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Abstract

We present an accurate simulation of the Raman spectrum of the carbon dioxide
molecule in the 1150–1500 cm−1 spectral range, comparing the results obtained
using the three polyad schemes found in the literature of this molecule. The
description of the molecule with the algebraic U1(2) × U(3) × U2(2) local model
encompasses both stretching and bending degrees of freedom. A detailed analy-
sis of the Hamiltonian interactions for the three polyad schemes provides fittings
with root mean square deviations in the range 0.14–0.20 cm−1, involving 19
parameters taking into account the 178 experimental term energies found in the
literature. Using a limited subset of 9 experimental transition moments, we opti-
mize 5 partial derivatives of the mean polarizability and simulate the Raman
spectrum of CO2 for the three polyad schemes. Comparing the calculated results
with the experimental spectrum, we obtain an overall good agreement for the
three polyads. However, an inspection in detail of the spectrum seems to show
a slight preference for polyad P212 albeit not due to the interaction characteriz-
ing the polyad but due to anharmonic effects and energy distribution. Finally,
we assess the effect of the Fermi resonance over CO2 Raman line intensities.
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1 INTRODUCTION

The measurement of carbon dioxide concentration in gas
mixtures is currently carried out through spectroscopic
techniques such as infrared, Raman, or nuclear magnetic
resonance spectroscopy. For instance, the analysis of rovi-
brational transitions from laser absorption spectroscopy
has been used in paleoclimatic studies for obtaining the
CO2 abundance in air bubbles found into ice cores from
Antarctica.[1] An accurate measurement of CO2 abun-
dance is not only relevant for atmospheric sciences or
paleoclimatology. In particular, Raman scattering is a
useful tool for the quantitative diagnosis of combustion
processes.[2,3] Molecular spectroscopy is also fundamen-
tal in the study of the chemistry of astronomical sources,
for example, planetary atmospheres and the interstellar
medium.[4]

The detection of molecular species in spectral surveys
involves the obtention of experimental spectra and the
succeeding analysis of the recorded spectra, making use
of an appropriate theoretical model for the calculation of
molecular (ro)vibrational levels. The model results should
be accurate enough to allow for the prediction of levels
beyond experimental access, improving the identification
of the molecule into study in spectral surveys. In the
present work, we study the vibrational structure of car-
bon dioxide with the aim of providing, through accurate
predictions, term values filling some of the existing gaps
in the available experimental frequencies. In addition to
this, we check through the validity of the resulting wave
functions making a comparison between experimental and
simulated Raman spectra.

The present approach is based on an algebraic proce-
dure carefully crafted to keep a link with the approach in
configuration space. This feature makes possible the esti-
mation of a potential energy surface from a set of optimized
spectroscopic constants[5,6] that is in agreement with the
surfaces obtained from works based on ab initio calcula-
tions or other theoretical procedures.[7–10] The need for
accurate predicted data has fostered new developments
in the algebraic approach to carbon dioxide vibrational
structure.[5,6,11] The final result is a polyad-preserving the-
oretical model that provides a CO2 vibrational description
of spectroscopic quality.[11]

Polyad-based models have proved his efficiency in
molecular spectral analysis for many molecular species.[12]

In general, several polyad schemes are possible in accor-
dance with different identification of resonances. In these
situations, a convenient route consists in testing the pro-
vided wave functions through the transition intensities.
The vibrational structure of the CO2 molecule offers an
excellent opportunity to carry out this kind of test because
the analysis of the overtones and combinations suggest
three polyads schemes. In this work, we simulate the CO2

Raman spectrum using three different polyad schemes
from the literature.[5,10,13,14] We compare simulated and
experimental[2] results to reckon which polyad scheme is
more suitable. In a previous work, polyad P212 was con-
sidered to generate a Raman spectrum simulation based
on a spectroscopic description including 101 vibrational
levels up to 9,600 cm−1 with a deviation of root mean
square (rms) = 0.53 cm−1[6] and involving 9 fitted transi-
tion moments.[15] The present simulated Raman spectrum
involves the 178 known experimental term energies with
deviations of rms = 0.14 − 0.20 cm−1 up to 26,600 cm−1

based on the same 9 fitted transition moments for three
different polyads. Hence, the predicted energies and wave
functions are accurate enough to markedly improve the
modeling of the CO2 Raman spectrum allowing the best
polyad scheme to be identified, a fact that provides possible
targets for future experiments.

The material in this paper is organized as follows: in
Section 2, the algebraic model for CO2 is outlined. In
Section 3, we briefly present the polyad-preserving model
and the three polyad schemes considered, making special
emphasis on the effect that the different interactions have
on the energy spectrum. Section 4 includes a description of
the procedure followed to calculate the Raman spectrum
and the resulting simulations and a discussion of the polar-
izability derivatives effects on the spectrum. Finally, we set
forth our concluding remarks in Section 5.

2 ALGEBRAIC VIBRATIONAL
HAMILTONIAN

Because our methodology to establish the vibrational
Hamiltonian has already described in detail in Ref.,[15]

here, we present only the salient ingredients of the model.
The vibrational degrees of freedom of CO2 are described
in terms of curvilinear internal displacement coordinates.
These coordinates are symmetry-adapted combinations
of the internal displacement (valence) bond-stretching
and angle-bending coordinates. The coordinates for the
stretching degrees of freedom are

S1 ≡ SΣ+
g
= 1√

2
(Δr1 + Δr2), S3 ≡ SΣ+

u
= 1√

2
(Δr1 − Δr2),

(1)
whereΔri = ri−re with i = 1, 2 stands for the displacement
of the i-th CO bond with respect to the equilibrium bond
length re. The bending coordinates {S2a, S2b} are defined as
in Ref.[16] for linear molecules. Accordingly, the vibrational
Hamiltonian Ĥ can be written as follows[17–20]

Ĥ = 1
2

P̃G(S)P + V(S), (2)

where S and P are internal displacement coordinates and
their conjugate momenta column vectors. The G(S) matrix
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links internal and Cartesian coordinates and V(S) is the
Born–Oppenheimer potential, where the mass-dependent
potential contribution has been neglected. The procedure
to follow consists in the expansion of the G(S) matrix
and the potential V(S) as a Taylor series in terms of the
S variables around the equilibrium configuration, trun-
cating the expansion up to sixth order, which turns out
to be enough to obtain high quality results. On the other
hand, as explained in Ref.,[15] the curvilinear coordinates
(S1, S3, S2a, and S2b) may be expanded in terms of rectilin-
ear symmetry coordinates (normal coordinates) Q𝛼 , (𝛼 =
Σ+

g ,Σ+
u ,Πg,a,Πg,b). Therefore, the Hamiltonian (2) is trans-

formed to
Ĥ = Ĥ(P,S) → Ĥ = Ĥ(p,Q), (3)

where p are the conjugate momenta of Q. The Hamilto-
nian Ĥ(p,Q) is rewritten in terms of bosonic creation and
annihilation operators (a†

𝛼 , a𝛼 , with 𝛼 = Σg/u,±) in direct
correspondence with the vibrational degrees of freedom.
Correspondingly, the Hamiltonian (3) is expressed as

ĤP = ĤP(a†
Σg
, aΣg , a†

Σu
, aΣu , a†

±, a±), (4)

a transformation that allows for an algebraic rep-
resentation with a straightforward identification of
polyad-preserving interactions (resonances). It is worth
recalling that the fundamental quantum number operators
that define bending states are

𝓁 = a†
+a+ − a†

−a− = n̂+ − n̂−,

n̂ = a†
+a+ + a†

−a− = n̂+ + n̂−,
(5)

where n̂ and 𝓁 are the number of bending quanta of excita-
tion and the vibrational angular momentum, respectively.

Note that the relationship between spectroscopic param-
eters in (4) and the molecular geometry and force con-
stants is preserved by the transformation from (2) to (4).[5,6]

In order to simplify the vibrational Hamiltonian, only the
relevant polyad-preserving interactions are kept. Thus, the
Hamiltonian only includes resonances that couple vibra-
tional states that comply with the preservation of the
pseudo quantum number P, established by the polyad.

The resulting algebraic Hamiltonian may be diagonal-
ized in a harmonic oscillator basis. This is the natural way
to proceed when dealing with molecules with a strong nor-
mal mode character like CO2. On the other hand, it is well
known that the local mode scheme provides an alterna-
tive approach for the modeling of vibrational degrees of
freedom, making use of local coordinates. The use of local
coordinates for the CO2 molecule, however, is not appro-
priate, first because polyads are defined in the framework
of the normal mode scheme and also due to the fact that
the force constants derived from optimized spectroscopic
parameters of a polyad-preserving Hamiltonian defined in
a local mode scheme may have unphysical values (see, e.g.,

Appendix B of Ref.[5]) unless a polyad-breaking Hamilto-
nian is applied, for example, by means of Van Vleck per-
turbation theory.[21] These two problems can be overcome
by transforming the Hamiltonian (4) to a local algebraic
representation through the following canonical transfor-
mation in the stretching coordinates

a†
Σg

= 1√
2
(a†

1 + a†
2), a†

Σu
= 1√

2
(a†

1 − a†
2). (6)

The bosonic operators a†
i (ai) are not local operators, but

an isomorphism to the true local operators can be set up
leading to a good approximation in the limit of weakly
interacting oscillators.[22] Therefore, we can transform
Hamiltonian (4) into a polyad-preserving Hamiltonian in
a local picture making use of the canonical transforma-
tion (6).

Because the transformation (6) is canonical, it does not
help by itself to gain a better description, the same energy
levels are obtained. To further improve this description, we
perform an anharmonization of the stretching local oper-
ators (see e.g., Refs.[6,23,24]) introducing the U(2) operators
b†

i , bi:

a†
i → b†

i , ai → bi , (7)

inducing the symmetry-adapted operators

a†
Σg

→ b†
Σg

≡
1√
2
(b†

1 + b†
2), a†

Σu
→ b†

Σu
≡

1√
2
(b†

1 − b†
2).

(8)
The creation (annihilation) operators b†

i (bi) are genera-
tors of a U(2) dynamical algebra[25] and can be interpreted
as ladder operators for Morse or Pöschl-Teller poten-
tial eigenstates |j vi⟩. Establishing the mapping |j vi⟩ →|j ni⟩,[26–28] in our approach, we take the matrix elements

b†
i |𝑗 ni⟩ = √

(ni + 1)(1 − (ni + 1)∕ks) |𝑗 ni + 1⟩,
bi |𝑗 ni⟩ = √

ni(1 − ni∕ks) |𝑗 ni − 1⟩, (9)

where ni is the vibrational number of quanta, ni =
0, 1, 2, … , j−1, and ks = 2j+1 is related to the depth of the
internal bond stretching coordinates potential. Whereas
the anharmonization (7) is valid also for 1D bending
degrees of freedom in semi-rigid bent molecules,[23,24,29–34]

the algebraic modeling of vibrational bending degrees of
freedom in linear and non-rigid molecules is based on
the U(3) Lie algebra in order to encompass the coupling
between rotational and vibrational degrees of freedom
that occurs in degenerate and large amplitude bending
modes.[5,6,11,15,35–40] In this latter case, we introduce the
anharmonization procedure equivalent to Equation (7)
through the mapping

a†
± → b†

± a± → b±, (10)
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with matrix elements[5]

b†
±|[N];n𝓁⟩ =√(

n±𝓁
2

+ 1
)(

1 − n
N

)|[N]; (n + 1)𝓁±1⟩,
b±|[N];n𝓁⟩ =√(

n±𝓁
2

)(
1 − n − 1

N

)|[N]; (n − 1)𝓁∓1⟩.
(11)

The N parameter is the total number of bosons (vibrons)
and labels the totally symmetric irreducible representation
of the U(3) Lie algebra that determines the dimension of
the Hilbert space for the bending degree of freedom.

We stress that the anharmonization procedure (7) and
(10) have proved to be crucial for the improvement of
the spectroscopic description. Examples correspond to the
BF3 molecule[23] and the carbon dioxide itself.[6,11] In this
work, we show that the wave functions are also dramat-
ically improved, a fact that allows a high quality Raman
simulation to be obtained.

3 POLYAD PRESERVING
HAMILTONIANS

Possible polyad schemes P = 𝛼𝜈1 + 𝛽𝜈2 + 𝛾𝜈3 are iden-
tified through the resonances appearing in the overtones
and combinations. The frequencies for the fundamentals
for the carbon dioxide are (in cm−1)

𝜔1 = 1285.41; 𝜔2 = 667.38; 𝜔3 = 2349.14, (12)

referred to Herzberg's notation.[41] The dominant reso-
nance is the one identified by Fermi[42]: 𝜔1 ≈ 2𝜔2. This
fixes the ratio 𝛼∕𝛽 = 2 but nothing can be said about 𝛼∕𝛾 .
Taking 𝛼 = 𝛾 , the resulting polyad is

P̂212 = 2(𝜈̂1 + 𝜈̂3) + 𝜈̂2. (13)

This polyad has been used even though resonances
associated with stretching interactions are not involved.
A Darling–Dennison interaction is included in (13),
although due to the fact that 2𝜔1 ≠ 2𝜔3, the contribu-
tion is expected not to be relevant. On the other hand, the
splitting between the stretches is around 1,064 cm−1, large
enough to expect 𝛼 ≠ 𝛾 .[22,43] The identification of the
resonances 3𝜔1 ≈ 2𝜔3 and 4𝜔1 ≈ 2𝜔3 leads to polyad
schemes[14],[44]–[52]

P̂213 = 2𝜈̂1 + 𝜈̂2 + 3𝜈̂3, (14)

P̂214 = 2𝜈̂1 + 𝜈̂2 + 4𝜈̂3, (15)
respectively. Polyad P214 involves higher order interactions
that the ones included in P213, a fact that may induce to pre-
ferred polyad P213. However, the differences 4𝜔1 − 2𝜔3 ≈
−443 and 3𝜔1 − 2𝜔3 ≈ 842 suggest stronger resonances in
P214, and consequently, a preference to one of the polyads
(14-15) is not obvious.

In this work, we consider the three polyad schemes
(13-15) to simulate the Raman spectrum of CO2

[5,10,13,14] in
order to elucidate the convenience to use one of the other.
According to the algebraic approach, each scheme can be
defined through the corresponding pseudo quantum num-
ber, corresponding to the eigenvalue of the operators given
in (13-15), where 𝜈̂i with i = 1, 2, 3 are normal number
operators that in the present model are expressed in terms
of symmetry-adapted operators as

𝜈̂1 = b†
Σg

bΣg ; 𝜈̂2 = n̂; 𝜈̂3 = b†
Σu

bΣu . (16)

Hence, we define for each polyad an algebraic Hamil-
tonian that preserves the particular polyad. We start from
a Hamiltonian in configuration space, obtain an algebraic
realization (4) in a normal mode scheme, which in turn is
transformed into a Hamiltonian in a local scheme through
the transformations (6) and the anharmonization proce-
dures (7) and (10). We express the three resulting algebraic
Hamiltonians for the vibrational spectrum of the 12CO2
molecule as follows:

ĤP212 = Ĥd + V̂P212 , (17)

ĤP213 = Ĥd + V̂P213 , (18)

ĤP214 = Ĥd + V̂P214 , (19)
where the contribution Ĥd is common to the three polyad
schemes and is given by

Ĥd =
3∑

i=1
𝜔i𝜈̂i +

∑
i≤𝑗

xi𝑗{𝜈̂i, 𝜈̂𝑗} + g22 l̂2 + 𝑓g∕bbF̂

+ x113{𝜈2
1 , 𝜈̂3} + x133{𝜈̂1, 𝜈

2
3} + x123𝜈̂2{𝜈̂1, 𝜈̂3} (20)

+ 𝛼sb
1 {(n̂1 + n̂2), F̂} + 𝛼s

1{(n̂1 + n̂2), D̂L + 2n̂1n̂2}

+ 𝛼sb
2 n̂(D̂L + 2n̂1n̂2) + 𝑓

[2]
g∕bbF̂2.

The number of quanta for the local stretching degrees of
freedom are

n̂i = b†
i bi; i = 1, 2. (21)

In Equation (3), we have introduced the notation

{Â, B̂} = 1
2
(ÂB̂ + B̂Â), (22)

where the symmetrization of non-commuting operators is
necessary due to the anharmonization. In addition, the
Fermi interaction F̂, corresponding to the dominant reso-
nance, is given by

F̂ = b†
Σg

b+b− + H.c. (23)

On the other hand, the interactions characterizing the
Hamiltonians (17-19) have the explicit form:

V̂P212 = 𝑓uu∕gg[b†2
Σg

b2
Σu

+ H.c.], (24)

V̂P213 = 𝑓uu∕ggg[b†3
Σg

b2
Σu

+ H.c.], (25)
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V̂P214 = 𝑓uu∕gggg[b†4
Σg

b2
Σu

+ H.c.]. (26)

The interaction (24) corresponds to the DD resonance,
which in principle is not expected to be important as we
have already pointed out.
The way we have recasted the Hamiltonians (17-19) as Ĥd
plus a polyad dependent term is advantageous when com-
pared with the approach followed in Ref.[11] In the present
case, we have managed to collect all the terms that are
common to the three polyads in a single operator Ĥd.

3.1 Spectroscopic analysis
The Hamiltonians (17-19) may be interpreted as modeling
three interacting oscillators: one 2D oscillator (U[3]model,
doubly degenerate bending degree of freedom) and two
1D Morse oscillators (U[2] model, stretching degrees of
freedom). Hence, the matrix representation of the Hamil-
tonian can be obtained in a U1(2) × U(3) × U2(2) basis

|[Ns = 2𝑗], [Nb];n1n2;n𝓁⟩ = |𝑗n1⟩⊗ |𝑗n2⟩⊗ |[Nb];n𝓁⟩.
(27)

In practice, this basis is projected to obtain functions
spanning irreducible representations of the ∞h point
group.[53,54]

We present three fits to the 178 available experimental
vibrational levels[14,15,44–47,51,55–60] for CO2, making use
of the Hamiltonians (17-19), associated with the polyads
(13-15). In the three cases, the spectroscopic parameters
were optimized with an iterative nonlinear least square
method. The values of the boson numbers Ns and Nb were
manually adjusted to Ns = 159 and Nb = 150 following
Ref.[6]

We now proceed to study in detail the effect of the dif-
ferent interactions included in the Hamiltonian operators
(17-19). To accomplish this goal, it is convenient to split the
common term Ĥd in the following contributions:

Ĥd = Ĥ0 + ÎnD + Î113 + Î123 + Î133 + Î[2]𝑓 , (28)

where

Ĥ0 =
3∑

i=1
𝜔i𝜈̂i+

∑
i≤𝑗

xi𝑗{𝜈̂i, 𝜈̂𝑗}+g22 l̂2+𝑓g∕bbF̂+𝛼sb
1 {(n̂1+n̂2), F̂},

(29)
whereas for the additional terms

ÎnD = 𝛼s
1{(n̂1 + n̂2), (D̂L +2n̂1n̂2)}+𝛼sb

2 n̂(D̂L +2n̂1n̂2), (30)

Î113 = x113{𝜈2
1 , 𝜈̂3}, Î123 = x123𝜈̂2{𝜈̂1, 𝜈̂3}, (31)

Î133 = x133{𝜈̂1, 𝜈
2
3}, Î[2]𝑓 = 𝑓

[2]
g∕bbF̂2. (32)

The usual parameter to measure the quality of the fits is
given by the rms deviation defined as

rms =

√√√√∑Ne
i=1 (E

(i)
exp − E(i)

th )
2

(Ne − Np)
, (33)

where Ne is the number of experimental energies E(i)
exp

taken into account (Ne = 178), E(i)
th are the energies com-

puted by the model, and Np stands for number of param-
eters involved. However, when different fits of the same
high quality are compared, like in CO2, a more convenient
quantity to assess the effects of the different interactions is
the sum of the squared residuals 𝜎2 defined as

𝜎2 =
Ne∑
i=1

(E(i)
exp − E(i)

th )
2, (34)

which is more sensitive to the fits. To accomplish the fits,
we start introducing the contribution Ĥ0 common to the
three polyads. The obtained fit, together with the deviation
𝜎2, is displayed in the first row of Table 1. There is a reason-
able agreement with the experiment, with 𝜎2 ≃ 50 cm−1

(rms ≃ 0.5 cm−1), where we include the Fermi interaction.
As a next step, the interactions characterizing the three
polyads V̂𝛼 , with 𝛼 = 212, 213, and 214, were taken into
account. The effect of these resonances was only notice-
able in the 213 case, reducing 𝜎2 to half its value, as shown
in the second row of Table 1. Including the ÎnD interac-
tions (30) instead of the V̂𝛼 resonances, deviations with
𝜎2 ≃10cm−2 (rms = 0.25 cm−1) were reached. Then we
proceeded including the interactions Î113, Î123, Î133, and Î[2]𝑓

(31-32), which contribute to further refine the agreement
with the experimental spectrum (Table 1). A graphical rep-
resentation of the results obtained in this analysis is shown
in Figure 1. We conclude that Hamiltonian,

Ĥ = Ĥ0 + ÎnD + Î123, (35)

provides a reasonable description of the CO2 vibrational
spectrum, with a rms deviation of 0.183 cm−1 for ĤP212 ,
0.242 cm−1 for ĤP213 , and 0.234 cm−1 for ĤP214 . However, in
order to provide an appropriate assessment of the polyad
schemes, in this work we consider the full 19 parameter
Hamiltonians (17-19), obtaining rms = 0.145 cm−1 for
ĤP212 , 0.140 cm−1 for ĤP213 , and 0.202 cm−1 for ĤP214 . There
is a slight improvement for the polyad schemes P213 and
P214 with respect to our former work.[11]

It is well known that a good fit to the experimental
energy spectrum does not necessarily guarantee that the
obtained wave functions have the necessary physical ingre-
dients to describe the model under study.[61] A test of the
wave functions quality is therefore of great help to evaluate
the model results. This situation will be discussed in detail
in the next section, where the modeling of the CO2 Raman
spectrum is introduced. The calculated energies and the
residuals when compared with the experimental spectrum
for the three polyad schemes are included as Supporting
Information for this work.
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TABLE 1 Values of 𝜎2 (34) in cm−2 units
obtained in the fits to the Ne = 178 available
experimental term energies with Hamiltonian
operators (17-19) for different parameterizations

Np Hamiltonian 𝜎2 (cm−2)
P212 P213 P214

12 Ĥ0 49.8681 46.9326 57.1134
13a Ĥ0+V̂𝛼 45.1744 28.0713 50.6968
14 Ĥ′

0=Ĥ0+ÎnD 7.14401 12.1092 13.019
15 Ĥ′

0+Î123 5.46412 9.55302 8.9437
16 Ĥ′

0+Î113+Î123 5.10786 7.97162 7.29859
17 Ĥ′′

0 = Ĥ′
0+Î113+Î123+Î133 5.03384 7.32553 6.5162

18 Ĥ′′
0 +Î[2]𝑓 3.67326 3.42145 6.48328

19a Ĥ′′
0 +V̂𝛼+Î[2]𝑓 3.33082 3.12642 6.48365

rms =
√
𝜎2∕(Ne − Np) (cm−1) 0.1447 0.1402 0.2019

Note. The standard rms value is also provided for the case including 19 parameters. a𝛼 labels each
column P212, P213 and P214, whereas the V̂𝛼 are defined in (13), (14) and (15).

FIGURE 1 Deviation 𝜎2 defined in (34). The different interactions
added to the initial Hamiltonian H0 can be found in Table 1. The
deviation attained for each Hamiltonian is plotted as a function of
the total number of spectroscopic parameters taken into account

4 RAMAN SPECTRUM
SIMULATION

We model the vibrational Raman spectrum of CO2 from
the vibrational eigenenergies and eigenstates computed in
Section 3, including transitions with term values in the
(1150, 1500) cm−1 region. Beyond this region, Raman tran-
sitions are not observed. In fact, at temperature 1,743 K, the
intervals (500-1150) and (1500-2000) cm−1 were explored
without any intensity registered. The line intensities are
calculated using the differential cross section, expressed in
the SI system, for the trace scattering of a gas sample at
thermal equilibrium[62](
𝜕𝜎

𝜕Ω

)trace

i→𝑓
=
(
𝜋

𝜖0

)2 (𝜈0 + 𝜈i − 𝜈𝑓 )4

Zvib(T)
gi𝑓 |Mi𝑓 |2 exp

(
−hc𝜈i

kBT

)
,

(36)
where 𝜖0 is the vacuum permitivity, 𝜈0 is the wavenum-
ber of the exciting radiation (𝜈0 = 19730 cm−1 in Ref.[2]),
𝜈i and 𝜈f are the term values of the initial and final states,
and gif is the vibrational degeneracy of the transition.
The vibrational partition function at a temperature (T) of

the gas sample is computed as a direct sum, Zvib(T) =∑
𝑗g𝑗e

−𝜈𝑗∕kBT , where gj is the degeneracy of the states with
𝜈j energy. The vibrational term values 𝜈j considered in
the vibrational partition sum are computed in each polyad
scheme, by means of the Hamiltonians (17-19), up to
26,000 cm−1. In Table S1, we provide values of the par-
tition function for each polyad scheme and at different
temperatures. The Raman transition intensities are mainly
due to the totally symmetric mean molecular polarizabil-
ity 𝛼̄Σ+

g
= 𝛼̄, and the integral of the transition moment

Mi𝑓 = ⟨𝜈i|𝛼̄|𝜈𝑓 ⟩ can be calculated from the polarizabil-
ity expressed as a function of the internal coordinates and
making use of the vibrational states |𝜈i⟩ and |𝜈f⟩ obtained
in Section 3.

In this work, we expand the mean polarizability in terms
of the curvilinear symmetry coordinates S𝛼 up to cubic
order as follows:

𝛼̄Σ+
g
= 𝛼̄0+

(
𝜕𝛼̄

𝜕SΣ+
g

)
0

SΣ+
g
+ 1

2

⎛⎜⎜⎝ 𝜕2𝛼̄

𝜕S2
Σ+

g

⎞⎟⎟⎠0

S2
Σ+

g
+ 1

2

(
𝜕2𝛼̄

𝜕S2
Σ+

u

)
0

S2
Σ+

u

+ 1
2

(
𝜕2𝛼̄

𝜕S2
2a

)
0

(S2
2a + S2

2b) +
1
2

(
𝜕3𝛼̄

𝜕SΣ+
g
𝜕S2

2a

)
0

× SΣ+
g
(S2

2a + S2
2b) +

1
2

(
𝜕3𝛼̄

𝜕SΣ+
g
𝜕S2

Σ+
u

)
0

SΣ+
g
S2
Σ+

u
, (37)

where the values of the different polarizability derivatives
can be determined either from a fit of experimental transi-
tion moments[62,63] or from ab initio calculations.[64,65]

We use the Raman spectrum as a probe to check the
quality of the wave functions resulting from the fit to the
experimental spectrum using each polyad scheme sepa-
rately. In order to do so, we carry out spectral simulations
for each case and compare the obtained results with the
experimental Raman spectrum of CO2 at T = 1743 K.
Thus, we have to calculate the matrix elements of the mean
molecular polarizability 𝛼̄ for the eigenstates of Hamiltoni-
ans HP212 , HP213 , and HP214 (17-19). The approach we follow
is very similar to the one introduced for the calculation
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of the Hamiltonian matrix elements. We define an alge-
braic representation of the 𝛼̄ operator in terms of bosonic
a†
𝛼 , a𝛼 , with 𝛼 = Σg/u,±. Then, we apply the canonical

transformation (6), and we perform the anharmonization
procedures (7) and (10). In this way, the matrix elements of
the 𝛼̄ in the local basis (27) are well defined, and the transi-
tion moments Mi𝑓 = ⟨𝜈i|𝛼̄|𝜈𝑓 ⟩ can be calculated using the
expansion (4).

Therefore, we compute Raman intensity values using
Equation (36), the eigenfunctions obtained in the different
fits performed and the partial derivatives of the mean
polarizability from the power expansion (4), whose values
are obtained from a fit to the available experimental
matrix elements |M(exp)

i𝑓 |.[62,66] We show in Table 2 the
experimental transition moment values and the calculated
ones. The first three columns provide the experimental
transition frequencies, the initial and final state assign-
ments, and the experimental molecular polarizability
transition moments |M(exp)

i𝑓 |.[62,66] For the sake of compar-
ison, we include the results obtained in previous works
using rectilinear[67] (fourth column) and curvilinear[15]

(fifth column) coordinate approximations to the symmetry
coordinates. The present work results for the polyad
schemes, P212, P213, and P214, labeled as |M(calc)

i𝑓 |, are shown
in the sixth, seventh, and eighth columns, respectively.
These were computed by fitting the first 9 experimental
transition moments minimizing a rms deviation between
experimental |M(exp)

i𝑓 | and calculated |M(calc)
i𝑓 | transition

moments defined as[67]

FIGURE 2 Experimental (black line) and calculated Raman
spectrum of CO2 in the 1, 150 − 1, 500 cm−1 range. The predicted
transition lines are obtained making use of the eigenenergies and
eigenfunctions of the algebraic Hamiltonians ĤP212

(red line), ĤP213

(blue line), and ĤP214
(orange line)

rms =
√∑

𝛽

(
log |M(exp)

𝛽
| − log |M(calc)

𝛽
|)2

. (38)

It is worth to notice that the rms values obtained in
this work are slightly higher than the values reported in
Ref.,[15] but the differences are very small as can be seen in
the last row of Table 2.

The simulated Raman spectrum in the wave number
range 1, 150 − 1, 500 cm−1 is compared with the experi-
mental one in Figure 2. We display a zoom of the previous
spectrum in the spectral ranges around 1, 180−1, 280 cm−1

in Figure 3 and 1, 360 − 1, 500 cm−1 in Figure 4. It can be

TABLE 2 Experimental and calculated transition moments |Mi𝑓 | = |⟨𝜈i|𝛼̄|𝜈𝑓 ⟩| of the mean polarizability of
CO2 in the three polyad schemes

𝝂(cm−1)a |𝝂i⟩→|𝝂f⟩ transitionb |M(exp)
i𝒇

|c |Mif|d |Mif|e
|M(calc)

i𝒇
|f

P212 P213 P214

1285.41 |000; Σ+
g ⟩ → |020; Σ+

g ⟩ 5.58 5.58 5.59 5.610 5.620 5.610
1388.18 |000; Σ+

g ⟩ → |100; Σ+
g ⟩ 6.79 6.79 6.89 6.910 6.890 6.890

2548.37 |000; Σ+
g ⟩ → |120; Σ+

g ⟩ 0.088 0.089 0.084 0.083 0.083 0.083
2671.14 |000; Σ+

g ⟩ → |200; Σ+
g ⟩ 0.114 0.110 0.116 0.118 0.118 0.117

2797.14 |000; Σ+
g ⟩ → |120; Σ+

g ⟩ 0.026 0.026 0.026 0.026 0.026 0.026
4673.33 |000; Σ+

g ⟩ → |002; Σ+
g ⟩ 0.050h 0.050 0.050 0.050 0.050 0.050

1265.09 |010;𝛱u⟩ → |030;𝛱u⟩ 5.4 5.41 5.41 5.420 5.420 5.420
1409.48 |010;𝛱u⟩ → |110;𝛱u⟩ 7.2 6.95 7.060 7.060 7.040 7.050
2514.08 |010;𝛱u⟩ → |130;𝛱u⟩ 0.095 0.107 0.098 0.098 0.098 0.098
2671.98 |010;𝛱u⟩ → |210;𝛱u⟩ ... 0.102 0.109 0.112 0.012 0.111
2833.29 |010;𝛱u⟩ → |130;𝛱u⟩ ≤0.03 0.019 0.016 0.016 0.016 0.016
rmsg - 0.135 0.060 0.075 0.075 0.072

Note. The results obtained in this work are also compared with those computed in previous works. aExperimental transition
wavenumber values from Ref.[62] bInitial and final vibrational states are labeled by the ket |𝜈1𝜈2𝜈3; Γ⟩ where (𝜈1, 𝜈2, 𝜈3) are the
quantum numbers in the normal-mode representation and Γ is the vibrational wavefunction symmetry. cExperimental transi-
tion moment values from Ref.[62] in 10−42CV−1m2 units, otherwise is indicated. Only the first nine transitions were involved in
the fit. dCalculated transition moments in 10−42CV−1m2 units reported in.[67] eCalculated transition moments in 10−42CV−1m2

units reported in.[15] 𝑓 Fitted transition moments in 10−42CV−1m2 units obtained for the different polyad schemes considered
in this work. gThe definition of rms is given in Eq. (38). hExperimental value from Ref.[66]
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FIGURE 3 Zoom left for the experimental and calculated Raman
spectrum of CO2. The predicted transition lines are obtained
making use of the eigenenergies and eigenfunctions of the algebraic
Hamiltonians ĤP212

(red line), ĤP213
(blue line), and ĤP214

(orange
line). In the box are pointed the main differences, the number
correspond to the polyad which has a better behaviour

FIGURE 4 Zoom right for the experimental and calculated
Raman spectrum of CO2. The predicted transition lines are obtained
making use of the eigenenergies and eigenfunctions of the algebraic
Hamiltonians ĤP212

(red line), ĤP213
(blue line), and ĤP214

(orange
line). In the box are pointed the main differences, the number
correspond to the polyad which has a better behaviour

easily noticed that the overall spectra are similar, and only
slight differences appear lying in the tails.

Fitting the experimental transition moment values in
Table 2, we obtain the derivatives of 𝛼̄ with respect to
curvilinear symmetry coordinates, S𝛼 . The obtained values
are shown in the upper rows of Table 3. As we have done
for the transition moments, we include the values reported
by Tejeda et al.,[62] the results obtained using a linear
approximation for the symmetry coordinates[67] and the
values obtained with curvilinear symmetry coordinates.[15]

In the lower rows of Table 3, we include the derivatives
calculated in the corresponding dimensionless normal
coordinates. The difference between the present work

results and the ones obtained by Tejeda et al.[62] can be due
to the different approaches followed to calculate the eigen-
states and to extract the partial derivative values from the
experimental transition moments. In the latter case, Tejeda
et al.[62] used perturbation theory to map experimental
transition moments and derivative values. The difference
between our results and the results from Ref.,[67] where
a rectilinear coordinates approximation was used, is due
to the considerable nonlinear effects in the polarizability,
specially when only the bending coordinates are involved.
In the case of the results obtained in Ref.,[15] using the
same approach than in the present work, the differences
stem from the different and more accurate fits performed
in the present work, that include the whole set of exper-
imental energies available in Ref.,[11] and consequently,
we expect to have a more accurate set of eigenstates, even
though our results in Tables 2 and 3 deviate from the values
reported by Tejeda et al.[62]

The results presented in Table 3, obtained with dif-
ferent approaches to the partial derivatives of the mean
polarizability, and their influence in the computed Raman
spectrum deserve a discussion. With this aim, we compare
in Figure 5 the experimental spectrum with the calcu-
lated spectrum using the different sets of derivatives in
Table 3. We split the figure in two panels, defined for the
same spectral ranges shown in Figures 3 and 4. As we
include the results of Ref.,[15] we will only consider the
present results for the polyad scheme P212. The depicted
simulations were computed using the present work eigen-
states for polyad scheme P212 and different sets of partial
derivatives of the mean polarizability: (a) the derivatives of
Ref.[62] (blue lines); (b) the derivatives presented in Ref.[15]

(orange lines); and (c) the derivatives obtained in this work
(red lines). It is easily noticed how similar the different
simulation results are.

Another aspect that it is also worth clarifying when
comparing the output of different calculation is the effect
of the number of transitions included in the calculation.
For each polyad scheme, the calculated transitions falling
in the interval (1150,1500) cm−1 are taken from the list
of predicted energies up to 26,000 cm−1 (see Support-
ing Information). The differences between the pairs of
calculated energy levels, considering the selection rules,
provide the transition frequencies, and the transition
moments are computed from the wave functions of the
pairs. Following this approach, in the present work, the
number of transitions included in the simulated spectrum
is of the order of 18,000, whereas in Ref.,[15] only 800 lines
were taken into account. A question which arises is con-
cerned with the effect of the number of lines included. In
other words, it is not clear whether the enhancement of the
agreement with the experimental spectrum is due to the
increase of the number of transitions or to the improved
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TABLE 3 Partial derivatives of the CO2 mean polarizability with respect to curvilinear symmetry coordinates
and to dimensionless normal coordinates

This worke

Derivative (units)a Tejedab Linearc Nonlineard P212 P213 P214(
𝜕𝛼̄

𝜕SΣ+g

)
0
(10−30CV−1m) 3.15±0.02 3.15 3.181 3.20 3.19 3.19(

𝜕2 𝛼̄

𝜕S2
Σ+g

)
0

(10−20CV−1) 2.9±0.2 2.549 2.634 2.61 2.62 2.63(
𝜕2 𝛼̄

𝜕S2
Σ+u

)
0
(10−20CV−1) 0.5±0.1f 0.447 0.448 0.465 0.445 0.445(

𝜕2 𝛼̄

𝜕S2
2a

)
0
(10−20CV−1) 0.36±0.06 0.8395 −0.060 −0.235 −0.258 −0.197(

𝜕3 𝛼̄

𝜕SΣ+g
𝜕S2

2a

)
0
(10−10CV−1m−1) −1.7±0.03 −1.21 −1.2 −1.11 −1.10 −1.13

Dimensionless normal coordinatesg

𝛼̄′
1(10−42CV−1m2) 12.43±0.07 12.44 12.56 12.46 12.44 12.43

𝛼̄′′
11(10−42CV−1m2) 0.45±0.03 0.398 0.411 0.396 0.398 0.399

𝛼̄′′
33(10−42CV−1m2) 0.15±0.04 0.144 0.144 0.153 0.146 0.146

𝛼̄′′
+−(10−42CV−1m2) 2.81±0.08 1.925 2.12 1.85 1.81 1.91

𝛼̄′′′
1+−(10−42CV−1m2) −0.06±0.02 −0.110 −0.06 −0.075 −0.076 −0.073

Note. The second, third and fourth columns include the values obtained by Tejeda et al.,[62] and the results previously obtained
using a linear[67] and nonlinear[15] approximation to the symmetry coordinates. The final three columns are the results obtained
in the present work for the three polyad schemes under study. aPartial polarizability derivatives as defined in Equation (4).
bValues reported in Ref.[62] cValues obtained using a rectilinear coordinate approximation for the symmetry coordinates from

Ref.[67] dValues obtained using a curvilinear coordinate approximation for the symmetry coordinates from Ref.[15] ePresent
work results from the fits to experimental polarizability transition moments shown in Table 2. fBest choice of the two values
provided in Ref.,[62] according to the ab initio CCSD(T) value of Ref.[65] gPolarizability derivatives in terms of dimensionless
normal coordinates as defined in Ref.[62]

FIGURE 5 Experiment (black line) and simulated Raman spectra of CO2 using different values of the derivatives in (4): the given in
Ref.[62] (blue line), the computed in Ref.[15] (orange line) and the optimized set obtained in this work for the polyad scheme P212 (red line)

wave functions. To answer this question, in Figure 6, we
compare the results presented in Ref.[15] and the present
results using the polyad scheme P212 and Hamiltonian
(17). In this figure, the experimental spectrum is depicted
using black lines, and the present work full calculation,
already plotted in Figure 2, is depicted using red lines.
To ascertain the origin of the improvement in the calcu-
lated spectrum, we also include in Figure 6 the following
calculations: the results from Ref.[15] (blue lines) and the
results of the present work limiting the transitions to those
considered in Ref.[15] (orange lines). Comparing these two
latter simulations, the blue lines versus the orange ones,
we conclude that the improved set of eigenstates used in

this work is responsible for the enhancement obtained in
the Raman simulation. Comparing red and orange lines, it
can be easily noticed that the effect of an increase in the
number of transitions included in the calculation is rele-
vant only along the spectrum tails, where no high intensity
transitions are present.

Considering the calculated frequency positions and line
intensities, we conclude that the Raman simulations dis-
played in this work offer a noticeable improvement in the
simulation of CO2 Raman spectrum at 1,743 K with respect
to Ref.[15] results. This cannot be explained by the larger
number of transitions involved in the simulation but to the
improvement in the quality of the wave functions.
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FIGURE 6 Comparison of the experimental Raman spectrum (black lines) of CO2 to the following three simulations: a) the present work
for polyad scheme P212 (red line); b) the one of Ref.[15] (blue line); and c) an alternative one, that encompass the same number of transitions
than Ref.[15] but using the eigenfunctions of present work (orange lines)

FIGURE 7 Left: histogram of number of states by number of polyad. Right: accumulative density of states with respect to the energy for
each polyad scheme

In the framework of our work, it is clear that a key
point is the inclusion of the Fermi resonance. To elucidate
the effect of the resonances involving the stretching modes
characterizing the polyads, we compared for each polyad
the Raman spectrum generated by the wave functions
using the common Hamiltonian Hd and the complete
Hamiltonian Ĥd + VP. The result is that both spectra turn
out to be practically the same with minimum changes
from the quantitative point of view. This fact supports the
conclusion that the resonances characterizing the polyads
are practically irrelevant and that the common contri-
bution Ĥd establishes the physical features of the wave
functions. This fact may induce to think that the three
polyad schemes provide the same Raman spectrum. This
is in fact the case concerning the overall spectrum but
not in details. In Figures 3 and 4, the Raman spectrum
predicted by the three polyads schemes is depicted. Even
though the general trend is similar for the three polyads,
some differences are evident. In the same figures, a zoom
of the spectrum is depicted, where we have pointed out
with circles the regions where differences are manifested.
From qualitative considerations, we have added a tentative
number to the best polyad description. This assignment
may indicate that the best spectrum is provided by the

P212 polyad scheme, although this is questionable due to
the lack of a quantitative criterion at this level of accu-
racy. However, histograms corresponding to the density of
states with respect to the polyad number as well as the
accumulative density with respect to the energy for each
polyad scheme displayed in Figure 7 show quite different
behavior. Whereas for polyad P212, a uniform increase of
states is manifested up to 26,000 cm−1, in the other two
polyads a maximum is reached. This fact is reflected in
the partition function presented in the Supporting Infor-
mation where the convergence of the direct sum of the
vibrational partition function seems that it is not reached
for polyads schemes P213 and P214

[68] despite a considerable
number of states are taken into account. We believe that
anharmonicity reflected in the Raman spectrum together
with the uniform increase of states makes polyad P212 a
better polyad scheme. Although this conclusion is not
definitive, we consider the need to discuss these differ-
ences originated from anharmonic effects because the
expected description in terms of a harmonic oscillator
basis is independent of the polyad scheme as long as the
Hamiltonian is taken to be Ĥ = Ĥd. This fact leads
to the conclusion that the anharmonic effects as well as
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FIGURE 8 Simulated Raman spectrum of CO2 at 100, 300, 1000, 1743, 2000 and 3000 K using the eigenenergies and eigenfunctions of the
algebraic Hamiltonian ĤP212

. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Raman intensity obtained for some transitions using the Hamiltonian ĤP212
(17) (left part) and the Hamiltonian ĤNF (4.1)

(right part)

Hamiltonian ĤP212
, rms=0.14 cm−1 Non-Fermi Hamiltonian ĤNF , rms= 25.76 cm−1|𝜈i⟩ → |𝜈f⟩ transition 𝜈f − 𝜈i (cm−1) Raman |𝜈i⟩ → |𝜈f⟩ transition 𝜈f − 𝜈i (cm−1) Raman

Intensity Intensity|0; 000; Σ+
g ⟩ → |2; 020; Σ+

g ⟩ 1285.39 4.112 |0; 000; Σ+
g ⟩ → |2; 100; Σ+

g ⟩ 1249.22 10.80|0; 000; Σ+
g ⟩ → |2; 100; Σ+

g ⟩ 1388.28 6.667 |0; 000; Σ+
g ⟩ → |2; 020; Σ+

g ⟩ 1387.96 0.1419|2; 020; Σ+
g ⟩ → |4; 120; Σ+

g ⟩ 1262.87 2.203 |2; 020; Σ+
g ⟩ → |4; 120; Σ+

g ⟩ 1244.44 3.682|2; 100; Σ+
g ⟩ → |4; 200; Σ+

g ⟩ 1283.06 1.898 |2; 100; Σ+
g ⟩ → |4; 200; Σ+

g ⟩ 1265.19 7.438|2; 020; Σ+
g ⟩ → |4; 200; Σ+

g ⟩ 1385.95 2.888 |2; 100; Σ+
g ⟩ → |4; 120; Σ+

g ⟩ 1383.18 0.0488|2; 100; Σ+
g ⟩ → |4; 120; Σ+

g ⟩ 1408.91 3.645 |2; 020; Σ+
g ⟩ → |4; 040; Σ+

g ⟩ 1408.64 0.1707|4; 120; Σ+
g ⟩ → |6; 140; Σ+

g ⟩ 1244.31 1.002 |4; 040; Σ+
g ⟩ → |6; 140; Σ+

g ⟩ 1239.66 1.044|4; 120; Σ+
g ⟩ → |6; 300; Σ+

g ⟩ 1267.28 0.5805 |4; 120; Σ+
g ⟩ → |6; 220; Σ+

g ⟩ 1256.6 2.329|4; 200; Σ+
g ⟩ → |6; 300; Σ+

g ⟩ 1271.39 1.144 |4; 200; Σ+
g ⟩ → |6; 300; Σ+

g ⟩ 1278.35 3.908|6; 300; Σ+
g ⟩ → |6; 300; Σ+

g ⟩ 1393.14 1.595 |6; 300; Σ+
g ⟩ → |6; 220; Σ+

g ⟩ 1374.59 0.0171|4; 120; Σ+
g ⟩ → |6; 300; Σ+

g ⟩ 1394.47 1.055 |4; 120; Σ+
g ⟩ → |6; 140; Σ+

g ⟩ 1403.86 0.0590|4; 120; Σ+
g ⟩ → |6; 140; Σ+

g ⟩ 1427.86 1.646 |4; 040; Σ+
g ⟩ → |6; 060; Σ+

g ⟩ 1429.32 0.1135|6; 140; Σ+
g ⟩ → |8; 320; Σ+

g ⟩ 1250.56 0.1672 |6; 060; Σ+
g ⟩ → |8; 160; Σ+

g ⟩ 1234.88 0.3175|6; 300; Σ+
g ⟩ → |8; 320; Σ+

g ⟩ 1254.64 0.4888 |6; 140; Σ+
g ⟩ → |8; 240; Σ+

g ⟩ 1248. 0.7269|6; 300; Σ+
g ⟩ → |8; 400; Σ+

g ⟩ 1265.41 0.4257 |6; 220; Σ+
g ⟩ → |8; 320; Σ+

g ⟩ 1266.27 1.215|6; 300; Σ+
g ⟩ → |8; 400; Σ+

g ⟩ 1387.16 0.6370 |6; 300; Σ+
g ⟩ → |8; 320; Σ+

g ⟩ 1362.5 0.0061|6; 140; Σ+
g ⟩ → |8; 320; Σ+

g ⟩ 1404.8 0.3841 |6; 220; Σ+
g ⟩ → |8; 240; Σ+

g ⟩ 1395.26 0.0205|6; 300; Σ+
g ⟩ → |8; 320; Σ+

g ⟩ 1411.14 0.6627 |6; 140; Σ+
g ⟩ → |8; 160; Σ+

g ⟩ 1424.53 0.0398

the energy distribution are responsible for the fine details
shown in Figures 3 and 4.

Finally, in Figure 8, we present the simulation of the
Raman spectrum provided by the P212 polyad for different
temperatures. In order to see the differences in detail, in
Figure 8 we show the predictions divided in two frequency
ranges. In general, at temperature 100 K, only two peaks
dominate the Raman spectrum. As the temperature aug-
ments to 300 K, the population of excited states increases
appearing intensities around 1,285 and 1,390 cm−1 even
with dominance over the intensities of higher tempera-
ture. With the exception of the previous transition lines,
at temperatures higher than 1,000 K, the intensities of
other transitions involving higher excited states increase

approaching the spectral lines to the results at T = 1,743 K.
Raman predicted for temperatures 2,000 and 3,000 K
are also displayed with similar behavior. This result
shows a strong temperature intensity dependence at some
frequencies.

4.1 Intensity borrowing via Fermi
resonance
In this section, we focus on the importance of the Fermi
interaction for a correct description of the CO2, which
is common to the three polyads. Since its introduction
by Fermi in 1931,[42] the Fermi interaction in CO2 is
a paramount example of a situation where a sole reso-
nance or coupling is capable of improving dramatically a

http://wileyonlinelibrary.com
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FIGURE 9 Raman intensities of transitions from Table 4 obtained using Hamiltonian ĤP212
(17) (blue) and Hamiltonian ĤNF (4.1) (brown)

FIGURE 10 Inverse participation ratio as a function of the state energy for polyad 26 eigenstates and six different symmetries. States are
obtained by diagonalization in the symmetry-adapted basis of Hamiltonian ĤP212

(17) (left panel) and non-Fermi Hamiltonian ĤNF (4.1)
(right panel). Dot colors indicate the symmetry, as shown in the plot legend

molecular species spectroscopic description. For this rea-
son, we include in this work some features of the Fermi
resonance not discussed before. To illustrate the impor-
tance of the Fermi resonance, we consider the following
Hamiltonian in the polyad scheme P212

ĤNF =
3∑

i=1
𝜔i𝜈̂i +

∑
i≤𝑗

xi𝑗{𝜈̂i, 𝜈̂𝑗} + g22 l̂2

+ x113{𝜈2
1 , 𝜈3} + x133{𝜈̂1, 𝜈

2
3} + x123𝜈̂2{𝜈̂1, 𝜈̂3}

+ 𝛼s
1{(n̂1 + n̂2), D̂L + 2n̂1n̂2} + 𝛼sb

2 n̂(D̂L + 2n̂1n̂2)

+ 𝑓uu∕gg[b†2
Σg

b2
Σu

+ H.c.], (39)

where the three Fermi interactions have been neglected
from Hamiltonian (17). We carry out a fit with this 16
parameter Hamiltonian to the 178 experimental vibra-
tional levels, obtaining an rms = 25.76 cm−1. As expected,
it is mandatory to include the Fermi resonance in order to
obtain a realistic description of CO2, and the Hamiltonian
terms that include the anharmonic resonances between
bending and stretching modes are fundamental. In Table 4,
we show the comparison of the Raman intensity obtained

for a selected set of transitions using Hamiltonians ĤP212

(17) and HNF (4.1). The conspicuous differences in transi-
tion labels and energies are explained taking into account
that the fitting procedure is based on the minimization of
energy differences with the experiment, without consider-
ing the quantum labels assignment. It is worth to notice
that the value of the Raman intensities provided by the
Hamiltonian ĤNF (4.1) is higher than the ones from Hamil-
tonian ĤP212 (17) for the lowest energy transitions in Table 4
(where transitions are ordered according to the polyad
number), whereas the opposite occurs for the high energy
states. This behavior is clearly seen in Figure 9, where
the values of the transition frequencies were fixed to the
experimental values in order to facilitate the comparison.

Additionally, the effect of the Fermi resonance on the
vibrational wave functions can be assessed with the inverse
participation ratio (IPR), a quantity that measures the level
of localization of a quantum state in a given basis.[69] This
quantity is closely related to the Shannon entropy,[70] and
it has recently been used in algebraic models to character-
ize quantum phase transitions.[71] For a quantum state |Ψ⟩
expressed in the basis {|i⟩}D

i=1, the IPR is defined as
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|Ψ⟩ = D∑
i=1

𝛼i|i⟩; IPRΨ = 1

D
D∑

i=1
𝛼4

i

,
(40)

where D is the basis dimension. An IPR value of 1 indicates
a strongly mixed state, with all basis states participating in
the state with equal components, whereas the minimum
1∕D value is obtained for a |Ψ⟩ state that has only one
nonzero component.

We show in Figure 10 a scatterplot of IPR values versus
state energies for a subset of polyad P212 = 26 eigenfunc-
tions, with symmetryΣ+

g ,Σ+
u ,Δg,Δu,Γg, orΓu. We compare

the results for Hamiltonian ĤP212 (17) in the left panel with
non-Fermi Hamiltonian ĤNF (4.1) in the right panel. The
different colors indicate the different symmetry labels, as
stated in the plot legend, and the dimension D depends on
the symmetry. As expected, Hamiltonian ĤP212 eigenstates
have larger IPR values than Hamiltonian ĤNF eigenstates,
which indicates the stronger mixing due to the presence
of the Fermi resonance. But also the qualitative behavior
is different, with more localized states for higher energies
in the ĤP212 and an opposite behavior in the non-Fermi
ĤNF case.

5 SUMMARY AND CONCLUSIONS

In this contribution, we present a high quality description
of the CO2 vibrational spectroscopy using the algebraic
model U1(2) × U(3) × U2(2). We compare the Raman
spectrum simulated using wave functions obtained fitting
the algebraic Hamiltonian to experimental data using the
three different polyad schemes more frequently found in
the literature for this particular molecular species, P212,
P213, and P214. The algebraic Hamiltonian is the same in
the three cases except for the resonance operator that char-
acterizes the polyad scheme (13), (14), and (15). We have
carried out a detailed analysis of the effects of the differ-
ent interactions included in the algebraic Hamiltonian. As
regards the fit to experimental energy terms, we obtained
a very good agreement with the data, and the final rms
obtained with the three polyad schemes is similar rmsP212 ≃
rmsP213 = 0.14 cm−1, and rmsP214 = 0.20 cm−1.

The wave functions derived from the energy fits are
evaluated through the simulation of the Raman spectrum.
Apart from differences in the tails of the energy regions
considered, the spectra for the three polyad schemes fol-
low similar structures, which lead us to conclude that
the Raman spectrum is mostly dictated by interactions
common to the three polyad schemes.

For the three polyad schemes, the quality of the energy
fits is similar to our previous results in Ref.,[11] and we have
notably improved the calculated Raman intensities from
Refs.[15,67]. As the number of transitions entering into the

Raman spectrum simulation is much larger in the present
work, in order to elucidate the origin of the improvement
in the calculated intensities, we have simulated the Raman
spectrum with a reduced number of transitions, taking
into account only those involved in the previous calcula-
tion. These results are shown in Figure 6 and demonstrate
that the improvement is mostly due to the higher quality
of the wave functions in the present work, although the
larger number of considered transitions makes a difference
mainly in the tails of the spectrum, with a significantly
improved agreement with the experiment.

Another possible source of discrepancy with previous
works could stem from the optimized partial derivatives
of the polarizability. In order to clarify the importance of
these quantities, we have modeled the CO2 Raman spec-
trum using both previous and present work values for
them. As shown in Figure 5, the spectrum structure turns
out to be very similar.

Based on the previous arguments, we conclude that the
resonances including the asymmetric stretching mode that
define the three polyad schemes more frequently found in
the literature are not relevant to obtain a good vibrational
description in light of the simulations of the CO2 Raman
spectrum carried out in this work. The three polyads play
similar roles because the truly necessary resonance is the
Fermi interaction. However, in detail, the differences are
manifested among the three polyad schemes due to anhar-
monic effects as well as energy distribution.

Finally, predictions of the Raman spectrum at tempera-
tures T= 100, 300, 1,000, 2,000, and 3,000 K were presented
in Figure 8. In general, due to the increasing of excited
states population, some intensity peaks increase with
temperature.
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