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Abstract
For surveys of sensitive issues in life sciences, statistical procedures can be used to

reduce nonresponse and social desirability response bias. Both of these phenomena

provoke nonsampling errors that are difficult to deal with and can seriously flaw the

validity of the analyses. The item sum technique (IST) is a very recent indirect ques-

tioning method derived from the item count technique that seeks to procure more reli-

able responses on quantitative items than direct questioning while preserving respon-

dents' anonymity. This article addresses two important questions concerning the IST:

(i) its implementation when two or more sensitive variables are investigated and effi-

cient estimates of their unknown population means are required; (ii) the determination

of the optimal sample size to achieve minimum variance estimates. These aspects are

of great relevance for survey practitioners engaged in sensitive research and, to the best

of our knowledge, were not studied so far. In this article, theoretical results for mul-

tiple estimation and optimal allocation are obtained under a generic sampling design

and then particularized to simple random sampling and stratified sampling designs.

Theoretical considerations are integrated with a number of simulation studies based

on data from two real surveys and conducted to ascertain the efficiency gain derived

from optimal allocation in different situations. One of the surveys concerns cannabis

consumption among university students. Our findings highlight some methodological

advances that can be obtained in life sciences IST surveys when optimal allocation is

achieved.

K E Y W O R D S
complex sampling, Horvitz–Thompson estimator, indirect questioning methods, sensitive research

1 INTRODUCTION

Studies in life and social sciences addressing highly personal, embarrassing, stigmatizing, threatening, or even incriminating

issues often yield unreliable estimates of unknown characteristics of the population under study, due to nonresponse (unit-

nonresponse or item-nonresponse) and socially desirable responding. In particular, social desirability bias, that is the desire to

make a favorable impression on others, poses a significant threat to the validity of self-reports in “sensitive research” as well

described in Dickson-Swift, James, and Liamputtong (2008).

Refusal to answer and false answers constitute nonsampling errors that are difficult to deal with and can seriously flaw the

quality of the collected data, thus jeopardizing the usefulness of subsequent analyses including statistical inference of unknown

characteristics of the population under study. Although these errors cannot be totally avoided, they may be mitigated by enhancing

respondents' cooperation. Since the decision to cooperate fully and honestly greatly depends on how survey participants perceive

their privacy being disclosed, survey modes that ensure respondents' anonymity or, at least, a high degree of confidentiality, may
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go some way to improving cooperation and, consequently, ensure more reliable information on sensitive topics than that derived

from direct questioning.

In recent years, indirect questioning survey modes have gained popularity in many research fields, mostly falling in the life

and social sciences, as effective methods for eliciting truthful responses to sensitive questions while guaranteeing respondents'

privacy. In general, this nonstandard survey approach encourages greater cooperation from respondents and reduces the moti-

vation to falsely report their attitudes. The approach obeys the principle that no direct question is posed to survey participants

and, then, there is no need for respondents to openly reveal if they are actually engaged in sensitive behaviors. In this way,

privacy is protected since answers remain confidential to the respondents and, consequently, their true status remains uncertain

and undisclosed to both the interviewer and the researcher. Nonetheless, although the individual information provided by the

respondents cannot be used to know their true sensitive status, the information gathered for all the survey participants can be

profitable used to make inference on certain parameters of interest of the population under study, usually the prevalence of a

sensitive behavior, its frequency or the mean/total of a sensitive quantitative variable.

The indirect questioning strategies may be classified in three different groups: the randomized response technique, the item

count technique (ICT), and the nonrandomized response technique. All the approaches have produced a considerable literature

and attracted the interest of health, cognitive and behavioral psychologists, epidemiologists, health-care operators, researchers

engaged in organizing, managing and conducting sensitive studies, as well as policy-makers committed in formulating effective

diseases and mental disorders control measures and promoting public intervention programs to gauge progress toward improving

the behavioral health of a state.

For a comprehensive review of the topic, interested readers are referred to Fox and Tracy (1986), Chaudhuri and Muk-

erjee (1988), Chaudhuri (2011), Chaudhuri and Christofides (2013), Tian and Tang (2014). Useful and detailed studies on

recent methodological advances, more complex estimation problems and new challenges may be found, among others, in Arcos,

Rueda, and Singh (2015), Barabesi, Diana, and Perri (2013, 2015), Diana and Perri (2011), Fox, Entink, and Avetisyan (2014),

Glynn (2013), Groenitz (2014), Hoffmann and Musch (2016), Hoffmann, Diedenhofen, Verschuere, and Musch (2016), Hus-

sain, Shabbir, and Shabbir (2015), Ibrahim (2016), Imai (2011), Imai, Park, and Greene (2015), Liu and Tian (2013), Moshagen,

Hilbig, Erdfelder, and Moritz (2014), Nepusz, Petróczi, Naughton, Epton, and Norman (2014), Perri and van der Heijden (2012),

Petróczi et al. (2011), Rueda, Cobo, and Arcos (2016), Tsuchiya (2005), Ulrich, Schörter, Striegel, and Simon (2012), Wu and

Tang (2016).

Various indirect questioning techniques have been experienced in different branches of life sciences. In particular, these

methods have been mainly applied to estimate prevalence of discriminating or embarrassing behaviors in epidemiological and

medical studies. Some recent contributions, although not exhaustive, cover a great variety of topics. For instance: the measure

of the impact of HIV/AIDS infection in Botswana (Arnab & Singh, 2010); the assessment of sensitive health-risk behaviors

in HIV/AIDS positive individuals (Arentoft et al., 2016); the assessment of permissive sexual attitudes and high-risk sexual

behaviors to reduce the transmission and acquisition of sexually transmitted infections and HIV/AIDS (De Jong, Pieters, &

Stremersch, 2012; Starosta & Earleywine, 2014; Geng, Gao, Ruan, Yu, & Zhou, 2016; Kazemzadeh, Shokoohi, Baneshi, &

Haghdoost, 2016); patterns of condom use among university students for HIV/AIDS control programs (Safiri, 2016; Vakilian,

Mousavi, Keramat, & Chaman, 2016); the prevalence of sexual behaviors such as extradyadic sex (Tu & Hsieh, 2017), com-

mercial sex among homosexual men (Chen et al., 2014) and sexual assault (Krebs et al., 2011); the use of drug, and athletic,

cognitive, and mood performance-enhancing substances (Striegel, Ulrich, & Simon, 2010; Petróczi et al., 2011; Dietz et al.,

2013; Franke et al., 2013; James, Nepusz, Naughton, & Petróczi, 2013; Nakhaee, Pakravan, & Nakhaee, 2013; Stubbe, Chorus,

Frank, de Hon, & van der Heijden, 2013; Shamsipour et al., 2014; Khosravi et al., 2015; Cobo, Rueda, & López-Torrecillas,

2016); smoking behavior validation studies (Fox, Avetisyan, & van der Palen, 2013); dental hygiene habits of Chinese college

students (Moshagen, Musch, Ostapczuk, & Zhao, 2010); farmers' transgressionary behaviors and prevalence of animal diseases

such as sheep scab in Wales (Cross, Edwards-Jones, Omed, & Williams 2010), African swine fever in Madagascar (Randrianan-

toandro, Kono, & Kubota, 2015), or foot and mouth disease-infected animals in Sri Lanka (Gunarathne, Kubota, Kumarawadu,

Karunagoda, & Kon, 2016); estimation of the prevalence of induced abortion (Oliveras & Letamo, 2010; Moseson et al., 2015;

Perri, Pelle, & Stranges, 2016); ecological and biological conservation issues including estimation of illegal bushmeat hunting

(Nuno, Bunnefeld, Naiman, & Milner-Gulland, 2013; Conteh, Gavin, & Solomon, 2015), illegal fishing (Blank & Gavin, 2009;

Arias & Sutton, 2013), and unauthorized natural resources use (Harrison, Baker, Twinamatsiko, & Milner-Gulland, 2015).

This article focuses on a recent variant of the ICT conceived to deal with quantitative sensitive variables. We propose some

methodological advances that can be useful in life sciences when multiple sensitive issues are to be investigated, and reliable

and accurate estimates of usually underreported characteristics are to be produced.

The ICT has recently attracted much attention among applied researchers. This method, also known as the list experiment or

the unmatched count technique, was originally proposed by Miller (1984) for binary variables to estimate the prevalence of a
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stigmatizing behavior within the population. Without loss of generality, respondents are asked directly about their own sensitive

behavior and, at the same time, about a number of innocuous behaviors. In the standard setting, the method requires the selection

of two samples: a reference sample that receives a short list (SL) of items on questions only about innocuous behaviors, and a

treatment sample that receives a long list (LL) containing the innocuous items in the SL-sample and a sensitive question. Units

selected in the two samples are asked to report the total number of items that apply to them without revealing which item applies

individually.

The ICT is used in surveys that require the study of a qualitative variable. Nonetheless, many practical situations may deal

with sensitive variables that are quantitative in nature. To address this situation, Chaudhuri and Christofides (2013) proposed a

generalization of the ICT that can be used to estimate the mean (or the total) of a quantitative variable. Trappmann, Krumpal,

Kirchner, and Jann (2014) called this variant the item sum technique (IST) and used it in a survey to estimate the amount of

undeclared work in Germany. The IST works in a similar way to the ICT and offers a promising tool for dealing with sensitive

issues. Nonetheless, some methodological challenges, conceptually inherited from the ICT, remain to be overcome in order to

successful use the technique in applied research. The purpose of the present article is to address these challenges. In particular,

two open and unresolved issues are discussed. The first pertains the reduction of the statistical burden when multiple sensitive

items are to be investigated and estimates of certain characteristics are required. This situation occurs frequently in real studies

where researchers must incorporate𝑄 ≥ 2 sensitive questions in their surveys. Three different approaches are considered in the

article, and pros and cons highlighted. The first two techniques require that sampled units participate in 𝑄 distinct IST surveys,

one for each sensitive item. The first method is time-consuming and costly since requires the selection of 2𝑄 samples, the

second instead requires𝑄 samples but burdens the surveyed participants. A third viable alternative, which requires the selection

of𝑄 + 1 samples and acts as a trade-off between the first two approaches, is therefore proposed and its performance investigated

on a number of simulation experiments based on real data.

The second, but not less important, problem we consider is how to split the total sample size into the LL-sample and the

SL-sample. A simple solution would be to allocate the same number of units to each sample, irrespective of the variability of

the items in the two lists. Although intuitive and easy to implement, this basic solution is inefficient because estimates may be

affected by high variability. A possible alternative, discussed in the article, would be to achieve optimal sample size allocation

by minimizing the variance of the IST estimates under a budget constraint. This possibility is first formalized and discussed

under a generic sample design and, then, results are particularized to the simple random sampling and the stratified sampling

designs. Optimal allocation results are finally extended to the multiple sensitive estimation setting.

Methodological developments are integrated with an extensive simulation study aimed at investigating the performance of

the proposed techniques and the related estimators under two different sampling designs and for different sample sizes. Most of

the simulation study is based on the results of a real sensitive research conducted among university students in Granada (Spain)

to investigate the consumption of cannabis for recreational purposes.

The rest of this paper is organized as follows: Section 2 introduces the IST under a very general sampling design. Section

3 discusses some estimation methods for multiple sensitive questions under different approaches. The problem of the optimal

sample size allocation is then formulated in Section 4. Allocation is first derived for a general setting and then applied to

simple random sampling without replacement and stratified sampling designs. In Section 5, a number of simulation experiments

are generated from two real surveys to investigate the performance of the optimal allocation for single and multiple sensitive

estimation under different scenarios. One of the surveys concerns the number of cannabis cigarettes smoked in last year by

university students. Section 6 concludes the article with some final considerations.

2 THE ITEM SUM TECHNIQUE

Consider a finite population 𝑈 = {1,… , 𝑁} consisting of𝑁 different and identifiable units. Let 𝑦𝑖 be the value of the sensitive

character under study, say  , for the 𝑖-th population unit. Let us suppose that the population mean 𝑌 = 𝑁−1∑𝑁

𝑖∈𝑈 𝑦𝑖 is unknown

and has to be estimated in an IST setting. In so doing, two independent samples, say 𝑠𝑙𝑙 and 𝑠𝑠𝑙, are selected from 𝑈 according to

the generic sampling designs 𝑝𝑙𝑙(⋅) and 𝑝𝑠𝑙(⋅) with positive first- and second-order inclusion probabilities 𝜋𝑖(𝑙𝑙) =
∑
𝑠𝑙𝑙∋𝑖 𝑝𝑙𝑙(𝑠𝑙𝑙),

𝜋𝑖𝑗(𝑙𝑙) =
∑
𝑠𝑙𝑙∋𝑖,𝑗 𝑝𝑙𝑙(𝑠𝑙𝑙), 𝜋𝑖(𝑠𝑙) =

∑
𝑠𝑠𝑙∋𝑖 𝑝𝑠𝑙(𝑠𝑠𝑙), and 𝜋𝑖𝑗(𝑠𝑙) =

∑
𝑠𝑠𝑙∋𝑖,𝑗 𝑝𝑠𝑙(𝑠𝑠𝑙) with 𝑖, 𝑗 ∈ 𝑈 . Let 𝑑𝑖(𝑙𝑙) = 𝜋−1𝑖(𝑙𝑙) and 𝑑𝑖(𝑠𝑙) = 𝜋−1𝑖(𝑠𝑙)

denote the known sampling design-basic weight for unit 𝑖 ∈ 𝑈 in each sampling design.

Chaudhuri and Christofides (2013) introduced the IST in the following way: one of the samples, say 𝑠𝑙𝑙, is confronted with

a LL of items containing 𝐺 + 1 questions of which 𝐺 refer to nonsensitive characteristics and one is related to the sensitive

characteristic under study. The other sample, 𝑠𝑠𝑙, receives a SL of items that only contains the 𝐺 innocuous questions present
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in the LL-sample. All sensitive and nonsensitive items are quantitative in nature. Respondents in each sample are requested to

report the total score of all the items applicable to them, without revealing the individual scores for the items.

Without loss of generality, let  be the variable denoting the total score applicable to the 𝐺 nonsensitive questions, and

 =  +  the total score applicable to the nonsensitive questions and the sensitive question. When 𝐺 = 1,  denotes the

innocuous variable and 𝑡𝑖 its value on unit 𝑖 ∈ 𝑈 . Hence, the answer given by the 𝑖-th respondent will be 𝑧𝑖 = 𝑦𝑖 + 𝑡𝑖 if 𝑖 ∈ 𝑠𝑙𝑙
or 𝑡𝑖 if 𝑖 ∈ 𝑠𝑠𝑙.

Under the sampling designs 𝑝𝑙𝑙(⋅), 𝑝𝑠𝑙(⋅), let:

̂̄𝑍 = 1
𝑁

∑
𝑖∈𝑠𝑙𝑙

𝑑𝑖(𝑙𝑙)𝑧𝑖,
̂̄𝑇 = 1

𝑁

∑
𝑖∈𝑠𝑠𝑙

𝑑𝑖(𝑠𝑙)𝑡𝑖

be the unbiased Horvitz–Thompson (hereafter HT) estimators of �̄� = 𝑁−1∑
𝑖∈𝑈 (𝑦𝑖 + 𝑡𝑖) and �̄� = 𝑁−1∑

𝑖∈𝑈 𝑡𝑖, respectively.

Hence, a HT-type estimator of 𝑌 under the IST can be readily obtained as:

̂̄𝑌 = ̂̄𝑍 − ̂̄𝑇 . (1)

From the unbiasedness of ̂̄𝑍 and ̂̄𝑇 , it readily follows that the estimator ̂̄𝑌 is unbiased for 𝑌 . Furthermore, as long as the two

samples are independent, the variance of ̂̄𝑌 can be expressed as:

𝕍 ( ̂̄𝑌 ) = 𝕍 ( ̂̄𝑍) + 𝕍 ( ̂̄𝑇 ) = (2)

= 1
𝑁2

(∑∑
𝑖,𝑗∈𝑈

Δ𝑖𝑗(𝑙𝑙)𝑑𝑖(𝑙𝑙)𝑑𝑗(𝑙𝑙)𝑧𝑖𝑧𝑗 +
∑∑
𝑖,𝑗∈𝑈

Δ𝑖𝑗(𝑠𝑙)𝑑𝑖(𝑠𝑙)𝑑𝑗(𝑠𝑙)𝑡𝑖𝑡𝑗

)
,

where Δ𝑖𝑗(𝑎) = 𝜋𝑖𝑗(𝑎) − 𝜋𝑖(𝑎)𝜋𝑗(𝑎) with 𝑎 = 𝑙𝑙, 𝑠𝑙. An unbiased estimator of 𝕍 ( ̂̄𝑌 ) is given by:

�̂� ( ̂̄𝑌 ) = 1
𝑁2

(∑∑
𝑖,𝑗∈𝑠𝑙𝑙

Δ̌𝑖𝑗(𝑙𝑙)𝑑𝑖(𝑙𝑙)𝑑𝑗(𝑙𝑙)𝑧𝑖𝑧𝑗 +
∑∑
𝑖,𝑗∈𝑠𝑠𝑙

Δ̌𝑖𝑗(𝑠𝑙)𝑑𝑖(𝑠𝑙)𝑑𝑗(𝑠𝑙)𝑡𝑖𝑡𝑗

)

where Δ̌𝑖𝑗(𝑎) = Δ𝑖𝑗(𝑎)∕𝜋𝑖𝑗(𝑎).

3 MULTIPLE SENSITIVE ESTIMATION UNDER IST

Traditionally, indirect questioning techniques deal with one sensitive variable. However, in real surveys, the researcher may be

interested in investigating more than one sensitive variable. Typical areas of inquiry include: (i) the amount of self-employment

income and income from financial assets; (ii) the frequency and amount of tax evasion; (iii) the frequency, quantity, and cost

of cannabis use. In general, in situations like these concerning multiple estimation of the means of 𝑄 > 1 quantitative sensitive

variables, the implementation of the IST may be not unique and cumbersome, for various reasons. To obtain a reliable estimation,

a number of solutions might be adopted. One consists in performing 𝑄 separate IST surveys, one for each sensitive item. This

approach (hereafter, separate approach) requires for each item the selection of one LL-sample and one SL-sample, for a total of

2𝑄 samples. In practice, however, this solution does not appear to be feasible, because it is both time-consuming and costly, and

also because possible associations between variables would be lost since each IST survey is independently executed on different

subjects. To overcome these problems, a single IST survey could be performed. In this case, just one LL-sample and one SL-

sample are selected and respondents are asked to participate in 𝑄 separate IST experiments, one for each sensitive item. As can

be readily imagined, this procedure (hereafter, all-in-one approach) imposes a heavy statistical burden on the respondents, since

they must provide the required information on the single sensitive items by separately implementing the IST 𝑄 times. More

specifically, each respondent belonging to the SL-sample has to answer on 𝑄 different short lists and each respondent in the

LL-sample has to answer on𝑄 different long lists. If there are many items to be investigated, the accuracy of the responses may

deteriorate during the runs. Respondents may be more willing to participate and concentrate more effectively at the beginning

of the process, but lose attention during the course of the survey, and possibly break the rules or drop out. If the all-in-one

approach is adopted, the order of the items to be investigated, the question of reducing the statistical burden and the problem of

respondent drop out must all be carefully considered in the survey design. In view of the manifest weaknesses of the separate

and all-in-one approaches, we now consider a possible solution, one providing a trade-off of costs and benefits. Without loss of
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generality, let us focus, initially, on two quantitative sensitive variables, 1 and 2, and on one innocuous variable  . We want

to estimate the mean of the two variables, say 𝑌1 and 𝑌2. Under this approach (hereafter, mixed approach), three independent

samples are selected. For ease of notation, let us suppose that the same sampling design 𝑝(⋅) is used. Hence, let:

(i) 𝑠0 be a sample of size 𝑛0. The respondents are given a SL containing only the innocuous variable. The 𝑖0-th respondent

provides the score 𝑡𝑖0 with 𝑖0 = 1,… , 𝑛0;

(ii) 𝑠1 be a sample of size 𝑛1. The respondents are given a list containing one sensitive variable, for instance 1, and the

innocuous one. The 𝑖1-th respondent provides the total score 𝑦1𝑖1 + 𝑡𝑖1 with 𝑖1 = 1,… , 𝑛1;

(iii) 𝑠2 be a sample of size 𝑛2. The respondents are given a list containing the two sensitive variables and the innocuous one.

The 𝑖2-th respondent provides the total score 𝑦1𝑖2 + 𝑦2𝑖2 + 𝑡𝑖2 with 𝑖2 = 1,… , 𝑛2.

Let

̂̄𝑍0 =
1
𝑁

∑
𝑖0∈𝑠0

𝑡𝑖0

𝜋𝑖0

, ̂̄𝑍1 =
1
𝑁

∑
𝑖1∈𝑠1

𝑦1𝑖1 + 𝑡𝑖1
𝜋𝑖1

, ̂̄𝑍2 =
1
𝑁

∑
𝑖2∈𝑠2

𝑦1𝑖2 + 𝑦2𝑖2 + 𝑡𝑖2
𝜋𝑖2

.

Hence

̂̄𝑌 ∗
1 = ̂̄𝑍1 − ̂̄𝑍0

is the HT-unbiased estimator of 𝑌1 with

𝕍
( ̂̄𝑌 ∗

1
)
= 𝕍

( ̂̄𝑍1
)
+ 𝕍

( ̂̄𝑍0
)
.

Similarly,

̂̄𝑌 ∗
2 = ̂̄𝑍2 − ̂̄𝑍1

is the HT-unbiased estimator of 𝑌2 with

𝕍 ( ̂̄𝑌 ∗
2 ) = 𝕍 ( ̂̄𝑍2) + 𝕍 ( ̂̄𝑍1).

This framework can be readily extended to the case of 𝑄 ≥ 2 sensitive variables, 1,… ,𝑄, by selecting 𝑄 + 1 samples. With

the same notation as in the case 𝑄 = 2, let:

̂̄𝑍𝑘 =
1
𝑁

∑
𝑖𝑘∈𝑠𝑘

𝑧𝑖𝑘

𝜋𝑖𝑘

= 1
𝑁

∑
𝑖𝑘∈𝑠𝑘

∑𝑄

𝑗=1 𝑦𝑗𝑖𝑘 + 𝑡𝑖𝑘
𝜋𝑖𝑘

,

with 𝑘 = 1,… , 𝑄. Hence, the estimator

̂̄𝑌 ∗
𝑘
= ̂̄𝑍𝑘 − ̂̄𝑍𝑘−1

is the HT-unbiased estimator of 𝑌𝑘, 𝑘 = 1,… , 𝑄. The variance of this estimator is given by:

𝕍
( ̂̄𝑌 ∗
𝑘

)
= 𝕍

( ̂̄𝑍𝑘) + 𝕍
( ̂̄𝑍𝑘−1) =

= 1
𝑁2

(∑∑
𝑖,𝑗∈𝑈

Δ𝑖𝑗(𝑘)𝑑𝑖(𝑘)𝑑𝑗(𝑘)𝑧𝑖𝑧𝑗 +
∑∑
𝑖,𝑗∈𝑈

Δ𝑖𝑗(𝑘−1)𝑑𝑖(𝑘−1)𝑑𝑗(𝑘−1)𝑧𝑖𝑧𝑗

)
,

where, slightly changing the notation, 𝑑𝑏(𝑎) = 𝜋−1𝑏(𝑎) and Δ𝑖𝑗(𝑎) = 𝜋𝑖𝑗(𝑎) − 𝜋𝑖(𝑎)𝜋𝑗(𝑎), with 𝑏 = 𝑖, 𝑗 and 𝑎 = 1,… , 𝑘. Accordingly,

an unbiased estimator for 𝕍 ( ̂̄𝑌 ∗
𝑘
) follows as:

�̂� ( ̂̄𝑌 ∗
𝑘
) = 1

𝑁2

(∑∑
𝑖𝑘,𝑗𝑘∈𝑠𝑘

Δ̌𝑖𝑗(𝑘)𝑑𝑖(𝑘)𝑑𝑗(𝑘)𝑧𝑖𝑘𝑧𝑗𝑘 +
∑∑

𝑖𝑘−1,𝑗𝑘−1∈𝑠𝑘−1
Δ̌𝑖𝑗(𝑘−1)𝑑𝑖(𝑘−1)𝑑𝑗(𝑘−1)𝑧𝑖𝑘−1𝑧𝑗𝑘−1

)
.
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Similarly, 𝐺 > 1 innocuous variables, say 1,… , 𝐺, can be considered. In this case,  denotes the total score of the values

of the 𝐺 innocuous variables and 𝑡𝑖𝑘 =
∑𝐺

𝑔=1 𝑡𝑔𝑖𝑘 is the total score of the 𝐺 innocuous variables for the 𝑖𝑘-th respondent in the

𝑘-th sample 𝑠𝑘.

4 TOTAL SAMPLE SIZE ALLOCATION IN THE IST ESTIMATION

A key design decision in an IST survey is how to split the total sample into the LL-sample and SL-sample. A simple solution

is to allocate the same number of units to each sample irrespective of the variability of the items in the two lists. Clearly, this

intuitive and basic solution is not efficient because responses in the LL-sample are tendentially affected by high variability due

to the presence of innocuous items: the larger the number of items, the higher the variability of the response and, hence, of the

estimates. To the best of our knowledge, the problem of optimal allocation in the IST framework has not been considered so far.

Therefore, we propose a possible solution to this problem. First, we consider the standard IST with just one sensitive variable,

and assume that the total sample size 𝑛 is fixed beforehand. Hence, the problem of optimal sample allocation is formulated as

one of determining the LL-sample and SL-sample sizes, 𝑛𝑙𝑙 and 𝑛𝑠𝑙, in such a way as to minimize the variance of ̂̄𝑌 subject to a

fixed cost 𝐶 .

4.1 Allocation under a generic sampling design
Suppose that an IST design has been decided upon. Let 𝑛 be the sample size of the IST design, or the expected sample size if the

sampling design is not of a fixed size. To estimate the population mean 𝑌 , the HT-estimator defined in (1) is considered. Before

selecting the sample, the sample sizes 𝑛𝑙𝑙 and 𝑛𝑠𝑙 must be determined. We provide a solution to this allocation problem for the

case in which the sampling designs 𝑝𝑙𝑙(⋅) and 𝑝𝑠𝑙(⋅) provide a variance of the estimator that can be formulated as:

𝕍
( ̂̄𝑌 ) = 𝐴𝑧

𝑛𝑙𝑙
+
𝐴𝑡

𝑛𝑠𝑙
+ 𝐵, (3)

where the terms 𝐴𝑧, 𝐴𝑡, and 𝐵 do not depend on 𝑛𝑙𝑙 and 𝑛𝑠𝑙. The simple random sampling and the stratified random sampling

designs meet this requirement.

Let 𝑐0 represent the fixed overhead cost of the survey, and 𝑐𝑙𝑙 > 0 and 𝑐𝑠𝑙 > 0 be the costs of surveying one element in 𝑠𝑙𝑙
and 𝑠𝑠𝑙, respectively. These costs depend on the survey designs adopted. We assume a linear cost function. Hence, the total

data-collection cost for the survey is given by:

𝐶 = 𝑐0 + 𝑐𝑙𝑙𝑛𝑙𝑙 + 𝑐𝑠𝑙𝑛𝑠𝑙. (4)

Under this setup, the following result holds.

Theorem 1. For an IST design that admits 𝕍 ( ̂̄𝑌 ) in the form given by (3), the optimal sample size allocation under the linear
cost function 𝐶 = 𝑐0 + 𝑐𝑙𝑙𝑛𝑙𝑙 + 𝑐𝑠𝑙𝑛𝑠𝑙 is achieved by choosing

𝑛𝑙𝑙 = (𝐶 − 𝑐0)
√
𝐴𝑧∕𝑐𝑙𝑙√

𝐴𝑧𝑐𝑙𝑙 +
√
𝐴𝑡𝑐𝑠𝑙

, 𝑛𝑠𝑙 = (𝐶 − 𝑐0)
√
𝐴𝑡∕𝑐𝑠𝑙√

𝐴𝑧𝑐𝑙𝑙 +
√
𝐴𝑡𝑐𝑠𝑙

. (5)

The minimum variance of the estimator ̂̄𝑌 is

𝕍 ( ̂̄𝑌 ) = 1
𝐶 − 𝑐𝑜

(√
𝐴𝑧𝑐𝑙𝑙 +

√
𝐴𝑡𝑐𝑠𝑙

)2
+ 𝐵. (6)

Proof. As in Särndal, Swensson, and Wretman (1992; Section 3.7.3), determining 𝑛𝑙𝑙 and 𝑛𝑠𝑙 to minimize 𝕍 ( ̂̄𝑌 ) for fixed 𝐶 is
equivalent to minimizing the product

(
𝕍
( ̂̄𝑌 ) − 𝐵)(𝐶 − 𝑐0) =

(
𝐴𝑧

𝑛𝑙𝑙
+
𝐴𝑡

𝑛𝑠𝑙

)
(𝑐𝑙𝑙𝑛𝑙𝑙 + 𝑐𝑠𝑙𝑛𝑠𝑙).
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From the Cauchy–Schwarz inequality, we obtain:(
𝕍
( ̂̄𝑌 ) − 𝐵)(𝐶 − 𝑐0) ≥

(√
𝐴𝑧𝑐𝑙𝑙 +

√
𝐴𝑡𝑐𝑠𝑙

)2
,

where the equality holds if and only if: √√√√𝑐𝑙𝑙𝑛𝑙𝑙
𝐴𝑧

𝑛𝑙𝑙

=
√√√√𝑐𝑠𝑙𝑛𝑠𝑙

𝐴𝑡

𝑛𝑠𝑙

= 𝐾.

From the previous equality, it follows that

𝑛𝑙𝑙 = 𝐾

√
𝐴𝑧

𝑐𝑙𝑙
, 𝑛𝑠𝑙 = 𝐾

√
𝐴𝑡

𝑐𝑠𝑙
. (7)

By replacing these quantities in the budget constraint (4), we obtain the value of 𝐾 as:

𝐾 =
𝑐𝑙𝑙𝑛𝑙𝑙 + 𝑐𝑠𝑙𝑛𝑠𝑙√
𝐴𝑧𝑐𝑙𝑙 +

√
𝐴𝑡𝑐𝑠𝑙

=
𝐶 − 𝑐0√

𝐴𝑧𝑐𝑙𝑙 +
√
𝐴𝑡𝑐𝑠𝑙

,

which, when replaced in (7), yields (5). Hence, with this optimal choice of 𝑛𝑙𝑙 and 𝑛𝑠𝑙, the quantity (𝕍 ( ̂̄𝑌𝐻𝑇 ) − 𝐵)(𝐶 − 𝑐0) attains
its minimum value (

√
𝐴𝑧𝑐𝑙𝑙 +

√
𝐴𝑡𝑐𝑠𝑙)2 or, equivalently, 𝕍 ( ̂̄𝑌 ) achieves the minimum variance bound given in (6). Hence the

proof. □

In terms of the sample size 𝑛 = 𝑛𝑙𝑙 + 𝑛𝑠𝑙, from (5) we have

𝑛 = (𝐶 − 𝑐0)
√
𝐴𝑧∕𝑐𝑙𝑙 +

√
𝐴𝑡∕𝑐𝑠𝑙√

𝐴𝑧𝑐𝑙𝑙 +
√
𝐴𝑡𝑐𝑠𝑙

,

from which it easily follows that:

𝑛𝑙𝑙 = 𝑛
√
𝐴𝑧∕𝑐𝑙𝑙√

𝐴𝑧∕𝑐𝑙𝑙 +
√
𝐴𝑡∕𝑐𝑠𝑙

, 𝑛𝑠𝑙 = 𝑛
√
𝐴𝑡∕𝑐𝑠𝑙√

𝐴𝑧∕𝑐𝑙𝑙 +
√
𝐴𝑡∕𝑐𝑠𝑙

.

Hence, the following result is proved:

Corollary 1. If the sample costs 𝑐𝑙𝑙 and 𝑐𝑠𝑙 are equal, the optimal sample size allocation is given by:

𝑛𝑙𝑙 = 𝑛
√
𝐴𝑧√

𝐴𝑧 +
√
𝐴𝑡

, 𝑛𝑠𝑙 = 𝑛
√
𝐴𝑡√

𝐴𝑧 +
√
𝐴𝑡

. (8)

We observe that the calculation of 𝑛𝑙𝑙 and 𝑛𝑠𝑙 given in (8) requires the knowledge of 𝐴𝑧 and 𝐴𝑡. These quantities generally

depend on the population variances that are usually unknown. When such values are unknown and cannot be properly guessed

on the basis of previous data or experts opinion, they must be estimated making use, for instance, of a pilot survey (Sukhatme,

Sukhatme, Sukhatme, & Asok, 1984).

4.2 Allocation under simple random sampling without replacement
Let us suppose that the two samples 𝑠𝑙𝑙 and 𝑠𝑠𝑙 are selected according to simple random sampling without replacement

(SRSWOR) and that all costs are equal. Hence, from (2), the variance of ̂̄𝑌 can be reformulated as in (3):

𝕍 ( ̂̄𝑌 ) = 𝕍 ( ̂̄𝑍) + 𝕍 ( ̂̄𝑇 ) =

=
(
1 −

𝑛𝑙𝑙

𝑁

) 𝑆2
𝑧

𝑛𝑙𝑙
+
(
1 −

𝑛𝑠𝑙

𝑁

) 𝑆2
𝑡

𝑛𝑠𝑙
=

=
𝑆2
𝑧

𝑛𝑙𝑙
+
𝑆2
𝑡

𝑛𝑠𝑙
− 1
𝑁

(
𝑆2
𝑧
+ 𝑆2

𝑡

)
,
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where 𝑆2
.

denotes the population variance of the variable in the subscript. Note that 𝑆2
𝑧
= 𝑆2

𝑦
+ 𝑆2

𝑡
+ 2𝑆𝑦𝑡, where 𝑆𝑦𝑡 denotes

the covariance. By replacing these population quantities by their sampling counterpart, we obtain an unbiased estimator of 𝕍 ( ̂̄𝑌 )
as:

�̂� ( ̂̄𝑌 ) =
𝑠2
𝑧

𝑛𝑙𝑙
+
𝑠2
𝑡

𝑛𝑠𝑙
− 1
𝑁

(
𝑠2
𝑧
+ 𝑠2

𝑡

)
where 𝑠2

.
denotes the sample variance.

Finally, from (8), we have:

𝛾 =
𝑛𝑙𝑙

𝑛
=

𝑆𝑧

𝑆𝑧 + 𝑆𝑡
=

√
𝑆2
𝑦
+ 𝑆2

𝑡
+ 2𝑆𝑦𝑡√

𝑆2
𝑦
+ 𝑆2

𝑡
+ 2𝑆𝑦𝑡 + 𝑆𝑡

,

1 − 𝛾 =
𝑛𝑠𝑙

𝑛
=

𝑆𝑡

𝑆𝑧 + 𝑆𝑡
=

𝑆𝑡√
𝑆2
𝑦
+ 𝑆2

𝑡
+ 2𝑆𝑦𝑡 + 𝑆𝑡

.

Clearly, if the correlation between the sensitive and the innocuous variables is positive, the LL-sample will be larger than

the SL-sample. This is because the responses given in the LL-sample are expected to have a larger variance, which must be

compensated with a larger sample size. Moreover, the function 𝛾 is: (i) an increasing function of 𝑆𝑦; (ii) a decreasing function

of 𝑆𝑡; (iii) an increasing function of 𝑆𝑦𝑡. Figure 1 shows the behavior of 𝛾 as a function of 𝑆𝑦 = 10, 20,. . . ,1000 and 𝑆𝑡 =
10, 20,. . . ,1000 for 𝜌𝑦𝑡 = 𝑆𝑦𝑡∕𝑆𝑦𝑆𝑡 = 0.5.

4.3 Allocation under a stratified sampling design
In the case of a stratified design, let the population 𝑈 be divided into 𝐻 strata. Let 𝑁ℎ denote the size of the ℎ-th stratum, say

𝑈ℎ, and 𝑊ℎ = 𝑁ℎ∕𝑁 be the weight of 𝑈ℎ in the population, ℎ = 1,… ,𝐻 . From the stratum 𝑈ℎ, two samples 𝑠ℎ(𝑙𝑙) and 𝑠ℎ(𝑠𝑙)
of sizes 𝑛ℎ(𝑙𝑙) and 𝑛ℎ(𝑠𝑙) are selected according to SRSWOR. The sampled elements in 𝑠ℎ(𝑙𝑙) are confronted with the LL of items

while those in 𝑠ℎ(𝑠𝑙) are confronted with the SL of items. Under stratified SRSWOR, expression (2) takes the form:

𝕍 ( ̂̄𝑌𝑠𝑡𝑟) =
𝐻∑
ℎ=1
𝑊 2
ℎ

(
1 −

𝑛ℎ(𝑙𝑙)

𝑁ℎ

) 𝑆2
ℎ,𝑧

𝑛ℎ(𝑙𝑙)
+

𝐻∑
ℎ=1
𝑊 2
ℎ

(
1 −

𝑛ℎ(𝑠𝑙)

𝑁ℎ

) 𝑆2
ℎ,𝑡

𝑛ℎ(𝑠𝑙)
, (9)

where 𝑆2
ℎ,⋅ is the variance in the stratum ℎ.

As in Theorem 1, minimizing (9) subject to
∑𝐻

ℎ=1(𝑛ℎ(𝑙𝑙) + 𝑛ℎ(𝑠𝑙)) = 𝑛 with equal cost gives the following optimal sample size

allocation for the stratum 𝑈ℎ:

𝑛ℎ(𝑙𝑙) = 𝑛
𝑊ℎ𝑆ℎ,𝑧∑𝐻

ℎ=1𝑊ℎ𝑆ℎ,𝑧 +
∑𝐻

ℎ=1𝑊ℎ𝑆ℎ,𝑡

, 𝑛ℎ(𝑠𝑙) = 𝑛
𝑊ℎ𝑆ℎ,𝑡∑𝐻

ℎ=1𝑊ℎ𝑆ℎ,𝑧 +
∑𝐻

ℎ=1𝑊ℎ𝑆ℎ,𝑡

.

Consequently:

𝛾ℎ =
𝑛ℎ(𝑙𝑙)

𝑛
=

𝐻∑
ℎ=1
𝑊ℎ

√
𝑆2
ℎ,𝑦

+ 𝑆2
ℎ,𝑡

+ 2𝑆ℎ,𝑦𝑡∑𝐻

ℎ=1𝑊ℎ

√
𝑆2
ℎ,𝑦

+ 𝑆2
ℎ,𝑡

+ 2𝑆ℎ,𝑦𝑡 +
∑𝐻

ℎ=1𝑊ℎ𝑆ℎ,𝑡

and

1 − 𝛾ℎ =
𝑛ℎ(𝑠𝑙)

𝑛
=

𝐻∑
ℎ=1
𝑊ℎ

𝑆ℎ,𝑡∑𝐻

ℎ=1𝑊ℎ

√
𝑆2
ℎ,𝑦

+ 𝑆2
ℎ,𝑡

+ 2𝑆ℎ,𝑦𝑡 +
∑𝐻

ℎ=1𝑊ℎ𝑆ℎ,𝑡

.
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γ

γ

F I G U R E 1 Behavior of 𝛾 for different values of 𝑆2
𝑦

and 𝑆2
𝑡

and 𝜌𝑦𝑡 = 0.5

4.4 Allocation in multiple IST estimation
Determining optimal sample size allocation is of particular importance in the multiple IST estimation introduced in Section 3

where, under the separate and mixed approaches, more than two samples will be selected. Optimal allocation is easily achieved

under the separate approach by applying the results of the previous sections to each sensitive variable under study. In other words,

optimal sample size allocation is obtained for each IST survey by minimizing the variance of the estimator of the sensitive mean

corresponding to the variable referred to by the IST survey. For the other approaches, the problem is slightly different but can be

solved by extending the results of the previous sections after having specified the expression of the variance to be minimized. Let

us first discuss the all-in-one procedure. In this case, just one sample is selected for the entire survey on the𝑄 sensitive questions.

This sample must then be optimally split into the LL-sample and SL-sample, and so the initial question is to decide how this

optimality is to be achieved. One possibility is to focus on one of the𝑄 sensitive variables, perhaps the most relevant variable—if
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any—for the survey, and then to minimize the variance of the estimator of its mean. Obviously, however, obtaining the optimal

sample size allocation for the variable considered does not ensure variance reduction in estimating the mean of the remaining

variables. To overcome this limitation, a more general solution that involves all the study variables might be considered. Since

multiple estimation leads to𝑄 estimators of the𝑄 population means of the sensitive variables under investigation, we may opt to

minimize the variance of a convex combination of the𝑄 variances of the estimators. Without loss of generality, let ̂̄𝑌𝑘 = ̂̄𝑍𝑘 − ̂̄𝑇𝑘

denote the estimator of the population mean 𝑌𝑘 for the sensitive variable 𝑘, 𝑘 = 1,… , 𝑄. The meaning of ̂̄𝑍𝑘 and ̂̄𝑇𝑘 follows

accordingly. Hence, the optimal sample sizes 𝑛𝑙𝑙 and 𝑛𝑠𝑙 are obtained by minimizing:

𝕍𝛼 =
𝑄∑
𝑘=1
𝛼𝑘𝕍 ( ̂̄𝑌𝑘),

with
∑𝑄

𝑘=1 𝛼𝑘 = 1. For instance, under SRSWOR, for𝑄 = 2 sensitive variables, say 1 and 2, and𝐺 = 2 innocuous variables,

say 1 and 2, we have:

𝕍𝛼 =
1
𝑛𝑙𝑙

(
𝛼1𝑆

2
𝑧1
+ 𝛼2𝑆2

𝑧2

)
+ 1
𝑛𝑠𝑙

(
𝛼1𝑆

2
𝑡1
+ 𝛼2𝑆2

𝑡2

)
− 1
𝑁

[
𝛼1

(
𝑆2
𝑧1
+ 𝑆2

𝑡1

)
+ 𝛼2

(
𝑆2
𝑧2
+ 𝑆2

𝑡2

)]
. (10)

For the mixed approach, finding the optimal sample size allocation by minimizing the variance of one estimator is unfeasible

since this will allocate the entire total size 𝑛 between two samples, leaving a zero size for the remaining 𝑄 − 1 samples. The

only solution to this problem is to minimize the convex combination of the 𝑄 variances of the estimators:

𝕍𝛼 = 𝛼1𝕍 ( ̂̄𝑌 ∗
1 ) + 𝛼2𝕍 (

̂̄𝑌 ∗
2 ) =

= 𝛼1𝕍 ( ̂̄𝑍0) + 𝕍 ( ̂̄𝑍1) + 𝛼2𝕍 ( ̂̄𝑍2).

For instance, if the samples are selected according to SRSWOR, 𝑄 = 2 and 𝐺 = 1, we have:

𝕍𝛼 =
1
𝑛0
𝛼1𝑆

2
𝑡
+ 1
𝑛1
𝑆2
𝑧1
+ 1
𝑛2
𝛼2𝑆

2
𝑧2
− 1
𝑁

(
𝛼1𝑆

2
𝑡
+ 𝑆2

𝑧1
+ 𝛼2𝑆2

𝑧2

)
. (11)

Note that the choice 𝛼 = 0.5 is equivalent to minimizing 𝕍 ( ̂̄𝑌 ∗
1 ) + 𝕍 ( ̂̄𝑌 ∗

2 ).

5 SIMULATION

5.1 Simulation design
In this section, we run a number of simulation studies to evaluate the performance of the optimal allocation discussed above. To

do so,𝑁 = 52,409 artificial observations are generated for the sensitive variable  and the innocuous one  . It is assumed that

( ,  ) are observed from a bivariate normal distribution with different values of the correlation coefficient 𝜌𝑦𝑡 = 𝜌, and with

mean and standard error vectors 𝝁 = (3.114, 7.446) and 𝝈 = (0.604, 0.049), respectively. The values generated are then used to

define the total score variable  =  +  and to obtain an estimate of 𝑌 using: (i) the values of  in a standard HT-estimator

as obtained by direct questioning; (ii) the values of  and  in the HT-estimator as defined in (1). Hence, for each simulation

study, we evaluate the estimated variance of the estimators for 𝐵 = 1000 runs and for different sample sizes. Throughout the

simulation, the costs are assumed to be constant.

The values for 𝝁 and 𝝈 are taken from a real sensitive research conducted at the University of Granada in the academic year

2015/2016 to investigate the consumption of cannabis, using the IST. During the class time break, a sample of students were

invited to participate in the study and to fill in a questionnaire. Some of these students (492) were directly posed the sensitive

question: “How many cannabis cigarettes did you consume last year?” The remaining students (1293) were asked to provide

data using the IST. In the IST survey, 773 students were arbitrarily allocated to the LL-sample and 520 to the SL-sample. The

values 𝜇 = 3.114 and 𝜎 = 0.604 represent the estimated mean and the estimated standard deviation for the number of cannabis

cigarettes smoked. Similarly, the values 𝜇 = 7.446 and 𝜎 = 0.049 refer to the estimates of the innocuous variable in the SL-

sample. The innocuous variable  is represented by students' score in the university entrance examinations (general stage score,

ranging from 0 to 10). As a referee noted, the choice of this innocuous variable may not have sufficiently protected respondents'
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F I G U R E 2 Difference and ratio between the variance of direct questioning estimates and optimal allocation IST estimates

privacy especially when the number of cannabis cigarettes smoked is “large,” for instance more than 50 cigarettes. Indeed, from

the collected data, we observed that students who released IST responses (total scores) higher than 10 and 50 were 24.5% and

6.5%, respectively, and that nonresponse rate was very low (1.93%).

It is worthy noting that, according to the IST, 14.931 cannabis cigarettes were smoked on average, a value significantly higher

than that obtained by direct questioning (one-tailed t-test, p-value < 0.001).

5.2 Direct questioning versus optimal allocation IST estimates
In this first study, the samples are selected according to SRSWOR and the variance of the sample mean estimator �̄� =

∑
𝑖∈𝑠 𝑦𝑖∕𝑛

is compared with that of the IST estimator with optimal sample size allocation, performed on the same sample size 𝑛, as described

in Section 4.2. Figure 2 illustrates the difference and the ratio between the estimated variances of the two estimators. Both the

difference and the ratio are presented as mean values computed over𝐵 = 1000 replications. As expected, the variance of the IST

estimator is higher than that of the sample mean estimator under direct questioning. The difference becomes negligible as the
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F I G U R E 3 Ratio between the variance of the optimal allocation IST estimator and the variance of the IST estimator with 𝑛𝑙𝑙 = 𝜆𝑛 under arbitrary

allocation. The upper plots refers to 𝜆 = 0.6 and the lower to 𝜆 = 0.5

sample size increases, while the ratio highlights the fact that the loss of efficiency remains within acceptable limits especially

when 𝜌 is low. Moreover, for a fixed sample size, the difference (ratio) increases with 𝜌. The fact that the difference and the loss

of efficiency are fairly modest values makes it clear that the optimal IST could provide estimates that are nearly as accurate as

those obtained by direct questioning, and without jeopardizing respondents' confidentiality. This finding is of major importance

in appraising the use of the IST in real surveys.

5.3 Optimal versus arbitrary IST allocation
In SRSWOR, we now examine the efficiency gains that can be obtained when the IST allocation is optimal. To illustrate the

magnitude of the increased efficiency, we consider the ratio between the variance of the optimal allocation IST estimator and

that of the IST estimator arbitrarily obtained assuming 𝑛𝑙𝑙 = 𝜆𝑛 and 𝑛𝑠𝑙 = (1 − 𝜆)𝑛, 𝜆 = 0.5, 0.6. The results are shown in

Figure 3. The improved efficiency is evident in both situations. As also shown in Figure 2, the correlation coefficient does

not appear to significantly affect the variance of the IST estimators and, consequently, the efficiency gain from the optimal

allocation.

5.4 Optimal IST allocation in stratified SRSWOR
We now examine the case in which stratified SRSWOR is adopted. We assume that the 𝑁 = 52,409 students of the University

of Granada (see Section 5.1) are stratified into two groups—male (M) and female (F)—with weights 𝑊𝑀 = 0.442 and 𝑊𝐹 =
0.558 known from administrative sources. Under the same framework as in Section 5.1, for the male group we generate𝑁𝑀 =
23,151 observations from the bivariate normal distribution ( ,  ) with different values of 𝜌, 𝝁𝑀 = (6.340, 7.507) and 𝝈𝑀 =
(1.431, 0.072). Similarly, for the female stratum (𝑁𝐹 = 29,258), we assume 𝝁𝐹 = (0.240, 7.408) and 𝝈𝐹 = (0.121, 0.067). As

in Section 5.1, the entries of the vectors 𝝁. and 𝝈. represent the estimated means and the estimated standard deviations of the

sensitive variable and the innocuous variable computed from the male/female direct questioning samples and for the male/female

SL-samples, respectively.

The minimum variance estimator of the stratified IST estimator is achieved by using the optimal sample size allocation given

in Section 4.3. The variance of the estimates under optimal allocation is then compared using two different forms of allocation:

(i) Arbitrary allocation. In stratified IST with two strata (𝑈𝑀 and 𝑈𝐹 ), four samples are considered. From the 𝑈𝑀 stratum,

the LL-sample and the SL-sample are selected. Similarly, for the 𝑈𝐹 stratum. Let 𝑛𝑙𝑙|. and 𝑛𝑠𝑙|. be the sample sizes in the

respective groups. Hence, we trivially assume: 𝑛𝑙𝑙|𝑀 = 𝑛𝑠𝑙|𝑀 = 𝑛𝑙𝑙|𝐹 = 𝑛𝑠𝑙|𝐹 = 𝑛∕4.
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F I G U R E 4 Ratio between variance under optimal allocation and under: (i) arbitrary allocation (upper plot), (ii) naive two-step optimal allocation

(lower plot)

(ii) Naive two-step optimal allocation. Allocation is conducted in two steps, separately determining the optimal IST allocation

in one sample of men and in another of women. In the first step, a stratified sample of male and female students is selected

with proportional allocation (see, e.g. Särndal et al., 1992). In the second step, each of the two first-step samples is optimally

allocated in the LL-sample and SL-sample according to (8).

Figure 4 shows the ratio between the variances of the optimal and non-optimal allocation stratified IST estimators. It can be

seen that arbitrary allocation is not at all efficient, while the results obtained with two-step allocation are almost identical to

those attainable with the theoretical optimal allocation.

Finally, we compared the efficiency of stratified and SRSWOR IST estimates under optimal allocation. The results shown in

Figure 5 reflect the considerable gain in efficiency achieved by stratifying the population.
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F I G U R E 5 Ratio of optimal allocation variances under stratified IST and SRSWOR IST

5.5 Optimal allocation in multiple IST estimation
In this section, we investigate multiple IST estimation under each of the approaches discussed in Section 3. The simulation study

is based on real data from the Survey of Household Income and Wealth (SHIW) conducted by the Bank of Italy (2014). The

survey covers 8156 households composed of 19,366 individuals. We assume the 8156 households as the target population and

focus on two sensitive variables: (i) net disposable income (1), and (ii) net wealth (2). For all the households surveyed, the

values of these and other variables are known.

The aim of this simulation study is to compare the IST estimates of 𝑌1 and 𝑌2 under the separate, all-in-one and mixed

approaches by assuming that  =consumption is the innocuous variable for implementing the IST. From the available data, we

know that 𝑌1 = 31,248 euro, 𝑌2 = 236,097 euro and these values are used as benchmarks. Under the separate approach, the

optimal sample allocation for 𝑛𝑙𝑙 and 𝑛𝑠𝑙 is separately considered for each of the two variables in such a way that the estimates

for 𝑌1 and 𝑌2 both attain their minimum variance bound. The all-in-one estimates are obtained assuming that data on both the

variables are collected by performing the IST twice on the same units belonging to the only sample selected. The optimal sample

sizes 𝑛𝑙𝑙 and 𝑛𝑠𝑙, which minimize (10) with 𝛼 = 0.5, are used to obtain the estimates of 𝑌1 and 𝑌2. Obviously, using 𝑛𝑙𝑙 and 𝑛𝑠𝑙

does not ensure that minimum variance is achieved for ̂̄𝑌1 and ̂̄𝑌2. A similar procedure is employed for the mixed approach. In

this case, the three sample sizes 𝑛0, 𝑛1 and 𝑛2 are optimally determined to minimize (11) with 𝛼 = 0.5 and then used in the single

estimators ̂̄𝑌 ∗
1 and ̂̄𝑌 ∗

2 . We specify that in all situations the optimal allocation has been achieved by minimizing the estimated

variance.

For different sample sizes and 𝐵 = 1000 replications, we investigate the performance of the estimators under the three

approaches by means of the absolute relative bias (ARB) and the relative variance (RV):

ARB(�̂�𝑖) =
∑𝐵

𝑘=1 |�̂�(𝑘)𝑖 − 𝑌𝑖|
𝐵𝑌𝑖

, RV(�̂�𝑖) =
∑𝐵

𝑘=1(�̂�
(𝑘)
𝑖

− 𝑌𝑖)2

𝐵𝑌 2
𝑖

with �̂�
(𝑘)
𝑖

denoting the estimate of 𝑌𝑖 on the 𝑘-th sample selected from the SHIW target population according to SRSWOR.

The outcomes of the simulation are summarized in Figure 6. It is immediately apparent that both the ARB and the RV

decrease as the sample size increases, which is a clear indication of the consistency of the estimates under the three approaches.

The three approaches produce equivalent results in estimating the mean of 2 = 𝑤𝑒𝑎𝑙𝑡ℎ, while for 1 = 𝑖𝑛𝑐𝑜𝑚𝑒 the separate

approach seems to slightly outperform the others, especially for usual sample sizes. As the sample size increases, the difference

between the methods decreases. However, on the whole there are no striking differences and for the situations considered in

this analysis, the mixed approach seems to be competitive in terms of efficiency while clearly reducing the statistical burden
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F I G U R E 6 Performance of the estimates under the three IST approaches for multiple estimates purposes. The results are based on Monte Carlo

simulated ARB and RV

F I G U R E 7 Performance of the estimates under the three IST approaches for multiple estimates purposes. The results are based on estimated

theoretical variances

on the respondents. We then replicated the simulation study by directly comparing the theoretical estimated variances of the

estimators of 𝑌1 and 𝑌2 under the three approaches. Figure 7 shows the behavior of the estimated relative variance (ERV),

obtained by dividing the estimated variance of �̂�𝑖 by 𝑌 2
𝑖

, 𝑖 = 1, 2. The results obtained confirm those for the RV reported in

Figure 6. We conclude, therefore, that multiple estimation may be profitably pursued via different approaches and that a useful

trade-off between efficiency in the estimates and reducing the statistical burden may be achieved by using the mixed approach

with optimal allocation. The findings of this study may therefore be of major significance to survey statisticians and practitioners

to support the use of the IST in real-world studies.
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6 CONCLUSIONS

The IST enables us to estimate the mean (or the total) of stigmatizing quantitative variables using an indirect questioning

approach, thus reducing nonresponse rates and social desirability response bias. This method is closely related to the ICT,

which was developed to measure the proportion of dichotomous sensitive items in human population surveys.

In this article, we presented certain methodological advances in the use of the IST, and discussed two open questions. First, we

considered the problem of how to reduce the statistical burden on respondents when𝑄 ≥ 2 sensitive variables are surveyed and

the population means need to be estimated. Three ways of applying the IST have been discussed. The first of these, the separate

approach, requires that for each sensitive item one LL-sample and one SL-sample be selected, that is in total, 2𝑄 samples are

used. In the second approach, termed all-in-one, one LL-sample, and one SL-sample are selected and the respondents are asked

to participate in 𝑄 distinct IST surveys, one for each sensitive item. The separate approach is time-consuming and costly, while

the all-in-one approach places an excessive burden on the survey participants that could even induce them to break the rules of

the IST or to drop out of the survey. Given the weaknesses of these two approaches, a viable alternative providing a possible

trade-off could be pursued. A mixed approach, which requires the selection of 𝑄 + 1 independent samples, has been therefore

proposed, and its performance investigated through a number of simulation experiments based on optimal sample size allocation.

The optimal allocation of the total sample size into the LL-sample and the SL-sample is the second, but no less important,

issue discussed in this article. First, we considered a method of allocation based on minimizing the variance of the IST estimator

of the mean of one sensitive variable that is valid under a budget constraint and for a general sampling design. Thus, explicit

expressions for the sampling fractions have been worked out when the SRSWOR and stratified sampling designs are used. The

allocation method has been then extended to the case of 𝑄 sensitive variables under the all-in-one and mixed approaches.

An extensive simulation study has been conducted to investigate the performance of the proposed techniques and the related

estimators under different sampling designs and for different sample sizes. All the situations examined reflect the benefits of

determining the optimal sample size, which can significantly increase the efficiency of the estimates with respect to any arbitrary

allocation of the sample units.

A very interesting result has been achieved when optimal allocation is used for multiple IST estimation purposes under the

mixed approach. In this case, in relation to the marked reduction obtained in the statistical burden placed on respondents and

in survey costs, the loss of efficiency with respect to the all-in-one and separate approaches may be considered very modest or

even negligible. Hence, from a theoretical standpoint, the mixed approach appears to be a viable alternative for the purposes of

multiple IST estimation. That said, final users interested in experiencing multiple IST have enough elements to critically evaluate

the feasibility of the different procedures and to weight between pros and cons with regards to costs, time effort, respondents'

burden, and accuracy.

We conclude by observing that all the ideas, the methodological advances and the results presented in this article regarding the

IST may be easily extended to its forerunner, the ICT, which, although it is a more widespread and long-established technique,

suffers from the same drawbacks that are discussed in this article with respect to the IST and that, to our knowledge, have not

yet been addressed. Hence, the value of this article is twofold.
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