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mi hermano Manolo, por su fortaleza de esṕıritu y callado sacrificio,
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criando gallinas) y nadie dijo que fuera fácil.
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Prefacio

Los algoritmos evolutivos son un conjunto de técnicas bioinspiradas

aplicadas a problemas de optimización que están basados en el proceso

darwiniano de selección natural. Al igual que en la evolución de las es-

pecies, aquellos individuos (o soluciones candidatas) que muestran ser

las más aptas, son seleccionadas preferentemente para la reproducción,

de este modo, los descendientes heredarán sus genes a través del paso

de las generaciones. Iterativamente, la selección actúa como un filtro

para los genes y solo aquellos que pertenecen a soluciones óptimas son

capaces de superar la presión selectiva y recombinarse formando solu-

ciones de más alto orden. En analoǵıa con este proceso, la búsqueda

estocástica de los algoritmos evolutivos tiene éxito en problemas de

optimización a partir del refinamiento progresivo de un conjunto de

soluciones candidatas.

No obstante, en aplicaciones con un alto coste de cálculo e instan-

cias grandes de problemas, los requisitos computacionales pueden lle-

gar a ser tan grandes que retrasen el proceso de búsqueda de solu-

ciones óptimas más allá de un tiempo razonable. Afortunadamente,

la naturaleza de los algoritmos evolutivos es inherentemente paralela
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ofreciendo aśı una forma fácil de mejorar las propiedades de escalabil-

idad. La idea principal consiste en acelerar los tiempos de ejecución

del algoritmo repartiendo la carga computacional de los individuos en

diferentes procesadores.

En este contexto, esta tesis propone un nuevo algoritmo evolutivo

paralelo (denominado modelo de Agente Evolutivo) que aprovecha las

capacidades de cómputo de un entorno dinámico P2P (del inglés Peer-

to-Peer; se traduce al castellano como sistema entre pares, aunque se

adopta normalmente la voz inglesa). La motivación subyacente al al-

goritmo es abordar instancias grandes de problemas de optimización

complejos de forma eficiente y precisa, aprovechando, para tal fin, la

escalabilidad masiva de las redes de computo P2P. Por lo tanto, un

correcto entendimiento de dicha plataforma es clave para el diseño efi-

ciente del algoritmo.

Los sistemas P2P ofrecen una infraestructura paralela potente para

la computación evolutiva, capaz de constituir un único computador

virtual compuesto de un número de recursos potencialmente grande.

Sin embargo, dicha plataforma esta desprovista de servidores centrales

lo cual supone un reto a la gestión centralizada del ciclo evolutivo

(tanto la selección de padres como la reproducción o la selección de

los supervivientes se realiza comúnmente de forma centralizada en los

algoritmos evolutivos). Para abordar dicha problemática, el modelo

de Agente Evolutivo asigna a cada nodo de cómputo un individuo y

adopta una estructura de población descentralizada que es definida

por el protocolo P2P newscast. De esta forma, cualquier individuo del

algoritmo tiene un número limitado de vecinos y el proceso de selección
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se restringe a la vecindad local P2P.

Además de la problemática de la descentralización de recursos, un

reto a tener en cuenta para la paralelización eficiente en este tipo de

redes, es que los nodos son propensos a fallos dado que los recursos

computacionales son añadidos y eliminados dinámicamente, frecuente-

mente como consecuencia de la decisión de los usuarios que ceden li-

bremente CPUs bajo su control. De esta forma, un algoritmo evolutivo

P2P tiene que ser tolerante a fallos con respecto a la dinámica de los

nodos. En este sentido, el modelo de Agente Evolutivo implementa un

mecanismo de degradación grácil, siendo capaz de abordar instancias

grandes de problemas de optimización a pesar de que los nodos aban-

donen el sistema sin otro mecanismo que el propio comportamiento

emergente del modelo.

Resumiendo, un algoritmo evolutivo P2P eficiente será aquel capaz

de abordar instancias grandes de problemas de optimización de forma

descentralizada a pesar de que los recursos de cómputo se degraden.

Por lo tanto, esta tesis se centra en el análisis de la descentralización,

escalabilidad y tolerancia a fallos como problemáticas clave para poder

establecer la viabilidad de este nuevo paradigma de computo evolutivo.

Con ese propósito, el modelo de Agente Evolutivo ha sido analizado

emṕıricamente en un entorno simulado P2P donde los experimentos

han sido llevados a cabo bajo diferentes escenarios usando funciones

trampa como problemas de prueba. Estas funciones representan un

conjunto de problemas descomponibles en funciones parciales, en los

que la bondad de las soluciones es calculada sumando las distintas
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bondades y donde el nivel de dificultad es ajustable, lo cual posibilita

observar el escalado de los tamaños de población y esfuerzos computa-

cionales para distintos tipos y tamaños de problema.

En esta memoria de tesis se exponen de forma detallada cada uno

de los aspectos previamente mencionados. A modo de resumen se de-

scriben a continuación los distintos caṕıtulos de los que está compuesta:

Caṕıtulo 1: Expone una introducción al resto de la memoria descri-

biendo los principales objetivos de esta tesis. Los algoritmos

evolutivos P2P son presentados como alternativa para abordar

instancias grandes de problemas de optimización con requisitos

de cómputo altos.

Caṕıtulo 2: En este caṕıtulo se revisan los modelos de algoritmos

evolutivos paralos más extendidos y en particular, aquellos enfo-

ques en la literatura relacionados con el computo evolutivo P2P.

Además, se proporciona una descripción del efecto que las pobla-

ciones estructuradas juegan en la presión selectiva de los algorit-

mos evolutivos.

Caṕıtulo 3: Este caṕıtulo se centra en la descripción detallada del

protocolo newscast dentro del contexto de las plataformas P2P

actuales. Además, la dinámica del protocolo es analizada en

tiempo de ejecución mostrando su robustez, escalabilidad masiva

y capacidad de diseminación de la información de forma eficaz.

Caṕıtulo 4: Se presenta el modelo de Agente Evolutivo como el marco

de trabajo con el que esta tesis evaluará la viabilidad del enfoque
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de computación evolutiva P2P. También se esbozan las primeras

claves del rendimiento computacional del modelo preveyendo su

capacidad de sostener ganancias lineales en problemas computa-

cionalmente pesados sobre plataformas de alto rendimiento.

Caṕıtulo 5: Este caṕıtulo analiza de forma experimental el rendimiento

del modelo evolutivo P2P de tal forma que la viabilidad del en-

foque pueda ser extraida de los resultados. Los experimentos se

centran en tres casos de prueba que respectivamente estudian la

escalabilidad del algoritmo, la influencia que la estructura de la

población en el rendimiento y la toleracia a fallos del modelo para

distintas tasas de degradación del sistema.

Caṕıtulo 6: Finalmente, en este caṕıtulo se exponen las principales

contribuciones de esta tesis al area de los algoritmos evolutivos

paralelos aśı como posibles extensiones en trabajos futuros.
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Preface

Evolutionary Algorithms are a set of population based stochastic search

techniques able to solve optimisation problems in reasonable time.

However, the execution times of EAs can be high for very demand-

ing problems and parallelism arises as an alternative to improve the

algorithm performance and to speed up times to solutions.

In that context, this thesis presents a spatially structured EA able

to take full-advantage of the large amount of available resources in

P2P platforms. Such an approach defines a decentralised population

structure by means of a P2P protocol in which every individual has a

limited number of neighbours with the mating choice locally restricted

within the P2P neighbourhood. The emergent population structure

behaves as a small-world topology and plays an important role in the

preservation of the genetic diversity. That way, population sizes can

be minimised and execution times improve.

Nevertheless, there are remaining challenges towards an efficient

design of P2P EAs. Questions such as decentralisation (such a compu-

tation paradigm is devoid of any central server), scalability (since P2P
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systems are large-scale networks) or fault tolerance (given that com-

putational resources are added and eliminated dynamically) become of

the maximum interest and have to be addressed. Therefore, this thesis

focuses on analysing such issues (i.e. decentralisation, scalability and

fault-tolerance) in order to conclude the viability of the Peer-to-Peer

Evolutionary Computation paradigm.
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Chapter 1

Introduction

Evolutionary Algorithms are a set of bio-inspired techniques for opti-

misation based in the Darwinian process of natural selection. As in the

evolution of species, those individuals (or candidate solutions) showing

to be the fittest are preferentially selected for mating so that offsprings

inherit their genes through the course of generations. Iteratively, se-

lection acts as a filter for genes and just those belonging to optimal

solutions are able to overcome the selection pressure and recombine

forming higher order solutions. It is within that process where the

stochastic based search of evolutionary algorithms has been shown to

succeed in optimisation problems [19].

However, for very demanding applications and large problem in-

stances computational requirements may become so high that delay

finding optimal solutions in reasonable time. Fortunately, the nature

of evolutionary algorithms is inherently suited to be parallelised offer-
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1 Introduction

ing a straightforward way to improve scale-up properties. The main

idea is to speed-up the execution times by sharing the workload of the

individuals among a pool of processors [13].

In that context, this thesis proposes a new parallel evolutionary al-

gorithm (denominated Evolvable Agent model) that takes full advan-

tage of a dynamic Peer-to-Peer environment. The motivation behind

the algorithm is tackling large instances of hard optimisation problems

in an efficient and accurate way via massive scalability of Peer-to-Peer

systems. To this end, a good understanding of the underlying comput-

ing platform can leverage on an efficient design.

Peer-to-Peer systems offer a powerful parallel infrastructure for evo-

lutionary computation able to constitute a single virtual computer

composed of a potentially large number of interconnected resources

[67]. However, such a computing platform is devoid of any central

server which challenges the central management of the evolutionary

cycle (parent selection, reproduction, survivor selection). To cope with

the issue, the Evolvable Agent model designates each individual as a

peer and adopt a decentralised population structure defined by the

Peer-to-Peer protocol newscast [43]. Then, any given individual has

a limited number of neighbours and the mating choice is restricted

within the local Peer-to-Peer neighbourhood.

In addition to decentralisation, a remaining challenge that accounts

for an efficient parallelisation is that peers are prone to failures and

computational resources are added and eliminated dynamically, often

as a consequence of a decision from an user that volunteers CPUs
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Motivation of the thesis 1.1

under his control. This way, a Peer-to-Peer evolutionary algorithm has

to show resilience to the peers dynamics. In that sense, the Evolvable

Agent implements a graceful degradation being able to tackle large

problem instances in spite of nodes departing from the system without

other mechanism than its own emergent behaviour.

Summarising, an efficient Peer-to-Peer Evolutionary Algorithm is

that one able to tackle large problem instances in a decentralised way

in spite of nodes departing from the system. Therefore, this thesis fo-

cuses on analysing the issues of decentralisation, scalability and fault-

tolerance in order to conclude the viability of the Peer-to-Peer Evolu-

tionary Computation paradigm.

To that aim, the Evolvable Agent model has been empirically anal-

ysed in a simulated Peer-to-Peer environment where experiments are

conducted under different scenarios using trap-functions as benchmark.

These functions represent a set of decomposable problems based on

unitation in which the level of difficulty can be tuned and the total

fitness is additively calculated by summing partial fitness. That way,

it is possible to observe how population sizes and computational efforts

scale with increasing problem size and difficulty.

1.1 Motivation of the thesis

The main motivation behind this thesis is tackling those large prob-

lem instances in which, due to memory or computational constraints,
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sequential approaches are unsuitable. In concrete, this thesis tries to

cope with the challenge of massive parallelisation of EAs derived from

the new synergies in the computer architecture and EC areas.

With respect to the advances in computer architecture, parallel

computing platforms cover nowadays a wide range of systems going

from special purpose architectures to interconnected off-the-shelf com-

puters. The case of this last has received much attention from the

scientific/technical community which has promoted its development.

That way, there is a set of technologies taking advantage of deallo-

cated resources that are controlled at a network level with the aim

of reducing costs associated to the management of hardware infras-

tructures. Within such technologies, GRID [24], Cloud [72] and P2P

Computing [66] are probably the best-known and widespread. Despite

having differences between, all of them share the concepts of massive

scalability and virtualisation of a decentralised and heterogeneous un-

derlying infrastructure. In fact, there is no a clear line dividing their

respective application fields and the convergence between them has

been reported in the literature as something unavoidable, e.g. Foster

in [25]. Therefore, our distributed approach to EC aims to go an step

further from a mere P2P parallelisation to become a prove of concept

for a whole set of technologies based on the decentralised management

of computing resources.

On the other hand, the massive use of such computing platforms

is justified from the perspective of EC. As established by Goldberg’s

population sizing theory in [35], there is an increasing necessity of

computing resources in EC when tackling problem instances becoming
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large. In other words, the population sizing theory states that there is

an optimal criterion for tuning the population size of an EA, so that, a

small problem instance requires a smaller population size than a larger

instance of a more difficult problem. As the instance size increases,

the computational requirements scale, becoming specially demanding

for the case of very large problem instances.

In that sense, studies of scalability on the population size, such e.g.

Thierens in [70] for GAs or Pelikan et al. in [57] for BOAs, show that

the population size should roughly scale with an order O(lα) , where

l is the chromosome length and α is a constant that depends on the

algorithm and the problem complexity. In the same way, Fernandes

and Rosa show in [21] that the number of generations g required to

find optimal solutions also scale following an order O(lβ). Such factors

influence the scalability of an EA as highlighted in Algorithm 1.

Algorithm 1 Time consuming keys in the evolutionary loop
for i = 0 to g generations do

for j = 1 to n individuals do

evaluatenij (l)

end for

end for

Therefore, the overall scalability order of an EA might be repre-

sented as O(lα+β+ζ) by simply assuming a problem in which the eval-

uation function scales with a polynomial order O(lζ) which is rather

reasonable considering realistic problems.

In this context, parallel EAs aim to outperform the scalability or-

ders of sequential approaches by improving the α-component which is

responsible of the population size and the β-component that stands
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for the speed of the algorithm convergence. In particular, fine grained

spatially structured EAs (that are described in detail in Section 2.1.3)

might be able to reduce the scalability order from O(lα+β+ζ) to O(lβ
′+ζ)

whenever we assume that every individual is placed on a different pro-

cessor and that the algorithm design is able to improve the speed of

convergence from β to β′. In addition to an accurate calibration of the

evolutionary operators, such an improvement is usually owns to the

population structure that plays a key role on the preservation of the

genetic diversity and, therefore, on the algorithmic performance.

Within this line, Giacobini et al. study in [30, 31] the impact of

different regular lattices, as those depicted in Figure 1.1, on the se-

lection pressure of an EA. However, spatially structured EAs are not

only subject to regular population structures and there are some in-

teresting results considering complex networks as population structure

(see Figure 1.2). In this sense, previous authors analyse in [33] the

influence of random and small-world structured populations on the

selection pressure and empirically demonstrate in [32] that complex

network population structures are competitive against panmictic EAs.

Such results show the suitability of the spatially structured approach

for decentralised systems as P2P system since they are inherently or-

ganised as complex networks. Therefore, our approach to P2P EC

in this thesis is designed as a spatially structured EA in which the

population structure is defined by a P2P overlay network.
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~~ ~~
~~ ~~

~~ ~~
~~ ~~

(a) Grid topology.

~~ ~~
~~ ~~

~~ ~~
~~ ~~

(b) Toroidal grid.

Fig. 1.1 — Different grid topologies.

Fig. 1.2 — Complex graph topology.
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1.2 Structure of the thesis

Current chapter of introduction has a descriptive orientation on the

main goals and motivations behind this thesis. To that aim, P2P EAs

are presented as an alternative for tackling large problem instances

with high computing requirements whose viability will be studied in

the following chapters.

Chapter 2 reviews the most extended models of parallel and dis-

tributed EAs and, in particular, those approaches in the literature

related to P2P EAs. Besides, it provides with some insights into the

role that the population structure plays on the environmental selection

pressure of EAs.

In chapter 3, newscast is put on the context of the current P2P

platforms. Furthermore, the protocol dynamics are assessed on the

issues of decentralisation, massive-scalability and fault-tolerance.

Chapter 4 presents the Evolvable Agent Model as the framework

to evaluate the viability of the P2P EA approach. In addition, it

provides some keys on the computational performance of the model

and how linear speed-ups can be hold for very demanding problems in

high performance computing platforms.

In chapter 5, the experimental analysis of the model is proposed

in a simulated P2P environment so that the viability of the P2P EA

can be drawn from the algorithmic performance of the approach. Ex-

periments are conducted for three different test-cases which focus on
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the algorithm scalability, the influence of the population structure in

the algorithm performance and the fault-tolerance of the model for

different degradation rates of the underlying computing platform.

Finally, chapter 6 exposes the main contributions of this thesis to

the P2P EC area as well as possible extensions in future works.
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Chapter 2

Parallel and

Distributed

Evolutionary

Algorithms

As saw in chapter 1, computational efforts in EAs can be high for de-

manding problems with parallelisation arising as a way of improving

the algorithm performance. In that context, a good knowledge of ad-

equate parallel models turns into a key for providing efficient designs.

This chapter introduces a general overview on the most extended

models of parallel and distributed EAs in Section 2.1. Rather than

presenting an exhaustive analysis, the aim is to establish a global
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framework to help understanding the following chapters in the con-

crete computer architecture area of P2P Computing. This way, Sec-

tion 2.2 provides some keys on how complex systems, such as P2P, can

host distributed EAs by structuring the population with the shape of

a complex network. Finally, Section 2.3 complements the view with

the most relevant approaches to P2P EAs in the literature.

As a final consideration, we have adopted the following criterion for

the alternate use of the concepts parallel and distributed. By parallel we

will refer to the property of an EA to be subdivided in sub-tasks that

can be executed with a certain degree of independence. On the other

hand, distributed refers to the parallel quality of several sub-tasks for

being executed in a loosely-coupled fashion (e.g. in distributed memory

systems in which every processor access its own private memory) [56,

26].

2.1 Parallel and Distributed Evolutionary

Algorithms models

Parallel and Distributed EAs models face two different aspects, the

algorithmic and the computational performance. The first is related

to the changes that the algorithm structure suffers when deployed on

several processors while the latter corresponds to the computational

speedup that can be expected. In fact, parallel EAs are studied as a

way of preserving genetic diversity while improving the execution time
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of the algorithm.

The following sections present different models of parallelisation

showing that not all of them fit well with P2P systems due to issues

such as decentralisation, massive scalability or fault-tolerance. The

parallel models are presented in two main groups according with the

classification of Alba and Tomassini in [4]:

� Global parallel EAs (Section 2.1.1) in which there is a single

population that follows the panmictic scheme of reproduction of a

sequential EA. In such an approach, parallelism lies in the parallel

evaluation of individuals and sometimes the parallel application

of the genetic operators.

� Spatially structured EAs in which the parallelism is present at

population level. The purpose is to balance the algorithm work-

load by spatially structuring the population of individuals among

the available processors. Sections 2.1.2 and 2.1.3 present different

approaches to spatially structured EAs depending on the paral-

lelisation grain.

2.1.1 Global parallel evolutionary algorithms

This approach takes advantage of the parallelism at evaluation level

in the case of very demanding fitness evaluation functions. Global

parallelisation consists in the parallel evaluation of the individuals,

usually following the master-slave model depicted in Figure 2.1 in which

13



2 Parallel and Distributed Evolutionary Algorithms

the algorithm runs on the master node and the individuals are sent for

evaluation to the slaves. Additionally, the master is responsible for

collecting the results and applying the genetic operators. Therefore,

scalability is often limited by the master performance and the incoming

bandwidth leading to sublinear speedups. For instance, Hauser and

Männer in [38] report an speedup of 5 using 6 processors. Abramson

et al. in [1] get a linear speedup up to 16 processors in a 128 processor

architecture. Finally, Cantú-Paz points in [13] that speedup degrades

quickly using such a model as a consequence of the master acting as

a bottleneck in distributed memory computers. Therefore, we can

conclude that global parallelisation models do not fit with the P2P

systems requirements on massive scalability.

Fig. 2.1 — Global parallel evolutionary algorithms. Master-Slave model.

2.1.2 Spatially structured coarse-grained approaches

One of the most usual and widely studied coarse-grained approaches

is the Island model depicted in Figure 2.2. As described by Cantú-

Paz in [12], the idea behind this model is that the global panmictic
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population is split in several sub-populations or demes called islands.

The communication between islands is defined by a given topology,

through which they exchange individuals (migrants) with a certain

rate and frequency. The migration follows a selection policy in the

source island and a replacement policy in the target one.

Practitioners generally use a fixed population size P in studies of

scalability, a maximum number of islands N and a population size

per island of P/n where n = 1, . . . , N . That is the case described by

Hidalgo and Fernández in [39] where the authors show how the algo-

rithmic results are highly sensitive to the calibration of the multiple

parameters, and in particular, to the number of islands. Specifically,

the best algorithmic result is obtained using a single island, that is,

a sequential EA. In addition, the authors conclude that using a small

number of individuals per island is usually a bad choice. Such re-

sults are in consonance with those of Cantú-Paz and Goldberg in [14]

suggesting that for difficult problems (large problem instances with

high-order BBs) the best choice is using a single deme with a large

population. Therefore, the island model turns into an unsuitable alter-

native for P2P systems, given that, distributed EAs over P2P systems

have to focus on the efficient load-balance of a population among a

large amount of resources in order to tackle large problem instances.
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Fig. 2.2 — Spatially structured coarse-grained approach. Island model.

2.1.3 Spatially structured fine-grained approaches

In fine-grained approaches every individual in the population is placed

on its own processor and evolves within a defined neighbourhood. One

of the most common fine-grained approaches is the Cellular Evolution-

ary Algorithm (CEA) [3]. Individuals in CEAs are usually disposed

in n-dimensional grid lattices as depicted in Figure 2.3 (a) where the

mate choice is restricted to those individuals in the neighbourhood,

thus, unlike in panmictic EAs, selection is decentralised.

Most of the efforts in CEAs have focused on analysing the algo-

rithmic effects of using different neighbourhood policies. For example,

Giacobini studies in [30] the impact of regular lattices on the selec-

tion pressure and of different graph structures such a toroid in [31].

Dorronsoro et al. study in [17] the effect of different grid shapes and
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asynchrony in CEAs. However, fine-grained approaches are not only

subject to regular population structures and there are some interest-

ing results considering complex networks as population structure (see

Figure 2.3 (b)). Giacobini et al. analyse in [33] the influence of ran-

dom and small-world structured populations on the selection pressure

and empirically demonstrate in [32] that complex network population

structures are competitive against panmictic EAs. Such results show

the suitability of the fine-grained approach for decentralised systems as

P2P system since they are inherently organised as complex networks.

(a) Regular lattice neighbourhood. (b) Complex network neighbour-

hood.

Fig. 2.3 — Spatially structured fine-grained approaches.
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2.2 Population structure as a complex net-

work

To help understand the role of the population structure in a P2P EA,

this section introduces the structural design of a simple and easy un-

derstandable complex network proposed by Watts and Strogatz in [74].

As described by the authors, the procedure for building a small-world

topology can start from a ring lattice with n vertices and k edges per

vertex. With a given probability p, each edge is rewired at random.

Since the procedure does not allow duplicate edges, no edge is gen-

erated whenever it matches an existing one. This way for a rewiring

factor of p = 0 the ring lattice is kept while for p = 1 a random graph

is generated. It has been shown that already for small values of p, the

average distance between two nodes decreases rapidly.

Fig. 2.4 — Watts-Strogatz graphs with n = 20 and k = 6. From left to right, the

original ring lattice for p = 0, a small-world graph for p = 0.2 and a

random graph for p = 1.

Figure 2.4 shows three stages of evolution of the Watts-Strogatz

model in which the small-world graph preserves the high clustering co-

efficient of regular lattices and the small average path length of random
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graphs. Despite having a larger average path length than panmictic

graphs, the inhomogeneity in such kind of topologies was shown by Gi-

acobini et al. in [33] to induce qualitatively similar selection pressures

on EAs compared to panmictic population structures.

The influence in the environmental selection pressure of such pop-

ulation structures can be represented by their takeover time curves.

Goldberg and Deb define in [34] the takeover time as the time that it

takes for a single, best individual to take over the entire population

with no mechanism other than selection. Hence, takeover time is the

proportion of best individuals formulated as a function of time.

Fig. 2.5 — Takeover time curves in a panmictic population structure, Watts-Strogatz

population structure with p = 0.2 and the original ring lattice with k = 2.

All results averaged from 50 independent runs, for a population size of

n = 1600 and binary tournament.

Figure 2.5 shows that the takeover time curve in the Watts-Strogatz

graph is similar to a panmictic graph meaning that the induced selec-
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tion pressures using both topologies are roughly equivalent. As in

Watts-Strogatz small-world topologies, this thesis will show that P2P

topologies can induce similar selection pressures to the panmictic one,

allowing in addition a better scalability behaviour at the lower edge

cardinality of P2P systems.

2.3 A review on Peer-to-Peer Evolution-

ary Algorithms

A first insight from the sections above is that P2P EAs models should

be closer to fine-grained approaches in order to be scalable. How-

ever, studying scalability in distributed EAs over P2P networks is

not straightforward and is usually approached in two complementary

ways, using real environments [23] or using simulations [8]; either way

presents its own advantages and drawbacks.

On the one hand, experiments in real environments present some

challenges that, so far, pose a whole set of practical problems beyond

the state of the art. The main reason is the difficulty to gather a

large amount of reliable resources. Whenever the study of scalability

is reduced to a few peers, no conclusions about massive scalability can

be drawn. However, if the amount of peers is large enough, other

questions, such as fault tolerance, arise [54]. On the other hand, using

simulations simplifies the analysis and allows focusing on the structural

design since restrictions like the harnessing of computing power or the
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peers’ failures disappear. The drawback in this case is that simulations

imply a certain number of assumptions about the real environment;

hence, they have to be well stated (e.g. representing a pessimistic

scenario as in [8]).

Some frameworks have been proposed in this context, some of the

most relevant works that have tackled scalability are detailed bellow:

� DREAM [7], is one of the pioneering frameworks for P2P Evo-

lutionary Computation (EC), the proposal focuses on the dis-

tributed processing of EAs and uses the P2P engine DRM (Dis-

tributed Resource Machine) which is an implementation of the

newscast protocol [43]. However, the island-based parallelisation

of DREAM was shown in [47] to be insufficient for tackling large-

scale decentralised scenarios. There are some other frameworks

based on DREAM as G2DGA [10] which uses G2P2P instead

of DRM and focuses on Genetic Algorithms among all the EAs

paradigms.

� Folino and Spezzano propose in [23] the P-CAGE environment

for EC in P2P systems which is a hybrid model combining is-

lands with cellular EAs. Every peer holds an island and every

island a cellular EA. Despite results outperforming canonical EAs

(either in execution time or convergence speed), the scalability

analysis is limited to ten peers and the algorithm yields the best

performance with five peers which points to poor scalability.

� Lee proposes in [48] a parallel system for EC using the P2P frame-
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work JADE. The optimisation is performed by three kinds of

agents: state agents for controlling whether the peer is active or

not, mobile agents for performing the evolutionary computation

and the synchronising agent, a centralised agent for synchronising

all the active peers. The algorithm’s execution time speeds-up

linearly but the scalability analysis is limited to eight nodes from

which no conclusions about true scalability can be extracted.

In addition to the previous approaches for real environments, some

other works in the literature face the design of P2P EAs by means

of simulations, focusing on the viability of the approaches rather than

dealing with the harnessing of computing power.

� The self-organising topology evolutionary algorithm (SOTEA) by

Whitacre et al. in [75] is an EA designed for the sake of diversity

maintenance. To this end, the authors focus on a self-organised

population structure with the shape of a complex network. The

network co-evolves with the EA by following two rules (from

which a power law population structure emerges):

1. Reproduction rule: When a new offspring is created, SOTEA

adds a new node, this node is linked to its parent (asexual

reproduction). The parent’s connections are inherited by

the offspring with certain probability Padd. In addition, all

inherited connections are lost by the parent with probability

Premove.
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2. Competition rule: A random selected individual competes

with its less fit neighbour. From such a competition, the

loser is killed and the winner inherits all its connections.

By following these two rules, SOTEA keeps a better population

diversity than the Cellular and Panmictic GA used as a baseline

for comparison.

� Along the same lines of self-organised algorithms, Wickramas-

inghe et al. present in [76] a P2P EA with two particular proper-

ties: autonomous selection and natural reproduction. Autonomous

selection means that the individuals in the population decide on

their own whether and when they want to reproduce and to sur-

vive without any central control. To this end, they use informa-

tion on their own fitness and estimations about the total popu-

lation to support decision making. The second special feature,

natural reproduction, means that birth and death decoupled [18].

That is, an individual can be removed without being replaced by

a child and a child can be born without removing an existing

individual first. This is highly uncommon in EAs and as a conse-

quence, the population size varies at run-time (just like in natu-

ral evolution) and a self-adjusting selection pressure mechanism

is needed to prevent population implosions or explosions.

Nevertheless and to the best of our knowledge, none of these ap-

proaches perform an integral analysis of viability taking into account

the issues of decentralisation, scalability and fault-tolerance in P2P

systems at once. Therefore, this thesis aims to present and analyse
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a simple and easy-understandable model for P2P EAs that cope with

the mentioned issues, so that, the general viability of P2P EAs can be

concluded.

2.4 Summary

This chapter describes the main parallel and distributed EA models

reviewing the possible advantages and drawbacks of adapting a given

model to a P2P system. To this aim, parallelism has been consid-

ered at two different levels in the structure of an EA, evaluation and

population levels. The first takes adventage of the parallel evaluation

of individuals on different processors in an approach known as global

parallelisation. A global parallel EA keeps a single and centralised pop-

ulation that evolves following the same scheme than in the sequential

mode. The centralised management of the evolutionary loop represents

a bottleneck on the master node and linear speedups can be expected

up to a few processors imposing, this way, a limitation to the massive

scalability of P2P systems. In the second case, parallelism is consid-

ered at population level in which the global population is divided into

several demes running on different processors and communicating with

each other, that is, the algorithm is spatially structured. Spatially

structured EAs can be classified in coarse-grained and fine-grained ap-

proaches depending on the parallelisation grain. In the coarse-grained

approach, the population is divided in several panmictic subpopula-

tions while in the fine-grained approach, individuals interact with each
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other by means of the population structure, so that, potentially, they

can be placed on different processors. In a similar way that the global

parallel EA, the spatially structured coarse-grained model has some

difficulties to take advantage of a large number of resources, specially,

when tackling large and difficult problems. However, fine-grained ap-

proaches seems to be more suitable for massive parallelisation and the

population structure can be defined with the shape of a complex net-

work as in the case of P2P systems.

Finally, some of the most relevant works in the literature of P2P

EAs are presented showing the interest of the scientific community

in this field of research. Nevertheless, we miss an integral analysis

of viability addressing the issues of decentralisation, scalability and

fault-tolerance. This thesis aim to tackle such issues in the following

chapters.
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Chapter 3

Newscast in the context

of Peer-to-Peer

Computing

By the term Peer-to-Peer computing we will refer to those issues re-

lating to protocol development, security management, analysis of per-

formance and applications of P2P systems [66].

Peers (that will be also referred to as nodes in the context of com-

munication graphs) are equal entities able to establish a self-organised

and decentralised communication using their own routing mechanisms.

Therefore, the working principle of the P2P technology is the ability

of every peer to behave autonomously as a servent, that is, every peer

acts as a SERVer and a cliENT.
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Such a dual operational mode has been proved to be a good way

to harness decentralised resources at the edges of the network (e.g.

storage or computing power), giving a single coherent view of the sys-

tem. Taking adventage of such features, the aim of this thesis is using

P2P technology as a computing platform in the application area of

Evolutionary Algorithms.

In order to explain the design decisions taken further on the follow-

ing chapters and put EAs in the context of P2P technology, Section

3.1 reviews different taxonomies of P2P systems according to criteria

such as system architectures or application areas. In such a framework,

Section 3.2 analyses the specific protocol that will be used throughout

this thesis, the newscast protocol. It consists in a fully-decentralised

protocol firstly proposed in [43] by Jelasity and van Steen which has

shown to succeed in the main issues related to P2P computing such

as massive scalability or fault tolerance in e.g. [42, 73, 41]. Finally,

Section 3.3 concludes with a summary about the described technolo-

gies stating how an easy understandable protocol such as newscast is

representative of the P2P paradigm.

3.1 Taxonomies of P2P systems

In order to present the main issues involving P2P systems and how

different applications approaches take adventage of P2P technology,

this section explains two well-known methods for classifying P2P sys-

tems; the first one, in Section 3.1.1, classifies P2P systems according
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to the degree of decentralisation promoted by different kind of system

architectures, meanwhile, the second one, in Section 3.1.2, provides a

taxonomy on the different application areas of P2P systems.

3.1.1 System architecture

The harnessing of resources in P2P systems depends of three basic

features of the architecture design, resource availability, resource dis-

covery and resource retrieval. Availability and retrieval of resources

refer to the way in which resources are disposed within the system,

and therefore, the way in which they can be retrieved. Additionally,

the discovery of resources addresses the look-up of contents in large and

decentralised systems.

In Bittorrent [49], for example, files are available in pieces of equal

size in a distributed network known as swarm. Two kind of special

peers, seeders and trackers, have respective information on the location

of pieces and peers. This way, seeders and trackers allow a client to

discover the resources, so that, it can retrieve content from the swarm

in a decentralised fashion.

Nevertheless, an efficient look-up mechanism turns out to be not

trivial for large and decentralised systems. In this sense, the system

architecture mainly depends on decisions about the indexing and dis-

covery of resources and according to such design decisions, P2P archi-

tectures can be classified within the following three main blocks:
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3.1.1.1 Centralised

The look-up service is implemented on central servers, and therefore, all

the addressable content of the peers is centralised such as in Napster.

The major drawback of centralised systems is that servers represent a

possible bottleneck for massive scalability and a single point of failure.

A good example is the history of Napster itself. Its controversial use

for the illegal sharing of copyright protected files in addition with its

centralised look-up architecture led soon to the intervention of the

service in 2001 by simply closing the servers.

3.1.1.2 Decentralised

In order to cope with the limitations of centralised approaches, decen-

tralised alternatives such as Gnutella 0.4 [29] have emerged during the

last decade. In a nutshell, a decentralised system implies that many

nodes are providers of the look-up service making the system robust to

failures of punctual nodes.

Such kind of approach has shown to be massively scalable and is

imposing within the current P2P architectures. The great number of

P2P systems following a decentralised scheme requires of an additional

subclassification. The most extended criterion for it is considering

whether the peers do a pro-active effort to maintain a given network

topology (in this case they are known as structured systems) or the

properties of the network emerge from the collective behaviour of the

peers (known as unstructured systems).
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� Structured systems:

It mainly refers to distributed hash table approaches (DHT) such

as Chord [68], Pastry [60], Tapestry [77] or CAN [58]. DHTs con-

sist in the distributed indexing of contents using pairs (key, value).

To this aim, the key space is composed of a set of integer val-

ues, e.g. from 0 to 280. Any node within the network receives a

portion of key indexes and a routing table to l different nodes in

such a way that entries point to nodes at the position n + 2i−1,

where 1 ≤ i ≤ l and n is the current node. This way, the look-up

of a given key can be done in O(log(n)) steps.

� Unstructured systems:

Some authors also refer to such systems as Pure P2P [66]. The

main idea behind is that all elements in the system are distributed

without any central component. Examples of these systems are

Gnutella 0.4 [29] or newscast [43]. Decisions on the routing are

taken locally by every peer, and therefore, the network topol-

ogy is self-organised. In these systems, the look-up for contents

is based on flooding mechanisms (a.k.a. gossipping or epidemic

look-up), that is, a request is flooded through neighbour nodes

taking a certain number of hops. The key to success is the small

diameter of the network at the self-organised small-world rela-

tionship between nodes. Hence, a given look-up could take log(n)

hops with respect to a network of size n.
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3.1.1.3 Hybrid or semi-centralised

Finally, there are hybrid (or semi-centralised) approaches consisting

in a hub based architecture. Hubs, also known as Superpeers, have a

higher degree of connections than the rest of peers, known as leafnodes.

Despite hubs representing a sort of centralisation, they scale according

to the network size. That is, the architecture allows massive scalability

by increasing the number of superpeers with respect to the network

size. On the other hand, the degree of leafnodes also scales following

a power-law distribution. A good example of hybrid architecture is

Gnutella 0.6 [45] whose aim was to reduce the load of the network

with respect to the decentralised version, Gnutella 0.4.

3.1.1.4 Conclusions

As a summary, Figure 3.1 depicts the topologies of the three system ar-

chitectures. In order to study the viability of P2P EAs, we have chosen

newscast (a purely decentralised P2P system [43]) as the system archi-

tecture for this thesis. As it will be analysed in Section 3.2, newscast

adopts the shape of a complex network and fits with all the require-

ments exposed in the previous Chapter for a fine-grained P2P EA such

as decentralisation, massive-scalability or fault tolerance. In this sense,

choosing a centralised approach would have imposed some limitations

on the scalability in addition to the high vulnerability to failures on

central nodes. On the other hand, hybrid approaches are the response

that arise from issues related to load balancing the network traffic or
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the computing power. We find that such issues would correspond to

decisions in later phases of design rather than in a preliminary study

of viability.

3.1.2 Application areas

P2P systems have been widely used and mainly developed for file-

sharing applications [61]. Nevertheless, the power for the harnessing

of distributed resources -storage, computing power or human presence-

has attracted the attention of researchers from different areas into P2P

systems. Thus, Mobile ad-hoc networks (MANET) can been modelled

following a P2P approach [11], Voice over IP (VoIP) protocols can be

understood as an instance of P2P protocols [51] or idle cycles are used

for computing applications [25]. In the widest sense, P2P is a key

for understanding, approaching and modelling distributed resources

providing a single coherent view of the system. The following points

summarise four of the main application areas in which P2P systems

are applied nowadays.

3.1.2.1 File-sharing

P2P systems were initially thought for this kind of applications. File-

sharing P2P systems are platforms for the interchange of files between

different final-users. Each one of these users is at the same time a

service provider and a consumer requesting contents from other users.

Therefore, contents had to be allocated in an addressable way in order
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Fig. 3.1 — From top to bottom. Centralised, hybrid and decentralised architectures.
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of being retrieved by any user willing to obtain them. Depending on

the system architecture, the look-up problem can be addressed in a

centralised way such in Napster [61], in a decentralised way such in

Gnutella 0.4 [29] or in an hybrid way such in Gnutella 06 [45].

3.1.2.2 VoIP and Instant Messaging

Voice has been recently incorporated to traditional instant messaging

technology. Applications such MSN Messenger or Net2Phone use tra-

ditional VoIP protocols such as SIP or H.323 [64, 52]. Nevertheless,

the most extended VoIP application nowadays is Skype, a P2P based

VoIP protocol. Lisha and Junzhou show in [51] that QoS is rather

similar between traditional and P2P approaches. However, the great

advantage of using such P2P based approach is that it can solve NAT

and firewall problems.

3.1.2.3 Mobile ad-hoc networks (MANET)

MANETs are networks of sensors designed to collect information from

the inside of a given phenomenon under study. The fields of application

are numerous going from e.g. traffic jams control to glacial monitoring

[44]. The basic features of sensors include sensing the environment,

processing the data and communicate with each other in a collabora-

tive way. To this aim, networking techniques require of self-organised

protocols in order to cope with an ad-hoc and changing environment in

which the position and persistence of the sensors is unreliable. At this
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point, P2P techniques are helpful and are widely used in MANETs for

the management of decentralised topologies, the probabilistic multi-

casting of information in multi-hop architectures, the resilience of the

system to sensors failures and the scale-up of the network size [11].

3.1.2.4 Cycle-sharing

Cycle-sharing P2P systems are distributed networks of heterogeneous

single systems that contribute spare processor cycles for computing.

A well-known example of application is the SETI@home project [5]

searching for extraterrestrial intelligence patterns among a huge amount

of radio signals collected from the spacial observatory of Arecibo in

Puerto Rico. Despite strictly speaking SETI@home is based on Desk-

top Grid (DG) technology [6], the dividing line between both tech-

nologies is unclear and is mostly subject to differences in the network

structure, centralised for DGs and decentralised for P2P. However,

both technologies focus on the harnessing of computational power from

a group of interconnected computers. Such source of computational

power is based in one or both of the following approaches:

� Volunteer Computing:

Volunteer Computing refers to distributed computing applica-

tions in which the source of computational power is aggregated

from volunteers that willingly donate their idle CPU cycles to

different research projects. In this case, cycle-sharing applica-

tions aim the harnessing of computing power at the edges of the
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Internet [67].

� Infrastructure applications:

There is no reason for limiting P2P technology to volunteer com-

puting. As in the case of GRID technology, P2P systems can be

hosted in private infrastructures. In fact, both technologies are

compatible and they converge towards common places. Quot-

ing Foster and Iamnitchi in [25] ”. . .both are concerned with the

same general problem, namely, the organisation of resource shar-

ing within virtual communities. . . . . .both take the same general

approach. . . . . .each has made genuine technical advances”.

3.1.2.5 Conclusions

Among all the above mentioned application areas, this thesis might be

catalogued as a study of viability on a cycle-sharing application. More

concrete, an application based on distributed Evolutionary Algorithms.

The main reason is that Evolutionary Algorithms performance depends

on the complexity of the problems to be tackled. The more complex

the problem instance, the larger the computing requirements. This fact

leads to a sometimes prohibitively long time to solution that happens,

for example, when tackling many real-world problems. In order to

reduce the execution time of EAs, this thesis presents a cycle-sharing

P2P system as an alternative platform for the harnessing of computer

power at a very low cost.
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3.2 Newscast Computing

As it has been mentioned at the introduction of this Chapter, we have

chosen newscast to be the underlying P2P protocol in this thesis be-

cause it represents a good example of purely decentralised protocol

that has shown to succeed in the main issues related to P2P comput-

ing such as massive scalability or fault tolerance. This section describes

the design of its components and analyses the runtime dynamics of the

protocol.

Newscast is a self-organised gossipping protocol for the maintenance

of dynamic unstructured P2P overlay networks [43]. Without any cen-

tral services or servers, newscast differs from other similar approaches

[29, 68, 58, 60, 77] by its simplicity and scalability:

1. The membership management follows a extremely simple proto-

col: In order to join a group, a given node just has to contact any

node within the system from which gets a list of its neighbours

members. Additionally, to leave the group, the node just requires

to stop communicating for a predefined time.

2. The dynamics of the system follow a probabilistic scheme able to

keep a self-organised equilibrium at a macroscopic level. Such an

equilibrium emerges from the loosely-coupled and decentralised

run of the protocol within the different and independent nodes.

The emerging macro-structure behaves as a small-world [74] al-

lowing a scalable way for disseminating information and, there-

fore, making the system suitable for distributed computing.
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3. Despite the simplicity of the scheme, newscast is fault-tolerant

and exhibits a graceful degradation without requiring an extra

mechanism other than its own emergent macro-behaviour [73].

Algorithm 2 shows the pseudo-code of the newscast protocol. Each

node keeps its own set of neighbours in a cache that contains c ∈ N
entries, referring to c other nodes in the network without duplicates.

Each entry provides a reference to the node in which it was created

and a time-stamp of the entry creation (allowing the replacement of

old items).

Algorithm 2 Newscast protocol in nodei
Active Thread
loop

wait tr

nodej ⇐ Uniformly random selected node from Cachei

send Cachei to nodej

receive Cachej from nodej

Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

Passive Thread
loop

wait Cachek from nodek

send Cachei to nodek

Cachei ⇐ Aggregate (Cachei,Cachek)

end loop

Cacheaggregated ⇐ Aggregate(Cachea,Cacheb)
Cacheaggregated ⇐ Cachea ∪ Cacheb
Keep the c freshest items in Cacheaggregated according with the time-stamp.

There are two different tasks that the algorithm carries out within

each node. The active thread which pro-actively initiates a cache ex-

change once every cycle (one cycle takes tr time units) and the passive

thread that waits for data-exchange requests.
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Every cycle each nodei initiates a cache exchange. It selects ran-

domly a neighbour nodej from its Cachei with uniform probability.

Then nodei and nodej exchange their caches and merge them follow-

ing an aggregation function. In this case, the aggregation consists of

picking the freshest c items from Cachei ∪ Cachej and merging them

into a single cache that nodei and nodej will share.

3.2.1 Communication Graph Series

The dynamic sequence of relations between the different nodes de-

fines a series of communication digraphs (directed graphs) Dt at time

t starting, therefore, at D0. In order to analyse the graph subseries

Ditr(i = 0, . . . , N), we assume that a complete communication cycle

occurs within a time interval [itr, (i + 1)tr]. Given the low commu-

nication exchange calls frequencies (this property will be analysed in

Section 3.2.4 around the results in Fig. 3.9) this assumption is not

unrealistic as long as the information exchange is short with respect to

tr.

In order to complete the characterisation of the graph series, we

will analyse two of the most relevant properties in the communication

graph Gt obtained from dropping the orientation in Dt: the average

path length and the clustering coefficient. The average path length of

a node ni is the average of the minimal path between ni and the rest

of nodes while the clustering coefficient of ni represents the fraction of

its neighbours which are also neighbours between them.
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3.2.2 Bootstrapping and Convergence

This section studies the self-organised dynamics of the newscast com-

munication graph series, showing that, independently of the initialisa-

tion criterion, the graph is able to bootstrap and converge to stable

conditions. It reproduces the results of the newscast seminal paper in

[43]. Figure 3.2 represents the convergence of the graph series boot-

strapping from a random and a small-world graph at G0. In quite an

early stage, i.e. around G12tr , the graph has already converged to an

state of dynamic equilibrium with independence of the initial graph

G0.

Nevertheless, the cache size (c) plays here an important role. It

represents the maximum degree of a node, and therefore, influences

the average path length and the clustering coefficient. For example,

Figure 3.3 shows newscast converging to different values depending on

c.

In addition, Figure 3.4 depicts the influence of the cache size on the

average path length and the clustering coefficient for different network

sizes. A smaller c implies a higher clustering coefficient and also a

higher average path length.

Based on such features, a newscast graph can behave as a small-

world by tuning c to the adequate values. In this sense, Jelasity and

van Steen state in [43] that the intended normal setting of newscast

is c � n; for c � n, newscast has the small average path length of

random graphs but, as shown in Figure 3.5, a much higher clustering
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Fig. 3.2 — Convergence of the average path length (up) and clustering coefficient

(down) bootstrapping from a random and a Watts-Strogatz (ws) graph

for a number of nodes n = 1600. The graph can be seen to converge to

the same values within the interval G0tr−20tr showing the independence

of the protocol convergence with respect to the initialisation criterion.
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Fig. 3.3 — Convergence of the average path length (up) and clustering coefficient

(down) bootstrapping from a random graph for different cache sizes and

a number of nodes n = 1600
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Fig. 3.4 — Converged average path length (up) and clustering coefficient (down)

for G40tr and different network and cache sizes (c).
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coefficient [73].

3.2.3 Robustness

One of the important issues regarding P2P computing is the robust-

ness of the underlying protocols such as newscast, that is, protocols

describe the dynamics of the communication graph series (Gt) in a

continuous changing environment. In this section, we consider two

important aspects regarding the robustness of the newscast protocol1.

1. The probability of spontaneous partitioning of Gt.

2. The robustness of newscast to node removals.

The spontaneous partitioning of the communication graph series

means that a subgraph becomes disconnected within the interval G0−t

as a consequence of the protocol dynamics. Figure 3.6 shows that in

newscast the probability of spontaneous partitioning is mainly influ-

enced by the cache size c. Despite the results showing that the null

probability is reached for c = 10, it has to be considered that results

are obtained over 50 independent runs for relatively small networks

within the interval G0−20000tr and, therefore, it might be still possible

to get a partition considering larger networks, a larger number of runs

or a larger time interval. In this sense, the seminal study in [43] ex-

tends such results and establishes that the probability of spontaneous

partitioning is almost negligible from c = 20 ahead.

1Results are reproduced from [73].
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Fig. 3.5 — Clustering coefficients for equivalent random and newscast graphs (i.e.

nodes have the same number of edges, ten on the upper figure and

twenty at the bottom one). The higher values in the newscast graphs

point to a small-world topology.
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Fig. 3.6 — Probability of spontaneous graph partitioning as a function of the cache

size. Probabilities are obtained from 50 independent runs starting at the

random graph G0 until G20000tr or partitioning.

Nevertheless, previous results on the spontaneous partitioning of

Gt do not take into account peers failures which is an inherent feature

of Peer-to-Peer systems known as churn [69]. Churn emerges from the

collective dynamics of peers joining and leaving the system. Given that

the running platforms use to be highly dynamic (e.g. the Internet)

protocols have to be well-suited for tolerating faults. Therefore, we

study in Figure 3.7 the robustness of newscast in an scenario in which

nodes are removed up to none is left. It can be seen how newscast

inherits the robust behaviour of random graphs, especially when c is

large. On the one hand, the graph remains connected until a large

percentage of nodes are removed, e.g. for c = 40, 90% of the nodes

have to be removed to get a partition of the graph. On the other hand,

most of the nodes remain in the larger cluster once the partition takes

47



3 Newscast in the context of Peer-to-Peer Computing

Fig. 3.7 — Partitioning of the communication graph as a function of the percentage

of removed nodes in G0 (random graph) and the newscast subgraph

G20tr . Results are averaged from 50 independent runs and n=5000.
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place.

3.2.4 Dissemination of the information

In order to make distributed computing possible, a key element in a

distributed system is having a reliable information flow. Taking into ac-

count the decentralised and unreliable nature of P2P systems, newscast

guarantees a scalable and reliable dissemination of the information by

implementing a probabilistic epidemic multi-casting scheme. As in in-

fectious diseases, a piece of information is able to ”infect” the ”healthy”

neighbourhood of a given carrier node. The speed of dissemination is

high at the small-world structure of the communication graph and the

process is likely to ”infect” the whole graph in few time steps.

Such an effect can be visualised in the following experiment. At

time 0 one node produces a piece of information (so-called a news

item) that is sent to one of the neighbours every time-step. Once that

a node is ”infected” begins to act as a replicant and sends the news

item to its neighbourhood. This way, Figure 3.8 shows the proportion

of ”infected”nodes as a function of time. To this end, a complete graph

and two different parameterised newscast graph were considered.

Similar curves in Figure 3.8 denote equivalent speeds in the dissemi-

nation of information induced by both kind of topologies. Nevertheless,

the node degree in complete graphs of size n is n− 1 while the average

degree in newscast is approximately 2c pointing out a better scalability

of the small-world approach given that the intended normal setting of
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Fig. 3.8 — Dissemination speed of a news item through the entire network for a

complete graph and two newscast graphs with c = 10 and c = 20.

Results are averaged from 50 independent runs for a network size of

n = 1600.

newscast is c� n.

In addition to a lower node degree than in complete graphs, the low

frequencies of the information exchange calls are a good indicator of

the scalability of the protocol as depicted in Figure 3.9. Independently

of the network and cache sizes (i.e. assuming c � n), a node receives

at any given cycle tr less than 4 information requests with probability

p > 0.8 and less than 8 with p > 0.98. Therefore, a randomly chosen

node is likely to process few requests in a cycle. Whenever tr is large

enough with respect to a single request (e.g. 20 times larger) the

protocol run does not represent a bottleneck on the system even when

considering large network sizes.
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Fig. 3.9 — Information exchange calls probability in a fixed node during a time inter-

val tr (cycle). Results are estimated in the graph series D0 . . . D10000tr

where D0 is a random graph.

3.3 Summary

This chapter provides a general overview of the Peer-to-Peer Com-

puting area. In order to provide an adequate understanding of P2P

systems and a general taxonomy of the application areas, the system

architectures and the different ways of approaching fully-decentralised

schemes is introduced.

In addition, the chapter focuses on an exhaustive analysis of the

newscast protocol that will be used within this thesis as the underly-

ing running platform for the experiments. Newscast is a decentralised

gossip-based protocol that follows an epidemic scheme for disseminat-

ing the information. Despite its simplicity, it is a robust and scalable

protocol able to self-organise the relations between peers into a small-

51



3 Newscast in the context of Peer-to-Peer Computing

world communication graph. That is, independently of the initial con-

ditions, the system converges to an state of dynamic equilibrium that

behaves asymptotically as an small-world graph.
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Chapter 4

A framework for P2P

EAs: The Evolvable

Agent Model

This chapter presents the Evolvable Agent Model as the framework to

evaluate the viability of the P2P EA approach in the following chap-

ters. In addition, it provides some keys on how the algorithm perfor-

mance will be influenced by the underlying computing platform and

the specific features of the problem to be tackled.

Going back to the model, it consists of a fine-grained spatially-

structured EA (that will be detailed in Section 4.1) in which every

agent schedules the evolution process of a single individual and self-

organises its neighbourhood via the newscast protocol. As explained in
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Section 3.2, newscast runs on every node and defines the self-organising

graph that dynamically maintains constant some graphs properties

such as a low average path length or a high clustering coefficient from

which emerges a small-world behaviour.

This makes the algorithm inherently suited for parallel execution

in a peer-to-peer fashion which, in turn, offers great advantages when

dealing with computationally expensive problems because distributed

execution implies a speedup of the algorithm. In this sense, Section

4.2 provides a first insight on the computational performance of the

algorithm from the perspective of the execution time. It considers the

limitations of our approach when running either locally to a computer

or in a parallel infrastructure:

� Given that every EvAg can be potentially scheduled within a

thread, we show in Section 4.2.1 how a multi-threading popu-

lation is able to scale seamlessly in desktop computers without

any effort from the programmer. To this aim, we measure how

the algorithm speed scales by conducting experiments in a Single

and a Dual-Core Processor architectures.

� Section 4.2.2 shows that, in terms of computing speedup, the

parallel performance of the approach mainly depends on the fit-

ness evaluation cost and the underlying computing platform. For

very demanding problem instances and high performance com-

puter architectures, the EvAg model is estimated to hold linear

speedups up to thousands of processors.
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Such results help understanding the performance of the approach

in terms of execution time but just considering simplified models of

real-world applications. It will be within the following chapters of this

thesis where the viability of the approach is tackled in detail from an

algorithmic perspective.

4.1 The Evolvable Agent Model

Given that the EvAg model is an agent system, different EvAgs might

implement independent strategies of evolution e.g. using different op-

erators, following different evolutionary schemes or self-adapting their

own schedule at run-time as in [76]. Nevertheless, we have adopted a

symmetric implementation of the agents in order to simplify the study

of viability of the approach. This way, EvAgs will follow within this the-

sis the same evolutionary scheme of Cellular Evolutionary Algorithms

(CEAs) explained in Section 2.1.3.

Algorithm 3 shows the pseudo-code of anEvAgi ∈ [EvAg1 . . . EvAgn]

where i ∈ [1 . . . n] and n is the population size. Despite the model not

having a population in the canonical sense, neighbours EvAgs provide

each other with the genetic material that individuals require to evolve.

Every agent acts at two different levels; the evolutionary level for

carrying out the main steps of evolutionary computation (selection,

variation and evaluation of individuals [19]) and the neighbour level

that has to adopt a neighbour policy for the population structure, in
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this thesis such a policy will consist in the newscast protocol:

� Evolutionary level.

The key element at this level is the locally executable selection.

Crossover and mutation never involve many individuals, but se-

lection in EAs usually requires a comparison among all individu-

als in the population. In the EvAg model, the mate selection takes

place locally within a given neighbourhood where each agent se-

lects the current individuals from other agents (e.g. Indactualh

and Indactualk in Algorithm 3).

Selected individuals are stored in a Pooli ready to be used by

the recombination and mutation operators. Within this process

a new individual Indnew′
i

is generated.

In the current implementation, the replacement policy adopts a

replace if worst scheme, that is, if the newly generated individ-

ual Indnew′
i

is better than the current one Indactuali, Indactuali

becomes Indnew′
i
, otherwise, Indactuali remain the same for the

next iteration.

Finally, every EvAg iterates till a termination condition is met.

� Neighbour Policy: Newscast.

In principle, our method places no restrictions on the choice of a

population structure, however, such a choice will have an impact

on the dynamics of the algorithm. In this thesis, the newscast

protocol is considered as neighbourhood policy because, this way,

the model is suitable for a P2P execution. The main reasons for

56



The Evolvable Agent Model 4.1

the choice of such a protocol have been pointed in Chapter 3 and

can be summarised by the robust an scalable behaviour of the

approach [73]. In addition, the small-world features emerging

from the collective dynamics of the protocol has been shown in

Section 2.2 to induce similar environmental selection pressures on

the algorithm than panmictic populations, however, scalability is

much better at the smaller node degree of small-world population

structures as can be observed in Figure 4.1.

57



4 A framework for P2P EAs: The Evolvable Agent Model

Algorithm 3 Pseudo-code of an Evolvable Agent (EvAgi)

Evolutionary level

Indactuali ⇐ Initialise Agent

while not termination condition do

Pooli ⇐ Local Selection(NeighboursEvAgi
)

Indnewi ⇐ Recombination(Pooli,Pc)

Indnew′
i
⇐ Mutation(Indnewi ,Pm)

Evaluate(Indnew′
i
)

if Indnew′
i

better than Indactuali then

Indactuali ⇐ Indnew′
i

end if

end while

Local Selection(NeighboursEvAgi
)

[Indactualh ∈ EvAgh, Indactualk ∈ EvAgk]⇐ Random selected nodes from Cachei

Neighbour Policy: Newscast

Active Thread

loop

wait tr

EvAgj ⇐ Random selected node from Cachei

send Cachei to EvAgj

receive Cachej from EvAgj

Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

Passive Thread

loop

wait Cachej from EvAgj

send Cachei to EvAgj

Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

58



The Evolvable Agent Model 4.1

Fig. 4.1 — A snapshot of a newscast population structure for c = 4 and n = 100

(direction of the edges has been removed). It is straightforward to see

that the node degree in newscast is smaller than in the panmictic case

that would be represented by a complete graph with n(n−1)
2

edges.
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4.2 Practical issues

As previously explained, this thesis focuses on studying the viability of

the EvAg model from an algorithmic point of view. Nevertheless, this

Section tries to provide some keys for the interpretation of results from

a real-world application perspective in which the dominant time factor

for an EA uses to be the fitness evaluation. Therefore, the following

sections analyse the limitations on local and parallel performances im-

posed by the fitness evaluation cost and conditioned by the underlying

computing platform.

4.2.1 Local performance

Locally to a computer, every EvAg can be scheduled within a thread

and dispatched by the operative system. The multi-threading nature

of the model implies an impact on the local throughput, expressed as:

ThroughputEA =
Computational Effort

T ime
(4.1)

where Computational Effort is usually understood in EC as the number

of fitness evaluations.

Either the context exchange of the threads or the mutual exclusion

mechanisms have a computational cost which is avoid in sequential

approaches.
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Nevertheless, Symmetric Multiprocessing (SMP) architectures are

becoming nowadays very popular as desktop machines and sequential

approaches are unable to take advantage of more than a single pro-

cessor. This way, the local performance of the EvAg model can be

assessed by measuring the speedup in the throughput with respect to

a sequential GA (sGA):

Speedup =
ThroughputEvAg
ThroughputsGA

(4.2)

To this end, the computational cost of the evaluation function (i.e.

the independent variable in the throughput equation) is scaled from

few milliseconds to one second.

Figure 4.2 shows that the throughput speeds up asymptotically,

having a limit on the number of processors. Therefore, the performance

in single processor machines tends to be equivalent to sequential ap-

proaches as the evaluation cost increases while is clearly outperformed

in SMP machines. An additional advantage of the EvAg model is that

the load balance at this level is transparent for the programmer since

it is carried out by the operative system.
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Fig. 4.2 — The figure depicts how the EvAg throughput speeds up with respect to

the sGA one when the evaluation function cost scales for a population

size of 400 individuals. The test-bed is a single processor (upper figure)

and a dual-core processor (bottom figure).
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4.2.2 Parallel performance

In parallel infrastructures, the speedup is a commonly used metric to

measure the parallel performance of a distributed algorithm over the

sequential one. Gagné et al. define in [27] the speedup of a distributed

EA assuming that the fitness evaluation is the main consuming task:

Speedup =
NTf
Tp

(4.3)

where N is the population size, Tf is the time needed to evaluate the

fitness of a single individual and Tp is the time needed to evaluate all

the individuals using P processors.

In the case of a P2P system, every individual is placed in a single

processor and therefore P = N and Tp = TN . Then:

TN = Tf︸︷︷︸
computation

+
N

m
Tcomm︸ ︷︷ ︸

communication

+ Tlat︸︷︷︸
latency

(4.4)

where Tcomm is the communication time required by every EvAg at each

evolutionary cycle and m is the number of hub/gateways of the physical

network from which all the network traffic is dispatched. Being Tind the

time to transmit a single individual, Tcomm = 2Tind in the case of using

a selection operator such as binary tournament. Finally, the latency

time, Tlat, will depend on the infrastructure of the physical network.

This way, having a single queue gateway M/M/1 (as depicted in Figure
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4.3), the latency time can be explained as the mean response time of

the gateway [40]:

TlatM/M/1
=

1

µ︸︷︷︸
throughput

1− λ

µ︸︷︷︸
utilisation

(4.5)

where λ represents the incoming traffic rate and µ the throughput

rate. This way, the traffic intensity (or utilisation of the gateway) can

be expressed as ρ = λ
µ and the latency time extended to m gateways

following a M/M/m scheme:

TlatM/M/m
=

1

µ
(1 +

ρ

m(1− ρ)
) (4.6)

Under such a framework, the following experiment aims to provide

a guideline on how the fitness evaluation cost and the underlying com-

puting platform may influence the parallel performance of the EvAg

approach.

According to Thierens in [70], the population size of an EA (N)

roughly scales with an order O(lα), where l is the chromosome length in

bits and α is a constant that depends on the algorithm and the problem

complexity. Therefore, we can analyse the parallel performance of

our P2P EA model under the following assumptions by scaling l ∈
[1 . . . 100]:
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Fig. 4.3 — Scheme of a M/M/1 queueing system. λ stands for the incoming traffic

rate and µ for the throughput rate.

� Since N scales with an order O(lα), we have set N = lα. Tak-

ing into account the empirical results on the Thierens paper, a

problem of intermediate difficulty can scale with α = 2.

� We assume that Tind = l, meaning that the time to transmit an

individual through the network scales linearly with respect to the

chromosome length.

� Given that λ represents the incoming traffic rate in a gateway,

it can be explained by λ = N
m2Tind if we assume a perfect load

balancing of all communications through the m gateways.

� µ has been adjusted to 20000 in such a way that the single gate-

way queueing M/M/1 would suffer overflow beyond l = 100.

� To analyse the influence of the fitness evaluation cost and the

network infrastructure on the speedup, we have considered six
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possible scenarios for both variables:

– The fitness evaluation cost is obviously a problem-dependent

variable. In real-world problems, the complexity orders tend

to be high. Therefore, by simply assuming polynomial or-

ders of complexity O(lζ), the fitness evaluation can be ex-

pressed as Tf = lζ . This experiment consider ζ = [3
2 , 2, 3]

which are rather optimistic values considering real-world

problems.

– In order to assess the influence of the physical network on

the parallel performance, we consider two possible infras-

tructures, the first using a single queue gateway m = 1 (as

it could be the case in a LAN) and the second one using a

eight queueing system m = 8.

Figure 4.4 shows the maximum speedup that the P2P approach can

reach on every of the six scenarios under study. Beyond the numeri-

cal fit of the assumptions, results provide a qualitative estimation on

how the fitness evaluation cost and the underlying computing platform

influence the performance.

On the one hand, the scalability of the fitness evaluation cost is key

to hold linear speedups. In addition, not all the problem instances but

those requiring larger genomes can apply for massive parallelisation. In

this sense, the scalability of the population size impose a limitation on

the number of processors to be used since P = N at a higher bound. On

the other hand, the underlying architecture plays an important role on
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Fig. 4.4 — Speedup curves for ζ = [3
2
, 2, 3] as a function of the population size

(or alternatively the number of processors since N = P ). Results are

obtained for a single queue gateway architecture (up) and a 8 queues

gateway system (down).
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the communication time and therefore on the overall performance. It

can be seen how the problems scaling with sublinear speedups (e.g. for

ζ = 2) perform much better for infrastructures with a higher capacity.

68



Summary 4.3

4.3 Summary

The Evolvable Agent model is a fine-grained spatially-structured EA

composed of a population of Agents. Every EvAg acts at two levels;

evolving a single individual with the mate selection locally restricted

within a neighbourhood and dynamically structuring such a neighbour-

hood by means of the protocol newscast. This makes the approach

suitable for a P2P execution in which every EvAg can be potentially

placed in a different peer. In such a loosely-coupled scenario, the exe-

cution of the model is decentralised and lacks of a central clock which

implies the asynchronous evolution of the individuals.

Inherent to the model is that such an asynchronous execution allows

to take a seamless advantage of the several processors in SMP com-

puters, outperforming, this way, the throughput of a sequential EA

for demanding fitness evaluation functions. Additionally, the parallel

performance of the model has been shown to scale up to thousands of

computers with a linear speedup. Nevertheless, it has to be taken into

account that such a case would require of a highly expensive fitness

evaluation, a large number of individuals and a parallel infrastructure

able to support all the network traffic.

Therefore, to this point, massive scalability of the EvAg model re-

main in an idealised scenario that do not account for the algorithmic

issues of the approach itself, such as the asynchrony, nodes failures or

dynamic changes on the population structure. This way, the following

chapter will tackle the algorithmic performance of the model from the
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perspective of the experimental analysis.
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Chapter 5

Experimental Analysis

In the previous chapter we have presented the EvAg model as the

framework in which this thesis will analyse the viability of the P2P

EC paradigm. In addition, a first insight on the computational per-

formance of the approach has been provided showing that, for very

demanding problems, it is able to scale holding linear speed-ups.

Nevertheless, such results do not take into account whether the

algorithm is able to converge to good solutions in spite of the run-

time dynamics of P2P systems. Hence, in this chapter, we propose the

experimental analysis of the model in a simulated P2P environment so

that the viability of the P2P EA can be drawn from the algorithmic

performance of the approach. All the source code for the experiments

has been published under a GPL v3 license and is available from our

Subversion repository at https://forja.rediris.es/svn/geneura/

evogen.

71

https://forja.rediris.es/svn/geneura/evogen
https://forja.rediris.es/svn/geneura/evogen
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Simulations will allow the execution of controlled experiments tack-

ling the goals described in Section 5.1 in which a set of representative

test-cases are proposed for studying the viability of the model. In

order to define the system with a good level of detail, Section 5.2

describes the decision-making process that we have followed for the

experimental analysis. Taking into account such decisions, Section 5.3

presents the overall methodology that will be followed in the test-case

1 (Section 5.4), test-case 2 (Section 5.5) and test-case 3 (Section 5.6).

Finally, conclusions on the scalability and fault tolerance of the model

are drawn in Section 5.7 based on the analysis of results.

5.1 Goals

As exposed at the introduction of this thesis, one of the main moti-

vations behind P2P EAs is tackling those large problem instances in

which, due to memory or computational constraints, sequential ap-

proaches are unsuitable. In this sense, analysing the scalability of the

EvAg model is key to determine the viability of the approach. Addi-

tionally, as the sizes of the problem instances increase, the number of

computing nodes required to tackle the problem scales and, therefore,

failures become more likely at run-time. Taking that into account,

we propose an experimental analysis focused on the following goals in

order to prove the viability of the model:

1. Analysing the scalability of the model to demonstrate that the

approach is suitable for tackling large problem instances in a
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failure-free environment.

2. Studying the fault-tolerance of the model under churn conditions

to demonstrate that the model follows a graceful degradation and

is able to tackle large problem instances in spite of nodes depart-

ing from the system.

Studying the scalability makes possible not only to analyse in-

stances under examination but also predicting the model behaviour

when tackling larger instances. On the other hand, fault tolerance is

a key issue in a P2P EA since churn is inherent to P2P systems given

that peers are prone to failures.

In order to tackle such goals, the following test-cases have been

designed to assess the algorithm performance:

1. Scalability of the model in failure-free environments against se-

quential approaches. The EvAg model is compared against a

canonical SSGA and a GGA to demonstrate that such a spatially-

structured EA scales better than panmictic schemes of evolution.

2. Influence of the population structure on the algorithm perfor-

mance. As explained in Section 4.1, there is no reason pre-

venting the EvAg model to use population structures other than

newscast. Therefore, this test-case aims analysing the scalabil-

ity of the model using two common topologies in fine-grained

approaches: a ring lattice [30] and a Watts-Strogatz [32] popula-

tion structures.
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3. Fault tolerance of the model. In this test-case, we will analyse the

scalability of the model using several scenarios of churn in which

the system degrades under different failure rates.

Before proceeding with the experimental analysis, the following sec-

tion describes all the decisions related with the implementation of the

different test-cases.

5.2 Rationale for the experimental anal-

ysis

Given the huge complexity of either P2P systems or EAs, a detailed

analysis on their interactions in the P2P EC paradigm remains beyond

the scope of this thesis. Hence, a certain number of decisions has to

be made in order to focus the analysis on the specifications of the

goals. Therefore, this Section aims to justify the simplifications and

assumptions made on the model.

5.2.1 Simplifications

In order to simplify the analysis on the model performance, the follow-

ing considerations were made on the design of experiments:

� The experimental analysis in this thesis will concentrate on binary-

coded GAs [55], excluding the rest of EC paradigms such as ES
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[59], EP [22] or GP [46]. The main reason for this restriction is

that the population sizing theory [35] that we will follow to per-

form analysis on the scalability of the algorithm focuses on such

a kind of EAs. Nevertheless, taking into account that binary-

coded GAs follow the same evolutionary scheme than other EAs

such as real-coded GAs [20] or GP, conclusions should be easily

extended to other paradigms.

� With the aim of establishing a worst-case analysis, evolutionary

operators will not apply specific knowledge on the problem. In

this context, we will use uniform crossover, bit-flip mutation as

operators and binary tournament as decentralised selection mech-

anism throughout all the experiments [19]. Taking into account

that we will use trap functions as benchmark (described in Sec-

tion 5.3.1), either uniform crossover or bit-flip mutation prevent

the algorithm search to form higher order BBs, thus challenging

the GA’s search mechanisms. On an averaged sense, such oper-

ators are fooled by traps as described by Deb and Goldberg in

[15].

� In the same line as the previous point, individuals will be ini-

tialised at random. Every gene will have an uniform probability

of 0.5 of being either 1 or 0, so that, on average, the randomly

generated initial population is placed on local optimum attract-

ing regions for the problem landscapes proposed in Section 5.3.1.

75



5 Experimental Analysis

5.2.2 Assumptions

The experimental analysis in this chapter examines the main variables

influencing the EvAg performance. To that aim, experiments were

designed in such a way that variables under study can be analysed by

assuming fixed conditions for the rest of factors. Such assumptions are

detailed in the following points:

� We have used selectorecombinative versions of the algorithms

(without mutation) for estimating the population sizes. Lobo

and Lima state in [53] that the assumption of a selectorecombi-

native GA is commonly made in population sizing studies. That

way, the only source of diversity is then the initial population

which stands for a worst case analysis. However, this thesis com-

plements the study analysing the convergence of the approach

using mutation.

� We assume that every EvAg behaves as a virtual node [16] in such

a way that every physical node can host more than a single EvAg.

Hence, the number of virtual nodes hosted in a physical one can

be decided at a load-balancing level depending on node capaci-

ties and a heterogeneous system such as P2P can be assumed as

homogeneous at a virtual level.

� Despite having assumed homogeneous conditions in the previ-

ous point, the lack of a central clock in a decentralised scheme

implies an asynchronous execution. In this sense, the most com-

monly used methods to simulate asynchrony either in cellular au-
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tomaton [63] or cellular evolutionary algorithms [71] can not be

applied in this case except for the Uniform choice policy, more

appropriate to model a decentralised run in which there is no

guarantee of any sequential order in the update of the individ-

uals. This way, we have adopted such a policy to simulate the

asynchronous update of EvAgs.

� With respect to the update frecuency of an EvAg , it has to be

consider that there are two independent tasks running in parallel

within every agent, the evolutionary loop and the newscast pro-

tocol. In this sense, we have assumed that every time an EvAg

performs a fitness evaluation, it also initiates a cache exchange

of the newscast protocol, i.e. tr = cycle where tr is the param-

eter for the newscast updating frequency exposed in Section 3.2

and cycle is defined as the time the algorithm takes to perform

n evaluations in a population of n EvAgs using uniform choice.

� As it has already been shown in Section 3.2.2, the newscast pro-

tocol takes at around 12 cycles to converge to an state of dynamic

equilibrium for a network size of 1600 which is the maximum size

that we have used here. In this sense, the evolutionary algorithm

will begin at tr = 20 in order to guarantee that the protocol boot-

straps and converges. We have assumed a synchronised start up

of the experiments.

� The cache size (c) is the only tunable parameter in newscast and

we use c = 20 within all the settings of the experiments. Such

value takes into account Jelasity and van Steen recommendations
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in [43] stating that the intended normal setting of newscast is

c � n and demonstrating that values from c = 20 prevent the

spontaneous partitioning of the graph even when it becomes very

large (see Section 3.2.3 for more details). In addition, we make

experiments for the fine-tuning of the parameter in the appendix

A of this thesis showing a lack of influence of c on the EvAg

performance when c ∈ [0.01n, 0.16n], where n is the population

size.

� We have assumed that the time required for communications is

negligible with respect to the fitness computing time. Such an as-

sumption might be unrealistic for small problem instances, but it

turns feasible for problem instances becoming large, as it has been

shown in the analysis of the parallel performance of the model in

Section 4.2.2, communications do not inflict a penalisation on the

algorithm speed-up for problems with a very demanding fitness

evaluation cost.

Once assumptions have been laid out, we will continue describing

the experimental methodology next.

5.3 Experimental Methodology

In order to analyse the scalability of the EvAg model, experiments

are conducted on trap functions (described in Section 5.3.1). The pur-

pose is investigating how population sizes scale with increasing problem
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size and difficulty. To this end, we follow the population sizing theory

[35] which states that there is an optimal population size for a given

problem instance that can be determined under some conditions. In

particular, we use the bisection method (which will be explained in

Section 5.3.2) that determines the minimum population size N for a

selectorecombinative GA. In addition, we look at the scale-up proper-

ties of the average number of evaluations to a solution (AES), which is

an algorithmic independent measure of computational effort that can

be used for all EAs, with or without mutation [19]. Finally, the study

is complemented switching mutation on, so that the algorithm con-

vergence is analysed for the most demanding problem instances using

the metrics that will be proposed in Section 5.3.3. Such results will

be statistically analysed using the non-parametric Wilcoxon test [28]

within the following Sections.

5.3.1 Test-suite for the experiments

Experiments were conducted on deceptive, quasi-deceptive, and non-

deceptive trap functions [2] following Lobo and Lima’s recommenda-

tions in [53] about choosing a test suite with known population re-

quirements and investigating the scalability on landscapes with differ-

ent characteristics. These functions represent a set of decomposable

problems based on unitation and composed of sub-functions in which

the total fitness is additively calculated by summing the partial fit-

ness of every sub-function. Hence, it is easy to scale the problem

from small to large instances by considering a smaller or larger num-
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ber of sub-functions. In addition, each sub-function is composed of

(k) bits representing the BB size, every sub-function is then composed

of 2k combinations from which only one belongs to the optimal solu-

tion. Considered values include k = 2, k = 3 and k = 4 (forming

non-deceptive, quasi-deceptive and deceptive problems respectively).

Studying the scalability for different settings of k can offer a better

understanding of the model since not only the scalability is analysed

but also how the scalability changes as the problem difficulty increases.

There are two distinct regions in the search space of trap functions,

one leading to a global optimum and the other leading to the local

optimum (see Figure 5.1). In general, a trap function is defined by the

following equation:

trap(u(−→x )) =

{
a
z (z − u(−→x )), if u(−→x ) ≤ z
b
l−z(u(−→x )− z), otherwise

(5.1)

where u(−→x ) is the unitation function, a is the local optimum, b is the

global optimum, l is the problem size and z is a slope-change location

separating the attraction basin of the two optima.

Fig. 5.1 — Generalised l-trap function.

For the following experiments, 2-trap, 3-trap and 4-trap functions
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were designed with the following parameter values: a = l − 1, b = l,

and z = l − 1. With these settings1, 2-trap is not deceptive, 4-trap

is deceptive and 3-trap lies in the region between deception and non-

deception. Under these conditions, it is possible not only to examine

the scalability on trap functions, but also to investigate how the scal-

ability varies when changing from non-deceptive to deceptive search

landscapes. Scalability tests were performed by juxtaposing m trap

functions in binary strings of length L and summing the fitness of each

sub-function to obtain the total fitness.

5.3.2 A method for estimating the population size

Sastry proposes in [62] a method based on bisection to estimate the

optimal population size N to solve a problem instance, that is, the low-

est N for which 98% of the runs find the problem optimum. To this

end, a selectorecombinative GA is used to search the minimum popu-

lation size such that using random initialisation it is able to converge

to the optimum without any other mechanism than recombination and

selection.

Algorithm 4 depicts the method based on bisection. The method

begins with a small population size which is doubled until the algorithm

ensures a reliable convergence. After that, the interval (min,max ) is

halved several times and the population size adjusted within such a

range until max−min
min > threshold , where min and max stand respec-

1Originally, Ackley’s trap functions use z = 3l
4 , however, Deb and Goldberg demonstrate in [15]

that trap functions are fully easy under such settings.
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Algorithm 4 Population tuning algorithm based on bisection
N = Initial Population Size (20)

while GA reliability (N) < 98% do

min = N ;max,N = 2N

end while

while max−min
min > 1

16 do

N = max+min
2

if GA reliability(N) < 98% then

min = N

else

max = N

end if

end while

tively for the minimum and maximum population size estimated and

threshold for the accuracy of the adjustment within such a range. This

parameter has been set to 1
16 in order to obtain a reasonable adjustment

of the population size, e.g. the algorithm would estimate a population

size of N = 310 if we consider an optimal size of N = 315.

5.3.3 Metrics

The following metrics will be used for assessing the performance of the

model in the experimental analysis. To allow the comparison of results

with those in the literature such metrics were chosen to be standard

in EAs. Either Tomassini in [71] or Eiben and Smith in [19] make an
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extensive revision of them.

� The success rate (SR) measures the algorithm quality as the pro-

portion in which the algorithm is able to find the problem opti-

mum out of all the runs.

� The average number of evaluations to solution (AES) stands for

the number of evaluations that the algorithm spends in those runs

that yield success. Since a preliminary analysis on the normality

of results shows that they do not follow a normal distribution,

we have chosen the number of evaluations to solution in the third

quartile (AESQ3) as a baseline value, meaning that 75% of the

runs will stay below such a value.

� The Mean Best Fitness (MBF) is used to depict the algorithm

convergence as the averaged values of the best fitness.

� The genotypic distance entropy (GE) is a measure of the popu-

lation diversity defined on the genotypic distances (Hg(P )).

Hg(P ) = −
N∑
j=1

gjlog(gj) (5.2)

where gj is the fraction
nj

N of individuals in P having a Hamming

distance j to a genotype of reference (we have used the optimal

genotype to that end), and N is the number of different distances.
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5.3.4 Summary

This section has presented the experimental methodology that will be

followed for analysing the viability of the EvAg approach. To that aim,

we will have to prove that the algorithm is scalable and fault-tolerant

in a simulated P2P environment.

In order to tackle such goals, we will perform an experimental anal-

ysis of the three test-cases summarised in Table 5.1. In every case, the

analysis will follow the same methodology, consisting in the study of

the algorithmic scalability, the analysis of the algorithm convergence

and population diversity at run-time and a comparison of the results

to show whether they present statistical differences or not.
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5.4 Test-Case 1: Scalability of the model

in failure-free environments

In order to investigate the scalability of the EvAg model, experiments

were conducted on different trap functions and compared against two

canonical GAs, a steady-state GA (SSGA) and a generational GA

(GGA). Whereas the population structure of the EvAg model is defined

by the newscast protocol, the canonical GAs are panmictic. Following

the experimental methodology of Section 5.3, two series of experiments

were conducted:

In the first series that will be presented in Section 5.4.1, experiments

use selectorecombinative versions of the GAs to estimate optimal pop-

ulation sizes for the different problem instances. The reason for using

selectorecombinative GAs is that there are well defined models to es-

tablish the population size and the number of evaluations required to

solve a given trap function instance [37], however, to the best of our

knowledge there are no such models when using mutation. To this

end, in Section 5.3.2 we have described a method for estimating the

population size. The underlying idea is that without mutation, the

population size becomes the only source of diversity. In this context,

Thierens demonstrates in [70] the necessity of larger population sizes

when tackling larger problem instances.

In the second series presented in Section 5.4.2, the analysis focuses

on the performance of the different approaches when they are equally

parametrised. Specifically, large instances of 2-Trap, 3-Trap and 4-
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Trap are considered to analyse the convergence of the fitness and the

evolution of genotypic diversity. Finally, such results are statistically

analysed in order to determine whether the difference in performances

are significant or not.

5.4.1 Scalability analysis

In this first series of experiments, different approaches have no muta-

tion in order to meet the selectorecombinative criterion of the bisection

method. All settings are summarised in Table 5.2 taking into account

decisions in Section 5.2 about choosing operators that do not take ad-

vantage of the problem structure or setting the cache size. Since the

methodology imposes a SR of 0.98 in the results, the AESQ3 has been

used as an appropriate metric to measure the computational effort to

reach the success criterion. A more efficient algorithm will need a

smaller number of evaluations.

Trap instances

BB size 2, 3, 4

Individual Length (L) 12, 24, 36, 48, 60

GA settings

GA selectorecombinative SSGA

selectorecombinative GGA

selectorecombinative EvAg

Population size Tuning algorithm

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Newscast settings

Cache size 20

Table 5.2 — Test-case 1: Parameters of the experiments in the analysis of scalability.
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Figure 5.2 depicts the scalability of the population size (N) and

the required number of evaluations to reach the problem optimum

(AESQ3) for the three approaches under study on 2, 3, and 4-trap

functions. All the graphics show that either the population size or the

computational effort fit with a potential order of scalability with base

the length of the chromosome (L) and different exponents depending

on the problem difficulty and the approach itself.

The first conclusion that can be easily drawn from results is a bet-

ter scalability of the EvAg approach with respect to the population

size, specially when the problem difficulty increases from 2 to 4-trap.

That is, increasing the problem difficulty makes the GGA and SSGA

face extreme difficulties to track the problem optimum, thus requiring

a higher population size N to prevent that the algorithm gets stuck in

local optima. From a computational perspective, this fact can be trans-

lated into a more efficient use of the running platform since the EvAg

approach will require a smaller amount of computational resources.

Additionally, results on AESQ3 are clearly correlated to the popula-

tion size, SSGA scales better than GGA and it is roughly similar to

EvAg in 2 and 3-trap. Nevertheless, as the problem difficulty increases

to 4-trap, EvAg scales clearly better.

In order to gain some insight on the influence of mutation in the

scalability order, we consider a more realistic GA set-up by switching

mutation on. This implies that we have to specify values for the mu-

tation rate parameter pm. Strictly speaking, we should also recalibrate

population sizes, since the bisection method only gives good estimates

for selectorecombinative GAs. However, an extensive parameter sweep
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Fig. 5.2 — Scalability in trap functions based on the population tuning algorithm

and the selectorecombinative versions of the generational GA (GGA),

steady-state GA (SSGA) and the Evolvable Agent (EvAg ). On the

left the estimated population sizes N and the evaluations to solution in

third quartile AESQ3 on the right. Results are obtained by bisection and

depicted in a log-log scale as a function of the length of the chromosome,

L.
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Fig. 5.3 — Reproduction of the results in Figure 5.2 with mutation switched on.
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goes far beyond the scope of this thesis and therefore we will use the

common“ 1
L heuristic”for setting the mutation rates and keep the popu-

lation sizes that were used in the first series of experiments. Obviously,

in this case we only need to look at the AESQ3 results. The outcomes

of these experiments are shown in Figure 5.3 in which curves appear

shifted with respect to the selectorecombinative version in Figure 5.2

but approximately keeping the same scalability order. Table 5.3 com-

pares such estimated complexity orders with mutation switched off and

on, showing that mutation does not alter the order in algorithm per-

formance, and exponents are roughly the same, with only the constant

in the power law changing.

GGA SSGA EvAg

Mutation Mutation Mutation

off on off on off on

2-Trap O(L1.804)) O(L1.833) O(L1.607) O(L1.6) O(L1.738) O(L1.714)

3-Trap O(L3.24) O(L3.422) O(L2.454) O(L2.583) O(L2.498) O(L2.843)

4-Trap O(L9.219) O(L10.17) O(L6.169) O(L6.949) O(L4.451) O(L4.33)

Table 5.3 — Complexity orders of the AESQ3 scalability in O notation.

5.4.2 Analysis of the algorithmic convergence

In the second series of experiments we try to gain more detailed insights

in the differences between the three approaches to population manage-

ment using mutation. To this end, we run the GGA, SSGA, and EvAg

models using the same settings on a problem instance as summarised

in Table 5.4 (recall that in the previous experiments, GGA, SSGA, and
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EvAg used different population sizes on any given problem instance).

We choose large instances of each problem under study for this purpose

(i.e. L = 36 in 4-trap, L = 99 in 3-trap and L = 400 in 2-trap), where

the differences in scalability between the approaches are most visible.

To estimate the population sizes and the maximum number of eval-

uations in each case, we have used the scalability orders for the selec-

torecombinative EvAg on the previous series, e.g. L = 99 in 3-trap will

require a population size of 1.098L1.479 = 942 and a maximum number

of evaluations of 1.974L2.498 = 190740. With these settings, switching

mutation on implies that such values are oversized for the EvAg ap-

proach since mutation represents a new source of diversity, however,

the highest scalability orders of SSGA and GGA indicate that such

population sizes will remain undersized for both approaches.

The results in Figure 5.4 show that the fitness of the SSGA and

GGA approaches stagnates at early stages of the search in the different

instances. Despite the SSGA performing a more exploitative search

than the GGA, as shown by the genotypic entropy converging to zero,

both cases lost track of the optimum, a fact that might be explained

by an undersized population size. On the other hand, the evolution of

diversity of the EvAg approach indicates that the algorithm converges

to the optimum in 2 and 3-trap and is still converging in 4-trap when

the termination criterion is met. In this last case, it is straightforward

to see that the population size is oversized since a selectorecombinative

EvAg is able to find the optimum in such number of evaluations. Given

that the three approaches are equally parametrised, it is within the

spatially structured scheme of reproduction of the EvAg model where
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Trap instances

2-Trap

Individual Length (L) 400

Population size 660

Termination Condition Max. Eval. =144700

3-Trap

Individual Length (L) 99

Population size 942

Termination Condition Max. Eval. =190740

4-Trap

Individual Length (L) 36

Population size 600

Termination Condition Max. Eval. =393000

GA settings

GA SSGA

GGA

EvAg

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Mutation Bit-flip mutation, pm = 1
L

Newscast settings

Cache size 20

Table 5.4 — Test-case 1: Parameters of the experiments for the analysis of conver-

gence.
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Fig. 5.4 — Test-case 1: Best fitness convergence (left) and evolution of the diversity

expressed as the entropy based on the Hamming distances between the

genotypes (right). Graphs plotted represent the average of 50 indepen-

dent runs.
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the genetic diversity is preserved at a higher level and consequently the

population size N can be reduced. Hence, the EvAg approach scales

better on difficult problems. With a lower optimal N , EvAg needs fewer

evaluations to reach the optimum when compared to panmictic GAs.

5.4.3 Statistical analysis

The results shown in the previous Section are analysed in Table 5.5

using the Anderson-Darling test to refute the null hypothesis on the

normality of the data. The small p-values at the best fitness distri-

butions show that results do not follow a normal distribution. This

way, a non-parametric Wilcoxon test is used to compare the quality of

fitness between the EvAg and the SSGA and GGA approaches.

Problem Instance Algorithm Anderson-Darling Normal distribution?

Trap2 GGA A=3.5 p-value=6.1e-09 no

SSGA A=1.8 p-value=6.6e-05 no

EvAg A=17 p-value<2.2e-16 no

Trap3 GGA A=0.9 p-value=0.01 no

SSGA A=1.8 p-value=9.9e-05 no

EvAg A=11.7 p-value<2.2e-16 no

Trap4 GGA A=2.4 p-value=2.035e-06 no

SSGA A=1.2 p-value=0.002 no

EvAg A=12 p-value<2.2e-16 no

Table 5.5 — Anderson-Darling test on the normality of the best fitness distributions.

Results are obtained over 50 independent runs. We have considered

p− values > 0.1 for a distribution to be normal.

Table 5.6 presents the Wilcoxon analysis of the data showing signif-

icant differences between the EvAg and canonical approaches in all the

problem instances. Therefore, it can be concluded that EvAg outper-

forms SSGA and GGA when tackling large instances of trap functions.
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Problem Instance Algorithm Avg. Fitness ±σ Wilcoxon Test Significantly different?

Trap2 GGA 399.08±1.01 W=624 p-value=1.637e-07 yes

L=400 SSGA 397.8±1.56 W=142 p-value<2.2e-16 yes

N=660

M. Eval.= 144700 EvAg 399.92±0.27 - -

Trap3 GGA 89.78±2.8 W=0 p-value<2.2e-16 yes

L=99 SSGA 97.16±1.46 W=402 p-value=3.623e-10 yes

N=942

M. Eval.= 190740 EvAg 98.72±0.60 - -

Trap4 GGA 28.02±0.14 W=2500 p-value < 2.22e-16 yes

L=36 SSGA 31.88±1.15 W=2476 p-value<2.22e-16 yes

N=600

M. Eval.= 393000 EvAg 34.82±0.66 - -

Table 5.6 — Wilcoxon test comparing the best fitness distributions of equally

parametrised SSGA, GGA and EvAg in 2,3 and 4-trap. Results are

obtained over 50 independent runs.

5.4.4 Summary

The EvAg model has been proved to have good scalability on trap

functions with search landscapes of different degrees of difficulty. We

found that EvAg scales better than a GGA and an SSGA that only

differ from it in the population structure. Based on various scenarios

with and without mutation we can conclude that EvAg needs fewer

evaluations to reach a solution in addition to requiring smaller pop-

ulations. The improvement is much more noticeable as the problem

difficulty increases showing thereby the adequacy of the P2P approach

for tackling large instances of difficult problems. These results are spe-

cially remarkable in the deceptive case for a BB size of 4. It illustrates

the good scalability of the parallel approach when tackling difficult

problems.

To gain more detailed insights, the runtime behaviour of equally

parametrised EvAg, SSGA, and GGA approaches have been analysed

on large problem instances where the differences of scalability are more
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outstanding. The results show that EvAg can maintain higher popu-

lation diversity and better progress in fitness. As a consequence, an

oversized population for the EvAg model still remains undersized for

the canonical approaches that get lost in local optima.
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5.5 Test-Case 2: Influence of the popula-

tion structure on the algorithm per-

formance

As described in Section 4.1, the EvAg model imposes no restrictions on

the choice of a population structure. Within that context, the newscast

protocol has been considered throughout this thesis in order to allow a

decentralised execution of the approach in a P2P system. Nevertheless,

different structures will influence the dynamics of the algorithm in a

different way and therefore, the algorithmic performance. Hence, the

aim of this test-case is the comparison of performances of the approach

using three different population structures. To that aim, the ring and

the Watts-Strogatz method explained in Section 2.2 have been consid-

ered for comparison against newscast (Figure 5.5 shows snapshots for

the different population structures).

Fig. 5.5 — From left to right: ring, Watts-Strogatz and newscast population

structures.

We have chosen a ring population structure as an instance to com-

pare the performance of regular lattices against newscast since most of
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the works in the literature considering fine-grained approaches use to

focus in regular lattices (some examples have been already mentioned

in this thesis including [36, 3, 71, 17, 31, 30]). The main reason for

such a choice is that the bisection method is not applicable for some

other regular lattices such as a toroid or a grid in which the rectan-

gular dimensions of the topology do not allow doubling the size of the

population in the process of estimating the correct size.

In addition, the Watts-Strogatz method represents an easy and un-

derstandable model for creating a small-world population structure.

This way, it will be possible to compare two different methods (i.e.

Watts-Strogatz and newscast) for generating the same sub-type of com-

plex network. The interest here goes a step further than in the case of

the ring since there are many P2P protocols designed to work as small-

world networks. Therefore, we aim to establish whether the properties

on scalability of the newscast population structure lie in its small-world

structure so that may extend to other protocols implementing the same

kind of topologies (e.g. Gnutella 0.4 [29] or any DHT [68, 60, 77, 58]).

Figure 5.6 depicts the influence of the three methods in the en-

vironmental selection pressure by their respective takeover times. It

shows both small-world populations inducing similar pressures in spite

of being a bit stronger in the case of newscast. Meanwhile, the ring

structure shows a delay in the takeover time given that the network

diameter is larger at such a kind of topology.
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Fig. 5.6 — Takeover time curves in a ring, Watts-Strogatz with p = 0.2 and newscast

population structures. All results averaged from 50 independent runs,

for a population size of n = 1600 and binary tournament.

5.5.1 Scalability analysis

The following experiment aims to compare the influence of previous de-

centralised population structures on the scalability of the EvAg model

when tackling trap functions. Table 5.7 summarises the settings in

these series including the ring, Watts-Strogatz and newscast.

Figure 5.7 depicts the scalability of the population size and the

computational effort for the different population structures in 2, 3 and

4-trap functions. Results show that the ring structure is able to scale

better than its counterparts with respect to the population size. In that

context, the ring has been shown to relax the environmental selection

pressure and will consequently preserve the genetic diversity. This way,

the population size can be reduced at every instance and the scalability

order improves. Nevertheless, the analysis drastically changes with
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Trap instances

BB size 2, 3, 4

Individual Length (L) 12, 24, 36, 48, 60

GA settings

GA selectorecombinative EvAg

Population size Tuning algorithm

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Population settings

Population structure Ring

Watts-Strogatz, p = 0.2

Newscast

Node degree 20

Table 5.7 — Test-case 2: parameters of the experiments in the analysis of scalability.

respect to the computational efforts. In such case, the ring population

scales worse than the small-world ones requiring therefore a larger time

to converge to optimal solutions.

In addition, the comparison between the two small-world meth-

ods shows that the scalability of the population size using the Watts-

Strogatz method is slightly better than in the case of newscast. Nev-

ertheless, results are quite similar with respect to the scalability of

the computational efforts in which there is no clear trend of an ap-

proach outperforming the other when changing the problem landscape

difficulty. Taking into account that results are estimations based on

the bisection method, such orders of scalability point out that either

Watts-Strogatz or newscast perform roughly the same, the newscast

approach needing a slightly larger population size than Watts-Strogatz

but requiring equivalent times to solution.
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Fig. 5.7 — Scalability of the EvAg model using a Ring, Watts-Strogatz and Newscast

population structures in trap functions for the estimated population sizes

N (left) and the evaluations to solution in third quartile (right). Results

are obtained by bisection and depicted in a log-log scale as a function of

the length of the chromosome, L.
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5.5.2 Analysis of the algorithmic convergence

This section analyses the convergence of the EvAg approach in large

instances of 2, 3 and 4-trap for different population structures. All

settings for the experiments are summarised in Table 5.8. In order to

establish the population sizes and the maximum number of evaluations

for the different instances, we have chosen previous values obtained by

bisection for the selectorecombinative EvAg using newscast. The aim

here is to provide better insights on the algorithmic convergence for

the three topologies when the EvAg model is equally parametrised.

Trap instances

2-Trap

Individual Length (L) 60

Population size 135

Termination Condition Max. Eval. = 5535

3-Trap

Individual Length (L) 60

Population size 480

Termination Condition Max. Eval. =49920

4-Trap

Individual Length (L) 36

Population size 600

Termination Condition Max. Eval. =393000

GA settings

GA EvAg

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Mutation Bit-flip mutation, pm = 1
L

Population settings

Population structure Ring

Watts-Strogatz

Newscast

Node degree 20

Table 5.8 — Test-Case 2: Parameters of the experiments for the analysis of con-

vergence.
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Figure 5.8 shows both small-world approaches having a better progress

in fitness than the ring one in every instance under study. In fact, ei-

ther Watts-Strogatz or newscast reach the same qualities in solutions

at the maximum number of evaluations.

In addition, results for the genotypic entropy provide some keys on

the influence of the population structure on the algorithm. The ring

preserves the genetic diversity at a higher level than its counterparts

delaying this way the convergence of fitness. Besides, the same shape

in curves of the Watts-Strogatz and newscast approaches indicate that

both population structures belong to a same kind of topology. Never-

theless, newscast promotes a stronger selection pressure as was shown

by the takeover time curves in Figure 5.6.

5.5.3 Statistical analysis

The Wilcoxon analysis in Table 5.9 shows that differences in fitness

between newscast and ring population structures are statistically sig-

nificant which confirms previous results on the different convergences

of the approaches. Nevertheless, such differences do not appear when

comparing newscast with the Watts-Strogatz model in 2 and 4-trap.

Additionally, the p− value = 0.045 in the 3-trap instance points to a

close related distribution of fitness between both approaches.

Therefore, the small-world population structures generated by both

methods promote equivalent algorithmic performances. This fact is

promising for the exploration of other small-world based P2P protocols
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Fig. 5.8 — Test-Case 2: Best fitness convergence (left) and evolution of the diversity

expressed as the entropy based on the Hamming distances between the

genotypes (right). Graphs plotted represent the average of 50 indepen-

dent runs.
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in the context of the EC paradigm.

Problem Instance Algorithm Avg. Fitness ±σ Wilcoxon Test Significantly different?

Trap2

L=60 Ring 53.88±1.21 W=2429 p-value=2.22e-16 yes

N=135 Watts-Strogatz 57.26±1.52 W=1386 p-value=0.335 no

M. Eval.= 5535 Newscast 57.6±1.38 - -

Trap3

L=60 Ring 54.9±0.97 W=2135 p-value=6.46e-10 yes

N=480 Watts-Strogatz 57.04±1.07 W=1536 p-value=0.045 yes

M. Eval.= 49920 Newscast 57.5±2.04 - -

Trap4

L=36 Ring 33.88±0.69 W=2044 p-value=4.38e-09 yes

N=600 Watts-Strogatz 34.78±0.65 W=1288 p-value=0.77 no

M. Eval.= 393000 Newscast 34.82±0.66 - -

Table 5.9 — Wilcoxon test comparing the best fitness distribution of the EvAg model

using a Ring, Watts-Strogatz and Newscast population structures.

Results are obtained over 50 independent runs.

5.5.4 Summary

In this test-case, we have analysed the EvAg model using different

decentralised population structures in order to assess their influence

on the performance of the algorithm. A ring topology and the Watts-

Strogatz method were considered for comparison against the newscast

method which allows a decentralised execution of the approach in a

P2P system.

The ring topology has been chosen as the instance to compare reg-

ular lattices performances against newscast given that such kind of

population structures are commonly used in fine-grained approaches.

In addition, the Watts-Strogatz method is an easy method for gen-

erating small-world topologies. The aim here is to establish whether

population structures based on small-world networks have equivalent

performances so that EvAg can be extended to other P2P protocols
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implementing such a kind of topologies.

Results show that the ring approach needs smaller population sizes

than newscast to guarantee a reliable convergence but, in turn, it re-

quires of a larger number of evaluations which translates into larger

times to solution. On the other hand, the Watts-Strogatz method ex-

erts a slightly more relaxed selection pressure in the algorithm than

newscast, however, results on the computational scalability and on

the algorithmic convergence show that both approaches have similar

performances that do not present statistical differences in qualities of

solutions. Therefore, it can be concluded that both methods promote

similar behaviours in the algorithm performance. We find that fact

promising since such a property may extend to other small-world based

P2P protocols.
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5.6 Test-Case 3: Fault tolerance of the

model

As explained in chapter 3, P2P systems are large networks of volatile

resources in which the collective dynamics of peers joining and depart-

ing from the system is known as churn. This way, addressing churn in

a P2P EA turns into a requirement of design since failures in peers are

inherent to the system.

Following the work by Stutzbach and Rejaie in [69], there are two

main group-level properties of churn characterising the behaviour of

every participating peer: The inter-arrival time and the session length,

respectively, the time between two sessions and the time from the be-

ginning to the end of a session. In this test-case, we have assumed that

all peers start at the same time with a certain session length and avoid-

ing inter-arrivals. Therefore, once a peer leaves the system, it does not

re-join again so that the system degrades from the initial configuration.

The session length can be modelled randomly from a Weibull dis-

tribution using the following formula:

X = λ(−ln(U))
1
k (5.3)

where U is drawn from the uniform distribution, k stands for the shape

of the degradation and λ for the time scale.

In this context, Stutzbach and Rejaie analyse the runtime dynamics
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of three real P2P systems and conclude that all session lengths fit with

a Weibull distribution of shape k ≈ 0.40 but differing on the time

dimension λ. Given that experiments are conducted in a simulator

and a simulator cycle represents different time units in real time, λ

parameter was pre-adjusted to simulate different failure rates in such a

way that the system degrades up to 90% in the worst case. In concrete,

we use the following values for λ = 400, 2500 (depicted in Figure 5.9).

It shows the Weibull cumulative distribution functions for such values,

representing the percentage of remaining nodes at each moment of a

experiment (e.g. in the cycle 2000, ∼15% of the peers remain for

λ = 400 and ∼75% for λ = 2500).

Fig. 5.9 — Complementary cumulative distribution functions for a Weibull distri-

bution in function of the simulator cycles. Percentages are obtained as

the ratio between the total number of failures and the initial population

size.
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5.6.1 Scalability analysis

Using previous degradation rates, several instances of 2, 3 and 4-trap

have been analysed in order to assess the impact of churn in the EvAg

model. All settings for the experiments are summarised in Table 5.10.

This way, there will be three variables affecting the performance

of the algorithm: The size of the problem (L), which will conduct

to a scalability analysis, the intensity of churn (λ) and the initial2

population size (N). Being λ and L two independent variables under

the condition of obtaining a SR of 0.98, the initial population size

can be expressed as a function f(λ, L) = N and empirically estimated

using the bisection method.

Trap instances

BB size 2, 3, 4

Individual Length (L) 12, 24, 36, 48, 60

GA settings

GA selectorecombinative EvAg

Population size Tuning algorithm

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Newscast settings

Cache Size 20

Scenarios of churn

λ 400,2500

k 0.4

Table 5.10 — Test-case 3: parameters of the experiments in the analysis of scala-

bility.

Figure 5.10 shows the scalability of the population size (N) as a

2Given that the system degrades, the initial population size will not correspond to the final one.
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function of L, that is, L scales and λ remains fixed in f(λ, L) = N .

Churn does not seem to damage the scalability of the approach since

estimated curves f(λ, L) roughly follow the same orders of scalability

and just appear shifted by a constant which is churn dependent. The

more intensive the churn, the bigger the constant. In this sense, a

small increase on the initial population size is enough to provide re-

silience to system failures since orders of scalability go from O(L0.901) to

O(L0.928) in 2-trap, O(L1.479) to O(L1.799]) in 3-trap and are estimated

to O(L2.075) for any scenario in 4-trap.

In addition, graphics on the AESQ3 show that the computational

efforts required for tackling any given instance are independent from

the churn scenario. Given that churn does not affect the scalability of

the computational efforts, results exclusively depend on the problem

instance size L and, therefore, EvAg degrades gracefully. We will re-

quire the same computational efforts under any churn scenario if we

ensure enough resources to satisfy the condition of a SR of 0.98.

Figure 5.11 provides a better idea of the extent of these results. It

represents the percentage of individuals of N for which each experiment

is expected to end. The effects of churn are more pernicious as the

instances scale. In the worst case (i.e. L = 36 in 4-trap and λ =

400), the initial population ends with a ∼ 10% of the individuals, still

guaranteeing a reliable convergence.
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Fig. 5.10 — Scalability of the EvAg model for two different scenarios of churn (λ) and

a failure-free environment in trap functions for the estimated population

sizes N (left) and the evaluations to solution in third quartile (right).

Results are obtained by bisection and depicted in a log-log scale as a

function of the length of the chromosome, L.
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Fig. 5.11 — Degradation of the system for the different failure rates and execution

times in three instances of the 4-trap function.

5.6.2 Analysis of the algorithmic convergence

This section analyses the convergence of the EvAg approach in 2, 3

and 4-trap instances for different degradation rates λ = 400, 2500 with

respect to a failure-free execution. All settings are summarised in Table

5.11.

Initial population sizes have been set to those values obtained in

the previous series for the failure-free run of the selectorecombinative

EvAg. Using such values means that populations will be oversized for

the failure-free counterpart in these series that use mutation. Never-

theless, that might not be the case when the system degrades. As pre-

viously seen, a small increase on the initial population size is sufficient

condition for tolerating faults. Given that populations are oversized for
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a failure-free run using mutation, values will approximate an optimal

size whenever the system degrades.

Trap instances

2-Trap

Individual Length (L) 60

Population size 135

Termination Condition Max. Eval. = 5535

3-Trap

Individual Length (L) 60

Population size 480

Termination Condition Max. Eval. =49920

4-Trap

Individual Length (L) 36

Population size 600

Termination Condition Max. Eval. =393000

GA settings

GA EvAg

Selection of Parents Binary Tournament

Recombination Uniform crossover, pc = 1.0

Mutation Bit-flip mutation, pm = 1
L

Newscast settings

Cache size 20

Scenarios of churn

λ 400,2500

k 0.4

Table 5.11 — Test-Case 3: Parameters of the experiments for the analysis of

convergence.

Figure 5.12 shows indeed that the EvAg model converges better

when the system degrades, specially in the worst case for λ = 400.

This fact is remarkable since the degradation of the system does not

inflict a penalisation in the quality of solutions as could be expected

but it is able to outperform the failure-free run despite EvAgs departing

possibly contain valid solutions.

Besides, genetic diversity decreases faster as the system degradation
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turns more intensive which can be translated into a more exploitative

behaviour of the algorithm. Such conclusion points out a possible

explanation for the fault-tolerance of the model; as it has already been

shown in Sections 5.4 and 5.5, EvAg is good at the preservation of

genetic diversity and this way, it is able to balance the effect of an

increasing exploitation component when the system degrades.

Finally and providing a quantitative view on the run-time dynamics

of churn, Figure 5.13 depicts the degradation of the population for the

different runs in the 4-trap instance. It shows how the system degrades

up to ∼ 90% in the worst case for λ = 400.

5.6.3 Statistical analysis

In order to provide previous results with an adequate statistical pro-

cessing, Table 5.12 presents the Wilcoxon analysis of the data showing

significant differences between the fitness distributions for the EvAg

model with and without failures in the system.

The statistical analysis confirms the conclusion on the system degra-

dation outperforming the failure-free run. In other words, the EvAg

model is inherently fault-tolerant and degrades gracefully.
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Fig. 5.12 — Test-case 3: Best fitness convergence (left) and evolution of the

diversity expressed as the entropy based on the Hamming distances

between the genotypes (right). Graphs plotted represent the average

of 50 independent runs.
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Fig. 5.13 — Population dynamics in the 4-trap instance for L = 36. Population

sizes of the different runs are represented as points and the respective

averaged values as lines for λ = 400 and λ = 2500.

Problem Instance Churn Avg. Fitness ±σ Wilcoxon Test Significantly different?

Trap2

L=60 λ = 400 59.82±0.43 W=184 p-value=6.32e-15 yes

N=135 λ = 2500 59.5±0.78 W=320 p-value=2.9e-11 yes

M. Eval.= 5535 No Churn 57.6±1.38 - -

Trap3

L=60 λ = 400 59.62±0.62 W=414 p-value=1.37e-9 yes

N=480 λ = 2500 59.14±1.2 W=614 p-value=6.2e-6 yes

M. Eval.= 49920 No Churn 57.5±2.04 - -

Trap4

L=36 λ = 400 35.68±0.46 W=447 p-value=1.89e-9 yes

N=600 λ = 2500 35.54±0.69 W=593 p-value=1.2e-6 yes

M. Eval.= 393000 No Churn 34.82±0.66 - -

Table 5.12 — Wilcoxon test comparing the best fitness distribution of the EvAg

model under different degradation rates. Results are obtained over

50 independent runs.
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5.6.4 Summary

In this test-case, we have analysed the fault tolerance of the EvAg

model when running on a computing platform that degrades following

the modelling of the churn dynamics established by Stutzbach and

Rejaie in [69]. To that aim, experiments were conducted on several

instances of 2, 3 and 4-trap functions for different degradation rates.

Through the experimental results we can conclude that churn does

not damage the scalability order of the algorithm and a small increase

on the initial population size is enough to keep a reliable convergence

towards optimal solutions. In that sense, large instances of trap func-

tions have been tackled with success in spite of aggressive churn con-

ditions in which peers depart from the system until 90% of the initial

configuration is left.

In addition, the approach shows to be resilient to churn with respect

to execution time; once that the estimated population size guarantees

a reliable convergence to the problem optimum, the departure of nodes

does not inflict a penalisation on the computational effort.

Therefore, the EvAg model is fault-tolerant and implements a grace-

ful degradation without any other extra mechanism than the emergent

behaviour of the approach itself.
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5.7 Conclusions

In this chapter, we have carried out an experimental analysis on the

performance of the EvAg model. To that aim, we investigate the scal-

ability and fault-tolerance of the approach in a simulated P2P envi-

ronment. Such goals have been tackled in three different test-cases

in which experiments are conducted on trap functions in order to as-

sess the scalability of population sizes and computational efforts with

increasing problem size and difficulty.

In the first test-case, the scalability of the P2P model has been

shown to outperform canonical panmictic approaches either in the pop-

ulation size or the computational efforts required to tackle the different

problem instances. Furthermore, the improvement is specially out-

standing as the problem difficulty increases pointing out that the EvAg

model is suitable for tackling large instances of difficult problems.

In the second test-case, we have analysed the influence of different

population structures on the scalability of the approach. In that con-

text, the choice of newscast as population structure has a positive effect

on the algorithmic performance showing better times to solution than

the ring lattice in every problem instance and equivalent performances

to the Watts-Strogatz approach.

Finally, the third test-case focuses on the fault-tolerance of the

model when running on failure prone platforms that degrade following

two different churn rates. Results show that a small increase on the

initial population size is a sufficient mechanism to guarantee the con-

119



5 Experimental Analysis

vergence of the approach, in turn, such an increase does not inflict a

penalisation on the computational effort.

This way and going back to the goals pose at the beginning, it can

be concluded that the EvAg model is scalable and fault-tolerant.
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Chapter 6

Conclusions

This thesis studies the viability of the Peer-to-Peer Evolutionary Com-

putation paradigm in the context of fine-grained spatially-structured

Evolutionary Algorithms. To that end, the Evolvable Agent model

has been presented and assessed empirically under different scenarios

using additively-decomposable trap-functions as a benchmark. Given

that trap-functions have been designed to be difficult for Evolution-

ary Algorithms, the results should be easily extended to more general

discrete or combinatorial optimization problems.

In particular, this thesis provides the following contributions to

the understanding of distributed Evolutionary Computation in Peer-

to-Peer infrastructures:

The viability of the P2P EC paradigm has been anal-

ysed around the issues of decentralisation, scalability and
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fault-tolerance. A main challenge on the design of P2P EAs

is to provide a single coherent view of the system despite the

nature of peers being decentralised. This way, P2P systems cre-

ate powerful parallel infrastructures able to constitute a single

virtual computer composed of a potentially large number of in-

terconnected resources. In order to take full advantage of such

systems, the motivation of a P2P EA is tackling large instances

of difficult problems at the increasing computing requirements

that such instances claim. In that context of massive-scalability,

failures of peers become inherent to the system and the approach

has to demonstrate fault-tolerance in order to hold good perfor-

mances.

The EvAg model is proposed as a simple and decentralised

approach for P2P EC. The Evolvable Agent model is a fine-

grained spatially-structured EA that defines a decentralised pop-

ulation structure by means of the gossiping protocol newscast.

This makes the approach suitable for a P2P execution in which

every EvAg can be potentially placed in a different peer. In that

context, EvAgs evolve asynchronously in a loosely-coupled fashion

with the mate selection locally restricted within their respective

neighbourhoods.

Linear speed-ups can be hold for large instances of de-

manding problems. In problems with very expensive fitness

evaluation cost, the parallel performance of the EvAg model has

been shown to depend on the underlying computing platform.

This way, for very demanding problem instances and high perfor-
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mance computer architectures, the approach has been estimated

to hold linear speed-ups up to thousands of processors. In addi-

tion, the multi-threading nature of the approach is able to take

a seamless advantage of the different cores in desktop machines

implementing a SMP architecture.

The experimental analysis is based on the correct sizing

of the populations. Setting an adequate population size is a

key to obtain good performances in EAs, that is, to preserve a

good quality in the solutions without spending extra computa-

tional efforts. In order to estimate optimal population sizes, we

have used an empirical method based on bisection. This way,

investigating scalability is possible by observing how population

sizes and computational efforts scale for different problem in-

stances.

The source code of the simulator is released as open-

source. We find that practitioners can benefit from it either

reproducing experiments or extending the framework. The simu-

lator can be found at the subversion repository https://forja.

rediris.es/svn/geneura/evogen, published under GPL v3 li-

cense.

P2P EAs scale well for increasing problem sizes and dif-

ficulties. EvAg has been shown to scale better than canonical

approaches requiring of a smaller population size and number of

evaluations as problem instances become large. The improve-

ment is much more visible as the problem difficulty increases
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showing the adequacy of the P2P approach for tackling large in-

stances of difficult problems. In addition, the comparison against

a ring structured population shows that such a regular lattice

population requires of a larger number of evaluations having

therefore, a worst algorithmic performance.

Small-world population structures offer good trade-offs

between exploitative and explorative components of EAs.

The inhomogeneities of small-world structured populations play

an important role in the preservation of the genetic diversity and

have a positive effect on scalability. On the one hand, the in-

fluence of the environmental selection pressure is not so high as

in panmictic populations so that population sizes and times to

solutions can be reduced. In addition, the progress of the genetic

diversity points out a more exploitative behaviour than the one

induced by regular lattices. This way, the number of evaluations

required to find optimal solutions can be minimised.

In that context, we have compared the performance of the Watts-

Strogatz and newscast methods generating small-world popula-

tion structures. Both methods have been shown to yield similar

results outperforming, in turn, the algorithmic scalability of the

rest of approaches in this thesis.

P2P EAs suffer a graceful degradation under churn. The

EvAg approach has been shown to be robust under different

degradation rates of churn; the departure of nodes does not inflict

a penalisation in the execution time and the quality of solutions

can be hold by simply increasing the initial population size.
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We find that previous contributions represent a great advance to

a better understanding of the P2P EC paradigm by pointing out the

main issues and showing the viability of the approach. Nevertheless,

there is much work to be done for a whole comprehension of P2P EAs

and, more in general, parallel EAs. In that line, we plan to focus

in future works on the following challenges that have been identified

throughout the development of the thesis:

Validation of the model in a real P2P infrastructure: Af-

ter studying the viability of the EvAg model, the validation of

the approach is a logical further step. To that aim, we plan to

deploy the algorithm in a real P2P platform for tackling demand-

ing problem sets such as the very large instances of the vehicle

routing problem [50]. This way, it will be possible to focus on

engineering issues such as the real impact of the latency and

bandwidth on the algorithm performance or the exploration of

load-balancing methods to cope with the issue of heterogeneity

in peers.

Exploration of other P2P protocols as population struc-

tures: This thesis has shown that different methods generating

small-world population structures have equivalent performances

in EAs. This fact is remarkable since there are many P2P pro-

tocols designed to work as small-world networks as Gnutella 0.4

[29] or any DHT [68, 60, 77, 58]. Therefore, we aim to explore

some of these P2P protocols as population structures for EAs so

that P2P EC can benefit from existing P2P platforms.
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Extension of the P2P concept to other optimisation meta-

heuristics: To this point, we have focused in P2P optimisation

within the concrete field of EC, however, there are no restrictions

imposing a limitation of the P2P approach to other paradigms

as they could be EDAs, ACO or PSO. In fact, PSO has already

received some attention in the literature, e.g. the P2P-MOPSO

approach by Scriben et al. in [65] or the one by Bánhelyi et al.

in [9].

As a final consideration and despite some future lines of work have

been exposed, we feel that P2P optimisation is on its beginnings yet

and this thesis can be a source of ideas and motivation for practitioners

and theoreticians to do further investigations in the area.

6.1 Published papers related to the thesis

During the development of this thesis, and directly related to it, the

following papers were published on different peer reviewed journals and

conference proceedings:

Peer reviewed journal papers :

1. Juan Luis Jimenez Laredo, Agoston E. Eiben, Maarten van

Steen, and Juan Julian Merelo. Evag: A scalable peer-

to-peer evolutionary algorithm. Genetic Programming and
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Evolvable Machines, 2010. http://dx.doi.org/10.1007/s10710-

009-9096-z.

2. Juan Luis Jimenez Laredo, Pedro A. Castillo, Antonio M.

Mora, Juan Julian Merelo, and Carlos Fernandes. Resilience

to churn of a peer-to-peer evolutionary algorithm. Int. J.

High Performance Systems Architecture, 1(4):260-268, 2009.

3. Juan Luis Jimenez Laredo, Pedro A. Castillo, Antonio Miguel

Mora, and Juan Julian Merelo Guervos. Evolvable agents, a

fine grained approach for distributed evolutionary comput-

ing: walking towards the peer-to-peer computing frontiers.

Soft Computing - A Fusion of Foundations, Methodologies

and Applications, 12(12):1145-1156, 2008.

Peer reviewed conference papers and book chapters :

1. Juan Luis Jimenez Laredo, Juan Julian Merelo Guervos,

and Pedro Angel Castillo Valdivieso. Paral. and Distrib.

Comp. Intel., volume 269 of SCI, chapter Evolvable Agents:

A Framework for Peer-to-Peer Evolutionary Algorithms, pages

43-62. Springer-Verlag Berlin Heidelberg, 2010.

2. Juan Luis Jimenez Laredo, Carlos Fernandes, Juan Julian

Merelo, and Christian Gagne. Improving genetic algorithms

performance via deterministic population shrinkage. In GECCO’

09: Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, pages 819-826, New York,

NY, USA, ACM, 2009.
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3. Juan Luis Jimenez Laredo, Carlos Fernandes, Antonio Mora,

Pedro A. Castillo, Pablo Garcia-Sanchez, and Juan Julian

Merelo. Studying the cache size in a gossip-based evolu-

tionary algorithm. In G.A. Papadopoulos and C. Badica,

editors, Proceedings of the 3rd International Symposium on

Intelligent Distributed Computing, volume 237 of Studies in

Computational Intelligence, pages 131-140. Springer-Verlag

Berlin Heidelberg, 2009.

4. Juan Luis Jimenez Laredo, Pedro A. Castillo, Antonio M.
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ing Churn in a Peer-to-Peer Evolutionary Algorithm. In
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Chapter 7

Conclusiones

Esta tesis estudia la viabilidad del paradigma de computo evolutivo

P2P en el contexto de los algoritmos evolutivos paralelos de grano fino

espacialmente estructurados. Con este objetivo, el modelo de Agente

Evolutivo ha sido presentado, y analizado emṕıricamente en diversos

escenarios usando funciones trampa como problemas de prueba. Dado

que las funciones trampa han sido diseñadas para ser dif́ıciles para los

algoritmos evolutivos, los resultados debeŕıan poder extenderse fácil-

mente a otros problemas de optimización combinatoria.

En concreto, esta tesis proporciona las siguientes contribuciones al

área de la computación evolutiva distribuida en infraestructuras P2P:

La viabilidad del paradigma de computación evolutiva

P2P ha sido analizado alrededor de los temas de de-

scentralización, escalabilidad y tolerancia a fallos. El reto
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principal al que se enfrenta un algoritmo evolutivo P2P es el de

proporcionar una visión coherente al sistema a pesar de su natu-

raleza descentralizada. Para aprovechar estos sistemas, la moti-

vación subyacente será abordar instancias grandes de problemas

dif́ıciles dados los altos requisitos computacionales que tales in-

stancias requieren. En este contexto de escalabilidad masiva, los

fallos son inherentes al sistema y cualquier enfoque tendrá que

demostrar ser tolerante a fallos de forma que se puedan sostener

los buenos rendimientos.

El modelo de Agente Evolutivo es propuesto como un

enfoque simple y descentralizado para la computación

evolutiva P2P. Dicho modelo consiste en un algoritmo evolu-

tivo de grano fino que define la estructura de la población por

medio del protocolo P2P newscast. Este hecho permite su eje-

cución en sistemas P2P en la que cada Agente Evolutivo puede

ser potencialmente albergado en un nodo distinto de modo que

el sistema evoluciona aśıncronamente de forma desligada y con

la selección de los padres localmente restringida a las respectivas

vecindades.

Las ganancias lineales son posibles para intancias grandes

de problemas computacionalmente pesados. En problemas

con funciones de evaluación muy costosas, el rendimiento paralelo

del modelo muestra ser dependiente de la plataforma de cómputo

subyacente. De esta forma, se ha estimado que el modelo es ca-

paz de sostener ganancias lineales hasta cientos de procesadores

en plataformas de alto rendimiento para instancias de problema
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costosas.

El análisis experimental esta basado en una dimension-

alidad correcta del tamaño de la población. Determinar

un tamaño adecuado de población es clave para obtener buenos

rendimientos en los algoritmos evolutivos, es decir, preservar bue-

nas calidades en las soluciones sin derrochar esfuerzos computa-

cionales. Con el propósito de estimar los tamaños de población

óptimos para los distintos problemas y modelos estudiados, se ha

usado un método emṕırico basado en bisección. De esta forma,

investigar la escalabilidad de los distintos modelos ha sido posi-

ble al observar como los tamaños de la población y los esfuerzos

computacionales escalan para distintas instancias de problema.

El código fuente del simulador utilizado para la exper-

imentación ha sido liberado como software libre. De

esta forma, creemos que los profesionales del área pueden ben-

eficiarse de él, tanto en la reproducción de los experimentos de

esta tesis como extendiendo el propio simulador. El código se

haya disponible en un repositorio subversion en https://forja.

rediris.es/svn/geneura/evogen publicado con licencia GPL

v3.

Los algoritmos evolutivos P2P escalan bien en proble-

mas dif́ıciles e instancias grandes. El modelo de Agente

Evolutivo ha mostrado escalar mejor que enfoques panmı́cticos

clásicos al requerir menores tamaños de población aśı como un

menor número de evaluaciones conforme las instancias del prob-
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lema crecen. La mejora es mucho más perceptible conforme el

problema se vuelve más complejo, mostrando por tanto, la ap-

titud del modelo para abordar instancias grandes de problemas

dif́ıciles. Además, la comparación con respecto al algoritmo de

población estructurada en anillo muestra que dicha estructura

conlleva un mayor número de evaluaciones y que por lo tanto

tiene un peor rendimiento algoŕıtmico.

Las poblaciones con estructura de mundo-pequeño ofre-

cen una buena solución de compromiso entre los com-

ponente explorativos y explotativos de los algoritmos

evolutivos. Las inhomogeneidades de las poblaciones estruc-

turadas como mundo-pequeño juegan un importante rol en la

preservación de la diversidad genética y tienen un efecto positivo

en la escalabilidad del algoritmo. Por un lado, la influencia de tal

tipo de estructuras en la presión selectiva no es tan alta como en

poblaciones panmı́cticas, de foma que los tamaños de población

y los tiempos de ejecución pueden ser reducidos. Por otro lado, el

progreso de la diversidad genética apunta que el comportamiento

es más explotativo que en el caso de las estructuras de población

regulares. Por tanto, el número de evaluaciones requeridas para

encontrar soluciones óptimas es minimizado.

En este contexto, hemos comparado el rendimiento de dos méto-

dos que generan estructuras de población mundo-pequeño: el

protocolo Newscast y el método de Watts y Strogatz. Ambos

métodos han mostrado alcanzar resultados similares superando,

en cambio, la escalabilidad algoŕıtmica del resto de enfoques en
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esta tesis.

Los algoritmos evolutivos P2P sufren una degradación

grácil bajo condiciones de churn. El modelo de Agente Evo-

lutivo ha mostrado ser robusto bajo distinatas tasas de degradación

del sistema modeladas como churn; el fallo de los nodos no in-

fringe penalizaciones a los tiempos de ejecución del algoritmo

mientras que la calidad de las soluciones es mantenida mediante

el incremento del tamaño de población inicial.

Dichas contribuciones representan un gran avance al entendimiento

del paradigma de computo evolutivo sobre sistemas P2P puesto que

apuntan los principales problemas de diseño y demuestran la viabili-

dad del enfoque. No obstante, creemos que aún se deben de realizar

avances importantes en el área de cara a una total comprensión de los

algoritmos evolutivos P2P, y más en general, de los algoritmos evolu-

tivos paralelos. En este sentido, como trabajo futuro planeamos cen-

trarnos en las siguientes ĺıneas de investigación que hemos identificado

a lo largo del desarrollo de esta tesis:

Validación del modelo en una infraestructura P2P real.

Después de estudiar la viabilidad el modelo de Agente Evolutivo,

la validación del enfoque es el siguiente paso lógico. Con ese

propósito, planeamos implementar el algoritmo en una plataforma

P2P real en la que se aborden conjuntos de problemas con alto

coste computacional, como seŕıa el caso de las instancias grandes

del problema de encaminamiento de veh́ıculos [50]. De esta forma,
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será posible centrarse en otros problemas que dependen de la in-

fraestructura de cómputo como son el impacto de la latencia y el

ancho de banda en el rendimiento del algoritmo o la investigación

de métodos de balanceo de carga que solucionen la problemática

de la heterogeneidad de los nodos de cómputo.

Investigación de otros protocolos P2P como estructuras

de población. Esta tesis muestra que diferentes métodos que

generan estructuras de población mundo pequeño tienen rendimien-

tos parecidos en los algoritmos evolutivos. Este hecho es im-

portante puesto que muchos de los protocolos P2P existentes,

como son Gnutella 0.4 [29] o cualquier DHT [68, 60, 77, 58],

están diseñados para funcionar como mundo-pequeño. Por lo

tanto, pretendemos explorar algunos de ellos como estructuras de

población para algoritmos evolutivos de tal forma que el ámbito

de la computación evolutiva se pueda beneficiar de plataformas

P2P existentes.

Extender el concepto P2P a otras meta-heuŕısticas de

optimización. Hasta este punto, nos hemos centrado en la op-

timización P2P dentro del campo concreto de la computación

evolutiva, sin embargo, no existen restricciones que limiten la

aplicación del enfoque P2P a otros paradigmas, como podŕıan

ser los algoritmos de estimación de distribuciones, la optimización

basada en colonias de hormigas o los enjambres de part́ıculas. De

hecho, este último ya ha recibido alguna atención en la literatura,

por ejemplo, el algoritmo P2P-MOPSO de Scriben et al. en [65]

o el debido a Bánhelyi et al. en [9].
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Como consideración final y a pesar de que se han expuesto algunas
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Appendix A

Tuning of the Cache

size parameter

Parallelising an EA implies the use of new parameters to control issues

such as migration rates or the topology management. These new com-

ponents drastically increase the complexity for the fine-tuning of the

algorithm. In this sense, Cantú-Paz in [12] and Hidalgo and Fernandez

in [39] analyse up to seven parameters derived from the parallelisation

using islands. Within the EvAg model instead, newscast simplifies all

the decision making for the parallelisation by tuning a single parame-

ter, the cache size. The cache acts as a routing table in which every

peer holds a list of neighbours peers. Therefore, the cache size repre-

sents the maximum number of connections (edges) that a peer could

have. Taking into account the recommendations of Jelasity et al. in

[42], the cache size has to be much smaller than the number of peers
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in order to get small-world features such as a small network diameter

or a high clustering coefficient.

Given the importance of the parameter, this appendix tries to cal-

ibrate an adequate cache size for the problems under study in this

thesis. To this aim, we measure the influence of different cache and

population sizes on the algorithm performance when tackling a 4-trap

instance. As will be shown, results indicate that success rates of the

algorithm remain constant independently of the different cache sizes.

This fact points to the robustness of the parallel model and helps deci-

sion making. Any cache size guaranteeing a small-world topology will

produce equivalent performances.

Table A.1 summarizes the settings for the experiments in which

eleven different cache sizes and two different population sizes have been

tested.

Problem instance

Problem 4-trap

Chromosome length 36

EvAg settings

Population size 400, 600 individuals

Selection Binary Tournament

Recombination Uniform Crossover, pc = 1.0

Max. Eval. 500000

Newscast settings

Cachesize 10,14,18,22,26,30,34,38,42,46,50

Table A.1 — Settings for the experiments.
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A.1 Analysis of Results

Figure A.1 shows the SR and AES of the EvAg model when tackling

the 4-trap instance using different cache and population sizes. It can

be observed how the population size has an impact on the algorithm

performance while the cache size does not.

The P2P EA is sensitive to the population size since the algorithm

converges with a SR ∼ 0.85 for N = 600 while it decreases to ∼ 0.52 for

N = 400. Nevertheless, results for different cache sizes move around

the same SRs and AES. This way, neither the algorithm quality nor

the execution time seems to be altered when using different settings

for the cache size.

This fact translates into the robustness of the EvAg model with

respect to such a parameter and is specially remarkable from the point

of view of tuning the parameters of the algorithm. Choosing any cache

size within the range [10 . . . 50] will not alter the EvAg performance.
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A Tuning of the Cache size parameter

Fig. A.1 — Success Rate of the EvAg model (left) and Average Evaluation to Solu-

tion with standard deviation (right) for a 4-trap instance using popula-

tion sizes of N = 400 and N = 600. Averaged values for the different

cache sizes in dotted lines.
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Numerical Results

In this appendix, numerical results for the scalability analysis of the

different test cases are presented. The aim of providing such values

is to allow a numerical comparison of results in addition to the re-

spective one of the graphs depicted in chapter 5. As saw in Section

5.3.3, central position values (e.g. the mean) are not representative of

the distributions on the computational efforts since they do not keep

normality conditions. Therefore, the following tables provide the first,

second and third quartiles of the distributions as values of reference.
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