos CD34⁺ no asegura que el transgén terapéutico se exprese sólo en células hematopoyéticas. La expresión ectópica del gen terapéutico podría entonces tener serios efectos adversos. Algunos ejemplos de ello son: 1) la proteína quimérica eGFP-WASP^(1294T) (mutante activo de WASP porque altera su conformación autoinhibida) provoca defectos en la citocinesis, polimerización desorganizada de actina e inestabilidad genómica de la línea celular HT1080 y células FDC (Ancliff y cols,); 2) la sobre-expresión de HOXB4 (factor de transcripción implicado en la regulación del tamaño de la población hematopoyética) en células hematopoyéticas pluripotenciales humanas, provoca un defecto en su diferenciación a los linajes mieloide y eritroide (Schiedlmeier y cols, 2003); 3) CD40L es el transgén utilizado en la terapia para el Síndrome de hiper-IgM ligado al cromosoma X, observándose en ensayos realizados in vivo, que su expresión a bajo nivel provocaba una respuesta proliferativa anormal de linfocitos T en desarrollo, debido a interacciones intercelulares desreguladas durante la selección y maduración tímica (Brown y cols, 1998).

Otro riesgo reside en el hecho de que los vectores retrovirales son vectores integrativos. Los vectores onco-retrovirales se insertan preferentemente en las zonas cercanas al punto de inicio de la transcripción, lo cual puede resultar en el desarrollo de un proceso tumoral. Este proceso será más probable cuanto mayor sea el número de copias de vector integradas (Wu y cols, 2003). El ejemplo más relevante de ello ha sido el ensayo de terapia génica llevado a cabo en Francia por el grupo del Dr. Alain Fischer. En dicho ensayo, 3 de los 16 niños SCID-X1 tratados desarrollaron una leucemia de células T, cuyo origen era la integración de los vectores en la región reguladora del gen *LMO2* (Hacein-Bey-Abina y cols, 2003; Check, 2005). Sin embargo, hay que destacar que en el ensayo llevado a cabo por el Dr. Adrian Thrasher y cols. en Londres, también en SCID-X1, todos los pacientes involucrados evolucionan favorablemente, y en

ninguno de ellos se ha detectado la presencia de leucemias, manteniéndose en cada paciente una población policional de células T modificadas por el vector terapéutico (Gaspar y cols, 2004). La integración es un proceso que depende de la estructura de la cromatina, siendo las regiones más accesibles aquellas donde las integraciones ocurren con más frecuencia (Mitchell y cols, 2004). Los vectores MLV tienen tendencia a integrarse en zonas reguladoras mientras que los vectores basados en VIH-1 tienden a integrarse en zonas activas de expresión de genes (Taganov y cols, 2004; Mitchell y cols, 2004). Sin embargo, hasta ahora no se ha demostrado el desarrollo de tumores por integración del vector con vectores lentivirales. De hecho se están realizando tres ensayos de terapia génica contra el SIDA en los que utilizan vectores lentivirales basados en el VIH-1 (Manilla y cols, 2005).

2.4 VECTORES RETROVIRALES

2.4.1 Consideraciones principales

Los retrovirus presentan una serie de características que los hacen muy atractivos para su utilización como vectores: 1) su ciclo de vida requiere la retrotranscripción e integración de su genoma en el DNA del hospedador (estabilidad de expresión y continuidad en las células hijas) (Coffín, 1992); 2) su estructura genómica es sencilla, bien conocida y fácilmente modificable; 3) las proteínas estructurales pueden ser aportadas en su totalidad en trans, lo que permite un elevado grado de seguridad biológica y expresión sólo del gen terapéutico (Dull y cols, 1998) 4) integran el material genético que transportan otorgando una expresión estable del transgén y 5) la capacidad de utilizar proteínas de la envuelta (responsables del tropismo del virus) de diverso origen (pseudotipaje) le otorgan versatilidad para transducir diferentes tipos celulares (Weiss y Tailor, 1995; Martin y cols, 1999).

2.4.2 Vectores lentivirales: nuevas perspectivas

Los vectores lentivirales superan a los vectores onco-retrovirales debido a su capacidad para infectar células que no se dividen. En este situación se encuentran importantes dianas celulares en protocolos de terapia génica, tales como células pluripotenciales hematopoyéticas, células dendríticas o neuronas (Blomer y cols, 1997;

Case y cols, 1999). Esta propiedad de los vectores lentivirales se debe al complejo de preintegración de los lentivirus que pueden penetrar la membrana nuclear aún estando intacta (Naldini y cols, 1996). Dicho proceso puede ser fomentado en los vectores mediante la incorporación de elementos del virus salvaje y que potencian esta característica (cPPT –central polypurine tract) (Follenzi y cols, 2000).

El diseño de vectores retrovirales sigue un principio común: las proteínas estructurales del virus y el ARN genómico deben de ser expresados desde unidades de transcripción diferentes para evitar la formación de retrovirus competentes para replicación (RCR) (Fig. 3). El sistema de empaquetamiento de vectores lentivirales más utilizado (basado en VIH-1) utiliza tres plásmidos para conseguir la expresión de los diferentes componentes del vector: 1) El plásmido empaquetador expresando las

Esquema del diseño de vectores lentivirales basados en el virus VIH-1. El sistema se compone de un plásmido empaquetador, un plásmido que codifica para la proteína de la envuelta, y finalmente el plásmido que codifica para el ARN genómico del vector. (ψ : señal de empaquetamiento; CMV: promotor del Citomegalovirus; RRE: *Rev Responsive Element*; Pro. Interno: Promotor interno)

proteínas Gag, Pol, Tat y Rev, necesarias para el empaquetamiento del ARN genómico en la partícula viral, así como para la transcripción en reverso e integración del ARN genómico en el ADN de la célula diana; 2) el plásmido vector, expresando el ARN genómico donde todos los genes virales han sido delecionados y sustituidos por el(los) gen (genes) de interés; 3) el plásmido de la envuelta expresando la glicoproteína Env necesaria para la entrada de la partícula viral en el citoplasma de la célula diana. Con este diseño se han desarrollado tanto sistemas de producción transitorios (Naldini y cols, 1996) como estables (Ikeda y cols, 2003).

En la figura 4 se representa el esquema de la producción transitoria de vectores lentivirales en células empaquetadoras, y la modificación genética de la célula diana mediante los vectores lentivirales obtenidos.

Previamente se ha comentado en el apartado de riesgos de la terapia génica los problemas que pueden presentar el uso de vectores retrovirales. Los vectores basados en VIH-1 tienen un problema adicional al ser un virus patógeno para humanos. Por lo

tanto, se han realizado numerosas modificaciones en los diferentes componentes del sistema con la finalidad de incrementar la seguridad biológica de los mismos:

- Plásmido empaquetador: se han eliminado todos los genes accesorios (vif, nef, vpr y vpu) disminuyendo las posibilidades de recombinación con una cepa del virus nativo (Zufferey y cols, 1997; Dull y cols, 1998).
- Plásmido vector: la región U3 (zona promotora del LTR del virus) ha sido eliminada, con objeto de evitar la expresión del vector completo desde la célula modificada. Estos vectores por lo tanto son vectores autoinactivables (Naldini, 1998). Esta característica facilita el diseño de vectores regulables y/o tejido específicos.
- Plásmido de la envuelta: se utilizan diferentes envueltas heterólogas (VSV-g) que impiden la formación de un virus completo.

Los avances en el conocimiento de los mecanismos involucrados en la expresión génica han contribuido a la mejora de los vectores. Se han insertando secuencias como el "<u>Woodchuck Post-transcriptional Regulatory Element</u>" (WPRE) (Zufferey y cols, 1999) que potencian la expresión del transgén estabilizando el ARN mensajero. Se han utilizado secuencias aisladoras (Emery y cols, 2000; Kowolik y cols, 2001) para lograr una expresión más prolongada y homogénea. Se evita el silenciamiento de la expresión del transgén debido a determinados mecanismos celulares (expresión más prolongada). Mediante dichas secuencias también se evita que la integración del transgén influya en el patrón de expresión de genes de la propia célula diana (expresión más homogénea) (Emery y cols, 2000; Ramezani y cols, 2003). Adicionalmente, se pueden incorporar secuencias de poliadenilación más fuertes. De esta manera se impide que continúe la transcripción corriente abajo, provocando así la expresión alterada de otros genes (Zaiss y cols, 2002). Finalmente, se han desarrollado vectores lentivirales expresando el transgén a través de promotores endógenos humanos (Wilcox y cols, 1999).

2.4.3 Vectores lentivirales para expresión regulada

El ideal de la terapia génica consistiría en reemplazar *in situ* el gen defectuoso por recombinación homóloga del locus original (Urnov y cols, 2005). No obstante, dada la baja eficiencia del proceso de recombinación, es más factible introducir en los vectores lentivirales secuencias que permitan un mayor control de la expresión del transgén. Dichas secuencias pueden ser: 1) promotores celulares que permiten la

expresión restringida del transgén a un linaje celular concreto (Ramezani y cols, 2000; Moreau y cols, 2004). Ejemplos de ello son el uso del promotor del CD19 (Werner y cols, 2004), promotores eritroides (Moreau-Gaudry y cols, 2001) y el promotor de la insulina (Castaing y cols, 2005); 2) secuencias con las que la expresión se controle mediante la adición de compuestos exógenamente, como la regulación por tetraciclina (Vigna y cols, 2002).

2.5 CÉLULAS DIANA

Las células diana son aquellas que van a ser modificadas por el vector de terapia génica. Pueden ser células diferenciadas, con una vida limitada, o bien pueden ser células pluripotenciales, con capacidad de auto-renovación y diferenciación a diferentes tipos celulares. Según el tipo de estrategia de terapia génica, en determinados casos las células diana no son las responsables directas de la patología (como en la terapia contra cáncer), pero tienen el potencial de acceder a los lugares donde ejercer el efecto terapéutico (Teng y cols, 2004).

Las células pluripotenciales hematopoyéticas son la diana ideal para terapia génica de inmunodeficiencias primarias porque se asegura la corrección permanente de los defectos celulares. Así se elimina la necesidad de una administración continuada del transgén (Kapoor y cols, 1998; Miyoshi y cols, 1999) y se consigue su presencia en todas las células de su progenie, como se ha demostrado en modelos animales y en ensayos clínicos (Robbins y cols, 1998; Cavazzana-Calvo y cols, 2000; Aiuti y cols, 2002; Schmidt y cols, 2004; Gaspar y cols, 2004). El desarrollo de nuevos vectores basados en VIH-1 ha permitido incrementar tanto la eficiencia de la transducción como la estabilidad del transgén en las células pluripotenciales hematopoyéticas (Naldini y cols, 1996). Al no requerir que la célula diana esté en división, la transducción de las células pluripotenciales no requiere largos tratamientos con citoquinas, aumentando las posibilidades de mantener intactas las características biológicas de dichas células (Haas y cols, 2000; Gao y cols, 2001).

3. TERAPIA GÉNICA DEL SÍNDROME DE WISKOTT-ALDRICH

Como se ha comentado previamente, el principal tipo celular afectado en WAS son las células T. El trabajo con células T periféricas de pacientes WAS es difícil debido a la baja frecuencia de la enfermedad, y al limitado número de células que pueden obtenerse de estos pacientes. No obstante, las líneas de células T, que se pueden mantener en cultivo mediante estimulación alogénica durante un determinado tiempo, representan un modelo celular importante porque son células primarias. Dichas células manifiestan un fenotipo estable y retienen todas las características celulares de las células parentales, tanto de individuos sanos como de pacientes WAS (Molina y cols, 1992). Sin embargo, el estudio de protocolos de terapia génica para WAS requiere además otros modelos celulares experimentales, puesto que las células T primarias tienen una vida limitada y para estudios a largo plazo se necesita un modelo celular que pueda mantenerse en cultivo de forma indefinida. Descartamos el uso de líneas de células T generadas por infección con HTLV-1, que a pesar de ser dependientes de IL-2 y funcionalmente competentes, dejan de expresar rápidamente ciertos marcadores importantes (incluído el complejo TCR/CD3) (Yssel y cols, 1989). Además, tras un cierto tiempo no necesitan más aporte de IL-2 exógena y aparecen células multinucleadas (Koga y cols, 1989).

Una posibilidad que nos permite una adecuada aproximación experimental para estudiar las funciones de las células T es el uso de líneas inmortalizadas con el Herpesvirus Saimiri (HVS). El HVS no es patógeno en su hospedador natural, el mono ardilla, aunque en otros primates provoca graves linfomas y leucemias (Kaschka-Dierich y cols, 1982). Las cepas HVS-C 484-77 y 488-77 del HVS tienen la capacidad de inmortalizar linfocitos T humanos (T-HVS) originando líneas celulares con fenotipo y marcadores de superficie estables en el tiempo. En las células del hospedador el material genético del virus se mantiene en forma episomal (Biesinger y cols, 1992; Weber y cols, 1993) y aunque su genoma codifica para dos proteínas anti-apoptóticas, la inmortalización se debe a interferencias entre proteínas virales y vías de señalización en las células T (Nava y cols, 1997; Thome y cols, 1997; Kraft y cols, 1998).

Las células T-HVS pueden ser mantenidas en cultivo independientemente de la presencia de células presentadoras de antígeno siempre que haya en el medio IL-2, y mantienen las características esenciales de las células T, tales como la especificidad antigénica, la producción de citoquinas y la citotoxicidad (Meinl y cols, 1995; Meinl y Hohlfeld, 2000; Daubenberger y cols, 2001). Las células T-HVS inmortalizadas también caracterizan adecuadamente los defectos de células T procedentes de individuos con enfermedades genéticas (Pacheco-Castro y cols, 1996; Gallego y cols, 1997; Broker y cols, 1997). Por lo tanto, las células T-HVS procedentes de pacientes

con inmunodeficiencias primarias constituirían modelos celulares ideales para evaluar la reconstitución funcional de dichas células tras la introducción de sus correspondientes genes terapéuticos. Sin embargo, hasta ahora no ha sido posible conseguir la modificación genética estable y eficaz de este tipo de líneas celulares, lo que ha limitado su uso como modelo en ensayos de terapia génica. El encontrar un método eficaz para lograr su modificación genética constituiría un avance muy importante en el campo de la biología celular y molecular y la terapia génica, puesto que estas líneas celulares podrían ser entonces utilizadas como modelo para una gran diversidad de estudios experimentales de células T.

OBJETIVOS

El Síndrome de Wiskott-Aldrich (WAS) es una inmunodeficiencia primaria causada por mutaciones en el gen *WASP*. La única terapia eficaz es el transplante de médula ósea, pero la carencia para muchos pacientes de donantes HLA idénticos y los frecuentes efectos secundarios que suceden tras el transplante provocan muchas complicaciones. Una alternativa que está siendo explorada con creciente interés es la terapia génica. La introducción del gen correcto en una proporción elevada de células hematopoyéticas pluripotenciales del paciente, que restaure los defectos funcionales sin provocar efectos secundarios, podría ser la estrategia a utilizar para WAS y para otras muchas inmunodeficiencias primarias.

El objetivo global de esta tesis consiste en mejorar las características de eficacia y seguridad biológica de los vectores retrovirales para terapia génica de WAS. Con esta finalidad, abordamos los siguientes objetivos:

1.- Transducir eficazmente células T inmortalizadas con el Herpesvirus Saimiri, así como células T alo-estimuladas para su utilización como modelos celulares de terapia génica de WAS.

2.- Incrementar la seguridad biológica de los vectores lentivirales mediante la expresión de WASP de forma fisiológica. Esto requiere:

- Obtener en las células de pacientes niveles de la proteína WASP similares a los de las células hematopoyéticas normales.

- Lograr que la expresión de la proteína WASP esté restringida a células de la estirpe hematopoyética, como ocurre en individuos sanos.

3.- Evaluar la utilidad de los **vectores** desarrollados para **terapia génica de WAS** determinando la capacidad de dichos vectores para:

- Restaurar los defectos funcionales de las células T WAS.

- Transducir eficazmente las células hematopoyéticas pluripotenciales.

MATERIALES Y MÉTODOS

1.- Líneas celulares y medios de cultivo

La generación y caracterización de las células T-HVS: HVS-WAS/1; HVS-WAS/2 (procedentes de dos pacientes con Síndrome de Wiskott-Aldrich) y HVS-NORMAL/1 ha sido descrita en detalle (Gallego y cols, 1997). La línea HVS-NORMAL/1 procede de la madre sana de un paciente con inmunodeficiencia combinada severa (SCID). De dicho paciente se derivó la línea HVS-SPA. La línea HVS-NORMAL/2 procede de un individuo normal no relacionado parentalmente con ninguno de los individuos anteriores. Las líneas primarias alo-específicas ALO-NORMAL/1 y ALO-WAS/2 procedentes de células de sangre periférica (PBL-Periferal Blood Lymphocites) de de un individuo normal y de un segundo paciente WAS (proporcionadas por la Dra. N. Matamoros, Hospital Son Dureta, Palma de Mallorca), fueron generadas en nuestro laboratorio, mediante estimulación semanal alo-específica con células Raji pre-tratadas con mitomicina-c, descrito previamente (Molina y cols, 1992). Todas las líneas T-HVS fueron cultivadas en una mezcla de medio RPMI 1640 (Bio-Whittaker, Verviers, Bélgica) y medio Panserín 1:1 (PAN Biotech, Aidenbach, Alemania), suplementado con un 10% de suero bovino fetal (FCS), L-glutamina al 1% (Bio-Whittaker), penicilina-estreptomicina al 1% (Bio-Whittaker), amfotericina al 1% (Sigma) y 50 UI/ml de IL-2 humana recombinante (rIL-2; obtenidas a través del AIDS Research and Reference Program, National Institutes of Health, Rockville, MD, USA). Las células 293T (células epiteliales de riñón), células JEG-3 (células de coriocarcinoma del trofoblasto extravellositario) y células RKO (células de adenocarcinoma de colon) fueron cultivadas en medio DMEM (Gibco-Invitrogen, Carlsbad, California. USA) suplementado como se ha indicado previamente y sin rIL-2. Las células HUVEC (células humanas primarias de origen endotelial; Promocell, Heidelberg, Alemania) fueron crecidas en medio para cultivo para células endoteliales (Promocell). Las células Jurkat fueron cultivadas en medio RPMI 1640, suplementado como se ha descrito y sin rIL-2. Las células primarias foliculares dendríticas (FDC) fueron obtenidas de amígadalas y cultivadas en RPMI 1640 con 20% de FCS hasta que la línea fue establecida (normalmente 2 semanas).

2.- Plásmidos

El esqueleto del vector utilizado en este estudio para construir los vectores lentivirales (pHRSin18-SFFVLTR) ha sido previamente descrito (Demaison y cols, 2002). Todos los plásmidos de los vectores lentivirales fueron clonados en el laboratorio del Dr. Adrian Thrasher en Londres. El vector lentiviral plasmídico pHRSIN-CSEW contiene la región LTR del virus SFFV (Spleen Focus-Forming Virus), que dirige la expresión de eGFP, el elemento post-transcripcional Woodchuck (Woodchuck Post-Regulatory Element) y el fragmento central polipurina (cPPT). Para construir el vector SW, la secuencia de WPRE fue eliminada del vector pHRSIN-CSEW. El gen eGFP fue sustituido por el ADN complentario (ADNc) de WASP, obtenido a partir de muestras de linfocitos de sangre periférica de un donante sano. El vector SW dirige la expresión de WASP por medio de la LTR del virus SFFV. Para obtener el vector WW, el vector SW fue digerido con las enzimas de restricción EcoRI-BamHI, lo que escinde el promotor SFFV, que fue reemplazado por un fragmento de 500 pb del promotor proximal de WASP (que se extiende desde las bases -1 hasta la -499 desde el sitio de inicio de la transcripción). Este fragmento fue obtenido por PCR de ADN genómico usando el siguente par de cebadores:

- sentido: 5'-CCGGAATTCGGGATTACAGGTGTGAGC-3';

- anti-sentido: 5'-CGCGGATCCGGTGCTTTCTGCCCTTGTCTTC-3'.

El vector WE también fue construido en el laboratorio del Dr. Thrasher, por medio de una restricción doble con las enzimas BamHI-XhoI, reemplazando el ADN complementario de *WASP* e introduciendo el ADN complementario de *eGFP*, procedente del plásmido pHRSIN-CSEW.

Los vectores basados en MLV (Virus de la Leucemia Murina) se obtuvieron a partir del plásmido pHIT sistema (Soneoka y cols, 1995) (pHIT60, que codifica gag-pol para MLV y el plásmido pCNCG que contiene el genoma del vector que contiene el DNA complementario que codifica eGFP precedido del promotor CMV). Estos plásmidos fueron amablemente donados por Oxford Biomedica (Oxford, Reino Unido). El plásmido pLCMV, que codifica la proteína de la envuelta del Virus de la coriomeningitis linfocítica, fue donado por el Dr. D. Sanders (Purdue University, West Lafayette, IN, USA). El plásmido empaquetador, que codifica los genes virales *gag, pol, tat* y *rev*, fue el pCMVDR8.91. El plásmido pMD.G es el que codifica la glicoproteína de la envuelta del virus de la estomatitis vesicular. Ambos plámidos son necesarios para obtener los vectores lentivirales y fueron amablemente cedidos por el Dr. D. Trono, y descritos previamente por Naldini en un caso y Zufferey en otro (Naldini y cols, 1996; Zufferey y cols, 1997).

3.- Producción de vectores

Los vectores lentivirales fueron producidos por co-transfección de células 293T con tres plásmidos: 1- plásmidos vector (pHRSIN-CSEW, pHRSIN-CWE, pHRSIN-CSW y pHRSIN-CWW), 2- plásmido empaquetador pCMVAR8.9 y 3- plásmido de la envuelta pMD.G. La co-transfección se realizó por medio la formación de vesículas lipídicas con lipofectamina 2000 (Invitrogen). En cada placa de Petri de 10 cm de diámetro (Sarstedt, Newton, NC) se añadieron 27 µg de ADN totales, en la proporción 3:2:1 de plásmido vector, empaquetador y envuelta respectivamente, donde había sembradas 6x10⁶ células 293T. Previamente, el ADN fue diluido en 1.5 ml de medio OPTI-MEM (Gibco) y mezclado con 1.5 ml de OPTI-MEM que contenían 60 µg de lipofectamina 2000. La mezcla se dejó 20 minutos a temperatura ambiente. Previo a la transfección, las células fueron lavadas 2 veces con medio OPTI-MEM a 37°C, dejando un volumen de 6 ml de OPTI-MEM por placa. La mezcla ADN-lipofectamina fue añadida a la placa, y se dejó incubando de 6 a 7 horas a 37° C, en estufa de CO₂ al 10%. Tras la incubación se retiró el medio OPTI-MEM y se lavaron las células una vez con 6 ml de medio OPTI-MEM (Gibco). Se añadieron 10 ml de medio OPTI-MEM a las células y se dejaron en la estufa durante 48 horas. La recogida de vectores se realizó tomando el sobrenadante de las células empaquetadoras y haciéndolo pasar por un filtro de 0.45 µm (Millipore, Billerica, MA, USA). Los vectores fueron almacenados a -80°C.

4.- Transducción de células y titulación de los vectores

Las células diana, que se mantenían creciendo exponencialmente, fueron lavadas dos veces con PBS. Se dispusieron 500 ul de medio en placas de 24 pocillos conteniendo las células a una concentración de 4 x 10^5 células /ml. Las células T de

sangre periférica fueron aislados y estimulados con el anticuerpo anti-CD3 OKT3 en presencia de rIL-2 exógena, como ya se ha descrito (Romero y cols, 2001), 3 días antes de la transducción. Los sobrenadantes fueron añadidos al cultivo e incubados toda la noche. Tras 72 horas de incubación, las células fueron recogidas, lavadas, fijadas con 0.2% de paraformaldeído y analizadas por citometría de flujo utilizando un citómetro FACScan (Becton-Dickinson, San Jose, CA, USA). Los títulos virales (unidades de transducción por mililitro) fueron calculados en base a la cantidad inicial de células transducidas y el porcentaje de células eGFP⁺ y WASP⁺ detectadas en el rango lineal de diluciones seriadas del sobrenadante viral. La multiplicidad de infección (MOI) se define como el número de vectores virales por célula, y se estima en una línea celular altamente permisiva como 293T. Para estimar el título, se añaden diluciones seriadas del sobrenadante viral a 10^5 células 293T. Mediante citometría de flujo se calcula el porcentaje de células positivas para eGFP o para WASP (después de la inmunotinción con anti-WASP de las células). La estimación del título se realiza en el rango lineal en el que una célula positiva tiene una copia de vector integrada. El título de los vectores que contienen WASP (WW y SW) fue estimado en la línea celular HVS-WAS/1 (carentes de WASP). Fue realizado de este modo puesto que las células no hematopoyéticas como 293T transducidas con WW no expresan WASP.

5.- Inmunotinción y citometría de flujo

Para la inmunotinción de WASP se tomaron 5×10^5 células por muestra. Tras ser lavadas con PBS frío 2 veces, se centrifugaron 10 minutos a 200g, fueron resuspendidas en 200µl de Citofix/citoperm (Pharmingen), dejándolas en incubación durante 20 minutos a 4°C y en agitación. Todo el proceso en adelante se realizó a 4°C. Tras la incubación se lavaron 2 veces con una solución de PBS-saponina 0.02%. Tras cada lavado las células se recogían mediaten centrifugación durante 5 minutos a 800g. Como anticuerpo primario se añadieron 200µl de una solución 1/50 (preparado en PBS, saponina 0.05% y suero de cabra al 2%) del anticuerpo monoclonal anti-WASP (clon B-9 [200 µg/ml], *mouse anti-human* WASP; Santa Cruz Biotechnologies, CA, USA). Se dejó incubando 1 hora a 4°C y en agitación. Para determinar la inespecificidad del anticuerpo se utilizó un control de isotipo IgG2a (*mouse anti-human* IgG2a [200 µg/ml]; Santa Cruz), preparado en las mismas condiciones que el anticuerpo primario. Tras la incubación se lavaron las células 2 veces y se recogieron en las condiciones anterioes. Se incubaron después con 200µl de una solución 1/100 del anticuerpo secundario marcado con PE (*goat anti-mouse* [400µg/ml] Santa cruz) preparado en PBS-saponina 0.05%. Se dejaron incubar durante 40 minutos a 4°C y en agitación. Las células ee lavaron y recogieron bajo las condiciones ya mencionadas. Se realizó un último lavado con PBS y se recogierion por centrifugación durante 5 minutos a 800g, tras lo cual las células se dejaron resuspendidas en PBS, preparadas para ser analizadas por FACS.

6.- Western Blot semicuantitativo y cuantitativo

Las muestras celulares fueron lisadas con tampón de lisis NP40 al 1%, en el que estaba diluido 1:10 una solución que contenía un cóctel de inhibidores de proteasas (Sigma, St. Louis, MO, USA). Las proteínas se separaron mediante un gel SDS-PAGE (al 10% de poliacrilamida en condiciones reductoras) y electro-transferidas a membranas PVDF Hybond-P (Amersham, Buckinghamshire, U.K.). Las membranas fueron bloqueadas durante 50 minutos con una solución de PBS-Tween20 al 0,1% y leche desnatada en polvo al 5% a temperatura ambiente. Fueron incubadas con el anticuerpo monoclonal D-1 anti-WASP [200 µg/ml] (Santa Cruz Biotech.), preparado 1/100 en la solución de bloqueo diluida 1/10 con PBS-Tween, durante 1 h a temperatura ambiente. Tras ello fueron incubadas con un anticuerpo goat anti-mouse conjugado con HRP (dilución 1:10000) (Caltag, Burlingame, CA, USA). Las membranas fueron reveladas por quimio-luminiscencia (ECL, Amersham) y expuestas a auto-radiografías (Amersham). Para revelar los controles de carga las membranas fueron rehibridadas, con un anticuerpo policional anti-Erk (anti-MAP kinasa 1/2, Upstate Biotechnology, UK). El análisis semi-cuantitativo fue llevado a cabo por densitometría tras digitalizar las bandas utilizando el programa Quantity One versión 4.5.0 (Bio-Rad). El análisis cuantitativo fue realizado utilizando para revelar ECL Advance Western Blotting Detection Kit (Amersham. Bioscience, UK). Las membranas fueron hibridadas como se ha indicado anteriormente y fueron reveladas por incubación de 1-5 minutos con una mezcla 1:1 de los reactivos suministrados en el kit. La cuantificación de la emisión de luz fue detectada con una longitud de onda de 440 nm utilizando el instrumento QuemiDoc XRS (Bio-Rad Laboratories, Hercules, CA, USA) y analizadas con el programa Quantity One. La aportación de cada banda fue grabada y expresada como intensidad relativa por mm².

7.- Preparación de ADN, PCR y PCR cuantitativa

Las muestras de ADN procedentes de cultivo celular y colonias de metilcelulosa fueron aisladas utilizando un *kit* para extracción de ADN genómico (Promega, Madison, WI. USA). La concentración de ADN fue estimada espectrofotométricamente. La transducción de las colonias de metil-celulosa fue determinada mediante la amplificación de un fragmento de 125 pb procedente del ADN complementario de WASP que comprende los exones 9 y 10 del gen *WASP*. La PCR fue realizada en un termociclador (Mastercycler, Eppendorf AG, Hamburg, Germany) utilizando el siguiente par de cebadores: sentido 5'- AGGCTGTGCGGCAGGAGAT -3'; y antisentido 5'- CAGTGGACCAGAACGACCCTTG -3'. Los parámetros fueron: 1 x (95°C durante 2'), 30 x (95°C durante 30'', 62°C durante 30'' y 72°C durante 1'30'') 1 x (72°C durante 10'). El producto de la amplificación fue observado mediante un gel de agarosa al 1% utilizando el marcador de peso molecular *Lambda 1Kb*, y teñido con bromuro de etidio.

La PCR a tiempo real fue realizada en el termociclador *iCycler iQ Real-Time PCR Detection System* (Bio-Rad). Las muestras fueron mezcladas con iQ^{TM} Supermix (Bio-Rad) que contenía los cuatro dNTP's (100mM), 50 U/ml iTaq ADN polimerasa y 6 mM de MgCl₂, SYBR green y 20 nM de los cebadores:

-sentido: 5'-GCTTAATACTGACGCTCTCGCA-3';

-anti-sentido: 5'-GGCTAACTAGGGAACCCACTG-3';

que amplificaban un fragmento de 321 pb desde una zona corriente arriba del sitio de *splicing* y 89 pb desde la 5'LTR del vector. El ADN correspondiente a $1x10^5$ células HVS-WAS/1 fue mezclado con cantidades crecientes de 10 en 10 veces de ADN plasmídico (desde 1 hasta 10^5 copias) para realizar la curva estándar. Los parámetros para la reacción fueron: 1 x (95°C durante 2'), 45 x (95°C durante 30'', 61.4°C durante 30'' and 72°C durante 30'') 1 x (72°C 2'). La temperatura de fusión (Tm) fue optimizada en experimentos preliminares.

8.- Ensayo de proliferación celular

Las células T-ALO procedentes de individuos normales y pacientes WAS fueron mantenidas en cultivo la noche anterior al experimento en medio RPMI 1640-Panserín sin IL-2. Las células fueron sembradas en dos placas de 96 pocillos (BioCoat, Becton Dickinson, Franklin Lakes, NJ, USA), con y sin el anticuerpo monoclonal anti-CD3 fijado a la placa. Se ensayaron diferentes cantidades de células por pocillo, por cuatriplicado, 10^4 , 2 x 10^4 , 5 x 10^5 y 10^5 células. En la placa sin anticuerpo, y como control positivo de proliferación por alo-estimulación, un mismo grupo de células fue estimulado con células Raji en proporción 1:1 y 1:0,5 células T-ALO:Raji, siguiendo el protocolo ya descrito (Molina y cols, 1992). Las células fueron mantenidas en cultivo a 37° C y 5% de CO₂ durante tres días, y para analizar el grado de proliferación se realizó un ensayo de viabilidad celular mediante MTT (Sigma Chemical, St. Louis, MO, USA). Brevemente, se lavaron 2 veces las placas problema y control con PBS y se añadieron 100 ul de medio de cultivo con 50 ug/ml de MTT. Se incubaron las células 4 horas a 37° C tras lo que se añadieron 100 ul de isopropanol con 0,04 M de HCl. Se dejó incubar 30 min y se la densidad óptica fue medida a 570 nm en un espectrofotómetro Perkin Elmer (Lambda 20. Perkin Elmer, Wellesley, MA, USA).

9.- Preparación y transducción de células dendríticas inmaduras procedentes de ratón

Se tomaron células de médula ósea de ratones WASP-KO y ratones control SV/129 y se cultivaron en RPMI suplementado con el 10% de FCS, 25 mM de HEPES, penicilina (100 UI/ml), estreptomicina (100 µg/ml) y L-Glutamina. Las células fueron cultivadas durante 48 horas con 25 ng/ml de rmuGM-SCF (Prepotech, London, UK). Las células no adherentes se eliminaron y se añadió medio fresco manteniendo la misma concentración de rmuGM-CSF, más 10 ng/ml de IL-4. Este tratamiento se prolongó 4 días. El sexto día, 10⁵ células dendríticas fueron sembradas en cubreobjetos e incubadas con vectores lentivirales a MOI de 10 (estimado sobre células T-HVSWAS/1). Después de 72 horas las células fueron fijadas con 4% de paraformaldehído, permeabilizadas con 0.1% de Tritón X-100 y bloqueadas en PBS-BSA al 1%, durante 30 minutos. Las células dendríticas fueron incubadas con faloidina marcada con TRITC (Molecular Probes, Invitrogen) para visualizar la actina F, y con un anticuerpo anti-vinculina (hVIN-1; mouse IgG1 monoclonal, dilución 1:100 - Sigma-Aldrich). Las células transducidas expresando eGFP o eGFP-WASP fueron incubadas con un anticuerpo secundario goat anti-mouse IgG conjugado con Cy-5, y el mismo anticuerpo conjugado con FITC, las transducidas con SW o WW (Jackson Immunoresearch, West Grove,
PA). Las imágenes fueron adquiridas mediante un microscopio confocal Leica (TCS-SP2), y procesadas con el programa Adobe Photoshop 7.0.

10.- Transducción de células progenitoras hematopoyéticas murinas y ensayo de metil-celulosa

Las células procedentes de médula ósea de 4 ratones Balb/c, obtenidas de tibia y fémur mediante elución celular con medio de cultivo, fueron purificadas mediante inmuno selección magnética positiva con un anticuerpo monoclonal anti-Sca1 (MACS, Miltenyi Biotec. Germany). Brevemente, $4x10^7$ fueron incubadas con 50 µl de una solución de anticuerpo anti-Sca1 conjugado con bolitas magnéticas (Miltenyi Biotec), y fueron pasadas a través de una columna. El proceso fue repetido una vez, utilizando otra columna diferente. Después de dos lavados con PBS, las células Sca1⁺ fueron resuspendidas en medio RPMI con 30% de FCS, y suplementado con un cóctel de citoquinas (murine SCF 100 ng/ml, IL-6 20 ng/ml; mFlt-3L 10 ng/ml) (StemCell Technologies, Vancouver, Canada). Se transdujeron 10⁶ cells/ml con los vectores lentivirales a MOI = 1 (estimado en células T-HVSWAS/1) O/N. Las células fueron lavadas e incubadas en medio IMDM (Gibco). Se tomaron 500 µl conteniendo10⁴ células, y se diluyeron en 2.5 ml de medio Metho Cult (StemCell Technologies). Las células fueron cultivadas en placas Petri de 35 mm a 37°C y 5% de CO₂. El recuento de colonias de progenitores hematopoyéticos fue realizado 20 días después.

11.- Transducción de células hematopoyéticas pluripotenciales humanas y ensayo en metil-celulosa

Las muestras de sangre de cordón umbilical fueron obtenidas de placenta, facilitadas por el Dr. Alberto Puertas, Hospital Materno-Infantil Virgen de las Nieves, Granada, y diluidas en medio Iscove modificado (IMDM, Gibco). Las células mononucleares fueron purificadas mediante gradiente de densidad (Ficoll-Hypaque, Pharmacia Biotech, Uppsala, Sweden) y las células CD34⁺ fueron aisladas mediante inmuno-selección positiva con anticuerpos anti-CD34 conjugado con bolitas magnéticas y utilizando columnas MACS (Miltenyi). Las células fueron analizadas por citometría de flujo inmediatamente tras la purificación usando anticuerpos anti-CD34 conjugados con ficoeritrina (PE) (Miltenyi). Para la transducción, se sembraron 10⁵ células CD34⁺ por pocillo, en placas de 96 pocillos y resuspendidas en medio Stem Spam (Stem Cell Technologies) con penicilina y estreptomicina y 10 ng/ml de trombopoietina (TPO, Peprotech EC, London, UK). Fueron incubadas toda la noche con el sobrenadante que conteniene los vectores lentivirales a los MOI indicados y lavadas al día siguiente con el medio IMDM. El ensayo de colonias de progenitores hematopoyéticos se realizó sembrando diferentes diluciones (10³, 2,5 x 10³ y 5x10³ células por placa) en placas de Petri de 35 mm de diámetro en medio de metil-celulosa con un cóctel de citoquinas recombinantes (MethoCult GF-4434, StemCells Technologies). Después de 10-16 días en cultivo, las colonias fueron analizadas mediante microscopía de fluorescencia (Leica DM IL, Wetzlar, Alemania) y las imágenes capturadas por la cámara digital incorporada a dicho microscopio.

12.- Microscopía electrónica de barrido (Scanning Electron Microscopy—SEM)

Las células en crecimiento exponencial fueron recogidas del cultivo y examinadas mediante SEM en el Centro de Instrumentación Científica de la Universidad de Granada. Las células T-HVS/WAS fueron lavadas con PBS, colocadas sobre portaobjetos cubiertos con poli-lisina y fijadas mediante una atmósfera saturada de glutaraldehído durante toda una noche a 4°C. Las muestras fueron post-fijadas durante 1 h mediante una solución de tetróxido de osmio al 1%, deshidratadas mediante incubación con diferentes grados de etanol, sometidas a un punto crítico de secado mediante CO2, y finalmente cubiertas con carbono. Las muestras fueron examinadas con un microscopio de alta resolución Leo 1530 Gemini (Leo, Oberkochen, Germany).

RESULTADOS

1. Las células T inmortalizadas por el Herpesvirus Saimiri (T-HVS) son transducidas por vectores lentivirales eficaz y establemente

Para modificar genéticamente las células T inmortalizadas con el Herpesvirus Saimiri (T-HVS) se utilizaron vectores onco-retrovirales (CNCG) (basados en MLV) y vectores lentivirales (SEW) (basados en VIH-1) (ver materiales y métodos). Ambos vectores fueron pseudotipados con la proteína de la envuelta del virus de la estomatitis vesicular (VSV-g) y se utilizó el mismo gen marcador, la proteína verde fluorescente (eGFP). El titulo de ambos vectores se realizó en las células 293 (áltamente permisivas tanto para vectores derivados de MLV como de HIV). Se realizó la transducción de diferentes líneas celulares T-HVS así como de las líneas Jurkat, HUVEC, RKO y JEG-3 (Figura 5a). Los vectores onco-retrovirales fueron muy ineficaces transduciendo las células T-HVS. Se alcanzó un máximo de un 1% de células expresando eGFP, cuando la multiplicidad de infección (MOI) fue de 40 (Figura 5a, barras oscuras, indicado con flechas y Fig. 5b, gráfico medio-abajo). Sin embargo, todas las líneas T-HVS fueron eficazmente transducidas por los vectores lentivirales. Para un MOI de 40, el porcentaje de células eGFP⁺ oscilaba entre el 15 y el 65%, y para un MOI de 4 oscilaba entre el 3 y el 25% (Fig. 5a, barras claras y Fig. 5b citograma derecho abajo). En el caso de las líneas celulares Jurkat, RKO, HUVEC y JEG-3, y para una misma cantidad de vector por célula, el porcentaje de células eGFP+ fue similar para ambos vectores con porcentajes de transducción por encima del 50% con un MOI de 4 (Fig. 5a, barras claras y oscuras).

Para comprobar que la detección del transgén en las células diana no fuera debida a fenómenos de pseudo-transducción (Haas y cols, 2000) que es especialmente frecuente a elevados MOIs, a la expresión de vectores no integrados (Stevenson y cols, 1990), o que resultase bloqueada por fenómenos de silenciamiento de genes (Cherry y cols, 2000), se analizó la estabilidad de la expresión de eGFP en dos líneas celulares T-HVS y en la línea tumoral Jurkat, después de la transducción con el vector lentiviral SEW a elevado MOI (Fig. 6). Tras una sola ronda de transducción en el día 0, la expresión de eGFP fue analizada los días 7, 28 y 48 por citometría de flujo. La figura 6 muestra que el elevado porcentaje de células transducidas (60, 82 y 100% para HVS-NORMAL/1, HVS-WAS/1 y Jurkat respectivamente) se mantuvo estable por un periodo de 48 días.

células T-HVS. A) Gráfica mostrando la expresión de eGFP⁺ en líneas T-HVS y otras líneas celulares, transducidas con SEW (barras claras) y CNCG (barras oscuras). **B)** Típico análisis *'dot-plot'* que representa células Jurkat (paneles superiores) y células T-HVS-WAS/1 (paneles inferiores) transducidas a un MOI de 40 con CNCG o SEW. El porcentaje de las células eGFP⁺ fue determinado mediante citometría de flujo.

2. Las células T-HVS manifiestan una restricción a la transducción con vectores lentivirales

Como se observa en la figura 5, los vectores lentivirales son más eficaces que los onco-retrovirales para transducir células T-HVS. Sin embargo, el porcentaje de células T-HVS eGFP+ no alcanza en ningún caso valores superiores al 70%, como sí ocurre con las demás líneas celulares. Para analizar más en detalle esta resistencia, se transdujeron dos líneas T-HVS a MOI's que iban desde 0,02 hasta 400, utilizando la línea Jurkat como control de transducción. La figura 6 indica que el porcentaje de células eGFP⁺ alcanzó un máximo en las dos líneas T-HVS a MOI 100 (HVS/WAS-1 y HVS/NORMAL; cuadrados y triángulos). El porcentaje de células eGFP⁺ en la línea T-HVS más permisiva, HVS/WAS-1, nunca fue mayor del 80% incluso a un MOI de 400 (Fig.7 cuadrados). Por otro lado, las células Jurkat alcanzaron un 90% de células modificadas a MOI de 10 y el 100% a MOI de 40 (triángulos).

La capacidad de un vector retroviral para infectar diferentes tipos celulares está determinada por su envuelta. Por lo tanto, investigamos si utilizando una envuelta que utilizase un receptor distinto del que usa VSV-g, cuyos receptores parecen ser componentes lipidicos (Carneiro y cols, 2002), se lograría reducir la resistencia a la transducción que ofrecen las células T-HVS. Por ello, además de los vectores pseudotipados con VSV-g, se produjeron vectores lentivirales pseutotipados con la envuelta del virus de la coriomeningitis linfocítica (LCMV), cuyo receptor es el alfadistroglicano (Baranowski y cols, 2001). Las líneas celulares HVS-NORMAL y HVS-WAS/1 así como la línea Jurkat, fueron transducidas por vectores lentivirales pseudotipados con VSV-g o con LCMV, a crecientes MOI's cuyo rango oscilaba desde 0.1 a 10. En la figura 8 se observa que no hubo un incremento en el porcentaje de células T-HVS eGFP⁺ transducidas por los vectores pseudotipados con LCMV, con respecto a cuando eran transducidas por los vectores lentivirales pseudotipados con VSV-g. De hecho, se observó lo contrario, puesto que los vectores pseudotipados con LCMV eran menos eficaces (10-20%) transduciendo células T-HVS que los pseudotipados con VSV-g (40-60%) (Fig. 8. triángulos y círculos). La línea celular Jurkat fue eficazmente transducida por ambos tipos de vectores (Fig. 8, diamantes), logrando un 90% de células eGFP+ a MOI de 10.

Las células T-HVS son más resistentes a la transducción que las células Jurkat. Análisis de la expresión de eGFP, mediante citometría de flujo, en las células Jurkat y T-HVS (NORMAL/1 y WAS/1) transducidas con el vector lentiviral SEW a crecientes MOI's, desde 0,01 hasta 400. La expresión de eGFP se analizó 7 días después de la transducción. Se muestra un experimento representativo.

independiente de la envuelta utilizada. Las células Jurkat (diamantes), HVS-WAS/1 (triángulos) y HVS-NORMAL/1 (círculos) fueron transducidas con el vector SEW, pseudotipado con las envueltas VSV-g (izquierda) y LCMV (derecha) a los indicados MOI's. La expresión de eGFP fue determinada mediante citometría de flujo.

3. Las células T-HVS y las células T primarias presentan un grado de restricción similar

La resistencia de las células T-HVS a ser transducidas podría deberse a mecanismos de restricción presentes en las células T primarias. Para estudiar esta posibilidad se transdujeron células T de sangre periférica (activadas mediante estimulación a través de CD3), las líneas celulares HVS-WAS/1 y HVS-NORMAL/1 y la línea tumoral Jurkat, a crecientes MOI's (1, 10 y 100) con SEW expresando eGFP⁺ (Fig. 9). Se observó que el porcentaje de células T periféricas transducidas estaba dentro del rango de transducción obtenido con las células T-HVS (de un 25 a un 70% con MOI 100—Fig 9, barras del centro y derecha), alcanzando un valor máximo de células eGFP⁺ que oscilaba entre un 30 y un 40% para una carga viral de 100 vectores por célula.

4. Caracterización de vectores lentivirales expresando WASP a través del promotor de WASP y a través de un promotor viral fuerte (SFFV)

Una vez seleccionados los vectores y establecidas las condiciones para conseguir la transducción eficaz y estable de las células T-HVS así como de células T primarias, se disponía de las herramientas necesarias para abordar el estudio de la obtención de un vector que expresase niveles fisiológicos de la proteína WASP exclusivamente en células hematopoyéticas (dado que el gen *WASP* se expresa sólo en dichas células). Para ello se realizó la construcción y caracterización de los vectores lentivirales WW y SW, representados ambos en la figura 10. Su construcción se realizó en el laboratorio del Dr. Adrian Thrasher (ver material y métodos), con quien nuestro grupo colabora activamente. El vector WW contiene un fragmento de 500pb del promotor proximal de *WASP* seguido del ADNc del gen *WASP*. El vector SW contiene un promotor constitutivo compuesto por la LTR del virus SFFV seguido del ADNc del gen *WASP*. En la Fig 10 se representan ademas de los vectores SW y WW, los plasmidos SEW (utilizado como control para varios experimentos) y el SEWW codificando para la chimera eGFP-WASP, ambos vectores cedidos por el Dr. Adrain Thrasher. Todos los vectores lentivirales se produjeron mediante la co-transfección con el plásmido empaquetador pCMV8.9 y el plásmido de la envuelta pMD.G en células 293T. Como parte del trabajo realizado durante el desarrollo de esta tesis, hemos desarrollado y optimizado las técnicas de citometría de flujo y Western blot (ver material y métodos) mediante las cuales se detectan eficazmente las células WASP⁺ y la propia proteína, como se observa en las figuras 11-15.

Las células HVS-WAS/1 y las células RKO fueron transducidas por todos los vectores esquematizados en la figura 10, con una misma carga viral. El porcentaje de células que expresaban eGFP y aquellas que expresaban la proteína quimérica eGFP-WASP fue determinado mediante citometría de flujo por detección de eGFP, y el porcentaje de células WASP⁺ fue determinado mediante inmunotinción, utilizando el anticuerpo monoclonal anti-WASP clon B9 (más efectivo para inmunofluorescencia que el clon D1-ver materiales y métodos), como se observa en la figura 11a. El título de los

vectores determinado en estas células fue del orden de 10⁶ UT/ml (Tabla 1). La intensidad de la expresión de WASP, determinada por la intensidad media de fluorescencia, era ligeramente mayor en las células transducidas por SW que por WW (Fig. 11a).

Expresión de las proteínas WASP, eGFP y eGFP-WASP en las células T-HVS-WAS, transducidas con los vectores WW, SW, SEWW y SEW. A) Detección mediante citometría de flujo de las células WASP⁺ (inmunotinción con anti-WASP-B9 y utilizando un anticuerpo secundario *goat anti-mouse* conjugado con PE), eGFP⁺ y eGFP-WASP⁺, localizadas en la región R1 de los citogramas. **B)** Detección por Western Blot de eGFP y WASP. Como control de carga se utilizó el anticuerpo a-ERK. Como control positivo para expresión de WASP se utilizó la linea HVS-NORMAL/1.

Mediante Western blot (utilizando el anticuerpo anti-WASP clon D1, más específico el clon B9, según nuestros datos) se determinó que la proteína WASP procedente de las células transducidas era del mismo tamaño que la procedente de células T-HVS normales (Fig. 11b). Asimismo, las proteínas eGFP y eGFP-WASP fueron detectadas a los tamaños esperados. En el caso de las células RKO, aún siendo eficazmente transducidas por los vectores WW, que se demuestra mediante el análisis del número de integraciones del vector por célula (Figs. 12 y 13), no se detectó la expresión de WASP (Tabla 1). No obstante, se detectó la expresión tanto de WASP como de eGFP en las células RKO transducidas por los vectores SW y SEW respectivamente, que contenían el promotor fuerte del SFFV. Ambos vectores transdujeron las células RKO eficazmente y se obtuvieron títulos por encima de 107 UT/ml (Tabla 1).

TABLA 1

Títulos de vectores lentivirales en las células HVS-WAS/1 y RKO			
		Títulos de los vectores lentivirales (UT/ml)	
		RKO	HVS-WAS/1
	SEW	1.70×10^8	$7.00 \ge 10^6$
	SEWW	4.30×10^7	$5.50 \ge 10^6$
	SW	2.50×10^7	3.00×10^6
	WW	ND	2.10×10^6

Las células fueron transducidas con diluciones seriadas al décimo del sobrenadante de los vectores SEW, WE, SEWW, SW y WW. Los títulos fueron calculados por citometría de flujo como se indica en materiales y métodos. ND: no determinado, debido a la carencia de expresión de WASP en las células no hematopoyéticas RKO. (UT: Unidades de transducción)

5. La expresión de WASP dirigida por el vector lentiviral WW está restringida a las células hematopoyéticas

Con la finalidad de analizar la especificidad de tejido de la expresión de WASP dirigida por el vector WW (que expresa la proteína WASP dirigida por el fragmento de 500 pb del promotor proximal del gen WASP), se transdujeron dos líneas de células T procedentes de pacientes WAS (WASP-) y tres líneas celulares de origen no hematopoyético (RKO, FDC y HUVEC) con los vectores lentivirales WW y SW (que expresa la proteína WASP dirigida por el promotor viral fuerte SFFV), a un MOI que permitiera obtener niveles similares de transducción. La expresión de WASP se determinó por citometría de flujo, mediante inmunotinción de las células transducidas con el anticuerpo monoclonal anti-WASP B9 (ver material y métodos). En la gráfica de la figura 12.B se representa la expresión de WASP en células hematopoyéticas procedentes de pacientes WAS (que carecen de la proteína) y células no hematopoyéticas, transducidas con los vectores SW y WW. La intensidad de la expresión de WASP (obtenida por el valor de la intensidad de fluorescencia de las células marcadas) se determinó estableciendo el diferencial entre los valores de intesidad de expresión de WASP en la región de las células positivas (R2 en los plots de la figura 12.A) y en la región de células negativas para WASP (R1 en los plots de la figura 12.A). Según se muestra en la gráfica, la expresión de WASP en las células hematopoyéticas T-HVS/WAS transducidas con WW, alcanzó unos valores de intensidad media de fluorescencia que oscilaban entre 25 y 35 unidades del diferencial de intensidad. Sin embargo la expresión de WASP era prácticamente indetectable en las células no hematopoyéticas transducidas con WW, alcanzando un valor máximo del diferencial de intensidad media de fluorescencia de 2 unidades en las células HUVEC. Por el contrario, la expresión de WASP sí fue detectada en todas las líneas celulares transducidas con el vector SW.

negativas (en R1).

Se compararon los niveles de expresión de WASP obtenidos mediante Western blot cuantitativo, con el número de copias de vector por célula, determinado por PCR cuantitativa, en las líenas HVS-WAS/1 y ALO-WAS/2 y las líneas no hematopoyéticas FDC y RKO (Fig. 13). La expresión de WASP dada por la medida de la densidad de las bandas se normalizó en cada muestra con la expresión de ERK, determinada de la misma manera, estableciéndose así la relación WASP/ERK. En el experimento 1, comparamos las células HVS-WAS/1, con las células FDC, transducidas con los vectores WW y SW (Fig. 13 panel izquerdo). Mediante el análisis por densitometría de las bandas obtenidas en el Western blot, se determinó que la señal de WASP en las células HVS-WAS/1 transducidas con WW era 30 veces más intensa, con 0,09 copias de vector por célula (panel izquierdo, abajo), que la obtenida en las células FDC transducidas con WW conteniendo 1,05 copias del vector por célula (panel izquierdo, abajo). Por lo tanto, determinamos que la expresión de WASP dirigida por WW en las células hematopoyéticas HVS-WAS/1 era 350 (30/0.09 * 1.05 = 350) veces más intensa que en las células FDC. En el experimento 2, se realizó el mismo estudio comparativo entre las líneas T-ALO-WAS/2 y RKO. En este caso, la señal de WASP en las células ALO-WAS/2 con 0,3 copias de vector por célula era 2,5 veces más intensa que la obtenida en las células RKO con 16,2 copias. Por lo tanto, la expresión de WASP dirigida por WW en las células ALO-WAS/2 era 135 (2.5/0.3 * 16.2 = 135) veces más intensa que en las células RKO.

En contraste, con el vector SW los niveles de expresión de WASP en las células hematopoyéticas fueron equivalentes (Exp.2) o ligeramente menor (3-10 veces) al nivel de expresión de WASP en las células no hematopoyéticas (Exp. 1) (Fig. 13 paneles de arriba).

6. Niveles fisiológicos de expresión de WASP en células de pacientes transducidas por vectores WW

Para analizar la cantidad de proteína WASP en las células HVS-WAS/1 y ALO-WAS/2, y compararla con la cantidad de WASP contenida en las células homónimas normales, las células se transdujeron a MOI 3 con el vector WW (Fig. 14). La intensidad de expresión de expresión de WASP se determinó mediante Western blot cuantitativo, estableciendo la relación WASP/ERK para normalizar la cantidad de WASP con la cantidad de proteína en la muestra. El número de copias de vector por célula en las células transducidas se determinó mediante PCR cuantitativa. La intensidad banda WASP dividida por la intensidad banda ERK (de la misma muestra) en las células HVS-NORMAL/1 era de 0.59 (valores medios de las concentraciones mas altas de proteina). Teniendo en cuenta que dicho valor para las células HVS-WAS/1 transducidas con WW era de 0.31 y que el número de copias de vector por célula es de 0.8, tenemos que 1 copia de vector por célula aporta 0.65 ((0.31 / 0.59) / 0.8) veces los niveles de WASP fisiológicos. Haciendo los mismos calculos con las células ALO-NORMAL/1 y ALO-WAS/1 nos aparece, que en estas células dicho valor es de 0.34.

determinó mediante PCR a tiempo real.

cuantitativo. Se determinó la cantidad de WASP y EKK se realizo mediante western Blot debajo de cada línea. El número de copias de vector por célula en las células transducidas se determinó mediante PCR a tiempo real.

7. La expresión de WASP aporta ventaja selectiva de crecimiento a las células T de pacientes WAS transducidas con el vector lentiviral WW

Para estudiar si la expresión de WASP confería ventaja de crecimiento a las células HVS-WAS reconstituidas, se transdujeron dichas células con WW a diferentes MOI's, y se determinó el porcentaje de células WASP⁺ a lo largo del tiempo. Así pues, se observó que el número de células WASP⁺ (Fig. 15a) incrementaba con respecto al porcentaje inicial, incluso cuando éste era extremadamente bajo. Un experimento en paralelo con el vector lentiviral expresando eGFP, revelaba que la expresión de eGFP no afectaba a las características del crecimiento de las células T-HVS (Fig. 6). Estos resultados fueron corroborados en células T-ALO (Fig. 15b), observándose un aumento tanto de la cantidad de proteína como del número de copias de vector por célula a lo largo del tiempo.

La transducción de las células T de pacientes transducidas con el vector WW les otorga ventaja selectiva de crecimiento. A) Se representa el porcentaje de células HVS-WAS/WW que expresan WASP a lo largo del tiempo. Análisis realizado por citometría de flujo mediante inmunotinción con anti-WASP. B) Análisis mediante Western blot cuantitativo de la cantidad de WASP de las células T-ALO-WAS-WW, a días 7 y 34 post-transducción. Detección de WASP y ERK mediante los anticuerpos anti-WASP D1 y anti-ERK. El número de copias de vector por célula se determinó mediante PCR cuantitativa.

8. Restauración de los defectos funcionales de las células T de pacientes mediante la transducción con WW

Tal y como se ha expuesto en la introducción, los defectos funcionales más característicos de las células T de pacientes WAS son la incapacidad de polimerizar actina y de proliferar tras la activación mediada por el complejo CD3. Así pues, para determinar el grado de reconstitución de los defectos celulares manifestados en WAS, se analizó si las células HVS-WAS/1 transducidas con WW recuperaban dichas funciones al expresar WASP *de novo*.

Polimerización de actina en respuesta mediada a través de CD3, de las células T-HVS transducidas con WW. Los histogramas representan la polimerización de actina, determinada mediante citometría de flujo previa tinción con faloidina en células T-HVS normales (arriba-izquierda), HVS-WAS/1 (arriba-centro) y HVS-WAS/1-WW (arriba-derecha) estimuladas por anti-CD3 (histograma vacío) y no estimuladas (histograma lleno). La polimerización de la actina fue determinada 30 minutos post-estimulación. Las fotografías inferiores muestran las mismas muestras analizadas por microscopía confocal, antes (control) y después de la estimulación (a-CD3 30') a través del complejo CD3 (mediante el anticuerpo monoclonal OKT-3).

La figura 16 muestra cómo la activación a través de CD3 (mediante el anticuerpo OKT3) de las células HVS/NORMAL/1 produce un incremento de actina polimerizada (gráficas superiores, panel izquierdo, histograma claro). También se observa que, tal y como se esperaba, no se detecta polimerización de actina tras la estimulación de las células HVS-WAS/1 (panel medio, histograma gris). Sin embargo las células HVS-WAS/1 transducidas por WW son capaces de polimerizar actina a niveles parecidos a los detectados por células sanas (panel derecho). Como control negativo se realizó un pre-tratamiento de las células HVS/NORMAL/1, HVS-WAS/1 y HVS-WAS/1 transducidas con WW, con Citocalasina-D (paneles inferiores). Las

mismas muestras analizadas por citometría de flujo fueron examinadas mediante microscopía confocal (Fig. 16, fotografías inferiores), con objeto de estudiar la intensidad y distribución de la F-actina tras la estimulación mediante OKT-3. De acuerdo con lo observado en los histogramas superiores, se observa un incremento de F-actina tras la estimulación en las células HVS-WAS/1 transducidas con WW similar al que ocurre en las células HVS-NORMAL (Fig. 16 fotografías inferiores izquierdas y derechas). Sin embargo en las células HVS-WAS/1 no transducidas (fotografías inferiores centrales) no se observó ningún cambio.

Como se ha señalado anteriormente, la proliferación de linfocitos T en respuesta a la estimulación por anticuerpos anti-CD3 es otro de los defectos más importantes observados en las células T de pacientes con WAS. Por lo tanto, se analizó si la transducción con WW era suficiente para restaurar este defecto. En la figura 17 puede observarse cómo las células de pacientes alo-estimuladas sin transducir (ALO-WAS/2) o transducidas con un vector control expresando eGFP (ALO-WAS/2 transducidas con el vector WE; el vector WE contiene el fragmento de 500 pb del promotor de WASP, seguido del gen eGFP) mostraron una proliferación que era tres veces inferior a la observada en las células T alo-estimuladas de individuos normales (ALO-NORMAL). Sin embargo, cuando las células de pacientes eran transducidas con el vector WW (ALO-WAS/2-WW) recuperaban por completo la capacidad de proliferación mediada por activación con anti-CD3.

9. Restauración de los defectos morfológicos de la superficie celular de las células T WAS transducidas con WW

Los defectos morfológicos observados en las células T WAS son una consecuencia de la reoganización anormal del citoesqueleto de actina, como se ha observado en las células T de sangre periférica (Kenney y cols, 1986), en líneas T alo-específicas (Molina y cols, 1992) y células T-HVS (Gallego y cols, 1997). Por lo tanto, células HVS-WAS/1 transducidas con los vectores WW (70% de células WASP+ determinado mediante inmunofluorescencia) fueron examinadas por microscopía electrónica de barrido (SEM), con objeto de averiguar si las células recuperaban el fenotipo sano. En la figura 18A y 18E se muestra la morfología típica de células HVS-NORMAL/1, procedentes de un donante sano, mientras que las figuras 18B, 18C (HVS-WAS/1 no transducidas) 18F y 18G (HVS-WAS/1 transducidas con SEW expresando eGFP) muestran los defectos morfológicos típicos. En este campo (18G) una célula muestra una completa ausencia de microvellosidades y su morfología está severamente afectada, mientras que otra célula muestra una marcada carencia de microvellosidades. Un examen de campos escogidos al azar reveló que aproximadamente el 80% de las células HVS-WAS/1 no transducidas o transducidas con el vector SEW tenían defectos morfológicos (Fig. 18I). Sin embargo, las células HVS-WAS/1 transducidas con el vector WW mostraron una recuperación completa de la morfología normal (18D, células indicadas con flechas), tal y como se observa en las células HVS-NORMAL/1 (18A). La figura 18H muestra en detalle una de las células HVS-WAS/1 transducida con WW con una morfología normal y con microvellosidades en su superficie. Para cuantificar el grado de reconstitución, el porcentaje de células reconstituidas fue determinado por la selección al azar de 10 campos y un recuento de aproximadamente de 10 a 30 células por campo (Fig. 18.I). Los criterios para seleccionar las células con fenotipo normal incluían la forma redondeada y la presencia de microvellosidades distribuidas homogéneamente, como ha sido previamente caracterizado para las células HVS-NORMAL/1. Con ello, solamente el 25% de las células HVS-WAS/1 no transducidas y el 18% de las transducidas con SEW mostraban una morfología normal, sobre el 50% de las células HVS-WAS/1 transducidas con WW y el 70% después de normalizar con las células HVS-NORMAL. Puesto que el porcentaje de las células HVS-WAS/1 transducidas con WW expresando WASP era del 70%, estimamos que prácticamente todas las células transducidas mostraron una reconstitución completa.

superficie celular de células HVS-NORMAL/1 (A y E), HVS-WAS/1 no transducidas (B y C), transducidas con el vector SEW (F y G), y transducidas con el vector WW (D y H). I) La gráfica muestra el porcentaje de células con morfología normal, realizado mediante el recuento de células en 10 campos tomados al azar (de cada tipo). El porcentaje de las células eGFP⁺ y WASP⁺ (inmunotinción) fue determinado mediante citometría de flujo.

10. Restauración de podosomas de células dendríticas de ratones WASP-KO transducidas con vectores lentivirales WW

Para evaluar la eficacia de los vectores lentivirales WW en la reconstitución de otro tipo celular hematopoyético también afectado en WAS, se generaron células dendríticas procedentes de médula ósea de ratones deficientes en WASP (WASP-KO). Aproximadamente el 50% de las células dendríticas normales, transducidas con el vector SEW expresando eGFP, formaron podosomas normales, mientras que se encontraron podosomas normales en menos del 5% de las células dendríticas de ratones deficientes en WASP (Figs. 19 a y c).

La transducción con los vectores SW y WW (que expresan WASP) o con SEWW (que expresan la quimera eGFP-WASP) dio como resultado la formación de podosomas semejantes a los de las células normales, con un núcleo central de F-actina rodeado por un anillo de vinculina (Fig. 19b). Como se esperaba, la proteína quimérica co-localizaba con la F-actina en los podosomas, mientras que eGFP estaba distribuida por toda la célula (paneles de arriba, Fig. 19 a y b). La presencia de conjuntos de podosomas en las células transducidas es similar a las formaciones agrupadas que adoptan los podosomas en las células dendríticas normales.

11. Transducción eficiente de células progenitoras con vectores lentivirales conteniendo el promotor proximal de WASP

Dado que las células pluripotenciales hematopoyéticas son las células diana idóneas en terapia génica de inmunodeficiencias primarias, nos propusimos evaluar la capacidad de modificación genética de nuestros vectores, en las células pluripotenciales (Sca1⁺) de ratones WASP-KO y humanas (CD34⁺) de individuos normales, fueron purificadas mediante inmunoselección magnética. En la figura 20 se observa que el grado de purificación de las células CD34⁺ obtenido rutinariamente fue superior al 90% (Fig. 20, histograma inferior izquierdo).

Se realizaron ensayos de diferenciación en medio Metho Cult (ver Mat. y Mét.) con las células Sca1⁺ transducidas por SW, WW y SEW. El análisis de las colonias procedentes de las células Sca1⁺ transducidas por SW y WW se realizó mediante PCR amplificando una determinada secuencia del vector. Se alcanzó un porcentaje de transducción similar para ambos vectores, que era del 40% para SW y 32% para WW. El porcentaje de colonias eGFP+ obtenidas tras la transducción con el vector SEW era del 65% (Fig. 21).

Un aspecto fundamental en la modificación de las células progenitoras es lograr la expresión adecuada del transgén en las células diferenciadas. Para analizar este aspecto y conocer si nuestro fragmento del promotor de WASP es activo en células hematopoyéticas pluripotenciales humanas (células procedentes de cordón umbilical de recién nacidos sanos y que por lo tanto expresan WASP), se realizó la construcción del vector WE, conteniendo dicho promotor seguido del gen *eGFP*. La expresión de eGFP fue detectada tanto en colonias mieloides como eritroides (Fig. 22a). La eficacia de la transducción con WE oscilaba entre el 30 y el 70% de colonias de diferentes linajes, tras una sola ronda de transducción a MOI de 2 (el MOI fue estimado en base a los títulos obtenidos en células HVS-WAS/1) (Fig. 22b).

Restauración de podosomas de celulas dendriticas de ratones deficientes en WASP (WASP-KO) transducidas con los vectores WW. A) Células dendríticas de ratones normales (paneles de arriba) y de ratones WASP-KO (paneles de abajo) transducidas por el vector SEW a MOI de 10. Los podosomas se indican con flechas. B) Células dendríticas de ratones WASP-KO transducidas por SEWW (paneles arriba), SW (paneles del medio) y WW (paneles de abajo). C) Análisis cuantitativo de la formación de podosomas en células dendríticas normales transducidas por SEW y células dendríticas de ratones WASP-KO. Fotografías realizadas mediante microscopía confocal. Detección de eGFP paneles izquierdos fíguras A y B. Tinción con faloidina y detección de F-actina, paneles centrales. Tinción con un anticuerpo anti-vinculina, paneles derechos.

Purificación de las celulas CD34⁺ procedentes de sangre de cordón umbilical de recién nacidos. Las células CD34⁺ se obtuvieron mediante inmunoselección positiva, con un anticuerpo monoclonal anti-CD34 conjugado con bolitas magnéticas (material y métodos). Se muestra la población control (panel superior izquierdo), eluido (panel derecho), y las células CD34 inmunoseleccionadas, localizadas en la región R3 (panel inferior). Los eluidos corresponden a la fracción celular que no fue retenida por las columnas. Detección de células CD34⁺ mediante citometría de flujo de las células de cordón umbilical teñidas con un anticuerpo monoclonal anti-CD34 marcado con ficoeritrina.

hematopoyéticas de ratón. Gráfica que representa el porcentaje de colonias derivadas de células $Sca1^+$ procedentes de médula ósea transducidas a MOI = 1 por los vectores SEW (barra izquierda), SW (barra del centro) y WW (barra derecha).

células hematopoyéticas pluripotenciales humanas. Las células CD34⁺ se transdujeron con el vector WE a MOI 2. A) Imágenes de microscopía de fluorescencia de colonias individuales (BFU-E: unidad formadora "explosiva" eritroide; CFU-E, unidad formadora de colonias eritroides; CFU-G, granulocítica; CFU-GM, granulocítica y macrofágica; CFU-GEMM, granulocítica, eritroide, macrofágica y megacariocítica). B) Recuento del número de colonias de cada linaje hematopoyético eGFP⁺ (barras oscuras) sobre las colonias eGFP⁻ (barras claras).

DISCUSIÓN

La terapia génica de inmunodeficiencias primarias se ha convertido en estos últimos años en una importante promesa terapéutica. La introducción del gen correcto en las células afectadas de los pacientes, podría llevar a la restaruración de los defectos de dichas células y a su curación. El sistema de vectores más idóneo para conseguir la modificación genética estable de las células diana son los vectores retrovirales, ya que se trata de vectores integrativos. Sin embargo, se necesita incrementar la seguridad biológica de los mismos para minimizar al máximo posible los riesgos que se derivan de su uso.

El abordaje experimental de la terapia génica *in vitro* de inmunodeficiencias primarias de células T plantea el problema de la obtención de muestras directamente de pacientes debido a su escaso número. Por ello, se requiere un modelo celular que, manteniendo los defectos celulares manifestados en las células de los pacientes, pueda mantenerse en cultivo indefinidamente. Se ha descrito que las células T inmortalizadas con el Herpesvirus Saimiri (T-HVS) retienen las características de las células T de pacientes con WAS (Gallego y cols, 1997). Sin embargo, los diferentes sistemas utilizados hasta ahora para modificarlas genéticamente tales como la electroporación, la lipofección, o la transducción con vectores onco-retrovirales (nuestros datos) no han tenido éxito. Sin embargo, en esta tesis se demuestra que los vectores lentivirales son muy eficaces para transducir establemente las células T-HVS alcanzándose fácilmente un 80% de células eGFP⁺, tras una sola ronda de transducción. Por otro lado, los vectores onco-retrovirales son muy poco eficaces para transducir células T-HVS, mientras que sí son capaces de transducir eficientemente otros tipos celulares (Fig. 5 y 6).

En el curso de estas investigaciones observamos que, aunque la eficacia de los vectores lentivirales para transducir las células T-HVS es elevada, es consistentemente menor que la mostrada para otros tipos celulares. Esta restricción que muestran las células T-HVS puede ser debida a factores celulares intrínsecos de dichas células, o bien a interferencias con genes procedentes del HVS implicados en la inmortalización de las células T. Las células T primarias poseen diversos mecanismos capaces de inhibir la replicación del VIH-1 mediante el factor antiviral de linfocitos CD8 (Chang y cols, 2003) o APOBEC3G (Mangeat y cols, 2003) y además las células T-HVS pueden ser infectadas por cepas naturales del VIH-1 (Bauer y cols, 1998; Vella y cols, 1999). Dado que los niveles de transducción alcanzados en células T primarias y T-HVS (Fig. 9) son

similares, nuestra hipótesis actual es que la restricción de las células T-HVS parece ser debida a factores intrínsecos presentes en las células T primarias.

En otros casos de restricción a la transducción, se ha demostrado que el cambio de envuelta utilizada por los vectores supera la restricción de un tipo celular determinado (Haynes y cols, 2003; Verhoeyen y Cosset, 2004). De hecho, la envuelta del vector determina su capacidad para infectar un determinado tipo celular (Weiss y Tailor, 1995; Vicenzi y cols, 1999), por lo que la restricción observada podría ser debida a la existencia de niveles reducidos del receptor de VSV-g en las células T-HVS. Por lo tanto, nos propusimos utilizar una envuelta diferente a VSV-g que se incorpore adecuadamente a los vectores lentivirales y les confiriese un amplio tropismo, tal y como ocurre con la envuelta del virus LCMV (Miletic y cols, 1999; Sandrin y cols, 2002). Sin embargo, el uso de esta envuelta no logró superar la restricción que presentaban las células T-HVS a la transducción por vectores lentivirales (Fig. 8), indicando que la restricción no está a nivel de la entrada, sino probablemente es consecuencia de la interacción con factores que están presentes tanto en células T-HVS como en linfocitos T primarios.

Estos primeros datos suponen un importante avance en el área de la biología celular y molecular, porque demuestran que mediante un sistema de vectores lentivirales se consigue la modificación genética estable y eficaz de las células T-HVS, procedentes tanto de individuos normales como de pacientes inmunodeficientes. Estos individuos padecían Síndrome de Wiskott-Aldrich y SCID. No obstante, existen muchas más inmunodeficiencias primarias de células T, como las provocadas por mutaciones en los genes RAG2, JAK3, IL7Ra y CD3y, entre otras y enfermedades como el SIDA o el lupus, en las que a partir de la sangre obtenida de los pacientes podrían derivarse nuevas líneas T-HVS, las cuales también podrían ser modificadas eficientemente con vectores lentivirales. La consecuencia más importante que se deriva de ello es la posibilidad de llevar a cabo estudios in vitro de terapia génica con estas líneas, dirigidos a lograr la restauración de los defectos celulares provocados por la patología. Igualmente, la disponibilidad de células T-HVS modificadas con genes concretos podría ser un elemento útil para diseñar dianas terapéuticas en enfermedades complejas en las que se afecten los mecanismos de transducción de señales de activación, como es el caso del lupus.

Las inmunodeficiencias primarias han servido como instrumento (como modelo natural de inactivación de genes) para conocer las funciones de los genes implicados en las mismas. Siguiendo un mismo planteamiento, las líneas T-HVS ofrecen una perspectiva interesante para realizar estudios de investigación básica. En los vectores lentivirales podrían introducirse secuencias de ARN de interferencia (ARNi) con el objeto de inhibir la expresión de determinados genes y estudiar su efecto.

En nuestro caso, hemos utilizado las líneas célulares T-HVS derivadas de pacientes WAS para estudiar el grado de seguridad biológica de los vectores lentivirales y su capacidad de reconstitución de los defectos celulares manifestados en las células T de pacientes WAS, mediante la expresión *de novo* de WASP en dichas células.

La expresión de WASP está limitada a las células hematopoyéticas, incluidos los progenitores y las células troncales (Stewart y cols, 1996; Parolini y cols, 1997). Este patrón de expresión de WASP está determinado por secuencias reguladoras presentes en su promotor (Petrella y cols, 1998). La terapia génica más idónea de inmunodeficiencias primarias, en la que el gen afectado se expresa en todos los linajes hematopoyéticos, consistiría en la modificación de las células hematopoyéticas pluripotenciales, porque se aseguraría la presencia del transgén en todos los linajes. No obstante, células procedentes de médula ósea purificadas mediante selección con CD34⁺ o Lin⁻ han dado lugar células no hematopoyéticos, mediante los procesos de fusión, а transdiferenciación o debido a la presencia de células pluripotenciales que pueden derivarse a diferentes tejidos (Lagasse y cols, 2000; Krause y cols, 2001; Donnelly y Krause, 2001; Orkin y Zon, 2002; Camargo y cols, 2003; Camargo y cols, 2004). Por lo tanto, la transducción de células CD34⁺ implica la posible expresión del gen terapéutico en células no hematopoyéticas. La expresión ectópica del transgén en estas células podría tener efectos tóxicos y comprometer el éxito de la terapia (Baum y cols, 2003). Así pues, se necesita desarrollar un vector capaz de dirigir la expresión específica de tejido de los genes terapéuticos.

Por este motivo, se estudió un vector lentiviral que incorporaba una región proximal de 500 pb del promotor proximal de WASP que dirigía la expresión del gen *WASP*, llamado WW. Según nuestros resultados, la expresión de WASP dirigida por el fragmento del promotor endógeno de WASP obtuvo un diferencial de expresión entre células hematopoyéticas y no hematopoyéticas de entre 135 a 350 veces (Fig. 12b). Es importante destacar que la expresión de WASP en las células no hematopoyéticas es prácticamente indetectable, aunque éstas contengan más de cinco copias de vector por célula (Fig. 13). Este diferencial es aproximadamente 15 veces mayor que el obtenido en los estudios de Petrella y col (Petrella y cols, 1998) y es de casi 80 veces más que el

diferencial obtenido por Dupre y col, en observaciones realizadas simultáneamente a las nuestras (Dupre y cols, 2004). En los ensayos de Dupre y col demuestran expresión específica de tejido de eGFP precedida por un fragmento de 1580 pb del promotor de WASP, mientras que nosotros hemos demostrado la expresión tejido-específica de WASP, determinando los niveles de proteína WASP. Hemos observado que la elevada restricción de la expresión que ocurre con WASP no se observa con eGFP (observaciones de Dupre y nuestros datos). Por lo tanto, se plantea la hipótesis de que pueda existir algún mecanismo de regulación a nivel transcripcional, post-transcripcional o post-traduccional, debido a la presencia del transgén *WASP* en el vector. Actualmente, dicha hipótesis está siendo investigada en nuestro laboratorio.

El incremento de la seguridad biológica de los vectores lentivirales no sólo requiere la expresión tejido-específica del transgén. Para que dicha expresión sea lo más fisiológica posible, se requiere obtener un nivel de proteína terapéutica en las células diana similar al nivel de las células normales. Puesto que las integraciones del vector al azar representan entre otros, un serio riesgo de oncogénesis (Hacein-Bey-Abina y cols, 2003; Gaspar y Thrasher, 2005), sería deseable obtener niveles fisiológicos de la proteína con el menor número posible de copias del vector por célula, a fin de reducir las posibilidades de transformación. Integraciones en zonas de transcripción de oncogenes podrían favorecer su activación y por ende el desarrollo de tumores (Hacein-Bey-Abina y cols, 2003). Nuestros resultados demuestran que para lograr niveles fisiológicos se necesita un bajo número de integraciones del vector WW por célula. Con una copia se obtiene aproximadamente la mitad del nivel de expresión fisiológico de WASP y con 2 integraciones se consigue alcanzar dicho nivel (Fig. 14). En ambos casos, la expresión de WASP lograda con el vector WW es suficiente para que las células T WASP⁺ manifiesten una ventaja selectiva de crecimiento (Fig. 15) sobre las células T WASP-. Estos datos son semejantes a los descritos anteriormente en dos pacientes WAS en los que ocurrieron sendas reversiones espontáneas (Ariga y cols, 2001; Wada y cols, 2001), y en otros modelos de células WASP⁺ activadas mediante CD3 (Lutskiy y cols, 2002; Strom y cols, 2003a).

Por lo tanto, los datos presentados demuestran que mediante la incorporación de un fragmento del promotor proximal de WASP, en el contexto de un vector lentiviral, se consigue que la expresión de dicho gen sea regulada de forma fisiológica. El análisis del grado de restauración alcanzado en las células T-HVS y T-ALO procedentes de pacientes WAS, modificadas con WW, indicará la validez terapéutica de este vector.

En el Síndrome de Wiskott-Aldrich, las células T son incapaces de responder a estímulos procedentes a través del complejo TCR/CD3, teniendo severamente afectada su capacidad de proliferación así como de reorganización del citoesqueleto de actina. Dichas células manifiestan una morfología anormal y la mayor parte de ellas carece de microvellosidades en su superficie (Gallego y cols, 1997). Durante la realización de esta tesis, otros grupos han realizado diversas aproximaciones a la terapia génica de WAS. Se ha demostrado la reconstitución funcional de las células T primarias in vitro e in vivo, con vectores onco-retrovirales, mediante ensayos de activación mediada por CD3 analizando la capacidad de proliferación y reorganización del citoesqueleto de actina (Wada y cols, 2002; Klein y cols, 2003; Strom y cols, 2003a). Nuestros datos también demuestran que la expresión de WASP de novo en las células T de pacientes transducidas con el vector lentiviral WW condujo a la reconstitución funcional de dichas células (Figs. 16 y 17) y, por primera vez, a la reconstitución de los defectos morfológicos de la superficie celular (Fig. 18). Adicionalmente, la reconstitución de los defectos celulares de WAS mediante el vector WW se demostró en otro tipo celular diferente a las células T. Nuestros resultados muestran que células dendríticas de ratones WASP-KO, transducidas con WW, recuperaron la capacidad de formación de podosomas (Fig. 19). Estos resultados, junto con la ventaja selectiva de crecimiento mostrada por las células modificadas (Fig. 15), demuestran que la proteína WASP es funcional, dotando a las células afectadas de las características funcionales y morfológicas de las células sanas.

Las aproximaciones en terapia génica de WAS realizadas hasta ahora, han sido enfocadas en evaluar el efecto terapéutico de WASP, más que en la regulación de la expresión del transgén. Wada, Strom y Klein, han utilizado vectores onco-retrovirales donde la expresión de WASP está dirigida por la LTR del vector MLV y por el promotor del CMV, que son promotores no humanos y constitutivos, y por lo tanto elementos no adecuados para dirigir la expresión regulada de WASP (Wada y cols, 2002; Strom y cols, 2003b; Strom y cols, 2003a; Klein y cols, 2003). En el último año se han realizado dos estudios en los que han utilizado vectores lentivirales. El estudio de Charrier y col., en el cual la expresión de WASP está dirigida por el promotor de la PGK1 de humano (Charrier y cols, 2004), y el estudio de Dupre, previamente comentado. Sin embargo, nuestro grupo ha sido el primero en evaluar el nivel de proteína obtenido tras la expresión del gen *WASP* dirigida por un fragmento del promotor proximal de *WASP*. Dicho examen ha servido para demostrar que la expresión

obtenida con el vector WW es fisiológica y suficiente para lograr restaurar los defectos celulares de las células de pacientes WAS *in vitro*.

Como se ha discutido previamente, las células hematopoyéticas pluripotenciales son las células diana más idóneas para terapia génica de inmunodeficiencias primarias. Sin embargo, su modificación genética es difícil debido a su bajo grado de permisividad. No obstante, el uso de vectores lentivirales permite superar esta restricción, lográndose una modificación eficiente de las células hematopoyéticas pluripotenciales (Naldini y cols, 1996; Demaison y cols, 2002). Nuestros datos demuestran que los vectores lentivirales transducen eficientemente dichas células (Figs. 20 y 21). El vector utilizado para modificar las células pluripotenciales humanas contiene el gen eGFP (vector WE) puesto que son células procedentes de individuos sanos y por lo tanto expresan WASP. Tras la diferenciación de dichas células a las diferentes estirpes hematopoyéticas, la expresión de eGFP se mantiene en todas ellas, mostrando por primera vez que el promotor de WASP en nuestros vectores es activo en todos los linajes. Sin embargo se deben realizar más ensayos en este sentido, y analizar si existe silenciamiento de la expresión del transgén tras la diferenciación de los progenitores hematopoyéticos a los distintos linajes, y de darse, analizar en qué grado. Las células pluripotenciales hematopoyéticas durante su diferenciación, sufren una modificación en el patrón de expresión génica como consecuencia de la reorganización de su material genético (Williams y cols, 1986; Fisher, 2002), que además puede ocurrir después de una pre-selección de las células hematopoyéticas pluripotenciales seleccionadas que expresaban el transgén (Kalberer y cols, 2000; Barquinero y cols, 2000). En las células pluripotenciales modificadas, este cambio en el patrón de expresión podría silenciar la expresión del transgén terapéutico en diferentes linajes.

A raíz de este trabajo, surgen nuevas cuestiones que serán tratadas en el trabajo futuro de nuestro laboratorio. Queda resolver por qué la expresión de eGFP dirigida por el promotor WASP no está tan restringida en las células no hematopoyéticas, como lo está la expresión de WASP. Aunque se haya logrado la expresión fisiológica de WASP con bajo número de copias de vector por célula, las integraciones al azar siguen representando un problema. Una posible solución sería incorporar a los vectores secuencias de poliadenilación más eficaces, que impidan que la transcripción del transgén continúe corriente abajo (Zaiss y cols, 2002), así como introducir secuencias aisladoras (HS4) que aislen el cassette de expresión del vector del entorno donde se ha integrado (Recillas-Targa y cols, 2002).

Por lo tanto, el vector WW, de entre los que existen actualmente, es el que ofrece una mayor seguridad biológica para terapia génica de WAS, planteándose la posibilidad de poder ser utilizado en ensayos clínicos. Una última propuesta, es que este vector podría ser utilizado para la expresión de genes hematopoyéticos diferentes a WASP, que teniendo un patrón de expresión similar, harían posible el tratamiento de otras inmunodeficiencias primarias.

CONCLUSIONES
1.- Los vectores lentivirales transducen eficientemente las células T inmortalizadas con el Herpesvirus Saimiri, permitiendo su uso como modelo celular para el estudio de terapia génica de WAS y otras inmunodeficiencias.

2.- Las células T inmortalizadas con el Herpesvirus Saimiri comparten con las células T periféricas y las células T primarias alo-específicas su resistencia a ser modificadas genéticamente.

3.- La expresión de WASP en las células transducidas por los vectores lentivirales WW está restringida a las células de origen hematopoyético, alcanzándose en ellas niveles de la proteína terapéutica similares a los niveles de WASP presentes en células normales.

4.- La expresión de WASP en las células T deficientes en WASP transducidas con el vector WW restaura los defectos celulares y funcionales característicos del Síndrome de Wiskott-Aldrich.

5.- Las células hematopoyéticas pluripotenciales humanas transducidas con vectores lentivirales conteniendo un fragmento del promotor proximal de WASP mantienen la expresión del transgén tras su diferenciación a los linajes mieloides y linfoides.

BIBLIOGRAFÍA

- Aiuti,A., Slavin,S., Aker,M., Ficara,F., Deola,S., Mortellaro,A., Morecki,S., Andolfi,G., Tabucchi,A., Carlucci,F., Marinello,E., Cattaneo,F., Vai,S., Servida,P., Miniero,R., Roncarolo,M.G., and Bordignon,C. (2002). Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410-2413.
- ALDRICH,R.A., STEINBERG,A.G., and CAMPBELL,D.C. (1954). Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 13, 133-139.
- Amann,K.J. and Pollard,T.D. (2001). The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat. Cell Biol. 3, 306-310.
- Ancliff, P. J., Blundell, M. P., G.O.C., Calle, Y., Kempski, H., Toscano, M. G., Jones, G. E., Ridley, A. J., Sinclair, J., Kinnon, C., Hann, I. M., Gale, R. E., de Botton, S., W.V., Linch, D. C., y Thrasher, A. J. Unregulated activation of the actin cytoskeleton promotes haematopoietic cell death and causes X-linked neutropenia. *Submitted*.
- Ariga, T., Kondoh, T., Yamaguchi, K., Yamada, M., Sasaki, S., Nelson, D.L., Ikeda, H., Kobayashi, K., Moriuchi, H., and Sakiyama, Y. (2001). Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. J. Immunol. 166, 5245-5249.
- Baba,Y., Nonoyama,S., Matsushita,M., Yamadori,T., Hashimoto,S., Imai,K., Arai,S., Kunikata,T., Kurimoto,M., Kurosaki,T., Ochs,H.D., Yata,J., Kishimoto,T., and Tsukada,S. (1999). Involvement of wiskott-aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood *93*, 2003-2012.
- Badolato, R., Sozzani, S., Malacarne, F., Bresciani, S., Fiorini, M., Borsatti, A., Albertini, A., Mantovani, A., Ugazio, A.G., and Notarangelo, L.D. (1998). Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack

of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J. Immunol. *161*, 1026-1033.

- Badour,K., Zhang,J., Shi,F., McGavin,M.K., Rampersad,V., Hardy,L.A., Field,D., and Siminovitch,K.A. (2003). The Wiskott-Aldrich syndrome protein acts downstream of CD2 and the CD2AP and PSTPIP1 adaptors to promote formation of the immunological synapse. Immunity. *18*, 141-154.
- Banin,S., Gout,I., and Brickell,P. (1999). Interaction between Wiskott-Aldrich Syndrome protein (WASP) and the Fyn protein-tyrosine kinase. Mol. Biol. Rep. 26, 173-177.
- Baranowski, E., Ruiz-Jarabo, C.M., and Domingo, E. (2001). Evolution of cell recognition by viruses. Science 292, 1102-1105.
- Barda-Saad,M., Braiman,A., Titerence,R., Bunnell,S.C., Barr,V.A., and Samelson,L.E. (2005). Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. *6*, 80-89.
- Barquinero, J., Segovia, J.C., Ramirez, M., Limon, A., Guenechea, G., Puig, T., Briones, J., Garcia, J., and Bueren, J.A. (2000). Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgeneexpressing cells in NOD/SCID mice. Blood 95, 3085-3093.
- Bauer,M., Lucchiari-Hartz,M., Fickenscher,H., Eichmann,K., McKeating,J., and Meyerhans,A. (1998). Herpesvirus saimiri-transformed human CD4⁺ T-cell lines: an efficient target cell system for the analysis of human immunodeficiency virus-specific cytotoxic CD8⁺ T-lymphocyte activity. J. Virol. 72, 1627-1631.
- Baum,C., Dullmann,J., Li,Z., Fehse,B., Meyer,J., Williams,D.A., and von Kalle,C. (2003). Side effects of retroviral gene transfer into hematopoietic stem cells. Blood *101*, 2099-2114.

- Bessis, N., GarciaCozar, F.J., and Boissier, M.C. (2004). Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. *11 Suppl 1*, S10-S17.
- Biesinger,B., Muller-Fleckenstein,I., Simmer,B., Lang,G., Wittmann,S., Platzer,E., Desrosiers,R.C., and Fleckenstein,B. (1992). Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc. Natl. Acad. Sci. U. S. A 89, 3116-3119.
- Blomer,U., Naldini,L., Kafri,T., Trono,D., Verma,I.M., and Gage,F.H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641-6649.
- Broker,B.M., Kraft,M.S., Klauenberg,U., Le Deist,F., de Villartay,J.P., Fleckenstein,B., Fleischer,B., and Meinl,E. (1997). Activation induces apoptosis in Herpesvirus saimiri-transformed T cells independent of CD95 (Fas, APO-1). Eur. J. Immunol. 27, 2774-2780.
- Brown,M.P., Topham,D.J., Sangster,M.Y., Zhao,J., Flynn,K.J., Surman,S.L., Woodland,D.L., Doherty,P.C., Farr,A.G., Pattengale,P.K., and Brenner,M.K. (1998). Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat. Med. 4, 1253-1260.
- Burns,S., Hardy,S.J., Buddle,J., Yong,K.L., Jones,G.E., and Thrasher,A.J. (2004). Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motil. Cytoskeleton 57, 118-132.
- Callebaut, I., Cossart, P., and Dehoux, P. (1998). EVH1/WH1 domains of VASP and WASP proteins belong to a large family including Ran-binding domains of the RanBP1 family. FEBS Lett. 441, 181-185.
- Camargo,F.D., Finegold,M., and Goodell,M.A. (2004). Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J. Clin. Invest *113*, 1266-1270.

- Camargo,F.D., Green,R., Capetanaki,Y., Jackson,K.A., and Goodell,M.A. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat. Med. 9, 1520-1527.
- Cannon, J.L., Labno, C.M., Bosco, G., Seth, A., McGavin, M.H., Siminovitch, K.A., Rosen, M.K., and Burkhardt, J.K. (2001). Wasp recruitment to the T cell: APC contact site occurs independently of Cdc42 activation. Immunity. 15, 249-259.
- Carneiro,F.A., Bianconi,M.L., Weissmuller,G., Stauffer,F., and Da Poian,A.T. (2002). Membrane recognition by vesicular stomatitis virus involves enthalpydriven protein-lipid interactions. J. Virol. *76*, 3756-3764.
- Caron, E. (2002). Regulation of Wiskott-Aldrich syndrome protein and related molecules. Curr. Opin. Cell Biol. 14, 82-87.
- Case,S.S., Price,M.A., Jordan,C.T., Yu,X.J., Wang,L., Bauer,G., Haas,D.L., Xu,D., Stripecke,R., Naldini,L., Kohn,D.B., and Crooks,G.M. (1999). Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. U. S. A *96*, 2988-2993.
- Castaing,M., Guerci,A., Mallet,J., Czernichow,P., Ravassard,P., and Scharfmann,R. (2005). Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells. Diabetologia. 48, 709-719
- Castellano,F., Le Clainche,C., Patin,D., Carlier,M.F., and Chavrier,P. (2001). A WASp-VASP complex regulates actin polymerization at the plasma membrane. EMBO J. 20, 5603-5614.
- Cavazzana-Calvo,M., Hacein-Bey,S., de Saint,B.G., Gross,F., Yvon,E., Nusbaum,P., Selz,F., Hue,C., Certain,S., Casanova,J.L., Bousso,P., Deist,F.L., and Fischer,A. (2000). Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669-672.

- Chang, T.L., Francois, F., Mosoian, A., and Klotman, M.E. (2003). CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J. Virol. 77, 6777-6784.
- 32. Charrier,S., Stockholm,D., Seye,K., Opolon,P., Taveau,M., Gross,D.A., Bucher-Laurent,S., Delenda,C., Vainchenker,W., Danos,O., and Galy,A. (2004). A lentiviral vector encoding the human Wiskott-Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Ther. Apr;12(7):597-606
- Check, E. (2005). Gene therapy put on hold as third child develops cancer. Nature 433, 561.
- Cherry,S.R., Biniszkiewicz,D., van Parijs,L., Baltimore,D., and Jaenisch,R. (2000). Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell Biol. 20, 7419-7426.
- 35. Chinen, J. and Puck, J.M. (2004). Perspectives of gene therapy for primary immunodeficiencies. Curr. Opin. Allergy Clin. Immunol. *4*, 523-527.
- Cocault,L., Bouscary,D., Le Bousse,K.C., Clay,D., Picard,F., Gisselbrecht,S., and Souyri,M. (1996). Ectopic expression of murine TPO receptor (c-mpl) in mice is pathogenic and induces erythroblastic proliferation. Blood 88, 1656-1665.
- 37. Coffin, J.M. (1992). Retroviral DNA integration. Dev. Biol. Stand. 76, 141-151.
- Daubenberger, C.A., Nickel, B., Hubner, B., Siegler, U., Meinl, E., and Pluschke, G. (2001). Herpesvirus saimiri transformed T cells and peripheral blood mononuclear cells restimulate identical antigen-specific human T cell clones. J. Immunol. Methods 254, 99-108.
- Davies, W.A. and Stossel, T.P. (1977). Peripheral hyaline blebs (podosomes) of macrophages. J. Cell Biol. 75, 941-955.

- de Noronha,S., Hardy,S., Sinclair,J., Blundell,M.P., Strid,J., Schulz,O., Zwirner,J., Jones,G.E., Katz,D.R., Kinnon,C., and Thrasher,A.J. (2005). Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood *105*, 1590-1597.
- 41. Demaison, C., Parsley, K., Brouns, G., Scherr, M., Battmer, K., Kinnon, C., Grez, M., and Thrasher, A.J. (2002). High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum. Gene Ther. *13*, 803-813.
- 42. Derry, J.M., Ochs, H.D., and Francke, U. (1994). Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 79, Dec 2;79(5).
- Donnelly,D.S. and Krause,D.S. (2001). Hematopoietic stem cells can be CD34⁺ or CD34⁻. Leuk. Lymphoma 40, 221-234.
- Dull,T., Zufferey,R., Kelly,M., Mandel,R.J., Nguyen,M., Trono,D., and Naldini,L. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463-8471.
- 45. Dupre,L., Trifari,S., Follenzi,A., Marangoni,F., Lain,d.L., Bernad,A., Martino,S., Tsuchiya,S., Bordignon,C., Naldini,L., Aiuti,A., and Roncarolo,M.G. (2004). Lentiviral vector-mediated gene transfer in T cells from Wiskott-Aldrich syndrome patients leads to functional correction. Mol. Ther. 10, 903-915.
- 46. Dupuis-Girod,S., Medioni,J., Haddad,E., Quartier,P., Cavazzana-Calvo,M., Le Deist,F., de Saint,B.G., Delaunay,J., Schwarz,K., Casanova,J.L., Blanche,S., and Fischer,A. (2003). Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics *111*, e622-e627.
- 47. Edelstein, M.L., Abedi, M.R., Wixon, J., and Edelstein, R.M. (2004). Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med. *6*, 597-602.

- Emery,D.W., Yannaki,E., Tubb,J., and Stamatoyannopoulos,G. (2000). A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc. Natl. Acad. Sci. U. S. A 97, 9150-9155.
- Ferrari,G., Rossini,S., Giavazzi,R., Maggioni,D., Nobili,N., Soldati,M., Ungers,G., Mavilio,F., Gilboa,E., and Bordignon,C. (1991). An in vivo model of somatic cell gene therapy for human severe combined immunodeficiency. Science 251, 1363-1366.
- Filipovich,A.H., Stone,J.V., Tomany,S.C., Ireland,M., Kollman,C., Pelz,C.J., Casper,J.T., Cowan,M.J., Edwards,J.R., Fasth,A., Gale,R.P., Junker,A., Kamani,N.R., Loechelt,B.J., Pietryga,D.W., Ringden,O., Vowels,M., Hegland,J., Williams,A.V., Klein,J.P., Sobocinski,K.A., Rowlings,P.A., and Horowitz,M.M. (2001). Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood *97*, 1598-1603.
- Finan,P.M., Soames,C.J., Wilson,L., Nelson,D.L., Stewart,D.M., Truong,O., Hsuan,J.J., and Kellie,S. (1996). Identification of regions of the Wiskott-Aldrich syndrome protein responsible for association with selected Src homology 3 domains. J. Biol. Chem. 271, 26291-26295.
- 52. Fischer, A. (2000). Gene therapy of lymphoid primary immunodeficiencies. Curr. Opin. Pediatr. 12, 557-562.
- 53. Fischer, A., Hacein-Bey, S., and Cavazzana-Calvo, M. (2002). Gene therapy of severe combined immunodeficiencies. Nat. Rev. Immunol. 2, 615-621.
- Fisher,A.G. (2002). Cellular identity and lineage choice. Nat. Rev. Immunol. 2, 977-982.
- 55. Follenzi,A., Ailles,L.E., Bakovic,S., Geuna,M., and Naldini,L. (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217-222.

- Friedmann, T. and Roblin, R. (1972). Gene therapy for human genetic disease? Science 175, 949-955.
- Gallego, M.D., Santamaria, M., Pena, J., and Molina, I.J. (1997). Defective actin reorganization and polymerization of Wiskott-Aldrich T cells in response to CD3-mediated stimulation. Blood 90, 3089-3097.
- Gao,Z., Golob,J., Tanavde,V.M., Civin,C.I., Hawley,R.G., and Cheng,L. (2001). High levels of transgene expression following transduction of long-term NOD/SCID-repopulating human cells with a modified lentiviral vector. Stem Cells 19, 247-259.
- Gaspar,H.B., Parsley,K.L., Howe,S., King,D., Gilmour,K.C., Sinclair,J., Brouns,G., Schmidt,M., von Kalle,C., Barington,T., Jakobsen,M.A., Christensen,H.O., Al Ghonaium,A., White,H.N., Smith,J.L., Levinsky,R.J., Ali,R.R., Kinnon,C., and Thrasher,A.J. (2004). Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet *364*, 2181-2187.
- 60. Gaspar,H.B. and Thrasher,A.J. (2005). Gene therapy for severe combined immunodeficiencies. Expert. Opin. Biol. Ther. 5, 1175-1182.
- 61. Gonda, T.J. (1998). The c-Myb oncoprotein. Int. J. Biochem. Cell Biol. 30, 547-551.
- Haas,D.L., Case,S.S., Crooks,G.M., and Kohn,D.B. (2000). Critical factors influencing stable transduction of human CD34⁺ cells with HIV-1-derived lentiviral vectors. Mol. Ther. 2, 71-80.
- Hacein-Bey-Abina,S., von Kalle,C., Schmidt,M., McCormack,M.P., Wulffraat,N., Leboulch,P., Lim,A., Osborne,C.S., Pawliuk,R., Morillon,E., Sorensen,R., Forster,A., Fraser,P., Cohen,J.I., de Saint,B.G., Alexander,I., Wintergerst,U., Frebourg,T., Aurias,A., Stoppa-Lyonnet,D., Romana,S., Radford-Weiss,I., Gross,F., Valensi,F., Delabesse,E., Macintyre,E., Sigaux,F., Soulier,J., Leiva,L.E., Wissler,M., Prinz,C., Rabbitts,T.H., Le Deist,F.,

Fischer, A., and Cavazzana-Calvo, M. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science *302*, 415-419.

- 64. Hagemann, T.L. and Kwan, S.P. (1999). The identification and characterization of two promoters and the complete genomic sequence for the Wiskott-Aldrich syndrome gene. Biochem. Biophys. Res. Commun. *256*, 104-109.
- 65. Haynes, C., Erlwein, O., and Schnierle, B.S. (2003). Modified envelope glycoproteins to retarget retroviral vectors. Curr. Gene Ther. *3*, 405-410.
- Hromas, R., Orazi, A., Neiman, R.S., Maki, R., Van Beveran, C., Moore, J., and Klemsz, M. (1993). Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82, 2998-3004.
- Ikeda,Y., Takeuchi,Y., Martin,F., Cosset,F.L., Mitrophanous,K., and Collins,M. (2003). Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 21, 569-572.
- Imai,K., Morio,T., Zhu,Y., Jin,Y., Itoh,S., Kajiwara,M., Yata,J., Mizutani,S., Ochs,H.D., and Nonoyama,S. (2004). Clinical course of patients with WASP gene mutations. Blood *103*, 456-464.
- Kalberer,C.P., Pawliuk,R., Imren,S., Bachelot,T., Takekoshi,K.J., Fabry,M., Eaves,C.J., London,I.M., Humphries,R.K., and Leboulch,P. (2000). Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-globin in engrafted mice. Proc. Natl. Acad. Sci. U. S. A 97, 5411-5415.
- Kapoor,N., Crooks,G., Kohn,D.B., and Parkman,R. (1998). Hematopoietic stem cell transplantation for primary lymphoid immunodeficiencies. Semin. Hematol. 35, 346-353.

- Kaschka-Dierich, C., Werner, F.J., Bauer, I., and Fleckenstein, B. (1982). Structure of nonintegrated, circular Herpesvirus saimiri and Herpesvirus ateles genomes in tumor cell lines and in vitro-transformed cells. J. Virol. 44, 295-310.
- Kay,M.A., Glorioso,J.C., and Naldini,L. (2001). Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33-40.
- 73. Kenney, D., Cairns, L., Remold-O'Donnell, E., Peterson, J., Rosen, F.S., and Parkman, R. (1986). Morphological abnormalities in the lymphocytes of patients with the Wiskott-Aldrich syndrome. Blood 68, 1329-1332.
- Kim,A.S., Kakalis,L.T., Abdul-Manan,N., Liu,G.A., and Rosen,M.K. (2000). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151-158.
- 75. Klein,C., Nguyen,D., Liu,C.H., Mizoguchi,A., Bhan,A.K., Miki,H., Takenawa,T., Rosen,F.S., Alt,F.W., Mulligan,R.C., and Snapper,S.B. (2003). Gene therapy for Wiskott-Aldrich syndrome: rescue of T-cell signaling and amelioration of colitis upon transplantation of retrovirally transduced hematopoietic stem cells in mice. Blood *101*, 2159-2166.
- Koga,Y., Oh-Hori,N., Sato,H., Yamamoto,N., Kimura,G., and Nomoto,K. (1989). Absence of transcription of lck (lymphocyte specific protein tyrosine kinase) message in IL-2-independent, HTLV-I-transformed T cell lines. J. Immunol. *142*, 4493-4499.
- Kolluri, R., Tolias, K.F., Carpenter, C.L., Rosen, F.S., and Kirchhausen, T. (1996).
 Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc. Natl. Acad. Sci. U. S. A 93, 5615-5618.
- Kowolik, C.M., Hu, J., and Yee, J.K. (2001). Locus control region of the human CD2 gene in a lentivirus vector confers position-independent transgene expression. J. Virol. 75, 4641-4648.

- Kraft,M.S., Henning,G., Fickenscher,H., Lengenfelder,D., Tschopp,J., Fleckenstein,B., and Meinl,E. (1998). Herpesvirus saimiri transforms human Tcell clones to stable growth without inducing resistance to apoptosis. J. Virol. 72, 3138-3145.
- Krause,D.S., Theise,N.D., Collector,M.I., Henegariu,O., Hwang,S., Gardner,R., Neutzel,S., and Sharkis,S.J. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell *105*, 369-377.
- Lagasse, E., Connors, H., Al Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I.L., and Grompe, M. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229-1234.
- 82. Lechardeur, D. and Lukacs, G.L. (2002). Intracellular barriers to non-viral gene transfer. Curr. Gene Ther. 2, 183-194.
- 83. Lenarsky, C. and Parkman, R. (1990). Bone marrow transplantation for the treatment of immune deficiency states. Bone Marrow Transplant. *6*, 361-369.
- Linder,S., Nelson,D., Weiss,M., and Aepfelbacher,M. (1999). Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl. Acad. Sci. U. S. A 96, 9648-9653.
- Lutskiy, M.I., Rosen, F.S., and Remold-O'Donnell, E. (2005). Genotypeproteotype linkage in the wiskott-Aldrich syndrome. J. Immunol. 175, 1329-1336.
- Lutskiy, M.I., Sasahara, Y., Kenney, D.M., Rosen, F.S., and Remold-O'Donnell, E. (2002). Wiskott-Aldrich syndrome in a female. Blood *100*, 2763-2768.
- Machesky,L.M. and Insall,R.H. (1998). Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347-1356.

- Mangeat,B., Turelli,P., Caron,G., Friedli,M., Perrin,L., and Trono,D. (2003). Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99-103.
- Manilla,P., Rebello,T., Afable,C., Lu,X., Slepushkin,V., Humeau,L.M., Schonely,K., Ni,Y., Binder,G.K., Levine,B.L., MacGregor,R.R., June,C.H., and Dropulic,B. (2005). Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum. Gene Ther. *16*, 17-25.
- Marchand, J.B., Kaiser, D.A., Pollard, T.D., and Higgs, H.N. (2001). Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat. Cell Biol. 3, 76-82.
- Martin,F., Neil,S., Kupsch,J., Maurice,M., Cosset,F., and Collins,M. (1999). Retrovirus targeting by tropism restriction to melanoma cells. J. Virol. 73, 6923-6929.
- McGavin,M.K., Badour,K., Hardy,L.A., Kubiseski,T.J., Zhang,J., and Siminovitch,K.A. (2001). The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis. J. Exp. Med. 194, 1777-1787.
- 93. Meinl,E. and Hohlfeld,R. (2000). T cell transformation with Herpesvirus saimiri: a tool for neuroimmunological research. J. Neuroimmunol. *103*, 1-7.
- 94. Meinl, E., Hohlfeld, R., Wekerle, H., and Fleckenstein, B. (1995). Immortalization of human T cells by Herpesvirus saimiri. Immunol. Today *16*, 55-58.
- 95. Miletic,H., Bruns,M., Tsiakas,K., Vogt,B., Rezai,R., Baum,C., Kuhlke,K., Cosset,F.L., Ostertag,W., Lother,H., and von Laer,D. (1999). Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J. Virol. 73, 6114-6116.

- 96. Mitchell,R.S., Beitzel,B.F., Schroder,A.R., Shinn,P., Chen,H., Berry,C.C., Ecker,J.R., and Bushman,F.D. (2004). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS. Biol. 2, E234.
- Miyoshi,H., Smith,K.A., Mosier,D.E., Verma,I.M., and Torbett,B.E. (1999). Transduction of human CD34⁺ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283, 682-686.
- Molina,I.J., Kenney,D.M., Rosen,F.S., and Remold-O'Donnell,E. (1992). T cell lines characterize events in the pathogenesis of the Wiskott-Aldrich syndrome. J. Exp. Med. 176, 867-874.
- Molina,I.J., Sancho,J., Terhorst,C., Rosen,F.S., and Remold-O'Donnell,E. (1993). T cells of patients with the Wiskott-Aldrich syndrome have a restricted defect in proliferative responses. J. Immunol. *151*, 4383-4390.
- Moreau, T., Bardin, F., Imbert, J., Chabannon, C., and Tonnelle, C. (2004). Restriction of transgene expression to the B-lymphoid progeny of human lentivirally transduced CD34⁺ cells. Mol. Ther. *10*, 45-56.
- 101. Moreau-Gaudry,F., Xia,P., Jiang,G., Perelman,N.P., Bauer,G., Ellis,J., Surinya,K.H., Mavilio,F., Shen,C.K., and Malik,P. (2001). High-level erythroidspecific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 98, 2664-2672.
- Naldini,L. (1998). Lentiviruses as gene transfer agents for delivery to nondividing cells. Curr. Opin. Biotechnol. 9, 457-463.
- 103. Naldini,L., Blomer,U., Gallay,P., Ory,D., Mulligan,R., Gage,F.H., Verma,I.M., and Trono,D. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-267.
- 104. Nava, V.E., Cheng, E.H., Veliuona, M., Zou, S., Clem, R.J., Mayer, M.L., and Hardwick, J.M. (1997). Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J. Virol. 71, 4118-4122.

- 105. Oda,A., Ochs,H.D., Lasky,L.A., Spencer,S., Ozaki,K., Fujihara,M., Handa,M., Ikebuchi,K., and Ikeda,H. (2001). CrkL is an adapter for Wiskott-Aldrich syndrome protein and Syk. Blood 97, 2633-2639.
- 106. Orkin,S.H. and Zon,L.I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat. Immunol. *3*, 323-328.
- 107. Pacheco-Castro,A., Marquez,C., Toribio,M.L., Ramiro,A.R., Trigueros,C., and Regueiro,J.R. (1996). Herpesvirus saimiri immortalization of alpha beta and gamma delta human T-lineage cells derived from CD34⁺ intrathymic precursors in vitro. Int. Immunol. *8*, 1797-1805.
- Park,J.Y., Shcherbina,A., Rosen,F.S., Prodeus,A.P., and Remold-O'Donnell,E.
 (2005). Phenotypic perturbation of B cells in the Wiskott-Aldrich syndrome. Clin. Exp. Immunol. *139*, 297-305.
- 109. Parkman, R., Rappeport, J., Geha, R., Belli, J., Cassady, R., Levey, R., Nathan, D.G., and Rosen, F.S. (1978). Complete correction of the Wiskott-Aldrich syndrome by allogeneic bone-marrow transplantation. N. Engl. J. Med. 298, 921-927.
- Parolini,O., Berardelli,S., Riedl,E., Bello-Fernandez,C., Strobl,H., Majdic,O., and Knapp,W. (1997). Expression of Wiskott-Aldrich syndrome protein (WASP) gene during hematopoietic differentiation. Blood 90, 70-75.
- 111. Petrella,A., Doti,I., Agosti,V., Giarrusso,P.C., Vitale,D., Bond,H.M., Cuomo,C., Tassone,P., Franco,B., Ballabio,A., Venuta,S., and Morrone,G. (1998). A 5' regulatory sequence containing two Ets motifs controls the expression of the Wiskott-Aldrich syndrome protein (WASP) gene in human hematopoietic cells. Blood *91*, 4554-4560.
- 112. Pollard,T.D. and Borisy,G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell *112*, 453-465.
- 113. Ramesh,N., Anton,I.M., Hartwig,J.H., and Geha,R.S. (1997). WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization

and redistribution in lymphoid cells. Proc. Natl. Acad. Sci. U. S. A 94, 14671-14676.

- 114. Ramezani, A., Hawley, T.S., and Hawley, R.G. (2000). Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther. 2, 458-469.
- 115. Ramezani,A., Hawley,T.S., and Hawley,R.G. (2003). Performance- and safetyenhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood *101*, 4717-4724.
- 116. Recillas-Targa,F., Pikaart,M.J., Burgess-Beusse,B., Bell,A.C., Litt,M.D., West,A.G., Gaszner,M., and Felsenfeld,G. (2002). Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc. Natl. Acad. Sci. U. S. A 99, 6883-6888.
- Rivero-Lezcano,O.M., Marcilla,A., Sameshima,J.H., and Robbins,K.C. (1995).
 Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol. Cell Biol. 15, 5725-5731.
- Robbins, P.B., Skelton, D.C., Yu, X.J., Halene, S., Leonard, E.H., and Kohn, D.B. (1998). Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc. Natl. Acad. Sci. U. S. A 95, 10182-10187.
- Romero, P., Ortega, C., Palma, A., Molina, I.J., Pena, J., and Santamaria, M. (2001).
 Expression of CD94 and NKG2 molecules on human CD4⁺ T cells in response to CD3-mediated stimulation. J. Leukoc. Biol. 70, 219-224.
- 120. Rosenberg,S.A., Aebersold,P., Cornetta,K., Kasid,A., Morgan,R.A., Moen,R., Karson,E.M., Lotze,M.T., Yang,J.C., Topalian,S.L., and . (1990). Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323, 570-578.

- 121. Sandrin,V., Boson,B., Salmon,P., Gay,W., Negre,D., Le Grand,R., Trono,D., and Cosset,F.L. (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34⁺ cells derived from human and nonhuman primates. Blood *100*, 823-832.
- 122. Sasahara,Y., Rachid,R., Byrne,M.J., de la Fuente,M.A., Abraham,R.T., Ramesh,N., and Geha,R.S. (2002). Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell 10, 1269-1281.
- 123. Schiedlmeier,B., Klump,H., Will,E., Arman-Kalcek,G., Li,Z., Wang,Z., Rimek,A., Friel,J., Baum,C., and Ostertag,W. (2003). High-level ectopic HOXB4 expression confers a profound in vivo competitive growth advantage on human cord blood CD34⁺ cells, but impairs lymphomyeloid differentiation. Blood *101*, 1759-1768.
- 124. Schmidt,M., Hacein-Bey-Abina,S., Wissler,M., Carlier,F., Lim,A., Prinz,C., Glimm,H., Andre-Schmutz,I., Hue,C., Garrigue,A., Le Deist,F., Lagresle,C., Fischer,A., Cavazzana-Calvo,M., and von Kalle,C. (2004). Clonal evidence for the transduction of CD34⁺ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood.
- 125. Shcherbina,A., Bretscher,A., Rosen,F.S., Kenney,D.M., and Remold-O'Donnell,E. (1999). The cytoskeletal linker protein moesin: decreased levels in Wiskott-Aldrich syndrome platelets and identification of a cleavage pathway in normal platelets. Br. J. Haematol. 106, 216-223.
- Shcherbina, A., Candotti, F., Rosen, F.S., and Remold-O'Donnell, E. (2003). High incidence of lymphomas in a subgroup of Wiskott-Aldrich syndrome patients. Br. J. Haematol. *121*, 529-530.
- 127. She,H.Y., Rockow,S., Tang,J., Nishimura,R., Skolnik,E.Y., Chen,M., Margolis,B., and Li,W. (1997). Wiskott-Aldrich syndrome protein is associated

with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. Mol. Biol. Cell *8*, 1709-1721.

- 128. Snapper,S.B., Meelu,P., Nguyen,D., Stockton,B.M., Bozza,P., Alt,F.W., Rosen,F.S., von Andrian,U.H., and Klein,C. (2005). WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol.
- Snapper,S.B. and Rosen,F.S. (1999). The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu. Rev. Immunol. 17, 905-929.
- Snapper,S.B., Rosen,F.S., Mizoguchi,E., Cohen,P., Khan,W., Liu,C.H., Hagemann,T.L., Kwan,S.P., Ferrini,R., Davidson,L., Bhan,A.K., and Alt,F.W. (1998). Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity. 9, 81-91.
- 131. Soneoka,Y., Cannon,P.M., Ramsdale,E.E., Griffiths,J.C., Romano,G., Kingsman,S.M., and Kingsman,A.J. (1995). A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628-633.
- 132. Spink, J. and Geddes, D. (2004). Gene therapy progress and prospects: bringing gene therapy into medical practice: the evolution of international ethics and the regulatory environment. Gene Ther. *11*, 1611-1616.
- Stevenson, M., Stanwick, T.L., Dempsey, M.P., and Lamonica, C.A. (1990). HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9, 1551-1560.
- Stewart,D.M., Treiber-Held,S., Kurman,C.C., Facchetti,F., Notarangelo,L.D., and Nelson,D.L. (1996). Studies of the expression of the Wiskott-Aldrich syndrome protein. J. Clin. Invest 97, 2627-2634.

- 135. Strom, T.S., Gabbard, W., Kelly, P.F., Cunningham, J.M., and Nienhuis, A.W. (2003a). Functional correction of T cells derived from patients with the Wiskott-Aldrich syndrome (WAS) by transduction with an oncoretroviral vector encoding the WAS protein. Gene Ther. 10, 803-809.
- 136. Strom, T.S., Turner, S.J., Andreansky, S., Liu, H., Doherty, P.C., Srivastava, D.K., Cunningham, J.M., and Nienhuis, A.W. (2003b). Defects in T-cell-mediated immunity to influenza virus in murine Wiskott-Aldrich Syndrome are corrected by oncoretroviral vector-mediated gene transfer into repopulating hematopoietic cells. Blood. Nov 1;102(9):3108-16
- Sullivan,K.E., Mullen,C.A., Blaese,R.M., and Winkelstein,J.A. (1994). A multiinstitutional survey of the Wiskott-Aldrich syndrome. J. Pediatr. 125, 876-885.
- 138. Symons, M., Derry, J.M., Karlak, B., Jiang, S., Lemahieu, V., Mccormick, F., Francke, U., and Abo, A. (1996). Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723-734.
- Taganov,K.D., Cuesta,I., Daniel,R., Cirillo,L.A., Katz,R.A., Zaret,K.S., and Skalka,A.M. (2004). Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J. Virol. 78, 5848-5855.
- 140. Takenawa,T. and Miki,H. (2001). WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801-1809.
- 141. Teng,M.W., Kershaw,M.H., Moeller,M., Smyth,M.J., and Darcy,P.K. (2004). Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum. Gene Ther. 15, 699-708.
- 142. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., Neipel, F., Mattmann, C., Burns, K., Bodmer, J.L., Schroter, M., Scaffidi, C., Krammer, P.H.,

Peter, M.E., and Tschopp, J. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature *386*, 517-521.

- Thrasher, A.J., Jones, G.E., Kinnon, C., Brickell, P.M., and Katz, D.R. (1998). Is Wiskott--Aldrich syndrome a cell trafficking disorder? Immunol. Today 19, 537-539.
- 144. Tian,L., Nelson,D.L., and Stewart,D.M. (2000). Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J. Biol. Chem. 275, 7854-7861.
- 145. Urnov,F.D., Miller,J.C., Lee,Y.L., Beausejour,C.M., Rock,J.M., Augustus,S., Jamieson,A.C., Porteus,M.H., Gregory,P.D., and Holmes,M.C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun 2;435(7042):646-51
- Vassilopoulos,G. and Russell,D.W. (2003). Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr. Opin. Genet. Dev. 13, 480-485.
- 147. Vassilopoulos, G., Wang, P.R., and Russell, D.W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature *422*, 901-904.
- 148. Vella,C., Zheng,N.N., Vella,G., Atkins,C., Bristow,R.G., Fickenscher,H., and Daniels,R.S. (1999). Enhanced replication of M-tropic HIV-1 strains in Herpesvirus saimiri immortalised T-cells which express CCR5. J. Virol. Methods 79, 51-63.
- 149. Verhoeyen, E. and Cosset, F.L. (2004). Surface-engineering of lentiviral vectors.J. Gene Med. 6 Suppl 1, S83-S94.
- 150. Vicenzi, E., Bordignon, P.P., Biswas, P., Brambilla, A., Bovolenta, C., Cota, M., Sinigaglia, F., and Poli, G. (1999). Envelope-dependent restriction of human immunodeficiency virus type 1 spreading in CD4⁺ T lymphocytes: R5 but not

X4 viruses replicate in the absence of T-cell receptor restimulation. J. Virol. *73*, 7515-7523.

- Vigna, E., Cavalieri, S., Ailles, L., Geuna, M., Loew, R., Bujard, H., and Naldini, L. (2002). Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol. Ther. 5, 252-261.
- 152. Wada, T., Jagadeesh, G.J., Nelson, D.L., and Candotti, F. (2002). Retrovirusmediated WASP gene transfer corrects Wiskott-Aldrich syndrome T-cell dysfunction. Hum. Gene Ther. 13, 1039-1046.
- 153. Wada,T., Schurman,S.H., Otsu,M., Garabedian,E.K., Ochs,H.D., Nelson,D.L., and Candotti,F. (2001). Somatic mosaicism in Wiskott--Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc. Natl. Acad. Sci. U. S. A 98, 8697-8702.
- 154. Weber,F., Meinl,E., Drexler,K., Czlonkowska,A., Huber,S., Fickenscher,H., Muller-Fleckenstein,I., Fleckenstein,B., Wekerle,H., and Hohlfeld,R. (1993). Transformation of human T-cell clones by Herpesvirus saimiri: intact antigen recognition by autonomously growing myelin basic protein-specific T cells. Proc. Natl. Acad. Sci. U. S. A 90, 11049-11053.
- 155. Weiss, R.A. and Tailor, C.S. (1995). Retrovirus receptors. Cell 82, 531-533.
- 156. Werner,M., Kraunus,J., Baum,C., and Brocker,T. (2004). B-cell-specific transgene expression using a self-inactivating retroviral vector with human CD19 promoter and viral post-transcriptional regulatory element. Gene Ther. 11, 992-1000.
- 157. Wilcox,D.A., Olsen,J.C., Ishizawa,L., Griffith,M., and White,G.C. (1999). Integrin alphaIIb promoter-targeted expression of gene products in megakaryocytes derived from retrovirus-transduced human hematopoietic cells. Proc. Natl. Acad. Sci. U. S. A 96, 9654-9659.

- 158. Williams, D.A., Orkin, S.H., and Mulligan, R.C. (1986). Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo. Proc. Natl. Acad. Sci. U. S. A 83, 2566-2570.
- Wu,X., Li,Y., Crise,B., and Burgess,S.M. (2003). Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749-1751.
- Yan,X.Q., Lacey,D.L., Saris,C., Mu,S., Hill,D., Hawley,R.G., and Fletcher,F.A. (1999). Ectopic overexpression of c-mpl by retroviral-mediated gene transfer suppressed megakaryopoiesis but enhanced erythropoiesis in mice. Exp. Hematol. 27, 1409-1417.
- 161. Yarar, D., D'Alessio, J.A., Jeng, R.L., and Welch, M.D. (2002). Motility determinants in WASP family proteins. Mol. Biol. Cell *13*, 4045-4059.
- 162. Yssel,H., de Waal,M.R., Duc,D., Blanchard,D., Gazzolo,L., de Vries,J.E., and Spits,H. (1989). Human T cell leukemia/lymphoma virus type I infection of a CD4+ proliferative/cytotoxic T cell clone progresses in at least two distinct phases based on changes in function and phenotype of the infected cells. J. Immunol. 142, 2279-2289.
- Zaiss,A.K., Son,S., and Chang,L.J. (2002). RNA 3' readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J. Virol. 76, 7209-7219.
- 164. Zeng,R., Cannon,J.L., Abraham,R.T., Way,M., Billadeau,D.D., Bubeck-Wardenberg,J., and Burkhardt,J.K. (2003). SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol. 171, 1360-1368.
- 165. Zhang,J., Shehabeldin,A., da Cruz,L.A., Butler,J., Somani,A.K., McGavin,M., Kozieradzki,I., dos Santos,A.O., Nagy,A., Grinstein,S., Penninger,J.M., and

Siminovitch,K.A. (1999). Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med. *190*, 1329-1342.

- 166. Zhu,Q., Watanabe,C., Liu,T., Hollenbaugh,D., Blaese,R.M., Kanner,S.B., Aruffo,A., and Ochs,H.D. (1997). Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood 90, 2680-2689.
- 167. Zicha,D., Allen,W.E., Brickell,P.M., Kinnon,C., Dunn,G.A., Jones,G.E., and Thrasher,A.J. (1998). Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome. Br. J. Haematol. 101, 659-665.
- Zufferey, R., Donello, J.E., Trono, D., and Hope, T.J. (1999). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886-2892.
- Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L., and Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871-875.

PUBLICACIONES

Gene Therapy (2004) 11, 956–961 © 2004 Nature Publishing Group All rights reserved 0969-7128/04 \$30.00 www.nature.com/gt

RESEARCH ARTICLE Efficient lentiviral transduction of Herpesvirus saimiri immortalized T cells as a model for gene therapy in primary immunodeficiencies

MG Toscano¹, C Frecha², C Ortega³, M Santamaría³, F Martín^{2,4} and IJ Molina^{1,4} ¹Immunology Unit, University of Granada School of Medicine, Granada, Spain; ²Service of Immunology, Hospital Clinico Universitario 'San Cecilio', Granada, Spain; and ³Department of Cell Biology, Physiology and Immunology, University of Córdoba Granada, Spain

Infection of human T lymphocytes with the Herpesvirus saimiri (HVS) yields immortalized T-cell lines (HVS-T) which retain all the phenotypical and functional characteristics of their parental cells. This represents a new experimental model for studying genetic disorders of T lymphocytes. In spite of the efforts of many laboratories, no satisfactory way has been found so far to modify HVS-T cells genetically. We have analyzed the capacity of oncoretroviral (MLV)- and lentiviral (HIV-1)-based vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSVg) to transduce HVS-T cells. HIV-1-derived vectors efficiently transduced HVS-T cell lines, reaching up to 85% of cells expressing the transgene in a single round of infection. MLV-based vectors, on the other hand, were unable to transduce more than 1% of any of the HVS-T cell lines analyzed. Lentiviral-driven gene expression was maintained constant and stable in HVS-T cells for a minimum of 48 days. We also observed that although the lentiviral transduction efficiency achieved on HVS-T cells is lower than that obtained with tumor or primary endothelial cells, it is nevertheless similar to that found with activated primary T cells.

Gene Therapy (2004) **11**, 956–961. doi:10.1038/sj.gt.3302259 Published online 18 March 2004

Keywords: T cells; herpesvirus saimiri; lentiviral vectors; primary immunodeficiencies; oncoretroviral vectors; gene therapy model

Introduction

The isolation and characterization of genetic functions involved in the biology of healthy and pathological human T lymphocytes demand suitable experimental systems. Thus, the molecular and functional analysis of T lymphocytes requires the adaptation of primary cells to long-term *in vitro* culture. This has been achieved either by generating antigen-specific T-cell clones or by infecting T lymphocytes with the HTLV-I retrovirus. Nevertheless, diverse factors have limited the extensive application of these two models. Primary T-cell clones show a stable phenotype and retain all the characteristics of their parental cells,¹ but they have a limited lifespan and in vitro culture requires cyclic stimulation with the specific antigen as well as the addition of exogenous IL-2. HTLV-I infected cells, on the other hand, are initially IL-2 dependent and functionally competent,2 although after some weeks in culture a downregulation of relevant cellular proteins takes place, giving rise to IL-2 independent, giant multinucleated cells that no longer retain T-cell characteristics.3,4

More recently, it has been reported that certain strains of *Herpesvirus saimiri* (HVS) immortalize human T

Correspondence: F Martín, current address: IPB 'López Neyra', CSIC, Ventanilla 11, 18001 Granada, Spain 'Share credit for senior authorship

Received 24 November 2003; accepted 6 February 2004; published online 18 March 2004

lymphocytes (HVS-T), thus yielding long-term cell lines with stable surface markers and functional phenotypes.^{5,6} This strategy has provided a suitable, convenient experimental approach to examine T-cell function. HVS is non-pathogenic in its natural host, the squirrel monkey, but provokes extremely aggressive lymphomas and lymphocytic leukemias in other primates,⁷ where it enters the cell and remains as nonintegrated viral episomes.^{5,6} Although HVS encodes two antiapoptotic proteins,^{8,9} all evidence suggests that it is not interference with apoptotic programs that promotes HVS immortalization of T cells but rather interactions between viral proteins and normal T-cell signaling pathways.¹⁰

¹ HVS-T cells are potentially important in the study of both primary and acquired immunodeficiencies. When studying primary immunodeficiencies, HVS-T cell lines are particularly useful due to the scarcity of patients and the low numbers of primary cells usually available. Our group¹¹ and others^{12,13} have shown the suitability of HVS immortalization for characterizing T-cell defects that are directly linked to mutated genes. Therefore, HVS-T cells from primary immunodeficient patients are ideal targets to assess functional reconstitution after the introduction of therapeutic genes.

In spite of numerous efforts by many laboratories, all attempts to introduce foreign genes into HVS-T cell lines by transfection or transduction with oncoretroviral vectors have met with little success. This has impeded the general use of HVS-T cells in experimental gene-therapy models. Lentiviral vectors have been Transduction of Herpesvirus saimiri-immortalized T-cells MG Toscano et al

described recently as the most powerful of all integrative vector systems.¹⁴ They are stable, easy to concentrate and have broad tropism. Virtually all the cells analyzed, including nondividing ones, have been efficiently transduced.¹⁵ We report here on our successful transduction with lentiviral vectors of several HVS-T cell lines from primary immunodeficient patients as well as healthy individuals. In addition, we also observed that although the efficiency achieved is lower than that obtained with tumor or primary endothelial cells, it is similar to that found with activated primary T cells.

Materials and methods

Cell lines and culture media

The generation and characterization of HVS-T cells: GOR-1/HVS; GOR-7/HVS (derived from two patients with the Wiskott-Aldrich syndrome) and ITA/HVS has been described in detail.¹¹ The HVS-T cell line ITA/HVS was derived from a healthy female subject, mother of a patient with a severe combined autosomal immunodeficiency from whom the SPA/HVS cell line was derived. CA/HVS cells were obtained from an unrelated normal individual. All HVS-T cell lines were cultured in a 1:1 mixture of RPMI 1640 medium (Bio-Whittaker, Verviers, Belgium) and Panserin 401 medium (PAN Biotech, Aidenbach, Germany), supplemented with 10% fetal calf serum, glutamine, penicillin-streptomycin (all from Bio-Whittaker), and 50 UI/ml recombinant human IL-2 (rIL-2; obtained through the AIDS Research and Reference Program, National Institutes of Health, Rockville, MD, USA). 293 T cells (kidney epithelial cells), JEG-3 cells (extravillous trophoblast coriocarcinoma cells) and RKO cells (colon adenocarcinoma cells) were grown in Dulbecco's modified Eagle's medium (DMEM High Glucose; Gibco), supplemented with 10% FCS, glutamine and antibiotics as above; and HUVEC cells (endothelial human primary cells; PROMOCELL, Heidelberg, Germany) were grown in endothelial cell-growth medium (PROMOCELL). Jurkat T cells were cultured in RPMI 1640, supplemented as above without the addition of rIL-2.

Plasmids

HIV packaging (pCMVΔR8.91) and VSV-G (pMD.G) plasmids were kindly provided by Dr D Trono and are described elsewhere.^{14,33} The packaging plasmid pCMVΔR8.91 encodes *gag*, *pol*, *tat* and *rev* genes. The pMD.G plasmid encodes the vesicular stomatitis virus (VSV) G protein. The lentiviral vector plasmid HRSIN-CSGW³⁴ contains a spleen focus-forming virus (SFFV) LTR, which drives an eGFP expression cassette. The HRSIN-CSGW vector also contains the Woodchuck posttranscriptional regulatory element (WPRE) and the central polypurine tract (cPPT) to enhance viral titer and efficiency within nondividing cells. The MLV vectors are based on the pHIT system³⁵ (pHIT60 plasmid encoding MLV *gag-pol*, and the pCNCG plasmid containing the vector genome encoding a CMV-driven eGFP) and were kindly provided by Oxford Biomedica (Oxford, UK). Plasmid pLCMV, encoding the envelope glycoprotein from the LCMV virus, was kindly provided by Dr D Sanders (Purdue University, West Lafayette, IN, USA).

Vector production

Transfection of packaging cells was carried out by lipofection. Briefly, 293 T cells (6 × 106) were plated over a 10-cm tissue culture grade Petri dish (Sarstedt, Newton, NC, USA) the day before transfection to ensure exponential growth and 80% confluence. Vector plasmids, together with packaging and envelope plasmids (27 µg total DNA; plasmid proportions of 3:2:1, respectively) were resuspended in 1.5 ml OPTI-MEM medium (Gibco) and mixed at room temperature for 20 min with 60 μl Lipofectamine 2000 (Invitrogen, Calsbad, CA, USA) before being diluted in 1.5 ml OPTI-MEM. The plasmidlipofectamine mixture was added to prewashed cells and then incubated for 6-8 h. The producer cells were then washed and further cultured for 48 h in 10 ml OPTI-MEM medium. The viral supernatants were collected and filtered through a 0.45 µm filter (Nalgene, Rochester, NY, USA), alliquoted and immediately frozen at -80°C.

Cell transduction and vector titration

Exponentially growing target cells were washed in PBS, and 2×10^5 cells were seeded per well in 500 µl of their appropriate medium in 24-well plates. PBTLs were isolated and stimulated with OKT3 in the presence of exogenous IL-2 as described elsewhere³⁶ 3 days before transduction. Supernatants containing retroviral vectors were added to the culture and incubated overnight. After 72 h or other time if indicated, the cells were collected, washed, fixed in 0.2% paraformaldehyde and analyzed in a FACScan Flow Cytometer (Becton-Dickinson, San Jose, CA, USA). The percentage of transduced cells was determined on the basis of fluorescence increase due to the expression of eGFP. Viral titers (transduction units/ ml) were calculated on the basis of the percentage of GFP+ cells detected in the linear range of a serial dilution of the supernatant. MOI is defined as the number of viral vectors/cell, and was estimated in a highly permissive cell line such as 293 T.

Results

Lentiviral vectors are efficient tools for stably transducing HVS-T cells

We produced oncoretroviral (murine leukemia virus (MLV)-based) and lentiviral (HIV-1-based) vectors by the cotransfection of 293 T cells with three plasmids: pCNCG, pHIT60 and pMD. G for MLV-based vectors and pHRSIN-CSGW, pCMV∆R8.9 and pMD.G for HIV-1based vectors (see Materials and methods). Both vectors encode the enhanced-green fluorescent protein (eGFP) gene and are pseudotyped by the same envelope (VSVg). In either case the transduction of target cells results in an increase in fluorescence, which is easily measured by flow cytometry. Cells deriving from hematopoietic and nonhematopoietic tumors (Jurkat; RKO; JEG-3), primary tissues (HUVEC) and HVS-T cells from both immunodeficient patients (GOR-1/HVS; GOR-7/HVS; SPA/ HVS) and healthy individuals (ITA/HVS; CA/HVS) were transduced with a single round of both lentiviral and oncoretroviral vectors.

Oncoretroviral vectors failed to transduce HVS-T cells efficiently, achieving not more than 1% cell transduction with any HVS-T cell analyzed, even at an multiplicity of infection (MOI) of 40 (Figure 1a, dark bars, and Figure

Figure 1 Lentiviral vectors but not oncoretroviral vectors can efficiently transduce HVS-T cells. (a) Transduction efficiency of lentiviral vectors HRSIN-CSGW (light bars) and oncoretroviral vector CNCG (dark bars) was determined in primary (HUVEC) and tumor cell lines (JEG-3, RKO, Jurkat) together with HVS-T cell lines derived from healthy individuals (ITA/HVS, CA/HVS) and immunodeficient patients (GOR-1/HVS, GOR-7/HVS, SPA/HVS). The data represent percentages of eGFP+ cells detected by flow cytometry 7 days after one single round of transduction. One representative experiment out of three is shown. (b) Flow cytometry plots of transduced cells. Typical flow cytometry dot-plot showing T-leukemia cells Jurkat (top row) and the GOR-1/HVS (bottom row) transduced at an MOI of 40 with either the oncoretroviral vector CNCG (middle column) or the lentiviral vector HRSIN-CSGW (right-hand column).

1b, lower-middle plot). All the HVS-T cell lines, however, were efficiently transduced by lentiviral vectors, at levels ranging from 15 to 65% fluorescent cells at an MOI of 40 and from 3 to 25% at an MOI of 4 after one single round of infection (Figure 1a, light bars, and Figure 1b, bottomright plot). Both oncoretroviral and lentiviral vectors transduced tumor and primary cells with comparably high efficiency (Figure 1a, dark and light bars).

We assessed the gene-expression stability of the HRSIN-CSGW vector in two HVS-T cell lines (ITA/HVS and GOR-1/HVS) and the Jurkat T-cell leukemia line after transduction at high MOI. This is important since transgene detection in target cells may be due to pseudotransduction¹⁶ (especially at high MOIs) or expression from nonintegrated vectors.^{17,18} Additionally, the expression of the transgene by transduced cells can be blocked by gene silencing.¹⁹ The expression of eGFP protein was determined on days 7, 28 and 48 after a single round of cell transduction on day one. Figure 2 shows that the high percentage of transduced cells

Figure 2 Lentiviral transgene expression on HVS-T cells is stable. Protein expression stability on HVS-T cells (GOR-1/HVS and ITA/HVS) and Jurkat cells was determined by measuring eGFP expression by flow cytometry over time. The different cell lines were transduced on day one with a single round of the HRSIN-CSGW lentiviral vector at an MOI of 400, maintained in culture for 48 days and analyzed at the indicated times.

obtained (60; 82 and 100% for ITA/HVS, GOR-1/HVS and Jurkat cell lines, respectively) remained stable over a period of 48 days. Furthermore, the eGFP gene-expression levels determined by cell-fluorescence intensity remained unchanged over time in all the three cell lines analyzed (data not shown).

HVS-T cells are restricted to retroviral-vector transduction

On the basis of the data shown in Figure 1, we may also conclude that oncoretroviral vectors are 100-700 times less efficient for HVS-T cells than for non-HVS-T cells, whereas this difference is only 2-7 times in the case of lentiviral vectors. This suggests that HVS-T cells are strongly restricted to MLV-based vectors and only partially resistant to HIV-1-based vectors. We were keen to determine whether HIV-1-based vectors were partially restricted in HVS-T cells. Thus, we transduced GOR-1/ HVS and ITA/HVS T cells with lentiviral vectors at MOIs ranging from 0.02 to 400, using Jurkat cells as lineagematched controls. Figure 3 shows that the percentage of transduced cells reached a plateau at an MOI of 100 in the two HVS-T cells analyzed (GOR-1/HVS and ITA/ HVS; solid squares and triangles), indicating that a subpopulation of these cells was strongly restricted to lentiviral transduction. The percentage of cell transduction with the most permissive HVS-T cell line, GOR-1/ HVS, was never higher than 80%, even at MOIs of 400 (Figure 3, solid squares). On the other hand, we routinely achieved 90% cell transduction in Jurkat cells with an MOI of 10 and 100% transduced cells with an MOI of 40 (solid diamonds).

Partial restriction of lentiviral vectors to transduce

HVS-T cells is not overcome using a different envelope Since receptor usage is the most highly limiting factor for a virus to infect different cell types,^{20,21} we investigated whether by using a different envelope we could overcome the partial restriction of lentiviral vectors to transduce HVS-T cells and therefore increase transduction efficiency. Jurkat cells as well as the HVS-T cells were transduced with the HRSIN-CSGW lentiviral plasmid pseudotyped with either the VSVg or lymphocytic chorimeningitis virus (LCMV) envelopes at increasing MOIs ranging from 0.1 to 10. In Figure 4, we show that

959

Transduction of Herpesvirus saimiri-immortalized T-cells

Figure 3 HVS-T cells are restricted to lentiviral vector transduction. Jurkat leukemia T cells and HVS-T cell lines GOR-1/HVS and ITA/HVS were transduced with the HRSIN-CSGW lentiviral vectors at increasing MOIs up to 400. The eGFP gene expression was assessed by flow cytometry 7 days after cell transduction. One typical experiment out of three is shown.

MO

Figure 4 LCMV pseudotyping does not overcome lentiviral vector restriction of HVS-T cell transduction. Jurkat tumor T cells (solid diamonds) and HVS-T cell lines GOR-1/HVS (solid triangles) and ITA/ HVS (solid circles) were transduced with the HRSIN-CSGW lentiviral vector pseudotyped with either VSVg (left-hand side) or LCMV (righthand side) glycoproteins at the indicated MOIs. Percentage of eGFP+transduced cells was determined by flow cytometry after 1 week.

lentiviral vectors pseudotyped with the LCMV envelope remain restricted to HVS-T cell transduction. Furthermore, whereas Jurkat cells are transduced with similar efficiency with both envelopes (Figure 4, solid diamonds), HVS-T cells are transduced significantly more successfully when the HRSIN-CSGW lentiviral vector is pseudotyped with the VSVg envelope (Figure 4, solid triangles and circles).

Equivalent permissiveness of HVS-T cells and activated primary T cells to lentiviral transduction

The low permissiveness of HVS-T cells to lentiviral vector transduction could be due to a behavior mirroring that of blood primary T cells. Therefore, OKT3-activated peripheral blood T lymphocytes (PBTLs) were transduced with lentiviral vectors at increasing MOIs (1, 10 and 100) concomitantly with the HVS-T cells GOR-1/ HVS, ITA/HVS and CA/HVS as well as Jurkat cells (Figure 5). Again, nearly 100% of the Jurkat cells were transduced at low MOI (10) (Figure 5, left bars), whereas

Gene Therapy

Transduction of Herpesvirus saimiri-immortalized T-cells

MG Toscano et al

Figure 5 HVS-T cell lentiviral transduction efficiency is similar to that of OKT-3-activated peripheral T hymphocytes. Jurkat and HVS-T cells GOR-1/HVS, ITA/HVS and CA/HVS were transduced at the indicated MOIs in parallel with human peripheral blood T lymphocytes (PBTLs) activated with OKT-3 3 days before transduction. Percentages of cells expressing eGFP were determined by flow cytometry 7 days after transduction.

the percentage of transduction of HVS-T cells ranged from 30 to 70% at an MOI of 100 (Figure 5, central bars), which is similar to the values obtained with stimulated peripheral T lymphocytes (Figure 5, right bars).

Discussion

npg

960

The genetic bases of many T-cell immunodeficiencies have been identified over the last few years. Gene reconstitution of defective progenitor cells is a promising therapeutic perspective for these patients, but unfortunately the clinical implementation of gene therapy protocols has been set back due to a lack of suitable *in vitro* experimental systems for testing new gene delivery vectors. There is an urgent need, therefore, to find a way around the scarcity of primary immunodeficient patients and the limited number of circulating T lymphocytes that can be obtained from them.

¹ HVS-T cell lines are a promising model for addressing the functional rescue of primary immunodeficient cells after gene reconstitution, but the initial enthusiasm stirred by the discovery of this process of cell immortalization was tempered by repeated failures in introducing foreign genes into these cells. Electroporation or lipofection of drug-selectable vectors, as well as cell transduction with MLV-oncoretroviral vectors failed to stably express the transgene (our data).

To investigate new vectors, which might deliver genes stably to HVS-T cells, we selected two different retroviral vector systems based equally on their high efficiency, broad tropism and stability of expression. The CNCG vector is based on the oncoretrovirus MLV and the HRSIN-CSGW vector on the lentivirus HIV-1. HIV-1based vectors in particular have demonstrated their high efficiency in almost any cell line, including those resistant to MLV-based transduction.¹⁵ Moreover, since wild-type HIV-1 strains can infect HVS-T cells^{22,23} we hypothesized that vectors deriving from HIV-1 should transduce these cells. We show here that HIV-1-based vectors can efficiently and stably transduce HVS-T cells. We easily reached up to 80% transduction efficiency after only one round of exposure to lentiviral vectors in all the HVS-T cells analyzed. MLV-based vectors, on the other hand, were quite inefficient and never transduced more than 1% of the cells. We demonstrated that eGFP detection in HVS-T cell lines transduced with HRSIN-CSGW represents vector transduction (and not pseudotransduction¹⁶ or expression from nonintegrated vectors^{17,18}) since the percentage of eGFP⁺ cells remained stable for at least 48 days as shown in Figure 2. This also supports that gene silencing¹⁹ is not occurring in lentiviral-transduced HVS-T cells.

The fact that we never obtained more than 60–80% transduction of HVS-T cells, even at an MOI of 400, indicates not only that HVS-T cells are less easily transduced than non-HVS cell lines but also that 40–20% of HVS-T cells are highly restricted against transduction by lentiviral vectors. The differences in susceptibility to lentiviral transduction among different HVS-T cell lines are difficult to interpret but may be due to donor variability.

Since receptor usage is the most highly limiting factor for a virus to infect different cell types,^{20,21} we investigated whether by using a different envelope we could overcome the partial restriction and increase transduction efficiency in HVS-T cells. We chose LCMV envelope because (i) it is efficiently incorporated into HIV-1 vectors,^{24,25} (ii) LCMV and VSVg bind different cell receptors26,27 and therefore vectors pseudotyped with LCMV and VSVg use different entry mechanisms and (iii) LCMV but not VSVg may allow the stable production of broad-host-range retroviral vectors, which can be concentrated by ultracentrifugation.^{24,25} We found that not only do LCMV-pseudotyped lentiviral vectors remain restricted to HVS-T cell transduction but also that HVS-T cell lines are transduced better with the VSVg pseudotypes. Since the receptor for VSVg is a membrane phospholipid²⁶ and for LCMV it is α-dystroglycan,²⁷ the restriction observed must occur at some stage after entry. Therefore, the low permissiveness of HVS-T cells may

be due either to intrinsic cellular factors present in T cells^{28,29} or to the possible expression of HVS latent genes that might interfere with lentiviral vector transduction. In our case, viral interferences are unlikely since HVS cells are permissive to HIV-1 infection^{30,31} and the expression of the HVS latent gene stpC enhances HIV-1 replication.32 If HVS immortalization does not block HIV replication but rather enhances it, T-cell factors must be primarily involved in explaining the relatively low permissiveness of HIV-1 vectors in HVS-T cells. In fact, T lymphocytes have several mechanisms that are capable of inhibiting HIV-1 replication28,29 and so it is likely that the restriction observed results from a behavior mirroring primary T cells. This would explain why the lentiviral vector acts equally well or even more efficiently on HVS-T cells than it does on primary T cells (Figure 5).

In summary, we have demonstrated that HVS-T cells from healthy individuals as well as immunodeficient patients can be stably transduced by lentiviral vectors and that they are just as susceptible as primary T cells. These results support the idea that HVS-T cells are an adequate model for gene therapy.

Acknowledgements

We are especially indebted to Dr Adrian Thrasher (Institute of Child Health, University College, London,

101

UK) for providing the HRSIN-CSGW plasmid and giving us his enthusiastic support. We are also grateful to Drs Didier Trono and Romain Zufferey (University of Geneva, Geneva, Switzerland) for supplying us with HIV packaging pCMVAR8.91 and envelope pMD.G plasmids, to Oxford Biomedica (Oxford, UK) for the pCNCG plasmid and to Dr David A Sanders of Purdue University, West Lafayette, IN, USA, for the pLCMV plasmid. We thank Dr Jon Trout for improving the English. We acknowledge the generous continuous supply of rIL-2 (Hoffman-LaRoche, Nutley, NJ, USA) provided by the National Institutes of Health AIDS reference and reagent program (Rockville, MD, USA). This work was supported by V Framework European Union contract grant QLT-1999-01090 (to IJM and MS) and by Spanish Ministry of Health Grant FIS01/3143 to FM. MGT is a predoctoral fellow (FPU program) of the Spanish Ministry of Education and Culture.

References

- Molina IJ et al. T cell lines characterize events in the pathogenesis of the Wiskott–Aldrich syndrome. J Exp Med 1992; 176: 867–874.
- 2 Mitsuya H et al. Functional properties of antigen-specific T cells infected by human T-cell leukemia-lymphoma virus (HTLV-I). Science 1984; 225: 1484–1486.
- 3 Yssel H et al. Human T cell leukemia/lymphoma virus type I infection of a CD4+ proliferative/cytotoxic T cell clone progresses in at least two distinct phases based on changes in function and phenotype of the infected cells. J Immunol 1989; 142: 2279–2289.
- 4 Koga Y et al. Absence of transcription of lck (lymphocyte specific protein tyrosine kinase) message in IL-2-independent, HTLV-Itransformed T cell lines. J Immunol 1989; 142: 4493.
- 5 Biesinger B et al. Stable growth transformation of human T lymphocytes by Herpesvirus saimiri. Proc Natl Acad Sci USA 1992; 89: 3116–3119.
- 6 Weber F et al. Transformation of human T-cell clones by Herpesvirus saimiri: intact antigen recognition by autonomously growing myelin basic protein-specific T cells. Proc Natl Acad Sci USA 1993; 90: 11049–11053.
- 7 Fleckenstein B, Desrosiers RC. Herpesvirus saimiri and Herpesvirus ateles. In: Roizman B (ed) The Herpesviruses, Vol. 1. Plenum Press: New York, 1982, pp. 253–332.
- 8 Nava VE et al. Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J Virol 1997; 71: 4118–4122.
- 9 Thome M et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997; 386: 517–521.
- 10 Kraft MS et al. Herpesvirus saimiri transforms human T-cell clones to stable growth without inducing resistance to apoptosis. J Virol 1998; 72: 3138–3145.
- 11 Gallego MD et al. Defective actin reorganization and polymerization of Wiskott–Aldrich T-cells in response to CD3mediated stimulation. Blood 1997; 90: 3089–3097.
- 12 Pacheco-Castro A et al. Signaling through a CD3 gammadeficient TCR/CD3 complex in immortalized mature CD4+ and CD8+ T lymphocytes. J Immunol 1998; 161: 3152–3160.
- 13 Broker BM et al. Activation induces apoptosis in Herpesvirus saimiri-transformed T cells independent of CD95 (Fas, APO-1). Eur J Immunol 1997; 27: 2774–2780.
- 14 Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.
- 15 Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. *Nat Med* 2001; 7: 33–40.

961

- 16 Haas DL et al. Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther 2000; 2: 71–80.
- 17 Cara A et al. Self-limiting, cell type-dependent replication of an integrase-defective human immunodeficiency virus type 1 in human primary macrophages but not T lymphocytes. Virology 1995; 208: 242–248.
- 18 Stevenson M et al. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J 1990; 9: 1551–1560.
- 19 Cherry SR et al. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 2000; 20: 7419–7426.
- 20 Vicenzi E et al. Envelope-dependent restriction of human immunodeficiency virus type 1 spreading in CD4⁺ T lymphocytes: R5 but not X4 viruses replicate in the absence of T-cell receptor restimulation. J Virol 1999; 73: 7515–7523.
- 21 Weiss RA, Tailor CS. Retrovirus receptors. Cell 1995; 82: 531–533.
- 22 Saha K et al. Generation of CD4+ and CD8+ T-cell clones from PBLs of HIV-1 infected subjects using herpesvirus saimiri. Nat Med 1996; 2: 1272–1275.
- 23 Vella C et al. Enhanced replication of M-tropic HIV-1 strains in Herpesvirus saimiri immortalised T-cells which express CCR5. J Virol Methods 1999; 79: 51–63.
- 24 Sandrin V et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100: 823–832.
- 25 Miletic H et al. Retroviral vectors pseudotyped with lymphocytic choriomeningitis virus. J Virol 1999; 73: 6114–6116.
- 26 Pottathil R et al. Role of cell membrane composition in receptormediated internalization of vesicular stomatitis virus in human HEp-2 cells. J Biol Chem 1985; 260: 5265–5270.
- 27 Cao W et al. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 1998; 282: 2079–2081.
- 28 Chang TL et al. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alphadefensin-1 HIV inhibition. J Virol 2003; 77: 6777–6784.
- 29 Hatziioannou T et al. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 2003; 22: 385–394.
- 30 Vella C et al. Herpesvirus saimiri-immortalized human T-cells support long-term, high titred replication of human immunodeficiency virus types 1 and 2. J Gen Virol 1997; 78 (Part 6): 1405–1409.
- 31 Bauer M et al. Herpesvirus saimiri-transformed human CD4⁺ T-cell lines: an efficient target cell system for the analysis of human immunodeficiency virus-specific cytotoxic CD8+ Tlymphocyte activity. J Virol 1998; 72: 1627–1631.
- 32 Henderson EE et al. Altered replication of human immunodeficiency virus type 1 (HIV-1) in T cell lines retrovirally transduced to express *Herpesvirus saimiri* proteins StpC and/or Tip. Virology 1999; 264: 125–133.
- 33 Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.
- 34 Demaison C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.
- 35 Soneoka Y et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.
- 36 Romero P et al. Expression of CD94 and NKG2 molecules on human CD4(+) T cells in response to CD3-mediated stimulation. J Leukoc Biol 2001; 70: 219–224.

Gene Therapy

npg

RESEARCH ARTICLE Lentiviral vectors transcriptionally targeted to hematopoietic cells by WASP gene proximal promoter sequences

F Martín¹, MG^a Toscano², M Blundell³, C Frecha¹, GK Srivastava², M Santamaría⁴, AJ Thrasher³ and IJ Molina²

³IPB 'López Neyra' CSIC, Granada, Spain; ²Immunology Unit and Institute of Biopathology and Regenerative Medicine, University of Granada School of Medicine, Granada, Spain; ³Molecular Immunology Unit, Institute of Child Health, University College London, London, UK; and ⁴Department of Cell Biology, Physiology and Immunology, University of Córdoba School of Medicine, Córdoba, Spain

The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. In order to achieve this, we used a 500 bp fragment from the proximal WASP gene promoter to drive the expression of the WASP cDNA in the context of a self-inactivating lentiviral vector. Single-round transduction of WASp-deficient herpesvirus saimiri (HVS)-immortalized cells as well as primary allospecific T cells from Wiskott–Aldrich syndrome (WAS) patients with this vector (WW) resulted in

expression levels similar to those of control cells. Non-HCs were transduced with similar efficiency, but the levels of WASp were 135–350 times lower than those achieved in HCs. Additionally, transduction of WASp-deficient cells with WW conferred a selective growth advantage in vitro. Therefore, lentiviral vectors incorporating proximal promoter sequences from the WASP gene confer hematopoietic-specific, and physiological protein expression. Gene Therapy (2005) **12**, 715–723. doi:10.1038/sj.gt.3302457 Published online 3 March 2005

Keywords: transcriptional targeting; WASP gene promoter; lentiviral vectors; hematopoietic specific; herpesvirus saimiri; allospecific T cells; Wiskott–Aldrich syndrome

Introduction

Gene therapy has demonstrated its clinical potential in hematopoietic disorders with significant success in the treatment of patients with severe combined immunodeficiency^{1,2} and adenosine-deaminase deficiency.³ These successful therapies were based on the reinfusion of gene-modified hematopoietic stem cells (HSCs). However, it has been demonstrated by several groups that purified HSCs may differentiate into or fuse with several non-hematopoietic cell (HC) types.4-10 The ectopic expression of hematopoietic genes in non-hematopoietic tissues raises safety concerns. Further improvements in vector design to achieve specific and efficient expression of transgenes in target tissues would increase the safety of the procedure and are therefore desirable. This may also facilitate the application of gene therapy to other hematopoietic diseases.

Lentiviral vectors are among the most versatile of all integrating vector systems.¹¹ They are stable, easy to concentrate and have a broad tropism. Virtually all cell types analyzed, including those nondividing, can be efficiently transduced. The latest generation of lentiviral vectors are self-inactivating (SIN) and drive the expression of the transgene only through an internal promoter.¹¹ This has facilitated the development of transcriptionally regulated vectors.^{12–14}

The Wiskott–Aldrich syndrome (WAS) is a X-linked condition characterized clinically by profound and progressive immunodeficiency, eczema and severely decreased number of platelets (reviewed in Snapper and Rosen¹⁵ and Thrasher¹⁶). Patients with classical WAS have heterogeneous mutations in the WASP gene,^{17–19} which usually result in the absence or very diminished expression of its encoded gene product (WASp), or otherwise give rise to non-functional truncated proteins.^{20,21} Expression of the WASP gene is restricted to cells of the hematopoietic lineage.^{17,22,23} Petrella and co-workers²⁴ have characterized a 170 bp fragment containing four potential binding sites for hematopoietic transcription factors (two for Ets-1, one for c-Rel and one for PU.1) sufficient to confer hematopoietic-specific expression in transient assays.²⁴ Therefore, the WASP gene promoter is a good candidate to achieve hematopoietic-specific expression in the context of a SIN lentiviral vector.

Experimental models to study primary defects and to evaluate therapeutic alternatives when patient cells are not readily available include allospecific T-cell lines²⁵ as well as herpesvirus saimiri (HVS)-immortalized T-cell lines.²⁶ Very recently, we have demonstrated that HVSimmortalized T cells from WAS patients can efficiently be transduced by lentiviral vectors and are therefore a

103

Correspondence: Dr F Martín, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, s/n, Granada 18100, Spain

Received 8 July 2004; accepted 23 November 2004; published online 3 March 2005

useful model for WAS gene therapy.²⁷ In this study, we show that a 500 bp fragment from the proximal *WASP* gene promoter, in the context of a SIN lentiviral vector, achieves hematopoietic-specific and physiologically relevant levels of WASp.

Results

Efficient transduction of hematopoietic and non-HCs by WW lentiviral vectors

The WASp-expressing lentiviral vectors used in this study are shown in Figure 1a. WPRE and enhanced green fluorescent protein (eGFP) sequences from the HRSIN-CSEW plasmid (SE)²⁸ were excised to obtain the SIN lentiviral backbone used to construct SW and WW vectors. cDNA sequences encoding WASP were cloned after the spleen focus-forming virus (SFFV) promoter to generate SW as described in Materials and methods. To construct WW, a 500 bp fragment from the proximal

Figure 1 Efficient transduction of target cells by lentiviral vectors expressing WASp. (a) Schematic maps of lentiviral vectors SW and WW. The SW vector drives the expression of the WASP cDNA by the SFFV LTR in a self-inactivating lentiviral vector backbone. The WW vector uses the proximal WASP gene promoter (extending from bases -1to -499 from the transcriptional start site) to drive the expression of the WASP gene. (b) Flow cytometry analysis showing HVS-WAS/1 cells transduced with WW and SW vectors at an MOI = 1. WW- and SWtransduced (bottom panels) and untransduced (top panel) cells were incubated with the α -WASp B9 mAb and an HTC-labeled goat anti-mouse second antibody. The percentage of WASp' cells and MFI within the gatedpositive region (R2) are shown. (c) Western blot of cell lysates from HVS-N cells as well as untransduced HVS-WAS/1 (no vector) and HVS-WAS/1 transduced with WW and SW vectors from (b). Membranes were probed with the α -WASp D1 mAb.

Gene Therapy

WASP gene promoter (extending from bases -1 to -499 from the transcriptional start site) was amplified by PCR and inserted in place of the SFFV promoter contained in the SW vector.

SW and WW lentiviral vectors expressed WASp protein in HVS-WAS/1 cells (derived from a WAS patient completely deficient in WASp) (Figure 1b, top panel) at the expected molecular weight (Figure 1c). Both vectors exhibited similar transduction efficiencies on hematopoietic HVS-T cells (Figure 1b), with titers over 106 TU/ml (Table 1). As expected, these titers were lower than those obtained with the WPRE-containing vector SE (Table 1). Nevertheless, the intensity of WASp expression was slightly higher in SW- than in WW-transduced cells as suggested by the mean fluorescence intensity (MFI) within the R2-positive gate (Figure 1b). In marked contrast, we did not detect any WASp expression in non-hematopoietic RKO cells transduced with the WW vectors (Table 1), even though they were efficiently transduced (data not shown and Figure 3). As expected, SW and SE vectors containing the SFFV promoter transduced RKO cells with high efficiency (titers over 107 TU/ml) (Table 1).

Targeted WASp expression to HCs by WW lentiviral vectors

In order to determine whether the proximal WASP gene promoter confers hematopoietic-specific expression of WASp, two HC lines from different WAS patients (HVS-WAS/1 and ALLO-WAS/2) and three non-HCs (RKO, follicular dendritic cell (FDC) and HUVEC) were transduced with SW and WW lentiviral vectors at identical multiplicity of infection (MOI). HCs were transduced with an MOI = 1 (as determined on HVS-WAS/1 cells) and the more permissive non-HCs with an MOI = 0.2 in order to achieve similar transduction efficiencies. WASp expression levels were determined by flow cytometry based on the difference of MFI between cells in the positive R2 gate and negative R1 gate (Figure 2a). Hematopoietic T cells deficient in WASp, HVS-WAS/1 (Figure 2a and b) and ALLO-WAS/2 (Figure 2b) were efficiently transduced by SW and WW vectors and WASp expression levels were readily detected. Interestingly, non-HC RKO (Figure 2a and b), HUVEC and FDC (Figure 2b) transduced with the WW vector showed almost undetectable WASp expression. In contrast, all SW-transduced cells expressed WASp regardless of their origin (Figure 2a and b).

Table 1 Titration of lentiviral vectors

	Vector titers (TU/ml)	
	RKO	HVS-WAS/1
SE	1.70×10^8	7.00×10^{6}
SW	2.50×10^{7}	3.00×10^{6}
WW	ND	2.10×10^{6}

Exponentially growing target cells were transduced with serial dilutions of SE, SW and WW vectors. Viral titers were calculated by flow cytometry as indicated in Materials and methods. ND: not determined due to lack of WASp expression in nonhematopoietic RKO cells.

716

Lentiviral vectors transcriptionally targeted to hematopoietic cells F Martín et al

Hematopoietic specificity of the WW vector was further analyzed by comparing WASp protein expression levels and vector copy number in two hematopoietic (HVS-WAS/1 and ALLO-WAS/2) and two nonhematopoietic (FDC and RKO) cell lines. The different cell lines were transduced with SW and WW vectors at varying

Figure 2 Hematopoietic-specific expression of the WASP gene by WW lentivinal vectors. (a) Representative experiment (out of three) showing expression levels of WASp in untransduced (left panels), SW- (middle panels) and WW- (right panels) transduced hematopoietic HVS-WAS/1 (top row) (MOI=1) and nonhematopoietic RKO cells (bottom row) (MOI=0.2). Cells were stained 3 weeks after transduction with the B9 α -WASp monoclonal antibody. (b) Graph showing differences in MFI between cells in the positive R2 gate and negative R1 gate of transduced cells as shown in (a). WASp expression levels achieved by SW and WW lentivinal vectors were analyzed in two HC lines (HVS-WAS/1 and ALLO-WAS/2) (MOI=1) and three non-HC lines (HUVEC, FDC and RKO) (MOI=0.2). Data represent the average of increment (R2 R1) in MFI \pm s.d. from three separate experiments.

MOIs (ranging from 0.01 to 3 depending on the cell type) in two separate experiments (Experiments 1 and 2 of Figure 3) and allowed to grow for 1 month before analyzing the number of vector integrations per cell by quantitative PCR, and protein expression by semiquantitative Western blot. In Experiment 1, we analyzed SW- and WW-transduced HVS-WAS/1 T cells versus nonhematopoietic FDC cells (Figure 3, left panels). Densitometric analysis revealed that WASp signal in WW-transduced HVS-WAS/1 cells containing 0.09 vector per cell (v/c) was 30 times stronger than the signal observed in WW-transduced FDC cells containing 1.05 v/c (Figure 3, bottom left panels). Therefore, we calculated that WASp expression driven by WW vector was 350 times more efficient in HVS-WAS/1 cells than in FDC. In Experiment 2, we performed a similar study using allospecific T cells from a second WAS patient (ALLO-WAS/2) and non-hematopoietic RKO cells. The WASp signal in WW-transduced ALLO-WAS/2 cells containing 0.3 v/c was 2.5 times stronger than the signal observed in WW-transduced RKO cells containing 16.2 v/c (Figure 3, bottom right panels). Therefore, WASp expression driven by the WW vector was at least 135 times more efficient in ALLO-WAS/2 T cells than in RKO cells. In sharp contrast to the WW vector, WASp protein levels in SW-transduced cells were equivalent (ALLO-WAS/2 versus RKO) or slightly lower (3-10 times) in non-HCs (FDC versus HVS-WAS/1) (Figure 3, top panels).

WW lentiviral vectors achieve physiological levels of WASp expression in WASp-deficient T cells

Full reconstitution of cellular functions may require WASp expression levels similar to those found in normal individuals. Thus, we compared WASp expression in WW-transduced HVS-T cells (MOI = 1) from a WAS patient (HVS-WAS/1) and their normal counterparts (HVS-N) (Figure 4, bottom panels). In addition, primary allospecific T cells from a second WAS patient (ALLO-WAS/2) were transduced with WW (MOI = 3) and WASp expression compared with allospecific cells from a healthy donor (ALLO-NORMAL) (Figure 4, top).

Figure 3 WASp expression driven by WW vector is 135–350 times more efficient in HCs than in non-HCs. Western blot analysis showing WASp protein expression driven by SSFV and WASP promoters relative to vector copy number per cell. Two different experiments compared hematopoietic HVS-WAS/1 versus nonhematopoietic FDC cells (Experiment 1, left panels) and hematopoietic ALLO-WAS/2 versus nonhematopoietic RKO cells (Experiment 2, right panels). Cells lines were transduced with SW (top panels) and WW vectors (bottom panels) at two different MOIs (right lane of each sample is a 10-fold dilution of the MOIs used in left lanes). Samples were analyzed 1 month after transduction for WASp expression using the D1 α -WASp monoclonal antibody. Number of vector integrations per cell was determined by real-time PCR (indicated on top of each lane). Membranes were rehybridized with an α -ERK polyclonal antibody as internal loading control.

Gene Therapy

Figure 4 Physiological expression of WASp protein in WW-transduced WAS T cells. Allospecific T cells (ALLO-NORMAL) (top left) and HVS-T cells (HVS-N) (bottom left) derived from normal individuals were compared for WASp protein expression with WW-transduced allospecific T cells (ALLO-WAS/2) (MOI=3) (top right) and HVS-T cells (HVS-WAS(1) (MOI=1) (bottom right) from two WAS patients. Two-fold serial dilutions were analyzed 1 week after transduction for WASp expression by quantitative Western blotting as described in Materials and methods. Membranes were simultaneously hybridized with an α -ERK polyclonal antibody as internal loading control. WASp/ERK ratio is indicated at the bottom of each lane. Number of WW vector integrations per cell (v/cell) was determined by real-time PCR.

1 week thereafter, cells were analyzed for copy number by quantitative PCR, and for protein by quantitative Western blotting as described in Materials and methods. This indicated that WASp expression levels in WWtransduced HVS-WAS/1 cells were 0.55 times of those found in HVS-N T cells. Likewise, WW-transduced ALLO-WAS/2 cells expressed 0.93 times the levels found in normal allospecific cells (ALLO-NORMAL). Considering the vector copy number in the transduced population, we can conclude that a single transduction event in HVS-WAS/1 T cells by the WW lentiviral vector achieves 0.65 times the levels of WASp expressed in HVS-N cells. Similarly, a single insertion of a WW vector in ALLO-WAS/2 cells achieved 0.34 times the levels expressed by ALLO-NORMAL cells.

WASp expression confers a selective growth

advantage to WW-transduced WASp-deficient T cells We explored the possibility that expression of WASp could confer a selective advantage to transduced cells as it has been previously described in other systems.24 Therefore, HVS-WAS/1 cells were transduced with the WW lentiviral vector at MOIs of 0.01, 0.1 and 1 and kept in culture for 39 days. The percentage of WASp-expressing cells was analyzed by flow cytometry at days 7, 27 and 39 after transduction. Figure 5a shows a robust increase in the percentage of WASp* cells over time in culture, indicating a selective growth advantage of transduced cells even in experiments where the starting WASp* population was lower than 1% (MOI of 0.1, solid circles). The cells were cultured in parallel with HVS-WAS/1 cells that had been transduced with the WE vector. Expression of eGFP driven by the WASP promoter did not affect cell growth characteristics (data not shown).

Gene Therapy

000 718

Figure 5 WASp expression confers a selective growth advantage to Tcells. (a) HVS-WAS/I cells were transduced at day 0 with the WW lentiviral vector at MOIs of 0.01 (solid circles), 0.1 (solid squares) and 1 (solid triangles). Expression of WASp was determined by flow cytometry at indicated days after transduction. Data represent man \pm s.d. of three separate experiments. (b) Allospecific T cells from a WAS patient (ALLO-WAS[2) were transduced with WW vectors 5 days after allostimulation. At days 7 and 34 after transduction, cells were analyzed for vector copy number per cell by real-time PCR and WAS/ERK protein mitio by quantitative Western blotting. Cells were grown by weekly Raji allostimulations as described in Materials and methods.

In order to corroborate these results, we performed a similar experiment with primary allospecific T cells from a second WAS patient (ALLO-WAS/2). ALLO-WAS/2 cells were transduced 5 days after stimulation and analyzed at days 7 and 34 after transduction. Vector copy number and WASp levels were analyzed by quantitative PCR and quantitative Western blotting as before. Figure 5b shows that WASp levels increased about 15 times from day 7 to day 34 (WASp/ERK ratio was 0.09 at day 7 and 1.43 at day 34). Vector copy number per cell was also increased about six times (Figure 6b, bottom), suggesting that expansion of cell populations with higher numbers of vector integrations had occurred.

Efficient transduction of hematopoietic progenitor cells by lentiviral vectors containing the WASP gene proximal promoter

We next explored whether WW vectors permit transduction of hematopoietic progenitor cells. Mouse Sca1* bone marrow cells transduced with WW in one single round (MOI = 1) resulted in up to 32% of colonies positive for vector integration as demonstrated by PCR of vector sequences (Figure 6). Transduction efficiencies achieved by SW and WW vectors were very similar, whereas with the SE vector it was almost double (up to 65% of colonies expressed eGFP).

Lentiviral vectors transcriptionally targeted to hematopoietic cells F Martín et al

A critical issue in HSC gene therapy approaches is to achieve adequate expression of the therapeutic gene in differentiated target cells. We therefore studied if the *WASP* promoter fragment used in the WW vector was able to drive transgene expression in human myeloid lineages derived from transduced hematopoietic progenitors. To determine this, we constructed a lentiviral vector (WE), which contains the backbone and promoter

Figure 6 WW vectors efficiently transduce mouse hematopoietic progenitors. Graph showing percentage of transduced colonies derived from murine Sca1⁺ bone marrow cells transduced at MOI=1 by SE (left bar), SW (center bar) and WW (right bar) vectors. Sca1⁺ cells purified from Balb/c bone marrow were transduced and cultured in methylcelhulose medium (see Materials and methods). Analysis of transduction efficiency was performed by PCR of single colonies (SW and WW vector) or eGFP expression (SE). elements of WW vector but drives the expression of eGFP instead of WASp (see Materials and methods). CD34* hematopoietic progenitors transduced with WE vectors were differentiated in methylcellulose medium and the colonies analyzed under fluorescence microscopy. Expression of eGFP was readily detectable in colonies from myeloid and erythroid lineages (Figure 7a). These data demonstrate that the WASP endogenous promoter in a context of a SIN lentiviral vector is able to achieve expression of the transgene in different hematopoietic lineages after transduction of human progenitors. Transduction efficiency of WE vector ranged from 30–70 percent among colonies from different hematopoietic lineages after one single round of transduction at MOI =2 (MOI estimated based on HVS-WAS/1 cells) (Figure 7b).

Discussion

Gene therapy protocols for haematological and immunological disorders are often based in the re-infusion of gene-modified HSCs obtained using cell purification strategies. However, even purified HSCs populations may differentiate into or fuse with several non-HC types, such as hepatocytes, endothelial, epithelial, neuron or muscle cells.⁵⁻⁸ The expression of hematopoietic-specific

Figure 7 WASP proximal promoter efficiently drives transgene expression in human hematopoidic precursors. Human CD34⁺ cord blood cells were purified and transduced at MOI = 2 with the WE vector, a WW-derived vector where the WASP gene has been replaced by eGFP. Transduced progenitor cells were cultured in methylcellulose media for 10-16 days before analysis. (a) Light transmission and fluorescence microscopy of individual colonies (BFU-E, burst-forming unit-erythroid; CFU-E, CFU-erythroid; CFU-G, CFU-granulocyte; CFU-GM, CFU-granulocyte, macrophage; CFU-M, CFUmacrophage; and CFU-GEMM, CFU-granulocytic, erythroid; macrophage, megakaryocytic). (b) Graph showing the number of colonies of each hematopoietic lineage expressing the eGFP transgene (solid bars) over the number of colonies eGFP⁻ (light bars).

Gene Therapy

719
genes in non-hematopoietic tissues might result in undesired side effects (reviewed in Baum *et al*³⁴). It would therefore be advantageous to develop vectors able to drive hematopoietic-specific expression of the therapeutic transgene.

Expression of WASp is normally restricted to HCs, including stem cells and progenitors.^{22–24} WASp has well characterized roles in the functionality of immune cells and in the formation and survival of platelets. The biological activity of WASp in stem cell populations is witnessed by the apparent non-random distribution of X-inactivation in female carriers of a mutant WASP gene,³⁵ and the demonstration of homing and engraftment defects in mutant mice.³⁶ The widespread but hematopoietic-restricted expression profile of WASp is dictated by WASP gene regulatory elements which are therefore attractive for expression of many hematopoietic genes.

For this reason, we designed and tested lentiviral vectors incorporating proximal promoter sequences from the natural *WASP* gene. Previous functional characterization of the *WASP* gene promoter has been limited.^{24,37,38} However, a 170 bp fragment 5' upstream of the transcription starting site does contain four potential binding sites for hematopoietic transcription factors (two for Ets-1, one for c-Rel, and one for PU.1) and is sufficient to confer preferential hematopoietic expression in transient reporter gene assays.²⁴ An alternate *WASP* promoter has been found 6 Kb upstream of the proximal promoter containing c-Myb and PU.1 binding sites³⁷ and has been suggested to have a role in WASP expression during the earlier stages of hematopoiesis. This also has not been functionally evaluated in detail.

We have shown that WASp expression regulated by proximal sequences of the WASP gene promoter in the context of an integrating vector system is transcription-ally targeted to HCs. A detailed analysis of cells transduced by vectors incorporating the SFFV LTR or the WASP gene proximal promoter showed that the latter is 135-350 times more efficient driving the expression of WASp in hematopoietic than in non-HCs. Interestingly, the activity (in terms of protein expression) of the *WASP* gene promoter in T cells was equivalent to that of the SFFV LTR, a highly potent regulatory element containing the duplicated enhancer sequences characteristic of many gammaretroviral vector LTRs.³⁹ Likewise, we have shown that a single WW vector integration is able to express protein levels that are close (0.34–0.63 times) to those found in normal cells. Therefore, the proximal *WASP* gene promoter in the context of a SIN lentiviral vector can also achieve physiologically relevant levels of WASp in transduced cells. In addition, we have demonstrated efficient transduction of both mouse and human hematopoietic progenitors, with preservation of gene expression following myeloid and erythroid differentia-tion. The proximal WASP gene promoter in the context of a SIN lentiviral vector may have useful characteristics for clinical trials of gene therapy for WAS as it achieves hematopoietic-specific and physiologically relevant levels of WASp. Expression of the WASP transgene confers a selective growth advantage to transduced T cells as described in spontaneous reversions of WAS patients²⁹⁻³¹ as well as in other models of CD3-activated WASp * cells.^{32,33} This observation indicates that the protein expressed in WW-transduced cells is functional. Furthermore, we have found that transduction of WAS-deficient

Gene Therapy

T cells with the WW vector results in full reconstitution of cellular defects, including restoration of morphology and CD3-mediated responses (our unpublished data). We therefore propose that the *WASP* gene regulatory elements may provide a safer alternative to retroviral LTR sequences for the regulation of hematopoietic genes.

In summary, we have described the development of a SIN lentiviral vector that directs hematopoietic-specific, physiological transgene expression of a therapeutic gene (WASp) through the proximal *WASP* gene promoter. We believe that our data represent a significant step towards the goal of achieving controlled hematopoietic-specific transgene expression, an objective that is becoming of increasing interest in the light of vector-mediated cell transformation in animal models³⁴ and human clinical trials.⁴⁰

Materials and methods

Cell lines and culture media

The generation and characterization of HVS-WAS/1 (derived from two WAS patients) as well as HVS-N (derived from a normal individual) have been described in detail.²⁶ Primary allospecific T cells from a second WAS patient (ALLO-WAS/2) (cared for by Dr N Matamoros, Hospital Son Dureta, Palma de Mallorca, Spain) and from a normal healthy individual (ALLO-NORMAL) were generated in our laboratory by mitomycin-C-treated Raji B-cell allospecific weekly stimula-tion as previously described in detail.²⁵ All HVS-T and allospecific cell lines were cultured in a mixture (1:1) of RPMI 1640 (Bio-Whittaker, Verviers, Belgium) and Panserin 401 (PAN Biotech, Aidenbach, Germany) media supplemented with 10% of fetal calf serum (FCS) (Gibco-BRL, Middlesex, UK), glutamine, penicillin-streptomycin and 50 UI/ml of recombinant human IL-2 (Hoffman-LaRoche, Nutley, NJ, USA; kindly supplied by the National Institutes of Health AIDS reagent program, Rockville, MD, USA); RKO (colon adenocarcinoma cells) were grown in Dulbecco's modified Eagle's medium (Gibco), supplemented with 10% FCS, glutamine and antibiotics as above; and HUVEC (primary umbilical cord cells) were grown in endothelial cell growth medium (PromoCell, Heidelberg, Germany). Primary FDCs were obtained from human tonsils and cultured in RPMI 1640, containing 20% FCS until the cell line was established (usually 2 weeks). Jurkat T cells were cultured in RPMI 1640 supplemented as above, without the addition of rIL-2.

Plasmids

The HIV packaging (pCMVAR8.91) and vesicular stomatitis virus(VSV)-G (pMD.G) plasmids were kindly provided by D Trono. The packaging plasmid pCMVAR8.91 encodes *gag*, *pol*, *tat* and *rev* genes. The pMD.G plasmid encodes the VSV-G protein. The lentiviral vector plasmid SE (previously named HRSIN-CSEW²⁸) contains an SFFV LTR that drives an eGFP expression cassette that was used to construct WASp-expressing vectors.

Lentiviral vector constructs

The lentiviral vector backbone used for this study has been described previously.²⁸ To construct SW, the WPRE

720

Lentiviral vectors transcriptionally targeted to hematopoietic cells F Martin et al

721

sequence was eliminated from the SE vector and the WASP cDNA amplified by RT-PCR inserted into the SE vector in place of the eGFP. The SW vector drives the expression of the WASP gene by the strong promoter from SFFV LTR. The proximal WASP gene promoter (extending from bases -1 to -499 from the transcriptional start site) was derived by PCR from genomic DNA using the following primers: 5'CCGGAATTCGGGATT ACAGGTGTGAGC3' and 5'CGCGGATCCGGTGCTTTC TGCCCTTGTCTTC3'. The WW vector was constructed by EcoRI and BamHI restriction enzyme digestion and ligation of the SW vector and the PCR product. This excised the SFFV LTR promoter sequences and replaced them by the 500 bp fragment containing the 5' proximal WASP promoter. WE vector was constructed by replacing the WASP gene cDNA from the WW vector with the eGFP cDNA from the pHRSin18-SFFV LTR plasmid²⁸ by double restriction enzyme digestion and ligation with BamHI-XhoI.

Vector production

Lentiviral vectors were produced by cotransfection of 293T cells with three plasmids: (1) vector plasmid (SE, WE, SW or WW), (2) packaging plasmid pCMV Δ R8.91 and (3) envelope plasmid pMD.G, as described previously.⁴¹ Briefly, 293T cells ($6 \times 10^{\circ}$) were plated on a 10-cm tissue culture-grade Petri dish (Sarstedt, Newton, NC, USA) the day before transfection to ensure exponential growth and 80% confluence. Vector plasmids, together with packaging and envelope plasmids (27 µg total DNA; plasmid proportions of 32:1, respectively), were resuspended in 1.5 ml of OPTI-MEM media (Gibco) and mixed at room temperature for 20 min with 60μ l of Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) and then diluted in 1.5 ml of OPTI-MEM. The plasmid–lipofectamine mixture was added to prewashed cells and then incubated for 6–8 h. The producer cells were then washed and further cultured for 48 h in 10 ml of OPTI-MEM media. Viral supernatants were collected and filtered through a 0.45 µm filter (Nalgene, Rochester, NY, USA), aliquoted and immediately frozen at -80° C.

Cell transduction and vector titration

Exponentially growing target cells were washed in PBS, and 2×10^5 cells were seeded per well in 500 µl of their appropriate media in 24-well plates. Supernatants were added to the culture and incubated overnight. After 72-h incubation or when indicated, cells were collected, washed, fixed in 0.2% of paraformaldehyde and analyzed in a FACScan Flow Cytometer (Becton-Dickinson, San Jose, CA, USA). Viral titers (transduction units/ml) were calculated based on the initial amount of target cells and the percentage of GFP⁺ or WASp⁺ cells detected in the linear range of a serial dilution of the supernatant. The MOI is defined as the number of viral vectors per cell, and was estimated over the HVS-WAS/1 cell line. This was required since the WW vectors are not expressed in non-HCs such as 293T, and should therefore be assayed on a hematopoietic WASp-deficient cell line.

Mouse hematopoietic progenitors transduction and methylcellulose colony assay

Bone marrow cells pooled from four Balb/c mice were harvested and Sca1* cells selected using MACS immuno-

magnetic columns (Miltenyi Biotec, Germany). Briefly, 4×10^7 bone marrow cells were incubated with 50 µl of magnetic-labeled Sca-1 antibodies (Miltenyi) and passed through the columns. After two washes with PBS, Sca1* cells were eluted with RPMI containing 30% of FCS and supplemented with a cytokine cocktail (murine Scf 100 ng/ml; IL-6 20 ng/ml; mFlt-3L 10 ng/ml) (StemCell Technologies, Vancouver, Canada). Cells were plated at a concentration of 106 cells/ml and incubated O/N with lentiviral vectors' supernatant (MOI = 1 estimated over HVS-WAS/1 cells). Cells were then washed and incubated in Iscove's modified Dulbecco's medium (IMDM) media (Gibco) and 500 µl containing 104 cells were mixed with 2.5 ml of Metho Cult media (StemCell Technologies). Cells were cultured in 35 mm Petri dishes at 37°C and 5% of CO2. Stem cell colonies were counted and analyzed after 20 days.

Human hematopoietic progenitors transduction and methylcellulose colony assay

Human cord blood was obtained from placental and umbilical tissues and diluted 1:3 in IMDM (Gibco). Mononuclear cells were collected by density centrifugation (Ficoll–Hypaque, Pharmacia Biotech, Uppsala, Sweden) and the CD34* subset isolated using α -CD34 MACS immunomagnetic columns (Miltenyi) as described above. Cells were analyzed by flow cytometry immediately after purification for CD34* expression using a PE- α -CD34 antibody (Miltenyi). The percentage of CD34* cells was typically higher than 85%. For transduction, 10⁵ CD34* cells were seeded in 96-well plates in Stem-Spam media (StemCell Technologies) containing antibiotics and 10 ng/ml thrombopoietin (Peprotech EC, London, UK), incubated overnight with viral supernatants at indicated MOIs and then washed with IMDM. Human clonogenic progenitor assays were carried out by seeding 10^3 –5 × 10^3 cells in two 10 mm Petri dishes in complete methylcellulose medium with recombinant cytokines (MethoCult GF-4434, StemCells Technologies). After 10–16 days in culture, colonies were analyzed in an inverted fluorescence microscope and images captured by a digital camera.

Immunostaining and flow cytometry

After 72 h or other times if indicated, cells were collected, washed and permeabilized with Citofix/cytoperm (Pharmingen, San Diego, CA, USA) following the manufacturer's recommendations. Cells were subsequently washed and preincubated in a PBS-blocking solution containing 2% normal goat serum and 0.05% saponin for 20 min at 4°C. After washes, intracellular staining of WASp was carried out by indirect immunofluorescence, using 2 µg of anti-WASp monoclonal antibody B9 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted in 200 µl of blocking solution and incubated at 4°C for 1 h with continuous agitation in an orbital shaker. Cells were washed in PBS-0.02% saponin and incubated again with 2 µg of an FITC-labeled goat anti-mouse IgG antisera (Caltag Laboratories, Burlingame, CA, USA) (diluted in PBS-0.05% saponin) for 45 min at 4°C in continuous agitation. Cells were washed 2× in PBS-0.02% saponin followed by a final wash in PBS alone. Cells were analyzed in the FACScan Flow Cytometer.

Gene Therapy

199 722

SDS-PAGE, semiquantitative and quantitative Western immunoblotting

Cells were lysed with 1% NP-40 lysis buffer containing protease inhibitor cocktail (Sigma, St Louis, MO, USA), resolved by SDS-PAGE (10% polyacrylamide gels, reducing conditions) and electrotransferred to Hybond-P PVDF membranes (Amersham, Buckinghamshire, UK). Membranes were blocked with 5% nonfat milk and probed for 1 h at room temperature with 1 $\mu g/ml$ of the anti-WASp mAb D1 (Santa Cruz Biotechnology) fol-lowed by incubation with HRPO-labeled goat antimouse antibody (1:10 000 dilution) (Caltag). The blot was developed by chemiluminescence (ECL, Amersham) and exposed to autoradiographs (Amersham). Loading controls were carried out by rehybridization of stripped membranes with an α -Erk polyclonal antibody (anti-MAP kinase 1/2, Upstate Biotechnology, UK). Semiquantitative analysis was carried out by densitometric scanning of bands using the Quantity One version 4.5.0 software (Bio-Rad).

Quantitative Western blot analysis was performed using the ECL Advanced Western Blotting Detection Kit (Amersham Bioscience, UK). Membranes were blotted and probed as above, but were revealed by incubation for 1–5 min with a mixture of ECL Advanced reagents. Quantification of light emission was detected using a QuemiDoc XRS instrument (Bio-Rad Laboratories, Hercules, CA, USA) and analyzed at 440 nm with Quantity One version 4.5.0 software (Bio-Rad). Contribution of each band was recorded and expressed as relative intensity per mm².

DNA preparation, PCR and quantitative PCR

Genomic DNA of tissue culture cells or methylcellulose colonies was isolated using a genomic DNA extraction kit (Promega, Madison, WI, USA). DNA concentration was estimated by UV spectrophotometry. Transduction of methylcellulose colonies was determined by amplification of a 125 bp fragment from the WASP cDNA encompassing exons 9 and 10 from the WASP gene. The PCR were performed in a thermocycler (Mastercycler, Eppendorf AG, Hamburg, Germany) using the following primers: forward 5'-AGGCTGTGCGGCAGGAGAT-3'; and reverse 5'-CAGTGGACCAGAACGACCCTTG-3' and parameters: $1 \times (95^{\circ}C$ for 2 min), $30 \times (95^{\circ}C$ for 30 s, $62^{\circ}C$ for 30 s and $72^{\circ}C$ for 30 s) and $1 \times (72^{\circ}C$ for 10 min). PCR amplification products were observed in a 1% agarose gel with a Lambda 1 kb marker after staining with ethidium bromide.

The real-time PCR reactions were performed in the iCycler iQ Real-Time PCR Detection System (Bio-Rad). Samples were mixed with iQ^M Supermix (Bio-Rad) containing each dNTP, 50 U/ml iTaq DNA polymerase, 6 mM MgCl₂, SYBR green and 200 nM of the specific primers: forward 5'-GCTTAATACTGACGCTCTCGCA-3'; and reverse 5'-GGCTAACTAGGGAACCCACTG-3', which amplify a 321 bp fragment containing the 5' splice site and 89 bp from the 5'LTR of the vector. DNA from 1×10^5 HVS-WAS/1 cells were mixed with 10-fold increasing amounts of plasmid DNA (1 up to 1×10^5 copies) for the standard curve. The parameters for the PCR were: $1 \times (95^{\circ}C$ for 2 min), $45 \times (95^{\circ}C$ for 30 s, $61.4^{\circ}C$ for 30 s and $72^{\circ}C$ for 2 min). Melting temperature was optimized in preliminary experiments.

Gene Therapy

Acknowledgements

We are indebted to Didier Trono (University of Geneva, Geneva, Switzerland) for providing the HIV packaging pCMVAR8.91 and envelope pMD.G plasmids and to Nuria Matamoros (Hospital Son Dureta, Palma de Mallorca, Spain) for WAS patient blood. We acknowledge the generous supply of rIL-2 (Hoffman-LaRoche, Nutley, NJ, USA) provided by the National Institutes of Health AIDS reference and reagent program (Rockville, MD, USA). This work was supported by EU Contract Grant number QLT-1999-01090 (WASPNEST; AJT, partner 1; JJM, partner 7 and MS, partner 8); SAF2003-09807-C02-01 (MS) and 02 (IJM); FIS Grant FIS01/3143 and SAF2003-00645 to FM. We also thank Wellcome Trust for financial support to AJT. MGT is a FPU predoctoral fellow from the Spanish Ministry of Education and Culture. GKS is a fellow from the Spanish Agency for International Cooperation (AECI).

References

- Cavazzana-Calvo M et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.
- 2 Gaspar HB et al. Successful gene therapy of SCID-X1 using a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.
- 3 Aiuti A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.
- 4 Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. *Nature* 2003; 422: 901–904.
- 5 Lagasse E et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229–1234.
- 6 Camargo FD et al. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 2003; 9: 1520–1527.
- 7 Krause DS et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369–377.
- 8 Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002; 3: 323–328.
- 9 Almeida-Porada G et al. Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood 2004; 104: 2582–2590.
- 10 Jang YY et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 2004; 6: 532–539.
- 11 Zufferey R et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.
- 12 Moreau-Gaudry F et al. High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 2001; 98: 2664–2672.
- 13 Marodon G et al. Specific transgene expression in human and mouse CD4* cells using lentiviral vectors with regulatory sequences from the CD4 gene. Blood 2003; 101: 3416–3423.
- 14 Cui Y et al. Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 2002; 99: 399–408.
- 15 Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol 1999; 17: 905–929.
- 16 Thrasher AJ. WASp in immune-system organization and function. Nat Rev Immunol 2002; 2: 635–646.

Lentiviral vectors transcriptionally targeted to hematopoietic cells ${\sf F}$ Martín et al

723

- 17 Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 1994; 78: 635–644.
- 18 Wengler GS et al. High prevalence of nonsense, frame shift, and splice-site mutations in 16 patients with full-blown Wiskott– Aldrich syndrome. Blood 1995; 86: 3648–3654.
- 19 Greer WL et al. Identification of WASP mutations, mutation hotspots and genotype-phenotype disparities in 24 patients with the Wiskott–Aldrich syndrome. Hum Genet 1996; 98: 685–690.
- 20 Shcherbina A, Rosen FS, Remold-O'Donnell E. WASP levels in platelets and lymphocytes of Wiskott–Aldrich syndrome patients correlate with cell dysfunction. *J Immunol* 1999; 163: 6314–6320.
- 21 Imai K et al. Clinical course of patients with WASP gene mutations. Blood 2004; 103: 456–464.
- 22 Stewart DM et al. Studies of the expression of the Wiskott– Aldrich syndrome protein. J Clin Invest 1996; 97: 2627–2634.
- 23 Parolini O et al. Expression of Wiskott–Aldrich syndrome protein (WASP) gene during hematopoietic differentiation. Blood 1997; 90: 70–75.
- 24 Petrella A et al. A 5' regulatory sequence containing two Ets motifs controls the expression of the Wiskott–Aldrich syndrome protein (WASP) gene in human hematopoietic cells. Blood 1998; 91: 4554–4560.
- 25 Molina IJ et al. Tcell lines characterize events in the pathogenesis of the Wiskott–Aldrich syndrome. J Exp Med 1992; 176: 867–874.
- 26 Gallego MD *et al.* Defective actin reorganization and polymerization of Wiskott–Aldrich T-cells in response to CD3-mediated stimulation. *Blood* 1997; 90: 3089–3097.
- 27 Toscano MG et al. Efficient lentiviral transduction of herpesvirus saimiri immortalized T cells as a model for gene therapy in primary immunodeficiencies. Gene Therapy 2004; 11: 956–961.
- 28 Demaison C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. *Hum Gene Ther* 2002; 13: 803–813.
- 29 Ariga T et al. Spontaneous in vivo reversion of an inherited mutation in the Wiskott–Aldrich syndrome. J Immunol 2001; 166: 5245–5249.

- 30 Wada T et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci USA 2001; 98: 8697–8702.
- 31 Konno A et al. Differential contribution of Wiskott–Aldrich syndrome protein to selective advantage in T- and B-cell lineages. Blood 2004; 103: 676–678.
- 32 Strom TS et al. Functional correction of T cells derived from patients with the Wiskott–Aldrich syndrome (WAS) by transduction with an oncoretroviral vector encoding the WAS protein. *Gene Therapy* 2003; 10: 803–809.
- 33 Lutskiy MI et al. Wiskott-Aldrich syndrome in a female. Blood 2002; 100: 2763–2768.
- 34 Baum C et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.
- 35 Wengler G et al. Nonrandom inactivation of the X chromosome in early lineage hematopoietic cells in carriers of Wiskott– Aldrich syndrome. Blood 1995; 85: 2471–2477.
- 36 Snapper SB et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. *Immunity* 1998; 9: 81–91.
- 37 Hagemann TL, Kwan SP. The identification and characterization of two promoters and the complete genomic sequence for the Wiskott–Aldrich syndrome gene. *Biochem Biophys Res Commun* 1999; 256: 104–109.
- 38 Hagemann TL, Mares D, Kwan S. Gene regulation of Wiskott–Aldrich syndrome protein and the human homolog of the *Drosophila* Su(var)3–9: WASP and SUV39H1, two adjacent genes at Xp11.23. *Biochim Biophys Acta* 2000; 1493: 368–372.
- 39 Baum C et al. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol 1995; 69: 7541–7547.
- 40 Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.
- 41 Neil S et al. Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 2001; 75: 5448–5456.

Gene Therapy

COMUNICACIONES A CONGRESOS

XXIX CONGRESO DE LA SOCIEDAD DE INMUNOLOGÍA Cádiz del 27 ald 30 de mayo de 2003 patía monoclonal) podría significar el tener mayor riesgo a padecer una enfermedad linfoproliferativa.

0119. DEFICIT DEL COMPONENTE C6 DEL

COMPLEMENTO. ESTUDIO FAMILIAR. O. Montes-Ares¹, M. Montes-Casado¹, P. Martínez-García¹, L. Marín¹, N. Guerra-Pérez¹, R. Moya-Quiles¹, M. Muro¹, J.B. Vidal-Bugallo², J. Rosique-Román¹, M.C. García-Calatayud¹, M.R. Alvarez-López¹, A.M. García-Alonso¹. Servicios de Inmunología¹ y Medicina Interna². Hospital U. Virgen de la Arrixaca. Murcia

Introducción. La citolisis dependiente de la activación del complemento, por la vía clásica y/o alternativa, se debe a la agresión que sufren las células en su membrana por medio del Complejo de Ataque de la Membrana (MAC). El MAC es una organización supramolecular de gran tamaño y su estructura fundamental está formada por una molécula de C5b, C6, C7 y C8, y una o varias moléculas del componente C9. Los defectos en cualquiera de los anteriores componentes impiden la formación del MAC y suelen ir asociados a meningitis y sepsis, por *Neisseria meningitidis*. Presentamos a una familia de cuatro miembros, uno de los cuales es una mujer de 31 años que desde los 18 años ha presentado varios procesos severos de meningitis y frecuentes amigdalitis purulentas. Entre los antecedentes familiares de interés encontramos dermatitis atópica en sus dos hermanas y rinitis alérgica en la madre.

Objetivos. Conocer los posibles defectos del sistema del complemento presentes en esta familia.

Resultados. Toda la familia presentaba valores normales de C3, C4 medidos por nefelometría. La actividad funcional del complemento (vía clásica y alternativa), medida por un método hemolítico comercial, era normal en todos los familiares salvo en la paciente donde la actividad del complemento era indetectable por ambas vías. En los ensayos de inmunodifusión radial para los otros componentes de la cascada del complemento se observó que todos los familiares tenían cifras normales de C7, C8 y C9. La paciente tenía un déficit total del componente C6 y una hermana un déficit parcial (80%) del mismo.

Conclusiones. Se describe una familia en la que dos de sus miembros presentan un déficit de C6, que en el caso de la paciente es total y en una hermana parcial. No hay evidencias de defectos de este componente en el padre y la otra hermana. Hasta el momento no tenemos datos cuantitativos del C6 materno. En el futuro se procederá a realizar los estudios moleculares necesarios para conocer la causa de este defecto.

0120. MODELOS DE RESCATE EN INMUNO DEFICIENCIAS PRIMARIAS MEDIANTE TRANSDUCCIÓN DE CÉLULAS T INMORTALIZADAS CON HERPESVIRUS SAIMIRI CON VECTORES LENTIVIRALES. M. García Toscano, F. Martín, C. Frecha, C. Ortega¹, M. Santamaría¹, IJ. Molina. Unidad de Inmunología. Facultad de Medicina. Universidad de Granada. ¹Servicio de Inmunología. Hospital Universitario "Reina Sofía". Universidad de Córdoba

Las células T inmortalizadas con Herpesvirus Saimiri constituyen potencialmente un buen modelo potencial para el establecimiento de modelos in vitro de inmunodeficiencias primarias, en tanto que mantienen las propiedades funcionales de las células primarias de los pacientes. Sin embargo, su uso generalizado se ha visto limitado por la aparente resistencia celular a la introducción de genes exógenos. Nosotros hemos estudiado en detalle este problema, utilizando para ello modelos de transducción con vectores retrovirales y lentivirales. Hemos confirmado la interferencia entre vectores oncorretrovirales y el H. Saimiri, manifestado por la ineficaz e inestable transducción de estas células con vectores retrovirales. Sin embargo, la utilización de vectores lentivirales bajo el control del promotor SFFV (Simian Focus Formed Virus) perrmite un porcentaje de transducción típicamente superior al 50% de las células del cultivo. Estos datos han sido obtenidos en líneas celulares procedentes de dos pacientes con el Síndrome de Wiskott-Aldrich, una Inmunodeficiencia Combinada Severa Autosómica y dos líneas procedentes de individuos normales. No obstante, el H. Saimiri interfiere con los vectores lentivirales provocando una restricción relativa en un factor de 5-10, obtenido al evaluar los porcentajes de transducción normalizados por la Multiplicidad de Infección (MOI) de los sobrenadantes lentivirales con respecto al obtenido en células primarias y tumorales de tejidos hematopovéticos y no hematopoyéticos. Por tanto, la alta expresión porcentual del gen marcador y la estabilidad de la expresión a lo largo de varios meses de cultivo, sugieren que esta estrategia es idónea para demostrar rescates funcionales en pacientes con inmunodeficiencias primarias.

Sesión 02. Linfocitos T: precursores, TCR y activación

Comunicaciones Orales: 0201-0210

0201. TCR DYNAMICS IN HUMAN MATURE T LYMPHOCYTES LACKING CD3γ. N. Rossi¹, P.S. Torres¹, A. Alcover², D.A. Zapata¹, Jacques Arnaud³, Alberto Pacheco¹, J.M. Martín-Fernández¹, E.M. Villasevil¹, O. Sanal⁴, J.R. Regueiro¹, ¹Inmunología, Facultad de Medicina. Universidad Complutense. Madrid. Spain. ²Unité de Biologie des Interactions Cellulaires CNRS URA 1960. Institute Pasteur, 75724 Paris Cedex 15. France. ³Unité de Physiopathologie Cellulaire et Moléculaire, CNRS, CHU Purpan. 31059 Toulouse Cedex 03. France. ⁴Hacettepe University Children's Hospital. 06100 Ankara. Turkey

The contribution of CD3 γ to TCR/CD3 complex (TCR) surface expression, internalization, and intracellular traffic has not been completely defined, but it is believed to be crucial for constitutive as well as for phorbol ester-induced internalization. We have explored TCR dynamics in resting and stimulated mature T lymphocytes derived from two unrelated human congenital CD3 γ -deficient individuals. In contrast to CD3 γ - deficient Jurkat mutants selected for the lack of membrane TCR, which are therefore constitutively surface TCR, these natural CD3 γ -deficient T cells expressed significant constitutive surtransducción retroviral de CD3γ en células T primarias no afecta a parámetros estructurales como la expresión en superficie del complejo TCR/CD3 como la modulación por PMA y la producción basal de citocinas (IL2 e IFNγ). También reflejarían disfunciones que podrían ser peligrosas en protocolos de terapia génica *in vivo* que tuviesen como diana la transferencia del TCR o quimeras de CD3 a linfocitos T humanos para enfermedades como Cáncer y Sida. Además, la simple expresión del vector con o sin CD3γ produce alteraciones en la regulación de marcadores de membrana como CD69, CD25 y CD152. Estos efectos podrían ser útiles para la modulación de las respuestas T dependientes.

0505. VECTORES LENTIVIRALES CONTENIENDO EL PROMOTOR ENDÓGENO DEL GEN TERAPÉUTICO: HACIA UNA EXPRESIÓN REGULADA Y ESTABLE EN PROTOCOLOS DE TERAPIA GÉNICA. I.J. Molina, M. García Toscano, C. Frecha, C. Ortega¹, A. Thrasher², M. Santamaría¹, F. Martín. Unidad de Inmunología. Facultad de Medicina. Universidad de Granada. ¹Servicio de Inmunología. Hospital Universitario "Reina Sofía". Universidad de Córdoba. ²Institute of Child Health. University College. Londres

La expresión de genes terapéuticos en vectores apropiados para su utilización en protocolos de terapia génica tiene el problema potencial de que la transcripción está gobernada por promotores exógenos muy potentes, necesarios para obtener unos niveles adecuados de la neoproteína. Ello implica que la expresión de estos genes se encuentra completamente disregulada, tanto en lo que se refiere a la especificidad de tejido como en sus niveles de expresión. Este problema es potencialmente importante en aquellas estrategias de terapia génica en la que se sospeche que una sobreexpresión del gen terapéutico puede tener un efecto negativo en las células diana. En experimentos iniciales, comprobamos que la sobreexpresión del gen WASP (Wiskott-Aldrich Syndrome Protein) contenido en vectores lentivirales controlados por promotores exógenos provocaba sustanciales cambios morfológicos en células no hematopoyéticas. Este efecto indeseado nos hizo valorar la posibilidad de utilizar el promotor del propio gen terapéutico como regulador de la transcripción. Para ello, un fragmento de 505 bp perteneciente a la secuencia genómica del promotor del gen WASP fue introducido en el vector lentiviral pHR'SINcppt para obtener así el vector pHR'SINcppt-WpEWW. El promotor de WASP regula la expresión del gen WASP fusionado con GFP. Hemos encontrado que la expresión de esta proteína quimérica es funcional y estable en diversas líneas celulares, demostrando la eficiencia transcripcional de la secuencia promotora endógena. Los niveles de expresión son sustancialmente diferentes a los obtenidos con vectores equivalentes conteniendo promotores virales, demostrando así la idoneidad de esta estrategia como primer paso hacia la expresión regulada de los genes terapéuticos.

0506. TRATAMIENTO DE LINFOMAS FOLICULARES MEDIANTE VACUNACIÓN ANTI-IDIOTIPO. S. Inogés, M. Rodriguez-Calvillo, A. Lopez-Díaz de Cerio, C. Panizo, E. Rocha, M. Bendandi. Área de Terapia Celular. Clínica Universitaria de Navarra. Pamplona

Introducción. El linfoma folicular (LF) se caracteriza por permanecer incurable a pesar de responder a los tratamientos habituales de quimioterapia, debido a la inevitable reexpansión de células tumonoglobulina

4. Monitorización de remisión molecular y de la respuesta inmune tras la vacunación.

escala, purificación de la Ig mediante cromatografía de afinidad, con-

rales residuales tras el tratamiento. La inmunoterapia se muestra como

un atractivo tratamiento adyuvante para posiblemente, eliminar las

células residuales y así prevenir el crecimiento tumoral tras la qui-

mioterapia. La inmunoterapia activa mediante vacunas paciente-espe-

cíficas se basa en el hecho de que las regiones variables de las cadenas

ligeras y pesadas de la inmunoglobulina tumoral expresada en la membrana de las células tumorales poseen determinantes antigénicos (idio-

topos y en su conjunto, idiotipo) que, debido a su clonalidad, permi-

ten emplearlos como antígenos tumorales específicos para inducir una

respuesta inmune. En nuestro centro se ha decidido aplicar esta estra-

2. Selección del hibridoma específico productor de la inmu-

3. Cultivo de las células del hibridoma seleccionado a gran

1. Fusión celular y generación de hibridomas.

tegia a pacientes afectos de LF en primera recaída. Objetivos y Material y Métodos.

5. Valoración de la duración de la respuesta inmune tras la suspensión de la inmunoterapia.

6. Comparación de la duración de la remisión obtenida tras el tratamiento previo de primera línea y la obtenida tras la aplicación de este protocolo inmunoterapéutico.

Resultados. Hasta la fecha se han incluido un total de 18 pacientes, de los que 5 han completado el calendario vacunal. Se presentaran los resultados obtenidos hasta el momento.

0507. AN ANTI-ICAM-2 (CD102) MONOCLONAL ANTIBODY INDUCES IMMUNE-MEDIATED REGRESSIONS OF TRANSPLANTED ICAM-2-NEGATIVE COLON CARCINOMAS THROUGH INHIBITION OF ACTIVATION-INDUCED T-CELL DEATH: SYNERGY WITH IL-12 GENE TRANSFER. I. Melero¹, I. Gabari¹, A.L. Corbí², M. Relloso², G. Mazzolini¹, I. Tirapu¹, E. Baixeras¹, J.P. Albar³, J. Prieto³. 'Gene Therapy Unit. Department of Medicine. University of Navarra School of Medicine. Pamplona. ²Centro de Investigaciones Biológicas. CSIC. Madrid. ³Proteomics Facility and Department of Immunology and Oncology. Centro Nacional de Biotecnología (Pharmacia/CSIC). Canto Blanco. Madrid

Monoclonal antibodies (mAbs) can mediate antitumor effects by indirect mechanisms involving antiangiogenesis and upregulation of the cellular immune response rather than by direct tumor cell destruction. From mAbs raised by immunization of rats with transformed murine endothelial cells, a mAb (EOL4G8) was selected for its ability to eradicate a fraction of established CT26 colon carcinomas that did not express the EOL4G8-recognized antigen. The antigen was found to be ICAM-2 (CD102). Antitumor effects of EOL4G8 required a functional T-cell compartment, were abrogated by depletion of CD8+ cells and correlated with antitumor CTL activity, while it only induced a mild inhibition of angiogenesis. Interestingly, we found that EOL4G8 mAb acting on endothelial ICAM-2 markedly enhances LFA-1-independent adhesion of immature dendritic cells to endothelium, an effect that is at least in part mediated by DC-SIGN (CD209). 11th ANNUAL CONGRESS OF EUROPEAN SOCIETY OF GENE THERAPY Edimburgo, 14-17 de noviembre, 2003 nificantly improved responses in treated compared with non-treated eyes. Histological analysis revealed reduced photoreceptor cell loss. Whilst treatment resulted in modulation of intra-ocular inflammation, there was no decrease in systemic proliferative responses to the IRBP peptide, supporting the specificity of this approach for the treatment of uveitis. Studies are now underway to evaluate the efficacy of AAV and lentiviral vectors carrying a combination of immunomodulatory genes.

P 265

Identification of an HLA-A*0201-restricted epitopic peptide from human dystrophin: application in Duchenne muscular dystrophy gene therpay

E Ginhoux¹, M Leboeuf¹, C Doucet¹, F A Lemonnier², H Firat¹, O Danos¹, J Davoust¹

¹Genethon, CNRS UMR8115, Evry, France; ²Institut Pasteur, Unité d'immunologie cellulaire antivirale, Paris, France

Dystrophin-based gene therapy treatments aimed at correcting the Duchenne muscular dystrophy phenotype require stable expression of normal dystrophin (DYST) protein in myocytes without immune responses, which would compromise long-term expression. To predict cytotoxic T-cell-mediated responses elicited by transgenes, we used here H-2-negative HLA-A*0201 transgenic mice and identified human DYST epitopes, which elicit HLA-A*0201-restricted cytotoxic T cell activities. Among a series of eight peptides predicted from the human DYST sequence, not shared with the endogenous mouse DYST sequence, four of them were able to bind to HLA-A*0201 molecules and to induce cytotoxic T lymphocyte (CTL) responses. After human DYST DNA transfer in muscle of HLA-A*0201 mice, only the human DYST1281 epitope, located in the spectrin-like repeat 9 domain, induced strong CD8+ CTL responses. Using the corresponding human DYST1281 peptide/HLA-A*0201 tetramer, we detected human DYST1281-specific CD8+ T cells in peripheral lymphoid organs and blood of HLA-A*0201 mice injected with human DYST DNA. Our results demonstrate that muscle injection with human DYST DNA systematically triggers CTL responses against this HLA-A*0201-restricted human DYST1281 peptide, which is present in long human DYST isoforms. Identification of such immunodominant human DYST epitopes and use of peptide/HLA tetramers will allow the immunomonitoring of CTL responses in HLA-phenotyped Duchenne muscular dystrophy patients undergoing gene therapy. Finally, the knowledge of HLA-A*0201-restricted human DYST peptides will be of importance to test, in mouse models, new immunomodulatory interventions allowing long-term engraftment of human dystrophin.

P 266

Toward gene therapy of Wiskott-Aldrich Syndrome with regulated lentiviral vectors

I J Molina¹, M Toscano¹, C Frecha¹, M Santamaria², M Blumdell³, A Thrasher³, F Martin⁴

¹Facultad de Medicina, Universidad de Granada, Unidad de Inmunologia, Granada, Spain; ²Facultad de Medicina. Universidad de Córdoba, Fisiología e Inmunología, Córdoba, Spain; ³Institute of Child Health, Molecular Immunology Unit, London, United Kingdom; ⁴Hospital Clinico San Cecílio, Unidad Mixta de Investigaciones Medicas, Granada, Spain

The Wiskott-Aldrich syndrome (WAS) is a severe immunodeficiency disease arising from mutation(s) in the WASP gene, which in normal haematopoietic cells encodes an intracellular protein able to integrate extra-cellular signals with cytoskeleton organization. The relative low number of patients and the monogenetic origin of the disease make WAS a good candidate for gene therapy. Over-expression of WAS gene in haematopoietic or non-haematopoietic cells can be toxic. It is therefore desirable to regulate the expression of the WASP gene in a similar way as it is regulated in normal haematopoietic cells. We developed SIN-18 derived lentiviral vectors expressing eGFP (WpE) and WAS gene (WpW) drived by a 500bp WASp promoter fragment (Petrella 1998). Both vectors were analyzed for specificity of transcription using a panel of haematopoietic and non-haematopoietic cells from different sources such as tumor derived cell lines, herpesvirus saimiri inmortalized T cell lines and primary cells. We found that eGFP expressing vectors were better expressed (4-5 folds) in primary haematopoietic cells than in primary endothelial or fibroblastic cells, but no differences were observed among transformed cell lines from different origins. Surprisingly, WASp expressing vector (WpW) was much more specific since transduced HSV-T cell lines expressed WASp at least 100 times more efficiently that both transformed or primary non-haematopoietic cell lines. In addition, WASp protein levels in transduced HSV-T cell lines from WAS patients was comparable to HSV-T cell lines from healthy donors. Finally, we observed that the WASp positive population of a HSV T cell line from a WAS patient increased with time in culture indicating positive selection for WASp-expressing cells. Analysis of phenotypic rescue of HSV-T cells from WAS patients showed restored morphology and CD3 actin polymerization. We used a HSV T cell model to demonstrate the feasibility of use regulated lentiviral vectors for WAS gene therapy.

P 267

- Treatment of experimental rheumatoid arthritis by electrotransfer of hTNF- α soluble receptor-I gene variants
- C Bloquel¹, P Bigey², D Scherman², M C Boissie¹, N Bessis¹ ¹UPRES EA-3408 and Rheumatology Dept, University Paris 13 and
- Aviceme Hospital (AP-HP), Bobigny, France² U266 INSERM FRE 2463 CNRS, Faculté de Pharmacie, Paris, France

Objectives: Electrotransfer (ET) is a simple, efficient and safe method for transferring therapeutic transgenes *in viva*. ET parameters and therapeutic effect in collagen-induced arthritis (CIA) in mice were studied after the ET of transgenes encoding three human hTNF- α soluble receptor-I (hTNFR-Is) variants.

Methods: Three plasmids were used: pCOR(hTNFR-Is)1, pCORhT-NFR-Is/mIgG1, pCOR(hTNFR-Is)2, encoding respectively a monomeric, a chimeric and a dimeric form of hTNFR-Is. ET was performed by injecting plasmids and by delivering electric pulses in muscle. hT-NFR-Is concentrations were determined by ELISA. Detection of plasmid genome was determined by PCR on various organs. CIA was induced by immunization of DBA/1 mice with bovine type II collagen in complete Freund adjuvant. Results. The expression of hTNFR-Is in muscle or serum 10 days after ET of the 3 plasmids (1 to 15 µg) was dependent on the dose of plasmid. Local expression in the muscle lasted for at least 6 months. Systemic expression in the serum was detectable right from 1 µg for the hTNFR-Is/mIgG1 form and lasted for at least 6 months. No plasmid DNA was found in the organs distant from the injected muscle. ET of 50 µg pCORhTNFRIs/mIgG1 plasmid at the onset of clinical disease induced a clear-cut decrease of clinical (p=0,0001 vs. empty pCOR electrotransferred group) and histological signs of arthritis. The dimeric (hTNFR-Is)2 form was also efficient (p=0,0378). The monomeric form had no effect on arthritides. Repeated recombinant protein (etanercept) injections highlighted the interest of gene therapy approach, which leads to sustained therapeutic effect after single treatment. Conclusion: Intramuscular ET of plasmids encoding the three forms of hTNFR-Is leads to a longterm and dose-dependent secretion of hTNFR-Is in vivo. CIA is efficiently inhibited when ET of plasmids encoding either the chimera or the dimeric form of the hTNFR-Is is performed at the onset of the clinical signs.

Methods: Adenoviral vectors were constructed containing SLPI and elafin cDNA under the control of the murine cytomegalovirus promoter. 100% infection efficiency was achieved for both human macrophages and endothelial cells by precomplexing the virus with liposomes. Macrophages and HUVECs were also infected with an empty adenoviral vector (dl70/3) and a vector expressing eotaxin as controls. Macrophages were stimulated with LPS for 3hrs and HUVECs were stimulated with LPS, oxLDL and TNF- for 8hrs. Macrophage TNFaproduction and HUVEC interleukin-8 production were measured by ELISA. Electromobility shift assays and Western Blot analysis were performed to examine activation of the inflammatory transcription factor NF-kB.

Results: SLPI and elafin significantly reduced inflammatory cytokine production in both macrophages and HUVECs to a range of stimuli (see tables). This was associated with a reduction in NF-kB activation and an increase in Ik-B in response to these stimuli. Conclusions : These results indicate that elafin and SLPI have anti NF-kB/anti inflammatory properties that may have therapeutic potential in a variety of chronic pathologies including atherosclerosis.

Macrophage TNF-aproduction

Adenovirus	Elafin	SLPI	eotaxin	dl70/3
LPS 100ng/ml	*68+/- 5.2	*53+/- 4.1	95.6+/- 5.5	93.4+/- 8.4
HUVEC IL-8 pr	oduction red cells +/-SD.	triplicate, 3	donors	

|--|

Adenovirus	Elafin	SLPI	eotaxin	dl70/3
OxLDL 100µg/ml	*56+/- 6.0	*40+/- 14	101+/- 5.6	101+/- 10.3
LPS 100ng/ml	*40+/-6.1	*33+/- 2.6	111+/- 16	96+/- 21
TNF-α 10ng/ml	*60+/- 6.8	*30+/-7.1	102+/-6	94+/- 9.5

P 279

Lentiviral vectors are efficient tools to achieve stable gene expression in Herpesvirus Saimiri-immortalized T cell lines M Toscano¹, F Martin², C Frecha¹, A Thrasher³, I J Molina

Facultad de Medicina, Universidad de Granada, Unidad de Inmunologia, Granada, Spain; ³Hospital Clinico San Cecilio, Unidad Mixta de

Investigaciones Medicas, Granada, Spain; Institute Child Health, Molecular Immunology Unit, London, United Kingdom

Primary immunodeficiencies are genetic disorders where the immune system is compromised affecting one or multiple haematopoietic cell lineages. Functional studies of affected cells are difficult because of the limited growth of primary haematopoietic cells. Herpesvirus Saimiri (HVS) immortalized T cells maintain the phenotype and functional characteristics of parental cells. This represents a new experimental model to study haematopoietic cells other than tumour derived cell lines. One drawback for this model has been the difficulty to transfect or transduce HSV-immortalized T cell lines. In this study we analyse the best way to get a trans-gene expressed stably and efficiently into a panel of target HSV-immortalized cell lines. Two retroviral vector system, oncoretrovirus (MLV) based system and a lentivirus based system were examined. Both system worked very efficiently in tumour cell lines, but only lentiviruses vectors were able to efficiently modify HSV cell lines. Transgene expression were stable for at least 2 months in culture. Titration of lentiviral vectors in HSV T cell lines and tumor T cell lines reveal that we needed 10 times more vector to get the same efficiency of transduction in HSV cells than in Jurkat cells. Remarkably, we could reach up to 80% transduction efficiency with a multiplicity of infection (MOI) of 100 in three HSV T cell lines and up to 60% in other two. Higher MOIs did not improve significantly the percentage of transduced cells. Thus, lentivirus vector are an efficient tool to genetically modify HSV immortalized T cell lines allowing the use of this model to study genetic modifications of hematopoietic cells.

P 280

Superiority of baculoviral vectors compared to adenoviral vectors in effective gene transfer for cardiovascular indications

G Grassi¹, H Kohn², J Platz², S Engel², A Kuhn², C Herdeg³, R Kandolf² ¹University of Tuebingen, Department of Molecular Pathology, Germany and, University Hospital of Trieste, Department of Internal Medicine, Trieste, Italy; ²University Hospital of Tuebingen, Department of Molecular Pathology, Tuebingen, Germany; ³University Hospital of Tuebingen, Department of Internal Medicine, Tuebingen, Germany

Background: The development of effective gene therapy approaches for cardiovascular diseases is in part limited by the lack of the appropriate gene transfer system. Thus, to investigate novel strategies, we explored the possibility to use baculoviral vectors and compared them to commonly used viral vectors, i.e. recombinant adenoviruses.

Methods: Baculoviral and adenoviral vectors expressing the enhanced green fluorescence gene were prepared and used to transduce human and porcine coronary smooth muscle cells (hCSMC and pCSMC), human endothelial cells (hCEC) and human cardiomyocytes (hCM). In addition, we studied the vector impact on cell viability evaluating the effects on DNA replication measured by bromodeoxyuridine incorporation.

Results: Baculoviral vector efficiently transduced hCSMC but not hCEC, while adenoviral vector behaved oppositely. Thus, baculovirus appears to be particularly suitable as transfer system in the treatment of in-stent restenosis, where hCSMC but not hCEC should be targeted by the therapeutic gene(s). When both vectors were used to transduce pCSMC, a marked induction of cell death was noticed compared to hCSMC. This observation stresses the existence of species-specific differences between human and pig and points out the difficulties to extrapolate data obtained in animal model to human beings. When used to transduce hCM, both vectors showed comparable transduction efficiencies, indicating that baculovirus can substitute adenovirus as transfer vector to modulate myocardial gene expression, e.g. in heart failure. Viability tests revealed a transitory inhibition of cell proliferation in baculoviral transduced cells, while, on the contrary a sustained inhibition was observed in adenoviral transduced cells, thus showing the higher impact on the cell biology of this last kind of vector. Conclusion: Due to the efficient transduction rate of hCM, the more selective transduction of hCSMC than hCEC and the lower impact on cell viability compared to adenoviral vectors, baculovirus are particularly promising as a transfer vector in the field of cardiovascular diseases such as heart failure and in-stent restenosis

P 281

Development of VEGF-A transcription factor for treatment of peripheral arterial disease

E J Rebar¹, B H Annex², F Giordano³, K Spratt¹, B Johnstone¹, L Zhang¹, Q Dai², Y Huang³, R Hickey³, J Rokovich⁴, C C Case⁵, <u>JT Martin¹</u> Sangamo BioSciences, Development, Richmond, CA, United States; ²Duke University, Internal Medicine, Durham, NC, United States; ³Yale University School of Medicine, Medicine, New Haven, CT, United States; *Edwards Lifesciences, Development, Irvine, CA, United States; *Sangamo BioSciences, Research, Richmond, CA, United States

Peripheral Arterial Disease (PAD) causes significant morbidity in the European Union and United States. Although some patients are successfully treated with surgery there is no effective treatment option for most patients. Gene therapy with angiogenic factors has been proposed as a potential therapeutic for these patients. Pre-clinical studies and early clinical trials utilizing single cDNAs for angiogenic factors have supported this notion. However, optimal therapies might require delivery of multiple genes and / or splice variants in a coordinated fashion. We are developing a therapeutic angiogenesis product based on the use of designed Zinc Finger Protein (ZFP) transcriptional regulators to activate Vascular Endothelial Growth Factor A (VEGF-A). In initial cellular studies we identified several VEGF-A activators from a

XXX CONGRESO DE LA SOCIEDAD ESPAÑOLA DE INMUNOLOGÍA Santander, del 25 al 28 de mayo de 2004

VIH. Estos resultados, junto con la correlación entre frecuencias de alelos 0 e incidencia de TBC, apoyan la idea de que *M. tuberculosis* es una de las fuerzas selectivas que ha colaborado en la selección positiva de los alelos no productores de MBL en las poblaciones.

F-0009-15-O. RELACIÓN ENTRE LOS POLIMORFISMOS DE LA MBL Y LA SUSCEPTIBILIDAD Y SEVERIDAD DE LA NEUMONÍA ADQUIRIDA EN LA COMUNI-DAD. A.García-Saavedra¹, F. Rodríguez de Castro², J. Solé-Violán³, M.I. García-Laorden¹, A. Caballero⁴, A. Marcos³, M.A. Ponce², J.M. Ferrer³, C. Rodríguez-Gallego¹. RedRespira-ISCiii-RTIC-03/11. ¹Servicio de Innunología. ²Servicio de Neumología, 3 U.M.I y ⁴Unidad de Investigación. Hospital de Gran Canaria Dr. Negrín. Las Palmas de Gran Canaria.

La Neumonía Adquirida en la Comunidad (NAC) es la principal causa de muerte por infección en países desarrollados. Su severidad es muy variable, desde asintomática hasta shock séptico, fracaso multiorgánico (FMO) y muerte. La lectina de unión a manosa (MBL) es una proteína sérica de fase aguda que reconoce diversos carbohidratos presentes en muchos microorganismos, activando la cascada del complemento por la vía lectin- dependiente y promoviendo la opsonización. La deficiencia y los bajos niveles de MBL se deben a las variantes estructurales B, C y D (alelos 0, siendo A, el alelo normal). Se analizaron los alelos del gen de la MBL en 202 individuos adultos con NAC, que posteriormente fueron estratificados según severidad, y un grupo control de 386 individuos. El tipaje se realizó con técnicas de PCR. El alelo más frecuente en nuestra población (alelo B) se encontró en mayor frecuencia en NAC que en controles (P=0.01). Los pacientes con sepsis y sepsis severa mostraron frecuencias alélicas y genotípicas similares y fueron agrupados (no-shock séptico-NSS-; N=159). Los pacientes con NSS presentaron mayor frecuencia de genotipos bajo/no productores que los controles (A/0+0/0: 46.5% vs 37.8%; P=0.06). La diferencia fue mayor cuando se compararon los pacientes fallecidos con NSS (NSSex) respecto a controles (A/A: 75% vs 37.8%; P=0.06). Sin embargo, los pacientes fallecidos por shock séptico (N=17) presentaron mayores frecuencias de genotipos normales que los NSS (A/A: 76.5% vs 53.5%; P=0.05) y que los pacientes con NSSex (A/A: 76.5% vs 25%; P=0.03). Similares resultados se observaron al comparar pacientes con FMO frente a NSS (A/A: 88.9% vs 53.5%; P=0.04) y frente a NSSex (A/A: 88.9% vs 25%; P=0.015). Nuestros datos indican que bajos niveles de MBL se asocian a mayor susceptibilidad a NAC, mientras que los genotipos alto productores presentan un mayor riesgo de desarrollar las formas más severas de la enfermedad, probablemente por una mayor respuesta inflamatoria.

F-0011. Inmunodeficiencias

Moderadores: Nuria Matamoros Florí (Mallorca), Margarita López Trascasa (Madrid)

F-0011-01-O. LINFOHISTIOCITOSIS HEMATOFAGOCÍTICA. ESTUDIO FENOTÍPICO Y GENOTÍPICO DE UNA FAMILIA. M.E. Seoane Reula¹, M. Camacho Lovillo², JL. Jiménez¹, J.A. León Leal², M.A. Muñoz-Fernández¹. ¹Laboratorio de Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid. ²Unidad de Enfermedades Infecciosas Pediátricas, Hospital Virgen del Rocío, Sevilla.

Introducción. La linfohisticitosis hematofagocítica (LHH) es una enfermedad rara que tiene una alta morbimortalidad. Se caracteriza por tener un defecto en las células efectoras del sistema inmunológico que se puede deber a un defecto congénito o adquirido. Clínicamente se manifiesta con un cuadro febril, hepatoesplenomegalia y síntomas neurológicos. A nivel analíticos se detecta citopenia, alteración en la coagulación, en el perfil lipídico, elevación de citocinas inflamatorias e infiltración de órganos por histiocitos y fenómenos de hemofagocitosis.

Pacientes y Métodos. Se estudia una familia de dos progenitores consanguineos y dos hijas gemelas. Se analiza la expresión de perforina en las subpoblaciones celulares CD3+CD8+, CD56+ CD3-, CD56+CD3+ por citometría de flujo de cuatro colores y se realiza el análisis del gen de la perforina por secuenciación automática.

Resultados. Entre los datos inmunológico más relevantes observamos que uno de los progenitores (padre) y una de las niñas tienen menor expresión de perforina por citometría de flujo en la subpoblación celular CD56+ CD3- que puede corresponder con un patrón heterocigoto, hecho que se comprobó en el análisis del gen de la perforina por secuenciación, donde encontramos una mutación en el mismo progenitor y niña igualmente en heterocigocia. La ventaja de realizar el estudio por citometría de flujo, es que si hay un déficit de expresión de perforina lo podemos detectar en horas, siendo un screening rápido. Es aconsejable realizar un estudio genético para poder detectar o bien mutaciones ya descritas o describir nuevas mutaciones relacionadas con un defecto en la perforina para en un futuro poder hacer con certeza un diagnóstico prenatal.

Conclusión. En la actualidad los pacientes con LHH se pueden beneficiar de nuevas técnicas diagnósticas específicas y rápidas como la citometría de flujo para la detección de déficit en al expresión de perforina. También es importante la realización de estudios genéticos que lo confirmen por técnicas automáticas de secuenciación. Todo ello servirá para que los pacientes puedan disponer en la mayor brevedad posible de un tratamiento.

F-0011-02-O. RECONSTITUCIÓN FUNCIONAL DE CÉLULAS DE PACIENTES CON EL SÍNDROME DE WISKOTT-ALDRICH MEDIANTE VECTORES LENTIVIRALES ESPECÍFICOS DE CÉLULAS HEMATOPOYÉTICAS. F. Martín¹, M.G^a. Toscano², M. Blundell⁴, C. Frecha¹, G. K. Srivastava², M. Santamaría³, A.J. Thrasher⁴, I.J. Molina². ¹IPB «López Neyra» CSIC. Granada. ²Unidad de Imunología. Facultad de Medicina. Universidad de Granada. ³Departamento de Fisiología e Imunología. Facultad de Medicina. Universidad de Córdoba. ⁴Institute of Child Health, University College London.

El Síndrome de Wiskott-Aldrich (WAS) es una inmunodeficiencia causada por mutaciones en el gen WASP, expresado en células hematopoyéticas. Los pacientes de WAS podrían beneficiarse de una terapia génica sobre células madre hematopoyéticas (HSC). No obstante, incluso las poblaciones de HSC altamente purificadas arrastran células contaminantes que pueden fundirse con, o diferenciarse hacia, tejidos no hematopoyéticos. Por ello, es importante diseñar vectores que no sólo transporten eficientemente el gen terapéutico hasta las HSC, sino que además dirijan la expresión del transgen de una manera restringida a células hematopoyéticas.

Hemos usado un fragmento de 500 bp de secuencias proximales del promotor endógeno del gen WASP para dirigir la transcripción del cDNA de WASP en un vector lentiviral autoinactivado. La transducción de células de pacientes de WAS inmortalizadas con HVS, así como células alogénicas primarias de WAS, nos permitió obtener un 60-70% de células WASp+ tras una ronda de infección lentiviral a niveles similares a los de los individuos normales. Las células no hematopovéticas fueron transducidas con una eficiencia similar, y la PCR a tiempo real reveló que los niveles de integración del transgen eran comparables a los obtenidos en células T. No obstante, los niveles de expresión de la proteína en células no hematopoyéticas eran al menos 100 veces inferiores a los detectados en células hematopoyéticas. Las células T de los pacientes de WAS fueron rescatadas de sus defectos funcionales, con normalización de la morfología celular, restauración de las respuestas mediadas por CD3 y ventaja selectiva de crecimiento in vitro.

En resumen, vectores lentivirales que incorporan secuencias proximales del gen WASP confieren una expresión de WASp que es estable, eficiente, fisiológica y restringida a células hematopoyéticas.

F-0011-03-O. DIAGNÓSTICO DE PACIENTES CON SÍNDRO-ME DE WISKOTT-ALDRICH MEDIANTE ANTI-CUERPOS MONOCLONALES CON PATRONES DIFERENCIADOS DE REACTIVIDAD EN CITO-METRÍA Y WESTERN BLOT. M. Gª-Toscano¹, C. Frecha², I.J. Molina¹, F. Martín², ¹Unidad de Inmunología. Facultad de Medicina. Universidad de Granada. ²IPB «López Neyra». CSIC. Granada.

El Síndrome de Wiskott-Aldrich (WAS) es una inmunodeficiencia debida a mutaciones en el gen WASP. Estas se localizan en los pacientes se a lo largo de todo el gen, sin correlación entre el genotipo y la severidad de la enfermedad. No obstante, aquellos pacientes que presentan cantidades detectables de WASp en sus leucocitos presentan enfermedades atenuadas. Por tanto, es deseable contar con métodos que permitan una detección de los niveles intracelulares de WASp. Sin embargo, los métodos de análisis, en especial la citometría de flujo. se han revelado hasta el momento poco reproducibles y fiables para establecer el diagnóstico de WAS.

Hemos utilizados dos AcMo (D1 y B9) dirigidos contra los AAs 1-250 de la proteína, estableciendo las condiciones para su utilización diagnóstica. El AcMo D1 detecta con fiabilidad WASp en Western Blot, pero exhibe una alta inespecificidad en citometría de flujo. El protocolo de citometría fue modificado para incluir un bloqueo extenso de proteínas intracelulares. Esto ha permitido concluir que sólo el AcMo B9 reacciona específicamente con WASp en citometría de flujo, pero no es suficientemente sensible en Western Blot.

El estudio fue realizado sobre un panel de células T de pacientes de WAS inmortalizadas con HVS así como células primarias alogénicas de enfermos de WAS y sujetos normales. Igualmente, se han utilizado células de pacientes de WAS transducidas con vectores lentivirales conteniendo un gen WASP intacto, estableciendo con precisión los niveles de expresión proteica derivada del transgen. Los porcentajes de células transducidas correlacionaban con los resultados de integración del vector obtenidos mediante PCR en tiempo real. Por último, se estudiaron linfocitos de 5 pacientes con un cuadro clínico de sospecha de WAS. El análisis combinado de citometría y Western Blot con estos anticuerpos permitió determinar que sólo un paciente era compatible con WAS, lo que ha sido corroborado por la evolución clínica posterior de todos ellos. Este método es por tanto de potencial interés a la hora de establecer el diagnóstico de WAS.

F-0011-04-O. CARACTERIZACIÓN DE UN PACIENTE CON DEFICIENCIA DE IRAK-4. M.P. Cárdenes, E.I. Santiago, A. Puel, H. Bernuth, M.C. Alvarez-Santana, J.L. Casanova, E. Colino, J.C. Rodríguez-Gallego. Servicio de inmunología, Hospital General de Gran Canaria Doctor Negrín.

La respuesta de las células fagocíticas de la inmunidad innata frente a los diversos microorganismos depende del reconocimiento de patrones moleculares presentes en los diferentes patógenos, induciendo la activación celular. Este reconocimiento es llevado a cabo por los receptores Toll-like (TLRs) presentes en estas células. Los TLRs, el IL-1R y el IL-18R señalizan al interior celular a través de una cascada que comparte varias moléculas de señalización, como IRAK-4.

El paciente es un varón de 7 años de edad, que desde los primeros meses de vida ha sufrido infecciones diseminadas recurrentes (dos episodios de artritis, sinusitis y otitis media recurrente, abscesos de pared abdominal y cutáneos y, celulitis) por Gram positivos (S. pneumoniae, S. equi, S. pyogenes y S. aureus). Dos primos en segundo grado del paciente fallecieron a las edades de seis meses y de dos años debido a meningitis y osteomielitis por pneumococo y meningitis por S. aureus respectivamente. Todos los resultados inmunológicos previos habían sido normales. Sin embargo, el paciente presenta un defecto severo de respuesta (producción de TNF-α, IL-6, IL-1β, IL-12p70) a diversos agonistas de TLR-2 (ácido lipoteicocico), TLR-3 (poly I:C) y TLR-4 (lipopolisacáridos de E. coli, Salmonella enteritidis y S. minessotta). Sin embargo otros activadores de TLR-2 (zymosán, peptidoglicanos) inducen una respuesta sólo discretamente disminuída. Además detectamos una ausencia completa de respuesta (producción de IL-12p70, IL-6, IL-8, IL-10) frente a IL-1β.

El análisis molecular del gen *IRAK-4* puso de manifiesto una mutación en el exón 11, en el extremo 3' del gen, que introduce un codon stop en el residuo 402.

Se describe un nuevo caso de déficit de IRAK-4. Los datos aportados sugieren un déficit parcial de IRAK-4.

Financiación: RedRespira-ISCiii-RTIC-03/11.

F-0011-05-C. DEFICIENCIA DE IL12Rb1 EN UN PACIENTE CON INFECCIONES DISEMINADAS POR Salmonella enteritidis Y CARCINOMA EPIDERMOIDE ESOFÁGICO. M.P. Cárdenes, M.I. García-Laorden, A.D. García-Saavedra, A. Moreno, M.C. Álvarez-Santana, E.I. Santiago, A.R. Domínguez-Acosta, J.C Rodríguez-Gallego. Servicio de Inmunología del Hospital de GC Dr. Negrín, Las Palmas de Gran Canaria.

Los defectos de producción de IL-12 y de la cadena β 1 del receptor de la IL-12 (IL-12R β 1) se asocian a un defecto severo de pro-

XXXI CONGRESO DE LA SOCIEDAD ESPAÑOLA DE INMUNOLOGÍA Córdoba, 10-13 de mayo de 2005 (tipo I). En concreto, se analizó la fosforilación de STAT-1 mediante citometría de flujo en respuesta a dosis crecientes de IFN_Y, datos que se compararon con el marcaje en membrana del receptor del IFN_Y, la producción de TNF α en respuesta a LPS y LPS + IFN- γ y la expresión de CD64 a dosis crecientes de IFN_Y.

Los tres pacientes presentan una mutación T188G, Val63Gly, en el sitio de unión del receptor al IFN γ . Los niveles de fosforilación de Statl fueron reducidos tras estimulación con bajas concentraciones de IFN γ , mientras que a concentraciones altas aumentaban y eran normales en respuesta a IFN α , en comparación con controles sanos.

La fosforilación de Stat-1 y la inducción de CD64, en respuesta a IFNγ son muy sensibles para detectar alteraciones en la respuesta a IFNγ, incluso en deficiencias parciales con sólo un defecto moderado.

Financiación: Red-Respira ISCiii-RTIC-03/11 e Instituto Canario de Investigación del Cáncer ISCiii RTICCC-C03/10.

ESTUDIO DE MUTACIONES EN EL GEN AIRE EN PACIENTES CON SOSPECHA DE SÍNDROME POLIGLANDULAR AUTOIN-MUNE TIPO 1. <u>Delgado Cerviño E</u>¹, Álvarez Doforno R¹, González Casado I², Martínez López MM², Salcedo Moreno C¹, Gracia Bouthelier R², Fontán Casariego G¹. ¹Servicio de Inmunología, Hospital La Paz (Madrid). ²Servicio de Endocrinología, Hospital La Paz (Madrid).

Introducción: El Síndrome Poliglandular Autoinmune tipo I (APS-1) es una enfermedad autosómica recesiva debida a mutaciones en el gen AIRE (Autoimmune Regulator), que se localiza en el cromosoma 21. El diagnóstico clínico se suele caracterizar por la aparición de al menos dos de los siguientes criterios: candidiasis mucocutánea crónica, hipoparatiroidismo autoinmune y/o insuficiencia adrenal primaria autoinmune. Además pueden presentarse otros procesos autoinmunes como hepatitis, onicodistrofia, diabetes mellitus tipo 1, tiroiditis, hipopitituarismo. Se han descrito al menos 45 mutaciones distintas no existiendo relación genotipo/fenotipo.

Objetivos: Se realiza estudio inmunológico y genético de 4 pacientes con sospecha de APS-1.

Pacientes: *Caso 1*, niña de 11 años (consanguinidad de 2º grado) con hipoparatiroidismo, cuadro malabsortivo de dudosa etiología y hepatitis autoinmune; *Caso 2*, paciente de sexo femenino de 17 años, con hepatitis autoinmune, hipoparatiroidismo autoinmune, anticuerpos antitiroideos con función tiroidea normal, candidiasis mucocutánea, distrofia ungueal y bronquiolitis obliterante de origen incierto, a la espera de trasplante pulmonar; *Caso 3*, varón de 15 años con candidiasis mucocutánea, ferropenia, linfopenia y onicomicosis en manos, y hepatitis autoinmune; *Caso 4*, niña de 14 años con amenorrea primaria (posible hipogonadismo gonadotropo), pancitopenia y hepatitis autoinmunes, esponidilolistesis S1-S2, procesos diarreicos de 3-4 días de duración, fenómeno de Raynod, hipotiroidismo central e hiperglucemia secundaria a tratamiento inmunosupresor.

Materiales y métodos: Estudio inmunológico. Estudio genético: a partir de ADN genómico, realizando amplificación por PCR de los 14 exones y las regiones intrónicas adyacentes y posterior secuenciación.

Resultados:. Estudio genético: en el caso 1 encontramos una deleción de 13 pares de bases. Se trata de un punto caliente, en el exón 8 descrito al menos en 51 pacientes, la mayoría en Gran Bretaña. No encontramos mutación en los demás casos.

Conclusión: El Síndrome Poliglandular Autoinmune es una enfermedad heterogénea. Existen diversas series en las que no se encuentra mutación en el gen AIRE, por lo que deben existir otros genes implicados que será necesario estudiar.

HETEROGENEIDAD GENÉTICA Y CLÍNICA EN LOS TRASTOR-NOS AUTOINFLAMATORIOS ASOCIADOS A CRIOPIRINA (CAPS). <u>Yagüe J</u>^I, Aróstegui JI^I, Rius F^I, Plaza S^I, Vives J^I, Argüelles F², González-Enseñat MA³, Modesto C⁴, Antón J⁵, García-Consuegra J⁶. ¹Servicio de Inmunología, Centro de Diagnóstico Biomédico CDB. Hospital Clínic. Barcelona. ²Servicio de Pediatría. Hospital Virgen de la Macarena. Sevilla. ³Servicio de Pediatría. Hospital Sant Joan de Deu. Barcelona. ⁴Servicio de Reumatología Pediátrica. Hospital de la Vall d'Hebron. Barcelona. ⁶Servicio de Reumatología Pediátrica. Hospital Sant Joan de Deu. Barcelona. ⁶Servicio de Reumatología Pediátrica. Hospital Sant Joan de Deu. Barcelona. ⁶Servicio de Reumatología Pediátrica. Hospital Sant Joan de Deu. Barcelona. ⁶Ser-

Introducción: La proteína criopirina ha sido relacionada con la vía de transducción de señales pro-inflamatorias debido a su papel en la regulación de la activación del factor de trascripción NFκB. La criopirina esta relacionada desde el punto de vista estructural con la proteína pirina/marenostrina – responsable de la FMF- por la presencia del dominio pirina dentro de la secuencia de aminoácidos. Está codificada por el gen denominado *CIAS1/PYPAF1/NALP3*, que mapea en la región 1q44. Mutaciones en este gen son responsables de un grupo de síndromes autoinflamatorios denominados CAPS –Cryopyrin-Associated Periodic Syndromes-, que recientemente han sido incluidos en el grupo VII de Inmunodeficiencias en la ultima clasificación de la IUIS.

Objetivos: En la presente comunicación presentamos los estudios del gen *CIAS1/PYPAF1/NALP3* en 12 pacientes afectos de síndromes autoinflamatorios asociados a criopirina, pertenecientes a 7 familias españolas, y se valora el tratamiento con terapia biológica inmunomoduladora de estas patologías.

Pacientes y Métodos: Se incluyen en este estudio 8 pacientes que presentaban un cuadro clínico compatible con FCAS/FCU pertenecientes a tres familias no relacionadas. En una de ellas, con individuos de 4 generaciones afectadas. En una cuarta familia se estudio una paciente afecta por el síndrome CINCA / NOMID, sin historia familiar de enfermedad. Una quinta familia con un paciente afecto de Muckle-Wells. Adicionalmente, se analiza un caso inicialmente diagnosticado de Artritis Idiopatica Juvenil con afectación sistèmica y finalmente un caso no filiado de síndrome Autoinflamatorio recurrente.

En todos ellos se realiza el estudio mutacional de los genes asociados a los diversos SHFP mediante la amplificación por PCR de cada uno de los exones y su posterior secuenciación. Así mismo se realiza el seguimiento de las diversas terapias mediante el análisis de los valores de reactantes de fase aguda.

Resultados y Conclusiones: Se analiza la gran variabilidad genotípica y fenotípica asociada al gen CIAS1. Se pone de manifiesto la existencia de síndromes asociados no filiados y finalmente se valoran los efectos terapéuticos de la terapia biológica inmunomoduladora en el tratamiento de los CAPS.

ANÁLISIS DE SEGURIDAD BIOLÓGICA EN TERAPIA GÉNI-CA DEL SÍNDROME DE WISKOTT-ALDRICH. G^a Toscano M⁴, Frecha C², Martín F², Molina IJ¹. ¹Unidad de Inmunología. Facultad de Medicina. Universidad de Granada. ²IPB "López Neyra". CSIC. Granada.

El síndrome de Wiskott-Aldrich (WAS) es una inmunodeficiencia causada por la inactivación total o parcial de la actividad de la

101

proteína WASP debido a mutaciones en su gen. Los pacientes tienen defectos funcionales en al práctica totalidad de las células del sistema inmune y en la actualidad no existen tratamientos efectivos. Esto hace de WAS una enfermedad ideal para su tratamiento mediante estrategias de terapia génica. El objetivo final de estas estrategias es la modificación genética de células hematopoyéticas pluripotenciales del paciente para que expresen el gen funcional de WASP. Se han desarrollado diversos vectores oncoretrovirales y lentivirales capaces de expresar el gen WAS en progenitores murinos y humanos. Asimismo, se ha demostrado la capacidad de estos vectores de rescatar el fenotipo sano tanto en modelos celulares como en animales. Sin embargo, no se han estudiado los efectos de una posible sobre-expresión de WASP en células del sistema inmune ni una expresión ectópica del gen en células no-hematopoyéticas. En este trabajo se muestran evidencias de que la sobre-expresión de WASP producida por transducción con vectores lentivirales no produce fenómenos de toxicidad en las células hematopoyéticas incluso cuando son transducidas con un alto número de vectores. Incrementos muy elevados en la concentración de vector producen toxicidad debido a componentes del vector e independientes de la proteína expresada dado que el efecto es equivalente en vectores que expresan GFP ó WASP. De la misma manera, la expresión de WASP en células nohematopoyéticas no afecta a la capacidad proliferativa de las células primarias analizadas (endoteliales y foliculares dendríticas). Estos datos indican que los vectores lentivirales expresando WASP tienen unas altos niveles de seguridad biológica, dado que la sobre-expresión de la proteína terapéutica no tiene efectos deletéreos detectables.

SESIÓN 6: TUMORES

Moderadores: Francisco Ruiz Cabello (H.U. Virgen de Las Nieves, Granada), Ignacio Melero Bermejo (Clínica Universitaria Pamplona)

ALTERACIONES EN LA EXPRESIÓN DE LA CADENA CD3¢ DE LINFOCITOS T DE PACIENTES CON ADENOCARCINOMA GÁS-TRICO. <u>López Santalla M</u>*, Valeri Lozano AP*, Aguilera Montilla N*, Pérez Blas M*, Gutiérrez A**, Lasa I**, García Sancho L**, Granell FJ**, Martín Villa JM*. *Inmunología. Facultad de Medicina. Universidad Complutense de Madrid. Madrid. **Servicio de Cirugía General y Digestivo. Hospital Universitario Príncipe de Asturias (HUPA), Alcalá de Henares. Madrid.

El cáncer es causado por el crecimiento progresivo de la progenie de una célula transformada, lo que da lugar a la expresión de proteínas alteradas que constituyen dianas antigénicas para la respuesta inmunitaria del huésped. El sistema inmune posee varios mecanismos para intentar frenar el avance tumoral pero el tumor puede escapar a este control por varias vías.

Objetivos: Considerando las distintas alteraciones previamente descritas por nuestro grupo (expresión de la cadena CD3[°]₄, movilización de calcio y apoptosis/necrosis) en líneas de linfocitos T infiltrantes de tumor inmortalizados con un virus linfotrópico, (*Herpesvirus saimiri, HVS*) obtenidos a partir de pacientes con cáncer gástrico, nos propusimos 1) estudiar líneas de linfocitos T de sangre periférica de pacientes con adenocarcinoma gástrico 2) estudiar el patrón de expresión de la cadena CD3[°]₄ y 3) secuenciar el promotor del gen de esta cadena. Metodología: Se realiza la transformación con HVS de linfocitos T aislados a partir de sangre periférica o de muestras de mucosa de pacientes con adenocarcinoma gástrico. El análisis de la expresión de la cadena CD3 ζ , los estudios de movilización de calcio y los estudios de apoptosis y necrosis celular se realizaron por citometría de flujo. El estudio del patrón de expresión de la cadena CD3 ζ se llevo a cabo por microscopia confocal y el estudio del promotor de la cadena zeta se hizo a partir de la secuenciación del amplificado obtenido a partir de DNA genómico por PCR, usando cebadores específicos, previamente descritos.

Resultados: Las líneas de linfocitos T de sangre periférica de los pacientes con cáncer gástrico mostraron una menor expresión de la cadena CD3[°]₄ (MFI 152,9 vs 114,6) y una defectuosa movilización de calcio en respuesta a CD3, que no fueron debidas a una mayor tasa de apoptosis o necrosis celular. El patrón de expresión de CD3[°]₄ fue el mismo en pacientes que en controles. Finalmente, no se encontró ninguna diferencia en la secuencia del promotor entre pacientes y controles.

Conclusiones: Los resultados obtenidos revelan que las líneas T de sangre periférica de pacientes muestran defectos en la expresión de la cadena CD3 ζ y en la transducción de señales, lo que facilitaría la posibilidad del tumor de escapar de la respuesta inmunitaria. El hecho de que el defecto se encuentre en líneas crecidas *in vitro* sugiere que es inherente a las células T y no a factores solubles producidos por el tumor.

EXPRESIÓN HETEROGÉNEA DE MOLÉCULAS HLA DE CLASE I Y DE QUIMIOCINAS EN DIFERENTES METÁSTASIS ESTABLE-CIDAS DE UN PACIENTE CON MELANOMA METASTÁSICO. Méndez Vales R, Rodríguez Ruiz T, Cantón Robles J, B. Del Campo Alonso A, Schadendorf D*, Ruiz-Cabello Osuna F, Garrido F. *University Hospital Mannheim, Alemania. Servicio Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves. Granada. España.

Existen numerosas evidencias experimentales de cómo el sistema inmune ejerce una presión selectiva para seleccionar clonas tumorales con baja inmunogenicidad. Entre los cambios que suceden, la presentación de un fenotipo alterado en la expresión de los genes HLA es frecuentemente observada. También los tumores adquieren propiedades que tienden a inmunosuprimir el desarrollo de las respuestas inmunitarias, y favorecer la angiogénesis. Nosotros hemos caracterizado las alteraciones en la expresión de moléculas HLA de clase I en seis metástasis provenientes de un paciente con melanoma maligno metastasico. El paciente (UKRV-mel 20) fue tratado con células tumorales antólogas transducidas con el gen de la IL-12. El tipaje HLA del paciente fue A02011, A0204, B40011 B3801 and Cw*03. Todas la líneas celulares estudiadas (UKRV-mel20b, UKRV-mel20c, UKRVmel20d, UKRV-mel20e, UKRVmel20f and UKRVmel20g) fueron derivadas de metastásis asincrónicas.En la línea UKRV-mel 20f se observó una LOH que afectaba a un haplotipo HLA entero detectada por análisis de marcadores de microsatélite.El resto de las líneas no mostraron alteraciones. En cambio, si se detectaron diferencias para el patrón de quimiocinas IP-10, I-TAC, RANTES, MCP-1, VEGFc y TGFb. Interesantemente la línea con LOH pudo inmunoseleccionarse, porque de hecho es en la que se detectó mayor producción de quimiocinas proinflamatorias. Estos resultados apoyan la inmunoedición de los tumores en el sentido de que las distintas clonas pueden adquirir características genotípicas y fenotípicas que favorecen el escape a la respuesta inmune.