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Al Departamento de Matemática Aplicada por poner a mi disposición un

espacio que hoy siento como mı́o.
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A mis compañeros de despacho y al resto de miembros del grupo de investi-
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Introducción

Esta tesis se centra en el análisis de algunos aspectos cualitativos relacionados
con ecuaciones diferenciales parciales que surgen en la bioloǵıa del desarrollo y
la mecánica cuántica. La idea de fondo que vinculan los diferentes problemas en
estudio es el control de esas propiedades de las soluciones relativas a la difusión,
la dispersión o disipación en contraste con en dichos modelos f́ısicos considerados.
En este esṕıritu, la Tesis se han abordado y discutido los distintos enfoques del
concepto de difusión en mecánica cuántica y la bioloǵıa, lo que constituye un
aspecto crucial en el presente y el futuro del desarrollo de estos campos. Aqúı,
hemos utilizado diferentes herramientas matemáticas para analizar los objetivos
anteriores: el modelado, aśı como el buen-planteamiento en el marco funcional
de los espacios de Sobolev, propiedades dinámicas de las ondas viajeras, las solu-
ciones de entroṕıa, puntos que en el mismo tiempo contribuyen a enriquecer la
variedad de temas y contenidos de la tesis.

Vamos a describir brevemente los temas concretos y los resultados de esta
tesis. El caṕıtulo 2 está dedicado al modelado de procesos de disipación/difusión
cuántica. El marco teórico habitual para este tipo de estudios es el de los sis-
temas cuánticos abiertos, en los que se analiza la interacción entre el sistema
de interés y el ambiente. De esta manera se establece la ecuación maestra que
gobierna la evolución temporal del operador de densidad (reducido) ρ de nue-
stro sistema. Una interpretación cinética de ρ permite asociarle una función de
(pseudo-) probabilidad W , cuya evolución temporal responde a una ecuación con
término de transporte. En nuestro caso dicha ecuación llevará acoplado un núcleo
de Fokker–Planck para describir efectos de disipación. La ecuación de WFP es
la siguiente

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W = LQFP [W ] ,

con

LQFP [W ] =
Dpp

m2
∆ξW + 2λ∇ξ · (ξW ) +

2Dpq

m
∇x · (∇ξW ) +Dqq∆xW .

La ecuación de WFP puede verse como una generalización del modelo de
Caldeira–Leggett [22] (el más comúnmente aceptado que describe efectos de disi-
pación) que está en la forma de Lindblad [69].

Aunque la formulación cinética presenta ventajas respecto al tratamiento de
ρ también conlleva algunos inconvenientes: en primer lugar la función W no

ix
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puede interpretarse como una función de probabilidad con sentido completo ya
que puede tomar valores negativos. Por otra parte, la formulación cinética está
definida en el espacio de fase, por lo que que el tratamiento es más costoso.
Además los fenómenos cuánticos usualmente se describen en términos de una
función de onda ψ por lo que es interesante representar los efectos de disipación
y difusión en la fomulación de Schrödinger, admitiendo términos no lineales.

Nuestro primer objetivo es establecer un modelo de Schrödinger que represente
la misma f́ısica que WPF. Para ello interpretaremos la ecuación de continuidad
asociada a WFP como resultado de un proceso de difusión gobernada a nivel
microscópico por movimiento Browniano, obteniendo la siguiente ecuación de
Schrödinger

iα
∂ψ

∂t
= − α

2

2m
∆xψ + V ψ +

α2

~2
Qψ + Λ log(n)ψ +Dqq

(
iα

2

∆xn

n
+m∇x ·

J

n

)
ψ .

La no linealidad de esta ecuación de Schrödinger, se reduce a un sólo potencial,
el término logaŕıtmico, por medio de una transformación Gauge. Por ello resulta
interesante el estudio de la ecuación simplificada ya que la f́ısica de ambos proble-
mas es la misma. En el caṕıtulo 3 se estudia la existencia y unicidad de soluciones
en todo el espacio de la ecuación de Schrödinger puramente logaritmica.

El resultado principal desarrollado en el caṕıtulo 3 es la prueba de la existencia
de una única solución global en tiempo en sentido mild en H1(R3), del problema
de valores iniciales

i
∂ψ

∂t
= −D∆ψ + σlog(n)ψ , (t, x) ∈ [0,∞)× R3 , (1)

ψ(0, x) = ψ0(x) , ψ0 ∈ H1(R3) , |x|n0 ∈ L1(R3) , (2)

bajo la única hipótesis de que el momento de inercia inicial
∫

R3 |x|n0 dx sea finito,
este estudio es independiente del signo que acompaña al logaŕıtmo, donde se
ha denotado n0(x) = n(0, x). El principal objetivo consiste en el desarrollo de
una teoŕıa matemática del buen planteamiento en todo el espacio en H1(R3), sin
ninguna restricción del espacio funcional a fin de evitar la singularidad del poten-
cial logaŕıtmico en el origen ni las condiciones técnicas que permiten garantizar
a priori la convergencia de la secesión de soluciones aproximadas. El resultado
principal es el siguiente teorema

Teorema 1 Existe una única función

ψ ∈ L∞([0,∞);H1(R3)) ∩ C([0,∞);L2(R3))

la cual es solución del problema de valores iniciales (1.1)–(1.2) en un sentido
mild.

En el Caṕıtulo 4 se ha lleva a cabo una modificación del efecto de difusión
ligado a la ley de Fick, ya que no describe la realidad de los modelos biológicos
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porque se produce la difusión en todo el espacio de manera instantánea , para
aproximarnos a la realidad de este proceso se ha modificado Fick según un término
no lineal que aparece por primera vez en [88], también aparece en el marco de
transporte de masa óptimo [19].

Una vez llevada acabo esta modificación se han estudiado un tipo de solu-
ciones especiales de las ecuaciones de RD que tiene un papel importante en las
aplicaciones, para el caso escalar se denominan ondas viajeras y para el caso
de sistema formación de patrones. Dadas las caracteŕısticas que las soluciones de
ondas viajeras tienen son muy útiles en modelacion en diferentes áreas como inva-
siones biológicas [24], epidemias [93], crecimiento de tumores [21] . Consideramos
el caso escalar de la ecuación modificada con un término de reacción del tipo de
Fisher Kolmogorov–PP (f(u)) y haremos la clasificación de ondas viajeras según
la velocidad de avance del soporte de la solución y la viscosidad.

El principal resultado descrito en el Caṕıtulo 4 de esta memoria da las condi-
ciones para la existencia de soluciones de tipo onda viajera de la ecuación

∂u

∂t
= ν∂x

 u∂xu√
|u|2 + ν2

c2
|∂xu|2

+ f(u), u(t = 0, x) = u0(x), (3)

Teorema 2 En términos de un valor de σ∗ ≤ c, dependiendo de ν, c, y k, existe
un frente de onda que es

(i) una solución clásica para (4.2), con velocidad de onda σ > σ∗ o σ = σ∗ < c;

(ii) una solución de entroṕıa discontinua para (4.2), con velocidad de onda σ =
σ∗ = c.

La existencia de soluciones de ondas viajeras en el caso para σ < σ∗ es un
problema abierto. También, la existencia de otra clase de ondas viajeras tales
como pulsos o solitones podŕıan estudiarse (véase por ejemplo [87], o [44] en otro
contexto).
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Chapter 1

Introduction

This Thesis is focused on the analysis of some qualitative aspects related to partial
differential equations arising in developmental biology and quantum mechanics.
The basic idea linking the different problems under study is the scrutiny of those
properties of the solutions concerning diffusion, dispersion or dissipation in con-
trast with the physical inputs of the models considered. In this spirit, the Thesis
deals with and discuss the various approaches to the concept of diffusion in quan-
tum mechanics and biology, which constitutes a crucial aspect in the present and
the future of the development of both fields. Here, different mathematical tools
come together in order to analyze the above general objectives: modeling, inter-
phase fluid flows, well–posedness in the functional framework of Sobolev spaces,
dynamic properties of traveling waves, entropy solutions, . . . , that at the same
time contribute to enrich the variety of topics and contents of the Thesis.

Let us briefly describe the specific subjects and results of this Thesis. The
second chapter is devoted to the modeling of quantum dissipation processes. The
theoretical framework supporting this sort of phenomena is that of open quantum
systems, which takes into account the interactions among the particle ensemble
under study and the environment. This is actually the starting point to derive
the master equation governing the temporal evolution of the (reduced) density
matrix operator of the system. A kinetic interpretation of this operator allows
to construct a pseudo–probability distribution function W in phase space, whose
evolution in time is ruled by a quantum–kinetic transport equation in the Wigner
picture. In our case, this equation is considered to be supplemented by a Fokker–
Planck kernel describing dissipation and diffusion effects. The Wigner–Fokker–
Plank (WFP) equation is the following

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W = LQFP [W ] ,

with

LQFP [W ] =
Dpp

m2
∆ξW + 2λ∇ξ · (ξW ) +

2Dpq

m
∇x · (∇ξW ) +Dqq∆xW .

The WFP equation can be seen as a generalization (written in Lindblad form
[69]) of the well–known Caldeira–Leggett dissipative model [22].

3
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Though the kinetic formulation shows some advantages with respect to the
mathematical treatment of the density operator it also exhibits some drawbacks,
mainly the fact that the Wigner function W cannot be interpreted as a true prob-
ability function, since it may take negative values. Our purpose is to represent
quantum diffusive effects in the wavefunction approach via nonlinear Schrödinger
models.

Our first objective is to establish a Schrödinger model describing the same
physics that the WFP equation. To this aim, the continuity equation associ-
ated with the WFP equation is interpreted as associated with a diffusion process
governed by Brownian motion at a microscopic level (in the sense of Nelsonian
stochastic mechanics [81]). We find the following Schrödinger type equation

iα
∂ψ

∂t
= − α

2

2m
∆xψ + V ψ +

α2

~2
Qψ + Λ log(n)ψ +Dqq

(
iα

2

∆xn

n
+m∇x ·

J

n

)
ψ ,

where the action unit is now α = 2mDqq instead of the Planck constant ~. This
is our main goal in Chapter 2, as well as the development of a numerical code to
simulate the dispersive and (anti)dissipative behaviour of solutions.

The family of nonlinearities of this equation is reduced to a single nonlinear
potential of logarithmic type by means of an adecquate Gauge transformation.
This makes the study of the reduced logarithmic equation particularly interesting,
since the physics underlying both problems is the same. In Chapter 3, the exis-
tence and uniqueness of solutions to the purely logarithmic Schrödinger equation
in whole space is analyzed.

The main result in Chapter 3 concerns the existence of a unique global–in–
time mild solution in H1(R3) to the following initial–value problem

i
∂ψ

∂t
= −D∆ψ + σlog(n)ψ , (t, x) ∈ [0,∞)× R3 , (1.1)

ψ(0, x) = ψ0(x) , ψ0 ∈ H1(R3) , |x|n0 ∈ L1(R3) , (1.2)

under the unique hypothesis that the initial inertial momentum
∫

R3 |x|n0 dx, n0

standing for the initial position density, is finite. This study is independent of
the sign (attractive or repulsive) of the nonlinear term. Our main goal consists
of developing a mathematical theory for the well–posedness of this problem in
H1(R3), without further restrictions neither of the functional space in order to
avoid the logarithmic singularity at the origin, nor of the technical conditions
that guarantee the convergence of the sequence of approximate solutions. The
main result is the following

Theorem 0.1 There exists a unique function

ψ ∈ L∞([0,∞);H1(R3)) ∩ C([0,∞);L2(R3))

that solve the initial value problem (1.1)–(1.2) in a mild sense.
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In Chapter 4 we are concerned with the introduction of a correction to the
diffusion effects linked to Fick’s law in a biological context, so as to avoid that
diffusion propagates to the whole space instantaneously. In this spirit, Fick’s law
is augmented with a nonlinear term first derived in [88], which is also inherent
to optimal mass transport processes [19]. Then, we study an especial type of
solutions to the model reaction–diffusion equations which are relevant in appli-
cations. In the scalar case they are known as traveling waves, while otherwise
we call it pattern formation. In virtue of their particular features, these solu-
tions have proved quite useful in modeling biological invasions [24], epidemies
[93] or tumor growth [21], among other phenomena stemming from various disci-
plines. In the scalar case, we consider the equation modified by a reaction term of
Fisher–Kolmogorov type, and classify the traveling waves according to the speed
of propagation of their supports as well as the viscosity.

The main result of Chapter 4 is concerned with the study of the conditions
under which there exist traveling wave solutions of the following equation

∂u

∂t
= ν∂x

 u∂xu√
|u|2 + ν2

c2
|∂xu|2

+ f(u), u(t = 0, x) = u0(x), (1.3)

Indeed this flux–limited equation, known as relativistic heat equation, is pos-
tulated as an alternative to the linear flow given by Fick’s equation.

Theorem 0.2 Given σ∗ ≤ c depending upon ν, c and k, there exists a wave front
which is

(i) a classical solution to Eq. (4.2), with wave speed σ > σ∗ or σ = σ∗ < c;

(ii) a discontinuous entropy solution to Eq.(4.2), with wave speed σ = σ∗ = c.

The existence of traveling wave solutions for the case σ < σ∗ is an open
problem. Also, the existence of other kind of traveling waves such as pulses or
solitons is worth to be studied (see for example [87], or [44] in other framework).
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Chapter 2

A wavefunction description of
stochastic–mechanical
Fokker–Planck dissipation:
derivation, stationary dynamics
and numerical approximation

2.1 Introduction

Modeling of quantum dissipation has experienced a great impulse over recent
years mainly due to the scrutiny of system+reservoir structures, which take into
account energy transfer from the system to the environment (e.g. semiconduc-
tor devices with doped regions as reservoirs that inject electrons into the active
regions). This aims to open quantum systems as the physical scenario [36], i.e.
a particle interacting dissipatively with an idealized heat bath of harmonic oscil-
lators, the effect of the bath on the particle motion being typically described by
the bath temperature and the friction constant after tracing over the reservoir
degrees of freedom. Nevertheless, though many nonlinear corrections have been
proposed up to now, quantum dissipative interactions are still far from being
well understood, mainly in the Schrödinger picture, and still deeper insight on
their physical interpretation is needed. One of the best accepted diffusion mecha-
nisms in modern quantum mechanics is the Fokker–Planck scattering kernel when
added to Wigner’s equation. Remarkably, the Caldeira–Leggett master equation
[22] has been succeedingly applied in spite of its mathematical defficiencies, as it
does not fit Lindblad’s form [69] so as to guarantee positivity of the density matrix
operator. Beingthe the quantum Fokker–Planck master equation (QFPME) the
most general extension of the pioneering Caldeira–Legett master equation, which
models the interaction of a quantum fermionic gas with a thermal bath subject to
moderate/high temperatures, in the Wigner quantum–mechanical representation
it reads

7



8 2.1. Introduction

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W = LQFP [W ] , (2.1)

with

LQFP [W ] =
Dpp

m2
∆ξW + 2λ∇ξ · (ξW ) +

2Dpq

m
∇x · (∇ξW ) +Dqq∆xW , (2.2)

where W (t, x, ξ) is the quasi–probability distibution function associated with a
quantum mixture of (complex) states ψk(t, x), that is

W (t, x, ξ) =
1

(2π)3

∑
k≥1

λk

∫
R3

ψk

(
t, x− ~y

2m

)
ψk

(
t, x+

~y
2m

)
e−iξ·y dy ,

with the λk’s standing for occupation probabilities, thus satisfying

λk ≥ 0 ,
∑
k≥1

λk = 1 .

Here x, ξ ∈ R3 are position and momentum coordinates of the electron gas, ~
is the (reduced) Planck constant,

Dpp = ηkBT , Dpq =
ηΩ~2

12πmkBT
, and Dqq =

η~2

12m2kBT

are phenomenological constants related to electron–bath interactions, λ = η
2m

is the friction coefficient, m the effective mass of the electrons, η the damp-
ing/coupling constant of the bath, Ω the cut–off frequency of the oscillators, kB
the Boltzmann constant, T the bath temperature and where

θV [W ](t, x, ξ) =
1

(2π)3

∫
R6

i

~

[
V

(
t, x+

~y
2m

)
− V

(
t, x− ~y

2m

)]
×W (t, x, ξ′)e−i(ξ−ξ

′)·y dξ′ dy

is a pseudo–differential operator related to the external potential V . In the pres-
ence of a purely Ohmic environment (namely, linear coupling in both system
and environment coordinates), the QFPME comes out from the Liouville (super-
)operator i~∂tρ = L[ρ] after Wignerization, with

L[ρ] = [H, ρ] + λ[q, {p, ρ}]− i

~

(
Dpp

[
q, [q, ρ]

]
+Dqq

[
p, [p, ρ]

]
+ 2Dpq

[
q, [p, ρ]

])
,

where q, p are position and momentum operators, H = − ~2

2m
∇2
q + V (q) is the

electron Hamiltonian and ρ the reduced density matrix operator, derived in [?, 41]
as the Markovian approximation of the originally non–Markovian evolution of the
electron in the oscillator bath. Here, the assumptions on the parameters are: (i)
the reservoir memory time Ω−1 is much smaller than the characteristic time scale
of the electrons, (ii) weak coupling: λ� Ω, and (iii) medium/high temperatures:

Ω<∼ kBT
~ . Notice that the Caldeira–Leggett model is obtained when Dpq = Dqq = 0

is assumed in the QFPME, i.e. in a high temperatures regime. Somehow less
restrictive models belonging to the Lindblad class were derived for example in
[49] and [95].
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2.2 The wavefunction approach

One of the main aspects of quantum–mechanical dissipative theories relies on the
presence of a diffusive term in the continuity equation. Indeed, the equation for
the position density n =

∫
R3 W (t, x, ξ) dξ reads

∂n

∂t
+∇x · J = Dqq∆xn ,

which is of Fokker–Planck type. Here, we denoted J =
∫

R3 ξW (t, x, ξ) dξ the
electric current density. This equation along with

∂u

∂t
+ (u · ∇x)u = − 1

m
∇xV −

∇x · P
n
− 2λu− 2Dpq

m
∇xlog(n) + F (n, u)

constitute the hydrodynamic system associated with the QFPME, where u = J
n

represents the fluid mean velocity, and where P = E − nu⊗u is the stress tensor
with E =

∫
R3(ξ⊗ξ)W (t, x, ξ) dξ denoting the kinetic energy tensor, while the

viscous term

F (n, u) = Dqq

(
2(∇xlog(n) · ∇x)u+ ∆xu

)
stands for the dissipative force. The idea underlying our derivation consists of
interpreting the continuity equation in terms of Nelsonian stochastic mechan-
ics. This theory gives a description of quantum mechanics in terms of classical
probability densities for particles undergoing Brownian motion with diffusive in-
teractions. In this spirit, the evolution of a particle subject to nondissipative
Brownian motion is shown to be equivalent (in the sense of its probability and
current density) to that described by Schrödinger’s equation [81]. In our context
we assume Brownian motion as produced by the dissipative interaction between
the electron gas and the thermal environment, the particles thus being subject to
the action of forward and backward velocities u+ and u− = u+−2u0 respectively,
ingentering the continuity equation as

∂n

∂t
+∇x · (nu±) = ±Dqq∆xn . (2.3)

Here, uo = Dqq∇xlog(n) is the osmotic velocity defined according to Fick’s law,
that sets the exact balance between the osmotic current nuo and the diffusion
current Dqq∇xn and somehow controls the degree of stochasticity of the process.
Summing up both forward and backward equations in (2.3) and introducing the
current mean velocity

v :=
1

2
(u+ + u−) = u+ − uo ,

it is easy to check that the standard continuity equation of quantum mechanics
∂tn +∇x · (nv) = 0 is recovered. Henceforth we shall use Einstein’s convention
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for summation over repeated indices. By defining the mean backward derivative
of the forward velocity as

D−u+(t, x) :=
∂u+

∂t
+ (u− · ∇x)u+ −Dqq∆xu+ ,

the momentum equation can be rewritten for u+ as

D−u+ = − 1

m
∇xV −

∇x · Pu+

n
− 2λu+ −

2Dpq

m
∇xlog(n) . (2.4)

We now perform time inversion according to the rules [56]

t 7→ −t , ∂z

∂t
7→ −∂z

∂t
, u± 7→ −u∓ , D± 7→ −D∓ .

Since the internal stress tensor Pu+ is a dynamic characteristic of motion, its
divergence changes sign under time inversion. Accordingly, Eq. (2.4) becomes

D+u− = − 1

m
∇xV +

∇x · Pu+

n
+ 2λu− −

2Dpq

m
∇xlog(n) , (2.5)

where D+u− := ∂u−
∂t

+ (u+ · ∇x)u− +Dqq∆xu− is the mean forward derivative of
the backward velocity. Subtracting (2.5) from (2.4) yields

∂(uo)j
∂t

+ vi
∂(uo)j
∂xi

=
∂vj
∂xi

(uo)i +Dqq
∂2vj
∂x2

i

− 2λvj −
1

n

∂(Pu+)ji
∂xi

.

or equivalently the following law for the stress tensor

∂(Pu+)ji
∂xi

= Dqq(
∂n

∂xi
+

∂

∂xi
)(
∂vj
∂xi

+
∂vi
∂xj

)− 2λnvj .

We then sum up (2.4) and (2.5) to get the frictional version of Nelson’s stochastic
generalization of Newton’s law

∂vj
∂t

+ vi
∂vj
∂xi

= − 1

m

∂

∂xj

(
V + Λlog(n)

)
− D2

qq

[
1

n

∂n

∂xi

∂

∂xi

(
1

n

∂n

∂xj

)
− ∂

∂xj

(
1

n

∂2n

∂x2
i

)]
, (2.6)

where we have set Λ := 2Dpq + ηDqq.
The evolution governed by the (general) QFPME and combining Eqs. (2.3)

and (2.6) with the relation
v = u+ − 2u0 ,

the equation for u+

∂(u+)j
∂t

+ (u+)i
∂(u+)j
∂xi

= − 1

m

∂V

∂xj
− Λ

m

∂log(n)

∂xj
− 2α2

~2

∂Q

∂xj

+ Dqq

[
1

n

∂n

∂xj

(∂(u+)j
∂xj

− ∂(u+)i
∂xj

)
− ∂2(u+)i
∂xi∂xj

]
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can be recovered, where we denoted α = 2mDqq and Q holds for Bohm’s quantum
potential defined by

Q = − ~2

2m

∆x

√
n√
n

= − ~2

4m

(
∆xn

n
− |∇xn|2

2n2

)
.

Under the original assumptions on the parameters we are straightforwardly led
to α� ~, which means that the quantum potential effects are drastically relaxed
due to the spatial diffussion introduced by the QFPME. As consequence, the Dqq

term confers ’classical’ behaviour to the system at the hydrodynamic level.
Now, after the identification of the velocity as an irrotacional field we get

u+ = 1
m
∇xS, hence

∂

∂xj

(
∂S

∂t
+

1

m

∂S

∂xi

∂2S

∂xj∂xi

)
= − ∂

∂xj

(
V +

2α2

~2
Q+ Λ log(n) +Dqq

∂2S

∂x2
i

)
,

which after integration along xj yields the following Hamilton–Jacobi type equa-
tion for the evolution of S:

∂S

∂t
+

1

2m

∣∣∇xS
∣∣2 = −V − 2α2

~2
Q− Λ log(n)−Dqq∆xS + Ξ , (2.7)

Ξ(t) being an arbitrary function of time. This along with the continuity equation

∂n

∂t
+

1

m
∇x · (n∇xS) = Dqq∆xn

constitute a closed potential–flow quantum hydrodynamic system, thus we may
construct an ’envelope’ wavefunction which contains the same physical informa-
tion that the QFPME. Indeed, if we consider

ψ =
√
n e

i
α
S (2.8)

along with the quantization rule m
∮
L
u+ dl = 2kπ, where k is an integer and L is

any closed loop [97], in order to keep ψ single–valued, we are led to the following
Schrödinger–like equation accounting for frictional and dissipative effects

iα
∂ψ

∂t
= Hαψ +

α2

~2
Qψ + Λ log(n)ψ +Dqq

(
iα

2

∆xn

n
+m∇x ·

J

n

)
ψ , (2.9)

where Hα = − α2

2m
∆x + V is the electron Hamiltonian (under the new action unit

α, see Section 4 and [32] for details). In this picture, the magnitudes |ψ|2 and
α
m

Im(ψ∇xψ) coincide with n and J , respectively. Notice that Ξ has been set to

zero in virtue of the gauge ψ̃ = eiθψ. Indeed, Eq. (2.9) is the (nonlinear) equation
we postulate in the Schrödinger picture to model the dissipative effects under-
gone by a quantum particle ensemble in contact with a thermal reservoir. The
crossed–diffusion Dpq–term (or ‘anomalous diffusion’), owing to a linear velocity–
dependent frictional force caused by the interaction of the electrons with the
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dissipative environment, is of logarithmic type [20] (actually, log(n) can be seen
as an expansion of V up to O(~2) when V is assumed to be the Hartree elec-
trostatic potential solving ∆xV = n). On the other hand, the position–diffusion
Dqq–terms contain nonlinearities which form part of a more general family of
Schrödinger equations of Doebner–Goldin type [42], which is actually the most
general class of nonlinear Schrödinger equations compatible with a Fokker–Planck
continuity equation. It is also noticeable that the Dpp–term, responsible for the
decoherence process, does not contribute to the final form of Eq. (2.9). This is
due to the fact that the moment system has been truncated at the level of the
momentum equation, while the Dpp–contribution is only ’visible’ at the next level,
i.e. that of the energy equation. However, the role played by Dpp is essential for
the fulfillment of the uncertainty inequality as well as for the Lindblad form of
the QFPME, thus for the positivity preservation of the density matrix operator.
Indeed, a sufficient and necessary condition to fit Lindblad’s class is that the
reservoir parameters be such that the inequality

DppDqq −D2
pq ≥

~2λ2

4

holds.

Remark 1 In the particular case of the Caldeira–Leggett master equation (i.e.
Eq. (2.1)–(2.2) with Dpq = Dqq = 0), our approach gives rise to the following
potential–flow quantum hydrodynamic system

∂n

∂t
= − 1

m
∇x · (n∇xS) +

h

2m
∆xn ,

∂S

∂t
= − 1

2m
|∇xS|2 − V − 2Q− ~λ log(n)− ~

2m
∆xS + Ξ .

If we introduce the Madelung wavefunction ψ =
√
n e

i
~S, its temporal evolution is

shown to be ruled by the Schrödinger–like equation

i~
∂ψ

∂t
= Hψ +Qψ + ~λ log(n)ψ +

i~2

4m

∆xn

n
ψ +

~
2

(
∇x ·

J

n

)
ψ , (2.10)

with H = − ~2

2m
∆x +V standing for the electron Hamiltonian (under the standard

action unit ~), which is analogous to that for the general case by taking α = ~.

We can also take advantage of the following nonlinear gauge transformation
[80]

G : ψ 7→ Φ = ψ exp

{
− i

2
log(n)

}
, (2.11)

which makes Eq. (2.9) formally equivalent to the (simpler) purely logarithmic
Schrödinger equation (see for instance [28, 29, 30, 58])

iα
∂Φ

∂t
= HαΦ + Λlog(n)Φ . (2.12)
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A rigorous proof of this equivalence is being developed in [59] under a more
general mapping

G : ψ 7→ Φ = |ψ| exp

{
i

α

(
Alog(n) +BS

)}
,

where A, B are arbitrary real numbers. G will be shown to be an homeomorphic
transformation between both equations in a suitable functional space, thus pre-
serving the physical behaviour. G is easily revealed to enjoy several nice properties
(indeed, it preserves the local density and satisfies the Ehrenfest theorem) which
allow us to study some aspects of Eq. (2.9) via the logarithmic Schrödinger equa-
tion (2.12). A variant of this equation was successfully derived in [66] to describe
quantum Langevin processes and has been recently applied to the modeling of
different phenomena such as magma transport or capillarity in fluids [38, 37, 67].

2.3 Steady state dynamics

We now explore the free–particle solutions (i.e. V ≡ 0) of (2.9) within the
thermal equilibrium regimes Jψ = ±Dqq∇xn (corresponding to vanishing local
diffusion current and Fick’s law) as well as Jψ = 0, making special emphasis in
the dynamics of radial solutions. In the sequel we shall consider a unit system
for which ~ = m = kB = 1. We shall also use the transformation (2.2) to reduce
eq. (2.9) to the logarithmic Schrödinger equation. In this system of units, it may
written as

i
∂Φ

∂t
= −Dqq∆xΦ +

Γ

2
log(n)Φ, (2.13)

where Γ = Λ
Dqq

. Observe that G is provides nψ = nΦ (we denote both of them by

n), and
SΦ = Sψ −Dqqlog(n) .

2.3.1 Vanishing local diffusion current

Firstly assume that the local diffusion current defined by jψ := Jψ − Dqq∇xn
identically vanishes. According to (2.2) this gives rise to JΦ = 0, which implies
∇xSΦ = 0 (notice that for m = 1, ∇xSΦ = JΦ

n
). The continuity equation so

adopts its simplest form ∂tn = 0, that leads to stationary profiles n(t, q) = n0(q).
In this setting we search for solutions

Φ(t, q) = |Φ0(q)|eiν(t) ,

which inserted into (2.12) yield ν ′ = Dqq
∆x|Φ0|
|Φ0| − Γlog(|Φ0|). Differentiating now

with respect to time we readily find ν ′′ = 0, thus ν(t) = −ωt + k with ω, k ∈ R.
Accordingly,

ω = −Dqq
∆x|Φ0|
|Φ0|

+ Γlog(|Φ0|) . (2.14)
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Figure 2.1: Solutions of Eq. (2.14) for high temperatures: T = 2, Ω = 1. On
the left increasing weak coupling: λ = 0.05 (dashed), λ = 0.15 (continuous) and
λ = 0.5 (dashed–pointed) with V = 0. And on the right with V = ω2

0x
2/2 : λ = 0.05

and w0 = 0.075 (thin-dashed), λ = 0.25 and w0 = 0.4 (thick-dashed), λ = 0.05
and w0 = 0.025 (thin-continuous) and λ = 0.25 and w0 = 0.1 (thick-continuous)
respectively. Note that very different qualitative behaviours are observed depending on
the external potencial.

Therefore, the uniparametric family of wavefunctions Φ(t, x) = |Φ0(x)|e−iωt are
steady state solutions (up to a constant phase factor) of (2.12) with constant
density. Now, by applying G−1 we are led to the associated stationary profiles of
(2.9) given by

ψ = |Φ0| exp
{
i
(
log(|Φ0|)− ωt

)}
.

One important feature to be stressed at this point is the absence of Gaussons
due to the sign of the logarithmic term (see [35] for a discussion). Indeed, when
searching for solutions Φ = |Φ0|eiν with Φ0 = eA|x|

2+B, we are led to

∆x|Φ0| = (6A+ 4A2|x|2)eA|x|
2+B ,

so that (2.14) now reads

ωDqq + 6D2
qqA− ΓDqqB = Dqq(Γ− 4ADqq)A|x|2 ,

yielding A = Γ
4Dqq

and B = 3
2

+ ω
Γ

, which leads to

Φ(t, x) = exp{γ(x)− iωt} with γ(x) =
Γ

4Dqq

|x|2 +
ω

Γ
+

3

2
.

Translated into the context of Eq. (2.9) we get

ψ = G−1(Φ) = exp
{
γ(x) + i(γ(x)− ωt)

}
.
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It proves also of interest to find nontrivial solutions of (2.12) as functions of the
symmetric polynomial s = x1 + x2 + x3. As a matter of fact, in considering the
ansatz |Φ0(x)| = y(s) we can deduce

ω = −3Dqq
y′′

y
+ Γlog(y) . (2.15)

Now, taking y(s) = exp{Csa +D} we are necessarily led to

a = 2 , C =
Γ

12Dqq

, D =
1

2
+
ω

Γ
,

that gives

Φ = exp
{
γ(s/
√

3)− iωt− 1
}
.

Hence, the wavefunction profiles

ψ(t, q) = exp
{
γ(s/
√

3)− 1 + i
(
γ(s/
√

3)− 1− ωt
)}

satisfy (2.9). To find a relation between y and y′ we just multiply (2.15) by yy′

and integrate against s to get

(y′)2 +
ω

3Dqq

y2 − Γ

6Dqq

y2
(
log(y2)− 1

)
≡ K0 ∈ R .

If K0 is set to zero, then this equation is easily shown to have two saddle points at
(±y0, 0) with y0 = exp{ω/Γ + 1/2}. Furthermore, we may remove the parameter
ω by introducing the scaling y = y0Y , which gives rise to the simpler equation

(Y ′)2 − Γ

6Dqq

Y 2log(Y 2) = 0 , (2.16)

that now has the saddle points at (±1, 0). We finally investigate the radial (rota-
tionally symmetric) solutions of (2.9). To this aim, consider |Φ0(x)| = ϕ(r) with
r = |x|. Then, ∆x|Φ0| = 2

r
ϕ′ + ϕ′′ and (2.14) does become

ω = −Dqq

(
2

r

ϕ′

ϕ
+
ϕ′′

ϕ

)
+ Γlog(ϕ) .

Using again the scaling ϕ = y0φ we find the normalized equation satisfied by the
(amplitude of the) radial solutions of (2.9) (see Figs. 2, 3 and 4)

φ′′ +
2

r
φ′ − Γ

2Dqq

(
2log(φ) + 1

)
φ = 0 . (2.17)
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2.4 Numerical evidence accounting for negative

dissipation in the log–law Schrödinger equa-

tion

The purpose of this section is to construct numerical solutions of Eq. (2.13)
in 1D ( wich is gauge-equivalent to Eq. (2.10) acording to the transformation
(2.2) ) and compare them to the exact ones, which come out after solving the
(linear) quantum Fokker–Planck master equation in the free particle and damped
harmonic oscillator cases (i.e. Eq. (2.1)–(2.2) with V = 0 and V = 1

2
ω2

0x
2,

respectively, ω0 denoting the frequency of the oscillator), namely

Wt + ξWx =
Dpp

m2
Wξξ + 2λ(ξW )ξ +

2Dpq

m
Wξx +DqqWxx , (2.18)

Wt + ξWx − ω2
0xWξ =

Dpp

m2
Wξξ + 2λ(ξW )ξ +

2Dpq

m
Wξx +DqqWxx , (2.19)

where subscripts of the Wigner function denote the variables with respect to
which differentiation is performed here and hereafter. To this aim we still choose
a unit system for which ~ = m = kB = 1 and adapt the discretization procedure
introduced in [86] to our context. We start with the presentation of the exact
solutions of Eq. (2.19).

2.4.1 Exact solutions of the quantum Fokker–Planck mas-
ter equation

Using the standard Fourier transform techniques for the calculus of the propaga-
tors Gfr

0 and Gho
0 associated with Eqs. (2.18) and (2.19), we obtain the following

expressions (see Appendix A in [71] for the details)

Gfr,ho
0 (x, ξ, t) =

1

2π
√
dfr,ho(t)

exp

{
− cfr,ho(t)
dfr,ho(t)

x2 +
bfr,ho(t)

dfr,ho(t)
mxξ − afr,ho(t)

dfr,ho(t)
m2ξ2

}
,

where

afr(t) =
Dpp

4λ2
+Dqq +

Dpq

λ
+

1− e−2λt

16λ3

(
Dpp

4λ
(e−2λt − 3)− 8λDpq

)
,

bfr(t) =
1− e−2λt

4λ2

(
4λDpq +Dpp(1− e−2λt)

)
,

cfr(t) =
Dpp

4λ
(1− e−4λt) ,

dfr(t) = dho(t) = 4a(t)c(t)− b(t)2 > 0 , ∀ t > 0 ,
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and where

aho(t) =
e−4λt

(λ+ − λ−)2

{
â(t)

(
λ+e

λ+t − λ−eλ−t
)2

+ ĉ(t)
(
eλ+t − eλ−t

)2

+ b̂(t)
(
λ+e

2λ+t + λ−e
2λ−t − 2λe2λt

)}
,

bho(t) = − e−4λt

(λ+ − λ−)2

{
ω2

0 â(t)
(
λ+e

2λ+t + λ−e
2λ−t − 2λe2λt

)
+ ĉ(t)

(
λ−e

2λ+t + λ+e
2λ−t − 2λe2λt

)
+ b̂(t)

(
2ω2

0

(
e2λ+t + e2λ−t

)
+ (λ+ + λ−)2e2λt

)}
,

cho(t) =
e−4λt

(λ+ − λ−)2

{
â(t)

(
eλ+t − eλ−t

)2
+ ĉ(t)

(
λ+e

λ−t − λ−eλ+t
)2

+ω2
0 b̂(t)

(
λ+e

2λ−t + λ−e
2λ+t − 2λe2λt

)}
.

Here, we denoted λ± = λ±
√
λ2 − ω2

0 and

â(t) =
λ2

+

2λ−

[
Dqq +

λ−
ω2

0

(
λ−
ω2

0

Dpp + 2Dpq

)]
(e2λ−t − 1)

+
λ2
−

2λ+

[
Dqq +

λ+

ω2
0

(
λ+

ω2
0

Dpp + 2Dpq

)]
(e2λ+t − 1)

− 1

λ

(
2ω2

0Dqq +Dpp + 4λDpq

)
(e2λt − 1) ,

b̂(t) =
1

λ
(2ω2

0Dqq +Dpp + 4λDpq)(e
2λt − 1)

−
(
ω2

0

λ+

Dqq +
λ+

ω2
0

Dpp + 2Dpq

)
(e2λ+t − 1)

−
(
ω2

0

λ−
Dqq +

λ−
ω2

0

Dpp + 2Dpq

)
(e2λ−t − 1) ,

ĉ(t) =
ω2

0

2

{(
ω2

0

λ+

Dqq +
λ+

ω
Dpp + 2Dpq

)
(e2λ+t − 1)

+

(
ω2

0

λ−
Dqq +

λ−
ω2

0

Dpp + 2Dpq

)
(e2λ−t − 1)

− 1

λ
(2ω2

0Dqq +Dpp + 4λDpq)(e
2λt − 1)

}
.

Then, the unique solution to the initial value problem associated with Eqs. (2.18)
and (2.19) (the initial datum being W (t = 0, x, ξ) = WI(x, ξ)) is written as

Wfr,ho =

∫
R2

Gfr,ho
0

(
t, x− Afr,hoz (t)z − Afr,hov (t)v,m ξ −Bfr,ho

z (t)z −Bfr,ho
v (t)v

)
×WI(z, v) dvdz,
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where the position and momentum time paths are now given by

Afrz ≡ 1 , Ahoz (t) =
1

λ+ − λ−
(
λ+e

−λ−t − λ−e−λ+t
)
,

Afrv (t) =
1− e−2λt

2λ
, Ahov (t) =

1

λ+ − λ−
(
e−λ−t − e−λ+t

)
,

Bfr
z ≡ 0 , Bho

z (t) =
ω2

0

λ+ − λ−
(
e−λ+t − e−λ−t

)
,

Bfr
v = e−2λt , Bho

v (t) =
1

λ+ − λ−
(
λ+e

−λ+t − λ−e−λ−t
)
.

We remark that all of the above calculations also make sense in the complex plane
whether λ2 − ω2

0 < 0.

2.4.2 The numerical algorithm

In this paragraph we shall give a short description of the numerical procedure
(adapted from that in [86]) employed to approximate the solution to the 1D initial
value problem associated with Eq. (2.9) as well as its macroscopic magnitudes,
say the energy and local and current densities, and dispersion quantities such as
the variance of the wave packet, to be compared with those obtained from the
exact Wigner–Fokker–Planck solutions established in the previous section.

Consider the interval [a, b] and the partition associated with the position step
h = (b−a)/N . Let also X = {xm}1≤m≤N+1 and Y = {yn}0≤n≤N−1 the meshes for
the subsequent evaluations of ψ and ∇xψ respectively, with xm = a + h(m − 1)
and yn = xn + h/2 = (xn+1 + xn)/2, equipped with the following inner products

〈u, v〉X =
N∑
m=0

αmu(xm)v(xm) , 〈u, v〉Y =
N−1∑
n=0

αmU(yn)Anv(yn) ,

where α = (h, . . . , h)N+1 and A = (h, . . . , h)N . Then, the derivatives (gradient
and divergence) can be written as

∇Du(yn) =
N+1∑
m=1

Dnmu(xm) , ∇D · U(xm) = − 1

αm

N∑
n=1

DnmAnU(yn) ,

thus satisfying the essential ’discrete divergence property’

〈u,∇D · V 〉X = −〈∇Du, V 〉Y .

Then, if choosing centered differences ∇u(yn) = 1
2h

(
u(xn+1) − u(xn)

)
we are led

to

D = (Dnm)1≤n≤N,1≤m≤N+1 =


− 1
h

1
h

0 0 . . . 0
0 − 1

h
1
h

0 . . . 0

0 0
. . . . . . 0 0

...
...

...
. . . . . .

...
0 0 0 0 − 1

h
1
h

 ,
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so that

∇Du = D


u(x1)
u(x2)

...
u(xN+1)

 ,

∇D · U =


1
α1
D11

1
α1
D21 . . . 1

α1
DN1

1
α2
D12

1
α2
D22 . . . 1

α2
DN2

...
...

...
...

1
αN+1

D1(N+1) . . . . . . 1
αN+1

DN(N+1)




A1U(y1)
A2U(y2)

...
ANU(yN)



=


− 1
h2 0 0 0 . . . 0
1
h2 − 1

h2 0 0 . . . 0

0
. . . . . . 0 . . . 0

...
...

. . . . . . . . .
...

0 0 0 1
h2 − 1

h2 0




hU(y1)
hU(y2)

...
hU(yN)

 ,

in such a way that

∇ · U(x1) =
1

h
U(y1) , ∇ · U(xN+1) = −1

h
U(yN) ,

∇ · U(xm) =
1

h

(
U(ym)− U(m− 1)

)
∀ 2 ≤ m ≤ N ,

∆Du(xm) =
1

h2

(
u(xm+1)− 2u(xm) + u(xm−1)

)
, ∀ 0 ≤ m ≤ N − 1 .

Furthermore, we consider

δtu
k =

1

dt
(uk+1 − uk) , µtu

k =
1

2
(uk+1 + uk) ,

where dt denotes the time step. After all this, the discretized version of Eq. (2.9)
reads

iδtψ
k +Dqqµt∆Dψ

k − µtUkµtψ
k = 0 , (2.20)

where we denoted U(ψ) = 2DqqQ + 1
2Dqq

(
V + Λlog(n)

)
+ 1

2

(
iDqq

∆xn
n

+ ∇x · Jn
)
.

Equivalently, Eq. (2.20) can be rewritten as

i

dt

(
ψk+1−ψk

)
+
Dqq

2

(
∆Dψ

k+1 +∆Dψ
k
)
− 1

4

(
Uk+1 +Uk

)(
ψk+1 +ψk

)
= 0 . (2.21)

To make this finite differences scheme more tractable form a computational view-
point, we invoke a predictor–corrector procedure ψk 7→ ψk,1 7→ ψk+1, where the
prediction ψk,1 is obtained from

i

dt

(
ψk,1 − ψk

)
+
Dqq

2

(
∆Dψ

k,1 + ∆Dψ
k
)
− 1

2
Uk
(
ψk,1 + ψk

)
= 0 . (2.22)
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Then we make

Uk,1 :=
1

2Dqq

(
V + Λlog(nk,1)

)
and solve

i

dt

(
ψk,2 − ψk

)
+
Dqq

2

(
∆Dψ

k,2 + ∆Dψ
k
)
− 1

4

(
Uk,1 + Uk

)(
ψk,2 + ψk

)
= 0 . (2.23)

to find ψk+1 := ψk,2. It is important to note that the whole scheme presented
above is mass–preserving.

To proceed with the calculations, we make use of an algorithm for an efficient
multiplication of tridiagonal matrices, in such a way that the predictor step ψk,1

is obtained as a solution to Apψ
k,1 = Bpψ

k, with

Ap =


A1d1 A1c1

A1a2 A1d2 A1c2

. . . . . . . . .

A1aN A1dN A1cN
A1aN+1 A1dN+1

 ,

Bp =


B1d1 B1c1

B1a2 B1d2 B1c2

. . . . . . . . .

B1aN B1dN B1cN
B1aN+1 B1dN+1

 ,

while the corrector step stems from the homologous equation Acψ
k,2 = Bcψ

k,1,
with

Ac =


A2d1 A2c1

A2a2 A2d2 A2c2

. . . . . . . . .

A2aN A2dN A2cN
A2aN+1 A2dN+1

 ,

Bc =


B2d1 B2c1

B2a2 B2d2 B2c2

. . . . . . . . .

B2aN B2dN B2cN
B2aN+1 B2dN+1

 .
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Here, the various coefficients are given by

A1d1 =
i

dt
− Dqq

2h2
− 1

2
Uk

1 , A1d2 =
i

dt
− 3Dqq

4h2
− 1

2
Uk

2 ,

A1dN =
i

dt
− 3Dqq

4h2
− 1

2
Uk
N , A1dN+1

i

dt
− Dqq

2h2
− 1

2
Uk
N+1 ,

A1dn =
i

dt
− Dqq

h2
− 1

2
Uk
n ∀ 3 ≤ n ≤ N − 1 ,

A1cn =
Dqq

2h2
∀ 1 ≤ n ≤ N − 1 , A1cN =

Dqq

4h2
,

A1a2 =
Dqq

4h2
, A1an =

Dqq

2h2
∀ 3 ≤ n ≤ N + 1 ,

B1d1 =
i

dt
+
Dqq

2h2
+

1

2
Uk

1 , B1d2 =
i

dt
− 3Dqq

4h2
+

1

2
Uk

2 ,

B1dN =
i

dt
+

3Dqq

4h2
+

1

2
Uk
N , B1dN+1 =

i

dt
+
Dqq

2h2
+

1

2
Uk
N+1 ,

B1dn =
i

dt
+
Dqq

h2
+

1

2
Uk
n ∀ 3 ≤ n ≤ N − 1 ,

B1cn = −Dqq

2h2
∀ 1 ≤ n ≤ N − 1 , B1cN = −Dqq

4h2
,

B1a2 = −Dqq

4h2
, B1an = −Dqq

2h2
∀ 3 ≤ n ≤ N + 1 .

The matrices A2 and B2 are identical by just replacing 1
2
Uk
n by 1

4

(
Uk,1
n + Uk

n

)
for

all 1 ≤ n ≤ N + 1.
We now observe that the discretizations of the Doebner–Goldin terms con-

forming the nonlinear potential U(ψ) are given by(
log(n)

)
k

= log(nk) ∀ 1 ≤ k ≤ N + 1 ,

and Vk =
ω2

0

2
x2
k for all 1 ≤ k ≤ N + 1 (in the harmonic oscillator case). On one

hand, ∇xψ must be evaluated over the mesh Y , ∇xψ(yk) = 1
h
(ψk+1 − ψk). On

the other hand, as ψ(yk) is not known, we can aproach it by 1
2
(ψk+1 + ψk).

The simulations of the dissipative behaviour of solutions to the free-particule
and harmonic-oscillator logarithmic Schrödinger equation (2.13) are attached at
the end of the Chapter.

2.5 Summary and conclusions

In many mathematical and physical situations the Schrödinger picture of quan-
tum mechanics is preferable to the Liouvillian representation, for instance for
computational reasons. Indeed, the Wigner function is evaluated in the position–
momentum space, which makes the subsequent numerical analysis certainly in-
tricate. Even from an analytical viewpoint, though most PDE techniques are
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expected to be inhereted from kinetic theory, the fact that the probability dis-
tribution (i.e. the Wigner function) can assume negative values constitutes a
serious drawback in making things rigorous. In any case, it seems convenient
to have an ’equivalent’ description of the dissipative Fokker–Planck mechanism,
that has proved to give satisfactory results in both the Wigner and the quantum
hydrodynamic formulations, in terms of the particle wavefunction. Actually, that
is our main purpose and goal here. Starting from the quantum Fokker–Planck
master equation, which models the interactions occurring between the electron
ensemble under examination and the phonons of a thermal bath in the framework
of open quantum systems, we derive a nonlinear dissipative Schrödinger equation
which is characterized in an essential way by the presence of a quantum correction
of logarithmic type (present in the literature since the seminal works by Kostin
[66] and Bialynicki–Birula and Mycielski [20]) as well as of various other nonlin-
earities that fit the Doebner–Goldin diffusive structure [42]. This equation does
retain the same macroscopic local density that the Wigner–Fokker–Planck equa-
tion we started with. The derivation follows the fundamental lines of Nelsonian
stochastic mechanics [81] combined with Madelung theory [75]. The stationary
regime for the new Eq. (2.9) has been widely explored from both an analytical
and computational point of view, making especial emphasis on the behaviour of
radial solutions and the absence of Gaussons.

Some final remarks on the role played by α are in order. The parameter
α = 2mDqq has the dimensions of an action but it is not an universal constant,
as it hinges on the particular system under study. Thus, though α 6= ~ in general
it plays the role of ~ in some sense (see [32] for a wider discussion), confering

quantum–mechanical meaning to our wavefunction. If we consider ψ =
√
n e

i
~S

instead of ψ (cf. (2.8)), the continuity equation and Eq. (2.7) along with the
quantization rule lead us to

i~∂tψ = Hψ+

(
2α2

~2
− 1

)
Qψ+Λlog(n)ψ+Dqq

(
i~
2

∇2
qn

n
+m∇q ·

J

n

)
ψ , (2.24)

that might be simplified into the so–called modular Schrödinger equation with
coupling parameter κ = 1− α2

~2 augmented by a logarithmic nonlinearity

iα∂tφ = Hαφ− κQφ+ Λlog(n)φ , (2.25)

by making use of the gauge transformation

g : ψ 7→ φ = ψ exp

{
− iα

2~
log(n)

}
.

For κ = 1 (see [11, 51]), this equation does not admit exponentially confined
solutions but it can be derived from a local Lagrangian. Besides, its associated
hydrodynamics does not contain quantum effects. As we have already observed,
in Eq. (2.7) the effects derived from the action of Q are quite close to be neg-
ligible. On the contrary, the choice of ψ as envelope wavefunction still retains
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this contribution in Eq. (2.25) with κ ' 1. However, taking α as the action
unit makes Q not to appear in Eq. (2.12). Since we are mainly interested in the
local densities associated with Ψ and ψ, which are identical to each other and
also to that stemming from the Wigner function, we are called to focus further
analysis on the simpler Eq. (2.9) and its gauge reduction to the purely loga-
rithmic Schrödinger equation (see [59]) . Anyway, both Eqs. (2.9) and (2.24)
retain the dissipative effects introduced by the QFPME. Numerical simulations
when quantum Fokker–Planck dynamics with negative dissipation is reproduced
are performed and compared with the exact results for the free particle and the
damped harmonic oscillator cases.
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Figure 2.2: Left to right and top to bottom: the first two pictures show the phase
portrait of (2.16) for typical high–temperature values of the coefficients (T,Ω, λ) within
Dekker’s phenomenology [39, 84]: (2, 1, 0.01) and (2, 1, 0.5), respectively. The last two
pictures correspond to the opposite sign for the logarithmic term.
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Figure 2.3: Numerical solutions of Eq. (2.17) for high temperatures: T = 2, Ω = 1.
On the left : V = 0 and λ = 0.2 (dashed), λ = 0.1 (continuous) and λ = 0.01 (dashed-
points). On the right: V = w2

0x
2/2, w0 = 0.05 and λ = 0.15 (dashed), w0 = 0.3 and

λ = 0.05 (continuous) and w0 = . Left to right: initial data (φ(0) = 0.1, φ′(0) = 0) and
(φ(0) = 0.2, φ′(0) = 0), respectively.
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Figure 2.4: Position dispersion of the numerical solutions of Eq. (2.10) for high tem-
peratures: T = 2, Ω = 1. On the left : V = 0 and λ = 0.1 (dashed), λ = 0.15
(continuous). On the right: V = w2

0x
2/2, w0 = 0.5 and λ = 0.1 (dashed) and λ = 0.15

(continuous).
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Figure 2.5: Kinetic plus potencial energy of the numerical solutions of Eq. (2.10) for
high temperatures: T = 2, Ω = 1. On the left : V = 0 and λ = 0.1 (dashed), λ = 0.15
(continuous). On the right: V = w2
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(continuous).



Chapter 3

Global H1 solvability of the 3D
logarithmic Schrödinger equation

3.1 Introduction and main result

The logarithmic Schrödinger equation

i
∂ψ

∂t
= −D∆ψ + σlog(|ψ|2)ψ , (3.1)

D > 0 being a diffusion constant (typicallyD = ~
2m

where ~ is the Planck constant
and m stands for the electron mass) and σ ∈ R \ {0} representing the strength of
the (attractive or repulsive) nonlinear interaction, was proposed by Bialynicki–
Birula and Mycielski [20] in 1976 as the only nonlinear equation of Schrödinger
type accounting for some fundamental aspects of quantum mechanics such as sep-
arability of noninteracting subsystems (i.e. a solution of the nonlinear equation
for the overall system can be constructed by taking the product of two arbitrary
solutions of the nonlinear equations for the subsystems), additivity of the total
energy for noninteracting subsystems: E[ψ1ψ2] = E[ψ1] + E[ψ2], boundedness
from below of E[ψ] for a free particle in any number of dimensions, Planck’s rela-
tion for all stationary states: E[ψ] = ~ω with ω denoting the frequency, Ehrenfest
theorem and invariance under the transformation ψ 7→ αψexp

(
− iσtlog(|α|2)

)
.

Nevertheless, they only addressed the case σ < 0. A derivation of this equation
from Nelson’s stochastic quantum mechanics [81] was also given by Lemos in [68]
(see also [79]). The single sign choice for the logarithmic term first made in [20]
and later continued in [27, 28, 29] was owing to the fact that the other sign leads
to an energy functional not bounded from below. However, the positive sign for
the logarithmic nonlinearity was physically justified by Davidson in [35] as rep-
resenting a diffusion force within the context of stochastic quantum mechanics.
Indeed, by considering slowly varying profiles in the absence of external forces
one easily observes that the kinetic contribution

∫
R3 |∇ψ|2 dx is negligible, so that

27
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the effective energy operator may be written as

E[ψ] = σ

∫
R3

|ψ|2log(|ψ|2) dx . (3.2)

This expression is not bounded from below. However, provided ψ(t, x) has its
support over a domain Ω with finite measure in configuration space, it is a simple
matter to check that (3.2) admits a minimizer.

Various meaningful physical interpretations have been given to the presence of
the logarithmic potential log(|ψ|2) in the Schrödinger equation. Indeed, it can be
understood as the effect of statistical uncertainty or as the potential energy asso-
ciated with the information encoded in the matter distribution described by the
probability density |ψ(t, x)|2. Recently, Eq. (3.1) has proved useful for the model-
ing of several nonlinear phenomena including capillary fluids [38] and geophysical
applications of magma transport [37], as well as nuclear physics [63], Brownian
dynamics or photochemistry. From a mathematical viewpoint this model has
not apparently raised much interest, although important contributions have been
done by Cazenave [27, 28], who showed the existence of stable, localized non-
spreading profiles of Gaussian shape (Gaussons), Cazenave and Haraux [29] and
by Cid and Dolbeault [30], who established some dispersion and asymptotic sta-
bility properties via rescaling techniques. Concerning well–posedness, the global–
in–time existence of solutions was studied in [27, §9.3] on a subspace of H1

0 (Ω), Ω
being an arbitrary open domain. Also Jüngel, Mariani and Rial dealt in a recent
paper [64] with the local well–posedness in H2(Ω) of the Schrödinger equation
equipped with a general family of nonlinearities, among them that of logarithmic
type. The locality of their result is owing to the strong constraint imposed by
working with the functional space

Xδ =
{
ψ ∈ H2(Ω) : essinf

x∈Ω
|ψ(x)| > δ > 0

}
in order to avoid the singularity of the logarithmic potential at the origin. In [70],
one of us stressed the relevance of a family of logarithmic Schrödinger equations
(of Doebner–Goldin type, see [42]) accounting for diffusion currents in appropri-
ately modeling quantum dissipation (σ > 0) of an electron ensemble in contact
with a heat bath, when viewed as a hydrodynamic or stochastic approach to
the so–called Wigner–Fokker–Planck equation (see also [8, 71]). In that context,
the logarithmic nonlinearity corresponds to a linear velocity–dependent frictional
force caused by the interaction of the particle ensemble with a dissipative envi-
ronment. Other nonlinear Schrödinger models of logarithmic type have proved
interesting in the literature, for instance the Schrödinger–Langevin equation [66]
for the description of nonconservative quantum systems or the logarithmic–type
and modular corrections introduced by Sabatier in [89]. In the general setting
of nonlinear Schrödinger equations, many different well–posedness results can be
found in the literature (see for example [26, 52, 73]), but none of them includes
the model under study here to the best of our knowledge.
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Our aim in this Chapter is to prove the existence of a unique global–in–time
mild solution in H1(R3) of the following initial value problem

i
∂ψ

∂t
= −D∆ψ + σlog(n)ψ , (t, x) ∈ [0,∞)× R3 , (3.3)

ψ(0, x) = ψ0(x) , ψ0 ∈ H1(R3) , |x|n0 ∈ L1(R3) , (3.4)

under the only hypothesis that the initial inertial momentum
∫

R3 |x|n0 dx is fi-
nite, independently of the fact that attractive or repulsive interactions are con-
sidered, where n(t, x) = |ψ(t, x)|2 is the charge density and where we denoted
n0(x) = n(0, x). Our main goal consists in developing a mathematical theory of
global well–posedness in the whole space consistent in H1(R3), with neither any
restriction of the functional space in order to avoid the singularity of the loga-
rithmic potential at the origin nor technical conditions which allow to guarantee
a priori the convergence of the sequence of approximate solutions. Our main
theorem is the following

Theorem 1.3 There exists a unique function

ψ ∈ L∞([0,∞);H1(R3)) ∩ C([0,∞);L2(R3))

which solves the initial value problem (3.3)–(3.4) in a mild sense.

The key points to control the H1–norm are the Carleman entropy inequality
and the logarithmic Sobolev inequality (see (3.14) and (3.21) below) along with
the charge and energy conservations. These inequalities allow us to work in the
subspace of H1 given by the functions with bounded inertial momentum (which
is a natural condition with straightforward mathematical and physical meanings)
instead of the subspace consisting of functions with finite energy (which is math-
ematically more involved because of the singularity of the potential). Actually,
we shall prove that solutions with bounded inertial momentum have finite en-
ergy. Our crucial technical goals are the estimates of Lemma 2.2 (i), which do
not hold if working only with H1(R3)–solutions. For the sake of selfconsistency,
we present in detail the regularization process of our initial value problem in H2

(thus in L∞) and later use some adequate compactness properties.
We structure this Chapter as follows: In Section 2 we build up a sequence of

ε–approximate problems via regularization of the logarithmic nonlinearity, each of
them enjoying global H2(R3) solvability. Finally, Section 3 concerns the passage
to the limit ε→ 0 via compactness arguments and the uniqueness proof.

3.2 Global well–posedness of a sequence of ap-

proximate problems

It is well–known that the Laplace operator is self–adjoint and dissipative on
H2(R3), so that iD∆ generates a unitary group of isometries U(t) := eitD∆ on
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L2(R3) which gives rise to the free Schrödinger propagator. We start by defining
the concept of solution to the initial value problem (3.3)–(3.4) we shall deal with.

Definition 2.1 (Mild solution) Given T > 0 and X = H1(R3) or H2(R3),
the complex function ψ ∈ C(0, T ;X) is called a mild solution of the logarithmic
Schrödinger initial value problem (3.3)–(3.4) if it solves the integral equation

ψ(t, x) = U(t)[ψ0]− iσ
∫ t

0

U(t− s)
[
log(n(s))ψ(s)

]
ds , (3.5)

where U(t)[ψ0] is the solution of the linear Schrödinger equation.

In order to circumvent the singularity of the potential at the origin, we start
by constructing a sequence of wave functions ψε which solves an ε–approximate
family of problems, consisting in an appropriate regularization of the nonlinear
term log(n)ψ and of the initial data ψ0.

3.2.1 A priori estimates: ε–local existence

For 1 > ε > 0, we consider a sequence of initial data ψε,0 ⊂ H2(R3) converging
to ψ0 in H1(R3) such that the total charge and the inertial momentum satisfy

‖ψε,0‖2
L2(R3) := Qε ≤ Q := ‖ψ0‖2

L2(R3) , (3.6)

and
‖|x|nε,0‖L1(R3) := Iε(0) ≤ 2 I0 := 2 ‖|x|n0‖L1(R3) , (3.7)

respectively. We then consider the following sequence of approximate initial value
problems

i
∂ψε
∂t

= −D∆ψε + σhε(nε)ψε , (t, x) ∈ [0,∞)× R3 , (3.8)

ψε(0, x) = ψε,0(x) , x ∈ R3 , (3.9)

where nε = |ψε|2 and hε(r) is a smooth function defined on R+
0 . Let us briefly

show how this function can be constructed and its main properties.

3.2.2 Approximation of the logarithmic nonlinearity

Consider a function hε ∈ C3
0([0,∞)) verifying

hε(r) :=


log(2 ε/3) , 0 ≤ r < ε/2 ,

log(r) , ε ≤ r < 1/ε ,

0 , 2/ε ≤ r ,

(3.10)

to be extended to [ε/2, ε] and [1/ε, 2/ε] in such a way that

|hε(r)| ≤ |log(r)| ∀r > 0 . (3.11)
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Then, it is continuously defined in r = 0 and obviously approaches log(r). We
now define the accumulation function

Hε(r) :=

∫ r

0

hε(s) ds ,

which shall play a crucial role in defining the potential energy operator. For
further comparison of the potential energy of the original problem,

∫
R3 log(n)n dx,

with that of the ε–approximate solutions, we shall derive some simple but useful
estimates on Hε(r). Taking into account that hε(r) ≥ log(r) if r < 1/ε and starts
decaying to zero afterwards, by simply integrating it becomes a simple matter to
observe that

rlog(r)− r ≤ Hε(r) + r3/2 , r ≥ 0 . (3.12)

Using (3.11) and integrating again one can also observe that

|Hε(r)| ≤ |rlog(r)|+ r , r ≥ 0 . (3.13)

Then, from (3.13) we have

Hε(r) ≤ |rlog(r)|+ r = −|rlog(r)|+ 2|rlog(r)|+ r , r ≥ 0 ,

from which, taking into account Carleman’s entropy inequality (see [82])

|rlog(r)| ≤ rlog(r) + |x|r + 2e−|x|/4 (3.14)

and the fact that rlog(r) ≤ r3/2 we finally find

|rlog(r)| ≤ −Hε(r) + 2 r3/2 + (1 + 2|x|)r + 4 e−|x|/4 , r ≥ 0 . (3.15)

These inequalities are far from been optimal and might be easily improved, but
are good enough for our purposes here.

3.2.3 ε–local existence

In the sequel, we are intended to apply the standard Pazy’s theory to obtain
a global mild solution of the approximate problem (3.8)–(3.9) in H2(R3) (see
Theorem 6.1.4 in [83]). To this purpose, we first show that the nonlinear term is
locally Lipschitz continuous in H2(R3), uniformly on bounded intervals of time,
i.e. that the operator

Γ : C([0, T ];H2(R3)) → C([0, T ];H2(R3))
ψ 7→ hε(|ψ|2)ψ

restricted to

BM :=
{
ψ ∈ H2(R3) : sup

0≤t≤T
‖ψ(t)‖H2(R3) ≤M

}
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is a Lispschitz continuous map for any T > 0 and M > 0. In the following, C
will represent a generic constant eventually depending on T and M , while Cε
will denote a generic constant depending on ε. Also, for the sake of simplicity
we shall omit further reference to R3 when dealing with the functional spaces
L2(R3), H1(R3) or H2(R3). We first compute

‖Γ[ψ1]− Γ[ψ2]‖L2 ≤ ‖hε(|ψ1|2)(ψ1 − ψ2)‖L2 + ‖
(
hε(|ψ1|2)− hε(|ψ2|2)

)
ψ2‖L2

≤ Cε
(
‖ψ1 − ψ2‖L2 +

∥∥|ψ1|2 − |ψ2|2
∥∥
L2 ‖ψ2‖L∞

)
≤ Cε(1 + 2M2)‖ψ1 − ψ2‖L2 , (3.16)

where we used that ψ ∈ BM implies ‖ψ(t)‖L∞ ≤ C‖ψ(t)‖H2 ≤ CM and the fact
that hε is a bounded, Lipschitz continuous function (with a Lipschitz constant
depending on ε). Concerning the gradients, we argue by adding and subtracting
several crossed terms as follows:

∇Γ[ψ1]−∇Γ[ψ2] = 2h′ε(|ψ1|2)Re
(
ψ1∇ψ1

)
ψ1 + hε(|ψ1|2)∇ψ1

− 2h′ε(|ψ2|2)Re
(
ψ2∇ψ2

)
ψ2 − hε(|ψ2|2)∇ψ2

= 2
(
h′ε(|ψ1|2)− h′ε(|ψ2|2)

)
Re
(
ψ1∇ψ1

)
ψ1

+ 2h′ε(|ψ2|2)Re
(
ψ1∇ψ1

)
(ψ1 − ψ2)

+ 2h′ε(|ψ2|2)Re
(
ψ1(∇ψ1 −∇ψ2)

)
ψ2

+ 2h′ε(|ψ2|2)Re
((
ψ1 − ψ2

)
∇ψ2)

)
ψ2

+hε(|ψ1|2)(∇ψ1 −∇ψ2)

+
(
hε(|ψ1|2)− hε(|ψ2|2)

)
∇ψ2 .

Using now that h′ε is also a bounded, Lipschitz continuous function we can esti-
mate (term by term) the above expression as follows

‖∇Γ[ψ1]−∇Γ[ψ2]‖L2 ≤ Cε‖ψ1‖2
L∞‖∇ψ1‖L4‖ψ1 − ψ2‖L4

+Cε‖ψ1‖L∞‖∇ψ1‖L4‖ψ1 − ψ2‖L4

+Cε‖ψ1‖L∞‖ψ2‖L∞‖∇ψ1 −∇ψ2‖L2

+Cε‖ψ2‖L∞‖∇ψ2‖L4‖ψ1 − ψ2‖L4

+Cε‖∇ψ1 −∇ψ2‖L2

+Cε‖∇ψ2‖L4‖ψ1 − ψ2‖L4

≤ Cε‖ψ1 − ψ2‖H2 . (3.17)

Finally, for the second order derivatives we compute

∆Γ[ψ] = 4h′′ε(|ψ|2)
(
Re
(
ψ∇ψ

))2
ψ + 2h′ε(|ψ|2)|∇ψ|2ψ

+ 2h′ε(|ψ|2)Re
(
ψ∆ψ

)
ψ + 4h′ε(|ψ|2)Re

(
ψ∇ψ

)
∇ψ + hε(|ψ|2)∆ψ .

Proceeding as for the gradients, we can analogously estimate ∆Γ[ψ1] − ∆Γ[ψ2]
after adding and subtracting various crossed terms in such a way that all pieces
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of the whole estimate involve a difference between ψ1 and ψ2 or their derivatives.
For the reader’s convenience, we shall not write up the twenty terms conforming
the whole estimate. In spite of that, we just remark that in all of them the factors
involving hε, h

′
ε and h′′ε or ψ1 and ψ2 (without derivatives) can be bounded by

their L∞ norm. On the other hand, the gradients of the wave functions can be
estimated by their L4 norms and the laplacians by their L2 norms, taking into
account in the latter case that the rest of factors in these terms belong to L∞.
After all that, we finally get

‖∆Γ[ψ1]−∆Γ[ψ2]‖L2 ≤ Cε‖ψ1 − ψ2‖H2 . (3.18)

Combining now (3.16), (3.17) and (3.18) we achieve the local Lipschitz continuity
of the operator Γ in H2(R3):

sup
0≤t≤T

‖Γ[ψ1]− Γ[ψ2]‖H2 ≤ Cε sup
0≤t≤T

‖ψ1 − ψ2‖H2 , ∀ψ1, ψ2 ∈ BM .

Then, Pazy’s theory applied to (3.8)–(3.9) gives us the existence of a unique mild
ε–approximate solution

ψε(t, x) = U(t)
[
ψε,0(x)

]
− iσ

∫ t

0

U(t− s)
[
Γ[ψε(s, x)]

]
ds , (3.19)

defined on [0, tmax), where tmax is the maximal time of existence, which equals
infinity if and only if ‖ψε(t)‖H2 does not blow–up in finite time.

3.2.4 A posteriori estimates: ε–global existence

The required a posteriori estimates and conservation laws for the problem (3.8)–
(3.10) before going to the limit ε→ 0 are collected in the following

Lemma 2.1 Let T > 0 and ψε ∈ C(0, T ;H2(R3)) be a mild solution of (3.8)–
(3.10). Then, the following properties are fulfilled:

(i) The total charge is preserved along the evolution, i.e.

Qε(t) := ‖ψε(t)‖2
L2 = Qε(0) := Qε ≤ Q .

(ii) The inertial momentum satisfies the estimate

Iε(t) := ‖|x|nε(t)‖L1 ≤ C + 2D
√
Q

∫ t

0

‖∇ψε(s)‖L2 ds ,

where C > 0 is a constant only depending upon the initial data.

(iii) ‖nεhε(nε)‖L1 ≤ ‖nεlog(nε)‖L1 ≤ ‖∇ψε(t)‖2
L2 + Iε(t) + C.
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(iv) The total energy operator associated with ψε,

Eε(t) := D

∫
R3

|∇ψε(t)|2 dx+ σ

∫
R3

Hε(nε(t)) dx ,

is well–defined and preserved along the time evolution, i.e. Eε(t) = Eε(0)
for all 0 < t < T .

(v) |σ| |nεlog(nε)| ≤ σHε(nε) + 4|σ|(|x|nε + nε + n
3/2
ε + e−|x|/4) .

Proof. The standard continuity equation linked to (3.8) reads

∂nε
∂t

+ div(jε) = 0 , (3.20)

where jε = 2DIm
(
ψε∇ψε

)
is the electric current associated with ψε. Assertion

(i) is a standard property for Schrödinger models and follows from the continuity
equation (3.20) after integrating with respect to the position variable (see also
(3.6)), meanwhile (ii) stems from multiplying (3.20) by |x|, integrating by parts
and using the estimate ‖jε‖L1 ≤ 2D

√
Q‖∇ψε(t)‖L2 and (3.7).

To prove (iii) we first recall (cf. (3.11)) that |hε(r)| ≤ |log(r)| for all r > 0,
thus the first inequality is inmediately satisfied. For the second inequality we
take essential advantage of the following logarithmic Sobolev inequality (see [45,
§8]) ∫

R3

nεlog(nε)(t) dx ≤ ‖∇ψε(t)‖2
L2 +Qεlog(Qε) . (3.21)

Finally, combining the estimates (3.14) and (3.21) along with (ii) yields (iii).
The total energy operator is well–defined thanks to (3.13), (iii) and (ii), by

simply noting that

|Eε(t)| ≤ D‖∇ψε(t)‖2
L2 + |σ| ‖Hε(nε(t))‖L1

≤ C
(
‖ψε(t)‖2

H1 + ‖nε(t)log(nε(t))‖L1 +Q
)
.

The preservation property stated in (iv) follows from a direct computation on
(3.8) by using that ψε ∈ H2, the relation H ′ε(r) = hε(r) and the continuity
equation (3.20).

Finally, we prove (v) in two steps concerning the two possible cases σ > 0 and
σ < 0. On one hand, if σ > 0 we may use (3.14) which along with (3.12) leads to

|rlog(r)| ≤ Hε(r) + (1 + |x|)r + r3/2 + 2e−|x|/4 ,

hence to (v) by identifying r = nε. On the other hand, if σ < 0 we just multiply
inequality (3.15) times |σ| = −σ to get (v) after identifying again r = nε. �

In the following lemma we collect the precise estimates that will yield the
global–in–time existence in H2 of the ε–approximate mild solutions.
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Lemma 2.2 Let ψε ∈ C(0, T ;H2(R3)) be a mild solution of (3.8)–(3.10). Then,
there exist positive constants Cε (independent of time) and C (independent of
time and ε) such that

(i) ‖∇ψε(t)‖L2 +‖nεlog(nε)(t)‖L1 +‖|x|nε(t)‖L1 ≤ CeCT , for all t ≤ T < tmax.

(ii)
∥∥∥∂ψε
∂t

(t)
∥∥∥
L2

+ ‖∆ψε(t)‖L2 ≤ Cεe
CεT , for all t ≤ T < tmax.

(iii) ‖ψε(t)‖H2 ≤ Cεe
CεT , for all t ≤ T < tmax and tmax =∞.

Proof. Using Lemma 2.1(v), (iv) and (ii), the following estimate

D

∫
R3

|∇ψε(t)|2 dx+ |σ|
∫

R3

|nεlog(nε)(t)| dx

≤ Eε(t) + 4|σ|
∫

R3

(|x|nε + nε + n3/2
ε + e−|x|/4) dx

≤ Eε(0) + 4|σ|
(
C + 2D

√
Q

∫ t

0

‖∇ψε(s)‖2
L2 ds+ ‖ψε(t)‖3

L3

)
≤ C

(
1 +

∫ t

0

‖∇ψε(s)‖2
L2 ds

)
+ 4|σ|‖ψε(t)‖3

L3

holds. Now, interpolation and Sobolev–Gagliardo–Nirenberg inequalities apply
to give

‖ψε(t)‖3
L3 ≤ ‖ψε(t)‖3/2

L2 ‖ψε(t)‖3/2

L6 ≤ CSGN Q
3/2‖∇ψε(t)‖3/2

L2 ,

thus we deduce

D‖∇ψε(t)‖2
L2 + |σ|

∫
R3

|nεlog(nε)(t)| dx

≤ C
(

1 +

∫ t

0

‖∇ψε(s)‖2
L2 ds

)
+ 4|σ|CSGN Q3/2‖∇ψε(t)‖3/2

L2 . (3.22)

Finally, applying to (3.22) the following inequality from real analysis

r3/2 ≤ 54|σ|3C3
SGNQ

9/2

D3
+

D

8|σ|CSGN Q3/2
r2 , r ≥ 0 ,

with r = ‖∇ψε(t)‖L2 , we conclude

D

2
‖∇ψε(t)‖2

L2 + |σ| ‖nεlog(nε)(t)‖L1 ≤ C
(

1 +

∫ t

0

‖∇ψε(s)‖2
L2 ds

)
.

Now, the proof of (i) ends after application of Gronwall’s lemma and Lemma
2.1(ii).
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We now prove (ii). The regularity of ψε along with (3.8) show that ∂tψε
belongs to L2 but do not provide a control of the norm. However, following [27,
§5] we can argue as follows, starting from the mild formulation:

ψε(t+ h, x)− ψε(t, x) = i

∫ h

0

U(s)[∆ψε,0(x)] ds

−iσ
∫ h

0

U(t+ h− s)
[
Γ[ψε(s, x)]

]
ds

−iσ
∫ t

0

U(t− s)
[
Γ[ψε(s+ h, x)]− Γ[ψε(s, x)]

]
ds.

Taking L2 norms, using that U(t) is an isometry in L2 in the tree integrals of the
right–hand side and the inequality (3.16) for the third term, we guess that

‖ψε(t+ h)− ψε(t)‖L2 ≤ h
(
‖∆ψε,0‖L2 + Cε

)
+ Cε

∫ t

0

‖ψε(s+ h)− ψε(s)‖L2 ds .

Now, Gronwall’s lemma applies to give us the first part of (ii). The second part
is now straightforward by noticing that

∆ψε =
1

D

(
− i∂ψε

∂t
+ σhε(nε)ψε

)
.

Finally, (iii) is an inmediate consequence of (i) and (ii) as well as of charge
conservation (cf. Lemma 2.1(i)). �

Remark 2 Notice that, in spite of the fact that a change of sign in the non-
linear term of the logarithmic Schrödinger equation (3.3) generates very different
dynamics (see [70] for a 1D analysis), the a priori and a posteriori estimates de-
rived in previous sections to finally achieve the H1(R3) existence of mild solutions
are all independent of the sign choice.

3.3 Passing to the limit ε→ 0: Global solvability

in H1(R3)

We finally find the unique global–in–time solution ψ(t, x) to (3.3)–(3.4) as the
limit of the ε–approximate solutions ψε(t, x) to (3.8)–(3.10), as ε is sent to zero,
by means of the following

Theorem 3.4 (Existence) Let ψε be the mild solution of (3.8)–(3.10). Then,
there exists a function ψ ∈ L∞([0,∞);H1(R3))∩C([0,∞);L2(R3)) such that, up
to a subsequence,

(i) ψε converges to ψ as ε→ 0 in C([0, T ];L2(R3)) for all T > 0,

(ii) ψεhε(nε) converges to ψlog(|ψ|2) as ε→ 0 in L2
loc([0,∞)× R3),
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(iii) ψ is a mild solution of the initial value problem (3.3)–(3.4).

Proof. We start by showing that, for 1 ≤ p < 6, the following inequality

‖φhε(|φ|2)‖Lp(K) ≤ ‖φ log(|φ|2)‖Lp(K) ≤ C(1 + ‖φ‖H1(K)) (3.23)

holds for any function φ ∈ H1(K) and any bounded domain K ⊂ R3. To do that
we recall that, according to (3.11), we only need to prove the second inequality.

First we split φ log(|φ|2) into two parts as φ log(|φ|2) = φ log(|φ|2)
(
χ{|φ|<1} +

χ{|φ|≥1}

)
in such a way that after optimizing we find

|φlog(|φ|2)| ≤ 2

e
+ C|φ|1+β ,

where β is any positive number. Given that φ ∈ Lq(K) for all 1 ≤ q ≤ 6, it is a
simple matter to conclude (3.23) via Sobolev imbeddings.

We are now in position to prove (i). The charge conservation established in
Lemma 2.1(i) (cf. (3.6)) guarantees the (a priori, weak∗) convergence of a subse-
quence of ψε to a function ψ in L∞([0, T ];L2(R3)) for all T > 0. In order to ob-
serve that this convergence is actually strong, and thus that ψ ∈ C([0, T ];L2(R3)),
we use Aubin’s Lemma (see [12] or [82, Lemma 11]). We first note that the mo-
mentum bounds established in Lemma 2.2(i) guarantee that for all R > 0, we
have ∫

|x|>R
|ψε(t, x)|2dx ≤

∫
|x|>R

|x|
R
|ψε(t, x)|2dx ≤ 1

R
CeCT , ∀t ∈ [0, T ].

Then, the arbitrariness of R reduces the problem to prove the convergence only in
C([0, T ];L2(K)), K being the ball of radius R. Finally, using the kinetic energy
bound showed in Lemma 2.2(i) together with the inequality (3.23) for ψε and
the approximated equation (3.8), we deduce that the sequence ψε is bounded in
L∞([0, T ];H1(K)) and its time derivative ∂ψε

∂t
is bounded in L∞([0, T ];H−1(K)).

Therefore, a straightforward application of Aubin’s Lemma concludes the proof.
Moreover, the boundedness of ∇ψε directly implies that ψ ∈ L∞([0,∞);H1(R3)).

Let us now prove (ii). We first note that, by according to (3.23), we deduce
that

‖ψεhε(|ψε|2)‖L2(K) ≤ C(1 + ‖ψε‖H1) , ‖ψlog(|ψ|2)‖L2(K) ≤ C(1 + ‖ψ‖H1) ,

for any arbitrary bounded domain K ⊂ R3, so they are both in L2
loc([0,∞)×R3)

as stated in (ii). To prove the convergence we observe that the sequence of func-
tions z 7→ zhε(|z|2) is uniformly equicontinuous on compact sets (although not
uniformly Lipschitz continuous), thus we can deduce via Ascoli–Arzela’s theorem
that it converges uniformly on compact sets to zlog(|z|2). Combining this con-
vergence property with (i), we easily deduce that ψεhε(nε) tends to ψlog(|ψ|2)
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a.e. (t, x) ∈ [0, T ]×K. Using now Egorov’s theorem we find that, for any k ∈ N,
there exists a subset A ⊂ [0, T ]×K with measure |A| < 1/k such that ψεhε(nε)
converges to ψlog(|ψ|2) uniformly on (t, x) ∈

(
[0, T ] ×K

)
\ A. Therefore, there

exists ε0 > 0 such that for any ε < ε0 we have

‖ψεhε(|ψε|2)− ψlog(|ψ|2)‖L2(([0,T ]×K)\A) ≤
√
|K|T
k

.

On the other hand, from (3.23) and Hölder’s inequality we can compute

‖ψεhε(|ψε|2)− ψlog(|ψ|2)‖L2(A) ≤ 2C|A|1/4 ≤ 2C

k1/4

and conclude that, for any ε < ε0, we have

‖ψεhε(|ψε|2)− ψlog(|ψ|2)‖L2([0,T ]×K) ≤
√
|K|T
k

+
2C

k1/4
.

Now we are done with (ii).
Finally, (i) and (ii) allow us to go to the limit ε→ 0 in the mild formulation

(3.19) and show that the limiting wave function ψ is a mild solution of (3.3),
which completes the proof. �

Theorem 3.5 (Uniqueness) Let ψ1, ψ2 ∈ C([0,∞);L2(R3)) be two mild solu-
tions of the initial value problem (3.3)–(3.4). Then ψ1 = ψ2 a.e., thus the whole
sequence of ε–approximate solutions converges to it.

Proof. We just make a sketch of the proof, since the details can be found in [27].
Take u, v ∈ C so that we may assume 0 < |v| < |u| without loss of generality.
Then, using the inequality∣∣log(|v|)− log(|u|)

∣∣ ≤ |v − u|
|v|

along with the identity

|Im(vu− uv)| = |v(u− v) + v(v − u)| ≤ 2|v||v − u|,

the following result is achieved∣∣∣Im((vlog(|v|2)− ulog(|u|2)
)
(v − u)

)∣∣∣ ≤ 4|v − u|2. (3.24)

Computing now the difference between (3.3) and its conjugate counterpart for ψ1

and ψ2 and taking the L2 product with (ψ1 − ψ2), it follows that

d

dt

∫
R3

|ψ2 − ψ1|2 dx = 2σIm

(∫
R3

(
ψ2log(|ψ2|2)− ψ1log(|ψ1|2)

)(
ψ2 − ψ1

)
dx

)
.

Then, (3.24) with u = ψ1 and v = ψ2 implies

‖ψ2(t)− ψ1(t)‖2
L2 ≤ 8|σ|

∫ t

0

‖ψ2(s)− ψ1(s)‖2
L2 ds .

Uniqueness follows after a straightforward application of Gronwall’s lemma. This
completes the proof. �



Chapter 4

On the analysis of travelling
waves to a nonlinear flux limited
reaction–diffusion equation

4.1 Introduction and main results

The aim of this Chapter is to analyze the existence of travelling waves associated
to a heterogeneous nonlinear diffusion partial differential equation coupled to a
reaction term of Fisher–Kolmogorov–Petrovskii–Piskunov type. The nonlinear
diffusion term has been motivated in different contexts and from different points
of view (see the pioneering work [88]). Also, it has been deduced in the Monge-
Kantorovich’s optimal mass transport framework where it is usually called the
relativistic heat equation [19] or in astrophysics [77]. The existence and unique-
ness of entropy solutions for the nonlinear parabolic flux diffusion was proved
in [4], while in [5] the finite speed of propagation was analyzed. The resulting
reaction–flux–limited–diffusion system exhibits new properties compared to the
classical reaction coupled to the linear diffusion equation, such as the existence of
singular travelling waves which opens new perspectives of application to biology
or traffic flow frameworks.

Reaction–diffusion systems consist in mathematical models describing the dy-
namics of the concentration of one or more populations distributed in space under
the influence of two processes: local reactions in which the populations interact
with each other, and diffusion which provokes the populations to spread out in
space. In the context of reaction-diffusion the notion of population can be under-
stood in a wide sense such as particles or concentrations in chemical processes, but
also examples can be found in biology (cells, morphogens), geology, combustion,
physics and ecology or more recently in computer science or complex systems,
see for instance [31, 47, 61, 74, 76, 78, 90, 92, 94]. This fact has motivated the
attention by both formal and rigorous work on a variety of applications starting

39
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from linear diffusion of type

∂u

∂t
= ν ∆u+ f(u), u(t = 0, x) = u0(x), (4.1)

where ν is the so called diffusion coefficient and f represents the reaction term.
Cooperative behavior often stems from diffusive coupling of nonlinear elements
and reaction-diffusion equations provide the prototypical description of such sys-
tems.

In many applications and in particular in complex systems reaction-diffusion
equations often provide a natural mathematical description of these dynami-
cal networks since the elements of the networks are coupled through diffusion
in many instances. The correct description of reaction-diffusion phenomena re-
quires a detailed knowledge of the interactions between individuals and groups
of individuals. This line of research motivates the study of nonlinear cooperative
behavior in complex systems [13], which is a closed subject interconnected with
reaction–diffusion systems. There is a wide literature raising the universality of
application of reaction–diffusion systems. Nevertheless, there are limitations to
the reaction-diffusion description. In biochemical networks constituted by small
cellular geometries a macroscopic reaction-diffusion model may be inappropriate.
In some circumstances the coupling among elements is not diffusive or the diffu-
sive processes are nonlinear, which will strongly influence the dynamical behavior
of the network. In [91] it is proposed a nonlinear degenerate density-dependent
diffusion motivated by the fact that there are biological (mating, attracting and
repelling substances, overcrowding, spatial distribution of food, social behavior,
etc.) and physical (light, temperature, humidity, etc.) factors which imply that
the probability is no longer a space-symmetric function, i.e., it looses the ho-
mogeneity, and so linear diffusion is not a good approach. This heterogeneity
property of the diffusion operator comes from the heterogeneous character of the
equation and/or from the underlying domain, we refer also to [16, 17, 14, 15]. The
same problems with the universality in the applicability occurs when we have not
a mean-field interaction between particles or when the particles are dilute or large
with respect to the vessel or the media where they are moving [6, 90]. In these
cases the linear diffusion approximation might not be the most appropriate. The
above processes probably require to incorporate one or various phenomena not
included in linear diffusion such as the finite speed of propagation of matter or the
existence of nonsmooth densities (singular travelling waves), for example. The
mathematical argument justifying that even if the solution has not compact sup-
port the size (mass or concentration, depending on the case dealt with) is very
small out of some ball with large radius could be unrealistic because in several
applications in biology (morphogenesis) [1, 15, 94, 96], social sciences [13] or traf-
fic flow [18] this kind of situations (solutions with large queues) could activate
other processes which is the case, for example, of the biochemical processes in-
side the cells whose activation depends on the time of exposure as well as on the
received concentration of morphogen, see [1]. Then, exploring or modeling new
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nonlinear transport/diffusion phenomena is an interesting subject not only from
the viewpoint of applications but also from a mathematical perspective.

Reaction–diffusion systems have also attracted the attention as prototype
models for pattern formation which is, in particular, connected with the study
of travelling waves, i.e. solutions of the type u(t, x) = u(x − σt) playing an im-
portant role in concrete applications. The problem when considering travelling
waves for (4.1) is that the evolution of the support could have an infinite speed
of propagation, which would contradict the fact that the speed should not exceed
the propagation rate of the real transport process.

Motivated by the above considerations the objective of this Chapter consists
in analyzing the existence of travelling waves for the one–dimensional, nonlinear,
flux limited reaction–diffusion equation

∂u

∂t
= ν∂x

 u∂xu√
|u|2 + ν2

c2
|∂xu|2

+ f(u), u(t = 0, x) = u0(x), (4.2)

where ν is the viscosity and c is a constant velocity related to the inner properties
of the particles. Why this election for the nonlinear diffusion term? First of all,
the solutions to this system have finite speed of propagation as opposite to the
linear heat equation, i.e. for an initial data with compact support the velocity
of growth of the support of the solution is bounded by c (see [2]). Furthermore,
this is an extension of the heat equation in the following sense: rewrite the heat
equation as

∂u

∂t
= ν

∂

∂x

[
u
∂

∂x
lnu

]
= ν

∂

∂x
[u v], (4.3)

where v is a microscopic velocity. In this form the heat equation can be seen as
a transport kinetic equation. The velocity v is determined by the entropy of the
system, S(u) = ulnu, and by the concentration u, via the following formula

v =
∂

∂x

(
S(u)

u

)
. (4.4)

Note that S(u)
u

= lnu is known as the chemical potential. We propose to modify
the form of the flux in (4.3) by considering a new microscopic velocity averaged
with respect to the line element associated with the motion of the particle, so
that the new velocity is given by ∂

∂v

√
1 + |v|2 = v√

1+|v|2
with

v =
∂x(S(u)/u)√

1 + [∂x(S(u)/u)]2
, (4.5)

arriving at the flux limited equation (4.2). This implies that the chemical poten-
tial is now finite, which is not the case for the linear heat equation. Thus, the
velocity for which the concentration or density u is transported depends on the
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entropy of the system (determining the disorder) as well as on its density under
an appropriate measure. This is the situation in which one can think in a traffic
flow or in a biological context, for example.

For the reaction term, we will consider one canonical model of Fisher [48] or
KPP [65] (for Kolmogorov, Petrovsky and Piskunov) type to analyze travelling
waves, called FKPP from now on. For the linear diffusion case, the properties
associated with this system are well understood in the homogeneous framework,
see for example [9, 10, 48, 65]. The above equation (4.2) with f = 0 is known as
the relativistic heat equation and is one among the various flux limited diffusion
equations used in the theory of radiation hydrodynamics [77].

The term f(u) is written as uK(u), where K is known in biology as the
growth rate of the population. The main hypotheses on the FKPP reaction term
K ∈ C1([0, 1]) are typically written as

(i) K(1) = 0 , (ii) K ′(s) < 0 , s ∈ (0, 1] . (4.6)

These hypotheses on K(u) have some consequences on f(u) such us f(0) = f(1) =
0, f ′(1) < 0, f ′(0) > 0, f > 0 in (0, 1). Hypothesis (i) in (4.6) is a normalization
property of the carrying capacity and (ii) represents a saturation of the media
when the concentration is increasing. Typical examples of such nonlinearities are
K(s) = k(1 − s) or K(s) = k(1 − s2), where k = K(0) = f ′(0) is a constant
related to the growth rate of the (biological) particles, usually called intrinsic
growth rate. In [48, 65] it was proved that, under the above assumptions, there is
a threshold value σ∗ = 2

√
νk for the speed σ associated with the linear diffusion

system (4.1). Namely, no fronts exist for σ < σ∗, and there is a unique front (up
to space or time shifts) for all σ ≥ σ∗.

The study of existence and uniqueness of solutions to the flux limited reaction-
diffusion equation (4.2) has been done in [2], see also the references therein for
a complete study of the “relativistic” heat equation. The natural concept of
solution for this problem implies the use of Kruzhkoz’s entropy solutions. In fact,
in [2] it is proved that for any initial datum 0 ≤ u0 ∈ L1(RN) ∩ L∞(RN), there
exists a unique entropy solution u of (4.2) in the N -dimensional case [0, T )×RN ,
for every T > 0, such that u(t = 0) = u0. In addition, solutions live in a subspace
of Bounded Variation functions. Moreover, if u(t), ū(t) are the entropy solutions
corresponding to initial data u0, ū0 ∈ (L∞(RN) ∩ L1(RN))+, respectively, then

‖u(t)− ū(t)‖L1(RN ) ≤ et‖f‖Lip‖u0 − ū0‖L1(RN ) , ∀t ≥ 0 ,

where ‖f‖Lip denotes the Lipschitz constant for f in [0, 1]. The the existence of
entropy solutions to initial data only in in L∞ was extended in Proposition 3.14
of [2].

One of the most important differences between the linear (4.1) and the nonlin-
ear (4.2) diffusion models emerges, besides the existence theory reported above,
in the study of travelling waves. A travelling wave is a solution having a constant
profile which moves with constant speed, i.e. a solution of the equation of the
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form u(t, x) = u(ξ) with ξ = x− σt for some constant σ. The function u is usu-
ally called the wave profile and the constant σ is the wave speed. Let us give a
simple example that may illustrate the results obtained in this Chapter for (4.2)
by means of a simplified reaction-flux–limited-diffusion equation,

∂tu = ∂x

(
u
∂xu

|∂xu|

)
+ u(1− u) , (4.7)

which allows us to compute explicit travelling waves. Given (4.7), the equation
satisfied by a decreasing wave front profile u(ξ) = u(x− σt) is

−σu̇ = −u̇+ u(1− u) .

Then, it can be easily proved the existence of a unique, global classical solution
given by

uσ(ξ) =
1

e−
1

σ−1
ξ + 1

, ξ ∈ R ,

only if σ > 1 up to space or time shifts. Furthermore, the step function u(ξ) =
1 if ξ < 0 and null otherwise, gives the travelling wave profile of an entropy solu-
tion to (4.7) with σ = 1. Let us observe how regular and discontinuous solutions
coexist in this simplified model. To complete the above results see [2].

As in the previous case, we find singular profiles for the travelling waves of
(4.2) which to a certain extent constitute the equivalent notion of shock waves in
hyperbolic models for traffic flow. On the other hand, there is a wide variety and
significant differences for the possible choices of the velocity σ for the travelling
wave solutions to the nonlinear reaction–diffusion equations (4.2) with respect to
those associated with (4.1).

In this Chapter, we look for a particular kind of travelling waves called wave
front, determined by a decreasing wave profile u ∈ (0, 1) such that limξ→−∞ u(ξ) =
1, limξ→∞ u(ξ) = 0, verifying (4.2) in a sense specified later. By the degenerate
character of the flux limiter if u ≡ 0, we split the analysis of the wave front in two
steps. For the positive part u(ξ) > 0 ∀ξ ∈ (−∞, ξ0), we impose that u ∈ C2 solves
the equation in a classical sense. Thus, if ξ0 =∞ we will have a classical solution
verifying the equation everywhere in the domain of definition. If ξ0 <∞, we will
see that the null extension of the positive part can be an entropy solution under
certain conditions, these solutions being discontinuous. The entropy criterium is
necessary in this problem since it selects travelling waves of discontinuous type.

Our main result is the following.

Theorem 1.6 In terms of a value σ∗ ≤ c, depending on ν, c, and k, there exists
a wave front which is

(i) a classical solution to (4.2), with wave speed σ > σ∗ or σ = σ∗ < c;

(ii) a discontinuous entropy solution to (4.2), with wave speed σ = σ∗ = c.
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Remark 3 The existence of travelling wave solutions in the case σ < σ∗ is an
open problem. Also, the existence of other kind of travelling waves such as those
with pulses or soliton-type shape could be explored, see for example [87] or [44] in
another context.

In Section 2 we will analyze the necessary and sufficient condition for the
parameters ν, c, and k in order to determine σ∗. The analytical theory dealing
with the existence of a solution-set-structure follows from the associated asymp-
totic initial value problem satisfied by the travelling wave profile. This problem
is framed in the analysis of a planar dynamical system where the wave speed σ
is a parameter.

Another fundamental property of equation (4.1) concerns the asymptotic
speed of spreading and was established in [10]: If u0 ≥ 0 is a continuous function
in RN with compact support and u0 6≡ 0, then the solution u(t, x) with initial
data u(t = 0, x) = u0(x) spreads out with speed σ∗ in all directions as t→ +∞,
i.e. max|x|≤σt|u(t, x) − 1| → 0 for each σ ∈ [0, σ∗), and max|x|≥σtu(t, x) → 0 for
each σ > σ∗. A similar result may fit our context by the control of the bound
of the entropy solution in the set {x > σ t} by means of an exponential function
with negative exponent (see Proposition 3.4 below).

The Chapter is organized as follows. In Section 2 we pose the asymptotic
initial value problem associated with travelling wave solutions and deal with the
existence and uniqueness of regular travelling waves. Finally, in Section 3 we
analyze the singular wave profiles that can be identified as entropy solutions.

4.2 An equivalent problem for classical travel-

ling waves

As we mentioned before, the aim of this section is to analyze the classical wave
front solutions to (4.2).

4.2.1 Travelling wave equations

The existence of a regular travelling wave u(x − σt) of the equation (4.2) leads
to the problem of finding a solution of the following equation

ν

 uu′√
|u|2 + ν2

c2
|u′|2

′ + σu′ + f(u) = 0 , (4.8)

which is defined on (−∞, ξ0) and satisfies

lim
ξ→−∞

u(ξ) = 1 (4.9)

and
u′(ξ) < 0 for any ξ ∈ (−∞, ξ0) . (4.10)
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The constant σ is a further unknown of the problem. Let us analyze this asymp-
totic initial value problem where f(u) = uK(u) and K fulfills (4.6). The following
result contributes to deduce the asymptotic value of the derivative of u.

Lemma 2.3 Let u : (−∞, ξ0)→ (0, 1) be a solution of (4.8) that satisfies (4.9)-
(4.10). Then,

lim
ξ→−∞

u′(ξ) = 0 . (4.11)

Proof. Take ξn → −∞ with ξn < ξ0. For any fixed n ∈ N we use the mean
value theorem in the interval [ξn − 1, ξn] to obtain the existence of a sequence
sn ∈ [ξn − 1, ξn] satisfying

u′(sn) = u(ξn)− u(ξn − 1)→ 0.

Then, we integrate (4.8) over [sn, ξn] and analyze the terms of the following
equality

∫ ξn

sn

ν

 u(δ)u′(δ)√
|u(δ)|2 + ν2

c2
|u′(δ)|2

′ dδ +

∫ ξn

sn

σu′(δ)dδ +

∫ ξn

sn

f(u(δ))dδ = 0 .

The third term ∫ ξn

sn

f(u(δ))dδ → 0 ,

since the interval is bounded and the integrand converges uniformly to zero. The
second term, using Barrow’s rule, is

σ(u(ξn)− u(sn))

that tends to zero because of (4.9). The first term, again from Barrow’s rule,
takes the form

ν
u(ξn)u′(ξn)√

|u(ξn)|2 + ν2

c2
|u′(ξn)|2

− ν u(sn)u′(sn)√
|u(sn)|2 + ν2

c2
|u′(sn)|2

,

which tends to zero since u′(sn)→ 0 and

ν
u(ξn)u′(ξn)√

|u(ξn)|2 + ν2

c2
|u′(ξn)|2

→ 0.

Using (4.10) one gets

u(ξn)u′(ξn)√
|u(ξn)|2 + ν2

c2
|u′(ξn)|2

=
−1√

1
|u′(ξn)|2 + ν2

c2
1

|u(ξn)|2

,
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therefore
1

|u′(ξn)|2
+
ν2

c2

1

|u(ξn)|2
→∞ .

As the second term tends to ν2

c2
, then 1

|u′(ξn)|2 → ∞ and finally u′(ξn) → 0. We

have then shown that for any ξn → −∞, u′(ξn)→ 0. This proves (4.11). �

In a classical framework, looking for travelling wave solutions is equivalent
to finding heteroclinic trajectories of a planar system of ODE’s which arises
from transforming the original problem into travelling wave coordinates (see
[48, 65, 91]). The same ideas in the search of travelling waves of (4.2) leads
to a system which is not uniquely derived from heteroclinic trajectories. Hence,
a more detailed analysis of the phase diagram for the planar system of ODE’s is
required. Define

r(ξ) = −ν
c

u′(ξ)√
|u(ξ)|2 + ν2

c2
|u′(ξ)|2

, (4.12)

where u is any positive solution of (4.8)–(4.9)–(4.10). Then (u, r) satisfies the
first order differential system

u′ = − c
ν

|u| r√
1− r2

,

r′ =
c

ν

r(r − σ
c
)

√
1− r2

+
1

c
K(u) .

 (4.13)

By using that u′ < 0, (4.12) yields r ∈ (0, 1). Also, Lemma 2.3 implies limξ→−∞ r(ξ) =
0. As a consequence, the problem of finding a maximal solution of (4.8)–(4.10) is
equivalent to look for a solution (u, r) : (−∞, ξ0)→ (0, 1)2 of (4.13), maximal in
(0, 1)2, that satisfies

lim
ξ→−∞

u(ξ) = 1, lim
ξ→−∞

r(ξ) = 0. (4.14)

We now analyze the equilibrium points of the system (4.13) which are (1, 0)
and (0, r∗), where r∗ ∈ (0, 1) is a possible root of

c

ν

r(r − σ
c
)

√
1− r2

+
1

c
k = 0 , (4.15)

with k = K(0) = f ′(0). The existence of equilibrium points (u, r) = (0, r∗) will
determine the behavior of the solution to (4.13)-(4.14) and consequently of the
solution to (4.8)–(4.10). More precisely, we obtain the following result.

Proposition 2.1 There always exists a solution u of (4.8) that satisfies (4.9)
and (4.10). This solution is unique up to a time translation and verifies:
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(i) If there exist no roots r∗ ∈ (0, 1) of (4.15), then the existence interval for u
can be extended to (−∞, ξ0), with ξ0 <∞, and

lim
ξ→ξ0

u(ξ) > 0, lim
ξ→ξ0

u′(ξ) = −∞. (4.16)

(ii) If there exist roots of (4.15), then ξ0 =∞ and u satisfies

lim
ξ→∞

u(ξ) = 0 . (4.17)

As a consequence, this solution is maximal in R×(−1, 1) and is located in (0, 1)2.

To prove Proposition 2.1 we will need two preliminary results describing some
properties of r and u.

Lemma 2.4 Let −∞ < ξ0 ≤ ∞ and (u, r) : (−∞, ξ0) → (0, 1)2 be a solution
of (4.13) that satisfies (4.14). Then, r′(ξ) > 0. The same holds true for any
extension of (u, r). In particular, the maximal solution (uM , rM) associated with
(u, r) remains in (0, 1)2 and verifies r′M(ξ) > 0.

We will give the proof of this result at the end of this Section by analyzing in
detail the zeros of r′ in (4.13) and describing the phase diagram associated with
(4.13)-(4.14).

The following result deals with the strict positivity of u.

Lemma 2.5 Let (u, r) : (ξ1, ξ0) → (0, 1)2 be a solution of (4.13), where −∞ ≤
ξ1 < ξ0 ≤ ∞ are such that

lim
ξ→ξ0

r(ξ) = 1 , r′(ξ) > 0 .

Then
lim
ξ→ξ0

u(ξ) > 0 .

Proof. Denote (ū, r̄) this particular solution. A contradiction argument allows
to define ũ(r) := ū(r̄−1(r)) in an interval (1− ε, 1) that satisfies

z′ =
−zr

r(r − σ
c
) + ν

c2
K(ũ(r))

√
1− r2

, z(1) = 0 .

If σ
c
6= 1, this equation is locally Lischitsz-continuous in z and the point (1, 0) is

regular. Then, by using the uniqueness of the initial value problem z must vanish
identically, which is a contradiction. If σ

c
= 1, then the differential equation is

singular. However, ũ is a solution of the differential equation

z′ = −z h(r)√
1− r
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With
h(r) =

r

−r
√

1− r + ν
c2
K(ũ(r))

√
1 + r

.

The term h(r)√
1−r is singular but improperly integrable and the associated differential

equation has uniqueness again by arguing via the separated variables theory. �

We are now in a position to prove Proposition 2.1.

4.2.2 Proof of Proposition 2.1

A local analysis of (4.13) gives the following Jacobian matrix in (u, r)

J [u, r] =


− c
ν

r√
1− r2

− c
ν

u

(1− r2)3/2

K ′(u)

c
− c
ν

σ
c
− 2r + r3

(1− r2)3/2

 .

Clearly,

J [1, 0] =


0 − c

ν

K ′(1)

c
−σ
ν


has two eigenvalues λ− < 0 < λ+ (because K ′(1) < 0) which are given by

λ± = − σ
2ν
±
√(

σ
2ν

)2 − K′(1)
ν

. The local unstable manifold theorem (see [54, 62])

guarantees the existence of a curve with initial condition γ for which the corre-
sponding solution satisfies (4.14). As the slope of the eigenvector corresponding
to λ+ is negative (see Remark 4 for an explicit calculus of the eigenvector) only
one branch of γ − {(1, 0)} is locally contained in (0, 1)2. Let us take γ maximal
in (0, 1)2. Then, there exist solutions of (4.13) satisfying (4.14). Uniqueness up
to a time translation comes up from the local uniqueness of the branch γ. Now,
Lemmata 2.4 and 2.5 can be applied.

From the fact that u′ has opposite sign to r we can deduce that u satisfies (4.9)
and (4.10). According to the existence of roots of equation (4.15) we will prove
the statements, (1) or (2), of Proposition 2.1. Let us choose (u, r) : (−∞, ξ0)→
(0, 1)2 to be a particular solution of (4.13) satisfying (4.14). Then, Lemma 2.4
implies that the following limit exists

lim
ξ→ξ0

r(ξ) = rL .

Let us prove that rL is a lower bound for any possible root r∗ of (4.15), i.e.
rL ≤ r∗. In fact, if r(ξ̄) = r∗ for ξ̄ ∈ (−∞, ξ0), then (4.6) leads to

r′(ξ̄) =
c

ν

r(ξ̄)(r(ξ̄)− σ
c
)√

1− r2(ξ̄)
+

1

c
K(u(ξ̄)) <

c

ν

r(ξ̄)(r(ξ̄)− σ
c
)√

1− r2(ξ̄)
+

1

c
k = 0 ,



4. On the analysis of travelling waves to a nonlinear flux limited reaction–diffusion equation 49

which contradicts Lemma 2.4. We focus now on the case in which there exists
r∗ a root of (4.15). Assume u < 1 and r(ξ) < r∗ for any ξ ∈ (−∞, ξ̄). Thus,
0 < r(ξ) < rL < 1 and the pair (u(ξ), r(ξ)) lives in a compact set for ξ near ξ0,
away from r = 0, r = 1, and maximal also in R × (−1, 1). Global continuation
theorems imply ξ0 =∞.

To prove (4.17) we observe that

lim
ξ→∞

u′(ξ)

u(ξ)
= − c

ν
lim
ξ→∞

r(ξ)√
1− (r(ξ))2

= − c
ν

rL√
1− r2

L

< 0 . (4.18)

Hence, we can use a Gronwall-type estimate in an interval (ξ∗,+∞) with ξ∗ large
enough so that u′(ξ) ≤ −αu(ξ) holds, where α is a positive constant and ξ > ξ∗.

In the case that (4.15) has no roots, let us first prove that rL = 1. Arguing
by contradiction (by assuming rL < 1), we can use a similar argument as in the
previous case by using rL instead of r∗. In this way, we will obtain that ξ0 = +∞,
and also (4.17). On the other hand, since r has a limit as ξ goes to +∞, then
r′(ξn)→ 0 up to a subsequence. Using this fact in the second equation of (4.13)
we obtain that rL is a root of (4.15), which contradicts our assumption. Hence,
rL = 1 holds and the first equation of (4.13) leads to

lim
ξ→ξ0

u′(ξ)

u(ξ)
= −∞ . (4.19)

Now, we use Lemma 2.5 to show the first part of (4.16). There only remains to
prove that ξ0 <∞. This statement can be achieved by a contradiction argument
again. Actually, if ξ0 = +∞ we get a sequence ξn for which u′(ξn) → 0, which
contradicts (4.19). �

Remark 4 It is possible to follow very precisely the track of the solution of (4.13)
starting from the point (u, r) = (0, 1). Denote r = r̃(u) the smallest root of

1

K(u)

c2

ν

(σ
c
− r̃(u)

)
=

√
1− (r̃(u))2

r̃(u)
, u ∈ (0, 1) .

The eigenfunction associated with the eigenvalue λ+ = − σ
2ν

+
√(

σ
2ν

)2 − K′(1)
ν

,

defined at the beginning of the proof of Proposition 2.1, determines the local un-

stable manifold and is defined by

(
c
σ+
√
−4K′(1)ν+σ2

2K′(1)ν
, 1

)
. On the other hand, it is

easy to check that the following identity

lim
u→1

r̃(u) =
ν

c σ
K ′(1)

holds. Then,
(
1, ν

c σ
K ′(1)

)
is the tangent vector to the solution curve r = r̃(u).

Comparing the slopes of the above vectors leads to the following unrestricted in-
equality

2K ′(1)ν

c(σ +
√
−4K ′(1)ν + σ2)

>
ν

c σ
K ′(1) .

Therefore, the curve r = r̃(u) starting at u = 1 verifies that r′|u=1 < 0.
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4.2.3 Existence of roots for (4.15)

To conclude the section we describe the existence of roots in (4.15) depending on
σ, c, ν and k = K(0). This problem is equivalent to find zeros of the equation

c2

νk

(σ
c
− r
)

= g(r) , r ∈ (0, 1) , (4.20)

where g is defined as

g(r) =

√
1− r2

r
,

which is a decreasing function with a pole at r = 0. The left–hand side is a
decreasing linear function that touches the r–axis at σ

c
with slope − 1

k
c2

ν
. So,

when
σ

c
> 1 (4.21)

there exists at least one root of (4.20), see Figure 4.1 (first two cases). Define r̃
as the smallest root of (4.20) in (0, 1).

Let us now focus our attention on the case

σ

c
≤ 1. (4.22)

Now, the existence of roots of (4.20) depends on σ
c

as well as on the slope − c2

ν
1
k

of the straight line in the left–hand side of (4.20). Let us prove that for a range
of values m = c2

ν
1
k
, there exists σ∗ = σ∗(m) such that for every σ

c
∈ (σ

∗

c
, 1) there

exists a root of (4.20). Note that g′(r) has a unique maximum in (0, 1), around it

the function is inceasing and then decreasing, verifying g′(r) ≤ −3
√

3
2

= g′(
√

2/3)

and limr→0 g
′(r) = limr→1 g

′(r) = −∞. Then, if −m ≤ −3
√

3
2

, we can claim that
there exist roots in (0, 1) of the equation

g′(r) = −m. (4.23)

In fact, when the inequality is strict, i.e. −m < −3
√

3
2

, there are two roots in
(0, 1) while there is only one if the equality is fulfilled, see Figure 4.1. Let us
denote r̃ the smallest real root of (4.20), r̃ ∈ (0,

√
2/3). Consider the intersection

δ̃ of the tangent to g at r̃ with the abscissa, which has the expression

δ̃ = δ̃ (m) = r̃ − g(r̃)

g′(r̃)
= 2r̃ − r̃3. (4.24)

Clearly, we have that for any σ
c
≥ δ̃ (m) the equation (4.20), with m = c2

ν
1
k
, has

at least one root in (0, 1). To analyze the case σ
c
< 1 we will check the range of

values m for which δ̃ (m) ≤ 1. By using (4.24) we deduce that δ̃ (m) ≤ 1 if and

only if r̃ ≤
√

5−1
2

or, according to (4.23),

m ≥

(
1 +
√

5

2

) 5
2

. (4.25)



4. On the analysis of travelling waves to a nonlinear flux limited reaction–diffusion equation 51

In conclusion, under condition (4.25) there exists a root of (4.20) in (0, 1), for
every σ

c
≥ δ̃ (m).

Define σ∗(m) as follows

σ∗(m)

c
=

 δ̃(m), when m ≥
(

1+
√

5
2

) 5
2
,

1, otherwise.
(4.26)

Then, we have proved the following result

Proposition 2.2 There exists a solution of (4.15) in r ∈ (0, 1) if and only if
σ > σ∗ or σ = σ∗ < c, where σ∗ is defined by (4.26).

As a consequence, combining Propositions 2.2 and 2.1 allows to deduce the
existence of a classical solution in Theorem 1.6.

4.2.4 Proof of Lemma 2.4

In order to prove Lemma 2.4, let us provide a description of the positive invariant
set associated with the flux defined by the planar system (4.13). The values (u, r)
for which r′ = 0 are defined by the equation

K(u) = −c
2

ν

r(r − σ
c
)

√
1− r2

. (4.27)

The roots of this equation can be equivalently obtained as the intersections be-
tween g(r) =

√
1−r2

r
and the straight line − c2

K(u)ν

(
r − σ

c

)
. The straight line is

determined by the point
(
σ
c
, 0
)

and the slope − c2

K(u)ν
, where only the last one

depends on u. Using (4.6), we have that the slope is a decreasing function of u
verifying

−∞ < − c2

K(u)ν
≤ − c2

K(0)ν
= − c

2

kν
, u ∈ [0, 1).

Our purpose now is to describe the function r̃(u), which is defined by the smallest
root of (4.27) for σ, c and ν fixed. We will prove that he number of these roots
as well as their existence depend on the value σ

c
. Simple calculus gives that the

tangent to g passing by (σ
c
, 0) satisfies

r
(
2− r2

)
= − g(r)

g′(r)
+ r =

σ

c
.

The maximum value of the function r (2− r2), reached at
√

2/3, is 8/(3
√

6).

The value of σ
c

in relation to 1 and 8/(3
√

6) will determine the different cases.
In Figure 4.1 the curved lines describe the function g(r) while the straight lines
represent the function 1

K(u)
c2

ν

(
σ
c
− r
)
.

In the first case (left–hand side in Figure 4.1), σ
c
≥ 8/(3

√
6), the straight lines

have an unique intersection with the curve g(r) and consequently r̃(u) is uniquely
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σ/c1 8/(3√6) σ/c1 8/(3√6)r*+r*- σ/c 1 8/(3√6)r*

r δ~ ~

Figure 4.1: The curved lines represent the function g(r) and the straight lines
the functions c2

νK(u)

(
σ
c
− r
)

for different values u.

determined and is a decreasing function. The second case (central picture in
Figure 4.1) corresponds to 1 < σ

c
< 8/(3

√
6). It is easy to check that again r̃(u)

is uniquely determined and is a decreasing function which has the shape given
in Figure 4.2 in terms of the two critical values r∗+ and r∗−. Finally, the third
case 0 ≤ σ

c
≤ 1 is represented by the picture in the right–hand side of Figure

4.1. The function r̃(u) has the same monotonicity and well–definition properties
that in the previous cases, but now the critical value r∗ determines the range of
definition. The analysis represented in Figure 4.1 leads to the complete definition
of r̃(u).

Let us now prove that the region

S =

(
(u, r) ∈ (0, 1)2,

{
0 < r < r̃(u), if r̃(u) is defined,
0 < r < 1, otherwise

)
(4.28)

is positively invariant. In order to prove the positive invariance of S we will de-
scribe the flux at the boundary. First, we observe that the segment {(u, r), 0 ≤
r < 1, u = 0} at the left–hand side of the square (0, 1)2 is invariant, which pre-
vents the solutions to escape through it. Every point of the segment {(u, r), 0 <
u < 1, r = 0} at the bottom of the square (0, 1)2 has an strict incoming flux
because the vector field is vertical through this segment. The arrow coming from
the corner (u, r) = (1, 0) corresponds to the discussion about the eigenvector for
the local unstable manifold theorem in Remark 4. The solid lines in Figure 4.2
correspond to the curves r̃(u) and satisfy that the vertical components of the flux
are zero because r′ = 0 while u′ < 0. The dashed lines corresponding to the
slopes in the curves r̃(u) are also incoming points since u′ < 0 there. Then, in
Figure 4.2 we have plotted the phase diagram (slope field) of the planar system
(4.13), (u, r) : (−∞, ξ0) → (0, 1)2 with boundary conditions (4.14) and (4.17).
Therefore, we have proved that if there exists ξ̄ such that (u(ξ̄), r(ξ̄)) ∈ S, then
(u(ξ), r(ξ)) ∈ S, for any ξ ≥ ξ̄.

We shall be done with the proof once we prove the existence of a sequence of
values ξ̄n such that ξ̄n → −∞ and (u(ξ̄n), r(ξ̄n)) ∈ S. Using (4.14), we can deduce
the existence of a sequence ξ̄n → −∞ for which r′(ξ̄n) > 0. Now, we observe that
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σ/c ≥ 8/(3√6) 1 < σ/c  < 8/(3√6)

r*+

r*-

1≥ σ/c ≥ 0

1

r*

1

r(u)~

1 1 1

r(u) r(u)~ ~

r*

1

Figure 4.2: Description of the positive invariant regions S in terms of the curves
r̃(u).

the graphic of r̃(u) splits (0, 1)×(0, r∗) into two components characterized by r′ >
0 or r′ < 0. Since (u(ξ̄n), r(ξ̄n))→ (1, 0), then (u(ξ̄n), r(ξ̄n)) ∈ S ∩ (0, 1)× (0, r∗)
for n large enough. �

4.3 Entropy solutions and consequences

In this section we deal with the study of discontinuous traveling waves. So far
ad authors know, there is no previous literature reporting on the existence of
singular traveling waves. In this case it is necessary to use the notion of entropy
solution for this equation, which has been introduced in [2].

The main result of this section is the following Theorem about existence of
singular travelling wave solutions.

Theorem 3.7 Assume σ = σ∗ = c. Then, there exists a discontinuous entropy
travelling wave solution of (4.2).

The existence of entropy, travelling wave solutions if σ < σ∗ is an open problem.
Define

v(t, x) =

{
u(x− σt), x− σt < ξ0,
0, otherwise,

(4.29)

where σ ≤ σ∗ and u : (−∞, ξ0) → (0, 1), ξ0 < ∞, is a solution of (4.8) given by
Proposition 2.1. (4.16) implies that v is discontinuous.

It is not trivial to prove that some of these functions v are entropy solutions.
This follows from the next two results.

Lemma 3.6 Any solution of (4.8) satisfying (4.9)–(4.10) is log-concave in (−∞, ξ0).

Proof. To see that log(v(ξ)) is concave, it is enough to prove that v′(ξ)
v(ξ)

is

decreasing. Using the system (4.13) we have

v′(ξ)

v(ξ)
= − c

ν

r(ξ)√
1− r(ξ)2

.
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The result follows from Lemma 2.4, since the function r → r√
1−r2 , r ∈ (0, 1), is

strictly increasing. �

The following Proposition characterizes the entropy solutions. The proof fol-
lows the same lines of Proposition 6.6 in [3], where a similar result was obtained
in the case of compact support solutions for the equation without the reaction
FKPP term. Thus, combining Theorem 3.4 and Proposition 6.6 in [3] together
with the null flux at infinity for non–compact support solutions and Proposition
3.15 in [2] we have

Proposition 3.3 Let v : [0, T ) × R → [0, 1) and Ω = supp(v(0, ·)) be such that
for any t ∈ [0, T ):

(i) supp(v(t, ·)) = Ωt, where Ωt = Ω +B(0, c t).

(ii) v ∈ C2(Ωt) and satisfies the differential equation (4.2).

(iii) v(t, x) has a vertical contact angle at the boundary of Ωt, for any t ∈ (0, T ).

(iv) v(t, x) is log-concave in Ωt.

Then, v is an entropy solution.

This result allows to select an entropy solution v from those defined by (4.29).
Properties (ii) and (iv) of Proposition 3.3 are satisfied by any v, but only when
σ = σ∗ = c the statement (i) holds, i.e. supp(v) = Ω(t). Moreover, we conclude
the proof of Theorem 3.7 by proving that, in this case, v has a vertical contact
angle at the boundary of Ω(t), and therefore (iii) is also satisfied.

The following result can be deduced directly from Proposition 2.1. We give
here a more explicit behavior of the vertical angle near ξ0.

Lemma 3.7 Let u be a discontinuous travelling wave for σ = σ∗ = c. Then, the
vertical angle near ξ0 is of order (ξ0 − ξ)−

1
2 .

Proof. Our starting point is system (4.13). By using Lemma 2.5 we can assure,
when σ ≤ σ∗, that there exists a constant ασ > 0 and ξ0 such that u(ξ0) = ασ
and r(ξ0) = 1 . In the case σ = σ∗ = c, (4.13) leads to

r′ =
1

c
K(u)− c

ν
r

√
1− r√
1 + r

.

Clearly r′(ξ0) = 1
c
K(ασ) < ∞. An expansion of r(ξ) in Taylor series around ξ0

allows to find r(ξ) = 1 + 1
c
K(ασ)(ξ − ξ0) + O((ξ − ξ0)2). Now, combining this

expression with the equation for u and integrating between ξ0 y ξ, 0 < ξ0−ξ � 1,
we obtain

−log(u(ξ0)) + log(u(ξ)) =
c

ν

2(
21
c
K(ασ)

) 1
2

(ξ0 − ξ)
1
2 − c

ν

(
K(ασ)

2c

)
(ξ0 − ξ)

3
2 .
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Neglecting higher–order terms we find u(ξ) = ασe

2

(2 1
cK(ασ))

1
2

(ξ0−ξ)
1
2

or

u(ξ) = ασ + ασ
2(

21
c
K(ασ)

) 1
2

(ξ0 − ξ)
1
2 , for 0 < ξ0 − ξ � 1 ,

after Taylor expansion. �

Remark 5 Since classical solutions are in particular entropy solutions, the ex-
istence of travelling waves for σ ≥ σ∗ is completed. The existence of an entropy
solution for σ < σ∗ is an open question, we can only assure that the corresponding
function v, defined by (4.29), is not an entropy solution. This follows from the
fact established in Theorem 3.9 of [2], that the support of any log-concave solution
moves with speed c while the support of v(t, ·) moves with σ < c.

Remark 6 The existence of travelling waves having different profiles from wave
fronts is also an open question. It can be proved that no more classical (C2) wave
fronts exist. The authors conjecture that no more entropy travelling wave solution
will exist, but it is likely to be a much harder problem.

To conclude this section we propose an application of the travelling wave
solutions with σ∗ < c that allows to bound entropy solutions.

Proposition 3.4 Let u0 : R → [0, 1) be a measurable function with compact
support and ess sup(u0) < 1. Let u(t, x) be an entropy solution of (4.2) with
initial data u0. Then,

ess supx∈R(u(t, x)) < 1

and for any c > σ > σ∗ there exist positive constants α and β not depending on
σ such that

ess sup|x|>σtu(t, x) ≤ αe−β(σ−σ∗)t.

In addition, if σ > c we have

ess sup|x|>σtu(t, x) = 0

for large t.

Proof. Let v∗(t, x) = u∗(x − σ∗t) be a C2 travelling wave solution of (4.2)
defined by Theorem 1.6. Then, we can take a translation of u∗, still denoted
u∗ for simplicity, such that u∗(ξ) ≥ u0(ξ). A comparison principle for entropy
solutions, see Theorem 3.8 in [2], leads to

u(t, x) ≤ u∗(x− σ∗t), a.e. (t, x) ∈ R2.

On the other hand, for a classical travelling wave there exist positive constants
α and β such that

u(ξ) ≤ αe−βξ , ξ ∈ R .
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This upper estimate is a consequence of the fact that u∗ is uniformly bounded
and limξ→∞

(u∗(ξ))′

u(ξ)
is strictly negative as pointed out in (4.18). Hence, we find

u(t, x) ≤ u∗(x− σ∗t) ≤ αe−β(x−σ∗t), a.e. (t, x) ∈ R2. (4.30)

Assuming now that x > σ t, we deduce from (4.30) the inequality

u(t, x) ≤ αe−β(σ−σ∗)t, a.e. (t, x) ∈ R2, x > σ t. (4.31)

In the case x < −σ t we can argue in a similar way by using a classical travelling
wave ũ∗(σ∗t− x) such that u0(ξ) < ũ∗(−ξ).

The second assertion follows by a comparison argument with the singular
travelling wave defined by (4.29). �
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[41] Diósi, L. On high–temperature Markovian equation for quantum Brownian
motion, Europhys. Lett. 1993, 22, 1–3.

[42] Doebner, H. D., Goldin, G. A. On a general nonlinear Schrödinger equation
admitting diffusion currents, Phys. Lett. A 1992, 162, 397–401.

[43] Doebner, H. D., Goldin, G. A., Nattermann, P. A family of nonlinear
Schrödinger equations: linearizing transformations and resulting structure,
in Quantization, Coherent States and Complex Structures, J.–P. Antoine et
al. (Eds.), 27–31, Plenum 1996.

[44] Dolbeault, J., Sánchez, O., Soler, J. Asymptotic behaviour for the Vlasov-
Poisson system in the stellar dynamics case., Arch. Ration. Mech. Anal.,
2004, 171, 301–327.

[45] Evans, L. C. Partial differential equations, Graduate Studies in Mathe-
matics 19, American Mathematical Society, Providence, Rhode Island, 1998.
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[71] López, J. L., Montejo–Gámez, J. A hydrodynamic approach to multidimen-
sional dissipation-based Schrödinger models from quantum Fokker-Planck
dynamics, Physica D 2009, 238(6), 622–644.
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