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ABSTRACT 

The management of uncertainty and imprecision is becoming more and more 
important in knowledge-based systems. Fuzzy logic provides a systematic basis for 
representing and inferring with this kind of knowledge. This paper describes an 
approach for fuzzy inference based on an uncertainty forward propagation method and 
a change in the granularity of the elements involved. The proposed model is able to 
handle very general kinds of facts and rules, and it also verifies the most usual 
properties required by a fuzzy inference model. 

K E Y W O R D S :  Fuzzy logic, fuzzy inference, uncertainty management, upper 
and lower probabilities 

I. INTRODUCTION 

The facts a n d / o r  the rules to be represented in knowledge-based 
systems may be often uncertain or imprecise. Different models for deduc- 
tive reasoning are based on mathematical  models like Demps te r /Sha fe r ' s  
theory of belief functions [1], [2], possibility theory [3], [4], among other 
alternatives to the standard Bayesian model. In particular, the problem of 
inference from vague or fuzzy premises [5] will be our main concern. 
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The basic problem may be stated as follows: 

If X is A then Y is B 
X is A* 

then Y is B*. 

(1) 

where X and Y are variables on reference sets U 1, U2, respectively. 
A, B, A* are fuzzy sets of the respective reference sets. These fuzzy sets 
may be considered as fuzzy information or soft restrictions on each 
variable. B* is also a fuzzy set, representing a soft restriction of Y 
obtained from the soft restriction A* on X and the fuzzy rule. 

This method was initially introduced by Zadeh [6], who proposed the 
following solution for the basic problem stated in (1) 

/xn*(s)  = sup{/XA*(r ) A (1 -- IxA(r ) + /ZB(S)) } 
g 

Thus, U 1 being the antecedent domain and U 2 the consequent domain, 
the membership function of the predicate B* is given by the projection 
on U 2 of the intersection of the implication relation /XH, defined by 
lZl4(r,s) = 1 /x ( 1 -  tzA(r)+ tz~(S)), and the cylindrical extension on 
U 1 × U 2 of the membership function /z A *. 

In contrast to the classical modus ponens, the above rule allows us to 
use fuzzy predicates A, B, and A*. Moreover, A* is not required to be 
identical with A. When A = A* and the predicates are crisp, then (1) 
becomes the classical modus ponens. 

A more general version of this generalized modus ponens (GMP) can 
be obtained if we replace the Min operator /x by an alternative t-norm *, 
and the particular implication relation /zH(r, s) by another tt A _~ B, thus 
obtaining 

/z B *(s)  = sup{ lz A *(r)*tZA~B(r,s)} .  (2) 
g 

Several authors have investigated this approach [3], [7], [8]. We are 
interested in a more general model within which the uncertain knowledge 
can be included. In this work, we propose a fuzzy inference model based 
on an uncertainty forward propagation approach [9]. 

The paper is arranged in nine sections. Section 2 describes the main 
ideas on which the proposed model is based, and section 3 outlines the 
propagation approach used to develop a fuzzy inference device. The basic 
inference model is introduced in section 4, the propagation approach is 
applied to a simple inference problem. The performance of this model is 
studied in section 5. Next, in sections 6 and 7, this basic inference model 
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is extended to include uncertainty degrees in the facts and rules, as well as 
more general kinds of rules. Section 8 includes an example that illustrates 
the use of the inference model presented, and section 9 comments on the 
performance and flexibility of our approach, and also points out future 
lines of research. 

2. OUTLINE OF THE INFERENCE MODEL 

Fuzzy logic provides a systematic basis for representing and inferring 
from imprecise knowledge. The main goal of this work is to develop a fuzzy 
inference model able to handle a wide class of fuzzy facts and rules. The 
simplest case would include fuzzy propositions such as 

Rule: if X is low then Y is high 

Fact: X is very low, 

but we would like also to include uncertain knowledge and more general 
kinds of facts and rules, as for example, 

X is low with certainty degree 0.7, 

if X is high then Y is very low with certainty degree 0.5, etc. 
Thus, we are interested in easy-to-implement and computationally 

efficient models able to do inference with the different kinds of fuzzy 
propositions (Zadeh [10]), and moreover, verifying the most usual prop- 
erties required by a fuzzy inference model. 

The proposed model is based on two main ideas [11]: 
° The fuzzy rule "If  X is A then Y is B"  defines a relation among 

the elements of the sets U A = {A, -1 A} and U B = {B, -1 B}. 
• This relation is interpreted as a conditioning, that we represent by 

means of an uncertainty measure. 
With respect to the first idea, the models based on the GMP usually 

assume that the rule "If  X is A then Y is B"  defines a relation on the 
cartesian product of the reference sets of X and Y, U 1 x U2. By con- 
trast, we suppose that the level of granularity in this relation is similar to 
the granularity of the elements involved, that is to say, the rule does not 
establish how each element of U~ and each element from U 2 are related; 
it only establishes the relation between the concepts represented 
by A, ~ A and B, ~ B. On the other hand, the second idea differs 
from other models that interpret the rule as a material implication 
( ~  A or B). 

A general input A*, does not usually match any of the antecedent 
items. Thus, taking into account the above considerations, the fuzzy 
inference model should translate the information contained in A* to 
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information about A and -~ A. This translation can be easily done 
through a compatibility degree between the input and the antecedent of 
the rule. These degrees (the values al ,  a 2 in Figure 1) will be inter- 
preted as an uncertainty measure generated by the current input A*, on 
the set U A. 

This uncertainty measure will be transferred from the set U A to the 
set U B through the fuzzy rule by means of an uncertainty propagation 
model. 

So far, the answer of the inference model is an uncertainty measure 
on U B. Finally, by combining the membership functions of B and -1 B, 
and their uncertainty values (the values /31,/32 in Figure 1), we will 
obtain a single output B* (see Figure 1). 

In order to make these general ideas more specific, first we need to 
choose a formalism to represent uncertainty measures, and a propaga- 
tion model. The next section is devoted to these topics. 

3. THE PROPAGATION MODEL 

The formalism we will use to represent pieces of uncertain information 
is by means of a class of fuzzy measures, namely representable measures 
(also called lower and upper probabilities). This is a very general frame- 
work of representation, which includes probabilities, possibilities [4], belief 

antecedent FUZZY RULE consequent 

input 

1 
uncertainty 

--.... 

B a, 

-,B a, 

uncertainty 

/ 
propagation model 

Figure 1. Fuzzy inference model. 

output 

, B* 
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functions [1], [2], and Choquet capacities of order two [12] [13] as particular 
cases. 

Let us very briefly introduce the concept of lower-upper probabilities: 
Let P be a family of probability measures on a referential D x. We may 
associate a pair of lower-upper probabilities with P, (l, u), given by 

l(A) = i n f  P(A) VA c_D x 
P e P  

u ( A )  = sup P ( A )  V A  c_D x 
P e P  

This defines a pair of ordered fuzzy measures in Sugeno's sense (see 
[141). 

Now, let us suppose that we have two variables X and Y that can take 
on values in the sets D x = {xl ,  x 2 . . . .  ,x  n} and Dy = {Yl, Y2 , . . . ,Y , , , } ,  
respectively and a pair of representable measures, ( ( l x ( A ) ,  u x ( A ) ) ,  A c_ Dx)  , 
representing our knowledge about the values of X. We also have condi- 
tional information about the values of Y, given that we know the true 
value of X. The problem is to propagate the information from X to Y, 
through the conditional relationships. 

So, we want to obtain on Y another pair of lower and upper probabili- 
ties representing the knowledge about the value of the variable Y that 
we can infer from our knowledge about the value of the variable X 
and the relationships between X and Y. We model the conditional 
information on Y given some value x~ by also using conditional repre- 
sentable measures ( l ( B / x i )  , u ( B / x i ) )  , B c Dy), x i E D x. 

In [9] the following general solution for this problem was obtained: to 
calculate the upper measure of any subset of Dy, we must solve this linear 
programming problem 

uy(B)  = max ~ u ( B / x i ) h  i 
i = 1  

subject to 

h, <_ u x ( A ) , V A  c_ D x ( 4 )  
x i ~ A 

Several particular cases of this problem can be directly solved without 
using any optimization techniques (see [15], [9]). Precisely one of these 
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particular cases will be needed in the fuzzy inference model. Further 
details about the concrete formulation can be found in the appendix. 

The following example illustrates how the propagation model works. 

Example 1: Let us consider two variables X and Y, which stand for the 
color and the weight of a set of objects, respectively. Suppose that the 
values these variables can take on are Black (B) and White (W) for X, 
and Heavy (H)  and Light (L)  for II. So, the domains for the variables X 
and Y are D x = {B, W}, Dy = {H, L} respectively. 

Let us also suppose that we have the following partial information about 
the color of the objects and about the relationship between color and 
weight: 

• 70% of the objects are Black, 10% are White, and 20% can be either 
Black or White. 

• 80% of the Black objects are also heavy, and 20% can be either Heavy 
or Light. 

• 30% of the White objects are also heavy, 60% are Light, and 10% can 
be either Heavy or Light. 

We want information about the weight of the objects in the light of the 
information about the color, and the weight given that we know the color. 

These pieces of information can be represented as Dempster-Shafer 
measures (a particular case of lower and upper probabilities) as follows: 
Information about the color: 

ux(B) = 0.9, Ux(W) = 0.3 

Ix(B) = 0.7, Ix(W) = 0.1 

Conditional information about the weight given the color: 
• If the color is Black: 

u(H/B) = 1, 
l(H/B) = 0.8, 

• If the color is White: 
u(H/W) = 0.4, 
t(H/W) = 0.3, 

u(L/B) = 0.2 
I(L/B) = 0 

u(L/W) = 0.7 
I(L/W) = 0.6 

By applying the propagation model to these measures, we obtain (see the 
appendix for details) the following m e a s u r e s  ly and Uy on Dy: 

Uy(H) = 0.94, Uy(L) = 0.35 

ly(H) = 0 . 6 5  ly(L) = 0.06 

that correspond to the following partial information about the weight of 
the objects: 

65% of the objects are heavy, 6% are Light and 29%, can be either 
Heavy or Light. • 
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4. THE FUZZY INFERENCE MODEL 

In order to develop a fuzzy inference model, we are going to express, 
within the context of the above propagation model, the following fuzzy 
rule: 

I f X i s A t h e n Y i s B  (5) 

where X and Y are variables on the reference sets U s, U 2, and A and B 
are fuzzy sets on U 1 and U 2, respectively. 

Let U A = {A, ~ A} and U B = {B, ~ B} be two fuzzy partitions of U 1 and 
U 2. The basic idea to develop the inference model consists in replacing U 1 
and U 2 by the fuzzy partitions U A and U 8 respectively, and then to 
consider uncertainty measures on these. 

The conditional information comes from a semantic interpretation of 
the rule (5) in the following sense: This rule generates two conditional 
representable measures on UR, ( l ( . / A ) , u ( . / A ) ) ,  ( l ( . / - . A ) , u ( . / - ~  A))  
defined by 

l( B / A )  = 1 u( B / A )  = 1 

l( -. B / A )  = 0 u( ~ B / A )  = 0 (6) 

l( B / - .  A )  = 0 u( B / - .  A )  = 1 

I ( - -1B/  ~ A )  = 0  u( ~ B /  ~ A )  = 1 (7) 

So, we are interpreting the rule "if  X is A then Y is B"  as a 
conditioning (instead of a material  implication), that is, if we know that A 
is true then we can assert that B is also true (this is modelized as the total 
certainty measure (6)), but if we know that A is false then we cannot infer 
anything about the truth of B (and it is modelized as the total ignorance 
measure (7)). 

Remark  As the representable measures we are using are always dual, 
in the following we will use only the upper  measure.  The results of the 
lower measures can be obtained by duality ( l (H )  = 1 - u(-~ H)). 

Moreover,  we also need an upper  probability measure on UA, in order 
to propagate  it on Y through the conditional information (the rule). 
This measure  will be obtained from a matching process between the 
input A* and each value in UA, that is, between A* and A and between 
A* and ~ A. For this purpose we will use a particular matching based on a 
compatibility degree between two fuzzy sets, F and G, through a t-norm *: 

c ( F , G )  = sup{ IzF(r)*tzG(r)} (8) 
r 
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Although we could use any t-norm in (8), we believe the Lukasiewicz 
t-norm to be adequate because it satisfies the noncontradiction law (a* 
( i  - a) = 0) and thus the compatibility degree between two complemen- 
tary fuzzy sets is zero: 

c(F, ~ F )  = sup{max(/ze(r)  + I~F(r)  --1,0)} = 0 
r 

Therefore we will use the Lukasiewicz t-norm in (8) because it makes 
the elements in each fuzzy partition UA and UB incompatible. 

Remark Although this choice may be controversial, in our context the 
fuzzy sets A and -7 A, B and ~ B act as the elements of two (crisp) sets 
U A and UB. Then the use of the Lukasiewicz t-norm guarantees having 
nonoverlapping dements  in these sets. 

So, we define the upper measure on U A induced by the input A* as 

ux(A/A* ) == c(A, A*) = sup {max( /zA(r ) + /z A * ( r )  - 1,0)} 
r 

ux (~A /A*  ) = c ( - ~ A , A * )  = sup {max( /zA *(r  ) -- &4(r),0)} (9) 
r 

It can be easily proved that 

c(A, A*) + c(m A, A*) > 1 (10) 

if we only impose the input A* to be normalized (3r ~ U1/Iza *(r) = l). 
We will always suppose that A* verifies this property in the rest of the 
paper. From (10) we may interpret Ux as an upper probability measure. 

By using the above propagation model and this upper measure on UA, 
we get an upper measure on U 8. In this case the solution of (4) is very easy 
(it may be calculated directly without using an optimization technique: we 
need only to calculate a Choquet integral (see [12], [13]) with respect to the 
measure Ux; see appendix for details). The solution is 

u y ( B )  = 1 

ur( -~  B ) =c(-~A,A*)  (11) 

We may consider this upper measure as the first interesting answer of 
the fuzzy inference: 

Rule if X is A then Y is B 
Input X is A* 

Output Y is B is [ 1 -  h, 1] 
Y is -7 B is [0, a], 

(12) 
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where A = c(--1 A, A*) and "Y is C is a "  means a proposition at degree 
[10]. In our case the uncertainty degree a is an interval [o/inf, O/sup] 
representing the lower and upper probability respectively. 

This answer generates certainty values for the results of B and ~ B. 
Observe that if the compatibility between A* and ~ A is zero then the 
result is unambiguously B. This only happens if /z A *(r )  < tzA(r) 'dr, that 
is, when the input A* is included in A. When the compatibility between 
A* and - , A  is maximum (3r ~ U1/tz A * ( r ) =  1 and IZA(r)= 0), for 
instance if A* = -~ A, then we obtain an uncertainty measure represent- 
ing the total ignorance, in agreement with the conditional interpretation of 
the fuzzy rule we have made. 

The kind of solution given by (12) is similar to that proposed by other 
authors (see [16]) in the sense that we obtain an uncertainty distribution 
on the possible answers. 

In some cases this solution may not be appropriate enough (e.g., in fuzzy 
control problems). Thus, if we want to obtain an answer B* as output, we 
could combine the two pieces of information that we have: the upper 
measure on U B and the membership functions of B and -~ B. The idea in 
carrying out this combination is to produce the result B* as an expected 
value of B and ~ B, weighted by their upper measures, through a fuzzy 
integral. 

In the above process, we obtained the answer ur(.) from Ux(.) and the 
conditional relation A ~ B as an average of u(./. ) weighted by the 
measure u x. In a similar way, we could obtain B* (ix B *) from ur ( . )  and 
{/z~(s), tz_, B(s)} because we interpret the membership function of a fuzzy 
set C, tZc(S), as the conditional possibility (a particular case of upper 
probability measure) of s given that C is true: tzc(s)= rr(s/C). Then 
again we have an upper measure uy(.)  on U B and two conditional upper 
measures 7r(s/B) = / z s ( s )  and rr(s/~ B) = / z  B(s) = 1 - / zB(s ) .  The 
model of forward propagation, when it is applied to this case, produces 
(using again the Choquet integral) the following membership function for 
the output B*: 

tZB(S) if i~B(S) >_ 1 / 2  
/ZB*(S ) = U({S}) ---- ~/ZR(S)( 1 _ 2A) + A if /Z~(S) _< 1 /2  

or equivalently 

~ B * ( s )  = (1 - A)~8(s  ) + A m a x ( ~ 8 ( s ) , l  - ~B(s) ) ,  (13) 

where h = c ( ~  A, A*). 
This method has the following drawback: let us suppose that h = 

uv(~ B) = 1, that is, ~ B is as credible as B. This happens, for instance, 
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when the input A* is equal to ~ A. In this case, and taking into account 
that we are interpreting the rule A ~ B as a conditioning, the reasonable 
output should be B* such that /x B *(s)  -- 1 Vs, that is to say, we do not 
know anything about the universe U 2 (the variable Y has no restrictions). 
However,  the output produced by (13) is B* such that 

/x B * ( s )  = / z B ( s  ) v (1 - /xs(s) )  * 1 

So, the output B* corresponds to the disjunction " B  or -7 B".  This 
result is coherent  at the semantic level (if the possible results are B 
and ~ B and we do not know anything, all we can say is "B or ~ B")  but it 
is not coherent  at a membership  function level. The problem arises 
because the integral we are using is based on the maximum operator  which 
does not make the sets B and -1 B exhaustive (B v ~ B 4; U2). 

One way to solve this problem is to consider a suitable modification of 
the integral we are using in which the max operator  is replaced by the 
bounded sum. The reason for this replacement  is similar to the reason why 
we chose the Lukasiewicz t-norm. In both cases, we need t-norm and 
t-conorm such that, in the first case, A and ~ A are incompatible and, in 
the second case, B or -7 B are exhaustive. To do this, it is necessary to 
take into account that the Choquet integral with respect to an upper  
measure g, defined on a finite set W, coincides with the upper  Dempster  
integral (see [1]) when the upper  measure g is a plausibility function with 
basic probability assignment (BPA) m: 

Eg(f) = E m(D)mEa~o{f(w)} (14) 
Dc_W 

In our case the upper  measure,  u r ,  is a plausibility function on U B with 
BPA m v ( { B } )  = 1 - A, m r ( { ~  B}) = 0 and m r ( { B  , ~ B}) = h. Then we 
propose to use the following modified Dempster  (or Choquet)  integral: 

Y'. m(D)min( Z f(w),l)  (15) 
Dc_W " w E D  

This integral, when it is applied to our problem, produces the following 
result B*: 

/z B * ( s )  = (1 - A)/xB(s ) + h min(/xB(s  ) + 1 -- /xB(s), 1) 

= (1 - h)k~B(S) + A. 

It is obvious that ~B * can be written as 

(16) 
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and therefore the output of the inference model is 

, ( s )  =  B(s) • • (17) 

where A = c (~  A, A*) and * is the probabilistic sum t-conorm (a • b = 
a + b - a b ) .  

Example 2: Let us consider the following rule: 

If X Very Low Then Y is Medium 

where the labels Very Low and Medium have been represented by the 
following fuzzy sets: 

Very Low = (0, 0, 25) 

Medium = (50, 25,25) 

with A = (m, a, b) representing the following parameters associated to a 
triangular fuzzy number A: m the modal value of A, and a and b the left 
and right spreads, respectively. Now, given the input 

A* = "Around 10" = (10, 5,5),  

the output B* corresponds to Figure 2 with B = (50, 25,25) and A = 
c(-~ A, A*) = 0.4, • 

5. PERFORMANCE OF THE MODEL 

As we mentioned previously, we are interested in fuzzy inference models 
that are easy to implement and computationally efficient, and in verifying 
the most usual properties required by several authors for these models. 

With respect to the first question, (17) shows how easy the model is 
to use: it only needs to calculate the compatibility between the input A* 
and ~ A, and to operate this value with the membership function of B by 

Figure 2. The output B* in the proposed model. 
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means of the probabilistic sum t-conorm (see Figure 2). Obviously, this 
simple case can be interpreted as a fuzzy modus ponens [17], [6]. 

With respect to the properties, our model verifies the following intuitive 
properties, which are usually considered as a test for the performance of a 
fuzzy modus ponens: 

(i) If A* = A  then B* = B: 
In effect, when A* = A, the compatibility between A* and ~ A 

is zero, and /z 8 *(.) =/zB(.) • 0 =/xB(.). So, this model extends 
the classical modus ponens. 

(ii) If A* _c --1A then B* = U2: 
In this case, the compatibility between A* and -7 A is equal to 

one, and then /~B *(-) = IzB(.) ~ 1 = 1. SO, for inputs completely 
different from A, the inference process gives no information, that 
is, all the elements of the consequent's domain are maximally 
possible. 

(iii) If A* _c A then B* = B: 
When the input A* is a subset of A, the compatibility between 

A* and -7 A is zero, and we obtain the result in a similar way as in 
(i). When the input is more precise than the antecedent, the rule 
can only infer the consequent, without adding information not 
contained in the rule (the rule only says "if X is A then Y is B," 
but it does not say, for instance, "the more X is A then the more Y 
is B"). 

In addition to these basic properties, it would also be interesting to 
study how this model works with respect to the chaining of rules. Let us 
suppose the knowledge base contains two such rules as 

If X is A then Y is B 
If Y is B then Z is C 

(18) 

In classical logic, from the input A one would expect to obtain the 
conclusion C by chaining the two rules. We want to study what kind of 
output C* is obtained from an input A*. 

Given an input A*, from the first rule we obtain on U B the measure 

u v ( B )  = 1, u r ( ~ B )  = A (A=c(~A,A*)) 

and then by combining this measure with the membership function of B 
and ~ B we get B* such that 

Now, the input to the second rule is the output of the first one. Starting 
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from B*, we calculate the compatibility degree of B* with B and -1 B and 
then we apply the inference process to the second rule again. So, let us see 
what the compatibility degrees c( -1 B, B*) and c(B, B*) are. If we suppose 
that the fuzzy set B satisfies 

3s 1, s z ~ Uz/txB(sl)  = 1 and P-B(S2 ) m- 0 

that is to say, B and -~ B are both normal fuzzy sets, then 

a) p-B(sl) = 1, /z 8 . ( s l )  = p-n(S~) • a = 1 

max( P-R *(s,) 

+ p-B(sl) - 1,0) = 1, 

and therefore 

c (B ,  B*) = 1. 

p-n( s2 ) = O, b) P-B*(S2) = P-B(S2) • a 

= A ~ max( P-B *(s2)  

- p - e ( s 2 ) , 0 )  = a.  

So, c ( ~  B, B*) > a. Moreover,  as the t-norm • verifies that a • b < a + b 
Va, b ~ [0, 1], then 

p-B(s)  • a ~ t z ~ ( s )  + XVs  ~ p -~(s )  • a - p -~(s )  

< XVs ~ max(/*B * ( s )  - p-B(s),O) _< aVa.  

Thus, c( -1 B, B*) is also less than or equal to A, and then 

c ( ~ B , B * )  = a. 

Therefore,  once we apply the inference process to the second rule, we 
obtain the following measure on Uc: 

u z ( C )  = 1, U z ( - ~ C ) = A  ( A = c ( ~ A , A * ) )  (19) 

and the final result is the fuzzy set C* with membership function 

p-c * ( t )  = p-c(t) * A (20) 

This result coincides with that obtained by the rule "if  X is A then Z is 
C" and the output A*. 

It is interesting to note that the imprecision in the result does not 
increase through the chaining: c(-~ A, A*) = A, P-B *(.) = P-~(.) • A, 
p-c *(.) = P-c(.) $ A, which seems reasonable to us because the two rules 
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are supposed to be absolutely certain, and the only source of uncertainty is 
the partial matching between the input and the antecedent of the first rule. 
(This situation will change when we consider uncertain rules.) 

As we mentioned before, the output of the inference model could be 
either an uncertainty measure u v on U~ (see (11)), or a fuzzy set B* 
obtained by integration of the above measure and the membership func- 
tions of B and -7 B (see (17)). In the previous study of chaining, we have 
used the second kind of output. Now, let us see how the same result is 
obtained if we use the first kind of output. 

In effect, the measure u~, obtained from u x and the first rule will be the 
input to the second rule. By directly applying the forward propagation 
mechanism to u v and to the second rule we get a measure Uz on Uc: 

u z ( C )  = 1, u z ( - 7  c )  = 

which coincides with (19) and therefore C*, obtained from integration of 
Uz coincides with (20). 

In this way, the outputs of the fuzzy modus ponens given by (12) and 
(17), are equivalent, that is, we can infer either an uncertainty measure on 
UB or a fuzzy set B*, and any of them will produce the same result when 
they are used by the inference model. 

To end this section, we show how our model verifies another property 
suggested by Magrez and Smets [8]. These authors proposed four proper- 
ties that any fuzzy modus ponens should verify. The properties (i), (ii), and 
(iii) above, that our model satisfies, are the first three properties in [8]. The 
fourth one is the following: 

(iv) If A _cA* then 3a ~ [0, 1] such that Vs ~ U 2 /@ *(s) = p.B(s) _t_ a, 
where ± is a t-conorm. This last property imposes two require- 
ments in a model: first, whenever an indetermination should appear 
on the output, each of the elements of the consequent domain 
receives the same degree of indetermination, and second, the 
shapes of the output B* and the input A* are independent. 

Obviously, our model also verifies the property (iv) for the proba- 
bilistic sum t-conorm. The model proposed by Magrez and Smets 
[8] is 

/z B*(s )  = min( /@(s)  + (1 - v ) , l )  

where v = 1 - SUPr{1 -- /xA(r))*/Z A *(r)), and * is the Lukasiewicz 
t-norm. So, their model verifies the fourth property by taking the 
bounded sum as t-conorm. Although both models are obtained 
from different approaches, the results are similar, differing only in 
the t-conorm used. 
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6. MANAGEMENT OF UNCERTAINTY IN FACTS AND RULES 

The propositions we have been using so far do not contain any kind of 
uncertainty different from fuzziness, that is, the facts and rules considered 
are fuzzy but there is not any doubt about their certainty. For instance, 
when we say " X  is a young man", we are not sure about the exact age of 
X, but the information conveyed by this fuzzy proposition is supposed to be 
completely certain. 

Zadeh in [10] divided the propositions, in a knowledge base, into four 
principal categories: 

1. An unconditional, unqualified proposition: X is A. 
2. An unconditional, qualified proposition: X is A is a. 
3. A conditional, unqualified proposition: If X is A then Y is B. 
4. A conditional, qualified proposition: If X is A then Y is B is a.  
Categories 1 and 3 are precisely those we have previously considered. In 

this section we are going to study the incorporation of categories 2 and 4 
that correspond to uncertain facts and rules in the inference model. 

Uncertain facts 

An uncertain fact can be written as 

X i s A i s a  (21) 

The degree ~ may be interpreted in several ways (linguistic probability, 
numerical value . . . .  ). One way to interpret this value is as a necessity 
degree of the proposition "X is A." Therefore, following the formalism 
given in (12), the proposition (21) will be rewritten as 

X is A is [ a , 1 ]  
X i s - ~ A i s [ 0 , 1 - a ]  (22) 

that is to say, the proposition (21) is translated in the inference model as a 
pair of uncertainty measures on U A given by 

L(  A )  = u A  A )  = 1 

l x ( - ~  A )  = O, ux(--7 A )  = 1 - a (23) 

This pair of measures obtained from (21) is obviously a pair of necessity 
and possibility measures. The formalism we are using to represent pieces 
of uncertain information includes, as a particular case, necessity and 
possibility measures, and even allows us to represent a more general kind 
of uncertainty. So, the kind of uncertain facts that could be interesting to 
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include in this model are described by 

X is A is [ a , / 3 ]  
X i s  -~A is [1 - / 3 , 1  - a ]  

(24) 

where a , /3  ~ [0, 1], a _</3, and the intervals [.,. ] represent lower and 
upper probabilities. When we take /3 = 1 we obtain (22), and from a = 1 
(and then /3 = 1, too) we get the true facts included in category 1. 

In order to simplify the notation, from now on we will represent (24) 
only by writing the first expression 

X is A is [ a , /3  ] (25) 

because it is obvious that once we know (25) then we know (24) too. 
In this way, the inference problem for uncertain facts can be written as 

If X is A then Y is B 
X is A* is [ a , / 3 ]  

(26) 

The way in which we solved the basic inference model given by (12) may 
be applied again, we only need to get a measure u x on UA. To do that we 
could transfer to U A the measure we have on UA *, which is, 

Ix(A*) = ,~, ux( A*) =/3 

l x ( ~ A * )  = 1 -  /3, U x ( - T A * )  = l - a (27) 

This transference will be made through a fictitious, uncertain rule, such 
a s  

if X is A* then X is A 

where the conditional measures that define this rule are the compatibilities 
among elements of UA and U A *, 

u(A/A*) = c(A, A*) 

u ( A / ~ A * )  =c(A,-~A*) 

u( ~ A / A * )  = c(  ~ A ,  A*)  

u( ~ A / - ~  A*)  = c(  -1 A ,  -1 A*)  

(28) 

Then, by chaining this rule with the real rule, we obtain a measure on 
UB, or equivalently, a fuzzy output B*. Next, we are going to develop this 
process. 

From the measure (27), the conditional measures (28) and the propaga- 
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tion model, we get the 

If u( A /A* ) < 

If u( A /A* ) > 

If u(-1 A / A * )  < 

If u( ~ A / A * )  > 

following measure on UA: 

u( A /  ~ A*) ~ ux( A ) = au(  A / A * )  

+ ( 1 -  a ) u ( A / ~ A * )  

u( A /  ~ A*) ~ Ux( A ) = ~u(  A / A * )  

+(1  - ¢ I ) u ( A / - ~ A * )  

u( -7 A~-1 A*) ~ ux( -~ A )  = au(  -7 A / A * )  

+ ( 1  - c ~ ) u ( ~  A/~ A*) 
u( ~ A ~  ~ A*) ~ Ux( -7 A )  = ¢lu( ~ A / A * )  

+ ( 1  - / 3 ) u ( ~  A/~ A*) 
Finally, by propagating (29) to U B through the rule we obtain 

=  B(s) • 3' 
with 

[ a c ( ~  A ,  A*) + (1 - a ) c ( ~  A ,  ~ A*) 

3" = ~ c ( ~  A ,  A*) + (1 f l ) c ( ~  A ,  -7 A*) 

(29) 

if c( ~ A, A*) 

_< c( A, A*) 
if c ( ~  A, A*) 

>_ c( A, A*) 

(30) 

This last equation can be easily simplified in many cases. Since 
c ( - ~ A , - ~ A * )  = 1 when 3ro/tzA(r o) = /ZA*(r 0) = 0 (for instance, this 
condition is obviously verified for fuzzy quantities with a bounded support 
set), (30) is written in this case as 3 '=  a c ( ~ A , A * ) +  1 - a  = 
c ( ~  A, A*) @ (1 - a) ,  and therefore the resultant output is 

t % * ( s )  = ~B(S) @ (h  @ (1 - a ) )  (31) 

with A = c(-7 A, A*). 
By considering this last value of 3, = h @ ( 1 -  a) ,  several particular 

cases of uncertain facts can be studied: 
• If a = 1 then /~B * (S) = tZB(S) @ h. That is, when the fact does not 

present any uncertainty, the basic inference model given by (17) is 
obtained again. 

• If a = 0 then tz B * (s) = /ZB(S) @ 1 = 1. So, the ignorance of the facts 
makes every value of the consequent domain completely possible. 

• If A * _ A  then h = 0  and /z B * ( s ) =  I~B(S)@(1-- a).  In this case 
the uncertainty of the conclusion only comes from the uncertainty of 
the fact. 

• If A* c_ --7 A then h = 1 and /z 8* ( s )  = /zs(s) @ 1 = 1. In this way, 
facts completely opposed to the antecedent, even being uncertain, give 
rise to ignorance of the consequent. 
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The equation (31) shows how the output B* does not depend on the 
upper probability/3. Curiously, we decided to represent the uncertainty of 
a fact in the formalism of the representable measures, but the inference 
model only uses the lower probability, and therefore to represent uncer- 
tain facts it suffices to use (21) and (22). That is to say, the possibilistic 
interpretation of (21) is enough for the purpose of this inference model. 

Uncertain rules 

An uncertain rule can be written as 

If X is A then Y is B is [ a , / 3 ]  (32) 

In a similar way as we interpreted the uncertainty in facts by means of 
lower and upper probabilities, we are going to interpret the uncertain rule 
(32) as the following conditional lower and upper measures 

l( B / A )  = a u( B / A )  =/3 

l(-~ B / A )  = 1 - /3 u(--~ B / A )  = 1 - a (33) 

I ( B / - ~  A )  = 0 u ( B / - ~  A )  = 1 

1( ~ B / - ~  A )  = 0 u( ~ B / - ~  A) = 1 (34) 

Here,  by propagating the measure (9) through these conditional mea- 
sures we obtain 

u),(B) = / 3 ( 1  - c( ~ A,  A*))  + c( -7 A ,  A*) 

= fl ~ c ( - n A , A * )  = / 3 ~ h  

Uy(-7 B) = (1 - ~ ) (1  - c ( ~  A, A*))  + c ( ~  A , A * )  

= (1 - • c (  A ,  A * )  = (1  - • ( 3 5 )  

where A = c ( ~  A, A*). 
The output B* produced by combining (35) and the membership func- 

tion of B and -7 B is 

/ z n* ( s )  = ( ~ B ( s )  • h ~9 (1 - a ) )  - ( ~ B ( s ) ( 1  - f l ) (1  - h)) (36) 

This equation defines an unnormalized fuzzy set fo r /3  4: 1. The lack of 
normalization does not create any problems when B* is a final output of 
the inference model. On the contrary, when the output may be used as 
input for another rule, unnormalization blocks the way of B* through the 
second rule. To prevent this kind of problem, we impose the condition 
/3 = 1 to the rules. Thus, we are restricting the kind of uncertainty in the 
rules to the possibilistic interpretation, that is, 

If X is A then Y is B is a (37) 
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with 

l( B / A )  = a u(  B / A )  = 1 

l(-~ B / A )  = 0 u(-~ B / A )  = 1 - a (38) 

and preserving (34). Therefore,  when the system uses uncertain rules, the 
output generated is 

/ , , * ( s )  = g ~ ( s )  ¢ A • (1 - a )  (39) 

Note how uncertainty in rules and facts (at the same degree) produces 
the same output. This coincidence shows how the system uniformly man- 
ages the uncertainty throughout their different components.  

When uncertain facts and rules appear  together, that is, when we have a 
rule "if  X is A then Y is B is c~" and a fact " X  is A* is a '",  then the 
output B* is 

/ z , * ( s )  = / , , ( s )  ¢ A ¢ (1 - (~) ¢ (1 - a ' )  (40) 

where A = c( --, A ,  A*).  

7. MANAGEMENT OF CONJUNCTIONS AND DISJUNCTIONS IN 
RULES 

The kind of rules contained in a real knowledge base are not always as 
simple as the basic rule (1). In this section, we extend the inference model 
to include conjunctions and disjunctions in rules. 

Conjunctions in premises 

Let us consider the following kind of fuzzy inference 

I f X  1 i s A  l a n d X  2 i s A  z a n d  . . .  a n d X  n i s A  n t h e n Y i s B  

X 1 is A~' and X 2 is A'~ and . . .  and Xn is A* 
(41) 

Y i s  B* 

where X i are variables on reference sets U/, Y is a variable on reference 
set V, A i are fuzzy sets on U/, and B is a fuzzy set on V. A* are the inputs 
and B* is the output of the inference model. 

The expression (41) can be rewritten in the following way 

If  X is A then Y is B 
X is A* (42) 

where X = ( X 1 ,  X 2 . . . . .  X n ) ,  A = (A 1, A z, . . .  , A , )  and A* = 
(A T , A~ . . . . .  A* ). 
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Thus, by replacing (41) by (42) we get a similar situation to the previous 
one, and the only problem is to define a measure on UA and a conditional 
measure to represent this rule. For this purpose, we need to define the 
compatibility between the conjunction of Ai,'s and the conjunction 
of A*'s. The greater all the compatibilities between each A i and A* 
(c(A i, A*)) are, the greater the compatibility between the vectors A and 
A* (c(A, A*)) is, because these vectors denote a conjunction of facts. For 
the same reason, as soon as an i exists such that the compatibility between 
Z i and A* is low, the compatibility between A and A* should be low, too. 
Thus, it seems appropriate to modelize c(A, A*) as a function o f  c(Ai, A* ) 
through a conjunctive operator as a t-norm, and by taking the minimum 
t-norm, the compatibility between A and A* is defined by 

c(A,  A*) = min{c(Ai,  A*)}  (43) 
i 

where c(Ai, A*) was defined in (8). The negation of the vector A can be 
interpreted as a disjunction of the negations of each A i. So, the compati- 
bility between ~ A and A* will be defined through a disjunctive operator, 
as a t-conorm, and by taking the maximum t-conorm, c ( ~ A , A * )  is 
defined by 

c( -7 A,  A*) = max {c( -1 Ai, A* )} (44) 
i 

From (43) and (44) we can also define the measure on the antecedent 
domain as 

ux(a /A*)  = c(A,  A*) 

Ux( --7 A / A * )  = c( -~ A,  A*) (45) 

It can be easily proved that u x ( A / A * ) +  Ux(-~A/A* ) > 1 since 
c(A i, A* ) + c(-~ A i, A* ) > 1 Vi, and so, we can interpret u x as an upper 
probability measure. 

By using the above measure, the conditional measure defined by (6) and 
(7) for certain rules or defined by (34) and (38) for uncertain rules, and the 
propagation model, the result of the inference model for conjunctions in 
premises is direct: 

for certain rules and 

uB * ( s )  = tzB(s )  • ,X (46) 

~B*(s )  = /xB(s ) ~ A • (1 - c~) (47) 

for uncertain rules, with A = max i Ai, t~ i = c ( ~ h i ,  a ~ )  and a is the 
uncertainty of the rule. 
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Note that (46) (and similarly (47)) can also be written as 

/xB*(s ) = m.ax{/xB,(s)} = max{/ZB(S ) * Ai} (48) 
t i 

where each /xB(s) = p.B(s) • A i would be the output produced by a simple 
rule "I f  X i is A i then Y is B." 

Disjunctions in premises 

Now, let us consider the following kind of fuzzy inference 

I f X  l i s A  l o r X  2 i s A  2 o r . . .  o r X  n i s A  n t h e n Y i s B  

X 1 is A'~ and X 2 is A~ and . . .  and X n is A* 

Y is B* 

(49) 

where again txB(s) = txB(s) • A i. 

where X i are variables on reference sets U/, Y is a variable on reference 
set V, A i are fuzzy sets on U/, and B is a fuzzy set on V. A* are the inputs 
and B* is the output to the inference model. 

The solution of this problem can be solved in a similar way to that of 
conjunctions in premises, by using the following compatibilities 

c ( A  1 V A ,  v . . .  V A n , A  T AA~ A " "  AA*)  

= m a x { c ( A  i, A*)} (50) 
i 

c ( ~ A  1A -~A 2 A ". A - ~ A n , A  T AA~ A ' "  AA*)  

= m i n { c ( ~  A i , A * ) }  (51) 
i 

that is to say, by defining a measure u x on U A = {A, -~ A], where -1 A = 
(-1 A1, -~ A 2 , . . .  , -n A n )  , a s  

u x ( A / A *  ) = max{c (A i ,  A*)} 
i 

Ux(-~ A / A * )  = min {c(-~ A i, A*) (52) 
i 

By using the conditional measures (6) and (7) or (34) and (38) again, the 
propagation model, and using the measure (52) too, we obtain the output 

, ( s )  =  B(s) • A (53) 

where A = min i A i and }k i = C("n Z i ,  A T )  Vi. 
Note that (53) may also be written as 

/x B *(s)  = m!n{/xB,(s) } = min{/xB(s ) * Ai} (54) 
t i 
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In fact, the rule (49) could be considered as equivalent to the set of rules 

If X i is A i then Y is B, i = 1 , . . .  n (55) 

Therefore, the output generated by the complex rule (49) is equivalent 
to the conjunction of the outputs from the simpler rules in (55). 

8. EXAMPLE 

Finally, we are going to show a simple but representative example of the 
inference method presented. Suppose that we have three rules and three 
facts in our knowledge base. The fuzzy sets that appear in the rules all 
belong to the set {Very Low, Low, Medium, High, Very High}, whose 
elements are the fuzzy numbers represented in Figure 3 and defined by 

Very Low VL = (0, 0, 25) 

Low L = (25, 25, 25) 

Medium M = (50, 25, 25) 

High H = (75, 25, 25) 

Very High VH = (100, 25, 0) 

where the parameters of the triangular fuzzy number A = (m, a, b) have 
the same meaning as in example 2. 

The facts and rules in the knowledge base are the following: 

X 1 is A 

X z is 30 

X 4 is B is 0.8 

i f X  1 i s V L a n d X  2 is L t h e n  X 3 is M 

i f X  3 i s M t h e n  X 5 is H i s 0 . 9  

if X 4 is VH then X 5 is VH 

where A = (10, 10, 20) and B = (95, 1, 1). 

VL L M H VH 

0 25  50  75  100  

Figure 3. Linguistic labels for antecedent and consequent in the rules. 
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Let us see the inference process: 
i) Let the values of  X a and X 2 be inputs to the first rule. Since 

c(A,  ~ VL) = 0.4, c(30, -~ L)  = 0.2, the output is: X 3 is 01, with 
tXo,(X) = /XM(X) • 0.4. If  we take this fuzzy quantity as input to the 
second rule, as c(O 1, -1 M)  = 0.4, then the new output is X 5 is 02, 
with 1~o2(x) = / z H ( x )  • (0.4 • 0.1) = / x H ( x )  ~ 0.46. 

ii) Let the value of X 4 be the input to the third rule. Since 
C(B, ~ VH) = 0.2, the output is: X 5 is 03, with /xo3(x) = tZvH(X) 

(0.2 • 0.2) = tZvn(X) • 0.36. 
iii) Since X 5 has two possible values at the end of the process, we can 

combine them by using the min operator,  that is, X 5 is 04, with 
tZo,(X) = min{ tzn(x)  • 0.46, tZvn(X) • 0.36}. 

The membership  functions of the outputs of X 3 and X 5 are shown in 
Figure 4. 

0 

0 . 4 6  

0 . 3 6  

,,' . 

.•' ,, 

0 . 4  

2 5  5 0  7 5  

(a) 

1 0 0  

VH 

/ . '  
' . ,  

• " . "  " ,  

2 5  5 0  7 5  

(b) 

Figure 4. Outputs for a) X 3, b)-X 5. 

1 0 0  
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9. CONCLUDING REMARKS 

The inference approach we have proposed: 
• is very easy to implement and computationally efficient, 
• is able to do inference with different kinds of fuzzy propositions. 

Moreover, the proposed model has the following characteristics: 
• it can be interpreted, in a particular case, as a fuzzy modus ponens, 
• it verifies the most usual properties required by a fuzzy inference 

model, and 
• it introduces a very flexible framework within which fuzzy inference 

can be done, with different freedom degrees: matching process, uncer- 
tainty representation, propagation model, integration model, etc. 

The restriction on the uncertainty intervals [a,  1] for the rules, that 
forces us to use only possibilistic uncertainty, will be removed in forthcom- 
ing work. This will allow us to manage a more general kind of uncertainty 
(for example, probabilistic uncertainty). The implementation of this 
method, together with its application to real problems, will be also the 
object of further work. 

APPENDIX 

This appendix contains basic concepts about the Choquet integral and 
the expression of the propagation model (4) for this particular measure. 
This result is used in several sections to derive the propagated uncertainty 
measure on the consequent. 

If the lower-upper probability measures (l x, Ux) are Choquet capacities 
of order two (see [14]), then the resultant measure ur (B)  on Dy can be 
obtained in the following way: 

uy(B)  E B = u x ( f  ) ,  

where fn  is a function on D x defined by fn (x  i) -- u (B/x  i) VX i ~-- Dx,  and 
Eux(.) is the Choquet integral [12], [13]) with respect to the measure Ux(.). 

This result is interesting because it is easy to calculate the Choquet 
integral, and therefore the calculation of ur(.)  is direct. The measure, 
defined in (12), which has been propagated in section 4 is a Choquet 
capacity of order two. Therefore the propagation can use the above result. 

Let us briefly show how to calculate the Choquet integral on finite 
domains: Given a fuzzy measure g on a set D x and a function f:  
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D x ~ R+, the Choquet  integral of f with respect to the measure g is 

f0 E g ( f )  = g (F~)  d a ,  

where F,  = {x ~ D x / f ( x )  >__ a}. 
If  the set D x is finite ( D  x -- {x I . . . . .  x ,})  and the values of the function f 

are ordered in the following way: f ( x l )  <_ f ( x  2) < ... < f ( x , ) ,  then the 
Choquet integral can be written as 

n 

E g ( f )  = Y ' ~ f ( x i ) ( g ( A i )  - g ( A i + l ) ) ,  
i=1  

w h e r e  A i = {Xi ,  Xi+ 1 . . . . .  Xn} , A n +  1 = Q~. • 
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