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Summary

The study of tissue from the point of view of mechanics provides a tool to understand

and unveil its structure as well as its behavior at different scales. Linear theories based on

the superposition principle are an approximation that is devoid of meaning at the microme-

chanical level. Nonlinear theories generalize this concept where the effect does not need to

be a consequence of only the sum of its causes, that is, where the principle of superposition

is not valid and they explain the phenomenology of the processes in more precise contexts

i.e. weather prediction, cellular competition in biology and propagation of sound through a

complex media.

Particularly, Nonlinear Ultrasounds (NLUS) depend on elastic and inelastic constants

different from Young’s or Elastic’s Modulus E and Poisson’s Coefficient ν, which can be

quite more sensitive to damage and hiperelastic properties in tissues, as they depends on

their microestructure.

Throughout History, there are a disparity of unified criteria to consider the Third Order

Elastic Constants (TOEC). Landau and Lifshitz in 1941, proposed for the first time in their

book ”Theory of Elasticity” [1] the TOEC as an exercise or proposed problem, following a

series expansion of Hooke’s law from the energy.

From the 70’s, several visionary researchers on nonlinear waves as Zarembo and

Gol’dberg field observed experimentally nonlinear elasticity constants by the finite am-

plitude techniques. Independently, they were raised theoretical models as Westervelt and

Khokhlov, Zabolotskaya and Kuznetsov (KZK), where by making use of resolution proceses

mainly based on perturbation theory an analytical solution were established and sometimes

comparing with elasticity models. Progress in Science is subject to the application or uni-

fication of theories only by standing on the shoulders of giants. Since then, a large number

of different references and criteria to encompass nonlinear elastic constants with the corre-

sponding conversion have been published.

In trying to systematize the above, we have found many inconsistencies and contradic-

tions. For example, following a reasonable basis to explore the relationship between nonlin-

ear elasticity and nonlinear acoustics, there are several definitions of the nonlinear acoustic

parameter of first order β (without physical meaning), several TOEC, Westervelt, Burgers

and KZK Partial Differential Equations PDE or Nonlinear acoustic models only valid for the

case of fluids or solids further with various different solutions suggested.
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Therefore it is important to develop a general theory, consistent from the viewpoints of

(1) mathematics, (2) the theory of continuum mechanics, (3) of the physics of wave propa-

gation and (4) experimental engineering, that unifies all previous developments.

B (1) Mathematics: A framework of PDE should be derived from a consistent series in

terms of invariants to rotations and translations are explicitly developed and analyzed,

and indexical and vector notation facilitates a clear and unambiguous expression. At

this point the families of nonlinear PDE should be well classified to establish the best

practice in the relationship between elasticity and acoustics.

B (2) Continuum Mechanics: The beginning of a new theory should be expressed with-

out simplifications in a general context without small displacements, correctly defin-

ing all the concepts of stress, Piola-Kirchoff tensor, strain tensor, deformation gradient,

energy, and related magnitudes.

B (3) Physics of Waves: The equation of nonlinear waves and definition of nonlinear-

ity from acoustic pressure is solved using perturbation theory as iterative recursive

method in converging to the equation of Westervelt and its generalization to multiple

harmonics.

B (4) Experimental Engineering : To quantify different harmonics from an experimen-

tal point of view, the acoustic pressures are measured with hydrophones and oscillo-

scopes, in different configurations via harmonic generation methods, as well as non-

linear interactions of ultrasonic waves, exciting with different types of source waves,

Primary (P), Secondary (S), and their combinations.

This thesis provides an unified derivation of the theories of nonlinear elasticity based on

the classical continuum mechanics evidencing several misconceptions and errors commonly

assumed in literature. It establishes a relationship with the classical nonlinear acoustics from

a new perspective that is validated with the results by Hamilton and Norris [2].

This analysis leads us to unify criteria and break down of the definition of the parameter

β previously mentioned, to develop an equation of Westervelt, generalized for harmonics of

any order, and to establish a new theory of nonlinear acoustics, expanding into four types

of nonlinearity, whose origin is based on the contribution of the liquid phase and the fiber

or collagen phase, which is crucial to explain and understand the hyperelasticity and wave

propagation in quasi-fluids and tissue. The potential impact of this technique involves a

new approach in the tissue characterization with clinical applications due to the separation

of nonlinear phases of tissue revealing their main mechanism that is relevant in the diagnosis

and therapy of many tissue disorders.

The different results that arise as a consequence of this theory, are experimentally vali-

dated in several setups in different materials by developing new non-destructive evaluation

techniques. They are (1) Non-linear mixing with a single transducer to measure and quantify

the nonlinearity of water, (2) nonlinear mixing with two transducers in angle to characterize



aluminum, and (3) a new torsional sensor for characterizing hydrogels, silicones and tissues,

which has been designed, optimized and prototyped.

Finally, this thesis proposes a possible explanation on how the nolinearity is caused by

damage from microcracks. The Homogenization theory developed by Eshelby in 1956 [3], is

used for this purpose. Subsequently, the case of a material is resolved with inclusions with

geometric form of spheroids. Note that the theoretical and experimental scheme proposed

could be relevant in the development of new medical devices for bone quality assessment

and the osteoporosis diagnosis.





Resumen

El estudio de los tejidos desde el punto de vista mecánico proporciona una herramienta

tanto para entender y conocer su estructura como su comportamiento a distintas escalas.

La teorı́as lineales basadas en el principio de superposición o el efecto como suma de las

causas, son una aproximación que queda exenta de sentido a nivel micromecánico. Las

teorı́as nolineales generalizan este concepto donde el efecto no tiene porque ser solo suma de

las causas, es decir el principio de superposición no es completo y explican la fenomenologı́a

de los procesos en contextos más precisos.

La Nolinelalidad Ultrasónica NL US en concreto depende de constantes elásticas e

inelásticas diferentes al Módulo de Young o Elástico E, y Coeficiente de Poisson ν, que

pueden ser mucho más sensibles a daño y propiedades hiperelásticas de tejidos que E, y ν,

porque dependen de su microestructura.

Varios investigadores visionarios desde los años 70 como Zarembo y Gol’dberg, obser-

varon experimentalmente nolinealidades acústicas mediante métodos de amplitud finita.

Independientemente, se plantearon modelos teóricos como es el caso de la Ecuación en

derivadas parciales nolineal PDE de Westervelt, Khokhlov, Zabolotskaya y Kuznetsov, KZK

con procesos de resolución analı́ticos basados en la teorı́a de la perturbación. El avance en la

ciencia viene sujeto a la aplicación o unificación de grandes teorı́as poniéndonos a hombros de
gigantes. A lo largo de la historia, existen disparidad de criterios para unificar las constantes

elásticas de tercer orden. El libro de Teorı́a de la Elasticidad de Landau y Lifshitz en 1957 [1]

es el primer lugar donde se plantean las Constantes Elásticas de Tercer orden conocidas hoy

en dı́a como TOEC, en un ejercicio o problema práctico propuesto, a raı́z del desarrollo en

serie de la ley de hooke a partir de la energı́a. Dese entonces es posible encontrar numerosas

referencias y diferentes criterios para englobar las constantes de la elasticidad nolineal con

su correspondiente conversión.

Al tratar de sistematizar lo anteriormente expuesto, hemos observado múltiples incon-

sistencias, y contradicciones. Por ejemplo, a raı́z de explorar un criterio razonable para

vincular la nolinealidad elástica con la nolinealidad acústica, existen diferentes definiciones

del conocido parámetro β, diferentes parámetros elásticos de tercer orden, ecuaciones de

Westervelt, Burgers y KZK que valen solo en el caso de fluidos, sólidos, etc. que además

sugieren distintas soluciones.
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Por lo tanto es importante desarrollar una teorı́a generalizada, consistente desde el punto

de vista (1) matemático, (2) de la teorı́a de medios continuos, y (3) de la fı́sica de la propa-

gación de ondas y (4) de la ingenierı́a experimental, que unifique todos los desarrollos ante-

riores.

B (1) Matemático: Partiendo de un marco consistente en el sentido de los desarrollos en

serie de la energı́a bien analizados cuyos invariantes frente a rotaciones y traslaciones

estén explı́citamente analizados y desarrollados y cuya notación indicial y vectorial

facilite de forma clara y unı́voca su expresión. En este punto las familias de ecua-

ciones en derivadas parciales nolineales deben quedar muy bien clasificadas de cara a

establecer procedimientos óptimos en la relación entre Elasticidad y Acústica.

B (2) Medios continuos: Comenzando con la teorı́a sin simplificaciones en un contexto

lo más general posible sin pequeños desplazamientos, definiendo correctamente todos

los conceptos de tensión, tensor de Piola-Kirchoff, tensor de deformaciones, gradiente

de deformación energı́a, etc...

B (3) Fı́sica de ondas: Teorı́a de la perturbación como método recursivo iterativo en la

ecuación de ondas nolineal, definición de nolinealidad desde la presión acústica coin-

cidiendo con la que interviene en la ecuación de Westervelt, generalización a múltiples

armónicos, etc.

B (4) Ingenierı́a experimental: Cuantificación de diversos armónicos desde el punto

de vista realista a partir de la presión acústica que medimos con osciloscopios, en

diferentes configuraciones vı́a generación de armónicos, mezcla de ondas ultrasónicas,

diferentes tipos de ondas, P, S, y su combinación, etc.

A lo largo del desarrollo de esta Tesis, hace un desarrollo unificado de las teorı́as de

nonlinealidad elástica basadas en la mecánica de medios continuos clásica. Se establece una

relación con la nolinealidad acústica clásica desde una nueva perspectiva que valida los re-

sultados de Hamilton y Norris en su libro Nonlinear Acoustics [2]. Dicho análisis nos lleva

a unificar y desglosar criterios de definición del parametro β previamente mencionado, a

desarrollar una ecuación generalizada de Westevelt para armónicos de cualquier orden y a

establecer una nueva teorı́a de nolinealidad acústica expandiendo en cuatro tipologı́as de

nolinealidad, es debido a la contribución de la fase lı́quida y la fase de fibra o colágeno,

en el caso de quasifluidos o tejidos, respectivamente. El impacto potencial de esta técnica

supone un nuevo aporte en la caracterización tisular cuyas aplicaciones clı́nicas se deben a

la separación de fases nolineales que revelan sus principales mecanismos, lo cual es espe-

cialmente relevante desde el punto de vista diagnóstico y terapéutico de muchos trastornos

en el tejido.

Al tratar de explicar experimentalmente los distintos resultados que surgen como con-

secuencia de esta teorı́a, se desarrollan varios ensayos en distintos materiales, utilizando

técnicas de evaluación no destructiva. Mezcla no lineal con un solo transductor para medir



la nolinealidad del agua, mezcla con dos para caracterizar aluminio y el diseño y opti-

mización de un nuevo sensor de torsión para caracterizar hidrogeles, siliconas y tejidos.

Además en esta Tesis se plantea una posible explicación sobre como se origina la nolin-

ealidad por daño a partir de microgrietas. Para ello se recurre a la teorı́a de homogeneización

desarrollada por Eshelby en 1956 [3], y se resuelve el caso de un material con inclusiones

con forma geométrica de esferoides. Cabe destacar que el esquema teórico y experimen-

tal propuesto podrı́a ser relevante en el desarrollo de nuevos dispositivos médicos para la

evaluación de la calidad ósea y el diagnóstico de la osteoporosis.
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regido por leyes extrañas
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1
Context and motivation

Ultrasonics based Nondestructive Evaluation (NDE) is an emerging technology with an

enormous potential in the field of biomedical and industrial engineering. To rigorously ad-

vance this technology, it is necessary to develop the knowledge mathematical and physical

models that ground it. Nonlinearity is the key to introduce us into a micro-mechanical level

and understand it as the origin of damage or pathology in new terms. Ultrasound non-

linearity is a new diagnosis principle with potentially superior sensitivity. The potential of

this multi-scale new paradigm gives us a significative tool to quantify several modulus and

parameters that could be relevant in diagnosis and therapies.

Nonlinearity should be studied for this proposal from the root, from (1) a mathematical

point of view, where a nonlinear system of equations is a set of simultaneous equations in

which the unknowns appear as variables of a polynomial of degree higher than one or in

the argument of a function which is not a polynomial of degree one, and (2) In physics and

other sciences, where a nonlinear system, in contrast to a linear system, is a system which

does not satisfy the superposition principle: meaning that the output of a nonlinear system is not
directly proportional to the input.

As nonlinear equations are difficult to solve, nonlinear systems are commonly approxi-

mated by linear equations (linearization). This works well up to some accuracy and some

range for the input values, but some interesting phenomena such as chaos and singulari-

ties are hidden by linearization. It follows that some aspects of the behavior of a nonlinear

system appear commonly to be chaotic, unpredictable or counterintuitive. Although such

chaotic behavior may resemble random behavior, it is absolutely not random. For example,

some aspects of the weather are seen to be chaotic, where simple changes in one part of the
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system produce complex effects throughout. This nonlinearity is one of the reasons why

accurate long-term forecasts are impossible with current technology.

Nonlinear acoustics is a branch of physics and acoustics dealing with sound waves of

sufficiently large amplitudes. Large amplitudes require using full systems of governing

equations of fluid dynamics (for sound waves in fluids and gases) and elasticity (for sound

waves in solids and quasifluids such as tissues). These equations are generally nonlinear,

and their traditional linearization is no longer realistic [8, 9, 10, 11]. The solutions of these

equations show that, due to the effects of nonlinearity, sound waves are being distorted as

they travel. This is a key in understanding the interaction and propagation of ultrasound.

The understanding of nonlinearity from the point of view of the Theory of Elasticity

carry out the study of constitutive equation from the energy potential. Landau-Lifshitz,

Murnaghan, Hughes, Gol’dberg, Thurston and Zarembo were interested in the formulation

of nonlinear elasticity since the beginning of the second half of twentieth century [1, 12,

13, 14, 15, 5]. The main context was the rotation and displacement invariance before and

after the consideration of strain. They extracted the TOEC with different expressions, and in

the case of Gol’dberg Thurston and Zarembo started with the relationship between TOEC

and acoustics. At the end of twentieh century, there were several authors interested on

that research due to the experimental developing of new techniques in ultrasonics as finite

amplitude, multilayer approaches, where the new forms of nonlinearity in acoustics and the

study different types of waves as shear and surface played an important role [16, 17, 18, 19,

20, 21, 22, 23, 24, 25].

Nowadays, there are several new approaches in this field due to the repercussion of

many experimental proceses as Dynamic Acousto Elasticity Testing, (DAET), and the re-

newal importance of the realtionship between the propagation of waves in complex media

[26, 27, 28]. Biomaterials and tissues can be understanding without non invasive radiations

in vivo [29, 30, 31].

Analyzing the theoretical background from Hamilton Nonlinear acoustics book and dif-

ferent studies about nonlinear acoustics previously cited [2], there were some conflict criteria

by different schools. For example, the TOEC definitions are not unique, they depend on the

algebraic invariants from the energy function and at the end to a Taylor expansion. There are

many definitions of stress and strain and the main point is the consideration of compatibil-

ity equation where the strain is formulated from displacements and the large displacements

when are introduced are considered as geometric nonlinearity. This leads to find in litera-

ture an ambiguous definition of beta nonlinear acoustic parameter of first order beta [32].

Consequently, this allow us to unify acoustic and elastic nonlinearity as a common theory

where all formulations in solids, crystals, liquids and tissues are contemplated. Starting

from the Hamilton classic relationship between TOEC and beta, and being validated from

Landau invariants, and nonlinear wave equation we extend to second order of nonlinearity

in acoustic and elastic regime, and transversally isotropic case is considered too due to the

nature of tissues. Considering all these contexts, is posible to derive the Westervelt equation
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[33, 34] to higher harmonics. It could be interesting in the field of the understanding of wave

propagation in fluids, and may to the development of the KZK equation that is actually used

in High Intensity Focus Ultrasound (HIFU) as a mechanism of modellization for ultrasonic

therapies against some solid cancers [35, 36]. Elastic and geometric nonlinearity manifest

in ultrasonic waves in new interactions by nonlinear mixing and appearance of growing

harmonics by harmonic generation technique, which are easily detected and isolated exper-

imentally in the frequency domain.

Finally, a new paradigm is formulated in order to establish a new criteria allowing the

separation and quantification of nonlinear parts due to the fiber or collagen and from the

liquid or water. For this reason, is necessary to validate the new types of nonlinearity from

experimental setups, non collinear mixing is [37] immersion tank with just one transducer.

Then, a new device is constructed to try the angles of interaction of two P and S waves even

for horizontal and vertical amplitudes and all combinations between them, based on Ko-

rneev’s equations [38]. However, for the cases of quasifluids and tissues nonlinear torsional

waves are investigated under the fundamentals of this theory. A torsional ultrasonic sen-

sor is design optimized and fabricated to validate the results of the theory [39]. The main

impact of this transducer is the direct application to preterm birth assessment, it consists of

the quantification of shear modulus as the consistency changes in cervical tissue [40]. The

nonlinear torsional parameters could be also relevant in the diagnosis of many diseases that

may be influenced by biomechanical variables.

Alternatively, the origin of nonlinearity in materials from the physical point of view was

studied by several authors taking into account atomistic potential arguments [41, 42]. In

this thesis, a new plausible explanation is proposed introducing that could be due to the

appearance of micromechanical damage. The microcrack inclusions inside a material are

considered and studied from nonlinear propagation of ultrasonic waves. This perspective,

based on the homogenization theory developed firstly by Eshelby in the beginning of sec-

ond half of the twentieth century [43, 44, 45] and then by many authors [46, 47, 48, 49, 50],

provides a new approach studied as a set of microcracks as density of them, which could

explain osseous quality and fracture risk [51, 52, 53, 54, 55, 56]. An experimental approach

is also proposed to link nonlinear acoustic properties and density of microcracks in osteo-

porotic bone.
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2
Objetives

The need to understand the mechanics impels us to unify nonlinear elasticity as well as

nonlinear acoustics and the different techniques and prototypes that could be useful as med-

ical diagnostic tools and principles.

The mechanics of solids understood and controlled to characterize tissue, provides both

diagnostic techniques based on ultrasonic propagation and new sensors reliable and sen-

sitive criteria in the face to improve the understanding of the structural annd mechanical

properties [57, 58, 59, 60, 61, 62, 63]. The interaction between ultrasound and tissue entails

evaluation techniques that evolve as advances into the understanding of the subject and the

development of the technology [64, 65, 66, 67, 68]. The methodology used to quantify the

mechanical properties focuses on the application of the inverse problem to reconstruct both

the linear constitutive characteristics as the nonlinear model-based ones [69, 70, 71, 72, 39].

To this end, this thesis aims at understanding nonlinear elastoacoustic parameters in

tissue, rewrite nonlinear acoustic models designing and validating a new set of parameters

and explore the posible origin of nonlinearity in terms of damage and microcracks. To reach

this target, the following research steps are consider, in basis of hypothesis:

1. To unify nonlinear continuum mechanics, which implies a global definition of stress

and strain taking or not taking into account geometric nonlinearity in the compatibil-

ity equation and considering the material, if it is solid, fluid or tissue. The different

assumptions, govern the whole theoretical background of this thesis.

Hypothesis 1: Nonlinear Elasticity can be understood from a consistent algebraic

context where a material whose anisotropic or isotropic behavior could be univo-

cally characterized. The parameters that appear in nonlinear classical extensions
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are relevant in the study of different materials as solids, crystals, liquids or tis-

sues.

Research objetive 1: Create a new consistent framework where all theories in nonlin-

ear classical elasticity are connected and a set of conversion factors to link to the

Third Order Elastic Constants.

2. To Unify nonlinear classical acoustics, is a key to understand the classical nonlinear

elasticity parameter because with a strong relationship with nonlinear acoustics, is

possible to measure experimentally with ultrasonic technologies [73, 74].

Hypothesis 2: Nonlinear classical acoustics under an unification criteria is a impor-

tant tool to understand mechanical parameters relatives to damage in the case of

materials or pathology in the case of tissue. A consistent and unified view pro-

vides a new approach to design a set of relevant experiments in tissue mechanics.

Research objetive 2: To unify nonlinear classical acoustic theories to exploring the

relationship between this parameters an mechanical ones and extend this to other

possible scenarios exploring its physical meaning.

3. Rewrite of nonlinear acoustics is a necessary task to contribute in the scope of the non-

linear acoustic unification. Several authors, give the inspiration idea of non unique-

ness in this field but without a physical explanation [38, 75].

Hypothesis 3: Fluid and matrix parts of tissue could be the origin of Nonlinearity

in tissues. The extension of nonlinear classical acoustics theories would imply a

new point in the understanding of nonlinear physical meaning.

Research objetive 3: Define nonlinear constitutive constants with physical meaning

from the point of view of the interaction of waves depending on fluid and matrix

parts, rather than a power series expansion as proposed by Landau.

4. To formulate a posible explanation to the nonlinear origin based on microdamage and

microcracks in solid state. This origin starts with developing of the homogenization

techniques, constructing a theory that connects micromechanical and heterogeneous

elasticity and nonlinear ultrasound tools is possible to derivate and quantify density

of microcracks [76, 77].

Hypothesis 4: The study of the theory of homogenization by Eshelby and its ex-

tension to nonlinear geometrical inclusions or microcracks suggests that using

ultrasonic nonlinear techniques, an origin to the nonlinearity could be due to the

microdamage.

Research objetive 4: Extending the theory of Eshelby to solve various cases of geo-

metrical inclusions and provide a method for measuring density of microcracks

with a consistent relationship established between the acoustic nonlinearity and

homogenization.

5. Validate if nonlinear parameters could be measured by ultrasonic experimental setups.

Reviewing the experimental techniques measuring ultrasonic parameters, a set of test
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should be taken into account in order to provide a full set of nonlinear acoustic reliable

parameters [78, 79, 80].

Hypothesis 5: The different techniques in the literature used to measure nonlinearity

may lead us to improve the form of measurement by setting different cases of

waves that interact resulting in desired measurements. Collinear mixing, Non-

linear mixing and new designs may explore and determine these parameters.

Research objetive 5: Develop new experimental techniques from ultrasonic sensors

and different setups that allow us to measure the deduced theoretically parame-

ters.

6. Torsional sensor method and measurements, once designed, provide a novel tool to

understand tissue from the quantification of shear modulus and nonlinearity in biome-

chanics field. This process carry out the mathematical design from a semi-analytical

model, a computational simulation, an structural optimization based in a different set

of criteria and the fabrication and improves. The measurements should be try in dif-

ferent materials which is a new technique.

Hypothesis 6: Torsional waves have the capability of be sensitive to the changes of

consistency in tissues through the quantification of shear modulus and nonlinear

acoustic parameters decomposed into collagen or fibers part and liquid part.

Research objetive 6: Evaluate the torsional wave feasibility and capability for assess-

ing linear and nonlinear measurements.
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3
State of Art

The need to model the soft tissue behavior in terms of mechanical characteristics, relies on

the understanding of nonlinear elasticity. Specifically, transversally isotropic nonlinear elas-

ticity plays a special role due to the complexity of the nature of biological tissues. Relevant

studies confirm the importance of these mechanical properties depending on the direction

of anisotropy [81, 82, 83, 84, 58, 85, 86, 87, 88].

3.1 Nonlinear elasticity

The chapter 4 presents the most frequent mathematical descriptions of nonlinearity in the

literature. We propose that nonlinearity can be understood from three different perspectives:

(1) at the continuum mechanics level, where the constitutive laws that relate stress and strain

deviate from Hooke’s law, (2) at the theoretical level, or wave equation level in chapter 5,

where the nonlinear parameters are directly related to the observable harmonics that appear

in oscillatory movements such as ultrasonics, and (3) at the micro-mechanics level, in which

atomistic, clapping microcracks see chapter 9, thermoelastic effects and so on, are proposed

hypothesis of mechanisms may originate the observable nonlinearity at the other two lev-

els. As opposed to many reviews, here we start from the continuum mechanics level, since

there is no consensus over the variety of mechanistic origins of nonlinearity. We consis-

tently derive the most frequent wave nonlinearity parameters from the different continuum

mechanics nonlinear definitions, which are based on Taylor expansions of the constitutive

equations. This expansion makes no assumption on the nature of the nonlinearity, which

can be proposed ad hoc. This formulation serves as a basis to quantitatively understand

and interpret experimental observations.
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The Eriksen and Rivlin are the classical Invariants assuming strain-energy [89, 90, 91], to

find a consistent algebraic context based on a historical review of isotropic and composite

materials modelling [92, 93, 94, 95, 96, 97, 98]. Murnaghan Invariants and Desdrade’s stud-

ies in the case of the compresibility restrictions of the strain-energy function to quasifluids

or tissues, concluding remarks of some subcases discussing the degree of phisically realistic

terms [99, 100, 101]. Exist a several invariants theories as such as Citarelle et. al. [102, 103],

Lu and Zhang [104], Criscione et. al. [105, 106], depending on the type of skin tissue, for ma-

terials with fiber tension, and for materials with a reference configuration with transversally

isotropic behavior, respectively.

Nevertheless, it is interesting explore the relationship between all of the different Third

Order Elastic Constants TOEC, in the standard, Murnaghan, Landau,...[2, 107, 99, 98, 108,

109], with details. It is also significant different techniques of how make measures of a set of

properties and explore the range limits of these experimental parameters where the tissue

perform its mechanical function [110].

3.2 Nonlinear acoustics

The nonlinear constitutive equation is commonly described there by making use of the Third

Order Elastic Constants TOEC [1, 111, 13, 5, 112, 6, 100], which are then linked to the non-

linear ultrasound propagation under the one dimensional P-wave restriction [113, 114, 115,

116]. Classical and nonclassical types of acoustic nonlinearities are developed below, show-

ing their effect on common stress-strain, strain-time and strain amplitude-frequency spec-

trum relations. [117].

The Westervelt equation due to its nonlinear acoustic nature, has recently been used

in the field of ultrasound for medical purposes such as for lithotripsy [118, 34] or by Fast

Ultrasound Image Simulation (FUIS) [119, 120] can simulate realistic ultrasound images in

a short time or through the application of HIFU [121, 122, 123].

In the chapter 5 an environmental theory about propagation of nonlinear waves in one

dimension is presented. Once exposed to classical Westervelt equation, the first parameter

of acoustic nonlinearity is derived from the classical nonlinear Hamilton equation. The gen-

eral equations of acoustic propagation in mechanical terms are presented, are developed for

the first order. The second order is also resolved using perturbation theory that is briefly

explained in the chapter 5 .

The aim of the chapter 5 is to extend the Westervelt equation to classical second order

nonlinearity and generalize it to the case of any high harmonics. At the same time it has been

characterized by coefficients in elastic and viscous terms. Finally, the Westervelt general-

ized equation involve an ideal environment to develop future applications as technological

progress in the field of tissue ultrasound mechanics.

As it is analyzed in this thesis, the study of the coefficients of acoustic nonlinearity has

recently been recovered again [124, 125, 126, 6, 100]. There is abundant literature relating

the degree of nonlinearity, in terms of the first and second nonlinear parameter in the wave
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equation, with the atomic potential, microcracks and damage generation on specific ma-

terials [127, 128]. Nevertheless, there is a lack of theoretical proposals on nonlinear serial

developments with the capability to explain some experimental phenomena. Nevertheless,

the present theoretical proposals on nonlinear serial developments has not got the capability

to explain some experimental phenomena.

The chapter 7 proposes deepening on the study of classical nonlinear acoustics, spliting

the general first order nonlinearity into five specific nonlinear phenomena, due to the in-

teraction of the deviatoric and volumentric components with the wave mode, P or S. The

concept is scalable to the third and higher harmonics [129, 21, 130]. Hysteretic and viscous

terms are also consider at this moment, in order to make easer the analysis [131].

Given the recent interest generated on the nonlinear elasticity and its relation to the non-

linear wave propagation [15], this chapter analyses the connection between the Landau third

order elasticity constants TOEC and second order parameters of acoustic nonlinearity. Un-

der this point of view, it can be considered that the parameters of constitutive nonlinearity

are explicitly described in terms of those of acoustic nonlinearity and viceversa.

3.3 Possible origins of nonlinearity

Alternatively, in nonlinear acoustics, when a sinusoidal ultrasonic wave at a given frequency

is transmitted into a nonlinear medium, the fundamental wave distorts as it propagates,

generating second and higher harmonics of the fundamental frequency [174]. Those acousti-

cal manifestations of nonlinear behavior can be explained as follows: Due to the amplitude-

dependent wave propagation velocity, the compression phase of a sinusoidal wave travels

faster than the rarefaction phase, and thus the wave distorts after it has propagated for some

distance through a nonlinear material being transformed into a saw-tooth wave. This steep-

ening of the waveform in the time-domain causes an energy transfer from the fundamental

frequency to higher harmonics. As a consequence, several higher harmonics can be ob-

served as local maxima in the frequency-domain [175, 176]. Measurements of the amplitude

of these harmonics thus provide a means for extracting the coefficient of second and higher

order terms in the nonlinear stress-strain relation, and deliver valuable information on the

material degradation that is far more sensitive than the linear acoustic properties. Mea-

suring these amplitudes is commonly referred to as the finite-amplitude method, initially

developed by Breazeale and Thompson [177]. The nonlinear coefficients are usually deter-

mined by measuring the second-harmonic generation and sometimes higher harmonics for

the longitudinal waves, and can be used to characterize acoustic nonlinear properties of

gases, liquids, and solids. For this technique, the through- transmission mode in immersion

is usually preferred. Instead of using two transducers, it is opportune to replace the receiver

by a needle hydrophone (with a nearly linear frequency response), in order to conveniently

measure the second and higher-harmonics. A finite- duration burst of (nearly) pure tone

- typically around 20 cycles long - is launched towards the specimen, and the progress of

some stationary peaks near the end of the tone-burst is followed and selected to compute
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the Fast Fourier Transform (FFT), and thus permits one obtain the second and higher-order

harmonics amplitude.

Associated with this study is the question of whether ultrasonic testing can be employed

successfully as an investigative tool to determine significant changes in these macrosopic

properties and thus provide an indication of material degradation in the form of dam-

age or microcracks. This would be an important diagnostic tool as an indicator for, e.g.

early on-set of a number industrial applications [178] or medical diagnosis tools, such as

osteoporosis[179]. As a result, nonlinear ultrasound techniques have been proposed since

it appears that the nonlinear acoustic parameters are much more sensitive to an increase in

microdamage [180, 179, 181].

The induced nonlinearity appears to be present at small strains, attributed to e.g.

Hertzian contact and other microstructural effects. The nonlinearity manifests itself in terms

of a Strain energy function (SEF) associated with the material, from which effective stresses

are found via differentiation. This SEF is not quadratic in strain, thus giving rise to non-

linear stress-strain relationships and effective nonlinear elastic moduli. Of specific interest

is how these moduli depend on the microstructure. In particular in the bone community,

where the interest is on the dependence of these parameters on the presence of damage,

usually assumed to be micro-cracks, Renaud et al. [181] state “However, little work has been
done on the relationship between crack density and level of elastic nonlinearity” and in Muller et

al. [179] “From empirical evidence it is clear that micro-cracks are responsible for the enhanced non-
linear response...we have no quantitative link between damage quantity and nonlinear response.” It

therefore appears to be of importance to try to build theoretical models which can attempt

to provide these links.

Most of conventional ultrasonic NDE methods are very sensitive to gross defects, but

much less sensitive to distributed micro-cracks. Furthermore, general degradation of

strength is often found in apparently flawless materials [182]. It is well known that material

failure is usually preceded by some kind of nonlinear mechanical behavior before signifi-

cant plastic deformation or material damage occurs [183]. Therefore, the degree of material

degradation can be evaluated by measuring the nonlinearity of the ultrasonic wave that

propagates through the target material. Thus, one can expect that the magnitude of the sec-

ond and higher-order harmonics will appear differently in normal and degraded material,

when the same amplitude of wave and the same propagation distance is used. For instance,

the finite-amplitude technique has been proven to be useful for nondestructive detection

of defects in ceramics [184], concrete structures [185, 186], composites [174], as well as fa-

tigue cracks in metals, such as steels, titanium, and aluminum alloys [187, 188]. Such defects

are due to internal stresses, micro-cracks, zero-volume disbonds, and usually precede the

main cracking mechanisms and the subsequent failure of the material. The characteristics

between such defects and common material heterogeneities (i.e. pores, grains, etc.) is that

an internal interface separates the intact material and the inclusion. This contact interface

can be either free (large pores, opened cracks), partially clamped (”clapping” mechanism
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between the states opened/closed cracks), or ideally bonded, and is thought to be mostly

responsible for the high nonlinear behavior of degraded materials [22]. Therefore, a con-

siderable number of authors have been involved in laboratory experiments to show that

cracks and imperfect interfaces can behave in a nonlinear fashion [189, 190], and have thus

opened new opportunities to detect partially closed cracks that may not be identified by

conventional linear methods. The potential of such models for describing interfaces, the

nonlinear mechanical behavior of layered media has been investigated using almost only

homogenization approaches [191].

The problem of determining the effective linear elastic properties of an inhomogeneous

material has been studied extensively [192, 193, 194]. A popular approach in micromechan-

ics is to characterize the heterogeneous medium via dispersions of inclusions, particularly

those involving spheroidal or ellipsoidal inclusions [195, 196, 197] thanks to the result of

Eshelby [198]. These methods include self-consistent methods [199], the differential scheme

[200, 201], the Mori-Tanaka method [202] and bounding schemes [203, 204]. Extensions

of these schemes to accommodate the case of cracked media in the linear (static) regime

when the cracks are assumed open (traction free), have been carried out in numerous stud-

ies [205, 206, 207, 208, 209, 210, 211]. Also see the comprehensive micromechanical study in

[192]. However, often overlooked is the effective dynamic response where cracks can be in

either opened or closed states (or more complex loadings) depending upon whether, for ex-

ample, the crack is in a compressive or tensile cycle of the propagating wave. Furthermore,

the notion of nonlinear crack response can often be important.

As opposed to the linear case, significantly less work has been carried out in the area

of the effective behaviour of nonlinear inhomogeneous materials. In the context of finite

elasticity, variational approaches associated with the Hashin-Shtrikman (HS) approach have

been developed [212, 204]. More recently some of the micromechanical approaches have

been adapted to the finite deformation regime [213, 214, 215, 46].

For the particular case of incompressible dispersions with rigid or liquid inclusions the

effective energy was approximated, and for a more general case, with a power-law-type

shear energy [216], where the energy density depends only on the Von Mises equivalent

stress. Other authors took into account higher-order moments of the local fields in individ-

ual phases to introduce the nonlinear effects in the effective properties. Computational in-

vestigations of the first and second moments of the strain fields were performed by Moulinec

and Suquet [217]. Recently, a new homogenization procedure of nonlinear inclusions based

on the Eshelby theory was developed by Giordano et al. [218], who obtained the bulk and

shear moduli along with the nonlinear Landau coefficients of the overall material in terms

of the elastic behavior of the constituents and of their volume fractions, all in the context

of small strain. Two nonlinear types of inclusions were investigated, spherical and paral-

lel cylindrical inclusions, both of which were embedded into a linear homogeneous and

isotropic matrix. In this context the material is considered to behave in a constitutively non-

linear manner under small strains (i.e. it is geometrically linear).
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3.4 Experimental techniques on nonlinear acoustics

Chapter 6 is aimed to organize the basis of a new perspective on the classical acoustic non-

linearity: to analytically solve the wave propagation on each case, to find its relation to the

coefficients of elastic nonlinearity and to experimentally validate using the Dynamic Acusto-

Elasticity Technique DAET or nonlinear mixing methods [132, 6, 133, 134, 135]. Then, some

possible scenarios will be considered with numerically simulated results in order to under-

stand the range of the values that has not been able to be experimentally measured until

now.

The nonlinear manifestations usually observed in classical materials are ultrasonically

quantified by nonlinear acoustic parameter of first order β. Many methods have been de-

veloped to measure β as is showed in previous chapters. One of the most common used

techniques for solids and fluids is the finite amplitude method [136]. This method based

on the second harmonic generation; measuring its amplitude, β can be experimentally ob-

tained. Despite it does not need a complicated setup and is relatively easy to perform, there

are some some drawbacks inherent to this method. The first limitation is that the second

harmonic signal recorded by the receiver may not all be due to the material nonlinearity

of the sample. Some of this measured nonlinearity may be due to the nonlinearity of the

measurement system, particularly the use of amplifiers, which reduces the accuracy of the

method. To overcome these limitations of the finite amplitude method, the methods based

on the nonlinear mixing technique have been recently applied to measure the ultrasonic

nonlinearity of different materials [137, 138, 139, 140]. The aim of chapter 8 is to extract β

parameter with a new experimental setup based on nonlinear mixing. The novelty of this

configuration resides on the use of just one transducer as transmitter. Such a configuration

permits to avoid the need to amplify the signal beyond 10 V while canceling out system

nonlinearities. First, an expression of β that can be experimentally measured from the am-

plitude of the generated harmonics is derived. Secondly, the harmonic generated by the two

incident waves at different frequencies are experimentally investigated in water for different

excitation powers and different transmitter-receiver distances.

3.5 Torsional ultrasonic transducer

The chapter 9 focuses on designing and optimizing a transducer capable of transmitting

and receiving torsional ultrasound waves, intended for tissue characterization applications

in the field of clinical diagnosis. The application of ultrasonic sensors in the clinical field

is mainly covered by compressional waves [141]. However, torsional ultrasonic waves are

proposed in this paper for the first time for shear stiffness based medical diagnosis. Tor-

sional ultrasound is chosen as the physical magnitude for several reasons. First, it is a

mechanical wave, controlled by and therefore most sensitive to the mechanical parame-

ters than any other indirect measurement. Second, the novelty and impact of this applica-

tion is rooted in the fact that torsional waves propagate at the S-wave speed cs has been

reported[142, 143, 144] to be significantly sensitive to consistence changes in quasifluids and
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soft tissues (p-value ¡ 0.001 measured with ultrasound) and to consistency changes caused

by tumors[145, 146]. Several authors have reported evidence about the potential of shear dy-

namic viscoelastic properties to characterize tissue condition [147, 148, 149, 150]. We propose

a design of a transducer to record information on the mechanical shear modulus in tissues.

The reason is that shear stiffness directly correlates with the tissue micro architecture, which

is most sensitive to pathologies, whereas compressional waves are predominantly correlated

with the fluid phase of the tissue, which remains mostly constant. The main challenge and

novelty resides in the capability of separate P waves and S waves based on the frequency

contents of each wave. In contrast to commercial shear transducers, torsional movement

guarantees no P-wave generation at the boundary of the transducer, with is critical in quasi-

fluids, where cs is at least 10 times lower than cp, and P-waves mask S-waves. This is re-

inforced by using a radially rigid sensor contact surface. The ensuing design comprises an

emitting disc and a receiving ring. Previous torsional transducers exist with resonance fre-

quency between [22-148] kHz, which are of the torsional Bolt-clamped Langevin Type (BLT),

and consist of discs of alternating polarity piezoelectric elements and two elastic blocks fit-

ted at each end, in order to generate torsional mechanical vibrations of the desired frequen-

cies with the capability of measuring shear modulus [151, 152]. The concept of introducing

a radiating head mass resembles the Tonpilz design, but has been modified fundamentally

to generate a torsional movement instead of a flexural movement.[153].

The transducer design that we propose is composed by a combination of elastic and

piezoelectric parts. Piezoelectric materials convert electrical signals into mechanical vibra-

tions and viceversa. Piezoelectric ceramic materials, such as lead zirconate titanate (PZT) are

widely used in solid-state actuators and sensors for various areas of nondestructive evalua-

tion and bioengineering such as an optical scanners, precision positioning, noise and vibra-

tion sensing and cancellation, linear motors,... [154, 155, 156, 157, 158, 159]. For this reason,

PZT-5 is adopted for our design.

The central focus of our contribution in this chapter is the optimization of the trans-

ducer design with the aim of maximizing the sensitivity to shear properties. There are

several optimization criteria of ultrasonic sensors, where the conventional characteristics

as impedance of the backing material and the thickness of piezoelectric material have been

studied [160, 141].

Numerical approaches can be used to evaluate transducer designs for each of the de-

sign parameters required, to maintain transducer performance within a specified range

[161, 162]. Our transducer is simulated with the Finite Element Method (FEM) using the

FEAP software [163], revealing the main mechanisms, which are in summary a circumfer-

ential shear movement of the piezoceramic elements, a torsional relative movement between

upper and lower discs and rings, an inertial mass by the discs and rings that control the res-

onant frequency and movement amplitude, and compressional eigenmodes at frequencies

at least 100 times higher than the torsional frequency. The model is subsequently validated
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with an analytical model, where the simplified differential equations of piezoelectric tor-

sional motions are derived and solved in terms of the circumferential displacement and the

electric potential, aimed at unveiling the main correlations between the design parameters

of the numerical model, and the response. This strategy has previously been used in dif-

ferent designs [151]. We have introduced dermic and connective tissue in the finite element

model in view of the first intended application, but it could be extended or modified to other

kinds of soft tissues, whose properties are similar, and the result too. Our simulated values

for the S wave velocity ranged [20, 380] [m/s], and for P-waves [1200, 1800] [m/s], while the

thicknesses layers in dermic and connective tissue was allowed to range at [0.3, 0.7] [mm].

Genetic Algorithms (GA) [164] and FEM have already been used in the literature to optimize

waveform and amplitude spectra of ultrasonic transducers [160, 165, 166], as well as other

optimization criteria [167, 166, 157].

The issue of the probability of detection (POD) has only been addressed independently,

under the name of identifiability, in statistics and mathematics, with a wide application in

chemistry and physics. In the field of nondestructive characterization, the concept of POD

has been discussed under the name of identifiability in relationship with the number of mea-

surements and the number of degrees of freedom to establish a necessity condition to obtain

a minimum criteria between the number of measurements and unknown variables[168].

Also, the inversion theory under a probabilistic formulation and the introduction of prob-

ability density functions in the model has been examined (see [169, 170]) to explain the

robustness of the inversion. Other perspectives of probabilistic formulations have been pre-

sented providing a general overview of the statistical inversion theory, whose Bayesian and

Kalman filtering exposition for nonstationary inverse problems is particularly useful, for

example in the micro damage detection field [171]. Some of these rational approaches have

been scarcely applied experimentally for the case of damage characterization [172, 173]. In

this paper, a new design optimality criteria called Robust Probability of Detection (RPOD)

is proposed in this paper as a methodology approach. It is defined with the goal of maxi-

mizing the transducer sensitivity to the tissue properties while minimizing the sensitivity to

noise ratio of the multilayered shear elastic constants.
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The universe works on a math equation that never really even ever
really even ends in the end Infinity spirals out creation.

Never ending math equation
Modest Mouse, 2004
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4
Unifying theories of classical nonlinearity

4.1 Nonlinear elasticity

In order to classify the nonlinear acoustic behavior of solid and fluid materials, the prin-

ciples of nonlinear elasticity are introduced. The general constitutive equations are consid-

ered, in tensile form to derive the one-dimensional wave equation with nonlinear elastic

coefficients. The notation used here is introduced in a similar manner that Norris 1998 [107]

changing a by x0
i as the initial position. Lagrangian (are used to locate a point in space with

respect to a fixed basis) and Eulerian (used to label material points) coordinates are defined

as x in vector notation, or xi in index notation (final position) and x0, or x0
i (initial position),

respectively, and displacements as u = x− x0, or ui = xi − x0
i . The deformation gradient

tensor is F = ∂x0/∂x in tensor notation or Fi j = ∂x0
i /∂xi in index notation is introduced to

quantify the change in shape of infinitesimal line elements in a solid body.

The associated Green-Lagrange strain tensor is E = 1/2(FTF− I) or εi j = 1/2(Fi jFji − δi j)

where I is the identity matrix and δi j is the Kronecker’s delta function (equal to 1 when

index i=j and zero if i 6= j) or in terms of displacements:

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂uk

∂xi

∂uk

∂x j

)
(4.1)

Note that the last term is frequently neglected in ultrasonic literature because small strains

are considered. However, it should be necessary taken into account to consistently link the

harmonics amplitude to the continuum mechanics, as proved later in the Nonlinear (NL)

wave equation. The latter is commonly defined Cauchy’s stress as,
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Figure 4.1: Classical representation of an undeformed and deformed body in both initial
and final positions.

T =
1

det(F)
F

∂W
∂E
· FT or σi j =

1
det(Fi j)

Fi j
∂W
∂Ei j

Fji (4.2)

where we have introduced the strain energy per unit volume of the undeformed material W.

The nominal stress or first Piola-Kirchoff stress P or Pi j, is defined as the force measured

per unit surface area expressed in the reference configuration. the use of nominal stress and

Green-Cauchy strain and them expansions establishes, so-called general nonlinear elasticity.

It is linked to the Cauchy stress is given via,

P = (det F)T · (F−1)T , T =
1

(det F)
P · FT ,

or

Pi j = (det Fi j)σi jF−1
ji , σi j =

1
(det Fi j)

Pi jFji. (4.3)

Consider a strain energy per unit volume of the undeformed material. Then,
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P =
∂W
∂F

, or Pi j =
∂W
∂Fi j

(4.4)

noting that here we use the convention ( ∂W
∂F |{i j} = ∂W

∂Fi j
). Note that, for example, Ogden

(1997) adopts [219] the transpose of this definition, mainly due to the fact that the nominal

stress is usually measured [107, 8]. We eventually wish to write the strain energy in terms

of the strain E so we write,

P =
∂W
∂E

:
∂E
∂F

= F · ∂W
∂E

,

or

Pi j =
∂W
∂εi j

:
∂εi j

∂Fi j
= Fi j

∂W
∂εi j

. (4.5)

and using the relations between stresses we obtain Equation 4.2. Importantly we note that

T 6= ∂W
∂E in general in nonlinear elasticity.

We note that only when E � 1, where strains are small, then T = ∂W
∂E . This stress

is usually noted as S = ∂W
∂E and called second Piola-Kirchoff tensor, since in that context

geometric nonlinearity is neglected and only constitutive nonlinearity is retained [220]. Here

we also remain in the context of small strain but we prefer to use an asymptotic methodology

which retains all second order nonlinear (quadratic terms). We note that via Equation 4.1 we

can obtain the expansions

F = I + E + O(E2), FT = I + E + O(E2),

or

Fi j = δi j +εi j + O(εi jε jk), Fji = δi j +εi j + O(εi jε jk) (4.6)

and thus we find that,

trF = 3 + trE, tr(F2) = 3 + 2trE, tr(F3) = 3 + 3trE,

or

Fkk = 3 +εkk, Fi jFji = 3 + 2εkk, Fi jFjkFki = 3 + 3εkk (4.7)

whereby,
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det F = 1 + trE + O(E2)

or

det Fi j = 1 +εkk + O(εi jε jk) (4.8)

Finally note the importance of notation in the above, i.e. tr(Fn) 6= (trF)n where we note the

standard definition for powers as for example E2 = εi jε jk so that tr(E2) = εi jε ji. We use

brackets in order to make this notation clear when n > 1.

Defining a relationship between the strain energy W, and the strain εi j, a Taylor series

expansion allows any degree of approximation to reality without loss of generality. The first

term describes the linear elasticity,

W(E) = C : E⊗ E + C :: E⊗ E⊗ E + ...,

or

W =
1
2!

Ci jklεi jεkl +
1
3!

Ci jklmnεi jεklεmn + ... (4.9)

where ”:”, denotes contraction operator (index-i j jk contracts by Einstein summation to

index-ik), and ⊗ is defined as the tensorial product which contract a pair of shared indices

in two tensors. As a consequence, the stress can be decomposed into linear and nonlinear

parts as,

T = TL + TNL or σi j = σ
L
i j +σ

NL
i j (4.10)

where σL
i j is consequence of Hooke’s law.

In order to write down appropriate strain energy functions it is useful to define the in-

variants of deformation. ”A deformable medium is isotropic if, and only if, W(E) is a function of
three invariants I1, I2 and I3 of E” (For more details see Murnaghan [12]). Then, for nonlinear

elasticity, i.e. the case that we consider here we use,

I1 = trE, I2 = tr(E2), I3 = tr(E3),

or,

I1 = εkk, I2 = εi jε ji, I3 = εi jε jkεki. (4.11)

These invariants are chosen explicitly in terms of the strain by writing detF (see Erigen

[109]). For an isotropic material the form of the corresponding strain energy WI was pro-

posed by Landau as,
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WI =
λ

2
I2
1 +µ I2 +

A
3

I3 + B I1 I2 +
C
3

I3
1 + h.o.t. (4.12)

where the coefficients A,B and C are often referred to as the nonlinear, third-order Landau
coefficients and h.o.t. stand for the neglected fourth order effects (See [1, 107]). The combi-

nations of invariants I3, I1 I2 and I3
1 are the three possible in third order. Let us consider the

stress of second Piola Kirchoff as defined above, that arises in an isotropic material. Note

that

∂WI

∂E
= λ(trE)I + 2µE +AE2 + B((tr(E2))I + 2(trE)E) + C(trE)2I,

or

∂WI

∂εi j
= λεkkδi j + 2µεi j +Aεikεk j + B(εkpεpkδi j + 2εkkεi j) + C(εkkδi j)

2. (4.13)

Then, grouping in strain terms of invariants using Cauchy stress, see Equation 4.2, the non-

linear extension of the Hooke’s law to the third order and isotropic materials can be written

as,

T = λtrEI + 2µE + ÃE2 + BtrE2I + 2B̃trEE + C̃(trE)2I or (4.14)

σi j = λεkkδi j + 2µεi j + Ãεikεk j + Bεkpεpkδi j + 2B̃εkkεi j + C̃(εkkδi j)
2

where λ and µ are the Lamé constants related to the Young modulus E, and Poisson ratio

ν, as λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) , εi j is the strain tensor, εkk is the trace of the strain

tensor, εi jε jk is the square of the strain tensor, δi j is the Kronecker delta, and Ã = 4µ +A,

B̃ = B + λ− µ and C̃ = C − λ are often referred to as the nonlinear, A, B and C third order

elastic constants [1]. The contribution in that the nonlinear stress never has been derived

under these hypothesis, and the expression of TOEC impacts on the nonlinear theory even in

the relationship between it and acoustics. Note that many authors defined other sets of third

order elastic constants, by taking into account different combinations invariants i. e. in terms

of Murnaghan l, m and n parameters, as a combination of three invariants in third order of

energy function see Equation 4.13 with a different rule of derivation [12, 221, 108, 222]. See

Table 4.1. below, note the standard nonlinear coefficients CI JK are defined with the Voigt

notation (where index is contracted with the rule i jklmn = I JK).

Table 4.2 ilustrates some experimental values of third order elastic constants [6, 126, 125,

223], using experimental acoustoelasticity techniques for Aluminum [6] and by other au-

thors in Aluminum 7075 and Aluminum 2S samples using finite amplitude methodology

and several ultrasonic setups.
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Murnaghan Standard,
(1951) CI JK

l = B + C c123 = 2C, c111 = 2A+ 6B + 2C
m = 1

2A+ B c144 = B, c112 = 2B + 2C
n = A c456 = 1

4A, c166 = 1
2A+ C

Table 4.1: Relations between third order elastic constants for isotropic solids

TOEC AL7075 (GPa) AL7075 (GPa) AL7075 (GPa) AL2S (GPa)
Muir (2009) Stobbe (2005) Dubuget et al. (1996) Smith (1966)

A -334.5 -351.2 -282 -408
B -125.35 -149.4 -179 -197
C -60.5 -102.8 53 -114

Table 4.2: Literature values of Third-Order Elastic Constants experimentally determined.

A solid is characterized by a positive bulk and shear moduli but the signs of third order

elastic constants are not univocal as shown in Table 4.2. In the case of fluids, since they have

null shear modulus, the relationship is given by λ = A,A = 0, B = −A, and C = (A− B)/2,

where A and B are the parameters of Taylor expansion of the pressure in fluids,

p = A
(
ρ′

ρ0

)
+

B
2!

(
ρ′

ρ0

)2

+
C
3!

(
ρ′

ρ0

)3

+ ... (4.15)

where ρ0 is the unperturbed density. The parameters A and B, are also described by making

use of the Westervelt and KZK nonlinear propagation models inside the acoustic nonlin-

earity of first order, (see [107]). Finally, Equation 4.1 can be written with respect to either

coordinate system. Working in Eulerian coordinates, the equation of motion is

Dv
Dt = ∇ · T,

or, neglecting advection,

ρui,tt = σi j, j (4.16)

where v is the velocity, D/Dt is the total derivative, T is the Cauchy stress defined above,

and for the index notation, ρ is the density, ui = (x1, x2, x3, t) and σi j, j, where we adopt the

compact notation of derivative f,i =
∂ f
∂xi

with i, j = 1, 2, 3 are the cartesian components of

the displacement and Cauchy stress, respectively.
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5
Nonlinear propagation of ultrasound:

Unification

The nonlinear wave propagation is particularized to one dimensional P-wave and S-wave

equations to extract the nonlinearity parameter of first order β, which has been widely used

in the literature. The second and hysteretic nonlinearity parameters are considered and

characterized in the next subsections.

The contribution is a consistent derivation of the NL wave solutions based on clear con-

tinuum mechanics assumptions.

5.1 One dimensional P-wave equation

The one-dimensional nonlinear wave equation for solids is derived from the continuum

model above. The nonlinear wave equation is reduced here to the classical theory and its

fundamental solution up to third- and fourth-order is provided below.

In order to derive the effects of nonlinear elastic materials, the formulation of the kine-

matic relations can be written as in the following equation [5], as in Equation 4.1,

εi j =
1
2
(ui, j + u j,i + uk,iuk, j) (5.1)

Under P waves restriction we note that u2 = u3 = 0, u1(x1, x2, x3) = u1(x1), since particles

only move along the x1-direction, and εi j = 0 ∀ i, j 6= 11,
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Kinematic relations : ε11 = u1,1 +
1
2 u1,1u1,1

Constitutive law : σ11 = (λ+ 2µ)ε11

+(3(λ+ 2µ) + (2A+ 6B + 2C))ε2
11

+O(ε3
11) (neglecting attenuation)

Dynamic equilibrium : ρu1,tt = σ11,1 (from Equation 4.2) (5.2)

5.1.1 Nonlinearity of first-order

The case of the nonlinear wave equation up to the first-order nonlinearity is first considered.

By making use of Equations 5.2 introducing Kinematic relations into Constitutive law and

making use of Dynamic equilibrium as spatial derivative of stress we can obtain,

ρu1,tt = Mu1,11 + (3M + 2A+ 6B + 3C)u1,1u1,11 (5.3)

If the second order wave equation (See [224]) is considered, Hamilton proposed to synthe-

size the 1D nonlinear wave equation to,

ρu1,tt = Mu1,11(1− 2βHu1,1) (5.4)

where u1, u1,tt and u1,11, are the displacements in one dimension, and the second derivatives

in time and space respectively M = λ+ 2µ = ρc2
p, and cp denotes the longitudinal (P-wave)

velocity. Whereby the constant βH (H is introduced to distinguish from other definitions of

β by other authors) is,

βH = −3
2
− A+ 3B + C

λ+ 2µ
(5.5)

This is the standard relationship between third order elastic constants and first nonlinear

wave parameter as defined Hamilton 1998, (See [2]). The linear part − 3
2 coming from geo-

metric nonlinearity and the NL part −A+3B+C
λ+2µ from constitutive nonlinearity. Definitely, it

is a contribution counterintuitive due to large strains of Cauchy stress tensor. Note that we

have introduced the nonlinear coefficientβH, in order to obtain a single nonlinearity param-

eter that described the acoustic harmonic generation. The perturbation theory [2] allows to

decompose the wave displacement as,

u = u(0) + u(1) + ... (5.6)

where u(0) and u(1) denote the zero-order and first-order perturbation solutions, respec-

tively. The zero-order perturbation solution corresponds to the solution to the linear wave

equation (that is, when βH = 0). When considering a monochromatic plane wave propagat-

ing in a semi-infinite nonlinear elastic layer, the latter is given as,
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u(0)(x, t) = aei(kx−ωt) (5.7)

where k is the wave number, a is the amplitude of fundamental harmonic neglecting vis-

cosity and ω = 2π f is the angular frequency of an oscillation frequency f . The nonlinear

parameter of first order βH can be determined by iteration from,

u(1)
1,tt − c2

pu(1)
1,11 = 2c2

pβHu(0)
1,11u(0)

1,1 + h.o.t. (5.8)

where h.o.t. is neglected since they are of order O(β2). The former expression has the form

of a classical partial differential equation with an inhomogeneous part. It is well-known that

when the inhomogeneous part is linearly dependent to the general solution of the homoge-

neous part, the solution approach for the particular solution of u(1) must be multiplied by

a sufficiently large power of x to become linearly independent. Thus, a particular solution

may be obtained by substituting Equation 5.7 in u(0), whereby the right hand side becomes

a forcing them that only allows a homogenous solution,

u(1)(x, t) = bxe2i(kx−ωt) (5.9)

where b is the amplitude of the second harmonic. From that solution, the nonlinear param-

eter of first-order βH is derived as,

βH =
4b

k2a2x
(5.10)

5.1.2 Nonlinear acoustic parameter of first order defined by Guyer

A different definition of nonlinear parameter of first order was given by Guyer [225] from

the following expansion of the constitutive law,

σ1 = K(ε1,1 +βG(ε
2
1,1) + O(ε3

1,1) + A[ε,ε1,t]) (5.11)

where K is the compressional modulus, A[ε,ε1,t] are the hysteretic elastic elements typically

nonanalytic and βG is the nonlinear term. Note that it is only valid for fluids, since it coin-

cides with that one of Hamilton Equation 5.3 if µ = 0. Also, Ã = 0 and B̃ = 0 from Equation

4.1, because all terms of strain tensor εi j, outside the diagonal are neglected which carries

out this specific condition for fluids.

5.1.3 Nonlinear mixing

This is used to explain both harmonics generation and frequency mixing. To illustrate the

second, if we consider two excitation frequencies,ωa,ωb, the solution of the wave equation

yields a third output pair of waves frequenciesωc = ωa ±ωb with amplitude proportional

to ε2
a that builds up over distance x to amplitude εc. Their amplitudes εa, εb and εc, are

related by,
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βG ≈
εc

xε2
a

(5.12)

5.1.4 Nonlinear acoustic parameters of first order defined by Zarembo

If we consider as invariants I1 = εkk, I2 = 1/2(εi jε ji−ε2
kk) and I3 = detεi j, classical invariants

of Murnaghan, deduced from the characteristic polinomial of the strain tensor, the stress is

defined as follows,

σi j =
ρ

ρ0
Y

∂W
∂εi j

YT (5.13)

where ρ and ρ0 are the densities in the deformed and undeformed states, respectively, ρ =

ρ0(1 + I1), Y = |ui, j + δi j|. Note that Equation 5.13 is similar to the Cauchy stress defined in

equation 4.2, however, in Equation 5.13 ρ/ρ0 = 1 +εkk and in Equation 4.2 its correspond to

1/(detεi j) = 1−εkk.

The equation of motion results to apply spatial derivate of stress and the conversion of

Murnaghan constants into Landau TOEC given in Table 4.1, stated as,

ρ0ui,tt −µui, j j −
(

K +
µ

3

)
ui,ki =

(
µ + A

4

) (
uk, j juk,i + uk, j juk,i + 2ui, j juk, j

)

+
(
K + µ

3 + A
4 + B

) (
uk,i juk, j + u j,k jui,k

)

+
(

K− 2µ
3 + B

)
ui, j juk,k

+
(A

4 + B
) (

u j,k juk,i + uk,i ju j,k
)

+ (B + 2C) u j,i juk,k (5.14)

If the wave front travels in x1-direction, all the particles of the x2x3-plane do not depend

on x2 and x3, and thus u1 and u2 are reduced to u1(x1, t) and u2(x1, t), respectively [5]. By

making use of perturbation theory, the nonlinear interaction of wave propagation in one

direction is obtained. Then, take the form,

u11,tt − (cl)2u1,11 = βl
Zu1,11u1,1 +β

τ
Z(u2,11u2,1 + u3,11u3,1) (5.15)

u2,tt − (cτ )2u2,11 = βτZ(u2,11u1,1 + u1,11u2,1) (5.16)

u3,tt − (cτ )2u3,11 = βτZ(u3,11u1,1 + u1,11u3,1) (5.17)

where (cl)2 =
(

K + 4µ
3

)
/ρ0 and (cτ )2 = µ/ρ0 are the longitudinal and transversal square

velocities, respectively. The Equation 5.16 corresponds to P-wave equation, primary wave

equation and Equations 5.17 and 5.17 with the S-wave equation, secondary wave equation,

in two polarizations that are related to the directions x2 and x3, respectively. The nonlinear

longitudinal parameter of first order βl
Z, (note that labeled Z side it correspond to Zarembo,

1951), is defined as follow in terms of Landau third order elastic constants,
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βl
Z = 3

λ+ 2µ
ρ0

+
1
ρ0

(2A+ 6B + 2C) (5.18)

If in a similar way, the S-waves is considered in the u2-direction u2(x1), and u1 = u3 = 0,

we obtain the nonlinear transversal parameter βτZ defined as follows,

βτZ =
µ

ρ0
+

1
ρ

(A
2
+ B

)
(5.19)

This definition establishes a relationship between nonlinear longitudinal and transversal

parameters of first-order with the third order elastic constants. Note that the conversion of

Murnaghan coefficients to Landau constants have been carried out by making use of the

Table 4.1 above.

5.2 Nonlinearity of second-order

The case of the nonlinear wave equation up to the second-order nonlinearity (two nonlinear

parameter βH and δ) is considered now. Therefore, equation 5.6 is reduced to,

u1,tt = c2
p(1− 2βHu1,1 + 3δ(u1,1)

2)u1,11 (5.20)

The elastic coeffcient of second-order δ can be derived in the same manner as the first-order

one βH, resulting in,

u(2)
1,11 −

1
c2

p
u(2)

1,tt = −2βH(u
(0)
1,11u(1)

1,1 + u(1)
1,11u(0)

1,1)− 3δu(0)
1,11(u

(0)
1,1)

2 (5.21)

being u(2) the second-order perturbation solution by making use of Equation 5.6 up to u(2).

Then, following the same framework, the solution for the δ parameter with monochromatic

plane wave excitation is,

u(2)(x, t) = ce3i(kx−ωt) , c = 1
2β

2k4a3x2 + 1
6δk3a3x (5.22)

where c is the amplitude of the third harmonic.

5.3 Extension to nonclassical nonlinearity

Recent studies show that a broad category of materials share nonclassical nonlinear elas-

tic behavior. Manifestations of nonclassical nonlinearity include stress-strain hysteresis and

discrete memory in quasi-static experiments, and specific dependencies of the harmonic

amplitudes with respect to the drive amplitude in dynamic wave experiments, which are

remarkably different from those predicted by the classical theory. Nonclassical nonlinear

effects are believed to be due to the presence of soft regions in hard materials (e.g., mi-

crocracks, micropores and soft bonding regions between material grains). They have been

successfully reproduced by a model [226] and, later, by Guyer and McCall, based on a
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Preisach-Mayergoyz space (PM space) representation [227, 228], in analogy with the treat-

ment of magnetic hysteresis. Differences between nonclassical and classical Landau-type [1]

nonlinear dynamic behavior include: a downshift of the resonance frequency, proportional

to the resonance amplitude in the nonclassical case versus a quadratic amplitude depen-

dence in the classical case; nonlinear attenuation versus amplitude independent attenua-

tion; quadratic amplitude dependence of the third harmonic versus cubic in the classical

case [229].

Given a harmonic excitation on a nonlinear constitutive material, the history of any vari-

able (either the strain, stress or displacement) at any point will not necessarily be harmonic

and can therefore be represented by,

σ = M(1 +βHε+ δε
2 + ... +α(ε+εsgn(ε1,t))ε (5.23)

The implications of the nonlinear classical and non classical contributions on the acoustic

wave propagation are depicted in Figure 5.1, which highlights the effects on the stress-strain

relations, the frequency spectrum and the deformation of the signal.

Figure 5.1: Nonlinear contribution to constitutive equation [4].

Note that Chapters 4 and 5 have direct application in nonlinear ultrasonics for early

damage detection [230].

5.4 Connection with classical Westervelt model

To describe the level of nonlinearity in fluids or quasifluids, the nonlinear parameter B/A
is usually provided, which originates in the Taylor series expansion of density in terms of

pressure.

By using the relation c2
p = ∂p/∂ρ where p and ρ are sound pressure and density respec-

tively, once can obtain from (Hamilton, Blackstock, and others, 1998) [107]:

p = A
(
ρ′

ρ0

)
+

B
2!

(
ρ′

ρ0

)2

+
C
3!

(
ρ′

ρ0

)3

+ ... (5.24)

And from Equation 5.24, using the relation c2
p = ∂p

∂ρ
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c2
p

c2
0
= 1 +

B
A

(
ρ′

ρ0

)
+

C
2A

(
ρ′

ρ0

)2

+ ... (5.25)

After a binomial expansion and leading root square,

c
c0

= 1 +
B

2A

(
ρ′

ρ0

)
+

1
4

[
C
A
− 1

2

(
B
A

)2
](

ρ′

ρ0

)2

+ ... (5.26)

Equation of state with4ρ = ρ− ρ0, is considered now in terms of B/A ratio as follows,

p = c2
04ρ

(
1 +

B
2A
4ρ
ρ0

+ O

((4ρ
ρ0

)3
))

(5.27)

where ρ0, is the ambient density and c0 =
√

K
ρ0

, is the small signal sound speed. The values

of B/A are usually calculated for selected fluids, liquefied gases,

βW = 1 +
B

2A
(5.28)

where βW is defined now from the Westervelt equation that is explained in Equation 5.30 by

making use of Taylor expansion of the pressure p in terms of volumetric strain v. Hydrostatic

stress (σ11 = σ22 = σ33) is defined in terms of pressure as,

p = −1
3
(σ11 +σ22 +σ33) = −σ11 (5.29)

If we define p as a Taylor expansion of volumetric pressure being β the nonlinearity of first-

order, from Equation 5.2 it results,

− p = −3Kv + 9βKv2 + O(v3) (5.30)

Note that M = K + 4µ
3 , so in the case of fluids and quasifluids (the limit of compressibility),

µ = 0 and µ → 0 respectively, M = K is assumed. Then inverting Taylor expansion in terms

of pressure and after second time derivative,

v =
p

3K
+
βW p2

3K2 + h.o.t. (5.31)

v̇ =
ṗ

3K
+

2βW

3K2 pṗ + h.o.t. (5.32)

v̈ =
p̈

3K
+

2βW

3K2 ( p̈p + ṗ) + h.o.t. (5.33)

then using the kinematic relations in Equation 5.2, and space derivative, assuming small

strains,

− 3v̈ = ε̈11 = ü1,1 (5.34)
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introducing kinematic relations into pressure expansion, we obtain,

− p = Ku1,1 + KβWu2
1,1 + h.o.t. (5.35)

assuming that high order terms are neglected (O(u3
1,1) = 0), where βW , is the Westervelt

nonlinear parameter of first-order. So, the pressure may be defined as follows, by making

use of Equations 5.34, 5.33 and 5.33,

− 1
3

ü1,1 =
p̈

3K
+
βW

3K2 ( p̈p + ṗ) + h.o.t (5.36)

After second derivative of the pressure and introducing Dynamic equilibrium 5.2 leads,

∇2 p = −σ11,11 = −ρü1,1 (5.37)

then the State Equation is deducted by comparing Equation 5.36 and Equation 5.37,

−∇2 p = ρ
p̈
K
+ ρ

βW

K2 ( p̈p + ṗ2) + h.o.t. (5.38)

is possible to derive the classical nonlinear Westervelt equation. This equation is used in or-

der to describe nonlinear sound propagation in dissipative fluids when cumulative nonlin-

ear effects dominate local nonlinear effects. It is obtained from second order wave equation

for progressive waves as,

∇2 p− 1
c2

0

∂2 p
∂t2 +

D
c4

0

∂3 p
∂t3 = −βW

ρc4
0

∂2 p2

∂t2 (5.39)

where D is the sound diffusivity that is not deducted at the moment, and βW is the nonlin-

earity of first order coefficient.

5.4.1 Westervelt equation assuming large strains

Following the same framework that has been introduced in the previos section, the rela-

tionship between kinematic relations in Equation 5.2 and volumetric pressure second time-

derivative 5.33 results,

− 3v̈ = ε̈11 = ü1,1(1 + u1,1) + u̇2
1,1 (5.40)

Introducing Kinematic relations into the pressure expansion neglecting displacement terms

with power upper than third we obtain,

− p = Ku1,1 +
1
2

Ku2
1,1 +βWKu2

1,1 + O(u3
1,1) (5.41)

A series expansion of u1,1 = −1 +
√

1− 6v have been calculated in order to deduce the

dynamic equilibrium in terms of volumetric part v. Then, is possible to establish the equi-

librium in terms of pressure p by making use of constitutive equation inverted, that have

been deducted in the previous section,
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∇2 p = −ρü1,1 (5.42)

whereby,

u1,1 = −3v− 9
2

v2 − 27
2

v3 ++h.o.t. (5.43)

u̇1,1 = −3v̇− 9vv̇− 81
2

v2v̇ + h.o.t. (5.44)

ü1,1 = −3v̈− 9(v̇2 + vv̈)− 81
2
(2vv̇2 + v2v̈) + h.o.t. (5.45)

thus, by making use of Equations 5.32, 5.33 and 5.33 where volumetric pressure, its first and

second time-derivatives were developed in terms of pressure and its first and second time

derivatives,

1
ρ
∇2 p = ṗ2

K2 +
p̈
K + pp̈

K2 +
(

2 ṗ2

K2 + 6 pṗ2

K3 + 2 pp̈
K2 + 3 p2 p̈

K3

)
β+

(
6 p2 ṗ2

K4 + 2 p3 p̈
K4

)
β2 (5.46)

is posible to derive the classical Westervelt equation assuming large strains in this case,

neglecting sound diffusivity part and third and high order terms as follows,

∇2 p = ρ
(

p̈
K +

(
β+ 1

2

) p̈2

K2

)
(5.47)

5.5 Extension to higher harmonics

In this section we have taken into account two parts, one with the assumption of fluid with-

out viscosity, and the other the assumption of small displacements inside the compatibility

equation with the wave propagating in one direction.

5.5.1 For fluid without viscosity in one direction and assuming small strains

• First simplification: For ideal fluid, shear moduli is equal to cero, µ = 0 and neglecting

viscosity means η = 0. In this case the terms outside the diagonal in the Cauchy stress

tensor are zero, τi j = 0 that implies,

σi j =
1
3
σkkδi j = −pδi j (5.48)

where δi j is the Kronecker’s delta, and p is the pressure.

• Second simplification: is to consider the displacement in one direction, it means, u1 6=
0 and u2 = u3 = 0 that implies ε11 6= 0 and εi j = 0 ∀ i j 6= 11. In this case, the

volumetric part is derived as,
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v = −1
3
(ε11 +ε22 +ε33) = −

1
3
ε11 (5.49)

where ε11 = −vδ11 + d11, and d11 is the deviatoric part of strain. Also small strains

implies, v = − 1
3 u1,1

• Third simplification affects to volumetric expression and its second derivative as fol-

lows,

v̇ =
1
3
(u̇1,1 + u̇2,2 + u̇3,3) and v̈ = −1

3

3

∑
k=1

ük,k (5.50)

The linear elastic dependency is enriched with quadratic and cubic terms, following the

series expansion concept put forth by Landau [1]. Only the volumetric part is datelined in

terms of nonlinear acoustic parameter of second order β and nonlinear acoustic parameter

of third order δ being scalar,

− p = −3Kv + 9βKv2 − 27δKv3 + h.o.t. (5.51)

the constitutive Equation 5.51 could be introduced in Equilibrium Equation 5.2 as follows,

ρü = σi j, j = ∇(−pδi j) = ∇(−3Kv + 9βKv2 − 27δKv3 + h.o.t.) (5.52)

If we consider the Constitutive Equation 5.32 in terms of volumetric part v, comparing coef-

ficients of the polynomial series as follows,

y = a0 + a1x + a2x2 + ... =
∞
∑

n=0
an(x− x0)

n

x =
∞
∑

n=0
bn(y− y0)

n =
∞
∑
k=0

bk[
∞
∑
j=0

a j(x− x0)
j]k

b1 =
1
a0

b2 = − a2

a3
1

b3 =
2a2

2 − a1a3

a5
1

b4 =
5a1a2a3 − a2

1a4 − 5a3
2

a7
1

bn =
(−1)n−1an

2 − an−2
1 an

a2n−1
1

(5.53)

Thus, we obtain the constitutive law for v,

v =
1

3K
p +

1
3K2βp2 +

1
3K3 (2β

2 − δ)p3 + h.o.t. (5.54)
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Then, if we introduce first and second derivative in time, volumetric scalar expansions re-

sults,

v̇ =
1

3K
ṗ +

2
3K2βpṗ +

1
K3 (2β

2 − δ)p2 ṗ + h.o.t.

v̈ =
1

3K
p̈ +

2
3K2β( p̈p + ṗ2) +

1
K3 (2β

2 − δ)(2pṗ2 + p2 p̈) + h.o.t. (5.55)

by making use of Equation 5.42 v̈ = − 1
3 ü1,1 and Equation 5.45, The westervelt equation for

third order of nonlinearity with the assumption of small strains and viscosity neglected in

one dimension, is deducted as follows,

1
ρ
∇2 p =

1
K

∂p
∂t
− ∂p2

∂t2
β

K2 +
∂3 p3

∂t3
(2β2 − δ)

K3 (5.56)

5.5.2 For fluid without viscosity in one direction and assuming large strains

If we consider the case in which strains are related to large displacements, regarding to

Equation 5.2, Kinematic relations 5.2 are derived as follows,

v = −1
3
(u1,1 +

1
2

u2
1,1) (5.57)

A series expansion of u1,1 = −1 +
√

1− 6v have been calculated in order to deduce the

dynamic equilibrium in terms of volumetric part v. Then, is possible to establish the equi-

librium in terms of pressure p by making use of constitutive equation inverted 5.47, that

have been deducted in the previous section,

ρü1,1 = ∇2(−p) (5.58)

whereby,

u1,1 = −3v− 9
2

v2 − 27
2

v3 − 405
8

v4 + h.o.t. (5.59)

u̇1,1 = −3v̇− 9vv̇− 81
2

v2v̇ + h.o.t. (5.60)

ü1,1 = −3v̈− 9(v̇2 + vv̈)− 81
2
(2vv̇2 + v2v̈) + h.o.t. (5.61)

So, the Westervelt equation for large strains for an ideal fluid neglecting viscosity terms, in

one direction results as follows,
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−1
ρ
∇2 p = −9

(
ṗ

3K + pṗβ
3K2 + p2 ṗ(2β2−δ)

6K3

)2
− 9

(
p

3K + p2β

6K2 +
p3(2β2−δ)

18K3

)

(
p̈

3K + ( ṗ2+pp̈)β
3K2 + ( ṗ3+2pp̈)(2β2−δ)

6K3

)
−

3
(

p̈
3K + ( ṗ2+pp̈)β

3K2 + ( ṗ3+2pp̈)(2β2−δ)
6K3

)
(5.62)

This expression could be expand and simplified under the assumption that p/K is the

unique factor no neglected up to third order. The others are approximately equal to zero

because the order of bulk modulus is upper than the pressure. Then it results as follows,

1
ρ
∇2 p = ṗ2

K2 +
3pṗ2

K3 + p̈
K + pp̈

K2 +
3p2 p̈
2K3

+ 2 ṗ2β

K2 + 6pṗ2β

K3 + 2pp̈β
K2 + 3p2 p̈β

K3

+ 12pṗ2β2

K3 + 6p2 p̈β2

K3 − 6pṗ2δ

K3 − 3p2 p̈δ
K3 (5.63)

Thus, grouping terms results,

1
ρ
∇2 p = p̈

K +
(
β+ 1

2

) p̈2

K2 +
3
2

(
1 + 2β+ 2(2β2 − δ)

) p̈3

K3 (5.64)

5.5.3 For fluid with viscosity in one direction and assuming large strains

If we consider the case in which strains are related to large displacements, regarding to

Equation 5.2, Kinematic relations 5.2 are derived as follows,

v = −1
3
(u1,1 +

1
2

u2
1,1) (5.65)

A series expansion of u1,1 = −1 +
√

1− 6v have been calculated in order to deduce the

dynamic equilibrium in terms of volumetric part v. Then, is possible to establish the equi-

librium in terms of pressure p by making use of constitutive equation inverted (39), that have

been deducted in the previous section, but in this case we introduce ηvv̇ as the viscosity part

in the constitutive equation as,

σ11,1 = ρü1,1 − 3ηv∇2v̇ = ∇2(−p) (5.66)

whereby,

ü1,1 = −3v̈− 9(v̇2 + vv̈)− 81
2
(2vv̇ + v2v̈) + h.o.t. (5.67)
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So, the Westervelt equation for large strains for an ideal fluid with viscosity terms, in one

direction results as follows,

− 3v̈− 9(v̇2 + vv̈)− 81
2
(2vv̇ + v2v̈)− ηv 1

Kρ
∇2 ṗ =

1
ρ
∇2(−p) (5.68)

Note that nonlinear terms are neglected in the viscosity part, due to the harmonics gener-

ation is not expressed. Since one frequency is considered, K
ρ∇2 ṗ =

...
p , Westervelt equation

results as follows,

p̈
K
+

(
β+

1
2

)
p̈2

K2 +
3
2

(
1 + 2β+ 2(2β2 + δ)

) p̈3

K3 − η
v 1
ρ2

...
p =

1
ρ
∇2(−p) (5.69)

These results are an “open door” that suggest the main idea of the next section, introduce

the extension to nonlinearity of second order into the Westervelt equation, and then upper

harmonics translated to nonlinearities of high order. This process have been carried out

based on binomial series expansion, discussing under different assumptions of the state of

material and regime of strain.

5.6 Generalized Westervelt equation

Westervelt generalized equation is derived under the assumption of an ideal fluid without

viscosity, since small displacements are considered inside the compatibility Equation 5.2.

Analagously to the previous cases, the wave propagation along 1 direction is fixed. Then,

an extension to high harmonics is derived.

5.6.1 For fluid without viscosity in one direction and assuming small strains

For an ideal fluid, where attenuation has been neglected, is possible to derive the generalized

Westervelt equation for high harmonics by making use of the same three simplifications

taking into account in Equations 5.48, 5.49 and 5.50.

• First simplification: For ideal fluid, shear moduli is equal to cero, µ = 0 and neglecting

viscosity means η = 0. In this case the terms outside the diagonal in the Cauchy stress

tensor are zero, τi j = 0 that implies,

σi j =
1
3
σkkδi j = −pδi j (5.70)

where δi j is the kronecker delta, and p is the pressure.

• Second simplification: is to consider the displacement in one direction, it means, u1 6=
0 and u2 = u3 = 0 that implies ε11 6= 0 and εi j = 0 ∀ i j 6= 11. In this case, the

volumetric part is derived as,

v = −1
3
(ε11 +ε22 +ε33) = −

1
3
ε11 (5.71)
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where ε11 = −vδ11 + d11, and d11 is the deviatoric part of strain. Also small strains

implies, v = − 1
3 u1,1

• Third simplification affects to volumetric expression and its second derivative as fol-

lows,

v̇ =
1
3
(u̇1,1 + u̇2,2 + u̇3,3) and v̈ = −1

3

3

∑
k=1

ük,k (5.72)

The linear elastic dependency is enriched with quadratic and cubic terms, following the

series expansion concept put forth by Landau [1]. Only the volumetric part is datelined in

terms of nonlinear acoustic parameter of second order β and nonlinear acoustic parameter

of third order δ being scalar,

− p = −
n

∑
i=1

3iKvi (5.73)

the Constitutive Equation 5.55 could be introduced in equilibrium Equation 5.2 as follows,

ρü = σi j, j = ∇(−pδi j) = ∇(−
n

∑
i=1

3iKvi) (5.74)

If we consider the Constitutive Equation 5.55 in terms of volumetric part v, comparing coef-

ficients of the polynomial series as follows,

y = a0 + a1x + a2x2 + ... =
∞
∑

n=0
an(x− x0)

n

x =
∞
∑

n=0
bn(y− y0)

n =
∞
∑
k=0

bk[
∞
∑
j=0

a j(x− x0)
j]k

b1 =
1
a0

b2 = − a2

a3
1

b3 =
2a2

2 − a1a3

a5
1

b4 =
5a1a2a3 − a2

1a4 − 5a3
2

a7
1

bn =
(−1)n−1an

2 − an−2
1 an

a2n−1
1

(5.75)

Thus, we obtain the constitutive law for v,

v =
1

3K
p +

1
6K2βp2 +

1
18K3 (2β

2 − δ)p3 + h.o.t. (5.76)

Then, If we introduce second derivative in time, volumetric scalar expansions results,
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v̈ =
1

3K
p̈ +

1
3K2β( p̈p + ṗ2) +

1
6K3 (2β

2 − δ)(2 p̈p + ṗ3) + h.o.t. (5.77)

by making use of Equation 5.58 v̈ = − 1
3 ü1,1 and Equation 5.61, The Westervelt equation for

third order of nonlinearity with the assumption of small strains and viscosity neglected in

one dimension, is deducted as follows,

1
ρ
∇2 p =

∂2

∂t2

[
b0 p +

1
K

n

∑
i=1

aibn−i pi+1

]
(5.78)

where

ai =
n

∑
i=0

3i+1ΠiK and, Πi = {1,β, δ, ...}n
i=1

bn =
n

∑
i=1

aibn−i

b0 = − 1
a0

(5.79)

5.6.2 For fluid with viscosity in one direction and assuming small strains

Generalized Westervelt equation is almost the same that in the equation 5.78 for fluid in one

direction of propagation and assuming small strains. However, in this case viscosity term

should be introduced in the same manner that in Equation 5.69, the case of the second order

of nonlinearity.

p̈
K
+

(
β+

1
2

)
p̈2

K2 +
3
2

(
1 + 2β+ 2(2β2 + δ)

) p̈3

K3 − η
v 1
ρ2

...
p =

1
ρ
∇2(−p) (5.80)

where 1
ρ∇2 p can be generalized as follows,

1
ρ
∇2 p =

∂2

∂t2

[
b0 p +

1
K

n

∑
i=1

aibn−i pi+1 − η
v

ρ2
∂p
∂t

]
(5.81)

where the coefficients of this generalization are the same than in the previous cases 5.79.

ai =
n

∑
i=0

3i+1ΠiK and, Πi = {1,β, δ, ...}n
i=1

bn =
n

∑
i=1

aibn−i

b0 = − 1
a0

(5.82)
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Note that all cases of second and higher order in a classical context have been studied

and extracted. However the case of generalization for large strains no, it keeps the same

frameworks than the others.

The purpose introducing an analytical new approach where the nonlinear acoustic West-

ervelt equation is directly linked with the future applications in this field. Nowadays is

technically almost imposible to develop a experimental procedure to obtain measurements

physically significant upper than the third harmonics, but with the constant evolution of the

ultrasonic technologies, some day could be relevant in the understanding of the matter.

5.7 Unification between β nonlinear parameters

The second research objetive of this Thesis connects with the unification of nonlinear acous-

tic parameter of first order and its explicit calculation from several literature values in differ-

ent materials. Table 5.1 shows seven types of β parameters depending on author conception

respect how are derived and the nature of the plane wave considered.

Nonlinear Classic Relation with third order Harmonic amplitudes B/A ratio
1st order β elastic constants and strains (Fluids)

βH − 3
2 − A+3B+C

λ+2µ
4b

k2a2x -
βG − 3

2 − A+3B+C
K

Ec
xE2

a
-

βl
Z 3 λ+2µ

ρ0
+ 1

ρ0
(2A+ 6B + 2C) - -

βτZ
µ
ρ0

+ 1
ρ

(A
2 + B

)
- -

βl
Gol 3K + 4µ + (2A+ 6B + 2C) - -
βτGol K + 4

3µ + A
2 + B - -

βW 1 + 2C+B
2B - 1 + B

2A

Table 5.1: Relationship between various nonlinear classic first order β from literature and
TOEC, harmonics amplitudes, and B/A ratio.

Note that to compare all definitions of βwe have introduced βW = 1 + B
2A with de index

W since Westervelt equation is commonly used in fluids with this relationship explicitly

deducted by Hamilton, see [2]. The definition of Gol’dberg in 1960 is also introduced as

longitudinal and transverse nonlinear acoustic parameter,βl
Gol andβτGol, respectively. It was

based on the study of β by Zarembo previously detailed, but with the purpose of analyzing

the interaction between them [14].

5.8 Nonlinear acoustic parameter of first order values for metals, crystals,
liquids and tissues

It is well known that there are not many references where Third Order Elastic Constants are

experimentally obtained. However, in the case of metals and crystals have been calculated

by Zarembo 1971 and Muir 2009. (See [5, 6]). Also, Third Order Elastic Constants have

been calculated from Hamilton 1998 [2] since B/A ratio was determined in all cases from

Equation 5.4 for liquids and biological tissues. Tables 5.2 and 5.3 shows TOEC for some

metals and crystals, and tables 5.4 and 5.5 shows TOEC for liquids and biological tissues,

respectively and in both the first parameter of no linearity βH that has been taken with the
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common Hamilton meaning from Equation 4.15. The first and second Lamé parameters λ

and µ have been included also, using traction forces and NDT (Non-Destructive Testing)

technics, with a database given by [231, 232, 233, 234, 63].

Metal λ [GPa] µ [GPa] A [GPa] B [GPa] C [GPa] βH
AL7075 52.04 25.86 -334.5 -125.35 -60.5 5.93

Steel 60C2H2a 107.8 81.32 -760 -250 -90 4.42
Nickel Steel 535 154 124 -730 -230 -180 2.48

Polystyrene 2.8 1.2 -10 -8 -11 7.15
”Armco” iron 80 80 1100 -1580 1230 8.54
Glass (pyrex) 16.67 25 420 -118 -132 -0.51

Table 5.2: Beta value and Third-Order Elastic Constants associated to literature values of
metals. TOEC were given by Zarembo and Muir (See [5, 6])

.

The first group of materials, solid metals, have been from references of Zarembo 1971 and

Muir 2009, the nonlinear acoustic parameter β comprises between -0.51 for glass (pyrex),

and 8.54 in the case of ”Armco” iron.

Crystal λ µ A [GPa] B [GPa] C [GPa] βH
NaCl 13.63 16 132 33 1.13 -6.56
NaF 57.66 29.7 304 76 2.74 -6.07
KBr 7.46 11.2 7.44 18.6 0.46 -6.63
KCl 9.54 12.14 82.8 20.7 0.62 -5.8
Si 65.08 51.14 -256 12 -2.67 -0.2

Ag 86.22 30.29 332 56 7.88 -4.96
Au 112.86 28.21 -48 -13 -9.71 -0.93
Cu 94.36 44.4 380 -3 -2.08 -3.51

SiO2 16.09 31.24 870 -276 -12.25 -1.88

Table 5.3: Beta value and Third-Order Elastic Constants associated to literature values of
crystals. (See Zarembo 1971 [5])

.

Table 5.3 shows the same parameters for solid crystals, this values have been calculated

from Zarembo 1971. In all cases the nonlinear acoustic parameter β has been obtained with

a minus sign and the minimum value corresponds to -6.63 for KBr and the maximum was

obtained for SiO2 with -1.88.

Liquid λ [GPa] µ [GPa] A [GPa] B [GPa] C [GPa] βH
Distilled water 2.15 0 0 -2.15 -4.3 3.5

Methanol 0.82 0 0 -0.82 -3.53 5.8
Ethanol 1.06 0 0 -1.06 -4.98 6.2
Mercury 28.5 0 0 -28.5 -96.9 4.9
Glycerol 4.35 0 0 -4.35 -17.4 5.5

Table 5.4: Beta value and Third-Order Elastic Constants associated to literature values of
liquids. (See Hamilton and Blackstock 1998 [2])

.
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In the next type of materials, for the liquid state Table 6, they have been deduced from the

extraction of experimental B/A parameter (see Hamilton and Blackstock 1998), this param-

eter is commonly calculated from finite amplitude technics. By making use of β = 1 + B
2A

relationship, and the mechanical properties assumptions for fluidsµ ≈ 0,A = 0 that implies

B = −λ and C = B−A
2 as was shown in section 1 is possible to deduce all nonlinear coef-

ficients. The nonlinear acoustic parameter β comprise a minimum value of 3.5 for distilled

water and a maximum value of 5.4 for the case of ethanol.

Biological Tissue λ [GPa] µ [GPa] B/A
Haemoglobin 2.2 ≈0 3.6±0.3
Human liver 1.7 ≈0 7.6±0.8

Human breast fat 2.1 ≈0 9.91
Human spleen 2.9 ≈0 7.8±0.8

Human multiple myeloma 2.5 5±0.1 5.8±5
Collagen 0.07 0.77 4.3±1

Table 5.5: B/A parameter associated to literature values of biological tissues. (See [2, 7])

.

Assuming the references values of haemoglobin 2.2 [7], human liver has a Lamé of about

1.7 [GPa] [7], human breast fat with 2.1 [GPa] of Lamé parameter [7], 2.9 ± 1.8 [kPa] for the

spleen [235], multiple myeloma 5.10± 1.47 [Pa] [236], and 0.073, 0.77 for first and second

Lamé parameters, respectively in the case of collagen [237], the values of Table 5.5 has been

extracted. The results, of nonlinear acoustic parameter B/A varies between 9.91 for human

breast fat and 4.3 for collagen.

Note that biological tissues are derived under the λ >> µ condition and µ can be rel-

evant in the context of fiber phase. In fact, there is no manner to measure TOEC at the

moment, this conclusion is one of the main contributions of this thesis, in Chapter 9.

5.9 General nonlinear elasticity for isotropic and transversely isotropic
materials

Three invariants suffice for isotropic elasticity, see Equation 4.13, but for transverse isotropy

we require an additional two, in terms of the anisotropy of the material. We define a vec-

tor M, or δi3 which defines the axis of transverse isotropy and thus define the additional

invariants,

I4 = M · EM, I5 = M · E2M,

or

I4 = δi3εi jδ3k, I5 = δi3εi jε jkδ3k. (5.83)

Here we shall take M to be in the direction parallel to the x3 axis, without loss of generality,

just by an reference rotation.

Thus for a macroscopically anisotropic material the form of the corresponding strain

energy W (see [238]) is,
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WTI =
1
2
(k−m)I2

1 + mI2 +
1
2
(n− 4p− 2`+ k + m)I2

4 + 2(p−m)I5 + (`− k + m)I1 I4(5.84)

+
A
3

I3 + B I1 I2 +
C
3

I3
1 +D I1 I2

4 + E I1 I5 +F I2
1 I4 + G I2 I4 +HI3

4 + I I4 I5(5.85)

where k, `, m, n and p are the linear elastic coefficients usually taken for linear elasticity [239],

they are introduced to simplify constitutive law in terms of invariants previously defined.

Note that there are nine nonlinear (third-order) moduli A,B, ..., I .

In the limit of isotropy, k = λ+µ, ` = λ, m = µ, n = λ+ 2µ and p = µ. This gives rise to

the leading order terms in (5.85) reducing to the form of those in (4.12). Additionally in this

limit, we must have D = E = F = G = H = I = 0.

So if we consider the transversely isotropic material with quadratic nonlinearity. Follow-

ing an analogous approach using 5.85-?? with 4.15 we can group,

T = TL1 + TL2 + TNL1 + TNL2 (5.86)

where we have decomposed the stress into its linear (L) and nonlinear (NL) parts and con-

tributions associated with isotropy 4.15 and anisotropy 5.86, defined by

TL1 = (k−m)(trE)I + 2mE, (5.87)

TL2 = L1(M · EM)N + 2(p − m)(NE + EN) + L2((M · EM)I + (trE)N), (5.88)

TNL1 = AE2 + B(tr(E2)I + 2(trE)E) + C(trE)2I, (5.89)

TNL2 = (D I2
4 + E I5 + 2F I1 I4)I + (2D I1 I4 +F I2

1 + G I2 + 3HI2
4 + I I5)N

+ 2G I4E + (E I1 + I I4)(NE + EN), (5.90)

where we used the notation N = M⊗M, or

σL1
i j = (k−m)εkkδi j + 2mεi j, (5.91)
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σL2
i j = L1(δi3εi jδ3 j)δi3δ j3 + 2(p−m)(δi3δ j3εi j +εi jδ33)

+ L2((δi3εi jδ3 j)δi j +εkkδi3δ j3), (5.92)

σNL1
i j = Aεi jε jk + B(εi jE ji)δi j + 2εkkεi j + Cε2

kkδi j, (5.93)

σNL2
i j = (D I2

4 + E I5 + 2F I1 I4)δi j + (2D I1 I4 +F I2
1 + G I2 + 3HI2

4 + I I5)δi3δ j3

+ 2G I4εi j + (E I1 + I I4)(δi3δ j3εi j +εi jδi3δ j3), (5.94)

and

L1 = n− 4p− 2`+ k + m, L2 = `− k + m. (5.95)

We note that in the isotropic limit, the anisotropic contributions TL2 = TNL2 = 0 and TL1

and TNL2 recover the isotropic forms Equation 4.15. (All derivations rules are detailed in the

appendix B)

5.10 Nonlinear acoustic constant β calculated from nonlinear terms in
transversally isotropic media

If the material constitutive law is extended to the anisotropic case, in addition to nonlinear,

the stress can be split into four terms, as it is explained in Equation 5.96,

T = TL1 + TL2 + TNL1 + TNL2 (5.96)

By making use of the index notation, the previous equation is explicitly related as,

σL1
i j = Aεkkδi j + Bεi j

σL2
i j = Γ(δi3εi jδ3 j)δi3δ3 j + ∆(δk3εi jδi3 + δi3εi jδk3)

+E(δk3εkpδp3δi j +εkkδi3δ3 j)

σNL1
i j = Zεi jε jk + Hεkpεpkδi j +Θεkkεi j + I(εkkδi j)

2

σNL2
i j = δi j(Kδk3εkpδ3pδk3εkpδ3p +Λδk3εkpεplδ3p + 2Mεkkδi3εi jδ3 j − Eεkkδi3εi jδ3 j)

+ δi3δ3 j(2Kεkkδi3εi jδ3 j + Mεkkεkk + Nεi jε jk + 3Ξδi3εi jδ3 jδi3εi jδ3 j

+ Oδi3Ei jε jkδ3 j − (Γεkkδi3εi jδ3 j + Eεkkεkk)) +εi j(2N + 2E)(δi3εi jδ3 j)

+ (δk3εi jδi3 + δi3εi jδk3)((Λ+ E− ∆)εkk + (O + Γ)δi3εi jδ3 j)

+ ∆(δi3δ3 jεi jε jk +εi jε jkδi3δ3 j +εi jδi3εklδk3 + δi3εi jδk3εkl)

(5.97)

50



where A, B, Γ , ∆, E, Z, H, Θ, I, K, Λ, M, N, Ξ and O are parameters related to anisotropy

stress expression showed below:

A = (k−m), B = 2m, Γ = L, ∆ = 2(p−m)

E = L2, Z = A+ 4m, H = B, Θ = 2(B − 2m + k)

I = C − k + m, K = D, Λ = E , M = F
N = G , Ξ = H, O = I

(5.98)

Once, specified constitutive anisotropic nonlinear third order law, two cases are considered,

on one hand the case of uniaxial stress in direction 1 where all strains are different and on

the other hand the case of uniaxial stress in direction 3 for the same strains in directions 1

and 2.

Case of uniaxial stress in direction 1, and all strains different

Case one of trasversally isotropic media occurs when σ11 6= 0,σ22 = 0,σ33 = 0 and ε11 6=
ε22 6= ε33. Firstly, σ11 6= 0,σ22 = 0,σ33 = 0 restriction is assumed. Then, constitutive

nonlinear anisotropic law takes the next form,

σ11 = (A + B)ε11 + Aε22 + (A + E)ε33 + (Z + H)ε2
11 + 2H(ε2

22 +ε
2
33) + (K +Λ)ε2

33

+Θε11(ε11 +ε22 +ε33) + I(ε11 +ε22 +ε33)
2

0 = Aε11 + (A + B)ε22 + (A + E)ε33 + (Z + H)ε2
22 + 2H(ε2

11 +ε
2
33) + (K +Λ)ε2

33

+Θε22(ε11 +ε22 +ε33) + I(ε11 +ε22 +ε33)
2

0 = (A + E)ε11 + (A + E)ε22 + (A + B + Γ+ 2∆+ 2E)ε33

+ (Z + H +Θ+ K + 3Λ+ 2M + 2K + 3N + 3E + 3Ξ+ 3O + Γ+ 2∆)ε2
33

+ 2H(ε2
11 +ε

2
22) + (Θ+ 2M− E + 2K− Γ+ 2(Λ+ E− ∆))(ε11 +ε22)ε33

+ (I + M− E)(ε11 +ε22 +ε33)
2

(5.99)

and when ε11 6= ε22 6= ε33, only linear terms are retained for substitution, since quadratic

terms will generate vanish higher order terms,

ε33 = −Aε11 + (A + B)ε22

A + E
(5.100)

ε22 =
(A + E)2 − A(A + B + Γ+ 2∆+ 2E)

−(A + E)2 + (A + B)(A + B + Γ+ 2∆+ 2E)
ε11 (5.101)

Finally, constitutive law in one dimension for this first case is derived as follows,
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σ11 = B(1− X)ε11 +

(
Z + H + 2HX2 + (K +Λ+ 1)

(
A + (A + B)X

A + E

)2
)
ε2

11

+

(
Θ

(
1 + X +

A + (A + B)X
A + E

)
+ I

(
1 + X +

A + (A + B)X
A + E

)2
)
ε2

11

(5.102)

where X = (A+E)2−A(A+B+Γ+2∆+2E)
−(A+E)2+(A+B)(A+B+Γ+2∆+2E) .

The acoustic nonlinearity is measured by comparing the stress and strain in one direction,

in our case for the direction 1. In order to define the acoustic βH, the terms of stress that

depend linearly and quadratically on the strain are grouped as,

σ11 = E∗(1−βε11)ε11 (5.103)

where E∗ is the young modulus. The acoustic nonlinearity parameterβH is therefore derived

to be,

βH = −

(
Z + H + 2HX2 + (K +Λ+ 1)

(
A+(A+B)X

A+E

)2
)

B(1− X)

−

(
Θ
(

1 + X + A+(A+B)X
A+E

)
+ I

(
1 + X + A+(A+B)X

A+E

)2
)

B(1− X)

(5.104)

and after the application of conversion given in the Equation (44), the next expression is

obtained,

βH = −

(
A+ 4m + B + 2BX2 + (D + E + 1)

(
(k−m)+(k+m)X

k−m+L2

)2
)

m(1− X)

−

(
2(B − 2m + k)

(
1 + X + k−m+(k+m)X

k−m+L2

)
+ (C − k + m)

(
1 + X + k−m+(k+m)X

k−m+L2

)2
)

m(1− X)
(5.105)

where X = (k−m+L2)
2−(k−m)(k+L1+4(p−m)+2L2)

−(k−m+L2)2+(k+m)((k+m)+L1+4(p−m)+2L2)

5.10.1 Case of uniaxial stress in direction 3, and equal strains in directions 1 and 2

The case two of transversally isotropic media is considered now and it occurs when σ11 =

0,σ22 = 0,σ33 6= 0 and ε11 = ε22 6= ε33. Firstly, constitutive nonlinear law under σ11 =

0,σ22 = 0,σ33 6= 0 condition is assumed as follows,
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0 = (A + B)ε11 + Aε22 + (A + E)ε33 + (Z + H)ε2
11 + 2H(ε2

22 +ε
2
33) + (K +Λ)ε2

33

+Θε11(ε11 +ε22 +ε33) + I(ε11 +ε22 +ε33)
2

0 = Aε11 + (A + B)ε22 + (A + E)ε33 + (Z + H)ε2
22 + 2H(ε2

11 +ε
2
33) + (K +Λ)ε2

33

+Θε22(ε11 +ε22 +ε33) + I(ε11 +ε22 +ε33)
2

σ33 = (A + E)ε11 + (A + E)ε22 + (A + B + Γ+ 2∆+ 2E)ε33

+ (Z + H +Θ+ K + 3Λ+ 2M + 2K + 3N + 3E + 3Ξ+ 3O + Γ+ 2∆)ε2
33

+ 2H(ε2
22 +ε

2
11) + (Θ+ 2M− E + 2K− Γ+ 2(Λ+ E− ∆))(ε11 +ε22)ε33

+ (I + M− E)(ε11 +ε22 +ε33)
2

(5.106)

and when ε11 = ε22 6= ε33, the previous Equation 5.106 takes this form,

0 = (2A + B)ε11 + (A + E)ε33 + (Z + 2H)ε2
11 + Hε2

33 +Θε11(2ε11 +ε33)

+ I(2ε11 +ε33)
2

0 = (2A + B)ε11 + (A + E)ε33 + (Z + 2H)ε2
11 + HE2

33 +ΘE11(2ε11 +ε33)

+ I(2ε11 +ε33)
2

σ33 = 2(A + E)ε11 + (A + B + Γ+ 2∆+ 2E)ε33

+ (Z + H +Θ+ K + 3Λ+ 2M + 2K + 3N + 3E + 3Ξ+ 3O + Γ+ 2∆)ε2
33

2Hε2
11 + (Θ+ 2M− E + 2K− Γ+ 2(Λ+ E− ∆))(2ε11)ε33

+ (I + M− E)(2ε11 +ε33)
2

(5.107)

The acoustic nonlinearity is measured by comparing the stress and strain in one direction,

(in our case the x3-direction). In order to define the acoustic β, the terms of stress that

depend linearly and quadratically on the strain are grouped as,

ε11 = − A + E
2A + B

ε33 (5.108)

Then, the nonlinear anisotropic constitutive in 3-direction, is derived as follows,

σ33 = −
(

2(A + E)
A + E

2A + B
+ A + B + Γ+ 2∆+ 2E

)
ε33

+ (Z + H +Θ+ K + 3Λ+ 2M + 2K + 3N + 3E + 3Ξ+ 3O + Γ+ 2∆)ε2
33

− 2H
A + E

2A + B
ε2

33 − 2(Θ+ 2M− E + 2K− Γ+ 2(Λ+ E− ∆))
A + E

2A + B
E2

33

+ (I + M− E)
(
−2

A + E
2A + B

+ 1
)
ε2

33

(5.109)
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and the acoustic nonlinear first parameter βH is therefore derived to be,

βH =
(Z + H +Θ+ K + 3Λ+ 2M + 2K + 3N + 3E + 3Ξ+ 3O + Γ+ 2∆)(

2(A + E) A+E
2A+B + A + B + Γ+ 2∆+ 2E

)

− 2H A+E
2A+B(

2(A + E) A+E
2A+B + A + B + Γ+ 2∆+ 2E

)

− 2(Θ+ 2M− E + 2K− Γ+ 2(Λ+ E− ∆)) A+E
2A+B(

2(A + E) A+E
2A+B + A + B + Γ+ 2∆+ 2E

)

+
(I + M− E)

(
−2 A+E

2A+B + 1
)

(
2(A + E) A+E

2A+B + A + B + Γ+ 2∆+ 2E
)

(5.110)

By making use of conversion related to Equation 5.98 is possible to deduce that,

βH =
A+ 4m + B + 2(B − 2m + k) +D + 3E + 2F + 2D + 3G
2(k−m + L2)

k−m+L2
2(k−m)+2m + k + m + L1 + 4(p−m) + 2L2

+
3L2 + 3H+ 3I + L1 + 4(p−m)

2(k−m + L2)
k−m+L2

2(k−m)+2m + k + m + L1 + 4(p−m) + 2L2

−
2B k−m+L2

2(k−m)+2m

2((k−m) + L2)
k−m+L2

2(k−m)+2m + k + m + L1 + 4(p−m) + 2L2

−
2(2(B − 2m + k) + 2F −L2 + 2D −L1 + 2(E + L2 − 2(p−m))) k−m+L2

2(k−m)+2m

2(k−m + L2)
k−m+L2

2(k−m)+2m + k + m + L1 + 4(p−m) + 2L2

+
((C − k + m) +F −L2)

(
−2 k−m+L2

2(k−m)+2m + 1
)

2(k−m + L2)
k−m+L2

2(k−m)+2m + k + m + L1 + 4(p−m) + 2L2

(5.111)

Furthermore, two anisotropic cases have been analytically derived and linked to the non-

linear acoustic parameter βH by a relationship based on constitute law. The next subsection

shows a numerical validation for both isotropic and anisotropy material of this formulation.

Numerical example for transversally isotropic cases

The consistency of the obtained formulation is validated by numerical evaluations of the

stress-strain curves for a set of realistic materials and setups. The obtained formulation

for acoustic nonlinearity is validated for realistic cases, where some of the constants are

known, whereas others are just invented for the sake of simulating realistic stress-strain

curves, using the nonlinear Landau formulation versus the acoustic nonlinearity expression

derived herein. First, the isotropic case is tested for a Polymethylmethacrylate (PMMA)

material whose Young’s modulus E∗ is between 1800 and 3100 [MPa] and whose Poisson’s

ratio ν ranges between 0.35 and 0.4 (see Figure 2). As the coefficients A, B and C have

never been measured experimentally in the case of CFRP. However, the acoustic nonlinear

coefficient βH for this material typically varies in the range between 12 and 15 [31], and
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hence, coefficients A, B and C are assigned assumed values compatible with βH (see figure

3). Furthermore, for the conversion of m and k variables depending on elastic constants, the

following relationships are obtained,

m =
E∗

−3(1− 2ν)
, k =

E∗
−3(1− 2ν)2 (5.112)
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Figure 5.2: Landau acoustic example for isotropic case

Transversally isotropic cases has been validated using carbon fiber material whose Young’s

modulus and Poisson’s ratio depends on direction E∗i and νi, respectively. As the coef-

ficients A, B, C, D, E , F , G, H and I have never been measured experimentally, to the

knowledge of the authors, simulated values were simulated computationally with a non-

linear acoustic βH assumed. Furthermore, for the conversion of values m, k, l, n and p
depending on elastic constants, we obtained:

m =
Q11 −Q12

2
, k =

Q11 + Q12

2
, l = Q13

n = Q33, p = Q44 (5.113)

where,

Q11 =
E∗11(1− ν23ν32)

∇ , Q12 =
E∗11(ν21 + ν31ν23)

∇ ,

Q13 =
E∗11(ν31 + ν21ν32)

∇ , Q33 =
E∗33(1− ν12ν21)

∇ ,

Q44 = G23 =
E∗23

2(1 + ν23)
(5.114)

are related to the stiffness matrix usually noted by Qi j in composites materials where

∇ = 1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13. They have been deducted experimentally

by the rule of mixtures method. It assumes that the modulus of a composite is the combina-

tion of the modulus of the fiber and the matrix that are related by the volume fraction of the
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constituent materials [240, 241].
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Figure 5.3: Landau acoustic example for transversally isotropic cases
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Figure 5.3 shows stress-strain relationship with two anisotropy directions cases 11 and

33 using Third Order Elastic Contants andβH nonlinear acoustic parameter as is extracted in

Equations 5.105 and 5.111. Note that the values of Third Order Elastic Constants have been

simulated computationally. Table 5.6 shows mechanical properties as Young modulus and

Poisson coefficient for isotropic (PMMA material) and transversally isotropic cases (CFRP

T300 N5208). Also, Third Order Elastic Constants and beta nonlinear acoustic parameter of

first order is calculated computationally in both cases.

Ispotropy Anisotropy Anisotropy
Properties/ Material PMMA CFRP T300 N5208 (2.1.) CFRP T300 N5208 (2.2.)

Young Modulus [MPa] 2700 - -
Poisson coefficient 0.384 - -

βH 13.247 10.569 14.952
S11 [MPa] - 0.0055 0.0055
S12 [MPa] - -0.0015 -0.0015
S13 [MPa] - -0.0015 -0.0015
S33 [MPa] - 0.0971 0.0971
S44 [MPa] - 0.1395 0.1395
A 22866 7450 73
B -34299 -2990 -2990
C -57165 -3850 -3850
D - -40000 43080
E - -10000 -10000
F - 1000 1000
G - -1000 -1000
H - 1000 1000
I - 10000 10000

Table 5.6: Numerical example parameters

Note that S∗, or S∗i j is the compliance matrix, by making use of Q = S∗−1 relationship, Qi j

coefficient have been deduced introducing Equation 5.114 into Equations 5.105 and 5.111.
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5.10.2 Isotropic derivation to fourth order elastic constants

It is possible to derive strain energy until fourth order, for macroscopically isotropic material

based on a combination of invariants, just introducing I6 = trE4, or I6 = εi jεikεkpεpi, in the

same manner that it has been developed in the previous subsection. (For more details about

derivation rules, see Appendix B).

WI =
λ

2
I1 +µ I2 +

A
3

I3 + B I1 I2 +
C
3

I3
3 +
J
4

I6 +KI1 I3 +
L
4

I2
2 +
M
2

I2
1 I2 +

N
4

I4
1 + ... (5.115)

It must be noted that anisotropic terms are neglected in this step, by making use of asymp-

totic methodology which retain all third order (cubic terms). Via Equation 4.2 we can obtain

the expansions,

F = I + E− 1
2

E2 + O(E3),

FT = I + E− 1
2

E2 + O(E3),

or

Fi j = δi j +εi j −
1
2
εi jε jk + O(εi jε jkεkl),

Fji = δi j +εi j −
1
2
εi jε jk + O(εi jε jkεkl) (5.116)

and thus from this we find that,

trF = 3 + trE− 1
2

trE2, tr(F2) = 3 + 2trE, tr(F3) = 3 + 3trE +
3
2

trE2,

or

Fkk = 3 +εkk −
1
2
εi jε ji, Fi jFji = 3 + 2εkk, Fi jFjkFki = 3 + 3εkk +

3
2
εi jε ji, (5.117)

and

det F =
1
6
[6 + 6trE + 3(trE)2 − 3

2
trE2 + O(E3)]

or

det Fi j =
1
6
[6 + 6εkk + 3ε2

kk −
3
2
εi jε ji + O(εi jε jkεkl)] (5.118)

Under these condition, the constitutive equation extended to FOEC (Fourth Order Elastic

Constants), by making use of Cauchy stress definition in Equation 4.10, it has been assumed

in the next form,
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T = TL1 + TNL1 + TNL3 (5.119)

where TNL3 has been noted with the index 3 to be differentiated from TNL2 in Equation 5.96

related to anisotropic nonlinear part of stress.

T = λtrEI + 2µE + ÃE2 + 2B̃trEE + Btr(E)2 + C̃(trE)2

+ J̃ E3 +Ktr(E3I + K̃E2trE) + L̃(Etr(E2))

+ M̃1trEItr(E)2 + M̃2(trE)2E) + Ñ (trE)3,

or

σi j = λεkkδi j + 2µεi j + Ãεi jε jk + 2B̃εkkεi j + Bεi jε ji + C̃ε2
kk

+ J̃εi jε jkε jp +Kεi jε jkεki)δi j + K̃εi jε jkεkk) + L̃εi jεi jε ji

+ M̃1εkkδi jεi jε ji) + M̃2(εkk)
2εi j + Ñ (εkk)

3. (5.120)

where J̃ = J + 2A+µ, K̃ = 3K−A+ 4B − 4µ + λ
2 , L̃ = L+ 2B − µ

2 , M̃1 =M−B− λ
4 ,

M̃2 = M− 2B + 2C + µ − 2λ and Ñ = N + C − λ
2 are referred to nonlinear constants

extracted to Taylor expansion of the strain energy up to fourth order, see Equation 5.115

above. We have noted that TL and TNL1 retain the same coefficients that Equation 4.10.

If we considerσ11 6= 0 and ε22 = ε33 = 0 since u2 = u3 = 0 the case of wave propagation

in one direction neglecting strain in directions 2 and 3, Equation 5.120 stated as,

σ11 = λε11 + 2µε11 + Ãε2
11 + 2B̃ε2

11 + Bε2
11 + C̃ε2

11

+ J̃ε3
11 +Kε3

11 + K̃ε3
11 + L̃ε3

11

+ M̃1ε
3
11 + M̃2ε

3
11 + Ñε3

11. (5.121)

Thus, by making use of the Equations 5.2, the nonlinear wave equation up to third order in

terms of nonlinear elastic constants results as follows,

σ11,1 = (λ+ 2µ)u1,11 + 2
(
λ+ 2µ

2
+ Ã+ 2B̃ + B + C̃

)
u1,11u1,1

+ 3(Ã+ 2B̃ + B + C̃ + J̃ +K+ K̃+ L̃+ M̃1 + M̃2 + Ñ )u2
1,1u1,11. (5.122)

Furthermore, we can conclude that the relationship between nonlinearity of second order

δ given by Equation 5.20 and nonlinear elastic constants up to fourth order is given by the

next expression,
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δ =
Ã+ 2B̃ + B + C̃ + J̃ +K+ K̃+ L̃+ M̃1 + M̃2 + Ñ

λ+ 2µ
(5.123)

It must be noted that we have no found any reference or method where experimental or

simulated values have been taken into account for the case of FOEC. We consider that it

could be interesting to investigate physical values and relationship with structure of matter

of all these parameters that was suggested firstly by Konyukhov in 1974 [242].
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6
Classical nonlinear acoustics genesis: Fluid and

matrix phases

The present theoretical proposals on nonlinear serial developments has helped to under-

stand many nonlinear experimental phenomena. But new approaches can better interpret

some others. This Chapter proposes deepening on the study of classical nonlinear acous-

tics, splitting the general first order nonlinearity into four specific nonlinear phenomena

(measured with four new nonlinear constants), due to the interaction of the deviatoric and

volumentric components of the deformation tensor with the wave mode, P or S. For in-

stance, this can be useful to explain nonlinear propagation in materials constituted by two

phases, as solid fibers embedded in a quasi-fluid matrix. This is the case of some tissues,

where the propagation of shear waves in the liquid phase can be neglected against the solid

propagation.

Fluids are composed of molecules that collide with one another and solid objects. The

continuum assumption, however, considers properties such as density, pressure, tempera-

ture, and velocity to vary continuously from one point to another, and are averaged values

over a REV (Reference Element of Volume), at the geometric order of the distance between

two adjacent molecules of fluid. Solid and fluid materials are assumed to coexist at non-

intersecting subdomains (phases) of the system. Solids will undergo not small deforma-

tions, due to the harmonic generation interest of this hypothesis, whereas fluids will flow

as they are unable to withstand static shear stress. In this Chapter, the nonlinear acoustic

theory will be rewrite in the common notation from linear elasticity governing equations in

the case of isotropy and classical material.

61



6.1 Solid phase

Small deformations are not assumed, and plastic flow neglected, which leads to the linear

elasticity governing equations that relate the quantities in Table 6.1.

Quantity Symbol Units
Displacement ui m
Velocity vi = u̇i =

dui
dt m/s

Stress σi j Pa
Strain εi j -
Body force bi N/m3

Space xi m
Time t s
Lamé constants λ, µ Pa
Density ρ kg/m3

Kinematic viscosity γ = η
ρ s−1

Table 6.1: Variables in fluid mechanics

Equilibrium

ρüi +γρu̇i = bi +σi j, j (6.1)

Compatibility

εi j =
1
2
(ui, j + u j,i + uk,iuk, j) (6.2)

Constitutive

General case and non linear isotropic case adding viscosity terms as σL
i j, σ

NL
i j , and σV

i j

respectively :

σi j = σ
L
i j +σ

V
i j +σ

NL
i j (6.3)

If we develop the equation described above, introducing Third Order Elastic Constants in

the Landau form, calculating from Cauchy stress, as in Chapter 4, it results,

σi j = λδi jεkk + 2µεi j︸ ︷︷ ︸
σL

+ 2ηε̇i j −
2
3
ηδi jε̇kk + η

vδi jε̇kk
︸ ︷︷ ︸

σV

+ (A+ 4µ)εikεk j + Bεkpεpkδi j + 2(B + λ−µ)εkkεi j + (C − λ)ε2
kkδi j︸ ︷︷ ︸

σNL

(6.4)

The solid and fluid constitutive equations can be derived as particular cases of the following

general form, which, after being decomposed into volumetric and deviatoric constituents,

each of them depends on the strain εi j (elastic component predominant in solids) and the

strain rate ε̇i j (viscous component predominant in fluids) [243],
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σi j = −pδi j︸ ︷︷ ︸
volumetric

+ τi j︸︷︷︸
deviatoric

, p = −1
3
σkk (6.5)

−p = −3Kv− 3ηv v̇ (6.6)

τi j = 2µ Di j + 2η Ḋi j (6.7)

where any tensor is split into volumetric (scalar) and deviatoric (tensor) parts by,

εi j = −vδi j + Di j, v = −1
3
εkk (6.8)

Note that a pure fluid, by definition, can withstand no static shear stress, i.e. µ = 0,

which, after substitution yields the Fluid Constitutive Equation 6.7. Similarly, the elastic

Constitutive Equation 6.3 is recovered by recalling that the compressibility modulus is re-

lated to K = λ + 2
3µ = ρc2 and relating (to be derived) a compound shear and volumetric

viscosity with the damping, recalling that Kinematic viscosity ν are related to Dynamic vis-

cosity η by the relation ν = η
ρ . The attenuation (excluding scattering)α is related to viscosity

by Stokes’ law (modified to account for volumetric viscosity),

α =
ω2

ρc3

(
2
3
η+

1
2
ηv
)

(6.9)

The linear elastic solid constitutive equation σi j = λεkkδi j + 2µεi j is recovered by neglecting

nonlinear terms ans viscosity.

Microviscosity, also known as microscopic viscosity, is the friction experienced by a sin-

gle particle undergoing diffusion because of its interaction with its environment at the mi-

crometer length scale. In the field of biophysics, a typical microviscosity problem is under-

standing how a biomolecule’s mobility is hindered within a cellular compartment which

will depend upon size, shape, charge, quantity and density of both the diffusing particle

and all members of its environment [244, 245].

6.1.1 Nonlinear constitutive equation

Following the series expansion concept put forth by Landau [1], only volumetric part is

detailed in terms of the nonlinear parameter β,

−p = −3Kv + 9Kβv2 − 3ηv v̇. (6.10)

However, there is five combinations of nonlinear parameters β that may explain a different

scenario of experimental calculations. These combinations could be expanded as exploring

the whole set of combinations by quadratic terms as follows,
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σi j = −3Kvδi j︸ ︷︷ ︸
pressure

+ 2µDi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σL
i j (Linear)

−3ηvv̇δi j︸ ︷︷ ︸
pressure

+ 2ηḊi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σV
i j (Viscous)

(6.11)

+9Kβvpv2δi j + 9KβdpDkpDpkδi j︸ ︷︷ ︸
pressure

+ 4µβdsDikDk j + 4µβcsvDi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σNL
i j (Nonlinear)

(6.12)

where v and Di j are the volumetric and deviatoric parts of the stress tensor defined in Equa-

tion 6.7. Four nonlinear parameters of first order have been defined as βvp,βdp as the volu-

metric, the deviatoric and the compound denoting the pressure components and βds,βcs as

the deviatoric, and compound denoting the shear components. Note that the combinations

vDkkδi j and (Dkk)
2δi j have been neglected due to the definition of Di j, where the deviatoric

tensor contains trace equal to zero. The constants in function of K and µ accompanying

nonlinear parameters have been chosen in accordance with Equation 9.47, as the quadratic

power expansion.

With the aim to find a relationship between this nonlinear expansion of beta parameters

and TOEC, we assuming now that the strains are separated in volumetric and deviatoric

part to the second order, so ε yields,

εkk = −vδkk + Dkk = −3v

εikεk j = v2δikδk j − vDikδk j − vDk jδik + DikDk j

εi j = −vδi j + Di j

εk j = −vδk j + Dk j

εkp = −vδkp + Dkp

εpk = −vδpk + Dpk

ε2
kk = 9v2 (6.13)

By making use of Cauchy stress described in Equation 6.7, in nonlinear regime, an equiva-

lence is deducted in terms of Third Order Elastic Constants TOEC,

(A+ 4µ)εikεk j = (A+ 4µ)(v2δikδk j − vDikδk j − vδikDk j + DikDk j)

Bεkpεpkδi j = B(3v2 + DkpDpk)δi j

2(B + λ−µ)εkkεi j = 2(B + λ−µ)(3v2δi j − 3vDi j)

(C− λ)ε2
kkδi j = (C− λ)9v2δi j (6.14)
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The above analysis is also valid combining nonlinear part of the stress with v and Di j in the

constitutive equation,

σNL
i j = v2(A+ 9B + 9C − 2µ − 3λ)δi j + DikDk j(A+ 4µ) + DkpDpkBδi j

+vDi j(−2A+ 6B − 6λ− 2µ) (6.15)

Since the relationship is established in the nonlinear constitutive equation, nonlinear acous-

tic parameters of first order are explicitly deducted as follows in terms of Third Order Elastic

Constants,

βvp =
A+ 9B + 9C − 2µ − 3λ

9K
(6.16)

βdp =
B
9K

(6.17)

βds =
A+ 4µ

4µ
(6.18)

βcs =
−2A− 6B − 2µ − 6λ

4µ
(6.19)

For the viscous components, it is shown that the establish definition in Equation 9.47

matches Landau’s one,

2ηε̇i j = 2η(−v̇δi j + Ḋi j)

−2
3
ηε̇kkδi j = 2ηv̇δi j

ηvε̇kkδi j = −3ηvv̇δi j

TV = −3ηvv̇δi j + 2ηḊi j = σ
V
i j

6.2 Perturbation method

By adopting the acoustic nonlinear constitutive equation presented above Equations 6.7

in terms of deviatoric a volumetric parts, is possible to establish the three dimensional

nonlinear equation of motion up to first-order nonlinearity in terms of four parameters β.

This formulation, implies that beta parameter is not unique and it can be defined as the

separation between pressure and shear waves written as, (See [246]),
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ρ
∂2ui

∂t2 = K
(

∂2uk

∂xk∂xi
+

∂ul

∂xk

∂2ul

∂xk∂xi

)
(6.20)

+µ

(
∂2ui

∂x2
j
+

∂2u j

∂xi∂x j
+

∂2uk

∂x2
j

∂uk

∂xi
+

∂2uk

∂xi∂x j

∂uk

∂x j
− 2

3

(
∂2uk

∂xk∂xi
+

∂ul

∂xk

∂2ul

∂xk∂xi

))

+2Kβvp
(

∂2uk

∂xk∂xi

∂ul

∂xl

)

+9Kβdp
(

1
2

(
∂2ul

∂xk∂xi

∂ul

∂xk
+

∂2uk

∂xl∂xi

∂uk

∂xl
+

∂2ul

∂xk∂xi

∂uk

∂xl
+

∂2uk

∂xl∂xi

∂ul

∂xk

)
− 2

3
∂2uk

∂xk∂xi

∂ul

∂xl

)

+4µβds
(

1
4

(
∂2ui

∂xk∂x j

∂uk

∂x j
+

∂2uk

∂xi∂x j

∂uk

∂x j
+

∂2ui

∂xk∂x j

∂u j

∂xk
+

∂2uk

∂xi∂x j

∂u j

∂xk

))

+4µβds

(
1
4

(
∂2uk

∂x j∂x j

∂ui

∂xk
+

∂2u j

∂xk∂x j

∂ui

∂xk
+

∂2uk

∂x j∂x j

∂uk

∂xi
+

∂2u j

∂xk∂x j

∂uk

∂xi

))

+4µβds

(
−1

3

(
∂2uk

∂xk∂x j

∂ui

∂x j
+

∂2uk

∂xk∂x j

∂u j

∂xi
+

∂2ui

∂x2
j

∂uk

∂xk
+

∂2u j

∂xi∂x j

∂uk

∂xk

)
+

2
9

∂2uk

∂xk∂xi

∂ul

∂xl

)

+4µβcs

(
−1

6

(
∂2uk

∂xk∂x j

∂ui

∂x j
+

∂2uk

∂xk∂x j

∂u j

∂xi
+

∂2ui

∂x2
j

∂uk

∂xk
+

∂2u j

∂xi∂x j

∂uk

∂xk

)
+

2
9

∂2uk

∂xk∂xi

∂ul

∂xl

)

where K is the Bulk modulus, µ is the shear modulus, ρ is the density and βvp,βdp,βds

and βcs are the four nonlinear parameter of first order explained below in the constitutive

expression. The relevance of this expression is directly linked with the separation of P and

S waves and the possibility of design an experimental setup to extract new measurements.

Applying the perturbation method [247], it allows to write the wave displacement as,

ui = u(0)
i + u(1)

i + . . . (6.21)

where u(0) and u(1) denote the zero-order and first-order perturbation solutions, respec-

tively. The zero-order perturbation solution corresponds to the fundamental solution of the

linear wave equation (that is, when β = 0). The first-order perturbation solution is denoted

by u(1). Since the effect of the nonlinear term β is small, an approximate solution can be

obtained by iteration. When considering two plane waves propagating in a semi-infinite

elastic layer, the latter is given as,

u(0)
1 = A sinθ cos

(
ω1

(
sinθx1 + cosθx2

cp

)
− t
)

u(0)
2 = A cosθ cos

(
ω1

(
sinθx1 + cosθx2

cp

)
− t
)

u(0)
3 = 0 (6.22)
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or,

u(0)
1 = −Ah cosθ cos

(
ω1

(
sinθx1 + cosθx2

cs

)
− t
)

u(0)
2 = Ah sinθ cos

(
ω1

(
sinθx1 + cosθx2

cs

)
− t
)

u(0)
3 = Av cos

(
ω1

(
sinθx1 + cosθx2

cs

)
− t
)

(6.23)

(6.24)

where A is the constant amplitude of the plane longitudinal waves, Ah and Av are the con-

stant amplitudes to the S-wave, for horizontal and vertical directions, cp and cs, are the

velocity of compressional wave and shear wave respectively, θ is the angle of propagation

andω1 is the angular frequency. Let us then consider the first-order perturbation equation,

ρ
∂2u(0)

1
∂t2 = K

(
∂2u(0)

1

∂x2
1

+
∂2u(0)

2
∂x2∂x1

+
∂2u(0)

3
∂x3∂x1

)

+µ

(
2

∂2u(0)
1

∂x2
1

+
∂2u(0)

1

∂x2
2

+
∂2u(0)

1

∂x2
3

+
∂2u(0)

2
∂x1∂x2

+
∂2u(0)

3
∂x1∂x3

)

−2
3
µ

(
∂2u(0)

1

∂x2
1

+
1
2

∂2u(0)
2

∂x2∂x1
+

∂2u(0)
3

∂x3∂x1

)
(6.25)

Analogously, is posible to calculate for u2 and u3, this result is coherent with the solution

given by Graff [248], where the speed of sound of longitudinal and shear waves are derived

as follows,
cp =

√
λ+2µ
ρ

cs =
√

µ
ρ

(6.26)

The figure 6.1 shows the propagation of P- wave and S-wave through an elastic bar,

Figure 6.1: Logitudinal P-wave and transversal S-wave propagation. Source: USGS
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6.3 Geometric and constitutive origin of acoustic nonlinearity

It is necessary to remark that the nonlinear effects in theory of acoustics, have three main

sources affecting the harmonics generation, (1) The nonlinear term inside the compatibility

equation 4.1 (this is referred to the the cross term), (2) the nonlinear term from the derivation

of Cauchy stress 4.2 and (3) the noninearity from the derivation of strain energy of third

order that impacts on TOEC. in Equation 4.13.

The Hamilton expression of nonlinear acoustic parameter βH can easily illustrate the

explained below as follows,

Dynamic equilibrium, σi j, j = ρui,tt

Constitutive law, σi j = λεkkδi j + 2µεi j +O(ε2
i j)︸ ︷︷ ︸

NL(3)

Compatibility equation, εi j =
1
2 (ui, j + u j,i +uk,iuk, j︸ ︷︷ ︸

NL(1)

)

Constraining to a plane wave in 1D (u(x, t) = u1, u2 = 0 = u3)

σ,x = ρui,tt

σ = (λ+ 2µ)ε−
(
β+

1
2

)
(λ+ 2µ)ε2

︸ ︷︷ ︸
NL(2)

ε = u,x +
1
2

u2
,x

︸ ︷︷ ︸
NL(1)

Substitution yields the equation of motion

∂2u
∂t2 = c2

p
∂2u
∂x2 ⇒ ∂2u

∂t2 = c2
p

∂2u
∂x2

(
1− 2β

∂u
∂x

)

︸ ︷︷ ︸
NL(2)

Then, the hamilton definition of nonlinear acoustic parameterβH is obtained by the main

three sources of nonlinearity as in Equation 6.27 as follows,

βH = −3
2
− A+ 3B + C

λ+ 2µ
(6.27)

Note that this parameter could variate depending on the of Nonlinear wave equation, as in

the Zarembo conception, Gol’dberg case or Guyer. (For more details, See Chapter 5). Then,

the fundamental contribution of this chapter connect with the expansion and derivation of

nonlinear acoustic parameter assumed as no unique. This extension contribute to distin-

guish between phases of material or tissue, under this process three sources of nonlinearity

have been considered.
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7
Exploration of microdamage as possible

explanation of nonlinearity

To formulate a posible explanation to the nonlinear origin based on microdamage and

microcracks in solid state. This origin starts with developing of the homogenization tech-

niques, constructing a theory that connects micromechanical and heterogeneous elasticity

and nonlinear ultrasound tools is possible to derivate and quantify density of microcracks.

The aim of this Chapter is extending the theory of Eshelby to solve various cases of geometri-

cal inclusions and provide a method for measuring density of microcracks with a consistent

relationship established between the acoustic nonlinearity and homogenization. The results

of this chapter are in process of review in Ultrasonics journal [262] with the coauthor William

J. Parnell.

In this chapter, a homogenization model is proposed to relate the density of micro-cracks

with the acoustic nonlinearity. To this end, the damaged material is idealized as a composite

material, that is a dispersion of nonlinear isotropic spheroidal inclusions surrounded by a

linear isotropic matrix. A basic hypothesis is that nonlinear properties are strongly sensitive

to strength changes and may unveil deeper dimensions of its micro and macrostructure.

Particularly, microcracks are a growing type of damage that is predominantly responsible

for the eventual mechanical failure. At the micro-scale, the clapping mechanism excited

inside each micro-crack during nonlinear ultrasonification is approximated by a Taylor ex-

pansion of the bilinear stress-strain constitutive law. This approximation is linked to the

acoustic nonlinearity by rearranging the nonlinear Landau constitutive law. The Eshelby

theory [249] is applied in the homogenization process, where the clapping micro-cracks are
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represented by non-linear penny-shaped inclusions. The penny-shaped cracks are assumed

to be aligned, as a consequence of a preferential fatigue load direction of the structure. The

nonlinearity of the inclusions can therefore be described by the so-called Landau coeffi-

cients, which measure the deviation from the linearity. Finally, the relationships between

these Landau coefficients and the measurable acoustic nonlinearity in ultrasound are pre-

sented. The complete process is outlined in Figure 7.1, in which the notation is anticipated,

but will be introduced below.

Nonlinear crack model Effective model Experiment

1D Clapping model

Nonlinearity parameter

Landau Equivalence

Eshelby result for spheroids

Homogenization

Microcrack density

Nonlinear ultrasound

Semi-analytical model

Derive sample
acoustic nonlinearity

T = E0

(
1 − H[E]

(△E
E0

))
E

β1 =
1

3vmax

A1 = 0, B1 = 0, C1 = −β1
3λ1 + 2µ1

6

λ1 =
1

2
λ0 µ1 =

1

2
µ0

E∞ = (I − S)E1 + SD0T1

Ē = (I − φ)Ē0 + φE1

T̄ = (C0 + φ(C1 − C0)[φI + (1 − φ)(I + S(D0C1 − I)−1)])Ē

βs

α =
φ

δ

Figure 7.1: Flow chart: homogenization procedure that relates the density of micro-cracks
with the acoustic nonlinearity.

Flow chart of the theory, summarizing steps: a crack behaves by contact clapping - the clap-

ping generates nonlinear constitutive law - 1D beta nonlinearity is approximated (bilinear

→ logistic curve→ Taylor series→ beta inclusion) - 3D Landau nonlinearity constants are

extracted (A,B and C of inclusion) - the crack is treated a nonlinear penny-shaped inclusion

- density of inclusions (cracks) are homogenized into equivalent properties (A,B and C ef-

fective) - acoustic nonlinearity (β effective) is obtained from them, which is the measurable

quantity by nonlinear ultrasound.

7.1 Homogenization framework

We model a damaged material in a similar manner to a composite material, as has been done

to good effect many times previously [250, 251, 252]. In particular we are interested in the

effect that damage, or more specifically micro-cracks, have on the effective properties and

how this subsequently affects the nonlinear acoustic response of the material. We suppose

that a number of aligned penny shaped cracks are dispersed throughout the linear elastic

host phase, see Figure 7.2. We model these cracks as the limit of spheroidal cavities as we

shall explain shortly. Furthermore we shall consider these cracks to behave nonlinearly. Let
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us deal with various effects sequentially, starting with the classical case of linear, traction

free cracks, followed by the linear effect of crack face contact and finally the case of nonlinear

effects.

7.1.1 Homogenization for linear elastic particulate media

Here we describe and employ the so-called Mori-Tanaka method [202] which attempts to in-

corporate interaction between inclusions and so can be used as an approximation for the ef-

fective properties of inhomogeneous media at finite concentrations of inclusions. Although

this approach is standard and well-known, it is important to describe its derivation fully

since later we can then describe the departures from this theory.

Consider the case in Figure 7.2 when a medium Ω has within it two linear elastic phases

Ω0 (the host or matrix) and inclusion phase Ω1 with elastic modulus tensors C0 and C1

respectively. We suppose that the inclusions are aligned spheroids with semi-axes a1 =

a2 = ` and a3 in the x1, x2 and x3 directions respectively, defining the aspect ratio δ = a3/`

so that δ < 1 (δ > 1) for oblate (prolate) spheroids.

N inclusions:

Host

a2 = l

a1 = l

a3 = δl

Ω1 → C1 +NL

Ω0 → C0

Figure 7.2: Outline of the considered bone medium: dispersion of nonlinear spheroidal
inclusions in a linear isotropic host with distribution of microcracks defined by densityα =
φ/δ whereφ is the volume fraction.

Referring to Figure 7.2, as will be shown later, the volume of cracks vanishes in the

strongly oblate limit of spheroidal cavities, i.e. δ → 0. As such the effective contribution of

the vanishing inclusion volume fraction has to be defined in this limit. The standard volume

fractionφ in homogenization theory is defined by

φ =
|Ω1|
|Ω| (7.1)

where |Ω| denotes the volume of the medium Ω and φ clearly tends to zero in the limit

δ → 0. This motivates introducing what we call density of microcracks α = φ
δ , which is

finite as δ → 0, and can be interpreted as the volume fraction of the spherical inclusions

that would have the same footprint or projection as the flat, zero-volumed, penny-shaped
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inclusions. To put it in another way, if the penny-shaped inclusions were inflated to make

them spherical, their volume fraction would beα.

Let us denote the Cauchy stress by T and the linear strain E. The average stress within

the medium is easily determined as

T̄ =
1
|Ω|

∫

Ω0

T0dΩ+
1
|Ω|

∫

Ω1

T1dΩ

=
C0

|Ω|
∫

Ω0

E0dΩ+φT̄1 (7.2)

=
C0

|Ω|

(∫

Ω0

E0dΩ+
∫

Ω1

E1dΩ−
∫

Ω1

E1dΩ
)
+φT̄1

= C0Ē−φC0Ē1 +φT̄1{Ē1} (7.3)

where f {·} denotes an argument of the function f and where f
r

denotes the volume average

over the rth phase, i.e.

f
r
=

1
|Ωr|

∫

Ωr

f (x) dΩr. (7.4)

Because here, for now, we assume that the inclusions are linear elastic, we have T̄1 = C1Ē1

and so we obtain the classical result that

T̄ = C0Ē +φ(C1 − C0)Ē1 (7.5)

Eshelby’s [198] result for spheroids informs us that

E∞ = Ē0 = (I− S)E1 + SD0T1

= (I + S(D0C1 − I))E1 (7.6)

where I is the fourth order identity tensor, S is the (uniform) Eshelby tensor, D0 is the com-

pliance tensor (D0C0 = I) and we have assumed dilute dispersions so that the average

strain in the matrix Ē0 = Ē∞, the strain in the far field. Importantly for spheroidal inclu-

sions Ē1 = E1 since Eshelby showed that the interior strain is uniform for isolated ellipsoids.

Next we determine the average strain in the medium which is

Ē = (1−φ)Ē0 +φE1 (7.7)

= [φI + (1−φ)(I + S(D0C1 − I))]E1 (7.8)

where we have used the Eshelby result to obtain the average strain in terms of the inclusion

strain. Finally, inverting (7.8) and substituting in (7.5) yields

T̄ =
(
C0 +φ(C1 − C0)[φI + (1−φ)(I + S(D0C1 − I))]−1)Ē

= C∗Ē (7.9)
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The above approach summarizes the Mori-Tanaka method. Even though we have assumed

a dilute dispersion of spheroids, the result (7.9) is feasible for non-dilute volume fractions in

that it recovers the limit C∗ → C1 asφ→ 1.

7.1.2 Linear elasticity: open cracks in a homogeneous matrix

Let us consider how the above theory is modified when we consider the case of penny

shaped cracks, which can be considered as the strongly oblate limit of the spheroidal cavity,

i.e. δ → 0 andφ→ 0. Clearly, one cannot simply take these as equalities in the above result

(7.9). Instead, one needs to consider the limit carefully. The approach below was employed

by Giordano [218] (amongst others) for example.

Let us first derive the result associated with spheroidal cavities or voids of aspect ratio

δ, in which case the traction on the void surface is zero by removing the stiffness of the

inclusion, C1 = 0. The average stress (7.3) then becomes

T̄ = C0Ē−φC0E1. (7.10)

and the Eshelby result (7.6) takes the form

E0 = (I− S)E1. (7.11)

Therefore we can write that the induced “cavity strain” is

E1 = (I− S)−1E0 = FE0. (7.12)

Next let us use the relationship for the average strain (7.7) with (7.12) to find that

Ē = [(1−φ)F−1 +φI]E1. (7.13)

Inverting this and using in (7.10) we find that

T̄ = C0Ē−φC0[(1−φ)F−1 +φI]−1Ē.

=
(

C0 −φC0F[(1−φ)I +φF]−1
)

E

= C∗Ē. (7.14)

where the effective modulus tensor is thus defined as

C∗ = C0 −φC0F[(1−φ)I +φF]−1. (7.15)

Next let us define

F = lim
δ→0

F = O
(

1
δ

)
(7.16)
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where we show the latter in appendix A. The important aspect to (7.15) is that terms involv-

ingφ and F are gathered together as products. Note that if we interpret the volume fraction

in the sense of spheroidal inclusions, referring back to (7.1) we have

φ =
|Ω1|
|Ω| =

N(4π/3)a1a2a3

|Ω| = δ
N(4π/3)`3

|Ω| = δα (7.17)

where N refers to the number of inclusions in the domain Ω, recalling that we are interested

in the limit as δ → 0 to obtain the strongly oblate limit, i.e. penny shaped cracks. Introducing

α in this manner ensures that the limit δ → 0 is sufficient for both δ → 0 and φ → 0, and

(7.15) becomes

C∗ = C0 −αC0G[(1− δα)I +αG]−1. (7.18)

where we have defined G = δF. Now take the limit δ → 0 and introduce

G = lim
δ→0

G = lim
δ→0

(δF) = O (1) (7.19)

The non-zero components of the transversely isotropic tensor G are listed in (A.22) of Ap-

pendix A. Results are now obtained in terms of the modified volume fractionα, noting that

G is independent of α the effective modulus tensor. The expression for C∗ given in (7.18)

therefore becomes, in the penny-shaped crack limit,

C∗ = C0(I−αG[I +αG]−1). (7.20)

noting that the term inside the square brackets that was δαI → 0. This is a classical result,

as derived in e.g. [218].

We wish to understand how the above is extended to the case of nonlinear inclusions.

We will do this shortly, but first as a precursor to this problem, let us consider how one can

incorporate more complicated (linear) crack face traction effects.

7.1.3 Linear elasticity: allowing for crack face effects

If the cracks are open, the traction T1 is identically zero and thus contributes nothing to the

effective properties. On the other hand, if it scales with the aspect ratio of the crack, T1 ∼ δ
then it can affect the overall properties in the penny-shaped crack limit as we now show. Let

us assume that as δ → 0

T1 = C1E1 = δC̃1E1 (7.21)

where C̃1 = O(1).1 Using this, the Eshelby result (7.6) becomes

1To show why the scaling of C1 is needed from a mathematical point of view, consider if we just put T1 =
C1E1 directly into the Eshelby result (no arguments about scaling of either C1 or E1 on δ, then we get

E∞ = (I− S + H̃)E1
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E0 = (I− S + δH) E1 (7.22)

where we have written H = SD0C̃1 which we note is order one as δ → 0. This is the effect

of the “extra stress” associated with the crack. Therefore following analogous steps to the

last section we find that

E1 = F [(1−αδ) (I + HδF) +αδF]−1 Ē (7.23)

where we setφ = αδ. The equation for the averaged stress then gives

T̄ = C0Ē−φC0E1 +φT̄1,

= C0Ē−αC0δE1 +αC̃1δ2E1, (7.24)

where again we have set φ = αδ, anticipating the penny-shaped crack limit being taken.

Note that the coefficient of the last term here is O(δ2) so that in the limit, this term will tend

to zero since E1 ∼ O(1/δ). The “extra stress” therefore arises purely due to the Eshelby

result and not due to averaged stress.

To understand from a physical point of view the definition of the scaled inclusion stiff-

ness C1, we should recall that neither T1, E1 or C1 are fully defined inside the crack in a

physical sense, simply because the crack is not fully defined due to the unknown δ. Start-

ing from the idea that the measurable physical magnitude which the matrix senses from the

crack is the displacement u, and since the strain E1 is defined from its gradient, it will depend

on δ and be of order O(δ). To transmit the same stress, the stiffness of an equivalent spher-

ical crack (of δ = 1) should rescale to be softer: C̃1 = C1

δ , so T1
L = C1E1 = δC̃1E1 = δT̃1

L.

Figure 7.3 provides a physical interpretation of the three terms that contribute to the average

stress in (7.24). In the penny-shaped crack limit we therefore obtain

with H̃ = SD0C1. But importantly note that there is no δ in front of this H̃ term. Therefore following the steps
through what we will end up with is, instead of 7.26 below, and expanding out brackets,

E1 = F
(
H̃F + I−αδ−αH̃δF +αδF

)−1 E

this ends up being multiplied by a δwhich is ok for the F out the front, but the problem is that in the limit δ → 0,
the term H̃F is not bounded, like the other terms in the brackets.

Alternatively if we scaled E1 as E1 = Ẽ1/δ then

T1 = C1E1 =
1
δ

C1Ẽ1

so that the Eshelby result becomes

E∞ = (I− S + H̃)
1
δ

Ẽ1

which just creates a different problem. Therefore, to solve it we need is a scaling of C1.
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Figure 7.3: Physical interpretation of how the average stress is composed of the addition of
the three stress terms in Eq. 7.24.

T̄ = C0
(

I−αG [I + HG +αG]−1
)

Ē (7.25)

noting that if we take C̃1 → 0 (so that H = 0) we recover (7.20). As should be expected

the effect of a non-zero H has the effect of stiffening the material. In particular for example,

in dynamics where a compressive wave will give rise to both open cracks (in tension) and

closed cracks (in compression) the effective Young’s modulus cannot be that due to the open

crack case considered above. Expression (7.25) is the correction to that result.

7.1.4 Homogenization for nonlinear cracks

Let us consider now what happens if we assume that the stress-strain condition for a crack is

nonlinear. This is reasonable since a number of competing effects occur on the crack face. The

form of the nonlinear term will be discussed shortly but we see that it needs an additional δ

scaling in order to have an O(1) effect and remain bounded. To understand physically the

reason, considering the scaling of E1 discussed above, in order to contribute equivalently be-

ing the nonlinear stress dependent on the square of the strain, T1
NL = δ2T̃1

NL, which justifies

the scaling of linear and nonlinear stress,

T1 = δC̃1E1 + δ2T̃1
NL (7.26)

Later on in section 7.2 we justify this scaling from a study of the local crack problem.

It has been shown that for constitutive nonlinearity in the strain, the Eshelby result for

spheroids holds [218] and gives

E0 = ((I− S) + δH)E1 + δ2SD0T̃1
NL (7.27)

and using this in the average strain yields (using curly brackets to denote an argument)

Ē = ((1−φ)((I− S) + δH) +φI) E1 + (1−φ)δ2SD0T̃1
NL

{
E1
}

(7.28)

= ((1− δα)(I + HδF) +αδF) F−1E1 + (δ2 −αδ3)SD0T̃1
NL

{
E1
}

(7.29)

= (I + HG +αG) F−1E1 + SD0T̃1
NL

{
δE1

}
+ O(δ) (7.30)
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where we have retained only terms that will become important in the penny shaped limit

and we note that we have conveniently put the δ inside the argument of the nonlinear stress

term which is quadratic in its argument. Now we have to formally invert this expression

which gives,

E1 = F [I + HG +αG]−1 Ē− FU{Ē} (7.31)

where U{Ē} refers to the first, quadratic nonlinear contribution to this equation, which it

transpires, takes the form

U{Ē} = (I + HG +αG)−1SD0T̃1
NL

{
G(I + HG +αG)−1Ē

}
(7.32)

noting again that the curly brackets denote that this is the argument of the nonlinear

isotropic stress term T̃1
NL.

Finally, using (7.31) in the average stress equation and taking the penny-shaped crack

limit, we find

T̄ = C0
(

I−αG [(I + HG) +αG]−1
)

Ē− C0αGU {Ē} (7.33)

where

U{Ē} = (I + HG +αG)−1SD0T̃1
NL

{
G(I + HG +αG)−1Ē

}
. (7.34)

Note once again that if we take the limit when nonlinear effects are negligible, U → 0, we

recover the linear limit of the previous section and the result (7.25).

7.2 Nonlinear crack clapping model

This section describes the formulation of the nonlinear model of an individual micro-crack,

which is later equated to an inclusion. As opposed to linear crack analysis, which the litera-

ture treats as open (since closed cracks transmit compressional forces as if the material were

intact), the nonlinear behaviour of cracks correctly models a range of states, either closed

(for negative strains) or open (for positive strains). The clapping contact mechanism excited

when a cyclic load exerted by the oscillatory movement of the nonlinear ultrasonification

behaves as follows: while the cracks tend to be closed at rest, once subject to the cyclic

stress, cracks close during the compressional half-cycle, transmitting stress and establishing

displacement continuity, whereas during the crack opening, stress inside the crack vanishes

and a displacement discontinuity across the crack arises.

7.2.1 Nonlinearity formulation

This local clapping contact phenomenon gives rise to a non-linear stress-strain relation at

the defect [253]. Pecorari et al. [254] already proposed a 1D clapping model along direction
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3 with different elastic moduli for compression and tension,

T33 = E0

(
1− H{E1

33}
(
∆E
E0

))
E33 (7.35)

where H{E33} is the Heaviside step function, E0 is the elastic modulus under compression,

and ∆E is its change under stress reversal to tension.

Given that micro-cracks are small compared to the specimen and ultrasonic wavelength,

we assume that the elastic modulus under tension is negligibly small and therefore ∆E = E0.

Additionally all other components of stress act, as usual, linearly in the strain components.

By treating only the volumetric components of stress and strain in the way defined in

next subsection, we obtain a 1D compressional constitutive law that relates pressure p with

volumetric strain v of the form, which captures the compressive or opening states of the

crack behavior in a single dimension,

p = K{v}v (7.36)

where K[v] is the non-constant bulk modulus. Hence, from Equation (7.35), the bilinear

stiffness of the proposed model with multiple micro-cracks is proposed as,

K{v} = K0(1− H{v}) (7.37)

where K0 is the compressibility modulus of the host material. Recall that this form is valid

only inside the inclusion, whose spatial domain is defined as coincident with that of the

penny-shaped crack, i.e. the limiting case of a spheroid whose transverse axis aspect ratio

tends to zero.

In order to bypass the difficulty of engaging with a non-differentiable function for the

stress-strain law (via the extraction a Taylor expansion of the Heaviside function) we ap-

proximate it by a logistic function, as is widespread in the literature [255, 256, 257]. The

Heaviside step function is therefore be smoothly approximated by the logistic function, with

a sharpness parameter κ, i.e.

K{v} ' lim
κ→0

K0

(
1− 1

1 + e−κv

)
. (7.38)

When homogenizing, note that the assumption of common alignment of cracks is made, as

well as negligible residual stresses that would be responsible for differences in the strain

where the kink appears, which would average out as a smoothed bilinear form

Now, the bilinear stiffness is approximated by a Taylor expansion,

K[v] ' K0

(
1
2
− κv

4
+ O[v2]

)
(7.39)
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where the parameterκ should be chosen so that the Taylor expansion is valid for the range of

volumetric deformation v induced by the ultrasound, whereby κ ' 2
vmax . These parameters

are chosen so as to optimize the fitting of the Taylor expansion around the kink and over

the desired range of values. This choice as well as the accuracy of the Taylor expansion is

evident from Fig. 3. This result can be validated by reasoning that, on average, the first linear
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Figure 7.4: Taylor expansion, logistic function and bilinear constitutive law

approximation contains half open (zero modulus) and half closed cracks (intact modulus).

This average yields an effective compressibility modulus of the inclusion of K0/2, which

coincides with the first linear tangent term of the Taylor expansion. Comparing now with

the definition of the acoustic nonlinearity to be compatible with Equation 9.47,

K{v} = K1

(
1− 3

2
β1v

)
(7.40)

the origin of both the linear and nonlinear constants can be identified from Equation 7.39,

where the equivalent Young modulus is derived as,

K1 =
1
2

K0 (7.41)

and the nonlinearity parameter β1 is found to depend only on the maximal induced defor-

mation vmax as,

β1 =
κ

6
=

1
3vmax (7.42)

7.2.2 Nonlinear Landau coefficients of inclusions

The nonlinear constitutive response of the crack relates the stress T1 and strain E1 fields and

is assumed to be of the second order form established by Landau et al. [1], valid for any 3D
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continuum, which was recently updated in the sense explained below by Parnell et al. [258]

based on [259, 260],

T1
NL(E

1) = A1(E1)2 + B1
(
tr
(
(E1
)2

)I2 + 2tr(E1)E1)+ C1(trE1)2I2 (7.43)

the subscript 2 on I2 indicates that this is the identity tensor of second order, as opposed

to I above which is the identity tensor of fourth order. The penny-crack limit ensures that

the macroscopic response is transversely isotropic for aligned cracks. λ and µ are the Lamé

constants andA1,B1, C1 are the Landau coefficients, where the following approximation has

been applied, since the linear constants are negligible when compared to the nonlinear ones,

A1 + 4µ1 ' A1,

B1 + λ1 −µ1 ' B1,

C1 − λ1 ' C1. (7.44)

Since any tensor (stress or strain) can be split into volumetric (scalar) and deviatoric (ten-

sor) parts, the constitutive equations can be rearranged as particular cases of the following

general form, by decomposing them into volumetric and deviatoric constituents,

T = −pI︸︷︷︸
volumetric

+ TD
︸︷︷︸

deviatoric

, p = − 1
3 trT (7.45)

since any tensor is split into volumetric (scalar) and deviatoric (tensor) parts. The strain is

therefore also decomposed into volumetric v and deviatoric D strain,

E = −vδi j + D, v = −1
3

trE (7.46)

The linear elastic dependency is enriched with quadratic terms, following the series ex-

pansion concept put forth by Landau [1]. Only the volumetric part is detailed in terms of

the nonlinearity parameter β due to the simplicity of the volumetric strain v being scalar,

and since the experimental part only applies compressional ultrasonic waves, i.e. D = 0,

−p = −3Kv + 9β1K 1
2 v2

TD = 2µD︸ ︷︷ ︸
Linear

︸ ︷︷ ︸
Nonlinear

(7.47)

where K = λ+ 2
3µ is the bulk modulus, which depends on the Lamé constants.

The definition of the compressional nonlinearity stems from the Taylor expansion of

pressure p in Equation 7.36 with respect to volumetric strain v, where the order zero term is

zero, the first order term is the linear elastic one proportional to v and the second order term

is depends on 1
2 v2, whereβ1 is defined to capture the volumetric constitutive nonlinearity as

a consequence of the clapping nonlinearity due to the change of volume during its closing
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and opening. Note that this definition of nonlinearity parameter β1 should not be confused

by that used by other authors who expand the compressibility as K{v} = K + 3βKv.

Combining equations (7.45), (7.46) and (9.47), and recalling that D = 0,

T = −KtrEI− β1K
2

(trE1)2I2 (7.48)

which compared to the general form (7.43), allows one to establish that the nonlinear prop-

erties are

A1 = 0, B1 = 0, C1 = −β1
(3λ1 + 2µ1)

6
(7.49)

and as such we find that

T1
NL(E

1) = C1(trE1)2I2. (7.50)

The inclusion is simplified to isotropic because the transverse projected area of the

penny-shaped spheroid vanishes, and its contribution to the transverse stress components

is zero. Therefore, the anisotropic terms of the crack behavior inside the inclusion are negli-

gible for the purpose of the homogenization. The first consequence is that Poisson’s ratio is

assumed to stay invariant under the presence of the micro-crack, and therefore both Lamé

constants behave following Equation 7.41, so that,

λ1 =
1
2
λ0, µ1 =

1
2
µ0 (7.51)

7.3 Effective acoustic nonlinearity

Given that we now have a model for the nonlinear behavior of the cracks, let us use this in

order to determine the effective nonlinear behavior of the cracked material. For conciseness

and computational ease we introduce the notation

X = [(I + HG) +αG]−1 (7.52)

together with Y = GX and Z = YSD0 which we note both depend on α as well as the

effective linear elastic moduli C∗ = C0 (I−αY). Referring to (7.34) and (7.50) we can then

write

GU (Ē) = ZT̃1
NL{XĒ}

= C1(tr(YĒ))2Z : I2. (7.53)

The total average stress is written

T̄ = C∗Ē−αC1C0(tr(YĒ))2Z : I2. (7.54)
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Importantly note that the same non-zero components of G are also non-zero in X, Y and Z.

This simplifies the analysis significantly.

Our investigation of nonlinearity focuses on a compressional stress wave propagating in

the x3 direction, with zero lateral stresses. The strains Ē11 = Ē22 6= Ē33 and all shear strains

are zero. We investigate the propagation of longitudinal, compressional waves in the x3

direction, i.e. the only non-zero stress is T̄33 and the contributions to this stress are therefore

from the Z33kl terms. Given that Y11k` = Y22k` = 0, it is straightforward to show that

Ē22 = Ē11 = −νA∗Ē33 (7.55)

where νA∗ is known as the (effective) axial Poisson’s ratio as determined from the effective

linear elastic modulus tensor via

νA∗ =
C∗1133

C∗1111 + C∗1122
(7.56)

The equation for the tensile/compressive longitudinal stress is rather more complicated

thanks to the non-zero components of the tensors introduced above. First note that

tr(YĒ) = Y3311Ē11 + Y3322Ē22 + Y3333Ē33

= (Y3333 − 2νA∗Y3311)Ē33 (7.57)

and

(C0Z : I2)33 = C0
3311(Z1111 + Z1122 + Z1133) + C0

3333(2Z3311 + Z3333)

' C0
3333(2Z3311 + Z3333). (7.58)

Then, eliminating Ē11 via (7.55) we find

T̄33 = E∗Ē33 −β∗E∗Ē2
33

= E∗(1−β∗Ē33)Ē33 (7.59)

where β∗ defines the effective nonlinear parameter that characterizes the compressional

nonlinearity in direction 3, and the effective linear elastic Young’s modulus is

E∗ = (C∗3333 − 2C∗3311νA∗) (7.60)

and the effective nonlinear parameter β∗ takes the form

β∗ = C1
α

E∗
(Y3333 − 2νA∗Y3311)

2C0
3333(2Z3311 + Z3333) (7.61)

where C1 is the Landau parameter of the inclusion derived in Equation 7.49.
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Contractions and inversions of transversely isotropic tensors within the tensors X, Y and

Z are best carried out in a symbolic package such as Mathematica where such operations

can be done straightforwardly by defining the operations with respect to the components of

the Hill basis [261].

7.4 Numerical example

A few figures are exposed to understand the relationships between the effective acoustic

nonlinearity β∗, the density of microcracksα and the nonlinearity of the inclusion β1. Note

that the nonlinear parameter β1 depends upon the maximum volumetric strain vmax accord-

ing to Equation 7.42, which can be quantified experimentally. Contractions and inversions

of transversely isotropic tensors within the tensors X, Y and Z are computed using Matlab

(The MathWorks, Inc., Natick, Massachusetts, United States).

First, we briefly describe how the maximal strain can be calculated. Consider a bone

sample immersed in water, which is interrogated by nonlinear ultrasound at a given central

frequency f . The incoming pressure pw in water at the back of the sample is registered by a

needle hydrophone. The water displacement Uw can be obtained as,

Uw = 3
pw

ρwcw2π f
(7.62)

where ρw and cw are the density and velocity of water, respectively. Considering that the

water gap between the specimen and the hydrophone is small (that is, the water attenuation

is negligible), the displacement of the particles in the specimen is obtained as,

Us =
Uw

Tsw
(7.63)

where Tsw denotes the transmission coefficient from bone to water, defined as,

Tsw =
2Zw

Zs + Zw
(7.64)

where Zi = ρici, with i = w, s is the impedance of a material i. The displacement field in the

sample is, as a first approximation, of the form,

U(x, t) = Us sin(ksx−ωt) (7.65)

where ks = ω/cs is the wave number. The strain field is the derivative of the displacement

field with respect to the x-coordinate along which ultrasound propagates,

E33(x, t) = Usks cos(ksx−ωt) (7.66)

and thus, the maximal strain is obtained when cos(ksx −ωt) = 1, that is vmax = | −
1
3 E33,max| = 1

3 Usks. Table 1 summarizes the values of the obtained variables for a measured

pressure pw = 85 [kPa].
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Property Value
Displacement in water Uw 40.5 [nm]

Displacement in sample Us 75 [nm]
Frequency f 666.67 [kHz]

Maximum strain in sample vmax 2.64 · 10−5

Lamé constants (λ1,µ1) (10, 2.5) · 109 [Pa]
Density ρ 1.8 · 103 [kg/m3]

Nonlinearity of inclusion β1 3.8 · 104

Landau coefficient of inclusion C1 22 · 1013 [Pa]
Table 7.1: Elastic parameters of the inclusion.

Figure 7.6 shows the relationship between the effective acoustic nonlinearity and density

of micro-cracks.
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Figure 7.5: Convergence study of the effective acoustic nonlinearity depending on the choice
of aspect ratio of the penny shaped inclusions for estimating the limit numerically. Values
between δ = 10−5 and δ = 10−10 are chosen.

Figure 7.8 shows the relationship between first effective Lamé lambda parameter and

density of micro-cracks.

The main contribution of this chapter resides on the explanation of microdamage as

source of nonlinearity with providing a experimental technique that allows quantify the

density of microcracks in terms of classical nonlinear effective acoustic parameter.
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Figure 7.6: Relationship between effective acoustic nonlinearity and density of microcracks.
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Figure 7.7: Relationship between effective acoustic nonlinearity and Poisson’s coefficients
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Eléctrico éxtasis. Movimiento continuo en alta frecuencia, temblor
vertical que se sumerge en la clarividencia, ardor, temblor de viva
luz.

Tientos de erótica celeste.
Val del Omar-Lagartija Nick, 1993
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Part III

RESULTS: EXPERIMENTAL
CONTRIBUTIONS
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8
Nonlinear mixing to measure acoustic

nonlinearities of first order

This Chapter explores all the possibilities of mixing acoustic plane waves from analyti-

cal results to experimental procedure to derive nonlinear acoustic parameters extended in

Chapter 6. The main aim is to solve the nonlinear acoustic equation extended in 3D by

perturbation method and explore the feasibility of measuring these new parameters with

ultrasound technology.

8.1 Analytical results

As in Chapter 6, where the linear regime of three dimensional linear wave equation solutions

were validated, the perturbation method is formulated with the same framework:

ui = u(0)
i + u(1)

i + . . . (8.1)

where u(0) and u(1) denote the zero-order and first-order perturbation solutions, respec-

tively. The zero-order perturbation solution corresponds to the fundamental solution of the

linear wave equation (that is, when β = 0). The first-order perturbation solution is denoted

by u(1). Since the effect of the nonlinear term β is small, an approximate solution can be

obtained by iteration. Then, the next subsections describe the whole list of detailed cases

where the waves interacting inside a material.

8.1.1 Collinear Mixing

This case is presented when two plane waves propagating simultaneously in the same di-

rection and are considering in a semi-infinite elastic layer, the latter is given as,
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u(0)
1 = A1 cos

(
ω1

(
x1

cp

)
− t
)
+ A2 cos

(
ω2

(
x2

cp

)
− t
)

u(0)
2 = 0

u(0)
3 = 0 (8.2)

where A1 and A2 are the constant amplitudes of the plane waves, cp, is the velocity of com-

pressional waves, and ω1 and ω2 are the angular frequencies. Let us then consider the

first-order perturbation equation,

u(1)
1 = Bax1 cos

(
ωa

(
x1

cp

)
− t
)
+ Bbx1 cos

(
ωb

(
x1

cp

)
− t
)

+Bcx1 cos
(
ωc

(
x1

cp

)
− t
)
+ Bdx1 cos

(
ωd

(
x1

cp

)
− t
)

+Bex1 cos
(
ωe

(
x1

cp

)
− t
)
+ B f x1 sin

(
ω f

(
x1

cp

)
− t
)

+Bgx1 cos
(
ωg

(
x1

cp

)
− t
)
+ Bhx1 sin

(
ωh

(
x1

cp

)
− t
)

u(1)
2 = 0

u(1)
3 = 0 (8.3)

Where |u(1)
ω1 | = Bax1 is the amplitude of the second harmonic, Ba, Bb, Bc, Bd, Be, B f , Bg and

Bh are the amplitudes of the first order of pertubation, the frequencies for each cases areωa,

ωb, ωc, ωd, ωe, ω f , ωg and ωh. Once established zero and first order of perturbation, first

order is expanded as follows,

u(1)
L =

1
3cp

2(3K + 4µ)
(

2B1ω1 sin
(

2ω1

(
x1

cp
− t
)))

+
1

3cp
2(3K + 4µ)

(
2B2ω2 sin

(
2ω2

(
x1

cp
− t
)))

+
1

3cp
2(3K + 4µ)

(
B3 (ω1 +ω2) sin (ω1 +ω2)

(
x1

cp
− t
))

+
1

3cp
2(3K + 4µ)

(
B4 (ω1 −ω2) sin

(
(ω1 −ω2)

(
x1

cp

)
− t
))

(8.4)

And nonlinear zero-order in nonlinear part results,
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u(0)
NL =

1
9c3

p
(9(1 + 12βdp + 9βvp)K + 4(3− 4βcs + 8βds)µ)

(
A1ω

2
1 cos

(
ω1

(
x1

cp
− t
))

+ A2ω
2
2 cos

(
ω1

(
x1

cp
− t
)))

(
A1ω1 sin

(
ω1

(
x1

cp
− t
))

+ A2ω1 sin
(
ω1

(
x1

cp
− t
)))

(8.5)

Expanding the last equation by the product generated in terms of first wave and second

compressional waves with both amplitudes and frequencies it results,

u(0)
NLEXP =

1
9c3

p
(9(1 + 12βdp + 9βvp)K + 4(3− 4βcs + 8βds)µ)F(x1, t) (8.6)

where,

F(x1, t) = A2
1ω

3
1 cos

(
ω1

(
x1

cp
− t
))

sin
(
ω1

(
x1

cp
− t
))

+A1 A2ω1ω
2
2 cos

(
ω2

(
x1

cp
− t
))

sin
(
ω1

(
x1

cp
− t
))

+A1 A2ω
2
1ω2 cos

(
ω1

(
x1

cp
− t
))

sin
(
ω2

(
x1

cp
− t
))

+A2
2ω

3
2 cos

(
ω2

(
x1

cp
− t
))

sin
(
ω2

(
x1

cp
− t
))

(8.7)

This result validates the analytical procedure developed in Chapter 6, where the nonlinear

mixing is introduced from a classical point of view. In that case ω2 −ω1 is neglected by

the deduction and it is also possible to be calculated when u(0) is defined as in Equation

8.3, it corresponds to four last terms. Note that trigonometric relations, of sum and dif-

ference of two different angles are introduced expanding the products and considering the

corresponding factors of each amplitude [263]. Both cases are detailed in Table 8.1 note that

ω2 −ω1 is introduced with 90o phase shift.

And then, β is related to the four nonlinear classical nonlinear parameters considering

each factor of the sum and comparing as follows,
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Combination Bi ωi
a A2

1 2ω1
b A2

2 2ω2
c A1 A2 ω1 +ω2
d @ @
e A2

1 2ω1
f A2

2 2ω1
g @ @
h A1 A2 ω2 −ω1

Table 8.1: The corresponding factors of each amplitude for zero and first order of perturba-
tion

Bac3
p

x1 A2
1ω1

=
1
9
(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ)

Bbc3
p

x1 A2
2ω2

=
1
9
(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ)

Bcc3
p

x1 A1 A2(ω1 +ω2)
=

1
9
(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ)

Bhc3
p

x1 A1 A2(ω2 −ω1)
=

1
9
(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ) (8.8)

In each case, β is the classical parameter equal to the left part of the equations i. e.

β =
Bac3

p

x1 A2
1ω1

, and if we want to calculated the right part of the equations with the nonlin-

ear acoustic parameter components an experimental design should be considered.

For the liquid case i.e calculating the nonlinearity of water as in the last section, shear

modulus is neglected µ = 0, and the Equation 8.8 is

|u(1)
2ω1
|c3

p

A2
1ω1

= (12βdp + 9βvp)K

|u(1)
2ω2
|c3

p

A2
2ω2

= (12βdp + 9βvp)K

|u(1)
ω1+ω2

|c3
p

A1 A2(ω1 +ω2)
= (12βdp + 9βvp)K

|u(1)
ω1−ω2

|c3
p

A1 A2(ω2 −ω1)
= (12βdp + 9βvp)K (8.9)

Nonlinear effect is influenced by a disaggregation that could be decomposed in volumetric

pressure and deviatoric pressure. Note that this case of collinear mixing in water has been

detailed as in the last section section of this chapter. A single transmitter setup is explored

and nonlinear acoustic parameter of water is calculated.
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8.1.2 Noncollinear Mixing: P-P interaction

This case is presented when two compressional waves are considering in a semi-infinite

elastic layer, in an angle θ, the latter is given as,

u(0)
1 = A1 cos

(
ω1

(
x1

cp

)
− t
)
+ A2 cosθ cosω2

(
(cos x1θ+ x2 sinθ)

cp
− t
)

u(0)
2 = A2 sinθ cosω2

(
(x1 cosθ+ x2 sinθ)

cp
− t
)

u(0)
3 = 0 (8.10)

where A1 and A2 are the constant amplitudes of the plane waves, cp, is the velocity of com-

pressional waves, and ω1 and ω2 are the angular frequencies. Let us then consider the

first-order perturbation equation,

u(1)
1 = Ba

(
(x1 cosα1 + x2 sinα1) cosα1 sinωa

(
(x1 cosα1 + x2 sinα1)

cp
− t
))

+Bb

(
(x1 cosα2 + x2 sinα2) cosα2 sinωb

(
(x1 cosα2 + x2 sinα2)

cp
− t
))

+Bc

(
(x1 cosα3 + x2 sinα3) cosα3 sinωc

(
(x1 cosα3 + x2 sinα3)

cp
− t
))

+Bd

(
(x1 cosα4 + x2 sinα4) cosα4 sinωd

(
(x1 cosα4 + x2 sinα4)

cp
− t
))

u(1)
2 = Be

(
(x1 cosα1 + x2 sinα1) sinα1 sinωe

(
(x1 cosα1 + x2 sinα1)

cp
− t
))

+B f

(
(x1 cosα2 + x2 sinα2) sinα2 sinω f

(
(x1 cosα2 + x2 sinα2)

cp
− t
))

+Bg

(
(x1 cosα3 + x2 sinα3) sinα3 sinωg

(
(x1 cosα3 + x2 sinα3)

cp
− t
))

+Bh

(
(x1 cosα4 + x2 sinα4) sinα4 sinωh

(
(x1 cosα4 + x2 sinα4)

cp
− t
))

u(1)
3 = 0 (8.11)

Once established zero and first order of perturbation, u(0)
NL and u(1)

L , respectively, the first

order it is expanded as follows,

95



u(1)
L =

1
3cp

2(3K + 4µ)
(
−Baωa cosα1 cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

+

(
−Bbω2 cosαb cos

(
2ωb

(
(x1 cosαb + x2 sinαb)

cp
− t
)))

+

(
−Bc(ωc) cosαc cos

(
(ωc)

(
(x1 cosαc + x2 sinαc)

cp
− t
)))

+

(
−Bh(ωh) cosαh cos

(
(ωh)

(
(x1 cosαh + x2 sinαh)

cp
− t
))))

(8.12)

And nonlinear zero-order in nonlinear part results,

u(0)
NL =

1
18c3

p

(
A1ω

2
1

(
A1(9(1 + 12βdp + 9βvp)K + 4(3− 4βcs + 8βds)µ)

(
ω1 sin

(
2ω1

(
x1

cp
− t
))

+ A2ω2 cos
(
ω1

(
x1

cp
− t
)))

(9(1 + 6βdp + 18βvp)K + 4(3− 5βcs + 4βds)µ

+3((3 + 54βdp)K− 4(−1 +βcs − 4βds)µ) cos 2θ)

sin
(
ω2

(
(x1 cosθ+ x2 sinθ)

cp
− t
)))

+(A2ω
2
2 cosθ)

(
A1ω1(9(1 + 6βdp + 18βvp)K + (21− 32βcs + 28βds)µ

+3(3K + 54βdpK +µ + 12βdsµ) cos 2θ)

cos
(
ω2

(
(x1 cosθ+ x2 sinθ)

cp
− t
))

sin
(

2ω1

(
x1

cp
− t
))

+
(

A2(9(1 + 12βdp + 9βvp)K)

+(4(3− 4βcs + 8βds)µ)ω2 sin
(

2ω2

(
(x1 cosθ+ x2 sinθ)

cp
− t
)))))

(8.13)

The amplitudes coincides with the collinear mixing case, expanding products and using of

trigonometric relations, as in Table 8.1. The non collinear mixing is feasible consideringα1 =

0 and α2 = θ in the sum of frequenciesω1 +ω2, the direction of harmonics coincides with

the advance of wave front. Note that if α3 = 0 the collinear case is recovered. Analogously

occurs, whenω1 −ω2 is expanded fromα4 = 0.

And then, β is related to the four nonlinear classical nonlinear parameters considering

each factor of the sum and comparing as follows,
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Bac3
p

x1 A2
1ω1

=
1

18
(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ)

Bbc3
p

x1 A2
2ω2

=
1

18
((9(12βdp + 9βvp)K) + (4(−4βcs + 8βds)µ)) cosθ

Bcc3
p

x1 A1 A2(ω1 +ω2)
=

1
18

(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ

+(3(54βdp)K− 4(+βcs − 4βds)µ) cos 2θ

+(9(6βdp + 18βvp)K + (−32βcs + 28βds)µ)

+(3(54βdpK +µ + 12βds)) cos 2θ)
Bhc3

p

x1 A1 A2(ω2 −ω1)
=

1
18

(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ

+(3(54βdp)K− 4(βcs − 4βds)µ) cos 2θ

+(9(6βdp + 18βvp)K + (−32βcs + 28βds)µ)

+(3(54βdpK + 12βdsµ)) cos 2θ)

(8.14)

Note that this case is not posible experimentally due to the angle extraction is imaginary, it

should be introduced modes conversion and u(0)
NL as an S-wave. This is detailed in the next

section.

8.1.3 Noncollinear Mixing: P-S interaction

This case is presented when two waves one transversal and other compressional are consid-

ering interacting in a semi-infinite elastic layer, in an angle θ, the latter is given as,

u(0)
1 = A1 cos

(
ω1

(
x1

cp
− t
))
− Ah sinθ cos

(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

u(0)
2 = Ah cosθ cos

(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

u(0)
3 = 0 (8.15)

where A1 and Ah are the constant amplitudes of the compressional and transversal waves

respectively, cp and cs, is the velocity of compressional and transversal waves respectively,

andω1 andω2 are the angular frequencies. Then, let us then consider the first-order pertur-

bation equation,
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u(1)
1 = Bha(x1 cosαa + x2 sinαa) cosαa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

−Bhb(x1 cosαb + x2 sinαb) sinαb cos
(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))

u(1)
2 = Bha(x1 cosαa + x2 sinαa) sinαa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

+Bhb(x1 cosαb + x2 sinαb) cosαb cos
(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))

u(1)
3 = 0 (8.16)

Once established zero and first order of perturbation, u(0)
N L and u(1)

L , respectively, the

first order it is expanded as follows,

u(1)
L =

1
3c2

pc2
s

(
Bhac2

s (3K + 4µ)ω2
a x1 cos4αa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

−1
2

Bhac2
sω

2
a x1 cos2αa(2(3K + 4µ) + (3K + 4µ) cos 2αa)

cos
(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

+Bhac2
s (3K + 4µ)ωa cos3αa

(
ωax2 cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

+2cp sin
(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
)))

+Bhac2
sωa cosαa sinαa

(
ωax2 cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

(−3K− 4µ + (3K + 4µ) sin2αa) + 2cp(3K + 4µ) sin
(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
)))

+3Bhbc2
pωb sinαb

(
−2csµ sin

(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))))

And nonlinear zero-order of perturbation part results,
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u(0)
NL =

1
18c3

p

(
A2

1(9(1 + 12βdp + 2βds)K + 4(3− 4βcs + 8βds)µ)ω3
1 sin

(
2ω1

(
x1

cs
− t
))

+
1
c3

s
3Ahcpω2

(
−A1cpcsω1ω2((3 + 54βdp)K + (7− 4βcs + 8βds)µ

+((3 + 54βdp)K +µ + 12βdsµ) cos 2θ) cos
(
ω2

(
(x1 cosθ+ x1 sinθ)

cs
− t
))

sin
(
ω1

(
x1

cp
− t
))

sinθ

−A1c2
s ((3 + 54βdp)K− 4(−1 +βcs − 4βds)µ)ω2

1

cos
(
ω1

(
x1

cp
− t
))

sin 2θ sin
(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

+

+Ahc2
p(3K + 27βdpK + 4µ + 6βdsµ)ω2

2 cosθ sin
(

2ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))))

(8.17)

Then, the amplitudes are described as in Table ??, and β is related to the four nonlinear

classical nonlinear parameters considering each factor of the sum and comparing as follows,

Bac3
p

x1 A2
1ω1

=
1

18
(9(12βdp + 9βvp)K + 4(−4βcs + 8βds)µ)

Bbc3
s

x1 A2
2ω2

=
1

18
(27βdpK + 6βdsµ) cosθ

Bc

x1 A1 A2(ω1 +ω2)
=

1
18

(
3

1
c3

s
Ahcp(−A1cpcs((3 + 54βdp)K + (7− 4βcs + 8βds)µ

+((3 + 54βdp)K +µ + 12βdsµ) cos 2θ)

−A1c2
s ((3 + 54βdp)K− 4(−1 +βcs − 4βds)µ) sin 2θ)

)

Bh

x1 A1 A2(ω2 −ω1)
=

1
18

(
1
c3

s
3Ahcp(−A1cpcs((3 + 54βdp)K + (7− 4βcs + 8βds)µ

+((3 + 54βdp)K +µ + 12βdsµ) cos 2θ)

−A1c2
s ((3 + 54βdp)K− 4(−1 +βcs − 4βds)µ) sin 2θ)

)
(8.18)

The nature of transversal waves is relevant to obtain transversal nonlinear acoustic pa-

rameter and also to disaggregate them. Longitudinal wave is considered as the reference,

and transversal wave as a angle θ. Note that the angle determines the interaction where

the velocity is coupled to the disaggregation. To explore the nonlinearity from the wave

generated after the interaction, is necessary to neglect S or P influence in the ω1 +ω2 or

ω2 −ω1 in order to receive a pure P or S wave depending on conversing modes. Note that

the result is the same when comparing S-P interaction. The different angles are detailed in

the experimental section.
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8.1.4 Noncollinear Mixing: S-S interaction

This case is presented when two transversal waves are considering in a semi-infinite elastic

layer, in an angle θ, the latter is given as,

u(0)
1 = −Ah2 sinθ cos

(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

u(0)
2 = Ah1 cos

(
ω1

(
x1

cs

)
− t
)
+ Ah2 cosθ cos

(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

u(0)
3 = 0 (8.19)

where Ah1 and Ah2 are the constant amplitudes of the transversal waves, cs, is the velocity

of transversal waves, andω1 andω2 are the angular frequencies. Then, let us then consider

the first-order perturbation equation,

u(1)
1 = Ba(x1 cosαa + x2 sinαa) cosαa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

−Bhb(x1 cosαb + x2 sinαb) sinαb cos
(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))

u(1)
2 = Ba(x1 cosαa + x2 sinαa) sinαa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

+Bhb(x1 cosαb + x2 sinαb) cosαb cos
(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))

u(1)
3 = 0 (8.20)
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Once established zero and first order of perturbation, u(0)
NL and u(1)

L , respectively, the first

order is expanded as follows,

u(1)
L =

1
3c2

pc2
s

(
Bac2

s (3K + 4µ)ω2
a x1 cos4αa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

−1
2

Bac2
sω

2
a x1 cos2αa(2(3K + 4µ) + (3K + 4µ) cos 2αa)

cos
(
ωa

(
(x1 cosαa + x2 sinαa)

cs
− t
))

+Bac2
s (3K + 4µ)ωa cos3αa

(
ωax2 cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cs
− t
))

+2cp sin
(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
)))

+Bac2
sωa cosαa sinαa

(
ωax2 cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cs
− t
))

(−3K− 4µ + (3K + 4µ) sin2αa) + 2cp(3K + 4µ) sin
(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
)))

+3Bhbc2
pωb sinαb

(
−2csµ sin

(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))))

(8.21)

And nonlinear zero-order of perturbation part results,

u(0)
NL =

1
6c3

s

(
Ah1ω1((3K + 4µ) + 3(9βdpK + 2βdsµ) cos

(
2ω1

(
x1

cp
− t
))

+ cosθAh2ωb((3K + 4µ) + 3(9βdpK + 2βdsµ)) sin
(

2ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

+
(

2Ah1 Ah2(3K + 4µ)ω2
1ω2 cos2θ+ω1ω

2
2 Ah2 Ah1 cosθ(3K + 7µ + (3K +µ) cos 2θ)

+ 3Ah1 Ah2ω1ω
2
2(9β

dpK + 2βdsµ)(cosθ+ cos 3θ)

+ sin (ω1 +ω2)

((
x1

cp
− t
))

+

(
2ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))))

(8.22)

Then, the amplitudes could be relates as in Table 8.1, and β is related to the four nonlinear

classical nonlinear parameters considering each factor of the sum and comparing as follows,

Bac3
s

x1 A2
1ω1

=
1
2
(3(9βdpK + 2βdsµ))

Bbc3
s

x1 A2
2ω2

=
1
2
(3(9βdpK + 2βdsµ))

Bcc3
s

x1 A1 A2(ω1 +ω2)
=

1
2
(3(9βdpK + 2βdsµ)(cosθ+ cos 3θ))

Bhc3
s

x1 A1 A2(ω2 −ω1)
=

1
2
(3(9βdpK + 2βdsµ)(cosθ+ cos 3θ)) (8.23)
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The results of nonlinear acoustic terms is a linear function of nonlinear classical acoustic

transversal parameter βT. Note that even βcs and βvp are neglected after the derivation pro-

cedure, due to the volumetric part does not exist in transversal mode. The collinear S-case

could be explored too, under this possibility an experimental setup should be considered

in a quasifluid media or in a soft tissue. The procedure should be introduced in the same

manner of the collinear for P waves interaction with θ = 0, with a T-junction and the exper-

imental configuration of the chapter 9.

8.2 Experimental methodology

The proposed experimental methodology consists of three elements: An (1) experimental

setup used to monitor the nonlinear ultrasound-sample interactions using the harmonic

generation technique, a (2) semi-analytical approach to extract the linear and nonlinear sam-

ple properties from the measurements, and the (3) implementation of the nonlinear acoustic

extension model formulated in previous section to estimate the disaggregation of nonlinear-

ity of first order .

In order to validate the sensitivity of the proposed methodology, the experiment has

been conducted on four different shape materials of Aluminum beam, with different ge-

ometries (see Figure 8.2) has been analyzed. The difference between samples are due to the

angle of incidence of two waves θ and the angle after the interaction ψ based on Korneev

and Zarembo estudies and modes conversion [38, 264, 5, 265] (see Figures 8.2 and 8.2 and

Equations 8.24 and 8.25), where,

(
ω1 ±ω2

ca

)2

=

(
ω1

c1

)2

+

(
ω2

c2

)2

± 2
ω1

c1

ω2

c2
cosθ (8.24)

where ca is the velocity for the c1 ± c2 case or only c1 or c2 ergo, transversal or longitudinal

plane wave. The case for the angle after the interaction is described as,

tanψ =
± c1ω2

c2ω1
sinθ

1± c1ω2
c2ω1

cosθ
(8.25)

Figures 8.2 and 8.2 represents the geometry of the four shapes design when the different

propagation of waves with modes conversion are considered.
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Figure 8.1: Four shapes of aluminium with the calculation of angles for each case of interac-
tion for S with S and P with S, respectively

Figure 8.2: Four shapes of aluminium with the calculation of angles for each case of interac-
tion for P with P and S with P respectively

The resulting aluminum samples are photographed in Figure 8.2, before introduced in

the immersion tank.
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Figure 8.3: Four shapes of Aluminum samples

The experimental calculus of the angles have been carried out in the project of Molina

[266], where the study interaction of plane waves from different nature between water and

aluminum (see Figure 8.2) was carried out.

Figure 8.4: Draft of the interaction waves in a medium

At the beginning, the following reference table of wave interactions recently described

by Korneev [38] was examined and validated through a device specifically designed to this

experiment (See Figure 8.2).

where = is refereed to the collinear case, when the direction of the propagation is the

same, 6= when the interaction posible, even when the waves are antili-nears (the direction of

the propagation are opposites), + when the interaction is possible, × when the interaction

not possible and white spaces, when the wave is not generated.
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Generated waves
ωr =ω1 +ω2 ωr = ω1 −ω2

N Interaction waves P S P S
1 P(ω1) y P(ω2) = = 6=
2 P(ω1) y S(ω2) 6= + 6=
3 S(ω1) y P(ω2) +
4 S(ω1) y S(ω2) 6= × ×

Table 8.2: Types of waves from interaction of two of them with different frequencies

Figure 8.5: Noncollinear mixing device with two transducers.

With the purpose of extract nonlinear parameters experimentally, a prototype has been

designed 8.2 in order to find desired angles for each nonlinear mixing case extracted in

previous section.

Note that when P propagating from medium one to medium 2 the amplitude of the

generating waves should be multiplied by the transmission coefficient TP = 0.1641. In the

case of sum of frequencies in aluminum from sum of frequencies in water the registered

amplitudes should be divided by the coefficient TP,S (depending on the generating wave

after the interaction). This coefficient is defined by Zoeppritz [267, 268] and denotes the

nature of the wabe and the angle with normal of the surface.

8.3 Experimental results

The receiver was an ONDA calibrated hydrophone (model HNR- 0500) with a bandwidth

of 0.1− 20 MHz. The response signals were sampled with a high resolution A/D converter

after 40 dB preamplification stage and saved for post-processing. The transmitters were two

panametric planar transducers, of central frequency 1 MHz and 0.25 in diameter. We used

two arbitrary wave generators (Agilent 33220) to drive the transmitter at two different fre-

quencies. The ultrasonic excitation frequencies were arbitrarily chosen, the only constraints

being that both driving frequencies and the sum and difference frequencies lay within the
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linear operating region of the transducers, and that fb was not an integer multiple of fa.

Different frequency combinations were used: fa = 6.25 MHz and fb = 4.25 MHz. The

amplitude of the input signal at the high frequency fb (HF) was kept at 7.5 V, while the

amplitude of the input signal at the low frequency fa (LF) was increasing, 10 V. To avoid

unwanted interference effects in the propagation medium, we used short trains of pulses

for excitation and a 10 ms pulse duration was used.

We investigated the generated waves as a function of distance. The transmitter-receiver

distance was increased in 1-mm increments until a total distance of 250 mm between two

mediums water and aluminum. At each distance x from the transmitter, the pressure of the

fundamental, u(0)
a and u(0)

b , and that of the generated harmonics, u(1)
a , u(1)

b , u− and u+, were

determined.

Figure 8.6: Experimental configuration

Figures 8.3 ilustrate a set of measurements carried out in the END lab at the University

of Granada. The prototype is introduced into a immersion tank where the values were

calculated experimentally.

Figure 8.3 shows when the specimen of aluminum was introduced in the immersion tank

and the process of alignment under a laser device and controlling the spirit level with the

designed prototype.

The whole cases was calculated with matlab software with an algorithm that calculated

the FFT and consequently the amplitude of the harmonics for each aluminum sample. The

Figures 8.3, 8.3, 8.3 and 8.3 show the wave received and the FFT for each experiment.
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Figure 8.7: Experimental test to obtain nonlinear acoustic parameters in aluminum

Figure 8.8: Experimental test to obtain nonlinear acoustic parameters in aluminum with a
laser aligment

Under this interaction of two P waves, ψ the output angle is obtained for each cases as

was showed in Figure 8.2. Note that the case of P wave resulting of the interaction is not

posible experimentally.

This interaction of a P wave with a S wave, with ψ as the output angle is obtained for

each cases as was showed in Figure 8.2.

This interaction of a S wave with a P wave, withψ as the output angle is obtained as was

showed in Figure 8.2.

This interaction of two S waves, with ψ as the output angle is obtained as was showed

in Figure 8.2.

Therefore, after the experimental procedure, the results of classical nonlinear acoustic

parameter βτ and βH and new parameters βvp, βdp, βcs and βds can be calculated from

Figures 8.3, 8.3, 8.3, and 8.3. Note that the disaggregated nonlinear acoustic new extension

could be measured by comparing two or more different experiments.

Note that the aluminum nonlinear parameters that were obtained by the different au-

thors is different that is due to the definition of the nonlinear acoustic theory, that converges

with the Hamilton one but not with the Zarembo definition detailed in chapter 5. The TOEC

can be derived due to the relationship established in Chapter 6, when the different nonlin-

ear acoustic parameters are uncoupled from the analytical results. Note that connects with

nonlinear acoustic transversal parameter of Zarembo and Gol’dberg and is the m TOEC of
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Figure 8.9: Nonlinear acoustic parameters in aluminum with signal and FFT for two P-
waves interaction
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Figure 8.10: Nonlinear acoustic parameters in aluminum with signal and FFT for P and S
waves interaction

Murnaghan see Table 4.1. it result converges with the calculation of others authors as Stobbe

and Muir, they are shown in Table 4.2.

Note that this method could be relevant in several cases for solid materials and could

be relevant to consider damaged materials treating to correlate the values with the internal

cracks.
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Figure 8.11: Nonlinear acoustic parameters in aluminum with signal and FFT for S and P
waves interaction

Wave interaction Angle B +A/2 GPa
P-P +ψ1 -2240.07 ×
P-P +ψ2 -1191.41 ×
P-P −ψ1 -2535.70 ×
P-S +ψ1 -893.10 ×
P-S −ψ2 -1760.13 ×
S-P +ψ1 -373.81
S-P −ψ1 -484.57
S-P −ψ2 -244.73
S-S +ψ1 -435.67
S-S +ψ2 -481.07
S-S −ψ1 -491.27

Average -418.52
Standar Deviation 87.62

Table 8.3: Nonlinear parameters characterization of the aluminum samples

8.4 Single transmitter setup

In this section, the acoustic nonlinearity of water was investigated using a variation of the

collinear wave mixing method [269]. One single transducer, driven at two different frequen-

cies fa and fb, was used to generate a third frequency component at fa − fb, fa + fb, 2 fa and

2 fb. Such a configuration allows to cancel out system nonlinearities since no amplification
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Figure 8.12: Nonlinear acoustic parameters in aluminum with signal and FFT for S waves
interaction

of the signal beyond 10V is needed. Perturbation solutions of nonlinear parameter in water

are analytically calculated and validated with experimental measurements.

8.4.1 Perturbation solutions

Let us considerer the equation of motion for plane elastic waves propagating through a

medium, in the absence of body forces, and in index notation as was detailed in the field

of Continuum Mechanics Equations 5.2. The first solution under a perturbation method

framework can be expressed as,

u0 = A sin
(
ω

(
x
cp
− t
)
+ϕ

)
(8.26)

whereω = 2π f is the angular frequency, f is the frequency of the wave, A is the amplitude,

A =
√

A1 + A2, andϕ the phase,ϕ = tan A2/A1. Now, let us consider two monochromatic

waves as zero-order perturbation: u(0) = u(0)
a + u(0)

b at two different frequencies,ωa andωb,

u(0)
a = A1 sin

(
ωa

(
x
cp
− t
))

+ A2 cos
(
ωa

(
x
cp
− t
))

(8.27)

u(0)
b = B1 sin

(
ωb

(
x
cp
− t
))

+ B2 cos
(
ωb

(
x
cp
− t
))

(8.28)

(8.29)
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or in compact form,

u(0)
a = A sin

(
ωa(

x
cp
− t) +ϕa

)

u(0)
b = B sin

(
ωb(

x
cp
− t) +ϕb

) (8.30)

Inserting the zero-order perturbation solutions into Equation linear wave equation part, it

can be shown that the first-order perturbation solution is the sum of four traveling waves

at velocity cp and frequency 2ωa , 2ωb , (ωa +ωb) and (ωa −ωb), respectively. Thus, a

particular solution may be obtained by the method of variations of parameters as,

u(1) = u(1)
a + u(1)

b + u(1)
ab + u(1)

ba (8.31)

where each wave can be written as [270],

u(1)
a = β

ω2
a

4c2
p

A2x sin(2ωa(x/cp − t) +ϕ1)

u(1)
b = β

ω2
b

4c2
p

B2x sin(2ωb(x/cp − t) +ϕ2)

u(1)
ab = β

ωaωb

2c2
p

BAx sin((ωa +ωb)(x/cp − t) +ϕ3)

u(1)
ba = β

ωaωb

2c2
p

BAx sin((ωa −ωb)(x/cp − t) +ϕ4)

(8.32)

As can be observed, the first-order perturbation solution is generated by the fundamental

waves, whose amplitude accumulates with the propagation distance x. In this case, the

nonlinear effect is essentially due to frequency-mixing between four spectral components,

i.e. the double-frequency components (second harmonics) are generated by a mixing of the

fundamental waves with themselves, the sum-frequency component (harmonic at frequency

ωa +ωb) and the difference- frequency component (harmonic at frequency ωa −ωb are

generated by a mixing of the two fundamental waves between them.

If we assign u(0)
a as the amplitude of the fundamental wave at frequency ωa, u(0)

b as

the amplitude of the fundamental wave at frequency ωb, u(1)a and u(1)b as the amplitude

of the second harmonic, u+ as the amplitude of the harmonic at frequency ωa +ωb and

u− as the amplitude of the harmonic at frequency ωa −ωb, we can obtain four different

expressions for the acoustical nonlinearity parameter as a function of these four harmonics.

Furthermore, these expressions can be written in terms of pressures of the fundamentals p(0)a

and p(0)b , the second harmonics p(1)a , respectively, p(1)b , the sum and difference harmonics

p+, p−, β can be derived from the acoustic pressures of generated components f+ = fa + fb,

f− = fa − fb, 2 fa, 2 fb and fundamental components fa, fb as,
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β =
ρc3

p

π fax
p1a(x)
p2

0a(x)

β =
ρc3

p

π fbx
p1b(x)
p2

0b(x)

β =
ρc3

p

π f+x
p+(x)

p0a(x)p0b(x)

β =
ρc3

p

π f−x
p−(x)

p0a(x)p0b(x)

(8.33)

8.4.2 Experimental setup

A schematic view of the experimental setup is shown in Figure 8.4.2. Both the transmitter

and the receiver were immersed in a tank that contained degassed water at room tempera-

ture and mounted on a 3-axes scanner, with guarantees perfect alignment along the propa-

gation direction of the sound.
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Figure 8.13: Schematic representation of the experimental setup

The receiver was an ONDA calibrated hydrophone (model HNR- 0500) with a band-

width of 0.1 − 20 MHz. The response signals were sampled with a high resolution A/D

converter after 40 dB preamplification stage and saved for post-processing. The transmit-

ter was a panametric planar transducer, of central frequency 1 MHz and 0.25 in diameter.

We used two arbitrary wave generators (Agilent 33220) to drive the transmitter at two dif-

ferent frequencies. The ultrasonic excitation frequencies were arbitrarily chosen, the only

constraints being that both driving frequencies and the sum and difference frequencies lay

within the linear operating region of the transducers, and that fb was not an integer multi-

ple of fa. Different frequency combinations were used: fa = [4, 4, 4, 3.6, 5.4, 3.6] MHz and

fb = [5.7, 6.3, 5.5, 4.3, 6.3, 6.3] MHz. The amplitude of the input signal at the high frequency

fb (HF) was kept at 7.5 V, while the amplitude of the input signal at the low frequency fa

(LF) was increasing, [5, 7.5, 10] V. To avoid unwanted interference effects in the propagation

medium, we used short trains of pulses for excitation and a 10 ms pulse duration was used.
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We investigated the generated waves as a function of distance. The transmitter-receiver

distance was increased in 1-mm increments until a total distance of 250 mm. At each dis-

tance x from the transmitter, the pressure of the fundamental, u(0)
a and u(0)

b , and that of the

generated harmonics, u(1)
a , u(1)

b , u− and u+, were determined, for the different frequencies

and excitation levels.
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Figure 8.14: Signal received by the hydrophone after 12.5 cm of propagation, for input fre-
quencies and amplitudes fa = 5.4 MHz, A = 10 V and fb = 6.3 MHz, B = 7.5 V.

8.4.3 Numerical results of collinear mixing

All experimental data were collected in degassed water at room temperature. The sound

speed determined from the travel time for several transmitter-receiver distances was 1486±
2 m/s. The near field distance (NF) was characterized for each pair of excitation frequencies

as,

NF =
2π fcr2

2c0
(8.34)

where fc is the called central frequency, defined by the two input frequencies as fc =
fa+ fb

2 ,

r is the radius of the two transducer and c0 is the compressional sound speed in water. The

corresponding values are shown in Table 8.4 with HF and LF.

HF [MHz] LF [MHz] NF [m]
4.0 5.7 0.1017
4.0 6.3 0.1080
4.0 5.5 0.0996
3.6 4.3 0.0829
5.4 6.3 0.1227
3.6 6.3 0.1038

Table 8.4: Characterization of the Near field (NF) for each pair of excitation frequencies.

Frequencies farther apart from the central frequency of the transducer presented results

with less resolution as the limited frequency band of the transducer. To highlight the fre-

quency mixing, the results for the pair of frequencies fa = 5.4 MHz and fb = 6.3 MHz will

be discussed further, since they are within the transducer band frequency. An example of a

113



collected signal at 12.5 cm from the transducer surface and its amplitude spectrum, for an

input signal of frequencies fa = 5.4 MHz and fb = 6.3 MHz, is shown in Figure 8.4.2.
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Figure 8.15: Representation of the experimental data used for the acoustic nonlinear param-
eter determination (sum and difference harmonics), for input frequencies and amplitudes
fa = 5.4 MHz, A = 10 V and fb = 6.3 MHz, B = 7.5V.

The representation of the experimental data for the sum and difference harmonics

(p+, p−) is depicted in Figure 8.4.3, where the horizontal axe represents the propagation

(transmitter-receiver) distance, and the input excitation voltage for the low frequency, re-

spectively. The vertical axe represents the measured pressure of the sum and difference

harmonics generated in the propagation through water. As can be seen in Figure 8.4.3, the

difference harmonics, p− is significantly lower than the harmonic of the sum, p+, which

contradicts the analytical solution. According to Equation 8.32, the amplitude of both har-

monics, sum and difference, should be the same.

Figure 8.16 shows the pressure of the four different harmonics versus the propagation

distance. The amplitude of the harmonics is greatly affected by interference effects in the

proximity of the transmitter. These effects are mainly due to the interference of the wave that

travels back and forth between the transmitter and the receiver, and due to the diffraction in

the close proximity of the transmitter. The pulse trains used in these experiments are short in

duration, but interference will occur when the transmitter-receiver distance is shorter than

the travel time between the two. Comparing to the classic finite amplitude method widely

used in the literature, where additional effects can be generated from the necessary high

power to generate the second harmonic, no high power is needed here for the harmonic

generation.

As expected from the contradictory measured amplitudes, non reliable value was ob-

tained from the difference harmonics (p−). Furthermore, it can be noticed that the experi-

mental values are stable in a short distance and beyond the NF distance they diverge from

the literature value [271]. Nevertheless, further experimental works are needed to figure out

the apparently contradictory results with the difference harmonics, i.e. the one generated at

frequency fa − fb.
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Figure 8.16: Harmonic pressures vs. transmitter-receiver distance, for input frequencies and ampli-
tudes fa = 5.4 MHz, A = 10 V and fb = 6.3 MHz, B = 7.5 V.
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Figure 8.17: Acoustic nonlinear parameter β calculated at different transmitter-receiver distances,
for input frequencies and amplitudes fa = 5.4 MHz, A = 10 V and fb = 6.3 MHz, B = 7.5 V.

Note that the expression of β nolinear acoustic parameter is the same that the one ob-

tained in the previous section, when the collinear mixing was derived as the first case of

interaction of two P waves as in Equation 8.9 for water.

Figure 8.17 shows the β parameter calculated using the expressions (8.33). The dashed-

line represents the literature value for water, β = 3.5, which is compatible with values

obtained in previous literature by other methods.
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Profound study of nature is the most fertile source of mathematical
discoveries.

Joseph Fourier 1783-1830

116



117





9
Torsional ultrasonic transducer to measure soft

tissue nonlinearities

The aim of this chapter is to test the feasibility of a new type of ultrasonic configuration,

named torsional ultrasound, to quantify nonlinear parameters of soft tissue. To this end a

new concept of sensor is designed and prototyped, based on the theory of piezoelectricity.

9.1 Sensor design and optimization

The piezoelectricity constitutive equations are described in this chapter in the charge-stress

and electric field-strain form, because they are necessaries to implement piezoelectric prop-

erties. The ultrasonic transducer is made of steel and piezoelectric ceramic taking into ac-

count two layers of dermic and connective tissue where the waves are propagated. This

process is simulated by FEAP software based on finite element method and it is detailed

below.

9.1.1 Piezoelectric formulation

Piezoelectricity is an interaction between mechanical and electric fields, whereby electric

charge that accumulates in certain solid materials in response to applied mechanical stress.

It is a coupling between the elasticity and the electricity that makes the concept of transduc-

tion possible. Linear piezoelectricity is described analytically within constitutive equation,

defined how stress (T), strain (S), charge-density displacement (D), and electric field (E)
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interact by two constitutive equations. The constitutive laws are in Strain-Charge form:

T = CE · S + eT · E (9.1)

D = e · S−εS · E (9.2)

where CE is the piezoelectric stiffness matrix, e is the piezoelectric coupling coefficient ma-

trix, eT is its transposed and εS is permitivity coefficient matrix.

The equilibrium and compatibility equations are stated as:

∇ ·D = 0; E = −∇φ (9.3)

∇S · T = 0; S =
1
2
(∇u +∇uT) (9.4)

where u = (u1, u2, u3) denotes the displacement vector field, and φ is the electric poten-

tial or voltage. Finally, the following standard sign criteria is used: the electric field and

stress values are considered positive for the direction of polarization of the material and for

tractions, respectively.

9.1.2 Finite element formulation

The governing discretized equation of motion of the system using is written in the form,

MÜ + KU = F̄(t) (9.5)

Ua =




ua
1

ua
2

ua
3

φa




(9.6)

where U and Ü are the displacement and acceleration vectors including the three compo-

nents of the displacements ua
i and the voltage degree of freedom φa associated to node a,

respectively, M is the mass matrix, K is the stiffness matrix, and F̄(t) is the time history of

the applied load.

The global stiffness matrix of the element can be expressed as

K =
∫

V
B(e)TD*B(e)dΩ (9.7)

where D* is the elasticity matrix that transforms effective strains to stresses including the

electric field coupling at every point of the domain. It depends on the piezoelectric consti-

tutive equations, and can be represented in matrix form as described below.
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T11

T22

T33

T12

T13

T23

D1

D2

D3




=




CE11 CE12 CE13 0 0 0 e11 e21 0

CE12 CE22 CE23 0 0 0 e12 e22 0

CE13 CE23 CE33 0 0 0 e13 e23 0

0 0 0 CE44 0 0 0 0 e34

0 0 0 0 CE55 0 0 0 e35

0 0 0 0 0 CE66 e16 e26 0

e11 e12 e13 0 0 e16 ε11 ε12 0

e21 e22 e23 0 0 e26 ε12 ε22 0

0 0 0 e34 e35 0 0 0 ε33




︸ ︷︷ ︸
D*




S11

S22

S33

S12

S13

S23

E1

E2

E3




(9.8)

and,

B(e) =




Na
,1 0 0 0

0 Na
,2 0 0

0 0 Na
,1 0

Na
,2 Na

,1 0 0

Na
,3 0 Na

,1 0

0 Na
,3 Na

,2 0

0 0 0 Na
,1

0 0 0 Na
,2

0 0 0 Na
,3




(9.9)

where B(e) is the strain-displacement matrix of the element (e), and the superscript T de-

notes the transpose operator, being Na
,i, i = 1, 2, 3 the shape functions defined for each type

of element.

9.1.3 Implementation

The numerical tool selected for solving the response of the model (forward problem) is the

Finite Element Method (FEM). A 8-node quadratic finite element is chosen because it im-

proves the ratio between precision of shape functions and the size of the system of equa-

tions, with 4 degrees of freedom per node described in equation 8. It has been implemented

to solve the model given by the previous constitutive equations. The piezoelectric element

was developed and implemented in the research academic finite element code FEAP [163]

because it is an open code allowing us to introduce our piezoelectric element formulation.

The strain-charge to stress-charge transformation has been used to introduce the piezoelec-
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tric properties:

CE = SE
−1 (9.10)

e = d · SE
−1 (9.11)

εS = εT − d · SE
−1 · dT (9.12)

9.1.4 Parametric geometry

Due to the difficulty that mechanical parameter measurement and detection of soft tissue

pathologies may lead to, a torsional S-wave transducer design is proposed in this paper,

where the transmitter and the receiver are fit inside a circular crown that can be encapsulated

in a clinical diagnostic device.

To model it, the partial differential equations described above require the geometry, ma-

terial properties and boundary conditions to completed the problem definition. The geom-

etry of the specimen comprises a 90 degree sector of a circular crown 90 degrees. The cyclic

boundary conditions ensures that the behavior is equivalent to a complete model.

The boundary conditions are completed with the excitation, which is defined by a 100 [V]

peak-to peak voltage difference applied between the upper and lower sides of the piezoelec-

tric ceramics, with a spike function based on Heaviside function time dependency:

f = AH(t)H(D0 − t)
t

D0
(9.13)

where A is the amplitude, H(t) is Heaviside function, D0 is the distance to origin in the x
axes, and t is the time. The output of the model (signal V), consist of a difference of voltage

at the piezo-ceramic blocks ends in the receiver ring.

The PZT-5A laminate is considered as prismatic block of size Lx [mm], Ly [mm] and Lz
[mm], as shown in table 9.1 and figure 9.1.

The geometry construction in FEAP consists in 86 blocks comprising the transmitter disc

pair, receiver crown pair, set of piezoelectric ceramic blocks and two layers of dermic and

connective tissue and piezoelectric ceramic, respectively (see figure 9.2). Mesh size and time

increment discretization are chosen in section 5 based on a convergence study (as shown in

figures 9.5 and 9.6).

The torque sensor simulation was pre-dimensioned based on the dimensions tested of

the simplified analytical model described in the next section, and summarized in the table

below.

The top and bottom central discs and external rings material will be selected later, within

the optimization procedure.

• Crystal symmetry class: Uniaxial

• Density: 7750 [kg/m3]

• Relative permitivity:
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Description of design parameters Dimensions [mm] Label
Piezoelectric ceramic width 1 pw
Piezoelectric ceramic length 1 pl

Piezoelectric ceramic thickness 2 pt
Disc piezoelectric ceramic eccentricity 2.5 dpe

Disc radius 4.25 dr
Ring piezoelectric ceramic eccentricity 7.5 rpe

Ring width 2 rw
Disc and ring thickness 8 drt
Table 9.1: Preliminar dimensions of the sensor design.

Figure 9.1: The geometry of the transducer describes a scheme with the outline of the trans-
mitter and reception elements. Projections are shown above.

εT

ε0
=

∣∣∣∣∣∣∣∣

1730 0 0

0 1730 0

0 0 1730

∣∣∣∣∣∣∣∣
, (9.14)

where ε0 = 8.854 ∗ 10−12 [F/m]

• Flexibility matrix:
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SE =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

16.4 −5.74 −7.22 0 0 0

−5.74 16.4 −7.22 0 0 0

−7.22 −7.22 18.8 0 0 0

0 0 0 47.5 0 0

0 0 0 0 47.5 0

0 0 0 0 0 44.3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∗ 10−12 [m2/N] (9.15)

• Piezoelectric coupling:

d =

∣∣∣∣∣∣∣∣

0 0 0 0 584 0

0 0 0 584 0 0

−171 −171 374 0 0 0

∣∣∣∣∣∣∣∣
∗ 10−12 [C/N] (9.16)

9.1.5 Simplified model of torsion transducer

A simplified analytical model of the fundamental oscillatory movement of the torsion ultra-

sonic transducer is derived. To this end, a number of assumptions are carried out mainly on

the relevance of elements of the design and on their movement shape (eigenmode), in order

to arrive at a single degree of freedom system. Second, the piezoelectric element is assumed

to have a predominant deformation law uniformly distributed and linearly proportional to

the electrical excitation. These assumptions are broken down below to yield the analytical

equations of motion:

Assumptions

• Reduction to a single-degree-of-freedom system, where the eigenproblem reduces to a

single frequency and a single mode (steady-state movement shape).

• Movement is assumed to be dominated by torsion rotation θ in radians.

• Dynamic equilibrium of torsional moment:

k∗θ+ I∗θ̈ = 0 (9.17)

where k∗ is the stiffness in [Nm/rad] and I∗ is the inertia.

• Steady-state solution has the form:

θ = θ0 sin (ωt) (9.18)

as the transient solution is neglected for computing the eigenvalue.

• Natural frequency (eigenvalue that fulfills the equilibrium 9.17):

ω =

√
k∗

I∗
(9.19)

in [rad/s], or f = ω
2π in [Hz].

• Stiffness of piezoceramic due to moment:
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k∗ = MT

θ
(9.20)

where MT is the applied torsional moment.

• Since each of the n piezoceramic elements is dominated by shear deformation, and

they are located at distance d from the center of rotation

MT = ndF = ndabσxz (9.21)

where F is the resulting force of the shear stress σxz applied over the area a× b of the

element.

• The element described above deforms due to the shear stress the amount εxz, which

creates the differential displacement u∗ = l/εxz between upper and lower sides sep-

arated distance l. This links to the rotation of the circular array of piezoceramic ele-

ments,

θ = u∗/d = l/dεxz (9.22)

• The effective length of the piezoelectric elements is reduced as leff ' 2l to account for

the flexibility of the clamping into the mass. Hence, θ = leff/dεxz.

• The piezoceramic behaves linearly elastically,

σxz = G∗εxz (9.23)

with modified shear stiffness G∗ adding piezoelectric coupling [151].

• The inertia against rotation is dominated by the mass blocks of density ρ, which are

either cylindrical or annular (ring-shaped) of radius r. The inertia of the piezoelectric

and other elements is comparatively neglectible.

• Inertia and mass of cylinder:

I =
mr2

2
, m = πr2hρ (9.24)

where h is the height of the cylinder (in the axial direction).

• Inertia and mass of ring:

I = mr2, m = 2πrheρ (9.25)

where e is the thickness of the ring (in the radial direction).

• Subsystem eigenfrequency in the case of cylinder mass. Combining equations 9.17 to

9.24,

f =
1

2π

√
nabd2G
π
2 leffhr4ρ

(9.26)

125



• Subsystem eigenfrequency in the case of ring mass. Combining equations 9.17 to 9.25,

f =
1

2π

√
nabd2G

2π leffher3ρ
(9.27)

When the transducer contains both a cylinder mass and a ring mass for each of the

transmitting and receiving subsystems, their eigenfrequencies should be matched in

order to maximize the combined resonance amplification.

9.2 Validation

The resonance frequency of the complete system for the final optimized design parameters

is given in table ??. It is computed from the FEM model by measuring the time between

peaks of cycles (see figure 9.3). It is found that they coincide with the frequencies of the

sensor calculated from the analytical simplified model with a relative error less than 1% in

both cases, shown in table 9.2.

Model Frequency [kHz] Relative Error to FEM [%]
Analytic Disc 27.977 0.680
Analytic Ring 28.180 0.039

FEM 28.169 -
Table 9.2: Validation analytic design vs. FEM
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Figure 9.2: Different states of torsional transducer at instants t = 9, 18, 117, 135 µs.

9.3 Inverse problem

The physical principle to mechanically characterize soft tissue is the following. A physical

magnitude is propagated along the medium to be analyzed, which distorts the wave until

it is measured at an accessible surface (see figure 9.4). The mechanical parameters respon-

sible for the modification of the wave can be inferred from the measured one under certain

circumstances by means of the inverse problem theory discussed below.

The problem of nondestructive characterization of mechanical tissue properties is solved

by a model-based inverse problem (IP) approach that consists of two steps: (i) to excite the

system applying a dynamic displacement, and (ii) to measure the response (displacements
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Figure 9.3: example of measurement validating design

Figure 9.4: Simplified system for measuring ultrasound wave distortion through tissue and
reconstruct mechanical properties.

in the time domain). A finite element method model is used in the forward procedure in

previous section. We assume the hypothesis that the dynamic behavior of the tissue in its

healthy and pathological states is predictable using a well-calibrated model in the sense of

faithful reproduction of real measurements.

Then, the measured signal is processed to solve the inverse problem, i.e., to determine the

changes in the tissue from its original state. A genetic algorithm search tool [272, 164] is

used to minimize the discrepancy between the experimental readings and the numerically

predicted trial response, by means of a cost functional designed to calibrate for coherent

uncertainties and noise, and providing maximal robustness and sensitivity. GA is a heuristic

search algorithm that mimics natural selection, where a population of candidate solutions

are evaluated in terms of their fitness. An iterative process generates, during a number of

generations, child populations through the processes of tournament, crossover and mutation
and selection, aimed at converging to the fittest solutions.

9.3.1 Cost functional

The readings from the sensors are time-domain signals denoted by V for the theoretical or

synthetic case, and Vx for the experimental case. A reading V0 in the healthy state of the

tissue is defined for calibration, and the measurement to analyze is defined as,
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Φ =
V −V0

RMS(V0)
(9.28)

where the RMS values are defined for a discrete function f in time domain f (ti) at N sam-

pling points as,

RMS( f ) =

√√√√ 1
N

N−1

∑
i=0

f (ti)2 (9.29)

A residual γ is defined from the misfit or discrepancy Φx −Φ between the measurements.

γ = (Φx −Φ) (9.30)

The cost functional f or fitness function is defined after a residual vector γ of size Ni as the

quadratic form,

f =
1
2
|γ|2 =

1
2

1
Ni

Ni

∑
i=1
γ2

i (9.31)

It is useful to define an alternative version of the cost functional denoted as f l , with the

property of improving the sensitivity while approaching the optimum, just by introducing

a logarithm and a small value ε to ensure its existence. This definition particularly enhances

the convergence speed when the minimization is tackled by with genetic algorithms or other

random search algorithms (see Rus et al.[273]),

f l = log( f +ε) (9.32)

9.3.2 Probability of detection

The following POD definition is defined to provide an idea of the probability that a pathol-

ogy is positively detected, given a monitored tissue specimen, when some noise and system

uncertainty are present. The detection and characterization of pathologies is based on the

interpretation of the alterations of the measurements due to the presence of the pathology.

Other model uncertainties such as density value, dermal layer thickness variability or sen-

sor manufacturing geometrical tolerances, and system noises may also alter these measure-

ments, but they are considered to fall outside the scope of this paper because the effect of

those uncertainties is grouped in the inserted measurements noise.

We propose to estimate the POD by the probability that the alteration of the measure-

ment caused by the pathology is larger than that caused by the noise. If we label the alter-

ation on the measurement readings caused by the pathology as the SIGNAL component, and

the alteration generated by the noise as NOISE, the former definition can be formulated as

[272],
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POD = P

(
|SIGNAL|2

|NOISE|2
> 1

)
(9.33)

Furthermore, three variables are be considered in the problem of maximizing the probability

of detection (POD), the level of noise, denoted by σ , the severity of the pathologies in terms

of shear stiffness and damping alteration in different tissue layers p considering a reference

healthy tissue r, denoted by patpr, and the cost functional that collects the effects of those in

a scalar function f , as defined above.

Nevertheless, we propose a new criterium of POD associated to multivariate patholo-

gies, to consider the case when a sensor should be sensitive to pathologies for a range of

different reference or healthy tissues r and a range of tissue layers p, labelled robust POD

(RPOD), and defined using a pessimistic criterion as follows,

RPOD = min
patpr

POD(patpr) (9.34)

POD(patpr) = P

(∣∣SIGNAL(patpr)
∣∣2

∣∣NOISE(patpr)
∣∣2 > 1

)
(9.35)

where patpr = {∆Gc = Gc − G̃c
r , ∆Gd = Gd − G̃d

r }, G is shear modulus, G̃ correspond to

reference healthy tissue, and c and d are refer to connective and dermic tissue respectively.

From the definition of the simulated noise, the dependency of the variation of the mea-

surement with increasing noise is also linear. These two considerations about linearity sup-

port the proposal that the measurements on a specimen with noise and with pathology can

be expressed as Taylor series expansion centered at the case without noise and without pathol-

ogy , and neglecting higher order terms (hot) than linear,

ψi(patpr,σ) = ψi(0, 0) +∑
p

patpr
dψi

dpatpr
(0, 0)

︸ ︷︷ ︸
SIGNAL

+σ
dψi

dσ
(0, 0)

︸ ︷︷ ︸
NOISE

+hot (9.36)

where i = 1, ..., Ni are the measuring points for a general case (one in our design). The first

term on the right hand side is the measurement at point i without noise nor pathology. The

second term is the alteration of that measurement due to the presence of the pathology only,

and is labeled SIGNAL, following the reasoning above. The third term is the alteration of the

signal originated by the noise only (NOISE).

The second term of the Taylor series depends on the sensitivity of the measurements on

the pathology, and can be approximated by finite differences,

dψi

dpatpr
( ˜patpr, 0)

= ψi,patpr
( ˜patpr, 0) =

ψi( ˜patpr + ∆patpr, 0)−ψi( ˜patpr − ∆patpr, 0)
2∆patpr

(9.37)
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where ˜patpr → 0 is a small pathology used to guarantee that the FEM captures the perturba-

tions produced at small ∆patpr (since the case patpr = 0 with no pathology needs to be com-

puted with a topologically different mesh), in order to compute ψi,patpr
(p0, 0) ≈ ψi,patpr

(0, 0).

In addition, a central difference scheme, which yields an error of the order O(∆pat2
pr), be-

comes available. Since the noise component is linear by definition, a forward difference

scheme is adopted, whose O(∆σ) error is sufficient.

The third term of the Taylor series can be directly derivated if the definition of POD is

assumed,

dψi

dσ
= ξiRMS(ψFEM

i ) = ξiRMS (9.38)

Equations (9.36), (9.38) and the relationship |Yi|2 = 1
m ∑

m
i=1 Y2

i , can be combined into (9.33)

to obtain,

PODpr = P

(
patpr

2 1
Ni

∑
Ni
i=1(ψi,patpr

(0, 0))2

σ2RMS2 1
Ni

∑
Ni
i=1ξ

2
i

> 1

)
(9.39)

= P




patpr
2 >

RMS2σ2
∑

Ni
i=1ξ

2
i

Ni

∑
i=1

(ψi,patpr
(0, 0))2

︸ ︷︷ ︸
Sp




(9.40)

If the noise generator ξi is a random variable, the POD is a probability of the stochastic

variable patpr
2, described by the cumulative probability density function F,

PODpr = F

(
RMS2σ2

∑
Ni
i=1ξ

2
i

Sp

)
(9.41)

Using Monte Carlo techniques and error propagation theory the noise in the measurement

points can be concluded to follow a normal distribution [272]. Assuming this distribu-

tion, the squared sum of the noise ξi is known to follow a Chi-square distribution, since

∑
Ni
i=1ξ

2
i −→ χ2

Ni
(e.g. [274]). The parameter of the Chi-square distribution is the number

of degrees of freedom Ni, which in this case is the number of measurement points. In the

case that Ni > 10, the Chi-square distribution can be approximated by a Gaussian or normal

N distribution χ2(Ni) ≈ N(Ni − 2/3,
√

2Ni) with mean Ni − 2/3 and standard deviation√
2Ni. This approximation in (9.41) yields,

patpr
2 −→ N

[
RMS2σ2(Ni − 2/3)

Sp
,

RMS2σ2√2Ni

Sp

]
(9.42)
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Since F(x) =
∫ x
−∞ f (y)dy is the cumulative of the normal probability density function f ,

whose inverse is x = G(F(x)), the useful pathology severity to noise ratio patpr/σ can be

expressed from (9.42) given a POD level as,

patpr

σ
=

√
RMS2(Ni − 2/3)

Sp

(
1 + G[PODpr]

√
2Ni

Ni − 2/3

)
(9.43)

Note that the analytical expression (9.42) is only valid for noise with normal distribution at

the measurement points.

The central focus of our contribution in this chapter is the optimization of the transducer

design with the aim of maximizing the sensitivity to shear properties. Several numerical

approaches can be used to evaluate transducer designs for each of the design parameters

required, to maintain transducer performance within a specified range [161, 162]. The is-

sue of the probability of detection (POD) has only been addressed independently, under the

name of identifiability, in statistics and mathematics, with a wide application in chemistry

and physics. In this chapter, the design optimality criteria called Robust Probability of De-

tection (RPOD) is proposed as a methodology approach (see Chapter 8). It is defined with

the goal of maximizing the transducer sensitivity to the tissue properties while minimizing

the sensitivity to noise ratio of the multilayered shear elastic constants.

9.3.3 Convergence

In order to select the space and time discretization size, a convergence study is carried out,

aimed at finding an acceptable trade-off between computational speed and model error.

Two discretization parameters are responsible for convergence: (1) time incremental, and

(2) element size, which is inversely proportional to the number of elements.

The time increment convergence was obtained evaluating in a range within 12 [ns] and

3200 [ns] in finite element model and was described by the following figures, where 25 [ns]

was chosen as the optimal time step. P waves speedily oscillating were captured with 12 [ns]
(see figure 9.6), and S waves slowly oscillating whereas S-waves were only reproduced with

3200 [ns]. Therefore, P waves have been flittering-out numerically.
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Figure 9.5: Time step convergence
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Figure 9.6: High incremental time time step convergence

The study of convergence of the spacial mesh was obtained from twelve mesh refinement

parameters q3, n, m, n2, q5, q2, q1, q4, l, p, l1 and l2. The final combination of parameters

was chosen according to an appropriate error to computational time trade-off, and the final

model consists of 1052 nodes, 186 elements and 32 time increments. The following chart

describes the geometry of the parametric distribution of the blocks of elements and their

mesh parameters (see figure 9.7).

Figure 9.7: Geometry of the blocks and mesh parameters.
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Figure 9.8: Simulation of evolution of several control points of the model.

The purpose of the numerical results is to obtain conclusions about which experimental

design is better in characterizing mechanical tissue properties. To the latter end, three

independent criteria are evaluated numerically: The effects of the excitation and driving

frequency combination on (i) the measurements, (ii) the cost function and (iii) the RPOD,

are studied for a set of configurations. The scope is to extract some a priori thumb rules that

allow to select those with a more accessible minimum in the cost function, and guarantee

satisfactory results for a minimization algorithm.

9.3.4 Simulated measurements

Consider the specimen described in previous sections, a sample of resulting measurements

is shown in figures 9.8 and 9.9. The simulated signal incorporates a 10% of noise to avoid

the inverse crime. The inverse crime consists in using the same model for simulating the

measurements than for reconstructing or inverting the unknowns instead of generating the

measurements by a different procedure. This is badly regarded in the inverse problem com-

munity since a perfect reconstruction is easily achieved, and robustness cannot be assessed,

since any small discrepancies between model and reality are not taken into account, which

yields an unreal and optimistic result.

9.3.5 Sensitivity analysis

The materials of the disc and ring evaluated in the design were steel, aluminum, carbon

fiber, ceramic and PMMA with the following mechanical properties (see table 9.3 below).

These materials were chosen according to their mechanical properties and the quality of the

simulated received signal in terms of amplitude. The piezoelectric properties of PZT-5A

are provided by the material manufacturer, and the Rayleigh stiffness damping is estimated

from our experimental experience.

A sensitivity analysis was performed too by assessing the model dimensions according

to the ranges chosen with a convergence criteria shown in table 9.4.
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Figure 9.9: Simulated measurements for model design, noise 10%
Material Young Modulus [MPa] Poisson coefficient Density [kg/m3]

Steel 210 0.3 7800
Aluminium 65 0.3 2700

Carbon 150 0.3 1500
PMMA 3 0.3 1200
Ceramic 80 0.3 1800

Table 9.3: Materials used in the design

Design Parameters Range Reference [mm] Label
Piezoelectric ceramic width [0.75, 2] 1 pw
Piezoelectric ceramic length [0.5, 2] 1 pl

Piezoelectric ceramic thickness [0.5, 4] 2 pt
Disc piezoelectric ceramic eccetricity [1.5, 3.5] 2.5 dpe

Disc radius [1.75, 5.75] 4.25 dr
Ring piezoelectric ceramic eccentricity [5.75, 8.5] 7.5 rpe

Ring width [1.5, 2.5] 2 rw
Disc and ring ceramic thickness [3, 13] 8 drt

Table 9.4: Design parameters and their admissible ranges.

The first part of the sensitivity study for the model parameters concerns the design ge-

ometrical dimensions of the sensor within their admissible ranges. It follows that, as the

width of the piezo pw piezoelectric width from 0.75 to 2.00 [mm] increases, the P-wave am-

plitude for high frequency and frequency increases too. However, the S-wave amplitude at

low frequency both outside and inside the ring is indifferent to this range. The same ap-

plies to the length of piezoelectric pl piezoelectric ceramic length: the P-wave amplitude is

directly correlated with it, for both high and low frequency components of the response.

Thereafter, we analyze the sensitivities regarding design ranges for the sensor geome-

try. dpe denotes the disc piezoelectric ceramic eccentricity from the center of the sensor,

which varies from 1.50 to 3.50 [mm]. The amplitude of the P-wave amplitude is observed to

increase with dpe. However the disc radius dr shows an opposite trend, as the P-wave am-

plitude decreases when dr increases for frequencies above 1 [MHz] and below 50 [kHz]. The
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same happens to the amplitude of waves at low frequency S. The voltage signal increases

with the disc radius distance dr.

The next parameter to be analyzed is the ring piezoelectric ceramic eccentricity rpe. Here,

the range varies between 5.75 and 8.5 [mm], and no change is observed by varying this

design parameter.

The following parameter was studied for which sensitivity analysis was rw defined as

the width of the ring. The ranges studied varied between 1.50 and 2.50 [mm] and showed no

significant differences in the outcome of the movement amplitude either within the interior

of the sensor, the ring, or the recorded voltage signal. Notably, only the S wave amplitude

at low frequency in radial displacement decreases with this distance.

Finally, the disc radius thickness drt generated a decrease in the P wave amplitude at

frequencies above 1 [MHz] and S-wave (circumferential component of the movement) be-

low 50 [kHz]. The signal voltage amplitude hardly changes for the studied range of values.

Some examples of sensitivity analysis have been calculated and are represented below in

figure 9.10.
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Figure 9.10: Example of sensitivity analysis for rpe and dr parameters with total time 200 µs
related to turn displacement disc and radial displacement ring
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Tissue sensitivity analysis

Hereinafter, the calculation of the sensitivity of the model parameters that describe the tissue

pathology is developed, both for the dermal tissue layer and for the layer of connective tis-

sue, which were chosen as significant within the model. To validate the model, the ranges of

values of S-wave velocity in both dermic tissue and connective tissue, as well as the P-wave

speed were verified to agree with literature values. Our simulated values ranged for the S

wave velocity in [20, 380] [m/s], and for P-waves [1200, 1800] [m/s], while the thicknesses

layers in dermic and connective tissue was allowed to range at [0.3, 0.7] [mm].(see [275, 276]

and figure 9.11).
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Figure 9.11: Example of sensitivity of connective and dermic tissue with total time 200 [µs]
turn radial displacement disc and voltage signal varying secondary wave speed

By varying the shear modulus of dermal tissue, we find that the amplitude of P waves

of frequency above 1 [MHz] behaves independently for the allowed range of values. Inter-

estingly, the S-wave amplitude at the ring varies, whereas it does not change at the disc.

9.3.6 Effects on cost functional

The shape of the cost function provides another subjective way to evaluate the sensitivity of

the numerically predicted signals, based on the following criteria:
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• The existence of local or global minima affects the convergence of the search algorithm.

• Steep minima are better than those providing soft valleys, due to algorithm conver-

gence performance.

• Valleys that present shapes close to circular are considered as an indicator of uncou-

pled mechanical properties of soft tissue parameters.

Figure 9.12 shows a slice of the multidimensional cost function as functions of the param-

eters Gd and Gc that are equivalent to CE44, CE55 and CE66 (see equation 8), for configuration

of the model.
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Figure 9.12: Cost functional as a function of the parameters with reference Gd and Gc. The
cost function is minima for the model (10,10) noted by +.

9.3.7 Effects on POD

The aforementioned criteria is aimed at evaluating the local behavior of the cost functional,

regardless of the noise effects. However, maximizing the POD enables to find the smallest

pathology given the presence of experimental noise, independently of the robustness of the

convergence of the search. Moreover, the POD serves as a quantifiable and comparable mag-

nitude that can be used as an objective optimality criterion. Figure 9.13 shows an example

of the POD estimation for one excitation configuration for increasing pathological values,

whereas the dependency of the POD on the pathology extent is illustrated for a fixed noise

level that amounts to 10 %.
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Figure 9.13: Dependency of the POD on the pathology indicator.
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9.3.8 POD optimization

Once the effects of the POD are identified, the optimization is calculated to demonstrate

how the POD serves as an optimality design criterion. The first four graphs show slices of

regions around maximum POD over the 8 parameters of the model. The fifth graph shows

the convergence of the genetic algorithms search with a population of 20 individuals and 50

generations of the best value. The last graph shows the optimized parameters for the best

POD represented in table 9.5 and in figure 9.14.
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Figure 9.14: POD optimization

Note that the sensitivity of the sensor is increased 172 times with respect to a reference

design. Finally, the central frequency of this design results 28 [kHz].

Final dimensions of transducer were introduced in the manufactured design taking into

account in the chosen material of steel.
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Design Parameters POD optimization [mm] Label
Piezoelectric Width 1.9 pw
Piezoelectric Length 0.8 pl

Piezoelectric Thickness 2.8 pt
Disc Piezoelectric Eccentricity 2.7 dpe

Disc Radius 5.1 dr
Ring Piezoelectric Eccentricity 5.9 rpe

Ring Width 1.6 rw
Disc-Ring Thickness 4.6 drt
Disc-Ring Material Steel drm

Table 9.5: Final dimensions of transducer based on POD optimization

Figure 9.15: Manufactured sensor.

The first torsional ultrasonic transducer was manufactured by END lab team at the Uni-

versity of Granada in 2013 as is shown in Figure 9.15. The next section provides the pos-

sibility of measure linear a nonlinear parameters of a material with a quasifluid nature or

tissue.

9.4 Torsional waves feasibility and capability for assessing measurements

The aim of this section is to explore the possibility of generate harmonics experimentally

with a torsional ultrasonic transducer. The design of this sensor have been developed and

improved for this purpose and widely reporter in the precious chapters. The amplitude

of harmonics carried out the extraction of nonlinear classical acoustic parameter but taking

into account as novelty the deviatoric shear part.

It is well known, the physical study of ultrasonic longitudinal P-waves phenomena vi-

brating through an isotropic material [277]. The equations that governs this process and

their relationship between elasticity are also showed in several cases as was mentioned with

detail in the previous chapters. The nonlinear classical extensions interacting with differ-

ent homogeneous media have given us the idea to formulate the nonlinear shear parame-

ters and validate them with a piezoelectric torsional sensor designed with this propose [39].

Therefore, if we consider S-waves, in particular torsional waves under nonlinear regime and

their relative nonlinear classical acoustic parameters harmonics across different materials or

soft tissues in the limit of compressibility, the model given by Zarembo [5] could be revis-

ited and improved with a new type of considerations as was deducted in chapter 5. One

of this considerations is the direct derivation of TOEC Third Order Elastic Constants [98].
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Adding a particular novelty in this study this experimental method provides the Landau A
parameter (See chapter 4) and this means an advance in nonlinear elasticity measurements

by ultrasound technology. This is also useful in order to extract a new consequences in the

field of tissue mechanics, this characterization improve the understanding of the nature on

nonlinear waves and materials. Furthermore, from the point of view of biomedical appli-

cations and diagnosis technics, nonlinear shear waves could represent a new challenge due

to the relationship proved between micromechanical properties and pathology or damage

diagnosis [278, 279].

We have used the piezoelectric torsional design given by [39], in order to configure an

experimental design based on three steps, i) validate the design of the transducer in the

linear regime, ii) extract the classical nonlinear acoustic parameter β for silicon and soft

tissue samples and iii) validate the measurements with a system based on the adjustment of

the constitutive nonlinear law by minimum squares.

9.5 Linear measurements of shear modulus

In this section a briefly resume to introduce the linear measurements of shear waves in

silicon and gelatin are related based on Valera’s grade project in 2015 [280]. Firstly, the

previous torsional sensor is experimentally improved by two research lines. On one hand its

capsuled from a Faraday jail and prototyped with alignment trials with the whole electronic

requirements, and on the other hand, some viscoelastic material are tested and validated

with a blending test.

Figure 9.16: Faraday’s jails for the capsulated transducer

140



Figure 9.17: Torsional transducer prototyped

The best design is basically the identically but the emisor was changed by a dynami-

cal micro-motor, and the receptor matin equal geometry steel by Polylactic acid (PLA) that

could be printed by a classical standard printer. The analytical model developed in chapter

8 is valid for each measurements.

9.5.1 Measurements

The measurements obtained could be resumed in the next two tables, where the Young mod-

ulus is approximated to shear modulus with the expression detailed below when Poisson’s

coefficient is close to 0.5,
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E
3
= µ if ν ≈ 0.5 (9.44)

Then the shear wave will be used with the aforementioned velocity of shear waves noted by

cs in the previous chapters as,

cs =

√
E
3
ρ

(9.45)

The shear speed is calculated by time of flight t of S0 initial signal through the sample

with a known distance (the distance d from emisor to receptor) from the classical equation

cs =
d
t . Specifically, the time of flight t is calculated from that signal that travel through the

sample S0, from the receiver signal Sr in the receiver.

Sr = S0 + Sc (9.46)

where Sr is the received signal when the sample is measured, S0 is the initial signal and Sc

is the signal transmitted through the capsule. time of flight of S0 signal is compared with a

simulation based on a excitation signal of the electromechanical actuator that been known

the calculation of the delay is direct. Then, A cross correlation algorithm have been used

to compare the simulated signal and S0 in terms of plausibility but taking into account the

delay of the system.

Energy (mV) Frequency (Hz) Delay (µ s) Velocity (m/s) Plausibility µ (KPa)
200 600 450 10.51 0.9998 135.2
200 800 421.5 11.29 0.99986 137.2
200 1000 418.5 11.38 0.99656 158.6
200 2000 394.5 12.16 0.99862 180.9
200 3000 429 11.08 0.98034 150.2
400 600 432 10.99 0.9975 147.9
400 800 447 10.59 0.99986 137.2
400 1000 426 11.26 0.99688 152.5
400 2000 396 12.11 0.99984 179.4
400 3000 391.5 12.26 0.99320 184

Table 9.6: Scanning of frequencies and energies for PLA receiver, in silicone mold material

The final torsional transducer was prototyped in the Nondestructive evaluation (END)

lab at the University of Granada and tested for several materials (See figure 9.17). In the

case of silicone mold material, the frequency range used started from 600 to 3000 KHz, and

the energy used was varied between 200 and 400 mV. The shear modulus was obtained in a

range between 135 and 184 KPa with a plausibility of 0.99 for each measurement, see table

9.5.1.
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Energy Frequency tS cs P µ

(mV) (Hz) (µ s) (m/s) (KPa)
200 600 585 7.97 0.99974 66.6
200 800 585 7.97 0.99888 66.6
200 1000 570 8.19 0.99427 70.4
400 600 580.5 8.03 0.99967 67.7
400 800 567 8.24 0.99797 71.2
400 1000 567 8.24 0.99754 71.2

Table 9.7: Scanning of frequencies and energies for PLA receiver, in gelatin material, with
92% of water

In the case of gelatin material with 92% of water, the frequency range used started from

600 to 1000 KHz, and the energy used was varied between 200 and 400 mV too. The shear

modulus was obtained in a range between 66.6 and 71.1 KPa with a plausibility of 0.99 for

each measurement.

Figure 9.18: Shear modullus validated by a bending test for a silicone mold material

The experimental process to obtain the shear modulus of both materials was validated

by a bending test. The figure 9.18 shows a small silicon beam, painted with dots in order

to calculate strain based on displacements of these points by a correlation image algorithm

and compatibility equation See chapter 4. Navier’s law was used for the calculation of stress

in a beam, it is commonly used in the strength of materials field [281].
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Figure 9.19: Torsional waves signals obtained for empty measurement (1) and several mate-
rials (2)

In the figures 9.19 is possible to appreciate the empty signal first and for several materials

with different time of flights.

9.6 Nonlinear analytical restrictions to shear components

Following the chapter 6 where the series expansion concept put forth by Landau [98], only

volumetric part is detailed in terms of the nonlinear acoustic parameter β,

−p = −3Kv + 9Kβv2 − 3ηv v̇. (9.47)

There are four combinations of nonlinear parameters β that may explain a different scenario

of experimental calculations as in this case where the exploration of quasi-fluids nonlinear-

ity is considered. The concept of the non uniqueness for the classical acoustic parameter β

have been recently studied by Bender [75] but without a physical explanation. The afore-

mentioned combinations could be expanded as exploring the whole set of combinations by

quadratic terms as follows,

σi j = −3Kvδi j︸ ︷︷ ︸
pressure

+ 2µDi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σL
i j (Linear)

−3ηvv̇δi j︸ ︷︷ ︸
pressure

+ 2ηḊi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σV
i j (Viscous)

(9.48)

+9Kβvpv2δi j + 9KβdpDkpDpkδi j︸ ︷︷ ︸
pressure

+ 4µβdsDikDk j + 4µβcsvDi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σNL
i j (Nonlinear)

(9.49)
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where v and Di j are the volumetric and deviatoric parts of the stress tensor defined in Equa-

tion (5). Four nonlinear parameters of first order have been defined as βvp,βdp as the volu-

metric, the deviatoric and the compound denoting the pressure components and βds,βcs as

the deviatoric, and compound denoting the shear components. Note that the combinations

vDkkδi j and (Dkk)
2δi j have been neglected due to the definition of Di j, where the deviatoric

tensor contains trace equal to zero. The constants in function of K and µ accompanying

nonlinear parameters have been chosen in accordance with Equation 9.47, as the quadratic

power expansion. However in the case of quasifluids, when compressibility is much higher

than shear moduli, it means K >> µ when the volumetric nonlinear terms could be ne-

glected, this expassion results,

σi j = −3Kvδi j︸ ︷︷ ︸
pressure

+ 2µDi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σL
i j (Linear)

−3ηvv̇δi j︸ ︷︷ ︸
pressure

+ 2ηḊi j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σV
i j (Viscous)

(9.50)

9KβdpDkpDpkδi j︸ ︷︷ ︸
pressure

+ 4µβdsDikDk j︸ ︷︷ ︸
shear︸ ︷︷ ︸

σNL
i j (Nonlinear)

(9.51)

With the aim to find a relationship between this nonlinear expansion of beta parameters and

TOEC, we assuming now that the strains are separated in volumetric and deviatoric part to

the second order, so ε yields,

εikεk j = DikDk j

εi j = Di j

εk j = Dk j

εkp = Dkp

εpk = Dpk (9.52)

By making use of Cauchy stress described in Equation (4), in nonlinear regime, an equiva-

lence is deducted in terms of Third Order Elastic Constants TOEC,

(A+ 4µ)εikεk j = (A+ 4µ)DikDk j

Bεkpεpkδi j = B(DkpDpk)δi j (9.53)

The above analysis is also valid combining nonlinear part of the stress with v and Di j in the

constitutive equation,
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σNL
i j = DikDk j(A+ 4µ) + DkpDpkBδi j

Since the relationship is established in the nonlinear constitutive equation, nonlinear acous-

tic parameters of first order are explicitly deducted as follows in terms of Third Order Elastic

Constants,

βdp =
B
9K

(9.54)

βds =
A+ 4µ

4µ
(9.55)

For the viscous components, it is shown that the establish definition in Equation. 9.47

matches Landau’s one,

2ηε̇i j = 2η(Ḋi j)

(9.56)

9.6.1 Perturbation method

By adopting the acoustic nonlinear constitutive equation presented above Equations 9.51

in terms of deviatoric a volumetric parts, is possible to establish the three dimensional

nonlinear equation of motion up to first-order nonlinearity in terms of four parameters β.

This formulation, implies that beta parameter is not unique [246] and it can be defined as

the separation between pressure and shear waves written as

ρ
∂2ui

∂t2 = K
(

∂2uk

∂xk∂xi
+

∂ul

∂xk

∂2ul

∂xk∂xi

)
(9.57)

+µ

(
∂2ui

∂x2
j
+

∂2u j

∂xi∂x j
+

∂2uk

∂x2
j

∂uk

∂xi
+

∂2uk

∂xi∂x j

∂uk

∂x j
− 2

3

(
∂2uk

∂xk∂xi
+

∂ul

∂xk

∂2ul

∂xk∂xi

))

+9Kβdp
(

1
2

(
∂2ul

∂xk∂xi

∂ul

∂xk
+

∂2uk

∂xl∂xi

∂uk

∂xl
+

∂2ul

∂xk∂xi

∂uk

∂xl
+

∂2uk

∂xl∂xi

∂ul

∂xk

)
− 2

3
∂2uk

∂xk∂xi

∂ul

∂xl

)

+4µβds
(

1
4

(
∂2ui

∂xk∂x j

∂uk

∂x j
+

∂2uk

∂xi∂x j

∂uk

∂x j
+

∂2ui

∂xk∂x j

∂u j

∂xk
+

∂2uk

∂xi∂x j

∂u j

∂xk

))

+4µβds

(
1
4

(
∂2uk

∂x j∂x j

∂ui

∂xk
+

∂2u j

∂xk∂x j

∂ui

∂xk
+

∂2uk

∂x j∂x j

∂uk

∂xi
+

∂2u j

∂xk∂x j

∂uk

∂xi

))

+4µβds

(
−1

3

(
∂2uk

∂xk∂x j

∂ui

∂x j
+

∂2uk

∂xk∂x j

∂u j

∂xi
+

∂2ui

∂x2
j

∂uk

∂xk
+

∂2u j

∂xi∂x j

∂uk

∂xk

)
+

2
9

∂2uk

∂xk∂xi

∂ul

∂xl

)

where K is the Bulk modulus, µ is the shear modulus, ρ is the density and βvp,βdp,βds

and βcs are the four nonlinear parameter of first order explained below in the constitutive

146



expression. The relevance of this expression is directly linked with the separation of P and

S waves and the possibility of design an experimental setup to extract new measurements.

Applying the perturbation method [247] allows to write the wave displacement as,

ui = u(0)
i + u(1)

i + . . . (9.58)

where u(0) and u(1) denote the zero-order and first-order perturbation solutions, respec-

tively. The zero-order perturbation solution corresponds to the fundamental solution of the

linear wave equation (that is, when β = 0). The first-order perturbation solution is denoted

by u(1). Since the effect of the nonlinear term β is small, an approximate solution can be

obtained by iteration. When considering a shear wave propagating in a semi-infinite elastic

layer, the latter is given as,

u(0)
1 = −Ah2 sinθ cos

(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

u(0)
2 = Ah1 cos

(
ω1

(
x1

cs

)
− t
)
+ Ah2 cosθ cos

(
ω2

(
(x1 cosθ+ x2 sinθ)

cs
− t
))

u(0)
3 = 0 (9.59)

u(1)
1 = Ba(x1 cosαa + x2 sinαa) cosαa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

−Bhb(x1 cosαb + x2 sinαb) sinαb cos
(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))

u(1)
2 = Ba(x1 cosαa + x2 sinαa) sinαa cos

(
ωa

(
(x1 cosαa + x2 sinαa)

cp
− t
))

+Bhb(x1 cosαb + x2 sinαb) cosαb cos
(
ωb

(
(x1 cosαb + x2 sinαb)

cs
− t
))

u(1)
3 = 0 (9.60)

where A and B are the constant amplitudes of the shear wave, in zero and first order of

perturbation respectively, and ω1 and ω2 are the is the angular frequencies. Let us then

consider the zero-order perturbation equation in linear regime,

ρ
∂2u(0)

1
∂t2 = K

(
∂2u(0)

1

∂x2
1

+
∂2u(0)

2
∂x2∂x1

+
∂2u(0)

3
∂x3∂x1

)

+µ

(
2

∂2u(0)
1

∂x2
1

+
∂2u(0)

1

∂x2
2

+
∂2u(0)

1

∂x2
3

+
∂2u(0)

2
∂x1∂x2

+
∂2u(0)

3
∂x1∂x3

)

−2
3
µ

(
∂2u(0)

1

∂x2
1

+
1
2

∂2u(0)
2

∂x2∂x1
+

∂2u(0)
3

∂x3∂x1

)
(9.61)
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Analogously, u2 and u3 this result is coherent with the solution given by Graff [277], where

the speed of sound of shear waves are derived as follows,

cs =
√

µ
ρ (9.62)

9.6.2 Analytical solutions

The analytical solution is obtained by the application of perturbation theory, were detailed

in Equations 8.21 and 8.22 and the consequent nonlinear acoustic parameter is derived as

follows,

Bac3
s

x1 A2
1ω1

= 3(9βdpK + 2βdsµ) (9.63)

This results can be compared with the Zarembo ones [5]. in htat case see chapter 5, the

nonlinear transversal acoustic parameter βτZ was formulated through the TOEC,

βτZ =
µ

ρ0
+

1
ρ

(A
2
+ B

)
(9.64)

So, converting βdp and βds in the corresponding TOEC is posible to obtain a similar expres-

sion as,

βT =
(B +A/2 + 2µ)

4(3K + 4µ)
(9.65)

note that number 2 is due to the nonlinear source of the constitutive expansion introduced

in Chapter 4.

In order to validate experimentally the theoretical background, is necessary to design

an experimental procedure, for this purpose these results should be convert into a pressure

magnitudes. Then, by making use of the conversion to amplitudes of fundamental and first

harmonics into transversal stresses, it is posible to calculate the nonlinear shear parameters

in terms of transversal stresses.

Then, torsional beta, βT could be defined by in terms of pressures and disaggregated

in two parts, one due to the liquid or water part and the other referred to collagen or fiber

undulation part,

βT =
(B +A/2 + 2µ)

4(3K + 4µ)
= − ρc3

s T(1)
12

π f1x(T(0)
12 )2

(9.66)

where the relation 2π f = ω1 has been introduced and the relationship between pressure

and displacements, used on numerous occasions in Chapter 8. The conversion of T12 will be

explained in the experimental procedure.
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9.7 Experimental setup

A schematic view of the experimental setup is shown in Figure 9.20. The transmiter and

receiver are located in the same transducer as was explained in the previous sections. The

measurements was taken as in transmission, with guarantees perfect alignment along the

propagation direction of sound.

to the resulting average of 490 captures of the signal, providing an effective

reduction of noise for the detected response signal, increasing the signal-to-

noise ratio around 25 dB. Figure 3.2 depicts the experimental setup used to

record the ultrasonic signals.
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3.3. Semi-analytical approach

The measurements procedure consists of four steps. Initially, the response

signal was measured in water at two different positions corresponding to

locations ahead of and at the back of the specimen (steps 1 and 2 ).

Then, the response signals were measured with the specimen in situ along

the scanning area at both frequencies (steps 3 and 4 ).

In order to reconstruct the linear and nonlinear material’s properties of

the specimen under inspection, a semi-analytical approach is proposed by

considering the following assumptions: (i) the attenuation in the water layers

is negligible, (ii) the thickness a3 of water layer 2 is small, and thus the

nonlinearity can be assumed not to accumulate over this distance (i.e. �(3)
w ⇡

0) [10], (iii) only second harmonics are considered, and thus frequency-mixing

12

Figure 9.20: Experimental configuration for a nonlinear torsional transducer

The response signals were sampled with a high resolution A/D converter with ampli-

fication Fonestar without preamplification stage and saved for post-processing. The trans-

mitter was a torsional transducer manufactured in our END lab at University of Granada of

central frequency X Hz and Y in diameter. We used an arbitrary generator (Agilent 33500)

to drive the transmitter at different frequencies. The ultrasonic excitation frequencies were

arbitrarily chosen. Different frequency combinations were used: f1 = [600, 800, 1000] Hz.

The amplitude of the input signal at the frequency was increasing, [5, 10] V. To avoid un-

wanted interference effects in the propagation medium, even the risk of burning, we used

short trains of pulses for excitation and a 8 ms pulse duration and 3 cycles.

We investigated the generated waves as a function of distance. The transmitter-receiver

distance was a total distance of 2.43 mm. At the distance x from the transmitter, the pressure

of the fundamental, u(0)
1 , and that of the generated harmonics, u(1)

1 , were determined, for the

different frequencies and excitation levels.

The material used in this experiment was the silicone mold as a first step. Secondly, a

connective tissue was explored with the transducer prototyped as is shown in Figure 9.21.
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Figure 9.21: Connective and silicone mold tissue and material, respectively during measure-
ments

Figure 9.23 shows the nonlinear torsional waves through a connective tissue, with the

characteristic curved amplitudes as in the longitudinal waves.

Figure 9.22: Nonlinear torsional signal from oscilloscope view

Note that the nonlinear torsional wave is not generated before with an ultrasonic device

according with the literature reviews.

9.8 Experimental results

To obtain the experimental results, is necessary to use the following equation calculated

from PZT-5 Piezoelectric material where elastic and electric field are coupled, it was formu-

lated in Chapter 7,

T12 = CE44S12 + e24E2 (9.67)

Neglecting elastic field to found a conversion factor between voltage and Pascal, 122.9 Pa

was the multiplication factor for the case of 10V and silicon mold. The conversion factor
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is formulated from the analytical simplified model in Chapter 8, where piezoelectric and

design material effects were considered interacting with two layers of tissue. For this rea-

son, the stress on the piezoelectric ceramic is approximately the stress on the tissue by a

correction factorαc,

Tpiezo
12 = αcTtissue

12 (9.68)

Parallel to this, to obtain αc transmission coefficient should be calculated, by making use of

the energy of the transmitter and receiver.

T =
4z1z2

(z1 + z2)2 =
energy,t
energy,r

(9.69)

where energy, t is the energy of the transmitter and energy, r is the energy of the receiver.

Knowing the different layers of the receiver, the stress and displacement ratios could be

deducted as,

Tt = Ti
2zt

zi + zt
(9.70)

Analogously, the displacement ratio is given by,

ut = ui
2zi

zi + zt
(9.71)

Table 9.8 shows the transmission coefficients and the correction factors for the different sam-

ples of the test given by the relationship,

TPZT-5A
12

Ttissue
12

= αc = cr · transmission PLA-PZT · transmission PLA-tissue (9.72)

Sample ut
ui

Tt
Ti

cr Transmission Transmission αc

Efficience % PLA-PZT PLA-Tissue
Silicon mold ≈2 0.026 ≈10 0.78 0.026 ≈0.01

Connective tissue 1.21 0.286 ≈10 0.78 0.286 ≈0.1
Liver tissue ≈2 0.0026 ≈10 0.78 0.0026 ≈0.001

Table 9.8: Table of transmission coefficients and correction factors for nonlinear torsional
measurements

The final experimental results are detailed in Table 9.8 and in Figures 9.23 where non-

linear torsional acoustic parameter βT was extracted for silicon mold, ligament tissue and

liver tissue through the speed of sound of shear waves cs, density ρ, shear modulus µ and

transmission coefficient Z.
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Sample Energy Frequency ρ cs Z µ βT

(V) (Hz) (kg/m3) (m/s) (KPa)
Silicon mold 5 800 1100 13.2 13200 0.16 -400±3

Connective tissue 5 800 1000 90 90000 8.1 -8000±0.0
Liver tissue 5 800 1000 4 4000 0.016 -88±20
Silicon mold 10 800 1100 13.2 13200 0.16 -400±3

Connective tissue 10 800 1000 90 90000 8.1 -8000±0.0
Liver tissue 10 800 1000 4 4000 0.016 -88±20

Table 9.9: Nonlinear torsional results for input frequency and amplitude f1 = 800 Hz and
A = 5, 10 V, respectively, for silicone mold, connective and liver tissue
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Figure 9.23: Nonlinear torsional signal from silicon and connective with frequency spectrum
for 800Hz and 10V

Note that the experimental values of nonlinear torsional acoustic parameter βT are adi-

mensional and sufficiently small than solid or crystal as it is shown in the tables 5.2, 5.3, 5.4

and 5.5 and this connect with the reference values obtained from the literature, see Chapter

5, the case of tissue in different due to the nature of wave equation considered.
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To conclude, a new ultrasonic sensor have been designed, optimized and manufactured

based on the piezoelectricity theory, The Robust Probabilty of Detection and Inverse prob-

lem. This torsional ultrasonic sensor allows to quantify linear and nonlinear properties in

quasifluids and soft tissues.
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El tiempo de lo dicho y de los sonidos que lo acompañan son tiem-
pos distintos y a la vez se encuentran en único tempo. La voz
parece seguir por momentos un ritmo ternario. Sonidos que se
escuchan llegar de otro mundo se mezclan con aquellos en los
que se percibe cierta familiaridad. El sonido transporta pero, so-
bretodo, choca, alza en volandas por unos segundos y luego, deja
caer. Sı́stole y diástole, el sonido atraviesa la piel.

El sonido en la piel: Desbordamiento de Val Del Omar
Carmen Pardo, 2010
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10
Conclusions and future works

This chapter presents the most relevant conclusions of the obtained results, along with a

discussion regarding the exposed contributions. In addition, some future works currently

under development are commented.

The analysis of nonlinearity from the point of view of the theory of Elasticity and ultra-

sonic waves has been considered since the middle of the twentieth century. Nowadays, the

relationship between these fields carry out a challenge due to its applications in the biomed-

ical research. This thesis (1) provides a deeper knowledge about the mechanisms that unify

nonlinear classical ultrasound and nonlinear elasticity according the references founded, (2)

generates a new approach extending the classical nonlinear wave equation which presents

a separation of fluid and matrix phases of a material or tissue, (3) suggests microdamage as

a possible source of nonlinearity and (4) explores the possibility of measure the nonlinenar

acoustic expansion with three experiment designed and validated building and manufac-

turing the devices.

In addition, the following relevant conclusions are extracted from each of research hy-

pothesis proposed in Chapter 2. Their limitations and future works are also described.

Nonlinear Elasticity Unification

Research objetive 1: Create a new consistent framework where all theories in nonlinear clas-

sical elasticity are connected and a set of conversion factors to link to the Third Order

Elastic Constants.
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Through the unification of Third Order Elastic Constants and its derivation by invariants

in nonlinear elasticity, a specific relationship between nonlinear elasticity up to fourth order

and nonlinear acoustic parameters until third order have been developed. This allows to

formulate the constitutive equation in terms of anisotropy and isotropy. It has been carried

out up to third order. The main novelty and contribution of the Chapters 4 and refereed to

the Chapter 4 is the understanding of the link of nonlinear acoustic parameter beta and that

connect with Hamilton’s theories (See [2, 282, 283]), in opposite to Rushchitsky who applied

a relationship based on an Taylor extension without invariants (see [284, 285]).

Also, note that large strains have been taken into account in order to obtain a realis-

tic expression of these nonlinear constitutive parameters following the path of Goldberg,

Zarembo, Muir, and Stobbe (see [14, 5, 6, 126]). The works of Abelee, Johnson, Muller

and Giordano, have been detailed previously and the differences between resides on the

mechanical parameters restrictions used due to the nature of the material or tissue (see

[286, 130, 287, 288, 117, 289, 290, 291]). Many authors such as Desdrade and Odgen, have sta-

blished a similar definition of nonlinear acoustic parameter beta based on several different

invariants but the relationship that they obtained is different to the one given by Hamilton

(see [100, 292]).

Nonlinear classical acoustics

Research objetive 2: To unify nonlinear classical acoustic theories to exploring the relation-

ship between this parameters an mechanical ones and extend this to other possible

scenarios exploring its physical meaning.

We conclude the Chapter 5 with: a new approach to understand nonlinear acoustics

and nonlinear elasticity parameters and their relationship. This connect with the definition

developed by Gol’dberg, Zarembo and Hamilton, with the novelty of a new development

and extension based on invariants, even so, for anisotropy environment and large strains.

The nonlinear sources involved in this formulation are derived from: (1) Constitutive non-

linearity, (2) geometric nonlinearity starting from compatibility equation and (3) geometric

nonlinearity beginning with stress of Cauchy definition.

The Westervelt nonlinear acoustics equations are also described in Chapter 5 by making

use of the B/A parameter in fluids, under a Taylor expansion of the pressure. Is impor-

tant to consider these equations as a particular case of nonlinear acoustics in liquids. The

general nonlinear elasticity, nonlinear wave equation and their relationship are the main

theories that allow the development of this research. Also, the role of small and large dis-

placements are clearly important if we take into account the nonlinear effects on harmonic

generation, where the cross term is significant. Note that attenuation has not been included

at the moment due to is not necessary for our first assumptions. It will be a future work. The

Westervelt equation has recently used in the field of medical ultrasound for tissues and flu-

ids, as was mentioned in previous sections. These allow us to consider future applications
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in this field i. e. correlating these nonlinear parameters with tissue characterization or even

with different pathologies in tissue.

Nonlinear classical acoustics: Fluid and matrix phases

Research objetive 3: Define nonlinear constitutive constants with physical meaning from the

point of view of the interaction of waves depending on fluid and matrix parts, rather

than a power series expansion as proposed by Landau.

A new approach is carried out in the field of nonlinear acoustics when non unique beta

constants considered. Chapter 6 explore and analyze from a physical and mathematics point

of view this possibility and a new theory is exposed. The results are detailed in chapter

8 where the whole parameters are deducted from the interaction of P and S-waves. The

perturbation theory is the methodology whose development provides a solution. The nature

of this multiple nonlinearity suggest the physical meaning of these variables. Chapter 8

provides new techniques to validate and measure them experimentally. Under this objetive

three sources of nonlinearity are exposed as an new approach that never have been explored:

(1) Nonlinearity from compatibility cross term or geometric nonlinearity, (2) nonlinearity

coming from the derivation of strain energy function and (3) nonlinear constitutive source.

Exploration of microdamage in solids

Research objetive 4: Extending the theory of Eshelby to solve various cases of geometrical in-

clusions and provide a method for measuring density of microcracks with a consistent

relationship established between the acoustic nonlinearity and homogenization.

A nonlinear micro-mechanical approach is proposed in Chapter 7, that relates a distri-

bution of clapping micro-cracks in damaged materials with the macroscopic measurable

acoustic nonlinearity in solids. A 1D contact clapping mechanism inside each micro-crack

is hypothesized to be responsible for a component of the quadratic nonlinearity. This rela-

tionship is formulated by establishing a bilinear clapping constitutive law, which is further

approximated by a Taylor expansion, from which the second order constitutive nonlinearity

stems. The simplifying assumption to restrict the effect to second order nonlinearity is of

course questionable in terms of fully capturing the dynamics of a clapping crack, and even

needs extension in a future work. However, there are practical reasons for solving the case of

second order components, which is the generation of second harmonics, which are measur-

able with ultrasonic equipment and could be potentially used to inspecting the structural

functionality and damage. It should be clarified that other possible sources of nonlinear-

ity are not treated in this work, such as hysteretic clapping, crack tip plastic zone, partial

closure, or atomistic nonlinearities. Their formulations therefore remain for future work.

The distributed micro-cracks are treated as individual penny-shaped inclusions behav-

ing as formulated in Appendix A, embedded into a macroscopic medium through Eshelby’s

homogenization theory through a nonlinear Mori-Tanaka scheme [293]. The assumption
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that penny-shaped inclusions are aligned is justified by the fact that fatigue cracks produced

by a preferentially-oriented stress appear to be aligned. However, the case of randomly ori-

ented micro-cracks remains to be solved in a future work.

The relationships between the measurable acoustic nonlinearity and the Landau-type

nonlinearity definition required by the homogenization are also proposed. For this purpose,

the proposed decomposition of stress and strain tensor into compressional and deviatoric

parts plays a key role in redefining several possible acoustic nonlinearities in a convenient

way.

There is a future work in progress on measuring the nonlinear cracks under the config-

uration mentioned at the end of Chapter 7. The control of effective nonlinearity may have

be a great impact in the quantification of bone microcracks directly correlated with osseous

quality and osteoporosis.

Nonlinear mixing

Research objetive 5: Develop new experimental techniques from ultrasonic sensors and dif-

ferent setups that allow us to measure the deduced theoretically parameters.

To measure experimentally the new parameters two main techniques have been carried

out: (1) Based on a two waves mixing, and (2) based on the torsional transducer that has

been mentioned below. Then, two waves mixing interaction have been measured in an

immersion tank by collinear and nonlinear mixing procedure. For collinear mixing case,

just one transducer and two waves are studied with a T-junction, this provides a nonlinear

parameter of water that coincides with the literature values. So, a variation of the collinear

wave mixing method was investigated to determine the acoustic nonlinear parameter β in

water. Perturbation solutions of beta parameter in water were analytically calculated and

validated with experimental measurements, for each 2 fa, 2 fb, fa + fb. A nonlinearity β

value of 3.5 approximately was obtained, which is consistent with the literature references.

However, in the case of the difference harmonic, fa− fb, contradictory results were obtained,

suggesting that the amplitude of this harmonic is not related to the nonlinearity parameter

β. In the case of non collinear mixing, this measurements are made from different samples

of aluminum with special geometries. This allow integrate the interaction volume of waves

inside the sample and validate the Korneev theory introducing the desired angles with a

correction given by Zoeppritz. A posible limitation to this technique is the absolute value of

FFT Fast Fourier Transform, it occurs when frequency spectrum is calculated by harmonic

generation procedure. This explains the ambiguity of the sign phase that has repercussion

in the quantification of the nonlinear acoustic parameters.

This technique provides at the first time one method to derive TOEC with ultrasound

different of DAET deducting an explanation of nonlinearity from physical point of view.
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Soft tissue nonlinearities

Research objetive 6: Evaluate the torsional wave feasibility and capability for assessing linear

and nonlinear measurements of tissues.

An optimal piezoelectric transducer design was carried out by combining a piezoelectric

finite element model and a robust analytical estimate of the probability of detection, called

RPOD in Chapter 9. This allows to estimate the minimum pathology findable given a pro-

posed sensor design, a layered tissue geometry and noise level on measurements. After

validation, the RPOD is used as an optimality criterion to feed the used genetic algorithms.

An analytical simplified model is formulated and validated with the finite element model,

which is aimed at easily predict trends and design parameter dependencies.

The design has the ability to clearly separate P and S wave depending on the frequency

and the time when the wave arrives at the receiver. Also, note that the simplified analyt-

ical model predicts the frequency response of the sensor with less than 1% error, which is

considered validated finite element model. S-waves were only reproduced with 3200 [ns],
flittering-out P waves numerically. Even so, amplitude is not predicted by the simplified

model, only central frequency and attenuation effects are not considered in the simplified

model. The optimization improves 172 times the design. However, after application of the

probability of detection of pathologies in the tissue there are several local minima therefore

requires a global search algorithm such as genetic algorithms.

A set of sensitivity tests was performed to validate the robustness of the analytical es-

timates and verify the feasibility, sensitivity and specificity of the designed transducer by

the algorithms above. The piezoelectric sensor was eventually manufactured based on the

resulting design parameters at Non Destructive Evaluation Laboratory of the University of

Granada by the END lab team (see figure 9.15).

Being a relevant approach the design and fabrication of a torsional transducer with sev-

eral applications in the field of tissue mechanics, the experimental methodology to extract

nonlinear shear wave have been rigorously analyzed. It must mention that the linear mea-

surements of shear modulus on cervical tissue are relevant in the problem of preterm birth

assessment it is an line of research of the END lab where this prototype is involved [40].

The nonlinear classical acoustics extension have been applied in the Chapter 9, extract-

ing a solution that separates the nonlinear terms that are interpreted as nonlinearity from

the matrix and the nonlinearity from the fibers. This is an important conclusion with a main

novelty in tissue microstructure. The results suggest that these nonlinear terms that from

now can be obtained at real time describe the behavior of the tissue in a new scale. This has

triggered an ongoing work with potential impacts on biomedical research and understand-

ing the mechanics of quasifluids and tissues.
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11
Conclusiones y trabajos futuros

En este capı́tulo se presentan las conclusiones más relevantes que se han obtenido a través

de los resultados, asimismo una detallada discusión de acuerdo a las contribuciones expues-

tas. Además, se comentan algunos trabajos futuros que actualmente están desarrollándose

en nuestro laboratorio.

The analysis of nonlinearity from the point of view of the Theory of Elasticity and ul-

trasonic waves has been studied since the middle of the twentieth century. Nowadays, the

relationship between these fields carry out a challenge due to its applications in the biomed-

ical research. This thesis (1) provides a deeper knowledge about the mechanisms that unify

nonlinear classical ultrasound and nonlinear elasticity according the references founded, (2)

generates a new approach extending the classical nonlinear wave equation which presents

a separation of fluid and matrix phases of a material or tissue, (3) suggests microdamage as

a possible source of nonlinearity and (4) explores the possibility of measure the nonlinenar

acoustic expansion with three experiment designed and validated building and manufac-

turing the devices.

El análisis de la no linealidad desde un punto de vista de la Teorı́a de la Elasticidad y

de la propagación de ondas ultrasónicas ha sido estudiado desde el principio de la segunda

mitad del siglo XX. Hoy en dı́a, establecer un vı́nculo consistente la relación entre estos dos

campos conlleva un reto debido su aplicación directa en la investigación biomédica. Esta

tesis (1) proporciona un profundo conocimiento sobre los mecanismos que unifican la no

linealidad clásica ultrasónica y la no linealidad elástica de acuerdo a las diversas fuentes

examinadas, (2) genera un aporte nuevo extendiendo la ecuación de ondas no lineal lo cual
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representa una separación en términos de fluido y matriz, diferenciando la no linealidad

en fases debidas a la naturaleza del material o tejido, (3) sugiere una posible explicación de

la no lineadad a partir del microdaño y (4) explora la posibilidad e realizar mediciones de

los parámetros no lineales mediante tres experimentos nuevos y diseñando y construyendo

dispositvos para este fin.

Además, en adelante se muestran las siguientes conclusiones extraı́das de cada hipótesis

propuesta en el capı́tulo 2. Se describen sus limitaciones y se detallan algunos trabajos

actuales y futuros.

Unificación de la no linealidad elástica

Objetivo de investigación 1: Crear un esquema nuevo y consistente donde todas las teorı́as

de nolinealidad clásica elástica se conectan con una serie de factores de conversión que

relacionan unas con otras.

A través de la unificación de las TOEC Constantes Elásticas de Tercer Orden y su

derivación por invariantes en el régimen de la elasticidad nolineal, se establece una relación

con la no linealidad elástica hasta cuarto orden y acústica hasta tercer orden. Esto per-

mite formular la ecuación constitutiva in términos tanto de isotropia como de anisotropia.

La principal contribución en los capı́tulos 4 y 5 es el entendimiento del vı́nculo entre el

parámetro de acústica nolineal clásica beta y su conexión con las teorı́as de Hamilton (Ver

[2, 282, 283]), al contrario que las teorı́as de Rushchitsky donde se aplican esta relación a

partir de un desarrollo en serie de Taylor sin invariantes. (Ver [284, 285]).

Además, las grandes deformaciones en la ecuación de compatibilidad se tienen en cuenta

para obtener una expresión realista de estos parámetros constitutivos nolineales siguiento

el camino de Gol’dberg, Zarembo, Muir y Stobbe (ver [14, 5, 6, 126]). Los trabajos de Abelee

Abelee, Johnson, Muller y Giordano, se analizan con detalle encontrando que la principal

diferencia con respecto a la teorı́a desarrollada reside en las restricciones debidas al tipo

de material o tejido (ver [286, 130, 287, 288, 117, 289, 290, 291]). Algunos autores como

Desdrade y Odgen, han establecido una definición muy similar a la desarrollada en esta tesis

haciendo especial hincapié en el vı́nculo con la no linealidad acústica a partir de invariantes

algebraicos válidos, pero sin encontrar un contexto consistente que apoye y valide las teorı́as

de Hamilton (ver [100, 292]).

No linealidad acústica clásica

Objetivo de investigación 2: Unificar las teorı́as de no linealidad acústica clásica y explorar

la relación entre los parámetros resultantes y los de origen mecánico. Extender dicha

relación a otros escenarios posible determinando su significado fı́sico.

Para extrapolar a valores reales estos resultados analı́ticos, se han extraı́do resultados

numéricos a partir de algunas referencias encontradas. (Ver [6, 126, 5]). En el capı́tulo 5 se

calcula el valor del parámetro nolineal acústico Beta en función de las Constantes Acústicas
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de Tercer Orden de Landau y varı́a entre [-0.51, 8.54] para el caso de los metales, entre [-

6.63, -1.88] para cristales, entre [3.5, 6.2] para lı́quidos, y entre [-3.96, -1.15] para el caso

de tejidos biológicos. En el caso de fibra de carbono CRFP y PMMA, estos valores fueron

simulados computacionalmente para poder obtener una posible visión de estos parámetros

transversalmente isótropos en los distintos supuestos fı́sicos que se detallan en el capı́tulo 5.

Una vez terminado el capı́tulo 5 se puede remarcar que el nuevo aporte llevado a cabo

en el entendimiento de la no linealidad acústica y la no linealidad elástica proporciona una

relación entre sus parámetros de forma consistente. Esto conecta con la definición desarrol-

lada por Gol’dberg, Zarembo y Hamilton, con la novedad de un nuevo desarrollo basado

en invariantes de energı́a y especificamente en la forma que estos se obtienen a través de las

ideas de Landau, incluso para casos anisótropos y en grandes deformaciones.

Las ecuaciones de Westervelt se describen en el capı́tulo 5 haciendo uso del parámetro

de no linealidad B/A en fluidos desde una expansión en serie de Taylor de la presión. Es

importante considerar estas ecuaciones como un caso particular de no linealidad acústica

en lı́quidos. Tanto la teorı́a general de la elasticidad como la ecuación no lineal de ondas

permiten investigar el vı́nculo entre ambas en este contexto, donde el rol de los pequeños

y grandes desplazamientos son muy relevantes ya que si tenemos en cuenta los efectos de

la generación de armónicos el término cruzado en la ecuación de compatibilidad es muy

significativo. Hay que tener en cuenta que los términos relativos a la atenuación no han sido

tomados en cuenta, ya que no son necesarios en una primera etapa, pero en futuros trabajos

serán analizados.

La ecuación de Westervelt se viene usando en el ámbito clı́nico modelizando dispositivos

médicos con ultrasonidos con aplicación en tejidos como se mencionó en la introducción y

en capı́tulos previos. Esto nos permite estimar que el estudio de su extensión e incluso de

la ecuación KZK donde aparece un término más podrı́a tener considerables aplicaciones

futuras, por ejemplo correlacionando parámetros de no linealidad con la caracterización

de tejidos tanto blandos como óseos e incluso ser una clave en el diagnóstico de distintas

patologı́as.

No linealidad clásica en acústica: Fases de fluido y matriz en cuasifluidos y tejidos

Objetivo de investigación 3: Definir las constantes constitutivas no lineales dotándolas de

sentido fı́sico desde el punto de vista de la interacción de ondas planas dependiendo

de su phase lı́quida y su phase matricial desde una expansion en serie como propuso

Landau.

Si en el contexto de no linealidad acústica clásica consideramos que el parámetro β no

es único, esto conlleva un nuevo aporte extendiendo y reescribiendo toda esta teorı́a. El

capı́tulo 6 explora y analiza desde un punto de vista fı́sico y matemático esta posibilidad

y expone una nueva teorı́a basada en este supuesto. Los resultados están detallados en

el capı́tulo 6 donde todos los parámetros no lineales resultantes se deducen a partir de la
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interacción de ondas S y P. La teorı́a de la perturbación es la metodologı́a encargada de

hacer factible las soluciones analı́ticas del modelo en 3D. La naturaleza de este tipo de no

linealidad clásica múltiple inspirador en el sentido de encontrar un significado fı́sico a estos

términos. El siguiente paso es encontrar y diseñar nuevas técnicas experimentales donde se

validen los resultados conseguidos, cuya repercusión serı́a muy relevante.

Bajo este objetivo subyace un nuevo aporte donde se exponen tres fuentes de nolineal-

idad que nunca se han explorado conjuntamente: (1) La no linealidad de la ecuación de

compatibilidad a través de su término cruzado o no linealidad geométrica, (2) la fuente de

no linealidad que surge tras la derivación de la energı́a de deformación y (3) la fuente de no

linealidad constitutiva.

Exploración del microdaño en sólidos

Objetivo de investigación 4: Explorar la teorı́a de Eshelby para resolver varios casos de inclu-

siones geométricas y proporcionar un método para medir densidad de microgrietas

estableciendo una relación entre no linealidad acústica y homogeneización.

En el capı́tulo 7 se propone un nuevo aporte no lineal micromecánico relativo a la dis-

tribución de micro grietas de tipo clapping en materiales sólidos dañados en los que se pueda

medir su parámetro de no linealidad acústica de forma macroscópica.

Bajo la hipótesis de un mecanismo tipo clapping por contacto 1D cada microgrieta es re-

sponsable de un componente de la no linealidad cuadrática. Esta relación se establece para

formular un clapping bilineal en la ley constitutiva que se aproxima por una expansión de

Taylor desde a partir del sistema constitutivo original. La hipótesis simplificada de restringir

el efecto al segundo orden de no linealidad es por supuesto cuestionable en lo referente a

la captura completa de la grietas tipo clapping de forma dinámica, e incluso necesitarı́a una

extensión en trabajos futuros. Sin embargo, existen razones prácticas para resolver el caso

de las componentes de segundo orden, su importancia reside en la generación de armónicos

de segundo orden, cuya medida a través de equipos ultrasónicos podrı́a usarse potencial-

mente para la inspección de funcionamientos estructurales y daño. Debe clarificarse que

existen otros posibles orı́genes de no linealidad que no se tratan en este capı́tulo, tales como

el clapping por histéresis, grietas en zona de plasticidad, daño de tipo cierre parcial o no-

linealidad atómicas. Por lo tanto, dichas formulaciones se continuarán en futuros trabajos.

Cabe destacar que la distrubución de microgrietas, se tratan como inclusiones de tipo penny-

shaped siendo formuladas en el apéndice A, embebidas en un medio macroscópico donde

se utiliza la teorı́a de homogenización de Eshelby a través de un esquema de Mori-Tanaka

[293] pero en el caso no lineal. La hipótesis de que las inclusiones tipo penny-shaped están

alineadas está justificada por el hecho de que las la aparición de grietas preferentemente ori-

entadas y alineadas en una dirección son debidas a fatiga dada una tensión. Aún ası́ podrı́a

darse el caso de que aparecieran microgrietas aleatoriamente orientadas lo cual deberı́a re-

solver en adelante durante futuros estudios.
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La relación entre no linealidad acústica medible y la definición de no linealidad de tipo

Landau es una propuesta requerida para utilizar la teorı́a de homogeneización en el capı́tulo

7. Con este propósito, la descomposición de la tensión en parte volumétrica y deviatoria,

juega un papel clave en la redefinición de varias no linealidades acústicas de una forma

conveniente.

Hay un futuro trabajo en este ámbito que se está llevando acabo tratando de medir las

grietas no lineales cuya configuración experimental se menciona en el capı́tulo 7. El con-

trol de la no linealidad acústica efectiva u homogeneizada puede tener un gran impacto en

la cuantificación de microgrietas óseas directamente correlacionadas con la calidad de los

huesos y por tanto con enfermedades como la osteoporosis.

No linealidad por mezcla de ondas

Objetivo de investigación 5: Desarrollar técnicas experimentales de investigación nuevas a

partir de sensores ultrasónicos con diferetens configuraciones que nos permitan medir

los parámetros deducidos teóricamente.

Para medir experimentalmente estos nuevos parámetros, se han llevado a cabo dos

técnicas principalmente: (1) Una basada en en la generación de dos ondas mezcladas, y

(2) la otra en un sensor que emite ondas de torsión cuyo diseño se ha mencionado previa-

mente. Entonces, en el caso de la interacción de dos ondas tanto P como S, el procedimiento

para medir ha sido en una cuba de inmersión tanto para una emisión superpuesta a través

de un transductor y dos ondas P generadas a distinta frecuencia es decir colineal como para

la mezcla a un cierto ángulo es decir no colineal. En el supuesto experimental de mezcla

colineal las ondas se realiza a través de una unión tipo T, y el resultado es la generación del

no linealidad acústica en agua calculado a partir del método de generación de armónicos

que coincide con los valores dados en las referencias con un valor aproximado de 3.5. Por

lo tanto a través de esta metodologı́a experimental se investiga el cálculo del parámetro de

no linealidad β en agua que además, se calculan analı́ticamente desde la metodologı́a de la

teorı́a de la perturbación tanto en el caso clásico a partir de las teorı́as de Hamilton, como

a través del capı́tulo de la extensión de no linealidad clásica desglosándolo en los distintos

tipos de betas. La validación es calculada para cada, 2 fa, 2 fb y fa + fb. Sin embargo, en el

caso de la diferencia de armónicos debido a la diferencia de frecuencias de entrada, fa − fb,

los resultados que se obtienen son contradictorios ya que sugieren que la amplitud de este

armónico no está relacionada con el parámetro de no linealidad β. En el caso de mezcla no

colineal, estas medidas no pueden realizarse en agua, supuesto que viene sugerido por los

estudios de Korneev [38], ası́ que se han utilizado una serie de muestras de aluminio con-

struidas y cortadas con una geometrı́a especial para realizar las mediciones experimentales.

Esto permite tanto integrar el volumen de interacción de las ondas dentro de al muestra y

validar la teorı́a de Korneev 2014 introduciendo los ángulos de entrada y salida de las on-

das, algo que hasta el momento no se ha sido posible con esta técnica. Una posible limitación
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en este aspecto podrı́a ser el valor absoluto del valor de los armónicos tras calcular la FFT

Transformada Rápida de Fourier, esto ocurre cuando se analiza el espectro de frecuencias

a través del procedimiento de generación de armónicos. Lo cual explica la ambigüedad de

signo en la fase y que repercute en el cálculo directo de la cuantificación de los parámetros

acústicos no lineales.

Esta técnica proporciona por primera vez un método para derivar las TOEC con ultra-

sonidos distinta a la basada en DAET acustoelasticidad dinámica, proporcionando además

una explicación desde un punto de fı́sico.

No linealidad en tejido blando

Objetivo de investigación 6: Evaluar la capacidad y factibilidad de las ondas de torsión para

valorar las medidas acústicas lineales y no lineales de tejidos blandos.

Se ha diseñado un transductor piezoeléctrico óptimo combinando el uso del modelo de

elementos finitos y una estimación robusta de la probabilidad de detección RPOD como cri-

terio de optimización del mismo en el capı́tulo 9. Esto permite estimar la mı́nima patologı́a

que se pueda encontrar dado un diseño de sensor propuesto dadas una geometrı́a de capas

de tejido y un nivel de ruido en las medidas. Después de validarlo, la RPOD se usa como

criterio de diseño óptimo sujeto al uso de algoritmos genéticos. Un modelos analı́tico sim-

plificado se formula y valida con el uso de elementos finitos con el objetivo de predecir y

diseñar fácilmente dependencias y tendencias en los parámetros utilizados.

El diseño tiene la capacidad de separar las ondas P y S dependiendo de la frecuencia

y el tiempo en el que llegan al receptor. Además, hay que tener en cuenta que el modelo

analı́tico simplificado predice la frecuencia de respuesta del sensor con menos de un 1% de

error, con lo que se considera validado el modelo de elementos finitos. Las ondas S solo se

reproducen numéricamente en 3200 [ns], a diferencia de las ondas P. Incluso ası́, la amplitud

no se puede predecir con el modelo analı́tico simplificado, puesto que solo se consideran la

frecuencia central, el efecto de la atenuación tampoco se tiene en cuenta. Cabe resaltar que la

optimización mejora el diseño 172 veces. Sin embargo, después de aplicar la probabilidad de

detección de patologı́as en tejido existen varios mı́nimos locales que requiere una búsqueda

global a través de algoritmos genéticos,

Se llevaron a cabo un conjunto de ensayos y análisis de sensibilidad para validar la ro-

bustez de la estimación analı́tica y verificar la fiabilidad y especificaciones del diseño del

transductor mediante los algoritmos detallados en el capı́tulo 9. El sensor piezoeléctrico se

manufacturó por primera vez en el laboratorio de Evaluación No Destructiva en la univer-

sidad de Granada en 2013. (Ver la figura 9.15).

El diseño y fabricación de un sensor de torsión con multitud de aplicaciones en la

mecánica tisular, es un aporte muy relevante, ası́ que la metodologı́a experimental para

extraer nuevos parámetros tanto mecánicos como acústicos ha sido analizada de forma rig-

urosa. Se debe mencionar que las medidas lineales del módulo de cizalla en tejido cervical
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conllevarán un logro aportando un pronóstico y correlacionándolo el diagnóstico de parto

prematuro (una de la mayores causas de mortalidad infantil), mediante técnicas estadı́sticas

[40]. Lo cual es una linea de investigación actual donde está involucrado el diseño de este

prototipo.

La extensión de la no linealidad acústica clásica ha sido aplicada en el capı́tulo 9, ex-

trayendo una solución que separa los términos no lineales que se puede interpretar de la

matriz y los generados por las fibras. Esta conclusión representa un aporte muy novedoso

en el entendimiento de la microestructura tisular. Los resultados sugieren además, que es-

tos términos no lineales podrı́an medirse a tiempo real describiendo procesos evolutivos en

una nueva escala. Esta lı́nea representará un trabajo futuro cuyo impacto repercutirá en el

campo biomédico y en la evaluación de las propiedades mecánicas de los quasifluidos.
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APPENDICES
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A
The Eshelby tensor, associated tensors and their

strongly oblate limits

TI tensors can be conveniently defined and manipulated by using the Hill basis tensors H(n)

whose components are defined as

H(1)
i jkl =

1
2
Θi jΘkl , H(2)

i jkl = Θi jδk3δl3, H(3)
i jkl = Θklδi3δ j3, (A.1)

H(4)
i jkl = δi3δ j3δk3δl3, H(5)

i jkl =
1
2
(ΘikΘl j +ΘilΘk j −Θi jΘkl) (A.2)

H(6)
i jkl =

1
2
(Θikδl3δ j3 +Θilδk3δ j3 +Θ jkδl3δi3 +Θ jlδk3δi3), (A.3)

with Θi j = δi j− δi3δ j3 so that the x1x2 plane is the plane of isotropy. A fourth order TI tensor

X say, is conveniently written down in terms of the TI basis as

X =
6

∑
n=1

XnH(n) (A.4)

Further, we find that

X1 = X1111 + X1122, X2 = X1133, X3 = X3311, (A.5)

X4 = X3333, X5 = X1111 − X1122, X6 = 2X1313 (A.6)

The minor (but not major) symmetries hold and furthermore we note that X1212 = (X1111 −
X1122)/2.
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The inverse X−1 of a transversely isotropic tensor X is straightforwardly determined as

X−1 =
6

∑
n=1

X̂nH(n) (A.7)

where

X̂1 = X4/∆, X̂2 = −X2/∆, X̂3 = −X3/∆, (A.8)

X̂4 = X1/∆, X̂5 = 1/X5, X̂6 = 1/X6 (A.9)

and ∆ = 2(X1X4 − X2X3).

For a spheroid, the non-zero components of the Eshelby tensor are

S1111 =
1
8
−3δ2 + 13L− 4δ2L + 8Lν0δ

2 − 8Lν0

(δ2 − 1)(ν0 − 1)
, (A.10)

S1122 =
−1
8
δ2 + L− 4δ2L + 8Lν0δ

2 − 8Lν0

(δ2 − 1)(ν0 − 1)
, (A.11)

S1133 =
−1
2

2δ2L− δ2 + L + 2Lν0δ
2 − 2Lν0

(δ2 − 1)(ν0 − 1)
, (A.12)

S3311 =
1
2
−L + δ2 − 2δ2L− 2Lν0δ

2 + 2ν0 + 4Lν0δ
2 − 4Lν0

(δ2 − 1)(ν0 − 1)
, (A.13)

S3333 =
−2δ2 + 1 + 4δ2L− L + ν0δ

2 − ν0 − 2Lν0δ
2 + 2Lν0

(δ2 − 1)(ν0 − 1)
, (A.14)

S1313 = −1
2
δ2L + 2L− 1 + Lν0δ

2 − Lν0 − ν0δ
2 + ν0

(δ2 − 1)(ν0 − 1)
. (A.15)

where

L =





δ
4(δ2−1)3/2

[
2δ(δ2 − 1)1/2 + ln

(
δ−(δ2−1)1/2

δ+(δ2−1)1/2

)]
, δ > 1,

δ
4(1−δ2)3/2

[
π − 2δ(1− δ2)1/2 − 2 arctan

(
δ

(1−δ2)1/2

)]
, δ < 1.

(A.16)

Here we are interested in limits as δ → 0. Thus we find that

L ∼ π

4
δ− δ2 + O(δ3)

and therefore the components of the Eshelby tensor in the strongly oblate limit, retaining

terms of O(δ) becomes

S1111 = δ
π(13− 8ν0)

32(ν0 − 1)
, S1122 = δ

π(8ν0 − 1)
32(ν0 − 1)

, (A.17)

S1133 = δ
π(2ν0 − 1)
8(ν0 − 1)

, S3311 =
ν0

1− ν0
− δπ(1 + 4ν0)

8(ν0 − 1)
, (A.18)

S3333 = 1− δπ(2ν0 − 1)
4(ν0 − 1)

, S1313 =
1
2
− δπ(ν0 − 2)

8(ν0 − 1)
. (A.19)
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so that only S3311 = S3322, S3333 and S1313 (with minor symmetries) have non-zero limits as

δ → 0.

Now define F−1 = I− S where I is the fourth order identity tensor whose components

are defined by

Ii jkl =
1
2
(δikδ jl + δilδ jk)

and we find that as δ → 0, defining F̂ = limδ→0 F−1 its only non-zero components are

F̂1111 = 1, F̂3311 = F̂3322 =
8ν0

8ν0 − 1
. (A.20)

Next given that F = (I− S)−1 we define

F = lim
δ→0

F = O
(

1
δ

)
. (A.21)

We also define G = δF and G = limδ→0(δF), the only non-zero components of which are

G3311 =
4ν0(1− ν0))

π(1− 2ν0)
, G3333 =

4(1− ν0)
2

π(1− 2ν0)
, G1313 =

2(1− ν0)

π(2− ν0)
(A.22)

together with G3322 = G3311 and minor (but not major) symmetries. For finite δ, as should

be expected FF−1 = I but we note that F−1 does not exist and in particular F̂F 6= I.
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B
Strain energy function for transversely isotropic

materials

Here we show the link between a general expansion and the correct version incorporating

the linear elastic moduli k, `, m, n, p as in the results.

STRESS FOR ISO MODEL (THIRD ORDER CASE):

First note that

∂I1

∂E
= I,

∂I2

∂E
= 2ET ,

∂I3

∂E
= 3(E2)T . (B.1)

STRESS FOR TI MODEL(THIRD ORDER CASE):

We need

∂I2
1

∂E
= 2tr(E)I, (B.2)

∂I2

∂E
= 2ET , (B.3)

∂I2
4

∂E
= 2(M · EM)M⊗M, (B.4)

∂I4

∂E
= M⊗M (B.5)

∂I5

E
= M⊗ (EM) + (ME)⊗M, (B.6)

∂(I1 I4)

∂E
= (M · EM)I + tr(E)M⊗M (B.7)
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∂I3
1

∂E
= 3(tr(E))2I, (B.8)

∂(I1 I2)

∂E
= (tr(E2))I + 2(tr(E))ET , (B.9)

∂I3

∂E
= 3(E2)T , (B.10)

∂(I1 I2
4 )

∂E
= (M · EM)2I + 2(tr(E))(M · EM)(M⊗M), (B.11)

∂(I1 I5)

∂E
= (M · E2M)I + (tr(E))(M⊗ (EM) + (ME)⊗M), (B.12)

∂(I2
1 I4)

∂E
= 2tr(E)(M · EM)I + (tr(E))2M⊗M, (B.13)

∂(I2 I4)

∂E
= 2(M · EM)ET + (tr(E2))M⊗M, (B.14)

∂I3
4

∂E
= 3(M · EM)2M⊗M (B.15)

∂I4 I5

∂E
= (M · E2M)M⊗M + (M · EM)[M⊗ (E ·M) + (M · E)⊗M] (B.16)

STRESS FOR ISO MODEL (FOURTH ORDER CASE):

I6 = tr(E4) (B.17)

I1 I3 = trEtr(E3) (B.18)

I2
2 = tr(E2)2 (B.19)

I2
1 I2 = tr(E)2tr(E2) (B.20)

I6
1 = tr(E)4 (B.21)

∂I6

∂E
= 4(E3) (B.22)

∂I1 I3

∂E
= tr(E3)I + 3trEE2 (B.23)

∂I2
2

∂E
= 4Etr(E2) (B.24)

∂I2
1 I2

∂E
= 2trEItr(E2) + 2tr(E)2E (B.25)

∂I4
1

∂E
= 4trE3 (B.26)
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C
Homogenization: single inclusion result:

spheres and ellipsoids

C.1 Configuration, geometry and description of the model

We consider that the damaged material is of the type depicted on the left of figure C.1 and

we wish to perform a homogenization procedure in order to derive an effective nonlinear

elastic constitutive law, i.e. the process of going to the homogenized uniform material on

the right of the figure. Even for linear elastic materials this procedure is non-trivial. Here

however we wish to understand how to determine the resulting nonlinear homogenized

elastic properties.
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Figure C.1: The required homogenization procedure should take the damaged material
which responds macroscopically nonlinear and replace this by an effective homogeneous
nonlinear elastic material.

The main difficulty in performing the homogenization step is to understand how to per-

form the upscaling of the individual contributions to the microstructure. The local stress
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and deformation field in the vicinity of the damaged areas in figure C.1 can be tremen-

dously complicated. We shall here adopt the approach of replacing this complicated local

region, which we depict as the region enclosed by the spheroidal regions in (b) in figure C.2,

with an effective homogeneous spheroidal inclusion region with nonlinear elastic behaviour

described by the Landau or Murnaghan model as in (4.12) and depicted in (c) of figure C.2.

The corresponding single-inclusion problem for an isolated ellipsoidal nonlinear elastic

inclusion embedded in an unbounded linear host medium has recently been considered by

Giordano et al. [294] who proved that provided the host material remains linear, the Eshelby

result [295] for an isolated nonlinear inclusion still holds. We shall use this property here

in order to perform the necessary nonlinear homogenization. The homogenization proce-

dure discussed here is depicted in figure C.2 in the scenario where the damage is purely

due to a distribution of aligned, identical microcracks. It is evident that the upscaling from

the specific local damage to an effective nonlinear elastic spheroid is non-trivial, although

intuitively one can see that there should be mechanisms to achieve this, particularly regard-

ing equivalence of elastic energy within this domain; the specifics of this will be considered

elsewhere. Here we assume that this upscaling procedure (a)− (c) in figure C.2 has been

achieved and a particular nonlinear damage mechanism can be effectively characterized by

a nonlinear elastic effective spheroidal inclusion.

The advantage of the replacement of the local damaged region is self-evident. One can

separately consider various types of local damaged regions and consider various analyti-

cal or numerical models of what effect this damage region has, the importance being that

it may always be characterized by a homogeneous nonlinear spheroid (or more generally

ellipsoid). This can then be fed straightforwardly into the resulting homogenization scheme

to be developed below in order to derive the macroscopic nonlinear constitutive law.

Since here we wish to motivate this model by a straightforward example, let us restrict

attention to distributions of identical aligned spheroidal inclusions corresponding to a distri-

bution of aligned identical damage regions (e.g. microcracks) which have been upscaled into

effective nonlinear spheroidal inclusions. We further assume that this behaviour can be ac-

counted for by an isotropic, spheroidal inclusion. One could also consider that an anisotropic

spherical inclusion or an anisotropic, spheroidal inclusion could also account for the dam-

aged region. However the isotropic spheroid leads to more straightforward results and

perhaps more importantly a smaller number of parameters.

C.2 Single inclusion result

C.2.1 The result of Eshelby (1957)

Note first the well known result of Eshelby [295], one of the most cited papers in applied me-

chanics. Eshelby showed that in the context of linear elasticity, the strain inside an isotropic

ellipsoid embedded in an unbounded isotropic host medium with an imposed uniform

strain field at infinity is uniform. This result was extended to the context of anisotropic
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Figure C.2: The homogenization process for a damaged material of the type considered
here. (a) shows the actual material which is behaving macroscopically nonlinearly due to the
complex response of the damage phase, here pictured as aligned microcracks. (b) We isolate
the microcracks by the imaginary spheroidal regions surrounding them. (c) We replace these
regions by an effective homogeneous nonlinear inclusion which has the same effect as the
microcrack region. (d) We homogenize the distribution of nonlinear inclusions using the
modified Eshelby result.

phases by Kneer [296]. The strain inside the inclusion E1 can then be written in terms of the

strain at infinity E∞ via the linear relationship

E∞ = E1 − S(I− C−1
0 C1)E1 (C.1)

where C0 and C1 are the linear elastic moduli tensors of the host and inclusion respectively

and where S is the Eshelby tensor, depending only upon the geometry of the ellipsoidal

inclusion and the host modulus tensor C0. We give the components of the Eshelby tensor

for the case of transverse isotropy and a spheroid in the appendix.

C.2.2 The result of Giordano et al. (2007)

Giordano et al. [211] generalized the Eshelby result described above to the case of an inclu-

sion with constitutive nonlinearity embedded inside a linear host phase and showed that the

strain remains uniform in this case. Note importantly that the fact that the stress is a derivative of
a potential was instrumental in this proof, geometric nonlinearity cannot therefore be incorporated.

Let us suppose that the linear elastic host modulus remains as C0 but now the inclusion

constitutive law is written in the form

T1 = C1(E1)E1. (C.2)

The approach is to assume that a solution to (C.1) exists but with C1 replaced by C1(E1).

To quote [211] “If such a solution E1 = E1
∗ exists for a given E∞, it means that the nonlinear

inhomogeneity could be replaced by a linear one with constant stiffness C0 = C0(E1
∗) without modi-

fications of the elastic fields at any point. Therefore, if E1
∗ exists, then (C.1) exactly describes, through

self-consistency, the elastic behavior of the nonlinear anisotropic inclusion.” In [297] it was shown

that such a solution does exist, albeit with a nonlinear association with E∞ rather than the

simple linear relationship in the linear problem.
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The result is therefore that (C.5) still holds, but now provides a nonlinear relationship

between the strains inside the inclusion and at infinity:

E∞ = E1 − S(I−D0C1(E1))E1. (C.3)

= (I− S)E1 + SD0T1(E1) (C.4)

(C.5)

where we have introduced the notation D0 = C−1
0 . Let us now describe how we can use this

and exploit the weak nonlinearity to derive effective nonlinear stress-strain relationships.

C.2.3 Eshelby’s tensor

Here we shall use Eshelby’s tensor in a number of different cases. In any of these cases

however we restrict attention to the isotropic and transversely isotropic forms, which can

conveniently be written as

S = S1I(1) + S2I(2) (C.6)

and

S =
6

∑
n=1

SnH(n) (C.7)

respectively. The basis tensors I(n) and H(n) are defined in Appendix ??.

C.3 Model implementation via homogenization: A nonlinear Mori-Tanaka
scheme

The modified Eshelby result introduced by Giordano (2007) enables us to perform a homog-

enization procedure. We will assume that at most the host phase is transversely isotropic

which means that its constitutive law is written

T = C0E (C.8)

where C0 depends on the five elastic properties k0, `0, m0, n0 and p0 were introduced in the

(linear) TI form of SEF (5.85). Another reason to ignore geometric nonlinearity is because

even for a linear elastic material, the presence of linear elastic moduli in the third order

terms when geometric nonlinearity is included means that the stress strain relationship will

not be linear!

Let us restrict attention to the case when the (nonlinear) inclusions are spheroidal and

isotropic. Note that we could extend to the transversely isotropic scenarios but since the

inclusions are intended to represent a nonlinear crack of damage region what we require

are parameters and the linear and nonlinear isotropic elastic coefficients together with the

aspect ratio of the spheroid already present six such parameters which one would feel is
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sufficient to represent such a region. The nonlinear constitutive behaviour of the inclusion

is thus represented by (4.2).

Giordano used what we view as a modified Mori-Tanaka homogenization procedure

(although it was not interpreted as such in that work) in order to determine the effective

properties of a medium in which reside a distribution of spherical nonlinear inclusions and

both phases are isotropic. Here we wish to extend that result to the case when phases are

transversely isotropic and the inclusions are spheroid. This is viewed as both an extension

but also due to the fact that we wish to apply this model to the case of predicting damage via

nonlinear elastic properties of inhomogeneous media via nonlinear acoustic measurements.

We seek an effective nonlinear stress-strain law in the form (5.86)-(5.90) relating average

stress to average strain. In particular we use the body averaged quantities, e.g. the body aver-

aged stress is defined as

T̄ =
1
|V|

∫

V
TdV (C.9)

where V is the domain of the inhomogeneous material we are interested in with volume

defined as |V|. If we denote the host material as V0 and the family of inclusions as V1, we

can use (C.8) to write

T̄ =
1
|V|

∫

V0

T0 dV +
1
|V|

∫

V1

T1 dV (C.10)

=
C0

|V|
∫

V0

E0 dV +φT̄1 (C.11)

=
C0

|V|

(∫

V0

E0 dV +
∫

V1

E1 dV −
∫

V1

E1 dV
)
+φT̄1 (C.12)

= C0Ē−φC0Ē1 +φT̄1(Ē1) (C.13)

where we have defined the volume fraction of the damage phase asφ = |V1|/|V|. The above

is a standard approach in the theory of micromechanics, but here we have had to separate

the term involving the inclusion response as this behaves nonlinearly.

What we require to close this system and yield an effective nonlinear stress strain law, is

an equation for the averaged strain inside the damage phase in terms of the overall average

strain, i.e.

Ē1 = Ē1 (Ē) (C.14)

Substituting this into (C.13) would yield the required equations.

The average strain in the medium can be written

Ē = φĒ1 + (1−φ)Ē0 (C.15)
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and we note that for a dilute composite Ē0 ≈ E∞1 so that

Ē = φĒ1 + (1−φ)E∞. (C.16)

Strictly we can drop the ”overline” on Ē1 since it is uniform. However for consistency we

retain this here. Eshelby’s result for an isolated isotropic (third order) nonlinear inclusion

yields

E∞ = Ē1 − SE1 + SD0T1. (C.17)

Since the stress here is a function of strain E1 we have the strain in the far field in terms of a

quadratic expansion in the strain inside the inclusion, i.e.

E∞ = E∞(E1). (C.18)

We substitute this into (C.16) and formally invert the expansion in order to find an expres-

sion for E1 as an expansion in Ē up to quadratic terms, i.e.

E1 = E1(Ē). (C.19)

Finally, using this in (C.13) yields the desired form

T̄ = C∗(Ē)Ē

where we retain orders up to quadratic terms.

The stress inside the nonlinear, isotropic inclusion is written in the form

T1 = TL + TNL (C.20)

with

TL = λ1(trE1)I + 2µE1, (C.21)

TNL = A(E1)2 + B(tr((E1)2)I + 2(tr(E1))E1) + C(trE1)2I. (C.22)

The tensor S(C0)−1 = SD0 is either isotropic or transversely isotropic (TI). If the inclusion

is spheroidal, there is no additional effort in incorporating a TI matrix phase - we can do this

without loss of generality since in any case SD0 will be a TI tensor.

1This is slightly different to how the Mori-Tanaka method can be explained, see e.g. Appendix C of [298] but
this is in fact equivalent and in particular this nonlinear version is more easily explained in this manner. On
can explain in the same manner as describedin [298] but this requires second order expansions in strain, etc.
In particular we stress that this nonlinear version reduces to the linear Mori-Tanaka approximations when we
neglect nonlinear terms
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For the isotropic case, we write

SD0 = S1I(1) + S2I(2) (C.23)

whereas for the TI case we have

SD0 =
6

∑
n=1

SnH(n). (C.24)

C.3.1 Macroscopically isotropic behaviour

Let us assume now that the matrix is isotropic and that the distribution of inclusions is such

that the overall response is macroscopically isotropic. Then

SD0 =
S1

3κ0
I(1) +

S2

2µ0
I(2) (C.25)

which thus identifies X1 and X2. We seek an effective stress strain law in the form

T̄ = λ∗(trĒ)I + 2µ∗Ē + A∗Ē2 + B∗(tr(Ē2)I + 2(trĒ)Ē) + C∗(trĒ)2I (C.26)

We have employed the general isotropic Eshelby tensor (C.23). For now we leave this

arbitrary so as to enable the incorporation of rather general effects the most simple of which

are uniformly distributed spheres. However this approach also enables us to model uni-

formly distributed and uniformly oriented ellipsoidal inclusions, common and useful cases of

which are penny cracks, discs and needles, all of which may be very useful in this damage

context.

Using (C.25) and (C.20)-(C.22) in (C.17) and we find the following quadratic for the strain

at infinity in terms of the strain inside the inclusion:

E∞ = LE1 + M(trE1)I + N(E1)2 + OE1(trE1) + Ptr((E1)2)I + Q(trE1)2I (C.27)

where

L = 1 + S2

(
µ1

µ0
− 1
)

, M =
S1

3

(
K1

K0
− 1
)
− S2

3

(
µ1

µ0
− 1
)

, (C.28)

N =
S2

2µ0
A, O =

S2

µ0
B, (C.29)

P =
1
3
A
(

S1

3K0
− S2

2µ0

)
+ B S1

3K0
, Q =

2
3
A
(

S1

3K0
− S2

2µ0

)
+ C S1

3K0
. (C.30)

Substitute (C.27) in (C.16) to yield

Ē = L′E1 + M′tr(E1)I + N′(E1)2 + O′E1trE1 + P′tr(E1)2I + Q′(tr(E1))2I (C.31)
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where

L′ = φ+ (1−φ)L, M′ = (1−φ)M, N′ = (1−φ)N, (C.32)

O′ = (1−φ)O, P′ = (1−φ)P, Q′ = (1−φ)Q. (C.33)

Next we invert (C.27) to yield (correct to quadratic terms)

E1 = RĒ + Str(Ē)I + T(Ē)2 + UĒtrĒ + Vtr(Ē)2I + W(tr(Ē))2I + ... (C.34)

where

R =
1
L′

, S =
−M′

L′(L′ + 3M′)
, T =

−N′

L′3
, (C.35)

U =
2M′N′ −O′L′

L′3(L′ + 3M′)
, V =

M′N′ − P′L′

L′3(L′ + 3M′)
, (C.36)

and

W =
M′2

L′2(L′ + 3M′)
+

M′2(3P′ − N′) + L′M′(2P′ + O′)−Q′L′2

L′3(L′ + 3M′)2 . (C.37)

We also note the useful relations

L′ =
1
µ0

(µ0 + (1−φ)(µ1 −µ0)S2), (C.38)

L′ + 3M′ =
1

K0
(K0 + (1−φ)(K1 − K0)S1). (C.39)

Finally use (C.34) in (C.13) and gather terms in order to find the effective nonlinear stress

strain relationship in the form (C.26). We find the effective linear properties

µ∗ = µ0 +φ
(µ1 −µ0)

L′
, (C.40)

K∗ = K0 +φ

(
K1 − K0

L′ + 3M′

)
. (C.41)

and effective nonlinear properties

A∗ =
φA
L′3

(C.42)

B∗ = φ(φ− 1)S1

3K0

(λ1 − λ0)

L′2(L′ + 3M′)

(A
3
+ B

)
+

2(µ1 −µ0)φ(1−φ)
L′3(L′ + 3M′)

(M′N − L′P) +
φB
L′2

(C.43)

C∗ = derive general form of C∗ (C.44)
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and note that

M′N − L′P =
1
3
A
(

S1

3K0
− S2

2µ0

)
+

S1B
3K0

+
1
3
(1−φ)S1S2

( A
2µ0

(
K1

K0
− 1
)
−
( A

3K0
+ BK0

)(
µ1

µ0
− 1
))

(C.45)

When we take the Eshelby tensor for a sphere we recover the results of Giordano [294]

(D=0). Alternatively we can also consider a variety of other types of inclusions that are uni-

formly oriented. We use the results derived by Berryman (1980) for the strain concentration

tensor and back-out the Eshelby tensor from these. In particular we find the results list in

table C.1.

S1 S2

Sphere
3K0

3K0 + 4µ0

6(K0 + 2µ0)

5(3K0 + 4µ0)

Table C.1: Isotropic components of the Eshelby tensor for inclusions averaged over orienta-
tions.

Spheres

where

L = 1 + S2

(
µ1

µ0
− 1
)

(C.46)

M =
S1

3

(
K1

K0
− 1
)
− S2

3

(
µ1

µ0
− 1
)

(C.47)

N =
3(A+ 4µ2)

5µ1

(
K1 + 2µ1

3K1 + 4µ1

)
(C.48)

O =
6(K2 − 5

3µ2 + B)
5µ1

(
K1 + 2µ1

3K1 + 4µ1

)
(C.49)

P =
1

15(3K1 + 4µ1)

(
15B − (A+ 4µ2)

(
1 + 3

K1

µ1

))
(C.50)

Q =
1

15(3K1 + 4µ1)

(
15
(
C − K2 +

2
3
µ2

)
− 2

(
K2 −

5
3
µ2 + B

)(
1 + 3

K1

µ1

))
. (C.51)

Write down linear properties (MT) explicitly.

Spheres

Sκ =
3K0

(3K0 + 2µ0)
, Sµ =

6
5

(
K0 + 2µ0

3K0 + 4µ0

)
(C.52)

and thus

SD = X1I(1) + X2I(2) (C.53)
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where

X1 =
S1

3K0
=

2
5K0

(
K0 + 2µ0

3K0 + 4µ0

)
, X2 =

S2

2µ0
=

3K0

2µ0(3K0 + 4µ0)
(C.54)

C.3.2 Macroscopically transversely isotropic behaviour

In the general TI case, this has the the form of (5.86) with associated effective elastic proper-

ties, i.e.

T̄ = T̄L1 + T̄L2 + T̄NL1 + T̄NL2 (C.55)

where each of the individual contributions, is defined in terms of the body averaged strain

and thus defines the effective properties:

T̄L1 = (k∗ −m∗)(trĒ)I + 2m∗Ē, (C.56)

T̄L2 = L∗1(M̄ · ĒM̄)M̄⊗ M̄ + 2(p∗ −m∗)(M̄⊗ ĒM̄ + M̄Ē⊗ M̄)

+ L∗2((M̄ · ĒM̄)I + (trĒ)M̄⊗ M̄) (C.57)

T̄NL1 = (A∗ + 4m∗)Ē2 + B∗(tr(Ē2))I + 2(B∗ − 2m∗ + k∗)(trĒ)Ē + (C∗ − k∗ + m∗)(trĒ)2I

(C.58)

T̄NL2 = I(D∗ Ī4
2
+ E∗ Ī5 + 2F ∗ Ī1 Ī4 −L∗2 Ī1 Ī4)

+ N∗(2D∗ Ī1 Ī4 +F ∗ Ī1
2
+ G∗ Ī2 + 3H∗ Ī4

2
+ I∗ Ī5 − (L∗1 Ī1 Ī4 + L∗2 Ī1

2
)) + Ē(2G∗ Ī4 + 2L∗2 Ī4)

+ [M̄⊗ ĒM̄ + M̄Ē⊗ M̄](E∗ Ī1 + I∗ Ī4 + L∗1 Ī4 + L∗2 Ī1 − 2(p∗ −m∗) Ī1)

+ 2(p∗ −m∗)[N̄Ē2 + Ē2N̄ + ĒM̄⊗ ĒM̄ + M̄Ē⊗ M̄Ē] (C.59)

where we used the notation N̄ = M̄⊗ M̄ and it was also convenient to define the moduli

combinations

L∗1 = n∗ − 4p∗ − 2`∗ + k∗ + m∗, L∗2 = `∗ − k∗ + m∗. (C.60)

Aligned isotropic spheroids

The strain inside the inclusion E1 can then be written in terms of the strain at infinity E∞ via

the linear relationship
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E∞ = AtnE1 I + BE1 + CME1MM⊗M + D(M⊗ E1M + ME1 ⊗M) (C.61)

+ EME1MI + FtrE1M⊗M + GtnE1E1 + H(E1)2 + Itn(E1)2 I (C.62)

+ J(trE1)2 I + Ktr(E1)2M⊗M + L(tnE1)2M⊗M (C.63)

+ MME1MM⊗ME1 + N(M⊗ E1M + ME1 ⊗M)E1 (C.64)

+ OME1ME1 I + PtnE1ME1MI + QtnE1ME1MM⊗M (C.65)

+ RtnE1(M⊗ E1M + ME1 ⊗M) + StnE1E1M⊗M (C.66)
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where

A =
2µ1SC

1122 + λ1(SC
1111 + SC

1122 + SC
1133 + SC

3311)

3λ0 + 2µ0
(C.67)

B = 1 +
2µ1(SC

1111 − SC
1122)

3λ0 + 2µ0
(C.68)

C =
2µ1(SC

1111 − SC
1133 − SC

3311 + SC
3333 − 2SC

1313)

3λ0 + 2µ0
(C.69)

D =
2µ1(2SC

1313 − SC
1111 + SC

1212)

3λ0 + 2µ0
(C.70)

(C.71)

E =
2µ1(SC

1133 − SC
1122)

3λ0 + 2µ0
(C.72)

(C.73)

F =
2µ1(SC

3311 − SC
1122) + λ1(−SC

1111 − SC
1122 − SC

1133 − SC
3311 + SC

3333)

3λ0 + 2µ0
(C.74)

(C.75)

G =
(A+ 4m)SC

1122 + 2(B + 2m + k)(SC
1111 − SC

1122)

3λ0 + 2µ0
(C.76)

H =
(A+ 4m)(SC

1111 − SC
1122)

3λ0 + 2µ0
(C.77)

I =
B(SC

1111 + SC
1122 + SC

1133 + SC
3311)

3λ0 + 2µ0
(C.78)

J =
2(B − 2m + k)SC

1122 + (C − k + m)(SC
1111 + SC

1122 + SC
1133 + SC

3311)

3λ0 + 2µ0
(C.79)

K =
B

3λ0 + 2µ0
(−SC

1111 − SC
1122 − SC

1133 − SC
3311 + SC

3333) (C.80)

L =
2(B − 2m + k)(SC

3311 − SC
1122) + (C − k + m)(−SC

1111 − SC
1122 − SC

1133 − SC
3311 + SC

3333)

3λ0 + 2µ0

(C.81)

M =
(A+ 4m)(SC

1111 − SC
1133 − SC

3311 + SC
3333 − 2SC

1313)

3λ0 + 2µ0
(C.82)

N =
(A+ 4m)(2SC

1313 − SC
1111 + SC

1212)

3λ0 + 2µ0
(C.83)

O =
(A+ 4m)(SC

1133 − SC
1122)

3λ0 + 2µ0
(C.84)

P =
2(B − 2m + k)(SC

1133 − SC
1122)

3λ0 + 2µ0
(C.85)

Q =
2(B − 2m + k)(SC

1111 − SC
1133 − SC

3311 + SC
3333 − 2SC

1313)

3λ0 + 2µ0
(C.86)

R =
2(B − 2m + k)(2SC

1313 − SC
1111 + SC

1212)

3λ0 + 2µ0
(C.87)

S =
(A+ 4m)(SC

3311 − SC
1122)

3λ0 + 2µ0
(C.88)
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Ē = A′tnE1 I + B′E1 + C′ME1MM⊗M + D′(M⊗ E1M + ME1 ⊗M) (C.90)

+ E′ME1MI + F′tnE1M⊗M + G′tnE1E1 + H′(E1)2 + I′tn(E1)2 I (C.91)

+ J′(tnE1)2 I + K′tn(E1)2M⊗M + L′(tnE1)2M⊗M (C.92)

+ M′ME1MM⊗ME1 + N′(M⊗ E1M + ME1 ⊗M)E1 (C.93)

+ O′ME1ME1 I + P′tnE1ME1MI + Q′ttnE1ME1MM⊗M (C.94)

+ R′tnE1(M⊗ E1M + ME1 ⊗M) + S′tnE1E1M⊗M (C.95)
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where

A′ = (1−φ)2µ1SC
1122 + λ1(SC

1111 + SC
1122 + SC

1133 + SC
3311)

3λ0 + 2µ0
(C.96)

(C.97)

B′ = φ+ (1−φ)2µ1(SC
1111 − SC

1122)

3λ0 + 2µ0
(C.98)

C′ = (1−φ)2µ1(SC
1111 − SC

1133 − SC
3311 + SC

3333 − 2SC
1313)

3λ0 + 2µ0
(C.99)

D′ = (1−φ)2µ1(2SC
1313 − SC

1111 + SC
1212)

3λ0 + 2µ0
(C.100)

E′ = (1−φ)2µ1(SC
1133 − SC

1122)

3λ0 + 2µ0
(C.101)

F′ = (1−φ)2µ1(SC
3311 − SC

1122)

3λ0 + 2µ0
(C.102)

G′ = (1−φ) (A+ 4m)SC
1122 + 2(B + 2m + k)(SC

1111 − SC
1122)

3λ0 + 2µ0
(C.103)

H′ = (1−φ) (A+ 4m)(SC
1111 − SC

1122)

3λ0 + 2µ0
(C.104)

I′ = (1−φ)B(SC
1111 + SC

1122 + SC
1122 + SC

1133 + SC
3311)

3λ0 + 2µ0
(C.105)

J′ = (1−φ)2(B − 2m + k)SC
1122 + (C − k + m)(SC

1111 + SC
1122 + SC

1133 + SC
3311)

3λ0 + 2µ0
(C.106)

K′ = (1−φ) B
3λ0 + 2µ0

(−SC
1111 − SC

1122 − SC
1133 − SC

3311 + SC
3333) (C.107)

L′ = (1−φ)B − 2m + k)(SC
3311 − SC

1122) + (C − k + m)(−SC
1111 − SC

1122 − SC
1133 − SC

3311 + SC
3333)

3λ0 + 2µ0

(C.108)

M′ = (1−φ) (A+ 4m)(SC
1111 − SC

1133 − SC
3311 + SC

3333 − 2SC
1313)

3λ0 + 2µ0
(C.109)

N′ = (1−φ) (A+ 4m)(2SC
1313 − SC

1111 + SC
1212)

3λ0 + 2µ0
(C.110)

O′ = (1−φ) = (A+ 4m)(SC
1133 − SC

1122)

3λ0 + 2µ0
(C.111)

P′ = (1−φ)2(B − 2m + k)(SC
1133 − SC

1122)

3λ0 + 2µ0
(C.112)

Q′ = (1−φ)2(B − 2m + k)(SC
1111 − SC

1133 − SC
3311 + SC

3333 − 2SC
1313)

3λ0 + 2µ0
(C.113)

R′ = (1−φ)2(B − 2m + k)(2SC
1313 − SC

1111 + SC
1212)

3λ0 + 2µ0
(C.114)

S′ = (1−φ) (A+ 4m)(SC
3311 − SC

1122)

3λ0 + 2µ0
(C.115)

(C.116)
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T̄ = C0Ē−φC0E1 +φT̄1(Ē1) (C.117)

Next we invert to yield (correct quadratic terms)

E1 = ÂtrĒI + B̂Ē + ĈMĒMM⊗M + D̂(M⊗ ĒM + MĒ⊗M) (C.118)

+ ÊMĒMI + F̂trĒM⊗M + ĜtrĒĒ + Ĥ(Ē)2 + Îtr(Ē)2 I (C.119)

+ Ĵ(trĒ)2 I + K̂tr(Ē)2M⊗M + L̂(trĒ)2M⊗M (C.120)

+ M̂MĒMM⊗MĒ + N̂(M⊗ ĒM + MĒ⊗M)Ē (C.121)

+ ÔMĒMĒI + P̂trĒMĒMI + Q̂trĒMĒMM⊗M (C.122)

+ R̂trĒ(M⊗ ĒM + MĒ⊗M) + ŜtrĒĒM⊗M (C.123)

where
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Â = − A′

B′(B′ + 3A′ + F′)
(C.124)

B̂ =
1
B′

(C.125)

Ĉ = −C′B̂ + C′Ê + 2D′Ê + 3F′Ê + 2E′D̂ + 2F′D̂ + 2D′D̂
B′ + C′ + D′ + E′ + F′

(C.126)

D̂ = − D′

B′(2D′ + B′)
(C.127)

Ê = −A′Ĉ + 2A′D̂ + 2C′D̂ + E′B̂
B′ + 3A′

(C.128)

F̂ = − C′ Â + 2D′ Â + F′B̂ + 3F′ Â
A′ + B′ + C′ + 2D′ + E′ + F′

(C.129)

Ĝ = −A′ Ĵ + A′K̂ + 4G′D̂ + G′B̂
B′ + 3A′ + C′ + E′

(C.130)

Ĥ = − H′

B′2
(C.131)

Î = − A′Ĥ
B′ + 3A′ + C′ + E′

(C.132)

Ĵ = − J′

B′2
(C.133)

K̂ = −2D′Ĝ + 3F′Ĝ + F′ Ĵ + K′B̂ + 4K′D̂ + S′ F̂ + A′ Ŝ
B′ + 2D′ + E′ + F′ + C′

(C.134)

L̂ = −2D′ Î + F′Ĥ + F′ Î + H′ F̂ + I′ F̂ + J′ F̂ + G′ F̂ + 3K′ Â
B′ + C′ + 2D′ + F′

(C.135)

− K′ F̂ + L′B̂ + 3L′ Â + G′ F̂ + P′ F̂ + 3Q′ Â + Q′ F̂ + 6R′ Â + 2R′ F̂ + S′ Â + F′ Ŝ
B′ + C′ + 2D′ + F′

(C.136)

M̂ = −2D′P̂ + M′Ê + M′Ĉ + M′B̂ + 2N′Ĉ + 2N′Ê + O′Ĉ + O′D̂ + 3Q′Ê
B′

(C.137)

N̂ = −D′ Ĵ + N′B̂ + O′Ê
B′ + E′

(C.138)

Ô = −2M′D̂ + 3P′Ê + O′B̂
B′

(C.139)

P̂ = −A′(M̂ + 2N̂ + 3Ô + Q̂ + 2R̂) + 2C′R̂ + E′Ĥ + H′Ê + G′Ĉ + 2N′ Â
B′ + 3A′ + E′

(C.140)

− 2N′ F̂ + P′B̂ + O′ F̂ + M′ F̂
B′ + 3A′ + E′

(C.141)

Q̂ = −C′Ĥ + C′P̂ + 2D′P̂ + 2D′Ĉ + 2E′R̂ + F′M̂ + 2F′N̂ + 3F′ Ĵ
B′ + C′ + 2D′ + E′ + F′

(C.142)

− 3F′Ô + 2F′R̂ + H′Ĉ + Q′B̂ + S′Ĉ + S′Ê + C′ Ŝ + E′ Ŝ
B′ + C′ + 2D′ + E′ + F′

(C.143)

R̂ = −D′Ĥ + H′D̂ + R′B̂
B′

(C.144)

Ŝ = −S′B̂ + M′ Â + O′ Â + O′ F̂ + 2N′ F̂
B′

(C.145)

(C.146)
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Assuming bound uniformity T̄1(Ē1) = T1(E1) we obtained the next configuration of

stress average.

T̄ = 2m∗Ē + (k∗ −m∗)trĒI︸ ︷︷ ︸
T̄L1

(C.147)

+ L∗1((MĒM)M⊗M) + 2(p∗ −m∗)(M⊗ ĒM + MĒ⊗M) + L∗2(trĒM⊗M + MĒMI)︸ ︷︷ ︸
T̄L2

(C.148)

+ Ã∗(Ē)2 + B∗tr(Ē)2 + 2B̃∗trĒĒ + C̃∗(trĒ)2 I︸ ︷︷ ︸
T̄NL1

(C.149)

+ MĒMM⊗MĒ + (M⊗ ĒM + MĒ⊗M)Ē (C.150)

+ trĒĒM⊗M + tr(Ē)2M⊗M + (trĒ)2M⊗M + MĒME1 I (C.151)

+ trĒMĒMM⊗M + trĒ(M⊗ ĒM + MĒ⊗M) + trĒMĒMI︸ ︷︷ ︸
T̄NL2

(C.152)

(C.153)

197





D
Contributions

The results, trasversal applications and contributions from this Thesis, are reflected in the

refereed journal publications, international conferences, patens and books enumerated be-

low.

• Refereed journal publications:

B G. Rus, J. Melchor, N. Bochud, L. Peralta and W. Parnell. A micro-mechanical ap-
proach for bone nonlinear quantitative ultrasound. Submitted to Ultrasonics.

B L. Peralta, F.S. Molina, J. Melchor, L.F. Gómez, J. Florido, P. Massó, G. Rus. Tran-
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J. Chiachio. Relationship between acoustic and homogenized Landau nonlinearity con-
stant in anisotropic bone ESUCB 2013

B M. Chiachı́o, J. Chiachı́o, G. Rus, N. Bochud, J. Melchor, L. Peralta, M. Membrilla,
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une méthode d?acousto-élasticité dynamique. IRBM, 32(5):269–273, 2011.

[30] Guillaume Renaud, Samuel Calle, J-P Remenieras, and Marielle Defontaine. Explo-

ration of trabecular bone nonlinear elasticity using time-of-flight modulation. Ultra-
sonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 55(7):1497–1507, 2008.
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Patat. Spatial variation of acoustic parameters in human skin: an in vitro study be-

tween 22 and 45 mhz. Ultrasound in medicine & biology, 28(5):599–615, 2002.

[145] F Sebag, J Vaillant-Lombard, J Berbis, V Griset, JF Henry, P Petit, and C Oliver. Shear

wave elastography: a new ultrasound imaging mode for the differential diagnosis of

benign and malignant thyroid nodules. Journal of Clinical Endocrinology & Metabolism,

95(12):5281–5288, 2010.

[146] Jung Min Chang, Woo Kyung Moon, Nariya Cho, Ann Yi, Hye Ryoung Koo, Wonsik

Han, Dong-Young Noh, Hyeong-Gon Moon, and Seung Ja Kim. Clinical application

of shear wave elastography (swe) in the diagnosis of benign and malignant breast

diseases. Breast cancer research and treatment, 129(1):89–97, 2011.

[147] D.L. Bader and P. Bowker. Mechanical characteristics of skin and underlying tissues

in vivo. Biomaterials, 4(4):305–308, 1983.

[148] Avtar S. Ahuja. Tissue as a voigt body for propagation of ultrasound. Ultrasonic
Imaging, 1(2):136–143, 1979.

[149] J.M. Pereira, J.M. Mansour, and B.R. Davis. Dynamic measurement of the viscoelastic

properties of skin. Journal of Biomechanics, 24(2):157–162, 1991.

[150] T.A. Bigelow, B.L. McFarlin, W.D. O’Brien Jr., and M.L. Oelze. In vivo ultrasonic at-

tenuation slope estimates for detecting cervical ripening in rats: Preliminary results.

Journal of the Acoustical Society of America, 123(3):1794–1800, 2008. cited By (since 1996)

0.

[151] J.O. Kim and O.S. Kwon. Vibration characteristics of piezoelectric torsional transduc-

ers. Journal of sound and vibration, 264(2):453–473, 2003.

[152] S. Kaneko, S. Nomoto, H. Yamamori, and K. Ohya. Load characteristics of a bolted

langevin torsional transducer. Ultrasonics, 34(2):239–241, 1996.

[153] Stephen C Butler. A 2.5 khz magnetostrictive tonpilz sonar transducer design. The
Journal of the Acoustical Society of America, 109(5):2459–2459, 2001.

[154] J. Li, P. Liu, H. Ding, and W. Cao. Modeling characterization and optimization de-

sign for pzt transducer used in near field acoustic levitation. Sensors and Actuators A:
Physical, 2011.

214



[155] H.Y. Lin and W. Fang. A rib-reinforced micro torsional mirror driven by electrostatic

torque generators. Sensors and Actuators A: Physical, 105(1):1–9, 2003.

[156] AE Glazounov, QM Zhang, and C. Kim. Torsional actuator based on mechanically

amplified shear piezoelectric response. Sensors and Actuators A: Physical, 79(1):22–30,

2000.

[157] P. Harkness, A. Cardoni, and M. Lucas. A comparison of coupling and degenerat-

ing mode in longitudinal-torsional step horns. IEEE Transactions on Ultrasonics, Ferro-
electrics and Frequency Control, 2011.

[158] S. Lin. Study on the langevin piezoelectric ceramic ultrasonic transducer of

longitudinal–flexural composite vibrational mode. Ultrasonics, 44(1):109–114, 2006.

[159] M. Aoyagi, T. Suzuki, and Y. Tomikawa. Characteristics of a bolt-clamped torsional

vibrator using shear-mode piezo-ceramics sandwiched in the axial direction. Ultra-
sonics, 34(2):219–222, 1996.

[160] JM Thijssen, WA Verhoef, and MJ Cloostermans. Optimization of ultrasonic transduc-

ers. Ultrasonics, 23(1):41–46, 1985.

[161] H. Kwun, WD Jolly, GM Light, and E. Wheeler. Effects of variations in design parame-

ters of ultrasonic transducers on performance characteristics. Ultrasonics, 26(2):65–72,

1988.

[162] CS Dutcher and DC Venerus. Compliance effects on the torsional flow of a viscoelastic

fluid. Journal of Non-Newtonian Fluid Mechanics, 150(2-3):154–161, 2008.

[163] R.L. Taylor. FEAP-ein finite element analysis programm. Ing.-Gemeinschaft Klee &

Wrigges, 1987.

[164] D. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-

Wesley Publ, Reading, Massachussets, etc., 1989.

[165] F. Wang, X. Zhao, D. Zhang, and Y. Wu. Development of novel ultrasonic transducers

for microelectronics packaging. Journal of materials processing technology, 209(3):1291–

1301, 2009.
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