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Abstract

Multivariate problems are found in all areas of knowledge. In chemistry and related

disciplines, the chemometric community was developed in a joint effort to understand and

solve problems mainly from a multivariate and exploratory perspective. This perspective is,

indeed, of broader applicability, even in areas of knowledge far from chemistry. In this paper,

we focus on the Internet: the net of devices that allow an interconnected world where all types

of data can be shared and unprecedented communication services can be provided. Problems

in the Internet, or in general in networking, are not very different from chemometric problems.

Building on this parallelism, we review four classes of problems in networking: estimation,

anomaly detection, optimization and classification. We present an illustrative set of problems

and show how a multivariate perspective may lead to significant improvements from state-

of-the-art techniques. In absence of a better name we call the approach of treating these

problems from that multivariate perspective networkmetrics. Networkmetric problems have

their own specificities, mainly their typical Big Data nature and the presence of unstructured

data. We argue that multivariate analysis is, indeed, useful to tackle these specificities.
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1 Introduction

The Internet has been recognized as one of the main technological advances in human history. In

developed parts of the world, we have changed the way we interact and the way we seek information

by relaying more and more on computer networks. This causes a fast and continuous alteration of

human habits, since advances in communication technologies are giving way to the development

of new Internet services we can access everywhere trough mobiles, wearable devices and vehicular

communications, among others.

The goal of this paper is to illustrate how Internet communications and services can benefit from

advances in multivariate analysis, making a parallelism with the achievements accomplished in

analytical chemistry or process analysis, among others, thanks to chemometrics. This parallelism

is, indeed, the reason why we refer to the study of multivariate data problems in the Internet

as networkmetrics1. Same types of problem arise in both chemometrics and networkmetrics:

estimation, optimization, anomaly detection and classification problems, among others. Still, two

main differences are found: (i) data-based problems in networkmetrics are commonly Big Data

problems by definition, and (ii) networkmetric data are mostly unstructured, which complicates

but also increases the flexibility and possibilities of the analysis.

The rest of paper is organized as follows. In Section 2, the Internet networking structure and

functioning is briefly introduced to contextualize the remainder of the paper. Section 3 discusses

similarities and differences between chemometrics and networkmetrics from a broad perspective.

The following four sections present some of the main data-driven problems in the context of

networking, organized according to their goal in Sections 4 to 7: estimation, anomaly detection,

optimization and classification, respectively. The list of problems provided here is not intended

to be complete, but illustrative of the potential benefit of an adequate application of multivariate

analysis to networking. In each of these sections, a brief literature review is performed, discussing

1It should be noted that this is not a widely extended term: researchers working on networking with multivariate

analysis methods do not have a sense of belonging to a research community, nor there are journals or conferences

focused on this topic.
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whether main references apply or not multivariate analysis and, where appropriate, suggesting how

we can make the most of advanced chemometrics methods to improve state-of-the-art approaches

in networking. Also, the specificities of the data used in each of the problems are described and

illustrative examples are included at the end of each section or subsection. Examples have clear

resemblance to problems dealt with in the chemometric literature, so the goal here is to motivate

the application of approaches that worked well in chemometrics to some of the problems below or

similar ones. Finally, Section 8 presents the conclusions of the work.

2 The Internet and the Networked World

The widespread use of the Internet is the result of the combination of very smart design decisions

[1]. Some of these are described in this section.

Computer communications were preceded by the invention of telephone communications, and

the Public Switched Telephone Network (PSTN) was well understood when the seed of the Internet,

the ARPAnet project, was initiated. In the traditional PSTN, each telephone call between a pair

of phones reserves dedicated resources in the network for that communication. Even if the users of

the call remain silent, the resources cannot be used by thirds. To avoid this waste of resources, the

Internet embraced the packet switching approach. Every message we send through the Internet

is cut into a number of packets, also named datagrams (Fig. 1). Each datagram contains a part

of the message plus a set of control variables added at the beginning, forming what is called the

header of the packet. One principal control information in the header is the datagram destination.

With this information, each datagram travels the Internet on its own, so that different datagrams

of a same message may follow different paths to their destination. This approach optimizes the

use of resources and makes communications more robust to malfunctioning. This was principal for

the adoption of the Internet, since reasonably low investments were required to offer very useful

services, like web navigation or the e-mail.

Another main design choice in the Internet is its layered architecture. For a proper commu-
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Figure 1: Illustration of how a message is sent through a packet-switching network: the informa-

tion, which is stored in binary form in a computer, is split into a number of packets and combined

with control information (headers H) prior to be sent.

nication between two devices, there are many problems that need to be solved. The fathers of

the Internet realized that it was too difficult for a single computer program to incorporate all the

functionalities needed to solve all of these problems. Instead, they decided to separate function-

alities into layers. In each layer, a handful of functionalities are implemented, and it is assumed

that the remaining functionalities are handled somewhere else. The functionalities in each layer

are accomplished by software entities (programs). Thus, the communication between two devices

in a network is supported by the communication between several paired entities in the devices,

each pair belonging to a different layer and talking in a specific language named protocol, see

Fig. 2. To make this possible, the datagram headers are divided in as many parts as protocols

are used in the communication, and then headers and data in the datagram are sent through the

communication channel.

The definition of layers is a very powerful idea in computing environments. A main advantage

is that a layered architecture can hide the specificities of the communication hardware. Thus, net-

works with different technologies, from legacy to the most modern technologies, can communicate

through a world wide interconnection of heterogeneous networks: the Internet. The layer that

most contributed to the development of the Internet has been the so-called Internet Protocol (IP)
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Figure 2: Layered network architecture: horizontal (virtual) communication is performed among

entities in the same layer, though real (physical) communication is done over the links in binary

codification. The virtual communication in layer n is carried out thanks to the information in the

corresponding header (Hn) of the packet, on the bottom of the figure.

layer. Software entities in this layer are responsible for identifying the devices in the whole Internet

with the IP addresses2 and routing the datagrams from the origin to the destination through the

mesh of interconnected networks. To reach the destination, the datagram goes through a number

of intermediate devices, referred to as routers, each of them is interconnected to the rest of the

Internet through (wired or wireless) links, see Fig. 3. Routers are responsible for maintaining

updated information for datagrams routing towards their destination.

As a summary, the proper functioning of the Internet is a mixture of complex functionalities

and decisions made on a distributed basis, in which a large number of entities at different parts of

the Internet contribute. In the end, the Internet is kind of a swarm intelligence, made up of simple

computing programs whose interaction create a complex behavior. Understanding such a behavior

is very much like understanding macroeconomics or the human body. This paper discusses the

2An IP address is the identifier of a device in a computer network. For instance 150.214.191.5
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Figure 3: Illustration of the Internet topology: end systems (e.g. PCs) communicate through a

network of routers connected by links.

potential contribution of multivariate analysis to this end.

3 Networkmetrics vs Chemometrics

It has already been discussed, and will be treated in detail in the following sections, that many

data-driven applications in networking are very close to other applications in the chemometric

literature. As a motivating example, the detection of cybersecurity issues and cyberwarfare activity

can be approached following the Multivariate Statistical Process Control (MSPC) philosophy [2].

However, the main differences relate to the data that need to be handled in each area.

A large number of networkmetric applications are naturally Big Data applications, while most

chemometric applications are not (yet). This may not be a relevant difference, since many chemo-

metric applications where sampling is applied, like in industrial processing, could be thought of

as Big Data. However, networkmetric applications are among the first applications where tons of

data needed to be handled. They share a number of features with other typical Big Data problems,

the so-called 4 Vs [3]:

• Variety: Data are varied in nature. Different sources, including unstructured and structured
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Table 1: Memory storage units.

Name (Symbol) Standard SI

Kilobyte (KB) 103

Megabyte (MB) 106

Gigabyte (GB) 109

Terabyte (TB) 1012

Petabyte (PB) 1015

Exabyte (EB) 1018

Zettabyte (ZB) 1021

Yottabyte (YB) 1024

information, need to be properly combined for problem solving.

• Veracity: The search for valuable information in large data sets is very much like the problem

of finding the needle in a haystack. Big Data present low signal to noise ratio, and data

analysis techniques are needed to find patterns or trends, which are more reliable than

punctual measures.

• Volume: The amount of data that needs to be handled simultaneously makes hardware

parallelism a must in many cases. Exabytes, Zettabytes, and even higher amounts of data

are described in Big Data applications (see a list of storage units in Table 1).

• Velocity: In networkmetric problems, a high rate of incoming information is common. This

further complicates the analysis and makes parallelism even more necessary. Quoting Robert

J. Moore, CEO and co-founder of RJMetrics, ”There was 5 exabytes of information created

between the dawn of civilization through 2003, but that much information is now created

every 2 days, and the pace is increasing”.

Another challenge in networkmetrics is to handle unstructured data, while typical chemometric

data are structured. Structured data refer to data with a fixed format (top of Fig. 4), e.g. the

data you can store in several fields of a spreadsheet. This includes three-way or multi-block data.
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Figure 4: Examples of structured and unstructured data.

For instance, process data is structured, since for every sampling time we obtain a set of process

variables we can directly input to our multivariate model. Instead, unstructured data need to be

translated into a set of variables to make possible the multivariate analysis. Take the example

of the e-mail in Fig. 4 and think of an automatic procedure to distinguish useful e-mails from

spam. The management of unstructured data is a main problem in anomaly detection, and will

be discussed in more detail in Section 5.

The networking literature is full of different approaches on how to deal with unstructured and

Big data, ranging from parallel processing to visualization methods. However, the analysis of

networking data can also benefit from identifying similarities with chemometric data and using

chemometric algorithms. Thus, the ability of chemometric methods to handle highly multivariate

data is of utmost importance to analyze unstructured data, since the amount of variables that

can be artificially defined from these is unlimited. For instance, following with the example of the

e-mail anti-spam application, we may select a parametrization that includes different statistics of

the apparition of specific letters, words and/or combinations of words. This is likely to be highly

multivariate. Most of the time, these types of approaches are avoided in the networking community,
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where the expertise on multivariate analysis is not common. This also opens interesting questions

on how to design the parametrization of unstructured data to make the most of a given multivariate

model. Another typical problem in networkmetrics is that of data fusion, where several sources of

information need to be combined to fulfill a specific goal. Multi-block methodologies can be useful

for that. Finally, temporal and spatial patterns in networkmetric problems may be adequately

handled following the N-way methodology, opening interesting research opportunities. This will

be further discussed in following sections.

Most networkmetric problems are Big Data problems. This means that the application of

multivariate algorithms in Big Data need to be worked out. There are at least two ways to

do so. A first approach is to program chemometric algorithms in parallel processing platforms

like Apache Hadoop (https://hadoop.apache.org) or Spark (http://spark.apache.org). This is the

case, for instance, of the Singular Value Decomposition (SVD) implementation of the Mahout

machine learning library (https://mahout.apache.org). However, implementations programmed so

far following this or similar philosophies [4, 5, 6] are more aimed at the automatic use of algorithms

advocated in the machine learning area. Multivariate models in chemometrics are more often used

in an interactive basis, an approach similar to that of the so-called visual analytics research area

[7].

A second approach to perform multivariate analysis in Big Data is to reduce/compress data

and then apply methods in a similar way how they are applied to short data. This is the goal

of the MEDA Toolbox [8], where iterative calibration methods based on kernel computations are

combined with clustering-based visualization tools, like the Compressed Score Plots (CSP) [9]. An

example of this approach is included below in one of the examples of the paper.

4 Estimation

Estimation is applied when there are important variables that cannot be measured, are missing,

or their measurement is complex and/or expensive. A common estimation problem in networking
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is that of the traffic load in a network, that is, the amount of traffic in terms of packets or bytes of

data transmitted per time unit. When the load is too high for the technology of the network, the

delay of the communication grows, effecting the quality of the network services. This is equivalent

to a traffic jam in a road network. Following this parallelism, a computer network (a road network)

gets congested when the amount of packets (cars) is too large for the capacity of the network links

(roads). Estimating the traffic load in a network is just as useful as in a road network. This

estimation is necessary for the design of the network, including the choice of the number of links

and routers to be deployed (Fig. 3) and their traffic capacity, the number of alternative paths to

a set of destinations, etc. [10]. This estimation is also useful for security, since some of the most

harmful attacks in communication networks, like Denial of Service (DoS) attacks, can be detected

from the amount of traffic [11].

Another typical estimation problem is that of missing data imputation. Missing data imputa-

tion is especially relevant in a class of networks, the so-called sensor networks, which send sensed

information to a Central Unit (CU) for analysis. An industrial network is a sensor network that

is also used to communicate controllers and actuators in an industrial process. The problem of

missing data estimation in sensor or industrial networks is very similar to that in the process

industry. However, missing data imputation in networking explores the ability of missing data

imputation algorithms when the information was lost due to communication problems, including

malfunction in communication devices and/or malicious attacks [12, 13].

4.1 Traffic Matrix Estimation

A network-wide view of the traffic load is obtained with the traffic matrix (TM) [14, 15]. The

TM contains the amount of traffic from each pair of origin-destination (OD) in the network. Once

estimated, the TM can be used in a large set of applications, mainly to optimize the performance

of the network (see Section 6).

There are different types of TMs depending on the specific goal (network design, network

monitoring, etc.). A main design choice for a TM is that of spatial aggregation [10]. Thus,
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Figure 5: Illustrative network and corresponding traffic matrix where the OD pairs are the subnets

(represented by clouds) and counts are in Mbps. The typical location of Netflow and SNMP sensors

is also shown.

depending on the size of the network and the goal of the TM, we may use a different definition

for the OD nodes [15]: from considering every single node of the network, and thus generating a

potentially huge TM, to measuring the traffic among large network areas. Other choices for a TM

are the units in which the traffic is measured (e.g. bits per second (bps) or packets per second

(pps)) and the measurement frequency. Fig. 5 illustrates a network and potential TM design,

where the traffic in each element corresponds to each pair of OD sub-networks (represented by

clouds) and the units could be Mbps3. In this case, the TM is not symmetric, which tells us that

the amount of traffic in a OD pair is not the same as in the other way round. Also, the diagonal

is zero because traffic within one subnet does not go through the transport network.

Let us call xt the column vectorization of the TM at a given sampling time t. The value

of xt can be directly measured using a traffic flow registering protocol like Netflow [16]. The

measurement is distributed across the network. Netflow sensors, measuring one or several of the

3Mbps reads Mega-bit-per-second and equates to 106 bps.
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Figure 6: Netflow records.

elements of xt, are located at different parts of the network where the incoming traffic is registered.

This information is regularly sent to a central device, where the complete xt is put together. In

Fig. 6, an example of Netflow file of registers (a.k.a. Netflow log) is shown. The log retains

useful information about the flows, mainly, the origin and destination IP addresses, the origin and

destination communication ports and the amount of packets and bytes in the flow. IP addresses

identify the devices and the ports identify the computer programs (processes) in the devices that

are communicating through the network. Thus, the origin and destination IP addresses and ports

provide of a unique identifier for a traffic flow, i.e. two flows cannot share same pairs of IPs and

ports.

Netflow and similar tools are resource demanding in terms of traffic generated and processing

time and storage capacity in the routers. For this reason, measuring the xt vector each sampling

interval can be cumbersome for the network hardware. The network is designed to provide certain

services to users while minimizing the cost of deployment (capital expenditures or CAPEX) among

other costs. Thus, network managers are reluctant to devote a large part of the network resources to
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Figure 7: Example of SNMP log with two link counters and measurement time stamp.

obtain the TM. An alternative is to estimate it from link counts, a method referred to as network

tomography [17] in the literature. Link counts refer to the number of incoming or outgoing

packets/bytes in a link of the network. In these counts, the information about the origin and

destination of the traffic is lost. Measuring link counts, for instance with the Simple Network

Management Protocol (SNMP), is much less resource consuming than using Netflow. An example

of SNMP record is shown in Fig 7. The typical location of both Netflow and SNMP sensors to

measure the TM is also shown in Fig. 5.

The relationship between link counts and the TM at a given time interval t can be specified as

follows:

yt = xtRt (1)

where yt are the link counts and Rt is a binary matrix with routing information, where elements

rijt equal to 1 when the traffic of the i-th OD is routed through the j-th link in the network and

0 otherwise. Both yt and Rt can be easily measured in the network. The routing information is

typically fixed in time or slowly varying, so that Rt may be replaced by R in eq. (1).

Estimating xt from yt is an ill-posed problem similar to those we encounter in chemometrics,

since typically the number of OD pairs is much higher than the number of links. This is also the

reason why measuring flows is more resource demanding than measuring link counts. Solutions
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in the literature are based on including some additional information to the problem. Nucci and

Papagiannaki [14] identify three generations of solutions:

• A first generation, e.g. [17], where a univariate distributional model for traffic flows is

assumed and combined with eq. (1). The estimation performance of these methods is

reduced [14].

• A second generation where additional link counts measurements are performed to improve

the estimation performance. Examples of this generation are the route change [18] and the

tomogravity [19] methods.

• A third generation, in which the inversion of eq. (1) is carried out with partial Netflow

measurements. Using measurements of both yt and xt, prediction models can be calibrated

to establish the relationship between link counts and the TM. Examples are the fanout

method in [20] and a PCA-based method proposed in [11]. For their resemblance with

chemometric approaches, these methods will be treated in detail in the following. The third

generation improves the estimation performance of the other two only considering a reduced

amount of Netflow measurements [14].

The fanout method is based on the cyclostationary nature of network traffic. In Fig. 8 we

illustrate this nature with real measurements. Typical traffic profiles of 24 hours are repetitive,

passing from almost inactivity (nightly periods) to peak use during working periods. Not all

the networks exhibit the same profile, since this depends on the specific activity carried out over

the network and the number of connected remote sites at potentially different hour zones, but the

cyclostationarity is a common feature. The fanout method makes of most of this feature to predict

future traffic with measured traffic at the same time of the day.

The PCA method in [11] is based on a number of consecutive xt and yt measurements con-

forming matrices X and Y. First, matrix X is approximated by its main PCs following the SVD

of X:
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Figure 8: Cyclostationarity: amount of traffic in different days.

X ≈ UASAV
′
A (2)

Combining eqs. (1) and (2) for matrices X and Y, and fixed R, follows:

Y ≈ UASAV
′
AR (3)

The relationship between Y and UA can be established with the Moore–Penrose pseudoinverse

of matrix Q = SAV
′
AR. The complete prediction model is the following:

X̂ = YQ′(QQ′)−1SAV
′
A (4)

Another interesting classification of the aforementioned methods is based on the type of infor-

mation contained in the models [14]:

• Spatial models: those that incorporate the relationship among OD pairs.

• Temporal models: those that incorporate univariate dynamics per OD pair.

• Spatio-Temporal models: those that incorporate dynamics and multivariate information at

the same time.
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The estimation of the TM can be regarded as a Big Data application, although of course this

depends on the amount of data handled, whether sampling is used or not, etc. Data employed

(Netflow, SNMP, routing information) are structured data, which simplifies the problem.

To exemplify the TM estimation problem, we collected Netflow and SNMP data in a teaching

lab in Communications Engineering. The network interconnected three local networks that shared

information. Traffic data from and to the local network was simulated using a network probe

called iperf. Considering that the amount of traffic in one direction may be different from the

other, the TM has 6 no-zero coefficients (considering zero diagonals). The amount of traffic was

measured during an hour, with measurements every 1 minute interval. From the total set of 60

measurements, 40 were used for calibration and 20 for testing. Results are shown in Figure 9.

Figure 9(a) compares the actual values of the TM coefficients with the estimation with the PCA

method in [11] and the use of Least Squares (LS) and PLS between Y and X. For PCA and

PLS, the optimum number of Latent Variables (LVs) were considered, 2 and 3 respectively. In

Figure 9(b), we compare the Mean Squared Error (MSE) for different LVs of the PCA and PLS

estimators. LS is also included in the comparison. The results in this toy example show that

the use of contextual information, in this case the routing matrix in the PCA approach, can be

beneficial in the estimation. It should be noted that retrieving this information from the network

may not be straightforward depending on the network design and size.

Different chemometric approaches can be applied to this problem. As shown in the example,

biased regression techniques can be used to find the relationship between link counts and the

TM. The combination of regression with routing information, using techniques like grey modeling

[21], can also be interesting. Finally, the cyclostationarity of the traffic, which makes suitable the

arrangement of the data in a 3-way matrix [15], can be modeled with batch processing chemometric

approaches like [22]. Combinations of these three ideas may produce interesting approaches to

calibrate spatio-temporal models for network tomography. Noticeably, Acar et al. [23] have

already approached the TM estimation with partial Netflow measurements using chemometric

tools (PARAFAC).
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Figure 9: Comparison between estimation methods: (a) TM estimation, and (b) Mean Squared

Error of estimation.

4.2 Missing Data Imputation

Missing data imputation is another relevant estimation problem. In the context of networking,

missing data imputation is of especial interest in sensor networks. A sensor networks is a group

of sensor devices intended to monitor a given area by measuring several physical variables [24].

Every certain time interval, each sensor introduces its measurements in a packet that is sent to a

Central Unit (CU), where the data corresponding to all the sensors are combined for analysis.

A sub-class of sensor networks with a great measurement flexibility are the Wireless Sensor

Networks (WSNs). A main advantage of using wireless technologies is that sensors can be easily

deployed, without the necessity of cabling installations. Sensor hardware has been greatly minia-

turized, leading to the tiny sensors called motes (see Fig. 10). Hundreds of even thousands of these

motes can be randomly distributed in an area for monitoring [24]. These sensors send information

to the CU until the battery expires and need to be replaced for re-charging.

In a WSN, there are different strategies to route the packets with measurement information

towards the CU. Sensors may use GPRS, a legacy mobile communications technology. With

GPRS, the information can be sent to a mobile telephone antenna, and in turn to the CU through

the Internet. This approach, however, is too consuming in terms of energy, reducing the sensors

autonomy. Alternatively, the WSN can use the so-called ad-hoc communication approach, where
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Figure 10: Illustration of a mote.

sensors send their information to sensors nearby that forward the information until it reaches the

CU. Thus, only a subset of the sensors, if any, need large range communication means.

Sensor networks are used for monitoring in military, medical and/or industrial applications

[25], among others. Like in any industrial set-up, there is the risk of sensor malfunction. Sensors

can also be the target of hackers [26][27], with unpredictable consequences. An example of attack is

a packet dropping attack [28], where a hacked sensor selects a subset of packets to discard (delete)

at random, so that their information do not reach the CU.

When the CU cannot gather information from a set of sensors, missing data imputation can be

used to estimate their values. An interesting feature of the missing data problem in a WSN is that

the lost information is dependent on the routing approach that is used to send the information

towards the CU. For instance, Fig. 11 illustrates a WSN where the sensors are regularly distributed.

Three routing strategies, and the consequence of data loss, are shown: i) direct communication

(e.g. GPRS) between each sensor and the CU (top-left corner); ii) linear routing from left to

right; and iii) cluster head routing where all sensors in a square send their information towards

the center, which in turn uses GPRS. Thus, in the first case, the missed data only correspond to

that measured by hacked/malfunctioning sensors. However, if ad-hoc communications are used

instead, a hacked/malfunctioning sensor may have a broader (and more harmful) effect, affecting

data from other sensors. See the affected sensors for each routing in black color in Fig. 11.

Several missing data imputation techniques for WSNs have been recently proposed. A neural
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Figure 11: Illustration of a WSN with regularly distributed sensors. Hacked/malfunctioning sen-

sors and affected sensors are highlighted for different routing strategies.
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Figure 12: Global modeling approach according to [12]. Each sensor is treated as a variables.

network-based anomaly detection scheme and missing data imputation algorithm were developed in

[29]. The authors in [30] introduce a data mining methodology based on exploiting spatio-temporal

relationships among sensors for imputation. A missing data recovery proposal using sparsity-

spatial interpolation is addressed in [31, 32]. So far, exception made on [12], the application of

multivariate methodologies to WSNs is limited and mainly restricted to monitoring applications

[33, 34].

To impute missing data using methods in the chemometric literature, like those in [35, 36]

and references therein, data have to be arranged in a proper way [12]. A direct way to do so is

combining the variables collected by each sensor in a unique, highly-multivariate, matrix. See Fig.

12 for an illustration of that data arrangement. This approach, however, may not be optimum

from the recovery performance. An alternative proposed in [12] is to use what the authors call

local models. Fig. 13 illustrates the local modeling approach. The measurement of one sensor

are combined with those of its N nearest-neighbors to conform the matrix of data. Then, the
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Figure 13: Local modeling approach according to [12] using the nearest-neighbors idea for PCA

and PLS.

information of a given sensor is recovered using PCA modeling plus Trimmed Score Regression

(TSR) [35] or PLS.

To illustrate the missing data problem in WSN, we developed a simulator [12] based on Matlab

2009b. We assumed a 1000 m×1000 m square forestry area where 81 (9×9) temperature sensors

are regularly distributed, i.e., each sensor is located ∼100 m away from its neighbors. Every sensor

gathers the ambient temperature each sampling time and sends the measurements to the CU. The

proposed deployment for the measurements is inspired in a real system provided by the Libelium

company4. In Table 2, estimation error values in terms of the Mean Squared Error (MSE) are

provided for different modeling and routing strategies. Two conclusions can be drawn from the

results: i) there is a strong interplay between routing and imputation performance, and ii) local

models outperform global models in several orders of magnitude.

The study of alternative data arrangements [37], as well as alternative missing data imputa-

tion methods [38, 35, 36], can be an interesting research opportunity in order to improve data

imputation performance in this problem.

4http://www.libelium.com/wireless sensor networks to detec forest fires/
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Global model Local model

Attack scenarios MSE (TSR-PCA) MSE (TSR-PCA) MSE (TSR-PLS)

Direct communication 1900.8 2.7 3.4

Linear routing 2472.0 67.8 71.1

Cluster head 4391.6 149.6 149.6

Table 2: MSE comparison between global and local models for the routing approaches illustrated

in Fig. 11.

5 Anomaly Detection

The outstanding capability of multivariate analysis to detect anomalies has been recognized also

in networking [39, 40, 41, 42, 43]. The pioneering work by Lakhina et al. [39] introduced the

use of PCA for network anomaly detection. Their approach received a lot of attention from the

networking community one decade ago, and most of the existent works on PCA-based anomaly

detection in networking are developed taking their work as a base.

The approach of Lakhina et al. was inspired by the chemical engineering literature. However,

there are main differences between this approach and the state-of-the-art in MSPC with PCA:

• Lakhina et al. use PCA to divide data in two subspaces for normal and anomalous behavior.

Anomaly detection is performed only in the latter. In MSPC, PCA is used to split data in

a structured subspace and a residual subspace. Detection is performed in both subspaces

using different statistics [44, 45, 46, 47].

• Lakhina et al. use data for the calibration of the anomaly detector that may incorporate

anomalies. In MSPC, a two phases approach is performed so as to avoid this problem

[22, 48, 49].

• Lakhina et al. select the number of Principal Components to capture a specific amount of

variance. Subsequently, in [50] they suggest the use of the Scree plot. These approaches are

well known to be impractical in most MSPC set-ups [51, 52].
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• Lakhina et al. use a supervised fault diagnosis system referred to as Reconstruction-Based

Contributions (RBC) [53], which were defined as an alternative to contribution plots. In

the original definition, RBC plots require an a priori set of common faults. Subsequently,

Lakhina et al. extended in [50] their approach for unsupervised diagnosis, yet assuming a

predefined structure in the fault. In MSPC, contribution plots are commonly used for faults

diagnosis without the need of any set of previously defined faults [44, 54, 55].

Ringberg et al. [43] claimed that the approach of Lakhina et al. is sensitive to calibration set-

tings. However, this is the consequence of the flaws in the approach, as the sensitivity problem was

solved by applying state-of-the-art MSPC [56]. We call Multivariate Statistical Network Monitor-

ing (MSNM) the approach that follows the MSPC theory for anomaly detection in communication

networks. MSNM has specificities not found in MSPC.

A main challenge in MSNM, and also a main difference between MSPC and MSNM, is the

data preparation5. Let us illustrate this in the most simple setting, that of two-way analysis–

e.g. MSPC of continuous processes. In MSPC, monitored variables, like temperatures, pressures,

concentrations, etc., are directly measured from the process. Thus, none or very little preparation

is needed. Observations are typically ordered in time, for regular or variable sampling rates, and

again with little or none pre-processing.

In MSNM we have the opposite situation. In a network, most of the information comes in

the form of logs or packets of data, unstructured information that cannot be directly used in a

MSNM set-up. Rather, logs and packets need to be translated into quantitative variables, and

there is a bunch of possibilities to do so. This is typically referred to as data parsing or feature

engineering [57]. The parsing needs to be programmed for very different sources of data, from

structured information similar to that in the process industry, to completely unstructured/textual

information like the e-mails. Thus, the parsing is in charge of converting textual information into

quantitative variables of value for anomaly detection. Clearly, there is no systematic way to do

5Data preparation is tipically referred to as data preprocessing in the networking community, though the meaning

of preprocessing is different from that in chemometrics.
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Figure 14: Diagram illustrating the flexibility of MSNM.

this, which opens very interesting research directions.

On the other hand, the definition of the observations in MSNM is not straightforward. Although

observations are typically ordered in time, it may be interesting to define the observations in terms

of relevant entities in a network, such as source or destination devices or protocols being used in

the network. Combining this with temporal information generates a three-way matrix of data.

However, the number of devices and protocols involved in communications through the network

is varying in time, which makes the multivariate analysis of these entities specially challenging.

The flexibility in the definition of both variables and observations in MSNM, see Fig. 14, makes

it more challenging but also more powerful than traditional MSPC.

Lakhina et al. [39] proposed the definition of counters as quantitative variables. The coun-

ters were restricted to counts of packets (datagrams) and bytes arranged by origin-destination.

Camacho et al. [2] generalized this definition to consider several sources of data. They pro-

posed the feature-as-a-counter approach, so that variables are basically counters for the number

of associated events (see Figure 15). Another class of variables are those representing a sample

distribution. These are commonly more suitable than counters to summarize the information in
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Figure 15: Illustration of the feature-as-a-counter approach.

traffic data, and less sensitive to packet sampling according to [50]. Histograms are useful artifacts

to transform a distribution into one or more quantitative variables. Alternatively, the histograms

can be summarized, for which measures of central tendency (e.g., averages) and dispersion (e.g.,

standard deviations) may be adequate. Also, Lakhina et al. proposed in [50] the use of entropy

to summarize the information in very large histograms, such as those obtained in terms of source

devices. Callegari et al. [58] also proposed the use of the Kullback-Leibler (K-L) divergence to

capture dynamical information.

Let us briefly discuss an example of MSNM in Big Data. This was an study hired by Protectwise

Inc. (http://www.protectwise.com), network security company based in Colorado, USA. The goal

was to investigate the potentialities of MSPC in network security. Protectwise provides of security

services to other companies. For that, they monitor several sources of information from the network

of their clients. This generates tons of data, and most anomaly detectors generate a great amount

of false positives. We applied standard MSPC techniques coupled with the Big Data extensions

in the MEDA Toolbox [8]. In Fig. 16 we show an example of monitoring charts for one of the

clients of Protectwise. The excursions highlighted anomalous events, which where diagnosed using
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Figure 16: Monitoring charts (D-statistic or Hotelling T2 [60] for the model space and Q-statistic

for the residual space [61]) and oMEDA diagnosis plot on the top showing the index d2A [59]. From

the features highlighted at the top, the anomaly is related to a larger than usual number of DNS

connections that remain open.

oMEDA plots [59] with the index d2A
6. Also, each dot in the charts was connected with a Big Data

Latent Model from where Compressed Score Plots (CSP) [9] for different objects definition could

be issued (see Fig. 17 for an CSP in the IPs and another CSP in the ports). A CSP is a plot of

clusters of scores in a given subspace. In Fig. 17, each single element in the D-statistic represents

a time interval where many network items (IPs or ports) are active. The CSP shows detail on this,

pointing to the main active network elements. Thus, combining MSPC plots with CSP plots we

can detect anomalies and locate them in the network. Apart from these visualizations, a report

was issued with a list of anomalies and related variables, devices and services in the network.

Clearly, there are tons of MSPC contributions in chemometrics that can be seamlessly applied

to MSNM. However, the flexibility on the definition of variables and observations is a new challenge

to deal with.

6This type of plot is an alternative to contribution plots. Please refer to the cited reference for more information.
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Figure 17: Compressed Score Plots for several thousands of observations, corresponding to one

of the anomalous data points in the D-statistic. For the same point, we show the CSP for IP

addresses (top-right) and ports (bottom-right), providing a more complete visual information.

6 Optimization

Like in many other fields of knowledge, optimization problems are central in chemometrics. The

formulation of a problem as a mathematical optimization implies the definition of an objective

function f(x) to minimize or maximize within a search space S, where the best solution x∗ is to be

found. This space is often constrained by equality and/or inequality constraints, gi(x) and hj(x).

The optimization can be generally formulated as follows, where the goal is to find the values in x

that minimize f(x):

x∗ := arg min
x∈S

{f(x) | gi(x) ≤ 0, for i = 1...I and hj(x) = 0, for j = 1...J} (5)

To formulate the optimization problem we need to define x, the search space S and the functions

f(x), gi(x) and hj(x). Once formulated, the solution is obtained using an adequate algorithm,
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sometimes referred to as a solver. Many times the optimization problem is too cumbersome, or the

search space too wide, to obtain the global optimal solution, and we rely on approximate algorithms

to find a sub-optimal solution. For instance, heuristic bio-inspired optimization algorithms, like

Particle Swarm Optimization (PSO) [62] or genetic algorithms [63], have been used for chemometric

problems.

In some optimization problems, parametric analytical solutions can be obtained from algebra

without the need of a solver. In those cases, the optimum is obtained from a single expression or an

iterative succession of expressions. This is for instance the case of many chemometric calibration

algorithms like NIPALS.

Finally, there are optimization problems where we do not know the objective function f(x)

explicitly. Instead, we have pairs of measurements of x and y = f(x). Variables in x are often

referred to as independent variables, while variables in y are the responses or dependent variables.

A form of pseudo-optimization in this class, which seeks to minimize the number of measurement

pairs in x and y, is the design of experiments [64], central in chemometrics. Another typical

example of data-driven optimization is that used for process optimization, for instance in run-to-

run optimization (see [65] and references therein).

Optimization is also principal in networking. Tasks like network design, capacity planning7,

traffic engineering8, etc., can be defined as purely optimization problems [66, 67]. An interesting

reference for that is the book by Pióro and Medhi [68], where explicit formulations are provided

for different optimization problems in networking. An example of formulation is that of capacity

problems, where the traffic capacity of the links of a network are optimized taking as input the

TM previously estimated according to Section 4.

However, as already discussed, there are cases in which we cannot define an explicit formulation

of the problem, because of its complexity. For instance, take the case of wireless networks, or

more specifically of ad-hoc wireless networks, where all network devices are allowed to make direct

7Capacity planning refers to the choice of the capacity of the links in the network according to the traffic demand.
8Traffic engineering refers to a set of mechanisms to manage traffic according to performance goals.
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Figure 18: Robotic ad-hoc network at IDSIA lab (http://www.idsia.ch): communicating nodes

have blue light while relay nodes have green light. Rely nodes choose their location to allow the

communication among all the nodes .

communications. In this type of networks, existent communications links depend on the distance of

the communicating devices. Thus, if two devices are close enough, they can communicate through

a direct wireless link. Otherwise, they need to send their communication through relaying devices.

A very interesting problem [69] is how to place the relaying devices in the network to maximize

the communications. Even more challenging is that problem when communicating devices are

allowed to move (see Fig. 18 for an illustration with a robotic network). The relay placement

problem will give way to networks based on autonomous relaying devices like mobile or flying

robots (drones). Robots act like communication antennas in the ad-hoc network, but with the

additional movement capability. Thus, they can relocate to improve communications as the other

devices, e.g. mobile phones, other robots, etc., also move. This is especially interesting for

certain applications, like military actions or in crisis management and disaster recovery, where the

communication infrastructure of an area needs to be recovered to facilitate rescue missions.
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If the placement problem is explicitly formulated, the potential number of variables in x in

eq. 5 would be too demanding for finding a solution with common solvers. Furthermore, because

of the mobile and wireless nature of the network, the optimal solution is continuously changing,

which introduces an upper limit for the time to obtain a solution. Although Big Data platforms

could help in that, a common alternative is to approach this problem with heuristic optimization

methods like PSO [69, 70].

The relay placement problem in ad-hoc networks can be tackled with heuristic optimizations.

In particular, Fig. 19 shows a comparison between PSO and the PLS optimization algorithm

proposed in [65]. This comparison was performed in a simulator based on Matlab [69]. We

chose a deployment rectangular area of 6.6m × 5.4m with a node coverage range of 1m assuring

network disconnections. The connectivity is measured as a percentage of interconnected nodes,

measured from 0 (no nodes interconnected) to 1 (all nodes interconnected). Results show that the

optimization algorithms provide effective relay placements, since the connectivity grows with the

number of relay nodes. Furthermore, we can see that both PSO and the PLS optimizer attain

similar results.

The previous example illustrates a way to use data-driven chemometric methods in network

optimization. In a similar way, DoE can be applied in optimization problems for fixed topology

networks, especially when deciding the number and location of network elements. On the other

hand, considering the cyclostationrity of most networks, the batch processing parallelism also holds

in optimization, and techniques applied to optimize batch processes [65] can be applied to network

optimization. In particular, mid-course corrections [71, 72] are suitable for the daily optimization

operations typical in traffic engineering.

7 Classification

A number of classification problems arise in networking, two of the most popular ones being those

of malware and traffic classification. They are further described in the next.
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Figure 19: Comparison in terms of connectivity of two optimization algorithms in the problem

of relay node placement in a mobile ad-hoc network. The algorithms are the PSO and the PLS

optimization algorithm of [65].

The term ’malware’ means malicious software, that is, software mainly intended to carry out

some harmful actions. There is a continuous race between antivirus companies and malware

developers. Antivirus detect malware by looking for patterns in the malware files. However,

recent tools for automatic malware generation have made possible to generate malware without

technical knowledge, which has given way to an increase of the amount of malware generated. In

this context, automatic classification [73] can be of use to simplify malware detection.

The type of data analysis techniques used in detection and classification of malware are diverse.

From bayesian-based [74] to SVM-based [75], as well as heuristic-based [76]. Others, like [77], rely

on graph related techniques to classify malware. Authors in [78] introduce an immune-based system

for malware detection in smartphones, while Zolotukhin et al. combine in [79] SVM, genetic and

game-based techniques for detection and classification.

In malware classification almost all current proposals make use of a variety of feature types

over which the detection/classification procedure is carried out. Most of the data used represent

behavioral information of the device: file system, network activity, OS commands, etc. Again,
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most of this information is unstructured. So far, very little attempts to use multivariate analysis

can be found in the literature [80].

Another main classification problem in networking is traffic classification, where the protocol

or type of protocol of a traffic flow is identified. The goal, thus, is to determine the type of

information a datagram contains, so as to infer the use of services in a network. This is a matter

of great importance for different applications. In the security ambit, traffic identification is a main

information source for anomaly detection. Since each type of service has its own traffic particular

features, from the knowledge of the used services we can estimate the behavior of the traffic.

Therefore, the traffic identification is also principal for network optimization and maintenance [81]

and to establish different priority levels for the network traffic [82].

There are three main network traffic classification strategies [83]: one based on the communi-

cation ports [84], another based on the packet content (payload) inspection [85], and a third one

based on the application of machine learning techniques over traffic statistics [86]. The first two

approaches present severe limitations [87] and the research community has moved towards the use

of classifiers over traffic statistics [83].

There are three choices to make in the design of a classifier over traffic statistics. First, traffic

is a mixture of structured and non-structured information. The proper selection of the features

that characterize the network traffic is essential for an adequate classification, and a wide variety

of proposals exists [88, 89, 90, 91]. Once the traffic has been parameterized, the classification can

be performed at different aggregation levels [92, 93]. The last choice is the classification method,

and again there is a bunch of methods in the literature for that [94, 86], including Support Vector

Machines (SVMs), Hidden Markov Models (HMM), k -Nearest Neighbors (kNN), etc.

Most recent publications in the literature claim results of very high classification accuracy, very

close to a 100%. However, these results are at the expense of high dependence on the considered

scenario and the specific traffic conditions. This lack of generalization questions the practical

applicability of the methods, since a network is a dynamic entity in ever changing conditions. In

recognition of this problem, Li et al. [95] compared the stability of a number of classification
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approaches. Also, Camacho et al. [87] showed the limitations of high accuracy classifiers. This

reference shows that achieving generalization ability in a classifier from traffic statistics is very

challenging, but doing it from dynamical relationships is simple. The authors propose a dynamic

model with simple rules to relate traffic flows with past flows associated to the same service, so

that only a minimum percentage of flows need to be actually classified.

Potential contributions of chemometrics to traffic classification algorithms are similar than

in previous applications. As already discussed, chemometric tools are suited to deal with the

high number of potential features for parameterizing unstructured information. Variable selection

procedures [96] can be helpful to that end. Also, the use of three-way models to account for

the cyclostationarity of the traffic may lead to more generalizable methods. To the best of our

knowledge, the notion of cyclostationarity has not been applied to traffic classification. Finally,

the use of dynamical models in the mode of the days to update the classifiers, e.g [97], may also

be convenient.

Surely, the multivariate nature of some of the classification methods like PLS-Discriminant

Analysis (PLS-DA) [98] can be helpful in the networking domain. However, in agreement with the

thesis in [99], the most interesting potential contribution may be the exploratory capability of the

methods. Let us take the following example using a data-set [100] available at the CRAWDAD

repository (http://crawdad.cs.dartmouth.edu/) and published in [101]. It consists of an outdoor

experiment for the comparison of four different communication protocols in a mobile ad-hoc net-

work formed by 33 laptops in movement. The evaluated protocols are: Any Path Routing without

Loops (APRL), Ad hoc On-demand Distance Vector (AODV), On-Demand Multicast Routing

Protocol (ODMRP) and System- and Traffic-dependent Adaptive Routing Algorithm (STARA).

Rather than a traffic classification problem, this is a traffic understanding problem, but the goal

is to understand differences among protocols, which is quite close to classification.

The main results provided in [101] are shown in Table 3. For an optimum performance, a

communication protocol should present the highest delivery ratio 9 using the lowest amount of

9The message delivery ratio is the percentage of datagrams reaching the destination.
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Table 3: Results provided in [101].

Routing Message delivery Packets per Average number

algorithm ratio message of hops

AODV 0.50 7.50 1.61

APRL 0.20 33.30 2.11

ODMRP 0.77 45.59 2.47

STARA 0.08 150.67 1.18

traffic generation, that is, minimum number of packets and hops10. According to the table,

ODMRP is the protocol that attains the highest message delivery ratio and STARA the one

attaining the lowest. On the other hand, AODV is the protocol that generates the lowest amount

of packets per message. Finally, ODMRP and APRL show a high hop ratio in their routes. These

results lead to the conclusion that AODV is the best trade-off between message delivery and traffic

generation.

In this example, an exploratory analysis with PLS-DA is used to unveil more details of the

experiment. For this purpose, a set of new statistics are computed from the original data at regular

intervals of time. The first 10 variables are related to the distribution and location of the devices

(laptops) in the field, while the remaining 8 variables are related to the network traffic.

The score plot, in Fig. 20, shows that the observations related to each algorithm are easily

distinguished with the designed variables. In Fig. 21, the differences between AODV and APRL

are studied with oMEDA [59]. Surprisingly, the main differences found are related to the laptop

spatial distribution and not to the routing performance. During the experiment, when APRL was

used, the laptop distribution presented a higher dispersion. Clearly, under these circumstances,

the communication with AODV is less challenging than with APRL just because of the location of

the laptops, not the routing algorithm. This feature can be also observed when comparing APRL

with the rest of the routing algorithms (not shown). In this situation, where the dispersion of

the stations are significantly higher for APRL than for the others, it is not possible to carry out

10The hop is the number of intermediate nodes between a source and a destination, which depends on the routing

algorithm that decides the paths of the datagrams.
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Figure 21: oMEDA plot showing the index d2A [59] for comparison between the routing algorithms

AODV vs APRL.

a reliable comparison with the rest of the algorithms. Stating otherwise, the comparison is not

fair because APRL is working on a more complicate scenario than its opponents. Therefore, the

results provided in Table 3 for APRL must not be taken into account.

The clear benefit in the application of the multivariate exploratory methodology in this example

is the better understanding of the multivariate nature in the data. When analyzing data sets using

traditional methods, the analyst needs to summarize the variables in a reduced set of statistics.

This may obscure the truth underlaying the data, as it was the case in the example. More details

on this example can be found on the Networkmetrics technical report in the MEDA toolbox [8].
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8 Conclusion

In this paper, we have built upon the concept we call networkmetrics: using the multivariate

analysis perspective in networking problems. The paper illustrates, through a number of examples,

the potentiality on the use of multivariate analysis methods developed mainly in the chemometric

area. A recurrent parallelism is done with three-way time series modeling, like in batch processes

modeling, but other tools like biased regression, missing-value imputation, multi-block methods,

variable selection, grey modeling, among others, are valuable in different networkmetric problems.

The extension of chemometric methods to networkmetrics is not straightforward, since the

special features of networkmetrics, mainly its Big Data nature and the need to handle unstruc-

tured data, complicate the application of multivariate methods. These are challenging problems

that open many research directions, where the contribution of experts on multivariate analysis is

encouraged. On the other hand, understanding the problems and solutions applied by the net-

working community may provide new strategies for tackling chemometric problems, especially in

a world where more and more data are becoming available.
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