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Nyström method is a standard numerical technique to solve Fredholm integral equations 
of the second kind where the integration of the kernel is approximated using a quadrature 
formula. Traditionally, the quadrature rule used is the classical polynomial Gauss quadrature. 
Motivated by the observation that a given function can be better approximated by a spline 
function of a lower degree than a single polynomial piece of a higher degree, in this work, 
we investigate the use of Gaussian rules for splines in the Nyström method. We show that, 
for continuous kernels, the approximate solution of linear Fredholm integral equations 
computed using spline Gaussian quadrature rules converges to the exact solution for 
m → ∞, m being the number of quadrature points. Our numerical results also show that, 
when fixing the same number of quadrature points, the approximation is more accurate 
using spline Gaussian rules than using the classical polynomial Gauss rules. We also 
investigate the non-linear case, considering Hammerstein integral equations, and present 
some numerical tests.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is well-known that a quadrature rule (QR for short) to estimate the value of I ( f ) := ∫ b
a f (x) dx of a given function f

defined on the interval [a,b] is defined as

Q m ( f ) :=
m∑

i=1

ωi f (τi) , (1.1)

where the coefficients ωi := ωi,m and the pairwise distinct abscissae τi := τi,m , 1 ≤ i ≤ m, are said to be the weights and the 
nodes of the rule, respectively. The QR given by (1.1) that requires m function evaluations are referred to as an m-point rule.
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Usually, the remainder term

Rm ( f ) := I ( f ) − Q m ( f )

is required to be zero for each element of a predefined linear function space L. In such a case the rule is said to be exact 
on L. The rule (1.1) is said to be Gaussian if m is the minimal number of nodes at which f is evaluated and Rm( f ) = 0 for 
all f ∈ L. That is, Gaussian quadratures are optimal in terms of the number of quadrature points used. In the case when L
is the linear space P2m−1 of polynomials of degree at most 2m − 1, then the classical Gaussian m-point QR is both exact 
and optimal in terms of the number of quadrature points. The nodes and the abscissae are computed using the orthogonal 
polynomials with respect to the measure dx or using the recursion algorithm of Golub and Welsch [15].

Classical techniques for numerically solving Fredholm integral equations of the second kind are Galerkin, collocation, 
Nyström and degenerate kernel methods (see the monograph [3]). Moreover, recently, spline quasi-interpolation has been 
shown to be very useful for this purpose (see e.g. [4,5,10,11]). Even though there are various alternative methods to solve 
Volterra and/or Fredholm integral equations, see e.g. [20–23] and other references cited therein, the Nyström method is 
a very efficient method to deal with integral equations. This method is based on the use of numerical integration, and 
typically Gaussian quadrature [14] or rules derived from spline quasi-interpolants are used. It is therefore quite natural to 
think of using Gaussian QR for spline spaces.

The topic of Gaussian quadratures for splines has been considered in [18,19], where the minimal number of nodes for 
the knot sequence associated with the spline space is derived, as well as the subintervals that must contain at least one 
node. The difficulty with spline Gaussian rules stems from the fact that the number of quadrature points in each knot span 
may vary depending on a particular knot vector. A numerical approach to compute the Gaussian spline rules, including 
spaces over non-uniform knot vectors, has been proposed recently [6].

In this paper, we both exploit the Gaussian spline rules derived recently [1,6,9] and the newly computed Gaussian 
quadrature rules for C4 quintic splines over uniform knots to show that these rules act favorably in the Nyström method 
when compared to the classical polynomial Gauss rules. In particular, we show that when fixing the number of quadrature 
points, the Nyström method produces the smallest error when spline Gaussian rules are used. The closest work to ours is 
[25], where some spline Gaussian rules are used in the Nyström method to numerically solve Fredholm integral equations 
of the second kind. However, only spline spaces with maximum continuity are considered and the quadrature rules come 
from the solution of the non-linear systems of equations yielding the exactness of the rule for the functions in a basis of 
truncated powers. Our work extends [25] by studying the convergence rate, moreover, we compare Gaussian quadratures of 
spline spaces of various continuities and apply them also to non-linear integral equations. The rest of the paper is organized 
as follows. Section 2 concerns spline Gaussian QR for certain spline spaces. Then we describe the Nyström method in 
Section 3 and present numerical results in Section 4 for linear integral equations. In Section 5 we also investigate the non-
linear case, considering Hammerstein integral equations and propose some numerical tests. Finally, we conclude the paper 
in Section 6.

2. Gaussian quadrature for splines

In this section, we recall the main results related to spline spaces [13] and we propose the Gaussian rules for splines for 
the numerical evaluation of I ( f ).

2.1. Spline spaces

We consider the break points x := {xi}n
i=0 such that a = x0 < x1 < . . . < xn−1 < xn = b and the space Pp,x of piecewise 

polynomial functions of degree p (and order d = p + 1) associated with the partition of [a,b] induced by x. Let r := {ri}n−1
i=1

be a vector with entries ri ≤ d, and consider the subspace Pp,x,r formed by all functions in Pp,x of Cri−1 class at xi , 
1 ≤ i ≤ n − 1. Its dimension is equal to

N := dn −
n−1∑
i=1

ri . (2.1)

Let u := {ui}N+d
i=1 be the knot sequence formed by the break points xi repeated d − ri times, u1 ≤ u2 ≤ . . . ≤ ud ≤ x0 and 

xn ≤ uN+1 ≤ uN+2 ≤ . . . ≤ uN+d . The integer d − ri denotes the knot multiplicity and ri − 1 is the spline regularity at xi . We 
further define the k-th normalized B-spline of degree p and order d as

Bk,p (x) := (
uk+p+1 − uk

) [
uk, . . . , uk+p+1

]
(· − x)p

+ , x ∈R,

where 
[
z0, · · · , zp+1

]
f stands for the divided difference at knots z0, . . . , zp+1 for the function f , and z+ := max (0, z)

denotes the truncated power. The B-spline Bk,p is a piecewise polynomial function of degree p, supported on 
[
uk, uk+p+1

]
and positive on 

(
uk, uk+p+1

)
. The B-splines Bk,p can be computed by using the de Boor-Cox recurrence formula
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Bk,0 (x) =
{

1, if x ∈ [uk, uk+1
)
,

0, otherwise,

Bk,p (x) = x − uk

uk+p − uk
Bk,p−1 (x) + uk+p+1 − x

uk+p+1 − uk+1
Bk+1,p (x) , p > 0,

where by convention the value 0 is assigned when the term 0/0 appears. By Curry-Schoenberg’s Theorem [13], we know 
that the sequence {Bk,p}N

k=1 is a basis of Pp,x,r , and it holds

Sn
p = span

{
Bk,p (u) , u ∈ [ud, uN+1]

} = Pp,x,r.

Another normalization can be used to define the Curry-Schoenberg’s B-spline as follows:

Mk,p (x) := p + 1

uk+p+1 − uk
Bk,p (x) , x ∈R.

Therefore, we have

Mk,p (x) = (p + 1)
[
uk, . . . , uk+p+1

]
(· − x)p

+ ,

and taking into account that

[
uk, . . . , uk+p+1

]
f = 1

p!
b∫

a

Mk,p(x)

p + 1
D p+1 f (x) dx,

it follows that Mk,p
p+1 is the Peano kernel of the linear functional 

[
uk, . . . , uk+p+1

]
when applied to f ∈ C p+1 ([a,b]) with 

uk, . . . , uk+p+1 ∈ [a,b]. As a consequence,

b∫
a

Mk,p(x) dx = 1.

However, the QRs in the following subsection use the non-normalized B-spline defined as

Dk,p (x) := 1

p + 1
Mk,p (x) = [

uk, . . . , uk+p+1
]
(· − x)p

+ , x ∈R (2.2)

and the two definitions of a basis function are linked via the following relation:

b∫
a

Dk,p(x) dx = 1

p + 1

b∫
a

Mk,p(x) dx = 1

p + 1
.

In the subsequent sections, where the used degree is clear, we omit it. In the case of uniform regularity, i.e. ri = μ + 1, 
1 ≤ i ≤ n − 1 the following notation will be used:

Sn
p,μ = {

f ∈ Cμ ([a,b]) : f |[xi ,xi+1] ∈ Pp, i = 0, . . . ,n − 1
}
,

where Pp denotes the space of polynomials of degree p. The existence of Gaussian QRs for these spaces with uniform 
regularity is proved in [17] and the uniqueness in [19, Theorem 3.4]. Moreover, the following relationship holds:

p + � + 1 = 2m,

where p is the polynomial degree, � the total number of interior knots (when counting multiplicities), and m is the number 
of Gaussian nodes. This fact is in accordance with the dimension count of the spline space, cf. Eq. (2.1), that is N = p +� +1, 
which is the maximum number of basis functions that is expected to be integrated exactly by only half the number of 
quadrature points. If p is assumed to be small compared to �, then the number of quadrature points is approximately 
half the number of interior knots in the integration interval. In the limit, when n → ∞, the spline rules converge to the 
half-point rules of Hughes et al. [16], that are exact and optimal over the whole real line.
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2.2. Quadrature rules for C1 cubic splines with uniform knots

In general, Gaussian rules for splines cannot be computed analytically, however, for certain specific spaces, e.g. of lower 
degrees over special knot vectors, one can compute the weights and nodes in a closed form fashion using a recursive 
formula [1,9,24]. One such a prominent spline space is C1 cubic splines with uniform knots, which has the special structure 
that guarantees existence of a single quadrature point in every element, except the middle one that requires two [24]. This 
fact allows us to construct a recursive algorithm that starts in the boundary element, computes the first node and weight 
analytically, and proceeds towards the middle of the domain, computing the following nodes and weights using a recursive 
formula containing the nodes and weights from the preceding element. Let consider [a, b] = [0, 1] and fix in [0,1] the break 
points x := {xi}n

i=0 with xi := i
n , r := {ri}n−1

i=1 with ri = 2 and define

Sn
3,1 := {

f ∈ C1 ([0,1]) : f |[xr ,xr+1] ∈ P3, r = 0,1, . . . ,n − 1
}
.

For this space over n uniform elements, the main goal is to look for the Gaussian QR that is known to need only m = n + 1
quadrature points, that is

Q n+1 ( f ) =
n+1∑
i=1

ωi f (τi), 0 < τ1 < . . . < τn+1 < 1. (2.3)

Since there exists only one optimal rule, it must be symmetrical, so it is sufficient to determine the left half of the nodes 
and weights. The next result is proved in [24, Theorem 2.1] and, depending on the parity of the elements n, it gives a 
recursive formula to compute the nodes and weights.

Theorem 1. Let ωi = δi
n and τi = (i−θi)

n , i = 1, . . . , �n/2� + 1, be the weights and nodes of the m-point Gaussian QR (2.3), where �z�
stands for the integer part of z. Then, the sequences (δi)1≤i≤�n/2�+1 and (θi)1≤i≤�n/2�+1 are determined by

δ1 = 16

27
, θ1 = 3

4
,

and for, i = 1, . . . , �n/2� − 1, by the recurrence relations

θi+1 = 1 − δi(1 − θi)
2(5θi + 1)

1 − δi(1 − θi)
2(4θi + 1)

and δi+1 = 1 − δi(1 − θi)
2(4θi + 1)

θ2
i+1

. (2.4)

If n is even, say n = 2l, then θl+1 = 1 and

δl+1 = 1 − 2δl (1 − θl)
2 (

2θl+1 + 1
)
.

If n is odd, say n = 2l − 1, then

δl = 1 − δl−1
(
1 − θl−1

)2 (
2θl−1 + 1

)
and θl is the greater zero of the equation

θl (1 − θl) = δl−1θl−1
(
1 − θl−1

)2

1 − δl−1

(
1 − θ2

l−1

)(
2θl−1 + 1

) .

Note that the δ- and θ -sequences do not depend on n, and (considered as infinite sequences, defined by (2.4)) both tend 
monotonically to 1 with second-order convergence. Theorem 1 constructs the QR on the unit interval. For non-unit intervals, 
the quadrature is mapped via an affine transformation. That is, for a general interval [a, b] we get w̄i := (b − a)ωi , and τ̄i :=
(b − a) τi + a, where ωi and τi are the weights and the nodes computed on the unit interval.

For f ∈ C4 ([0,1]) \ Sn
3,1, then there exists z ∈ [0,1] such that

Rn+1 ( f ) = I ( f ) − Q n+1 ( f ) = cn+1,4 f (4) (z) ,

where [24, Theorem 2.2, eq. (2.6)]

cn+1,4 = 1

720n4
− 1

12

⌊
n+1

2

⌋∑
i=1

ωi (xi−1 − τi)
2 (xi − τi)

2 .

Moreover, from [24, Corollary 2.3] it holds
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1

720n4
− 1

551.9775n5 ≤ cn+1,4 ≤ 1

720n4
− 1

552n5 .

The proof of Theorem 1 is based on the representation of the spline functions in Sn
3,1 in terms of the basis of B-splines 

Dk,3 in (2.2). Let x−1 := − 1
n and xn+1 := 1 + 1

n be two extra break points, added to the partition x of the interval [0,1]

in order to obtain the extended knot partition u := {ui}N+4
i=1 , with N = 2n + 2 and u2i+3 = u2i+4 = xi , i = −1, . . . , n + 1. 

Therefore, the B-splines are given explicitly by the following expressions: for r = 1, . . . , n + 1,

D2r−1 (t) = [xr−2, xr−2, xr−1, xr−1, xr] (· − t)3+ ,

D2r (t) = [xr−2, xr−1, xr−1, xr, xr] (· − t)3+ .
(2.5)

They are supported on [xr−2, xr] and positive on (xr−2, xr).

2.3. Quadrature rules for C1 quintic splines with uniform knots

Another spline space that admits to compute the Gaussian QR using a recursive formula is C1 quintic splines with uni-
form knots. For this space, each element is guaranteed to have two Gaussian points, except the middle one that requires 
three [9]. Analogously to [24], the nodes and weights can be computed analytically using a recursive formula. The con-
struction of QRs for C1 quintic splines with uniform knots proceeds as follows, see also [9]. For a given set of break points 
x := {xi}n

i=0, xi := a + (i − 1)h, 1 ≤ i ≤ n + 1, with steplength h := (b − a) /n, and r := {ri}n−1
i=1 with ri = 2, the spline space 

considered is

Sn
5,1 := {

f ∈ C1 ([a,b]) : f |[xr ,xr+1] ∈ P5, r = 0,1, . . . ,n − 1
}
.

Its dimension is equal to dim Sn
5,1 = (5 + 1) + 4(n − 1) = 4n + 2, therefore the number of nodes of the Gaussian QR is equal 

to 2n + 1.
As in the C1 cubic case, in order to derive a recurrence method to determine the weights and nodes, an appropriate basis 

to Sn
5,1 is considered, whose non-normalized B-splines are defined by (2.2). Therefore, an appropriate extended partition u

is needed. It is achieved from x and r, by adding two additional break points x−1 := a −h and xn+1 := b +h with multiplicity 
two. It is given by u := {ui}N+6

i=1 , with N = 4n + 2 and u4i+3 = u4i+4 = u4i+5 = u4i+6 = xi , i = 0, . . . , n, and u1 = u2 = x−1, 
u4n+7 = u4n+8 = xn+1. From this partition the basis {Di}4n+2

1 is defined according (2.2) to obtain the following expressions:

D4k−3 (t) = [xk−2, xk−2, xk−1, xk−1, xk−1, xk−1, xk] (· − t)5+ ,

D4k−2 (t) = [xk−2, xk−1, xk−1, xk−1, xk−1, xk, xk] (· − t)5+ , k = 1, . . . ,n + 1,

D4k−1 (t) = [xk−1, xk−1, xk−1, xk−1, xk, xk, xk] (· − t)5+ ,

D4k (t) = [xk−1, xk−1, xk−1, xk, xk, xk, xk] (· − t)5+ , k = 1, . . . ,n.

Functions D4k−3 and D4k−2 are supported on [xk−2, xk], while the supports of D4k−1 and D4k are equal to [xk−1, xk], see 
Fig. 1. Moreover, after some computations, the following expressions are obtained: for t ∈ [xk−2, xk] it holds

D4k−3 (t) = 1

4h6

(
t − xk−2

)4 (
xk + 8xk−1 − 9t

)
,

D4k−2(t) = 1

4h6

(
t − xk−2

)5
,

and for t ∈ [xk−1, xk] we have

D4k−3(t) = 1

4h6 (xk − t)5 ,

D4k−2(t) = 1

4h6 (xk − t)4 (
9t − 8xk−1 − xk−2

)
,

D4k−1(t) = 10

h6

(
t − xk−1

)2
(xk − t)3 ,

D4k(t) = 10

h6

(
t − xk−1

)3
(xk − t)2 .

(2.6)

For every interval [xk−1, xk] only six B-splines have supports intersecting it.
A detailed study in [9] leads to a recurrence method to determine the nodes and weights of the (2n + 1)-Gaussian QR

Q 2n+1 ( f ) :=
2n+1∑

ωi f (τi) (2.7)

i=1
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Fig. 1. Only the B-splines D4k−3, . . . , D4k+2 have supports intersecting the interval [xk−1, xk].

to approximate I( f ). They are summarized in the following result (see Theorem 2.1 in [9]), that, similarly to Theorem 1, 
considers two scenarios depending on the parity of n.

Theorem 2. Let A1 := 1
24 and B1 := 1

8 , and for k = 2, . . . , �n/2� + 1 define

Ak := I
(

D4k−3
) − ω2k−3 D4k−3

(
τ2k−3

) − ω2k−2 D4k−3
(
τ2k−2

)
,

Bk := I
(

D4k−2
) − ω2k−3 D4k−2

(
τ2k−3

) − ω2k−2 D4k−2
(
τ2k−2

)
.

Then, the nodes and weights relative to the Gaussian QR (2.7) are determined by recurrence as follows: for k = 1, . . . , �n/2�,

τ2k−1 = xk−1 +
−bk −

√
b2

k − 4akck

2ak
and τ2k = xk −

−bk +
√

b2
k − 4akck

2ak
,

with

ak := 1 − 480Ak + 576A2
k + 576B2

k − 1152Ak Bk,

bk := 2h (12Bk + 108Ak − 1) ,

ck := h2 (1 − 24Bk + 24Ak) ,

and

ω2k−1 = 2h5 (9βk Ak + h Ak − hBk + βk Bk)

5
(
h − τ2k−1 + xk−1

)4 (
τ2k − τ2k−1

) ,

ω2k = h5
(
2τ2k−1 − 2xk−1 − h

)
60

(
τ2k − xk−1

)2 (
h − τ2k + xk−1

)2 (
τ2k−1 − τ2k

) .

If n is even, namely n = 2l, then

τn+1 = xl = a + b

2
and ωn+1 = 2

3
h − 2α2

l (5h − 4αl)ωn−1 + 2β4
l (5h − 4βl)ωn

h5 ,

with αl := τn−1 − xl−1 and βl := τn − xl−1 . If n is odd, namely n = 2l − 1, then τn+1 = a+b
2 ,

τn = xl−1 +
−b̃l −

√
b̃2

l − 4ãlc̃l

2ãl
,

where

ãl := 2 (108Al + 12Bl − 1) ,

b̃l := −2h (108Al + 12Bl − 1) ,

c̃l := −h2 (24Al − 24Bl + 1) ,

and τn+2 is the symmetrical point of τn with respect to τn+1. Moreover, the associated weights are given by the expressions

ωn = ωn+2 = h (108Al + 12Bl − 1)2

30 (156Al − 36Bl + 1)
,

ωn+1 = 4h
(
1152Al Bl + 264Al − 576A2

l − 576B2
l − 24Bl + 1

)
.

15 (156Al − 36Bl + 1)
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It can be seen that the cost of integration with this method is reduced by 2/3 compared to the classical Gaussian 
quadrature for polynomials as the spline rule requires asymptotically (for large n) only two quadrature points per element 
while the polynomial Gauss needs three. This cost reduction is even more significant in multivariate (tensor product) setups 
where this “cost saving ratio” 2/3 powers by the dimension.

The rule from Theorem 2 is guaranteed to exactly integrate C1 quintic splines. One can use the rule also for quintic 
spaces of higher continuities over uniform knot vectors (as these spaces are contained), however, the rule is not optimal in 
terms of number of quadrature points anymore.

For functions outside the spline space of interest, the integration error can be estimated using [9, Theorem 3.1]. That is, 
for f ∈ C6 ([a,b]) \ Sn

5,1 there exists ξ ∈ [a,b] such that

Rn+1 ( f ) = I ( f ) − Q n+1 ( f ) = c2n+1,6 f (6) (ξ) ,

where

c2n+1,6 = (b − a)7

5040
− 1

720

2n+1∑
k=1

ωk (τk − a)6 .

2.4. Quadrature rules for C2 cubic and C4 quintic splines by homotopy continuation

While for C1 cubic and quintic spline spaces there exist recursive formulas to compute Gaussian QRs, for higher conti-
nuities such explicit formulas are not at hand. To this end, one has to derive the QRs numerically. Polynomial homotopy 
continuation (PHC) is a numerical scheme that solves polynomial systems of equations (for a detailed explanation, see the 
book [27]) and it has been used in [6–8] for generating Gaussian quadrature rules for splines. In particular, to generate 
a Gaussian quadrature rule in a given (target) spline space, an associated source space with known Gaussian quadrature 
is built and the rule from the source space to the target space is transferred, while preserving the number of quadra-
ture points and therefore optimality. The exactness of the quadrature rule is formulated as a polynomial system and the 
quadrature nodes and weights, considered as a higher-dimensional point, are a zero of this system. Using the homotopy 
continuation concept, the source space is continuously deformed by changing the source knot vector to the target configu-
ration and the quadrature rule gets updated numerically by tracing the unique root of the continuously modified (piecewise 
polynomial) system.

We consider a uniform knot vector x on the interval [a, b] as in Section 2.2, where each of the n − 1 interior knots 
has associated multiplicity two and the spline space Sn

3,1. We define h := b−a
n = xr − xr−1 for all r = 1, . . . , n. Let us denote 

ñ := 2n − 1 and consider a uniform knot vector

x̃ = (a = x̃0, x̃1, ..., x̃ñ−1, x̃ñ = b)

such that each its knot is of multiplicity one. Then the spline space is

Sñ
3,2 = { f ∈ C2 ([a,b]) : f |[x̃k−1,x̃k

] ∈ P3, k = 1, . . . , ñ}
and we further define h̃ := b−a

ñ = x̃r − x̃r−1 for all r = 1, . . . , ̃n. The dimension of both spaces is 2n + 2, that is, the total 
number of interior knots is the same for both spaces, while the number of non-zero knot spans is different.

Moreover, we consider the two extended partitions u, obtained by considering x0 and xn as double knots and adding 
two extra double knots outside the interval [a, b] that we set as to be

x−1 = x0 − h and xn+1 = xn + h, (2.8)

and ũ, obtained by extending the knot sequence of x̃ by two triplets of single knots as

x̃−k = x̃0 − kh̃ and x̃ñ+k = x̃ñ + kh̃,k = 1,2,3. (2.9)

We define {D̃k}2n+2
k=1 the basis of the target space Sñ

3,2 where

D̃k(t) = [x̃k−4, . . . , x̃k](· − t)3+, k = 1, . . . ,2n + 2.

We further have that

I(D̃k) = I(Dk), k = 4, . . . ,2n − 1, (2.10)

where {Dk}2n+2
k=1 is the basis of the source space Sn

3,1, defined as in (2.5). The ten boundary integrals (five only due to 
symmetry) are computed directly by integrating the corresponding B-splines. These integrals change during continuation 
and therefore have to be recomputed for various continuation parameter t , typically t ∈ [0, 1]; t = 0 (source), t = 1 (target).
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Now we consider a continuous transition between the source Sn
3,1 and target Sñ

3,2. Since the transition of the spline 
spaces is governed by the transformation of the corresponding knot vectors, we consider the mapping

x → x̃

including the six outer knots defined in (2.8) and (2.9). Due to the fact that we work with non-normalized basis functions, 
(2.10) remain unchanged. The total number of knots is 2n + 6, but since the two boundary knots are constrained to stay 
fixed, there are 2n + 4 free knots. The transformation can be conceptualized as a curve between x and x̃, two points in 
R2n+4. There exist infinitely many paths connecting the source and target knot vectors. In particular, we use the geodesic 
path when considering the Euclidean metric on the vector of free knots.

We set our source space as Sn
3,1 for which we know a Gaussian source quadrature rule of the form (2.3), with nodes and 

weights given in Theorem 1. Due to the equal dimensions of Sn
3,1 and Sñ

3,2, the target rule requires the same number of 
nodes and therefore we look for a QR of the form

Q̃ n+1 ( f ) =
n+1∑
i=1

ω̃i f (τ̃i).

During the continuation, we transform the spline space Sn
3,1 to Sñ

3,2 and accordingly the Gaussian rule Q n+1 → Q̃ n+1. 
Therefore Q̃ n+1, represented by its nodes and weights, is a function of t . Without loss of generality, we conceptualize t = 0
(source) and t = 1 (target) and write the source quadrature rule as Q n+1 = Q̃ n+1(0) and the target rule as Q̃ n+1 = Q̃ n+1(1). 
The vector of unknowns consisting of the quadrature nodes and weights is conceptualized as a (2n + 2)-dimensional point

(τ̃1, . . . , τ̃n+1, ω̃1, . . . , ω̃n+1) ∈R2n+2

and the source polynomial system expresses that exactness condition, i.e., that the source rule exactly integrates the source 
basis. The source root that solves it is the quadrature rule of Section 2.2. By using the homotopy framework, in [6] a 
Gaussian QR for uniform C2 cubic spline spaces has been constructed, see [6] for more details.

By using the same logical argument, it is possible to derive a QR for uniform C4 quintic spline spaces, starting from the 
QR of Section 2.3 for C1 quintic splines with uniform knot sequences. In this case, we consider a uniform knot vector x on 
the interval [a, b] as in Section 2.3, where each of the n − 1 interior knots has associated multiplicity four. We denote the 
associated source spline space by Sn

5,1. We define h := b−a
n = xr − xr−1 for all r = 1, . . . , n. Let us denote ñ := 4n − 3 and 

consider a uniform knot vector

x̃ = (a = x̃0, x̃1, . . . , x̃ñ−1, x̃ñ = b)

such that each its knot is of multiplicity one. Then the target spline space is

Sñ
5,4 = { f ∈ C4 ([a,b]) : f |[x̃k−1,x̃k

] ∈ P5, k = 1, . . . , ñ}
and we further define h̃ := b−a

ñ = x̃r − x̃r−1 for all r = 1, . . . , ̃n. The dimension of both spaces is 4n + 2, that is, the total 
number of interior knots is the same for both spaces, while the number of non-zero knot spans is different.

Moreover, we consider the two extended partitions u, obtained by considering x0 and xn as knots of multiplicity four 
and adding two extra double knots outside the interval [a, b] that we set to be

x−1 = x0 − h and xn+1 = xn + h,

and ũ, obtained by extending the knot sequence of x̃ by two sets of single knots as

x̃−k = x̃0 − kh̃ and x̃ñ+k = x̃ñ + kh̃, k = 1, . . . ,5.

We define {D̃k}4n+2
k=1 the basis of the target space Sñ

5,4 where

D̃k(t) = [x̃k−6, . . . , x̃k](. − t)5+, k = 1, . . . ,4n + 2,

and we have that

I(D̃k) = I(Dk), k = 6, . . . ,4n − 3,

where {Dk}4n+2
k=1 is the basis of the source space Sn

5,1, defined as in (2.6). The six boundary integrals (three only due to 
symmetry) are computed directly by integrating the corresponding B-splines. These integrals change during continuation 
and therefore have to be recomputed for various continuation parameter t , typically t ∈ [0, 1]; t = 0 (source), t = 1 (target).

Now we consider a continuous transition between the source Sn
5,1 and target Sñ

5,4. We set our source space as Sn
5,1 for 

which we know a Gaussian source quadrature rule of the form (2.7), with nodes and weights given in Theorem 2 and we 
look for a QR of the form
78
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Table 1
Nodes and weights for Gaussian quadrature rules (2.11) for uniform knot distribution for various ñ. The integration interval is [0, ñ+3

4 ]
and thanks to symmetry properties only the first ñ+3

4 + 1 nodes and weights are reported.

i τi ωi ‖r‖ τi ωi ‖r‖
ñ = 9 6.42(−18) ñ = 13 1.21(−17)

1 0.070809859159811 0.183349827808167 0.065385669153961 0.169325364763240
2 0.377199653495331 0.423226004611632 0.348498904402831 0.391327681325333
3 0.888400716916905 0.579969346497780 0.822112583828282 0.538918320717784
4 1.500000000000000 0.626909642164842 1.395550612462171 0.596379706769487
5 − − 2.000000000000000 0.608097852848314

ñ = 17 1.91(−17) ñ = 21 1.95(−17)

1 0.062501758846785 0.161857754107132 0.060716019702809 0.157233335577858
2 0.333134377797970 0.374085047673794 0.323616604989813 0.363397640909352
3 0.785911368439571 0.515262428552110 0.763459071760679 0.500544699204603
4 1.334359996496279 0.570705014728738 1.296248210647031 0.554420719611212
5 1.913781728943024 0.584630042082223 1.859170957103380 0.568041687847310
6 2.500000000000000 0.586919425712005 2.428939359660305 0.570767137676093
7 − − 3.000000000000000 0.571189558347143

ñ = 25 1.82(−17) ñ = 29 1.99(−17)

1 0.059501700174624 0.154088671891742 0.058622364733744 0.151811499504440
2 0.317144284901381 0.356129713236112 0.312457423959895 0.350866713409836
3 0.748189969221157 0.490533943462980 0.737132977306587 0.483284678101352
4 1.270323682402073 0.543333040508792 1.251550440956447 0.535303513391059
5 1.821989881285721 0.556684789756668 1.795064002776477 0.548458055855679
6 2.380373136568870 0.559372890108410 2.345195639148952 0.551107018869507
7 2.940067341931896 0.559878806579807 2.896620379924060 0.551608612579667
8 3.500000000000000 0.559956288910975 3.448288240582612 0.551701856114277
9 − − 4.000000000000000 0.551716104348365

ñ = 33 2.10(−17) ñ = 37 4.05(−17)

1 0.057956201499154 0.150086368831821 0.057434073557755 0.148734239383008
2 0.308906771429059 0.346879591696191 0.306123827542799 0.343754550330581
3 0.728756466293858 0.477792806922296 0.722191092726851 0.473488367225914
4 1.237328277368729 0.529220519787704 1.226181175788537 0.524452767387078
5 1.774665550962560 0.542225582588944 1.758677573121231 0.537340667590496
6 2.318545703519458 0.544844463986058 2.297657904899482 0.539935956159231
7 2.863704318670243 0.545340466255171 2.837905183402830 0.540427493680052
8 3.409103572755148 0.545433231813783 3.378390942637572 0.540519443566724
9 3.954547737362110 0.545450436137280 3.918921259881264 0.540536600406546
10 4.500000000000000 0.545453063961504 4.459459881438810 0.540539780926602
11 − − 5.000000000000000 0.540540266687536

Q̃ 2n+1 ( f ) =
2n+1∑
i=1

ω̃i f (τ̃i). (2.11)

By using the homotopy framework, we are able to obtain the desired Gaussian QR. In Table 1 we report nodes and weights 
for various values of ñ. We also report the error ‖r‖ of the rule that is measured as the Euclidean norm of the vector of the 
residues, normalized by the system’s dimension 4n + 2 = ñ + 5, i.e.,

‖r‖ = 1

ñ + 5

( ñ+5∑
i=1

(Q̃ 2n+1(D̃i) − I(D̃i))
2
) 1

2

.

3. Numerical solution of linear Fredholm integral equations of the second kind via the Nyström method

Consider the linear Fredholm integral equation of the second kind

λu (x) −
∫
I

k (x, y) u (y) dy = f (x) , x ∈ I := [a,b], (3.1)

where k(x, y) is a enough regular bivariate kernel.
Among the methods to solve (3.1) (see e.g. [3]), we are interested in the Nyström method. It stems in numerical inte-

gration of the integral operator in (3.1) using a numerical quadrature. To approximate the value of I(g), we consider an 
m-point quadrature rule Q m (g) of kind (1.1), that is exact for some function space L, i.e., Rm(g) = 0 iff g ∈L. Traditionally, 
Gaussian quadrature for polynomials is used, i.e. L = Pp . The kernel k is assumed to be smooth, usually it is assumed to 
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be several times differentiable. The function g typically lies outside L and it is also assumed that there is a sequence of 
quadratures (Q m)m≥1 that converges to the exact integral as m → ∞. Applying the quadrature rule to (3.1), one obtains

λun (x) −
m∑

j=1

ω jk
(
x, τ j

)
un

(
τ j

) = f (x) , x ∈ I, (3.2)

where the unknown is the approximate solution un and the integer n is the number of elements, i.e., the uniform discretiza-
tion of the interval I . Then the Nyström method proceeds by sampling x values at the quadrature points τ ’s also in the 
x-direction, which gives an m × m linear system

λun (τi) −
m∑

j=1

ω jk
(
τi, τ j

)
un

(
τ j

) = f (τi) , i = 1, . . . ,m, (3.3)

with the vector of unknowns

un := (un (τ1) , . . . , un (τm))T .

Let z := (z1, . . . , zm)T be a solution of (3.3), then the solution reads as

z (x) = 1

λ

⎛⎝ f (x) +
m∑

j=1

ω jk
(
x, τ j

)
z j

⎞⎠ ,

which is known as Nyström interpolation formula [3].
Let us consider the Banach space X = C (I) and the operators K, Kn :X →X defined as

Kx (t) =
∫
I

k (t, s) x (s)ds and Knx (t) =
m∑

j=1

ω jk
(
t, τ j

)
x
(
τ j

)
, (3.4)

associated respectively with the integral equation (3.1) and a sequence of QRs

b∫
a

g(x) dx ≈
m∑

j=1

ωn, j g
(
τn, j

)
(3.5)

such that

sup
n≥1

m∑
j=1

∣∣ωn, j
∣∣ < ∞.

To simplify the notation, we will omit the index n from now on.
It holds

‖Kn‖∞ = max
t∈I

m∑
j=1

∣∣ω jk
(
t, τ j

)∣∣ .
With the notation given in (3.4), equations (3.1) and (3.2) read

(λ −K) u = f and (λ −Kn) un = f .

Observe that m is the number of quadrature points and this number depends on n, the number of elements of the 
discretization, in various ways, depending on particular quadrature rules based on splines of various degrees and continuities 
or polynomial Gaussian ones. It holds that m → ∞ as n → ∞, but the concrete relation between m and n depends on the 
particular rule. For example, for the C1 cubic spline space and its Gaussian quadrature we have n = m + 1, so asymptotically 
n ≈ m. See later Table 3 in Section 4 for relations of m and n for other discretization spaces.

Next, we give a result on the convergence of the sequence (un)n≥1 provided by the Nyström method when QRs for 
splines are used [3].

Theorem 3. Let k (t, x) be a continuous kernel defined on D := I × I , and suppose that the sequence (3.5) of QRs converges for all 
continuous functions defined on I . Moreover, let us suppose that the integral equation (3.1) admits a unique solution for all function 
f ∈ C (I) with λ �= 0. Then, for n enough large, for instance n ≥ N, the operator (λ −Kn)−1 exists and is uniformly bounded. More 
precisely, there exists a constant cs such that
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Table 2
Seven test datasets for the Fredholm integral equations of the second kind. In turn, the columns 
contain the intervals, kernels, exact solutions, and right-handsides of (4.1).

i Ii ki (x, t) ui (x) f i (x)

1 [0,1] cos (πxt) e−x e−x − e+πx sin(πx)−cos(πx)
(π2 x2+1)e

2 [0,1] ext ex ex − ex+1−1
x+1

3 [0,1] ln (1 + x + t) 1 − x + x2 − x3 x
(

1
4 x3 + 4

3 x2 + 3x + 4
)

ln
(

x+1
x+2

)
+ 25

12 ln (x + 1) − 8
3 ln (x + 2)

− 3
4 x3 + 47

24 x2 + 7
12 x + 385

144
4 [0,1] ext e−x cos x e−x cos x − ((x−1) cos 1+sin 1)ex−e(x−1)

e
(
x2−2x+2

)
5 [0,π ] cos (t + x) cos (50x) cos(50x) − 2

2499 sin x
6 [0,π ] ext x2 cos (50x) − 1(

2500+x2
)3

(−2x
(−7500 + x2

)
+eπx

(
2x

(−7500 + x2
) + π2x

(
2500 + x2

)2
)

+2πeπx
(
6250000 − x4

))
+x2 cos (50x)

7 [0,π ] t + x e−x cos (50x) − e−π
(
2499−2501π−2501x+eπ (−2499+2501x)

)
6255001+e−x cos (50x)

∥∥(λ −Kn)
−1

∥∥∞ ≤ 1 + ∥∥(λ −K)−1
∥∥∞ ‖Kn‖∞

|λ| − ∥∥(λ −K)−1
∥∥∞ ‖(K −Kn)Kn‖∞

≤ cs, n ≥ N.

Furthermore, for the solutions of equations (λ −K) u = f and (λ −Kn) un = f , n ≥ N, it holds

‖u − un‖∞ ≤ ∥∥(λ −Kn)
−1

∥∥∞ ‖(K −Kn) u‖∞ ≤ cs ‖(K −Kn) u‖∞ .

We recall that the sequences of Gaussian QRs here considered are convergent for all continuous functions because they 
have positive weights (see e.g. [26, Theorem 3] and [12, p. 130]).

4. Numerical tests of the Nyström method based on QRs for splines

In this section, we consider seven integral equations

ui (x) −
bi∫

ai

ki (x, t) ui (t)dt = f i (x) , x ∈ Ii = [ai,bi], (4.1)

whose kernels and independent terms are given in Table 2, as well as the corresponding solutions and the intervals Ii .
We numerically solve them by using the Nyström method in combination with the QRs proposed in Section 2 defined on 

a uniform partition of the interval Ii into n subintervals (elements). We compare the results with the ones produced when 
polynomial Gaussian quadratures are used. We develop all the tests in the Matlab environment.

The uniform norms ‖ui − ui,n,β‖∞,Ii of the errors ui − ui,n,β between the exact and approximate solutions ui and ui,n,β

are estimated from their values at 1000 equispaced points in Ii , yielding values ei,n,β . Here β denotes the QR applied in the 
Nyström method, in particular we use the following notation:

• β = 3 for the QR exact on Sn
3,1;

• β = 5 for the QR exact on Sn
5,1;

• β = 3H for the QR exact on Sn
3,2;

• β = 5H for the QR exact on Sn
5,4;

• β = G2 for the classical Gaussian rule with 2 nodes, exact on cubic polynomials;
• β = G3 for the classical Gaussian rule with 3 nodes, exact on quintic polynomials.

The numerical convergence orders are computed as

NCOβ := log2
ei,n,β

ei,2n,β

.

In order to qualitatively compare the results produced by different quadratures, we fix the number of nodes as this 
corresponds to the computational cost of the numerical integration. We consider the integers m ∈ {8,16,32,64,128} and, 
for each fixed m, we compute the number of subintervals (aka elements) for each quadrature by using the relations reported 
in Table 3. In the case of spline Gaussian rules, the relation between m and n comes from the fact that the dimension of 
each corresponding spline space over n elements equals 2m. The number of subintervals varies as it depends on the degree 
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Fig. 2. Two spline spaces and their corresponding Gaussian quadratures used in the Nyström method. Left: Discontinuous (C−1) quintic spline space over 
n = 3 elements and the corresponding polynomial Gauss quadrature (blue dots) applied elementwise with total m = 9 quadrature points. Right: C2 cubic 
spline space over n = 13 uniform elements with its Gaussian quadrature consisting of only m = 8 quadrature points. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Table 3
Relation between the number of elements and number of nodes (middle column) and 
the number of elements (NoE) n (right) used for a fixed m to compare the results of the 
Nyström method using various quadrature rules (left), where [�] := round(�).

Relation between m and n NoE

Formula exact in Sn
3,1 m = n + 1 m − 1

Formula exact in Sn
5,1 m = 2n + 1

[ m
2

]
Formula exact in Sn

3,2 2m = n + 3 2m − 3
Formula exact in Sn

5,4 2m = n + 5 2m − 3
Formula based on Q 2 [4] n = m m
Formula based on Q 4 [4] n = m m
Composite 2-nodes Gaussian Formula 2n = m

[ m
2

]
Composite 3-nodes Gaussian Formula 3n = m

[ m
3

]

Table 4
Results for example 1.

m n = m − 1 e1,n,3 NCO3 n = m
2 e1,n,5 NCO5

8 7 2.13 (−05) − 4 1.75 (−07) −
16 15 1.04 (−06) 4.35 8 3.02 (−09) 5.85
32 31 5.70 (−08) 4.19 14 4.87 (−11) 5.95
64 63 3.33 (−09) 4.10 32 7.70 (−13) 5.98
128 127 2.01 (−10) 4.05 64 1.21 (−14) 5.99

m n = 2m − 3 e1,n,3H NCO3H n = 2m − 3 e1,n,5H NCO5H

8 13 1.49 (−06) − 13 2.19 (−09) −
16 29 6.43 (−08) 4.53 29 2.42 (−11) 6.50
32 61 3.31 (−09) 4.28 61 3.01 (−13) 6.33
64 125 1.88 (−10) 4.14 125 4.22 (−15) 6.16
128 253 1.12 (−11) 4.07 253 7.77 (−16) 2.44

and continuity of the underlying spline space. In cases where the particular number of nodes does not permit admissible 
number of elements (i.e., n is not integer in Table 3) or it does not permit to satisfy the relations explained in Section 2.4, we 
round n up to fairly compare spline spaces with (almost) the same dimension, and consequently almost the same number of 
nodes. This is depicted in Fig. 2 where two spline space requiring almost the same number of quadrature points are shown. 
Observe a lot higher flexibility of the spline space that spans n = 13 elements while the discontinuous counterpart spans 
only n = 3 elements, yet being of even a slightly higher dimension. This phenomenon is reflected by larger approximation 
error when using standard polynomial Gaussian quadrature in contrast to some spline alternatives.

Tables 4 and 8 contain estimations of the errors provided by the different methods used to compute numerical solutions 
to the first integral equation whose kernel, independent term and exact solution are given in Table 2.

These results confirm the theoretical ones regarding the numerical convergence orders. They are equal to 4 for the formu-
las based on cubic splines and 6 for the formulas based on quintic splines. Comparing formulas with the same convergence 
order, we can conclude that the QRs constructed in Section 2.4 produce better results.

When compared to polynomial Gaussian quadrature, the Gaussian quadratures for splines exploit the continuity between 
the polynomial pieces and therefore would not capture behavior of a function with low continuity. If, for example, the 
right hand-side of (3.1) is discontinuous, it is not recommended to use spline quadratures as they might underintegrate the 
solution.

The conclusions are similar for the other examples, whose results are given in Tables 5-11. Observe that when we do 
not have results of errors for certain values of m in these tables, it is because the double float precision of our Matlab 
implementation was reached.
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Table 5
Results for example 2.

m n = m − 1 e2,n,3 NCO3 n = m
2 e2,n,5 NCO5

8 7 2.59(−05) − 4 5.63(−08) −
16 15 1.40(−06) 4.21 8 1.03(−09) 5.77
32 31 8.16(−08) 4.11 14 1.74(−11) 5.89
64 63 4.92(−09) 4.05 32 2.83(−13) 5.94
128 127 3.02(−10) 4.03 64 1.51(−14) 4.23

m n = 2m − 3 e2,n,3H NCO3H n = 2m − 3 e2,n,5H NCO5H

2m − 3 2m − 3
8 13 2.01(−06) − 13 1.28(−10) −
16 29 9.02(−08) 4.48 29 6.00(−12) 5.95
32 61 4.82(−09) 4.22 61 5.31(−13) 6.10
64 125 2.79(−10) 4.11 125 1.10(−15) 4.39
128 253 1.68(−11) 4.05 253 − −

Table 6
Results for example 3.

m n = m − 1 e3,n,3 NCO3 n = m
2 e3,n,5 NCO5

8 7 2.22 (−05) − 4 5.29 (−08) −
16 15 1.20 (−06) 4.21 8 1.02 (−09) 5.70
32 31 6.96 (−08) 4.11 14 1.78 (−11) 5.84
64 63 4.19 (−09) 4.05 32 2.96 (−13) 5.91
128 127 2.57 (−10) 4.03 64 8.77 (−15) 5.08

m n = 2m − 3 e3,n,3H NCO3H n = 2m − 3 e3,n,5H NCO5H

8 13 1.72 (−06) − 13 1.29 (−10) −
16 29 7.69 (−08) 4.48 29 6.31 (−12) 5.21
32 61 4.11 (−09) 4.23 61 5.70 (−14) 5.91
64 125 2.38 (−10) 4.11 125 1.18 (−15) −
128 253 1.43 (−11) 4.05 253 − −

Table 7
Results for example 4.

m n = m − 1 e4,n,3 NCO3 n = m
2 e4,n,5 NCO5

8 7 1.91 (−06) − 4 1.01 (−09) −
16 15 1.01 (−07) 4.24 8 1.80 (−11) 5.81
32 31 5.82 (−09) 4.12 14 2.98 (−13) 5.92
64 63 3.48 (−10) 4.06 32 5.47 (−15) 5.77
128 127 2.13 (−11) 4.03 64 − −
m n = 2m − 3 e4,n,3H NCO3H n = 2m − 3 e4,n,5H NCO5H

8 13 1.45 (−07) − 13 9.92 (−12) −
16 29 6.45 (−09) 4.49 29 1.32 (−13) 6.23
32 61 3.42 (−10) 4.24 61 2.36 (−15) 5.81
64 125 1.97 (−11) 4.11 125 − −
128 253 1.18 (−12) 4.06 253 − −

In the last three examples, solution functions ui(x) are highly oscillating functions. Observe that the performances of the 
QRs in Section 2.4 are by several orders of magnitude better when compared to their polynomial Gauss counterparts. Note 
that, due to the oscillatory behavior of ui(x), the error is large for small number of elements and therefore we start with 
n = 32 and n = 16 in Table 10 and 11, respectively.

5. Numerical solution of Hammerstein integral equations via the Nyström method

In this section we consider Hammerstein integral equations of the form

u(x) −
∫
I

k(x, y)g(y, u(y))dy = f (x), x ∈ I := [a,b], (5.1)

where the kernel k(x, y) and the function f (x) are given, and g(x, u(x)) is a non-linear function of u(x) while the unknown 
function u(x) represents the solution of the integral equation. The existence and the uniqueness of solutions to this type of 
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Table 8
From top to bottom and from left to right, results for examples 1, 2, 
3 and 4 using classical Gaussian rules with 2 and 3 nodes.

m e1,n,G2 e1,n,G3 e2,n,G2 e2,n,G3

n = m
2 n = [ m

3

]
n = m

2 n = [ m
3

]
8 3.49 (−05) 3.55 (−07) 5.14 (−05) 1.28 (−07)

16 2.14 (−06) 1.62 (−08) 3.23 (−06) 6.00 (−09)

32 1.33 (−07) 1.41 (−10) 2.02 (−07) 5.31 (−11)

64 8.30 (−09) 2.91 (−12)) 1.26 (−08) 1.10 (−12)

128 5.19 (−10) 3.95 (−14) 7.90 (−10) 1.87 (−14)

e3,n,G2 e3,n,G3 e4,n,G2 e4,n,G3

m n = m
2 n = [ m

3

]
n = m

2 n = [ m
3

]
8 4.38 (−05) 1.29 (−07) 3.65 (−06) 2.19 (−09)

16 2.75 (−06) 6.31 (−09) 2.28 (−07) 1.01 (−10)

32 1.72 (−07) 5.70 (−11) 1.42 (−08) 8.94 (−13)

64 1.08 (−08) 1.18 (−12) 8.89 (−10) 1.87 (−14)

128 6.73 (−10) 1.68 (−14) 5.56 (−11) 9.16 (−16)

Table 9
Results for example 5.

m e5,n,3 e5,n,5 e5,n,3H e5,n,5H e5,n,G2 e5,n,G3

n = m − 1 n = m
2 n = 2m − 3 n = 2m − 3 n = m

2 n = [ m
3

]
8 5.39 (−02) 5.04 (−01) 2.57 (−01) 9.00 (−02) 4.37 (−02) 2.37 (−01)

16 4.83 (−03) 2.04 (−02) 4.66 (−03) 5.04 (−03) 1.72 (−01) 7.44 (−01)

32 4.46 (−03) 9.84 (−05) 2.55 (−03) 3.70 (−03) 3.11 (−03) 9.30 (−03)

64 2.01 (−05) 1.43 (−04) 9.54 (−06) 2.17 (−08) 8.28 (−04) 4.87 (−05)

128 1.17 (−06) 5.56 (−08) 9.43 (−08) 3.15 (−11) 1.10 (−05) 3.93 (−06)

Table 10
Results for example 6.

m e6,n,3 e6,n,5 e6,n,3H e6,n,5H e6,n,G2 e6,n,G3

n = m − 1 n = m
2 n = 2m − 3 n = 2m − 3 n = m

2 n = [ m
3

]
32 7.80 (+00) 6.61 (+00) 1.61 (+00) 8.07 (−01) 1.04 (+01) 3.56 (+00)

64 9.94 (−02) 3.29 (−01) 2.54 (−02) 5.46 (−04) 2.52 (+00) 3.56 (−01)

128 1.43 (−02) 1.11 (−03) 6.10 (−04) 6.93 (−06) 4.43 (−02) 1.43 (−02)

Table 11
Results for example 7.

m e7,n,3 e7,n,5 e7,n,3H e7,n,5H e7,n,G2 e7,n,G3

n = m − 1 n = m
2 n = 2m − 3 n = 2m − 3 n = m

2 n = [ m
3

]
16 8.05 (−02) 5.20 (−02) 4.04 (−02) 7.69 (−02) 9.86 (−02) 3.75 (−01)

32 8.21 (−03) 1.03 (−02) 1.68 (−02) 5.78 (−03) 3.30 (−03) 9.15 (−03)

64 3.38 (−04) 1.40 (−04) 2.21 (−05) 5.66 (−06) 8.76 (−04) 4.15 (−05)

128 2.60 (−05) 2.12 (−06) 4.77 (−07) 2.80 (−08) 1.18 (−05) 4.19 (−06)

integral equations have been investigated in the literature by many authors (see e.g. [28]). Hammerstein integral equations 
arise in several applications in physics and engineering, such as in fluid mechanics, biological models, solid state physics, 
kinetics in chemistry, etc. In most cases, it is difficult to solve them, especially analytically.

For g ∈ C(I), the integral operator can be approximated in the following way∫
I

k(x, y)g(y, u(y))dy ≈
m∑

j=1

ω jk
(
x, τ j

)
g
(
τ j, un

(
τ j

))
,

where ω j e τ j are weights and nodes of the QR, respectively. Thus, we approximate integral equation (5.1) by

un (x) −
m∑

j=1

ω jk
(
x, τ j

)
g
(
τ j, un

(
τ j

)) = f (x) , x ∈ I. (5.2)

This is equivalent to first solve the system of non-linear equations
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Table 12
Three test datasets for the Hammerstein integral equations.

i ki (x, t) gi(t, u) ui (x) f i (x)

1 cos (πx) sin (πt) u2 sin (πx) sin(πx) − 4
3π cos(πx)

2 −x eu x ex

3 −ex−2t u3 ex ex+1

un (τi) −
m∑

j=1

ω jk
(
τi, τ j

)
g
(
τ j, un

(
τ j

)) = f (τi) , i = 1, . . . ,m,

where the unknowns are the values un(τi), 1 ≤ i ≤ m and then obtain the approximate solution by (5.2)

un (x) =
⎛⎝ f (x) +

m∑
j=1

ω jk
(
x, τ j

)
g
(
τ j, un

(
τ j

))⎞⎠ .

Let us consider the Banach space X = C (I) and the non-linear operators K, Kn :X →X defined as

Kx(t) =
∫
I

k(t, s)g(s, x(s))ds,

Knx(t) =
m∑

j=1

ω jk(t, τ j)g(τ j, x(τ j)), t ∈ I, x ∈ C(I).

Moreover, we assume that the following assumptions are satisfied [2]:

1. K and Kn , n ≥ 1, are completely continuous operators on � into X , where � is an open connected subset of X ;
2. {Kn}n≥1 is a collectively compact family on �;
3. Kn →K as n → ∞, all x ∈ �;
4. {Kn}n≥1 is equicontinuous at each x ∈ �.

We also assume that the integral equation (5.1) has a unique solution for f ∈ C(I) and we denote the solution by x∗ . In 
order to compute the convergence rate, assume [I −K′(x∗)]−1 exists on X , where K′(x∗) denotes the Fréchet derivative of 
K(x) in x∗ and further assume

‖K′
n(x)‖ ≤ c1 < ∞, ‖K′′

n(x)‖ ≤ c2 < ∞
for n ≥ 1 and ‖x∗ − xn‖ ≤ ε, with ε, c1 e c2 > 0. Then [2]

‖x∗ − xn‖ ≤ c‖K(x∗) −Kn(x∗)‖, n ≥ N.

Thus, the speed of convergence is that of the numerical integration method applied to K(x∗), and this is usually obtained 
easily.

5.1. Numerical tests

In this section, we consider three integral equations

ui (x) −
1∫

0

ki (x, t) gi (t, ui (t))dt = f i (x) , x ∈ [0,1],

whose corresponding data are given in Table 12.
We numerically solve them by using the Nyström method in combination with the QRs proposed in Section 2 defined 

on a uniform partition of the interval [0, 1] into n subintervals. We compare the results with the ones produced when poly-
nomial Gaussian quadratures are used and with those obtained in [5]. We develop all the tests in the Matlab environment. 
For the solution of the non-linear systems we use the fsolve command.

The uniform norms ‖ui −ui,n,β‖∞,[0,1] of the errors ui −ui,n,β between the exact and approximate solutions ui and ui,n,β

are estimated from their values at 1000 equispaced points in [0, 1], yielding values ei,n,β . As in Section 4, β denotes the QR 
applied in the Nyström method. Moreover, here we consider

• β = 3nu for the QR based on the non-uniform quadratic quasi-interpolant Q 3, as explained in [5]. The formula is of 
order O  

(
h4

)
;
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Table 13
Results for example 1 – non-linear case.

m n = m − 1 e1,n,3 NCO3 n = m
2 e1,n,5 NCO5

8 7 1.07 (−04) − 4 4.27 (−06) −
16 15 8.93 (−06) 3.59 8 1.77 (−07) 4.60
32 31 5.43 (−07) 4.04 14 3.39 (−09) 5.70
64 63 3.26 (−08) 4.06 32 5.56 (−11) 5.93
128 127 1.98 (−09) 4.04 64 8.80 (−13) 5.98

m n = 2m − 3 e1,n,3H NCO3H n = 2m − 3 e1,n,5H NCO5H

8 13 9.27 (−06) − 13 1.30 (−08) −
16 29 5.33 (−07) 4.11 29 1.08 (−09) 3.59
32 61 3.13 (−08) 4.09 61 2.00 (−11) 5.75
64 125 1.83 (−09) 4.09 125 2.99 (−13) 6.06
128 253 1.10 (−10) 4.06 253 4.75 (−15) 5.98

Table 14
Results for example 1 – non-linear case.

m e1,n,3nu e1,n,5nu e1,n,G2 e1,n,G3

n = m n = m n = m
2 n = [ m

3

]
8 1.38 (−04) 1.36 (−03) 4.14 (−04) 3.65 (−05)

16 7.99 (−06) 2.86 (−05) 2.21 (−05) 1.32 (−06)

32 4.94 (−07) 4.79 (−07) 1.33 (−06) 1.05 (−08)

64 3.08 (−08) 7.61 (−09) 8.24 (−08) 2.14 (−10))

128 1.93 (−09) 1.49 (−10) 5.14 (−09) 2.88 (−12)

Table 15
Results for example 2 – non-linear case.

m n = m − 1 e2,n,3 NCO3 n = m
2 e2,n,5 NCO5

8 7 3.99 (−07) − 4 2.62 (−10) −
16 15 2.14 (−08) 4.22 8 4.74 (−12) 5.79
32 31 1.23 (−09) 4.12 14 7.23 (−14) 6.04
64 63 7.41 (−11) 4.06 32 2.66 (−15) 4.76
128 127 4.54 (−12) 4.03 64 − −
m n = 2m − 3 e2,n,3H NCO3H n = 2m − 3 e2,n,5H NCO5H

8 13 3.06 (−08) − 13 2.27 (−12) −
16 29 1.37 (−09) 4.49 29 3.30 (−14) 3.59
32 61 7.27 (−11) 4.23 61 − −
64 125 4.20 (−12) 4.11 125 − −
128 253 2.53 (−13) 4.06 253 − −

Table 16
Results for example 2 – non-linear case.

m e2,n,3nu e2,n,5nu e2,n,G2 e2,n,G3

n = m n = m n = m
2 n = [ m

3

]
8 3.41 (−07) 2.17 (−07) 7.75 (−07) 5.82 (−10)

16 2.18 (−08) 5.31 (−10) 4.85 (−08) 2.72 (−11)

32 1.36 (−09) 9.24 (−12) 3.03 (−09) 2.27 (−13)

64 8.46 (−11) 1.49 (−13) 1.90 (−10) 6.22 (−15))

128 5.29 (−12) 2.89 (−15) 1.19 (−11) −

• β = 5nu for the QR based on the non-uniform quartic quasi-interpolant Q 5, as explained in [5]. The formula is of order 
O  

(
h6

)
.

As in Section 4, we consider the integers m ∈ {8,16,32,64,128} and for each on them we compute the number of 
subintervals for each quadrature by using the relations reported in Table 3.

Tables 13-18 contain estimations of the errors provided by the different methods used to compute numerical solutions 
of the three integral equations (when we do not have results of errors for certain values of m in these tables, it is because 
the double float precision of our Matlab implementation was reached).

These results confirm the theoretical ones regarding the numerical convergence orders. They are equal to 4 for the formu-
las based on cubic splines and 6 for the formulas based on quintic splines. Comparing formulas with the same convergence 
order, we conclude that, among the quadrature rules tested, the spline Gaussian rules with maximum continuity, described 
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Table 17
Results for example 3 – non-linear case.

m n = m − 1 e3,n,3 NCO3 n = m
2 e3,n,5 NCO5

8 7 3.53 (−07) − 4 2.31 (−10) −
16 15 1.89 (−08) 4.22 8 4.19 (−12) 5.79
32 31 1.09 (−09) 4.12 14 7.11 (−14) 5.88
64 63 6.54 (−11) 4.06 32 4.00 (−15) 4.15
128 127 4.01 (−12) 4.03 64 − −
m n = 2m − 3 e3,n,3H NCO3H n = 2m − 3 e3,n,5H NCO5H

8 13 2.70 (−08) − 13 2.01 (−12) −
16 29 1.21 (−09) 4.49 29 3.11 (−14) 6.01
32 61 6.42 (−11) 4.23 61 2.66 (−15) 3.54
64 125 3.71 (−12) 4.11 125 − −
128 253 2.260 (−13) 4.04 253 − −

Table 18
Results for example 3 – non-linear case.

m e3,n,3nu e3,n,5nu e3,n,G2 e3,n,G3

n = m n = m n = m
2 n = [ m

3

]
8 3.01 (−07) 1.92 (−08) 6.85 (−07) 5.14 (−10)

16 1.92 (−08) 4.69 (−10) 4.29 (−08) 2.41 (−11)

32 1.20 (−09) 8.16 (−12) 2.68 (−09) 2.12 (−13)

64 7.48 (−11) 1.30 (−13) 1.68 (−10) 7.99 (−15))

128 4.67 (−12) 3.55 (−15) 1.05 (−11) −

in Section 2.4, produce the best solutions. In particular, when compared to the classical polynomial Gauss quadrature, the 
approximated solutions are by two to three orders of magnitude better.

6. Conclusions

We solve Fredholm linear integral equations of the second kind and non-linear Hammerstein integral equations via 
Nyström method using various existing spline Gaussian quadrature rules and newly derived rules for quintic C4 spline spaces 
with uniform knots. We prove that the method converges to the exact solution as the number of uniformly distributed 
elements goes to infinity and show numerically that, in the majority of the test cases, using spline Gaussian rules the 
approximation error is smaller by several orders of magnitude than the one when the classical polynomial Gaussian rule is 
used.
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