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Intestinal microbiota has been associated with systemic autoimmune diseases, yet the functional consequences of
these associations are elusive. We characterized the fecal microbiota (16S rRNA gene amplification and sequencing)
and the plasma metabolome (high-performance liquid chromatography coupled to mass spectrometry) in 59 patients
with systemic sclerosis (SSc) and 28 healthy controls (HCs). Microbial and metabolic data were cross-correlated to find
meaningful associations after extensive data mining analysis and internal validation. Our data show that a reduced
model of nine bacteria is capable of differentiating HCs from SSc patients. SSc gut microbiota is characterized
by a reduction in protective butyrate-producing bacteria and by an increase in proinflammatory noxious genera,
especially Desulfovibrio. From the metabolic point of view, a multivariate model with 17 metabolite intermediates
well distinguished cases from controls. The most interesting peaks we found were identified as glycerophospholipid
metabolites and benzene derivatives. The microbial and metabolic data showed significant interactions between
Desulfovibrio and alpha-N-phenylacetyl-l-glutamine and 2,4-dinitrobenzenesulfonic acid. Our data suggest that in
SSc, intestinal microbiota is characterized by proinflammatory alterations subtly entwined with the metabolic state.
Desulfovibrio is a relevant actor in gut dysbiosis that may promote intestinal damage and influence amino acid
metabolism.
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Introduction

Systemic sclerosis (SSc) is an autoimmune disease
characterized by vascular damage, widespread fibro-
sis, and immune system activation. The gastroin-
testinal tract (GIT) is affected in nearly 90% of
patients1 as a consequence of motor disturbances2

secondary to myenteric neuropathy, muscle atrophy,
and fibrosis.3 GIT involvement presents as a variety

a Both the authors contributed equally.

of signs and symptoms such as bloating, diarrhea,
and constipation. Intestinal bacterial overgrowth
and dysbiosis may occur in up to 75% of patients,
and this may be related to dysmotility.4 Dysbiosis is a
modification of microbiota with relevant immuno-
logical and metabolic consequences. Gut micro-
biota interacts with the intestinal immune system
playing a fundamental role in maintaining immune
tolerance,5–7 exerts antimicrobial functions through
signaling with pattern recognition receptors con-
tributing to the development of an intact barrier
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function,8 and regulates T lymphocytes (Treg cells)9

and plasma cell production of IgA.10

Several studies focusing on microbiota in
autoimmune diseases have found distinct profiles
in patients with systemic lupus erythematosus
(SLE),11,12 inflammatory arthritis, and spondy-
loarthritis.13,14 A few studies conducted in rela-
tively small case-series have studied microbiota
in SSc.15–17 A first study found a distinct colonic
microbial signature on cecum and sigmoid mucosal
lavage samples in 17 SSc patients compared with
healthy controls (HCs).16 Here, microbial genera
and species elsewhere related to inflammatory bowel
disease (IBD) were found to be associated with
the severity of GIT symptoms. Similar results were
found in stool sample analysis when comparing
the same patients with 17 patients from Norway.15

Recent work on 18 Italian SSc patients showed spe-
cific microbial differences between SSc patients with
or without gastroenteric involvement.17 Despite
the encouraging results described by these reports,
a detailed description of intestinal microbiota
in larger case-series is lacking, thus challenging
the overall generalizability of previous findings.
Moreover, the functional consequences of microbial
alterations in SSc are still poorly understood.

Next-generation omics approaches have revolu-
tionized the study of microbiota, making feasible
the study of the whole intestinal microbial ecol-
ogy in a high-resolution and culture-independent
manner.18 Sequence-based taxonomic profiling of
the microbiome can be integrated with other multi-
omics data as for instance, transcriptomics, pro-
teomics, and metabolomics, to fully understand
the functional activity of microbial community.18

Nonetheless, the integration of multi-omics data
has mostly been dampened by bioinformatic chal-
lenges. Metabolomic is of great interest for function-
ally characterizing intestinal microbiota: metabolic
pathways and shared metabolites are fundamen-
tal in the crosstalk among microorganisms, or
between microorganisms and the host. Moreover,
the metabolome is partially the result of interaction
between the body and the microbiota;19 for exam-
ple, gut microbiota may alter the concentrations of
specific metabolites that lead to the development of
cardiac diseases.20

The present study was conducted in order to (1)
provide a detailed description of intestinal micro-
biota in the largest case-series of SSc patients ana-

lyzed so far (59 cases) in comparison with geograph-
ically matched HCs (29 cases); (2) describe the most
relevant metabolic alteration occurring in this very
same population, and (3) determine to what extent
metabolite intermediates are correlated to dysbiosis.
Overall, we aim to provide insight into microbial
alterations and into the functional consequences of
these alterations in SSc.

Patients and methods

Sixty consecutive SSc patients referring to our insti-
tution and fulfilling the 2013 ACR/EULAR criteria21

were included. Exclusion criteria included the pres-
ence of hepatitis B or C infection, nephrotic syn-
drome with proteinuria >3.5 g/day, the presence
of overlap syndromes with other systemic autoim-
mune diseases, and/or the recent (<1 year) use of
depletive therapies; all the patients had to be on sta-
ble doses of steroids or immunosuppressants for the
last 3 months. Patients were categorized into the lim-
ited (lc-SSc) or into the diffuse cutaneous (dc-SSc)
subset;22 patients with definite SSc21 without skin
fibrosis yet with puffy fingers were categorized as
lc-SSc. Interstitial lung disease (ILD) was defined as
the presence of an involvement of lung parenchyma
>5% on high-resolution computed tomography
accompanied by a reduced forced vital capacity
<80% of predicted values and/or a reduced diffus-
ing capacity for carbon monoxide (DLco) < 80% of
predicted values.23

All SSc patients completed the Italian version of
the UCLA GIT 2.0 questionnaire24,25 to evaluate
the severity of self-reported GIT symptoms. The
questionnaire provides an overall evaluation of the
whole GIT and includes seven domains: reflux, dis-
tension/bloating, soilage, diarrhea, social function,
emotional well-being, and constipation. The scores
from the first six domains were averaged, while con-
stipation was evaluated separately. GIT scores range,
from 0 (the least severe involvement) to 3 (the most
severe involvement), was deemed appropriate to
evaluate the activity and severity of GIT involvement
in SSc. To focus on enteric problems, scores from
the intestinal domains (distension/bloating, diar-
rhea, and constipation) were averaged; an arbitrary
cutoff point equal to the 50th percentile of the scores
distribution was used to discriminate patients with
(SScInt) or without intestinal involvement (SScCtrl).

Thirty age- and sex-matched HCs were included
as a comparison group. All the HCs came from the
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same geographical area as the SSc patients (Milan
metropolitan area). HCs were enriched for nonrel-
atives kindred of the SSc patients.

All patients and controls were asked to complete a
24-item questionnaire to record their dietary habits
before the collection of stool samples. The results
from the questionnaire were used to determine if
short-term dietary modifications may influence gut
composition, as hypothesized by some authors,26 or
may have a negligible effect compared to intersub-
ject variability, as suggested by others.27

None of the study participants was treated with
antibiotics or probiotics the month before stool col-
lection. Fecal samples were frozen at −20 °C until
analysis. Within 24 h of stool collection, plasma
samples were obtained and frozen at –80 °C until
analysis.

The multi-omic analysis is ancillary to the
Precisesads project (www.precisesads.eu) that was
approved by the local ethic committee (comitato
etico Area B); written consent was obtained from
each participant.

Microbiota identification by 16S rRNA gene
amplification and sequencing

DNA was extracted from each stool sample using the
QIAamp DNA Stool Mini kit following the manu-
facturer’s instructions (Qiagen).

Partial 16S rRNA gene sequences were ampli-
fied from extracted DNA using primer pair
Probio_Uni/Probio_Rev, which targets the V3
region of the 16S rRNA gene sequence.28 16S
rRNA gene amplification and amplicon checks
were carried out as previously described.28 Notably,
the primer pair Probio_Uni/Probio_Rev has
been specifically developed to maximize coverage
and amplification performance of gut bacterial
populations.28

16S rRNA gene sequencing was performed
using a MiSeq Illumina28 at the DNA sequencing
facility of GenProbio srl (www.genprobio.com)
according to the protocol previously reported. Fol-
lowing sequencing and demultiplexing, the reads
of each sample were filtered to remove low quality
and polyclonal sequences and data were exported
as .fastq files. The .fastq files were processed
using a custom script based on the QIIME soft-
ware suite.29 Paired-end reads were assembled to
reconstruct the complete Probio_Uni/Probio_Rev
amplicons. Quality control (QC) retained those

sequences with a 140–400 bp length and mean
sequence quality score >20, while sequences with
homopolymers >7 bp and mismatched primers
were omitted. Chimeric sequences were removed
with ChimeraSlayer included in the Qiime software
suite. To calculate downstream diversity measures,
16S rRNA operational taxonomic units (OTUs)
were defined at �97% sequence homology using
uclust,30 and OTUs with <10 sequences were fil-
tered. All reads were classified to the lowest possi-
ble taxonomic rank using QIIME29 and the SILVA
database v. 119 clustered at 97% identity as reference
dataset.31

Metabolomic analysis of plasma samples

Protein content was removed from plasma
samples with methanol:ethanol (50:50, v/v).32

Metabolomics analyses were performed using an
Agilent 1260 HPLC instrument coupled to an Agi-
lent 6540 Ultra High Definition (UHD) Accurate
Mass Q-TOF equipped with a Jet Stream dual ESI
interface. The compounds were separated using a
reversed-phase C18 analytical column and a gradi-
ent of mobile phases A, water containing 0.1% of
formic acid, and B, methanol. Detection was per-
formed in positive-ion mode over a range from 100
to 1700 m/z.

A QC sample, prepared by mixing equal volumes
from each sample, was analyzed throughout the
sequencing to control for analytical reproducibility.
An MS/MS analysis of this sample was performed to
facilitate the identification of potential biomarkers.

Once the analysis was performed, features were
extracted by means of MassHunter Profinder soft-
ware (B.06.00, Agilent) with the Recursive Feature
Extraction method for small molecules.33 Peaks
were filtered with intensity threshold at 1000 counts.
[M+H]+, [M+Na]+, and [M–H2O] were the con-
sidered species. Feature alignment parameters were
± 0.25 min and 40 ppm ± 4 mDa for retention time
and mass windows, respectively.

The integrated areas of each feature were nor-
malized by the sum of the total areas of all features
from the nearest QC in order to correct the instru-
mental variability produced throughout the analy-
sis. F features with high variability (CV >30%) were
filtered.

Metabolite identification was carried out through
the comparison of accurate mass, isotopic dis-
tribution, and fragmentation patterns obtained
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in MS/MS analysis with online metabolomic
databases.

Data analysis

Bioinformatic analysis was restricted to 59 cases and
28 HCs because one SSc sample and two HC sam-
ples did not pass the quality test for metabolomic
analysis. Microbiome quality filtering results are
provided in the Supplementary File S1 (online only).

Canonical analysis of microbiota
Biodiversity of the samples (alpha diversity) was
calculated with Chao1 and Shannon indexes using
10 subsampling points for a maximum of 54,890
sequences in order to generate rarefaction curves.
Similarities between samples (beta diversity) were
calculated by unweighted uniFrac.34 PCoA repre-
sentations of beta diversity were performed using
QIIME.29 For the other analyses, bacteria at the
genus or species taxonomic rank, with an over-
all abundance >1%, were considered. To iden-
tify differentially represented bacterial populations,
the linear discriminant analysis (LDA) effect size
(LEfSe) algorithm35 was used (https://huttenhower.
sph.harvard.edu/galaxy/).

Data mining analyses
To model nonlinear multivariate interactions
among variables, several inductive data mining algo-
rithms were used. Details about the data mining pro-
cedures are reported in Supplementary Figure S1
(online only). In brief, the procedure was carried
out to select a reduced subset of variable capable of
explaining the differences between groups (i.e., SSc
versus HCs; and SScInt versus SScctrl). To this end,
the variables were selected to maximize a classifi-
cation function: the area under receiver operating
characteristics curve (AUROC). The AUROC mea-
sures the overall discrimination of a classification
algorithm, where 1 represents a perfect test and 0.5 a
test doing no better than random choice. The study
pipeline included a nested cross-validation phase
(model selection and data filtering) and an extensive
cross-validation phase (to assess the robustness and
capability of generalization of the selected model).

Microbiomic and metabolomic
cross-correlation
The main aim of the study was to determine whether
there were relevant correlations between micro-
biomic and metabolomic data. The construction

of a simple correlation matrix between the two
omics would yield too many entries that would
not withstand statistical correction. To tackle this
issue, the following procedure was devised. Micro-
biomic and metabolomic models were built tak-
ing into account a reduced number of features as
described in the data mining section. We refer to
these models as “models conditioned to the class”
because they maximize the capability of discrimi-
nating cases and controls. Selected microbial genera
and selected metabolites conditioned to the class
were correlated by means of Spearman’s � . Statisti-
cal correction was calculated via a 10,000-fold mul-
tivariate permutation test for correlated data.36 The
microbial × metabolic cross-correlation matrix is
visualized via heat maps and plotted via the Orange
data mining suite (http://orange.biolab.si/).

Descriptive statistics
Differences between study groups were tested
via Student’s t-test after adjustment (pc) via a
permutation-based step-down Pmin procedure37

to account for multiple testings; cubic root trans-
formation was applied to data before analysis.
The scikit-learn algorithm (http://scikit-learn.org/
stable/index.html) was used for all the analysis,38

along with custom python codes implemented by
L.B.

Nucleotide sequence accession numbers

The raw 16S rRNA gene amplicon sequences
reported in this article have been deposited in the
NCBI Short Read Archive (SRA) (PRJNA437384).

Results

Clinical characteristics
Clinical and demographical characteristics of the
study participants who passed the QCs (59 SSc
and 28 HCs) are reported in Table 1. Overall,
the population was mostly composed of females
(n = 52, 88.1%) and lc-SSc patients (n = 43,
72.8%). The average GIT score from SSc patients
was 0.48 ± 0.45, while the average score of intesti-
nal domains was 0.475 ± 0.42. Nineteen (32.2%)
patients had ILD; the presence of ILD was the
most common motivation for the current use of
immunosuppressants (10 out of 12 cases, 83.3%),
followed by arthritis (remaining two cases, 16.7%).
More details about SSc patients are reported in
Supplementary Table S1 (online only), including a
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Table 1. Clinical characteristics of study groups

HCs SSc SScCtrl SScInt

Variable (n = 28) (n = 59) (n = 33) (n = 26)

Age, years 49.3 ± 12.9 56.5 ± 12.7 53.7 ± 13 60 ± 11.9

Females, n (%) 22 (78.6) 52 (88.1) 30 (90.9) 22 (84.6)

BMI 25.3 ± 4.2 22.6 ± 3.7 22.07 ± 3.3 23.36 ± 4.04

Disease duration, years – 12.5 ± 10.4 11.4 ± 10.4 11.8 ± 10.2

Subsets, n (%)

Definite SSc – 6 (10.1) 0 (0) 6 (22.8)

lc-SSc – 43 (72.8) 26 (88.8) 17 (65.4)

dc-SSc – 10 (17.1) 7 (21.2) 3 (11.8)

Autoantibody, n (%)

ANA – 56 (94.9) 31 (93.9) 25 (96.1)

ACA – 23 (39) 8 (24.2) 15 (57.7)

Topo I – 23 (39) 18 (54.6) 5 (19.2)

FVC, % predicted – 100.1 ± 21.1 98.2 ± 22.6 99.2 ± 23.1

DLco, % predicted – 73.1 ± 21.8 73.4 ± 22.5 72.7 ± 22.2

ILD, n (%) – 19 (32.2) 13 (39.4) 6 (23.1)

Therapy, n (%)

Prednisone >5 mg/day – 19 (32.2) 15 (45.5) 4 (15.4)

Immunosuppressants – 12 (20.3) 7 (21.2) 5 (19.2)

Biologicals – 9 (15.2) 6 (18.3) 3 (11.4)

GIT total – 0.48 ± 0.45 0.24 ± 0.32 0.78 ± 0.41

Note: Values expressed as mean ± standard deviation.
HCs, healthy controls; SSc, systemic sclerosis; SScCtrl, SSc without intestinal involvement; SScInt, SSc with intestinal involvement; BMI,
body mass index; lc-SSc, limited cutaneous SSc; dc-SSc, diffuse cutaneous SSc, ANAs, antinuclear antibodies; ACAs, anticentromere
antibodies; Topo I, antitopoisomerase I antibodies; FVC, forced vital capacity; DLco, diffusing capacity for carbon monoxide; ILDs,
interstitial lung diseases; GIT, gastrointestinal tract (UCLA GIT questionnaire).

thorough description of concurrent therapies and
GIT subscores. Details about comorbidities in HCs
are given in Supplementary Table S2 (online only);
overall, only essential hypertension was found in
donors (n = 4, 14.3%). Comorbidities were those
captured in the Precisesads study; no information
about other comorbidities is available.

Microbic differences between SSc and HCs
Canonical analysis of the microbiota between SSc
and HCs did not provide significant results; the
alpha diversity of SSc patients was not different
from that of HCs when measured either with the
Chao1 index or via the Shannon index. Analysis of
beta diversity based on uniFrac distances and PCoA
also could not discriminate patients and controls
(Supplementary Fig. S2, online only).

The analysis of the microbiota via nonlinear algo-
rithms could sort out different models to explain
microbial differences between SSc and HCs. The
overall microbial community at the species rank
(AUROC = 0.696 ± 0.86) and to a greater extent

the genus rank (AUROC = 0.706 ± 0.023) could dis-
tinguish SSc patients from HCs. Filtering and data
reduction could not sort out a satisfactory model
to classify cases from controls at the species level
(AUROC = 0.665 ± 0.044). On the contrary, a sim-
plified model comprising just nine microbial genera
(out of 88 available) was capable of discriminating
SSc from HCs with a fairly good performance and
an overall AUROC = 0.711 ± 0.042 after extensive
internal validation; this model was thus selected as
a reference, and further analyses were conducted at
the genus level. The relative abundances of these
nine genera in SSc patients and HCs are reported
in Supplementary Table S3 (online only). LDA
univariate analysis confirmed that a few bacterial
species included in the model were over-represented
(Parabacterioides, unidentified members of the Fir-
micutes phylum, Butyricimonas, and Desulfovibrio)
or under-represented (Turicibacter and unidenti-
fied members of the Lachnospiraceae family) in SSc
patients (LDA |log score| >2; see Fig. 1).
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Figure 1. LDA analysis in patients and controls. Linear discriminant analysis (LDA) of bacteria (genus rank) selected in the best
classification model. HCs, healthy controls (n = 28); SSc, systemic sclerosis (n = 59). Significant results with log10 scores >2 are
represented.

To rule out the possibility that short-term
dietary modification may have accounted for dif-
ferences between groups, we checked available ali-
mentary diaries from 19 HCs and from 53 SSc
participants who returned them correctly com-
piled. Only the unidentified members of the
Erysipelotrichaceae family were related to short-
term dietary modifications with an explained vari-
ance (R2) equal to 12.8% ± 6.3%. The abundance of
this taxon was, however, equal between HCs and SSc
(0.23% ± 0.31% versus 0.43% ± 0.99%; P = 0.66).
Overall, these results suggest that short-term dietary
modification of gut composition was modest com-
pared with intersubject variability, and do not
account for HC versus SSc differences (detailed
information about 24-h dietary habits in the study
groups can be found in Supplementary Table S4,
online only).

Plasma metabolic differences between SSc
and HCs
Before metabolomic analysis, the desmethyldehy-
dronifedipine, the hydroxydehydro-nifedipine car-
boxylate, and the omeprazole peaks were excluded
from the analysis because the vast majority of our
SSc subjects were treated with dihydropyridine cal-
cium channel blockers (84.7%) and proton-pump
inhibitors (88.1%); 426 peaks were thus retained for
further analysis. A simple model of just 17 metabo-
lites was capable of differentiating SSc patients and
HCs, with an AUROC = 0.744 ± 0.029. The normal-
ized peak areas of the 17 metabolites included into
the model are reported in Supplementary Table S4
(online only).

Correlations between microbic and metabolic
data
The cross-correlation matrix between the nine bac-
teria and the 17 metabolites that best explained
the differences between SSc and HCs is reported
in Figure 2. The strongest signals were found
between unidentified Firmicutes and alpha-N-
phenylacetyl-l-glutamine (� = 0.363, pc = 0.083)
and 2,4-dinitrobenzenesulfonic acid (� = 0.393,
pc = 0.024) or between desulfovibrio and alpha-N-
phenylacetyl-l-glutamine (� = 0.389, pc = 0.03)
and 2,4-dinitrobenzenesulfonic acid (� = 0.39,
pc = 0.029). Alpha-N-phenylacetyl-l-glutamine
and 2,4-dinitrobenzenesulfonic acid were highly
correlated (� = 0.79, p = 1.1 × 10−19). Ps
peak areas of both the metabolites were increased
in SSc patients as compared to HCs. Alpha-
N-phenylacetyl-l-glutamine, HCs: 0.357 ± 0.337
versus SSc: 0.837 ± 0.679; pc = 7.8 × 10−4. 2,4-
dinitrobenzenesulfonic acid, HCs: 0.461 ± 0.311
versus SSc: 0.863 ± 0.619; pc = 0.003.

Effect of gut composition on GIT symptoms
Based on the severity of symptoms, as assessed by
the intestinal domains of the UCLA GIT 2.0 ques-
tionnaire, we were able to classify 26 patients as
SScInt and 33 patients as SScCtrl; the threshold to dis-
criminate the two populations was equal to 0.5. The
clinical characteristics of the categorized patients
are summarized in Table 1. SScInt patients had an
increased prevalence of anticentromere antibodies
(SScInt = 15/26 versus SScCtrl = 8/33; P = 0.015)
and were less likely to use steroids (SScInt = 4/26
versus SScCtrl = 15/33; P = 0.0237) compared
with SScCtrl subjects. SScInt patients had a reduced
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Figure 2. Cross correlation between microbiomic and metabolomic data. Spearman’s correlation coefficients between selected
bacteria and metabolites. The nine bacteria and the 17 metabolites were selected via bioinformatic analysis and best classified cases
versus controls in multivariate models. Individual correlations significant at the 0.05 threshold after 100,000-fold permutation
testing for correlated data are highlighted in yellow.

number (richness) and distribution (evenness) of
taxa compared to SScCtrl patients (Fig. 3).

Overall, 10 genera could be used to model
differences among HCs, SScCtrl, and SScInt The
multivariate model based on these bacteria had
a weighted AUROC = 0.679 ± 0.021. The fol-
lowing pairwise results were observed: HCs ver-
sus SScCtrl, AUROC = 0.703 ± 0.056; HCs versus
SScInt, AUROC = 0.64 ± 0.038; SScCtrl versus SScInt,
AUROC = 0.689 ± 0.043. Within this model, sig-
nificant LDA scores were observed for Desulfovibrio
and Turicibacter (Fig. 4A). The relative abundance
of Desulfovibrio in the study groups is illustrated in
Figure 4B.

SScCtrl and SScInt patients could not be well dif-
ferentiated from a metabolic point of view; and no

single peak or complex interaction model was asso-
ciated with either group.

Effect of therapy on gut microbiota
As reported in Table 1, at the time of sample col-
lection, 19 SSc patients (32.2%) were treated with
prednisone >5 mg/day, 12 (20.3%) with immuno-
suppressant, and 9 (15.2%) with biologics. We
investigated the effect of any of these therapy on
microbiota composition. Beta diversity of patients
receiving one or two treatments was different com-
pared to that of patients receiving no treatment
as illustrated in Supplementary Figure S3 (online
only). Data mining analysis could not sort out ade-
quate model to classify the two subsets of patients.
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Figure 3. Alpha diversity in relation to intestinal involvement. Microbial diversity of gut composition in systemic sclerosis (SSc)
patients with mild/no self-reported intestinal involvement (SSc Ctrl) or with moderate-to-severe self-reported intestinal symptoms
(SSc Int) according to the Shannon index (top panel) or the Chao1 index (bottom panel). Low values indicate a reduced richness
and distribution of taxa. *, P < 0.05.

Discussion

We determined the microbiological characteristics
and the metabolic profile of a large case-series of
SSc patients, demonstrating that (1) Italian SSc
patients have a unique mirobial proinflammatory
colonic profile; (2) these patients are character-

ized by peculiar metabolic characteristics; (3) and
there are relevant correlations between microbial
and metabolomic “fingerprints” conditioned to the
disease status.

Among the genera differentially expressed in
SSc patients and HCs, nine bacteria were jointly
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Figure 4. LDA analysis in relation to the intestinal status. Panel (A) shows linear discriminant analysis (LDA) of bacteria (genus
rank) selected in the best classification model capable of jointly discriminating healthy controls (HCs) and systemic sclerosis (SSc)
patients with or without intestinal involvement; significant results with log10 scores >2 are represented. Panel (B) shows relative
abundance of Desulfovibrio in the classification model according to the disease status; each bar represents a case; dotted line,
median; and solid line, mean.

associated with the disease status. These findings
emphasize the multifaceted relationships among
bacteria in a complex nonlinear interaction model;
however, a number of genera were singularly either
over-represented (Fonticella, Parabacterioides,
unidentified members of the Firmicutes phylum,
Butyricimonas, and Desulfovibrio) or under-
represented (Turicibacter and unidentified members
of the Lachnospiraceae family) in SSc patients.

These findings cannot be directly compared with
those presented by Volkmann et al.16 because of the
different sample size, the different severity of GIT
symptoms, the different clinical picture of enrolled
subjects, and the different dietary and lifestyle habits
of Italy and U.S. residents. Food intake is a major

driver of gut microbiota,26 whose ecological compo-
sition may differ in different geographical regions39

because of phenotypic variations as well as diet
and lifestyle.40 Differences in gut microbiota were
indeed observed in SSc when the same U.S. pop-
ulation described in Ref. 16 was compared to a
similar sample of Norwegian patients.15 Another
source of variability with respect to the study by
Volkmann et al.16 is the sampling methodology: we
analyzed stool samples, while the Volkmann et al.
analyzed colonic lavage. Each collection method has
advantages and drawbacks: some authors claim that
colonic lavage is more representative of the actual
gut microbial ecology (as determined by biopsy)
with respect to stool samples;41 while others suggest
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that bowel cleansing before sample collection may
alter the gut microbiota.42 Despite these consider-
ations, and regardless of the specific findings, our
results are in full accordance with other studies (see
Refs. 15 and 16), suggesting the presence of a proin-
flammatory microbial flora in SSc patients, which
may have functional consequences on the intestinal
integrity.

More specifically, Lachnospiraceae were
described as reduced in IBD,43 in untreated
multiple sclerosis subjects,44 or in SLE patients.11

Lachnospiraceae is a family of butyrate-producing
bacteria, and butyrate exerts anti-inflammatory
and antioxidant effects on the colonic mucosa.45

Similarly, Turicibacter, decreased in SSc patients, are
protective in models of inflammatory ileitis46 and
in colitis-resistant CD8 T cell–deficient mice,47 and
its abundance decreases after a proinflammatory
high-fat diet.48 In contrast, Desulfovibrio pro-
motes ileitis and colonic inflammation in animal
models46,48 and is implicated in IBD.49,50 Notably,
in our samples, the abundance of Desulfovibrio
was related to the severity of intestinal symptoms
and its relative abundance linearly increased from
HCs to SSc patients with none/mild intestinal
manifestations, to those with overt self-reported
intestinal symptoms (Fig. 4). Differences in gut
composition between SSc patients with or without
intestinal involvement were previously analyzed
in a relatively small case-series of Italian patients
(18 subjects, of whom half were without enteric
involvement) recruited from a different geographi-
cal region.17 As in our study, these authors described
a reduced alpha diversity in SScInt subjects and a
different microbial status in relation to intestinal
involvement, even if they were able to capture
more differences than we found. The difference in
findings could be related to sample size and other
methodological differences between the studies. In
particular, in Ref. 17, controls were defined as the
complete absence of self-reported symptoms, while
in our work a threshold equal to 0.5 was used to
discriminate cases from controls, and indeed this
threshold has been validated to distinguish patients
with none/mild enteric symptoms from those with
moderate-to-severe/very severe complains.51

As far as the metabolic findings are con-
cerned, in the multivariate model that char-
acterized the profile of our patients, a few
hits were increased and individually associated

with SSc: the dl-2-aminooctanoic acid, glyc-
erophospholipid metabolites diacylglycerol 38:5,
1-(9Z-pentadecenoyl)-glycero-3-phosphate, phos-
phatidylcholine 36:4, and two benzene derivatives,
2,4-dinitrobenzenesulfonic acid and alpha-N-
phenylacetyl-l-glutamine. The significance of such
associations is elusive; it is unknown if they have a
causative role in SSc progression or if they reflect the
general perturbations underlying SSc pathogenesis.
Glycerophospholipids are bioactive molecules that
may regulate different cellular pathways, including
apoptosis and inflammation;52 but the source of
these compounds in scleroderma patients is unclear.

The correlation of benzene derivatives and Desul-
fovibrio merits further discussion. The association
between Desulfovibrio and phenylacetylglutamine
(alpha-N-phenylacetyl-l-glutamine) has not
been described before. As discussed previously,
Desulfovibrio proliferation characterizes a dysbiotic
microbiota; in this environment, pathogenic
bacteria compete with commensal bacteria.53

Commensal bacteria possess the capability to
catabolize phenyl acetate,54 and their relative
scarcity would promote an excess of substrate and
favor phenylacetylglutamine formation. Overall,
our results suggest that SSc-related dysbiosis may
have metabolic consequences influencing amino-
acid metabolism, whose alterations have been
already suggested in SSc patients.55 In our patients,
we observed increased amounts of a sulfonate
benzene compound (2,4-dinitrobenzenesulfonic
acid), whose levels strongly correlate with pheny-
lacetylglutamine, raising the possibility that
some of the events that lead to phenylacetyl-
glutamine accumulation might be relevant to
2,4-dinitrobenzenesulfonic acid biosynthesis. Of
interest, this sulfone may act as a substrate for
Desulfovibrio anaerobic respiration (a process
called dissimilatory sulfate reduction), further
promoting the production of hydrogen sulfide to
cause intestinal damage and inflammation.49

Some limitations of our study should be acknowl-
edged. First, cross-sectional samples of gut micro-
biota have an intrinsic variability and do not reflect
the dynamic changes of microbial flora in time or in
response to exogenous stimuli. Therefore, it is not
possible to determine to what extent dysbiosis in
SSc is persistent or, rather, if it waxes and wanes in
response to therapy or in relation to the severity of
GIT symptoms.
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Second, no experiment was carried out to corre-
late microbial alterations with colonic transit time,
even if previous work suggests that dysbiosis is
the consequence of altered intestinal motility in
SSc gut.4,56 The observation made elsewhere that
Desulfovibrio abundance positively correlates with
colonic transit time57 and that colonic transit time
is increased in subjects with high GIT scores58 largely
supports our findings.

Last, the findings we describe are the results of
complex analyses that rely on a local search opti-
mization. This metaheuristic does not guarantee the
discovery of an optimal solution, and other potential
microbial/metabolic associations in SSc may have
been overlooked. In spite of this, we believe that the
framework we used could fruitfully be applied in
multi-omics research to isolate meaningful signals
and to tackle the “curse of dimensionality” problem.

In summary, we have shown that SSc patients
have peculiar microbial and metabolic characteris-
tics, and that these are subtly entwined. Desulfovib-
rio is a relevant factor in SSc-related gut dysbiosis
in that it may promote intestinal damage and influ-
ence amino-acid metabolism. Further studies are
needed to characterize these associations in response
to therapy and during the disease course of affected
individuals.
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of diet to the composition of the human gut microbiota.
Microb. Ecol. Health Dis. 26: 26164.

28. Milani, C., A. Hevia, E. Foroni, et al. 2013. Assessing the fecal
microbiota: an optimized ion torrent 16S rRNA gene-based
analysis protocol. PLoS One 8: e68739.

29. Caporaso, J.G., J. Kuczynski, J. Stombaugh, et al. 2010.
QIIME allows analysis of high-throughput community
sequencing data. Nat. Methods 7: 335–336.

30. Edgar, R.C. 2010. Search and clustering orders of magnitude
faster than BLAST. Bioinformatics 26: 2460–2461.

31. Quast, C., E. Pruesse, P. Yilmaz, et al. 2013. The SILVA ribo-
somal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Res. 41: D590–D596.

32. Bruce, S.J., I. Tavazzi, V. Parisod, et al. 2009. Investiga-
tion of human blood plasma sample preparation for per-
forming metabolomics using ultrahigh performance liquid
chromatography/mass spectrometry. Anal. Chem. 81: 3285–
3296.

33. Kitagawa, N., S.M. Fischer, J. Roark & M.S.T. Samant. 2013.
Novel two-pass feature extraction workflow for the statistical
profiling of mass spectrometric data. In MP379, Proceedings
of the 61st ASMS Conference on Mass Spectrometry and Allied
Topics, Minneapolis, Minnesota.

34. Lozupone, C. & R. Knight. 2005. UniFrac: a new phyloge-
netic method for comparing microbial communities. Appl.
Environ. Microbiol. 71: 8228–8235.

35. Segata, N., J. Izard, L. Waldron, et al. 2011. Metagenomic
biomarker discovery and explanation. Genome Biol. 12: R60.

36. Yoder, P.J., J.U. Blackford, N.G. Waller, et al. 2004. Enhanc-
ing power while controlling family-wise error: an illustra-
tion of the issues using electrocortical studies. J. Clin. Exp.
Neuropsychol. 26: 320–331.

37. Westfall, P.H. & S.S. Young. 1993. Resampling-Based Multiple
Testing: Examples and Methods for P-Value Adjustment. John
Wiley & Sons, Inc.

38. Pedregosa, F., A. Gramfort, V. Michel, et al. 2011. Scikit-
learn: machine learning in Python Gaël Varoquaux. J. Mach.
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53. Bäumler, A.J. & V. Sperandio. 2016. Interactions between
the microbiota and pathogenic bacteria in the gut. Nature
535: 85–93.

54. Teufel, R., V. Mascaraque, W. Ismail, et al. 2010. Bacterial
phenylalanine and phenylacetate catabolic pathway revealed.
Proc. Natl. Acad. Sci. USA 107: 14390–14395.

55. Bengtsson, A.A., J. Trygg, D.M. Wuttge, et al. 2016. Metabolic
profiling of systemic lupus erythematosus and comparison
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