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Introducción

La física de partículas está viviendo su edad dorada: experimentos como el Relativistic
Heavy Ion Collider (RHIC) o el Large Hadron Collider (LHC) están generando petabytes
de datos altamente precisos. Pese al enorme progreso realizado en los últimos años, la
descripción teórica de la estructura interna del protón continúa siendo uno de los gran-
des problemas sin resolver en la física de las interacciones elementales. Además de ser
una cuestión acuciante y fundamental per se, precisar cuáles son los grados de liber-
tad relevantes y sus propiedades tiene profundas implicaciones en diversos aspectos
fenomenológicos de las colisiones a altas energías.

La Cromodinámica Cuántica (QCD) se ha consolidado como la teoría cuántica de
campos relativista que describe la interacción fuerte. Sus grados de libertad fundamen-
tales son los quarks y los gluones, también llamados globalmente partones. Tanto quarks
como gluones son portadores de la carga que caracteriza a las partículas que interaccio-
nan fuertemente, esto es, el color. En aquellos procesos físicos en los que el momento
transferido es grande, como en Drell-Yan o producción de jets, el éxito de QCD a la hora
de describir las observaciones experimentales con un alto grado de precisión es notable.
Esto es posible gracias a una propiedad única de la teoría conocida como libertad asin-
tótica por la cual la constante de acoplamiento fuerte disminuye a pequeñas distancias o,
de manera equivalente, cuando el momento transferido es alto. En estos casos, es posi-
ble aplicar métodos perturbativos para calcular las correspondientes secciones eficaces
a nivel partónico a cualquier orden.

Sin embargo, el estudio de los constituyentes fundamentales de la materia está domi-
nado por fenómenos de largo alcance, esto es, procesos en los que el momento transferi-
do es pequeño. En este caso la constante de acoplamiento es lo suficientemente grande
como para que el cálculo de amplitudes de dispersión quede fuera del dominio de vali-
dez de la teoría de perturbaciones. Asimismo, QCD no es capaz de dar una explicación
fundamental al hecho de que no se observen quarks y gluones libres en la naturaleza
sino combinaciones de ellos en estados neutros de color que llamamos hadrones. Este
fenómeno se conoce como confinamiento y, a día de hoy, es considerado una conjetura
apoyada por observaciones experimentales. Uno de los grandes retos de la física actual
es demostrar formalmente esta propiedad de QCD.

Pese a la imposibilidad de describir la estructura hadrónica mediante teoría de per-
turbaciones en QCD, sí es posible, mediante este marco teórico, determinar su evolución
al variar la energía y el momento de la colisión. El paso inicial consiste en medir la es-
tructura del nucleón a una determinada escala de momento y energía. Esta información
constituye la condición inicial de las ecuaciones de evolución. Sin duda alguna, los expe-
rimentos de dispersión son los microscopios más adecuados para desvelar la estructura
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básica de las partículas partícipes en la colisión. Siguiendo con la analogía óptica, la
resolución de dichos experimentos resulta ser inversamente proporcional a la energía
de la colisión, ∆r ∼ 1/

√
s. En concreto, los experimentos de dispersión profundamente

inelástica proporcionan acceso a la dependencia en momento longitudinal, x, del hadrón
en cuestión, lo que se conoce como función de distribución de partones (PDFs). Los
parámetros libres de las PDFs son ajustados a los datos a una determinada escala y su
evolución se calcula resumando las correcciones cuánticas que aparecen al variar el mo-
mento y la energía de la colisión mediante las ecuaciones del grupo de renormalización.
Sin embargo, una caracterización completa del hadrón requiere información tanto en es-
pacio de momentos como de coordenadas. El objeto teórico que contiene ambas depen-
dencias se conoce como distribución de Wigner. Hasta el momento no se ha diseñado
ningún experimento capaz de medir la misma. Desde el punto de vista teórico, como se
discute en el Capítulo 2 de esta tesis, en su tratamiento aparecen muchas complicacio-
nes como la no-universalidad o la invalidación de los teoremas de factorización. Por lo
tanto, en general, la descripción de la estructura hadrónica requiere inevitablemente el
uso de herramientas fenomenológicas que combinen modelos teóricos y observaciones
experimentales.

La estructura del protón es un elemento relevante en prácticamente cualquier obser-
vable en colisionadores hadrónicos tal y como indica la Fig. 1. Actualmente, un tema
candente que está siendo investigado intensivamente es la posibilidad de crear gotas de
quark gluon plasma (QGP) no solo en colisiones de iones pesados sino también en siste-
mas no tan densos como en interacciones protón-protón de alta multiplicidad en en LHC.
El debate ha sido impulsado por la observación experimental de patrones muy similares
en los diferentes sistemas de colisión en el LHC (p+p, p+Pb y Pb+Pb) en los coeficientes
armónicos de flujo: una de las pruebas por excelencia de la formación de QGP que es
especialmente sensible a la geometría de la colisión inicial.

Otro campo en el que la estructura del protón juega un papel esencial es la des-
cripción de las interacciones múltiples entre partones, un mecanismo fundamental a la
hora de entender una colisión hadrónica a energías del LHC, en generadores de eventos
Monte Carlo como PYTHIA. Además, una caracterización precisa de las interacciones
múltiples entre partones es vital a la hora de controlar el ruido que constituye QCD en
búsquedas más allá del Modelo Estándar cuyas señales son débiles.

Por tanto, una caracterización detallada de los grados internos de libertad del pro-
tń es un ingrediente crucial del programa de física del LHC. La construcción de futuras
instalaciones como el Electron Ion Collider o el LHeC proporcionará una mayor compren-
sión de la estructura de los hadrones, a través de mapas multidimensionales sobre las
distribuciones de partones en el espacio, momento y espín.

Esta tesis se organiza del siguiente modo. En el Capítulo 2 se presentan los ele-
mentos básicos del formalismo de QCD y la descripción de la estructura hadrónica en
términos de la distribuciń de Wigner y otras funciones que se obtienen a partir de ella
integrando (PDFs, distribuciones de momento transverso, distribuciones de partones ge-
neralizadas y factores de forma). El objetivo fundamental de esta tesis es caracterizar
la estructura transversa del protón. Para ello, hemos analizado los datos de colisiones
elásticas protón-protón a energías de ISR y LHC (

√
s = 62,5 GeV y 7 TeV, respectiva-
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mente). Los resultados de este análisis a
√
s = 7 TeV, presentados en el Capítulo 3,

revelan una inesperada propiedad de las interacciones hadrónicas denominada el efecto
hollowness en la literatura. Proponemos una realización microscópica de esta propiedad
desde un punto de vista geométrico mediante el formalismo de Glauber. La descripción
del efecto hollowness en nuestro modelo es capaz de restringir notablemente la distribu-
ción transversa de los grados de libertad subnucleónicos en el protón. Concretamente,
hace inevitable la introducción de correlaciones espaciales: algo no considerado en la
literatura hasta la fecha. En el Capítulo 4 se expone una amplia discusión acerca de
la posible creación de QGP en sistemas de colisión pequeños (p+p, p+Pb). Continuan-
do con estas ideas, el Capítulo 5 está dedicado al estudio de las implicaciones que las
correlaciones en el protón tienen en las propiedades del estado inicial en interacciones
protón-protón a muy alta energía en el contexto de la física del QGP. Dado el drástico
impacto que la inclusión de correlaciones espaciales entre los constituyentes del pro-
tón tiene en la descripción del efecto hollowness, hemos desarrollado un generador de
eventos Monte Carlo que implementa nuestro modelo de la geomtría inicial de la colisión.
Todas las propiedades estudiadas son sensibles a la presencia de dichas correlaciones.
En especial, su impacto en los cumulantes simétricos ayuda de manera decisiva a re-
producir aspectos de las observaciones experimentales. Finalmente, en el Capítulo 6 se
exponen las conclusiones de este trabajo.





Ready to start;
Arcade Fire.

Introduction

Particle physics is living its golden age: petabytes of high precision data are being recor-
ded at experimental facilities such as the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC). Despite the outstanding theoretical progress achieved in
the last years the complete understanding of the internal structure of protons remains as
one of the most challenging unsolved problems in the physics of elementary interactions.
Besides its fundamental interest, pinning down the relevant degrees of freedom (d.o.f)
and their properties has profound implications in several phenomenological aspects of
high-energy collisions.

Quantum Chromodynamics (QCD) is the, firmly established, relativistic quantum field
theory that describes the strong interaction. Its fundamental degrees of freedom are
quarks and gluons, collectively called partons, both of them carriers of the charge of
strongly interacting particles, namely color. In physical processes where the momentum
transfer is large, such as Drell-Yan or jet production, the success of QCD in consistently
describing the experimental data, up to a high degree of accuracy, is remarkable. This is
due to a salient property of the theory, asymptotic freedom, by which the strong coupling
diminishes at small distances or, equivalently, large momentum transfers, allowing the
use of perturbative methods to compute the corresponding partonic cross section to any
order. The study of the fundamental constituents of matter is, however, dominated by
long-range phenomena, i.e. small momentum transfer, where the strong coupling is large
making the calculation of amplitudes for scattering processes beyond the scope of usual
perturbation theory. Further, QCD is not able to provide a fundamental explanation to the
fact that isolated quarks and gluons are not observed in nature but only combinations of
them in colourless bound states called hadrons. This is known as confinement and it is
established as a conjecture supported by experimental facts. To prove it in QCD is still a
challenge that hasn’t been met.

Thus, hadron structure is not computable within perturbative QCD although its evol-
ution when varying the energy and momentum of the collision can be successfully de-
termined by this framework. The strategy consists in measuring the nucleon structure at
a given energy and momentum scale and afterwards use evolution equations. For that
purpose, scattering experiments are the most suitable microscopes to unveil the under-
lying structure of the colliding particles. The resolution of these experiments is inversely
proportional to the collision energy, ∆r ∼ 1/

√
s. Deep-inelastic scattering experiments

are suitable to measure the longitudinal momentum dependence of the hadron in terms
of Parton Distribution Functions (PDFs). Once the PDFs are fitted to data at a given
scale their evolution is computed by resuming quantum corrections emerging from the
variation of energy and momentum scales of the collisions via renormalization group
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equations. However, a full characterization of a hadron would require both momentum
and spatial information, the so-called Wigner distribution. So far obtaining this information
experimentally has not been achieved. From a theoretical point of view several complic-
ations arise such as non-universality and breaking of factorization theorems as will be
discussed in Chapter 2. Then, in general, the description of the hadron structure relies
on phenomenological tools that require theoretical modelling constrained by experimental
data.

The proton structure is a relevant input in barely any observable in hadronic colliders
as sketched in Fig. 1. Currently one of the subjects undergoing intense study is the pos-
sibility that droplets of quark-gluon plasma (QGP) are being created not only in heavy ion
collisions but in more dilute systems such as high-multiplicity proton-proton interactions
at the LHC. This is a data driven debate as it is rooted in the similar patterns observed
across the different collision systems at the LHC (p+p,p+Pb and Pb+Pb) in the flow har-
monic analyses: one of the golden probes of QGP formation specially sensitive to the
initial collision geometry.

Another domain in which the proton structure plays a central role is the description of
multi-parton interactions, the mechanism that dominates the underlying event at LHC en-
ergies, in Monte Carlo event generators such as PYTHIA. A precise description of multi-
parton interactions is essential to control the QCD background in Beyond the Standard
Model searches where the signal is rather weak.

All in all, a detailed characterization of the internal degrees of freedom of the proton
is a crucial ingredient of the physics program of the LHC. The construction of future
facilities such as the Electron Ion Collider or the LHeC will yield much greater insight into
the nucleon structure, by facilitating multi-dimensional maps of the distributions of partons
in space, momentum and spin.

This thesis is organized as follows. In Chapter 2, the basics of the QCD formalism
and the description of hadron structure in terms of Wigner distributions and its integrated
quantities (PDFs, Transverse Momentum Distribution, Generalized Parton Distributions
and Form Factors) are presented. Being the main goal of this thesis to characterize the
transverse structure of the proton, an analysis of elastic scattering data in p+p interactions
at ISR and LHC energies (

√
s=62.5 GeV and 7 TeV, respectively) is performed in Chapter

3. The result of this analysis at
√
s = 7 TeV reveal unexpected properties of hadronic

interactions dubbed as hollowness effect in the literature. We provide a microscopic
realization of this feature in a geometric picture such as the Glauber formalism. The
description of the hollowness effect within our framework put stringent constraints on the
transverse distribution of subnucleonic d.o.f of the proton. More concretely, it requires the
introduction of spatial correlations: a unique feature of our model with respect to others in
the literature. In Chapter 4, the timely debate on whether QGP effects are being observed
in small collision systems (p+p, p+Pb) is exposed. Following these ideas Chapter 5 is
devoted to the study of the implications of a correlated description of the proton on the
initial state properties of high energy proton-proton interactions in the context of QGP
physics. After realizing the drastic impact of the inclusion of spatial correlations between
the constituents of the proton in the description of the hollowness effect, we develop
a Monte Carlo event generator to implement our model for the initial geometry of the
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collision. Finally, in Chapter 6 we present the conclusions and the natural extension of
the research lines exposed in this thesis.

GEOMETRY OF THE PROTON

Exclusive processes
Diffractive vector meson production

QGP studies

Multi-parton interactions
Theory & MC-event generators

Generalized parton distributions
Deeply virtual Compton scattering

Elastic scattering p+p
Hollowness effect

Hydrodynamics CGC 

Figure 1: Sketch illustrating some of the different areas of QCD phenomenology where
the proton structure is needed as an input. In this thesis we focus on QGP studies and
elastic scattering p+p data.



Future starts slow;
The Kills.

1
Quantum Chromodynamics

Currently, we are able to explain physical phenomena based on the existence of four
fundamental forces in nature: gravitational, electromagnetic, weak and strong. While
gravity is governed by Einstein’s general relativity, the other three forces can be described
to an excellent accuracy by a quantum field theory of quarks and leptons consistent with
Einstein’s special theory of relativity and quantum mechanics: the so-called Standard
Model (SM). The subject of this work is the study of the internal structure of hadrons and
thus we only consider the strong interaction.

This chapter is not intended to be a thorough review of QCD but to emphasize the
main features of the theory that will play an important role in the development of sub-
sequent chapters and the more recent experimental results. For a general overview the
reader is referred to [1]. Further, a more extended discussion on some relevant experi-
mental facilities namely LHC, RHIC and EIC can be found in Sec. 3.2.

1.1 Basics

Quantum chromodynamics is the theory of the strong interaction. It is a quantum field
theory (QFT) with a non-Abelian gauge symmetry group SU(Nc), Nc =3, describing the in-
teractions between quarks and gluons. Quarks are point-like, massive, spin-1/2 particles
and are represented by a four-component Dirac spinor Ψ. Gluons, in turn, are massless,
spin-1 bosons and are represented by four-vector gauge fields Aaµ. The additional de-
gree of freedom associated with this gauge group is referred to as color. The classical
Lagrangian density of QCD is:

L =
∑

f

Ψfi(i(D
µ)ijγµ −mδij)Ψfj −

1

4
F aµνF

a µν (1.1)

1
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with the gluon field strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (1.2)

and the covariant derivative

(Dµ)ij = δij∂µ − igtaijA
a
µ (1.3)

where g is the strong coupling constant, ta are the SU(3) generators in the adjoint repres-
entation (a= 1, ..., 8) and fabc are the structure constants of the group that determine its
Lie Algebra: [ta, tb] = ifabctc. In Eq. (1.1), the labels (i, j) refer to the colour index of the
(anti-)quark that belongs to the fundamental representation of SU(3), (i, j)=1, 2, 3. Addi-
tionally, the flavor index, f , of (anti-)quarks can take six possible values f = u, d, s, c, b, t
and the QCD Lagrangian is flavor diagonal. Notice that the term gfabcAbµA

c
ν in Eq. (1.2),

that accounts for gluon self interactions, emerges from the non-Abelian nature of the
gauge symmetry and is not present in other field theories such as quantum electrodynam-
ics. This unique feature of QCD allows a quark with a large momentum to radiate gluons
that will radiate more gluons themselves and end up in a spray of particles after had-
ronization, i.e. a jet. In order to extend Eq. (1.1) to the quantum case we would have
to consider two additional contributions. First, the gauge-fixing term, that breaks the
gauge invariance of the Lagrangian, is needed in any quantum field theory to define the
gauge field propagator, in our case the gluon propagator [2]. The inclusion of this term
in non-abelian theories goes hand in hand with the Fadaeev-Popov ghosts that allows to
preserve gauge symmetry [3]. Details about these terms of the Lagrangian will not be
provided here because it is beyond the scope of this thesis.

The nomenclature strong coupling constant is slightly misleading as in any renormal-
izable theory the strength of the interaction actually depends on the energy scale. The
running strong coupling constant, to one loop order, is given by [4]

αs(Q
2) =

g2
ren

4π
=

4π

b ln(Q2/λ2)
(1.4)

where
b =

11Nc − 2Nf

3Nc
(1.5)

and Nf is the number of active flavors at the energy scale Q2. λ is a dimensionful energy
scale in which the QCD coupling would diverge and it arises due to the renormalization
procedure. From Eq. (1.4) the asymptotic freedom of QCD can be inferred: when in-
creasing the energy scale of the problem to values much larger than λ, the value of the
renormalized coupling constant diminishes and perturbation theory is applicable. In the
limit of Q2→∞, αs = 0 and consequently the interaction vanishes. The value of λ gives
the approximate scale where non-perturbative effects kick in and therefore perturbation
theory breaks down. Thus, αs(λ) does not actually diverge as Eq. (1.4), obtained with
perturbative techniques, is no longer valid. Experimentally, see Fig. 1.1, asymptotic free-
dom is confirmed and λ is found to be ∼ 200 MeV, the typical size of a hadron. At this
point it is clear that QCD has two different regimes: the one dominated by soft phenom-
ena, where perturbative techniques are not applicable, and the hard sector where the
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Figure 1.1: The strong coupling αs and its uncertainty (yellow band) as a function of the
momentum transfer Q. Figure extracted from [5].

coupling is small and the full machinery of perturbative QCD can be used. Nevertheless,
any process in QCD is sensitive to both of them. Further, although QCD is formulated
in terms of quarks and gluons, hadronic states, not elementary quantum fields, are the
ones present in real experiments. Thus, a systematic way to relate partonic processes to
hadronic states is needed. The way to move forward is to assume that a hadronic cross
section can be split into two parts. The total hadronic cross section can be written as

dσAB =
∑

a,b

∫ 1

0
dxadxbfa/A(xa)fb/B(xb)dσ̂

ab (1.6)

That is, a convolution of the parton-level cross section dσ̂, that involves only dynamics
at short distances i.e. it’s computable in perturbative QCD, and the probability of finding
such a parton inside the hadron f(x), a non-perturbative object. This procedure relies
on a separation of scales. How much information do we need to know about the parton
bounded inside the hadron i.e. its longitudinal momentum, transverse position etc., de-
pends on the physical process we are looking at. In the following Sections a rather casual
review on the different quantities describing the distribution of partons inside the proton
will be presented.

1.2 Wigner distributions

The ultimate understanding of the partonic structure of the nucleon can be gained by
means of joint position-and-momentum densities such as the Wigner distributions [6]. To
facilitate the discussion we shall start by their definition in quantum mechanics, as it is
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done in [7]. In a one-dimensional quantum mechanical system with wave function ψ(x),
where x represents the spatial coordinate, the Wigner distribution is defined as

W(x, p) =

∫
dηeipηψ(x− η/2)∗ψ(x+ η/2). (1.7)

Due to Heisenberg’s uncertainty principle Eq. (1.7) doesn’t have a probabilistic interpreta-
tion and for arbitrary values of x and p it is not positive definite. However, when integrating
out the coordinate x one recovers the genuine momentum space density, |ψ(p)|2, and,
equivalently, the coordinate space density, |ψ(x)|2 is obtained by p integration. Then, the
Wigner distribution contains all the information available in the wave function. Our aim is
to extend this picture to the description of quarks in a quantum field theory. First, one has
to promote wave functions to operators, in this case, spinors:

W(~r, k) =

∫
d4ηeik·ηψ(~r − η/2)ψ(~r + η/2) (1.8)

where ~r is the position of the quark with respect to the centre of the proton. k is its
four momentum written in light-cone coordinates as k = (k+, k−,k⊥) conjugate to the
space-time separation z1. The definition of light-cone coordinates is given in Appendix B.
Further, as quarks are spin-1/2 particles it is needed to include a Dirac matrix, Γ,

W(~r, k) =

∫
d4ηeik·ηψ(~r − η/2)Γψ(~r + η/2) (1.9)

that selects the polarization of the quark inside the proton. For instance, in the case of
an unpolarized quark one has Γ =γ+ = (γ0 + γz)/

√
2 [8]. From Eq. (1.9) it can be easily

deduced that gauge invariance is broken as we are evaluating the two fermionic fields
at different space-time points. More concretely, any bi-local operator product such as
ψ(y)ψ(x) is not invariant under gauge transformations U

ψ(x)→ U†(x)ψ(x)

ψ(x)→ U(x)ψ(x)

⇒ ψ(y)ψ(x)→ ψ(y)U†(y)U(x)ψ(x) 6= ψ(y)ψ(x). (1.10)

This difficulty should be overcome as the Wigner distribution could be extracted from
experimental measurements and, consequently, it must be gauge invariant. To fix this
problem, we have to insert an operator, O[x,y], in between the quark fields with the follow-
ing gauge transformation properties

O[y,x]ψ(x)→ U(y)
(
O[y,x]ψ(x)

)
(1.11)

that would lead to the bi-local operator product supplemented with O[x,y] being gauge
invariant

ψ(y)O[y,x]ψ(x)→ ψ(y)U†(y)U(y)
(
O[y,x]ψ(x)

)

⇒ ψ(y)O[y,x]ψ(x). (1.12)

1Bold face is used to denote two dimensional vectors.
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This condition is fulfilled by the so-called gauge link, G, [9]

G[x,y] = P exp

[
−ig

∫ y

x
dξµAaµ(ξ)Ta

]
(1.13)

where P reflects the need to order the exponential in the gauge group generators Ta
given the non-Abelian nature of QCD i.e. they do not conmute. The definition given by
Eq. (1.13) is identical to the one of a Wilson line, U[x,y], that describes the propagation of
a high energy parton through a background color field. The connection between these
two concepts and a more intuitive interpretation of Eq. (1.13) in terms of multiple gluon
exchanges between the struck quark and the fragments of the proton after the scattering
will be given in Sec. 1.2.1.

Thus, including all the elements discussed in Eqs. (1.9-1.13) we obtain the complete
expression for the Wigner operator

Wq(~r, k+,k⊥) =

∫
d3ηe−ik+η−+ik⊥η⊥ψ(~r − η/2)ΓG[~r−η/2,~r+η/2]ψ(~r + η/2) (1.14)

where we have imposed that both quarks have equal light-cone time η+ [10] or, equival-
ently, we have integrated out x−. This step reflects our ignorance on how to measure
the light-cone energy of the quarks involved in high-energy experiments, the perfect play-
ground to resolve the partonic content of the proton and thus be able to measure the
Wigner distributions. Note that although the gauge link only depends on the endpoints,
fixed by the Wigner operator, there is still the freedom of the choice of the path ξ i.e. how
to reach the endpoints. The importance of this fact will be explicitly shown in Sec. 1.2.2.
Therefore, the gauge invariant Wigner operator is, in general, path dependent. The last
step to construct joint position-momentum distribution from the Wigner operator given by
Eq. (1.14) is to compute its expectation value between localized proton states

W q(~r, k+,k⊥) = 〈~R = 0|Wq(~r, k+,k⊥)|~R = 0〉 (1.15)

or, equivalently, in momentum space

W̃ q(ξ,∆⊥, k
+,k⊥) ≡ 2mp

∫
d3r

(2π)3
ei~∆·~rW q(~r, k+,k⊥) (1.16)

where mp is the mass of the proton and the spin dependence has been omitted. The
definition of a localized proton state is cumbersome given its relativistic nature. For in-
stance, the recoil effect cannot be neglected. The choice of ~R= 0 is justified by looking
at its conjugate variable in the Breit frame (see Appendix A) where the incoming proton
has a momentum P−∆/2 and the outgoing one P+∆/2 as depicted in Fig. 1.2. The fact
that the momentum transferred to the proton is reversed after the scattering is equivalent
to set ~R= 0 in coordinate space. For consistency, the rest of the calculations are done
in this reference frame. Although we are referring to the quark Wigner distribution the
extension to the antiquark and gluonic cases is straightforward. Explicit expressions can
be found in [11].

To sum up, the Wigner distribution for a quark, given by Eq. 1.15 is a 6 dimensional
function: 3 spatial and 3 momentum coordinates. So far the challenge of designing
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Figure 1.2: Kinematics for the quark Wigner distribution in terms of k, the quark mo-
mentum, P , the proton momentum, and ∆, the momentum transferred to the proton.

experimental observables to measure it has not been met. However, by integrating with
respect to different variables, see Fig. 1.3, we can generate distributions that contain less
information about the proton but that, in some cases, can be measured. The purpose of
next Sections is to exploit the concepts that have been presented above to examine the
most relevant distribution functions for high-energy collisions, namely PDFs, Transverse
Momentum Distributions (TMDs) and Generalized Parton Distributions (GPDs), both from
an experimental and a theoretical point of view.
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Figure 1.3: Sketch illustrating some of the quantities that can be derived from the Wigner
distribution and the experimental processes where they can be measured. FT denotes
a Fourier transform from momentum to coordinate space.
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1.2.1 PDFs and DIS

The most familiar element of Fig. 1.3 are the parton distribution functions that contain
information about the longitudinal momentum structure of the proton. Their formal defini-
tion, for the unpolarized quark case, in the same language as in Sec. 1.2 is

f q(x) =

∫
dη−

2π
e−ixP

+η−〈P |ψ(0, η−,0⊥)γ+G[η−,0]ψ(0, 0,0⊥)|P 〉
∣∣∣
η+=η⊥=0

(1.17)

where P+ is the momentum of the proton and k+ = xP+2. Thus, PDFs describe the
probability of finding a parton with longitudinal momentum fraction x of its parent hadron.
In this case the gauge link is greatly simplified

GDIS
[(0,η−,0⊥),(0,0,0⊥)] = P exp

[
−ig

∫ η−

0
dξ−A+

a (0, ξ−,0⊥)ta

]
(1.18)

and, in particular, it can be set to one by working in the light-cone gauge A+ = 0. This
can also be written as the product of two longitudinal Wilson lines:

G[(0,η−,0⊥),(0,0,0⊥)] = UL[η−,∞;0⊥]UL[∞,0;0⊥] (1.19)

with

UL[a,b;x⊥] = P exp

[
ig

∫ b

a
dx−A+

a (0, x−, x⊥)ta
]

(1.20)

as represented in Fig. 1.4. An important comment is in order at this point: up to now
we have not assumed anything about the physical process, in which this quark is in-
volved. The fact that the formal operator definition of the PDF does not depend on the
gauge link is directly related with the concept of universality i.e. the parton distributions
are properties of the hadron itself, and not of the collision. This endows QCD with a
high predictive power: the PDF is an intrinsic property of the quark and if we measure
it in some process, e.g. electron DIS, we can reuse it in another experiment such as
proton-proton interactions. Before exploring the phenomenological issues of PDFs there
is still one relevant aspect to be clarified about the gauge link. We introduced G[x,y] some-
how ad-hoc in order to make the Wigner operator gauge-invariant. However its physical
meaning remains blurry. The fact that G[x,y] shares the same expression as the one for a
Wilson line is not an artificial coincidence. The Wilson line attached to ψ(x) in Eq. (1.17)
resums all soft gluon exchanges between the struck quark and the color gauge field of
the proton. Qualitatively, the parton that suffers the hard process can rescatter off the
proton. These interactions can happen before or after the hard scattering depending on
the physical process. The path-ordering ensures that the integrations are performed in
the same order in which the interaction occur. The type of diagrams that contribute to the
gauge link are shown in Fig. 1.5. An explicit calculation of the left process is presented in
Appendix C. To finish with this discussion it should be emphasized that when two quarks

2In the polarized case, two more PDFs appear, namely the helicity distribution function, denoted as gL(x),
obtained by setting Γ=γ+γ5 and the transversity distribution h(x) where Γ=−[γi, γ+]γ5.
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from different hadrons come into play, factorizing multiple gluon exchanges is not trivial
i.e. there could be interference such as one of the quarks rescattering both off its parent
hadron and the projectile. It is well beyond the scope of this project to discuss how to
overcome these difficulties and also the divergences that arises from the gauge link. An
updated discussion on this topic can be found in [12].

ξ⊥

η− ξ−

Figure 1.4: Path of the gauge link given by Eq. (1.19). The dotted lines indicate the
extension up to∞.

. . .

Figure 1.5: Left: One-gluon exchange between the parton and the background color field
of its parent hadron. Right: n-gluon exchange as accounted by the Wilson line. The
black dots represent any hard interaction that the struck quark may suffer. The dotted
line represents the cut that distinguishes the scattering amplitude and its conjugate.

It has been stressed that although parton distribution functions are not computable
from first principles in QCD as they are dominated by the non-perturbative regime, they
are well defined objects, see Eq. (1.17). Thus, the only way out to access parton dis-
tribution is via experimental measurements. Inclusive processes where a hard probe
struck the parton inside the proton, breaks it and the fragments are not measured are the
adequate playground. Deep (Q2�m2

p) inelastic (m2
X �m2

p) electron-proton scattering,
shown on the left side of Fig. 1.6, is the cleanest way to test the hadron structure as the
electromagnetic interaction of leptons is well understood. In this reaction, only the elec-
tron is detected and the final states are integrated out. Consequently the sensitivity to
the transverse momentum of the struck quark is lost and this process is ideal to explore
the longitudinal momentum dependence of partons inside hadrons. The assumption that
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the photon interacts with only one constituent of the proton can be justified by looking at
the timescales. For that purpose it is convenient to use a reference frame in which the
hadron moves at high velocity: due to Lorentz time-dilation the time scale characteristic
of interactions between the partons is far larger than that characteristic of the interaction
with the virtual boson (∆T = 1/Q). Therefore, the incoming photon scatters incoherently
and instantaneously off a single parton. The differential cross section for the process on
the right side of Fig. 1.6 in the fixed-target frame is given by [13]:

E′k
d3σ

dk′3
=

2

s−m2
p

α2

Q4
LeµνW

µν (1.21)

where α is the fine structure constant. Leµν is the leptonic tensor given by a straightforward
calculation in QED; its expression is [13]

Leµν = 2(k′µkν + k′νkµ − gµν(k′ · k −m2)). (1.22)

The hadronic tensor Wµν contains both the virtual photon-quark scattering and the non-
perturbative information about the proton, see Fig. 1.7. It can be expressed, as expected,
in terms of the parton distribution functions as defined by Eq. (1.17) [14]

Wµν ∼
∑

q

e2
qTr(f q(x)γµγ+γν). (1.23)

k
k′

q

P
X

Lµν

W µν

Figure 1.6: Left: Deep inelastic scattering: e(k)p(P ) → e(k′)X. Right: Sketch repres-
enting the manifest separation between the leptonic tensor (green box) and the hadronic
one (orange box).

An important assumption was made to write the hadronic tensor as in Eq. (1.23):
the long-distance dynamics encoded in the parton distributions decouples from the hard-
scattering between the photon and the quark. The latter is computed, in this case, at
leading order in perturbation theory assuming on-shell massless partons independent of
the non-perturbative part of the process. In other words, the differential DIS cross section
can be written schematically as

dσeP

dx
∼ f q(x)⊗ dσeq

dx
(1.24)
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PDF

Figure 1.7: The hadronic tensor Wµν decomposed as the γq-scattering and the parton
distribution function.

that is, the electron-proton scattering is split into two parts: the photon-quark scatter-
ing characterized by a hard scale (Q2� λ) and the parton distribution function. This is
the main result of the so-called collinear factorization scheme. The meaning of collinear
becomes clear in the infinite momentum frame in which the proton has a very large mo-
mentum in the longitudinal direction: due to Lorentz-contraction the partons are almost
parallel to the direction of motion of the proton. From Eq. (1.24) it is unclear how to make
the distinction between hard and soft modes. In other words, the factorization is done at
an arbitrary scale µ2

F in such a way that the hard part contains k2
⊥ larger than this scale

and the non-perturbative part has k2
⊥<µ

2
F . Thus,

f q(x)→ f q(x, µ2
F ). (1.25)

µ2
F is called factorization scale and its value is usually set to the virtuality of the process
Q2. Certainly, a physical observable cannot depend on the choice of µ2

F . Fortunately,
the µ2

F -dependence of the parton distribution functions can be calculated perturbatively,
provided that µ2

F is sufficiently large, in terms of evolution equations. An intuitive insight on
the fact that the PDF depends on µ2

F or, equivalently, Q2, can be achieved by considering
that the quark struck by the virtual photon may have a history prior to the interaction i.e.
it may come from a radiation process or have radiated itself new gluons as shown on the
right side of Fig. 1.8. From this point of view, the distributions f q(x,Q2) can be interpreted
as the probability of finding a quark, where emissions with transverse momentum lower
than Q2 are not resolved [15]. Therefore, to compute the evolution we have to resum all
the gluon emissions of the quark up to a scale Q2.

Consider the emission of a gluon which carries a small fraction x�1 of the longitud-
inal momentum of its parent quark represented in Fig. 1.8. The differential probability for
this emission is given by

dP ' αsCF
2π

d2k⊥
k2
⊥

dx

x
(1.26)

where k⊥ and x are the transverse momentum and the fraction of longitudinal momentum
of the newly created parton, respectively. There are two types of singularities in this ex-
pression: when x→0 (soft divergence) and when k2

⊥→0 (collinear divergence). However,
the soft singularities cancel when the virtual corrections are taken into account [12]. Con-
cerning the collinear divergence, we can understand what is going on, if we realize that
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(x, k⊥)
µF

Figure 1.8: Left: a quark radiating a soft gluon with momentum components (x,k⊥).
Right: the transverse momenta of the gluons are smaller than the factorization scale so
they are absorbed in the PDF via DGLAP equations. If k2

⊥>µ
2
F the gluon is a correction

to the hard part.

the limit k2
⊥→ 0 corresponds to a long-range part of the strong interaction, which is not

calculable in perturbation theory. The collinear singularities can then be absorbed into
a redefinition of the parton densities. Once Eq. (1.26) is integrated over the available
phase space region, parametrized by the energy scales of the DIS process (x,Q2), the
probability of gluon emission is going to be enhanced by large logarithms of Q2 or 1/x. In
order to get reliable predictions, these logarithms have to be resummed to all orders.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution is the most familiar
resummation strategy [16, 17, 18]. It provides the evolution of hadron structure to higher
values of Q. Such processes are dominated by diagrams where the transverse momenta
of the successive emitted partons are strongly ordered,

1

Rh
� k⊥1 � k⊥2 . . .� k⊥n ∼ Q (1.27)

where Rh is the length scale of the order of the hadron size and the longitudinal mo-
menta are less constrained. The k⊥-ordering gives rise to large logarithms lnQ2 as the
probability of emission of n gluons, using Eq. 1.26, is

dPn ∼
∫ k⊥2

Q0

d2k⊥1

k2
⊥1

∫ k⊥3

k⊥1

d2k⊥2

k2
⊥2

. . .

∫ Q

k⊥n−1

d2k⊥n
k2
⊥n

∼
[
αs(Q

2) ln

(
Q2

Q2
0

)]n
(1.28)

where Q0 is some initial perturbative scale. In summary, DGLAP resums terms
αs ln(Q2/Q2

0) ∼ 1 to all orders. The complete DGLAP evolution equations can be writ-
ten in a compact matrix way that explicitly shows how different components are mixed
through evolution:

∂

∂ lnQ2

(
Σ(x,Q2)
fg(x,Q2)

)
=
αs(Q

2)

2π

∫ 1

x

dz

z

(
Pqq(z) 2nfPqg(z)
Pgq(z) Pgg(z)

)
×
(

Σ(x/z,Q2)
fg(x/z,Q2)

)
(1.29)

where Σ(x,Q2) = f q(x,Q2)+f q(x,Q2) and nf is the number of active flavours. These
equations are the analogue to the β function describing the variation of αs(Q2) as given by
Eq. (1.4). The DGLAP equations have been successfully and intensively tested against



12

experimental data and, together with asymptotic freedom and factorization theorems,
provide a fundamental tool for establishing controlled theoretical predictions.

To obtain the parton distributions from data we assume a given structure in the x vari-
able, such as a polynomial function with a given number of free parameters, at a low Q2

0.
The initial parameters are fitted to data once and for all. Then, by using DGLAP equations
and the universal nature of the PDFs, our knowledge of the proton at a certain value Q2

0

can be used for other observables at any higher Q2. An important clarification should be
made. This procedure works as long as no new dynamical effects become relevant in the
region where the set of PDFs is applied. For instance, the kinematic region relevant for
ultra-high energy neutrino-nucleon interactions is characterized by very small values of x
(x. 10−7 for Eν & 1011 GeV) and virtualities of the order of the electroweak boson mass
squared, Q2∼M2

Z,W ∼104 GeV2. Clearly, DGLAP equations are not sufficient to capture
all the dynamics as not only lnQ2 are relevant in this scenario but ln 1/x too [19].

The HERA experiment at the Deutsches Elektronen Synchrotron (DESY) laboratory
in Hamburg can be considered the particle accelerator par excellence in the field of DIS.
Several fixed target experiments explored the interaction of electron beams with hadronic
matter. However, HERA has been the only electron/positron-proton collider ever built and
took data from 1997 to 2004. The electrons were accelerated to an energy of 27.5 GeV
and the protons up to 920 GeV. All in all, the center of mass energy of these collisions
was

√
s= 2

√
EeEp = 318 GeV. The kinematic region in the (x,Q2)-plane explored by the

two main detectors at HERA, H1 and ZEUS, is shown in the left part of Fig. 1.9. Fixed
target experiments and recent data taken from interactions distinct to DIS at the LHC
are also included. This is the data set used by the NNPDF Collaboration together with
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Figure 1.9: Left: Kinematic coverage in the (x,Q2)-plane of different experiments. Right:
The NNPDF3.1 NNLO PDFs, evaluated at µ2

F =10 GeV2. Figures extracted from [20].
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state-of-the-art artificial intelligence techniques to constrain the free parameters of their
parametrizations. As an example, in Fig. 1.9 the PDFs of a proton multiplied by x at
Q2 =10 GeV2 are shown as a function of x. At large x, the two valence quarks, uv, carry
approximately 2/3 of the total momentum and the dv quark carries approximately 1/3 of
the total momentum. However, with decreasing x the population of the sea quarks, s,
rises. The gluon contribution becomes clearly dominant at small-x. The relation between
a large gluonic density at small-x and the applicability of weak coupling techniques will
be discussed in Sec. 1.3.

1.2.2 TMDs and SIDIS

The enormous success of the (universality+collinear factorization+DGLAP equations)-
paradigm when describing data up to a high degree of accuracy is, probably, one of the
major achievements of QCD. However, it turns out to be insufficient when measuring
more exclusive processes i.e. where not all the final state is integrated out. In these
cases, going beyond the one-dimensional characterization of the proton is mandatory.
More concretely, consider a DIS process in which not only the lepton but also one hadron
is detected after the scattering. This is known as Semi-Inclusive DIS (SIDIS) and is
represented in Fig. 1.10.

x

y

z

φS

φ

Ph

S⊥

k

k

q

TMD

D(z,p⊥)

Figure 1.10: Left: Parton level SIDIS kinematics. Figure extracted from [21]. Right: SIDIS
factorizes as the convolution of the TMD, the hard interaction with the virtual photon and
the fragmentation function.

The measured hadron is directly related with the scattered quark as it originated from
its fragmentation. Thus, by measuring the scattered lepton and the momentum of this
hadron one can access both the longitudinal and transverse momentum information of
the struck quark. Furthermore, the fragmentation function D(z,p⊥), neglected in the DIS
scenario where the final state was integrated out, depends as well on the transverse
momentum of the quark. Following Fig. 1.3, the joint distribution of partons in their longit-
udinal momentum fraction x and their momentum transverse to the proton direction k⊥ is
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given by the Transverse-Momentum Dependent parton densities (TMDs) defined as

Φ(x,k⊥) =

∫
dη−d2η⊥

(2π3)
e−ixP+η−+ik⊥·η⊥〈P |Ψ(0, η−, η⊥)γ+G[(η−,η⊥);(0,0⊥)]Ψ(0, 0,0⊥)|P 〉

(1.30)

in the case where the quark is unpolarized. When considering both the polarization of
the quark and of its parent hadron eight independent TMD quark distributions arise. They
are summarize in Fig. 1.11. Three of them can be considered as the natural extension
of the PDFs (f q(x),gL(x) and h(x))3, while the origin of the other five lies on the vectorial
nature of k⊥ and vanish when a k⊥-integration is performed.
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Figure 1.11: Different TMDs classified according to the polarization of the quark and the
nucleon. Figure extracted from [21].

A novel structure of the gauge link appears in Eq. (1.30) with respect to the PDF
case, Eq. (1.17). The space-time separation between the fields does not lie on the light-
cone but has a transverse component. Then, apart from a Wilson line in the longitudinal
direction as defined in Eq. (1.20) one in the transverse direction is needed,

UT[x−;a⊥,b⊥] = P exp

[
ig

∫ b⊥

a⊥

dx⊥A
a
⊥(0, x−, x⊥)Ta

]
. (1.31)

Following our previous interpretation, inside the TMD we have a resummation of both
soft collinear gluons coming from UL and of the transverse ones as this is the role of UT.
Clearly, the whole gauge link cannot be set directly to one by choosing the light-cone
gauge. This will only drop the longitudinal part. At this level this indicates that the TMDs
are going to be path-dependent. The complete expression for the gauge link in the case
of SIDIS is given by

GSIDIS
[(η−,η⊥);(0,0⊥)] = UL[η−,∞;η⊥]UT[∞;η⊥,∞]UT[∞;∞,0⊥]UL[∞,0;0⊥] (1.32)

and it is represented on the left side of Fig. 1.12. Up to now we have only considered
situations (DIS and SIDIS) where the gluon exchanges between the struck quark and the

3This identification only holds when QCD corrections are neglected.
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ξ⊥

η− ξ−

η⊥

ξ⊥

η− ξ−

Figure 1.12: Left: Path of the gauge link in SIDIS as given by Eq. (1.32). Right: Path of
the gauge link in DY as given by Eq. (1.33).

spectators in its parent hadron occur after the hard scattering i.e. they are final state
interactions and the Wilson lines are future pointing (they extend up to +∞). However,
this is not always the case. Consider a Drell-Yan process (DY) where quark and antiquark
annihilate to form a virtual photon which then decays into a pair of oppositely-charged
leptons. Then, the multiple gluon exchanges between the struck quarks and the hadrons
take place before the hard scattering and the gauge-link for each participant looks like

GDY
[(η−,η⊥);(0,0⊥)] = UL[η−,−∞;η⊥]UT[−∞;η⊥,∞]UT[−∞;∞,0⊥]UL[−∞,0;0⊥] (1.33)

where the Wilson lines are "past pointing" or, in other words, define an initial state inter-
action as depicted in the right part of Fig. 1.12. By comparing Eqs. (1.32) and (1.33) an
important consequence is extracted: TMDs are process-dependent, they are not univer-
sal. In particular, this is an important result for the two naively4 time-reversal odd TMDs
from Fig. 1.11 i.e. the ones that do not fulfill

Φ(~k, ~P, ~S)∗ = γ5(iγ2γ0)Φ(−~k,−~P,−~S)(iγ2†γ0†) (1.34)

the so-called Sivers (f⊥1T (x,k⊥)) [22] and Boer-Mulders functions (h⊥1 (x,k⊥)) [23]. Ac-
cording to our discussion the following relation should be realized

f⊥1T (x, k⊥)
∣∣∣
SIDIS

= −f⊥1T (x, k⊥)
∣∣∣
DY

(1.35)

and the same for h⊥1 (x,k⊥). Together with their non-zero value, the relation given by
Eq. (1.35) constitutes a very robust prediction of the TMD formalism stemming from
gauge invariance: (f⊥1T (x,k⊥), h⊥1 (x,k⊥)) are not universal but exhibit time-reversal mod-
ified universality. In order to connect the operator definition of a TMD and the experi-
mental measurement of Eq. (1.35) via DY and SIDIS processes an essential ingredient
is required: a factorization theorem in the spirit of Eq. (1.24). In the case of SIDIS the

4The term naive is used to emphasized the fact that the origin of the time-reversal breaking are the gluon
exchanges. Without them these distributions would be zero.
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type of factorization for the total differential cross section that has been probed to be valid
when p⊥ � Q2 is [24, 25]

dσSIDIS ∝ Φ(x,k⊥)⊗ dσeq ⊗D(z,p⊥) (1.36)

and in the case of Drell-Yan, under the same assumption that k⊥ of both partons is much
smaller than the hard scale, the invariant mass of the lepton pair, [12, 26]

dσDY ∝ Φ(x1,k
1
⊥)⊗ Φ(x2,k

2
⊥)⊗ dσqq→ll′ (1.37)

where the longitudinal momentum fractions of the partons are fixed by external kinemat-
ics. On the contrary, TMD-factorization has been shown to break down in hadron-hadron
collisions [27]. Thus, in the processes relevant for the measurement of Eq. (1.35), i.e.
SIDIS and DY, factorization holds.

Non-zero quark Sivers TMD functions were reported, almost simultaneously, by
the HERMES [28], COMPASS [29] and JLAB [30] experiments in semi-inclusive deep-
inelastic scattering off transversely polarized nucleons. The milestone of measuring the
sign flip of the Sivers function in Drell-Yan and SIDIS was recently achieved by the COM-
PASS facility [31]. It is fair to mention that the first experimental hint on this effect was
reported by the STAR Collaboration using W and Z boson production from polarized p+p
collisions at RHIC [32].

The COMPASS experiment is located at CERN and it is a fixed-target facility. In the
case of Drell-Yan they bombard with a 190 GeV π−-beam, from the SPS accelerator,
a transversely polarized ammonia (NH3) target and detect muon-pairs. For SIDIS, the
same target is shot with a µ+-beam of 160 GeV. The hard scales explored lie in the range
1<Q<9 GeV. The prominent feature of this experiment is its capability of performing DY
and SIDIS measurements using mostly the same setup and in a similar kinematic region.
Thus, there is no need to evolve the TMDs and the uncertainties are clearly reduced. The
chosen observable sensitive to the sign flip is called Sivers asymmetry and measures the
sinφs (as defined in Fig. 1.10) modulation in the distribution of the produced hadrons or
lepton pairs in SIDIS and DY respectively. The results of this observable in the SIDIS
scenario are shown in Fig. 1.13. In this case, it only confirmed the non-zero value of f .
However, when a combined analysis of the data from SIDIS and DY was performed the
agreement with the change of sign hypothesis was successfully confirmed as shown in
the right side of Fig. 1.13. The measurement of the Sivers asymmetry in a vastly extended
kinematic region, as shown in Fig. 1.14, constitutes one of the major challenges in the
physics program of the upcoming Electron Ion Collider [21].

1.2.3 GPDs and DVCS

Analogously to the TMDs case that sketch out a 3-D picture of the parton in momentum
space, we would like to construct a function that encodes information on the distribution
of partons both in coordinate space and longitudinal momentum. For that purpose, one
has to integrate out the k⊥-dependence of Eq. (1.16) i.e.

Gq(x, ξ,∆⊥) =

∫
dη−

2π
e−ixP

+
η−〈P ′|Ψ(0, η−,0⊥)γ+G[η−,0]Ψ(0, 0,0⊥)|P 〉

∣∣∣
η+=η⊥=0

(1.38)
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Figure 1.15: Kinematics of Deeply-virtual Compton Scattering.

where

P = (P + P ′)/2

ξ =
∆+

P
+

x =
k+

P+
(1.39)

and ξ, the light-cone momentum transferred to the proton, is called skewness. The func-
tion Gq(x, ξ,∆⊥) is the definition of a Generalized Parton Distribution. There are several
things of Eq. (1.38) that should be clarified. First, proton and parton momenta aren’t
the same before and after the scattering, consequently GPDs cannot be interpreted as a
probability because they are defined from the overlap between different states. The trans-
verse momentum component of the momentum transferred, ∆⊥, is Fourier conjugate of
the impact parameter, b⊥. Thus, the transverse structure of the target can be accessed
thanks to ∆⊥. In particular, when ξ = 0 and the Fourier transform is performed, GPDs
reduce to Impact Parameter Distributions defined as

I(x,b⊥) =

∫
d2∆⊥
(2π)2

e−ib⊥·∆⊥G(x, 0,∆⊥) (1.40)

as sketched in Fig. 1.3. I(x,b⊥) does have a probabilistic interpretation.
The shape of the gauge link in Eq. (1.38) is identical to the PDFs case and therefore

can be set to unity in the light-cone gauge. Finally, although the quark is assumed to be
unpolarized, Γ=γ+, the scattering may switch the helicity of the proton. Then, Eq. (1.38)
can be rewritten as a sum of two terms

Gq(x, ξ,∆⊥) =
1

2P
+

[
Hq(x, ξ,∆⊥)u(p′)γ+u(p) + Eq(x, ξ,∆⊥)u(p′)

i[γα, γi]∆α

2mp
u(p)

]

(1.41)

where Hq(x, ξ,∆⊥) accounts for the case in which the proton helicity is unchanged and
Eq(x, ξ,∆⊥) that reflects the situation in which the target helicity flips.

Deeply-virtual Compton Scattering (DVCS) is one of the simplest scattering processes
to constrain GPDs. The kinematics of DVCS is represented in Fig. 1.15: a highly virtual
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photon hits a parton, exchanges momenta with it and appears on-shell in the final state. A
distinction should be made between the two transfered momenta that appear in Fig. 1.15.
Q is related to the precision with which partons are resolved. In turn, ∆⊥ determines the
available resolution to determine the position of these partons inside the hadron. In other
words, using an imaging analogue, Q2 characterizes the probe to obtain the image and
∆⊥ is a property of the object that is being imaged. Solely, when 1

Q2� 1
∆⊥

, formal proofs
of factorization exist [34]. The factorization formula for DVCS adopts the following shape

dσγ
∗P ∝

∫ 1

ξ
dxdσγ

∗q ⊗G(x, ξ,∆⊥;Q2) (1.42)

where an additional dependence on the factorization scale (set to Q2) has been included
in the GPDs. Notice that in the previous factorization formula, the longitudinal momentum
fraction, x, appears in the convolution between the GPD and the partonic cross section
and, therefore, this information is washed out. Performing the deconvolution of Eq. (1.42)
is, in general, a not well-defined mathematical problem and greatly complicates the ex-
traction of GPDs from experimental data [35]. On the contrary, both ξ and ∆⊥ are directly
measurable quantities. The only way to independently explore the (x, ξ)-dependence of
GPDs from experimental data is through their evolution with the resolution scale Q2 while
fixing ξ and ∆⊥. From a theoretical point of view the evolution equation that modifies the
GPDs x-dependence when changing the resolution is known and acts in a similar way to
DGLAP [10] (see Eq. (1.29)) not affecting ξ and ∆⊥ . However, on the experimental side,
reconstructing the x-dependence of GPDs by changing Q2 requires a large and precise
data set in a wide range of Q2 and ξ and will be feasible in the future EIC era as shown
in Fig. 1.16 [21].

1.2.4 Lattice QCD

To finish the discussion on the structure of the proton, the role of lattice QCD will be briefly
presented. For a complete review on this topic the reader is referred to [36].

Besides the common operator formalism any quantum field theory can be formulated
within the path integral framework, a generalization of the action principle in classical
mechanics. In the case of QCD it allows to compute the expectation value of any operator,
O, written in terms of quark and gluon fields, as

〈O〉 =
1

Z

∫
[Dq][Dq][DA]ei

∫
d4xLQCDO (1.43)

where D denotes a functional integral over the temporally ordered fields and LQCD is
given by Eq. (1.1). The analytic solution to the path integral given by Eq. (1.43) remains
unknown, so in principle, numerical techniques must be applied. For that purpose, in
order to avoid the oscillatory behavior of the exponential formulated in Minkowski’s metric,
a rotation to Euclidean space is performed in the following way

t→ itE ⇒ i

∫
d4xLQCD → −

∫
d4xLQCD. (1.44)
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Figure 1.16: Kinematic coverage in the (x,Q2)-plane expected in the Electron Ion Collider
compared to other existing experiments for DVCS. Figure extracted from [21].

This formalism is the basis of lattice QCD that approximates the solution of Eq. (1.43) by
discretizing the Euclidean space-time in form of a hypercubic lattice [37]. In Eq. (1.43) we
have not imposed any constraint on the values of the coupling constant, it contains the full
Lagrangian. The salient feature of lattice QCD is that it provides a first-principle approach
to tackle the non-perturbative nature of QCD at small momentum transfer. However, when
applying the method to the study of PDFs and GPDs a fundamental limitation appears:
their x-dependence cannot be computed within lattice QCD due to the very Minkowski
nature of their underlying operator structure. The definition of both PDFs and GPDs (see
Eq. (1.17) and Eq. (1.38), respectively) contains bi-local operators on the light cone that
introduce an intrinsic time-dependence. There is no continuous Lorentz transformation
that rotates the non-local operator into Euclidean space or, in other words, converts the
light-like separation into space-like, as in the case of TMDs [38]5. Actually, a light-like
path in Minkowski’s space (t2−z2 =0) shrinks into a single point in the Euclidean scenario
(t2E + z2 =0) and so the ξ−-dependence is completely lost.

Although being far from a complete characterization of the hadron structure in terms
of PDFs and GPDs within the lattice QCD framework, moments in the momentum fraction
x given by

fn =

∫
dxxn−1f(x) (1.45)

can be computed in a controlled way by using the operator product expansion technique
[40]. It provides an elegant solution to the non-locality of the operators in the PDFs and

5In the latter scenario, the complications come from the geometry of the gauge link and a full lattice
calculation is not possible either up to date although progress is being made (see [39]).
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GPDs definitions consisting in a Taylor expansion of the separation distance or, equival-
ently, converts the calculation into an infinite sum of local operators. The bi-local and
local operators are then related through moments as defined by Eq. (1.45). In prin-
ciple, computing all the moments of the functions would be equivalent to knowing their
x-dependence. Nevertheless, only the lowest x moments up to n=3 have been obtained
so far due to numerical limitations [41]. Therefore, a full reconstruction of the x functional
form of PDFs and GPDs on the lattice remains unsettled.

1.3 Color Glass Condensate

The Color Glass Condensate (CGC), an effective field theory of high-energy QCD scat-
tering, offers an ab-initio perspective on the characterization of hadron structure in a par-
ticular scenario: the small-x regime. For recent monographs on this topic see [42, 43].

The DIS experimental program carried out at HERA provided a picture of the hadronic
wave function largely dominated by its gluonic component at small-x as it is shown in
Fig. 1.9. This observation was expected from a theoretical point of view given that the
probability of a quark to radiate gluons suffers a soft-divergence i.e. scales as 1/x (see
Eq. (1.26)). However, the strong rise of the gluon PDF is not easy to reconcile with
another experimental data set: the mild dependence of the total p+p cross section with
the collision energy,

√
s, as presented in Fig. 1.17. Note that high-energy scattering is

equivalent to small-x (see Eq. (A.6)). Typical values of x explored at RHIC and the LHC
in central rapidities are: 10−2 and 10−4 respectively. Therefore, an indefinite growth of the
gluon density would translate into a similar fast rise of the forward scattering amplitude
and, eventually, lead to the violation of unitarity of the theory, a fundamental property of
any QFT. Thus, it is clear that a novel dynamical mechanism is needed in order to tame
the exponential behavior of the gluon PDF and describe the observed growth of the total
p+p cross section.

Intuitively, when the proton becomes a densely populated system of gluons the as-
sumption that interactions among them can be neglected in processes such as DIS
breaks down. At a certain scale, Q2

s(x), the probability of two gluons to recombine into
a single one is of the same order as the bremsstrahlung probability. Q2

s(x) is the so-
called saturation scale and its value can be parametrically estimated using a very simple
geometrical argument. The probability of two gluons to interact, κ, can be written as the
product of the transverse gluon density times the typical gluon-gluon cross section i.e.

κ = ρg · σgg→q

κ ∼ xfg(x,Q2)

πR2
h

· αs
Q2

(1.46)

where Rh is the radius of the hadron and fg represents the gluon PDF. κ is known as
packing factor and it should be of order 1 when evaluated at Q2 =Q2

s, thus

Q2
s(x) ∼ αs

πR2
h

xfg(x,Q2). (1.47)
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In the nuclear case, RA ∼ A1/3Rh. Therefore, saturation effects kick in at lower energies
in nuclear collisions. In this paradigm it is assumed that Qs � λ i.e. it is a semi-hard
scale.

Hence, the evolution equations should be modified accordingly to include not only
radiative terms but gluon fusion processes as well. Using a very schematic notation,
DGLAP evolution can be expressed as

∂f(x,Q2)

∂ lnQ2
∝ P ⊗ f(x,Q2) (1.48)

where P accounts for the splitting function given in Eq. (1.29). The solution of this lin-
ear differential equation has an exponential shape. In turn, when saturation effects are
taken into account the x-evolution of the gluon Weiszacker-William distribution, φ(x,k⊥),
also known as unintegrated gluon distribution (uGD)6, is given by the so-called Balitsky-
Kovchegov equation (BK) [45, 46]

∂φ(x,k⊥)

∂ ln(1/x)
∝ K ⊗ φ(x,k⊥)− φ(x,k⊥)2 (1.49)

where K is the evolution kernel that resums terms ln 1/x to all orders including diagrams
such as the one depicted in Fig. 1.18. The non-linear nature of Eq. (1.49) results into
a softening of the endless growth of φ(x,k⊥) and its integrated version at small-x as
expected.

The consideration of non-linear evolution equations is one of the bedrocks of the
Color Glass Condensate. However, this is not the end of the story. We can benefit from
the fact that a hadron is, effectively, a collection of gluons at high energies to justify the
applicability of semi-classical techniques to compute, from first principles, the functional
form of φ(x,k⊥).

First of all, the condition Qs� λ defines a weak coupling regime where αs(Q
2
s)� 1.

Further, the system is characterized by large occupation numbers that can be expressed
in terms of creation and annihilation operators as

N = a†a� 1. (1.50)

Therefore, when compared to the Heisenberg commutator that quantifies the quantum
fluctuations

N � [a†, a] = 1. (1.51)

The condition given by Eq. (1.51) defines a classical system. Then, the strong gluon
fields characterizing the hadronic wave function at small-x can be treated as classical
gauge fields Aaµ. The origin for color and condensate in the name of the theory is now
clear: we are dealing with a largely populated system of colored particles. To understand

6It should be noted that the conventional gauge-invariant operator definition of a gluon TMD differs from
the Weiszacker-William distribution valid in the x� 1 regime. A study on how to relate both regimes was
presented in [44]. Further, the unintegrated gluon distribution is related to the usual PDF by fg(x,Q2) =∫ Q2

d2k⊥φ(x,k⊥).
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Figure 1.17: Total and elastic cross section measurements as a function of the centre of
mass energy. Figure extracted from [47].

Figure 1.18: Left: Recombination of gluons coming from two different parton cascades.
Right: Sketch of an electron-nucleus collision in the dipole model including multiple scat-
terings and non-linear small-x evolution. Figure extracted from [48].
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where does the glass comes from we have to take a look into the space-time scales of the
problem. In the infinite momentum frame, the hadron has a large light-cone momentum
Pµ=(P+, 0,0⊥). Partons with a large momentum fraction of its parent hadron, p+ =xP+,
are, due to Heisenberg’s uncertainty principle, sharply localized on the light-cone ∆x− ∼
1/p+. Further, the light-cone temporal extent of these fluctuations, ∆x+ ∼ p+/k⊥, is long.
On the contrary, by using the same arguments, the small-x partons are short-lived and
delocalized over larger distances. Therefore, a clear separation between fast and soft
modes can be made in terms of their momentum fraction: large for the former and small
for the latter. The definition of a glass is a disordered system which evolves very slowly
relative to natural time scales [42]. In the same way, the soft modes, short-lived, see the
fast ones as an infinitely thin and frozen configuration of color charges. More concretely,
the valence partons, that carry a large momentum fraction, are identified with the fast
modes and the small-x gluons with the soft ones. Thus, small-x gluons are described
by classical fields Aaµ. The fast partons propagate in an eikonal fashion so that they do
not deviate from their light-cone trajectory x+ =0 (see Appendix C). To compute physical
observables they are integrated out as they are not considered dynamical fields but a
source of a color current in the + -direction

Jaµ(x) = δ+
µ δ(x

−)ρa(x−,x⊥) (1.52)

where ρa(x−,x⊥) defines the density of color charges and it is independent of x+ as we
consider that the color charges are frozen. It is treated as a stochastic variable described
by a weight functional WΛ[ρ]. Finally, the relation between Aaµ and Jaµ is given by Yang-
Mills equations of motion

[Dµ, F
µ,ν
a ] = Jνa (1.53)

that is, the analog of Maxwell equations in the non-Abelian case. The current Jν must be
covariantly conserved

[Dν , J
ν ] = 0⇒ ∂νJ

ν = ig[Aν , J
ν ]. (1.54)

This equation clearly shows that the produced gauge field has a feedback on the current
itself. Putting together Eqs. (1.53) and (1.54) we end up with a system of equations that
can be solved iteratively expanding in powers of ρ. The exact solution for the gauge field
in the covariant gauge (∂µAµ=0) is

Aµ,a = δµ+ba(x) with −∇2
⊥b

a(x) = ρa(x). (1.55)

Thus, to compute any observable that depends on the small-x d.o.f in the CGC formalism
one has to solve Eq. (1.53) first and afterwards average over all possible color configura-
tions

〈O[Aµ]〉 =

∫
[dρ]WΛ[ρ]O[Aµ[ρ]]. (1.56)

Now we have all the elements to fulfill the original purpose of this Section: compute
φ(x,k⊥) within the CGC. Its definition is given by

φ(x,k⊥) =

∫
d2r⊥
2πr2

⊥
e−ir⊥·k⊥ (1− S(x, r⊥;A)) (1.57)
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where

S(x, r⊥;A) =
1

Nc

∫
[dρ]WΛ[ρ]Tr

[
U(x⊥)U†(y⊥)

]
(1.58)

represents the propagation of a qq-dipole, originated from a photon, through the back-
ground color field of the target and therefore, is expressed in terms of Wilson lines. The
process is sketched in the right pannel of Fig. 1.18. The missing ingredient is a spe-
cific functional form for WΛ[ρ], a model-dependent object. In the McLerran-Venugopalan
model [49] a Gaussian probability distribution for the color charges is assumed

WMV[ρ] ∝ exp

[
−
∫

dx−d2x⊥
ρa(x−,x⊥)ρa(x−,x⊥)

2µ2(x−)

]
(1.59)

where µ2(x−) is the per nucleon charge density and it is related to the saturation scale.
This ansatz, justified by the central limit theorem when the number of color charges
is large enough as in the nuclear case, greatly simplifies the calculations involved in
Eq. (1.57). Further, it leads to trivial correlators between charges

〈ρa(x−,x⊥)ρb(y−,y⊥)〉 = δabδ2(x⊥ − y⊥)δ(x− − y−)µ2
A. (1.60)

The following parametric solution for φ(x,k⊥) is obtained [48]

φMV(x,k⊥) ∼
{

ln k2
⊥/Q

2
s for k⊥ � Qs

Q2
s/k

2
⊥ for k⊥ � Qs

. (1.61)

Remarkably, the unintegrated gluon distribution saturates for k⊥ � Qs and exhibits a
power-like behavior for large transverse momenta as in the usual perturbative calculation.

Up to now we have performed a purely classical calculation. It is well suited to de-
scribe gluon modes with a value of x close to that at which the classical action is defined,
x ∼ Λ/P+. However, when trying to describe modes with momentum fraction x′ ∼ Λ′/P+

much smaller than x quantum corrections are large. This is due to the fact that, as in the
case of the factorization scale (see discussion in Sec. 1.2.1), the momentum scale Λ at
which the separation between soft and fast modes is done is totally arbitrary and the in-
teractions do not disappear as we move away from this scale to. These corrections can
be resummed via a renormalization group equation, JIMWLK, for the weight functional of
color charges that adopts the following Hamiltonian form [50]

∂WY [ρ]

∂Y
= HWY [ρ] (1.62)

where Y =Λ/Λ′ and H includes the kernel of the evolution that is a non-linear function of
ρ. Thus, the purely classical calculation can be adapted to contain the quantum modific-
ations by replacing WΛ[ρ] with WY [ρ], a modified statistical weight, whose variation with
the scale, Y , is given by the JIMWLK equation. Then, the McLerran-Venugopalan model
is used as an initial condition for this evolution equation. In practice, solving the JIMWLK
equation is highly non-trivial so, usually, its mean field and large-Nc approximation, i.e.
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the BK equation schematically given in Eq. (1.49), has become the starting point for phe-
nomenological studies. At this point we have learned how the nonlinear evolution leads
to a forward scattering amplitude that doesn’t violate unitarity i.e. it is always smaller
than one. Nevertheless, as will be discussed in Sec. 2.3.1, the total proton-proton cross
section obtained from it rises as a power of energy violating the Froissart-Martin bound
that states that hadronic total cross sections in the asymptotic limit, s→∞, should not
grow faster than∝ ln2 s [51]. This condition arises from very general properties of the
scattering such as unitarity, crossing or analiticity. The violation of the Froissart bound
has been confirmed both theoretically [52] and by numerically solving BK evolution in-
cluding impact parameter dependence [53]. This is not a flaw exclusive of BK evolution
but of any perturbative framework that is applied beyond its limit of validity. Therefore,
CGC techniques should be complemented with non-perturbative effects to make the total
cross section satisfy the Froissart bound.

The methodology to compare CGC and data is the same as in the PDF scenario: the
unintegrated gluon distributions are obtained by fits to HERA data and later on applied in
other physical processes sensitive to the small-x regime provided that the corresponding
factorization theorems apply. In Fig. 1.19, two particular cases in which CGC calculations
successfully met experimental data are depicted. The unintegrated gluon distributions
constrained by HERA data for the proton were scaled to the nuclear case and used
to compute the multiplicity of charged particles in a heavy ion collision at a centre of
mass energy per nucleon pair,

√
sNN , of 2.76 TeV. The agreement between theory and

data is, in both cases, excellent and confirms the predictive power of the Color Glass
Condensate. This phenomenological success reinforces the status of the CGC as the
best candidate to approximate QCD dynamics in high-energy scattering or, equivalently,
the small-x regime.

1.4 This thesis in the context of the proton structure

All in all, significant progress has been made until reaching our current understanding
of proton structure despite its non-perturbative nature. Briefly, our knowledge of proton
structure consists of:

• HERA legacy: The longitudinal momentum information of the partons is well con-
strained thanks to a remarkable synergy between theoretical developments, such
as factorization theorems and renormalization group equations, and experimental
effort in terms of DIS data among others. Currently, PDF sets at NNLO accuracy
are available for high-precision LHC phenomenology studies with uncertainties at
the percent level in some kinematic window. Further, DIS at HERA opened the door
to study the small-x regime. An excellent agreement between data and experiment
has been achieved both in the framework of BFKL dynamics and saturation phys-
ics (see left pannel in Fig. 1.19) suggesting the necessity to go beyond DGLAP by
including non-linear terms in the evolution equations in this kinematic regime.
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Figure 1.19: Left: Comparison of the CGC calculation of the reduced cross section, a
combination of structure functions, with HERA data on electron-proton collisions. Figure
extracted from [54]. Right: Measured multiplicities in a lead-lead collision at LHC energies
compared to different theoretical predictions. Figure extracted from [55].

• 3-D imaging: Besides its intrinsic theoretical interest, the necessity of going beyond
PDFs stems from the study of exclusive observables in which the final state of the
interactions is partially or fully measured. In contrast with DIS where it is integrated
out and the only relevant scale is x. Several complications appear when trying to
extract the 3-D image of a proton in momentum or coordinate space:

– TMDs: One of the recent breakthroughs of the field is the experimental con-
firmation by the COMPASS Collaboration of the Sivers asymmetry, a robust
prediction of the theory that emerges from the gauge-invariance properties of
QCD. This measurement evidences their non-universality i.e. they are process
dependent. Further, a timely line of research consists in exploring the small-x
limit of TMDs within the CGC approach [56].

– GPDs: The mixed information on longitudinal momentum, intrinsic (x) and
transfer (ξ), and transverse coordinates described by GPDs encounters a ma-
jor drawback: the explicit dependence on the intrinsic longitudinal momentum
of partons is lost in experimental measurements such as DVCS. This is so
because it always appears convoluted with a function representing the hard-
scattering process. The information on the separate dependence can only be
obtained by measuring the Q2 variation of exclusive processes at a given ξ.

Apart from the theoretical developments, the wide kinematic coverage that will be
explored by the upcoming Electron Ion Collider woud allow to perform tomographic
images of the nucleon with unprecedented precision.

• Ab-initio methods: Even though hadron structure is dominated by long-range phe-
nomena, the situation concerning its theoretical description is not completely hope-
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less. Two well-defined approaches tackle this question by means of first principles
calculations:

– Lattice QCD methods: Being perhaps the best approximation to QCD, this
technique is not able to describe the full longitudinal momentum dependence
by construction i.e. the action is discretized in Euclidean space. However,
moments of these distributions are formally well defined on the lattice and the
main reason behind the fact that only low moments have been computed so
far are numerical bottlenecks.

– Color Glass Condensate: The experimental confirmation of the strong growth
of gluonic densities at small values of x was the smoking gun for the con-
struction of this effective field theory of QCD in the small-x regime. The large
gluonic densities enable a semi-classical description of the gluon content in
hadronic wavefunctions. Deep-inelastic scattering is the perfect playground to
test the CGC. Further, nuclei can be initially characterized within the CGC in
ultra high energy heavy ion collisions. Its role in the description of QGP physics
will be explored in detail in Chapter 4.

In this thesis a phenomenological study of the spatial distribution of subnucleonic
degrees of freedom in the proton is performed. We base our model on features of elastic
scattering data of proton-proton interactions at low (

√
s = 62.5 GeV) and high (

√
s =

7 TeV) energies as measured in ISR and LHC respectively. The momentum information
is omitted and thus, a natural extension of our studies would be to investigate the x-
dependence of the considered degrees of freedom in our model and construct GPDs out
of it. In the next Chapter a detailed presentation of the ingredients of our description
together with the experimental data set is provided.



Into the hollow;
Queens of the Stone Age.

2
The hollowness effect

The best way to constrain the transverse spatial structure of the proton is to scrutinize
the available elastic scattering data. The analysis of the elastic proton-proton differential
cross-section at collision energy

√
s=7 TeV measured by the TOTEM Collaboration [57]

has revealed a new, intriguing feature of hadronic interactions: at high energies, the
inelasticity density of the collision does not reach a maximum at zero impact parameter.
This phenomenon, not observed before at lower collision energies, has been referred to
as hollowness effect [58].

In this Chapter, we present a dynamical explanation of the hollowness effect. Our
analysis is based on three main ingredients: we rely on gluonic hot spots inside the
proton as effective degrees of freedom for the description of the scattering process. Next,
we assume that some non-trivial correlation between the transverse positions of the hot
spots inside the proton exists. Finally, we build the scattering amplitude from a multiple
scattering, Glauber-like series of collisions between hot spots. In our approach, the onset
of the hollowness effect is naturally explained as due to the diffusion or growth of the hot
spots in the transverse plane with increasing collision energy. This microscopic realization
of the hollowness effect sets stringent constraints on the spatial distribution of the gluonic
hot spots.

This Chapter is based on the publication:

• J. L. Albacete, A. Soto-Ontoso, Hot spots and the hollowness of proton–proton
interactions at high energies, Phys. Lett. B770 (2017) 149–153 [59].

2.1 Proton-proton elastic scattering

Counterintuitively, one third of the times two protons collide at LHC energies they do
not produce new charged particles but exchange momentum while retaining their identity

29



30

after the scattering i.e. they interact elastically. As depicted in Fig. 1.31, elastic scatter-
ing provides a sensitive probe of the proton transverse structure with a resolution given
by the momentum transfer ~q, Fourier conjugate to the impact parameter ~b. The impact
parameter is defined as the distance between the centres of the two protons. The lar-
ger the momentum transfer, the deeper one looks inside the proton. It should be noted
that at very small-|t| or, equivalently, when the separation between the protons is large,
the electromagnetic force becomes dominant. Then, the elastic interaction is described
by Coulomb scattering and reaches the same magnitude as the strong interaction when
t0 ∼ 1/(14σtot) ∼ 3×10−4 GeV2 at

√
s= 7 TeV [60]. In our analysis, we will work in the

nuclear region, i.e. we consider t≥5×10−3 GeV2, such that both the electromagnetic and
the Coulomb-nuclear interference terms will be neglected. The differential elastic cross
section is given by

dσel

dt
=

1

4π
|Tel(s, t)|2 (2.1)

where Tel(s, t) is the elastic scattering amplitude that depends both on the absolute value
of the momentum transfer |t|= q2, and the energy of the collision s. In the following we
will work with the Fourier-Bessel transform of the elastic scattering amplitude computed
as

T̃el(s,~b) =

∫
d2q

2π
ei~q·~bTel(s, q

2) =

∫
qJ0(qb)Tel(s, q

2)dq (2.2)

with J0 the zeroth Bessel function and azimuthal symmetry has been assumed in the last
step given that both target and projectile are unpolarized. The optical theorem establishes
the relation between the forward (t= 0) scattering amplitude and the total cross section.
With this normalization the total cross section, σtot, the 2 → 2 elastic cross section, σel,
and the ratio of real and imaginary parts of the scattering amplitude, ρ, read, respectively

σtot(s) = 2ImTel(s, 0) = 2

∫
d2b ImT̃el(s,~b) (2.3)

σel(s) =

∫
d2b

∣∣∣T̃el(s,~b)
∣∣∣
2

(2.4)

ρ(s, t) =
ReTel(s, t)

ImTel(s, t)
. (2.5)

These two expressions can be combined into

σ2
tot(s) =

16π

1 + ρ2(s, 0)

dσel

dt

∣∣∣
t=0

(2.6)

therefore, the differential elastic scattering data can be exploited to determine the total
cross section, as it is actually done in experiment. The value of ρ at t = 0 is usually
taken from an external source (such as COMPETE fits [61]) or it can also be extracted
by analyzing the interference between Coulomb and hadronic contributions to dσel/dt

1The notation form factor is subtle as it usually refers to the charge distribution as measured in electron-
proton scattering. In our case, we parametrize the matter distribution.
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[62]. In the latter scenario, the t-dependence of ρ is sensitive to the electromagnetic form
factor of the proton and the impact of different parametrizations has been considered in
the literature [63] being the subject to an on-going debate [64]. In any case, as it enters
the computation of σ2

tot like 1+ρ2 the influence of any errors in the determination of ρ is
small.

From an experimental point of view, the measurement of elastic processes is ex-
tremely challenging. In order to benefit from Eq. (2.6), a high degree of efficiency in
detecting small momentum transfers or, equivalently, protons with small deflection angles
(see Eq. (A.5)) is mandatory to reduce the uncertainties related to the extrapolation of
dσel/dt to t=0, given that this value cannot be measured directly. To be sensitive to small
angles, dedicated detectors capable of measuring tracks of scattered protons flying at
millimeter distance from the beam pipe and special beam optics, with reduced beam di-
vergencies, are needed. In proton-proton collisions at CERN, early measurements made
at the Intersecting Storage Rings (ISR) at energies lying in the 23.4<

√
s<62.5 GeV range

and the most recent results achieved by TOTEM, with energies more than 100 times
higher, shared the same detection set up. It is composed by forward (see Eq. (A.3))2

tracking telescopes to detect the charged particles coming from inelastic p+p collisions
together with a system of roman pots located far (∼100 m) from the interaction point but
as close as possible (< 1 mm) to the beam. A roman pot, named after the CERN/Rome
group that introduced this experimental technique in the early 1970s at ISR, is a movable
beam insertion equipped with tracking detectors. During beam injection, these secondary
vacuum chambers remain in a safe position and approach close to the beam for meas-
urements thanks to vacuum bellows. In the case of TOTEM there are 26 roman pots,
placed symmetrically, housing silicon strips. Thus, the scattered back-to-back protons hit
the detectors and by computing their transverse motion from the interaction point to the
roman pots, the scattering angle is determined. Once the scattering angle is known the
momentum transfer |t| in the elastic scattering can be reconstructed by using the relation
given in Eq. (A.5) [65].

It is worth to mention that dσel/dt has been measured in proton-antiproton interac-
tions at the SppS collider [66] at CERN and the Tevatron [67] at Fermilab between

√
s=

546 GeV and 1.96 TeV. Nevertheless, our study is restricted to the p+p case. The meas-
urements of the elastic proton-proton differential cross-section at (

√
s=7 TeV) by the TO-

TEM Collaboration [57] at the LHC and at the maximum ISR energy (
√
s=62.5 GeV) [68]

are presented in Fig. 2.1. The data on dσel/dt exhibits a high degree of structure and
consequently its description is challenging from a phenomenological point of view. First,
we will focus on the generic characteristics of the curve and afterwards on the energy
dependence of the observed features.

• The small-|t| behavior (before the pronounced dip) follows an almost exponential
shape

dσel

dt
∼
(

dσel

dt

) ∣∣∣
t=0

e−B|t| (2.7)

2At TOTEM the tracking telescopes cover 3.1 ≤ |η| ≤ 6.5.
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Figure 2.1: dσel/dt as a function of the momentum transfer at
√
s= 7 TeV (red squares)

and
√
s = 62.5 GeV (blue dots). Note that the ISR data has been multiplied by 0.01 for

readability. The error bars account for statistical uncertainties.

where B ≡ B(s) is called the slope parameter. Hints of deviation from the single
exponential behavior i.e. B(s) → B(s, t) were reported in [69]. Naively, Fourier
transforming the exponential function in Eq. (2.7) a Gaussian in impact parameter
space ∼ e−b

2/B2
is obtained. This points to a direct relation between the slope

parameter and the only length in the game i.e. the proton radius.

• After the exponential fall-off, moving to larger |t| values a pronounced dip is en-
countered followed by a secondary maximum. This characteristic pattern is uni-
vocal of diffractive phenomena. To make this point clear, let’s consider Eq. (2.1) in
impact parameter representation

dσel

dt
=

1

4π
|Tel(s, ~q)|2 =

1

4π

∣∣∣
∫
d2qe−i~q·~bT̃el(s,~b)

∣∣∣
2
. (2.8)

Now, if the scattering is off a totally absorptive target that is circular with radius R
(a black disk) the elastic amplitude is given by

T̃el(s,~b) = iΘ(R− b) (2.9)

where Θ is the Heaviside function. Then, the elastic differential cross section reads

dσel

dt
= πR2J

2
1 (
√
|t|R)

|t| . (2.10)

The series of minima of Eq. (2.10) are the zeroes of the Bessel function and their
position is uniquely determined by the inverse size of the target. In other words, the
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B [GeV−2] |tdip| [GeV2] n in t−n

ISR:
√
s=62.5 GeV 13.3±0.2 1.26±0.03 –x–

LHC:
√
s=7 TeV 23.6±0.6 0.53±0.01 7.8±0.3

Table 2.1: Parameters characterizing the shape of dσel/dt at ISR and LHC energies.
Systematic and statistical uncertainties have been added in quadrature. The –x– symbol
indicates that this value has not been measured.

position of the dip in t-space scales as 1/σtot in this geometric interpretation. We
see that an analogy can be established between high-energy elastic scattering off a
black disk and light diffraction. Unavoidably, the parametrization given by Eq. (2.10)
fails when confronted with the experimental data presented in Fig. 2.1 as the spatial
structure of the proton is much more involved than the one of a black disk.

• At very high |t|, the differential elastic cross section can be described by a power-law
t−n. In this region, the QCD coupling constant is small enough so that perturbat-
ive techniques are applicable and the partonic structure of the proton is resolved.
In particular, it was shown in [70] that an energy independent dσel/dt∝ t−8 arises
naturally when describing the proton-proton scattering as the interaction of valence
quarks via the exchange of three gluons in a colorless state with negative charge
parity. The three gluons exchange is the easiest perturbative realization of an ob-
ject, the so-called odderon, that appears in Regge field theory, a pre-QCD formal-
ism that will not be covered in this tesis. For a detailed review and the connections
between Regge language and QCD the reader is referred to [71].

The values of the slope parameter B, the position of the diffractive minimum |tdip|
and the exponent n of the power-law fall-off at large-|t| for ISR and LHC energies are
presented in Table 2.1. Firstly, although the ISR Collaboration did not make a dedicated
analysis of the large-|t| behavior of the elastic scattering amplitude, the experimental
data was shown to be compatible with the three gluon exchange interaction in [72]. The
measured value of n at an energy hundred times larger is also compatible with the pQCD
model and thus reinforces the validity of this approach in the partonic regime. On the
contrary, the position of the diffractive minimum is strongly energy-dependent: it is shifted
towards smaller values of |t| when the centre of mass energy is increased. As it has
been previously mentioned, |tdip| can be related, in a geometric picture, to the inverse of
the total cross section or, equivalently to the inverse size of the hadron R−2. This phe-
nomenon is known in the literature as the shrinkage of the forward elastic peak and was
already observed before the advent of the LHC in the low energy scan performed at ISR
from 23.5 to 62.5 GeV [68]. This result is confirmed by the opposite

√
s-dependence of

the slope parameter, that scales as R2. Indeed, both experimental observations suggest
a diffusion of the proton interaction radius that naturally explains the raise of the total p+p
cross section when increasing the collision energy (see Fig. 1.17). Naively, the meas-
ured values of the slope parameter would correspond to R∼0.72 and 0.96 fm at ISR and
LHC energies, respectively. A natural question arises at this point: what is the underlying
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dynamical mechanism responsible for the swelling of R. In Sec. 2.4 we argue that the
measured growth of the total proton-proton cross section can be accounted for by the
diffusion of the proton constituents and not by the proton itself. Further, in a radiative
description of proton subnucleonics degrees of freedom this growth emerges naturally.

In the next Section it is shown how to learn from the inelasticity component of the
collision by the data on dσel/dt.

2.2 Extraction of Gin(s, b) from data

The conservation of total probability, also known as unitarity condition, constitutes one of
the main bedrocks of scattering theory together with Lorentz invariance. Succinctly, it can
be written as

SS† = I (2.11)

where S and I are the scattering and identity matrices, respectively. Possibly, a more
transparent form of Eq. (2.11) is given in terms of cross sections

σtot = σin + σel (2.12)

where σin is the total inelastic cross section. For our discussion, it is more convenient to
formulate the unitarity condition in impact parameter space by means of Eqs. (2.5)

Gin(s,~b) ≡ d2σin

d2~b
= 2ImT̃el(s,~b)− |T̃el(s,~b)|2. (2.13)

The most reliable relation between elastic and inelastic processes is provided by
Eq. (2.13). The inelasticity density (or profile), Gin(s,~b), is the probability of having a
collision where new particles are produced at a given energy

√
s and impact parameter

~b. Conforming to unitarity, the inelasticity density is bound like 0<Gin(s,~b)< 1 and the
probabilistic interpretation holds. However, impact parameters cannot be measured ex-
perimentally. Therefore, the inelasticity density is not a physical observable. Up to now,
the only known method to explore the functional shape of Gin(s,~b) is based on the meas-
urements of dσel/dt. An important comment is in order. From Eq. (2.13) it is neat that
through an accurate description of data on dσel/dt one is sensitive only to the square of
the absolute value of the amplitude, not to real and imaginary parts independently i.e. not
to the phase. Thus, the information gained with dσel/dt should be complemented with the
description of other features of p+p interaction which do depend on the phase such as
the real to imaginary ratio of the scattering amplitude at t = 0. It would be desirable to
obtain a complete description of ρ(s, t), however, the experimental information is scarce
and from a theoretical point of view, as it has been mentioned, involves the modeling of
the electromagnetic structure of the proton, a source of uncertainties.

The procedure to construct Gin(s,~b) starts by fitting the data on dσel/dt with a cer-
tain parametrization of the elastic scattering amplitude. The real and imaginary parts
of Tel(s, t) should be also constrained by describing ρ(s, 0). Next, Tel(s, t) is Bessel-
Fourier transformed to impact parameter space as expressed in Eq. (2.2). At this point,
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a1 a2 b1 b2 b3

ISR −0.31± 0.02 30.22± 4.14 −0.99± 0.02 −8.41± 0.48 −4.44± 0.16

LHC −7.92± 0.49 99.56± 4.56 −2.45± 0.04 −11.00± 0.17 −6.05± 0.27

d1 σtot [mb] ρ

ISR −4.24± 0.11 43.3 0.1

LHC −5.98± 1.00 98.3 0.12

Table 2.2: ISR and LHC parameters, expressed in [GeV−2], extracted from the fit with the
parametrization given by Eq. (2.14) and the corresponding χ2/d.o.f. χ2/d.o.f is computed
taking into account the data statistical uncertainties. The values of a3 and c1 are fixed to
reproduce the measured values of σtot and ρ at each energy taking into account the
uncertainties.

one has to make sure that the t-range measured experimentally is sufficient to carry out
the numerical Fourier transformation with a satisfactory accuracy. In the case of TO-
TEM data, this issue was tackled in [73] where it was explicitly shown that the integrand
of Eq. (2.2) vanishes long before reaching the maximum measured value of t. Finally,
the inelasticity density can be constructed from T̃el(s,~b) by means of Eq. (2.13). Albeit
several analysis of ISR and LHC data on dσel/dt have been recently presented in the
literature [73, 74, 75, 76], resulting into similar quality fits, we have performed our own
independent analysis whose details are presented hereafter.

To describe the data on dσel/dt = (1/4π) |Tel(s, t)|2 we resort to the following generic
parametrization:

ImTel(s, t) = a1e
b1t + a2e

b2t + a3e
b3t ,

ReTel(s, t) = c1e
d1t , (2.14)

with the fit parameters (ai, bi, ci, di) being energy dependent and (ai, ci) subjected to the
constraints:

σtot = 2

3∑

i=1

ai =

{
43.32± 0.34 mb ISR
98.3+2.8

−2.7 mb LHC
(2.15)

ρ = c1

3∑

i=1

1/ai =

{
0.095± 0.018 ISR
0.14+0.01

−0.08 LHC
(2.16)

where the values of σtot and ρ correspond to the experimental measurements given in [57,
68]. For the LHC case we use the extrapolated ρ value provided by the COMPETE
Collaboration [61], same as the TOTEM collaboration in their data analysis. With this set
up we obtain a very good description of dσel/dt, χ2/d.o.f = 1.1 for ISR and χ2/d.o.f = 2
for the LHC as depicted in Fig. 2.2. The minimization procedure has been performed
with the MINUIT package [77]. In Table 2.2 the numerical values of the fit parameters
are presented. Nevertheless, their physical interpretation is unclear as Eq. (2.14) is just
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Figure 2.2: Fit to dσel/dt with the parametrization given in Eq. (2.14) for
√
s= 62.5 GeV

(top) and
√
s=7 TeV (bottom). The error bars account for statistical uncertainties. χ2(α)=∑n

i=1(f(xi, α) − ei)2/σ2
i where f is the theoretical parameterization that depends on the

vector of free parameters being fitted α and ei are the individual measurements with
uncertainties σi.
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a general parametrization of the elastic scattering amplitude flexible enough as to allow a
very good description of data. Fits with a larger number of free parameters lead to similar
values of χ2/d.o.f. Thus, in consistency with other works in the literature, we find that any
fit to the highly precise and structured data on dσel/dt with χ2/d.o.f ∼ O(1) requires at
least 6 free parameters. This point will be relevant in forthcoming discussions.

The normalized inelasticity densities Gin(s, b) extracted from the corresponding fits
to dσel/dt for ISR and LHC energies are shown in Fig. 2.3. Note that by construction
Gin(s, b) < 1 as required by the unitarity condition. Analyzing the behavior of Gin(s, b)
in Fig. 2.3 a novel, striking feature of p+p interactions emerges: at high energies, the
inelasticity density of the collision does not reach a maximum at zero impact parameter.
Rather, peripheral collisions, where the effective geometric overlap of the colliding pro-
tons is smaller, are more inelastic or, equivalently, are more effective in the production of
secondary particles than central ones. This phenomenon, not observed before at lower
collision energies, is not an artefact of our specific parametrization for Tel(s, t). Actu-
ally, identical conclusions have been achieved employing completely different techniques
and it has been referred to as hollowness [58] or grayness [74, 75, 76] of proton-proton
collisions by the authors of the first analyses where it was identified.

This exciting phenomenon is not exempt from a certain degree of skepticism. Firstly,
from Fig. 2.3 it could be argued that an effect at the level of 10−3 can be defined, perhaps,
as subtle. Further, it has been discussed in [78] that the accuracy of the experimental
data at LHC is still not enough to completely discard the no-hollowness hypothesis i.e.
the deviation is in the scope of experimental error bars. Efforts have been made to refute
the previous arguments. On the one hand in [73], it was unveiled via the inverse scat-
tering method that the shallow minimum in the 2-D inelasticity density reflects a much
more pronounced hollow in 3-D. This idea can be easily understood as the longitudinal
integration effectively covers up the hole. Then, a flattening of Gin at low impact para-
meters is already signaling a robust depletion in the 3 dimensional scenario. Besides, an
alternative approach to the hollowness phenomenon was suggested in [79]. In this work
the elastic scattering amplitude at low values of b is parametrized as purely imaginary
and Gaussian

ImTel(s, t) ∝ Ae−b
2/B, A =

4σel

(1 + ρ2)σtot
, B =

(1 + ρ2)σ2
tot

16πσel
. (2.17)

The obtained inelasticity density from Eq. (2.17) develops a maximum at a non-zero value
of b whenever σel>σtot/4, which is the case for the LHC collision energies. Another cri-
ticism that has been recently made [80] is related, precisely, to the role of the real contri-
bution to the scattering amplitude. Since the real part of the elastic scattering amplitude
is much smaller than the imaginary part it is often neglected in the unitarity condition
Eq. (2.13). Then, the authors discuss how this approximate definition of the inelasticity
density, that doesn’t longer have a probabilistic interpretation, may develop a hollow but
emphasize that when the real part is restored it enables to avoid the hollowness paradox.
This argument, although interesting, does not apply in our case as a non-zero real part is
included in the fits. All in all, the best way to overcome these critics would be the release
of new data at 13 TeV with a more extended range of t, to reduce the uncertainties on the
Fourier transformation in the low b region. This analysis would definitely help to shift our
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view of the current experimental observations from suggestive to certain.
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Figure 2.3: Normalized inelasticity density for
√
s = 62.5 GeV (top) and

√
s = 7 TeV

(bottom). Sub-pannels: zoom in the region of small b.

Taking everything into consideration, the onset of the hollowness effect entails a
change in the derivative of the inelasticity density at b = 0, a highly non-trivial dynam-
ical feature. In that regard, its description does not amount to a fine tuning of parameters
of a successful parametrization of lower energies data but, rather, requires the introduc-
tion of new dynamical mechanisms to account for such critical behaviour. The final point,
very important for the subsequent section, is that the hollowness effect challenges the
standard geometric interpretation of proton-proton collisions. In particular, it precludes
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models where the scattering amplitude is constructed as a naive folding of the density
profiles of the two colliding protons regardless how intricate the internal structure of one
individual proton may be. This argument holds even in the tempting case of modeling the
proton as empty in the middle. More concretely, and following [81], folding implies

Gin ∝
∫

d2b1

∫
d2b2ρ(~b1 +~b/2)ω(~b1 −~b2)ρ(~b2 −~b/2), (2.18)

where ρ(~b) describes the transverse distribution of componentes in the proton and ω(~b1−
~b2) is usually taken as δ(~b1 −~b2) in the literature.

If b is small one can perform a Taylor expansion of Eq. (2.18)

Gin ∝
∫

d2b1

∫
d2b2ρ(~b1)ω(~b1 −~b2)ρ(~b2)−

1

2

∫
d2b1

∫
d2b2[~b · ∇ρ(~b1)]ω(~b1 −~b2)[~b · ∇ρ(~b2)] + . . . (2.19)

and, therefore, Gin =α−βb2 + ..., has necessarily a local maximum at b=0, in contrast to
the phenomenological observation of the hollowness effect. Eq. (2.18) can also be seen
in signal processing language as an autocorrelation function i.e. the convolution of a
function with a delayed copy of itself. By construction, the autocorrelation function always
reaches its peak at the origin. This fact has far-reaching theoretical consequences: an
incoherent superposition of scatterings between partonic constituents cannot reproduce
the hollowness effect. Therefore, a quantum nature of the scattering process where
interference/coherence effects exist should be the underlying mechanism responsible for
the striking onset of the hollowness effect. These observations suggest that the scattering
problem may be best formulated in terms of subnucleonic degrees of freedom which
internal dynamics and correlations should be non-trivial with increasing collision energy.
In the next Section a microscopic realization of the hollowness effect is presented.

2.3 Model description

We propose a phenomenological model allowing for the onset of hollowness of proton-
proton interactions. Although QCD-inspired, at the same time, is kept at the highest level
of simplicity, the reduced number of parameters being directly related with essential dy-
namical ingredients. An extensive discussion of the main elements, sketched in Fig. 2.4,
can be found below.

2.3.1 Gluonic hot spots

The idea that the gluon content of the proton is concentrated in domains of small ra-
dius Rhs, as compared to the proton electromagnetic radius that controls the valence
quark distribution i.e. Rhs � Rp, is strongly supported by theoretical and phenomeno-
logical arguments. In lattice QCD, the gauge-invariant two–point correlator of the gluon
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Figure 2.4: Sketch of the main ingredients of our description of proton-proton interactions.

field strength can be computed in the QCD vacuum [82]. It is defined, using the same
language of Chapter 1, as

Dµρ,νσ(x) = 〈0|Tr{Fµν(x)G(x, 0)Fνσ(0)G†(x, 0)}|0〉, (2.20)

where x is the spatial coordinate and, the gauge-link is given by

G(x, 0) = P exp

(
i

∫
dtxµAµ(xt)

)
. (2.21)

An exponential falloff at large distances of Eq. (2.20) i.e. Dµρ,νσ ∼ exp(−|x|/λ) with
λ = 0.22 fm is found. Note that one would expect this distance to be of the order of
the hadron size according to the confinement hypothesis. Therefore, an additional scale
relevant for the hadron description appears. This result confirms the smallness of the
correlation length of the gluon field strengths inside hadrons and suggests a picture of
the proton as a collection of domains of high gluonic density. Such domains have been
dubbed gluonic drops or hot spots in the literature.

While the existence of hot spots inside hadrons is widely accepted, the debate on
their ultimate dynamical origin remains open. It is commonly assumed that the gluon
content of the proton is radiatively generated from valence quarks in DGLAP or BFKL-
like cascades (see Eq. (1.26)). In this view, hot spots relate directly to the Fock space of
valence partons, for which they would provide an effective description. Thus, a hot spot
accounts for a large-x valence quark surrounded by a small-x gluon cloud. However,
the question arises of how and why the resulting glue is confined to a region of small
radius. In particular, any perturbative emission kernel possesses long range Coulomb-
like power tails that allow for successive massless gluon radiation at arbitrary distance
scales (as large as the distance from Earth to Cassiopeia) and make the hadron grow
exponentially. This mechanism is also known as infrared diffusion. Note that the use
of any kernel emphasizes the no distinction between linear (DGLAP) or non-linear (BK)
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kernels. Indeed, in the derivation of the BK equation (see Eq. (1.49)) translational invari-
ance, N(r, b) → N(r), or, in other words, an homogenous and infinitely large target is
assumed. Then, the scattering probability solution of this equation saturates, N(r)≤ 1,
but locally in impact parameter space. However, once the b-dependence is considered
the full BK evolution generate power like tails in N(r, b) that enable scatterings to happen
at arbitrarily large impact parameters. This can be directly deduced from the shape of
the unintegrated gluon distributions given by Eq. (1.61). In short, perturbative saturation
effects cut-off the fast growth of partonic densities but only suppress and not stop the
transverse expansion. Phenomenological approaches tackle this problem by including
non-perturbative gluon masses that modify the Coulomb behavior to a screened Yukawa
one in order to mimic confinement effects. In turn, the intrinsic non-perturbative nature of
glue drops has been advocated in [83, 84, 85, 86].

An interesting description of gluonic hot spots within a weak coupling approach mo-
tivated by the power-like growth of the total p+p cross section with energy was presented
in [87]. The main idea is the following. Two mechanisms are responsible for the rise of σtot

when the energy of the collision increases in a perturbative framework: the fast growth of
partonic densities and the transverse diffusion. The former is counteracted by saturation
effects that kick in when the density reaches a critical value as discussed in Sec. 1.3.
The transverse swelling overcomes the non-linear finite density corrections and becomes
the leading method driving the evolution of σtot in dense systems. Further, the expansion
in the transverse plane is power-like due to the perturbative Coulomb like gluon fields.
Thus, it successfully conforms with the experimental observation on σtot(

√
s). To avoid

the natural cut-off imposed by confinement, hadrons themselves should be conformed by
dense gluonic regions with a radius smaller than the confining scale of QCD. The chosen
scale for these glue drops is the radius of the constituent quarks that can be estimated to
be ∼0.3 fm according to diffractive J/Ψ production [88] and double dijet production [89].
Still, non perturbative effects are needed in the asymptotia i.e. when the size of the hot
spots reaches the hadronic scale, in order to cease the power-like growth and respect the
Froissart bound. Long-range phenomena may be also responsible for the building up of
these gluonic clouds around each valence quark at low energies. However, once these
glue drops are formed, their energy evolution is strictly driven by perturbative branchings.

In this work we remain agnostic in this debate and simply assume that hot spots are
adequate degrees of freedom to discuss inclusive proton-proton scattering at high ener-
gies. Our main assumption about their dynamical properties is that collisions between
hot spots are fully absorptive over distances smaller than their radius, Rhs. Hence, in
our effective description, hot spots appear as small black disks of average radius Rhs.
We also assume implicitly that their ultimate dynamical origin is correlated to the valence
partons, since we model the proton as composed of Nhs=3 hot spots. The dependence
of our conclusions on the number of hot spots will be examined.

2.3.2 Multiple scattering in Glauber theory

Our goal is to construct the elastic scattering amplitude in proton-proton collisions in im-
pact parameter representation. Note that all along the calculation we neglect the longitud-
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Figure 2.5: Different diagrams contributing to the multiple scattering expansion given
by Eq. (2.22). The yellow numbers indicate the combinatorial factor associated to each
diagram and the purple arrows the interactions between hot spots. The grey line indicates
the 17 omitted diagrams.

inal coordinate due to the Lorentz contraction that suffer the two protons when travelling
on the TeV regime. We describe p+p interactions as a collision of two systems, each one
composed of three hot spots. According to the Glauber model [90], the natural frame-
work to describe high-energy scattering of composite particles, the elastic amplitude for
a collision of hadrons A and B with the hot spots frozen in transverse positions {~si} has
the form:

Tel(~b) = 1−
3∏

i=1

3∏

j=1

[
1−Θ(~b+ ~sAi − ~sBj )

]
, (2.22)

where Θ denotes the scattering amplitude of the i-th and j-th hot spots interaction and
~b is the impact parameter of the collisions (see Fig. 2.4). The physical elastic amplitude
is obtained after averaging Eq. (2.22) over the transverse positions of the hot spots as
given by their probability distributions D(~s1, ~s2, ~s3) in the projectile and target, A and B:

T̃el(~b)=

∫ ∏

k,l

d2sAk d2sBl DA({~sAk })DB({~sBl })Tel(~b) . (2.23)

The main hypotheses underlying Eq. (2.22) are to assume a constant cross section
between the constituents and the fact that they do not deviate from their trajectories
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during the scattering, i.e. the use of the eikonal approximation, both of them justified
at high energies. An intuitive way to understand the shape of the multiple scattering
expansion given by Eq. (2.22) is to consider the interaction of a projectile A formed by
two constituents with a target B with only one. Then, the elastic amplitude computed in a
probabilistic way is given by:

Tel(~b) = Θ1(1−Θ2) + Θ2(1−Θ1) + Θ1Θ2, (2.24)

where the first two terms correspond to a single scattering while the third one to an
interaction in which both constituents interact with the target. Expanding Eq. (2.24) we
obtain

T̃el(~b) = Θ1(~b− ~sA1 ) + Θ2(~b− ~sA2 )−Θ1(~b− ~sA1 )Θ2(~b− ~sA2 ). (2.25)

Therefore, the double scattering term introduces a destructive interference contribution
in the elastic amplitude i.e. the scattering as described in the Glauber model contains
coherence effects. The different weights in the multiple scattering expansion will play
a major role in the description of the hollowness effect. Generalizing Eq. (2.25) to a
projectile with A constituents we get

T̃el(~b) =
A∑

i

Θi(~b− ~sAi )−
A∑

i>j

Θi(~b− ~sAi )Θj(~b− ~sAj ) +
A∑

i>j>k

Θi(~b− ~sAi )Θj(~b− ~sAj )Θk(~b− ~sAk )

= 1−
A∑

i

[
1−Θi(~b− ~sAi )

]
(2.26)

and, if the target is not elementary but composed byB constituents we recover Eq. (2.22).
A diagrammatic representation, pioneered by [91], of some of the different terms contrib-
uting to Eq. (2.22) is displayed in Fig. 2.5. Each row corresponds to the k-terms con-
tributing with a weight ck, indicating the number of equivalent diagrams, to the n-th order
of the scattering given by the number of hot spot-hot spot interactions or the number of
arrows in the sketch. In our case there are 25 independent diagrams. This diagrammatic
scheme is particularly useful to express Eq. (2.23) in a compact manner as

T̃el(~b) =
25∑

k=1

(−1)n+1ckT kel(
~b), (2.27)

where

T kel(
~b) =

∫
d2sA1 . . . d

2sB3 DA({~sAi })DB({~sBj })
∏

(i,j)

Θij(~b+ ~sAi − ~sBj ) (2.28)

involves a 12-dimensional integral. The use of Gaussian functions will allow to analytically
solve these integrations, as will be shown in the next Section, thus keeping a tight control
over the parameter space.
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Further, we have to specify the elastic scattering amplitude between two hot spots
separated a transverse distance sij . As mentioned before, in order to facilitate full analytic
calculations, we resort to a Gaussian parametrization:

Θ(sij) = exp
(
−s2

ij/2R
2
hs

)
(1− iρhs) . (2.29)

This amplitude can be thought as resulting from the convolution of two Gaussian density
distributions for a single hot spot, each of radius Rhs. The maximum value of the ab-
sorptive part of Eq. (2.29), unity, is reached for head-on collisions. Although hadronic
amplitudes are expected to be mostly imaginary at high energies, we allow for a constant
real to imaginary ratio ρhs in order to match the non-zero values measured experiment-
ally. It should be noted that all the energy dependence in our model has been left implicit
so far. As discussed below, it is encoded in the transverse swelling of the hot spot radius
Rhs with increasing collision energy.

To finalize this Section, we would like to mention that considering the number of hot
spots as a variable quantity has a dramatic impact on the number of terms spanned by
the multiple scattering expansion. For example, the full numerical calculation for Nhs= 4
is an order of magnitude heavier than for Nhs = 3 given the increased dimensionality of
the problem. Therefore, motivated by the results concerning the onset of the hollowness
effect, presented in the following sections, we have performed the calculation just for
Nhs=2, 3.

2.3.3 Spatial correlations

The last element to compute the elastic scattering amplitude in impact parameter space
is the spatial distribution of the hot spots. The general structure that we shall consider for
the joint probability distribution for the transverse positions of hot spots inside a proton
has the following form:

D({~si}) = C

(
3∏

i=1

d(~si;R)

)
× f(~s1, ~s2, ~s3), (2.30)

where C is a normalization constant to ensure that the probability distribution is normal-
ized to unity:

∫
{d2si}D({si}) = 13. The next term corresponds to the product of three

uncorrelated probability distributions for a single hot spot, d(~si). In order to facilitate a
full analytical calculation of the scattering amplitude, we shall assume them to be of a
Gaussian form:

d(~si;R) = exp
(
−s2

i /R
2
)
, (2.31)

where R is the average radius of the d distribution. It should not be confused with the
proton radius itself Rp. Finally, all the correlation structure is encoded in the function f

3C=
(1 + µ)(1 + 2µ)(1 + 3µ)2

2µ3(2 + 3µ)π2R4
.
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which, by definition, is not factorizable in the spatial coordinates of the hot spots. We
write

f(~s1, ~s2, ~s3) = δ(2)(~s1 + ~s2 + ~s3)
3∏

i<j
i,j=1

(
1− e−µ|~si−~sj |2/R2

)
. (2.32)

The δ-function in Eq. (2.32) ensures that the hot spots system is described with respect
to the proton centre of mass, thus preventing it from acquiring unphysical transverse
momentum. Next, we implement repulsive short-range correlations between all pairs of
hot spots controlled by an effective repulsive core r2

c ≡ R2/µ. In the limit µ → ∞ we
recover the uncorrelated case.

While we have no clear dynamical justification for these correlations, their main role in
our calculation is to enforce a larger transverse separation between hot spots with respect
to the completely uncorrelated case. Indeed, all realistic models for the electromagnetic
nucleon form factors entail non-trivial spatial correlations between the constituent quarks:
diquark models, where the proton is envisaged as a bound diquark state interacting with
the third quark via gluon flux tubes, depict a rod-like structure of a typical string length
ls∼1.5 fm. In turn, baryon junction models, where the Wilson lines link the three valence
quarks at a junction, yield a more triangular structure of the proton. We argue that three-
dimensional realizations of both diquark and baryon junction models, when projected
onto the reaction plane, produce a similar correlation structure as the two dimensional
repulsive core correlations in Eq. (2.32). This is proved in Fig. 2.6 where we show the
average transverse distance between two hot spots yielded by the uncorrelated distribu-
tion, corresponding to µ→∞, a correlated one with rc = 0.3 fm and the corresponding
value for two three-dimensional triangular distributions projected onto the reaction plane:
equilateral and a highly asymmetric isosceles one, which we take as proxies for baryon
junction and diquark models. More quantitatively, average quantities are defined as

〈X〉 =

∫
d~s1d~s2d~s3XD(~s1, ~s2, ~s3) (2.33)

and the probability distribution for the equilateral and isosceles triangles are, respectively:

DBY(~r1, ~r2, ~r3) = CBYe
−(r21+r22+r23)/R2

δ(3)(~r1 + ~r2 + ~r3)δ(3)(|~r1| − |~r2|)
× δ(3)(~r1 · ~r2 + |~r1||~r2|/2) (2.34)

DQDQ(~r1, ~r2, ~r3) = CQDQe
−(r21+r22+r23)/R2

δ(3)(~r1 + ~r2)δ3(~r2 − ~r3) (2.35)

where CBY and CQDQ are again normalization constants. Note that in Eqs. (2.34-2.35)
the vectors ~ri are 3-dimensional in opposition to ~si in Eqs. (2.30-2.32) which are defined
on the transverse plane. As displayed in Fig. 2.6 the results for the probability distribution
given by Eqs. (2.30-2.32) provide a good interpolation between the aforementioned, more
realistic models of proton substructure.

Albeit the debate on the necessity of spatial correlations inside the proton is very
timely it has been previously discussed and analyzed in the case of nuclei [92, 93]. Fur-
ther, a similar mechanism prevents the ropes in the DIPSY event generator to be in a
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Figure 2.6: Mean transverse separation squared between pairs of hot spots as a function
of the mean transverse position for different D({~si}) as given by Eqs. (2.30), (2.34) and
(2.35).

highly energetic color state [94]. In the Glauber formulation of the scattering process ad-
opted here, the main effect of correlations in the transverse positions is to reweight the
contribution of the different terms of the multiple scattering series spanned by Eqs. (2.22-
2.23) with respect to the uncorrelated case. For instance, in baryon junction models,
terms where the three hot spots in one proton undergo simultaneous scattering with con-
stituents of the target are strongly suppressed, since the three vertices of an equilateral
triangle cannot overlap in the transverse plane, unlike the uncorrelated case. The other
parameter that controls the amount of effective overlap for different scattering configura-
tions, and hence their relative contribution to the scattering series, is the hot spot radius,
that, together with R, rc and ρhs are the four parameters of our model.

2.3.4 Multi-dimensional Gaussian integration

All the necessary elements to compute T̃el(~b) as given by Eqs. (2.27-2.28) have been
described. Now, we shall present a simple algebraic scheme which allows to ana-
lytically perform the integration over the transverse hot spots positions exploiting that
DA,B(~s1, ~s2, ~s3) and the elastic scattering amplitude between hot spots, Θ, are Gaussian
functions. First, the integrals involved in

T kel(
~b) =

∫
d2sA1 . . . d

2sB3 DA({~sAi })DB({~sBj })
∏

(i,j)

Θij(~b+ ~sAi − ~sBj ) (2.36)



47

can be written in a general way as

I(~b) =

∫
d2sA1 . . . d

2sB3 exp(−f(~sA1 , . . . , ~s
B
3 ;~b)) (2.37)

where

f({~si};~b) =
6∑

i,j=1

Xij~si · ~sj + 2~b ·
6∑

i=1

Yi~si +Wb2

= sT ·X · s+ 2z · s+Wb2. (2.38)

Note the vectorial character of s and z although, in the last line, the notation is not explicit
for readability purposes. In turn, W is a scalar and X a matrix. The goal is to remove the
linear term in Eq. (2.38). This can be achieved by transforming the coordinates as follows

β = η + s, where η = X−1z. (2.39)

Then, one obtains

sT ·X · s+ 2z · s = (β − η)X(β − η) + 2z(β − η)

= (β −X−1z)X(β −X−1z) + 2z(β −X−1z)

= βXβ − βXX−1z −X−1zXβ +X−1zXX−1z + 2zβ − 2zX−1z

= βXβ − zTX−1z. (2.40)

Since X is real and symmetric we may make an unitary and orthogonal transformation,
O, on the coordinates βi which will diagonalize it, giving

∫
e−β

TXβ
6∏

i=1

d2βi =

∫
e−α

TO−1XOα
6∏

i=1

d2αi

=

∫
e[−λ1α2

1−...−λ6α2
6]

6∏

i=1

d2αi

=
π6

detX
(2.41)

where λi are the eigenvalues of X. Thus the Gaussian integral in terms of the matrix X,
the vector Y and the scalar W is

I(~b) =
π6

detX
e−b

2(W−Y TX−1Y ). (2.42)

The explicit forms of X, Y and W change from diagram to diagram of Fig. 2.5. We
have systematically computed the 25 different contributions to T̃el(~b) using the symbolic
manipulation program Mathematica [95].
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2.4 Parameter space: {Rhs, Rp, rc, ρhs}

In order to prove that our model actually accounts for the onset of hollowness effect at
high energies, we scan the parameter space looking for the presence of a dip of the
inelasticity density at zero impact parameter and a monotonically decreasing scattering
amplitude, as dictated by data. In our model, essentially a linear combination of Gaus-
sian functions, both T̃el(s, b) and Gin(s, b) have extrema at b= 0 by construction (the first
derivative vanishes). Therefore, the growing/decreasing behavior of these two functions
is governed by the sign of the second derivative at b= 0. Consequently, we impose the
following conditions:

d2T̃el(s, b)

d2b

∣∣∣∣∣
b=0

< 0, (2.43)

d2Gin(s, b)

d2b

∣∣∣∣
b=0

> 0 . (2.44)

We shall refer to the region of parameter space that fulfills the two above conditions as
hollowness region.

A first, important result is that it is not possible to obtain a growing behaviour of
Gin(s, b) at zero impact parameter in the absence of non-trivial correlations, i.e for µ→∞
in Eq. (2.32) or, equivalently for zero correlation distances rc = 0, as long as ρhs = 0. In
turn, for non-zero values of the correlation length rc<R, we find a wide region of the para-
meter space compatible with the hollowness effect. In Fig. 2.7 we show the hollowness
region –represented as a grey area in the plots– in the (Rp, Rhs)-plane for rc = 0.3 (top),
0.4 (middle) and 0.5 fm (bottom), where we have defined R2

p ≡ R2 + R2
hs, the effective

proton radius resulting from the convolution of the hot spots distribution with their own
density distribution. Results in all plots were obtained with 0.05<ρhs<0.15. We observe
that the hollowness region enlarges with increasing correlation distance rc.

In order to ensure the compatibility of our results with other global features of exper-
imental data, we now explore the phase space region of our model that is compatible
with the measured values of σtot and ρ at LHC and ISR energies as given by Eqs. (2.16).
Upon imposing these further phenomenological restrictions we see how the phase space
region phenomenologically compatible with ISR data falls outside the hollowness area. In
turn, the subspace compatible with LHC data at 7 TeV fully overlaps with it, both results
in perfect agreement with empiric observations. These phenomenologically allowed re-
gions are represented in Fig. 2.7 as blue (ISR) and red (LHC) solid areas. It is also shown
the subspace of parameter space –represented as a green area in the plots– compatible
with the COMPETE predictions σtot = 111.5 ± 10 mb and ρ = 0.14+0.01

−0.08 for collision en-
ergy 13 TeV which, same as for 7 TeV, is fully contained within the hollowness region.
We hence predict that the hollowness effect should also be observed for the collision en-
ergy of the Run II at the LHC, 13 TeV, provided the COMPETE predictions hold. We have
also tested that there is no hollowness region compatible with the phenomenological con-
straints when the number of hot spots, Nhs, is 2. We then infer that the minimum number
of hot spots to describe the onset of the hollowness effect, within our model, is Nhs = 3.
Possibly, setting Nhs ≥ 4 our conclusions would also hold.
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Regarding the relevant geometric scales for fixed Rp and rc, the hollowness effect
kicks in at some finite value of the hot spot radius Rhs. For instance, fixing Rp to the
value of the measured proton charge radius Rp ≈ 0.88 fm the hollowness region starts at
Rhs ≥ 0.34 and 0.24 fm for rc = 0.3 and 0.5 fm respectively. These results are in perfect
agreement with the chosen hot spot radius discussed in Sec. 2.3.1. We hence conclude
that the main dynamical process underlying the onset of the hollowness effect is the
transverse diffusion or growth of the hot spots with increasing collision energy, which is
the main result of this analysis. Further, the measured growth of the total proton-proton
cross section can be simultaneously accounted for by the same mechanism.

Rhs[fm] Rp[fm] rc[fm] ρhs
ISR 0.21 0.74 0.3 0.14
LHC 0.27 0.94 0.5 0.15

Table 2.3: Parameters of the Gin results presented in Fig. 2.8 for ISR and LHC energies.

For completeness, we show in Fig. 2.8 a comparison between the resulting Gin of
our model for representative values of the parameters of Fig. 2.7 given in Table 2.3 and
the inelasticity profiles extracted from data as described above. The small-b part, the
essential region where the hollowness effect take place, is correctly described within our
framework in all cases. For large impact parameters the tails of the distributions extracted
from our model start to deviate from the data-driven profile of Gin. The main reason is the
relatively simplicity of the model. The possibility of improving the description of the data
by introducing a genuinely soft contribution is explored in the next section.

2.5 Model vs. dσel/dt data

After successfully describing the onset of the hollowness effect it would be desirable to
obtain a quantitatively precise description of experimental data on dσel/dt. Clearly, data
on the differential elastic cross section at ISR and LHC energies exhibit a high degree of
structure that requieres a similar degree of complexity in any phenomenological model.
Indeed, we have tried to perform fits to data on dσel/dt within our model and with its four
free parameters {Rhs, Rp, rc, ρhs} constrained to also reproduce the experimental values
of σtot and ρ. Notice that, with these additional constraints, our model has essentially only
two degrees of freedom, which turns out to be insufficient to reproduce the highly precise
and structured experimental data. Further, the functional form for the hot-spot distribution
functions and their scattering amplitude are chosen to be just Gaussian functions in order
to facilitate the exact analytical computation of the Glauber series. This approach allows
us to establish a general framework that could, and should, be systematically improved in
order to provide a good quantitative description of all available data. In the case of LHC,
Fig. 2.9 shows the fit to the differential elastic cross section using our original model. A
similar quality fit is found in the ISR case. The parameters are displayed in Table 2.4.
According to the χ2/d.o.f ∼O(10), the quality of the fits is manifestly poor. However, the
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Figure 2.9: Fit to the differential elastic cross section using the parametrization of Tel(t)
given by our model.

Rhs[fm] Rp[fm] rc[fm] ρhs
LHC 0.25 0.99 0.57 0.24

Table 2.4: LHC parameters extracted from the fit with Tel(s, t) as computed in our model.
The value of ρ is slightly overshot (0.19 vs 0.15).

bulk features of data, namely the slope of the diffraction cone, the position of the minimum
and the approximate power-law behaviour at high-|t|, are correctly grasped within our very
simple model. This result is suggestive that, as we discuss hereafter, a good quantitative
description of the data could be attained in case our model was extended and refined.

Arguably, the simplest extension of our model is to allow the scattering amplitude to
receive an additional contribution, to which we refer as soft as opposed to the supposed
hard dynamical origin of the hot spot. This new component allows us to adjust the fine
detail of the high-|t| behaviour of the scattering amplitude and to obtain a good description
of experimental data. Simultaneously, as we argue below, the onset of the hollowness
effect is explained in the same terms as in our original model. The scattering amplitude
in the extended model now reads:

Tel = Tg + Tsoft, (2.45)

where Tg stands for the scattering amplitude resulting from the Glauber series Eqs. (2.27-
2.32) and Tsoft is the new component parametrised in the following way:

ImTsoft = A1 exp(−B1t) (2.46)
ReTsoft = C1 exp(−D1t) (2.47)
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Rhs [fm] Rp [fm] rc [fm] ρhs A1 [fm2] B1 [fm2]
ISR 0.08±0.02 0.82±0.12 0.60±0.05 0.14±0.02 0.87±0.07 0.38±0.09

LHC 0.26±0.03 0.9±0.08 0.33±0.02 0.17±0.03 1.52±0.8 0.65±0.3

C1 [fm2] D1 [fm2]
0.02±0.1 0.10±0.04

0.06±0.18 0.07±0.02

Table 2.5: ISR and LHC parameters extracted from the fit with Tel =Tg + Tsoft.

or, equivalently, in impact parameter space

ImT̃soft =
A1

4πB1
exp(−b2/4B1) (2.48)

ReT̃soft =
C1

4πD1
exp(−b2/4D1). (2.49)

Adding this new contribution our model have 8 free parameters (Rhs, Rp, rc, ρhs, A1, B1,
C1 and D1) constrained to also reproduce the experimental values of σtot and ρ resulting
in 6 degrees of freedom. We have performed global fits to dσel/dt, finding that a good de-
scription of the data is possible, as shown in Fig. 2.10. The fit parameters are presented
in Table 2.5. Two important comments are in order:

• First and foremost, the presence of an additional component is needed to attain a
good quantitative accurate description of the data at all values of exchanged mo-
mentum t but does not change the main conclusions presented in the previous
section on the emergence of the hollowness effect. We have checked that the res-
ulting scattering amplitude from all successful fits yields the presence (absence) of
hollowness at LHC (ISR) energies. Further, all successful fits yield a non-zero cor-
relation length between hot spots and systematically larger values of the hot spot
radius at LHC than at ISR energies. We have not performed a systematic study of
the parameter space yielding good fits to data and simultaneously resulting in the
onset of hollowness at LHC energies (and its absence at ISR). This would result
in a parametric plot analogous to that of Fig. 2.7. Rather, as explained above, we
have sampled the parameter space represented in Fig. 2.7 and checked that all the
good fits to data obtained within the extended model fall within the right hollowness
region of parameter space.

• In the fits, the contribution of the new soft component to the total cross section at
ISR and LHC energies is constrained to be less than a 40% and 25% respectively.
The relative contribution of the soft term to the total cross section decreases from
the ISR to the LHC, thus confirming that the transverse diffusion of the hot spot
domains is the main mechanism for the growth of the cross sections with increasing
energy.
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Figure 2.10: Fit to the differential elastic cross section with the Tg + Tsoft parametrization
for the two energies considered in this work. Left: ISR at

√
s= 62.5 GeV. Right: LHC at√

s=7 TeV.

The fits to data including a soft component presented above successfully fulfill all the
required conditions for the model to be phenomenologically consistent. First, they provide
a good quantitative description of the data. Further, the parameters yielded from the best
fits to data fall in the correct region of parameter space: no-hollowness for ISR energies
and hollowness for the LHC.

2.6 Proton transverse structure as a byproduct of the hollow-
ness effect

Regarding the transverse structure of the proton in terms of gluonic hot spots, describing
the onset of the hollowness effect sets stringent constraints on its properties. In a nutshell,

• The number of gluonic hot spots must be at least 3.

• Short-range repulsive correlations between the proton constituents are vital.

• Although we do not provide a dynamical description, the hot spot radius grows with
increasing collision energy.

These effects may have observable consequences in other sets of experimental data
on proton collisions. Arguably, they could impact significantly the interpretation of data
specially sensitive to the initial collision geometry, like the correlation and flow analyses
of proton-proton collisions and the possible production of small drops of Quark Gluon
Plasma in such collisions, a highly debated topic nowadays. This is the subject of the
following chapters.
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3
The quest for the quark-gluon plasma

The natural continuation of the work presented in previous chapters is to explore further
consequences of subnucleonic spatial correlations on the properties of the initial state in
p+p collisions. As mentioned in the introduction of this thesis, there are several areas of
high-energy physics, where the proton structure plays a decisive role. A convenient play-
ground to test the implications of a correlated description of the subnucleonic degrees of
freedom of the proton are the initial state properties of high energy proton-proton inter-
actions in the context of quark-gluon plasma (QGP) physics. This new state of matter,
to be described below, is expected to be created in extreme conditions when reaching
very high temperatures and/or densities. In nature, the early universe and the interior of
neutron stars are considered plausible scenarios for the QGP to be formed. Reproducing
these conditions in a controlled way is the main goal of high-energy heavy ion collisions
(A+A). In this context, the recent analyses of some of the considered golden probes for
QGP formation in small collision systems at the LHC (p+p and p+A), thought of as the
baseline for heavy ion collisions, have revealed striking similarities to the A+A case. The
possibility that QGP droplets are being produced in small collision systems has initiated
a lively debate both from a theoretical and an experimental point of view.

In this chapter, a general overview on selected aspects of QGP physics is presented
to set the stage. First, the current theoretical paradigm that has been confronted with ex-
perimental data on ultra-relativistic heavy ion collisions is described. Then, the signatures
of QGP formation are explored in terms of measurable quantities and their interpretation
in small collision systems.

3.1 The QCD phase diagram

Up to now we have considered the fundamental degrees of freedom of QCD, quarks and
gluons, to be bound inside hadrons. However, another salient feature of QCD, namely
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asymptotic freedom, tells us that the coupling constant is αs(Q2)� 1 whenever the dis-
tance between partons is small or as the exchanged momentum increases. The former
situation can be achieved by enlarging the density of the hadronic system i.e. by com-
pressing it, while the latter requires heating the system. Therefore, at sufficiently high
densities and/or temperatures the interaction among partons that keeps them confined
is weak enough so that they become free [96]. This phase of strongly-interacting matter
in which hadron constituents are deconfined and can roam quasi-freely is dubbed the
quark-gluon plasma.

We have identified the temperature and the density as the relevant variables that
make strongly interacting matter show up in distinct phases. In the case of water it is
common to represent its different states as a function of the pressure and the temperat-
ure. Therefore, analogously to the diagram of water, in Fig. 3.1 we show a sketch ot the
QCD phase diagram. As discussed above, the different phases are expressed in terms of
the temperature of the system T and a proxy for the density, namely the baryon-chemical
potential µB. The definition of this quantity is the following. The density of baryons, nB,
in the center of the nucleus at T = 0 has been measured to be very similar in all nuclei
nB = 0.16 fm−3. These baryons inside stable nuclear matter are bound by−8 MeV and
therefore, the energy per baryon is ε/nB = mN − 8 ∼ 931 MeV where mN ∼ 939 MeV
is the rest mass of the nucleon. In general, the basic thermodynamic variables (energy,
entropy and number densities and pressure) are related through ε=Ts+µn−p. Consider-
ing a stable nucleus we set the pressure to zero and thus the baryon-chemical potential
µB at T = 0 is identical to the energy per baryon in the ground state. Therefore, in the
(T, µB)-QCD phase diagram the ground state of nuclear matter sits at (0, 931) MeV. In
other words µBB is a measure of how the energy of the system increases as one adds
another baryon to it. At non-zero temperature, if µB = 0 the number of baryons and
antibaryons is identical while increasing it leads to a baryon dominated system. In the
following discussion of Fig. 3.1 we are going to distinguish two different scenarios: the
µB∼ 0/finite temperature case and a baryon dominated scenario. A detailed description
of the QCD phase diagram can be found in [97]. The experimental facilities exploring the
different regions of the uncharted (T, µB) territory will be presented in the next section.

3.1.1 Finite temperature

Nowadays, our universe is baryon dominated. Antibaryons are created in the laboratory
or in cosmic ray cascades. This has not always been the case. After the Big Bang and
below the electroweak scale (T < 100 GeV) the early universe was a relativistic gas of
Standard Model particles with the same amount of quarks and antiquarks i.e. µB = 0.
Given the high temperatures and energy densities, the QCD degrees of freedom formed
a quark-gluon plasma. Then, the accelerated expansion made the system cool down and
our universe experienced a phase transition from the QGP to hadronic matter in its first
microseconds of existence. Note that if the number of baryons and antibaryons would
have been exactly the same they would have annihilated each other and only photons
would exist. Understanding the mechanism that generated the small excess of matter
over antimatter is one of the main open issues of the Standard Model.
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It is the goal of modern experiments to reproduce under controlled conditions the
high temperatures of the early universe and access the QGP phase. For this purpose,
heavy-ion collision at ultra-relativistic energies are performed. In these collisions, the
baryo-chemical potential is close to zero. This is so because the nuclei travelling close
to the speed of light deposit energy in the reaction centre (y∼ 0) and then pass through
each other. This deposited energy is converted, due to baryon number conservation, in
an equal amount of baryons and antibaryons. As will be discussed below large µB can
be achieved by reducing the beam energy.

From a theoretical point of view, the partition function contains all the information
about the thermodynamic properties of the system. In the grand canonical ensemble,
using the same notation as in Eq. (1.43), it reads

Z(T, V, µ) =

∫
[Dq][Dq]DAei

∫
d4xLQCD+µN (3.1)

where µ is the quark chemical potential andN ≡ qγ0q [97] is the number density operator
associated with the quark number conservation. We can talk indistinctly about quark
chemical potential or µB as they are related by a scaling factor given by the number of
quarks. By performing elementary algebraic operations with the grand partition function
one obtain all thermodynamic quantities such as the pressure p, the energy density ε or
the equation of state p(ε, µB) (EoS). Then, phase transitions are determined by studying
discontinuities of the derivatives of the pressure at a given (T, µ). For example, a first
order phase transition, like water turns into vapor, implies discontinuities in

∂p

∂T

∣∣∣
µ
,
∂p

∂µ

∣∣∣
T

(3.2)

while the pressure is continuous at the point (T, µ). In general, a n-th order phase trans-
ition is described by the discontinuity of ∂np, while p and its n − 1-derivatives are con-
tinuous. Instead, a cross over transition, like butter melts in a pan, occurs when thermo-
dynamic properties change rapidly in a narrow range of (T, µ) while the pressure and its
derivatives remain continous. A full analytical solution for Eq. (3.1) would allow to draw
firm conclusions on the QCD phase diagram but, once more, non-perturbative effects
hamper the task. However, the QCD partition function can be computed in lattice QCD
(see Section 1.2.4) at µB = 0. At finite baryon densities the fermionic part of the Euc-
lidean action induces an oscillatory behavior in the integral of Z that invalidates the usual
Monte Carlo sampling. To circumvent the so-called sign problem is one of the actual chal-
lenges of the lattice QCD community [98, 99]. Nevertheless, when µB = 0 lattice QCD
has demonstrated a smooth cross-over transition from hadronic degrees of freedom to
the QGP phase as it is displayed in Fig. 3.2. We see how energy and entropy densities
grow very fast in the region around the cross-over temperature that has been determ-
ined to be in the range Tc = 154 ± 9 MeV or, equivalently, at a critical energy density of
ε=0.34±0.16 GeV/fm−3 [100]. This can also be interpreted as an explosion in the number
of degrees of freedom of the system, when moving from a hadron gas to the QGP phase.
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Figure 3.1: Sketch of the QCD phase diagram.

3p/T4

ε/T4

3s/4T3

 0

 4

 8

12

16

130 170 210 250 290 330 370

T [MeV]

HRG

non-int. limit

Tc

200 300 400 500
T[MeV]

0

5

10

15

20 s/T
4ε/T

3

150 200 250

0.2

0.3
cs

2=dp/dε

Figure 3.2: Left: pressure, energy density and entropy density as a function of the tem-
perature. The vertical band marks the crossover region. Figure extracted from [101].
Right: energy and entropy densities. The subpanel shows the speed of sound. In both
plots the arrows indicate the Stefan-Boltzmann limit i.e ideal massless gas limit. Figure
extracted from [102]. This plot shows the agreement between the results obtained by the
two major collaborations of the field: HotQCD (left) and Wuppertal-Budapest (right).
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3.1.2 Finite density

High energy heavy-ion collisions (O(100−1000) GeV) and lattice QCD are the tools to ac-
cess the high temperature and low density regime of the phase diagram. Three scenarios
have been proposed to explore the high density regime from low to high temperatures.

First, our universe provides a cosmic laboratory where the high density and low tem-
perature phase is expected to play a key role: the interior of neutron stars. The core of
these compact stellar objects, formed as a byproduct in supernovae collapse, may reach
ten times nuclear matter ground state densities with T .1 MeV. Then, neutron stars lie on
the baryo-chemical potential axis in Fig. 3.1. Therefore, measuring neutron stars prop-
erties such as their masses and/or radii may provide insights of cold dense QCD matter
[103].

To access the moderate temperature regime (T ∼ 100 MeV) at finite densities (2 .
ρ/ρ0. 6), low beam energies (O(1−10) GeV) and high interaction rates (luminosity) are
required. In this case, the collision occurs at the interaction scale of the nucleons i.e. the
partons are not resolved. A phenomenon called baryon stopping kicks in at these low
energies. It is defined as the shift of an incoming baryon rapidity towards |y| ∼ 0. The
baryons of the colliding nuclei are stopped i.e. they do not leave the interaction region
immediately but become part of the medium. Thus, the medium produced in low energy
collisions has a larger net baryo-chemical potential due to the contribution of the stopped
nucleons.

Finally, it has been argued that similar conditions to the ones in heavy-ion collisions
at low beam energies are reached in an alternative scenario. This is the early time of
neutron star mergers where both the temperature (T ≈ 100 MeV) and the density (ρ ≈
3ρ0) are high [104]. Interestingly, it has been explicitly shown how the equation of state
of nuclear matter in the high (T, µB)-zone can be constrained by analyzing the post-
merger gravitational waves frequency spectra [105]. Consequently, the recent discovery
by the LIGO Collaboration of this type of gravitational waves [106] may shed light on
the structure of the equation of state of nuclear matter. To conclude, two drastically
different experimental setups, heavy ion collisions at low beam energies and neutron star
mergers share the necessity of an equation of state. This fact suggests potential sinergies
between nuclear theory and cosmology communities.

Theoretically, at low T and high baryo-chemical potential several QCD calculations
predict a first-order phase transition [107]. The end of this line would mark the position of
a critical point. In the viccinity of a critical point large thermodynamic fluctuations, espe-
cially fluctuations of conserved quantities (baryon number, electric charge and strange-
ness) are expected. These critical fluctuations may show up into multiplicity spectra.
Therefore, a suggested experimental way to prove this critical behavior is to measure
event-by-event fluctuations and higher-order moments of the multiplicity distribution of
baryons, charged particles and strange hadrons [108]. Definite conclusions on the exist-
ence of the critical point or the first order phase transition have not been drawn yet.
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3.2 Heavy-ion experimental facilities

Awaiting for a robust extension of lattice QCD methods to the finite density regime, had-
ron colliders provide a unique opportunity to gain insight on the QCD phase diagram. It
would be desirable to know the reaction trajectories of each of the experimental facilities
in the (T, µB)-plane. However, this cannot be done in a model-independent way. This
is so because the equation of state is needed to translate energy densities and particle
numbers to (T, µB) values. Given certain experimental conditions, in terms of the collision
energy and the atomic number of projectile and target, one may end up in totally differ-
ent regions of the phase diagram just by changing the EoS. Therefore, in the vanishing
baryon-chemical potential region, where lattice QCD is applicable, the (T, µB)-(ε, nB) cor-
respondence is well established while in the µB>0 regime we rely on educated guesses
such as Taylor expansions of the QCD action in powers of µB/T [98] or effective field
theories [109].

This section does not pretend to be an extended historical review of all experimental
facilities of the field. We are going to focus on two on-going and two upcoming accelerat-
ors given their relevance for this thesis and, in general, for QGP physics. The four of them
scan distinct regions of the phase diagram and are, therefore, complementary. Moreover,
some of the highlights of their experimental programs will be recasted in Sec. 3.4.

3.2.1 Large Hadron Collider

The physics program of the world’s largest and most powerful collider, i.e. the LHC, does
not only consist in searching for new particles and performing precision measurements
of the Standard Model, but includes studies of the quark-gluon plasma. Besides ALICE,
a dedicated heavy-ion experiment, ATLAS, CMS and LHCb have joined the quest for the
QGP. The available collision systems and the centre of mass (

√
s) or per nucleon pair

(
√
sNN) energies are summarized in Fig. 3.3. Note that the difference in the maximum

energies reached in the proton beam with respect to the nuclear one is due to the charge-
to-mass ratio Z/A. In short, neutrons inside the nucleus act like a burden for acceleration
purposes. Recently, a Xenon run was performed during 8 hours in order to test the
sensitivity of heavy-ion observables to the geometry of the collision. The corresponding
results have not been released yet.

The main distinctive feature of the LHC is its capability of performing three different
types of collisions namely p+p, p+A and A+A (ordered by increasing degree of complex-
ity), at the same effective energy. This allows to break the very complicated puzzle of
heavy-ion collisions into simpler pieces i.e. disentangle effects that have nothing to do
with the QGP formation. In this way, the proton run is used to characterize the element-
ary collisions involved in bigger systems. Analogously, proton-nucleus collisions allow to
study the influence of the nuclear wave function, the so-called cold nuclear matter effects.
Once both collision systems (p+p and p+A) are under control they are used as a bench-
mark for the heavy ion run in which final-state effects are related to the QGP medium.
This neat and logical procedure is based on the assumption that a hot and dense medium
is solely formed in the A+A case. This long-established hypothesis has been spoiled by
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unanticipated observations as will be discussed in Sec. 3.5.

 [TeV]
NN

s
0.9 2.76 5.02 5.44 7 8 13

C
ol

lis
io

n 
sy

st
em

p+p

p+Pb

Xe+Xe

Pb+Pb

LHC

Figure 3.3: Compilation of collisions systems and energies investigated at the LHC. (Pb,
Xe) stands for isotopes with atomic numbers (208Pb,154Xe).

3.2.2 Relativistic Heavy Ion Collider

The RHIC in Brookhaven National Laboratory (USA) started running in 2000 becom-
ing the pioneering machine in the experimental study of heavy ions at high energies with
Au+Au collisions at

√
sNN =200 GeV. RHIC, in analogy with the LHC, hosts 4 experiments:

STAR, PHENIX, PHOBOS and BRAHMS. Nowadays, only the PHENIX and STAR detect-
ors are still active and taking data. The different collision systems and energies available
at RHIC are displayed in Fig. 3.4. The most remarkable design characteristic of this facility
is the flexibility of the machine that is capable of colliding a wide range of nuclear spe-
cies at multiple energies. Precisely this versatility lead to the Beam Energy Scan (BES)
program whose primary purpose is two-fold. First, pinpoint the location of the critical en-
dpoint and cross the first order phase transition, if it does exist. Second, measure how
the QGP signatures turn off, when the energy of the collision decreases below the critical
energy density. During 3 years of data taking (2010, 2011 and 2014), deuteron, gold,
copper and uranium nuclei were collided at 7 different energies 7.7<

√
sNN < 62.4 GeV

(see Fig. 3.4). A second run of the BES, BES-II, is planned to run in 2019-2020 with√
sNN < 20 GeV in order to collect more statistics given the importance of measuring

event-by-event fluctuations of conserved charges for the discovery of the QCD critical
point.

RHIC is not only a heavy ion facility but also the most powerful source of polarized
proton beams up to date achieving

√
s=500 GeV. This mode is being used to explore the

spin structure of the nucleon in the spirit of Chapter 1.
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Figure 3.4: Compilation of collisions systems and energies investigated at the RHIC.
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3.2.3 Facility for Antiproton and Ion Research

To explore the high-density regime of the QCD phase diagram, the FAIR experiment
is currently under construction at the Gesellschaft für Schwerionenforschung (GSI) in
Darmstadt, Germany. FAIR is a multi-purpose facility that will cover not only heavy-ion
research but also atomic physics, nuclear structure relevant for astrophysics and proton-
antiproton collisions. Heavy ion physics at FAIR counts with a fixed target detector, the
Compressed Baryonic Matter experiment (CBM) [110]. The goal of the CBM research
program is to explore the QCD phase diagram in the region of 800>µB>500 MeV using
nucleus-nucleus collisions within an energy interval of 2.7<

√
sNN<4.2 GeV. Then, CBM

will look for the critical point at even higher densities and smaller collision energies than
the Beam Energy Scan program at RHIC. Another particular feature is the interaction
rate achieved at CBM that will be at least 2 and up to 5 orders of magnitude larger than in
existing and planned low energy heavy ion experiments such as NA61/SHINE at CERN-
SPS. This fact enhances the discovery potential of this experiment with respect to others
exploring the same region of the phase space.

3.2.4 Electron Ion Collider

The US-EIC will be the world’s first e+A collider and will also pioneer the scattering of
polarized electrons off polarized protons. There are two laboratories developing plans
to host the EIC with the premise of recycling the existing infrastructures: Brookhaven
National Laboratory (eRHIC) and Jefferson Lab (MEIC). The machine aims at achieving
energies in the range 20<

√
s<175 GeV for e+p collisions and 40<

√
sNN<90 GeV in the
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e+A case. The beams will consist of diverse species from protons to a Uranium nucleus.
Further it can polarize not only electrons and protons but also small nuclei such as d and
3He [21].

The scientific case is based on three main pillars. First, the EIC is a tomographic
machine in the e+p mode that offers the opportunity to characterize the structure of the
proton in a unprecedented way in terms of TMDs and GPDs as has been presented in
Sec 1.2. Turning to the e+A case, the heavy ion community has being facing for a long
time the scarceness of data on nuclear parton distribution functions (nPDFs) obtained by
the measurements in low-energy fixed-target experiments. This fact translates into large
uncertainties that disable a precise study of cold nuclear matter effects needed to prop-
erly describe p+A collisions. In [111], it was shown how a significant reduction of these
uncertainties could be achieved after including the pseudo data on EIC measurements on
the corresponding fits. The third physics prospect of the proposed Electron Ion Collider
is to scrutinize the saturation regime by exploring the small-x part of the wave function of
nuclei down to x∼10−5. A region, up to now, truly terra incognita.

The European counterpart to the US-EIC, the Large Hadron electron Collider (LHeC),
is proposed to be based at CERN [112]. By adding an electron linear accelerator close
to the existing LHC tunnel, it would be the only TeV-scale lepton-hadron/nucleus collider
ever built reaching a factor of 20 higher centre of mass energy than HERA (

√
sNN ≈

0.81−1.3 TeV). In addition, the electron beam could be polarized. The scientific case of
this program would benefit both the particle physics and the heavy ion communities. First,
the e+p run will extend the kinematic coverage down to very small longitudinal momentum
fraction x∼10−7 and therefore provide a sound reduction on the uncertainties of PDFs, a
crucial element for Beyond the Standard Model searches. In the case of e+A collisions,
it would complement the EIC program in the high-energy regime.

3.3 The standard model for heavy ion collisions

Over the last decade, a well-established paradigm on how to describe the 20 fm/c of a
heavy ion collision at high energies (RHIC, LHC) has been accepted by the community.
The stages of a heavy ion collision are sketched in Fig. 3.5. Contrary to the QCD phase
diagram cartoon, the displayed space-time evolution is theoretically motivated. The dy-
namical description of such a complex process is highly interdisciplinary and it requires
the use of diverse theoretical tools: from a CGC picture of the colliding nuclei to the use
of kinetic theory in the final stages. The standard model for heavy ion collisions consists
of the following components:

• Prior to the collision, the wave function of the colliding nuclei is dominated by small-
x gluons. Therefore, they shall be described as sheets of color glass.

• At t = 0 the nuclei meet each other and the interactions start occuring. Then, at
t= 0+ the gluons of the colliding nuclei are liberated and form a highly-dense and
coherent state out of thermal equilibrium, the so-called glasma.
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• The large number of interactions between the produced partons lead to a redistri-
bution of energy and momentum that drives the system towards local thermal equi-
librium. According to experimental data this process happens in ∼1 fm/c. How the
system thermalizes so rapidly is one of the remaining not fully answered questions
of the field.

• This partonic thermal state is nothing but the quark-gluon plasma. In this stage of
the evolution, the mean free path is much more smaller than the size of the system
and a fluid description is justified. Thus, the energy momentum tensor computed
within the CGC serves as an initial condition for the subsequent relativistic hydro-
dynamic evolution of the fireball. The matching procedure between both formalisms
comes, as expected, fraught with subtleties.

• Due to the expansion, the temperature of the system will eventually (t ∼ 10 fm/c)
drop below Tc=150÷170 MeV. At this point, bf hadronization kicks in and the equa-
tion of state has to be modified from partonic to hadronic degrees of freedom. Then,
the system can be described as a hot hadron gas. During this 10 fm/c thermalization
dynamics has to outrun the expansion.

• Once in the hadronic phase, the fluid description gradually breaks down. The trans-
ition from macroscopic variables (components of the energy momentum-tensor) to
a microscopic description in terms of particles (4-momenta) is called particlization.
The switching criterion is not unique in the literature and varies from a constant
temperature of the order of Tc to a critical energy density.

• The lower temperature description of the fireball relies on kinetic theory i.e. the
relevant variable is the particle distribution function f(x, p). Hadrons rescatter until
the system become so dilute that they do not undergo more interactions i.e. they
freeze out at t∼ 20 fm/c. After the kinetic freeze out, the hadrons free stream until
they reach the detector.
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Figure 3.5: The standard model for heavy ion collisions.

More details on each of the stages of high energy heavy ion collisions are presented
below.
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3.3.1 Initial state and the glasma

Highly energetic nuclei afford an ab-initio description of their structure in terms of the
Color Glas Condensate theory (see Sec. 1.3). The large-x degrees of freedom of the two
colliding nuclei generate an external current [43]:

Jµ = δµ+δ(x−)ρ1(x⊥) + δµ−δ(x+)ρ2(x⊥) (3.3)

where ρ(1,2) are the color charge densities of projectile and target. This current acts as an
external non-dynamical source for the small-x gluon fields via classical Yang-Mills equa-
tions [Dν , F

νµ] = Jν . At leading order, observables depend on the solution Aµa that is
non-linear to all orders in both ρ1 and ρ2 and can be expressed in terms of the asso-
ciated chromo-electric and chromo-magnetic fields, (Ea,Ba). For example, the energy-
momentum tensor reads [113]

Tµν =
1

4
gµνF λσFλσ − FµλF νλ (3.4)

Prior to the collision (t<0), when Eq. (1.55) is rewritten in the light-cone gauge (A+ = 0)
one obtains the following solution for the gauge field [114]

A± = 0

Ai(A,B)(x⊥) =
i

g
U(A,B)(x⊥)∂iU†(A,B)(x⊥) (3.5)

where A refers to the projectile and B to the target. Therefore, the corresponding vectors
(Ea,Ba) have only transverse components i=1, 2 with respect to the z-axis.

The next step is to compute the gauge field Aµ immediately after the two nuclei hit
each other i.e. at time t= 0. In an Abelian situation, Aµ would be simply the sum of the
incoming transverse fields of each of the nuclei. However, the intrinsic non-linearities of
Yang-Mills equations introduce additional terms. As we have discussed, the two incoming
nuclei satisfy, respectively, the conditions A−(x−= 0) = 0 and A+(x+ = 0) = 0. The Fock-
Schwinger gauge Aτ = (x+A− + x−A+)/τ = 0 (see Appendix B) smoothly interpolates
between the light-cone gauge conditions of the incoming nuclei. In this gauge, the solu-
tion to the classical Yang-Mills equations of motion at t=0 in terms of the gauge fields of
the colliding nuclei reads [115]

Ai = AiA +AiB

Aη =
ig

2
[AiA, A

i
B] (3.6)

This solution has a very rich structure. As anticipated, in addition to the intrinsic trans-
verse fields of the colliding color sheets, there is also a longitudinal component of the
gauge field Aη which extends along the collision axis. At t = 0, it can be related to the
longitudinal component of the chromoelectric field like Aη = −Eη/2. This fact suggests
a picture in terms of color flux tubes with the endpoints on each of the nuclei and a typ-
ical transverse extension radius of 1/Qs. Therefore, at the initial time of a high energy
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nuclear collision the only nonzero components of Fµν are the longitudinal chromoelec-
tric and chromomagnetic fields. Then, the structure of the energy-momentum tensor is
TµνCGC =diag(ε, ε, ε,−ε) where the energy density can be computed as [116]

ε(t = 0) =
1

2
Tr(FijFij) + 4Tr(Aη)2 (3.7)

The shape of Tµν in the CGC is comparable to that of a system with an anisotropy in the
longitudinal direction i.e TµνCGC = diag(ε, pT , pT , pL) with the transverse and longitudinal
pressures given by (pT = ε, pL =−ε). At t= 0, the Glasma is a highly anisotropic state
i.e. the ratio pL/pT is not close to one. A natural question is, if the time-evolution of the
energy-momentum tensor may lead to isotropization and justify the matching with a fluid
description.

To compute the evolution of the system at later times, one has to solve the classical
equations of motion with Eq. (3.6) as initial conditions. So far, the analytic solution is not
known so it has to be computed either numerically or within certain approximations. Note
that with increasing time the system expands and becomes dilute in a such a way that
the description in terms of gluonic fields breaks down. An estimate of the instant up to
which the dynamics can be described in terms of the CGC is t∼ 1/Qs ∼ 0.2÷0.3 fm/c.
This estimate arises from the uncertainty principle: the small-x gluons have predomin-
antly k⊥ ∼ Qs and, consequently, will be released by the collision after ∆t ∼ 1/Qs. Up
to t ∼ 1/Qs, the numerical solution of classical Yang-Mills (also at NLO [117]), assum-
ing a McLerran-Venugopalan distribution for the color charge densities (see Eq. (1.59),
shows that the longitudinal pressure remains at all times much smaller than the trans-
verse one [118]. This leads to an unsatisfactory matching between the CGC description
and hydrodynamics at t∼1/Qs [119].

To bypass this fundamental problem several solutions have been proposed. The
bottom-up thermalization scenario [120] has shown promising results [121, 122]. In gen-
eral terms, the idea is to introduce an intermediate step between the CGC and hydro-
dynamics. The natural choice is to describe the system from t ∼ 1/Qs up to thydro in
kinetic theory. Switching from fields to particles at t∼ 1/Qs is justified as the occupancy
numbers are no longer non-perturbative. The input for the effective kinetic theory is the
gluon spectrum dNg/dyd

2k⊥, that is a function of Aµ in the CGC. Then, when the sys-
tem is sufficiently close to thermal equilibrium, kinetic theory and hydrodynamics provide
equivalent descriptions and a smooth matching between them can be performed. Expli-
cit results of two implementations of this scenario are shown in Fig. 3.6. An orthogonal
solution to the early thermalization puzzle was proposed in the context of the AdS/CFT
correspondance: viscous hydrodynamics may be applicable, even when the pressures
are anisotropic i.e. for times as early as t ∼ 0.25 fm [123, 124]. As a disclaimer, it is
important to keep in mind that N = 4 supersymmetric Yang-Mills is a toy model for QCD
and henceforth, this result should be considered a valuable insight but not a dynamical
solution to the problem of thermalization.

Up to this point we have presented a completely model-independent description of
the initial state of high-energy nuclear collisions within the Color Glass Condensate ef-
fective theory of QCD. Note that we have omitted so far the energy dependence of the
distribution of color charge densities. To extrapolate, in a consistent way, results from
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Figure 3.6: Left: Different components of the energy momentum tensor as a function
of the proper time. Figure extracted from [121]. Right: Pressure evolution starting from
a CGC-inspired model evolved through kinetic theory and matched to hydrodynamics.
Figure extracted from [125].

RHIC to LHC energies a full solution of JIMWLK equations is mandatory. However, as
we have already mentioned, when including the impact parameter dependence into the
evolution equations a regulator/cut-off has to be included ad-hoc to mimic confinement
effects. Such an insufficiency of the theory implies some degree of modeling in the nuc-
lear wave functions at small-x to compare with experimental data. The main differences
amongst the diverse phenomenological CGC approaches [126, 127] stem from this char-
acterization. To provide a more detailed description on how the initial state modelling is
done, we pick IP-Glasma [128], the trendy choice given its very good agreement with a
wide range of experimental data, as an example. We stick to a heavy-ion collision where
subnucleonic degrees of freedom are not considered. For a discussion of their role see
Sec. 3.5. The main ingredients of IP-Glasma can be expressed in an algorithmic fashion
as:

• The transverse positions of the nucleons are sampled from a Woods-Saxon distri-
bution

ρ(r) = ρ0
1 + w(r/R)2

1 + exp((r −R)/a)
(3.8)

where ρ0 is the nucleon density, R stands for the nuclear radius, a corresponds to
the skin depth and w measures the deviation from a spherical shape [129].

• The color charge squared µP per unit transverse area of each nucleon is (x, b⊥)-
dependent and proportional to Q2

s(x,b⊥). The saturation scale is obtained from the
IP-Sat model. This model describes the dipole-nucleon cross section as [130]

N (x, r, b) = 1− exp

[
− πr

2

2Nc
αs(µ

2)xg(x, µ2)T (b)

]
(3.9)

where xg(x, µ2) is the gluon distribution evaluated at µ2 =µ2
0+1/r2 and T (b) is the

impact parameter profile of the proton chosen to be Gaussian. The evolution of N
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is done à la DGLAP and the parameters fitted to HERA data. Note that Eq. (3.9)
is an extension of the MV-model that incorporates small-x evolution in a completely
ad-hoc way.

• The nucleus color charge µA(x,b⊥) is obtained by incoherently summing the indi-
vidual contributions of each nucleon.

• Once µA(x,b⊥) is built the color charge density ρa(x⊥) is sampled adopting the
MV-model (see Eq. (1.60)).

• The color charges ρa(x⊥) are inserted in the classical Yang-Mills equation of motion
that are solved numerically using a lattice formulation. Further, an infrared regulator,
O(m) ∼ Λ, that imposes color neutrality at the nucleon level is inserted into the
definition of the Wilson line:

U(A,B)(x⊥) = P exp

(
−ig

∫
dx−

ρ(x⊥)

∇⊥ +m2

)
(3.10)

Given the quantum nature of the colliding objects this procedure is performed on an
event-by-event basis. It leads to an initial energy density distribution, Eq. (3.7), displayed
on the left side of Fig. 3.7 that is fed into a hydrodynamic evolution. The main feature
is the lumpy shape and high degree of granularity of ε(x⊥) due to fluctuations on length
scales of O(Q−1

s ).
The saturation framework, extensively covered in this section, is not the unique ac-

cepted description of the initial state in the heavy-ion community. On the right hand side
of Fig. 3.7 the initial energy density for a heavy ion collision computed in an alternative
paradigm is shown. It relies on a Monte Carlo implementation of the Glauber Model,
discussed in Chapter 1. The methodology to extend the analytical framework in a Monte
Carlo fashion will not be covered here, but in the following chapter as it constitutes one of
the major projects of this thesis.

Figure 3.7: Initial energy density in the transverse plane obtained with IP-Glasma (left)
and MC-Glauber (right) models. Figure extracted from [128].
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3.3.2 Hydrodynamic evolution

Hydrodynamics is an effective theory that describes the dynamics of a fluid in terms of a
reduced set of macroscopic variables. The underlying microscopic description is kinetic
theory i.e. fluid dynamics follows from kinetic theory in the small mean free path limit. In
our case, the fluid under consideration is the expanding and relativistic nuclear fireball.
In this section the basic ideas of this framework that have been phenomenologically suc-
cessful are discussed. Recent developments in the field of hydrodynamical modeling are
presented. For a comprehensive review, followed in this thesis, the reader is referred to
[131].

A fluid can be characterized locally in space-time by its energy momentum tensor
Tµν(x)1 and by the currents jµi associated to i conserved charges such as baryon number
or electric charge. The equations of motion, in the relativistic case, of the considered fluid
are

∂µT
µν(x) = 0

∂µj
µ
i (x) = 0. (3.11)

These equations demand the conservation of energy, momentum and charge number.
Tµν is a symmetric tensor and has, consequently, 10 independent components. Thus,
for a system with n charges, there are 10+4n independent variables but only 4+n are
constrained by Eqs. (3.11). Therefore, fluid dynamics is, in its more general formulation,
a non-solvable systems of equations. To close the set of equations one has two ways
out: reduce the number of unknowns or include 6+3n additional equations of motion.
The latter is realized in the case of ideal fluid dynamics while the former constitutes an
elegant solution when dissipative effects are introduced in the fluid description. Before
dealing with both cases it is convenient to decompose Tµν and jµ in their most general
form allowed by symmetries:

Tµν = εuµuν − p∆µν + qµuν + qνuµ + πµν

jµi = niu
µ + νµ (3.12)

where ∆µν is a projection operator orthogonal to uµ

∆µν ≡ gµν − uµuν (3.13)

and uµ is an arbitrary normalized time-like vector uµuµ = 1. The physical meaning of uµ

depends on the reference frame and will be discussed hereafter. As an example, the
Landau frame is defined as the coordinate system in which uµ = (1,0). In this reference
frame, a physical interpretation of the quantities appearing in Eq. (3.12) is possible e.g ε
is the energy density, p is the hydrostatic pressure and ni is the density of particles. Note
that with Eq. (3.12) we have just split the 10+4n unknowns as follows: ni depends on n
variables, ε and p are scalars and qµ(3), νµi (3n), πµν(5).

On general grounds, the microscopic properties of the particles that compose the fluid
and its macroscopic description must be related. This is realized in kinetic theory. The

1Note the use of x as a spatial coordinate.
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cornerstone of kinetic theory is the one-particle phase-space distribution function f(x,p)
that is nothing else but the Wigner function (see Sec. 1.2). It measures the number of on-
shell particles in a given unit of phase space, in this case, of the fluid. Actually, omitting
the temporal dependence, Tµν and jµ can be computed as moments of f(x,p) in a local
thermal equilibrium state:

Tµν(x) ≡
∫

d3p

E
pµpνf(x,p)

jµi (x) ≡ qi
∫

d3p

E
pµf(x,p) (3.14)

where qi are charges of the individual particles and E fulfills the relativistic dispersion
relation E =

√
p2 +m2. Unfortunately, the functional shape of f(x,p) is only known

when the system is in local thermodynamical equilibrium, as will be used in the ideal fluid
discussion. In a non-equilibrium situation, such as a dissipative scenario, f(x,p) lacks
of a dynamical meaning in the context of Eqs. (3.14) and one has to, unavoidably, make
approximations. Finally, the one-particle phase-space distribution is not an static object
but evolves with time as dictated by the relativistic Boltzmann equation that reads in its
covariant form:

pµ∂µfi(t,x,p) = Ci[fi(t,x,p)] (3.15)

where all the interactions (decays and collisions) are encoded in the collision kernel C.
The solution of this integro-differential equation in 6+1 dimensions is, in general, not
known analytically. The two more relevant cases of fluid dynamics in heavy ion collisions
are presented below.

• Ideal fluid dynamics: A fluid is said to be ideal, if it is in local thermal equilibrium.
The equilibrium phase space distribution reads

feq(x,p) =
g

(2π)3

1

exp((p · u− µ(x))/T (x))± 1
(3.16)

where g is a degeneracy factor, uµ(x) is the average four velocity of the particles,
T is the temperature and µ refers to the chemical potential. The ± relates to the
fermionic (+) or bosonic (−) nature of the particle. To compute the macroscopic
variables one has to insert feq into Eqs. (3.14). For an ideal fluid, Tµν and jµi are
given by

Tµν = εuµuν − p∆µν

jµi = niu
µ (3.17)

Comparing Eqs. (3.17) with Eqs. (3.12) we observe how the assumption of local
thermal equilibrium significantly reduces the dimensionality of the problem. After
setting the dissipative corrections i.e. qµ,πµν and νµ to zero, the system of 4+n
equations only has 5+n unknown variables left. The missing element to close the
above system is the equation of state p(ε, ni) that connects the so far general de-
rivation to a particular physical system. Thus, after including the EoS and choosing
a set of initial conditions the evolution of the fluid is unambiguously determined by
Eqs. (3.11).
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• Viscous fluid dynamics: The natural extension of the ideal fluid case is to in-
clude small departures of thermal equilibrium. In other words, not to set, a priori,
the dissipative/viscous terms to zero but force them to be small compared to the
equilibrium quantities. This is equivalent to write the distribution function as

f(x,p) = feq(x,p) + δf(x,p) (3.18)

or, in the hydrodynamic language,

Tµν = Tµνeq + δTµν , δTµν ≡ qµuν + qνuµ + πµν

jµν = jµeq + δjµ (3.19)

where Tµνeq and jµeq are given by Eqs. (3.17). The question now is how to determine
the additional 6+3n equations of motion needed to settle the evolution. We are
going to outline the two most popular methods in the framework of 2nd order fluid
dynamics.

The first idea is related to entropy production. Contrary to the ideal case in which
the entropy is conserved along the evolution, when dissipative effects are included
the entropy increases as dictated by the second law of thermodynamics. This fun-
damental bedrock is used to derive the evolution equations of the dissipative terms
as follows. An ansatz for the entropy four-current is performed [131]:

Sµ = suµ + βqµ +Qµ

with Qµ = α0Πqµ + α1π
µνqν + uµ(β0Π2 + β1q · q + β2π

νλπνλ). (3.20)

Note that Qµ contains up to second order terms in the dissipative quantities. This
fact is essential as when only first order terms are considered the solutions of the
evolution equations turn out to be unstable and acausal [132]. Therefore, in order to
ensure the principle of non-decreasing entropy one imposes ∂ ·S≥0. This leads to a
system of equations of motion for the dissipative quantities (Π, qµ, πµν) in terms of 8
transport coefficients (β0, β1 . . .) [133]. These coefficients, just like the EoS, depend
on the microscopic properties of the fluid. They must be obtained from experiment
or lattice QCD. The most relevant ones in phenomenological applications are the
shear (η) and bulk (ζ) viscosities.

The second approach relies on kinetic theory. The off-equilibrium correction can
be expanded up to second order in momentum like δf(x,p) = ε1(x) + ε2(x) ·
p + εµν(x)pµpν +O(p3). Therefore2, the non-equilibrium one-particle phase-space
distribution function depends on 14 independent variables (ε1, ε2, εµν (symmetric),
uµ, T, µ) that can be uniquely mapped to the unknown 14 macroscopic variables
(ε,Π, uµ, qµ, πµν) using the kinetic definitions of Tµν and jµ as given by Eqs. (3.14).
The equations of motion are then derived from the Boltzmann equation [134]. This
is the state-of-the art in hydrodynamic simulations for heavy ion collisions.

In recent years, the necessity to go beyond relativistic viscous hydrodynamics both in
the early and final stages of the collision has been clearly established. In these phases,

2For simplicity, only one conserved charge is considered.
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the QGP fireball is highly anisotropic as one would expected given the evident asym-
metry between longitudinal and transverse directions in a relativistic heavy ion collision.
For the early stages we have already discussed the suggestion of transforming the early
non-equilibrated state into a thermalized medium via kinetic evolution of the gluon distri-
bution arising from the CGC. Alternatively, anisotropic viscous hydrodynamics has been
proposed to describe far from equilibrium systems [135, 136]. The starting point of this
framework is to allow the one-particle distribution function to be momentum anisotropic.
In a system that undergoes one-dimensional hydrodynamical expansion f(x,p) reads
[137]

f(x,p) = feq

(√
p2 + ξ(x)p2

z

λ(x)

)
+ δf(x,p) (3.21)

where ξ(x) quantifies the momentum anisotropy and λ(x) reduces to the temperature
in the isotropic limit, ξ(x) → 0. The field is currently under development and the first
phenomenological results for bulk observables of heavy ion collisions can be found in
[138].

3.3.3 Hadronic rescattering and freeze out

Sooner or later the hydrodynamic description is no longer valid in any of its formulations.
Due to the expansion, the system gets colder and dilute leading to a reduction in the
number of interactions. Therefore, maintaining local thermodynamical equilibrium be-
comes unfeasible. Formally, the validity of the fluid-dynamical limit can be quantified by
the Knudsen number Kn≡ lmicro/Lmacro. Hydrodynamics applies when Kn�1 i.e. when
a clear separation between microscopic length scales (mean free path) and macroscopic
scales (related to the gradients) exists. An estimate of the values of Kn reached in heavy
ion collisions has been presented in [139].

In practice, the conversion from fluid to particles, also called particlization, is per-
formed as follows. First, the transition from partonic to hadronic degrees of freedom is
taken care by a change in the equation of state during the hydrodynamic evolution. Note
that this does not have to take place at the same instant as the particlization, although
is commonly assumed that they occur close in time. Then, single inclusive spectra of
particles is obtained from the phase-space distribution function according to the Cooper-
Frye formula [140]:

E
dN

d3p
=

g

(2π3)

∫

σ
pµf(x,p)dσµ (3.22)

where σ is the freeze-out hyper-surface and dσµ its surface element. Basically,
Eq. (3.22) describes the flux of particles through a 3-dimensional hypersurface determ-
ined by ensuring a constant temperature, energy density or Knuden number. The number
of particle species sampled from the Cooper-Frye prescription is uniquely determined by
the degrees of freedom included in the hadronic equation of state.

At this point of the evolution, we are left with hadrons that may collide and decay,
although not as frequently as in the early stages, before reaching the detectors. This last
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step before the free streaming is described within kinetic theory and has non-negligible
effects on bulk observables. The combination of hydrodynamics and hadronic rescatter-
ing is usually referred to as hybrid approaches [141].

The so-called hadronic afterburners describe the non-equilibrium dynamics of had-
rons by performing N-body simulations that numerically solve the equations of motion
associated to Eq. (3.15) [142, 143]. Hadronic rescattering is the final step in the evolu-
tion3. Afterwards, particles fly to the detectors. The purpose of next section is to show
how to disentangle from this final collection of particles (around 10.000 in a Pb+Pb colli-
sion at LHC energies at mid-rapidity) whether a droplet of QGP was created or not.

3.4 QGP signatures

Several observables have been proposed as standard candles for QGP formation. The
usual strategy is to compare the outcome of a given observable in a heavy-ion collision
with respect to proton-proton considered to be a reliable baseline. To do an apples-to-
apples comparison one has to introduce a scaling factor such as the number of nucleon-
nucleon collisions in A+A. Then, the differences between both collision systems may
be solely attributed to medium effects. Depending on their transverse momentum, pT,
probes are classified into soft (pT . 1÷2 GeV) and hard i.e. particles with a perturbatively
large pT. The latter, relatively rare even in the highest energy collisions, do not thermalize
but act as tomographic probes. In the following two golden probes of the QGP, one of each
sector, will be presented together with their experimental measurement.

3.4.1 Jet quenching

Particles with large transverse momenta are generated in the early stages of a heavy
ion collision, well before the QGP is expected to form, via hard scatterings. Being in
the large momentum regime, the complete machinery of perturbative QCD is safely and
successfully applied. These high energetic parent partons give rise to jets via radiation
processes i.e. a collimated spray of hadrons in the final state. In the presence of a colored
medium the parton propagation is expected to be modified by multiple interactions with
the surrounding plasma [144]. The energy loss suffered by a parton during its ride through
the medium is referred to as jet quenching [145]. Due to this energy loss some of the
high energy particles may thermalize becoming part of the medium.

The simplest consequences of jet quenching can be translated into definition of ex-
perimental observables. For example, high-pT hadrons in heavy ion collisions should be
suppressed when compared to proton-proton collisions. The observable used to quantify
this idea is the nuclear modification factor, RAA, defined as

RAA =
dNAA/d

2pTdy

〈Ncoll〉dNpp/d2pTdy
(3.23)

3Note that although the theoretical description has been lenghty the actual heavy ion collision takes place
in only 20 fm/c.
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where N refers to the number of hadrons and 〈Ncoll〉 is the number of binary nucleon
collisions. This scaling factor is obtained a priori with Monte Carlo Glauber simulations.
In the absence of nuclear modifications this observable would be equal to unity at high
pT. At low pT, particle production follows a scaling with the number of participants and
not with the number of binary collisions. Therefore, RAA is expected to be lower than one.

In Fig. 3.8 the nuclear modification factor measurements at RHIC and LHC energies
are displayed. First, a clear suppression of high-pT hadrons was measured in Au+Au
collisions at

√
sNN =200 GeV and Pb+Pb at

√
sNN =5.02 TeV. Another interesting feature

measured at RHIC is that RAA for photons remains close to unity indicating that electro-
magnetic probes do not feel the presence of the medium. All in all, the measurement of
RAA strongly supports the discovery of the QGP in high energy heavy ion collisions both
at RHIC and LHC.

Remarkably, ALICE [146] and CMS [147] have determined the ratio between hadron
spectra in p+Pb and p+p. The so-called RpA is intended to disentangle whether me-
dium effects are present in p+A collisions. From Fig. 3.8, we observe the absence of jet
quenching i.e. RpA is compatible with one. The straightforward inference is to discard
the possibility of creating QGP droplets in small collision systems such as p+A. As will
be discussed in Sec. 3.5 this observation is highly challenged by the measurements of a
complementary QGP probe: flow harmonic coefficients.
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Figure 3.8: Nuclear modification factor at RHIC energies for different particles and cent-
ralities (left) and at LHC for Pb+Pb and p+Pb collision systems (right). Figures extracted
from [148, 147].

3.4.2 Flow harmonic coefficients

Particle production processes are symmetric with respect to the azimuthal angle, φ,
whose definition in terms of momentum components of the particle is

φ = arctan

(
py
px

)
. (3.24)
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Therefore, one expects an isotropic distribution of particles reaching the detector. How-
ever, a key point during our discussion on QGP formation in ultra-relativistic heavy ion
collisions is that the system thermalizes. Thus, it can be described in terms of macro-
scopic variables such as pressure. According to Euler’s equation of fluid dynamics i.e.:

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p (3.25)

the pressure, p, leads to a common velocity v that depends on the density ρ. The common
velocity is usually referred to as collective flow [149]. This effect has a direct impact on the
momentum distribution of particles and constitutes an indirect probe of the QGP transport
properties such as its viscosity.

Consider a non-central collision as depicted in the left corner of Fig. 3.9. The overlap
region delimits the zone where particles are created, with an isotropic cross section in the
azimuthal angle, in the central rapidity region. Note that the shaded area is asymmetric
i.e. it is an ellipse with its major axis aligned with the y-direction. This spatial anisotropy
leads to a larger pressure gradient in the x-direction. Then, due to the pressure boost,
it is easier for the particles to escape in the x-direction than in the y-direction. Con-
sequently, the transverse momenta are preferentially oriented along the same line. Thus,
the initial spatial anisotropy of the nuclear overlap region is converted into a final state
momentum space anisotropy via large collective pressure gradients during the evolution
of the system. This phenomenon translates into a non-flat measured azimuthal distribu-
tion of particles, dN/dφ. The whole process is sketched in Fig. 3.9. The plane spanned
by the impact parameter and the beam axis, (x, z) in our case, is called reaction plane.
Notice that the impact parameter fluctuates from one event to the next and so it does the
reaction plane.

The azimuthal distribution can be written in the form of a Fourier expansion:

dN

dφ
=
v0

2π
+

1

π

∞∑

n=1

[xn cos[n(φ− ψRP)] + yn sin[n(φ− ψRP)]] (3.26)

where φ is the azimuthal angle of the particle, ψRP is the azimuthal angle of the reaction
plane and the coefficients are given by

v0 =

∫ 2π

0

dN

dφ
dφ

xn =

∫ 2π

0

dN

dφ
cos[n(φ− ψRP)]dφ

yn =

∫ 2π

0

dN

dφ
sin[n(φ− ψRP)]dφ. (3.27)

First, if the azimuthal distribution is normalized v0 =1. Second, in a symmetric collision the
probability of emitting a particle with an angle φ is identical to produce it at −φ. Therefore,
dN/dφ is symmetric and all the yn coefficients vanish. Then, the azimuthal distribution
reads

dN

dφ
=

1

2π

[
1 + 2

∞∑

n=1

vn cos[n(φ− ψRP)]

]
. (3.28)
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Anisotropy in momentum space
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If QGP

Figure 3.9: Collective flow in a peripheral heavy-ion collision. The impact parameter is
directed along the x-direction and z denotes the beam axis.
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A more differential definition includes rapidity and transverse momentum dependence,
i.e.:

E
dN

d3p
=

d2N

pTd2pTdy

[
1 + 2

∞∑

n=1

vn(pT, y) cos[n(φ− ψRP)]

]
. (3.29)

with the so-called flow harmonic coefficients, vn, given by

vn(pT, y) = 〈cos[n(φ− ψRP)])〉 (3.30)

where 〈. . .〉 denotes an average over all particles, summed over all events, in the (pT, y)-
bin under study. v1 is called directed flow and represents an overall shift of the distribution
in the reaction plane. v2 and v3 are referred to as elliptic and triangular flow respectively,
etc.

Although its apparent simplicity, the flow harmonics definition given by Eq. (3.30) en-
tails several complications from an experimental point of view. First, it contains an ele-
ment that cannot be accessed experimentally: the reaction plane. The easiest way to
experimentally estimate the real reaction plane is called the event-plane method [150]
where the event-plane angle is computed as

Ψn =
1

n
arctan




N∑

j=1

wj cos(nφj)

N∑

j=1

wj sin(nφj)




(3.31)

being wj weights chosen to optimize the reconstruction of the reaction plane. Then, the
values of the flow coefficients are estimated as vn{EP} ≡ 〈cos[n(φ − Ψn)]〉/R. R is a
resolution factor that would be equal to unity if the event plane coincides with the reaction
plane. It is commonly calculated by dividing the set of particles into subgroups according
to a certain criterion i.e. their rapidity, randomly, etc. If the whole set is divided into two
sub-events, A and B, the flow coefficients are estimated as [150]

vn(pT, y) =
〈cos[n(φ−ΨA

n )]〉√
〈cos[ΨA

n −ΨB
n ]〉E

(3.32)

where the denominator is averaged over the number of events. Certainly, a systematic
study of the different choices in this method (weights, number of sub-events,etc.) has to
be performed.

The results for the flow harmonic coefficients using the event-plane method both at
RHIC and LHC energies are displayed in Fig. 3.10. The experimental data exhibit ro-
bust collective flows at both energies. Moreover, as mentioned above, one of the free
parameters that can be constrained with flow analyses is the viscosity over entropy ratio,
η/s, that characterizes how perfect a fluid is, that is, the viscosity is zero for an ideal
fluid. The excellent agreement between theory and data displayed in Fig. 3.10 is com-
patible with values of η/s ∼ 0.1 at RHIC and 0.2 at LHC. These values are an order of
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magnitude smaller than any other fluid in nature [151]. Then, the QGP is said to be the
most ideal fluid ever observed. An important comment is in order. Measuring a non-zero
value of the flow coefficients do not unambiguously imply a fluid description i.e. the initial
state dynamics may be responsible for this observation. In other words, the momentum
correlations observed in the final state were there from the very beginning and do not de-
velop during the evolution. Nevertheless, the measured flow strength in ultra-relativistic
heavy ion collisions has only be reproduced, up to date, by evolving these initial state
momentum correlations with hydrodynamics.

To sum up, jet quenching and collective flow in the expanding fireball, among others
measurements, have provided strong indications of the formation of drops of quark-gluon
plasma at RHIC and later confirmed at even higher energies at LHC. In the next section
the analysis of particle correlations and their theoretical interpretation in smaller collision
systems is reported.
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Figure 3.10: Left: elliptic flow measured by PHENIX in Au+Au collision at
√
sNN =200 GeV

compared to a hydrodynamic calculation [152, 153]. Right: anisotropic flow coeffi-
cients measured by ATLAS in Pb+Pb collisions at

√
sNN = 2.76 TeV compared to IP-

Glasma+viscous fluid dynamics simulation [154].

3.5 Hints of collectivity in small systems

3.5.1 Experimental observations

The first discovery at the LHC was the observation in 2010, even before the Higgs boson,
by CMS of ridge i.e. two-particle correlations at small relative azimuth, ∆φ∼0, which ex-
tends over at least several units of ∆η in high multiplicity p+p collisions [155]. This meas-
urement represented a major breakthrough as these correlations could not arise from
particles produced in a binary collision i.e due to transverse momentum conservation
those would appear in opposite azimuthal hemispheres. These azimuthal correlations
were later quantified in terms of flow harmonic coefficients as discussed below.
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A fundamental difference between A+A and p+p (or p+A) collisions is the multiplicity of
the event. While on a Pb+Pb interaction at the LHC around 10.000 particles are produced
at mid-rapidity, the average number of charged particles is ∼ 40 in a p+p collision at√
s=7 TeV. This observation has a direct impact in experimental flow analyses due to the

so called non-flow contributions, significantly relevant when the multiplicity, N , is low. The
event-plane method presented in the previous section relies on a very strong assumption:
all momentum correlations in the system are due to anisotropic flow. However, this is not
always the case as particles coming from the same resonance decay or contained within
the same jet will also have correlated momenta. These sources of correlations, that scale
approximately as 1/N [156] clearly endanger the flow reconstruction. From a theoretical
point of view it is not clear how to compute them. Therefore, the task is to systematically
reduce the troublesome non-flow contributions and isolate the collective flow signal. For
that purpose, methods using multi-particle azimuthal correlations, where the response to
flow and non-flow is better understood, have been developed [157, 158, 159].

To illustrate how these methods works consider the simplest case on which the event-
plane method basically relies: two-particle azimuthal correlations i.e. 〈cos(n[φ1 − φ2])〉
where φi is measured with respect to a fixed direction in the detector. The average is
performed in two steps: first, over all possible combinations of pairs in one event i.e.

〈cos(n[φ1 − φ2])〉 =
1

N(N − 1)

N∑

i 6=j
i,j=1

cos[n(φi − φj)] (3.33)

where autocorrelations are avoided by imposing i 6=j. Then, one averages over all events.
For a given n harmonic, the measured two particle correlations can be written as:

cn{2} ≡ 〈cos(n[φ1 − φ2])〉 = 〈e(in(φ1−φ2))〉 = 〈v2
n + δ2〉 (3.34)

where δ2 represents the non-flow contributions and the nomenclature cn{m} has been in-
troduced that refers to the so-called cumulants, which are genuine multi-particle correla-
tions. The standard assumption to neglect δ2 is only justified when vn � 1/N1/2. Further,
we have assumed that δ2 and vn are uncorrelated. For two-particle cumulants, cn{2}, the
non-flow correlations can be reduced by requiring a large separation in η between the
pairs of particles that enter in Eq. (3.34). In other words, if two particles originate from the
same resonance decay they will have a similar value of η. The effect of this rapidity-gap is
illustrated on the left side of Fig. 3.11. As expected, non-flow contributions are especially
harmful in the low multiplicity regime.

Turning to four particle correlations one finds [163]:

〈cos(n[φ1 + φ2 − φ3 − φ4])〉 = 〈e(in(φ1+φ2−φ3−φ4))〉
= 〈v4

n + (2× 2)v2
nδ2 + 2δ2

2 + δ4〉 (3.35)

where v4
n arises from purely flow correlations between the four particles. Its correspond-

ing non-flow term is δ4 that scales as 1/N3/4. Additional terms are needed to account for
the fact that the four particle correlations may emerge from pairs of two particles correla-
tions. Therefore, non-flow two-particle correlations are included via 2δ2

2 where the factor 2



80

〉 > 0.4 GeV)
T

(p
ch

N〈
0 50 100 150 200

2c

0

0.005

0.01

0.015

{2}2c
|>2}η∆{2,|2c

ATLAS

refEvSel_M
 = 13 TeVsp+p  

| < 2.5η < 3 GeV |
T

0.3 < p

centrality percentile

ε

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ε
ε
{2}ε
{4}ε

0 10 20 30 40 50 60 70 80

{RP}

(a)

2v

0

0.02

0.04

0.06

0.08

0.10

{EP}2    v
{2}2v
{4}2v

{RP}2   v

0 10 20 30 40 50 60
centrality percentile

AMPT Pb-Pb 2.76 TeV

70 80
(b)

Figure 3.11: Left: c2{2} measured by ATLAS in p+p collisions at
√
s= 13 TeV with and

without a rapidity gap. Figure extracted from [160]. Right: elliptic flow simulated in the
AMPT framework [161] with different analysis techniques covered in the text. Figure
extracted from [162].

arises from the two ways of pairing. The last possibility is that two particles are correlated
due to flow and the other two are not that, with the corresponding combinatorial factor,
gives (2 × 2)v2

nδ2. The key point in this discussion is to substract Eqs. (3.34) and (3.35)
in the following manner:

cn{4} ≡ 〈e(in(φ1+φ2−φ3−φ4))〉 − 2〈e(in(φ1−φ2))〉2

= 〈v4
n + 4v2

nδ2 + 2δ2
2 + δ4〉 − 2〈v2

n + δ2〉
= 〈−v4

n + δ4〉 (3.36)

where the last equality holds, if one neglects event-by-event flow and non-flow fluctuations
i.e. 〈v2

2〉2 = 〈v4
2〉. This procedure can be extended up to an arbitrary number of particles

cn{m}. Before explaining how to introduce these fluctuations note the remarkable feature
of the four-particle cumulant: the δ2 contribution has been removed and it only depends
on δ4. Hence, the main advantage of the cumulant analysis is that the contribution of non-
flow correlations to vn extracted from higher order cumulants are suppressed by powers
of particle multiplicity. The flow coefficients from two and four particle cumulants are
obtained from

vn{2} = (cn{2})1/2, vn{4} = (−cn{4})1/4. (3.37)

Finally, if the value of vn does not fluctuate and without non-flow vn = vn{2} = vn{4}.
If the event-by-event fluctuations of vn are characterized by a standard deviation σvn ,
and neglecting non-flow again, vn{2} =

√
〈vn〉2 + σ2

vn [164]. When σvn � vn, vn{4} =√
〈vn〉2 − σ2

vn and the difference between vn{2} and vn{4} can be used to infer σvn [165].
Due to all these arguments, an ordering of the flow harmonic coefficients vn{2}≥vn{4}∼
vn{6} is expected. The differences between the discussed methods to compute vn are
nicely summarize in Fig. 3.11 using a simulation where the reaction plane is known by
definition. Clearly, the estimator that provides a better agreement with v2{RP} is v2{4}.
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The results for the elliptic flow in the three collision systems measured at the LHC are
displayed in Fig. 3.12. Strikingly, a robust signal of a non-zero value of v2 is extracted
even in low multiplicity p+p collisions. Note that v2{2}, even with the rapidity gap, is still
higher due to residual non-flow contributions and fluctuations. These flow-like features
were recently confirmed by the analyses of ATLAS and ALICE [160, 166]. Although
in qualitative agreement, ATLAS and CMS results show non-negligible differences that
affect both the absolute magnitude of vn and their multiplicity dependence. The origin of
these discrepancies has been identified as due to the method used to reduce non-flow
contributions and the classification of the event activity. The different possibilities have
been discussed both at a real data and a Monte Carlo level. For example, in [167, 160]
the sensitivity of multi-particle azimuthal correlations to the multiplicity class definition in
terms of kinematic variables such as (η, pT) and the multiplicity bin-width was studied.
The non-negligible value of v2 in p+p collisions have lead to an intense theoretical debate
on the origin of these azimuthal correlations that will be the subject of the next section.
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Figure 3.12: Integrated elliptic flow of unidentified charge particles as a function of the
multiplicity. Figure extracted from [168].

The vast amount of high-precision data collected in the recent years at the LHC has
allowed to go beyond the analysis of event-averaged observables and explore higher
order moments of their probability distributions. More concretely, measurements of the
correlations between different flow harmonics vn have been performed. The so-called
symmetric cumulants are defined as [159]

SC(n,m) ≡ 〈ei(nφ1+mφ2−nφ3−mφ4)〉 − 〈ein(φ1−φ2)〉〈eim(φ1−φ2)〉
∼ 〈v2

nv
2
m〉 − 〈v2

n〉〈v2
m〉 (3.38)

where the non-flow contributions have been neglected in the last step. Their normalized
version

NSC(n,m) ≡ 〈v
2
nv

2
m〉 − 〈v2

n〉〈v2
m〉

〈v2
n〉〈v2

m〉
(3.39)
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eliminates the dependence on the absolute magnitude of vn(m). The measurement of
Eq. (3.38) would be zero by definition, if the fluctuations of vn and vm were totally uncor-
related, in the same way as the Pearson’s correlation coefficient. Instead, a positive value
of Eq. (3.38) implies that an event with vn> 〈vn〉 would be more likely to have vm> 〈vm〉
i.e. vn and vm are said to be correlated. Equivalently, if SC(n,m) < 0 the two flow har-
monic coefficients under consideration are anti-correlated. In particular, by measuring
SC(2,3) we can gain information about initial state fluctuations whereas SC(2,4) is mostly
sensitive to the strongly interacting medium properties [169].
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Figure 3.13: Top: SC(2,3) and SC(2,4) as a function of the multiplicity in the three collision
systems. Bottom: normalized symmetric cumulants. Figures extracted from [170].

The experimental study of symmetric cumulants was pioneered by ALICE [171] in
Pb+Pb collisions at

√
sNN = 2.76 TeV. Recently, CMS has performed an experimental

analysis of the symmetric cumulants as a function of the multiplicity in the three collision
systems available at the LHC: p+p, p+Pb and Pb+Pb [170]. The experimental results,
shown in Fig. 3.13, suggest a similar pattern across systems. Concretely, SC(2,4) is
always positive although its multiplicity dependence varies from p+p to Pb+Pb. Further,
NSC(2,4) is clearly modified when varying the system size. On the contrary, the sign
of SC(2,3) is strongly multiplicity-dependent: at low multiplicities SC(2,3) is found to be
positive. However, it turns out to be negative for very high multiplicities,Noffline

trk >60 in both
p+Pb and Pb+Pb and Noffline

trk ∼ 100 in p+p. Moreover, NSC(2,3) in the high-multiplicity
regime is found to have not only the same sign in the three collision systems but the same
quantitative value as well.
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Other measurement showing similarities between high-multiplicity proton-proton inter-
actions and p+Pb and Pb+Pb is the enhanced production of multi-strange hadrons [172].
All together, the experimental data is constantly reigniting the debate on whether collect-
ive effects, precedently attributed to the formation of QGP droplets, are being observed
in small collision systems such as p+p and p+Pb.

3.5.2 Theoretical perspective

From a theoretical point of view, we have seen that the well established paradigm of
either Monte Carlo Glauber or CGC initial conditions followed by viscous hydrodynamic
evolution has successfully described data on bulk observables in heavy-ion collisions.
Turning to smaller systems the situation is less conclusive and two schools of thought
have emerged to tackle the origin of these correlations.

• Hydrodynamical evolution: One option is to consider that there is no fundamental
difference between the flow signals observed in p+p and Pb+Pb collisions and the
Panta Rhei principle holds [173, 174]. This idea was adopted in [175] to simultan-
eously describe the integrated flow values in the three collision systems using vis-
cous hydrodynamic evolution. A reasonable agreement with experimental data was
found with the QGP parameters set to be the same in the three collision systems.
Earlier, in the case of p+Pb interactions, a successful description of the harmonic
flow was found in [176] using a similar set-up consisting on Glauber+event-by-event
viscous relativistic hydrodynamics and with the EPOS model [177]. Regarding, the
symmetric cumulants data a satisfactory description within the hydro paradigm was
achieved in [169, 178] in the A+A case. The major criticism to this approach is re-
lated to the break down of a fluid description in a system that is neither in thermal
equilibrium nor isotropic. The validity of hydrodynamics outside of equilibrium was
discussed in [179]. Possibly, there is no way around quantitatively studying the
Knudsen numbers reached in p+p collisions to obtain firm knowledge on the applic-
ability of hydrodynamics.

• Initial state dynamics: Azimuthal anisotropies of multiparticle correlations can be
generated in the Color Glass Condensate framework without the need of final state
interactions due to QGP formation [180, 181]. This can be understood in a very
simplified picture. For instance, consider a p+Pb collision in which uncorrelated
partons from the proton scatter off the strong color fields of the nucleus. Then,
each parton receives a transverse momentum kick in the scattering process. As
we discussed in Section 3.3.1 a spatial extension, or domain, with a characteristic
size of 1/Qs can be attributed to the color fields. Therefore, when two partons, in
the same color state, scatter off the same domain they acquire a similar transverse
momentum kick that gives rise to a correlation. The diagrammatic representation of
the scattering in coordinate space is displayed in Fig. 3.14. However, the diagrams
contributing to the momentum correlations are suppressed by the number of color
sources [180] and consequently the signal is weak. An additional degree of free-
dom, namely the orientation/polarization of the chromoelectric field that naturally
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collimate the partons, is included in the color domain model that enhances the flow
signal [182]. Thus, two partons that were completely uncorrelated develop a mo-
mentum correlation that gives rise to a non-zero signal of vn solely by means of the
scattering process. In short, non-trivial initial state correlations can mimic collectiv-
ity. Remarkably, within this picture, a quantitative description of the ridge data was
provided in [183]. A step forward has been recently presented in [184, 185] where,
not only two but multi-particle azimuthal correlations and SC(n,m) are computed
within the CGC in qualitative agreement with the p+Pb results. In the p+p case, the
possibility of generating a non-zero vn signal by converting the gluon distribution
as obtained in classical Yang-Mills into hadrons with the Lund string fragmentation
model contained in PYTHIA was explored in [186].

To finalize, the fact that both frameworks, conceptually orthogonal, are able to de-
scribe not all but some features of the experimental data keeps alive the flame of this
exciting debate. Claims in favor of one particular approach should not be done solely
on the basis of agreement with flow harmonic coefficients data. Such is a necessary
but not sufficient condition. Together with stringent experimental predictions of the two
models, a robust theoretical description across a wide kinematic range from p+p to A+A
collisions seem unavoidable to work out which of them contains the most suitable dy-
namics underlying azimuthal correlations in small systems. An alternative and pragmatic
view is to consider that this is not a black and white question. In that regard, a com-
bination of both initial and final state momentum correlations cannot be discarded. The
fundamental tasks in this gray area are to asses the strength of both effects in a given kin-
ematic window and ensure a smooth matching between frameworks. This line of thought
was explored in [187], on a weak coupling description of p+Pb interactions i.e. classical
Yang-Mills+effective kinetic theory, finding that the relative importance of the initial state
momentum correlations with respect to the ones built up in the evolution depend on the
multiplicity of the event and the transverse momenta considered. In addition, a quant-
itative theory-to-data agreement in flow coefficients measurements in p+Pb has been
achieved by feeding CGC-like initial momentum correlations into a viscous hydro evolu-
tion [188].

3.6 This thesis in the context of QGP physics

The parametrization of the geometry of the collision is mandatory in any theoretical model
attempting to describe the striking experimental results that suggest collective behavior
in small systems at the LHC, such as the non-zero value of the flow harmonic coefficients
vn. This information is indispensable regardless on whether the origin of these azimuthal
correlations is attributed to the initial state dynamics or to the dynamical evolution of the
expanding fireball as in the nucleus-nucleus case. Precisely the smaller systems exhibit
a high degree of sensitivity to the description of the proton structure and its fluctuations.
The origin of the fluctuations is intimately related with the quantum mechanical nature
of the system. As an example, the importance of considering subnucleonic degrees of
freedom when describing the elliptic flow in p+Pb within the IP-Glasma framework was
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Figure 3.14: The grey blobs represent the domains of color fields in the target off which
two independent quarks at transverse positions (x,u) scatter. The momentum kick is
equivalent, in the conjugate coordinate space, to a shift in the positions in the amplitude
and conjugate amplitude. Left: independent scattering of the two quarks. Right: connec-
ted diagram that leads to genuine correlations. Figures adapted from [180].

realized in [188]. While current theoretical models differ in many aspects, as we have
discussed in the previous section, all [188, 189, 190, 191, 192, 193] assume a similar
picture of the proton that consists on:

• Three or more subnucleonic degrees of freedom dubbed valence quarks, constitu-
ent quarks or hot spots.

• Two relevant scales: the radii of the proton and the constituents.

• The subnucleonic components of each colliding proton are completely independent
from each other i.e. they are uncorrelated.

However, in our view, it seems unrealistic that the components of the wave function of the
proton do not know anything about each other. This claim is phenomenologically sup-
ported by the substantial impact of spatial correlation in the description of the hollowness
effect (see Chapter 2). The subject of the next chapter is to go beyond the current as-
sumptions on the proton structure in the literature and include spatial correlations among
the sub-nucleonic degrees of freedom. For this purpose, a Monte Carlo Glauber event
generator to study proton-proton interactions at different collision energies has been de-
veloped. Our work tackles the initial state of hadronic collisions i.e. t=0 in the language
of Fig. 3.5.
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4
Initial state studies in p+p collisions

In this Chapter we investigate the effect of non-trivial spatial correlations between pro-
ton constituents, considered to be gluonic hot spots as introduced in Chapter 2, on
the initial conditions of proton-proton collisions from ISR to LHC energies, i.e.

√
s =

52.6, 7000, 13000 GeV. Our analysis relies on a Monte Carlo Glauber approach including
fluctuations in the hot spot positions and their entropy deposition in the transverse plane.
We explore both the energy dependence and the effect of spatial correlations on the
number of wounded hot spots, their spatial distribution and the eccentricities, εn, of the
initial state geometry of the collision. A quantitative way to characterize the initial geo-
metry anisotropy of the overlap region in a collision is to compute the spatial eccentricity
moments (εn). A precise understanding of the geometry of the collision is the first step to-
wards addressing the enigmatic flow signals in small collision systems at LHC energies.
Precisely in a hydrodynamical picture, the flow harmonic coefficients are the response
to the anisotropy in the initial density profile. Actually, a linear response, vn ∝ εn, was
extensively assumed for a long time. Recently, non-linear terms have been shown to be
non-vanishing [194, 195].

Moreover, we present a systematic study of the normalized symmetric cumulants,
NSC(n,m), at the eccentricity level in proton-proton interactions at

√
s= 13 TeV. Further,

we explore the dependence of our conclusions on the number of hot spots, the values
of the hot spot radius and the repulsive core distance. Our results add evidence to the
idea that considering spatial correlations between the subnucleonic degrees of freedom
of the proton may have a strong impact on the initial state properties of high-energy
proton-proton interactions.

This chapter is based on the publications:

• J. L. Albacete, H. Petersen, A. Soto-Ontoso, Correlated wounded hot spots in
proton-proton interactions, Phys.Rev. C95 (2017) no.6, 064909 [196].

• J. L. Albacete, H. Petersen, A. Soto-Ontoso, Gluonic hot spots and spatial correla-
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tions inside the proton, Nucl.Phys. A967 (2017) 924-927 [197].

• J. L. Albacete, H. Petersen, A. Soto-Ontoso, Symmetric cumulants as a probe of
the proton substructure at LHC energies, Phys.Lett. B778 (2018) 128-136 [198].

4.1 Setup

The proton is a quantum mechanical system. Therefore, in proton-proton collisions at the
LHC its intrinsic properties, such as the arrangement of its constituents or how effective
they are producing new particles, fluctuate on an event-by-event basis. Consequently,
the model presented in Chapter 2 is not sufficient and has to be extended to accomodate
these stochastic features. For that purpose, we developed a Monte Carlo Glauber event
generator in ROOT [199] and C++. Similar codes for nucleus-nucleus collisions can be
found in the literature [129, 200]. In this section, a detailed description of the building
blocks is presented. In the following, for simplicity, a proton is considered to be formed
by 3 hot spots. The impact of a varying number of hot spots Nhs = (2, 4) is studied in
Sec. 4.3 and 4.4.

4.1.1 Impact parameter distribution

First of all, the impact parameter of the collision is chosen randomly from the distribution

dNev/db ∝ b (4.1)

up to bmax = 2 fm & 2Rp as displayed in the left side of Fig. 4.1. In our picture, the
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Figure 4.1: Left: impact parameter distribution as given by Eq. (4.1). Right: Typical event
for p+p with the target constituents in red and the projectile ones in blue.

impact parameter is the distance between the centers of the two protons in the x-direction.
Thus, the centers of the colliding protons are located at (x, y) = (−b/2, 0) and (b/2, 0).
Furthermore, the z-component will be neglected in the whole calculation i.e. the analysis
is performed exclusively in the transverse plane. We have checked that beyond b= 2 fm
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the number of events with at least one collision is negligible. The reaction plane is defined,
in our case, by the (x, y)-plane.

4.1.2 Sampling hot spots positions

In each p+p event, after generating a random impact parameter for the collision, we
sample the transverse positions of the three hot spots in each proton {~si} according to
the distribution defined in Chapter 2 i.e.:

D(~s1, ~s2, ~s3) = C

3∏

i=1

e−s
2
i /R

2
δ(2)(~s1 + ~s2 + ~s3)×

3∏

i<j
i,j=1

(
1− e−µ|~si−~sj |2/R2

)
. (4.2)

It should be noted that the extension of Eq. (4.2) to an arbitrary number of hot spots is
straight forward. As mentioned in the previous chapter, most of the models in the lit-
erature [201, 192, 193, 188, 175, 191, 202] implement a proton geometry following the
two first terms of Eq. (4.2) i.e. the hot spots are distributed according to Gaussian func-
tions with the natural constraint of fixing the centre of mass of the constituents system
to the centre of the proton. However, with this set up the most probable configurations
are the ones with three hot spots in the middle of the proton and the one with two hot
spots fully or partially overlapping and the third one separated due to the δ-function like
in the quark-diquark model. The third term of Eq. (4.2) allows us to go beyond these
approaches by implementing short range repulsive correlations among all pairs of hot
spots that effectively enlarge the mean transverse separation |~si − ~sj | between them. It
should be noted that we do not impose any kind of artificial minimum-distance between
the hot spots as it is done in other works in the literature to mimic the short range cor-
relations [200]. This would directly modify the single particle distribution. We generate
the polar coordinates of the three hot spots, that are next easily converted into Cartesian
ones, sampling D(~s1, ~s2, ~s3) for each proton. An illustrative example of a p+p interaction
generated in this fashion is displayed on the right side of Fig. 4.1.

4.1.3 Collision criterion

Once the hot spots of projectile and target are located in the transverse plane, the prob-
ability of two hot spots to collide is sampled from the inelasticity density

Gin(d) = 2e−d
2/2R2

hs − (1 + ρ2
hs)e

−d2/R2
hs (4.3)

where d is the transverse distance between a pair of hot spots with radius Rhs, and ρhs
is the ratio of real and imaginary parts of the hot spot-hot spot scattering amplitude.
This collision probability results from a Gaussian parametrization of the elastic scattering
amplitude (see Eq. (2.29)). We evaluate this probability for all pairs of hot spots and refer
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to them as wounded [203, 204], if they have suffered at least one collision. Thus, in each
event, the maximum number of wounded hot spots Nw and collisions Ncoll is 6 and 9
respectively. Another possibility that has been studied in the literature is to consider the
number of binary collisions instead of the wounded hot spots scenario or a combination
of both. We have tested that our main conclusions are not affected by this choice and
take the wounded hot spot approach for simplicity. For each event, we keep track of the
position of each wounded hot spot, (xw, yw), for later usage in the calculation of spatial
distributions, eccentricities or any other quantity of interest.

4.1.4 Entropy deposition

Subsequently, we consider that each wounded hot spot located at (xw, yw) deposits a
random amount of entropy smeared around the center of the wounded hot spot following
a Gaussian prescription according to

s(x, y) = s0
1

πR2
hs

exp

(
−(x− xw)2 + (y − yw)2

R2
hs

)
(4.4)

where s0 fluctuates independently for each wounded hot spot. The choice of a Gaussian
profile in Eq. (4.4) avoids unphysical spiked entropy deposition and endows our model
with a more realistic description. To characterize the entropy deposition s0 we rely on
a very similar approach to the one recently proposed in [192]. Essentially, entropy de-
position is directly related to the number of charged particles produced in p+p collisions.
The charged hadron probability distribution in an incoherent description of the particle
production process can be written as

P(Nch) =

Nw∑

i=2

Pw(i)
∑

n1,n2,...,ni

Phw(n1)Phw(n2) . . .Phw(ni)

× δ(Nch − n1 − n2 − . . .− ni) (4.5)

where Pw is the probability distribution of i hot spots to be wounded and Phw is the
distribution of the number of hadrons produced by a single wounded hot spot. To make
clearer the interpretation of Eq. (4.5) consider that we want to know the probability of
producing Nch =3 in a collision where two hot spots have been wounded. Then, Eq. (4.5)
reduces to:

P(3) = Pw(2)
[
Phw1(3)Phw2(0) + Phw1(0)Phw2(3)

+ Phw1(2)Phw2(1) + Phw1(1)Phw2(2)
]

(4.6)

that is, the 3 charged particles can be produced by only one hot spot (the two first terms)
or each of them contribute (the other two terms). According to Eq. (4.5) each wounded
hot spot contributes independently to the total charged hadron multiplicity distribution in
p+p collisions. An important comment is in order at this point. Particle production is
treated incoherently, since we assume that each hot spot contributes the same way to
the multiplicity distribution independent of the number of interactions. However, it seems
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reasonable to think that a certain degree of coherence should be included in a realistic
model for particle production. By coherence we refer to the fact that an event where e.g.
one hot spot in the projectile undergoes simultaneous scattering with three constituents in
the target may not contribute in the same way to P(Nch) as the incoherent superposition
of three 1 vs. 1 interactions. For instance, in the IP-Glasma model the saturation scale
is used as a degree of freedom to describe coherence [128]. Exploring a more realistic
coherent description of the charged hadron multiplicity distribution is left for future work.
Up to this point there is still one missing element in Eq. (4.5): the precise functional form
for the hadron multiplicity distribution from each wounded hot spot Phw(Nch). The latest
analysis of experimental data on charged hadron multiplicities by the LHC collaborations
has revealed that a double negative binomial function provides a better description of the
data than just a single one [205]. This is the choice adopted in this work to parametrize
Phw:

Phw(Nch) = α
Γ(Nch + κ1)nNch

1 κκ11

Γ(κ1)Nch!(n1 + κ1)Nch+κ1
+

(1− α)
Γ(Nch + κ2)nNch

2 κκ22

Γ(κ2)Nch!(n2 + κ2)Nch+κ2
(4.7)

where Γ(x) is the Euler Gamma function, the averages are given by ni, larger κi means
smaller fluctuations and α is a mixing parameter. The parameters {ni, κi, α} are adjusted
to reproduce the observed multiplicity distributions at all the collision energies considered
in this work, independently. We achieve a good description of the data, χ2/d.o.f ∼ 1.2−2,
for all cases as it is shown in the left side of Fig. 4.2. Nevertheless, there are small
departures at low values of Nch at

√
s = 13 TeV and we overshoot the tail of the ISR

data. We have not included in the fit the last 5 points of the experimental data of the
ATLAS Collaboration at

√
s= 13 TeV due to the large systematic uncertainties and their

tiny contribution to the probability distribution.
Within the current context, the main purpose of an accurate description of the

charged hadron multiplicity distribution is to provide phenomenological guidance to a
non-measurable quantity, the shape of the entropy distribution i.e. s0 in Eq. (4.4). In gen-
eral, the negative binomial distribution can be expressed as a convolution of a Gamma
and a Poisson distributions. Following the usual assumption that the particle emission is
given by a Poissonian process with the mean proportional to the entropy deposited in the
fluid element, the entropy distribution can be written as a double Gamma distribution:

P(s0) =α
sκ1−1

0 κκ11

Γ(κ1)nκ11

exp (−κ1s0/n1)+

(1− α)
sκ2−1

0 κκ22

Γ(κ2)nκ22

exp (−κ2s0/n2). (4.8)

The parameters {ni, κi, α} in Eq. (4.8) are identical to the ones of the negative binomial
distribution, Eqs. (4.5-4.7), that yield a precise description of the measured multiplicity
distributions (see Table 4.2).
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4.1.5 Centrality classes

In this work we characterize the centrality of an event by its deposited entropy that is
tightly related with the event multiplicity. In other words, the more entropy is deposited
by the wounded hot spots, the more central the event. At this point it is worth to men-
tion that the definition of centrality in small systems is a highly debated topic nowadays.
Originally, the term centrality was borrowed from the heavy ion community. In these type
of collisions a systematic correlation between the number of charged particles produced
in an event (a measurable quantity) and the impact parameter (a theoretical variable) ex-
ists. Then, small values of Nch are related to peripheral collisions i.e. large values of the
impact parameter. In the case of small systems the correspondance between multiplicity
and b becomes much weaker. These kind of systems are dominated by fluctuations that
invalidate a geometric interpretation of multiplicity as a measure of collision centrality as
was explicitly shown in [193] and later confirmed in our studies. A hard collision might
produce lots of particles independently of b. To sum up, in our context by more central we
mean more effective producing entropy and it does not always imply a small impact para-
meter. On the right side of Fig. 4.2 we show the integrated entropy deposition distribution
for a particular choice of the parameters, the rc=0.4 fm case (to be described below), at√
s=13 TeV where S is computed in each event as

S =

Nw∑

i=2

si0 (4.9)

and s0 is given by Eq. (4.8). We have superimposed the division of the events in centrality
classes depending on their contribution to the integrated entropy. Then, the [0−1%] bin
contains one percent of the total number of events around the maximum value of the
integrated entropy.

4.1.6 Parameters

Our model has four free parameters {Rhs, R, rc, ρhs}. For a given value of rc we constrain
{Rhs, R, ρhs} to reproduce the measured values of the total p+p cross section (σtot) and
the ratio of real and imaginary parts of the scattering amplitude (ρ) at each collision
energy as was done in Sec. 2.4. Upon imposing these constraints we ensure that our
results are phenomenologically compatible. Note that the values of the parameters of
our model that fulfill the phenomenological conditions are not unique but rather conform
a whole region of the parameter space. As shown below, we have chosen representative
values of those allowed regions.

Regarding the correlation structure of the hot spots, Eq. (4.2), we have considered two
extreme scenarios: the uncorrelated case labeled as rc=0 and a repulsive core of 0.4 fm
labeled as rc=0.4. Being the main goal of this work to explore the net effect of correlations
we have considered a third situation, rc=0, nc, in which we set the repulsive distance to 0
but choose the values of {Rhs, R, ρhs} as in the rc=0.4 case, not reproducing though the
experimental values of σtot and ρ. However, although the rest of the parameters coincide,
this is not enough to consider that differences between the results of rc=0.4 and rc=0, nc
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Figure 4.2: Left: Fit to the charged particle multiplicity distributions for different collision
energies in the wounded hot spot model, Eqs. (4.5-4.7). The experimental data from
top to bottom is taken from: ATLAS [206], ALICE [207] and ISR [208]. Note that each
experiment has a different rapidity acceptance window, η, that influences the shape of
the data. Also, the ALICE (red) and ISR (blue) curves are multiplied by 0.1 and 0.01
respectively. Right: Histogram of the integrated entropy deposition for the rc = 0.4 fm
case at

√
s=13 TeV. Vertical red lines labelled by black numbers define centrality classes

as fractions of the total number of events.

are then only attributable to the presence of short-range repulsive correlations. This is so
because for the same values of {Rhs, R, ρhs} the hot spots of the correlated distribution
have a larger mean transverse position (or r.m.s), 〈s1〉, defined as

〈s1〉 =

∫
s1d~s1d~s2d~s3D(~s1, ~s2, ~s3) (4.10)

where D(~s1, ~s2, ~s3) is given by Eq. (4.2), than for rc = 0. In order to avoid this artificial
swelling we have included one last scenario, labeled as "〈s1〉 fixed", in which {Rhs, ρhs}
are the same as in the rc=0.4 case butR is chosen to reproduce the 〈s1〉 of the correlated
distribution.

The values of {Rhs, R, rc, ρhs} are shown in Table 4.1. Further, the parameters of the
double Gamma distribution that controls the entropy deposition s0 obtained after fitting
the multiplicity distributions are given in Table 4.2. Note that the fits shown in Fig. 4.2
correspond to the rc = 0.4 case. Good quality fits were found in the other scenarios as
well.

Once the building blocks of our model have been presented in the next sections we
display its results.

4.2 Basic quantities in a Monte Carlo Glauber calculation

Before addressing the two relevant observables for flow studies i.e. spatial eccentricities
and their fluctuations in terms of symmetric cumulants, it is interesting to explore the
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effect of spatial correlations in core elements of any Monte Carlo Glauber simulation such
as the average number of wounded objects or the radial distribution of the participants.
The following results have been obtained after generating 500k events with the set of
parameters corresponding to

√
s= 7 TeV. The results are qualitatively the same for ISR

and LHC-Run II energies. The averages have been performed over the number of events
with at least one hot spot-hot spot collision.

rc=0.4 fm rc=0 〈s1〉 fixed√
s [GeV] Rhs [fm] R [fm] Rhs [fm] R [fm] R [fm]
52.6 0.19 0.72 0.23 0.73 0.84

7000 0.3 0.69 0.39 0.65 0.83

13000 0.32 0.76 0.41 0.75 0.87

Table 4.1: Parameters of the hot spot distribution and the inelasticity profile in Eqs.(4.2-
4.3) for various p+p collision energies with (rc = 0.4 fm) and without (rc = 0) short-range
repulsive correlations. We set ρhs= 0.1 in all cases. On the last column, the values of R
for the "〈s1〉 fixed" case are shown.

√
s=62.5 GeV n1 κ1 n2 κ2 α

rc=0.4 fm 7.81 36.10 2.46 2.20 0.52

rc=0 5.61 49.12 0.07 0.03 0.77

rc=0, nc 6.48 26.58 0.44 41.61 0.72

〈s1〉 fixed 6.70 18.14 0.43 27.98 0.73

√
s=7 TeV n1 κ1 n2 κ2 α

rc=0.4 fm 11.86 2.45 2.04 1.49 0.27

rc=0 10.86 2.27 1.72 1.68 0.24

rc=0, nc 11.47 2.40 1.92 1.54 0.26

〈s1〉 fixed 11.69 2.40 1.98 1.50 0.27

√
s=13 TeV n1 κ1 n2 κ2 α

rc=0.4 fm 27.29 1.51 4.68 1.66 0.37

rc=0 26.26 1.55 4.16 1.79 0.31

rc=0, nc 21.70 1.51 4.38 2.50 0.48

〈s1〉 fixed 26.47 1.42 4.54 1.73 0.37

Table 4.2: Default values of the parameters of the double Gamma distribution that char-
acterizes the fluctuating amount of entropy each wounded hot spot deposits, s0, for√
s= 52.6, 7000, 13000 GeV. The errors of the parameters arising in the fitting procedure

are ∼ ±0.01.
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Figure 4.3: Left: Average number of wounded hot spots for different impact parameter
bins of the collision. The horizontal lines indicate the width of the bins. Right: Normalized
radial distribution of the wounded hot spots with respect to the reaction plane.

4.2.1 〈Nw〉 vs. b

We begin our analysis by computing the average number of wounded hot spots in p+p col-
lisions as a function of the impact parameter b for the four different scenarios introduced
above. The results are shown in the left part of Fig. 4.3. We note that the qualitative
behavior of the impact parameter dependence of 〈Nw〉 is not affected by the inclusion of
correlations. For instance, the number of wounded hot spots is larger in central collisions
(b=0) than in peripheral ones, as expected. However, in central to moderately peripheral
collisions, 0<b<0.8 fm, the average number of wounded hot spots is smaller in the cor-
related scenario (squares vs. empty dots/triangles in Fig. 4.3). We have also computed
the mean number of wounded hot spots in a proton-proton interaction defined as

Nw = (

Nev∑

i=1

N i
w)/Nev (4.11)

where Nev is the total number of events with at least one collision. We find that Nw is
slightly reduced ∼ 5% in the rc = 0.4 case with respect to fixing 〈s1〉. Then, a very basic
element of all Monte Carlo Glauber calculations i.e. the mean number of wounded ob-
jects, hot spots in our case, is already affected by the modification of the initial geometry
of the collision as it is illustrated in Fig. 4.3. Nevertheless, the dominant scale affecting
〈Nw〉 is not rc but Rhs i.e. the bigger the hot spots, the larger the value of 〈Nw〉. It is worth
to mention that, in agreement with [192], we find moderate variations in the mean number
of wounded hot spots as the energy increases. Indeed, for the rc = 0.4 case we obtain
Nw=2.3, 2.74, 2.75 at

√
s=52.6 GeV, 7 TeV and 13 TeV respectively. The rising behavior

of Nw with increasing collision energy can be directly attributed to the growth of Rhs as
depicted in Table 4.1. In other words, in a geometrical framework as it is the Monte Carlo
Glauber model, bigger hot spots translate into more collisions between them.
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4.2.2 Radial distribution of wounded hot spots

Another important feature of the presence of repulsive correlations is their effect on the
spatial distribution of the hot spots. In the right part of Fig. 4.3 we compare the normal-
ized radial distribution of the wounded hot spots, characterized by their polar coordinate
rw=

√
x2
w + y2

w, resulting from the uncorrelated and correlated scenarios. One sees that
for rc = 0.4 fm, the radial distribution gets broader and its mean value is shifted to larger
values than in the uncorrelated case. Therefore, a plausible interpretation in a geomet-
rical picture is that when including repulsive correlations the probability to find wounded
hot spots on the edges of the interaction region is increased.

4.2.3 〈S〉 vs. b and Pw(i)

The behavior of the average entropy deposited, 〈S〉, as a function of the impact parameter
is depicted in Fig. 4.4. We found a similar trend in the four cases considered in this work:
〈S〉 decreases as a function of the impact parameter as it should be by construction in our
model i.e. on average the more central the smaller the impact parameter or, equivalently,
larger number of wounded hot spots, the larger the entropy deposited. It is important to
emphasize that this is true on average and not on an event-by-event basis as we have
already discussed. We see that the difference between "rc = 0.4" and "〈s1〉 fixed" cases
is small in Fig. 4.4.

An easy to way to crosscheck if the parameters of the multiplicity distribution extracted
from the fits are in agreement with other features of the Monte Carlo calculation is to
compute the average probability of i hot spots to be wounded. This factor, Pw(i) takes
part in the functional shape of P(Nch) (see Eq. (4.5)) whose parameters are fitted to
data. From Fig. 4.4 we observe how correlations favor collisions with a small number of
wounded hot spots. This has a direct consequence: in order to reproduce the probability
distribution for charged particles each wounded hot spot has to be more efficient or,
equivalently produce more particles on average than in the uncorrelated cases. In other
words, when trying to describe P(Nch) a trade-off between the mean number of wounded
hot spots and the average number of produced particles by hot spot exists. That is, if the
mean number of wounded hot spots decreases from the correlated to the uncorrelated
case it has to be compensated by an increase on the averages in the negative binomial
(n1, n2). In fact, this argument is confirmed by the parameters extracted from the fits
displayed in Table. 4.2.

4.3 Spatial eccentricity moments

A quantitative measurement of the initial anisotropy of the geometry in a collision, which
results into an asymmetric transverse flow by means of the pressure gradients, is given
by the spatial eccentricities that are defined as

εn =

√
〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2

〈rn〉 (4.12)
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Figure 4.4: Left: Average entropy deposited as a function of the impact parameter. Right:
Average probability of i hot spots to be wounded that enters into Eq. (4.5).

where 〈·〉 denotes the average weighted by the entropy deposition i.e.
∫

dxdy(·)s(x, y)
and includes a sum over all wounded hot spots (see Eq. (4.4)). By construction, 0≤εn≤1.
For n = 2, Eq. (4.12) reduces to the standard definition of the eccentricity of an ellipse
i.e. ε2 = 0 for a circle. In our calculation εn are defined on an event-by-event basis with
respect to the participant plane as described in the next section.

4.3.1 Participant plane

In a Glauber Monte Carlo event, when calculating eccentricities of a system that suffers
fluctuations, in our case of the hot spots positions and of their entropy deposition, one
important aspect should be noted. To make the discussion more intuitive we take ε2

as an example but the idea generalizes to any moment. In a given event, the minor
axis of the ellipse in the transverse plane formed by the wounded hot spots does not
necessarily point along the impact parameter direction as given in Fig. 4.1. In other
words, the principle axes of the ellipse may be tilted by an angle ψ2 with respect to the
(x, y)-directions. This new reference frame defined by the tilted axes is called participant
plane. In order to avoid that the spatial eccentricities lose their power of characterizing
the anisotropy of the collision one has to transform the wounded hot spots coordinates to
ensure that the minor and major axes of their distribution align with the x and y axes. This
situation is illustrated in Fig. 4.5 where the green circles represent the (xw, yw) positions
of the wounded hot spots and the purple ones correspond to the transformed coordinates.
This transformation is a two-step procedure.

First, Eq. (4.12) is valid whenever 〈x〉 = 〈y〉 = 0. Then, the coordinates are shifted
such that (0, 0) coincides with the center of mass of the participants system. In our case,
the wounded hot spots create an entropy distribution in the transverse plane as given by
Eq. (4.4). Therefore, the shifted distribution, s′(x, y), is given by

s′(x, y) = s

(
x−

∫
xs(x, y)dxdy, y −

∫
ys(x, y)dxdy

)
. (4.13)
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Figure 4.5: Illustrative example of a
√
s = 7 TeV p+p event with 5 wounded hot spots

(green disks). The principal axes of the area formed by the wounded hot spots are tilted
by an angle ψ2 with respect to the reaction plane given by the axes (x and y) of the
transverse plane. The purple disks represent the transformed coordinates.

Next we determine the angular orientation of the εn plane from

ψn =
1

n
arctan 2

(∫
dxdy(x2 + y2)n/2 sin(nφ)s′(x, y)∫
dxdy(x2 + y2)n/2 cos(nφ)s′(x, y)

)
. (4.14)

Then, the participant spatial eccentricities are defined on an event-wise basis as:

εn =

∫
dxdy(x2 + y2)n/2 cos(n(φ− ψn))s′(x, y)∫

dxdy(x2 + y2)n/2s′(x, y)
(4.15)

A good test to check if the method has been correctly implemented consists in simplifying
Eq. (4.15) by removing the smearing effect and the entropy fluctuations. In this case,
x′i = xiw − xC.o.M

w ,y′i = yiw − yC.o.M
w and the ψn angle is given by

ψn =
1

n
arctan 2




Nw∑

i=1

r′i sin(nφ′i)

Nw∑

i=1

r′i cos(nφ′i)



. (4.16)
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Figure 4.6: Left: Average values of the eccentricity, ε2, for rc = 0 (blue empty circle),
rc = 0.4 fm (red empty square), rc = 0, nc (grey filled circle) and 〈s1〉 fixed (purple filled
circle) as a function of the number of wounded hot spots. Right: Example of an event
with two wounded hot spots before (green disks) and after (purple disks) rotating to the
participant plane.

Therefore, the computation of the spatial eccentricity moments is given by

εn =

√√√√
Nw∑

i=1

(
(ripp)

n cos(nφipp)
)2

+

Nw∑

i=1

(
(ripp)

n sin(nφipp)
)2

Nw∑

i=1

(ripp)
n

(4.17)

where (ripp, φipp) are the polar transformation of (xipp = x′i cosψn − y′i sinψn, yipp =
y′i cosψn + x′i sinψn). In Fig. 4.6 the event-averaged value of ε2 as a function of the
number of wounded hot spots is shown. The fact that 〈ε2〉 reaches unity for Nw = 1
is a direct consequence of the participant plane method. When only two hot spots are
wounded, they sit symmetrically on the vertical axes after rotating by ψ2 as depicted on
the right side of Fig. 4.6. In this case, 〈ε2〉= 1 (and ε3 = 0) by definition. This artifact is
washed out once the smearing and entropy fluctuations are taken into account.

After cross-checking the implementation of the participant plane calculation, in the
following we compute εn as given by Eq. (4.15) and refer to them simply as spatial ec-
centricities. We present our results in two different cases: all the events are selected
(minimum bias) and only the events on the [0−1%] centrality class (ultra-central colli-
sions) as defined in Fig. 4.2 are considered.

4.3.2 Minimum bias

The probability distribution of ε2 is shown in Fig. 4.7: the eccentricity is reduced in the
correlated scenario compared to the rest of the cases including the one with 〈s1〉 fixed.
We hence conclude that the probability of having smaller values of the eccentricity in
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Figure 4.7: Probability distribution of the eccentricity, ε2, for rc = 0 (blue short-dashed
line), rc=0.4 fm (red long-dashed line), rc=0, nc (grey dotted line) and 〈s1〉 fixed (purple
solid line).

a proton-proton interaction is increased when repulsive short-range correlations are in-
cluded. In essence the eccentricity is a direct measurement of the anisotropy of the
interaction region between the x and y directions. Thus, the results presented in Fig. 4.7
suggest that the characteristic ellipsoidal shape of the interaction region between the
two protons is replaced by a more round one (with smaller eccentricity) in the correlated
scenario. However, all cases exhibit a broad probability distribution of ε2 due to the highly
fluctuating nature of the system.

In addition, the effect of correlations between the constituents of the proton is shown
to be qualitatively the same as in the nucleus case [209] but has a stronger impact on
the numerical values of ε2. This is not a surprising result as smaller systems are ex-
pected to be more sensitive to the fine details of the geometry than the complex A+A
case, where the net effect of these subtleties is washed out by the accumulation of un-
correlated nucleon-nucleon collisions. However, this study being a multiparametric one
the magnitude of the eccentricity’s depletion could vary depending on the values of {Rhs,
R, rc, ρhs} provided that it will always decrease when including correlations among sub-
nucleonic degrees of freedom in the proton.

Further, we show in Fig. 4.8 the probability distribution for the triangularity, P(ε3). The
origin of odd eccentricity moments, in our model, is not driven by the geometry of the
collision but rather by the fluctuations in both the entropy deposition and the positions of
the hot spots. The main reason is that our spatial distributions are symmetric with respect
to the y-axis, 〈y〉=0, so in absence of fluctuations all the odd eccentricity moments would
exactly vanish. Compared to ε2, we observe how the role of spatial correlations for ε3
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Figure 4.9: Average value of the triangularity as a function of the eccentricity for rc = 0
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is weaker. Nevertheless, the triangularity of the proton-proton interaction in our model
shows the same qualitative behavior as the eccentricity i.e. is reduced in the correlated
scenario.

To conclude this Section the correlation between ε3 and ε2 is displayed in Fig. 4.9.
In agreement with other works in the literature [193], the value of ε3 is always smaller
than ε2 and the correlation among them is positive. Note that, the impact of spatial
correlations is the opposite depending in which regime of values of ε2 we are. That
is, for ε2≥ 0.4, repulsive correlations generate a more triangular interaction region while
for smaller values of ε2 the conclusion is reverted. A similar situation will be discussed in
the next section. Nevertheless, by comparing the ε3−ε2 correlation between the 〈s1〉 and
rc=0.4 fm cases we conclude that it is a rather insensitive observable to the presence of
spatial correlations.

4.3.3 Ultra-central collisions

Motivated by the phenomenological interest in very high-multiplicity p+p collisions we
have computed the probability distributions P(ε2(3)) for the 0− 1% centrality class i.e.
after imposing a cut on the entropy deposition S as given by Fig. 4.2. Two remarkable
results can be extracted by comparing Figs. 4.7-4.8 (minimum bias) with Fig. 4.10 (ultra-
central collisions). First, we observe how the probability distributions P(ε2(3)) are shifted
towards larger values when selecting ultra-central events both in the uncorrelated and
correlated scenarios. Next, focusing on the role of correlated constituents in this high-
entropy context we observe that it turns out to favor higher values of ε2 and ε3 when
compared to the uncorrelated scenario. Thus, we find that the consequence of having
correlated constituents inside the proton is the opposite in ultra-central collisions than in
minimum bias. To sum up, in the 0−1% centrality class the net effect of correlations is
to increase the probability of having larger values of ε2(3) whereas in the minimum bias
case this probability is diminished.

The difference on the effect of spatial correlations between the minimum bias case
and the ultra-central can be neatly deduced from Figs. 4.11-4.12. We represent the
average values of ε2(3) for different centrality classes. A common trend is observed both in
the correlated and uncorrelated cases: while 〈ε2(3)〉 is barely centrality independent in the
mid-central to peripheral collisions it increases significantly in the very central region i.e.
in the events with higher entropy deposition. Regarding the effect of spatial correlations
we notice that they increase 〈ε2(3)〉 for the higher entropic events with respect to the
uncorrelated cases as we have already shown in Fig. 4.10. Minimum bias collisions
are not dominated by these infrequent extremely entropic events but by the ones with a
smaller entropy production. In this case, we see in Figs. 4.11-4.12 how the net effect
of correlations in the peripheral/less entropic bins is to reduce 〈ε2(3)〉. Furthermore, the
quantitative difference in 〈ε2(3)〉 between the correlated and uncorrelated scenarios is
larger in the ultra-central events than in minimum bias. Thus, we conclude that the net
effect of correlated constituents is larger in ultra-central collisions.

Certainly, it would be desirable to obtain a quantitatively precise description of ex-
perimental data on vn. Unfortunately, this is not possible within the current status of our
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Figure 4.10: Average values of the eccentricity, ε2, (left) and the triangularity, ε3, (right)
for rc = 0 (blue empty circle), rc = 0.4 fm (red empty square), rc = 0, nc (grey filled circle)
and 〈s1〉 fixed (purple filled circle) as a function of the number of wounded hot spots.
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Figure 4.11: Average values of the eccentricity, ε2, for rc=0 (blue empty circle), rc=0.4 fm
(red empty square), rc=0, nc (grey filled triangle) and 〈s1〉 fixed (purple filled circle) as a
function of the centrality range.
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Figure 4.12: Average values of the triangularity, ε3, for rc = 0 (blue empty circle), rc =
0.4 fm (red empty square), rc = 0, nc (grey filled triangle) and 〈s1〉 fixed (purple filled
circle) as a function of the centrality range.

relatively simple geometric model. Our calculation lacks of any kind of information on the
momenta of the produced particles. Thus, we consider that only after feeding our model
into a hydrodynamic evolution, currently a work in progress, a full comparison with data
would be meaningful and realistic. Nevertheless, one can grasp a feeling by comput-
ing ratios of cumulants, as defined in Eq. (3.37), because in first approximation they are
independent of the hydrodynamic response [210] i.e.:

vn{µ}
vn{ν}

=
εn{µ}
εn{ν}

. (4.18)

In the case of the eccentricity,

ε2{2} = 〈ε2
2〉, ε2{4} = (2〈ε2

2〉2 − 〈ε4
2〉)1/4 (4.19)

The equality in Eq. (4.18) only holds if the scaling between eccentricity and flow is linear.
Although deviations from this linear response are expected [194], it is interesting to check
whether our model can capture the general trends of the data. The comparison between
eccentricity and flow fluctuations is displayed in Fig. 4.13. Note that the experimental
data is given in terms of the flow harmonic coefficients as a function of the Noffline

trk . This
variable contain the number of reconstructed charged particles after imposing pT and η
cuts which vary from one experiment to the other. Therefore, we refuse to present the
results of our model overlaid on top of the experimental data as the x-axes, although
sharing the same spirit of representing particle/entropy production, do not match i.e. it
will not be an apples-to-apples comparison. Presenting our results as a function of Nch

as shown in Fig. 4.2 will not help to directly compare to the experimental measurement
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Figure 4.13: Left: Fluctuations of v2 characterized by the ratio v2{2}/v2{4} as a function of
the number of reconstructed charged particles using the CMS definition. Data measured
by ATLAS [160] and CMS [170]. Right: Fluctuations of ε2 within our wounded hot spot
approach.

and may lead to confusion for the reader. This is so because Noffline
trk and Nch are not

equivalent. Nevertheless, two interesting messages can be extracted from Fig. 4.13.
First, the outcome of our calculation is in quantitative agreement with the experimental
data and nicely interpolates between the ATLAS and CMS results indicating that our
model although unsophisticated is realistic. The fluctuations of ε2 turn out to be very
sensitive to the presence or absence of correlations, even more than its absolute value
as one can observe by comparing Figs. 4.13 and 4.11. Therefore we conclude, as already
suggested by [210], that the description of v2{2}/v2{4} may set strong constraints in any
initial state model.

4.3.4 Energy scan in minimum bias

In addition to the effect of correlations on the properties of the initial state we have ex-
plored their energy dependence from ISR to the LHC. In Fig. 4.14 we represent the av-
erage values of ε2 and ε3 as a function of their standard deviation for 3 different collision
energies namely

√
s= 52.6, 7000, 13000 GeV. All the curves refer to the rc= 0.4 case and

all events have been included. It should be noted that the energy dependence of the
parameters of the model (see Table 4.1) comes from the requirement of reproducing the
total p+p cross section, being this a quite soft condition. Endowing our model with a more
rigorous and precise energy dependence is left for future work. The main goal of Fig. 4.14
is to show that there are no significant differences in the values of 〈ε2〉 and 〈ε3〉 for dif-
ferent collision energies. The fact that the spatial eccentricities do not drastically deviate
with increasing energy was also observed in [211] where a different parametrization of
the initial state was used. Further, the purpose of representing the average values as a
function of the standard deviation is to emphasize the width of the probability distributions
that we obtain as we have seen in the previous sections (see Figs. 4.7-4.10).
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Figure 4.14: Average values of ε2 (filled markers) and ε3 (empty markers) for
√
s =

52.6 GeV (blue filled/empty circles), 7 TeV (red filled/empty squares) and 13 TeV (grey
filled/empty triangles) as a function of their standard deviation. These energies corres-
pond to ISR and Runs I-II of the LHC, respectively.

Correlated 〈s1〉 fixed
Rhs [fm] R [fm] rc [fm] Rp [fm] R [fm]

Nhs =2 0.51 1.04 0.35 1.31 1.13

Nhs =4 0.21 0.55 0.32 1.2 0.64

Table 4.3: Default values of the parameters characterizing the hot spots distribution
Eq. (4.2) and their probability to interact Eq. (4.3) for different number of hot spots both in
the correlated and "〈s1〉 fixed" cases.
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Correlated
n1 κ1 κ2 n2 α

Nhs =2 26.22 1.21 4.64 1.79 0.45

Nhs =4 25.68 1.46 4.54 1.82 0.34

〈s1〉 fixed
n1 κ1 κ2 n2 α

Nhs =2 24.66 1.05 4.55 2.05 0.49

Nhs =4 23.04 1.15 4.37 2.14 0.4

Table 4.4: Default values of the parameters of the double Gamma distribution that charac-
terizes the fluctuating amount of entropy each wounded hot spot deposits, s0, for different
number of hot spots both in the correlated (top) and "〈s1〉 fixed" cases (bottom).

4.3.5 Nhs-dependence

All along this Section we have considered that the proton is constituted by 3 gluonic hot
spots. This is the most natural scenario when a direct correspondance between the
Fock space of valence partons and the hot spots is assumed. However, this relation
is arguable as, while being extensively used as a phenomenological tool, the ultimate
dynamical origin of the hot spots remains as an open debate (see Sec. 2.3.1). Therefore,
it is opportune to check the reliability of our results after variations of this parameter, Nhs.
Note that the possibility of having a different number of hot spots may account for other
elements such as the large-x sea quarks.

We focus our discussion on the results for ε2(3) after considering the two more straight-
forward extensions of our model: Nhs=2 and Nhs=4. In order to make a fair comparison
between the three different scenarios, Nhs=(2, 3, 4), we choose representative values of
the parameters {Rhs, R} that fulfill two constraints. As in the previous sections, the ex-
perimental value of the total p+p cross section is reproduced. Further, the proton radius
defined as Rp=

√
Nhs

√
〈s2

1〉+R2
hs, where 〈s1〉 is the r.m.s of the spatial probability distri-

bution given by Eq. (4.2), should not depend on the number of hot spots that the proton
contains so we fix it to be the same in all cases. For simplicity, we restrict the analysis
to the correlated and 〈s1〉 fixed cases at

√
s= 13 TeV. The values of the parameters are

given in Tables 4.3 and 4.4. From a technical point of view, the extension of the code
to Nhs > 3 brings with it a change in the sampling procedure of the spatial distribution
of hot spots D({si}). This is so because the built-in ROOT class for random number
generation extends up to 3 dimensional functions. To overcome this difficulty we have de-
veloped an independent algorithm based on the well-known rejection sampling method.
The algorithm has been tested against the ROOT routine by generating random numbers
according to a 3-dimensional Gaussian distribution. As shown in Fig. 4.15, the accuracy
of the method is satisfactorily compatible with the well tested ROOT class. Nevertheless,
the current implementation of the Monte Carlo event generator is not straightforwardly
extendable to an arbitrary number of hot spots in each proton. From a numerical point
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Figure 4.15: Each green dot represents an (x,y,z)-trio distributed according to a 3-D
Gaussian distribution. They have been generated with the TRandom class in ROOT
(left) and with our own rejection-sampling based algorithm (right). The boxes show the
mean values and the standard deviations of (x,y,z).
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Figure 4.16: Average values of the eccentricity, ε2, (left) and the triangularity, ε3, (right)
for Nhs=2 as a function of the centrality range.

of view, the main bottleneck is the generation of P(Nch) as the number of terms entering
the sum increases very rapidly. Up to now, all these possible combinations are computed
in a rather brute-force fashion and, therefore, obtaining P(Nch) for a large number of Nhs

would be doable but computationally expensive. On the analytic side, tuning the model
parameters by ensuring that the total cross section is reproduced and the proton radius
remain constant makes the full study we are undertaking more cumbersome as meeting
both conditions require 3Nhs-dimensional Gaussian integration. Enlarging the flexibility of
the code to accomodate an arbitrary number of constituent hot spots is a must for the fu-
ture. However, even the two simplest extensions considered in the following already show
very interesting physical features. The average values of ε2 and ε3 against the centrality
of the collision for Nhs= 2, 4 are shown in Fig. 4.16 and 4.17, respectively. Note that we
have extended our calculations to a higher centrality bin, [0−0.1%]. First and foremost,
the effect of including spatial correlations is invariant under changes in the number of
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Figure 4.17: Average values of the eccentricity, ε2, (left) and the triangularity, ε3, (right)
for Nhs=4 as a function of the centrality range.

hot spots: larger eccentricities and triangularities are expected in the correlated scenario
than in the uncorrelated one in ultra-central collisions while they reduce both of them in
minimum bias events. Furthermore, we find that both ε2 and ε3 smoothly increase when
a larger number of hot spots is considered.

4.4 Normalized symmetric cumulants

This Section constitutes the natural extension of our previous studies on the initial state
properties of proton-proton collisions in terms of eccentricities by exploring not only their
mean but their fluctuations (see Sec. 3.5). There have been attempts to describe the val-
ues of the symmetric cumulants, SC(n,m) in p+Pb by computing them in terms of eccent-
ricities, i.e. replacing vn(m) by εn(m) in Eqs. (3.38-3.39), within wounded quark models.
These studies lead to the correct negative sign of SC(2,3) at high multiplicities but the
magnitude is off [212, 193]. Up to today we are unaware of any theoretical prediction for
the values of SC(n,m) in p+p interactions at LHC energies, although results for RHIC en-
ergies were presented in [212]. All along this Section we compute the normalized version
of the symmetric cumulants at the eccentricity level as given by:

NSC(n,m) ≡ 〈ε
2
nε

2
m〉 − 〈ε2

n〉〈ε2
m〉

〈ε2
n〉〈ε2

m〉
(4.20)

at
√
s = 13 TeV, the energy at which they have been measured. The computation of

higher order moments of the eccentricities distributions requires more statistics. More
concretely, within our Monte Carlo approach, an order of magnitude more of events was
needed relative to the eccentricities calculation to achieve enough statistical significance
(4.5 million vs 500k). For simplicity, we have not considered the rc = 0, nc case. In the
following plots the uncorrelated results will be exhibited as a band bounded by the rc=0
and 〈s1〉 fixed cases to display the different possibilities considered. Again, the proton is
considered to be formed by 3 hotspots by default and the sensitivity of the results to this
parameter is explored in a dedicated section.
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Figure 4.18: Average value of NSC(2,3) as a function of the centrality range for rc = 0
(blue short-dashed line connecting open blue circles), 〈s1〉 fixed (purple short-dashed
line connecting filled purple circles) and rc = 0.4 fm (red solid line connecting filled red
squares). The error bars represent statistical uncertainties while the light violet band
indicates the theoretical uncertainty associated to the choice of parameters that define
the uncorrelated scenario.

4.4.1 Centrality dependence

The most important result of this Section is shown in Fig. 4.18 where we represent the
event-averaged value of NSC(2,3) as a function of centrality. A common feature in the
three correlation scenarios is the fact that NSC(2,3) decreases from peripheral to cent-
ral collisions as suggested by data. Focusing on the effect of the short-range repulsive
correlations we observe how they enlarge the positive correlation of ε2 and ε3 in the
peripheral regime. However, their repercussion in the very central collisions is precisely
the opposite. Finally, the most striking effect of the spatial correlations is observed in
the ultra-central bins [0− 0.1%] and [0.1− 1%]: only in the rc = 0.4 case there exists
an anti-correlation of ε2 and ε3 as data dictates. Then, we conclude that the experi-
mental evidence of NSC(2,3)<0 may back up the necessity to consider correlated proton
constituents. Note that a precise theory-to-data comparison, is not possible due to the
aforementioned multiplicity selection. Especially cumbersome is the comparison in the
low multiplicity regime where non-flow dijet contributions, totally absent in our initial state
coordinate space approach, dominate the measured values of NSC(n,m). However, our
main purpose is to lay out, for the first time in the literature, a particular mechanism i.e.
the presence of spatial repulsive correlations inside the proton, that builds up a negative
sign of NSC(2,3) in the highest centrality bin at the geometric level.

In the case of NSC(2,4), see Fig. 4.19, the role of the repulsive correlations is qual-
itatively the same as in the NSC(2,3) calculation: in peripheral collisions the value of
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Figure 4.19: Average value of NSC(2,4) as a function of the centrality range for rc = 0
(blue short-dashed line connecting blue open circles), 〈s1〉 fixed (purple short-dashed
line connecting filled purple circles) and rc = 0.4 fm (red solid line connecting filled red
squares). The error bars represent statistical uncertainties while the light violet band
indicates the theoretical uncertainty associated to the choice of parameters that define
the uncorrelated scenario.

NSC(2,4) is larger in the rc = 0.4 case than in the uncorrelated scenarios and the situ-
ation gets reversed at barely the same centrality bin. As well, we find the absolute value of
NSC(2,4) to be larger than NSC(2,3) in all the centrality bins as it is the case in the data.
We would also like to remark that in our approach the symmetric cumulants are almost
flat in the mid-to-peripheral interactions but thanks to a dissection of the very central bins
we see a clear centrality dependence. This is consistent with our previous calculations of
the average values of the spatial eccentricity moments (see Figs. 4.11-4.17).

A geometric and intuitive interpretation of the fact that only in the correlated case
NSC(2,3)< 0 in the [0−1%] centrality bin is given in the following section. It should be
noted that, for this purpose, we have merged the two highest centrality bins, [0−0.1%]
and [0.1−1%], into a single one in order to improve the statistics.

4.4.2 Role of the interaction topology

In order to capture the effect of the spatial correlations we characterize each proton-
proton interaction by its number of wounded hot spots and the number of collisions
(Nw, Ncoll), the two basic quantities of any Monte Carlo Glauber calculation. We dub
each (Nw, Ncoll)-configuration as interaction topology.

We begin our analysis by computing the average number of collisions as a function
of the number of wounded hot spots for the three different scenarios introduced above.
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Figure 4.20: Average number of collisions as a function of the number of wounded hot
spots for rc = 0 (open blue circles), 〈s1〉 fixed (filled purple circles) and rc = 0.4 fm (filled
red squares).

The results are shown in Fig. 4.20. First of all, as we describe the entropy deposition
in an incoherent way i.e. on average the more wounded hot spots the more entropy is
deposited, the configurations in which only two hot spots collide cannot create enough
entropy to be part of the [0 − 1%] centrality bin. Then, the minimum number of wounded
hot spots is three and, in this case, 〈Ncoll〉= 2 in all the correlation scenarios as it is the
only existing configuration. However, for Nw > 3 the average number of collisions starts
to differ between the three different cases. We observe that 〈Ncoll〉 is systematically re-
duced when including repulsive correlations with respect to the uncorrelated cases. This
effect has a very straightforward interpretation: enlarging the mean transverse distance
between the hot spots reduces the probability of having interaction topologies with a high
number of collisions. In other words, the repulsive correlations spread the hot spots in
the transverse plane and as a consequence enhance the probability of the hot spots to
collide by pairs over the configurations in which all hot spots in the projectile interact with
all the others in the target, as it is schematically represented in Fig. 4.21.

To connect this fact with the total value of NSC(2,3) we would like to understand
the individual contributions from the different interaction topologies. For this purpose we
define a weighted version of NSC(n,m) denoted NSCw(n,m) as follows

NSCw(n,m) ≡ P(Nw) · P(Nw|Ncoll) ·NSC(n,m)
∣∣∣
Nw,Ncoll

(4.21)

where

• P(Nw) is the probability of having a certain number of wounded hot spots.
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Figure 4.21: Sketch representing the interaction topologies preferred in the correlated
case (left) and in the uncorrelated one (right). The purple arrows represent the collisions
between the hot spots.

• For a given Nw, P(Nw|Ncoll) represents the probability of having a certain number
of collisions between the hot spots.

• NSC(n,m)
∣∣∣
Nw,Ncoll

is the value of NSC(n,m) for each interaction topology.

The error of NSCw(n,m) is computed by adding the statistical uncertainties of each term
in Eq. (4.21) in quadrature. Essentially, by summing NSCw(n,m) over all the possible
(Nw, Ncoll)-configurations one recovers NSC(n,m). This new quantity allows us to de-
compose the value of NSC(2,3) and investigate the contribution of each interaction topo-
logy separately. From now on, to facilitate the discussion, we only show the comparison
between 〈s1〉 fixed and rc = 0.4 scenarios. We have checked that the same conclusions
as in the 〈s1〉 fixed case hold for rc=0.

In Fig. 4.22 we show a particular example of the output of our calculation for
NSCw(2,3) by selecting the events with Nw = 6. Two important results can be extrac-
ted from this figure. First, as already suggested by Fig. 4.20, configurations with a large
number of collisions, e.g. Ncoll > 6, only occur in the uncorrelated case where the three
hot spots are closer to each other or, equivalently, clustered. Second, and more im-
portant, the value of NSCw(2,3) shows a clear dependence on Ncoll: configurations with
a smaller number of collisions reduce the value of NSC(2,3) and, eventually, contribute
negatively. Then, in our picture, the inclusion of spatial correlations inside the proton mod-
ifies the weight of each interaction topology in such a way that these configurations are
enhanced. This feature provides a natural explanation for the different sign of NSC(2,3)
in the uncorrelated and correlated scenarios. Far from being a casual coincidence or an
artifact this effect is observed for any number of wounded hot spots as it is depicted in
Fig. 4.23. In the left pannel we show the event-averaged value of NSCw(2,3) with respect
to the number of collisions for Nw=3 to Nw=6 for the rc=0.4 case. Once again, the con-
figurations that contribute more to the total value of NSC(2,3) are the ones with a large
number of wounded hot spots that interact a small amount of times. In opposition, as
displayed in the right pannel, the interaction topologies that have associated a negative
NSC(2,3) are extremely suppressed in the uncorrelated scenario where the configuration
with the biggest weight and precisely positive value of NSC(2,3) is (Nw=4, Ncoll =3).

Then, by computing NSCw(2,3) for the different interaction topologies we find that the
origin of the negative sign of NSC(2,3) in the rc=0.4 scenario is due to the decisive role
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of correlations in modifying the weights of the diverse configurations in the Monte Carlo
Glauber simulations.

4.4.3 Scan of the parameter space

To continue, we check the sensitivity of the obtained results on the values of the model
parameters. Thus, we focus on the correlated scenario and study the dependence of
NSC(2,3) on the radius of the hot spot and the repulsive core distance in the [0−1%]
centrality bin. The value of the repulsive distance, rc, apart from being different from zero
[59], is essentially unconstrained. As it could be argued that rc=0.4 fm is a large repuls-
ive distance that may be unrealistic we explore the results of our model for rc = 0.25 fm.
In the case of Rhs, we choose 4 different values in our scan {0.15, 0.25, 0.32, 0.4} fm.
Consequently, the parameters of the Gamma distribution for the entropy deposition (see
Eq. (4.8)) are extracted in all the cases by fitting the experimental charged-particle mul-
tiplicity distributions P(Nch). The other two parameters of our model, namely R and ρhs,
remain fixed to their default values given in Table 4.1. Except in the chosen values for
Rhs and rc appearing in Table 4.1, i.e. Rhs=0.32 fm and rc=0.4 fm, the requirement that
our model reproduces the p+p total cross section and ρ is not fulfilled. Removing these
phenomenological constraints allows to pinpoint the effect of just varying the radius of the
hot spot or the correlation distance in our results.

In the left pannel of Fig. 4.24 we represent the event-averaged value of NSC(2,3)
as a function of Rhs for the two different values of the correlation distance considered.
First, we observe that by reducing the value of rc for a given value of Rhs we get closer
to the uncorrelated case and thus the value of NSC(2,3) is enlarged and pushed to the
positive regime, as expected. However, this statement is not universal as it breaks down
when Rhs . 0.22 fm. In this scenario of very small values of the radius of the hot spot,
ε2 and ε3 are positively correlated for both values of the repulsive core distance and the
value of NSC(2,3) is larger in the rc=0.4 case. This result indicates that NSC(2,3) is not
sensitive to Rhs and rc independently but to the interplay of both scales. In other words,
NSC(2,3) depends on a generic function of the radius of the hot spot and the repulsive
core distance f(Rhs, rc).

As a first and simple guess to the functional form of f(Rhs, rc) we choose it to be
the ratio of the two scales involved i.e. f(Rhs, rc) =Rhs/rc. This ratio has a transparent
interpretation by characterizing the degree of repulsion: if Rhs/rc � 1 the shape of the
proton resembles the uncorrelated scenario where the hot spots can largely overlap in
transverse space. The results of NSC(2,3) for different values of Rhs/rc are displayed in
the right pannel of Fig. 4.24. We can distinguish three regimes in this plot. On the one
hand, when Rhs/rc ≥ 1 the geometric picture of the proton approaches the uncorrelated
scenario and the value of NSC(2,3) increases monotonically starting to be positive for
Rhs/rc & 1.3. Moreover, when Rhs/rc = 1 the value of NSC(2,3) is identical within error
bars for both correlation scenarios rc=0.25 and rc=0.4 supporting the idea that NSC(2,3)
depends on f(Rhs, rc) =Rhs/rc. However, on the second regime characterized by 0.6 .
Rhs/rc.1, we find an abrupt change of the value of NSC(2,3) when slightly increasing the
ratioRhs/rc from 0.6 to 0.63. This suggests that a residual dependence of NSC(2,3) on the
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Figure 4.24: Average value of NSC(2,3) for two different values of the repulsive distance:
rc = 0.25 fm (filled green circles) and rc = 0.4 fm (filled red squares) as a function of the
radius of the hot spot (left) and the ratio Rhs/rc (right).

other scale of the problem, R, may exist. Finally, configurations in which the hot spots are
much smaller than the repulsive core distance between them i.e. Rhs/rc.0.6 result into a
positive correlation between ε2 and ε3. Then, our study favors values of 0.6.Rhs/rc.1.3
in order to be compatible with the experimental observation of NSC(2,3)<0 in the highest
centrality bin. Unfortunately, this interval is large enough to be compatible with a picture of
the proton in which the hot spots transverse separation is larger than in the uncorrelated
case but still they can overlap (Rhs/rc ∼ 1.3) and with a much more dilute description in
which the probability of two hot spots to overlap is highly supressed (Rhs/rc∼0.6).

4.4.4 Sensitivity of NSC(2,3) to Nhs

As in the case of the eccentricities, we check the robustness of our results after variations
in the number of constituent hot spots. We start by exploring the dependence of the event-
averaged value of NSC(2,3) on the number of hot spots in the correlated scenarios as
displayed in Fig. 4.25 as a function of centrality. The differences between the three cases
start to appear in mid-to-ultra central collisions. There exists a clear trend towards smaller
values of NSC(2,3) when a bigger number of hot spots is considered. Specifically, the
negative sign of NSC(2,3) in the high centrality bins is not achieved when Nhs = 2 even
with correlations. Thus, we conclude that with the selected parameters the minimum
number of hot spots to describe the onset of the anti-correlation between ε2 and ε3 is
Nhs = 3. Note that this threshold number of hot spots coincides with the one needed to
describe the onset of the hollowness effect (see Chapter 2). Moreover, the inclusion of
an additional hot spot i.e. Nhs = 4 helps to make NSC(2,3) even more negative in the
highest centrality bins although the effect is small when compared to the drastic impact
of changing from Nhs=2 to Nhs=3.

In Fig. 4.26 the comparison between the correlated and 〈s1〉 fixed scenarios forNhs=2
(left) and Nhs = 4 (right) is displayed. First and foremost, the effect of including spatial
correlations is invariant under changes in the number of hot spots: in peripheral colli-
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Figure 4.25: Average value of NSC(2,3) as a function of the centrality range in the cor-
related scenario for Nhs= 2 (filled green circles), Nhs= 3 (filled red squares) and Nhs= 4
(filled violet triangles). The error bars represent statistical uncertainties.

sions they enlarge the positive correlation of ε2 and ε3 while favoring a negative sign of
NSC(2,3) with respect to the uncorrelated scenario. Albeit the correlated curve is always
below the uncorrelated scenario in the highest centrality bins an important comment is in
order: NSC(2,3) is compatible with negative values, within statistical uncertainty, in the
[0−0.1%] bin for the uncorrelated case. This fact reinforces the idea remarked in the pre-
vious section: the interplay of the different scales {Rhs, rc, Nhs} is decisive in the sign of
NSC(2,3) within our framework. For Nhs= 4 the weight of the configurations with a large
number of wounded hot spots and a small number of collisions is large enough so that
the spatial correlations are not essential to obtain a negative NSC(2,3) in the [0−0.1%]
bin. However, as these configurations are enhanced in the correlated scenario, the anti-
correlation of ε2 and ε3 is stronger than in the uncorrelated case just as in the case of
Nhs=3. To sum up, although the negative sign of NSC(2,3) in the highest centrality bins
is not a unique feature of the correlated scenario but relies on the interplay of the different
scales, the inclusion of repulsive correlations provides a mechanism to reduce its value
in the highest centrality bins.

4.4.5 Influence of Nw/Ncoll on NSC(2,3)

All along the previous sections we have reached the firm conclusion that NSC(2,3) is
extremely sensitive to the initial state fluctuations and can help to discriminate between
different parameterizations of the proton geometry. However, a natural question remains
unanswered: is there a physical parameter controlling the sign of NSC(2,3)? Being our
model a multiparametric one the task of pinpointing the critical parameter is far from
being straightforward as we have seen in previous attempts by testing the sensitivity to
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Figure 4.26: Average value of NSC(2,3) as a function of the centrality range for 〈s1〉 fixed
(purple short-dashed line connecting filled purple circles) and rc = 0.4 fm (red solid line
connecting filled red squares). The error bars represent statistical uncertainties. Left:
Nhs=2. Right: Nhs=4.

the different scales of the problem. The study in terms of the interaction topologies guided
our choice to Nw/Ncoll as a potential candidate.

Thus, we study the dependence of NSC(2,3) on this ratio for the highest centrality
bins with and without correlations in all cases where Rp is identical. The results are
shown on the left pannel of Fig. 4.27. Remarkably, the value of the cumulant is the same
in all the different scenarios for a given value of Nw/Ncoll. Nor the presence/absence of
correlations neither the number of constituent hot spots modify the value of NSC(2,3) for a
fixed Nw/Ncoll ratio. This feature backs up the relevant role of this parameter in the values
of NSC(2,3). To facilitate the discussion on the sign of NSC(2,3) we identify two separated
regimes. For Nw/Ncoll < 1, the results are dominated by statistical uncertainties as it is
rather unusual that the number of collisions surpasses the number of participants. At first
sight, the small error bars and neat negative sign of the point sitting at Nw/Ncoll =0.7 for
the Nhs = 4; 〈s1〉 fixed case is, perhaps, surprising. A deeper look into this value reveals
that it corresponds to the configuration (Nw = 7,Ncoll = 10) that occurs only three times
in the Monte Carlo data set used to obtain this plot. The reduced statistical uncertainty
in such a fluctuating quantity as NSC(2,3) indicates that this point may be an outlier.
More statistics is needed to clarify this aspect. In the opposite regime of Nw/Ncoll >
1, a general trend is observed. The sign of NSC(2,3) tends to negative values when
enlarging the value of Nw/Ncoll reaching its maximum for Nw/Ncoll = 2 i.e. when the
wounded hot spots interact by pairs. Therefore, we identify these configurations to be
responsible of the negative sign of NSC(2,3) in the highest centrality bins. Then, the
main distinction between the different cases considered in this work is the probability of
these configurations to happen. For example, when Nhs = 4 the weight of configurations
with large Nw/Ncoll ratio is enhanced with respect to the Nhs= 3 case and then permit a
negative value of NSC(2,3) even within the uncorrelated scenario.

To check to what extent the previous conclusions depend on the size of the proton we
repeat the computation of NSC(2,3) as a function of Nw/Ncoll for Nhs = 3 and consider
three different situations. In addition to the default rc = 0.4 fm and 〈s1〉 fixed cases, we
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Figure 4.27: Average value of NSC(2,3) as a function of Nw/Ncoll. Left: Nhs=(2, 3, 4) for
the correlated and uncorrelated scenarios. Right: Nhs= 3 for the 〈s1〉 fixed case and the
correlated one with two different values of Rhs=(0.15, 0.32).

reduce Rhs down to 0.15 fm by keeping the same correlation distance as it was done in
Fig. 4.24. From the right side of Fig. 4.27 one sees how the value of NSC(2,3) does not
coincide in the three scenarios considered as was the case on the left side of the plot.
Therefore, the universality of NSC(2,3) as a function of Nw/Ncoll requires the global size
of the proton to be identical in the different configurations to be compared.

Although the previous results encourage to identify Nw/Ncoll as the physical para-
meter controlling the sign of NSC(2,3), this is not the end of the story. As an example, an
interesting question that requires further investigation is whether these arguments hold,
and if so, how do they relate to the p+p scenario, in an asymmetric collision such as p+Pb
where, if the proton substructure is not considered, the ratio Nw/Ncoll is always smaller
than one.
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Franz Ferdinand.

Conclusions and future prospects

Up to now it has not been possible to firmly establish a full, self-consistent, multi-
dimensional map of the distributions of partons inside the proton in space, momentum
and spin. The biggest stumbling-block to accessing this information from a theoretical
perspective is its non-perturbative nature within QCD. Beyond its crucial role to sharpen
our knowledge about the building blocks of matter, the ample amount of highly-precise
data being released by collider experiments such as RHIC or the LHC calls for a fine
detailed description, at the subnucleonic level, of the proton structure.

In this thesis we address the characterization of the transverse distribution of proton
constituents in coordinate space and their fluctuations. We take as starting point the data
sample on the elastic differential cross section measured by ISR and LHC experiments.
A successful description of bulk features of the data yields a composite picture of the
proton in terms of gluonic hot spots that are spatially correlated and whose radius swells
with increasing energy. Next, driven by the suggestive signals of quark-gluon plasma
formation in p+p collisions at the LHC, we develop a Monte Carlo Glauber event generator
to test the sensitivity of generic properties of the geometry of the collision to the presence
of spatial correlations. The ensemble of results achieved in this thesis are summarized
next.

� Microscopic realization of the hollowness effect in proton-proton interac-
tions at the LHC.

We propose that the explanation to the rather counterintuitive hollowness effect, whereby
proton peripheral collisions are more effective producing new particles than central ones
at high energies, lies in the interplay between the different internal scales of the proton:
proton radius, hot spot radius and transverse correlation length. The relative enhance-
ment of the destructive interference terms in the multiple scattering series, known as
shadowing corrections, induced by non-trivial probability distributions for the hot spots
transverse positions and the swelling hot spots radius with increasing energy yield the
observed depletion of the inelasticity density in central collisions. Three main conclu-
sions can be drawn from this project:

• The hollowness effect, to be confirmed by the
√
s = 13 TeV data, has a quantum

mechanical origin. Therefore, a coherent description of the scattering is mandatory
and our choice of the Glauber model is well justified.

• Spatial correlations between the constituents of the proton are of most importance
in the description of the hollowness effect.
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• Within our picture the emergence of the hollowness effect can not be described
when the number of hot spots is smaller than 3.

� Imprints of spatially correlated constituents on the initial geometry of
proton-proton interactions within a Monte Carlo Glauber model.

We present a quantitative analysis of the effect of non-trivial spatial correlations between
constituents of the proton on the features of the initial state geometry in proton-proton
collisions at high energies in terms of spatial eccentricities and symmetric cumulants.
This part of the thesis holds the following results:

• We find that both the eccentricity and the triangularity are affected by the inclusion
of short-range repulsive correlations. In particular, the correlated scenario yields
larger values of ε2(3) in ultra-central collisions while reducing them in minimum bias.

• The fluctuations of the eccentricity as described by the ratio ε2{2}/ε2{4} show a
larger degree of sensitivity to the presence of correlations. The outcome of our cal-
culation reproduces the general trends of the experimental data and is compatible
with the measured value.

• We have explored the energy dependence of ε2 and ε3, encoded in the growth of
the hot spot radius, from ISR to the LHC finding small deviations in their values.

• The bulk of our results for ε2(3) remain qualitatively the same when varying the
number of gluonic hot spots from three toNhs=(2, 4). A smooth increasing behavior
of ε2(3) when enlarging Nhs is observed.

• We lay out, for the first time in the literature, a particular mechanism that permits
an anti-correlation of ε2 and ε3 in the highest centrality bins as dictated by data.
When modeling the proton as composed by 3 gluonic hot spots, the most com-
mon assumption in the literature, we find that the inclusion of spatial correlations is
indispensable to reproduce the negative sign of NSC(2,3).

• We confirm the large discriminating power of this observable on any realistic initial
state model by scanning the parameter space. This results into stringent constraints
on the ratio Rhs/rc within our model.

• The values of NSC(2,3) are sensitive to the variation of the number of hot spots
that constitute the proton. Specifically, we find that, within the correlated scenario,
adding an extra hot spot to our description reinforces the negative sign of NSC(2,3)
while reducing it to Nhs = 2 pushes NSC(2,3) towards positive values. For Nhs = 4
we obtain a negative value of NSC(2,3) within the uncorrelated scenario although
its absolute value is smaller than in the correlated case.

• We interpret this last result by showing a suggestive universal behavior of NSC(2,3)
when evaluated as a function of Nw/Ncoll. The weight of the configurations with a
large value of this ratio in the Monte Carlo simulation has a dramatic influence on the
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sign of NSC(2,3). In the correlated scenario, the probability of having interactions
with a large number of wounded hot spots colliding a small amount of times is
enhanced. These interaction topologies are responsible in our set up of the negative
sign of the symmetric cumulant NSC(2,3).

The results presented in this thesis shall be regarded as the first steps towards a
broader objective: the dynamical understanding of the origin of spatial correlations inside
the proton and their phenomenological implications. To this concern, there are two major
lines of research to be explored in the near future.

On one hand, in order to do a one-to-one comparison of our initial state model with
the experimental data on flow harmonic coefficients and symmetric cumulants we will
feed a relativistic viscous hydrodynamic simulation with the initial entropy density profiles
obtained within our Monte Carlo Glauber model. This project will allow us to check if the
effect of the spatial correlations is washed out by the hydrodynamic evolution or, on the
contrary, gives a better description of the experimental data. If a linear relationship is as-
sumed between the spatial eccentricity moments and the flow harmonic coefficients, the
net effect of spatial correlations is expected to be an enhancement of the elliptic and tri-
angular flow in high-multiplicity proton-proton interactions. Further, we would like to calib-
rate the sensitivity of our results to the system size by extending our framework to include
p+Pb collisions. In such small systems, it is a must to demonstrate that our approach
does not break down the assumptions underlying the applicability of hydrodynamics.

On the other hand, for the sake of reinforcing the theoretical bedrocks of our model
for the proton, we are working towards its explicit realization within the Color Glass Con-
densate formalism. The introduction of spatial correlations between a reduce number of
sources of color charge, i.e. the hot spots, would imply going beyond the approximation
taken in the successful McLerran-Venugopalan model of a Gaussian probability distribu-
tion for the color charges, justified by the central limit theorem when the number of them
is large enough such as in the nuclear case. Thus, the final goal of this study besides its
theoretical content is to gauge the impact of a finite number of correlated colour sources
in the initial state momentum correlations.

A successful completion of both projects will open the door for a profound understand-
ing of the intriguing experimental hints of quark-gluon plasma droplets production in small
collision systems from an initial and a final state perspective.
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Conclusiones y futuras líneas de investigación

Hasta la fecha no ha sido posible establecer firmemente un mapa completo, auto con-
sistente y multidimensional de las distribuciones de partones en el espacio, momento y
espín. El mayor obstáculo para acceder a esta información desde una perspectiva teóri-
ca es su naturaleza no perturbativa dentro de QCD. Más allá de su papel crucial en aras
de afianzar nuestro conocimiento sobre los constituyentes fundamentales de la materia,
el análisis de la amplia cantidad de datos de alta precisión obtenidos en colisionadores
de partículas como RHIC o el LHC requiere una descripción fina y detallada, a nivel
subnuclear, de la estructura del protón.

Esta tesis aborda la caracterización de la distribución transversa de los constituyentes
del protón en espacio de coordenadas y sus fluctuaciones. Tomamos como punto de
partida el conjunto de datos sobre la sección eficaz diferencial elástica medido por los
experimentos ISR y LHC. Una descripción satisfactoria de las características globales de
dichas colisiones da lugar a una imagen compuesta del protón en términos de regiones
de alta densidad gluónica que llamamos hot spots. Estos hot spots están correlacionados
espacialmente y su radio crece al incrementar la energía. A continuación, instigados por
las señales que sugieren la formación de plasma de quarks y gluones en colisiones p+p
en el LHC, desarrollamos un generador de eventos Monte Carlo Glauber para comprobar
la sensibilidad de las propiedades genéricas de la geometría de la colisión a la presencia
de correlaciones espaciales. El conjunto de resultados logrados en esta tesis se resumen
a continuación.

� Realización microscópica del efecto hollowness en interacciones protón-
protón a energías del LHC.

Proponemos que la explicación del más bien contraintuitivo efecto hollowness, por el que
las colisiones periféricas entre protones son más destructivas que las centrales a altas
energías, radica en la interrelación entre las diferentes escalas internas del protón: su ra-
dio, el radio de los hot spots y la longitud de correlación transversa. El mayor peso relativo
de los términos de interferencia destructiva en la expansión en serie de la interacción,
conocidos también como correcciones de apantallamiento, debido a las distribuciones de
probabilidad no triviales para las posiciones transversas de los hot spots y el crecimiento
de su radio con el aumento de la energía es capaz de generar la observada reducción de
la densidad de inelasticidad en colisiones centrales. Se pueden extraer tres conclusiones
principales de este proyecto:

• El efecto hollowness, que ha de ser confirmado por los datos a
√
s = 13 TeV, tie-
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ne un origen cuántico. Por lo tanto, es necesaria una descripción coherente de la
interacción y nuestra elección del modelo de Glauber está bien justificada.

• Las correlaciones espaciales entre los constituyentes del protón son de suma im-
portancia en la descripción del efecto hollowness.

• Dentro de nuestra modelo, no somos capaces de describir la aparición del efecto
hollowness cuando el número de hot spots es menor a 3.

� Impacto de constituyentes espacialmente correlacionados en la geome-
tría inicial de las interacciones protón-protón dentro de un modelo Monte
Carlo Glauber.

Presentamos un análisis cuantitativo del efecto de las correlaciones espaciales no trivia-
les entre los constituyentes del protón en las características de la geometría de estado
inicial en colisiones protón-protón a altas energías mediante el cálculo de excentricida-
des espaciales y cumulantes simétricos. Esta parte de la tesis contiene los siguientes
resultados:

• Encontramos que tanto la excentricidad como la triangularidad se ven afectadas
por la inclusión de correlaciones de repulsión de corto alcance. En particular, el
escenario correlacionado resulta en valores mayores de ε2(3) en colisiones ultra-
centrales mientras que los reduce en colisiones de tipo minimum bias.

• Las fluctuaciones de la excentricidad caracterizadas a través del cociente
ε2{2}/ε2{4} muestran un mayor grado de sensibilidad a la presencia de correla-
ciones. El resultado de nuestro cálculo reproduce las tendencias generales de los
datos experimentales y es compatible con el valor medido.

• Hemos explorado la dependencia con la energía de ε2 y ε3, codificada en el cre-
cimiento del radio del hotspot, desde ISR hasta el LHC encontrando pequeñas
desviaciones en sus valores.

• El grueso de nuestros resultados para ε2(3) sigue siendo cualitativamente el mismo
al variar la cantidad de hot spots de tres a Nhs = (2, 4). Se observa un gradual
aumento de ε2(3) al incrementar Nhs.

• Exponemos, por primera vez en la literatura, un mecanismo concreto que permite
una anti-correlación de ε2 y ε3 en los bines de centralidad más altos tal y como
dictan los datos. Al modelar el protón como compuesto por 3 hot spots, la supo-
sición más común en la literatura, encontramos que la inclusión de correlaciones
espaciales es indispensable para reproducir el signo negativo de NSC(2,3).

• Confirmamos el gran poder de discriminación de este observable en cualquier mo-
delo de estado inicial realista mediante un scan del espacio de parámetros. Esto
da lugar a estrictas restricciones en la relación Rhs/rc dentro de nuestro modelo.



127

• Los valores de NSC(2,3) son sensibles a la variación del número de hot spots que
constituyen el protón. Específicamente, encontramos que, dentro del escenario co-
rrelacionado, agregar un hot spot adicional a nuestra descripción refuerza el signo
negativo de NSC(2,3) mientras que el considerar Nhs = 2 empuja NSC(2,3) hacia
valores positivos. Para Nhs = 4 obtenemos un valor negativo de NSC(2,3) dentro
del escenario no correlacionado aunque su valor absoluto sigue siendo menor que
en el caso correlacionado.

• Interpretamos este último resultado mostrando indicios de un comportamiento uni-
versal de NSC(2,3) cuando se evalúa como una función de Nw/Ncoll. El peso de las
configuraciones con un gran valor de esta cantidad en la simulación Monte Carlo
tiene una influencia dramática en el signo de NSC(2,3). En el escenario correla-
cionado aumenta la probabilidad de tener configuraciones en las que muchos hot
spots interaccionan un reducido número de veces. Estas topologías de interacción
son responsables en nuestro modelo del signo negativo del cumulante simétrico
NSC(2,3).

Los resultados presentados en esta tesis deben ser considerados como los primeros
pasos hacia un objetivo más amplio: la comprensión dinámica del origen de las correla-
ciones espaciales dentro del protón y sus implicaciones fenomenológicas. Con el fin de
profundizar en este tema hay dos grandes líneas de investigación que exploraremos en
el futuro cercano.

Por un lado, para hacer una comparación unívoca de nuestro modelo de estado inicial
con los datos experimentales sobre coeficientes armónicos de flujo y cumulantes simé-
tricos alimentaremos una simulación hidrodinámica, viscosa y relativista con los perfiles
de densidad de entropía iniciales obtenidos en nuestro modelo Monte Carlo Glauber.
Este proyecto nos permitirá verificar si el efecto de las correlaciones espaciales des-
aparece tras la evolución hidrodinámica o, por el contrario, da una mejor descripción de
los datos experimentales. Si se supone una relación lineal entre los momentos de ex-
centricidad espacial y los coeficientes armónicos de flujo, se espera que el efecto neto
de las correlaciones espaciales sea un incremento del flujo elíptico y triangular en las
interacciones protón-protón de alta multiplicidad. Además, nos gustaría calibrar la sen-
sibilidad de nuestros resultados al tamaño del sistema ampliando nuestro marco para
incluir colisiones p+Pb. En sistemas tan pequeños, es imprescindible demostrar que las
suposiciones subyacentes a la aplicabilidad de la hidrodinámica siguen siendo válidas.

Por otro lado, en aras de reforzar las bases teóricas de nuestro modelo para el pro-
tón, estamos trabajando en su realización explícita dentro del formalismo Color Glass
Condensate. La introducción de correlaciones espaciales entre un número reducido de
fuentes de carga de color, es decir, los hot spots, implicaría ir más allá de la aproximación
tomada en el exitoso modelo McLerran-Venugopalan de una distribución de probabilidad
gaussiana para las cargas de color, justificada por el teorema del límite central cuando
el número de ellas es lo suficientemente grande como en el caso nuclear. Por lo tanto, el
objetivo final de este estudio además de su contenido teórico es medir el impacto de un
número finito de fuentes de color correlacionadas en las correlaciones de momento del
estado inicial.
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Completar de manera satisfactoria ambos proyectos abrirá la puerta a una mayor
comprensión de los intrigantes indicios experimentales de la producción de gotas de
plasma de quarks y gluones en pequeños sistemas de colisión desde una perspectiva
tanto de estado inicial como de final.



A
Kinematics

A particle position and momentum are characterized in terms of four-vectors. They are
defined as

xµ = (t, x, y, z)

pµ = (E, px, py, pz). (A.1)

To operate with four-vectors, a metric tensor has to be specified. In this thesis, two
systems of coordinates are used: Minkowski and light-cone. In Minkowski space the
metric is defined as gµν = diag(1,−1,−1,−1). The definition of light-cone coordinates
is given in Appendix B. The z-direction is consider the longitudinal one and (x, y) often
collapse into a transverse component i.e. x⊥ ≡

√
x2 + y2.

Although in general we work with Lorentz invariant objects the physics interpretation
of any process varies with the reference frame we choose to work in. In our case, they will
be the centre-of-mass (C.o.M) and Breit frames. Consider a collision between particles
A and B. In the C.o.M frame, the relation ~pA + ~pB =0 is fulfilled. For the Breit frame, the
initial momentum of A is reversed after the scattering i.e. ~pout

A =−~pin
A .

Consider the hadronic collision between particles A and B in which a relativistic
particle of mass m is created with momentum p and energy E =

√
m2 + p2. We take

the z-direction as the collision axis. The angle between the transverse momentum p⊥
and the longitudinal component pz is the polar emission angle θ. Unfortunately, pz does
not transform linearly under Lorentz transformations so a new variable called rapidity is
introduced

y =
1

2
log

(
E + pz
E − pz

)
. (A.2)

Central rapidity is equivalent to y ∼ 0 while large values of rapidity are referred to as
forward. Note that the definition of rapidity involves the mass of the particle. An alternative
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variable, the pseudo-rapidity, that can be extracted from the particle track geometry in the
detector is often used:

η =
1

2
log

(√
p⊥2 + p2

z + pz√
p⊥2 + p2

z − pz

)

=
1

2
log

(
1 + cos θ

1− cos θ

)
. (A.3)

In the ultra-relativistic limit y≈η. The centre of mass energy of the collision is defined as
√
s =

√
2EAEB (A.4)

Further, the four-momentum transfer squared can be expressed as:

t = (pµA − pµ)2 = −2p2(1− cos θ). (A.5)

Finally, by measuring (y,p⊥) of the produced particle and knowing
√
s one has access to

the longitudinal momentum fraction carried by the participant partons of their parent had-
rons. Assuming that the produced particle originates from a single partonic interaction,
the longitudinal momentum fractions are given by

x1,2 =
p⊥√
s
e±y. (A.6)



B
Light-cone coordinates

A coordinate system frequently used in relativistic collisions is defined by choosing an
axis along which particles have a large momentum and calling it x3. Then, for any 4-
vector xµ we define:

xµ = (x+, x−,x⊥) (B.1)

with

x± =
1√
2

(x0 ± x3) (B.2)

and x⊥=(x1, x2) being (x0, x1, x2, x3) the coordinates in the standard basis of Minkowski
space. The graphic representation of the two different coordinate systems is shown in
Fig. B.1.

In order to obtain the metric, gµν of this coordinate system,

ds2 = gµνdx
µdxν (Minkowski ds2 = dt2 − dx2 − dy2 − dz2) (B.3)

2dx+dx− = (dx0 + dx3)(dx0 − dx3) = (dx0)2 − (dx3)2 (B.4)

⇒ ds2
LC = 2dxxdx− − (dx1)2 − (dx2)2 (B.5)

Assuming that we write xµ = (x+, x−,x⊥), the metric looks like

gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1
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.
A product of two four-vectors aµ and bµ in light cone notation is

a · b = gµνa
νbµ = aµb

µ = a+b− + a−b+ − a⊥ · b⊥ (B.6)

a · a = 2a+a− − a⊥ · a⊥. (B.7)

Finally, the on-shell condition is

kµk
µ = m2 ⇒ 2k+k− − k2

⊥ = m2 ⇒ k− =
k2
⊥ +m2

2k+
. (B.8)

It is also useful to define the proper time and the space time rapidity as follows

τ =
√

(x0)2 − (x3)2 =
√

2x+x−

η =
1

2
ln
x0 + x3

x0 − x3
=

1

2
ln
x+

x−
(B.9)

The metric in the (τ, η,x⊥) reads

ds2 = dτ2 − τ2dη − dx⊥ (B.10)

Therefore, any 4-vector Aµ(x+, x−,x⊥) can be transformed to (τ, η,x⊥) coordinates by
applying

Aτ = Aτ = (x+A− + x−A+)/τ

Aη = −τ2Aη = x+A− − x−A+. (B.11)

x3

x0

x+x−

Figure B.1: Representation of the rotation from usual Minkowski space (x0, x3) to light-
cone coordinates (x+, x−).



C
Eikonal scattering and Wilson lines

In Chapter 1 we have related the gauge link needed to obtain a gauge invariant definition
of Wigner distributions to the rescattering of partons off their parent hadron in terms of
Wilson lines. To justify this idea we present an explicit calculation of the S-matrix of the
process depicted in Fig. C.1. That is, a fast parton exchange one gluon with a color field
source that can be its parent hadron, a nucleus or a nucleon. Generically we will refer to
it as target.

Ac
µ

(k, s, a) (k′, s′, b)

q

Figure C.1: One gluon exchange between a fast quark and a dense target.

Before delving into the details of the calculation we make some kinematic consider-
ations. In the infinite momentum frame, the target moves with a very large momentum
along the x− direction i.e. P ≈ (0, P−,0⊥). Therefore, the color field only has a − com-
ponent, Acµ ≡ Ac,−(x+,x⊥) and it is independent of x−. A simple +↔− sustitution relates
the results of this Appendix and the ones in Sec. 1.3. On the other hand, the massless
quark is moving along the light-cone x+ axis with a very large momentum k+. Applying
the on-shell condition we get the magnitude of k−

k2 = 0⇒ 2k+k− − k2
⊥ = 0⇒ k− =

k2
⊥

2k+
. (C.1)

Now we apply the eikonal approximation: at high energies, the recoil of the propagating
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quark as it scatters off the target can be neglected. In transverse space, this is equivalent
to assume the transverse position of the quark to be fixed during the propagation. Con-
sequently, |k⊥|�k+ and from Eq. (C.1) one sees that k− is strongly suppressed. Then,
the 4-momentum of the incoming quark is

kµ ≈ (k+, 0,k⊥) (C.2)

.
Regarding the outgoing quark, its 4-momentum given by:

k′ = (k+ + q+, q−,k⊥ + q⊥) (C.3)

where q is the 4-momentum of the gluon. This expression can be further simplified by,
first, imposing the on-shell condition

k′2 = 0⇒ q2 + 2k+q− = 0⇒ q− = − q2

2k+
→ 0 (C.4)

An alternative, but equivalent, view of the eikonal approximation is that the energy of the
collision is much greater than the energy exchanged between parton and background
field so that the latter can be neglected. Therefore, p+� q+ and the final expression for
the outgoing quark is

k′ ≈ (k+, 0,k⊥ + q⊥) (C.5)

Now we are ready to evaluate the scattering matrix corresponding to Fig. C.1 that
reads

S1(k, k′, a, b, s, s′) =

∫
d4xei(k−k′)xus

′
(k′)igAcµ(tc)abγ

µus(k) (C.6)

where (a, b) are color indices in the fundamental representation and (s, s′) relate to the
spin. Using light-cone coordinates

S1 = ig

∫
dx+dx−d2x⊥e

i(k+−k′+)x−ei(k−−k′−)x+e−i(k⊥−k′⊥)·x⊥

× us′(k′)igAcµ(tc)abγ
µus(k). (C.7)

Next, it can be shown that us
′
γµus = 2δss

′
kµ within the eikonal approximation [213] and

defining Aµ ≡ Acµ(tc)ab Eq. (C.7) turns into

S1 = igδss
′
∫

dx+dx−d2x⊥e
i(k+−k′+)x−ei(k−−k′−)x+e−i(k⊥−k′⊥)·x⊥2kµAµ. (C.8)

where the dependence of Aµ on the light-cone coordinates has been omitted. As men-
tioned above, Aµ has only a − component so that its 4-product with kµ is simplified

S1 = 2igδss
′
∫

dx+dx−d2x⊥e
i(k+−k′+)x−ei(k−−k′−)x+e−i(k⊥−k′⊥)·x⊥k+A−. (C.9)



135

Making use of the shape of the four momenta of the incoming and outgoing quark as
derived in Eqs. (C.2) and (C.5) we get:

S1 = 2igδss
′
k+

∫
dx+dx−d2x⊥e

i(k+−k′+)x−e−i(k⊥−k′⊥)·x⊥A−(x+,x⊥)

= 2ig2πδss
′
k+δ(k+ − k′+)

∫
dx+d2x⊥e

−i(k⊥−k′⊥)·x⊥A−(x+,x⊥). (C.10)

To make the connection with the Wilson line clearer we restore the color matrix and write:

S1 = 2πδ(k+ − k′+)δss
′
2k+

∫
d2x⊥e

−i(k⊥−k′⊥)·x⊥
[
ig

∫
dx+Ac−(x+,x⊥)tc

]

ab

(C.11)

The factors outside the integral in Eq. (C.11) reflect the conservation of the spin and
the +-component of the momentum in the scattering. The term in brackets has a neat
interpretation: the quark undergoes a color rotation from a to b due to the scattering
process. Up to now we have considered only one gluon exchange i.e. Eq. (C.11) is the
first term of an infinte sum that takes into account all possible scatterings. When this sum
is performed, the total scattering matrix reads:

S =

∞∑

n=0

Sn

= δ(k+ − k′+)δss
′
2k+

∫
d2x⊥e

−i(k⊥−k′⊥)·x⊥P exp

[
ig

∫
dx+Ac−(x+,x⊥)tc

]

ab

. (C.12)

Finally, we can write S as:

S(k, k′, a, b, s, s′) = δ(k+ − k′+)δss
′
2k+

∫
d2x⊥e

−i(k⊥−k′⊥)·x⊥U(x⊥)ab (C.13)

where

U(x⊥)ab = P exp

[
ig

∫
dx+Ac−(x+,x⊥)tc

]

ab

(C.14)

is the definition of a Wilson line.
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[192] P. Bożek, W. Broniowski, M. Rybczyński, Wounded quarks in A+A, p+A, and p+p
collisions, Phys. Rev. C94 (1) (2016) 014902. arXiv:1604.07697, doi:10.1103/
PhysRevC.94.014902.

[193] K. Welsh, J. Singer, U. W. Heinz, Initial state fluctuations in collisions between
light and heavy ions, Phys. Rev. C94 (2) (2016) 024919. arXiv:1605.09418, doi:
10.1103/PhysRevC.94.024919.

[194] J. Noronha-Hostler, L. Yan, F. G. Gardim, J.-Y. Ollitrault, Linear and cubic response
to the initial eccentricity in heavy-ion collisions, Phys. Rev. C93 (1) (2016) 014909.
arXiv:1511.03896, doi:10.1103/PhysRevC.93.014909.

[195] L. Yan, J.-Y. Ollitrault, ν4, ν5, ν6, ν7: nonlinear hydrodynamic response versus
LHC data, Phys. Lett. B744 (2015) 82–87. arXiv:1502.02502, doi:10.1016/j.
physletb.2015.03.040.

[196] J. L. Albacete, H. Petersen, A. Soto-Ontoso, Correlated wounded hot spots in
proton-proton interactions, Phys. Rev. C95 (6) (2017) 064909. arXiv:1612.06274,
doi:10.1103/PhysRevC.95.064909.

[197] J. L. Albacete, H. Petersen, A. Soto-Ontoso, Gluonic hot spots and spatial cor-
relations inside the proton, Nucl. Phys. A967 (2017) 924–927. doi:10.1016/j.
nuclphysa.2017.05.021.

[198] J. L. Albacete, H. Petersen, A. Soto-Ontoso, Symmetric cumulants as a probe of
the proton substructure at LHC energies, Phys. Lett. B778 (2018) 128–136. arXiv:
1707.05592, doi:10.1016/j.physletb.2018.01.011.

[199] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.
Instrum. Meth. A389 (1997) 81–86. doi:10.1016/S0168-9002(97)00048-X.

[200] W. Broniowski, M. Rybczynski, P. Bozek, GLISSANDO: Glauber initial-state simu-
lation and more.., Comput. Phys. Commun. 180 (2009) 69–83. arXiv:0710.5731,
doi:10.1016/j.cpc.2008.07.016.

[201] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, U. Heinz, Applying Bayesian
parameter estimation to relativistic heavy-ion collisions: simultaneous characteriz-
ation of the initial state and quark-gluon plasma medium, Phys. Rev. C94 (2) (2016)
024907. arXiv:1605.03954, doi:10.1103/PhysRevC.94.024907.

[202] J. T. Mitchell, D. V. Perepelitsa, M. J. Tannenbaum, P. W. Stankus, Tests of
constituent-quark generation methods which maintain both the nucleon center of
mass and the desired radial distribution in Monte Carlo Glauber models, Phys. Rev.
C93 (5) (2016) 054910. arXiv:1603.08836, doi:10.1103/PhysRevC.93.054910.

[203] A. Bialas, W. Czyz, W. Furmanski, Particle Production in Hadron-Nucleus Collisions
and the Quark Model, Acta Phys. Polon. B8 (1977) 585.

http://arxiv.org/abs/1604.07697
http://dx.doi.org/10.1103/PhysRevC.94.014902
http://dx.doi.org/10.1103/PhysRevC.94.014902
http://arxiv.org/abs/1605.09418
http://dx.doi.org/10.1103/PhysRevC.94.024919
http://dx.doi.org/10.1103/PhysRevC.94.024919
http://arxiv.org/abs/1511.03896
http://dx.doi.org/10.1103/PhysRevC.93.014909
http://arxiv.org/abs/1502.02502
http://dx.doi.org/10.1016/j.physletb.2015.03.040
http://dx.doi.org/10.1016/j.physletb.2015.03.040
http://arxiv.org/abs/1612.06274
http://dx.doi.org/10.1103/PhysRevC.95.064909
http://dx.doi.org/10.1016/j.nuclphysa.2017.05.021
http://dx.doi.org/10.1016/j.nuclphysa.2017.05.021
http://arxiv.org/abs/1707.05592
http://arxiv.org/abs/1707.05592
http://dx.doi.org/10.1016/j.physletb.2018.01.011
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://arxiv.org/abs/0710.5731
http://dx.doi.org/10.1016/j.cpc.2008.07.016
http://arxiv.org/abs/1605.03954
http://dx.doi.org/10.1103/PhysRevC.94.024907
http://arxiv.org/abs/1603.08836
http://dx.doi.org/10.1103/PhysRevC.93.054910


163

[204] A. Bialas, M. Bleszynski, W. Czyz, Multiplicity Distributions in Nucleus-Nucleus
Collisions at High-Energies, Nucl. Phys. B111 (1976) 461–476. doi:10.1016/
0550-3213(76)90329-1.

[205] J. Adam, et al., Charged-particle multiplicities in proton–proton collisions at
√
s =

0.9 to 8 TeV, Eur. Phys. J. C77 (1) (2017) 33. arXiv:1509.07541, doi:10.1140/
epjc/s10052-016-4571-1.

[206] M. Aaboud, et al., Charged-particle distributions at low transverse momentum
in
√
s = 13 TeV pp interactions measured with the ATLAS detector at the

LHC, Eur. Phys. J. C76 (9) (2016) 502. arXiv:1606.01133, doi:10.1140/epjc/
s10052-016-4335-y.

[207] K. Aamodt, et al., Charged-particle multiplicity measurement in proton-proton col-
lisions at

√
s = 7 TeV with ALICE at LHC, Eur. Phys. J. C68 (2010) 345–354.

arXiv:1004.3514, doi:10.1140/epjc/s10052-010-1350-2.

[208] A. Breakstone, et al., Charged Multiplicity Distribution in p p Interactions at ISR
Energies, Phys. Rev. D30 (1984) 528. doi:10.1103/PhysRevD.30.528.

[209] G. S. Denicol, C. Gale, S. Jeon, J. F. Paquet, B. Schenke, Effect of initial-state
nucleon-nucleon correlations on collective flow in ultra-central heavy-ion colli-
sionsarXiv:1406.7792.

[210] G. Giacalone, J. Noronha-Hostler, J.-Y. Ollitrault, Relative flow fluctuations as a
probe of initial state fluctuations, Phys. Rev. C95 (5) (2017) 054910. arXiv:1702.
01730, doi:10.1103/PhysRevC.95.054910.

[211] H. Petersen, Identified Particle Spectra and Anisotropic Flow in an Event-by-Event
Hybrid Approach in Pb+Pb collisions at

√
sNN = 2.76 TeV, Phys. Rev. C84 (2011)

034912. arXiv:1105.1766, doi:10.1103/PhysRevC.84.034912.

[212] W. Broniowski, P. Bozek, M. Rybczynski, Wounded quarks at the LHC, Acta Phys.
Polon. Supp. 10 (2017) 513. arXiv:1611.00250, doi:10.5506/APhysPolBSupp.10.
513.

[213] G. P. Lepage, S. J. Brodsky, Exclusive Processes in Perturbative Quantum Chro-
modynamics, Phys. Rev. D22 (1980) 2157. doi:10.1103/PhysRevD.22.2157.

http://dx.doi.org/10.1016/0550-3213(76)90329-1
http://dx.doi.org/10.1016/0550-3213(76)90329-1
http://arxiv.org/abs/1509.07541
http://dx.doi.org/10.1140/epjc/s10052-016-4571-1
http://dx.doi.org/10.1140/epjc/s10052-016-4571-1
http://arxiv.org/abs/1606.01133
http://dx.doi.org/10.1140/epjc/s10052-016-4335-y
http://dx.doi.org/10.1140/epjc/s10052-016-4335-y
http://arxiv.org/abs/1004.3514
http://dx.doi.org/10.1140/epjc/s10052-010-1350-2
http://dx.doi.org/10.1103/PhysRevD.30.528
http://arxiv.org/abs/1406.7792
http://arxiv.org/abs/1702.01730
http://arxiv.org/abs/1702.01730
http://dx.doi.org/10.1103/PhysRevC.95.054910
http://arxiv.org/abs/1105.1766
http://dx.doi.org/10.1103/PhysRevC.84.034912
http://arxiv.org/abs/1611.00250
http://dx.doi.org/10.5506/APhysPolBSupp.10.513
http://dx.doi.org/10.5506/APhysPolBSupp.10.513
http://dx.doi.org/10.1103/PhysRevD.22.2157

	Acknowledgements
	Introducción
	Introduction
	Quantum Chromodynamics
	Basics
	Wigner distributions
	PDFs and DIS
	TMDs and SIDIS
	GPDs and DVCS
	Lattice QCD

	Color Glass Condensate
	This thesis in the context of the proton structure

	The hollowness effect
	Proton-proton elastic scattering
	Extraction of Gin(s,b) from data
	Model description
	Gluonic hot spots
	Multiple scattering in Glauber theory
	Spatial correlations
	Multi-dimensional Gaussian integration

	Parameter space: "4266308 Rhs,Rp,rc,hs"5267309 
	Model vs. del/dt data
	Proton transverse structure as a byproduct of the hollowness effect

	The quest for the quark-gluon plasma
	The QCD phase diagram
	Finite temperature
	Finite density

	Heavy-ion experimental facilities
	Large Hadron Collider
	Relativistic Heavy Ion Collider
	Facility for Antiproton and Ion Research
	Electron Ion Collider

	The standard model for heavy ion collisions
	Initial state and the glasma
	Hydrodynamic evolution
	Hadronic rescattering and freeze out

	QGP signatures
	Jet quenching
	Flow harmonic coefficients

	Hints of collectivity in small systems
	Experimental observations
	Theoretical perspective

	This thesis in the context of QGP physics

	Initial state studies in p+p collisions
	Setup
	Impact parameter distribution
	Sampling hot spots positions
	Collision criterion
	Entropy deposition
	Centrality classes
	Parameters

	Basic quantities in a Monte Carlo Glauber calculation
	"426830A Nw"526930B  vs. b
	Radial distribution of wounded hot spots
	"426830A S "526930B  vs. b and Pw(i)

	Spatial eccentricity moments
	Participant plane
	Minimum bias
	Ultra-central collisions
	Energy scan in minimum bias
	Nhs-dependence

	Normalized symmetric cumulants
	Centrality dependence
	Role of the interaction topology
	Scan of the parameter space
	Sensitivity of NSC(2,3) to Nhs
	Influence of Nw/Ncoll on NSC(2,3)


	Conclusions and future prospects
	Conclusiones y futuras líneas de investigación
	Kinematics
	Light-cone coordinates
	Eikonal scattering and Wilson lines
	List of figures
	List of tables
	Bibliography



