
Modelling and Controlling the Kinetic and Dynamic of

a Bicycle

C. Tapken (1), P.Gloesekoetter (1) , A. Olivares (3) , G. Olivares (2),

(1) Fachbereich Elektrotechnik und Informatik.

Münster University, Germany.
(2) Departamento de Arquitectura y Tecnología de Computadores

Universidad de Granada. Granada, Spain
(3). Nazaries IT. Granada. Spain

ct500893@fh-muenster.de, peter.gloesekoetter@fh-muenster.de,

alberto.olivares@nazaries.com, gonzalo@ugr.es

Resumen. En este trabajo, se presenta el modelado y control posterior de una

mini-bicicleta autónoma, que se utilizará para la enseñanza de sistemas de

control. El modelo mecánico se construye inicialmente a partir de un diseño

CAD y posteriormente se integra en Simulink, conjuntamente con los módulos

de control. Se lleva a cabo el modelado del sistema completo, incluyendo las

partes mecánicas, sensores, actuadores y la fricción de las ruedas con el suelo,

consiguiéndose el mismo comportamiento que con la bicicleta física. A partir

de las ecuaciones matemáticas que definen el comportamiento del sistema se

diseña un controlador PID y un controlador LQG en el espacio de estados. Para

verificar el modelo, los controladores diseñados se prueban también con los

mismos parámetros en la mini-bicicleta física, obteniéndose un resultado

idéntico.

Palabras Clave: Bicicleta autónoma, Control Digital, Control PID, control

LQG, Simscape, Aprendizaje Experimental.

Abstract. In this paper, we present the modelling and subsequent control of an

autonomous mini-bicycle, which will be used to teach control systems. The

model is initially built from a CAD design and then integrated into Simulink,

together with the control modules. The modelling of the complete system is

carried out, including the mechanical parts, sensors, actuators and the friction of

the wheels with the ground, achieving the same behavior as the physical

bicycle. From the mathematical equations that define the behavior of the

system, a PID controller and an LQG controller are designed in the state space.

To verify the model, the designed controllers are tested, too. Identical

parameters in the physical mini-bicycle lead to the same results in the model.

Keywords: Autonomous Bicycle, Digital-Control, PID controller, State space

controller, LQG control, Simscape Multibody Simulation, Experimental

Learning.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

97

1 Introduction

The main aim of this paper is to design a bicycle model from a little existing

physical bicycle, which can be used for education. Using a virtual model for teaching

control systems has one main advantage; it is possible to test every controller and

every configuration without damaging anything. In addition, there is the advantage

that with a virtual model, a complete course with several students can experiment at a

very low cost, and achieve the same learning experience than they would obtain with

a physical system. Further on, teaching at home and distance learning capabilities can

be mentioned. A bicycle is a good example to learn to control a system, because it is a

very popular and well-known vehicle. Therefore, many people have an idea of how to

control it. But it is not so easy to design a controller for this system, because it has no

stable state of equilibrium and mathematical equations change with the speed of the

bicycle. Due to the increased computing power of the past years, it makes sense to

represent this model in a graphical fashion; this is called “multibody simulation”. This

graphical simulation method has the advantage to verify the function of the controller

intuitively; since it is not necessary to read and understand diagrams. Further, no

mathematical equations are needed during set-up; the model can be built by drawing a

CAD model and passing it to the multibody simulation software. After the creation of

this virtual mechanical model, it is required to build a controller, as well as to obtain

the complete and runnable model to check its controllability.

 In this paper, it is shown how to set up the mathematical equations which are

required to build a PID controller and a state space controller for this model. To verify

the results, the controllers are verified with the physical bicycle. At the end of this

paper it is shown how to develop the program for the physical bicycle and how to

implement this program on an Arduino card. Therefore, it is also shown how to read

all the sensors and how to control all the actuators. The bicycle model can be used to

raise interest of the students, because it is not artificially made up and has direct

practical reference. Additionally, it can also serve as the basis for the future

construction of a real-size autonomous bicycle.

2 Physical bicycle

At first, the physical mini-bicycle is described [1]. It is a simple model, on which

all the necessary parts are mounted so that it can drive autonomously. It has a motor

for the driving, a servo for the steering, an encoder for controlling the speed, a sensor

for measuring the inclination, an accumulator and an Arduino One card for the

calculations. The already existing Arduino shield is necessary, since the Arduino

board cannot drive the motor on its own. For reference: the distance between the axes

is approximately 165 mm. Figure 1 shows a photograph of the model.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

98

Figure 1. Physical model of the bicycle

2.1 Driving motor

In the physical model, a series DC motor with a gearbox is used. The gearbox is

plugged directly to the motor shaft and on the other side of this motor there is an

encoder, which will be described later in the article. It is a small motor that provides a

mechanical power of about 0.3 watts only, due to the used battery voltage. The motor

is mounted between the two wheels and the power transmission is handled by a

timing belt.

2.2 Servo for the steering

The physical model uses a servo for steering. A servo is a combination of a motor,

a gearbox, and the necessary control electronics. This kind of motor is used for

example for model making, in automotive construction and in hard drives. In the

physical bike a small one with a plastic gear is used. Furthermore, it is controlled with

a pulse width modulation and the position can be directly specified with this signal

while its integrated electronics regulate the position. The servo is mounted on top of

the bike and it is connected to the handlebar with an adapter.

2.3 Arduino

Arduino is an open source hardware and software for the construction of digital

devices and interactive objects [2]. The physical bicycle uses an "Arduino Uno R3"

card, with an "ATmega328P device". It is a microcontroller with clock speed of 16

MHz. In addition, this board contains six pins for analog input and 14 for digital input

signals. Six of them can provide a PWM output. Because the output current is limited

to 20 mA, a driver is needed; at the bicycle, a “TB6612FNG” device is used [3]. This

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

99

is a “H-Bridge driver” consisting out of four transistors; it can be used to drive the

motor in both directions and the speed can be controlled by pulse width modulation.

This chip is mounted on an Arduino shield attached directly on the Arduino Uno card.

In addition, there is a voltage transformer, a switch for the battery and some connector

for the sensors and the motors on the shield.

2.4 Encoder

The physical bicycle uses an encoder which is mounted directly on the motor shaft.

It consists of a magnetic disc and two Hall sensors; the sensor can be seen below.

Figure 2. Encoder.

Because of the twisted mounting of the two Hall sensors it is possible to detect the

direction of rotation. The sensors generate 13 pulses for a complete revolution,

because there are several pairs of poles on the magnetic disk. The encoder delivers up

to 1800 pulses per second in non-load operation mode.

2.4 Gyroscope and accelerometer

The physical bicycle uses a “MPU6050” integrated circuit [4] to measure the

inclination. This is a six-axis motion tracking device that combines a three-axis

accelerometer, a three-axis gyroscope and a microprocessor for the communication

over I²C bus. A gyroscope uses the principle of angular momentum to measure

rotation rate of an axis and an accelerometer measures the inertia caused by the

movement of masses during linear acceleration or deceleration. We make the fusion

of both sensors to measure the inclination with sufficient precision.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

100

3 Modelling process

The first step is the modelling process. To create a model that behaves in the same

way as the physical model, it is necessary to model not only the dimensions or the

volume of the frame but also the motor, the servo and the friction. For the building

processes, the “Autodesk Inventor Professional 2018” [5] software is used to design a

CAD model. This model can be exported to a multibody simulation software, which

can, in turn, simulate the graphical model. “MATLAB Simscape” [6], a toolbox

included in “MATLAB Simulink” [7], is used for the latter purpose.

3.1 Bicycle model

Within the next sections, it is presented how to build the CAD model of bicycle

frame and how to make it runnable inside of the multibody simulation software. Also,

it is shown how to measure the inclination and the speed of the bicycle, because these

values a required to build a controller.

3.1.1 CAD drawing of a simple bicycle model

At first, the CAD drawing of the bicycle must be built. This model consists of

about 14 different parts and it is important to create every part with the same

dimensions, the same mass and the same density as the physical bicycle to get the

same behaviour. Because the CAD program calculates the mass from the density and

the dimensions, it is not essential to measure the weight. This has the advantage that it

is not necessary to disassemble the physical model. In “Inventor”, the connection tool

can be used to add the joints. The designed CAD model is depicted in figure 3.

Figure 3. Inventor CAD model of the physical bike

In addition, a ground area must to be added so the bike can ride on it and the

degrees of freedom are reduced to the normal use case of a bicycle.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

101

3.1.2 Importing the model to Simulink

The bicycle model can be imported to “Simscape Multibody”, a toolbox from

“MATLAB”, by using the “Simscape Multibody Link Inventor Plug-In” [8]. Because

Simscape is a toolbox which makes part of Simulink, it can be used inside a Simulink

model, as a simple block diagram. The resulting block diagram can be seen in figure

4.

Figure 4. Simulink block diagram of the mini-bicycle model.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

102

This model is runnable without any changes, but the problem with the connection

of the wheel and the ground is still relevant, because MATLAB also has no joint for

this connection. In this block diagram a joint with six degrees of freedom is used,

which means that the bicycle can move in every direction and in every plane, which is

not realistic. To fix the problem an additional library, called “Simscape Multibody

Contact Forces Library” [9] can be employed. By using this library, it is possible to

model every contact between a moving and a fix part; for example, the contact

between a wheel and the ground can be modelled with the block “Spare to Plane

Force”. Now, the model can move like a real bicycle. A still of the running model can

be seen in figure 5.

Figure 5. Simscape Multibody bicycle simple model.

The connection between the belt and the pulleys can be modelled with the CAD

program, but Simscape interprets this connection as a rigid connection without

movement. This is a problem since the movement of the belt is necessary, because it

is the connection of the motor and the rear wheel. This problem is solved by manually

building this connection with Simulink. After these manipulations, the model is

runnable, except for the motor, which inclusion is discussed in detail in section 3.2.

3.1.3 Measuring the data

To control the bicycle model, it is important to measure the magnitudes which

should be controlled, because these values must be returned to close the control loop.

In this case, the necessary physical values are the speed of the bicycle and the

inclination. Simscape has a “Transform Sensor” block, which can be used to measure

physical values. This block measures the relationship between two frames.

Additionally, it is possible to select which parameters should be measured. For

example, the rotational and translational relationships, the velocities and the

accelerations can be measured.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

103

3.2 Driving motor

As described above, a series motor with a gearbox is used for the physical model.

The following equivalent circuit diagram represents the behavior of the series motor

in a simplified way [10], since for instance the brush voltage remains is constant.

Figure 6. Simplified equivalent circuit diagram of series motor.

Figure 7 reveals the block diagram that has been deduced from the equivalent

circuit diagram.

Figure 7. Block diagram complete series motor.

3.2.3 Determination of the motor parameters

Every model requires the determination of the involved parameters. Datasheets and

specifications are a good initial source to set a value for the parameters, but often they

are missing or incomplete. For the determination of the moment of inertia, we

employed a retardation test. For this test, the engine is accelerated to unloaded top-

speed. After that, the engine power is switched off and through the time depending

speed drop, the moment of inertia can be determined. Finally, the inductance needs to

be determined. Since the motor is controlled by pulse width modulation, the motor’s

performance depends highly on its inductance. The inductance can be derived by

measuring the motor’s impulse response. For this test, the engine must stand still and

the supply voltage of the motor must be pulsed. In that case the equivalent circuit

diagram of the motor simplifies to a series connection of a resistor and an inductance.

The inductance can, then, be deduced with the help of an oscilloscope.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

104

3.3 PWM

The speed controller of the physical bicycle is built with a pulse width modulation.

To use the same speed controller for the virtual model and for the physical bicycle, it

is also necessary to build a pulse width modulation. The block diagram is reflected on

figure 8.

Figure 8. Block diagram of PWM modulation employed for speed control.

3.4 Steering servo

Because the servo position can be specified, and the electronics regulate the

position, the servo can be modelled as a proportional element. However, no

mechanical element can change the position without a time delay. As a first

approximation, the servo is modelled as a “PT1 element” (a proportional element with

a time constant). The servo has an important influence on the control, because it

essentially determines the response time of the bicycle to the controller’s output

signals. One option is to determine the servo’s delay by measuring its step response

time. In our case, we measured the response time by taking a video from the motion.

Then we derived the time constant during slow motion replay.

Once the servo delay is determined, all the parameters of the module are specified.

4 Controller design

It is necessary to design a control system because the bicycle is a system which has no

stable state of equilibrium, i.e. without a controller this bicycle will always fall. It is

also useful to set up a speed controller so that the bike can ride at a constant speed.

4.1 Theoretical foundations

To design a good controller, it is necessary to define the mathematical equations

which compose it and which will, in turn, determine the value of the parameters.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

105

4.1.1 Bicycle equations

The main difference between our bicycle and a conventional bicycle, ridden by

humans, is that we can only use its inclination to maintain the balance, while humans

can use their weight to change the balance point of the bike they are riding. This fact

makes the necessary mathematics to be much simpler. Åström et al. [11]

demonstrated that a very simple mathematical model can be used to express the

behavior of a bicycle. This transfer function shows the mathematical connection

between the inclination (s) and the steering angle (s):

𝐺1 𝑠 =
𝜑(𝑠)

𝛿(𝑠)
=

𝑣 ∙ 𝑎
𝑏 ∙ ℎ

𝑠 +
𝑣²

𝑏 ∙ ℎ

𝑠2 −
𝑔
ℎ

Equation 1. Transfer function of the bike model.

Where g is the gravity acceleration, v is the bicycle speed and h is the height from de

centre of the masses to the floor. The rest of parameters can be identified in Figure 9.

In our case we suppose that λ =90º.

Figure 9. Bicycle geometry. Obtained from [2].

4.1.2 Servo equations

For the mathematical equation of the servo this first order transfer function from

the modelling process can be used:

𝐺2(𝑠) =
𝐾𝑆𝑒𝑟𝑣𝑜

1 + 𝑇𝑆𝑒𝑟𝑣𝑜 ∙ 𝑠

Equation 2. Transfer function of the servo.

We obtained the gain KServo and the period TServo from the servo step response.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

106

4.1.3 Steering

The servo is connected to the handlebar with an adapter, because of this, the angle

of the servo isn’t identical to the steering angle. Figure 10 illustrates the problem.

Figure 10. Adapter between servo and front fork.

By creating a diagram of the relationship between the angles, it can be shown that

the steering adapter can be linearized as a proportional factor (Ksteering).

4.2 PI controller for the velocity

A speed without large over or under swing is required, because the velocity has a

big influence on the behaviour of the inclination control.

Initially it was necessary to obtain the parameters of the motor, and calculate its

transfer function. Subsequently, the feedback loop is constructed with that transfer

function and a discrete PI controller. The adjustment of the proportional and integral

constants is done automatically with the "auto tune" option of the discrete PI module

included in the Simulink library. A delay block to the closed loop is included, to

consider the delay created by the calculation. Figure 11 shows the speed control

feedback loop used to calculate PI controller parameters.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

107

Figure 11. Simulink control loop of the bicycle speed.

The designed PI controller can now be tested using the mechanical Simscape

model. The resulting step response can be seen in figure 12.

Figure 11. Step response of the driving motor.

4.3 PID controller for the inclination

Initially we designed a PID controller to regulate the inclination of the bicycle; for

this, we have used the Simulink block diagram of figure 13. The numerical transfer

functions of the steering servo and the bicycle are taken into account. Figure 14 shows

the response of the inclination of the virtual bicycle with a 7 degrees inclination set

point.

 A video of the simulation can be seen in [12].

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

108

Figure 13. Feedback loop used for the calculation of the PID parameters for

inclination control.

Figure 14. Inclination response for the virtual model of the bicycle for a set point of

7 degrees (Kp=5.1; Ki=6.7; Kd=0.48).

4.4 State space controller for the inclination

Furthermore, a state space controller is built. This controller is based on a state

space representation and the states of the controlled system are estimated with an

observer. These estimated states are the feedback variables of the controller. At first, a

state space representation of the system to be controlled must be set up. The

differential equation can be defined in an observable canonical form by using the

transfer functions in equations 1 and 2 [13].

𝑥 𝑡 =

 0 0

𝑔

ℎ ∙ 𝑇𝑠𝑒𝑟𝑣𝑜

1 0
𝑔

ℎ

0 1 −
1

𝑇𝑠𝑒𝑟𝑣𝑜

∙ 𝑥 𝑡 +

𝐾𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 ∙ 𝐾𝑠𝑒𝑟𝑣𝑜 ∙ 𝑣²

𝑏 ∙ ℎ ∙ 𝑇𝑠𝑒𝑟𝑣𝑜

𝐾𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 ∙ 𝐾𝑠𝑒𝑟𝑣𝑜 ∙ 𝑣 ∙ 𝑎

𝑏 ∙ ℎ ∙ 𝑇𝑠𝑒𝑟𝑣𝑜

0

∙ 𝑢(𝑡)

𝑦 𝑡 = 0 0 1 ∙ 𝑥 𝑡 + 0 ∙ 𝑢(𝑡)

Equation 3. Space state representation of the bicycle.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

109

Now the controller can be designed with the state space representation above.

Because the states of the system don’t represent physical magnitudes that are

conceivable, the state space controller is designed as a linear-quadratic-gaussian

regulator (LQG), which is really formed by a Kalman observer and a LQR control

with the feedback of the estimated states. This is useful, because the controller can be

calculated automatically and no poles must be specified. The feedback constants have

been calculated with Matlab, using the order lqr, and testing with different values of

the Q and R parameters. The Kalman filter block by Simulink is also used. It is also

necessary to adjust the covariance matrices Q and R of this filter

This controller has been designed, again, as a time discrete controller so the

Arduino is able to run it. The resulting block diagram from this controller and the step

response can be seen in figures 15 and 16 respectively. In this case an initial alteration

of the signal is appreciated, possibly due to the initial slip of the rear wheel, produced

when trying to get the final speed very quickly.

A video of the simulation can also be seen under [14].

Figure 15. Block diagram of the LQG control.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

110

Figure 16. Diagram of the virtual bicycle inclination with the LQG controller (setup

of inclination = 5 deg).

4.5 Comparison between the controllers

Now the controllers can be compared using the steering diagrams as a basis. The

PID controller produces the best result, because the set point is reached earlier, but the

first overshoots of both controllers are nearly equal, since they are due to the fact that

initially the speed of the bicycle is not yet regulated (a minimum speed is required to

maintain balance).

In addition, the disturbance reaction of the control loop is important; this can be

determined by further simulations, but the resulting diagrams aren’t shown here for

the sake of clarity. Due to the D component, the PID controller is more aggressive

than the state space controller, and as a result, the PID controller makes many more

steering movements when a noise variable is switched on. However, there are no big

differences in the inclination. This means that the disturbance reaction of the state

space controller is a slightly better.

5 Controlling the physical bicycle

To complete this project, the designed controllers are ported to the Arduino card to

test the controller set. This is useful to verify the model and the functional bicycle can

be used to raise interest of the students, because it allows to show that this task is not

only a constructed model without any practical reference.

5.1 Basics

It is possible to program the Arduino card directly from Simulink. This has the

advantage that the designed controller can be used without big changes. However, the

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

111

block diagram must be supplemented to read the data from the sensors and to set the

actuating variables. The standard Arduino Simulink library has its limitations, though.

For instance, it is not possible to read the data from the accelerometer and the

gyroscope with the available blocks.

5.2 Reading the sensors

To read the data from the accelerometer and the gyroscope, the library “Rensselaer

Arduino Support Package Library” [15] [16], can be used. This library is designed

with blocks, which call a program in C code. The C code can include other C code;

for example, exiting Arduino libraries. Furthermore, the library also contains a block

to read encoders; however, this block computes pulses, so it can be used to calculate

angles and not the speed. Some changes in the C code, which is called by the block,

are used to solve this problem.

5.3 Filtering the accelerometer and gyroscope data

The physical bicycle uses an accelerometer and a gyroscope to measure the

inclination, but the accelerometer is very noisy and the gyroscope can drift. A

gyroscope uses the principle of angular momentum to accurately measure rotation rate

about an axis, and an accelerometer measures the stresses caused by the movement of

masses during linear acceleration or deceleration. We use the fusion of both sensors to

measure the inclination with sufficient precision. To combine the sensors a

complementary filter or a Kalman filter can be used. The instructions of the library

which is mentioned in section 5.2, show that the following block diagram for the

complementary filter can be used.

Figure 12. Block diagram of the complementary filter.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

112

This block diagram includes also a calibration, because the gyroscope has always a

bias and this amount depends on each device and can change with the temperature.

So, the gyroscope must be calibrated after every start. In this project, the values

gathered during the first second are averaged; the resulting value is subtracted from

the current value. So, it is necessary that the bicycle is in upright position during the

first second. The weight of the individual sensors is set experimentally, leading to a

satisfactory result.

The Kalman filter was discarded in this occasion as it needs more computation

power (we use an Arduino One Card).

5.4 Writing the actuators

To make the model runnable it is also important to write the calculated actuating

variables to the actuators. In the case of the physical bicycle these are the PWM signal

for the motor and the angle for the servo. The Simulink standard library has the right

blocks for these actuators. The PWM block needs only an input from 0 to 255 so it

can be connected to the controller, and the servo block needs only the angle in

degrees, so the controller can be connected to this block after converting the angle to

degrees. These elements are reflected on figure 16.

5.5 Controlling the physical bicycle

Now the controller can be ported to the Arduino card. At first the speed controller

is tested. The controller produces similarly good results in the physical model as in

the simulation with the same parameters, but this result cannot be measured because

the bicycle must move for the correct result and a cable connection also affects the

signal, because the cable is pulled behind. After this step, the controllers of the

inclination must be tested.

5.5.1 PID controller for the inclination

The PID controller, which is designed in section 4.3, can be added directly to this

block diagram, because it is a time discrete controller. With this controller, the

physical bicycle works without changing the parameters. However, this controller

generates many steering movements. This can be explained by the disturbance

behaviour of the PID controller, because the D component reacts very quickly to the

noise. This is because many disturbances occur when the bike is moving. In this case

it is also not possible to measure the data to create a diagram. Below the complete

Simulink block is shown; this block diagram includes also the controller for the speed

and the control of the motor driver. A video of the simulation can be seen under [17].

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

113

Figure 13. Block diagram of the PID controller.

5.5.2 State space controller for the inclination

In the same way as above, the state space controller can also be added directly to

the block diagram. This controller works also without changing the parameters and

the subjective result is slightly better. However, it is also not possible to record a

diagram here. Figure 17 depicts the complete Simulink block, including the speed

control block as well. A video of the simulation can be seen under [18].

Figure 14. Block diagram of the state space controller.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

114

6 Conclusion

The modelling of a complete autonomous mini-bicycle has been carried out,

including the mechanical parts, sensors, actuators and the friction of the wheels with

the ground, achieving the same behaviour as the physical bicycle.

We can conclude, then, that is it possible to create working controllers for

mechatronics systems with the methods which are presented along this paper.

Furthermore, the created model has shown satisfactory results leading to a matching

between the behaviour of the controllers in the virtual model and in the physical

bicycle.

Therefore, the created virtual model can be used for practical teaching of control

technology, allowing the results to be ported directly to an Arduino board so that the

students can observe the theoretical results in a real physical model.

References

[1] Minibalance. https://shop114407458.world.taobao.com/.

[2] Arduino Board Official Site. https://www.arduino.cc/ Access: 09.07.2018.

[3] TB6612FNG Toshiba Bi-CD Integrated Circuit. https://toshiba.semicon-

storage.com/info/docget.jsp?did=10660&prodName=TB6612FNG. Last accessed:

09.07.2018.

[4] Invensense MPU 6000 Datasheet. https://www.invensense.com/wp-

content/uploads/2015/02/MPU-6000-Datasheet1.pdf. Access: 09.07.2018.

[5] Autodesk Inventor Official Site. https://www.autodesk.com/products/inventor/overview

Access: 04.07.2018.

[6] Matlab Simscape Official Site. https://es.mathworks.com/products/simscape.html Access:

04.07.2018.

[7] Matlab Simulink Official Site. https://www.mathworks.com/products/simulink.html

Access: 04.07.2018.

[8] Matlab’s SMI Port function.

https://es.mathworks.com/help/physmod/sm/ref/smimport.html Access: 04.07.2018.

[9] Matlab Simscape Multibody Contact Forces Library.

https://es.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-

contact-forces-library Access: 04.07.2018.

[10] P. Kurzweil, B. Frenzel and F. Gebhard, Physik Formelsammlung, pp.281-282,

Wiesbaden, Vieweg, 2008.

[11] K. J. Åström, R. E. Klein and A. Lennartsson, “Bicycle Dynamics and Control”, Control

Systems Magazine, pp. 26-47, 01 01 2005.

[12] Video of the simulation of the PID controller of the inclination (I/II).

https://youtu.be/dSf5DLQnZeE Access: 09.07.2018.

[13] J.Lunze, Regelungstechnik 1, pp. 88, 163, Springer Vieweg, 2016.

[14] Video of the simulation of the state space controller for the inclination (I/II)

https://youtu.be/j3ycO2Lp8Mw Access: 09.07.2018.

[15] Rensselaer Arduino Support Package Library.

https://es.mathworks.com/matlabcentral/fileexchange/62702-rensselaer-arduino-support-

package-library--rasplib- Access: 04.07.2018.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

115

https://youtu.be/dSf5DLQnZeE
https://youtu.be/j3ycO2Lp8Mw

[16] The Miniature Balancing Robot Kit for Education. Downloads page.

https://minseg.com/pages/downloads Access: 04.07.2018.

[17] Video of the simulation of the PID controller for the inclination (II/II).

https://youtu.be/_VZ02BhqNuk Access: 10.07.2018.

[18] Video of the simulation of the state space controller for the inclination (II/II).

https://youtu.be/CNUgtSXgdqA Access: 10.07.2018.

[19] N. H. Getz and J. E. Marsden, “Control for an Autonomous Bicycle”, 27.05.1995.

[20] L. Keo and M. Yamakita, “Controller Design of an Autonomous Bicycle with Both

Steering and Balancer Controls”, 10.08.2009.

[21] M. Sasaki, H. Tanaka and S. Ito, “Development of an Autonomous Two-Wheeled

Vehicle Robot”, 22.12.2011.

[22] A. Owczarkowski, D.Horla, P. Kozierski and T. Sadalla, “Dynamic Modeling and

Simulation of a Bicycle Stabilized by LQR Control”.

[23] Y. Feng, R. Dum Y. Xu, “Steering Angle Balance Control Method for Rider-Less Bicycle

Based on ADAMS”, 2017.

[24] J. Lowell, H. D. McKell, “The stability of bicycles”, 7.11.1981.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

116

https://youtu.be/_VZ02BhqNuk
https://youtu.be/CNUgtSXgdqA

