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IMPROVED ENERGY METHODS FOR NONLOCAL DIFFUSION

PROBLEMS

JOSÉ A. CAÑIZO AND ALEXIS MOLINO

Abstract. We prove an energy inequality for nonlocal diffusion operators of
the following type, and some of its generalisations:

Lu(x) :=

∫
RN

K(x, y)(u(y) − u(x)) dy,

where L acts on a real function u defined on RN , and we assume that K(x, y)
is uniformly strictly positive in a neighbourhood of x = y. The inequality
is a nonlocal analogue of the Nash inequality, and plays a similar role in the
study of the asymptotic decay of solutions to the nonlocal diffusion equation
∂tu = Lu as the Nash inequality does for the heat equation. The inequality
allows us to give a precise decay rate of the Lp norms of u and its derivatives.
As compared to existing decay results in the literature, our proof is perhaps
simpler and gives new results in some cases.
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1. Introduction

In this paper we develop energy methods which are useful in the study of some
partial differential equations involving nonlocal diffusion terms. We start by the
basic example which is the following integro-differential equation in convolution
form:

(1) ∂tu(t, x) =

∫

RN

J(x− y)
(
u(t, y)− u(t, x)

)
dy, u(0, x) = u0(x)

where t ≥ 0 is the time variable, x ∈ RN is the space variable, u = u(t, x) ∈ R is the
unknown, and J is the diffusion kernel. Typically one assumes that J is smooth,
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2 JOSÉ A. CAÑIZO AND ALEXIS MOLINO

nonnegative, radially symmetric, and with integral 1; we also mention a variety
of models with different assumptions and variations of (1) in Section 4. Equation
(1) and its relatives appear as a nonlocal version of the usual diffusion equation
∂tu = ∆u, and it is known that (1) approximates it when J is close to a Delta
function (see Theorem 1.8 and the remarks before it).

We will apply energy methods to deal with nonlocal problems that not necessarily
involve a convolution. That is, problems of the form

(2) ∂tu(t, x) =

∫

RN

K(x, y)(u(t, y)− u(t, x)) dy,

where our main hypotheses on K can be summarized as follows: K(x, y) is a non-
negative symmetric function with supy∈RN

∫
RN K(x, y)dx ≤ CK and such that K

is strictly positive in a neighborhood of the closet set {x = y}. Furthermore, the
symmetry of K can be replaced by integrability conditions (see Subsection 4.2).
On the other hand, observe that it makes sense to assume that K(x, x) > 0 since in
many models it means that the probability that individuals remain for some time
at the point where they are is positive.

As a particular application which motivates our arguments we consider the non-
local dispersal model proposed by Cortázar et al. (2007) (see also Cortázar et al.
(2011); Cortázar et al. (2015); Cortázar et al. (2016)):

(3) ∂tu(t, x) =

∫

R

J

(
x− y

g(y)

)
u(t, y)

g(y)
dy − u(t, x), in R× [0,∞),

with a prescribed initial data u(x, 0) = u0(x) defined on R. Here J is an even,
positive, smooth function such that

∫
R
J(x) dx = 1 and supp J = [−1, 1], and g

is a continuous positive function which accounts for the dispersal distance which
depends on the departing point. In this model u represents the spatial distribution
of a certain species, and g models the heterogeneity of the environment which can
affect the distribution of a species through space-dependent dispersal strategies.
For this model we are able to give an explicit rate of decay of the Lp norm of
solutions, which is to our knowledge a new result (see Theorem 4.3).

The driving idea of our methods is that solutions to (1) behave in many ways
like solutions to the heat equation

(4) ∂tu = ∆u, u(0, x) = u0,

where as usual the Laplacian ∆ acts only on the space variable x (see Theorem
1.8 and the comments before it). For more details we refer the reader to Sun
et al. (2011) for the Cauchy problem, Cortázar et al. (2009) for Dirichlet boundary
conditions (see also Molino and Rossi (2016) in a more general framework) and
Cortázar et al. (2008) for Neumann boundary conditions. One important property
of (4) is the following time decay of solutions (see for instance Giga et al. (2010)):
there is a constant C = C(N, p) > 0 such that

(5) ‖u‖pp ≤
(
‖u0‖

−pγ
p + C‖u0‖

−pγ
1 t

)− 1
γ , for all t ≥ 0,

which holds for any 1 < p < +∞ and any initial condition u0 ∈ L1(RN ) ∩ Lp(RN )
nontrivial, and where

γ :=
2

N(p− 1)
.
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In fact, it still holds for u0 ∈ L1(RN ) and all t > 0 by removing the term ‖u0‖
−pγ
p .

Here and below, Lp(RN ) denotes the usual Lebesgue space of p-integrable functions
on RN , with associated norm denoted by ‖ · ‖p. There are several ways of showing
this decay and regularization property for the heat equation. One of them is noticing
that the Lp norms are Lyapunov functionals for (4): if u solves (4) with u0 ∈
Lp(RN ) then

(6)
d

dt
‖u‖pp = −

4(p− 1)

p

∫

RN

∣∣∇(u
p
2 )
∣∣2.

One can then compare the right hand side term to ‖u‖p by using the Gagliardo-
Nirenberg-Sobolev inequality (which in this particular case is known as the Nash
inequality Nash (1958))

(7) ‖v‖2 ≤ CN ‖∇v‖θ2 ‖v‖1−θ
1 ,

with

θ :=
N

N + 2
.

This inequality is valid in any dimension N ; in dimensions N ≥ 3 it can easily be
obtained as a consequence of the more familiar Sobolev inequality ‖u‖2∗ ≤ C‖∇u‖2,
where 2∗ := 2N/(N − 2). By using (7) with v = up/2 we obtain for any p ≥ 2 that

(8)

∫

RN

∣∣∇(u
p
2 )
∣∣2 ≥ C

− 2
θ

N ‖u‖
p
θ
p ‖u‖

−p(1−θ)
θ

p
2

≥ C
− 2

θ

N ‖u‖p(1+γ)
p ‖u‖−pγ

1 ,

where the last step is obtained through an interpolation of ‖u‖p/2 between ‖u‖p
and ‖u‖1. Due to mass conservation for the heat equation we have ‖u‖1 ≤ ‖u0‖1 for
all times t ≥ 0 (this inequality is of course an equality for nonnegative, finite-mass
solutions). Hence using (8) in (6) one has

d

dt
‖u‖pp ≤ −C ‖u‖p(1+γ)

p ‖u0‖
−pγ
1 ,

for some constant C = C(N, p). This is a differential inequality for ‖u‖p that
readily gives the decay (5).

In the context of diffusion equations, the strategy of using the Lp norm of u and
its derivative as a means for studying properties of solutions is known as the energy
method. It is a close relative of a common and quite successful strategy in kinetic
equations and dissipative PDE sometimes known as the entropy method (Arnold

et al., 2004; Bakry and Émery, 1985; Bonforte et al., 2010; Carrillo et al., 2001;
Desvillettes and Villani, 2004; Gross, 1975; Otto and Villani, 2000; Villani, 2002),
where one compares the time derivative of a Lyapunov functional with the Lya-
punov functional itself via a functional inequality in order to obtain a certain decay
rate for solutions. These energy methods have the advantage of being quite ro-
bust, often being applicable to equations that are not explicitly solvable by Fourier
transform methods, and to nonlinear problems. The question that motivates this
paper is whether these ideas can be adapted to equation (1) in order to show a
decay property similar to (5). One important observation is that the same state-
ment cannot be true for solutions of (1), since there is no instantaneous L1 to Lp

regularization. In fact, the Lp norms are still a Lyapunov functional for (1) (as is
well known, any convex function gives a Lyapunov functional for (1)): if u is an Lp
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solution to (1) then

(9)
d

dt
‖u‖pp = −DJ

p (u).

Here, the Lp dissipation DJ
p (u) is defined for any measurable u : RN → R as

(10) DJ
p (u) :=

p

2

∫

RN

∫

RN

J(x− y)
(
u(x)− u(y)

)(
φp−1(u(x)) − φp−1(u(y))

)
dxdy,

where for q > 0 we denote by φq the antisymmetric extension of the usual q-th
power, that is,

φq(s) := |s|q sgn(s), s ∈ R.

Of course, since φp−1 is nondecreasing, the integrand in (10) is also nonnegative
and always makes sense as a number in [0,+∞]. We point out that for nonnegative
u the expression becomes a bit simpler,

DJ
p (u) :=

p

2

∫

RN

∫

RN

J(x− y)
(
u(x)− u(y)

)(
u(x)p−1 − u(y)p−1

)
dxdy.

Precisely this strategy was discussed in Ignat and Rossi (2009), where it was re-
marked that no inequality of the following form can hold, for any q > 2 and a
smooth, nonnegative, compactly supported function J :

DJ
2 (u) ≥ C‖u‖2q.

Hence the natural analogue of the usual Sobolev inequality does not hold in the
nonlocal case. Similarly, the direct analogue of (8) (with DJ

p (u) on the left hand

side) cannot hold, since it would imply an L1−Lp regularization effect on (1) which
is known to fail. In view of this failure, a different strategy was followed there,
leading to different inequalities and applications to several linear and nonlinear
equations involving nonlocal diffusions. Similar ideas were developed in Brändle
and de Pablo (2015) in order to establish decay estimates for fractional diffusions,
with modified inequalities used in place of the usual Nash inequality. After the
statement of our results we compare them in more detail to those in Brändle and
de Pablo (2015); Ignat and Rossi (2009) and other previous works.

Main results. Our purpose is to show a simple inequality that plays the role of
(8) and provides a means to show precise decay properties of (1) and (2):

Hypothesis 1. J : RN → [0,+∞) is a measurable function such that for some
r, R > 0 we have

(11) J(z) ≥ r, for all |z| < R .

In particular, this is obviously satisfied if J is continuous in a neighborhood of
0 with J(0) > 0.

Theorem 1.1 (Lp energy inequality). Let J : RN → R be a function satisfying
Hypothesis 1. For every N ≥ 1 and p ≥ 2, there exists a positive constant C =
C(N, p) > 0 such that

(12) DJ
p (u) ≥ Crmin

{
RN+2‖u‖−pγ

1 ‖u‖p(1+γ)
p , RN‖u‖pp

}
,

for all u ∈ L1(RN ) ∩ Lp(RN ), where γ := 2
N(p−1) .
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This inequality serves as a useful analogue of (8) in the nonlocal case, as we will
see shortly. If one does not care about the precise dependence of the constant C on
J then this can be more simply stated as: there exists a constant C = C(N, p, J)
depending only on N , p and J such that

(13) DJ
p (u) ≥ Cmin

{
‖u‖−pγ

1 ‖u‖p(1+γ)
p , ‖u‖pp

}
.

The constants in the above inequalities can be estimated explicitly by following the
proof. To our knowledge, inequality (12) is new. Similar modified Nash inequali-
ties are considered in Carlen et al. (1987); Ignat and Rossi (2009), and especially
in Brändle and de Pablo (2015)[Corollary 4.7]. In the latter, (p, q)-inequalities in-
volving the p and q norms of u are given for p > q > 1; ours is the limiting case
with q = 1, not included there. We notice the L1 case is fundamental for the gen-
eralisations we describe later, since mass is a natural conserved quantity in many
models.

The inequality in Theorem 1.1 immediately allows us to deduce bounds on the
asymptotic behaviour of several nonlocal diffusion equations (see Section 4). Let
us give the argument for equation (1), which is the simplest possible model: using
(9) we have

d

dt
‖u‖pp = −DJ

p (u) ≤ −Crmin
{
RN+2‖u‖−pγ

1 ‖u‖p(1+γ)
p , RN‖u‖pp

}
.

Taking into account that ‖u‖1 is nonincreasing in time (it is conserved for nonneg-
ative solutions) one has

d

dt
‖u‖pp ≤ −Crmin

{
RN+2‖u0‖

−pγ
1 ‖u‖p(1+γ)

p , RN‖u‖pp

}
.

This is a differential inequality for ‖u‖p, which can be solved (see Lemma 4.1) to
yield the following result:

Theorem 1.2. Take a function J ∈ L1(RN ) satisfying Hypothesis 1 and p ∈
[2,+∞). Consider the solution u to equation (1) with initial data u0 ∈ L1(RN ) ∩
Lp(RN ). There exists a constant C = C(N, p) (the same as in Theorem 1.1) such
that

(14) ‖u‖pp ≤

{
‖u0‖

p
p for 0 ≤ t ≤ t0,(

‖u0‖
−pγ
p + CγrRN+2‖u0‖

−pγ
1 (t− t0)

)− 1
γ for t ≥ t0,

where γ := 2
N(p−1) and

t0 = max

{
0,

1

CrRN
log

(
R

2
γ ‖u0‖

−p
1 ‖u0‖

p
p)
)}

.

Again, if we are not interested in the precise dependence of the bound on J ,
‖u0‖1 and ‖u0‖p then the following statement is simpler: there exists a constant
C = C(r, R,N, p, ‖u0‖1, ‖u0‖p) such that

(15) ‖u‖pp ≤ C(1 + t)−
N(p−1)

2 for all t ≥ 0.

This is a direct consequence of the bound (14); see Remark 4.2. In this sense,
Theorem 1.1 is a nonlocal analogue of the Gagliardo-Nirenberg-Sobolev (or Nash)
inequality: it allows us to give a decay rate of the nonlocal diffusion equation (1),
and in fact this decay rate approaches that of the heat equation as (1) approaches
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it (see Theorem 1.8). Furthermore, due to the interpolation formula and using
inequality (15) for p = 2, we obtain that for q ∈ [1, 2]

‖u‖qq ≤ ‖u‖2−q
1 ‖u‖

2(q−1)
2

≤ ‖u‖2−q
1 Cq−1(1 + t)−

N(q−1)
2

≤ C̃(1 + t)−
N(q−1)

2 ,

which means that (15) also holds for 1 ≤ p < 2 and some positive constant C =
C(J,N, p, ‖u0‖1, ‖u0‖2).

We also give inequalities related to higher derivatives of u in Section 3, and
deduce from them corresponding decay properties of derivatives of u, still at the
same asymptotic rate as those for the heat equation. For k ≥ 0 we define the
differential operator Dk acting on a function u as

Dku := −(−∆)k/2u.

In order to ensure that this expression makes sense we will always assume that
u ∈ Hk(RN ) (i.e., the classical Sobolev space W k,2(RN )) when applying Dk. The
following result gives an estimate of DJ

2 (D
ku); note that the case k = 0 is just the

p = 2 case of Theorem 1.1:

Theorem 1.3. Let N ≥ 1 be an integer and J : RN → R be a function satisfying
Hypothesis 1. There exists a positive constant C = C(N) such that

(16) DJ
2 (D

ku) ≥ Crmin

{
Rk+N+2‖u‖

− 4
N+2k

1 ‖Dku‖
2+ 4

N+2k

2 , Rk+N‖Dku‖22

}

for all u ∈ Hk(RN ) ∩ L1(RN ).

As a consequence one can obtain a decay of higher derivatives of solutions to (1).
Notice that the case k = 0 of the following result is just Theorem 1.2 with p = 2:

Theorem 1.4. Take a function J satisfying Hypothesis 1 and a real k ≥ 0. Con-
sider the solution u to equation (1) with initial data u0 ∈ L1(RN )∩Hk(RN ). There
exists a constant C = C(N, k) (the same as in Theorem 1.3) such that

‖Dku‖22 ≤

{
‖Dku0‖

2
2 for 0 ≤ t ≤ t0,(

‖Dku0‖
−2γ
2 + CrγRk+N+2‖u0‖

−2γ
1 (t− t0)

)− 1
γ for t ≥ t0,

where γ := 2
N+2k and

t0 = max

{
0,

1

CrRk+N
log

(
R

2
γ ‖u0‖

−2
1 ‖Dku0‖

2
2

)}
.

The decay in Theorem 1.2 can be interpreted as follows: for large times, the
asymptotic decay of the Lp norm of solutions to the nonlocal diffusion equation
(1) is the same as that of the heat equation. However, there can be an initial
time during which a different decay takes place. The threshold between the two is
related to the value of the Lp norm of u: if it is large then heuristically (since we
are assuming u0 is integrable) the main contribution to the Lp norm comes from
local concentrations of u. Since the smoothing effect of (1) is much weaker than
that of the heat equation, the rates of decay of the two differ. On the other hand,
when ‖u‖p is small, the concentrations of u do not play a major role and the decay
of both equations becomes comparable. The inequality (12) and the corresponding
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decay (14) are quite precise on the dependence on J and the initial data, giving
a direct estimate of the time when the “heat-like” diffusion kicks in: the time t0
depends logarithmically on the ratio between ‖u0‖p and ‖u0‖1.

Theorem 1.2 as stated is not new; the simplified statement (15) can be proved for
example by Fourier transform methods (Andreu-Vaillo et al., 2010), and the decay
(14) can probably be obtained as well. The important advantage of using Theorem
1.1 to prove Theorem 1.2 is that the method is quite robust under modifications
in the linear operator. In Subsection 4.2 we prove a result similar to Theorem 1.2
which gives decay properties for general nonlocal diffusion equations with a more
general kernel K(x, y) instead of J(x− y): consider the equation

(17) ∂tu(t, x) =

∫

RN

K(x, y)u(t, y) dy − σ(x)u(t, x),

where K : RN × RN → [0,∞) is a general kernel (not necessarily symmetric) and
σ : RN → [0,+∞) is a function. Let us keep our discussion at a formal level for
the moment and not worry about the problem of existence of solutions to (17) or
the precise regularity of K and σ. Equation (17) is a general form of the scattering
equation (see for example Michel et al. (2004)), and contains many others as a
particular case. The nonlocal diffusion (1) is recovered if K(x, y) = J(x − y) and
σ(x) =

∫
RN J for all x, y. In the case that σ(x) =

∫
RN K(x, y) dy the equation can

be written as

(18) ∂tu(t, x) =

∫

RN

K(x, y)
(
u(t, y)− u(t, x)

)
dy,

which is a type of nonlocal diffusion equation, where the nonlocality is not given
by a convolution. Similarly, if we assume

(19) σ(x) =

∫

RN

K(y, x) dy,

then equation (17) is formally the Kolmogorov forward equation for a Markov jump
process with jump rates given by K, where u represents the probability density
of the process (Ethier and Kurtz, 1986, Chapter 4.2). Notice that (19) is just the
statement that the total mass

∫
RN u(t, x) dx is formally conserved in time (as should

happen for a probabilistic evolution). In that sense, equation (17) contains many
evolution equations linked to Markov processes, and has multiple applications. (We
give an example linked to a population dispersal in Section 4.3.) Equation (17) has
some properties in common with diffusion processes, but it is important to notice
that (17) may have finite-mass equilibria (unlike the usual heat equation, whose
only finite-mass equilibrium is 0).

Let us state a precise result which is relevant for nonlocal diffusions. For all of
them we will assume:

Hypothesis 2. There exist r, R > 0 such that K(x, y) ≥ r whenever |x− y| < R.

This is the analogue of Hypothesis 1 in this setting. In order to ensure that Lp

solutions of (17) exist we will also assume that K is measurable and that for some
CK > 0

(20)

∫

RN

K(x, y) dy ≤ CK ,

∫

RN

K(y, x) dy ≤ CK , for all x ∈ R
N .
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This ensures that the linear operator on the right hand side of (17) is bounded in
L1(RN ) and L∞(RN ) (and hence, by interpolation, in any Lp(RN ) with 1 ≤ p ≤
∞).

Theorem 1.5. Take p ∈ [2,+∞). Assume that K : RN × RN → [0,+∞) satisfies
Hypothesis 2 and (20). Consider equation (17) with σ given by (19), and assume
that there exists an equilibrium u∞ of (17) satisfying

(21)
1

m
≤ u∞(x) ≤ m, for all x ∈ R

N ,

for some m > 0. Let u be any solution to equation (17) with initial data u0 ∈
L1(RN ) ∩ Lp(RN ). There exists a constant C depending only on r, R, N , m, p,
‖u0‖1 and ‖u0‖p such that

‖u‖pp ≤ C(1 + t)−
N(p−1)

2 , for all t ≥ 0.

In Section 4.3 we give an application of these results to a dispersal equation
proposed in Cortázar et al. (2007), obtaining an explicit rate of convergence to
equilibrium.

Remark 1.6. Condition (20) is just included in order to ensure that there are well-
defined solutions to (17), but it does not play a role in the decay estimates. It can
be removed if it can be justified by other means that solutions to (17) exist and
rigorously satisfy the entropy property (9).

Remark 1.7. In Theorem 1.5 one can also give a more precise estimation of the
decay and the constants involved, as we did in Theorem 1.2. We have preferred in
this case to leave the statement in this form for simplicity, but the reader can state
the analogue of Theorem 1.2 without difficulty.

We refer to Section 4.2 for details on this and a proof of Theorem 1.5.

Heat equation scaling. It is worth mentioning that Theorems 1.1 and 1.2 pass
to the limit well when the nonlocal equation (1) approximates the heat equation.
Let J be a smooth and radially symmetric convolution kernel with J(0) > 0, and
denote by Jǫ the rescaling

Jε(z) :=
C(J)

ε2+N
J
(z
ε

)
, with C(J)−1 =

1

2

∫

RN

J(z)z2N dz.

It is well-known that, uε, the solution to the equation

(22) ∂tu
ε(t, x) =

∫

RN

Jε(x− y)((uε(t, y)− uε(t, x)) dy, x ∈ R
N , t > 0,

with initial data u0 ∈ C(RN ) converges to the solution of the heat equation ∂tv =
∆v with the same initial data (see for instance Andreu-Vaillo et al. (2010); Rey
and Toscani (2013)). Since J satisfies Hypothesis 1 for some r, R > 0 one has

Jε(z) ≥
rC(J)
ε2+N , for all |z| < Rε. Replacing this in expression (14) the ε is cancelled

and we obtain the following result:

Theorem 1.8. Assume J satisfies Hypothesis 1. Let uε be a solution of (22) with
initial data u0 ∈ L1(RN ) ∩ Lp(RN ) with p ∈ [2,∞). Then it holds

‖uε(t, ·)‖pp ≤
(
‖u0‖

−pγ
p + C1‖u0‖

−pγ
1 (t− t0)

)− 1
γ for t ≥ t0,
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where C1 = C(N, p)γrRN+2C(J) does not depend on ε and

t0 = max

{
0,

ε2

CrRNC(J)
log

(
ε

2
γ R

2
γ ‖u0‖

−p
1 ‖u0‖

p
p)
)}

.

In particular, t0 = 0 for all ε < ε0 = ‖u0‖
γp
2
1 /

(
R‖u0‖

γp
2
p

)
.

The interest of the above theorem is that the decay is preserved in the scaling
that leads to the heat equation. In addition, for small ε the expression of the decay
is exactly of the same form as that of the heat equation, given in (5).

Comparison to results in the literature. Several precise results exist already
regarding the decay properties of equation (1). Let us give a brief review and
compare them to our own. Nonlocal diffusions including (1) have been studied
in Chasseigne et al. (2006), and we refer the reader to the recent book Andreu-
Vaillo et al. (2010) for background and an extensive review of the state of the art
for equations involving similar nonlocal terms. A similar approximation to the
heat equation, with a particular kernel J , was studied in Rey and Toscani (2013),
and some nonlocal approximations to Fokker-Planck equations have been recently
considered in Mischler and Tristani (2016) and very recently in Toscani (2017).

The observation that solutions to (1) decay asymptotically like the heat equation
has been present since the first works on the matter, with several analogues of
(5). The first ones were based on the Fourier transform of (1), which is explicitly
solvable Chasseigne et al. (2006); Ignat and Rossi (2007, 2008). Energy methods
were considered in Ignat and Rossi (2009); results were given on the decay of several
models including the linear nonlocal diffusion equation (1) and a nonlocal version
of the p-Laplacian evolution equation. The method in Ignat and Rossi (2009) is
different from ours, and is based on a splitting of the function u into a “smooth”
part and a “rough” part. The ideas are somehow reminiscent of ours, since they
borrow techniques from Fourier splitting by Schonbek (1980) and there is a parallel
with our splitting of the function u in Fourier space. The results from Ignat and
Rossi (2009) are in dimensions N ≥ 3 and K symmetric; on the other hand, they
are well-adapted to nonlinear problems like the nonlocal p-Laplacian equation. Our
inequality seems to be a simpler argument which works in any dimension, is well-
adapted to the linear nonlocal diffusion operator, but does not easily carry over to
nonlinear nonlocal operators. It also gives a simple way to track the dependence of
the decay on the parameters of the problem, especially the diffusion kernel J .

Inequalities of the type (12) were already noticed in Brändle and de Pablo (2015),
and used in order to obtain decay and regularisation properties for nonlinear diffu-
sions of the type (1) where the function J typically behaves as |x|−N−α as x → +∞,
for some 0 < α ≤ 2. Their proof goes along the lines of Ignat and Rossi (2009).
Inequality (12) is a limit case of their results, but is not included there for similar
reasons as in Ignat and Rossi (2009).

As compared to previous results, we summarise our contributions as follows:

(1) Inequality (12) seems to be new. Similar ideas were used in Brändle and
de Pablo (2015); Ignat and Rossi (2009), but (12) is a limiting case not
included in these works.

(2) Our proof of the inequality (12) is straightforward, works in any dimension,
and in our opinion simplifies previous arguments for related inequalities. It
also leads to a precise estimate of the constants in the inequality, which have
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in particular the correct scaling when approximating the heat equation (see
Theorem 1.8).

(3) A similar method of proof yields inequalities and decay results involving
higher derivatives of the function u; see Section 3.

(4) The entropy method used allows for an extension to linear mass-conserving
equations with general kernels K(x, y) (not necessarily symmetric) instead
of J(x− y); see Subsection 4.2.

The paper is organised as follows: in Section 2 we give the proof of the inequality
in Theorem 1.1, and in Section 3 we prove similar inequalities involving derivatives.
Finally, in Section 4 we show how these inequalities yield decay properties for several
equations involving general kernels K(x, y), in particular proving Theorem 1.2 in
Subsection 4.1.

2. Energy inequalities for nonlocal diffusion operators

We are interested in finding useful lower bounds of DJ
p (u) in terms of Lp norms

of u. Since (|a| − |b|)(|a|s − |b|s) ≤ (a− b)(φs(a)−φs(b)) for any a, b ∈ R and s > 1
(where φs(a) := |a|s sgn(a)), it is easily seen that

DJ
p (u) ≥ DJ

p (|u|)

for any measurable u : RN → R. This allows us to work only with nonnegative
functions u.

This section is devoted to the proof of Theorem 1.1. We first show the case
p = 2, and then deduce from it the general inequality for p ≥ 2. The proof of
the p = 2 case is a modification of a the original proof of the Nash inequality (7)
appearing in the paper by Nash (1958):

Lemma 2.1. Let I be the normalised characteristic function of the unit ball in RN ,

(23) I(z) :=
1

ωN
if |z| < 1, I(z) = 0 otherwise,

where ωN is the volume of the unit ball in dimension N . There exists a constant
C = C(N) depending only on N such that

(24) DI
2(u) ≥ C min

{
‖u‖

− 4
N

1 ‖u‖
2+ 4

N

2 , ‖u‖22

}
,

for all u ∈ L1(RN ) ∩ L2(RN ).

We point out that the constant C can be estimated explicitly by following the
calculations in the proof below.

Proof. Along the proof we call C1, C2, . . . several constants that depend only on
the dimension N . We will use the following property, which holds for some constant
C1 > 0:

1− Î(ξ) ≥
1

C1
min{1, |ξ|2}, for all ξ ∈ R

N

or, in other words,

(25) (1− Î(ξ))−1 ≤ C1 max{1, |ξ|−2}, for all ξ ∈ R
N .
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Since I has integral one we can write, using that the Fourier transform is an isometry
of L2(RN ;C),

DI
2(u) = 2 〈u, u− I ∗ u〉 = 2

〈
û, (1− Î)û

〉
= 2

∫

RN

(1− Î)|û|2,

where 〈·, ·〉 denotes the usual inner product in the space of L2 complex functions in
RN . We can break the integral of ‖u‖2 in two parts, for any δ > 0:

(26) ‖u‖22 = ‖û‖22 =

∫

|ξ|≤δ

|û(ξ)|2 dξ +

∫

|ξ|>δ

|û(ξ)|2 dξ.

These two terms can be estimated as follows: for the first one,

(27)

∫

|ξ|≤δ

|û(ξ)|2 dξ ≤ ‖u‖21

∫

|ξ|≤δ

dξ ≤ ωNδN‖u‖21.

For the second one, using (25) and assuming δ < 1 we have
∫

|ξ|>δ

|û(ξ)|2 dξ ≤ C1

∫

|ξ|>δ

(
1− Î(ξ)

)
max{1, |ξ|−2} |û(ξ)|2 dξ

≤ C1

∫

|ξ|>δ

(
1− Î(ξ)

)
max{1, δ−2} |û(ξ)|2 dξ

≤
C1

δ2

∫

|ξ|>δ

(
1− Î(ξ)

)
|û(ξ)|2 dξ ≤

C1

δ2
DI

2(u).

(28)

Using (27) and (28) in (26) we obtain

(29) ‖u‖22 ≤ ωNδN‖u‖21 +
C1

δ2
DI

2(u), for any 0 < δ < 1.

We would like to optimise this quantity in δ, but it is only valid for 0 < δ < 1. If
we could choose δ freely we would take the one that achieves the best bound in the
inequality (29), that is,

δ0 :=

(
2C1D

I
2(u)

NωN‖u‖21

) 1
N+2

.

Now we discuss two cases:

Case 1. If δ0 < 1, then replacing δ by δ0 in (29) we have

‖u‖22 ≤ ω
2

N+2

N C
N

N+2

1

(
1 +

N

2

)(
2

N

) N
N+2

‖u‖
4

N+2

1 DI
2(u)

N
N+2 .

Equivalently,

(30) DI
2(u) ≥ C2‖u‖

− 4
N

1 ‖u‖
2+ 4

N

2

where C2 = ω
− 2

N

N C−1
1

(
1 + N

2

)−N+2
N N

2 .

Case 2. If δ0 ≥ 1 then this means that

NωN‖u‖21 ≤ 2C1D
I
2(u).

In this case, choosing δ = 1 in (29) and using the above inequality we get

‖u‖22 ≤ ωN‖u‖21 + C1 D
I
2(u) ≤

(
1 +

2

N

)
C1 D

I
2(u),
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or

(31) DI
2(u) ≥ C3‖u‖

2
2

with C3 := C−1
1

(
1 + 2

N

)−1
.

Finally, summarising (30) and (31) we obtain

(32) DI
2(u) ≥ C4 min

{
‖u‖

− 4
N

1 ‖u‖
2+ 4

N

2 , ‖u‖22

}

with C4 := max {C2, C3}. This proves (24) with C = C4. �

Notice that DJ
2 (u) satisfies the following scaling property. For λ > 0 and any

function g on RN we denote

gλ(z) := g(z/λ), z ∈ R
N .

Then one sees that

(33) DJλ

2 (u) = λ2NDJ
2 (u 1

λ
).

This easily gives the following extension of Lemma 2.1:

Corollary 2.2 (L2 energy inequality). Let J satisfy Hypothesis 1. There is some
constant C = C(N) that depends only on the dimension N such that

(34) DJ
2 (u) ≥ Crmin

{
RN+2‖u‖

− 4
N

1 ‖u‖
2+ 4

N

2 , RN‖u‖22

}

for all u ∈ L2(RN ) ∩ L1(RN ).

Proof of Corollary 2.2. Call I = I(z) the normalised characteristic of the unit ball,
and define

K(z) :=
1

r ωN
J(Rz), z ∈ R

N .

Then

K(z) ≥ I(z) for all z ∈ R
N

so

DK
2 (u) ≥ DI

2(u).

Since J = rωNKR, due to the scaling (33) we have

DJ
2 (u) = r ωNR2NDK

2 (u 1
R
) ≥ r ωNR2NDI

2(u 1
R
).

Hence we can use Lemma 2.1 (writing CN to denote the constant C in it) to say
that

DJ
2 (u) ≥ rωNR2NCN min

{
‖u 1

R
‖
− 4

N

1 ‖u 1
R
‖
2+ 4

N

2 , ‖u 1
R
‖22

}

= rωNCN min
{
RN+2‖u‖

− 4
N

1 ‖u‖
2+ 4

N

2 , RN‖u‖22

}
.

This shows the result. �

Corollary 2.2 gives the case p = 2 of Theorem 1.1. In order to obtain the general
case for p ≥ 2 and complete the proof, let us first state a simple elementary without
proof inequality in the next lemma:

Lemma 2.3. Let p > 1, there exists c(p) > 0 such that

(35) (a− b)(ap−1 − bp−1) ≥ c(p) (ap/2 − bp/2)2, for all a, b ≥ 0.
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We can now complete the proof of Theorem 1.1:

Proof of Theorem 1.1. As explained at the beginning of Section 2, we may assume
that u is nonnegative. By using the inequality (35) we obtain

DJ
p (u) =

∫

RN

∫

RN

J(x− y)(u(x) − u(y))(u(x)p−1 − u(y)p−1)dxdy

≥ c(p)

∫

RN

∫

RN

J(x− y)(u(x)p/2 − u(y)p/2)2dxdy

= c(p)DJ
2 (u

p/2).

Now, by virtue of Corollary 2.2, and calling CN the constant in it, it follows that

DJ
p (u) ≥ c(p)CN r min

{
RN+2‖up/2‖

− 4
N

1 ‖up/2‖
2+ 4

N

2 , RN‖up/2‖22

}

= c(p)CN r min

{
RN+2‖u‖

−2p
N

p
2

‖u‖
p(1+ 2

N )
p , RN‖u‖pp

}
.

Finally, due to the interpolation formula

‖u‖ p
2
≤ ‖u‖

1
p−1

1 ‖u‖
p−2
p−1
p

(note that p ≥ 2 is used here) we conclude that

DJ
p (u) ≥ c(p)CN r min

{
RN+2‖u‖−pγ

1 ‖u‖p(1+γ)
p , RN‖u‖pp

}
,

with γ = 2
N(p−1) . �

3. Energy inequalities involving derivatives

We now prove Theorem 1.3, an inequality which is useful when studying the
decay of derivatives of solutions to nonlocal diffusion equations:

Proof of Theorem 1.3. The proof is a direct extension of the technique in the proof
of Theorem 1.1. We follow the same steps. First, we assume that J is the normalised
characteristic function of the unit ball in R

N , given by (23). Then, closely following
Lemma 2.1, we claim

(36) DJ
2 (D

ku) ≥ CN min

{
‖u‖

− 4
N+2k

1 ‖Dku‖
2+ 4

N+2k

2 , ‖Dku‖22

}

for some constant CN > 0 depending only on N . As in the proof of Lemma 2.1,

DJ
2 (D

ku) = 2

∫

RN

(1 − Ĵ)|D̂ku|2.

Now, recalling inequality (25) and taking into account that |D̂ku(ξ)|2 = |ξ|2k|û(ξ)|2 ≤
|ξ|2k‖u‖21 we obtain for 0 < δ ≤ 1 that

‖Dku‖22 = ‖D̂ku‖22 =

∫

|ξ|≤δ

|D̂ku(ξ)|2 dξ +

∫

|ξ|>δ

|D̂ku(ξ)|2 dξ

≤ ‖u‖21

∫

|ξ|≤δ

|ξ|2k dξ +
C1

δ2

∫

|ξ|>δ

(1 − Ĵ(ξ))|D̂ku(ξ)|2 dξ(37)

≤ ωNδ2k+N ‖u‖21 +
C1

2δ2
DJ

2 (D
ku).
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Choose

δ0 =

(
2C1 D

J
2 (D

ku)

(N + 2k) ‖u‖21 ωN

) 1
N+2k+2

.

We obtain, as in Lemma 2.1, two possibilities: if δ0 ≤ 1, we get

(38) ‖Dku‖22 ≤ C2 ‖u‖
2µk

1 DJ
2 (D

ku)1−µk

with µk = 2
N+2+2k and C2 =

(
N
2 + k

)µk

(
1 + 2

N+2k

)1−µk

C1ω
µk

N . In the other case,

δ0 > 1, we get

(39) ‖Dku‖22 ≤
2C1

(N + 2k)µk
DJ

2 (D
ku).

Collecting inequalities (38) and (39) we have

‖Dku‖22 ≤ CN max
{
‖u‖2µk

1 DJ
2 (D

ku)1−µk , DJ
2 (D

ku)
}

where CN = max
{
C2,

2C1

(N+2k)µk

}
. Reversing the inequality we have thus proved

(36).

In order to complete the proof we consider any J satisfying Hypothesis 1. We
have a scaling property which is an extension of (33):

(40) DJλ

2 (Dku) = λ2N−kDJ
2 (D

ku1/λ),

for any λ > 0. Of course, we also have Dkuλ = λ−k(Dku)λ, the usual scaling for
derivatives. If I denotes the characteristic function of the unit ball on RN and we
define K = 1

rωN
J1/R as in the proof of Corollary 2.2 then K ≥ I, and J = rωNKR.

Using the scaling property (40) and the normalised case (36) we see that

DJ
2 (D

ku) = rωNR2N−kDK
2 (u1/R) ≥ rωNR2N−kDI

2(u1/R)

≥ rωNR2N−kCN min

{
‖u1/R‖

− 4
N+2k

1 ‖Dku1/R‖
2+ 4

N+2k

2 , ‖Dku1/R‖
2
2

}

= rωNR2N−kCN min

{
R2k−N+2‖u‖

− 4
N+2k

1 ‖Dku‖
2+ 4

N+2k

2 , R2k−N‖Dku‖22

}

= rωNCN min

{
Rk+N+2‖u‖

− 4
N+2k

1 ‖Dku‖
2+ 4

N+2k

2 , Rk+N‖Dku‖22

}
,

which shows the result. �

We point out that analogous results can be stated for other differential operators.
As an example we consider ∇u. Following the notation of the preceding section we
set

(41) DJ
2 (∇u) =

∫

RN

∫

RN

J(x− y) |∇u(x)−∇u(y)|
2
dxdy,

defined for any u ∈ H1(RN ). Reasoning along the same lines as in the previous
result one obtains the following result for ∇u (notice that this is not the same as
the k = 1 case of Theorem 1.3, since D1u is not equal to ∇u):



IMPROVED ENERGY METHODS FOR NONLOCAL DIFFUSION PROBLEMS 15

Theorem 3.1. Let N ≥ 1 be an integer and J : RN → R be a function satisfying
Hypothesis 1. There exists a positive constant C = C(N) such that

(42) DJ
2 (∇u) ≥ Crmin

{
RN+3‖u‖

− 4
N+2

1 ‖∇u‖
2+ 4

N+2

2 , RN+1‖∇u‖22

}
,

for all u ∈ H1(RN ) ∩ L1(RN ).

Proof. If J has integral one we can write, as before,

DJ
2 (∇u) = 2 〈∇u,∇u− J ∗ ∇u〉 = 2

〈
∇̂u, (1 − Ĵ)∇̂u

〉
= 2

∫

RN

(1 − Ĵ)|∇̂u|2.

Since |∇̂u(ξ)|2 = |ξ|2|û(ξ)|2 ≤ |ξ|2‖u‖21, one can follow the same reasoning as in the
k = 1 case of Theorem 1.3 to obtain the result. �

4. Some applications

4.1. The linear nonlocal diffusion equation in convolution form. The most
direct application of the inequalities in the previous section concerns the long-time
behaviour of the linear nonlocal diffusion equation:

(43) ∂tu(t, x) =

∫

RN

J(x − y)(u(t, y)− u(t, x)) dy,

where t ≥ 0 is the time variable, x ∈ RN is the space variable, u = u(t, x) ∈ R is
the unknown, and J is the diffusion kernel. As a straightforward consequence of
Theorem 1.1 we obtain Theorem 1.2, which we prove now.

Proof of Theorem 1.2. The regularity of the solution u allows us to write the fol-
lowing H-theorem for the Lp norm:

(44)
d

dt
‖u‖pp = −DJ

p (u).

Due to Theorem 1.1, and taking into account that ‖u(t, ·)‖1 = ‖u0‖1 (mass conser-
vation), we have

d

dt
‖u‖pp ≤ −Crmin

{
RN+2‖u0‖

−pγ
1 ‖u‖p(1+γ)

p , RN‖u‖pp

}
,

for some constant C = C(N, p). This is a differential inequality for ‖u‖pp which
allows us to compare it to the solution to the equation

X ′(t) = −Crmin
{
RN+2‖u0‖

−pγ
1 X(t)(1+γ), RNX(t)

}
.

We can then apply Lemma 4.1 with

C1 := CrRN+2‖u0‖
−pγ
1 , C2 := CrRN ,

to obtain the result. �

Lemma 4.1. Take C1, C2, γ > 0 and let X = X(t) be a solution on [0,+∞) to the
ordinary differential equation

(45) X ′(t) = −min
{
C1X(t)1+γ , C2X(t)

}
.

with X(0) > 0. Then we have

(46) X(t) ≤

{
X(0) for t ∈ [0, t0],(
X(0)−γ + γC1(t− t0)

)− 1
γ for t ∈ (t0,+∞)
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where

t0 = max

{
0,

1

C2
log

(
C

− 1
γ

2 C
1
γ

1 X(0)
)}

.

Remark 4.2. The solution of the ordinary differential equation in the above lemma
is actually explicit (see the proof), and we just aim to give a simple statement that
captures the decay of the solution as t → +∞. One can simplify even further and
say that there is a constant C = C(C1, C2, γ,X(0)) such that

X(t) ≤ C(1 + t)−
1
γ , for all t ≥ 0.

This is easily deduced from (46) with

C := sup
t≥0

X(t)

(1 + t)−
1
γ

,

which is finite since both X and (1 + t)−
1
γ have the same decay as t → +∞, and

obviously depends only on C1, C2, γ and X(0).

Proof of Lemma 4.1. By usual theorems in ordinary differential equations, equation
(45) has a unique solution on [0,+∞) with the given initial condition X(0), and
this solution is nonnegative on [0,+∞). The condition that decides which of the
two terms achieves the minimum at each time t is whether

(47) X(t)γ ≤
C2

C1

or not. Since X is nonincreasing, once this condition is satisfied at a certain t0 ≥ 0
it will be satisfied for all t ≥ t0. With this it is easy to calculate the explicit solution,
given by

X(t) =

{
X(0)e−C2t for t ∈ [0, t0],(
X(t0)

−γ + γC1(t− t0)
)− 1

γ for t ∈ (t0,+∞)

where

t0 = max

{
0,

1

C2
log

(
C

− 1
γ

2 C
1
γ

1 X(0)
)}

.

One obtains the result by noticing that X(0)e−C2t ≤ X(0) and X(t0) ≤ X(0). �

Similarly, with the help of the previous lemma the inequalities in Theorem 1.3
imply the decay in Theorem 1.4:

Proof of Theorem 1.4. If u satisfies equation (1) then Dku satisfies the same equa-
tion, with initial condition Dku(0, x) = Dku0(x). Hence we have, as in (9),

d

dt
‖Dku‖22 = −DJ

2 (D
ku).

Using Theorem 1.3 we obtain

d

dt
‖Dku‖22 ≤ −Crmin

{
Rk+N+2‖u‖

− 4
N+2k

1 ‖Dku‖
2+ 4

N+2k

2 , Rk+N‖Dku‖22

}
.

This is again a differential inequality for ‖Dku‖22, to which we can apply Lemma
4.1 with

C1 = CrRk+N+2‖u0‖
− 4

N+2k

1 , C2 = CrRk+N .

This directly gives the result. �
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4.2. General linear mass-conserving nonlocal equations. In this section we
prove Theorem 1.5, which concerns equation (17), recalled here:

(48) ∂tu(t, x) =

∫

RN

K(x, y)u(t, y) dy − σ(x)u(t, x),

where K : RN × R
N → [0,∞) is a general kernel (not necessarily symmetric) and

σ : RN → [0,+∞) is a function. In order to apply our strategy to equation (48)
we need to have suitable Lyapunov functionals for it. To our knowledge, the most
general setting in which one can do this is that of the so-called general relative
entropy method (Michel et al., 2004, 2005), which we state here in a particular
case: assume that (19) holds and that

(49) There exists a positive equilibrium u∞ : RN → (0,+∞) of (48).

(That is, a solution u∞ of (48) which does not depend on time t.) Then it is known
that

d

dt

∫

RN

Φ

(
u(t, x)

u∞(x)

)
u∞(x) dx ≤ 0,

whenever Φ is a convex function and u is any solution of (48). This fact is well-
known in probability theory (see the review by Chafäı (2004)) and is a direct
consequence of the general relative entropy method (Michel et al., 2004). The
explicit form of its time derivative can be found in Michel et al. (2004):

(50)
d

dt

∫

RN

Φ (f(x))u∞(x) dx

= −

∫

RN

∫

RN

K(x, y)u∞(y)
(
Φ′(f(x))(f(x) − f(y))− Φ(f(x)) + Φ(f(y))

)
dxdy,

where we denote f(t, x) ≡ u(t, x)/u∞(x), and where the t variable has been omitted
for shortness. Notice that the integrand is always nonnegative due to the convexity
of Φ. The following particular cases are of interest for us here: for Φ(f) = |f |p with
p > 1 we have

(51)
d

dt
‖u‖pp = −EK

p (f),

where the dissipation EK
p (f) is an operator acting only on the x variable. Its

expression is given by the right hand side of (50) (with Φ(f) = |f |p) and is not so
simple. But if we additionally assume that

(52) K(x, y)u∞(y) = K(y, x)u∞(x), for all x, y ∈ R
N ,

then one can check that

(53) EK
p (f)

= p

∫

RN

∫

RN

K(x, y)u∞(y)
(
(f(x))p−1(f(x)− f(y))− (f(x))p + (f(y))p

)
dxdy

=
p

2

∫

RN

∫

RN

(
f(x)− f(y)

) (
f(x)p−1 − f(y)p−1

)
K(x, y)u∞(y) dxdy

for all nonnegative functions f ; note the parallel with (9). The last equality in (53)
is obtained by noticing that the integrals corresponding to f(x)p and f(y)p cancel
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out (easily seen by using (52)), and using (52) again to symmetrise the remaining
integral:

∫

RN

∫

RN

K(x, y)u∞(y)f(x)p−1(f(x) − f(y)) dxdy

=
1

2

∫

RN

∫

RN

K(x, y)u∞(y)
(
f(x)p−1 − f(y)p−1

) (
f(x)− f(y)

)
dxdy.

Condition (52) is known in probability as the detailed balance or reversibility condi-
tion (it holds for example if u∞ ≡ 1 and K is symmetric). If one works in a setting
where (51) holds then it may still be possible to use the inequality in Theorem 1.1
(or related ones) and deduce some information on the rate of decay of solutions.

Proof of Theorem 1.5. Condition (20) is easily seen to imply that the linear oper-
ator given by

Lu(x) =

∫

RN

K(x, y)u(y) dy − σ(x)u(x), x ∈ R
N ,

is well defined and bounded both in L1(RN ) and Lp(RN ). This shows that equation
(48) with initial condition u0 has a unique solution in C1([0,+∞), Lp(RN )∩L1(RN ))
which conserves mass (that is,

∫
RN u(t, x) dx =

∫
RN u0(x) dx for all t ≥ 0), and

that it satisfies the entropy property (9). It is also seen easily that equation (48)
preserves sign: if the initial condition is nonnegative (nonpositive) then u(t, x) is
nonnegative (nonpositive) for all t, x. As a consequence, it is enough to prove the
result when u0 is nonnegative — the general result is then obtained by linearity
from u0 = u+

0 − u−
0 , with u+

0 := max{u0, 0} and to u−
0 := max{−u0, 0}.

For x, y ∈ RN call

K̃(x, y) := r, if |x− y| ≤ R, K̃(x, y) := 0 otherwise

and

J(x) := r, if |x| ≤ R, J(x) := 0 otherwise.

Due to Hypothesis 2 and (21) we have

K(x, y)u∞(y) ≥
1

m
K̃(x, y).

Hence, since K̃ is symmetric, using the same symmetrisation trick as in (53),

EK
p (f) ≥ EK̃

p (f)

≥
p

2m

∫

RN

(
(f(x))p−1(f(x)− f(y))− (f(x))p + (f(y))p

)
K̃(x, y) dxdy

=
p

2m

∫

RN

(
f(x)p−1 − f(y)p−1

) (
f(x)− f(y)

)
K̃(x, y) dxdy

= DJ
p (f)

for any nonnegative function f , where DJ
p (f) is the dissipation in (10). Hence for

the (nonnegative) solution u, using Theorem 1.1 and calling

X(t) :=

∫

RN

fpu∞ =

∫

RN

(
u(t, x)

u∞(x)

)p

u∞(x) dx
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we have

d

dt
X(t) = −EK

p (f)

≤ −DJ
p (f)

≤ −Cmin{‖f‖−pγ
1 ‖f‖p(1+γ)

p , ‖f‖pp}

≤ −C2 min{‖u0‖
−pγ
1 X(t)1+γ , X(t)},

where C2 also depends on m, and we have used mass conservation and again the
bounds in (21). Due to the differential inequality in Lemma 4.1 we obtain that

X(t) ≤ C(1 + t)−
N(p−1)

2 , for all t ≥ 0,

for some constant C as stated in the result. We complete the proof by noticing that

‖u‖pp ≤ m1−p

∫

RN

(
u(t, x)

u∞(x)

)p

u∞(x) dx = m1−pX(t). �

4.3. A nonlocal dispersal equation. We consider the following integro-differential
equation (the dispersal model that was briefly mentioned in the introduction):

(54) ∂tu(t, x) =

∫

R

J

(
x− y

g(y)

)
u(t, y)

g(y)
dy − u(t, x), in R× [0,∞),

with a prescribed initial data u(x, 0) = u0(x) defined on R. Here J is an even,
positive, smooth function such that

∫
R
J(x) dx = 1 and supp J = [−1, 1], and g

is a continuous positive function which accounts for the dispersal distance which
depends on the departing point. In this model u represents the spatial distribution
of a certain species, and g models the heterogeneity of the environment which can
affect the distribution of a species through space-dependent dispersal strategies.
This model was proposed in Cortázar et al. (2007) (see also Cortázar et al. (2011);
Cortázar et al. (2015); Cortázar et al. (2016)). It was shown there that if we assume
g is bounded above and below then there exists a positive steady state solution of
(54), that is, a solution of the corresponding stationary problem,

u∞(x) =

∫

R

J

(
x− y

g(y)

)
u∞(y)

g(y)
dy, in R.

Moreover, u∞ is bounded above and below by positive constants. It was also
proved in Cortázar et al. (2007) that any solution u of (54) converges to 0 locally
as t → ∞. Using the general result in Theorem 1.5 we are able to improve this
asymptotic behavior obtaining a precise decay rate of the Lp norms of u:

Theorem 4.3. Take p ∈ [2,+∞). Let u be a solution of (54) with initial data
u0 ∈ L1(R) ∩ Lp(R), and assume that

(1) J ∈ L∞(R) is a bounded, nonnegative function with compact support, sat-
isfying Hypothesis 1,

(2) and g is a continuous function satisfying

1

M
≤ g(x) ≤ M, for all x ∈ R

and for some M > 0.

Then for some constant C > 0 depending on J , M , p, ‖u0‖1 and ‖u0‖p,

‖u‖pp ≤ C(1 + t)−
p−1
2 , for all t ≥ 0.
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Proof. Equation (54) is of the form (48) with σ(x) = 1 for all x ∈ R and

K(x, y) = J

(
x− y

g(y)

)
1

g(y)
, for x, y ∈ R.

Defining K and σ in this way, (19) is satisfied and one can check that this kernel
K satisfies Hypothesis 2 and (20). By the results in Cortázar et al. (2007) we know
that there exists an equilibrium u∞ satisfying (21) (with m depending only on the
parameters of the problem), so we are in condition to apply Theorem 1.5 and obtain
the result. �

Remark 4.4. One can pose equation (54) in RN instead of R. The only reason in
Theorem 4.3 why we need the dimension N to be 1 is that we use the results in
Cortázar et al. (2007) to ensure there is a positive equilibrium u∞ which is bounded
above and below. Theorem 4.3 is still true in dimension N provided the existence of
an equilibrium satisfying (21) (with the same proof). Such existence of a bounded
u∞ is to our knowledge an open problem in dimension N > 1.

4.4. Nonlocal diffusions with a nonlinear source. With very little change in
our arguments we can obtain the same decay estimates if we add a nonlinear source
to equation (48), as long as the nonlinear source “decreases energy”. We consider

(55) ∂tu(t, x) =

∫

RN

K(x, y)u(t, y) dy − σ(x)u(t, x) + f(u(t, x)).

with K and σ as in Section 4.2 and f a locally Lipschitz function satisfying the
sign condition

(56) f(s)s ≤ 0, for s ∈ R.

With the same arguments as before we obtain the following:

Theorem 4.5. Take p ∈ [2,+∞) and let u be a solution of (55) with nonnegative
initial data u0 ∈ L1(R)∩Lp(R), and assume that K and σ satisfy the conditions of
Theorem 1.5. Assume that f is a locally Lipschitz function satisfying (56). Then
for some constant C > 0 depending only on K, N , ‖u0‖1 and ‖u0‖p,

‖u‖pp ≤ C(1 + t)−
N
2 , for all t ≥ 0.

Proof. The conditions on f , K and σ ensure that there exists a solution of the equa-
tion, and that one may differentiate it in time to obtain the usual expression for the
time derivative of ‖u‖pp. Dropping the nonpositive term f(u(t, x))u(t, x) |u(t, x)|p−2

we obtain the inequality

d

dt
‖u‖pp ≤ −EK

p (u),

Arguing as in the proof of Theorem 1.5 we obtain the asymptotic decay. Observe
that the total mass of the solution is nonincreasing, since f(s) ≤ 0 for s ≥ 0. �

This equation was treated in Andreu-Vaillo et al. (2010); Ignat and Rossi (2009)
where a restriction on the dimension (N ≥ 3) and K symmetric are required in
order to establish the asymptotic behavior.
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