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Abstract—Epileptic seizures are one of the most crucial
neurological disorders, and their early diagnosis will help the
clinicians to provide accurate treatment for the patients. The
electroencephalogram (EEG) signals are widely used for epileptic
seizures detection, which provides specialists with substantial
information about the functioning of the brain. In this paper,
a novel diagnostic procedure using fuzzy theory and deep
learning techniques is introduced. The proposed method is
evaluated on the Bonn University dataset with six classification
combinations and also on the Freiburg dataset. The tunable-
Q wavelet transform (TQWT) is employed to decompose the
EEG signals into different sub-bands. In the feature extraction
step, 13 different fuzzy entropies are calculated from different
sub-bands of TQWT, and their computational complexities are
calculated to help researchers choose the best set for various
tasks. In the following, an autoencoder (AE) with six layers
is employed for dimensionality reduction. Finally, the standard
adaptive neuro-fuzzy inference system (ANFIS), and also its
variants with grasshopper optimization algorithm (ANFIS-GOA),
particle swarm optimization (ANFIS-PSO), and breeding swarm
optimization (ANFIS-BS) methods are used for classification.
Using our proposed method, ANFIS-BS method has obtained
an accuracy of 99.74

Index Terms—Epileptic Seizures, Diagnosis, EEG, TQWT,
Fuzzy Entropies, AE, ANFIS-BS
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EPILEPSY is a group of neurological disorders associated
with seizures [1], [2]. Epileptic seizures result from the

abnormal activity in the cortex of the brain, presented in
two types of focal and general seizures [3], [4]. Seizures can
cause various symptoms such as sudden loss of consciousness,
muscle contraction, and emotional or behavioral changes in
the patient [5], [6]. Based on statistics published by the world
health organization (WHO), more than 50 million people on
the planet suffer the burden of epilepsy, shaping around one
percent of the world population [7].

Neuroimaging modalities are among the essential tech-
niques for epileptic seizures detection, including functional
and structural methods [8], [9].

The EEG signals carry vital physiological and pathological
information in their recordings [10]. Various neurological
disorders such as epileptic seizures [11] and autism spectrum
disorder (ASD) [12] can be diagnosed using EEG signals,
owing to its high temporal resolution, portability, and in-
expensiveness. Epileptic seizures are detected currently by
clinicians by visual inspection, which is subjective and time-
consuming. The presence of myogenic and ocular artifacts
makes the detection process a challenging task [13]. The
computer aided diagnosis system (CADS) can be employed for
the diagnosis of epileptic seizures. The CADS helps clinicians
to identify epileptic seizures automatically [14]. These systems
are faster, more accurate, and also can handle a huge volume
of data. The CADS has four steps for automated diagno-
sis of epileptic seizures. These steps contain pre-processing,
features extraction, feature selection/dimensionality reduction,
and classification [1], [3], [4], [5], [6], [15].

So far, many pieces of research have been conducted on
creating CADS suitable for epileptic seizures detection on
EEG signals, mostly focusing on increasing these systems’
accuracy and performance. In this paper, a novel method is
presented for epileptic seizure detection on EEG signals based
on fuzzy logic theories and deep learning; Figure 1 shows the
steps of the proposed system. As shown in Figure 1, the Bonn
and the Freiburg datasets were used for the implementation and
evaluation of the proposed method. The Bonn dataset contains
various classification problems.

The second part of the proposed CADS is dedicated to
preprocessing EEG signals of both datasets using TQWT.
In this stage, the TQWT [16] is used to decompose the
EEG signals of the Bonn [17] and Freiburg [18] datasets
into different sub-bands. TQWT, first introduced in [16],
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is an improved version of DWT, suitable for preprocessing
of chaotic biomedical signals such as EEG. Redundancy or
oversampling rate (r), number of sub-bands (J), and Q factor
(Q) are the most critical parameters of this wavelet transform.
In our paper, parameters are chosen as J = 8, r = 1, and
Q = 3, similar to [19].

Considering that EEG signals have chaotic behavior, non-
linear feature extraction techniques can help CADS reach
higher performances. Feature extraction is of utmost im-
portance in steps of CADS for epileptic seizure detection.
Previous studies have shown that non-linear features perform
better in this task, given the chaotic characteristics of EEG
signals [20]. Among them, fractal dimension (FD) techniques
[21], correlation [22], largest Lyapunov exponent (LLE) [23],
and also various types of entropies [20].

In this paper, a combination of fuzzy entropies is employed
for feature extraction. Employing fuzzy entropies for epileptic
seizure detection has been examined very limited in previous
studies, all of which are reviewed in the following.

Xing et al. [24] proposed a method for epileptic seizure
detection based on fuzzy entropy (FuEn). They used FuEn
for feature extraction and support vector machine (SVM) for
classification and achieved promising results. In [25], first,
EEG signals were segmented into various time-windows. In
the following, power spectral density (PSD) and FuEn were
computed for signals as features; lastly, SVM was applied for
classification, and an accuracy of 96.20% is reached at best.
Tripathi et al. [26] employed empirical mode decomposition
(EMD) in preprocessing step for the decomposition of signals
into different sub-bands; then, they used FuEn and SVM for
feature extraction and classification, respectively, and reported
a 97% accuracy. In [27], the authors introduced a novel
entropy named fuzzy distribution entropy (FuDistEn). Then, an
epileptic seizures detection method is presented that consists of
wavelet packet decomposition (WPD), FuDistEn, and Kruskal-
Wallis nonparametric one-way analysis of variance. In their
system, FuDistEn values are computed from all nodes in
every level and fed to k nearest neighbors (KNN) classifier
as features.

An epileptic seizure detection method based on fuzzy
permutation entropy (FuPeEn) was introduced in [28]. In
this work, an artificial neural network (ANN) is employed
for classification, and an accuracy of 98.72% is achieved.
Similarly, in [29], FuPeEn has been picked for the same
task. Here, after preprocessing the input signals, researchers
have extracted FuPeEn from each frame and fed them to
various classification methods for comparison. Averagely, they
reach an accuracy of 98.72%. In another research, Kumar
et al. [30] applied fuzzy approximate entropy (FuApEn) for
epileptic seizure detection. They first preprocessed signals
using discrete wavelet transform (DWT), and after feature
extraction, they used an SVM for classification, reporting
an accuracy of 97.83%. Bhattacharyya et al. [31] employed
TQWT and multivariate Fuzzy Entropy for preprocessing and
feature extraction, respectively. Fractional fourier transform-
wavelet packed transform (FFTWPT) was used by Li et al.
[32] in preprocessing step of their method. Then, FuEn was
used for feature extraction. By using principal component

analysis (PCA) for dimensionality reduction and SVM for
classification, they reached an accuracy of 98.58%.

As noticeable from reviewed studies, no previous work
has been conducted on combining various Fuzzy entropies
as feature extractors from EEG signals for epileptic seizures
detection. In this paper, numerous fuzzy entropy based features
are extracted from different sub-bands of TQWT for epileptic
seizure detection, which makes this paper also a suitable
review of type-1 fuzzy entropy features for this task. The
different fuzzy entropies are FuEn [33], averaged (AFuEn)
[34], multiscale (MFuEn) [35], refined composite multiscale
(RCMFuEn) [36], fractional (FFuEn) [37], FuApEn [38], min-
imum variance modified (MVMFuEn) [39], inherent (IFuEn)
[40], FuDistEn [27], cross fuzzy (CFuEn) [41], FuPeEn [29],
hierarchical (HFuEn) [42], and fuzzy measure (FuMeEn) [43].

As demonstrated in Figure 1, the fourth step is dedicated
to dimensionality reduction. In this paper, an AE is applied
to reduce the feature matrix’s dimensionality; the applied AE
has a hand-tailored structure for this specific task, which
is the second novelty of this paper. Considering the high
dimensionality of feature vectors, without dimensionality re-
duction, the classifier cannot train properly; AE is a well-
known dimensionality reduction that learns a representation in
a smaller space. Compared to other dimensionality reduction
methods such as PCA [44], AEs are capable of modeling
complex non-linear functions, while others are mostly a linear
transformation.

The last step of the proposed method is classification;
here, KNN, multilayer perceptron (MLP), SVM, random
forest (RF), and various ANFIS classification methods are
employed for comparison. First, the classification is performed
using standard ANFIS [45]; then, to improve the proposed
CADS performance, improved ANFIS-GOA, ANFIS-PSO,
and ANFIS-BS models are used. Standard ANFIS uses back-
propagation to train the model; however, in the improved
versions, GOA [46], PSO [47], and BS [48] methods are used
to enhance the training process. Using optimizers for training
the ANFIS has been studied before by many researchers [49],
[50]; however, they have mostly used GA or PSO optimizers.
In this work, we have used the BS algorithm to train the
ANFIS, which is a combination of GA and PSO, and to the
best of our knowledge, this is the first time any research
has used this algorithm to train ANFIS. Results show the
superiority of the proposed method compared to previous
studies.

The organization of the rest of the paper is depicted as
follows. The material and methods are described in Section 2,
Section 3 is dedicated to the evaluation processes; and finally,
Section 4, 5, and 6 present the experiment results, limitations
of the study, and discussion, respectively.

II. MATERIAL AND METHODS

A. Dataset

1) Bonn Dataset: This dataset was recorded at the Uni-
versity of Bonn by a group of researchers, and it had been
extensively used for research in the area of epileptic seizure
analysis and detection [17]. This dataset contains 500 signal



3

Fig. 1: Proposed method for automated diagnosis of epileptic seizures.

frames with a length of 23.6 seconds. In this dataset, the
sampling frequency is 173.61 Hz. They consisted of five
classes’ viz. A, B, C, D, and E with 100 segments recordings
in each class [17]. Five healthy controls in the relaxed and
awake state with 10-20 standard electrode placement schemes
contributed to Class A and B EEG surface data. Intracranial
electrodes were used on 5 patients who suffered from epilepsy
and collected data of C, D, and E classes [17].

The hemisphere of the epileptogenic zone and the opposite
hemisphere were used respectively for the recording of the C
and D classes’ signals during inter-ictal (seizure-free) period.
Ictal (seizure) period was taken into account for the recording
of class E [17]. More details about the Bonn dataset are
reported in Tables I and III.

2) Freiburg Dataset: The Freiburg dataset [18] includes
intracranial electroencephalography (IEEG) signals from 21
patients suffering from focal epileptic seizures recorded at
Freiburg Hospital in Germany. All IEEG signals were recorded
using a Neurofile NT digital video EEG system with 256 Hz
sampling frequency. During recording, depth (d), strip (s), and
grid (g) electrodes were applied to reduce noise and increase
SNR. In this database, all subjects range in age from 10
to 50 years containing 13 women and 8 men. The database
comprises a variety of ictal, pre-ictal, and inter-ictal samples
from patients with epileptic seizures. At the time of recording
IEEG signals, at least 2 and at most 5 epileptic seizures were
observed in each subject. Three different seizure types includ-
ing generalized tonic-clonic (GTC), complex partial (CP), and
simple partial (SP) have been reported among patients and
they have experienced at least two different types. Epilepsy
was detected in 11 patients in the neocortical brain location, in
the hippocampus location in eight patients, and in two patients
in both regions. More details on Freiburg dataset are provided
in Table II.

B. Preprocessing using TQWT

Wavelet transforms have a wide range of applications in
the scope of brain signal processing [51], [52], [53]. TQWT
is an improved and particular type of DWT introduced by Ivan
Selesnick [16] and is also employed to precisely analyze EEG
signals. In the TQWT, the input parameters, r, J , and Q can be

TABLE I: Thorough explanation of five subsets of dataset

Sets Subjects

Patient
Stage

Electrode
type

Num. of
Cases

Num. of
Data

Length. of
Segments

Set A Eye Open Surface 5 100 4097
Set B Eye Close Surface 5 100 4097
Set C Seizure Free Intracranial 5 100 4097
Set D Seizure Free Intracranial 5 100 4097
Set E Seizure Activity Intracranial 5 100 4097

tuned [16]. Two channel filter bank operations high pass filter
H1(ω) with scaling factor γ and ξ low pass filter H0(ω) with
scaling factor ξ can be used in TQWT. The TQWT expressions
are as given below [16]:

H0(ω) =


1 |ω|< (1− γ)π

λ(ω+(γ−1)π
ξ+γ−1 ) (1− γ)π ≤ |ω|< ξπ

0 ξπ ≤ |ω|< π

(1)

H1(ω) =


0 |ω|< (1− γ)π

λ( ξπ−ω
ξ+γ−1 ) (1− γ)π ≤ |ω|< ξπ

1 ξπ ≤ |ω|< π

(2)

where λ(ω) = cos2 ω2
√

2− cos(ω), |ω|≤ π is the
Daubechies filter frequency response [16].

High-pass and low-pass scaling factors are selected to
satisfy the conditions [16]:

0 < ξ < 1; 0 < γ ≤ 1; ξ + γ > 1 (3)

The maximum number of sub-bands Jmax, redundancy r,
and quality factor Q and parameters are defined in terms of ξ
and γ as [16]:

r =
γ

1− ξ
;Q =

2− γ
γ

; Jmax =
log(γ

N

8 )

log( 1
ξ )

(4)

Redundancy r must be greater than 1, and the Q-factor
should be chosen such that Q ≤ 1. Figure 2 illustrates the
result of applying TQWT on a frame of the Bonn dataset’s
signals for r = 3, Q = 1, J = 8, respectively. Also, Figure
3 illustrates the frequency response for r = 3, Q = 1, and
J = 8.
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TABLE II: More details on the Freiburg dataset

Patient Age Gender Seizure Origin Seizure Type Electrodes Number of Seizures Focus Location

1 15 Female Temporal SP, CP g, s 4 Ne
2 38 Male Frontal SP, CP, GTC d 3 Hi
3 14 Male Temporal SP, CP g, s 5 Ne
4 26 Female Temporal SP, CP, GTC d, g, s 5 Hi
5 16 Female Frontal SP, CP, GTC g, s 5 Ne
6 31 Female Temporal CP, GTC d, g, s 3 Hi
7 42 Female Temporal SP, CP, GTC d 3 Hi
8 32 Female Temporal SP, CP g, s 2 Ne
9 44 Male Frontal CP, GTC g, s 5 Ne
10 47 Male Frontal SP, CP, GTC d 5 Hi
11 10 Female Frontal SP, CP, GTC g, s 4 Ne
12 42 Female Frontal SP, CP, GTC d, g, s 4 Hi
13 22 Female Temporal SP, CP, GTC d, s 2 Hi
14 41 Female Temporal CP, GTC d, s 4 Ne, Hi
15 31 Male Frontal SP, CP, GTC d, s 4 Ne, Hi
16 50 Female Temporal SP, CP, GTC d, s 5 Hi
17 28 Male Temporal SP, CP, GTC s 5 Ne
18 25 Female Temporal SP, CP s 5 Ne
19 28 Female Frontal SP, CP, GTC s 4 Ne
20 33 Male Temporal SP, CP, GTC d, s 5 Ne
21 13 Male Temporal SP, CP s 5 Ne

TABLE III: More details about six problem classification

Case Classification
Problems Description

Case 1 A-E Healthy - Ictal
Case 2 B-E Healthy - Ictal
Case 3 C-E Interictal - Ictal
Case 4 D-E Interictal - Ictal
Case 5 ABCD-E Normal - Seizure
Case 6 AB-CD-E Healthy - Interictal - Seizure

C. Feature Extraction

EEG signals have chaotic behavior. Given that entropies are
an important class of feature extraction methods, in this work,
different fuzzy entropies have been used to extract the feature
from EEG signals, and they are mentioned below.

1) Standard Fuzzy Entropy: For a time series x(i), i =
1,2,...,N FuEn [33] establishes vector sequences Xm

i , i =
1, ..., N −m+ 1 as given blow:

Xm
i = {x(i), x(i+ 1), ..., x(i+m− 1)} − x0(i) (5)

Where the length of the sequences is denoted by m, x0(i)
is a baseline.

Dmij (n, r) is the similarity degree using fuzzy membership
function µ(dmij , n, r)) for the vector Xm

i and Xm
j replacing

the Heaviside function [33].

Dm
ij (n, r) = µ(dmij , n, r) (6)

µ(dmij , n, r) = e
−(dmij )n

r (7)

Fig. 2: EEG signal of Bonn dataset decomposition using
TQWT.

where r and n are predefined gradient and width of the
exponential function, dmij is the maximum absolute difference
between Xm

i and Xm
j . φm function is defined as below [33]:

φm(n, r) =
1

N −m

N−m∑
i=1

 1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij

 (8)

The sequences Xm+1
i is generated by setting m ← m+1

and φm(n, r) is constructed afterwards. Time series for input
x(i) for FuEn is generated φm(n, r) deviated from φm+1(n, r)
as given below [33]:

FuEn(m,n, r,N) =
φm(n, r)

φm+1(n, r)
(9)

2) Averaged Fuzzy Entropy: AFuEn is a novel and im-
proved model of FuEn. Various approaches have been pro-
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Fig. 3: Illustration of frequency response for r=3, Q=1, and
J=8.

posed to implement this entropy [34]. In this method, an
improved m pattern Γk[Xm

j ] is compared to Xm
i . At this

entropy, equation (6) is modified as follows [34]:
kDm

ij (n, r) = µ
(
d
[
Xm
i ,Γk[Xm

j ]
]
, n, r

)
(10)

In the following, four different types of Γk [Xm(j)] operations
with k={T,R,I,G} are defined as follows [34]:
• A translation of n samples, k = T is corresponding to

ΓT [Xm
j ] = Xm

j+n

• A reflection at the position n, k = R is corresponding to
ΓR[Xm

j ] = Xm
−j+n

• An inversion at the position n, k = I is corresponding to
ΓI [X

m
j ] = −Xm

−j+n
• A glide reflection of n samples, k = G is corresponding

to ΓG[Xm
j ] = −Xm

j+n

In this case, four fuzzy entropies including FuEnT, FuEnR,
FuEnI, and finally FuEnG are obtained. The following fuzzy
entropy is computed as follows [34]:

FuEna(m,n, r,N) =
(FuEnT + FuEnR + FuEnI + FuEnG)

4
(11)

Finally, equation (12) is acquired.

FuEnk(m,n, r,N) = ln

[
φmk (n, r)

φm+1
k (n, r)

]
(12)

3) Multi-Scale Fuzzy Entropy: In MFuEn, slight variations
in EEG signals are detected with high precision. At this
entropy, we have [35]:

yτ (j) =
1

τ

jτ∑
i=(j−1)τ+1

ui; i ≤ j ≤
N

τ
(13)

Where yτ (j) represents the large series of the structure, τ
is the scale factor, ui indicates the independent components
of the time series, and N is the total data points in the EEG
signals. Finally, MFuEn for any large series of the structure
yτ (j) is calculated using the equation below [35]:

MFuEn(m, r) = log(
Bmr
Am+1
r

) (14)

A and B are counters that analyze m and (m + 1) pattern
matchings with the value r.

4) Refined Composite Multiscale Fuzzy Entropy: RCM-
FuEn based on µ and σ are the two techniques introduced by
[36]. For embedding dimension m, scale factor τ , φmτ,k|(k =

1, ..., τ) and φm+1
τ,k |(k = 1, ..., τ) for each Z(r)

k |(k = 1, ..., τ)
are calculated separately. The RCMFuEnσ is computed as
follows [36]:

RCMFuEσ(x, τ,m, n, r) = − ln

(
φ
m+1

r

φ
m

r

)
(15)

RCMFuEnσ and RCMFuEnµ have differences that both use
different equations in their first step algorithm. The tolerance
r, Fuzzy entropy power n, the embedding dimension m were
chosen as 0.15, 2, and 2 respectively [36].

5) Fractional Fuzzy Entropy: As shown in [37], a new
fractional based Shannon entropy is introduced as follows:

Sα =
∑
i

pi

[
− p−αi

Γ(α+ 1)
[ln pi + ψ(1)− ψ(1− α)]

]
(16)

Also, fractional-order information of order α can be de-
ducted using :

Iα = − p−αi
Γ(α+ 1)

[ln pi + ψ(1)− ψ(1− α)] (17)

Using the base idea of the Shannon fractional entropy, in
[37] a Fuzzy based fractional entropy is introduced, which can
be shown similar to equation (18).

FFuEn(m, r, α, xN ) =

−
(
φm+1(r)

φm(r)

)−α lnφm+1(r)
φm(r) + ψ(1)− ψ(1− α)

Γ(1 + α)

(18)

6) Fuzzy Approximate Entropy: In FuApEn, the similarity
index depends on the fuzzy membership function [38]. Hard
boundaries are loosened by choosing the points approach over
the Heaviside function. Similarity degree Dmij between two
vectors Xm

i and Xm
j is calculated by a fuzzy membership

function by using a predetermined tolerance value r as below
[38]:

Dm
ij = µ(dmij , r) (19)

The function Cmr is given by

Cmr (i) =
1

N −m+ 1

N−m+1∑
j=1,j 6=i

Dm
ij (20)

φm(r) =
1

N −m+ 1

N−m+1∑
j=1,j 6=i

ln[Cmr (i)] (21)

FuApEn(m, r) can be defined as time series measure from
the function φ(m+1)(r) and the vector sequence {Xm+1

i }
where sequence length N , tolerance r, and dimension m as
given below [38]:

FuApEn(m, r) = lim
m→∞

[φm(r)− φm+1(r)] (22)
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FuApEn can be defined for finite datasets from the statistics
as below [38]:

FuApEn(m, r,N) = φm(r)− φm+1(r) (23)

7) Minimum Variance Modified Fuzzy Entropy: The mod-
ified FuEn is proposed (MoFuEn) by [39] to tackle mem-
bership functions limitations. The relative energy function ψ
is estimated by using N as segmentation length, time-series
x = x1, x2, ..., xN [39].

ψi =
|xi|2∑N
i=1|xi|2

(24)

The MoFuEn is calculated using relative energy as member-
ship function as follows [39]:

HA = −C
N∑
i=1

[ψi log(ψi) + (1− ψi) log(1− ψi)] (25)

Let H = HA1 , HA2 , ...,HAK
where k is the total of modified

fuzzy entropy values, then [39]

Hnew =
H

min(H)
(26)

And MVMFuEn is defined as [39]:

MVMFuEn =
Hnew

σ2
Hnew

(27)

Where σ2
Hnew

is the variable of Hnew. More information about
MVMFuEn is presented in [39].

8) Inherent Fuzzy Entropy: IFuEn is presented for the first
time in [40] and includes three primary steps. In the first step,
several IMFs are generated by decomposing the original signal
x(t) and regeneration of signal x̂(t) using EMD techniques.
In the second step, FuEn is applied to evaluate the complexity.
Finally, the MFuEn version similar to relations (13) and (14)
is used for the third stage. The details of this entropy are
presented in [40].

9) Fuzzy Distribution Entropy: This entropy has for steps
reconstruction of state-space, distance matrix construction,
similarity degree calculation, probability density estimation,
and FuDistEn calculation. In reconstruction of state-space
stage, baseline removal is done like FuEn as a first step
and vectors of N − m + 1 m-dimensional are created [27].
In step two, Chebyshev distance is utilized in FuDistEn. In
order to estimate similarity degree Dm

ij exponential function
and fuzzy membership functions are used [27]. In probability
density estimation step, the diagonal elements of Dm

ij are not
included to shun self-matching and vector Rm is obtained by
transforming the matrix. Finally, FuDistEn calculation is as
eq. (28) as follow [27]:

FuDistEn(M,m,n, r) = −
M∑
t=1

Pt
log2 Pt
log2M

(28)

Which Pt be the probabilities of ePDF, tolerance r, the order
of n, and embedding dimension m.

10) Cross Fuzzy Entropy: Two distinct signals’ similarity
or synchrony can be analyzed using CFuEn [40]. CFuEn
utilized exponential function instead of Heaviside function as
used in cross-sample entropy for examining the similarity of
vectors. The CFuEn parameters m,n, r can be denoted as the
negative logarithm of φm+1(n,r)

φm(n,r) conditional probability [41].

CFuEn(m,n, r,N) = − lim
N→∞

(
ln

(
φm+1(n, r)

φm(n, r)

))
(29)

11) Fuzzy Permutation Entropy: FuPeEn is computed as
follows [29]:

1) Let us assume a time series [x(i) : 1 ≤ i ≤ L], where
L is the length of the series X . These time series are
utilized to create a matrix [29].

x(1) x(1 + τ) ... x(1 + (pm− 1)τ)
x(2) x(2 + τ) ... x(2 + (pm− 1)τ)
x(3) x(3 + τ) ... x(2 + (pm− 1)τ)
... ... ... ...
x(j) x(j + τ) ... x(j + (pm− 1)τ)
... ... ... ...
x(k) x(k + τ) ... x(k + (pm− 1)τ)


where pm and τ are the permuted dimension and the em-
bedded time dimension, respectively. k = L−(pm−1)τ
each row of the matrix is considered as a reconstruction
component. Hence, there are k reconstruction compo-
nents in the matrix described above [29].

2) We can derive a new time series constructed from the
earlier time series with the values between 1 and pm!
Arranging the elements in ascending order based upon
their values [29].

{U(i) : 1 ≤ i ≤ 1− (pm− 1)τ} (30)

3) m-dimensional vector is constructed by considering the
length of U as N , by arranging the elements in order to
reconstruct U [29].

Y mi = {u(i), u(i+ 1), ..., u(i+m− 1)} − u0(i) (31)

Where u0(i) is the average value and i = 1,2,...,N −
m+ 1,m < N − 2 which is depicted in Eq. (32) [29].

u0(i) =
1

m

m−1∑
j=0

u(i+ j) (32)

4) Go through the Eq. (5) to (9) as described in the standard
FuEn (Eq. 9) [29].

12) Hierarchical Measure Entropy: HFuEn is based on
fuzzy entropy calculations and hierarchical procedure [42].
In this method, FuEn of each component is computed in the
HFuEn analysis and then plotted as the function of the scale
factor, which can be denoted as follows [42].

HFuEn(u, k, e,m, r) = FuEn(uk,e,m, r) (33)

In eq. (33), uk,e is the high frequency and low frequency
component of time series u(i) at scale k and k denotes kth
layer of the hierarchical analysis [42]. More details about this
HFuEn provided in reference [42].



7

13) Fuzzy Measure Entropy: This entropy is introduced by
Chen et al. [43]. At the research, FuMeEn is compared with
ApEn, SampEn, and FuEn, and successful results are achieved.
The FuMeEn is a generalization of FuEn and has a relation
given by (34) [43]:

FuzzyLMEN(m,nL, rL, N) =

lnφLm(nL, rL)− lnφLm+1(nL, rL)

FuzzyFMEN(m,nF , rF , N) =

lnφLm(nF , rF )− lnφLm+1(nF , rF )

(34)

In the equations above, FuzzyLMEn and FuzzyFMEn are the
calculations of Fuzzy Entropy with upper and lower bound-
aries, respectively. The final relation for entropy is defined as
equation (35) [43]:

FuzzyMEn(m,nL, rL, nF , rF , N) = FuzzyLMEN+FuzzyFMEN
(35)

The complete information on this entropy is given in [43].

D. Computational Complexity of Features

In this section, the computational complexity of these
features are computed and compared. A standard method to
calculate the computational complexity is using the big O
notation (O) [54]. While the hidden constants and underlying
framework can dramatically affect algorithms’ overall runtime,
the big O gives the researchers enough insights to find the most
suitable feature set for their work.

As shown in [55], FuEn can be calculated in O(n2m)
where m is the chosen length for patterns. For other advanced
fuzzy entropies, usually, the base fuzzy entropy calculation is
the dominant part, and their big O is similar to FuEn, i.e.,
O(n2m). However, their runtime could be different due to
different hidden constants. Moreover, O for RCMFuE is of
O(τn2m) and for MFuEn its the scaled of O(FuEn). Also, O
for FuDistEn depends dramatically on the implementation of
the density estimation calculator, and that part is usually the
dominant part in O calculation.

E. Dimensionality reduction using Autoencoder

One of the aspects that can affect the performance of any
classification model is the curse of dimensionality [56]. Many
algorithms are suggested to reduce the dimensionality of the
feature vector, from both categories of supervised learning,
such as Fisher [55], and unsupervised learning such as PCA
[57], [58]. AEs [59], [60] are a group of unsupervised neural
networks [61] that can be used for dimensionality reduction.
In an AE, the input feature vector is first transformed into a
smaller latent space with the encoder and then reconstructed
from latent space with the decoder. Trained correctly, the
encoder can be used as a dimensionality reducer.

To train this AE, an Adadelta [62] algorithm is applied as
an optimizer and mean square error (MSE) as a loss function,
respectively. For the last layer of AE, a tangent hyperbolic
(Tanh) activation is used due to its faster convergence than
the sigmoid activation function, as it has stronger gradients
[63]. Also, all data are normalized to match the output of the
last layer activation (Tanh). The details of the AE network

Fig. 4: Proposed AE architecture for feature reduction.

TABLE IV: Detailed parameter information of proposed
AE

Layers Output Shape Parameters Activition

Input 135 0 —
Dense-1 128 17408 Relu
Dense-2 64 8256 Relu
Dense-3 32 2080 Relu
Dense-4 64 2112 Relu
Dense-5 128 8320 Relu
Dense-6 135 17415 Tanh

with the dimensionality reduction approach are given in Table
IV. In addition, Figure 4 shows the proposed AE architecture.

F. Classification

1) Standard ANFIS: In recent decades, many different
schemas have been used to design classification algorithms;
such as statistical models [64], SVMs [44], decision tree and
its variations [65], ensemble learning [66], fuzzy-based models
[67], and ANNs [68], [69]. The result of combining neural net-
work and fuzzy logic is a technique called ANFIS, which was
proposed in 1993 [45]. Fuzzy logic is very resembling human
reasoning, and this significant issue has led to more advantages
compared to neural networks. In ANFIS, analogously ANN,
data inputs and labels can be applied to the network. In ANFIS,
the system behavior is described by the membership function
parameters from a dataset [45]. A specified error condition is
utilized for the adjustment of the parameters of the system. In
the following, the structure and details of the ANFIS method
are discussed.

ANFIS Architecture
The learning and adaption are supported by the adaptive

framework where ANFIS, Sugeno fuzzy strategy, is put into.
A first-order Sugeno framework fuzzy model with the rules
of IF-THEN is taken into account for the presentation of
ANFIS design [45].

Rule 1: if x is A1 and y is B1 then f1 = p1x+ q1y + r1
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Fig. 5: Block Diagram of standard ANFIS.

Rule 2: if x is A2 and y is B2 then f2 = p2x+ q2y + r2

Where the inputs are x and y, the fuzzy sets are Bi and Ai.
pi, qi and ri are the parameters of design that are denoted in
training and fi are the outputs described by the fuzzy rule.

The individual layers are denoted as below with the assump-
tion that an adaptive node is illustrated as square and a fixed
node is drawn as a circle in Figure 5.

Layer 1: All the nodes i in layer 1 are adaptive with a node
function [45]

O1
i = µAi

(x) (36)

where x is the input to node i, µAi is the membership
function of Ai. The membership function is selected as below
[45]:

µAi
(x) =

1

1 +

[(
x−ci
ai

)2]bi (37)

Or

µAi(x) = exp

(
−
(
x− ci
ai

)2
)

(38)

where ai, bi, ci is the principle parameter set and x is the
input [45].

Layer 2: The fixed nodes are presented in layer 2 and 3.
In Layer 2, they operate as a simple multiplier and marked as
M. The output is as follows for Layer 2 [45]:

O2
i = ωi = µAi(x).µBi(y), i = 1, 2 (39)

These are the firing strength of the rules.
Layer 3: The firing strength of layer 2 is normalized by the

nodes and marked as N and represented as below [45]:

O3
i = ωi =

ωi
ω1 + ω2

, i = 1, 2 (40)

Layer 4: The product of a first-order polynomial and
normalized firing strength is the output of Layer 4, where
nodes are adaptive. The outputs are illustrated as below:

O4
i = ωifi = ωi(pix+ qiy + ri), i = 1, 2 (41)

where ωi is the output of layer 3 and {pi, qi, ri} is the
consequent parameter set [45].

Layer 5: There is a single fixed node marked as S in layer 5.
All incoming signals are summed up by the node. The output
as a whole is depicted as follows [45]:

O5
i = overalloutput =

∑
i

(ωifi) =

∑
i ωifi∑
i ωi

(42)

2) Optimal ANFIS Classifiers: As mentioned earlier, fuzzy
c-means clustering (FCM) is arguably the best method for
conducting the fuzzy inference system (FIS) in ANFIS. Two
schemas can be used to train ANFIS, namely, backpropaga-
tion and Hybrid methods [45]. These methods directly affect
membership functions, input, and outputs of the FIS in the
training phase. Here, we used various optimization algorithms
to improve ANFIS performance. In the suggested ANFIS, first,
the membership functions’ parameters are all put together in
a vector; then, using PSO or BS optimizer, the best values are
picked to minimize a chosen cost function. The cost function
is described as follows:

min
θ

Error =
1

N

n∑
i=1

e2i (43)

ei = ti − f(xi|θ) (44)

RMSE =

√√√√ 1

n

n∑
i=1

(ti − yi)2 (45)

Where N is the number of ANFIS inputs, ei shows the error,
xi shows input values, θ are ANFIS parameters, n is the
number of data instances, and yi is ANFIS output. Finally,
GOA, PSO, and BS are used to minimize the error.

In this section, GOA [46], PSO [47], and BS [48] optimiza-
tion algorithms are applied separately for network training
instead of back propagation procedure. The description of
GOA and PSO algorithms can be found in their reference
paper; also, the BS algorithm is explained below.

Breeding Swarm Optimization (BS)
In this section, the BS algorithm, which is a hybrid genetic

algorithm (GA)-PSO algorithm, is presented. Both GA and
PSO algorithms have advantages and drawbacks [48].

A PSO particle memorizes a part of the search space having
better performance (a memory to store past experience), in
GA, if a particle is not selected in the crossover or mutation
phase, the relevant information of the particle is lost. There-
fore, in the BS algorithm, the strengths of both PSO and GA
algorithms are combined [48]. The algorithm combined the
steps of standard velocity and particle position update in PSO
with the steps of selection, crossover, and genetic mutation in
GA as a result, the GA section of the BS algorithm facilitates
the global search, and the PSO section accomplishes the local
search [48]. The steps for implementing this algorithm are as
follows [48]:
• Step 1: Generate a random population
• Step 2: Calculate the fitness of each particle according

to the cost function
• Step 3: Select P best particles applying the roulette wheel

algorithm
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Fig. 6: Flowchart of BS algorithm implementation.

TABLE V: Description of performance parameters used

Parameters Name Formula

Accuracy Acc = TP+TN
FP+FN+TP+TN

Sensivity Sens = TP
FP+TP

Specificity Spec = TN
FP+TN

Precision Prec = TP
TP+FP

F1 score FS = 2TP
2TP+FP+FN

• Step 4: Perform step 3 of GA and PSO in parallel and
creation a new population with PSO and GA outputs

• Step 5: Go to step 2 to achieve convergence.
Figure 6 exhibits the block diagram of the BS algorithm steps.

III. STATISTICAL PARAMETERS FOR CLASSIFICATION
PERFORMANCE

The classification results are evaluated using 10-fold cross
validation method. The advantage of K-fold cross-validation
is that all the observations in the database are eventually
used for both training and testing. Finally, the performance
of the algorithm is estimated using evaluation metrics such as
specificity (Spec), sensitivity (Sens), accuracy (Acc), and F1-
Score (F-S) that is shown in Table V. These terminologies are
extracted from the confusion matrix: true positive (TP), false
negative (FN), true negative (TN), and false positive (FP) [55].

IV. EXPERIMENT RESULTS

In this section, the results of the proposed CADS based on
fuzzy theory and deep learning techniques for the automated
diagnosis of epileptic seizures are presented. The system used
in this work had a Ryzen 1700 CPU, an Nvidia 1060 GPU, and

TABLE VI: Hyper parameters used for optimization meth-
ods

PSO BS GOA

C1 = 2 W1 = 1.8 Cmin = 0.00004
C2 = 2 k1 = 2 Cmax = 1
W = 0.2 w = 0.2

N pop = 60
Var min = min(Feature Matrix)
Var max = max(Feature Matrix)

MAX IT = 400

24GB of RAM. For software implementation of algorithms,
Python 3.6 with Keras [70] is used for AE and Matlab 2019b
for preprocessing, feature extraction, and classification. The
identical preprocessing steps are adopted to preprocess the two
datasets Bonn and Freiburg. First, the signals of both datasets
are decomposed into the same time windows, and then TQWT
is applied to decompose the signals into meaningful frequency
sub-bands. At this stage, the windowing direction of the two
datasets signals are selected in such a way as to achieve the
highest level of efficiency and classification accuracy. In our
previously conducted studies using the same database, a signif-
icant performance is achieved using EEG signals of the Bonn
database with 5-seconds frame duration and outperformed
other time frames [19], [55]. Hence, we have considered 5
seconds time window for this work also. Additionally, in the
Freiburg dataset, each signal is decomposed into 4-second time
windows based on [71], [72], [73]. As aforementioned in the
previous sections, the TQWT has three important parameters
Q, r, and J to decompose the signals into different sub-bands.
In this study, these parameters are selected as Q = 1, r = 3
and J = 8 for both datasets. In Figure 2, a signal from the
Bonn dataset using TQWT is decomposed and demonstrated.

In this study, the combination of various types of fuzzy en-
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Fig. 7: Runtime of different fuzzy entropies.

tropies for feature extraction from EEG signals has been done
for the first time. Each of the entropies involves a different
computational complexity. To demonstrate the computational
complexity of fuzzy entropies, they are employed on a frame
of the Bonn and Freiburg datasets, and their execution times
are shown in Figure 7. According to Figure 7, the minimum
execution time is relevant to FuEn, and the highest time is
allocated to FuDistEn. Figure 7 shows the execution time of
each fuzzy entropy while applied to raw EEG signals and sub-
bands of TQWT, respectively.

In this step, 15 fuzzy entropy were extracted from 9 sub-
bands of TQWT. Therefore, for each frame of the EEG signals
of the Bonn or Freiburg datasets, 135 features have been
acquired. Next, in order to lessen the dimensions of the feature
matrices of Bonn and Freiburg datasets, an AE network with
the proposed number of layers has been used. Applying AE
with dimensionality reduction allows the informative features
to be selected and less effective features to be removed, which
helps to enhance the performance of CADS. According to
Figure 4 and Table IV, after feature reduction, 32 features
are obtained.

In the final step of the proposed CADS, a variety of
different classifier algorithms were assayed containing two
groups of fuzzy and non-fuzzy. Non-fuzzy methods embrace
SVM, KNN, MLP, and RF. Also, fuzzy techniques for classi-
fication are based on the ANFIS method. Takagi-Sugeno Kang
(TSK) [74] fuzzy system has been used to implement various
classification procedures based on ANFIS. The basic fuzzy
system of all these approaches is genfis-3 which is based on
FCM method [75], [76]. The genfis-3 function is based on the
Gaussian membership functions, and in our research, two and
three membership functions are applied for each input. Figure
8 displays a number of membership functions based on genfis-
3 for some inputs of the Bonn and Freiburg datasets.

In this research, the standard ANFIS takes the advantage of
various training procedures that the hybrid method has been
exploited. As mentioned earlier, in ANFIS-PSO, ANFIS-GOA,
and ANFIS-BS methods, an optimization method has been
applied for the training. Therefore, the only difference between
the standard ANFIS and its improved versions is in the training
phase. Additionally, the important hyper parameters of PSO,
GOA, and BS algorithms are given in Table VI.

In the following, the results of fuzzy and non-fuzzy classifier
algorithms for each dataset are provided. In order to assess the
performance of classification algorithms, each method is exe-
cuted 10 times under identical conditions, and the evaluation
parameters are reported on average. Carrying out this issue
so makes the reported results more reliable and eliminates
under/over performances due to chance. Figure 9 and Table
VII show the average results of different classifiers for the

Bonn and Freiburg datasets, respectively. Results show that,
the ANFIS-BS classifier achieved higher performances.

Applying the BS optimization method alongside ANFIS
classification resulted in better performance of the ANFIS-BS
method compared to others. In ANFIS, the backpropagation
technique is used for training, which is based on gradient
descent [77]. Gradient descent moves toward the optima in the
opposite direction of the loss function’s gradient. Choosing the
correct learning rate dramatically affects the performance of
this method; a large rate may cause the algorithm to overshoot
the optima, while low rates may lead to small steps, thus
the algorithm not learning anything [78]. To solve this issue,
researchers have used optimization techniques for the training
of ANFIS and have reached promising results on many tasks
[79], [80], [81]; this paper is an example of these methods’
capabilities. As shown in Figure 9 and Table VII, ANFIS-BS
outperformed other classification methods. This is arguably
due to the combination of GA and PSO in the BS algorithm;
while BS algorithm has inherited the PSO speed benefits, also
by adding GA, the performance has improved noticeably.

V. LIMITATIONS OF THE STUDY

This section is devoted to discussing the limitations of the
proposed method. For the first limitation, the high compu-
tational cost in the feature extraction can limit the applica-
tions of the proposed system; as a solution to this problem,
the method can be implemented on hardware such as field
programmable gate array, with appropriate approximations to
increase the speed. The second limitation relates to setting
hyper-parameters in fuzzy entropies; given that nonlinear
feature extraction methods such as fuzzy entropies require
precise parameter adjustments to achieve high accuracy results,
they are usually chosen by trial and error, limiting their
performance to the accuracy of these trials. Other limitations
of the proposed method are the use of ANFIS for classification
applications.

As mentioned in the previous sections, the ANFIS clas-
sification method’s optimization has been done using GOA,
PSO, and BS algorithms. Precisely adjusting the parameters
of PSO and BS algorithms to increase the performance of
ANFIS is time-consuming and requires sufficient knowledge
in the field of optimization and fuzzy algorithms. In this paper,
ANFIS, ANFIS-GOA, ANFIS-PSO, and ANFIS-BS classifi-
cation techniques are implemented based on the TSK model.
In MATLAB, the basic TSK system is implemented based
on the Gaussian membership function, which is a limitation,
considering that other types of membership functions such as
triangular and trapezoidal can not be examined and tested in
the proposed classification methods.



11

Fig. 8: Samples of membership functions.

TABLE VII: Summary of results obtained for various classifiers on Freiburg dataset

Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

SVM 99.02 99.14 99.25 99.32 99.19
KNN 98.19 98.66 98.53 98.20 98.34
MLP 98.71 99.02 98.93 99.03 98.97
RF 99.24 99.37 99.17 99.31 99.41

ANFIS 99.16 99.44 99.36 99.19 99.26
ANFIS-PSO 99.21 99.52 99.44 99.38 99.38
ANFIS-GOA 99.19 99.41 99.48 99.13 99.31
ANFIS-BS 99.28 99.54 99.56 99.29 99.49

VI. DISCUSSION, CONCLUSION AND FUTURE DIRECTIONS

Diagnosis of epileptic seizures in the early stages is of
particular significance to physicians and neurologists. Early
detection of epileptic seizures allows specialist physicians to
control the disease and prevent further progression.

So far, various methods have been proposed for epileptic
seizures detection, among which the recording of EEG signals
has received a great deal of attention among physicians and
neurologists. EEG signals provide physicians with significant
information about the function of brain activity. The most
important advantages of EEG recording possess low cost
and accurate display of brain neuronal function for accurate
diagnosis of epileptic seizures. However, diagnosing epileptic
seizures based on EEG signals is always a challenging task
for physicians. The high complexity, the presence of different
noises, and the long-term EEG signal recording are among the
most important problems that make it difficult for specialist
physicians or neurologists to precisely and quickly diagnose
epileptic seizures [149].

In recent years, researchers have tried using AI techniques
coupled with EEG signals to assist physicians in diagnosing
epileptic seizures faster and more accurately. So far, much
research has been conducted on the implementation of CAD
systems based on AI for epileptic seizure diagnosis [150],
[151], [152], [153], [149]. AI-based CAD systems for diag-
nosing epileptic seizures include both conventional machine
learning and deep learning [150], [154].

In this paper, a novel CADS is introduced for epileptic
seizures detection from EEG signals using fuzzy theory and
deep learning methods. The proposed method involves four
steps of preprocessing, feature extraction, dimensionality re-
duction, and classification. Preprocessing consists of two parts:
windowing the EEG signals and then decomposing them into
different sub-bands using TQWT. First, the EEG signals of the
Bonn and Freiburg datasets are decomposed into various time
windows. The objective is to achieve maximum CADS perfor-
mance for two different datasets. The EEG signals of the Bonn
dataset are segmented into 5-seconds time windows similar
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Fig. 9: Summary of results obtained for various classifiers on Bonn dataset.

to [19], [55]. Additionally, the EEG signals of the Freiburg
dataset have been decomposed into 4-second time windows
based on [71], [72], [73]. In the second stage of preprocessing,
TQWT is exploited to decompose the EEG signals of both
datasets into 9 sub-bands. EEG signals possess fundamental
information in different frequency bands. Consequently, the
decomposition of EEG signals into various sub-bands using
TQWT enhances the efficiency of CADS in epileptic seizures
detection. TQWT has three main parameters, r, J , and Q;
selected values for both datasets are r = 3, Q = 1, and J = 8.

In the next step, type-1 fuzzy entropies are applied for
feature extraction from different sub-bands of TQWT. In all
previous works [11], [155], [156], [157], this combination of
fuzzy entropy types is not used for feature extraction, and this
step is one of the novelties of our paper. Also, in this stage, the
computational complexity for each fuzzy entropy is calculated
as another novelty of this work. Calculating the computational
time complexity of feature extraction algorithms is very impor-
tant for signal processing researchers. So far, in several studies,
computational complexity in feature extraction algorithms has
been considered by researchers [158], [159], [160], [161],
[162]. In this research, for the first time, the computational
time complexity for fuzzy entropies is presented. In addition,
Figure 7 displays the run times for each fuzzy entropy, which
is highly important for practical applications and hardware
implementations. The proposed AE architecture with 6-layers

is presented in the dimensionality reduction section, which is
another novelty of this work.

Finally, various fuzzy and non-fuzzy techniques have been
applied in the classification step. In this section, the ANFIS-
GOA and ANFIS-BS methods have been employed for the first
time in epileptic seizures detection and are another novelty.
The ANFIS-BS method outperforms ANFIS-PSO and ANFIS-
GOA. This verifies that the choice of an optimization method
along with ANFIS demands high knowledge in the fuzzy
systems theory and optimization methods.

The proposed method results show that the ANFIS-BS
classifier method has been able to reach the highest accu-
racy among all fuzzy and non-fuzzy classifiers for its two
different datasets. The reason behind the high efficiency of
the ANFIS-BS procedure against all fuzzy and non-fuzzy
classifier algorithms is that the BS optimization algorithm
is a combination of GA and PSO methods. In the Bonn
dataset, the best performance is acquired using ANFIS-BS,
which in the two-class and three-class mode are 99.74%
and 99.46%, respectively. Also, the ANFIS-BS method on
the Freiburg dataset provides 99.28% accuracy, which is the
highest efficiency compared to other classifier methods. In
addition, it should be reminded that in this study, we have
used the K-fold method with k equal to 10 for evaluation in
all classifier methods.

In Tables VIII and IX, the research papers conducted on
Bonn and Freiburg datasets for epileptic seizures detection
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TABLE VIII: Comparison of proposed method with other related works on Bonn dataset

Works Methods K-fold Accuracy (%)

Two Classes Multi Classes

[19] TQWT + FD, Entropy and Statistical Features + Ensemble Learning 10 100 98
[82] TQWT + CLP + RF 10 99 –
[83] TQWT + QPS + NCA + KNN 10 99.80 99.67
[84] TQWT + Statistical Features + KNN – 98.13 –
[85] TQWT + Multi-Scale KNN Entropy + SVM 10 99.30 98.60
[86] TQWT + Spectral Features + Bagging – 99 98.53
[87] TQWT + CCE Feature + Different Classifiers – 98.30 98.20
[88] DWT + Dynamic Features Based Entropy (Information entropy) + FSFS + LS-SVM 10 99.50 –
[89] LSP + NCA Feature + SVM 10 99.10 96.50
[90] FBSE + WMRPE Feature + RF 10 98.93 –
[91] Matrix Determinant Based Features + MLP 10 96.94 95.97
[92] IMFs + AmE + DESA + RF 10 97.97 98.00
[93] DoG + LBP Feature + SVM 10 99.41 98.80
[94] DWT + Different Features + RF 10 98.75 91.39
[27] WPD + FuDistEn Feature + Kruskal-Wallis + KNN 10 99.69 99.07
[55] Filtering + Different Features + Fisher Score + CNN-AE – 99.53 98.67
[95] Filtering, Normalization + 1D-CNN, Softmax – 91.8 99
[96] Segmentation + DCT + Hurst Exponent and ARMA Model Features + LSTM, Softmax – 97.78 94.81
[97] DWT + Feature Extraction + Stacked AE, Softmax – 96 –
[98] Filtering + CNN-AE, Different Classifiers 5/10 92 –
[99] Normalization + 1D-CNN, Softmax 10 – 98.67

[100] Filtering + RPS representation, AlexNet, Softmax 10 98.5 95
[101] Filtering + DWT + 2D-CNN, Softmax – 97.74 –
[102] ApEn and RQA Features + 1D-CNN, Softmax – 99.26 –
[103] Filtering + Combination of 1D-CNN and 2D-CNN, Softmax 10 99.84 97.82
[104] Normalization + Stacked Ensemble based DNN modeling, Meta Learner 10 97.17 –
[24] Windowing + FuEn + K–S Two-Sample Test + SVM 10 100 –
[26] EMD + FuEn + SVM – 97 –
[30] DWT + FuApEn + SVM – 97.38 –
[32] FrFT-WPT + FuEn + PCA + SVM 10 98.58 –

[105] Filtering + Spike Detection Process + SVM, KNN, RF – 99.8 –
[106] Filtering, DWT + Time Domain Features + NB, SVM – 97.75 –

[107] Filtering, HVD, DTCWT + Permutation Entropy, Spectral Entropy,
Tsallis Entropy, Hjorth Parameters + relief Algorithm + M-SVM – 95.73 –

[108] DWT + Statistical Features + ANN – – 97.33
[109] TQWT + Correntropy Features + Kruskal Wallis, ANOVA + RF – – 100
[110] Segmentation, Filtering, DWT, FFT + Statistical Features, PSD + ELM – 99.68 –
[111] Segmentation, WT + ApEn, LLE, Correlation Dimension + FRBS + LDAG-SVM – – 95
[112] TsE + DT – 100 92.67

[113] Segmentation, Clustering, Covariance Matrix + Statistical Features +
Non-Parametric Tests + AB-LS-SVM – 99 –

[114] CEEMD + MDE, RCMDE + Filter-Wrapper Based Method, One-Way-ANOVA + ANN – 99 98.97
[115] Filtering, Segmentation, DWT + Temporal and Spectral Features + KNN, FRNN – – –
[116] Filtering, VMD + Differential Entropies, PRMS + RF – 94.1 –
[117] Segmentation, CEEMD + Different Features + XGBoost – 100 99
[118] Filtering, WD + FuEn, ReEn, KrEn + Kruskal-Wallis + Gaussian SVM – 99.4 –
[119] Filtering, Segmentation, DWT + Sigmoid Entropy + SVM – 100 –
[120] ECT + MGT, NPT, GLCM + PCA + RF – 98 –
[121] Segmentation, WPD + Energy, ApEn + E-LPP + LS-SVM – 99.5 –
[122] Spectral Thresholding + Different Features + RF – – 98.80
[123] DWT + Statistical Features + MEPA + APN – 93.8 –
[124] DWT + Statistical Features + CCP, PCA + LSTM – 99 –
[125] STFT + Haralick’s Texture Feature + DT – 92.5 –

Proposed
Method TQWT + Fuzzy Entropy Features Set + AE + ANFIS-BS 10 99.74 99.46

based on AI techniques are presented and compared with the
proposed method. This section provides a complete overview
of papers on the Bonn and Freiburg datasets.

According to Tables VIII and IX, our proposed method
has achieved higher accuracy than most studies. The results
indicate that the proposed technique compared to other studies,
has attained an acceptable accuracy in diagnosing epileptic
seizures. The proposed approach takes advantage of a com-
bination of fuzzy logic and deep learning and has been suc-
cessful in diagnosing epileptic seizures. The proposed method
can aid physicians and other relevant medical professionals in
the future as a software or hardware platform in diagnosing

and predicting epileptic seizures using EEG signals. It can be
help physicians in the rapid and accurate diagnosis of epileptic
seizures in the near future, which will reduce the time to
diagnose epileptic seizures.

For future directions, investigating the performance of the
method on more complicated datasets or clinical ones or
employing the method on more sophisticated tasks, such as
seizure prediction, can help to examine the potential of the
technique more accurately. Designing robotic systems and
applications for smartphones to help patients with epilepsy,
creating real-time tools to help experts in more accurate and
faster detection of seizures, and combining deep learning
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TABLE IX: Comparison of proposed method with other related works on Freiburg dataset

Works Methods Performance (%)

[18] Filtering + ApEn, SampEn, PE, PFuzzy + SVM Acc=95.3
[126] DWT + Energy, Entropy, STD, Mean + SVM Acc=99.26
[127] DWT + Linear and Non-Linear Features + RF Acc=97.74
[128] FFT + CNN AUC=92
[129] Stockwell Transform + Bi-LSTM Acc=98.69
[130] DWT, DESA, Temporal and Spatial Averaging + FA + RF, Logistic, SVM Acc=95
[71] Filtering + RL, FD, IV + Gradient Boosting Sen=91.67
[72] DWT + R-ProCRC –
[73] WPT + Relative Amplitude, PSD, PMRS + Weighted ELM –
[131] Time and Frequency Domain Features + CNN –
[132] Filtering, CBA + Linear and Non-Linear Features + SVM Acc=96.8
[133] WT + Maximum, Minimum, Mean, STD + BoW + SVM
[134] FT, WT + DCNN + Multi-View FCM Acc=97.38
[135] DWT, S-Transform + CNN Acc=98.12
[136] Normalization, Filtering + LSTM Acc=97.75
[137] Filtering + FC-NLSTM Acc=96.17
[138] FFT, Filtering + Integer-Net Acc=93.2

[139] MSPCA, EMD, DWT, WPD + Statistical
Features + RF, SVM, MLP, KNN Acc=100

[140] Filtering, Decomposition + FD, RFI + ELM-Trained SLFN Acc=94.90

[141] Filtering, Normalization, Decomposition
+ Different Features + SVM Acc=97.5

[142] Filtering, Normalization, HADTFD + TF-Flux,
TF-Entropy, TF-Flatness + Spatial Averaging + Linear Acc=98.56

[143] Filtering, LMD + RE, FI, Coefficient of Variation, + DPL Acc=95.10
[144] DWT + Uniform 1D-LBP + SVM, ML-DF Acc=95.33
[145] Linear and Non-Linear Features + KH + GAN Acc=98.9
[146] MSPCA + PSD + DT Acc=99.59
[147] Different Methods + DPL Acc=98.5
[148] Filtering + Different Features + ANOVA, Tukey’s Post-Hoc –

Proposed
Method TQWT + Fuzzy Entropy Features Set + AE + ANFIS-BS Acc=99.28

methods, such as convolutional neural networks (CNN) with
fuzzy-based features for feature fusion, feeding extracted fea-
tures to long short term memory (LSTM) models or employing
a hierarchical structure consisting of both deep learning and
fuzzy entropies to minimize uncertainty [163], all can be inves-
tigated as future directions to further improve the performance.

Additionally, in future works, type-2 fuzzy methods can
replace the ANFIS [164], [165], [166]. Nevertheless, employ-
ing type-1 and type-2 fuzzy regression algorithms to predict
seizures is another direction for future studies [167], [168],
[169].
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