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Abstract
Assessing soil hydrological conditions can provide essential information for understanding the environmental processes that
affect ecosystem services and, particularly in the context of ongoing climate change. This is key in areas affected by water
scarcity such as the Mediterranean belt. Therefore, the main goals of this research are (i) to assess the main rainfall dynamics and
trends of some representative hotspots along with southern Spain and (ii) to determine the impact on the soil available water
content (AWC) over the last two decades. An analysis of daily precipitation and soil hydrological conditions was combined with
soil sampling (543) and laboratory analyses to evaluate the properties related to the soil infiltration and retention capacity. The
results show that the organic factors control soil properties and their hydrodynamics in southern Spain. Furthermore, a general
declining trend in soil water availability is observed over the last two decades. This is more extreme in arid and semi-arid areas,
where there have been several years in the last decade with more than 200 days without the available water content. Moreover, in
these areas, heavy rainfall during specific moments of the year is the key factor that manifests a greater incidence in areas with
steeper slopes, which in turn, also conditions the biological factors and the hydrodynamics of the soil. In short, in the context of
climate change, the analysis of soil hydrological dynamics could be used to identify biodiversity thresholds in the Mediterranean
area and even to detect phenological changes in specific plant species.
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Introduction

The Mediterranean climate is characterized by dry summers;
therefore, the native vegetation must adapt to increasingly
frequent and recurring conditions of water stress
(Klausmeyer and Shaw 2009; Nardini et al. 2014). Some

authors claimed that this situation will impact pasture
(Dlamini et al. 2016; Abdalla et al. 2018), crop productivity
(Rodrigo-Comino et al. 2021), and plant mortality (Peñuelas
et al. 2001; Bréda et al. 2006), and, as a consequence, it will
enhance the fuel for forest fires (Vidal et al. 1994; Alcasena-
Urdíroz et al. 2019; Martínez-Torres et al. 2019; Fernandez-
Anez et al. 2021). Thus, an increase in the intensity or fre-
quency of droughts can limit productivity and the ecological
and economic values of this fragile ecosystem (Guillot et al.
2019; Lobo Do Vale et al. 2019). Some authors confirm that
timely and accurate monitoring of soil moisture and vegeta-
tion is necessary to inform early warning services, assess
droughts, and develop efficient management plans that reduce
economic and environmental vulnerabilities (Guo et al. 2019;
He et al. 2017).

The soil water balance has been traditionally used to estimate
various soil hydrological parameters (Wang and Dickinson
2012) and can be fundamental to understand the soil–plant–at-
mosphere relationships (Gabarrón-Galeote et al. 2013) that un-
derpin diverse hydrological issues. The spatiotemporal evolution
of soil water conditions directly determines various natural
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conditions including the state and composition of vegetation
cover, vulnerability to erosion processes, and the stability of soil
aggregates (Eskandari Damaneh et al. 2021). This is also funda-
mental to assess other phenomena including climate change and
desertification, which are necessary to develop efficient water
resource management plans (Jodar-Abellan et al. 2019a, 2019b).

Recent reports have estimated that the predicted climate
change would imply a modification in not only the total
amount of rainfall, but also the spatiotemporal distribution
patterns (IPCC 2014, 2019). Future climate change projec-
tions indicate a trend of decreasing total rainfall and an in-
crease in its intensity and concentration periods (Dore 2005;
Pendergrass and Hartmann 2014). Spatial ecosystem re-
sponses are variable depending on the specific characteristics
of each region, which are conditioned by local factors, and the
ability of species to adapt to new climatic conditions (Rahmati
et al. 2019). Especially, in the Mediterranean belt, including
southern Spain, this issue is becoming more intense (Sillero-
Medina et al. 2019a, 2019b). Understanding changes in the
soil water balance and, therefore, water availability for plants
is of great relevance for fragile ecosystems including the
Mediterranean one (e.g., Grayson et al. 1997; Llorens et al.
2003; Fernández and Trillo 2005; Katz et al. 2005; Negri et al.
2005; Medrano et al. 2007; De Luis et al. 2011; Lemus-
Canovas and Lopez-Bustins 2016; Olcina-Cantos 2017). In
this area, water is the major limiting factor determining the
plant production and structure of communities (Ferreras
Chasco 2000; Terradas 2001).

The water available for plants can be defined as the amount
of water retained into the soil, resulting from the difference
between the field capacity (FC) and the permanent wilting
point (PWP) (Kirkham 2005). This varies according to soil
characteristics such as soil texture and structure (Behnam
et al. 2020). Both soil texture and structure affect soil matrix
potential linked to the water suction capacity by plants (Givi
et al. 2004; Martínez-Fernández 1996). This is directly mod-
ified by the potential evapotranspiration (Campos et al. 2013).
In arid and semiarid environments, large differences in soil
AWC occur because of fluctuating water balances and ongo-
ing changes between water revenues and demand (Dong et al.
2019; Gomes Marques et al. 2019). The open vegetation pat-
tern in the Mediterranean results in only part of the excess
water being stored in the root zone and depending on its depth;
plants can use it during deficit periods, while the rest drains to
deeper layers (Joffre and Rambal 1993). Campos et al. (2016)
reported that areas registering diverse soil moisture conditions
differed according to their degradation states and inclination.
These differences favor a greater plant cover in climatic envi-
ronments ranging from subhumid to dry. As aridity increases,
the pattern of moisture in the soil profile becomes more uni-
form. This results in less significant changes in vegetation,
which uses to be better adapted to lower water availability
(Ruiz Sinoga et al. 2011).

Under Mediterranean conditions, when soil moisture is
high and soil moisture content is sufficient to support plant
physiological processes (Laio et al. 2001), soil transpiration
rate depends on the vegetation pattern itself and climatic con-
ditions (Campos et al. 2016). However, below this moisture
point, plants start to reduce transpiration to avoid internal wa-
ter loss (Gabarrón-Galeote et al. 2013). Below that point, soil
water availability becomes a key factor determining the cur-
rent evapotranspiration, which continues at a reduced rate un-
til soil moisture reaches the PWP. These points depend on the
type of vegetation and soil characteristics and are generally
determined in terms of the soil matrix potential for volumetric
water content (Gabarrón-Galeote et al. 2013; Laio et al. 2001;
Larcher 1995).

The FC refers to the amount of water retained into the soil
when excess water has drained away, and downward flow has
ceased being usable by vegetation (Ruiz Sinoga et al. 2011).
Consequently, the PWP can be defined as the moisture con-
tent of the soil in the root zone at which a withered plant
cannot recover turgidity, even if it is in a saturated atmosphere
for 12 h (Ruiz Sinoga et al. 2011; Campos et al. 2016). The
relationship existing in a given soil between the moisture con-
tent at PWP and the one it possesses in FC is known as AWC
(Martínez-Fernández 1996). However, there is currently no
information about the number of consecutive days those
Mediterranean soils are subject to a soil moisture content be-
low the PWP (soil driest period), especially in southern Spain.
In this study, rainfall data, field measurements using soil mois-
ture probes (TDR), and laboratory simulations of soil wetting/
drying to relate the number of days without precipitation to the
hydrological state of the soil were estimated. We hypothesize
that our results should aid the development of land manage-
ment plans and predictions of the negative impacts of climate
change on Mediterranean ecosystems. Understanding the soil
AWC, as well as its dynamic in recent years, will represent a
step forward in analyzing the possible impacts of these im-
pacts on the phenology of the vegetation.

Materials and methods

Study area

The study area is located in a representative hotspot alongwith
southern Spain (Fig. 1). This area is situated along the Littoral
Betic Range, where over just 308 km of differences in
pluviometry gradient occurs from 1400 mm per year in the
Sierra de Grazalema (Cadiz) to 150 mm per year in Cabo de
Gata (Almeria). This gradient reflects a climatic variability
that oscillates between a humid Mediterranean climate in the
western part and aridity in the eastern one. Therefore, some
authors hypothesized that this gradient would have direct
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impacts on the landscape, ecosystems, and geomorphological
processes (Ruiz-Sinoga and Romero Diaz 2010).

Rainfall monitoring data and assessment

Data from ten climate observatories of the Spanish State
Meteorological Agency (AEMET) located along some points
in southern Spain were used. Our analysis was divided into
four different areas from the West to East, due to their differ-
ent climatic conditions: (i) the western area (W), with a humid
Mediterranean climate (> 700 mm/year); (ii) Málaga (M) and
Costa Granadina (G), with dry conditions (400–700 mm/
year); and (iii) the eastern area (E) with semi-arid and arid
characteristics (< 400 mm/year).

The daily precipitation database was obtained from
AEMET (Table 1; Fig. 1) and allowed us to analyze the fol-
lowing parameters: rainfall on rainy days, the daily maximum
rainfall, the number of consecutive days without rain, dry
periods, and the maximum number of consecutive days with-
out precipitation (duration of the dry period).

Hourly rainfall data obtained from the Automatic
Hydrological Information System (SAIH) network for the
Andalusian Mediterranean Basins (Table 2; Fig. 1) for the
period (1997–2019) were used to assess climate variations

associated with the soil moisture conditions (1997–2019).
Hourly events able to reach rainfall amounts higher than the
infiltration rates were selected to determine how much rain
was not infiltrated. Finally, evapotranspiration data (Table 3)
from the Institute for Agricultural and Fisheries Research and
Training (IFAPA) for the same period (1997–2019) was also
analyzed.

The databases were integrated chronologically for the four
zones along the pluviometry gradient. This involved a data-
base of daily precipitation covering at least 50 years, a 22-year
hourly precipitation database, and a database of soil moisture
at a depth of 50 cm for the last 22 years. For the 25 represen-
tative sites, the soil moisture corresponding to the two basic
hydrological states (PWP and FC) was also included.

Soil hydrological conditions and laboratory analysis

A total of 543 soil samples were collected in spring 2008 and
2009 analyzed for 25 representative sites. Thus, 112 samples
belonging to the Mediterranean humid area, 99 to the sub-
humid part, 118 to the dry territories, 102 to the semi-arid
points, and 112 to the arid climate locations were collected.
All of them belong to areas with metamorphic lithology
(phyllites, schist), similar hillslope inclinations (between 10

Fig. 1 Study area
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and 16%), and vegetation cover degree and typology. After
sampling (disturbed and non-ones cores), we analyzed the
percentage of vegetation cover, the number of species in the
surroundings of the sample (100 m2), bulk density (BD), soil
texture, organic matter (OM), organic carbon (OC), structural
stability (AS), permeability, as well as FC and PWP (Table 4).
Moreover, both humidification and drying tests under labora-
tory conditions and using in situ tests through TDR (time
domain reflectometry) humidity sensors during the periods
2002–2006 (Hydrosur Project), 2006–2010 (Hydrosur2
Project), 2010–2014 (REME Project), and 2016–2019
(GLOMEDLAND Project) were used following the protocols
described by Ruiz-Sinoga and Romero Diaz (2010).

Statistical analysis

Based on environmental, pedological, and climatic data, a
principal component analysis (PCA) was carried out to deter-
mine those factors that allow to explain the soil hydrological
dynamics along with southern Spain. Thus, these data have
been normalized into five different categories depending on
the variable, either from the lowest to the highest values or
from the oldest to the newest ones. This analysis was per-
formed using SPSS version 25 (IBM Corp 2017, USA;
corporate license of the University of Malaga). The variables
used were annual rainfall (mm), vegetation biodiversity (num-
ber of species) (VB), available water (days) (AW), rainy days,

Table 1 Selected AEMET
weather observatories used in the
study. Abbreviations: W, western
area; M, Málaga; G, Granada
coast; E, eastern area

AEMET code Station name Coordinates XY ETRS89 UTM Zone 30N Altitude (m) Area

1-43 Gaucín 292081-4044073 630 W

1-44 Genalguacil 300017-4040747 534 W

2-72 Ronda 307023-4069091 743 W

3-55 Marbella 330975-4042108 16 W

3-56 Marbella2 330887-4042799 59 W

4-64 Pantano Agujero 372123-4070772 117 M

4-49 Boticario 376124-4073244 576 M

5-48 Aeropuerto Malaga 366937-4058334 24 M

5-50 Contadoras 376458-4076289 760 M

5-51 Málaga Ejido 373351-4065628 40 M

5-52 Málaga Oficina 374207-4064799 10 M

6-226 Motril 453724-4070052 29 G

6-227 Motril. Club náutico 452887-4064467 4 G

7-96 Albuñol 481947-4071845 200 G

7-97 Albuñol a Órgiva 481558-4074080 685 G

8-259 Roquetas Pueblo 534364-4068719 9 E

8-260 Roquetas Faro 535100-4068001 3 E

9-265 Tabernas 554239-4100777 408 E

9-266 Tabernas a Sorbas 565062-4104645 561 E

10-231 Níjar 577232-4088198 140 E

Table 2 Selected weather
observatories in the SAIH
network. Abbreviations: W,
western area; M, Málaga; G,
Grenadine coast; E, eastern area

SAIH Hydrosur
Network Code

Station name Coordinates XY ETRS89
UTM Zone 30N

Altitude (m) Area

9 Hozgarganta 280189-4034238 37 W

16 Concepción 324643-4045234 110 W

20 Limonero 372436-4069267 136 M

22 Málaga 374218-4064810 24 M

27 Ronda 306584-4069318 770 W

60 Motril 453614-4067322 69 G

72 Albuñol 484959-4070128 414 G

78 Punta Sabinar 526616-4060200 9 E

93 Rambla de Tabernas 549623-4097053 264 E

97 Níjar 575436-4081658 231 E
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OM (%), OC (%), rainfall summation of 50 days before the dry
season (mm), rainfall summation of 10 days after the dry season
(mm), vegetation cover, AS, BD, sand (%), silt (%), clay (%),
hydraulic conductivity, heavy rainfall (HR) (%), available water
continuous period (days), evapotranspiration, slope (%), field
capacity period (days) (FC), wilting point period (days) (WP),
xeric period (XP) (days), and driest year (days). In addition,
factor analysis was performed using the covariance (raw data)
and the correlation matrix (standardized data). Using a correla-
tion matrix, factors with eigenvalues >1 were retained and sub-
jected to varimax rotation to maximize the correlations among
factors (Shukla et al. 2006). Finally, Bartlett’s test and the KMO
(Kaiser-Meyer-Olkin) test were applied.

Results and discussion

Rainfall patterns

Analysis of the AEMET database (1959–2019) showed
changes in the daily rainfall distribution over time in southern
Spain (Figs. 2 and 3). This included a progressive reduction in
the number of rainy days, which is consistent with other re-
ports for other arid and semiarid regions of the world (Dore

2005; Pendergrass and Hartmann 2014). Similarly, the aver-
age number of consecutive days without rain also decreased
(from almost 6 to 5.3 days). Therefore, the number of rainy
days hardly changed, even the maximum number of days
without rain increased; however, the duration of the XP did
increase. Thus, the length of the dry season increased, which is
also consistent with other recent studies in Australia and
China among others (Guo et al. 2019; He et al. 2017;
Rahmati et al. 2019).

The reduction in rainy days was assessed in the context of
changes in the rainfall pattern. The historical AEMET data-
base showed this progressive change, evident as a reduction in
the average rainfall for each rainy day (from 12 to 8.8 mm)
(Fig. 4). Thus, there was a considerable increase in the max-
imum daily rainfall amount (from 88 to 110 mm), probably
because of more intense precipitation, as reported for all of
Spain by Martin Vide (2004).

Hydrological dynamics of the soil surface

Figure 5 shows that during summer, soils were conditioned by
the effects of summer droughts and registered the minimum
humidity values. Consequently, this coincides with a stressful
period for plants, as also reported by Jordano et al. (2002).

Table 3 Selected weather
observatories in the IFAPA
network https://www.
juntadeandalucia.es/
agriculturaypesca/ifapa/riaweb/
web/estaciones. Abbreviations:
W, western area; M, Málaga; G,
Grenadine coast; E, eastern area

Station name Coordinates XY ETRS89 UTM Zone 30N Altitude (m) Area

Jimena 286263-4032470 50 W

Estepona 301937-4035540 185 W

Churriana 365680-4059740 17 M

Campanillas 360629-4065960 63 M

Pizarra 346918-4070360 71 M

Cártama 350119-4064780 78 M

Almuchécar 439384-4067570 29 G

Cádiar 483613-4086360 928 G

Adra 500683-4066780 2 E

Almería 553282-4076780 5 E

Tabernas 561998-4105230 502 E

Níjar 577785-4089250 158 E

Table 4 General characteristics of the study areas. Abbreviations: SD,
soil depth (cm); BD, bulk density (g/cm3); OM, organic matter (%); OC,
organic carbon (%); AS, structural stability (%); Ksat, permeability (cm/
h); VB, vegetation biodiversity (number of species); VC, vegetation

cover (%); SM Max, soil moisture maximum value (%); SM Min, soil
moisture minimum value (%); SM, soil moisture (%); WP, wilting point
(%); FC, field capacity (%)

SD BD Porosity Very fine
sand

Sand Silt Clay OM OC AS Ksat VB VC SM
Max

SM
Min

SM WP FC

Western area 69.00 1.20 48.8 12.36 38.18 34.87 23.36 7.74 28.10 74.53 17.57 8.50 81.64 35.27 2.45 19.86 12.00 32.00
Málaga 56.00 1.30 46.6 17.34 31.64 35.05 24.65 3.97 13.83 72.55 10.22 7.22 57.22 24.80 1.86 12.63 7.10 18.20
Grenadine Coast 38.00 1.38 44.3 25.23 57.82 28.53 12.94 2.03 7.71 62.27 6.84 4.20 44.60 17.65 1.42 8.66 3.60 18.00
Eastern area 23.00 1.44 43.7 13.77 54.18 30.73 15.09 1.61 6.42 59.23 5.08 2.00 40.00 8.50 1.18 5.05 2.50 18.10
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This situation, which occurred almost every year, indicates
that the soil water available for vegetation was low
(Martínez-Fernández et al. 2001; Cortesi et al. 2012). In con-
trast, during spring and autumn, optimum soil moisture values
were reached for the use of plants, sometimes exceeding the
content that determines the FC.

Our results confirm that there were extreme weather
situations conditioning ASWC. It is appreciated that
there was a large number of drought periods and, by
contrast, sporadic and random occurrences of heavy
rainfall events (Martínez-Fernández et al. 2001; Cortesi

et al. 2014; Martin-Vide and Lopez-Bustins 2006). In
short, there was marked seasonal variability in the soil
moisture conditions (Gallart et al. 2002), as was evident
in the data from most of the weather stations analyzed
(Fig. 5). At the Hozgarganta station, in particular, the
FC state was exceeded on a large number of days. The
same was evident at the Malaga City weather station,
where this state was reached at lower humidity values
(%), which, considering the recent publication by
Senciales-González et al. (2020), could even generate
heat islands at the urban scale.

Fig. 2 Analysis of the AEMET database (1959–2019)

Fig. 3 Number of days of rainfall distribution
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Along the pluviometry gradient considered in this study,
the periods during which the soil was below the PWP oc-
curred much more frequently and for a longer duration in
the more arid eastern sector (E) of the Mediterranean basin.
Thus, sampling sites including Albuñol (Granada province)
or Tabernas (Almería province) reached an optimum state of
soil moisture (useful reserve) on few occasions and very
irregularly, resulting in frequent occurrences of water stress
throughout the year.

Figure 5 also shows in each selected zone the medium
values of the interannual pluviometry variability. The hydro-
logical state of the soil showed an elevated spatiotemporal
variability, which depended on several factors. In terms of
the potential AWC, in the westernmost zone (W), the wettest
soils registered values of 12% for the PWP and 32% for the
FC, while in the easternmost (E) area, those parameters had
values of 3% and 18%, respectively. However, as the aridity
conditions increased, the number of days on which the soil
was above the FC declined, because of several consecutive
days of precipitation. The number of consecutive days on
which the ground was below the PWP also increased.

Based on this interannual perspective and the variability
patterns, the number of days without rain increased at all cli-
mate observatories, except those in the western (W) zone (Fig.
6). In general terms, the number of days on which the soil
hydrological state was below the PWP increased for most of
the observatories (in W and M increased in more than 10
days), except in the oriental ones, where was slightly reduced
(Fig. 7). The stations were grouped considering the number of
days without rain and soil moisture.

These general approaches did not consider that at some
observatories the magnitude of the soil driest periods could
be interpreted as extreme. The largest increase in the number
of days in the soil driest period corresponded to the eastern (E)
observatories, where in several years in the last decade, this
period has extended well beyond 200 days; for example, in
2016, there were 338 days at Níjar station during which the
soil was below the PWP, and in 2019, it was up to 256 days.
They have practically been found all year round in what could
be known as the “driest period” (Table 5).

Thus, as other scholars have previously demonstrated (e.g.,
Grayson et al. 1997; Llorens et al. 2003; Fernández and Trillo
2005; Katz et al. 2005; Negri et al. 2005; Medrano et al. 2007;
De Luis et al. 2011; Lemus-Canovas and Lopez-Bustins 2016;
Olcina-Cantos 2017), theMediterranean is a fragile ecosystem
in which water is the most important limiting factor for plant
production (Ferreras Chasco 2000; Terradas 2001) and a ma-
jor determinant of the configuration of plant communities
(Sillero-Medina at al. 2019). If this trend continues in the
number of days without rain and on which the soil is in water
deficit, the repercussions for the ecosystem will be severe,
especially regarding the water availability for plants
(Dunkerley 2002; Martínez-Fernández et al. 2001).

Rainfall pattern impacts on soil hydrological
conditions

In the context of climate change, rainfall in the Mediterranean
area is expected to become more concentrated, and extreme
rainfall will increase (IPCC 2014). Under these conditions, the

Fig. 4 The historical AEMET database
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infiltration rate of a given soil may be exceeded with
greater frequency (Fig. 8), and when precipitation exceeds
the infiltration rate of the soil, runoff is generated (Cerdà
et al. 2021a; Imeson and Lavee 1998). The poor develop-
ment of soils, resulting from intense erosion processes,
and the proximity of the topsoil to the parent material,

also exacerbates rapid soil saturation and consequently
surface runoff in the case of continuing precipitation
(Cerdàet al. 2021b; Panagos et al. 2014). Thus, changes
in rainfall patterns can directly affect the hydrodynamics
of surface formations and the retention of water by soil, as
manifested through its moisture content.

Fig. 5 Marked seasonal variability in the soil moisture conditions
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For the study period, it has been defined a rainfall pattern,
with a direct incidence from soil hydrology. At those obser-
vatories corresponding to a humid–subhumid Mediterranean
climate, a slight decrease in rainfall was recorded, net precip-
itation increased, or precipitation exceeded the soil infiltration
rate. Thus, more than 40% of rainfall generated runoff, indi-
cating much of the rainfall infiltrated into the soil; this is es-
pecially significant, considering the absolute values (Martin-
Vide 2004; Cortesi et al. 2012; Ruiz-Sinoga et al. 2010a). At
those observatories corresponding to a dry Mediterranean cli-
mate, a slight reduction in rainfall and an increase in excess

rainfall was also observed, but the levels were lower than in
the humid–subhumid zone, and approximately 50% of the
precipitation infiltrated into the soil.

At the observatories in semiarid and arid areas, the patternwas
different. With average annual records showing less than
300 mm rainfall in semiarid conditions and 150 mm in arid
zones, the precipitation slightly increased. The variations of
scarce water resources can also show even other different pat-
terns depending on how soils aremanagedwhen the precipitation
rate exceeds the soil infiltration rates. Rodrigo-Comino et al.
(2019) demonstrated this in poorly managed abandoned plots

Fig. 6 The number of days without rain increased at all climate observatories

Fig. 7 The number of days on which the soil hydrological state was below the PWP increased for most of the observatories
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previously cultivated with vineyards in southern Spain.
Therefore, the obtained results could also vary in several magni-
tudes considering human impacts.

Incidence of the rainfall gradient in determining
factors of the soil hydrological dynamics

The results corresponding to the general hydrodynamics in the
mentioned pluviometric gradient are consistent since they
have been corroborated by principal component analysis
(KMO test = 0.864; Bartlett’s sphericity = 0.000) (Table 6).

For the considered pluviometry gradient, the results
show the importance of the factors related to water and
its consequences, mainly in the organic factors and in the
properties of the soil, in the same line that has already
been raised by other experts (Imeson and Lavee 1998;
Cerdà 1998; Novara et al. 2014; Asgari et al. 2020).
Thus, following the PCA results (Tables 7 and 8), five
different components (C) are able to explain 85.9% of
the total variance. Especially, it is significant that up to
three components can explain 69.7%. C1 (29.5% of the
variance) is related to the organic component, grouping
the rainiest areas, not only with higher biodiversity and
vegetation density, but also with a higher content of or-
ganic matter and organic carbon sequestration. These re-
sults agree with other recent studies that highlight the
relevance of precipitation and increase in organic matter
and, subsequently, in vegetation cover, although human
activities (agriculture, urbanization, etc.) highly modify
this trend (Lado et al. 2004; Ruiz-Sinoga and Romero
Diaz 2010; Ruiz-Sinoga et al. 2010b; Ruiz Sinoga et al.
2011; Sillero-Medina et al. 2019b; Desjardins et al. 2020;
Ayoubi et al. 2020).

C2 (27.3% of the variance) is directly related to the pedo-
logical properties. The most stable soils are those that register
higher BD, sand, and silt percentages, showing a higher infil-
tration capacity (Shukla et al. 2006; Al-Shammary et al.
2020). C3 reaching a 12.8% of the whole variance is related
to the torrentiality of the rain, grouping higher percentages of
heavy rainfall, rainfall summation of 10 days after the dry
season (mm) and evapotranspiration (Boegh et al. 2002;
Bosch and Hewlett 1982; Domingo et al. 1999). However,
torrential rainfall not only is important in the management of
water resources by vegetation but also has a direct effect on
landscape modelling (Angulo-Martínez et al. 2009; Negese
et al. 2021). In addition, it is inversely related to the duration
of the continuous period of AW and slope percentage. C4
(8.9% of the variance) grouped the years with a longer dura-
tion of XP; a higher number of days with soils below WP are
the last in the series. Furthermore, this component is inversely
related to the period in FC. Finally, clay explains 7.2% of the
variance and appears as an isolated factor.Ta
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Humid areas (W) (> 700 mm/year)

In humid areas, the PCA has shown both a KMO and
Bartlett’s test with adequate values (Table 6), with six com-
ponents that explain 75% of the variance, of which the first
one explains 34% of it (Table 7). Thus, in these humid areas,
the factors associated with water management explain most of
the variance, grouping stable soils with high organic matter
content (56.3% of the variance), in line with other studies
(Laio et al. 2001; Shukla et al. 2006; Ruiz-Sinoga and
Romero Diaz 2010; Pulido-Fernández et al. 2013; Novara
et al. 2014). C1 (Table 9) is associated with hydrological var-
iables (34.3% of the variance), with the AW. The areas with
the highest rainfall are those with the longest AW peri-
od, even continuous (AWc), where maximum rainfall
occurs in spring and where the highest values of VC,
VB, and permeability are found. Thus, in these areas,
the most recent years are the driest.

C2, with 12.4% of the variance, is related to the soil texture.
The highest values of clay and silt contents correspond to the

lowest values of FC. C3 explains 9.6% of the variance and it is
related to the organic factor. The most structurally stable soils,
i.e., with higher AS, correspond to higher OM and OC con-
tents. C4 (7.1% of the variance) could be considered as a
climate factor, since it links the torrential rainfall (HR) in-
versely to the duration of the XP and the percentage of sand,
in relation to that identified by Sillero-Medina et al. (2019a,
2019b). C5, with 6.4% of the variance, is associated with
topographical variables. The areas where the longest periods
of WP are reached are those with the steepest slopes.

Dry areas (M and G) (400–700 mm/year)

In these areas, both the KMO and the Bartlett test have ade-
quate values, which show a statistical significance (Table 6).
Six components explain 85.5% of the variance, from which
three explain 61.8% (Table 7). Thus, in these dry areas, biol-
ogy, soil stability, and climate variables are the factors that
explain this 61.8% of the variance. These areas act as a thresh-
old between biotic and abiotic factors as controllers of soil

Fig. 8 The infiltration rate of a given soil

Table 6 Bartlett and the KMO
(Kaiser-Meyer-Olkin) tests Total > 700 mm 700–400 mm < 400 mm

KMO and Bartlett’s test 0.808 0.748 0.590 0.785

Bartlett’s test of sphericity Aprox. chi-square 4.154.953 1.405.681 665.801 781.251

df 245 173 175 175

Sig. 0.000 0.000 0.000 0.000
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29 Table 8 Component

matrix obtained in the
PCA analysis.
Abbreviations: AR,
annual rainfall; AS,
structural stability (%);
AW, available water
(days); AWc, available
water continuous period;
Dap, bulk density; Dyear,
drier year; ET, evapo-
transpiration; FC, field ca-
pacity period; HR, heavy
rainfall (%); Ksat, perme-
ability; OC, organic car-
bon (%);OM, organic
matter (%); RD, rainy
days; VB, vegetation bio-
diversity (number of spe-
cies); VC, vegetation cov-
er (%); WP, wilting point
period; XP, xeric period
(days); ∑pmm-50d, rain-
fall summation of 50 days
before dry season (mm);
∑pmm+10d, rainfall sum-
mation of 10 days after dry
season (mm)

Components

AR 0.897

VB 0.875

AW 0.860

RD 0.840

OM (%) 0.769

OC (%) 0.729

∑pmm -50d 0.690

VC (%) 0.669

AS (%) 0.945

Dap (g/cm
3) 0.929

Sand (%) 0.903

Ksat (cm/h) 0.878

Silt (%) 0.771

HR 0.899

∑pmm+10d 0.856

AWc −0.841
ET 0.597

Slope (%) −0.545
FC −0.680
WP 0.678

XP 0.425

Dyear 0.412

Clay (%) 0.750

Table 9 Component
matrix obtained in the
PCA analysis in humid
areas. Abbreviations: AR,
annual rainfall; AS,
structural stability (%);
AW, available water
(days); AWc, available
water continuous period;
Dap, bulk density; Dyear,
drier year; ET, evapo-
transpiration; FC, field ca-
pacity period; HR, heavy
rainfall (%); Ksat, perme-
ability; OC, organic car-
bon (%);OM, organic
matter (%); RD, rainy
days; VB, vegetation bio-
diversity (number of spe-
cies); VC, vegetation cov-
er (%); WP, wilting point
period; XP, xeric period
(days); ∑pmm-50d, rain-
fall summation of 50 days
before dry season (mm);
∑pmm+10d, rainfall sum-
mation of 10 days after
dry season (mm)

Components

AW 0.970

AWc −0.926
Dyear 0.961

∑ pmm-50d 0.956

VC (%) 0.937

VB 0.891

Ksat (cm/h) 0.790

∑ pmm+10d 0.599

FC −0.897
Clay (%) 0.795

Silt (%) 0.539

OM (%) 0.858

OC (%) 0.709

AS (%) 0.565

HR −0.778
XP 0.580

Sand (%) 0.531

Slope (%) 0.826

WP 0.604

Dap (g/cm
3) 0.873
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degradation processes, as demonstrated by other authors under
similar conditions (Mohammed et al. 2020; Cerdà et al. 2021b).

C1 explains 28.5% of the variance and can be considered
as a biological component. The higher AW content is related
to a higher VC, VB, OM, and OC (Table 10). C2 (17.6% of
the variance) is associated with soil stability. Thus, soils with
a better AS are associated with a higher sand content (%),
higher BD, and more days in FC. In addition, these variables
are negatively related to torrential rainfall (HR).

C3 explains 15.7% of the variance and is entirely related
to climatic variables. This component is linked to rainfall
summation of 50 days before occurring dry seasons (mm)
and inversely to 10 days of rain after a dry season (mm). So,
C4 has a pedological character and explains 9.2% of the
variance. The soils with higher clay or silt contents are those
with lower permeability. C5 can also be connected to C3 and
is relative to soil hydrology since as XP is extended, the
number of days with AW is reduced. Furthermore, it ex-
plains 7.7% of the variance. Finally, C6 is related to physi-
ography, with 6.5%. The areas with steeper slopes coincide
with those that have a lower number of days with AW and
the higher ones in WP.

Semiarid and arid areas (E) (< 400 mm/year)

KMO and Bartlett’s test also showed significant results
(Table 6). Six factors can explain 78.3% of the variance

(Table 7). In this sense, in the arid environments, it is the
torrential nature, the orography, and the biological factors that
explain, in this order, 69.3% of the variance. In these environ-
ments, AW is linked to rainfall occurring in such a way that
the soils can benefit, and not above the soil infiltration rates, as
well as in areas where the slope prevents the generation of
surface runoff processes, hence the importance of the physio-
graphic factor and specific rainfall events during concentrated
seasons (Li et al. 2020; Peña-Angulo et al. 2021). C1, with
29.9% of the variance, could correspond to torrential rainfall,
since it relates the percentage of RH to the rainfall that occurs
after the summer, in addition to the clay and silt content of the
soils, and the number of days in WP and XP (Table 11).

C2, with 19.9% of the variance, is associated with topo-
graphical changes. The number of days in AW, the soils with
higher AS and BD, and soft slopes are related. C3 and C4,
with 19.5% of the variance in total, are related to the biological
factor. Thus, increased precipitation before starting the dry
season is associated with higher VC and VB, and these with
higher levels of OM and OC. C5 (6.6% of the variance) is
related to soil hydrology since it directly associates soils with a
high percentage of sands with higher permeability and in-
versely with the number of days in FC. C6, with 5.1% of the
variance, is associated with the current climatic dynamics, as it
inversely relates the duration of the continuous period of soils
with AW, with the most recent years. In other words, at pres-
ent, the number of continuous days of soils with AW is in-
creasingly lower (5.1% of the variance).

Table 10 Component
matrix obtained in the
PCA analysis in dry
areas. Abbreviations:
AR, annual rainfall; AS,
structural stability (%);
AW, available water
(days); AWc, available
water continuous period;
Dap, bulk density;
Dyear, drier year; ET,
evapotranspiration; FC,
field capacity period;
HR, heavy rainfall (%);
Ksat, permeability; OC,
organic carbon (%);OM,
organic matter (%); RD,
rainy days; VB, vegeta-
tion biodiversity (num-
ber of species); VC,
vegetation cover (%);
WP, wilting point peri-
od; XP, xeric period
(days); ∑pmm-50d, rain-
fall summation of 50
days before dry season
(mm); ∑pmm+10d, rain-
fall summation of 10
days after dry season
(mm).

Components

AWc 0.979

VC (%) 0.892

VB 0.842

OM (%) 0.761

OC (%) 0.742

AS (%) 0.867

Sand (%) 0.763

FC 0.698

Dap (g/cm
3) 0.665

HR −0.614
∑ pmm+10d −0.884
∑ pmm-50d 0.675

Clay (%) 0.819

Silt (%) 0.790

Ksat (cm/h) −0.449
XP 0.875

AW −0.571
Dyear 0.687

Slope (%) 0.856

WP 0.563

Table 11 Component matrix
obtained in the PCA analysis in
semiarid and arid areas.
Abbreviations: AR, annual
rainfall; AS, structural stability
(%); AW, available water (days);
AWc, available water continuous
period; Dap, bulk density; Dyear,
drier year; ET, evapotranspira-
tion; FC, field capacity period;
HR, heavy rainfall (%); Ksat,
permeability; OC, organic carbon
(%);OM, organic matter (%); RD,
rainy days; VB, vegetation biodi-
versity (number of species); VC,
vegetation cover (%);WP, wilting
point period; XP, xeric period
(days); ∑pmm-50d, rainfall sum-
mation of 50 days before dry
season (mm); ∑pmm+10d, rain-
fall summation of 10 days after
dry season (mm)

Components

∑ pmm+10d 0.957

Clay (%) 0.949

WP 0.878

XP 0.841

Silt (%) 0.820

HR 0.690

Dap (g/cm
3) 0.872

AW 0.878

AS (%) 0.795

Slope (%) −0.577
∑ pmm-50d 0.694

VC (%) 0.686

VB 0.679

OM (%) 0.792

OC (%) 0.670

Sand (%) 0.734

Ksat (cm/h) 0.686

FC −0.480
Dyear −0.873
AWc 0.872
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Conclusions and possible challenges

Following the objectives set out, there has been an increase in
the length of dry periods as a result of a decrease in both the
number of rainy days and the number of consecutive days
without rain. While there was a reduction in average daily
rainfall, there was an increase in maximum rainfall, indicating
that the number of events involving extreme rainfall has in-
creased. Therefore, there has been a significant change in the
rainfall pattern, with more concentrated rainfall. Soils reflect
the climatic seasonality through their hydrological state. Thus,
in summer and early autumn, the humidity was low, with a
general tendency to increase in the number of days in which
the soil is water-deficient or has a humidity state below the
WP. This is of particular significance when considering the
main land uses in the Mediterranean drylands, since the driest
period of the soil could be assumed to be a phenological sum-
mer and the hydrological state of the soil will be more often
extreme. There is a need for a better understanding of the
effect of rainfall dynamics on different land uses, which would
modify the results obtained for bare soils, given that vegeta-
tion is one of the main consumers of water.

Finally, it can be seen that for the whole of the selected area
it is the organic factors that control the properties of the soils
and their hydrodynamics. However, while in humid areas, the
dominant factor is soil hydrology, the availability of water,
which provides consistent plant cover, regardless of its phys-
iographic position. In arid and semi-arid areas, torrential rain-
falls are keys, with a greater incidence in areas with steep
slopes, to understand biological factors and soil hydrodynam-
ics. This could be used to establish biodiversity thresholds in
the context of climate change. Furthermore, a new challenge
could be related to the determination of AWC dynamics from
a phenological perspective, which could provide fundamental
information for understanding the evolution or loss of plant
species in each area and biodiversity. Ultimately, future re-
search should aim at assessing landscape modifications as a
result of specific AWC dynamics and identifying which spe-
cies are most vulnerable.
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