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Preface

Standing on the shoulders of giants such as Landau, Anderson, Mandelbrot or
Bak, emergent phenomena have meant a major step towards the comprehension
of macro-structures and patterns in Nature. In particular, the criticality hy-
pothesis, which proposes that –under some circumstances– living systems can
lie in the vicinity of a phase transition, i.e. at the borderline between their
ordered and disordered phases, has shed much light on the comprehension of
several natural phenomena that, until recently, were poorly understood.

This celebrated and provocative idea conjectures that living close to a critical
point may confer a large number of benefits such as maximal dynamical range,
maximal sensitivity to environmental changes, as well as an excellent trade-off
between stability and flexibility.

Based on this assumption, the aim of this thesis is to look into the criticality
hypothesis, extending its horizons through the analysis of phases and phase
transitions in Nature, developing a better understanding of certain empirical
findings and behaviors of biological systems. Thus, the development of models
trying to shed light –through numerical simulations and theoretical calculations–
on the emergent behavior of particular biological systems constitute the common
theme of this thesis.

In chapter 1 a basic introduction and a schematic review on the critical-
ity hypothesis, as well as some particular examples in living systems such as
neuronal dynamics and gene regulation are outlined.

Also, a brief, but necessary introduction to phases and phases transition and
the Landau equilibrium theory of critical phenomena is presented. It covers the
two principal phase transitions, first order and second order, certain theoretical
notions of non-equilibrium systems, together with the introduction of the main
self-organizing mechanisms to such phase transitions, as well as a brief summary
on the effects of non-homogeneous underlying structures in the dynamical evo-
lution, and phases, of most systems. Above all, one of the principal aims of this
chapter is to be intended to allow for a self-contained book.
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In chapter 2 we try to shed light in the origin, nature and functional signifi-
cance of complex patterns of neural activity in the human cortex, which operates
in a state of sempiternal irregular activity, whose meaning and functionality are
still not well understood. Such patterns include collective oscillations, emerg-
ing out of neural synchronization, as well as highly-heterogeneous outbursts of
activity interspersed by periods of quiescence, called “neuronal avalanches”. A
fascinating though still controversial hypothesis, to some extent backed by em-
pirical evidence, suggests that the cortex might work at the edge of a phase
transition, from which important functional advantages stem. However, the na-
ture of such a phase transition is still not fully understood. Here, we adopt
ideas from the physics of phase transitions, to construct a general (Landau-
Ginzburg) theory of cortical networks, allowing us to analyze their possible col-
lective phases and phase transitions. We conclude that the empirically reported
scale-invariant avalanches can possibly come about if the cortex operated at the
edge of a synchronization phase transition, at which neuronal avalanches and
incipient oscillations coexist.

Chapter 3 tackles the problem of neuronal synchronization in a more com-
plex and realistic underlying structure (i.e. coupling scheme) given by the actual
human-brain connectome network employing a parsimonious (mesoscopic) ap-
proach, the Kuramoto model, in order to preserve the essence of a minimal
design, with the purpose of studying analytically and computationally the syn-
chronization dynamics and to scrutinize the spontaneous emergence of coherent
behavior in neural function.

We elucidate the existence of a so-far-uncovered intermediate phase, placed
between the standard synchronous and asynchronous phases, i.e. between order
and disorder. This novel phase stems from the hierarchical modular organiza-
tion of the connectome. Where one would expect a hierarchical synchroniza-
tion process, we show that the interplay between structural bottlenecks and
quenched intrinsic frequency heterogeneities at many different scales, gives rise
to frustrated synchronization, metastability, and chimera-like states, resulting
in a very rich and complex phenomenology. We uncover the origin of the dy-
namic freezing behind these features by using spectral graph theory and discuss
how the emerging complex synchronization patterns relate to the need for the
brain to access –in a robust though flexible way– a large variety of functional
attractors and dynamical repertoires without ad hoc fine-tuning to a critical
point.

Also, we explore the role of noise, as an effective description of external per-
turbations, and we discuss how its presence accounts for the ability of the sys-
tem to escape intermittently from such attractors and explore complex dynamic
repertoires of locally coherent states, in analogy with experimentally recorded
patterns of cerebral activity.
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In Chapter 4 we revisit the problem of deriving the mean-field values of
avalanche exponents in systems with absorbing states. These are well known to
coincide with those of an unbiased branching processes, as reported in neural
avalanches, for at least, four different universality classes. We report on the
emergence of non-universal continuously varying exponent values stemming from
the presence of small external driving –that might induce avalanche merging–
and that, to the best of our knowledge, has not been noticed in the past.

Such active/quiescent transition is closely related with the “balanced ampli-
fication” theoretical approach recently proposed to explain the empirical neural
avalanches of activity. Standing on the active phase with an excellent balance
between excitation/inhibition, the weak stability of the basin of attraction of the
system caused by a reactive dynamics is exploited, i.e. the dynamics is encoded
in a “non-normal” matrix. Thus, the system exhibit large fluctuations reminis-
cent of “up” and “down” states and neural activity. We have progressed in a
thorough understanding of such phenomenon as well as it has been extended
to a wider scenario: a similar non-critical scale-invariance can be obtained by
changing the regulatory mechanism that drives the dynamics, i.e. excluding
inhibition and introducing synaptic plasticity.

We believe that a simple and unified perspective as the one presented here
can help to clarify the overall picture and underline the super-universality of
the behavior giving rise to the unbiased branching processes exponents in ac-
tive/quiescent phase transitions, as well as review, better understand and clarify
certain processes with generic power laws but poised far away from criticality.

Chapter 5 is the first to address other problems beyond neural dynamics
such as gene regulation in complex biological systems. To this end, the well-
founded Boolean approach to model gene regulatory networks is employed. A
much discussed hypothesis proposed that such approach reproduces empirical
findings the best if it is tuned to operate at criticality, exploiting its large number
of functional advantages. Here, we study the effect of noise within the context
of Boolean networks trained to learn complex tasks under supervision. We ver-
ify that quasi-critical networks are the ones learning in the fastest possible way
–even for asynchronous updating rules– and that the larger the task complex-
ity the smaller the distance to criticality. On the other hand, when additional
sources of intrinsic noise in the network states and/or in its wiring pattern are in-
troduced, the optimally performing networks become clearly subcritical. These
results suggest that in order to compensate for inherent stochasticity, regula-
tory and other type of biological networks might become subcritical rather than
being critical, all the most if the task to be performed has limited complexity.

In chapter 6 we analyze the evolving modular structure of the network
of dependencies between software packages in the different Debian GNU/Linux
distributions released to date. Also, we explore the emergent properties and
vulnerability of such networks and their role in the functionality of the system.
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In parallel, we show the interesting parallelisms between the architecture and
emergent properties of software networks and that of regulatory interactions
between genes. Indeed, such analogy allow us for an appealing explanation of
recent empirical findings and enigmas of systems biology, the emergent cascad-
ing failures of “gene knockout” and possible functionalities of the, sometimes
considered futile, non-coding DNA.

Chapter 7 highlights key findings and conclusions derived from this thesis,
seen in a global perspective, which allows the reader to appreciate its contri-
bution to the understanding of the emergent (critical) properties and phases of
living systems, as well as the open issues and the enormous amount of work that
remains to be done.

Although, in order to make this work available to the wider academic com-
munity, this thesis is written in English, a brief summary in Spanish (appendix
E) is included in order to obtain the degree of Doctor of Philosophy in Physics
with European level, fulfilling the requirements of the University of Granada.

Furthermore, some chapters also contain annexes. In particular, chapter
1 (appendix A), chapter 2 (appendix B), chapter 3 (appendix C) and chapter
4 (appendix D), in order to clarify some calculations and remarks that are
too specific (or exhaustive) and may be excluded without impairing a proper
understanding of each chapter.

Also, a list of publications of the author is reported. Of course, there has
been more work beyond that explained here, as part of the learning process that
gave birth to this thesis. Some of this additional work has been published and
it has also been included in such list of publications.

Granada, February 2018
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1.1
The criticality hypothesis

“The crisis consists precisely in the
fact that the old is dying and the new
cannot be born; in this interregnum a
great variety of incommensurate phenom-
ena appear.”

A. Gramsci

Let us imagine for a moment that all the fundamental laws of Nature could
be fully understood, being reduced to their most basic physical microscopic

mechanisms (e.g. elementary particles or the fundamental interactions). Would
it be possible to solve any physical problem using such knowledge? We can
predict in an effective way the motion of a classical particle confined inside a
potential, as well as the motion of two interacting particles, but even the case
of the three-body problem –being non-integral– presents serious difficulties. To
make matters worse, the usual challenges inherent to statistical physics comprise
a vast number of interactions (on the order of 1024, the Avogadro’s number),
making it impossible to analytically solve the equation of motion of such systems.
Instead of this, drawing from statistical physics, we can tackle such (physical)
problems of many components from a macroscopic viewpoint, with observables
as the mean density of particles, the magnetization or its variance, together with
their response to external stimuli.

Hence, through a probabilistic analysis of large interacting microscopic sys-
tems (atoms, electrons...) at thermodynamic equilibrium1, statistical physics
explains the phenomenological laws and the (emerging) macroscopic physical
properties of matter, outlined in phases (e.g. solid or gaseous). Such phases bear
little resemblance to the nature of their microscopic components, but show emer-
gent collective properties [3]. These also highlight the level of order (or disorder)
of the system, determined by the presence (or absence) of certain symmetries
or correlations. For instance, both diamond and graphite, composed entirely
by carbon atoms, represent different phases due to the microscopical particular
structure –i.e. the inherent symmetry– of the crystal. Similarly, snowflakes and
water droplets represent different phases stemming from the level of order of

1Without macroscopic flows of matter or of energy, that is no more than a coarse simpli-
fication of the reality. Most systems found in nature are far for equilibrium, i.e. they are
non-equilibrium systems permanently exchanging energy and matter, whose study requires
more general concepts.
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4 Chapter 1. Introduction to phase transitions and critical phenomena

the system. In this way, statistical physics also account for the changes between
states of matter and phase transitions, in which symmetries can be sponta-
neously broken –generating ordered phases– at the macroscopic level, but not
at the level of individual components.

Phase transitions take place throughout Nature. In our everyday life, H2O
constitutes the most vivid example of changes between different states of matter
(e.g. the melting of ice cubes or boiling water) and the water cycle (involving
the exchange of energy among the three forms of water) is crucial to make life on
Earth possible. The smart use of a phase transition –at the bases of the steam
engine– triggered the industrial revolution ushering in our modern society.

All the usual phase transitions (evaporation, melting or sublimation) are
first-order or discontinuous transitions taking place in a “mixed-phase regime”
with phase coexistence, i.e. during the transition there exist some parts of the
system in each macroscopic phase (ice does not instantly turn into liquid water).
Additionally, the system conserves a memory that depends on its history, the
so-called hysteresis. One illustrative case that takes place in the vicinity of such
phase transition is the supercooled water, where the liquid water, all of a sudden,
under some physical stimuli, turns into ice.
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Figure 1.1.1: Energy fluctuations of liquid helium versus the distance to the
critical temperature (2.17K, the so-called Lambda point). At this temperature
normal fluid helium becomes in superfluid helium. It should be noted, apart from
the divergence, the lack of differences between different scales of temperature,
i.e. the scale-invariant behavior around the critical point. Data from [17].
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Nevertheless, there are also continuous or second-order phase transitions,
with no sign of hysteresis (the paradigmatic example is the iron paramagnetic-
ferromagnetic transition at the Curie temperature or the superfluid transition of
liquid helium, shown in Fig. 1.1.1). They can be distinguished for having long-
range correlations (and diverging specific heat), as well as by their distinctive
scale-invariant behavior of the relevant observables near the critical point. As
example, the dramatic phenomenon of critical opalescence, right at criticality,
causes that the normally transparent liquid looks cloudy due to large density
fluctuations when the critical temperature is approaching.

※ Universality In continuous phase transitions, the emergent (macroscopic or
collective) properties of the system depend on very few parameters (the spatial
dimension and the inherent symmetries). If we consider that fluctuations can
be neglected (that is conceivably e.g. in high-dimensional scenarios, as will
be discussed below), only the symmetries (and their possible changes) play an
important role in the macroscopic properties of the system at criticality [11]
and, as a corollary to this,

due to the finite nature of the number of relevant parameters, the behavior
of many real systems at criticality can be captured from very simple
approaches (the Landau theory for systems at equilibrium) and, thus,
such systems should share the same universality class.

A beautiful, real example of this behavior is shown in Figure 1.1.2, where
the liquid-gas coexistence curves of many different fluids –from Ne to CH4–
collapse in a common curve. It suggests the existence of laws for collective
systems beyond micro-details. In this way, the idea of universality class, i.e.
the fact that many models share the same critical behavior (and thus, emergent
properties) independently of their microscopic details, emerges naturally.

The wonder of it all is that, due to their statistical nature, the study and
applications of the phenomena associated with phase transitions (or criticality)
arising from “pure” physics has permeated many fields far from it: sociology,
ecology, neuroscience or earth science. In particular, critical phenomena con-
stitute a starting point to explain or shed light on many poorly understood
phenomena –until recently– as the emergence of the Gutenberg–Richter law in
earthquakes, neural activity in cortex, solar flares or forest fires, among others
[4–6, 12].
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Figure 1.1.2: Liquid-gas coexistence curve for many fluids. The relevant mag-
nitudes, i.e. the order parameter (density) and the control parameter (temper-
ature), have been rescaled by their critical values, collapsing all data into one
single universal curve. Observe that the system undergoes a phase transition for
some critical temperature (Tc) which clearly depends on the specific compound.
Adapted from [11].

1.1.1
Criticality beyond physics

Historically, as discussed for physics, most fields of natural sciences (such as
biology, chemistry or earth science, among others) have focused their efforts in
a reductionist point of view, assuming that a system is nothing but the sum
of its parts, i.e. they have attempted to explain whole systems through the
profound behavior of smaller and smaller spatial scales –or organizational units–
of individual components and interactions, conforming an orderly framework
with the aim of shedding some light on natural phenomena.

However, this point of view poses serious and evident problems to explain
and foresee the behavior of systems with a high level of complexity, as living
cells, neural networks, ecological trends, snowflakes or to converge with unspoilt
fields as social sciences (sociology or economics, for instance). Thus, the impor-
tant issue of how order can emerge from disorder in living (or natural) systems
remained a mystery for a long time (as stated by Schrödinger in “What Is Life?
The Physical Aspect of the Living Cell” [58]).
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In a seminal work published in 1972 and entitled “More is Different” the
Nobel prize Philip Anderson confront by this viewpoint noting that complex
systems are irreducible in constituent parts [3].

The ability to reduce everything to simple fundamental laws does
not imply the ability to start from those laws and reconstruct the uni-
verse. The constructionist hypothesis breaks down when confronted
with the twin difficulties of scale and complexity.

This perspective led to look at problems from a global outlook, shifting from
the detailed and thorough understanding of the individual components. But
the essential question in this case is, how to do so? In particular, in this work
Anderson points out that symmetry breaking is a clear example of emergent
phenomena. Thus, it is foreseeable that statistical physics –linking microscale
and macroscale worlds– and the theory of phase transitions, have a say in all of
this.

Examples of collective phenomena (i.e. the emergence of coordinated behav-
ior in large interacting systems) are ubiquitous in nature: swarming is present
across a large variety of animal species (flocks of birds, fish stocks, locusts, ant
colonies, phytoplankton blooms, krill or myxobacterias). In the same way, dif-
ferent macrostructures emerge for other species (e.g. colonies of ants, mound-
building termites, beehives or webs of spiders; see Figure 1.1.3) and massive
patterns emerge spontaneously on Earth’s surface (e.g. ripple patterns in sand
dunes, the Giant’s causeway or the recently described Namibia’s fairy circles)
as long as fractals are ubiquitous our Universe at all scales (from seashells or
snowflakes to shorelines or fjords).

Figure 1.1.3: From left to right: fern frond, Ammonite fossil (Cleoniceras cleon),
extratropical cyclone near Iceland in 2003 and Whirlpool Galaxy. Even with
the myriad of typical scales separating such systems (from mm to thousands
of light-years) and the inconceivably different physical interactions involved, a
massive pattern (a logarithmic spiral) emerges in all of them.
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Life is evidently a major source of complexity (i.e. emergent phenomena),
a common feature that spreads across biology, earth sciences or social sciences;
thus, it is to be expected that most systems exhibit (macroscopic) collective
behavior with different levels of order (phases) stemming from their (microscop-
ical) components. But, we should emphasize a small –but significant– point,
some of them can often show intermediate levels of organization: less structured
than a crystal but much more ordered than a random gas, living and natu-
ral systems seem to be –under some circumstances– between order and disorder
[4, 6, 31, 48], i.e. around a critical point. For instance, biological systems should
be resilient against external perturbations (a property of an order phase), but
also have enough responsiveness to external stimuli (being disordered, lacking
the required robustness and accuracy that biological machinery demands). The
criticality hypothesis states that the marginal situation between these two im-
practical tendencies constitutes an optimal compromise and solution, fostering
additional benefits, e.g. from long-range correlations.

In this respect, this fine balance between order and disorder has been hy-
pothesized to confer to critical systems a large number of functional advantages
such as a large repertoire of dynamical responses, maximal sensitivity to en-
vironmental changes, optimal transmission and storage of information as well
as to an excellent trade-off between stability and flexibility. This picture that
biological systems might extract important functional benefits from operating
at criticality, i.e at the edge of a continuous phase transition, has attracted a lot
of recent interest and excitement [1, 4, 46], as well as some skepticism [10, 69].

In the light of the criticality hypothesis, many real examples of inanimate
natural phenomena have been understood. For instance, solar flares [12], sand-
piles [6], earthquakes [5], rainfall measurements [32], forest fires [40], vortices in
superconductors [23] or droplet formation [33], to name but a few, have been
reported to exhibit fingerprints of criticality. More recently, with the advent
of high-throughput technologies, empirical evidences in living matter have ap-
peared, such as bacterial communities [72], the human hearth [73], networks of
living neurons [74], cluster of ants colonies [76], the auditory systems [77] or
gene expression [52], along with so many others [48].

It therefore looks as if criticality pervades Nature, spreading its shadow over
inanimate matter and living matter. Thus, our main objective here is to look
into the criticality hypothesis, extending its horizons through the analysis of
(possible) phases and phase transitions in living matter. Our methodology will
be based not only on modeling, but also on replicating and contrasting the
(sometimes insufficient) empirical findings with the aim of trying to understand
more specific quantitative features of living matter.
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It should be noted that real biological systems are continuously exchanging
energy and matter and thus, it is hard to envision an appropriate description
based only on equilibrium tenets (remember that the concepts explored in equi-
librium statistical physics are based on thermodynamic equilibrium). Accord-
ingly, the equilibrium tenets have been extended into non-equilibrium descrip-
tions [30, 43] that will be briefly outlined afterward.

However, despite being provocative and charming, such hypotheses appear
to be chimerical. Between all possibilities, how can living matter (and natural
systems) remain fine-tuned to a particular point? In this context, the theory of
self-organized criticality (SOC) provides a framework that explain, without any
fine tuning, the prevalence in a critical point. Also, since its very origin, SOC
has always been closely linked to the study of the natural phenomena (“the aim
of the science of self-organized criticality is to yield insight into the fundamental
question of why nature is complex, not simple, as the laws of physics imply”,
“How Nature Works”, Per Bak [4]), suggesting reasonable explanations to many
of the aforementioned examples. We refer to [48, 70] for an extended and recent
perspective on further biological systems and a comprehensive summary of the
issue.

At this point, we wonder whether the criticality hypothesis can operate
in real systems with restless activity. Furthermore, although SOC provides a
compelling explanation to the lack of need for fine tuning mechanisms, we ask
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ourselves if criticality can be exploited by living matter beyond a single point, in
any way. On the other hand, does there exist alternative mechanisms accounting
for some empirical findings ascribed to criticality? Is it criticality the optimal
evolutionary solution, even in the presence of external perturbations?

Without loss of generality, here we try to shed light on such questions
through the study of neural and genetic systems, making use of extensive existing
empirical researches, theoretical approaches from complexity sciences, statistical
mechanics and stochastic processes as well as extensive computational analysis.

1.1.1.1 Neural dynamics

The mammalian brain consists of myriads of neurons with further connections
among them. In particular, an average adult brain comprises 8.6 · 1010 neurons
linked for up to 1015 synapses, but also the brain of other animal species like
elephants (∼ 2.57 · 1011), gray squirrels (∼ 4.5 · 108) or the naked mole-rat
(∼ 2.7 · 107), possess a formidable number of neurons. Even the human cerebral
cortex, that plays a key role in higher order functions as memory, reasoning and
abstraction, language or consciousness, has a surprising quantity of neocortical
neurons (∼ 1.6 · 1010, interestingly enough, a dolphin, the Globicephala melas
–yielding around ∼ 3.7 · 1010– exceeds the case of the human cortex).

However, neuron cells (whose thorough structure are fully understood since
the groundbreaking works of Ramón y Cajal, Golgi and others) are capable of
generating electrical signals, triggering action potentials, stimulating the outgo-
ing synaptic connections, and propagating the activity to neighboring neurons.
It is possible to propose two distinct neural phases: the quiescent one, in which
the collective state of neurons are mostly turned off, i.e. activity cannot spread
and the active one, in which the collective state of neurons are always turned
on, i.e. activity can spread fast. Thus, it would be reasonable to bet that the
collective state of neurons cannot be persistently nor quiescent nor active, rais-
ing some type of critical phenomena. In fact, it has been noticed that they
show irregular outbursts (firing at unison) with certain periods of inactivity,
in neuronal cultures in vitro and in vivo, and deviations in such activity –by
excess or by defect– are a signature of diseases as epilepsy, Parkinson’s disease,
schizophrenia, or autism [80].

In this respect the important empirical finding of neuronal avalanches by
Beggs and Plenz (see Fig. 1.1.4) appears crucial: recorded local field potentials
were found to trigger in connection with a large number of neurons, producing
collective spikes separated by period of inactivity [9]. Such observation is ro-
bust (and universal) across species [54, 61], scales and experimental techniques
[9, 44, 67]. The duration and size (total number of spiking neurons) of such
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avalanches have been reported to follow a power-law2 –suggesting some type of
scale-invariant behavior– and obeying finite-size scaling, i.e. its cut-off increase
depending on system size. Of course, the paradigm of self-organized critical-
ity –including both conserved and non-conserved variants– has been profusely
adopted in neuroscience, and interesting models inspired in SOC have been pro-
posed [15, 38, 45] to account for the empirically observed scale-free avalanches
of neuronal activity.

Figure 1.1.4: (left) In vitro neuronal culture of rat somatosensory cortex with
a microarray monitoring its activity. Black points state electrode positions.
(right) Distribution of the total number of network spikes (sizes) separated by
periods of inactivity. There is clearly a power law distribution where the cutoff
only depends on the total number of electrodes, i.e. the system size, suggesting
a scale invariant behavior. Adapted from [9, 53].

From the analysis of brain timeseries, it also has been reported that the
cortical activity shows power-laws in the power spectra with the form 1/f [39].
This particular decay constitutes an evidence of long-range correlations, and it
can be considered as a hallmark of criticality. On the other hand, the dynamic
range (related with the susceptibility, i.e. the ability of the system to respond
to external stimuli) has been found to be maximal both in vitro and in vivo in
cortical networks with neuronal avalanches [28, 63].

It is important to underline that there is no satisfactory theoretical under-
standing of why the empirical findings are compatible with branching-process
exponents. In particular, it is not clear whether the exponent values appear as
a generic consequence of how temporally-defined avalanches are measured (in-
volving thresholding, time binning to discriminate their beginning and end, or

2With the exponents of a mean-field branching process, α ≈ 2 and τ ≈ 3
2 , for duration and

size, respectively.
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sub-sampling due to technological and empirical limitations). Therefore alter-
native explanations have been proposed [69].

Overall, it is usually assumed that the quiescent-to-active phase transition
justifies the presence of branching-process exponent values [30, 43]. However,
some works have found empirical evidence that scale-free avalanches emerge in
concomitance with collective rhythms or neural oscillations [18] in a coherent
way, consistent with the edge of a synchronization phase transition [29, 79]. Fur-
ther explanations relate cortical dynamics to the point of marginal percolation
of activity ([67]) or the Ising model ([25]).

Summing up, despite a sufficient number of empirical and theoretical evi-
dences support the critical brain hypothesis, it is still orphan of a compelling the-
oretical explanation, constituting an open field in which further work is needed.

1.1.1.2 Gene regulatory networks

The last universal common ancestor (LUCA) is the hypothesized living system
from which all existing ones descend. Such common venerable ancestor, a single-
celled bacteria, of course, that lived from 3.5 to 3.8 billion years ago, is estimated
to be composed of 355 inferred genes [75]. Nowadays, the minimal (artificial)
bacterial genome (i.e. the set of genes comprising it), a self-replicating bac-
terium, contains just 437 genes, much smaller, for instance than other bacteria,
mammals or plants in nature like E. Coli (∼ 5 · 103 genes), human (∼ 2.1 · 104

genes) or rice (∼ 4− 5 · 104 genes).
Such game board (i.e. the genotype) can show diverse cellular states (phe-

notypes, resulting from the expression of a fixed genotype). Thus, the simplest
bacteria must achieve a complex, intricate dance involving the coordination of
thousands of expressing and silencing genes.

Regarding this, Kauffman developed a cutting edge approach considering
that cellular states could be identified as attractors of the dynamics of gene
networks [36]. In this particular approach, modeling the genes as network nodes
linked (in a directed way) by their mutual interactions, it was surmised that
poised at the critical point (also called the “edge of chaos”) give the best way
to depict real biological networks. In this case, the order phase implies conver-
gence in the dynamics, i.e. the response to external inputs is erased converging
on a unique attraction basis (or phenotype) while the disorder phase leads to
large divergences and to completely different cellular states. Again, criticality
confers an optimal trade-off between being exceedingly ordered/stable and too
disordered/noisy [36, 52, 64].

The experimental initiative, however, is rather limited in this issue. Stud-
ies based on DNA micro-arrays (measuring and comparing different expression
levels in similar cells [22]), as well as gene knock-out experiments (silencing indi-
vidual genes and following the cascade of differences between two replicas) have
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given a few highlights concerning the topic. For example, avalanche size on that
gene knock-out experiments [56], as well as the number of affected metabolite
ions [26], seems to decay as a power-law with exponent τ = 3/2 (as shown in Fig-
ure 1.1.5), compatible with being close to a quiescent/active phase transition.
On the other hand, from numerous experiments with micro-arrays there exist
different inferred structures, entailing complex networks and showing, in gen-
eral, an exponential ingoing distribution and a scale-free outgoing distribution
([2]). Through diverse applications of Boolean models on top of such complex
structures, across different species of bacteria, it has been found that they might
operate very close to criticality [8].
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Figure 1.1.5: (left) optix gene coordinates (and thus its knock-out drastically
changes) the pigment color in the J. coenia butterfly. Figure from [82] (right)
Total number of metabolite changes for different mutants replica (i.e. with
single-gene deletions) of E. Coli. It seems to follow a power law distribution
with exponent τ ≈ 3/2 (the dashed lines are guides to the eye). Data from [26].

Despite being one of the canonical examples of criticality in living systems,
as pointed out by Kauffman, there exist important caveats related to the effects
(and perils) of thresholding in gene-knockout experiments [48]. Hence, further
and better empirical measures and findings in gene knockout experiments are
needed, as well as getting larger networks of genes or implementing concrete
experiments to measure the dynamic range of genetic systems, all in order to
discriminate the possibility that gene-regulatory networks operate indeed in the
vicinity of a critical point.

In particular, in this thesis, we try to shed light into some open problems
concerning the criticality hypothesis in both fields. Specifically, the develop-
ment of a minimal model (in the Landau viewpoint) of cortical dynamics able
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to combine both avalanches and oscillations in a common perspective and clarify
different non-critical methods susceptible to generate power-laws. We also try to
understand the effect of real –and modular-complex– cortical networks (the hu-
man connectome) in this common perspective (the synchronization paradigm).
Finally, we tackle the problem of criticality in Boolean models of gene regu-
latory networks, in order to understand a little their structural evolutionary
process and how external perturbations can affect the machinery of real genetic
networks.

As a prelude of all this topics, first it is necessary to expose the Landau
theory of critical phenomena, resting in equilibrium tenets, together with a
briefly summary of phase transitions, as well as an outline of the non-equilibrium
problems studied on subsequent chapters. Thus, familiar readers with these
subject areas can skip to the next chapter.



1.2
Introduction to phase

transitions

1.2.1
The Landau-Ginzburg theory of phase transitions

The Landau-Ginzburg model is a “meta-model” of phase transitions, i.e. it is a
phenomenological theory that unifies many models, ignoring particular micro-
scopic details, and clarify their behavior very close to the critical point. In this
spirit, it shows that only very few parameters are needed to characterize the sys-
tem, namely (i) the dimension of the physical system, d and (ii) the dimension
of the order parameter, D [11].

The very heart of this theory is to conceive a quantity describing the energy
of the system –at equilibrium– near the critical point, the so-called Landau free
energy, F (φ), where φ is the so-called order parameter (see the explanatory
box). Such free energy, in the absence of external fields, should remain invariant
under common relevant symmetries in the Hamiltonian of the system –or in the
original microscopic model– at the coarse-grained level3 [51]. So, one of its main
points is to forget the microscopic details and to consider just the symmetries.

In particular, as we are interested in the critical point –under the influence
of the criticality hypothesis– the order parameter will remains very close to zero
and thus, the free energy can be Taylor expanded retaining only the smaller
terms. This is no more than the Landau expansion,

F (φ) = F0 + hφ+ a

2φ
2 + b

3φ
3 + c

4φ
4 + . . . (1.2.1)

where F0 is a constant with no influence on the order parameter (and thus,
irrelevant). In a particular case4 (without loss of generality), it finally reads

F (φ) = a

2φ
2 + b

3φ
3 + c

4φ
4 + . . . (1.2.2)

3For instance, in the case of a system of spins, as the Ising model for ferromagnetism, the
magnetization (m = 〈si〉) change it sign, m → −m if all the spins are flipped, si → −si, i.e.
it is invariant under this change. This is a global symmetry that must be present in the free
energy, and consequently, being assumed an even function of the magnetization [51].

4The absence of external fields imply that h = 0, and the fact that the equilibrium state
is a minimum of the Landau free energy yields the prescription

(
∂F
∂φ

)
φ=φeq

= 0. Also, the
assumption (or definition) of a vanishing order parameter in any of the different phases of the
system supports this particular choice.

15
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Order parameter
With the aim of developing a quantitative study of phase transitions, it
is necessary to identify a measure of the degree of order of the system,
the order parameter, φ (x, t). Normally, it vanishes in one phase (above
the critical point) and it is not equal to zero in the other. Examples are
the magnetization (local orientation of spins) in a ferromagnetic system
or the difference between densities in the liquid-gas transition (many
more examples are presented in [11]). Although φ (x, t) can fluctuate in
space and time in the whole system, sometimes it is only necessary the
stationary state of φ, i.e. a long-time average at equilibrium. However,
we should, obviously, not rule out the fluctuations of φ, because they are
of vital importance, as will be outlined below.
From a theoretical viewpoint, order parameters stem from symmetry
breaking. For instance, in the ferromagnetic-paramagnetic phase tran-
sition, below the Curie temperature (acting as the dubbed control pa-
rameter) the spins align parallel to each other, and above it, the spins
are randomly aligned, i.e. they have up-down symmetry due to thermal
noise. Another example is the freezing of a fluid, breaking the continuous
translational symmetry. Thus, typically, the high-temperature phase has
more symmetries than the low-temperature phase or, in other words, the
system ’lose’ symmetries and is more ordered.

Before we go any further, let us make the following considerations,

• The phases of the (equilibrium) system correspond to the different minima
of the Landau free energy.

• The symmetries of the order parameter totally jeopardize the presence of
the cubic term. For example, if the system has orientational symmetry,
only even functions should be considered. Thus, in particular, for the
Ising-like models it takes the particular form F (φ) = a

2φ
2 + c

4φ
4.

• To ensure thermodynamic stability, the positivity of the highest term must
be imposed. Besides, the free energy could be conditioned if the series
expansion is cut down in an odd term –requiring additional considerations–
because it would be unbounded from below.

• How many terms should be considered in the series expansion? Fluctu-
ations, directly related with the dimension of the system, set the upper
limit [11]. Usually, beyond four dimensions is enough with the φ4 term to
maintain the emergent properties unaltered, but careful, all φn terms are
relevant in two dimensions. In conclusion, depending upon the dimension
of the system, the Landau theory may lack such irrelevant terms and thus,
as soon as the physics is captured, the series can be truncated.
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• There exists an upper critical dimension in which the Landau (or the mean-
field) theory gives exact predictions, according to the critical properties
observed in numerical (or empirical) studies.5 For example, this applies
for the Ising model (with dc = 4), or a field-theoretical formulation with
a term φ3, related with percolation (with dc = 6) [60].

1.2.1.1 Second-order phase transitions

Let us start discussing the paradigmatic example of a Landau free energy in-
cluding only the first two even terms (due to symmetries in the coarse-grained
level of the system to be studied) that takes the form (see inset of Figure 1.2.1)

F (φ) = a

2φ
2 + c

4φ
4 (1.2.3)

By simple differentiation of the free energy, it can be seen that the order
parameter (φ) that minimizes F (φ) satisfies

aφ+ bφ3 = 0⇒
{
φ = 0 if a ≥ 0
φ2 = −a

b if a < 0
(1.2.4)

meaning that, for ac = 0, the system undergoes, in a continuous way, a
phase transition and, just below the critical point6 φ ∝ a1/2 (outlined in Figure
1.2.1). Thus, β = 1/2 is a critical exponent characterizing the growth of the
order parameter near the critical point.
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Figure 1.2.1: Sketch of a second order phase transition. The order parameter
begins to grow continuously just below the critical point (or in further cases, just
above) Inset: Representation of the Landau free energy in the disorder phase
(blue), the critical point (green) and the order phase (orange).

5If the lowest power of φ –after the φ2 term– is of order φr, it is given by dc = 2r
r−2 [11].

6Or, more generally, shifting a from the origin, and regarding it as an effective temperature,
φ ∝ (Tc − T )1/2 just below the critical point.
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A wide set of critical exponents describes the physical behavior near a (con-
tinuous) second-order phase transition. The possible cases, related with their
corresponding physical quantity, are summarized in Table 1.1. In particular,
some relevant quantities are the specific heat (cv, related with the variance
of the energy fluctuations) and the susceptibility (the response against external
perturbations, χ, related to thermal fluctuations in the order parameter through
the fluctuation-dissipation theorem), both showing -almost always- a divergence
just at the critical point (and, in the case of the susceptibility, necessarily im-
plies the divergence of the correlation length and thus, the presence of long-range
correlations).

Exponent Definition
α cv ∼ |T − Tc|−α

β φ ∼ (Tc − T )β

γ χ ∼ |T − Tc|−γ

δ φ ∼ h
1
δ , h→ 0

η G (r) ∼ 1/rd−2+η

ν ξ ∼ |T − Tc|−ν

Table 1.1: Critical exponents in relation to their physical quantities. Together
with the growth of the order parameter (φ), some quantities such as the specific
heat (cv), the compressibility and the susceptibility (κ, χ) , the dependence of
the order parameter on the external field (φ), the two-point correlation func-
tion (G (r)) and the correlation length (ξ) has exponents α, β, γ, δ, η and ν,
respectively.

A fixed set of critical exponents, universally shared by diverse systems, shape
the so-called universality classes, in which the same fundamental dynamics
emerge. In the particular case of the Eq. (1.2.3), denominated the mean-field
universality class, the critical exponents are β = 1/2, α = 0, γ = 1, δ = 3, ν = 1

2
and η = 0, with critical upper dimension dc = 4 (for a proper deduction of the
critical exponents we refer to [11]).

A direct consequence of the particular form of the physical quantities around
the critical point is the emergence –in the relevant observables– of power law
distributions of the form P (x) ∼ x−α, where α is a positive real number referred
to the critical exponents of the system. In this sense, their omnipresence in na-
ture [59] (in particular, remember Figures 1.1.4 and 1.1.5), strongly encouraged
to delve into this approach. However, this leads to a necessary but not sufficient
condition to ensure that a system is poised at criticality or, in other words,
generic power laws are an effect but not a cause of criticality.
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1.1 Percolation universality class

A very special case is one that considers the Landau expansion until the
term φ3, (taking b > 0 and φ ∈ (0,+∞) to avoid physical difficulties)
giving rise to

F (φ) = a

2φ
2 + b

3φ
3

In a straightforward and easy way, one can infer that: (i) it is a second-
order phase transition and, (ii) the critical exponents are β = 1, γ = 1,
δ = 2 and α = −1, together with an upper critical dimension dc = 6. Such
exponents belong to the so-called ordinary percolation universality class.
This is because a delicate and cumbersome relation maps the percolation
problem, i.e. filtering of fluids through porous materials, onto a q → 1
Potts modela [24, 66, 78]. The free energy of its field-theoretical approxi-
mation contains a term φ3 leading to those particular values of the critical
exponents.

aIn fact, the Potts model is a generalization of the Ising model with q possible states
(and therefore recovering it in the case of q = 2). In such case, the free energy [78], for
small φ, is F = q−1

2q (q − γK)φ2− 1
6 (q − 1) (q − 2)φ3 + . . ., accounting for the φ3 term.

Pay close attention to the vanishing of the φ3 in the q = 2 particular case in accordance
to the present symmetries in the Ising model.

※ Scale invariance Also a necessary but not sufficient feature to know that
a system is in the vicinity of a critical point of a second-order phase transition
is the scale invariance, i.e. the systems remains –apparently– unchanged if
the relevant properties (length, energy, etc.) are rescaled by a common factor,
involving a fractal nature [41, 65], and lacking a characteristic scale.

1.2 Why are power laws scale-free?

The condition for a general function (or in particular, a probability dis-
tribution) to be scale invariant is to fulfill,

f (λx) = λnf (x)

or, in other words, to be an homogeneous function. A simple monomial
and, by extension, any power law distribution, P (x) ∝ x−α with α > 0,
satisfy such requirement. Likewise, the logarithmic spiral intersects any
radii from the origin at distances which are in geometric progression, and
thus, increase its size geometrically, being scale invariant.
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In conclusion, second-order phase transitions have some very interesting fea-
tures which we proceed to list. Just in the critical point, the system experiences
a symmetry breaking, where the ergodicity is broken (i.e. it is confined in a
subregion of the phase space), the susceptibility diverges producing long-range
correlations and their relevant properties are scale-invariant or fractal, which is
reflected in power law distributions.

1.2.1.2 First-order phase transitions

Let us now come back and take the whole Landau free energy until the φ4 term,

F (φ)
β

= a

2φ
2 + b

3φ
3 + c

4φ
4 (1.2.5)

with, for simplicity, the particular choice of c = 1 (fulfilling c > 0 as previ-
ously discussed). Now, the order parameter increases as,{

φ = 0 a > 0
φ = −b±

√
b2−4a

2 a ≤ 0
(1.2.6)

clearly distinguishing two possible cases for b > 0 and b < 0. In the first one,
the order parameter grows continuously just after the critical point, leading to a
second-order phase transition. Conversely, if b > 0 there exists a discontinuous
jump between the state with φ = 0 and its value in the emergent new phase
(see Figure 1.2.2) leading to a discontinuous or first-order phase transition. In
short, the nature of the phase transition only depends on the sign before the
φ3 term. In the second scenario, always exists a local minimum of F (φ) in the
order phase leading to a bistable behavior, i.e. two local minima coexist (as
stated in the inset of Figure 1.2.2) and the system can remain trapped in both,
leading to the so-called hysteresis effects, and running away by the influence of
thermal fluctuations. The special point at which two local minima coexist and
have the same value (or depth of F) is usually called the Maxwell point.
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Figure 1.2.2: Sketch of a first-order phase transition. The order parameter grows
discontinuously just below the Maxwell point (or in further cases, just above)
Inset: Representation of the Landau free energy after the Maxwell point with a
deeper second state with non-zero value of the order parameter (red).

1.2.2
Dynamical models: non-equilibrium phase transitions

As stated in the latter free energy (see inset of Figure 1.2.2), it can happen that
the deterministic evolution of the system does not sample the whole ensemble
of available states. To cope with the problem, it can be introduced some source
of randomness, mimicking thermal fluctuations, which are a sign of the temper-
ature allowing the system to wander around all the possible states, in the same
way as in the Boltzmann distribution.

Thus, a Langevin equation for the dynamical evolution of the order parame-
ter, φ (x, t), could be considered7, constituting the first example of a stochastic
differential equation (SDE) with additive noise [11, 16],

∂φ

∂t
= −δF (φ)

δφ︸ ︷︷ ︸
A(φ)

+ Cξ (x, t) (1.2.7)

where F (φ) is the Landau free energy, and ξ (x, t) is a zero-mean delta-
correlated Gaussian noise with 〈ξ (t)〉 = 0 and 〈ξ (t) ξ (t′)〉 = σ2

2 δ (t− t′).

7Also, in order to account for spatial effects, the coupling between j neighbors is described
by the leading-order term containing derivatives (i.e. finite differences) of the activity between
any pair of coupled nodes, i.e. by adding a diffusion term D∇2φi ≡ D

∑
j
(φj − φi) and thus,

leading to ∂φ
∂t

= ∇2φ− ∂V (φ)
∂φ

+ ξ (x, t).
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It is equivalent8 to the so-called Fokker-Planck equation [27, 68, 71], i.e. a
dynamical equation for the probability of being in a specific location of the phase
space, that takes the form

Ṗ (φ, t) = − ∂

∂φ
A (φ)P (φ, t) + 1

2
∂2

∂φ2C
2P (φ, t) (1.2.8)

An essential property, however, that need to be met in order to ensure that
a system are at equilibrium, is the detailed balance condition: each elemen-
tary process –at equilibrium– should be equilibrated by its reverse process. That
is to say, if the transitions α → α′ between different states are to be con-
sidered, through the transition probability per time (i.e. the transition rates
W (α→ α′)), the following condition must be fulfilled

W (α→ α′)
W (α′ → α) = pα

pα′
(1.2.9)

where pα (pα′) is the probability density9 –at equilibrium– for the occurrence
of state α (α′).

In this respect, in non-equilibrium problems, such condition is broken and
(mostly) the Landau free energy will not exist [30, 43]. But, it is yet possible
(and necessary) to employ stochastic process techniques such as the Master
equation, the Fokker-Planck or the Langevin equation (for a detailed discussion
on the matter we refer to [27, 71]). In any case, they exhibit similar features
–with extra degrees of freedom– to the equilibrium phase transitions (like an
existence of shared and enhanced universality classes), although their in-depth
analysis requires of further analytical techniques.

Coming back to the φ4-Landau theory, we can raise the Langevin equation,

φ̇ = −aφ− bφ2 − cφ3 + ξ (x, t) (1.2.10)

In a nutshell, two archetypical dynamical equations –depending on the sign
of b– have resulted for both, first and second-order phase transitions, fostering
their dynamical study and opening a wide and fascinating new field.

8In the Itô sense, equivalent to a Stratonovich one for additive noise but not for multi-
plicative noise [27, 71]. Although there exists an equivalence between both treatments, the
modeling of phenomena, in the Itô or Stratonovich sense, yields different solutions, giving rise
to the Itô-Stratonovich dilemma (a discussion on this issue is addressed in the appendix A.1).

9Usually, the Gibbs probability distribution pα ∼ e
− Eα
kBT , where Eα is the state energy.
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※ On the origin of inherent noise A prime example of a non-equilibrium
problem arise from the microscopical reactions for the contact process describing
the propagation of activity (which is in substance similar to a birth-death process
[27]). For that purpose, on the basis of theMaster equation for a Markov process
[27, 71], and given the microscopic probabilistic rules for the transitions in the
system, it is possible to set up a probabilistic description of it.

Let us consider the following microscopical rules (summarized in Figure
1.2.3):

i) A site of our network/lattice, of size N , can be active (A) or inactive (I)

ii) If the site is in the active state, it can be inactivated or activate a random
neighbor (provided it is inactive), with rates µ and λ, respectively.A

λ−→ A+ 1
A

µ−→ A− 1

Figure 1.2.3: Sketch of the contact process dynamics. Each node is in an active
or an inactive state and active nodes can be inactivated (at rate µ) or propagate
their activity to a non-active neighbor (at rate λ). Observe that the underlying
structure, a complex network, is heterogeneous rather than a regular lattice.
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From both simple microscopical rules it is possible –resting upon probability
conservation– to employ the master equation to propose a dynamical equation
for the probability of having A active sites at time t,

dPA (t)
dt

= W+
A−1PA−1 (t) +W−A+1PA+1 (t)

−W+
A PA (t)−W−A PA (t) A-1 A+1

A
W-

W-

W+

W+

where W+
A , W−A are the transition rates, i.e. the transition probabilities per

unit time from a state with A active nodes to other with A + 1 (or A − 1),
which in the present case, the contact process10, are W+

A = λA
(
1− A

N

)
and

W−A = µA.
This equation can be rewritten in terms of the macroscopical density of

active states, ρ (t) = A(t)
N , at time t

1
N

∂P (ρ, t)
∂ρ

= w+
(
ρ− 1

N

)
P

(
ρ− 1

N
, t

)
+ w−

(
ρ+ 1

N

)
P

(
ρ+ 1

N
, t

)
− w+ (ρ)P (ρ, t)− w− (ρ)P (ρ, t)

where w+ (ρ) = W+
A
N = λρ (1− ρ) and w− (ρ) = W−A

N = µρ are the rescaled
transition rates as function of the population density of active nodes rather than
the total number of active nodes.

Solve the problem analytically may be a long and hard path. Thus, instead
of find and analytical solution, it could be easily scrutinized through the Fokker-
Planck approximation employing the Van Kampen’s expansion [71] (also known
as the Ω-expansion, the limit of small jumps, i.e. the Taylor expansion11 in a
–large– system of size Ω),

∂P (ρ, t)
∂t

= − ∂

∂ρ

{[
w+ (ρ)− w− (ρ)

]
P (ρ, t)

}
+ 1

2N
∂2

∂ρ2

{[
w+ (ρ) + w− (ρ)

]
P (ρ, t)

}
+O

( 1
N2

)

10It is possible to activate λI nodes, as long as such node is a neighbor of an active node in
the lattice, A

N
. Thus, W+

A = λA
N
I = λA

(
1− A

N

)
.

11Up to second order, P
(
ρ± 1

N
, t
)

= P (ρ, t)± 1
N
∂ρP (ρ, t) + 1

2N2 ∂
2
ρP (ρ, t).
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which mapped in a Langevin equation –grouping terms for small ρ– becomes,

ρ̇ = −µρ+ λρ (1− ρ) +√ρξ (t) (1.2.11)

including a multiplicative noise term
(√
ρ
)
depending on the state of the

system, being ξ (x, t) a zero-mean delta-correlated Gaussian noise. In this case,
a second-order phase transition12 emerges for the marginal situation with λ = µ.

The multiplicative noise term vanishes if ρ = 0 and, as a result, the system
can get trapped13 into the so-called absorbing state for any finite value of N .
Thus, the system presents an analogous phase diagram to the one shown in Fig-
ure 1.2.1, but with absorbing and active phases, and it explains, for example,
the spreading of infectious diseases. In order to avoid such a situation, a sponta-
neous creation of particles can be introduced, disturbing as little as possible the
original system, to extricate itself of the absorbing state. Observe, also, that in
the case with additive white noise, although a vanishing order parameter exists
in the deterministic case, the description of absorbing phase is not accurate since
the system is able to fluctuate and reach values of ρ 6= 0.

1.2.3
Self-organizing mechanisms

※ Self-organized criticality (SOC) Many biological and natural systems, as
earthquakes, solar flares, vortices in superconductors, forest fires, epidemics or
neuronal avalanches of activity, among others [6, 12, 23, 38, 40], show features
of criticality, as if they had been carefully tuned to dwell in the vicinity of a
phase transition. The theory of self-organized criticality (SOC) –started to be
developed 30 years ago– explains how systems can become self-organized to the
edge of a continuous phase transition, i.e. to the vicinity of a critical point
characterized by scale-free avalanches of activity, without the apparent need of
parameter fine tuning [4, 6, 20, 55]. This theory (or mechanism) is often invoked
to explain the emergence of scale-free distributed bursts of activity interspersed
by periods of quiescence in very diverse settings, covering both inanimate and
living systems.

The mechanism for self-organization (as exemplified by its most paradig-
matic examples, i.e. the sandpile models [6, 19, 42]) relies on a couple of essen-
tial features. The first one is the presence of two infinitely separated timescales:
one characterizes the fast dynamics of the system activity (ρ), while the slow one
controls the dynamics of the background field (E, which, acting as an effective

12Due to the minus sign in front of λ, coming along with ρ2. It is easy to see that, if we wish
to obtain a first-order phase transition, such a term should be positive and another additional
term proportional to +ρ3 must appear, leading to ρ̇ = aρ+ bρ2 − cρ3 +√ρξ (t).

13Constituting essentially a non-equilibrium problem [21, 30, 43], because the “detailed bal-
ance” condition is blatantly violated.
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order parameter, creates a feedback loop which is ultimately responsible for the
self-organization to the edge of a phase transition [20]). This energy variable14

fosters the creation of activity through different possibilities, e.g. by taking into
account an equation Ė = h− ερ, in the limit h, ε→ 0 with h

ε → 0, or increasing
E and ρ at some point with a fixed amount (when the system has fallen into the
absorbing state), until an avalanche is triggered. A second important feature is
that the dynamics is conserved (i.e. dissipation can only occur at the system
boundaries), even if SOC models lacking conservation –as exemplified by fire
forest models, earthquake models, etc.– have also a long tradition in the field.
The main difference is that while conserved mechanisms drive the dynamics ex-
actly to the critical point, non-conserved ones generate an effective dynamics
which wanders around the critical point, with excursions to both sides of the
transition point but not sitting exactly on it (see [14] and references therein).

Figure 1.2.4: Self organization to the critical point leading to the emergence
of criticality in a natural way in conserved systems. Two forces acts over the
system, namely the driving (h), predominating in the absorbing phase, and
the dissipation (ε), of growing relevance when the activity is triggered and an
avalanche invades and propagates across the system.

In SOC systems, the phase transition is described employing the next set of
Langevin equations with spatial coupling and noise,{

ρ̇i (t) = [−a+ E (t)] ρi (t)− bρ2
i (t) +D∇2ρi (t) + σ2ηi (t)

Ėi (t) = D∇2ρi (t)
where ηi(t) is a Gaussian white noise term, with 〈ηi(t)ηj(t′)〉 = ρi(t)δ(t −

t′)δij , ρ and E are fields, a and b are positive constant parameters, D and σ2 are
diffusion and noise constants, and ∇2ρi ≡

∑
j(ρj − ρi) stands for the diffusive

coupling between each unit i and its neighbors j.
14In particular, for sandpiles, is the total number of sand grains.
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※ Self-organized bistability (SOB) A mechanism similar in spirit to SOC has
been discovered to be able to self-organize systems exhibiting a discontinuous
phase transition to its very edge, i.e. to the (Maxwell) point of bistability of two
alternative phases. Indeed, self-organized bistability (SOB) has been proposed
as a new and very general paradigm for the organization to points of bistability.
In this case, avalanches turn out to be bimodal, i.e. their sizes and times dis-
tributions consist of a power-law complemented with a bump, corresponding to
frequent anomalously large events [57]. Such a theory –relying also on conser-
vation and on infinitely separated timescales, with the same dynamics for the
energy field (E)– offers a simple explanation for why some real sandpiles (the
archetype of SOC) are empirically observed to exhibit deviations from perfect
scaling behavior, showing huge avalanches in a quasi-periodic fashion together
with smaller scale-free ones [57, 81].

In SOB systems, the phase transition is described employing the next set of
Langevin equations with spatial coupling and noise15,

{
ρ̇i (t) = [−a+ E (t)] ρi (t) + bρ2

i (t)− cρ3
i (t) +D∇2ρi (t) + σ2ηi (t)

Ėi (t) = D∇2ρi (t)

where ηi(t) is a Gaussian white noise term, with 〈ηi(t)ηj(t′)〉 = ρi(t)δ(t −
t′)δij , ρ and E are fields, a, b, c are positive constant parameters, D and σ2 are
diffusion and noise constants, and ∇2ρi ≡

∑
j(ρj − ρi) stands for the diffusive

coupling between each unit i and its neighbors j.

1.2.3.1 Avalanches

All systems with absorbing states share the common feature of exhibiting avalanch-
ing behavior, meaning that if the absorbing state is perturbed by a localized seed
of activity, this can trigger a cascade of events before falling back again into the
absorbing state16. It is common knowledge that avalanches turn out to be scale
invariant at critical points; in particular, the avalanche-size (S) and avalanche-
duration (T ) probability distribution functions can be written at criticality as

P (S) ∼ S−τGS(S/SC)
P (T ) ∼ T−αGT (T/TC), (1.2.12)

where GS(S/SC) and GT (T/TC) are cut-off functions, and the cut-off scales,
SC and TC , depend only on system size right at the critical point, and on the
distance to criticality away from it [35].

15An additional cubic term (whose need has been widely discussed in the Landau theory of
phase transitions) is included to avoid divergences, i.e. the case ρ→∞.

16An extended discussion on how avalanches should be measured is discussed in later chapters
and, specifically, in appendix B.3.2.
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Similarly, the averaged avalanche size scales with the duration as 〈S〉 ∼ T γ ,
where the exponent γ needs to obey the scaling relation [7, 62],

γ = α− 1
τ − 1 . (1.2.13)

For the particular cases concerned here, SOC and SOB, for avalanches prop-
agating in high dimensional systems (or in densely connected networks) mean-
field exponent values take the value τ ≈ 1.26, α ≈ 1.48, γ ≈ 1.84 and τ = 3/2,
α = 2, γ = 2, respectively. A compilation of avalanche exponents for differ-
ent dimensions and universality classes, as well as scaling relationships, can be
found in [13, 34, 37, 49].

1.2.4
Griffiths phases: the stretching of criticality

The two possible transitions that has just been explained lie in homogeneous or
mean-field systems. However, it is not surprising to sight in nature heteroge-
neous systems, in contrast with homogeneous regular lattices. In particular, one
can imagine the so-called quenched disorder that stems from inhomogeneities in
the system and microscopical effects (that are considered frozen in time) as, e.g.
infection rates, activity propagation, population density in neuronal cultures,
etc. Another possibility is the topological disorder that generates isolated, highly
connected or modular structures (see lower panel of Figure 1.2.5, it is worth
noting the real case of the human brain connectome network). In both cases
–quenched disorder and topological disorder– the usual critical point separating
the absorbing and the active phase can be altered and stretched generating rare
active regions [47, 50], even if the system is globally in the absorbing phase (see
upper panel of Figure 1.2.5). This critical-like phase is called a Griffiths phase
and can be very relevant in inhomogeneous biological systems [47, 48, 50].
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Figure 1.2.5: Phase transition in homogeneous (left) and heterogeneous (right)
systems separating the absorbing phase and the active one. Observe the inho-
mogeneities present in the lattice, although a large amount of local properties
and possible networks can be considered. A Griffiths phase can emerge in the
neighborhood of the phase transition of such systems. In the Griffiths phase,
some critical-like features emerge, as a power-law decay to the stationary state
of the global activity[47].
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2.1
Introduction

“Everything should be made as sim-
pler as possible, but not simpler”

A. Einstein

Landau was pioneer to propose a revolutionary approach to the analysis of
phases of matter and the phase transitions they experience. It consists

in a parsimonious, coarse-grained, and deterministic description of states of
matter in which –relying in the idea of universality– only relevant ingredients
(such as symmetries and conservation laws) need to be taken into account and
in which most microscopic details are safely neglected [8, 77]. Ginzburg went
a step further by realizing that fluctuations are an essential ingredient to be
included in any sound theory of phase transitions, especially in low-dimensional
systems. The resulting Landau-Ginzburg theory, including fluctuations and
spatial dependence, constitutes a firm ground on top of which the standard
theory of phases of matter rests, and can be seen as a meta-model of phase
transitions [8].

Similar coarse-grained theories are nowadays used in interdisciplinary con-
texts where diverse collective phases stem out of the interactions among many
elementary constituents; e.g. in population dynamics [69, 85] and in neuro-
science [12, 13, 16]. Our goal here is to analyze a Landau-Ginzburg theory for
cortical neural networks with the hope of shedding light –from a very general
perspective– on the collective phases and phase transitions that dynamical cor-
tical networks can harbor and, more specifically, on the intriguing experimental
finding of neuronal avalanches, as described in what follows.

The cerebral cortex exhibits spontaneous activity even in the absence of any
apparent task or external stimuli [4, 28, 68]. A salient aspect of this, so-called,
resting-state dynamics, as revealed by in vivo and in vitro measurements, is that
it exhibits outbursts of electrochemical activity, characterized by brief episodes
of coherence –during which many neurons fire within a narrow time window–
inter-spaced by periods of relative quiescence, giving rise to collective oscillatory
rhythms [63, 72]. Shedding light on the origin, nature, and functional meaning
of such an intricate synchronization dynamics is a fundamental challenge in
Neuroscience [17].

Upon experimentally enhancing the spatio-temporal resolution of activity
recordings, Beggs and Plenz made the remarkable finding that, actually, syn-
chronized outbursts of neural activity could be decomposed into complex spatio-
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temporal patterns, thereon named “neuronal avalanches” [6]. The sizes and du-
rations of such avalanches were reported to be distributed as power-laws, i.e. to
be organized in a scale-free way, they obey finite-size scaling [64], a trademark of
scale invariance [8], and the corresponding exponents are compatible with those
of an unbiased branching process.

Scale-free avalanches of neuronal activity have been consistently reported to
occur across neural tissues, preparation types, experimental techniques, scales,
and species [7, 34, 35, 54, 62, 67, 74, 80]. This has been taken as empirical
evidence backing the criticality hypothesis, i.e. the conjecture that the awake
brain might extract essential functional advantages –including maximal sensitiv-
ity to stimuli, large dynamical repertoires, optimal computational capabilities,
etc.– from operating close to a critical point, separating two different phases
[19, 20, 58, 71].

In order to make further progress, it is of crucial importance to clarify the
nature of the phase transition marked by such an alleged critical point. It is
usually assumed that it corresponds to the threshold at which neural activity
propagates marginally in the network, i.e. to the critical point of a quiescent-
to-active phase transition [6], justifying the emergence of branching-process ex-
ponents [39, 51]. However, several experimental investigations found evidence
that scale-free avalanches emerge in concomitance with collective oscillations,
suggesting the presence of a synchronization phase transition [33, 89].

From the theoretical side, on the one hand, very interesting models ac-
counting for the self-organization of neural networks to the neighborhood of
the critical point of a quiescent-to-active phase transition have been proposed
[2, 3, 7, 47, 56]. These approaches rely on diverse regulatory mechanisms [37],
such as synaptic plasticity [50], spike-time-dependent plasticity [73], excitability
adaptation, etc. to achieve network self-organization to the vicinity of a critical
point. These models have in common that they rely on extremely large sepa-
ration of dynamical timescales (as in models of self-organized criticality (SOC)
[5, 43]) which might not be a realistic assumption [2, 10, 47]. Some other models
are more realistic from a neurophysiological viewpoint [7, 56], but they give rise
to scale-free avalanches if and only if causal information, which is available in
computational models but not accessible in experiments [52]. Thus, in our opin-
ion, a sound model justifying the empirical observation of apparent criticality is
still missing.

On the other hand, well-known simple models of networks of excitatory and
inhibitory spiking neurons exhibit differentiated synchronous and asynchronous
phases with a synchronization phase transition in between [1, 14, 15, 84]. How-
ever, avalanches do not usually appear (or are not looked for) in such modeling
approaches, with a few recent exceptions [31, 67, 82].
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Concurrently, during deep sleep and also under anesthesia the cortical state
has long been known to exhibit, so-called, “up and down” transitions between
states of high and low neural activity, respectively, giving rise to slow (δ) os-
cillations [25, 78], which clearly deviate from the apparent criticality of the
awake brain, and which have also been modeled on their own [41, 55, 56]. Thus,
it would be highly desirable to design theoretical models describing within a
common framework the possibility of criticality, oscillations, and up-down tran-
sitions.

Our aim here, as advanced above, is to clarify the nature of the phases and
phase transitions of dynamical network models of the cortex by constructing a
general unifying theory ’a la Landau-Ginzburg’ based on minimal assumptions,
allowing us, in particular, to elucidate what the nature of the alleged critical-
ity is. The model can be seen as a variant of the well-known Wilson-Cowan
model including, crucially, stochasticity and a spatial dependence. Employ-
ing analytical and computational techniques, we show that our theory explains
the emergence of scale-free avalanches, as episodes of marginal and transient
synchronization in the presence of a background of ongoing irregular activity,
reconciling the oscillatory behavior of cortical networks with the presence of
scale-free avalanches. Last but not least, our approach also allows for a unifica-
tion of existing models describing diverse specific aspects of the cortical dynam-
ics, such as up and down states and up-and-down transitions, within a common
mathematical framework.



2.2
Building a minimal model of
neural activity with synaptic
plasticity

We construct a mesoscopic Landau-Ginzburg description of neuronal activ-
ity, where the building blocks are not single neurons but local neural

populations. These can be thought as small sections of neural tissue [22, 44]
consisting of a few thousand cells (i.e. still far away from the large-network
limit), and susceptible to be described by a few mesoscopic variables. Even
though this effective description is constructed here on phenomenological bases,
more formal derivations of similar equations from microscopic models exist in
the literature (see e.g. [7]). In what follows, first (i) we model the mesoscopic
neural activity at a single “unit”, then (ii) we analyze its deterministic behavior
as a function of parameter values, and later on (iii) we study the dynamics of a
network of coupled units, defining a stochastic cortical network.

2.2.1
Single-unit model

In the Wilson-Cowan (WC) model the dynamics of the average firing rate or
global activity, ρ, is governed by the equation

ρ̇(t) = −aρ (t) + (1− ρ (t))S (Wρ (t)−Θ) (2.2.1)

where a controls the spontaneous decay of activity,W is the synaptic strength, Θ
is a threshold value, and S(x) is a sigmoid (transduction) function, e.g. S(x) =
tanh(x) [7, 88]. We adopt this well-established model and, at each single unit
we consider a dynamical model in which the excitatory activity, ρ, for simplicity,
keep only the leading terms (following the Landau approach) in a power-series
expansion, yielding the deterministic part1:

ρ̇(t) =
[
− a+R(t)

]
ρ(t) + bρ2(t)− ρ3(t) + h (2.2.2)

where h is an external driving field, a > 0 controls the spontaneous decay of
activity, which is partially compensated by the generation of additional activity

1We keep up to third order to include the effect of the sigmoid response function; a variant
of the model considering the non-truncated Wilson-Cowan equation leads to almost identical
results; see appendix B.1
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at a rate proportional to the amount of available synaptic resources at a given
time, R(t); the quadratic term, with a parameter b > 0 controls non-linear inte-
gration effects2, and the cubic term imposes a saturation level for the activity,
to avoid unbounded growth.

A second equation describes the dynamics of the available resources, R(t),
through the combined effect of synaptic depression and synaptic recovery, as
encoded in the celebrated model of Tsodyks and Markram (TM) [50, 83]:

Ṙ(t) = 1
τR

(ξ −R(t))− 1
τD
R(t)ρ(t), (2.2.3)

where τR (resp. τD) is the characteristic recovery (depletion) time, and ξ is the
baseline level of non-depleted synaptic resources.

2.2.1.1 Mean-field analysis

We analyze, both analytically and computationally, the dynamics of the single
unit, as given by Eqs. (2.2.2) and (2.2.3). We obtain the fixed points (ρ∗, R∗)
of the dynamics –i.e. the possible steady-states at which the system can settle–
as a function of the baseline-level of synaptic resources, ξ, which plays the role
of a control parameter (all other parameters are kept fixed to reasonable values,
as summarized in the caption of Fig. 2.2.1). For small values of ξ, the system
falls into a quiescent or down state with ρ∗ ≈ 0 and R∗ ≈ ξ 3. Instead, for large
values of ξ there is an active or up state with self-sustained spontaneous activity
ρ∗ > 0 and depleted resources R∗ < ξ. In between these two limiting phases,
two alternative scenarios can appear, depending on the time scales τD and τR.

(A) A stable limit cycle (corresponding to an unstable fixed point, with com-
plex eigenvalues) emerges for intermediate values of ξ (in between two
Hopf bifurcations) as illustrated in Fig.2.2.1A. This Hopf-bifurcation sce-
nario has been extensively discussed in the literature (see e.g. [53]) and it
is at the basis of the emergence of oscillations in neural circuits.

(B) An intermediate regime of bistability including three fixed points is found
for intermediate values of ξ (in between two saddle-node bifurcations):
the up and the down ones, as well as an unstable fixed point in between
(as illustrated in Fig.2.2.1B). This saddle-node scenario is the relevant
one in models [41, 46, 56] describing transitions between up (active) and
down (quiescent) states as they occur in the brain during sleep or under
anesthesia [25, 78]

2Single neurons integrate many presynaptic spikes to go beyond threshold, and thus their
response is non-linear: the more activity the more likely it is self-sustained [44]. In fact, the
WC model includes a sigmoid response function with a threshold, implying that activity has to
be above some minimum value to be self-sustained, and entailing b > 0 in the series expansion.

3Deviations from ρ∗ = 0 stem from the small but non-vanishing external driving h 6= 0.
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Figure 2.2.1: Phase portraits and nullclines for the (deterministic) dynamics,
Eqs. (2.2.2) and (2.2.3). Nullclines are colored in blue (ρ̇ = 0) and red (Ṙ = 0),
respectively; fixed points (ρ∗, R∗) –at which nullclines intersect– are highlighted
by green full (empty) circles for stable (unstable) fixed points. Background
color code (shifting from blue to purple) represents the intensity of the vector
field (ρ̇, Ṙ), whose direction is represented by small grey arrows. A trajectory
illustrating a limit cycle is showed in green in (A). The system exhibits either
(A) an oscillatory regime or (B) a region of bistability, in between a down (left)
and an up (right) state. To shift from case (A) to case (B) the timescale of
resources depletion, τ−1

D , is 0.016 and 0.001 , respectively. Other parameter
values: h = 10−3, a = 0.6, b = −1.3, τR = 103; control parameter, from left to
right, ξ = 0.3, 1.6, 2.3 in the upper panel and ξ = 0.2, 0.4, 0.7 in the lower one.
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Two remarks are in order. The first is that one can shift from one scenario to
the other just by changing one parameter, e.g. the synaptic depletion timescale
τD

4; thus, as shown in Fig. 2.2.2, when the recovery time (τR) is much bigger
than the depletion time (τD) the system is in the case A, while for bigger values
of the depletion time (τD) it falls into the case B with a transition between up
(active) and down (quiescent) states. The second and important one is that none
of the two scenarios exhibits a continuous transition (transcritical bifurcation)
separating the up from the down regimes; thus, at this deterministic level there
is no precursor of a critical point for marginal propagation of activity.

τ
R

101

102

103

104

105

τD
101 102 103 104 105

B

A

Figure 2.2.2: Phase diagram. It is possible to shift from case (A) to case (B)
and viceversa by changing just one parameter; e.g. the timescale of resources
depletion, τ−1

D . Red (blue) cross show the particular case chosen in the Fig. 2.2.1
for the case A (B). Other parameter values: h = 10−3, a = 0.6, b = −1.3, τR =
103.

4Note that the slope of the the nullcline deriving from Eq.(2.2.3) (red in Fig.2.2.1) is pro-
portional to τD: if it is small enough, there exists only one unstable fixed point, giving rise to
a Hopf bifurcation; otherwise the nullclines intersect at three points, generating the bistable
regime.
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2.2.2
Stochastic network model

We now introduce stochastic and spatial effects in a simple way. For this we
consider a network of N nodes coupled following a given connection pattern.
Each network node represents a mesoscopic region of neural tissue or “unit” as
described above. On top of this deterministic dynamics, we consider that each
unit (being finite) is affected by intrinsic fluctuations [7, 13, 23]. More specif-
ically, Eq.(2.2.2) is complemented with an additional term +A(ρ)η(t) which
includes a (zero-mean, unit-variance) Gaussian noise and a density-dependent
amplitude A(ρ)5. In the limit of slow external driving and up to leading order
this can be written as A(ρ) =

√
ρ(t); this stems from the fact that the spiking

of each single neuron is a stochastic process, and the overall fluctuation of the
density of a collection of them scales with its square-root, as dictated by the
central limit theorem [30] (see also chapter 1 or [7] for a detailed derivation).

At large macroscopic scales, the cortex can be treated as a two-dimensional
sheet consisting mostly of short-range connections [11]6. Although long-range
connections are also known to exist, and small-world effects have been identified
in local cortical regions [76], here we consider a two-dimensional square lattice
(size N = L2) of mesoscopic units as the simplest way to embed our model
into space. Afterward, we shall show that our main results are robust to the
introduction of more realistic network architectures including additional layers
of complexity such as long-range connections and spatial heterogeneity.

Following the minimal Landau-Ginzburg approach we adopted, coupling be-
tween units is described by the leading-order term containing derivatives (i.e.
finite differences) of the activity between any pair of coupled nodes, i.e. a diffu-
sion term. This type of diffusive coupling between neighboring mesoscopic units
stems from electrical synapses [44, 81] and has been analytically derived starting
from models of spiking neurons [16] 7. Thus, the set of stochastic equations is:{

ρ̇i(t) = (−a+Ri + bρi)ρi − ρ3
i + h+∇2ρi +√ρiηi

Ṙi(t) = 1
τR

(ξ −Ri)− 1
τD
Riρi

(2.2.4)

where ρi and Ri are the activity and resources at a given node i with i =
1, 2, ...N , ∇2ρi ≡

∑
j(ρj − ρi) describes the diffusive coupling of unit i with

its neighbors j, and ηi(t) is a Gaussian white noise term, with 〈ηi(t)ηj(t′)〉 =
δ(t − t′)δij . For the forthcoming analyses we resort to numerical integration

5A noise term could be also added to the equation for synaptic resources [55], but it does
not significantly affect the results.

6At the basis of, so-called, neural-field models, with a long tradition in neuroscience [24].
7More elaborated approaches including coupling kernels between different regions, as well

as asymmetric ones, are also often considered in the literature (e.g. [12]), but here we stick to
the simplest possible coupling.
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of the stochastic equations –which is feasible thanks to the exact and efficient
scheme developed by Dornic et al. [26] to integrate eqs. such as Eq.(2.2.4) with
multiplicative noise– keeping, as above, all parameters8, except for ξ, fixed, and
employing δt = 0.01 as integration timestep.

Importantly, we have considered variants of this model, avoiding the trunca-
tion of the power-series expansion, and also including an inhibitory population
as the chief regulatory mechanism: either of these leads to essentially the same
phenomenology and phases as described in what follows, backing the robustness
of our conclusions (see appendix B.1).

2.2.3
Phases and phase transitions: Case A

We start analyzing sets of parameters lying within the deterministic case A
above, i.e. with a limit cycle. We study the possible phases that emerge as the
baseline level of synaptic resources, ξ is varied. These are illustrated in Fig.2.2.3
where characteristic snapshots, overall-activity time series and probability dis-
tributions, as well as raster plots are plotted.

※ Down-state phase (A1) If ξ is sufficiently small (i.e. ξ . 0.75), resources R
are always scarce and the system is unable to produce self-sustained activity (i.e.
it is hardly excitable) giving rise to a down-state phase, characterized by very

small stationary values of the network time-averaged activity ρ̄ ≡ 1
T

∫ T
0 dt 1

N

N∑
i=1

ρi(t) for large times T (see Fig.2.2.3a). The quiescent state is disrupted only
locally by the effect of the driving field h, which creates local activity, hardly
propagating to neighboring units.

※ Synchronous irregular (SI) phase (A2) Above a certain value of resource
baseline (ξ & 0.75) there exists a wide region in parameter space in which activ-
ity generated at a seed point is able to propagate to neighboring units, triggering
a wave of activity which transiently propagates through the whole network until
resources are exhausted, activity ceases, and the recovery process restarts (see
Fig.2.2.3b). Such waves or “network-spikes” appear in an oscillatory, though
not perfectly periodic, fashion, with an average separation time that decreases
with ξ. In the terminology of Brunel [14], this corresponds to a synchronous
irregular (SI) state/phase, since the collective activity is time-dependent and
individual spiking is irregular (as discussed below). This wax-and-wane state
resembles the huge bursts of anomalous synchronous activity as they appear in
e.g. epileptic tissues [40].

8For simplicity, some time dependences have been omitted and some coefficients have been
fixed to unity; periodic boundary conditions are considered.
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Figure 2.2.3: Illustration of the diverse phases emerging in the model (case A) for
a network of N = 1282 units. The baseline of synaptic resources, ξ, increases
from top to bottom (see left blue arrow). First column: Snapshots of typi-
cal configurations; the color code represents the level of activity at each unit.
The synchronous irregular case is characterized by waves of activity growing
and transiently invading the whole system, before extinguishing the resources
and coming to an end; while in the nested-oscillation or asynchronous irregu-
lar regime multiple traveling waves coexist, interfering with each other. Second
column: Time series of the overall activity averaged over the whole network.
In the down state activity vanishes, appearing synchronous bursts, interspersed
by almost silent intervals in the synchronous phase. At the critical point net-
work spikes begin to superimpose, giving rise to complex oscillatory patterns
(nested oscillations) and marginally self-sustained global activity all across the
asynchronous regime; finally, in the up state the global activity converges to
steady-state with small fluctuations. Third column: Steady state probability
distribution P (ρ) for the global activity: in the A1 and A2 regimes the dis-
tributions are shown in a double-logarithmic scale; observe the approximate
power-law for very small values of ρ stemming from the presence of multiplica-
tive noise. Fourth column: Different levels of synchronization across phases: a
sample of 200 randomly chosen units are mapped into oscillators (see below);
the plot shows the time evolution of their corresponding phases φAk .
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※ Asynchronous irregular (AI) phase (A3) For even larger values of resource
baseline (ξ & 2.15), the level of synaptic recovery is sufficiently high as to
allow for resource-depleted regions to recover before the previous wave has come
to an end. Thereby, diverse spatially extended waves coexist in the network,
giving rise to a collective complex oscillatory pattern (see Fig.2.2.3d; which is
strikingly similar to, e.g. EEG data of α−rhythms [75]). The amplitude of
these oscillations, however, decreases upon increasing network size (as many
different local waves are averaged and deviations from the mean tend to be
washed away). This regime can be assimilated to an asynchronous irregular
(AI) phase of Brunel [14].

For all the considered network sizes the time-averaged overall activity, ρ̄,
starts taking a distinctively non-zero value above ξ ≈ 0.75 (see Fig.2.2.4), re-
flecting the upper bound of the down or quiescent state (transition between (A1)
and (A2)). This phase transition is rather trivial and corresponds to the onset
on network spikes. More interestingly, it exhibits an abrupt increase at values
of ξ between 2 and 3, signaling the transition from (A2) to (A3). However, the
jump amplitude decreases as N increases, suggesting a smoother transition in
the large-N limit. Thus it is not clear a priori –using ρ̄ as an indicator, whether
there is a true sharp phase transition or there is just a crossover between the syn-
chronous and the asynchronous regime. To elucidate the existence of a true crit-
ical point, we measured the standard deviation of the network-averaged global
activity ρ̄, σρ. Direct application of the central limit theorem [30] would imply
that such a quantity should decrease as 1/

√
N for large N and thus χ ≡

√
Nσρ

should converge to a constant. However, Fig.2.2.4B shows that χ exhibits a
very pronounced peak located at the (size-dependent) transition between the
SI and the AI phases that grows with N –i.e. diverges in the thermodynamic
limit–, revealing anomalous scaling, as occurs in critical points. Also, a finite-
size scaling analysis of the value of ξ at the peak (for each N), i.e. ξc(N),
reveals the existence of a bona fide continuous synchronous-asynchronous phase
transition at ξ∞c ' 2.15(5) in the infinite-size network limit (see Fig.2.2.4C).
Moreover, a (detrended fluctuation) analysis of timeseries reveals the emergence
of long-range temporal correlations right at ξc (see appendix B.2).
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Figure 2.2.4: Overall network activity state (case A) as determined by the net-
work time-averaged value ρ̄ (h = 10−7). (A) Order parameter ρ̄ as a function
of the control parameter ξ for various system sizes N = 212, 214, 216, 218 (from
bottom to top); observe that ρ̄ grows monotonically with ξ and that an inter-
mediate regime, in which ρ̄ grows with system size, emerges between the up and
the down states. (B) Inset: Standard deviation of the averaged overall activity
in the system multiplied by

√
N ; χ = σρ

√
N (see main text); The point of max-

imal variability coincides with the point of maximal slope in (A) for all network
sizes N . (C) Finite-size scaling analysis of the peaks in (B). The distance of the
size-dependent peak locations ξc(N) from their asymptotic value for N → ∞,
ξ∞c , scales as a power law of the system size, taking ξ∞c ≈ 2.15, revealing the
existence of true scaling as corresponds to criticality.

About the nature of nested oscillations. In order to unveil the na-
ture of the nested oscillation (AI) phase and to explicit whether it is a finite
size effect or it survives in the thermodynamic limit, the existence of a second
(hidden) phase transition between the up state and the nested oscillation phase
is questioned. In fact, in principle, those two regimes show a qualitative differ-
ence: in the AI phase each single unit keeps switching between the on and off
states and there exists a macroscopic fraction of off sites, whereas in the ac-
tive phase units are permanently in the on state and, even if fluctuations might
lead some unit to the off state, the macroscopic fraction of them is null. The
fraction of inactive units, ρ0, can thus be chosen as an order parameter for this
putative phase transition. In Figure 2.2.5 we plot the average over time of ρ0 in
function of ξ and we verify that this "complementary" order parameter detects
the same phase transition already characterized in the main text, thus unveiling
that, in the thermodynamic limit, there exists no difference between the nested
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oscillation regime and the up state. Therefore, the nested oscillations can be
understood as the partial synchronization of a small number of units, which pro-
duces effects at the network level only if the system is finite. Conversely in the
infinite size limit the total activity of the system is constant, since many small
incoherent clusters of synchronized activity coexist and superimpose, producing
a null net effect.
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Figure 2.2.5: Phase transition for the fraction of inactive sites in the system.
Inset: Variance over runs of fixed length of the average value of the control
parameter multiplied by

√
N in order to highlight the deflections with respect

to central limit theorem (χ =
√
Nσρ0). Note that for all the system sizes the

peaks are located approximately in the same spots as in Fig. 2.2.4.

※ Up-state phase (A4) For even larger values of ξ, plenty of synaptic resources
are available at all times, giving rise to a state of perpetual activity with small
fluctuations around the mean value (Fig.2.2.3e), i.e. an up state. Let us finally
remark, that as just explicitly shown, the AI phase and the Up-state cannot
be distinguished in the infinite network-size limit, in which there are so many
waves to be averaged that a homogeneous steady state emerges on average in
both cases.



52 Chapter 2. Landau-Ginzburg theory of cortical dynamics

2.2.4
Phases and phase transitions: Case B

We discuss the much simpler scenario for which the deterministic/mean-field dy-
namics predicts bistability, i.e. case B above, which is obtained e.g. considering
a slower dynamic for synaptic-resource depletion. In this case, the introduction
of noise and space, does not alter the deterministic picture. Indeed, computa-
tional analyses reveal that there are only two phases: a down state and an up
one for small and large values of ξ, respectively. These two phases have the
very same features as their corresponding counterparts in case A. The phase
transition between them is discontinuous (much as in Fig. 2.2.1B) and thus,
for finite networks, fluctuations induce spontaneous transitions between the up
and the down state when ξ takes intermediate values, in the regime of phase
coexistence. Thus, in case B, our theory constitutes a sound Landau-Ginzburg
description of existing models, such as those in [41, 55, 56], describing up and
down state transitions.



2.3
Synchronization phase

transition

The Landau-Ginzburg model has shown us thus far, that, at least, there exists
a non-trivial phase transition (in the sense that stays outside a continuous

quiescent/active phase transition) between the synchronous irregular phase and
the asynchronous irregular one, characterized by the emergence of oscillations
and waves of activity propagating and invading the whole system. It is however
not unreasonable to assume that this type of transition belongs to a synchro-
nization/desynchronization one but, to test this assumption, the units of the
system must be considered as oscillators. So, the main question now is: how
to deal with the conversion from ’activity units’ to oscillators in a network? In
this section, we tackle this problem, and we also deep in some possible empirical
findings that can be reproduced in our theory.

2.3.1
From activity to phases: oscillators

Our first objective must be to assign an effective phase φk(t) to the time-series
at unit k, ρk(t). In principle, the are two possible solutions to this problem.
The first one involve the computing of its analytic signal representation, which
directly maps any given real-valued timeseries into an oscillator with time-
dependent phase and amplitude, and the second one, in concomitance with the
empirical treatment of the real time-series, consists in its conversion to spiking
pattern of activity.

※ Analytic signal representation The Hilbert transform H(·) is a bounded
linear operator largely used in signal analysis as it provides a tool to transform
a given real-valued function u(t) into a complex analytic function, called the an-
alytic signal representation. This is defined as Au(t) = u(t)+ iH[u(t)] where the
Hilbert transform of u(t) is given by: H[u(t)] = h∗u = 1

π limε→0
∫∞
ε

u(t+τ)−u(t−τ)
τ dτ .

Expressing the analytic signal in terms of its time-dependent amplitude and
phase (polar coordinates) makes it possible to represent any signal as an oscilla-
tor. In particular, the associated phase is defined by φAk = arctan Im(Ak)/Re(Ak).

53
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※ Phases from spiking patterns Another possibility is to consider that local
timeseries at each single unit, ρk(t), can be mapped into time sequences of point-
like (“unit spiking”) events. For this, a local threshold θ � 1 is defined, allowing
to assign a state on/off to each single unit/node (depending on whether it is
above/below such a threshold) at any given time. If the threshold is low enough,
the procedure is independent of its specific choice. A single (discrete) “event”
can be assigned to each node i, e.g. at the time of the maximal ρi within the
on-state9. Once the continuous timeseries has been mapped into a spiking series,
the phase at each unit can be constructed as φ(B)

k (t) = 2π(t − tkn)/(tkn+1 − tkn)
where t ∈ [tkn, tkn+1) and tkn is the time of the nth spike of node/unit k.

That said, to shed further light on the nature of such a transition, it is
also convenient to employ a more adequate (synchronization) order-parameter,
e.g. the Kuramoto index K [45, 65] that vanishes in the asynchronous phase
and takes non-zero values in the synchronous one. In particular, K is defined
by K ≡ 1

N

〈∣∣∣∑N
k=1 e

iφk(t)
∣∣∣〉 –where i is the imaginary unit, |·| is the modulus

of a complex number, 〈·〉 here indicates averages over time and independent
realizations, and k runs over units, each of which is characterized by a phase
φk(t) ∈ [0, 2π], which can be defined in various ways.

Using the resulting phases, φAk (t) (or φBk (t)), the Kuramoto index KA (or
KB) can be calculated. As illustrated in Fig. 2.3.1A, this reveals the presence
of a synchronization transition: the value of KA clearly drops, at the previously
determined critical point ξc(N). The spiking method to define a time-dependent
phase for each unit reveals even more vividly the existence of a synchronization
transition at ξc(N) as shown in Fig. 2.3.1B. Finally, we have also estimated
the coefficient of variation10 (CV) of the distance between the times at which
each of these effective phases crosses the value 2π; it reveals the presence of a
sharp peak of variability, converging for large network sizes to the critical point
ξ∞c ≈ 2.15 (see inset of Fig. 2.3.1B).

9Other conventions to define an event are possible, but results are quite robust to the
specific way in which this procedure is implemented.

10Given a set of spikes, it is defined as the standard deviation divided by the mean inter-spike
interval.
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Figure 2.3.1: Synchronization transition elucidated by measuring the Kuramoto
parameter as estimated using (A) the analytic signal representation Ak(t) of
activity time series ρAk (t) at different units k and for various system sizes (N =
1282 (red), 2562 (orange), 5122 (green)). For illustrative purposes, the top right
inset of (A) shows the analytical representation (including both a real and an
imaginary part) of 5 sample units as a function of time; the left inset shows the
time evolution of one node (gray) together with the amplitude of its analytic
representation (blue). Both insets, vividly illustrate the oscillatory nature of the
unit dynamics. (B) Similar result to (A), but employing a different method to
compute time-dependent phases of effective oscillators ρBk (t). This alternative
method captures more clearly the abruptness of the transition; the point of
maximum slope of the curves corresponds to the value of the transition points
ξc(N) in (A). The inset in (B) shows the coefficient of variation CV of the times
between two consecutive crossing of the value 2π; it exhibits a peak of variability
at the critical point ξc(N).

Thus, recapitulating, different measurements reveal the existence of a bona
fide synchronization phase transition in our model. On the other hand, the
phase transitions separating the down state, from the synchronous irregular
regime (A1-A2 transition) is rather trivial, as it just corresponds to the onset
of network spikes, with no sign of interesting critical features, while in between
the asynchronous and the up state (A3-A4) there is no true phase transition, as
both phases are indistinguishable in the infinitely-large-size limit. On the other
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hand, different measurements clearly reveal the existence of a bona fide synchro-
nization phase transition (A2-A3) at which non-trivial features characteristic of
criticality emerge.

2.3.2
Empirical matches

2.3.2.1 Avalanches

For ease of comparison with empirical results, we define a protocol to analyze
avalanches, that closely resembles the experimental one as introduced by Beggs
and Plenz [6]. As before, individual-unit activity timeseries can be mapped into
a discrete-time “spiking” pattern (see Fig.2.3.2A). Remember that a unit “spike”
corresponds to a period in which the activity at a given unit is above a given
small threshold in between two windows of quiescence (activity below threshold)
for such a unit. The only difference is that now a weight proportional to the
integral of the activity time series spanned between two consecutive threshold
crossings is assigned to each single event (see Fig.2.3.2A). Hence, as illustrated in
Fig.2.3.2B, the network activity can be represented by a raster plot of weighted
spiking units.

Following the standard experimental protocol, we estimate the inter-spike
interval (ISI), which are no more than the mean time distance between two
consecutive events. Thus, once a discrete time binning ∆t is chosen and each
individual spike is assigned to one such bin. An avalanche is defined as a con-
secutive sequence of temporally-contiguous occupied bins preceded and ended
by empty bins (see Fig.2.3.2 B and C).

As shown in Figure 2.3.2D, for the avalanche-size distribution, near criti-
cality, a power law with an exponent similar to the experimentally measured
one (3/2) is recovered. Away from the critical point, either in the synchronous
phase (blueish colors) and the asynchronous one (orangish) clear deviations from
power-law behavior are observed. Observe the presence of “heaps” in the tails
of the distributions, especially in the synchronous regime; these correspond to
periodic waves of synchronized activity; they also appear at criticality, but at
progressively larger values for larger system sizes. In the same way (see 2.3.2D),
for the avalanche-duration distribution, the experimentally measured exponent
2 is reproduced using ∆t = ISI, whereas deviations from such a value are mea-
sured for smaller (larger) time bins, in agreement with experimentally reported
results. After reshuffling times, the distributions become an exponential, with
characteristic timescales depending on ∆t (dashed lines).
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Figure 2.3.2: Avalanches measured from activity time series. (A) Illustration
of the activity timeseries ρi(t) at a given unit i. A single “unit spike” is de-
fined at the time of the maximal activity in between two threshold crossings
(θ, dashed blue line); a weight equal to the area covered in between is assigned
to each event (note the color code). (B) Raster plot obtained using the pro-
cedure above for each unit (N = 642). Observe that large events coexist with
smaller ones, and that these last ones, occur in a rather synchronous fashion.
The overall time-dependent activity is marked with a black line. (C) Zoom of
(B) illustrating the time resolved structure and using a time binning ∆t equal
to the network-averaged ISI. Shaded columns correspond to empty time bins,
i.e. with no spike. Avalanches are defined as sequences of events occurring in
between two consecutive empty time bins and are represented by the black bars
above the plot. (D) Avalanche-size distribution (sum of the weighted spikes it
comprises) for diverse values of ξ (from 1.85 to 2.05, in blueish colors, from
2.7 to 2.9 in greenish colors, and from 3.3 to 3.45 in orangish colors) measured
from the raster plot. The slope 3/2 is plotted as a reference. (E) Avalanche-
duration distribution, for different choices of the time bin. The experimentally
measured exponent 2 is reproduced using ∆t = ISI. After reshuffling times,
the distributions become an exponential (dashed lines).
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Using this, quite remarkably, several well-known experimental key features
are reproduced if ξ is tuned to a value close to the synchronization transition,
namely:

i) Avalanches of activity are broadly (power-law) distributed in size at the
critical point, with scale invariance coexisting with oscillatory behavior
(as revealed by the “heaps” in the tails of the curves of in Fig.2.3.2D, that
correspond to anomalously large events or “waves” of synchronization,
which have a periodic nature as elucidated in appendix B.3.1). Similarly,
power-law distributed avalanche durations (or times) are observed at the
critical point (see Fig.2.3.2E).

ii) Away from the critical point, both in the sub-critical and in the supercriti-
cal regime, deviations from this behavior are observed; in particular, in the
subcritical or synchronous regime, the peak of periodic large avalanches
becomes much more pronounced, while in the asynchronous phase, such a
peak is lost (see Fig.2.3.2D);

iii) When ∆t is chosen to be equal to the ISI (inter-spike interval, i.e. the
time interval between any two consecutive spiking events) in the network,
avalanche sizes and durations obey –at criticality– finite-size scaling with
exponent values compatible with the standard ones, i.e. those of an unbi-
ased branching process (see Fig.2.3.2B and C);

iv) Changing ∆t, power-law distributions with varying exponents are obtained
at criticality (the larger the time bin, the smaller the exponent) as origi-
nally observed experimentally by Beggs and Plenz (Fig.2.3.2E).

v) Reshuffling the times of occurrence of unit’s spikes, the statistics of avalanches
is dramatically changed, giving rise to exponential distributions (as ex-
pected for an uncorrelated Poisson point process) thus revealing the exis-
tence of a non-trivial temporal organization in the dynamics (Fig.2.3.2E).

Summing up, our model tuned to the edge of a synchronization/desynchroniza-
tion phase transition reproduces all chief empirical findings for neural avalanches.
These findings strongly suggest that the critical point alluded by the criticality
hypothesis of cortical dynamics does not correspond to a quiescent/active phase
transition --as modeling approaches usually assume-- but to a synchronization
phase transition, at the edge of which oscillations and avalanches coexist.

It is important to underline that our results, in what respect avalanches, are
purely computational. To date, we do not have a theoretical understanding of
why results are compatible with branching-process exponents.
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2.3.2.2 Heterogeneity effects

It is of particular interest the study of Okujeni et al. [61], in which the authors
were able to experimentally tune the network architecture in neuronal cultures,
and make it either poorly or highly clustered, as illustrated in Figure 2.3.3A,
simply by changing the level of protein kinase C (an enzyme regulating neurite
growth and its level of aggregation or clustering). In the case in which clusters
emerge (rightmost picture) the network is strongly heterogeneous at a meso-
scopic level, with some mesoscopic regions having a high neuronal density and
some others being almost empty. On the other hand, un-clustered networks are
much more homogeneous at a mesoscopic scale. Detailed experimental analyses
of the neural activity on these cultures revealed that, as illustrated in Figure
2.3.4A, the activity time series look quite different in the different cases: peaks
of activity (synchronization events or “network spikes”) occur more rarely for
poorly clustered networks, while increasing the degree of clustering –keeping
other experimental conditions fixed– the level of activity increases, i.e. cluster-
ing promotes the generation of spontaneous network activity.

Homogeneus network Heterogeneous network
B

A

Figure 2.3.3: (A) Spatial distribution of neurons (white circles) for rising values
of protein kinase C (from Okujeni et al. [61]). The higher the value of PKC
the more aggregated (or clustered) the network of cultured cortical neurons.
(B) Sketch of the considered networks: homogeneous to the left and heteroge-
neous/clustered to the right. In both cases the network-average value of the
activity-decay parameter a is taken to be equal. However, while in the homoge-
neous case the value of a is constant across the network, in the heterogeneous
one there are some areas (marked with red nodes) with a lower value of a.
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To verify if this finding can be explained within the context of our gen-
eral theoretical framework, we considered a variant of the homogeneous square
lattice (see the sketch in Figure 2.3.3B) in which we include some degree of
mesoscopic heterogeneity mimicking that of empirical networks. In particular,
clusters describe regions more densely populated by neurons. Given that each
of the nodes in the lattice represents a mesoscopic region, spatial heterogeneity
in parameter values (e.g on “a”, “b”) accounts for spatially heterogeneity in its
internal propensity to sustain activity; in particular regions with more neuronal
density have a smaller value of a, i.e. are more likely to sustain activity.

In order to model these experimental results, we developed a heterogeneous
network in which we keep fixed the mean value of the parameter a (that con-
trols the decay of the activity at each single unit), but inducing some areas with
low local values of a1, i.e. with a smaller propensity for activity to decay (red
nodes in Fig. 2.3.3B), while in the rest of the network larger values of a, a2,
are considered (keeping the network-average value of a constant). As shown
in Fig. 2.3.4B, the lower the local value of a1, the more facilitated the emer-
gence of spontaneous activity, leading the system closer and closer to the critical
point or the asynchronous irregular phase, and reproducing quite remarkably
the chief experimental observations of Okujeni et al. The similarity, as shown
in Fig. 2.3.4A, is remarkable: more homogeneous lattices show network spikes
more separated in time, while more heterogeneous ones exhibits clustered spikes,
with persistent activity in some units, in a way that closely resembles that of ex-
periments. This computational experiments clearly reveal that refined variants
of our general model are able to closely reproduce experimental observations.

Apart from this, long-range connections among local regions also exist in
the cortex, and mesoscopic units are not necessarily homogeneous across space.
Even if most of the neuronal connections occur within the local neighborhood,
long-range white-matter connectivity allows for information to be distributed
and processed across the whole cortex. Such long-range connections comprise
only about 10% of the total connections in the brain, but their role is crucial
for brain functionality [42, 76]. The simplest possible approximation beyond
a lattice is a small-world network (as done in the Watts-Strogatz model [87]).
In fact, our main results (i.e. the existing phases and phase transitions) are
insensitive to the introduction of a small percentage of long-range connections.

However, there exists empirically-obtained large-scale networks of the hu-
man brain, and their heterogeneous and hierarchical-modular architecture is
known to influence dynamical process operating on them [59, 76] and optimize
the transmission of information. But nevertheless, our approach refers to the
cortex in the context of the neural field models –that can be treated as a con-
tinuous sheet– and not to a network of neural masses [11]. So, to consider real
neuroanatomical connections –encoded in the human connectome network– the
diffusive coupling (or the model) should be re-examined.
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Figure 2.3.4: Temporal series for different level of network clustering. Panel A
shows the experimental results of Okujeni [61] (adapted figure from the original
paper) for increasing levels of aggregation in a neural network. Panel B shows
three temporal series for different levels of network clustering and a fixed value
of ξ = 1.2. In the first one (red) the network is homogeneous with a1 = a2 = 1.
Observe that smaller values of a1 produce a more active network, in particular
for a1 = −0.7 (black) and a1 = −0.928 (green). In both cases, the clustering
facilitate the spontaneous activity. Other parameter values: b = 1.5, τD =
102, τR = 103, h = 10−7.



2.4
The case of infinite separation
of timescales. Recovering
self-organize bistability

It has been speculated that self-organized bistability (SOB) might be relevant
in e.g. the neuronal dynamics of the brain, which –during deep sleep or under

anesthesia– exhibits bistability, with an alternation between high and low levels
of neural activity, called up and down states, respectively [7, 41, 57]. This under-
lying bistability, together with the empirical observation of scale-free avalanches
–appearing sometimes in concomitance with anomalously large outbursts– in the
awake resting brain, suggests indeed that the neuronal avalanches in the awake
state could stem from the self-organization to the edge of bistability, rather than
the usually postulated self-organization to criticality.

Remarkably, our physiologically-inspired model –the set of equations (2.2.2)
and (2.2.3)– proposed to shed light on the large-scale features of brain activ-
ity, and relying on synaptic plasticity as a chief regulatory mechanism, exhibits
profound analogies with the theory of SOB [70]. As a matter of fact, the first
equation is identical with the equation for activity in SOB, which describes in
the simplest possible way a first order phase transition. Thus, it is natural to
scrutinize whether self-organized bistability plays any relevant role in neuro-
science.

On the other hand, formal differences appear in the second one, for the
so-called “background (energy) field” (which here is interpreted as a synaptic-
resource field). An important one is that in SOB the background field is con-
served in the bulk; only driving events and boundary dissipation make the total
integral value fluctuate in time, providing a mechanism, out of which –in the
limit of small driving and dissipation– the system self-organizes to the very edge
of the first-order phase transition, as described in [70].

However, the above equation for Ṙ(t) is not conserved in general. It includes
a (positive) term for the charging/recovery of resources which is tantamount to
driving in SOB as well as a (negative) term for the activity-dependent consump-
tion of resources. For neuro-physiologically plausible values of the characteristic
times of these two processes, a rich phenomenology emerges, as extensively dis-
cussed until now.

62
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Figure 2.4.1: Phase diagram and phase portraits for the (deterministic) dynam-
ics of Eqs. (2.2.2) and (2.2.3). (A) It is possible to recover the SOB limit by
taking some conditions in the aforementioned case A (limit cycle). (B) Null-
clines for ρ̇ = 0 is colored in green, and three nullclines for Ṙ = 0 for three
different values of ξ are plotted in yellow, orange and brown; small grey arrows
represent the vector field for (ρ̇, Ṙ) and light orange curve represent a trajec-
tory for the intermediate value of ξ (orange curve). The system falls in the
–widely discussed above– case A, showing a limit cycle between the down and
the up state (τD/τR = 10−1, τR = 103 and ξ = 0.2, 1.5, 3.5 for yellow, orange
and brown curves respectively) (C) The system approaches to the SOB limit
behavior and the dependence on the control parameter vanishes (τD/τR = 10−3,
τR = 107 and ξ = 1, 5, 10). Other parameters are h = 10−3, a = 0.6, b = 1.3,
c = 1, in both cases.

In this particular case, as discussed above, there are two possible scenarios
–for a plausible separation of the characteristic scales of synaptic resources, τR
and τD– according to the relation between the timescales for the recovery and
depletion (τR and τD, respectively). Remember that, between the quiescent or
’down’ state with ρ∗ ≈ 0 and the active or ’up’ state with self sustained activity
there exists a stable limit cycle (case A) or a regime of bistability (case B). The
phase diagram of Figure 2.4.1A show the different possible cases that emerge
when the control parameter ξ is varied (cases A and B).

But, nevertheless, by the mere fact of enhance the difference between the
charging/consumption ratio of resources –as shown in Fig. 2.4.1C in the same
non-conserved framework– the limit of SOB can be recovered for infinitely slow
synaptic dynamics. Thus, keeping in mind that the mechanism of the recovery of
synaptic resources (happening at a timescale τR) plays the role of driving, while
the depletion of resources (at the characteristic scale τD) in presence of neural
activity plays the role of dissipation, the limit of infinite separation of timescales
can be recovered considering the case with 1/τR → 0 and 1/τD → 0, while



64 Chapter 2. Landau-Ginzburg theory of cortical dynamics

τD/τR → 0 (see phase diagram of Figure 2.4.1A). And now, in fact, the larger
the synaptic timescales, the weaker the dependence on the control parameter ξ
(see Fig. 2.4.1C). This allows to reproduce one of the main features of the self-
organization mechanism: the independence on any tuning parameter. Moreover,
the relation between the two timescales is such that the slope of the nullcline
Ṙ = 0 goes to zero in the thermodynamic limit, making sure that (for any
–reasonable– value of the parameter ξ) only one unstable fixed point exists11,
giving rise to a limit cycle, much as in the mean field SOB case [70].

We have hypothesized that the emergent collective behavior of a network
of mesoscopics regions of neural tissue is poised at a synchronization phase
transition, in the aforementioned case A, that is able to reproduce multiple
empirical findings. But, as in real mesoscopic populations [6], which displays
local field potentials exhibiting sharp negative peaks indicative of population
spikes, this particular signal processing should be kept. Otherwise, a measure
of global activity over threshold (probably meaningless in such a case), as it
is usually done in absorbing/active phase transitions, poses some problems to
the detection of spatially extended scale-invariant activity with the branching
process exponents (see appendix B.3.2 for an extended discussion on the proper
measure of avalanches over a threshold). Such ideal definition of avalanches is
based on the fact that, under a slow charging, i.e. a slow adding of activity, the
(quiescent) system end up triggering a concatenation of events until fell again
in the absorbing/quiescent state. As far as we know, both formalisms –in the
vicinity of a critical point– can lead to avalanches following a scale-invariant
law for the the avalanche-size (S) and avalanche-duration (T) as P (S) ∼ S−τ

and P (T ) ∼ T−α, respectively. Likewise, the averaged avalanche size scale as
〈S〉 ∼ T γ 12.

On the other hand, in the original case of SOB, the ideal definition of
avalanches leads to spatially extended cascades of activity showing scale-invariant
behavior, complemented with anomalous events of activity spanning the whole
system size, and following the mean-field exponents of the (Galton-Watson) un-
biased branching process [38, 48, 70, 86]. Also, at the steady state, and in the
limit of infinite size, the system self-organizes to the Maxwell point of a first
order phase transition, where active and absorbing phases coexist, being equally
stable and continuously trying to invade each other.

In fact, in the case of very large synaptic timescales –bringing us closer to
the case of SOB– we can appreciate this proper measure of avalanches (see
Fig.2.4.2), intended as activity over threshold. The behavior reports scale-
invariant episodes of activity, which fits very well with the exponents of the
branching process universality class, together with anomalous "king" avalanches,
whose sizes scale with the system size, much as in the conserved SOB system.

11As long as the Maxwell point is not in the vicinity of R = 0
12And it obey the scaling relation γ = α−1

τ−1
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Figure 2.4.2: Avalanche distributions in the limit of extremely slow synaptic-
resources dynamics, for the spatially extended noisy system. Probability distri-
bution for avalanche durations T (left), avalanche sizes S (center) and average
avalanche size as a function of duration (right) in log-log scale, for square-
lattice systems of sizes N = 642, 1282 and 2562. The dashed lines are plotted
as a guide to the eye, and have the slopes corresponding to the expectations
for an unbiased branching process (α = −2, τ = −3/2 and γ = 2, respectively)
as experimentally observed. The “bumps” in the blue curves, correspond to
anomalously large events, i.e. synchronized spiking events, obeying finite-size
scaling. Parameters: b = 0.5 a = 1, h = 10−7, τD = 104, τR = 106, σ = D = 1.

On the other hand, in Fig. 2.4.3 we plot a measure of avalanche statistics,
showing the weak dependence on the control parameter ξ, if SOB conditions
are fulfilled, whereas in the limit of infinitely slow dynamics the dependence
on the control parameter vanishes completely, as expected for a well-behaved
self-organizing mechanism.

At first, we have accomplished the theoretical abstraction of recovery SOB
dynamics from the Landau-Ginzburg theory of cortex. However, it makes apol-
ogy of the (sometimes) stormy relation between physics and biology, in the sense
that “well-behaved” physical theories are not mere copies of the intricate Na-
ture. They involve some idealization and, in particular, SOB depicts a highly
idealized reality, going much further than the Landau-Ginzburg model. For in-
stance if we take as a reference the neural activity timescale13, as reported by
neurophysiological measurements, such scales are comprised between few tens
and few hundreds of milliseconds [17, 53]. Such timescales are are outside the
scope of the proposed SOB limit, which requires much slower dynamics for its

13The unit of time, in the Landau-Ginzburg model, should be understood in terms of the
spontaneous decay of activity.
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idealistic outlook. On the other side, the Landau-Ginzburg model –leading to
verifiable predictions– is able to undertake such timescales as a starting point.

Summing up, SOB limit could be seen as a limiting unrealistic case of the
Landau-Ginzburg model that, however, is able to provide certain theoretical
context to the exponents reported both in the Landau-Ginzburg model and in
neural avalanches. Also, further work is needed to merge both definitions of
avalanches, as well as in a thorough theoretical understanding of why results
are compatible with branching-process exponents.

3

Figure 2.4.3: The control parameter has no influence in the limit of ex-
tremely slow synaptic-resources dynamics, for the spatially extended noisy sys-
tem (N = 1282) in double logarithmic scale. Different colors depicts different
values of ξ (ξ = 1, 3, 5, 7, 10). There is no change in the probability distribu-
tions for avalanche durations T (left), avalanche sizes S (center) and average
avalanche size as a function of duration (right). The dashed lines are plotted
as a guide to the eye and their slopes correspond to unbiased branching process
exponents. Other parameters are exactly the same as in Fig. 2.4.2.



2.5
Conclusions

The brain of mammalians is in a state of sempiternal irregular activity. Un-
derstanding the origin, meaning, and functional significance of such an en-

ergetically costly dynamical state are fundamental problems, whose importance
cannot be overemphasized. The –so called– criticality hypothesis conjectures
that the underlying dynamics of cortical networks is such that it is posed at the
edge of a continuous phase transition, separating qualitatively different phases
or regimes, with different degrees of order. Experience from statistical physics
and the theory of phase transitions teaches that critical points are rather sin-
gular locations in phase diagrams, with very remarkable and peculiar features,
such as scale invariance, i.e. the fact that fluctuations of wildly diverse spatio-
temporal scales can emerge spontaneously, allowing the system dynamics to
generate complex patterns of activity in a simple and natural way. A number of
other features of criticality, including scale invariance, have been conjectured to
be functionally convenient and susceptible to be exploited by biological (as well
as artificial) computing devices. Thus, the hypothesis that the brain actually
works at the borderline of a phase transition has gained momentum in recent
years, even if some skepticism remains [82]. However, what these phases are,
and what the nature of the putative critical point is, are questions that still
remain to be fully settled.

Aimed at shedding light on these issues, here we followed a classical statistical-
physics approach. Following the parsimony principle of Landau and Ginzburg
in the study of phases of the matter and the phase transitions they experience,
we proposed a simple stochastic mesoscopic theory of cortical dynamics that al-
lowed us to classify the possible emerging phases of cortical networks under very
general conditions. For the sake of specificity and concreteness we focused on a
regulatory dynamics –preventing the level of activity to explode– controlled by
synaptic plasticity (depletion and recovery of synaptic resources), but analogous
results can be obtained considering e.g. inhibition as the chief regulatory mech-
anism. As a matter of fact, our conclusions are quite robust and general and do
not essentially depend on specific details of the implementation, the nature of
the regulatory mechanism, or the network architecture.

The mesoscopic approach upon which our theory rests is certainly not rad-
ically novel; quite a few related models exist in the literature. For instance,
neural-mass or neural-field models [12, 21, 27, 29, 36], rate or population activ-
ity equations [22, 32], are similar in spirit, and have been successfully employed

67
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to analyze activity of populations of neurons and synapses, and their emerging
collective regimes, at a mesoscopic scale.

However, importantly, taking advantage of experience from the theory of
phase transitions, we introduce two additional key ingredients: intrinsic stochas-
ticity stemming from the non-infinite size of mesoscopic regions, and spatial de-
pendence. In this way, our theory consists of a set of stochastic Wilson-Cowan
equations and can be formulated as a field theory, employing standard tech-
niques [79]. Let us mention that Buice and Cowan developed a very similar
(field theoretic) approach in which fluctuation effects in neural networks were
analyzed [16]. Their theory turns out to include a continuous phase transition
from a quiescent to an active phase, with a critical point in between. This is in
blatant contrast with our findings here. Note, however, that their picture can be
easily recovered in our framework, just by changing the sign of a parameter: i.e.
making b in Eq.(2.2.2) negative. The meaning of this is that neural integration
effects are neglected (as discussed below). This change of sign leads to an under-
lying continuous phase transition between a quiescent and an active phase; and
in such a case (i.e. with b < 0) our theory constitutes a sound Landau-Ginzburg
description of microscopic models of neural dynamics exhibiting criticality and
a continuous phase transition (see [10, 47]). We believe, however, that this sce-
nario does not properly capture the essence of cortical dynamics as, in actual
networks of spiking neurons, there are spike-integration mechanisms, meaning
that many inputs are required to trigger further activity. This is, indeed, cap-
tured in the Wilson-Cowan model –at the basis of our approach– which includes
a sigmoid response function, implying that activity has to be above some thresh-
old to be self-sustained, and implying, after expanding in power-series that the
parameter b has to be positive, precluding the existence of a continuous quies-
cent/active phase transition.

Using our Landau-Ginzburg approach, we have shown that the stochastic
and spatially extended neural networks can harbor two different scenarios de-
pending on parameter values: case (A) including a limit cycle at the determin-
istic level and the possibility of oscillations and case (B) leading to bistability
(see Fig. 2.2.1).

In the simpler case (B) our complete theory generates a down and a homo-
geneous up-state phase, with a discontinuous transition separating them, and
the possibility of up-down transitions when the system operates in the bistabil-
ity region. In this case, our theory constitutes a sound mesoscopic description
of existing microscopic models for up-and-down transitions [41, 46, 56, 66] as
observed in the cortex during deep sleep or under anesthesia [25, 78].

On the other hand, in case (A), we find diverse phases including oscillatory
and bursting phenomena: down states, synchronous irregular, asynchronous ir-
regular, and active states. As a side remark, note that, in the search of a
mesoscopic description of cortical networks of spiking neurons, we constructed
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a coarse-grained model for the network activity. However, our analyses readily
revealed the “spiking” nature of the activity dynamics, underlying the funda-
mental role of oscillations and partial synchronization in neural dynamics across
scales. Hence, our results justify the use of models of effective coupled oscillators
to scrutinize the large-scale dynamics of brain networks [18] (as explained below
in the chapter 3). As a matter of fact, these models seem to achieve the best
performance –in reproducing empirically observed resting-state networks [76]–
when operating close to the synchronization phase transition point.

Within our framework, it is possible to define a protocol to analyze avalanches,
resembling very closely the experimental one [6, 7, 54, 64, 74]. Thus, in con-
trast with other computational models, causal information is not explicitly need-
ed/employed here to determine avalanches –they are determined from raw data–
and results can be straightforwardly compared to experimental ones for neuronal
avalanches, without conceptual gaps [52].

The model reproduces all the main features observed experimentally: (i)
Avalanche sizes and durations distributed in a scale-free way emerge at the
critical point of the synchronization transition. (ii) The corresponding exponent
values depend on the time bin ∆t, required to define avalanches, but (iii) fixing
the time bin ∆t to coincide with the inter-spike interval, ISI, the same statistics
as in empirical networks, i.e. the critical exponents compatible with those of
an unbiased branching process (which is subsequently addressed) are obtained;
and finally (iv) scale-free distributions disappear if events are reshuffled in time,
revealing a non-trivial temporal organization.

Thus, the main outcome of our analyses is that the underlying phase tran-
sition at which scale-free avalanches emerge does not separate a quiescent state
from a fully active one but a synchronization transition, separating regimes in
which mesoscopic units tend to become active synchronously or asynchronously,
respectively. This is a crucial observation, as most of the existing modeling ap-
proaches for critical avalanches in neural dynamics to date rely on a continuous
quiescent/active phase transition, and this is not a pertinent choice as we have
argued above.

Let us also remark that –consistently with our findings– the amazingly de-
tailed model put together by the Human Brain Project consortium seems to
suggest that the model best reproduces experimental features when tuned near
to its synchronization critical point [49]. In such a study, the concentration of
Calcium ions, Ca2+ needs to be carefully tuned to its actual nominal value to
set the network state. Similarly, in our approach, the role of the calcium concen-
tration is played by the parameter ξ, regulating the maximum level reachable
by synaptic resources. Interestingly, the calcium concentration is well-known to
modulate the level of available synaptic resources (i.e. neurotransmitter release
from neurons; see e.g. [22, 50, 83]), hence, both quantities play a similar role.
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Let us emphasize that here we have not made any attempt whatsoever to
explore how could potentially the network self-organize to operate in the vicinity
of the synchronization critical point. Adaptive, homeostatic and self-regulatory
mechanisms accounting for this will be analyzed in a future work. Also, here
we have not looked for the recently uncovered neutral neural avalanches [52], as
these require causality information to be considered, and such detailed causal
relationships are blurred away in mesoscopic coarse grained descriptions.

Summing up, our Landau-Ginzburg theory with parameters lying in case
(B) constitutes a sound description of the cortex during deep sleep or during
anesthesia, when up and down transitions are observed. On the other hand,
case (A) when tuned close to the synchronization phase transition can be a
sound theory for the awake cortex, in a state of alertness. A detailed analysis
of how the transition between deep-sleep (described by case (B)) and awake (or
REM sleep, described by case (A)) may actually occur in these general terms
is beyond our scope here, but let us remark that, just by modifying the speed
at which synaptic resources recover it is possible to shift between the two cases,
making it possible to speculate on how such transitions could be easily induced.

A simple extension of our theory, including spatial heterogeneity has been
shown to be able to reproduce remarkably well experimental measurements of
activity in neural cultures with structural heterogeneity, opening the way to
more stringent empirical validations of the general theory proposed here.

Even if further experimental, computational and analytical studies are cer-
tainly required to definitely settle the controversy about the possible existence,
origin, and functional meaning of the possible phases and phase transitions in
cortical networks, we hope that the general framework introduced here –based
on very general and robust principles– helps in clarifying the picture and in
paving the way to future developments in this fascinating field.
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3.1
Introduction

“Oscillators of all brain, unite!”

Misattributed to K. Marx

Neuro-imaging techniques have allowed the identification of structural con-
nections –at an individual-based level– making possible the reconstruction

of structural human brain networks, composed of hundreds of neural regions
and thousands of white-matter fiber interconnections. All this enables the pos-
sibility of a ’road map’ of the brain: the well known “human connectome” (HC)
[33, 36], which, moreover is arranged in a set of moduli –with a much larger intra
than inter connectivity– structured in a hierarchical fractal-like fashion across
multiple scales [17, 37, 38, 47, 64, 76].

On the other hand, the inference of correlations in neural activity between
different brain regions, as detected in EEG or fMRI time series, and enables the
reconstruction of “functional” connections, and thereby functional networks.
Disclosing the structural and functional networks relationship is a key issue
in modern neuroscience. Notable in this regard are the pioneering works that
remark the profound implications for neural dynamics behind the hierarchical-
modular organization of structural brain networks [39, 44, 76, 77]. In an en-
tirely different way to the usual simpler network structures, –as the archetypal
Erdős-Rényi networks– neural activity propagates in hierarchical networks in a
rather distinctive way [48]; beside the usual two phases –percolating and non-
percolating– commonly exhibited by models of activity propagation, an inter-
mediate “Griffiths phase” [70] emerges on the HC network [48, 49]. The great
variety of relatively-isolated moduli or “rare regions” promote the emergence
of this novel phase, where dynamical activity remains mostly localized for long
time periods, generating slow dynamics and very large responses [48, 49, 70].

Brain function requires coordinated or coherent neural activity at a wide
range of scales and thus, synchronization is a keystone in modern computational
neuroscience [16, 18, 26]. Besides, along with all these, synchronization plays
a key role in vision, memory and other cognitive functions [65], such as the
circadian rhythms in mammals [41], as well as in pathologies such as epilepsy
[40].
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Then, as a logical further development, one possibility is –in the spirit of con-
template realistic neural connections such as electrical, chemical, excitatory and
inhibitory or dynamical synapses– to embedding the Tsodyks-Markram equa-
tions for synaptic plasticity of the above chapter in the human brain networks,
implementing a more realistic coupling scheme than simple diffusion, in the
same line as neural mass models [23, 30], or some type of direct interactions
[24, 25, 45]. However, in order to preserve the essence of a minimal design,
the prototypical Kuramoto model –widely used in neuroscience– allow us to
analyze synchronization effects considering only couplings between mesoscopic
units acting as oscillators [15, 22, 35].

Here we scrutinize the special features of synchronization [56] –as exempli-
fied by the canonical Kuramoto model [4, 42, 66]– in a context of topological
increasing complexity, i.e. from “all to all” coupling and mean-field analysis,
to random network couplings and, finally, operating on top of the actual HC
network [33, 36]. This interesting and particular case comprise a set of 998
nodes, each of them representing a mesoscopic population of neurons producing
self-sustained oscillations [19], whose mutual connections are encoded by a sym-
metric –binary or weighted– connectivity matrix W [33, 36]. We uncover the
existence of a novel intermediate phase for synchronization dynamics stemming
from the hierarchical organization of the HC, constituting the optimal regime
for the brain to harbor complex behavior and large dynamical repertoires, pre-
senting a plethora of complex and interesting dynamical features.

After dissect the special features of synchronization dynamics, the last step
is to describe in more detail the complex behavior within such an intermedi-
ate regime, both in individual moduli and at a global brain level. We measure
the fluctuations of the global order parameter as a function of the overall cou-
pling strength, and we show that there is a broad region (rather than a unique
“critical” point) with huge variability and response.

As we shall see in detail, this behavioral richness comes, at a first glance, from
the modular structure of the human brain, and the story becomes interesting
when a great variety of sizes and modules are blended in a fractal-like way.
Thus, it is not enough with a simple modular network, and we should assemble
a hierarchic-modular network to replicate the observed phenomena.

Finally, we assess the role of noise and perturbations in the robustness of the
metastable stated arising in the intermediate regime, and we show that adding
intrinsic fluctuations to the picture of synchronization dynamics in hierarchi-
cal modular networks accounts for the ability of the brain to explore different
attractors, giving access to the varied functional configurations recorded in ex-
periments [20, 24, 34].



3.2
The Kuramoto model

The paradigmatic Kuramoto model [42] was introduced by Yoshiki Kuramoto
in 1975 with the goal of understanding the behavior of chemical and bi-

ological oscillators. However, over the time, the scope of the model exceed its
germ, pervading fields that Kuramoto could never had imagined [15, 22, 62, 72].
In its usual formulation, it consists in a set of N coupled oscillators (see sketch
in Fig. 3.2.1) governed by the next set of differential equations,

θ̇j = ωj +k
N∑
l=1

Wjl sin (θl − θj) (3.2.1)

where θj is the phase of node j at time
t, ωj is the natural frequency of each os-
cillator, that should be extracted from
some predefined probability distribution
(g (ω)), Wjl are the couplings between
the different oscillators, and k is the cou-
pling strength.

Figure 3.2.1: Phase (θj) and fre-
quency (ωj) in a set of oscillators.

In order to measure and quantify the level of synchronization in the whole
system, i.e. to determine the difference between phases over time, the Kuramoto
order parameter is the polar form of the complex sum of all phases,

Z(t) = R(t)eiψ(t) = 1
N

N∑
j=1

eiθj(t) (3.2.2)

where 0 ≤ R ≤ 1 gauges the overall coherence and ψ(t) is the average phase.
For an (infinitely) large population of oscillators interacting –in a fully con-

nected network, as will be shown immediately– the model exhibits a phase
transition at some value of k, separating a coherent steady state (R > 0) from
an incoherent one (R = 0, plus 1/

√
N finite-size corrections) [4, 6, 42, 66]. On

the other hand, in the absence of frequency heterogeneity perfect coherence al-
ways emerges reaching a coherent state [65]. Thus, frequency heterogeneity –or
noise– leads to a phase transition at some critical value of the coupling strength,
kc, being able to frustrate synchronization if the coupling strength is weak.
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3.2.1
Mean-Field approach

The first step to be taken is to understand the Kuramoto model in its simplest
form. For that purpose, an all-to-all coupling scheme –or mean-field (MF) ap-
proach– bring us an useful way to study it theoretically in depth [4, 56], meaning
thatWjl is a matrix with zero diagonal values and ones in the rest of the matrix.
To achieve this end, using the order parameter from Eq. (3.2.2), multiplying by
e−iθj and regarding the imaginary part, it is easy to see that Eq. (3.2.1) now is,

θ̇j = ωj + kR (t) sin (ψ − θj) (3.2.3)
where ψ is the global phase of the whole system and kR is the new effective

coupling strength.
This is an Euler differential equation, that can be mapped –in the continuum

limit for large N– into a continuity equation1

∂P

∂t
+ ∂

∂θ
{P [ω + kR sin (ψ − θ)]} = 0 (3.2.4)

where P (θ, ω, t) is the density of oscillators of phase θ and characteristic
frequency ω at time t, obeying the normalization condition,∫ π

−π
P (θ, ω, t) = 1 (3.2.5)

This equation has the trivial solution P = 1
2π , R = 0, that corresponds to an

equally phase distribution of the oscillators in [−π, π]. We are interested in the
non-trivial stationary solution of P (θ, ω) which generate a non-zero value of R.
Thus, it can be possible to take the condition v = ω − kR sin (θ − ψ), wherein
v (the drift velocity) is a constant, as stationary solution of Eq. (3.2.4) and, in
particular, let us choose the case v = 0 –by simply fiddling with the rotating
reference frame– for the coupled ones, turning it into θ−ψ = arcsin

(
ω
kR

)
. From

its domain, it is easy to see that: (i) the coupling oscillators are in an interval[
−π

2 ,
π
2
]
and, (ii) those with frequency ω > |kR| cannot be possibly in phase.

Such a state of partial synchronization should fulfill the form,

P (θ, ω, t) =

δ
[
θ − ψ − arcsin

(
ω
kR

)]
H (cos θ) ω < |kR|

C
|ω−kR sin(θ−ψ)| ω > |kR|

(3.2.6)

properly normalized, being C a normalization constant, and H (x) the Heav-
side step function.

1That is very similar in spirit to a mapping from a Langevin equation to a Fokker-Planck -in
the Itô sense- in the limiting case σ = 0. Remember (or see chapter 1) that a general stochastic
equation ẋ = A (x) + Cξ (t) is equivalent to Ṗ (x, t) = − ∂

∂x
A (x)P (x, t) + 1

2C
2 ∂2

∂x2P (x, t).
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※ Inferring the critical point In all this sight, we have considered the contin-
uum limit for large N and, the density of oscillators of phase θ and characteristic
frequency ω at time t, P (θ, ω, t). Assuming a probability distribution of natural
frequencies, g (ω), the complex order parameter can be expressed as,

Z = Reiψ =
∫ +∞

−∞
dω

∫ π

−π
dθP (θ, ω, t) g (ω) eiθ (3.2.7)

replacing the form of P (θ, ω, t) (Eq. (3.2.6)) and considering the condition
P (θ, ω) = P (θ + π,−ω) and thus, neglecting the terms with ω > |kR|, the
above equation becomes2,

R =
∫ +∞

−∞
g (ω) dω

∫ π/2

−π/2
dθei(θ−ψ)δ

[
θ − ψ − arcsin

(
ω

kR

)]
=∫ π/2

−π/2
g (ω) dωei(sin−1( ωkr )) (3.2.8)

which, imposing that the distribution of frequencies should be an even func-
tion, i.e. g (ω) = g (−ω), centered on ω = 0, then we are left with nothing but
the real part of the complex exponential, giving us,

R = Rk

∫ π/2

−π/2
cos2 θg (kR sin θ) dθ (3.2.9)

or, simply

R =
∫ kR

−kR

√
1−

(
ω

kR

)2
g (ω) dω (3.2.10)

Let us take a close look at these equations. The trivial solution –R = 0
always present– corresponds to a random distribution of the oscillators in the
unit circle

(
P = 1

2π

)
. Also, there is a solution of partial synchronization that

can lead to the critical value of the coupling strength, kc. Only by taking the
limit R→ 0+ in Eq. (3.2.9), it comes to be,

kc = 2
πg (0) (3.2.11)

separating the incoherent phase from the coherent one.

2Employing the next property of the Dirac delta function,
∫ +∞
−∞ δ (x− a) f (x) dx = f (a).
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Even though it gives us the precise value for any symmetric distribution,
it does not tell us nothing about the nature of the underlying synchroniza-
tion transition. All this information lies behind the self-consistency equation
(Eq. (3.2.9)), which prompt both first order and second order phase transitions
[11]. Indeed, for unimodal and symmetric distributions, with non-zero second
derivative, a second order phase transition emerges, forming a seed that grows
monotonically with k beyond the critical point (in the coherent phase). By
contrast, first order phase transition emerges when the distributions shows a
plateau at the maximum or even for bimodal distributions. In these cases, all
the oscillators in the plateau contributes to form the seed, and it becomes in a
macroscopic effect in the order parameter.

Looking back briefly to the derivation of the critical point, with no more than
insert the Taylor series expansion of g (kR sin θ) –around ω = 0– in the previous
self-consistency equation (Eq. (3.2.9)) and assuming that it is unimodal and
has a maximum in ω = 0, it can be seen that, in the vicinity of the critical
point, the growth of the order parameter is proportional to the square root of
its distance, R ∝ (k − kc)

1/2, i.e. with critical exponent 1
2 . This supports the

existence of a second-order phase transition and the universality class associated
to the MF approached threatened here [56]. Furthermore, this validity fulfill the
hole ensemble of unimodal and symmetric distributions –if the Taylor expansion
exists– and it is of great help to characterize the critical behavior of the MF
system. Notwithstanding, not to go on so long with this reflection, all this
behaviors are carefully studied below.



Chapter 3. Synchronization in the human brain 87

3.2.2
The Ott-Antonsen ansatz

Further analytical insight –in the “all-to-all” case with heterogeneous frequen-
cies– can be obtained using the celebrated Ott-Antonsen (OA) ansatz [52], which
allows for a projection of the high-dimensional dynamics onto an evolution equa-
tion for Z(t), i.e. a dimensional reduction of the problem. Despite showing it
in a context of globally coupled oscillators, this perspective transcend the MF
approach, and is very useful in other contexts, as networks of networks or time-
delays, among others [52].

From Eqs. (3.2.2) and (3.2.3) the next equality can be obtained,

θ̇j = ωj + kR sin (ψ − θj) = ωj + kIm
(
Ze−iθj

)
= ωj + k

2i
(
Ze−iθj − Z̄eiθj

)
(3.2.12)

and now search -in the continuum limit- the stationary solution of

∂f

∂t
+ ∂

∂θ
{f [ω + kR sin (ψ − θ)]} = 0 (3.2.13)

being f (θ, ω, t) = g (ω)P (θ, ω, t), which is no more than the density of
oscillators of phase θ and characteristic frequency ω at time t.

However, this equation does not imply a simplification of our problem, be-
cause, as it can be seen, an N-dimensional problem is replaced with an infinite
dimensional one. But, the Ott-Antonsen ansatz, with the purpose to reduce
the dimensionality of the problem, assumes that f (θ, ω, t) can be expanded in
Fourier series as,

f (θ, ω, t) = g (ω)
2π

[
1+

∞∑
n=1

(
f̂n (ω, t) einθ + ˆ̄fn (ω, t) e−inθ

)]
(3.2.14)

and that f̂n (ω, t) should verify the form f̂n (ω, t) = [α (ω, t)]n with |α (ω, t)| ≤
1, to avoid divergence of the series and, being Im (ω) < 0 and |α (ω, t)| → 0
when Im (ω) → −∞. This properties are verified in both Kuramoto model
stationary states, the incoherent and the partially synchronous. Thus, the con-
tinuity equation is transformed into another one for the order parameter. After
some calculations, plugging Eq. (3.2.14) into (3.2.13), it can be shown that (see
appendix C.1),

α̇+ iωα+ k

2
(
Zα2 − Z̄

)
= 0 Z̄ =

∫ +∞

−∞
dωg (ω) ᾱ (ω, t) (3.2.15)

providing the general result for the dimensional reduction of the problem and
enabling us to study the phase transition in terms of the frequency distribution.
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3.2.3
The role of the frequency distribution: g (ω)

As we have seen, the frequency distribution of the set of oscillators plays a crucial
role in the phase transition of the system, entailing the main source of frustration
that has been considered until now. Indeed, the results covered in the globally
coupled case –by the MF description or the Ott-Antonsen ansatz– completely
depend on the frequency distribution of natural frequencies (for example, giving
rise to first-order and second-order phase transitions). Here, some results for
those archetypal distributions are presented, highlighting and threshing its role
on the emergent synchronization phenomena.

3.2.3.1 Cauchy-Lorentz distribution

The Cauchy-Lorentz distribution of natural frequencies

g (ω) = γ

π
[
γ2 + (ω − Ω0)2

] (3.2.16)

is a case for which explicit analytical predictions can be done. It provides,
employing Eq. (3.2.11), a critical point kc = 2γ. On another note, the Ott-
Antonsen ansatz can be applied here (for the entire derivation, see appendix
C.1.1), giving rise to the next two differential equations,{

ψ̇ = Ω0

Ṙ = −γR+ 1
2kR

(
1−R2) (3.2.17)

The first of these equations is trivial and it has only a fixed point at Ω0 = 0.
Rather, the second one has a first stable fixed point in R∗1 = 0 until k = 2γ, and
a stable fixed point after k = 2γ, R∗2 =

√
1− 2γ

k . Similarly, circles of variable
radius R –coming from the complex order parameter Z = X + iY – appear in
the coherent phase.

The excellent agreement between theory and simulation can be appreciated
in Figure 3.2.2, in which the analytical prediction for the critical point and the
analytical function derived from the Ott-Antonsen equations are one on top of
the other. Besides, the standard deviation of the averaged order parameter, σR,
rescaled by a factor

√
N coming from a direct application of the central limit

theorem
(
χ = σR

√
N
)
, shows a pronounced peak located at the size-depend

critical point, growing anomalously with N , indicating the presence of a legiti-
mate critical point. Meanwhile, Figure 3.2.3 shows the expected emergent circles
in the phase portrait of the complex Kuramoto order parameter, traces of the
coherent state that arises in the system.
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Figure 3.2.2: Order parameter R as a function of the coupling strength k for
analytical and computational (for a size of N = 16000 oscillators) perspectives.
Observe that the critical point sort out the absorbing (or incoherent) from the
active (or coherent) phase growing continuously. Inset: Standard deviation of
the averaged order parameter multiplied by

√
N , χ = σR

√
N for different system

sizes (N=4000, 8000 and 16000). The point of maximal variability displays the
location of the critical point depending on the system size.
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Figure 3.2.3: Phase portrait showing circles in the Kuramoto model beyond the
critical point (coherent phase). In the incoherent phase, there is no evidence of
synchronous activity (a point can be appreciated for k < kc) but, just in the
critical point (at kc = 2, see red line), a seed of synchronization is formed and
grows shaping out circles in the coherent phase until the state wit R = 1 has
been reached.
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3.2.3.2 Uniform distribution

Another simple and especially illustrative case is that of an uniform distributions
of frequencies, but ensuring that the aforementioned conditions are satisfied,

g (ω) = 1
2γ ω ∈ (−γ, γ) (3.2.18)

which provides, through the Eq. (3.2.11), a critical point in kc = 4γ
π . Be-

sides, by employing Eq. (3.2.10) it is possible to derive the next self-consistency
equation,

R = 1
2

√
1−

(
γ

kR

)2
+ kR

2γ arcsin
(
γ

kR

)
(3.2.19)

There is only a real solution for kR ≥ γ, giving in the limiting case a partic-
ular value of Rc = π

4 . Thus, in this case, we have a gap in the value of the order
parameter from the incoherent state to the coherent one, which generate a sud-
den change in the order parameter. Hence, a first order phase transition emerges
in this situation. Figure 3.2.4 shows the discrete jump of high π

4 in the order
parameter derived from the analytical prediction. Besides, it also reflects the
remarkable compromise between theory and simulation, showing a discontinuity
located at the critical point, as expected in first-order phase transitions.
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Figure 3.2.4: Order parameter R as a function of the coupling strength k for
analytical (orange line, solution of the self-consistency Eq. (3.2.19)) and compu-
tational (blue line, for a size of N = 16000 oscillators) perspectives. A (discon-
tinuous) gap of size π

4 appears together with the coherent phase of synchronized
oscillators.
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3.2.4
Chimera states: getting frustration and metastability

According to the Greek mythology, the chimera was a hybrid three-headed mon-
ster, a fire breathing creature, with lion’s head and body a goat’s head in his
back and a serpent’s tail. Figuratively, Abrams and Strogatz coined this term
–broadly employed now in the field of synchronization phenomena– to define
a synchronized state with incongruous interconnected parts, in which regions
of coherent and incoherent oscillators coexist [1, 3, 43, 53]. It stems from the
study of the Kuramoto-Sakaguchi model, that –in the MF case– only includes
an additional intrinsic repulsion term with respect to Kuramoto, namely,

θ̇j = ωj + k

N

N∑
l=1

sin (θl − θj + α) (3.2.20)

where α is a repulsion term between oscillators.
The derivation of the critical coupling strength could be done under identical

assumptions as those for the original Kuramoto one,

kc = 2
πg (0) cosα (3.2.21)

which clearly leads to a growing level of frustrated synchronization, i.e. the
value of the critical coupling separating the coherent phase from the incoherent
one is bigger and bigger until it reaches –for values of α > π

2 – a negative coupling
scheme scenario. But, in particular, in the limiting case with α = π

2 , it is clear
that both phases –coherent and incoherent– coexist for any k value. This leads
to a divergence of the coupling strength (see Eq. (3.2.21)) shown in the Figure
3.2.5, where the critical coupling strength value is estimated through the point
of maximal variability of the standard deviation in an ensemble of N = 4000
oscillators.

Although not in the “all-to-all” extremely simple case, but rather adding
a slight variation of the coupling scheme with two clusters, thwarting even
more the complete synchronization of the whole system, Abrams and Strogatz
depicted the existence of this research topic [3]. Indeed, they develop some
interesting analytical calculations employing the Ott-Antonsen ansatz in that
two-cluster system of identical oscillators, uncovering the existence of chimera
states, and defining it as follows [53],

Definition 3.1 (Chimera state)
“a spatio temporal pattern in which a system of identical oscillators is
split into coexisting regions of coherent (phase and frequency locked) and
incoherent (drifting) oscillations.”
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Figure 3.2.5: Critical value of the coupling strength as a function of the repulsion
term, α. Analytical curve is plotted in red, and computationally estimated
values as blue points (for N = 4000 oscillators). Note the break in the x-axis,
due to the region of order with negative couplings obtained for some particular
values of α.

Even if it is true that this intriguing phenomenon was explored in a large
variety of underlying topologies, like clustered networks, rings, torus, spheres,
and so on (see [53] and references therein), the all-to-all case was also recently
revealed both analytically [75] and experimentally in a four globally coupled
system of oscillators [57]. Likewise, two successful stable experimental chimeras
are recently reported [32, 67]. Besides, it is of particular interesting the real
application of unihemispheric sleep in many species of birds, dolphins, whales
or sea lions (a half of the brain sleeps while the other half remains awake) [55].

Figure 3.2.6: Chimera state in the surface of a torus. Radial coordinate involves
the spatial coordinate while the radial one stands for the phase of each oscillator.
From: Abrams and Strogatz (2006) [2].



3.3
Complex networks coupling

We have analyzed the simple “all-to-all” coupling scheme. However, the
forthcoming step –coming back to the general Eq. (3.2.1)– is to consider

the system in a general network [6], represented by a coupling matrix, W, and
scrutinize the results for the well-known general case of random couplings.

The general equation for the Kuramoto model can be reformulated as,

θ̇j = ωj+
N∑
l=1

σjlajl sin (θl − θj) (3.3.1)

where ajl represents the (binary or weighted) connectivity matrix and σjl
stands for the coupling strength, that should be redefined in terms of the net-
work coupling. The normalization of the coupling between oscillators must be
carefully defined. The choice3 in which the coupling strength is intensive, has
serious issues now because, except in the case of some particular nodes in scale-
free networks, the connectivity of each node never scales with the system size,
nullifying the effective coupling in the infinite size limit. Consequently, there
are two possible choices, namely to consider local properties of each node or
some general properties of the network [6]. The first one is defined by σjl = k

κj
,

where κj is the specific connectivity (or degree) of each node and k the usual
coupling strength of the model. This choice –obviously intensive– makes a clean
sweep of the nodes matching the hubs and the periphery, and it is able to mask
the heterogeneities in the network. On the other hand, there is the possibility
of take a general property of the network, as the mean-connectivity 〈κ〉 or the
maximum connectivity κmax, among others. But, in this simple case, in which σ
is a constant that does not depend on the local properties of each node, we can
appreciate that the interaction term (non-intensive in some cases) can diverge
in the infinite-size limit.

Either way, for simplicity, we will now consider the second one for the an-
alytical results described below but, on subsequent computational analysis we
consider a proper intensive normalization (σjl = k

κj
) without observing any

qualitative change in the phenomenology.

3The all-to-all case is recovered in the particular case of ajl = 1 ∀j 6= l and σjl = k
N
.
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At this point, it is interesting to estimate the critical point of a homogeneous
network. To this end, as indicated in [6], it is necessary to define a local order
parameter (rj) as,

rj(t)eiψj(t) =
N∑
l=1

ajleiθl(t) (3.3.2)

where rj and ψj capture the mean amplitude and phase of the local field in
the vertex j of our network. From this equation, we obtain,

θ̇j = ωj + σri sin (ψj − θl) (3.3.3)

and after some calculations (see appendix C.2.1), the critical point is given
by,

σc = kc
〈κ〉
〈κ2〉

where kc is the all-to-all critical point of Eq. (3.2.11), and
〈
κi
〉
stand for the

i-th moment of the network degree distribution. This highlights the vanishing
σ − value (and thus, these networks are always synchronous) in the particular
case of diverging

〈
κ2〉, i.e. in power-law degree distributions of the form P (κ) ∼

κ−γ with γ ≤ 3, present in many real biological networks [9, 10].
Also, it is clear that the underlying topology of the network induces hetero-

geneities, non-existent in the all-to-all case. As pointed out by Um et al. [69]
this type of disorder induces dramatic changes in the nature of the synchroniza-
tion transition, reaching the point that the first-order phase transition becomes
a second-order phase transition in a quenched Erdős–Rényi network (see Figure
3.3.1). And, in particular, the same mean-field exponents of the all-to-all case
can emerge, for all types of frequency distributions.

These results reveal that the underlying topology is crucially important, be-
yond the (usually nonlinear) dynamical process adopted in each particular case.
It has profound implications, stretching the usual approach of theoretical model
developing to the study of the spatial systems in which they are embedded. In
fact, as recently shown [48], the specific –hierarchical-modular– organization of
structural brain networks can induce strongly disturbances in neural dynamics
[39, 44, 76, 77].
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Figure 3.3.1: Synchronization phase transition in an Erdős–Rényi network with
〈κ〉 = 25 and a uniform and symmetric frequency distribution g (ω) = U (−1, 1)
for different system sizes (N = 256, blue line; N = 256, red line; and N = 1024,
orange line). The dotted line stands for the analytical result for the critical
point in this particular case, σc ≈ 0.051, showing a good match between theory
and simulations. It has to be emphasized the emergence of a second-order phase
transition due to the network heterogeneities.



3.4
The Human Connectome

Once established all the tools needed to understand the behavior of the Ku-
ramoto model, now we change the underlying topology –’all to all’ or

Erdős–Rényi– to a realistic ones,
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Figure 3.4.1: (a) Cumulative degree distribution (see inset for the non-
cumulative). The blue line represent a Weibull distribution [31], f (κ;λ, ζ) =
ζ
λ

(
κ
λ

)ζ−1
e−(κ/λ)ζ κ ≥ 0, with mean equal to the expected mean connectivity

〈κ〉 ≈ 36 of the Human Connectome (i.e. λ ≈ 41) and ζ ≈ 2.3. (b) Adjacency
matrix, with 998 nodes, of the Human Connectome network [33], employing
a reverse Cuthill-McKee reordering algorithm. Connections between nodes are
plotted in blue. Pay close attention to the structure in boxes along the diagonal,
which can be seen by the naked eye. (c) Dendrogram of the human connectome,
red lines shows a partition in twelve communities, that is the optimal parti-
tion into disjoint communities, i.e. the partition maximizing the modularity
parameter [50].

which is the Human Connectome network (HC) [33], as depicted in Figure
3.4.1b. It comprises 998 non-directed nodes, organized in a clear modular struc-
ture (as can be seen from the structure in boxes along the diagonal). Also,
the degree distribution of the network consists in a Weibull distribution [31] for
the probability density function and therefore a “stretched” exponential in the
cumulative distribution function (Figure 3.4.1a). At last, as shown in Figure
3.4.1c, note that the dendrogram of the HC –on its first hierarchy levels– shows
a very rich landscape of interspersed moduli.
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We perform a computational study of the Kuramoto model, running it on
top of the Human Connectome (HC) network, unveiling the existence of an
intermediate regime placed between the coherent and the incoherent phase (see
Figure 3.4.2). This is characterized by broad quasi-periodic temporal oscillations
of R(t) which wildly depend upon the realization of intrinsic frequencies [5, 8].
Anomalously large sampling times would be required to extract good statistics
for the actual mean values and variances. Besides, collective oscillations of
R(t) are a straightforward manifestation of partial synchronization (as can be
appreciated in the raster plot of individual phases in Figure 3.4.2) and they are
robust against changes in the frequency distribution (e.g. Gaussian, Lorentzian,
uniform, etc.) whereas the location and width of the intermediate phase depend
upon details.

Figure 3.4.2: Time average of the order parameter R(t), for Kuramoto dynamics
on the HC network employing a N(0, 1) Gaussian distribution set of frequen-
cies. Observe that the synchronous phase (for high values of k) is separated
from the incoherent phase by a broad intermediate regime, in which coherence
increases with k in an intermittent fashion, and with strong dependence on the
frequency realization. (b) Raster plot of individual phases (vertical axis) versus
time showing local rather than global synchrony and illustrating the coexistence
of coherent and incoherent nodes (k = 2.7). (c) Temporal series of the order
parameter, R(t), for four selected values of k (arrows in the main plot).

With the aim of quantifying the observed variability of R in the intermediate
phase, we take a particular realization of frequencies (extracted from a Gaussian
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g(ω)) and, starting from an initial –uniformly distributed– random configuration
of individual phases, {θi(t = 0)}Ni=1, to measure the temporal standard deviation
of the global coherence parameter R (after the transient) up to a maximum time
T = 104, which we will call “time variability”4,

σ =
(
〈(R− 〈R〉t)2〉t

)1/2
(3.4.1)

as a function of the coupling strength k.
As we have seen a great variability in the intermediate region, it suggests the

existence of several possible attractors. So, the ergodicity may be broken and
thus, different initial conditions may lead to different attractors of the dynamics.
Therefore we also average σ over 102 different independent realizations of the
dynamical process. Figure 3.4.3 illustrates the diagram of the order parameter
obtained for this particular (averaged) realization of g(ω).
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Figure 3.4.3: Time-averaged order parameter R = 〈R (t)〉 (blue curve) standard
deviation of time-series, averaged over realizations with different –uniformly
distributed– initial conditions. Maximal variability is found in the intermediate
phase, where the system is neither too unsynchronized nor too coherent. Several
peaks in the variability can be distinguished (dashed lines), which appear at val-
ues of the control parameter k for which the system experiments a fast increase
in global synchronization. Statistical sampling of different realizations indicate
that error-bars are larger in the intermediate region, suggesting the existence of
several attractors depending on the initial conditions.

4Notice that this definition of σ, that we call, ’time variability’ is closely related to the
chimera index that will be introduced afterward (and originally by Shanahan [58]). In this
case, σ is defined at the global level and records fluctuations of the global order parameter,
while chimera indices are averaged between individual network moduli to highlight the onset
of local coherence.
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Let us stress the following salient aspects from the “time variability” of the
system:

i) Averaged time variabilities are small in the non-coherent (k . 1) as well
as in the coherent (k & 5) phases, whereas much larger variabilities are
found in the intermediate region (1 . k . 5).

ii) The curve of time variabilities presents several peaks for the intermediate
region, lying in the vicinity of values of the control parameter at which the
system experiences a change in its level of coherence (see the corresponding
jumps in the derivative of the order parameter).

iii) And finally, error bars are also larger in the intermediate phase; this vari-
ability of time variabilities means that different initial conditions can lead
to different types of time-series, suggesting a large degree of metastability
in the intermediate regime.

As there are clues that this phenomenology may be reminiscent of a Griffiths
phases –posed in between order and disorder and stemming from the existence
of semi-isolated regions [48, 49, 70]– it is natural to investigate how the HC
hierarchical modular structure affects synchronization dynamics. Besides, as
one can deduce from a simple visual inspection of Figure 3.4.1, there exists
a modular organization of the network and thus, we expect that the different
moduli must play and important role in this emergent new phase.

On the other hand, it is not so hard to envision the fact that any network
with perfectly isolated and independently synchronized moduli trivially exhibits
oscillations of R(t), with amplitude peaking at times when maximal mutual syn-
chronization happens to be incidentally achieved. Such oscillations can become
chaotic if a finite and relatively small number of different coherent moduli are
coupled together [54]. Thus, in a connected network without delays or other
additional ingredients, oscillations in the global coherence are the trademark of
strong modular structure with weakly interconnected moduli.

As shown before (see Figure 3.4.1), strong modular organization into distinct
hierarchical levels is indeed present in the HC and it has been already discussed
in the literature (see e.g. [48] and references therein). For instance, we have
found –employing standard community detection algorithms [28, 37]– that the
optimal partition into disjoint communities –i.e. the partition maximizing the
modularity parameter [50]– corresponds to a division in 12 communities (see
Figures 3.4.1 and 3.4.4c) while, at a higher hierarchical level, a separation into
just 2 moduli –the 2 cerebral hemispheres– is obtained [36] (Figure 3.4.4). Ob-
viously, these 2 coarser moduli include the 12 above as sub-moduli. Although
more levels of hierarchical partitioning could be inferred (see e.g. [13] and refs.
therein), for the sake of simplicity we focus on these two levels l, l = 1 and l = 2
with 12 and 2 moduli, respectively.
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Figure 3.4.4: Adjacency matrix of the HC network with 998 nodes [33, 36]
ordered to emphasize its modular structure as highlighted by a community de-
tection algorithm, showing also the partition into the 2 hemispheres (dashed
lines). 12 moduli can be distinguished (each plotted with a different color); 4
of them correspond to one of the two hemispheres, 5 to the other, and only
3 moduli overlap with both hemispheres (cyan, blue and red moduli). Inter-
modular connections (grey) are limited to small subsets, acting as interfaces or
connectors between moduli.

Now we analyze the local properties of the different moduli –and hierarchical
scales– just analyzed. Fig. 3.4.5 shows numerical results for the local order
parameter, r(l), for some of the moduli at the 2 hierarchical levels, l = 1 and
l = 2 in the HC network. It reveals that (Fig. 3.4.5a) local coherences exhibit
oscillatory patterns in time (with characteristic frequencies typically between
0.01 and 0.1Hz) and that (Fig. 3.4.5b) the transition to local coherence at
progressively higher hierarchical level occurs at progressively larger values of k;
i.e. coherence seems to emerge out of a hierarchical bottom-up process. Also,
Fig. 3.4.5 reveals that the ordering process in the hierarchical modular HC may
be non-monotonous: coherence does not systematically grow with k.
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Indeed, the emergence of local order in some community may hinder or
reduce coherence in others, inducing local “desynchronization” and reflecting
the metastable nature of the emerging states.

Figure 3.4.5: Local synchronization in the human connectome: (a) Oscillations
of the local order parameters in one particular modulus in the partitions of
the HC into 12 (green, l = 1, and k = 3) and 2 (magenta, l = 2, and k =
10) moduli, respectively. The characteristic frequency of these oscillations is
typically between 0.01 and 0.1 Hz (a range which coincides with slow modes
detected in brain activity; see e.g. [15]. (b) Average of the local order parameter
over all moduli.

To better illustrate the role played by internal network modularity on global
synchronization, Figure 3.4.6 portraits the trajectories of the parameter Z(t) in
the complex plane for different values of the control parameter k, measured at
different hierarchical levels: two (out of the existing 12) different small moduli
(violet and orange curves), the two hemispheres (red and green), and the overall
brain (blue). In the incoherent phase (panel a), the real and imaginary parts of
Z fluctuate around zero at all scales in the hierarchy. On the other hand, in the
coherent phase (panel d), all nodes are synchronized, and trajectories are circles
with radii close to unity at all hierarchical levels

A much richer behavior is found in the intermediate region: panel b (left)
illustrates a situation in which one modulus (orange) is mostly coherent, while
the other (violet) is not; however, hemispheres and global dynamics remain
mostly unsynchronized (panel b (right)). In panel c (left), we have slightly
increased the control parameter with respect to panel b, with a subsequent
increase of the coherence for all hierarchical levels. Interestingly, as not all
moduli exhibit the same state of coherence, chaotic-like oscillations of the order
parameter are observed at the global scale.
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Figure 3.4.6: Phase portraits of the complex order parameter Z(t), measured
at different scales in the hierarchy for a Gaussian g(ω): two of the existing
moduli are plotted in violet and orange, respectively, the two hemispheres in
red and green, and the global scale in blue. Panels (a)-(d) correspond to values
of the control parameter k = 1, 3, 5 and 8, respectively (panels (b) and (c)
have been split into two to enhance clarity). (a) In the non-ordered phase,
the real and imaginary components of Z fluctuate around zero, not exhibiting
synchronization at any scale. (b) In the early region of the intermediate phase,
a few moduli are coherent (as the one in orange) but most of them remain
unsynchronized (violet), and the system does not present coherence for upper
scales in the hierarchy. (c) Increasing k, more heterogeneity of synchronization
among moduli is found, and the system exhibits complex trajectories for the
intermediate (hemispheres) and global scale. (d) In the coherent phase, all
moduli are synchronized, and trajectories are concentric circles.
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3.4.1
Chimeras

Local oscillations and states of partial synchronization, mixed with a high de-
gree of frustration and an extraordinary plethora of emergent properties in the
intermediate phase, closely resembles to the chimeras that had been introduced
earlier (see section 3.2.4 on page 91).

To answer the question as to whether or not there are chimeras in our case,
we must examine some type of index that provides us such information. A
good possibility is the chimera index, χ(l), that is introduced as a measure of
partial synchronization at the community level l [58, 73]. Besides, it could be
foreseeable that at any hierarchical level l, the HC network, in a fractal-like way
can be divided into a set of communities. Thus, following [58], χ(l) is defined as
follows:

i) In the steady (oscillatory) state, and for each time t, local order parame-
ters r(l)

i (t) for each community i are calculated and their variance across
communities σ(l)

chi(t) is stored.

ii) The chimera index is computed as the time average χ(l) = 〈σ(l)
chi(t)〉t. Hav-

ing χ(l) > 0 at a given hierarchical level l implies that local order is only
partial as r(l)

i fluctuates, giving rise to a chimera-like state. On the other
hand, χ(l) = 0 means that each local order parameter at that level is
r

(l)
i ≈ 1, and local order has been attained.

Figure 3.4.7: Chimera index for moduli at levels as a function of k, in one
particular modulus in the partitions of the HC into 12 (green, l = 1) and 2
(magenta, l = 2) moduli, respectively. Global order emerges only after local
order is attained at lower levels.
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Figure 3.4.7 shows that at each l (l = 1 and l = 2) a peak in the corre-
sponding χ(l) marks the onset of the local synchronization processes: as soon
as the peak vanishes upon increasing k, local order at that level is attained.
The sequence of separated peaks in χ(l) for increasing values of l is the direct
evidence of a hierarchical synchronization process.

Concluding, the fact that the average variance of local coherences (called
chimera index, χ) [58] exhibits a marked peak –reflecting maximal configu-
rational variability– indicates a transition point for the corresponding level.
It should be added that similar intra-modular oscillatory patterns –dubbed
chimera states– have been recently found [1, 3, 58, 73] in Kuramoto models in
which explicit phase lags induce a different kind of frustration, hindering global
synchronization. Strictly speaking, chimeras are defined in systems of identical
oscillators. In such a case, a non-zero phase lag term is essential for partial
synchronization to occur. Realistic models of the brain, however, require oscil-
lators to be heterogeneous. States of partial synchronization in empirical brain
networks with frequency heterogeneity have been found for Kuramoto models
with explicit time delays [19]. In contrast, the chimera-like states put forward
here have a purely structural origin, as they arise from the network topology.
It was noted in the past that synchronization in a synthetic network with hubs
could be limited to those hubs by tuning clustering properties, and global order
could be attained in a monotonous step-like fashion upon increasing k [46].

One important question remains, namely, to carefully select the essential in-
gredients to achieve this prolific phenomenology in synthetic networks. Hence-
forth, on the basis that a modular network forms the cornerstone of all this, one
of the latest steps is to develop a model –with increasing complexity– able to
reproduce all these behaviors.



3.5
Modeling the HC

To shed further light on the properties of synchronization on the HC, we
revisit the existing analytical approaches for networks with a community

structure of coupled oscillators, and after that a very simple network model is
developed –allowing for analytical understanding– which constitute the elemen-
tary “building-block” for subsequent more complex analyses. The subsequent
step is the inclusion of simple modular networks, examining very attentively
what elements are lacking in this structures to resemble to the HC. Definitely,
hierarchic modular networks –containing a huge variety of modules of different
sizes in a fractal way– will constitute the optimal solution to reproduce the
behavior observed in the HC topology.

3.5.1
Communities

Once the procedure for the original Ott-Antonsen approach has been presented,
the generalization to the case of community structured networks is rather straight-
forward. The original idea was formulated by themselves and developed by
Skardal and Restrepo [63] and consists in assuming that nodes in community
σ interact with nodes in community σ′ with a Kuramoto coupling kσσ′ . In the
presence of C communities in a network of total size N , nodes are relabeled in
such a way that their phases are written as θσi , referring to the phase of node i
in the community σ of size Nσ. The Kuramoto equations thus read

θ̇σj = ωσj + kσσ′

N

C∑
σ′=1

Nσ′∑
l=1

sin(θσ′l − θσj ). (3.5.1)

Still, in a hierarchical modular network all connected nodes interact with the
same k, it constitutes a first approach to explore the analytical understanding of
the effects of a separation in simple communities. But, in our case, this means
that kσσ′ is either zero or one, depending on whether communities σ and σ′

are connected. The basic idea behind the community model is that, in spite
of the fact the mean field approach is not exact system-wide, it is inside each
community, so that the goal is to coarse-grain all communities and end up with
a system of C coupled equations employing the Ott-Antonsen ansatz (in the
way of Eq. (3.2.15)) expressing the interaction between C complex oscillators.

105
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To this end we define the local order parameter of community σ as

zσ = rσeiψσ = 1
Nσ

Nσ∑
j=1

eiθσj , (3.5.2)

so that the global order parameter is simply the weighted average Z =∑
σ(Nσ/N)zσ. We can thus rewrite Eq. (3.5.1) in terms of local rσ and ψσ as

θ̇σi = ωσi +
C∑

σ′=1
Kσσ′rσ′ sin(ψσ′ − θσi ), (3.5.3)

where the effective coupling constants are given by

Kσσ′ = (Nσ′/N)kσσ′ . (3.5.4)

This last result is crucial. Even if kσσ′ is one between all linked communities
(as in our case), the effective coupling between linked communities depends on
their size. That is to say, if two communities of different sizes interact between
them, the bigger one affects the smaller one more than it is affected by it.
However, Skardal and Restrepo assume that all Nσ are large enough as to allow
the usual continuum approximation, defining the Eulerian drift term for each
community

vσ = ωσ + 1
2i
∑
σ′

Kσσ′
(
zσ′e−iθσ − z̄σ′eiθσ

)
, (3.5.5)

which is aware of the interactions with other communities thanks to the
cross terms with σ 6= σ′, and since the density of oscillators per community
fσ(θσ, ωσ, t) is conserved, its form will simply be

∂

∂t
fσ(θσ, ωσ, t) + ∂

∂θσ
[fσ(θσ, ωσ, t)vσ] = 0. (3.5.6)

For each fσ, we can write the Fourier decomposition

fσ(θσ, ωσ, t) = g(ωσ)
2π

[
1 +

∞∑
n=1

(
f̂σ,n(ωσ, t)einθσ + ˆ̄fσ,n(ωσ, t)e−inθσ

)]
. (3.5.7)

and employ the respective Ott-Antonsen ansatz, f̂σ,n(ωσ, t) = anσ(ωσ, t),
leading to

ȧσ + iωσaσ + 1
2

C∑
σ′=1
Kσσ′(z̄σ′a2

σ − z̄σ′) = 0, (3.5.8)

zσ =
∫ +∞

−∞
dωσ

∫ 2π

0
dθσfσ(θσ, ωσ, t). (3.5.9)
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We assume that characteristic frequencies in each community σ are dis-
tributed following a Lorentzian gσ(ωσ; Ωσ, γσ) so that Eq. (3.5.9) leads to

zσ = āσ(Ωσ − iγσ, t) (3.5.10)

that replaced in each (Eq. (3.5.8)) finally yields the evolution equations for
each community

żσ + (γσ − iΩσ)zσ + 1
2

C∑
σ′=1
Kσσ′(z̄σ′z2

σ − zσ′), (3.5.11)

or, separating real and imaginary part,

ψ̇σ = Ωσ + 1 + r2
σ

2rσ

C∑
σ′=1
Kσσ′rσ′ sin(ψσ′ − ψσ) (3.5.12)

ṙσ = −γσrσ + 1− r2
σ

2

C∑
σ′=1
Kσσ′rσ′ cos(ψσ′ − ψσ). (3.5.13)

This result states that, irrespective of the details of the topology of the
network at hand and provided that a decomposition of the type in Eq. (3.5.1)
can be performed, in which each of the C communities behaves in a mean-field
way, the time evolution of Kuramoto dynamics is described by the set of 2C
differential equations depicting the evolution of the local phase and coherence
of each community. An important point is that, by virtue of Eq. (3.5.1), all
nodes in community σ are in interaction with all nodes in community σ′ through
a coupling constant Kσσ′ . Allowing Kσσ′ to vary by small amounts, as done by
Skardal and Restrepo, accounts for a weak community structure, where pair
interactions are almost of mean-field type. This is generally not the case in
networks where communities introduce sparsity and isolation, in which case Kσσ′
should be allowed to vary substantially, being zero for disconnected community
pairs. Interestingly, the Human Connectome falls in this category.

3.5.2
The two-block model

The first model that we develop, is a very simple network model –that might
be dealt analytically– which will constitute the elementary “building-block” for
subsequent more complex analyses.

This consists of a few blocks with very large internal connectivity and very
sparse inter-connectivity. Each block is composed by a bulk of M � 1 nodes
that share no connection with the outside and a relatively small “interfacial”
set that connects with nodes in other blocks. For instance, in the simplest
realization, consisting of just two blocks connected by a single pair of nodes
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(Figure 3.5.1), each block is endowed with local coherence rA,B, average phase
ψA,B, and average characteristic frequency ωA,B, while 1-node interfaces have
perfect coherence r = 1, phase ϕA,B, and characteristic frequency νA,B. In this
case, N = 2M +2, and the OA ansatz can be safely applied to each block (large
M) but not to single-node interfaces. The Kuramoto coupling will simply be
kσσ′ = k between linked communities and 0 otherwise. In the particular case in
which g(ω) are zero-mean Lorentz distributions g(ω) = 1

π
δ

ω2+δ2 (convenient for
analytical treatment) with spreads δA,B, the resulting set of OA equations is

ψ̇A = ωA + k
1+r2

A
2rA

sin(ϕA − ψA)
ṙA = −δArA + k

1−r2
A

2 [MrA + cos(ϕA − ψA)]
ϕ̇A = νA + k [MrA sin(ψA − ϕA) + sin(ϕB − ϕA)]

(3.5.14)

(and r = 1 for each 1-node interface), and a symmetric set (A ↔ B) for block
B.

Figure 3.5.1: Sketch of the two-block model.

The solution of Eq. (3.5.14) –displayed in Figure 3.5.2– reveals a transition
to local coherence within each block at a certain threshold value of k ≈ 0.02.
As soon as local order is attained, rA,B ≈ 1 and ψ̇A,B ≈ 0, from Eq. (3.5.14) the
mutual synchronization process obeys

ϕ̇A ≈ (νA +MωA) + k sin (ϕB − ϕA) (3.5.15)

and a symmetrical equation for ϕ̇B. For small k, the right-hand side is domi-
nated by νA + MωA: whereas the average value ωA becomes arbitrarily small
within blocks (assuming that M is large), the frequency νA does not. Conse-
quently, synchronization between the two blocks through the interfacial link is
frustrated: each block remains internally synchronized but is unable to achieve
coherence with the other over a broad interval of coupling strengths. This inter-
val is delimited above by a second transition at k ∼ max{M |ωA,B|, νA,B}, where



Chapter 3. Synchronization in the human brain 109

k is large enough as to overcome frustration and global coherence emerges. This
picture is confirmed by numerical integration of the full system of N coupled
Kuramoto equations as well as by its OA approximation (Eq. (3.5.14)), both
in remarkably good agreement. Therefore, local and global coherences have
their onsets at two well-separated transition points [63] and –similarly to the
much more complex HC case– R oscillates in the intermediate regime (Figure
3.5.2). The existence of two distinct (local and global) transitions had already
been reported in a recent study of many blocks with much stronger inter-moduli
connections than here [63] (even if, owing to this difference, no sign of an inter-
mediate oscillatory phase was reported).

Our two-block model shows that the presence of “structural bottlenecks” be-
tween moduli combined with heterogeneous frequencies at their contact nodes
(interfaces) are essential ingredients to generate a broad region of global oscilla-
tions in R. Still, it is obviously a too-simplistic model to account for all the rich
phenomenology emerging on the HC. As a main example, local oscillations were
not present in the two-block model. This suggests that the 12 moduli in the HC
are on their turn composed of finer sub-moduli and that structural frustration,
as introduced above, affects all hierarchical levels.

Figure 3.5.2: Global order parameter for the two-block model with M = 128.
Results of the numerical integration of the 256 Kuramoto equations (blue points)
are in strikingly good agreement with the integration of Eq. (3.5.14) (solid
blue line). Local block-wise order parameters are shown for comparison (small
symbols; dashed lines are guides to the eye). A first transition, where local order
emerges, occurs at k ≈ 2, while global coherence is reached at a larger value of
k. In the intermediate region, the global R(t) oscillates (inset), revealing the
lack of global coherence.
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3.5.3
Simple-modular network

Similar results are expected to hold for versions of the model with more than
two moduli, e.g. 4 in a single-level modular network. This simple extension con-
sider four Erdős–Rényi blocks, randomly connected with probability p = β 〈κ〉N ,
where β is an additional parameter much smaller for inter-block connections.
Additionally, all the results presented from now on are completely numerical.

Figure 3.5.3: 4-block modular
network, with similar features
to the network of the HC.

HC 4-block

〈k〉 35.8 25.9
lG 3.072 2.96

Modularity 0.469 0.722

Table 3.1: Structural properties of both
networks: mean connectivity, average
path length (lG) and modularity index.
The latter is larger in our synthetic net-
work.

Figure 3.5.4: Dendrogram of the 4-block modular network. Note that the four
communities could be clearly appreciated, and there is a great gap with the lower
hierarchical levels, that presents a random coupling with very large internal
connectivity.
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Thus, running the Kuramoto model on top of this particular network, we can
recover the intermediate regime with complex oscillations observed in the HC,
and placed between the coherent and the incoherent phase, as shown in Figure
3.5.5. Again, it is characterized by broad quasi-periodic temporal oscillations
of R(t) which wildly depend upon the realization of intrinsic frequencies, but
with partial synchronization and being robust against changes in the frequency
distribution (e.g. Gaussian, Lorentzian, uniform, etc.)

Figure 3.5.5: Time average of the order parameter R(t), for Kuramoto dynam-
ics on the four-block network employing a N(0, 1) Gaussian distribution set of
frequencies (red dotted line stands for the mean-field predicted critical point).
Observe that the synchronous phase (for high values of k) is separated from the
incoherent phase by an intermediate regime, in which the temporal series of the
order parameter, R(t), shows an huge variability.

3.5.3.1 Anomalous dynamics in the human connectome

In order to focus specifically on structural effects, let us to fix all intrinsic fre-
quencies to be identical. Thus, we consider, without loss of generality, the simple
case ωi = 0, and define the “activity” ρ = 1− 〈R〉. In this case, perfect asymp-
totic coherence should emerge for all values of k but, as illustrated in Figure
3.5.6a, the convergence towards ρ = 0 turns out to be extremely slow (much
slower than exponential, like in the case of the single-level modular network).



112 Chapter 3. Synchronization in the human brain

Figure 3.5.6: (a) Average decay of activity ρ for identical frequencies ω = 0
in the HC network and comparison with a single-level modular network (made
up of 4 similar random moduli at a single hierarchical level) of the same size
and average connectivity as the HC network. Symbols stand for different values
of k. (b) Characteristic decay times corresponding to the inverse of the first
1000 non-trivial eigenvalues of the Laplacian matrix (x axis) as a function of
their respective ordered indexes (y axis), for networks as in (a). The stretched
exponential behavior in (a) is the result of the convolution of slow time scales
associated with small eigenvalues in (b).

This effect can be analytically investigated assuming that, for large enough
times, all phase differences are relatively small. Then, up to first order, θ̇i =
−k

∑
j Lijθj where Lij = δij

∑
lWjl − Wij are the elements of the Laplacian

matrix [21, 27]. Solving the linear problem (see complete derivation on ap-
pendix C.2.2), θi(t) =

∑
l,j e−kλltvlivljθj(0), where λl denotes the l-th Laplacian

eigenvalue (0 = λ1 < λ2 < ... < λN ) and vli the i-th component of the cor-
responding eigenvector. Since the averaged order parameter can be written as
Z(t) ≈ 1

N

∑
j

(1 + iθj − 1
2θ

2
j ), averaging over initial conditions, and considering

that (as the Laplacian has zero row-sums [27]) λ1 = 0, we obtain

ρ(t) = σ2

2

N∑
l=2

e−2kλlt, (3.5.16)

where σ is the standard deviation of the initial phases. This expression holds
for any connected network. As usual, the larger the spectral gap λ2, the more
“entangled” [27] the network and thus the more difficult to divide it into well
separated moduli (λ2 = 0 only for disconnected networks) [21, 27].
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For large spectral gaps all timescales are fast, and the last expression can be
approximated by its leading contribution, ensuing exponential relaxation to ρ =
0, as in fact observed in well-connected network architectures (Erdős-Rényi, scale
free, etc. [50]). This is not the case for the HC matrix, for which a tail of small
non-degenerate eigenvalues is encountered (see Figure 3.5.6b and [48]). Each
eigenvalue λi in the tail corresponds to a natural division of moduli into sub-
moduli [27], and the broad tail reflects the heterogeneity in the resulting modular
sizes. As a consequence, each of these eigenvalues –with its associated large
timescale, ti = 1/λi– contributes to the sum above, giving rise to a convolution
of relaxation processes, entailing anomalously-slow dynamics, which could not be
explained by a single-level modular network (see Figure 3.5.6a-b): slow dynamics
necessarily stems from the existence of a hierarchy of moduli and structural
bottlenecks. As explained, in the case of the HC the convolution of different
times scales gives rise to stretched-exponential decay, which is an obvious flaw
of this single-level modular structure should be reproduced in some way. It was
noted in the past that strongly modular networks exhibit isolated eigenvalues
in the lower edge of the Laplacian spectrum. Synchronization would develop
in a step-wise process in time, where each transient would be given by each
isolated eigenvalue [7]. In our case, the depth of the hierarchical organization
and the strength of topological disorder produce instead a quasi-continuous tail
of eigenvalues, and the step-wise process is replaced by an anomalous stretched-
exponential behavior.

3.5.4
Hierarchic-modular network

Now, we go beyond the single-level modular network model and study hierarchi-
cal modular networks (HMN) in which moduli exists within moduli in a nested
way at various scales [17, 37, 38, 47, 64, 76]. HMN are assembled in a bottom-
up fashion: local fully-connected moduli (e.g. of 4 nodes) are used as building
blocks. They are recursively grouped by establishing additional inter-moduli
links in a level-dependent way as sketched in Figure 3.5.7 (top) [48, 71].

※ Building a Hierarchic-modular network A model to construct synthetic hi-
erarchical and modular networks (HMN) have been devised with s hierarchical
levels, comprising L links (mimicking synapses) and N nodes (mimicking neu-
rons), with a variable structure with the aim to resemble real neural networks
[48]. They are built in a bottom–top procedure; to begin with, at hierarchical
level 1, 2s basal fully connected blocks of size M are linked pairwise into super-
blocks by establishing a fixed number α of random unweighted links between
the elements of each (α = 2 in the Figure 3.5.7). Newly formed blocks are then
linked iteratively with the same α up to level s, i.e. the number of connections
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between blocks is fixed a priori, until the network becomes connected, avoiding
double connections and self-loops between nodes. There is an inherent stochas-
ticity when connections are assigned even though both, the degree distribution
of the network and the total number of connections, are fixed initially. Finally, it
is important to mention that the networks exhibit an exponential degree distri-
bution with a characteristic connectivity. Besides, the network is characterized
by, {

N = M2s

k = (M − 1) + 2α
M (1− 2−s)

(3.5.17)

Figure 3.5.7: (a) Sketch of a HMN network bottom-up grouping. (b) Graph
representation of a HMN with N = 512 and s = 9 hierarchical levels
(α = 1, M = 2).
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In a similar vein, implementing the Kuramoto model on top of this syn-
thetic topology, an intermediate regime placed between the coherent and the
incoherent phase emerges (see Figure 3.5.8). Patterns akin to the broad quasi-
periodic temporal oscillations of R(t) are present now, with Gaussian g(ω), and
they are also robust against changes in the frequency distribution whereas the
location and width of the intermediate phase depend upon details. Also, Figure
3.5.8 shows that –through the local order parameter, r(l), for different hierar-
chical levels (l = 1 to l = 5)– the transition to local coherence at progressively
higher hierarchical level occurs at progressively larger values of k; i.e. coher-
ence emerges out of a hierarchical bottom-up process. Identically, the ordering
process is non-monotonous and coherence could decrease momentarily with k,
due to that the emergence of local order in some communities hinder or reduce
coherence in others, inducing local “desynchronization” and frustration in the
burgeoning global order, and reflecting the metastable fractal-like nature of the
emerging states. This metastable nature is revealed by the study of the “chimera
index” for this networks, presenting a clear peak in the corresponding χ(l) for
each hierarchical level, that marks the “matrioshka-doll” synchronization pro-
cesses: the sequence of separated peaks in χ(l) for increasing values of l reflect
the direct evidence of the hierarchical synchronization process, being local order
attained in a bottom-up process.

Figure 3.5.8: Results for a HMN with N = 512, s = 5, and α = 4. Hierarchical
levels are i = 1 → 5 in black, blue, green, magenta and red respectively (as in
the previous sketch, not all shown in a) for clarity). (a) Temporal series with
broad oscillations of the local order parameter, ri(t), for 3 selected hierarchical
levels (arrows in the main plot). (b) Average of the local order parameter over
each hierarchical level. (c) Chimera index for different levels as a function of k.
As in the HC, global order emerges only after local order is attained at lower
levels.
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Figure 3.5.9: Time-averaged order parameter R = 〈R (t)〉 for a HMN with
N = 512, s = 5, and α = 4.

3.5.4.1 Lifshitz tails and stretched-exponential asymptotic behavior

In sparse HMNs, the lower end of the Laplacian spectrum is characterized by an
exponential tail in the density of states p(λ) ∼ e−1/λa for N → ∞, with a ≈ 1,
known as Lifshitz tail [48]. In graphs, Lifshitz tails signal the existence of non-
trivial heterogeneous localized states governing the asymptotic synchronization
dynamics at very large times t. We have shown that in the absence of frequency
heterogeneity, the t→∞ behavior of the activity is given –taking the continuum
limit of Eq. (3.5.16)– by ρ(t) ≈ σ2

2
∫
dλ p(λ)e−2kλt, which can be evaluated with

the saddle-point method (details in appendix C.2.2), yielding

ρ(t) ≈ σ2

2 exp
[
−(1 + a)a−

a
1+a (2kt)

a
1+a
]
. (3.5.18)

Substituting a ≈ 1, as empirically found in HMNs [48], leads to

ρ(t) ∼ e−
√

8kt, (3.5.19)

i.e. anomalous stretched-exponential asymptotic behavior, in excellent agree-
ment with computational results (see Figure 3.5.10). Therefore, hierarchical
modular networks constitute a parsimonious and adequate model for reproduc-
ing all the complex synchronization phenomenology of the HC.
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Figure 3.5.10: (a) Time relaxation of activity ρ for homogeneous characteristic
frequencies ω = 0, for logarithmically equally spaced values of k. Averages over
106 realizations of HMNs with N = 4096 and s = 11. Inset: as in the main plot
(a), but representing as a function of t1/2 and confirming the predicted stretched
exponential behavior. (b) Inverse tail-eigenvalues for a HMN.

Thus, our computational analyses of the Kuramoto dynamics on HMN sub-
strates (Figures 3.5.8 and 3.5.10) reveal the striking similarity between both
networks, HC and HMNs, specifically:

i) A sequence of synchronization transitions for progressively higher hierar-
chical levels at increasing values of k.

ii) Chimera-like states at every hierarchical level, resulting in a hierarchy of
metastable states with maximal variability at the corresponding transition
points.

iii) Extremely slow relaxation toward the coherent state when all internal fre-
quencies are identical. Furthermore, anomalies in the Laplacian spectrum
analogous to those of the HC network are observed for HMN matrices.

It is clear that a crucial role in the emergence of such behavior is played by
disorder. One would be tempted to believe that all networks characterized by
a finite spectral dimension could potentially give rise to this phenomenology.
This is obviously not the case for a regular lattice, where the spectral gap is
always well defined. A fractal lattice or an ordered tree, on the other hand,
could exhibit a hierarchy of discrete low eigenvalues, whose multiplicities reflect
system symmetries. The introduction of disorder, as in HMNs, is then necessary
in order to transform such hierarchy of discrete levels into a continuous Lifshitz
tail, leading eventually to the behavior predicted by Eq. (3.5.19).



3.6
Metastability and noise effects

Our previous results vividly illustrate the existence of an intermediate re-
gion in which the HC exhibits maximal dynamical variability at the global

scale, suggesting metastable behavior. In order to explore more directly whether
metastable states exist, we now assess if the dynamics may present different at-
tractors and, for some values of the control parameter k and noise amplitudes,
if the system may switch between different global attractors with different levels
of coherence.

For this purpose, an additional term must be added to Eq. (3.2.1) to imple-
ment a noisy Kuramoto dynamics,

θ̇j(t) = σηj(t) + ωj + k
N∑
l=1

Wjl sin [θl(t)− θj(t)] , (3.6.1)

where the new term, ηi(t), is a zero-mean delta-correlated Gaussian noise, tuned
by the real-valued amplitude σ.

Figure 3.6.1 shows a time series of the global parameter, for a fixed realiza-
tion of internal frequencies –with Gaussian g(ω)– and initial phases. It clearly
illustrates how the HC spontaneously switches between two different attractors.
These type of events, however, are not easy to observe in the HC network. Due
to the coarse-grained nature of the HC mapping, different attractors may ac-
tually have comparable average values of the coherence R, which makes their
discrimination especially difficult at the global scale.

Remarkably, such events are easier to spot in synthetic hierarchical modular
networks (HMN), such as proposed to model brain networks in an efficient way,
since the effects of modularity and hierarchy are much enhanced, as they develop
across a larger number of hierarchical levels than the one allowed by current
imaging techniques for empirically obtained connectomes. Also, figure 3.6.1
illustrates the bi-stable nature of the global parameter in the intermediate phase
for a HMN, in which metastability can be very well appreciated. This switching
behavior closely resembles “up and down” states, which are well known to appear
in certain phases of sleep or under anesthesia (see [29] and refs. therein).
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Figure 3.6.1: Time series exhibit metastability of the global synchronization in
the HC and in HMNs, in the intermediate region. (a) In the HC –in the interme-
diate region– the system remains in the same attractor for low noise amplitudes
(σ = 0 and 0.1). But, for large values, such as σ = 0.2, it is able to “jump” to
another more coherent attractor, where it settles. (b) In HMNs (size N = 1024,
s = 9), we observe the same phenomenology, but much enhanced: when noise
is very low (σ ≤ 0.45), the system tends to remain stable in a certain attractor
(with a few exceptions after very large waiting times). Choosing a higher σ
(σ ≥ 0.5), it exhibits bi-stable behavior, switching intermittently between two
different attractors. For large enough σ (σ ≥ 0.55), the dynamics becomes too
erratic to appreciate metastability.

We hypothesize that hierarchical modular networks in general (and the HC in
particular) enable the possibility of a large repertoire of attractors, with different
degrees of coherence and stability. Such metastability can be made evident and
quantified by performing the following type of numerical test. Starting from
a fixed random initial condition and considering a vanishing noise amplitude
(i.e. σ = 0), the system might deterministically fall into a number of differ-
ent attractors, each of them with an associated value of the global coherence
depending on the initial conditions, the network structure, and the choice of
natural frequencies. Once this attractor A is reached, the system is perturbed
by switching on a non-vanishing noise amplitude (σ > 0) during a finite time
window. The system may remain stable in the same attractor A if the noise
is weak enough (σ � 1). However, if larger values of the noise amplitude are
chosen, the system may jump into another close, more stable, attractor. If the
noise amplitude is very large (σ � 1), the system can in principle jump to any
attractor, but, very likely, will also escape from it, wandering around a large
fraction of the configuration space.
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After the perturbation time-window is over, we let the system relax once
again, and check if the new resulting steady steady state B has changed with
respect to A. In that case, we can conclude that the systems was in a metastable
state A before the perturbation, and has reached another state B after it –
potentially a metastable state itself.

We have carried out this type of test using an artificial HMN (see Figure
3.6.2) for a specific value of the control parameter, k, belonging in the intermedi-
ate region. Natural frequencies are sampled from the a Lorentzian distribution
g(ω) (as above, our main results are not sensible to this choice). Starting from
a random initial configuration of phases, we integrate Eq. (3.6.1) up to time
500 with σ = 0. After this, we introduce the external perturbation by switching
the noise coefficient σ to a certain non-zero value during a time window of du-
ration 100. Finally we revert to σ = 0 and continue the integration up to time
t = 1000. The last steady state value is averaged over 104 realizations of initial
conditions, networks, and intrinsic frequencies.
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Figure 3.6.2: Perturbations can lead the system to more coherent attractors
in the intermediate non-coherent phase. (a) Order parameter R averaged in
time over 104 realizations. A noise pulse of amplitude σ is applied during the
green interval. This same protocol is repeated for different values of σ. (b)
Average order parameter in the final steady state (after the noise pulse) as
a function of σ. For intermediate values of σ, a resonant peak emerges for
1 < σ < 10, illustrating that the system can jump to a close, more coherent
on-average attractor. Simulations are run on HMN networks of size N = 1024,
with 9 hierarchical levels.
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As illustrated in Figure 3.6.2, for low as well as for high values of the
noise amplitude, the system has the same average order parameter close to
〈R〉t,runs ' 0.2, as could have been anticipated. However, a resonant peak
emerges for intermediate values of the noise, where the system switches to states
with different levels of coherence. This plot explicitly illustrates the existence of
metastability and noise-induced jumps between attractors. As noise is enhanced,
progressively more stable states are found, but above some noise threshold, the
system does not remain trapped in a single attractor but jumps among many,
resulting in a progressive decrease of the overall coherence.



3.7
Conclusions

Simple models of synchronization dynamics exhibit an unexpectedly rich phe-
nomenology when operating on top of empirical human brain networks.

This complexity includes oscillatory behavior of the order parameter suggesting
the existence of relatively isolated structural communities or moduli, that –as a
matter of fact– can be identified by using standard community detection algo-
rithms. Even more remarkably, oscillations in the level of internal coherence are
also present within these moduli, suggesting the existence of a whole hierarchy
of nested levels of organization, as also found in the recent literature relying on
a variety of approaches [13, 17, 18, 37, 38, 47, 64, 76]. Aimed at unveiling this
complex behavior we have introduced a family of hierarchical modular networks
and studied them in order to assess what structural properties are required
in order to reproduce the complex synchronization patterns observed in brain
networks.

In the absence of frequency dispersion, perfect coherence is achieved in syn-
thetic hierarchical networks by following a bottom-up ordering dynamics in
which progressively larger communities –with inherently different timescales–
become coherent (see [7]). However, this hierarchically nested synchronization
process is constrained and altered by structural bottlenecks –as carefully de-
scribed here for the simpler two-block toy model– at all hierarchical levels. This
structural complexity brings about anomalously-slow dynamics at very large
timescales. Observe that the HC, in spite of being a coarse-grained mapping
of a brain network, already shows strong signals of this ideal hierarchical archi-
tecture as reflected in its anomalously slow synchronization dynamics as well as
in the presence of non-degenerate eigenvalues in the lower edge of its Laplacian
spectrum, acting as a fingerprint of structural heterogeneity and complexity. We
stress that such a complex phenomenology would be impossible to obtain in net-
works with stronger connectivity patterns (e.g. with the small world property)
such as scale free-networks or high-degree random graphs. Even the generic
presence of simple communities may not be sufficient to grant the emergence
of frustration: the uniqueness of the human connectome, and of hierarchical
modular networks in general, resides in the strong separation into distinct lev-
els, which the synchronization dynamics is able to resolve only at well-separated
values of the coupling k.

On the other hand, in the presence of intrinsic frequency heterogeneity, the
described slow ordering process is further frustrated. Actually, for small val-
ues of the coupling constant k the system remains trapped into metastable and
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chimera-like states with traits of local coherence at different hierarchical levels.
In this case, inter-moduli frequency barriers need to be overcome before weakly
connected moduli achieve mutual coherence. This is clearly exemplified by the
separation between distinct peaks in the chimera index χ(l) in Figures 3.4.7-
3.5.8, each one signaling the onset of an independent synchronization process
at a given level. The result is a complex synchronization landscape, which is
especially rich and diverse in the intermediate regime put forward here. If a hier-
archical modular networks is loosely connected, this type of “matryovska-doll”
synchronization process is constrained at all levels by structural bottlenecks,
bringing about anomalously-slow synchronization dynamics.

Including other realistic ingredients such as explicit phase frustration [58] or
time delays [19, 73] to our simplistic approach should only add complexity to the
structural frustration effect reported here. It is also expected that more refined
models –including neuro-realistic ingredients leading to collective oscillations–
would generate similar results and provide a finer description of brain activity,
but this remains to be explored in future works.

Addition of noise to the Kuramoto dynamics allows the system to escape
from metastable states, in which the loose connectivity between some mod-
uli does not allow them to overcome intrinsic-frequency differences and achieve
coherence. Stochasticity can overcome the “potential barriers” between mutu-
ally incoherent moduli as well as re-introduce”desynchronization” effects. These
combined effects can make the system able to explore the nested hierarchy of
attractors, allowing one to shed some light into the complex synchronization
patterns in real brain networks. Actually, spontaneous dynamical fluctuations
have been measured in the resting state of human brains [14]; these are corre-
lated across diverse segregated moduli and characterized by very slow fluctua-
tions, of typical frequency < 0.1Hz, in close agreement with those found here
(Figure 3.4.5). While persistence in metastable states may extend indefinitely,
it has been suggested that the brain is routinely exploring different states or
attractors [24] and that –in order to enhance spontaneous switching between
attractors– brain networks should operate close to a critical point, allowing for
large intrinsic fluctuations which on their turn entail attractor “surfing” and
give access to highly varied functional configurations [20, 24, 34, 60, 61] and,
in particular, to maximal variability of phase synchrony [74]. The existence of
multiple attractors and noise-induced surfing is largely facilitated in the broad
intermediate regime first elucidated here, implying that a precise fine tuning to
a critical point might not be required to guarantee functional advantages usu-
ally associated with criticality [12, 20, 59]: the role usually played by a critical
point is assumed by a broad intermediate region in hierarchically architectured
complex systems [48].

We have shown that a simple description of neural coherence dynamics
based on the noisy Kuramoto model may suffice to reproduce a very rich phe-
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nomenology, in hierarchical modular networks and in particular in the human
connectome. The introduction of small fluctuations (exemplifying external per-
turbations, stimuli, or intrinsic stochasticity) allow the system to escape from
metastable states and sample the configuration space, proving a paradigmatic
modeling tool for the attractor surfing behavior suggested by experiments. Fi-
nally, let us remark that our results might also be of relevance for other hier-
archically organized systems such as gene regulatory networks [68] for which
coherent activations play a pivotal role [51].
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4.1
Introduction

“If you have a hammer, use it ev-
erywhere you can, but, although I wish,
I do not claim that everything is criti-
cal.”

Adapted from B. Mandelbrot

Scale-invariance has been proven to be ubiquitous in nature. Power-law dis-
tributed avalanches of activity are reported in very diverse phenomena, from

earthquakes and microfracturing phenomena, to solar flares, rainfall, or type II
superconductors [2, 22, 59, 76]. Very often such a scale-invariant behavior is
considered as the fingerprint of underlying criticality. Groundbreaking experi-
mental evidence by Beggs and Plenz, revealed the existence of scale-invariant
episodes of electrochemical activity in neural tissues in vitro, thereafter named
neural avalanches. Subsequently, neural avalanches were detected in a wide
range of experimental settings, tissues and species both in vitro [4, 5, 23, 43, 60]
and in vivo [6, 30, 56, 58].

Such a scale-invariant organization has been taken as an indicator that cor-
tical dynamics operates close to a critical state, endowing the system with huge
sensitivity to stimuli, large spatio-temporal correlations and fluctuations, op-
timal transmission of information, etc [52, 68], and theoretical models have
actually proposed a link to self-organized criticality (or variants of it) [9, 40,
41, 48, 65]. Nevertheless, the criticality hypothesis in cortical networks is still
controversial [71] and some authors have highlighted that it is not clear whether
the available empirical evidences actually call for criticality or alternative origins
could be invoked, such as noise, bistability or neutral theories [23, 47, 67, 71].
Moreover the optimal properties that have been attributed to criticality are of-
ten related to scale invariance and consequently they can be ascribed, to the
same extent, to other mechanisms originating heavy-tailed observables.

Thus, in order to focus on alternative scenarios for the emergence of neu-
ronal avalanches we should first specify the most fundamental and particular
aspects that give rise to such scale-invariant behavior. In such a way, is essen-
tial the comprehension and reassessment of simple non-equilibrium phase tran-
sitions with absorbing states. In particular, one of the most representative case
between an active phase and an absorbing phase, the quintessential Directed
Percolation one. Despite its straightforward definition, it cannot be solved even
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134 Chapter 4. Reactive and noisy dynamics in simple neural systems

in one dimension, but provides a robust universality class with well-defined
scale-invariant avalanches explaining, for example, spreading of infectious dis-
ease. It is also has been related (for high-dimensional systems [14, 49]) with the
experimental exponents of neuronal avalanches founded (originally) by Beggs
and Plenz together with the theory of critical branching processes ([31, 38]).

Otherwise, beyond and active/quiescent phase transition, the emergence of
highly irregular bursts of activity has often been reported in association with
balance between excitatory and inhibitory activity [13, 75], but it is not always
clear whether or not implementing a balanced condition can be interpreted as
tuning the system close to the point of transition between two distinct phases.
In this context, Benayoun et al. in [7] introduced an intriguingly puzzling, with
very general mechanisms, giving rise to the emergence of self-similar bursts of
activity in finite-size systems of spiking neurons. Thus, indicating that the
system, poised in a regime of balance between excitation and inhibition, results
in an avalanching-like behavior.

Our aim is to uncover the interplay between the factors concurring to the
appearance of non-critical avalanches of activity in [7] as well as to extend these
results to regularly mechanisms other than inhibition.

In order to explain the phenomenon, we will recover the mathematical ratio-
nale of “non-normal” forms and in particular we will study the transient behavior
of “reactive” systems and try to explain the emergence of a non-differentiable
manifold (a “scar”) close to the fixed point. Also, this framework allows to
precisely survey the relationship that exists between “balance” and “criticality”
and to explain that the system being close to the transition between two phases
is not a necessary nor sufficient condition for the emergence of the phenomenon.
Although the specific meaning of the two concepts of “balance” and “critical-
ity” might vary in other contexts, clarifying the differences between them in a
simple framework, may give a hint on how they can be correctly interpreted
in more complex setups. Moreover we give specific quantitative insights on the
exponents of the power laws, measured at a mesoscopic level and relate them
to two different types of noise (multiplicative and additive, playing a key role in
many physical systems [66]), that become dominant at different scales.

Finally we show that the described mechanism is not a peculiarity of the
excitatory/inhibitory underlying structure, but it applies to a wider scenario: a
similar non-critical scale-invariance can be obtained by changing the regulatory
mechanism that drives the dynamics, i.e. excluding inhibition and introducing
synaptic plasticity.



4.2
Demographic noise and

balanced logarithmic
potentials

Directed percolation (DP) is the paradigmatic example of a very large class
of systems –including catalytic reactions, growing interfaces in random

media, damage spreading, epidemic dynamics, and turbulence, to name but a
few– exhibiting a phase transition separating a quiescent or absorbing state from
an active one [28, 31, 32, 42, 46, 54]. The essence of this very robust universality
class –which, curiously enough, had to wait long for experimental backing [70]–
is parsimoniously encoded in the following Langevin equation [27, 28, 32, 37, 54]

ρ̇(r, t) = aρ(r, t)− bρ2(r, t) +D∇2ρ(r, t) +
√
ρ(r, t)η(r, t), (4.2.1)

where ρ(r, t) is the density of activity at coordinates r and time t, a is the control
parameter regulating the distance to the critical point, b and D are constants,
and η(t) is a Gaussian white noise of variance σ2. Critical exponents, scaling
functions, and, in general, all critical features can be obtained using Eq.(4.2.1) as
a starting point. The most preponderant aspect of this equation, distinguishing
it from other classes, as for instance the Ising class [8], is the √ρ factor in the
noise amplitude. This square-root noise term stems from the “demographic”
nature of the particle-number fluctuations; and it imposes that there are no
fluctuations in the absence of activity, as corresponds to the absorbing state1.

The same type of demographic noise also appears in other slightly different
universality classes, such as:

i) the voter-model or neutral class describing the dynamics of neutral theories
in which two symmetric competing states are possible [1, 18, 20, 42]; in
this class there is no deterministic force except for diffusion, and the noise
amplitude is different from zero only at the interfaces separating the two
absorbing states e.g. at ρ = 0 and ρ = 1, i.e. ρ̇(r, t) = D∇2ρ(r, t) +√
ρ(r, t)(1− ρ(r, t)) [1];

1Another group of universal behavior is that of systems with noise proportional to the ac-
tivity (rather that to the square-root of the activity); these encode a different type of processes
where the most dominant fluctuations are not demographic, but associated to spatio-temporal
variability in the overall parameters [25, 29, 49].
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136 Chapter 4. Reactive and noisy dynamics in simple neural systems

ii) the dynamical percolation class [26, 36] –in which re-activation of sites
cannot occur and, as a consequence, the non-linear term in Eq.(4.2.1) needs
to be replaced by a non-Markovian term −ρ(r, t)

∫ t
−∞ dt

′ρ(r, t′) keeping
track of past activity while the noise term remains unchanged, and

iii) the Manna class of systems with many absorbing states such as sandpiles
in which an additional conservation law –that can be encapsulated in an
additional term −ρ(r, t)

∫ t
−∞ dt∇2ρ(r, t) [10, 74]– exists, while the noise

term remains as in directed percolation.

As previously discussed in chapter 1, all systems with absorbing states ex-
hibit scale-invariant avalanches at criticality, distributed as P (S) ∼ S−τ and
P (T ) ∼ T−α. Of course, such behavior include these four classes and some
other more infrequent ones, not specified here. Remember also that, in par-
ticular, for avalanches propagating in high dimensional systems (or in densely
connected networks) mean-field exponent values τ = 3/2, α = 2 and γ = 2 are
obtained for all systems with absorbing states.

In order to explicitly compute these exponent values, textbooks usually re-
sort to the (Galton-Watson) branching process [21, 31, 42, 77]. In this, each
node of a tree has two branches emerging out of it; from an occupied/active
node at time/generation n each of its two out-branches (at time/generation
n+ 1) are occupied/active with probability p or left empty with complementary
(1− p). Observe that this is just a variant of directed percolation running on a
regular tree (see Figure 4.2.1). For completeness, we now present a very simple
derivation of its associated avalanche distribution functions.

4.2.1
A simple calculation for the branching process

To compute P (S) –where S is the total number of occupied/active nodes before
the process comes to its end– one just needs to evaluate the total number of
connected trees of size S, which is nothing but the Catalan number [33]

C(S) = 1
S

(
2S
S − 1

)
, (4.2.2)

and multiply it for the probability of each one to occur, pS−1(1− p)S+1. Evalu-
ating the resulting expression P (S, p) = (2S)!/((S+ 1)!S!)pS−1(1−p)S+1 in the
Stirling approximation for S >> 1, one readily obtains

P (S, p) = N√
π
S−3/2(4p(1− p))S , (4.2.3)

where N is a normalization constant; in particular, this becomes a power law
at the critical point p = 1/2: P (S, 1/2) = N√

π
S−3/2, implying τ = 3/2.
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The exponent γ can also be derived using the statistics of branch lengths in
Catalan trees of a given size [16], leading readily to the result γ = 2; and from
this, using the scaling relation Eq.(1.2.13), one obtains α = 2.

These results for the branching-process avalanche statistics can be derived
in a more systematic way –for different types of underlying regular or random
tree topologies– within the generating function formalism [61, 63, 79]; indeed,
already back in 1949 Otter computed the solution for the case of a Poissonian
distribution of branches per node [55].

T

0 1 2 3 4

p

1-p C(3)=5

Figure 4.2.1: Left: Illustration of a realization of the un-biased branching pro-
cess, showing (highlighted) an avalanche of size S = 10 and duration T = 3,
together with the structure of the underlying rooted binary tree on top of which
it unfolds. Right: Visualization of the 5 possible paths of S = 3 as counted by
the Catalan number C(3) = 5.

Given that the result, e.g. a power-law with exponent 3/2 for the size distri-
bution, is much more general than any specific branching process in any specific
tree-like topology, it is appealing from a theoretical point of view to derive
an even more general proof of these results, covering all cases at once. From
a slightly different perspective, relying on field theory and scaling arguments
[35, 50, 51] the whole set of exponent values can be obtained for each specific
universality class, but again, the result –being common to all classes, i.e. super-
universal– should be amenable for a more generic explanation.
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4.2.2
Random walks in a logarithmic potential

The common feature shared by all the Langevin equations of the different classes
of systems with absorbing states, as already mentioned above, is the presence of
a demographic, square-root, noise amplitude. As a matter of fact –as illustrated
in more detail in appendix (D.1)– in the mean-field limit it is easy to derive a
common and unique effective Langevin equation for all classes of systems with
absorbing states at criticality, as

ρ̇ = √ρ ξ(t), (4.2.4)

where ρ is the overall activity and ξ(t) is a Gaussian white noise with zero mean
and 〈ξ(t)ξ(t′)〉 = 2σ2δ(t−t′) which needs to be interpreted in the Itô sense in or-
der to guarantee that ρ = 0 is an absorbing state [24, 72]. We refer to Eq.(4.2.4)
as “demographic random walker” (DRW). To avoid the complications of the Itô
calculus, we write the equivalent equation in the Stratonovich interpretation
(see appendix A.1 or [24, 72] for a detailed discussion):

ρ̇ = −σ
2

2 +√ρη(t) (4.2.5)

where now 〈η(t)η(t′)〉 = σ2

2 δ(t − t′). Using now standard calculus to change
variables to x = √ρ directly gives2

ẋ = −σ
2

4x + η(t). (4.2.6)

The resulting equation is just a particular case of a one-dimensional random
walker (RW) moving in a logarithmic potential U(x) = λ log x, i.e.

dx

dt
= −dU(x)

dx
+ η(t) = −λ

x
+ η(t), (4.2.7)

where λ is a positive constant and, in general, 〈η(t)η(t′)〉 = 2µδ(t− t′), with µ a
generic positive constant. Observe that Eq.(4.2.6) corresponds to the particular
case, λ = µ = σ2/4 –that we call balanced– in which the ratio between the
amplitudes of the logarithmic potential and the noise-correlation amplitude, µ,
is equal to unity: β ≡ λ/µ = 1. This perfect balance between the deterministic-
force and stochastic coefficients is essential for what follows, as we shall see.

2An alternative approach to analyze Langevin equations such as Eq.(4.2.4) consists in re-
absorbing the noise amplitude into the time-scale, leading to a standard random walk with
a different “clock” [64]. Another interesting possibility is deriving these results from a more
general fractional Brownian motion [19].
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More in general, let us remark that, in the presence of an external field –al-
lowing for the spontaneous generation of activity at a fixed rate h– Eq.(4.2.5)
needs to be complemented with an additional +h term. Upon changing vari-
ables, this implies β = 1 → 1 − h/µ, in Eq.(4.2.7) and thus, in the presence of
external driving, the perfect balance between coefficients breaks down.

Figure 4.2.2: Illustration of the time evolution of a standard random walk (RW)
and a demographic random walk (DRW); each color corresponds to a different
realization. Upper panel: standard RW that, in principle, can freely cross the
origin. Avalanches start and end when the walker crosses the origin. Lower
panel: the DRW can be represented as a stochastic RW moving in a balanced
logarithmic potential that keeps the walker bounded to the origin. Since the
variable is always strictly positive, the avalanches can be defined as the activity
over a threshold ε→ 0.

To compute avalanche exponents from Eq.(4.2.7), let us define an avalanche
as a random walk x(T ), starting at x(t = 0) = 0+ and returning for the first time
to the origin at time T , x(T ) = 0 (see Figure (4.2.2)). The distribution or its
return times is nothing but P (T ) as defined above. The problem of computing
such a return-time distribution for the random walk in a logarithmic potential,
i.e. by Eq.(4.2.6), was solved by A. Bray [12] and revisited by F. Colaiori in
the context of Barkhaussen crackling noise [15]. The solution requires writing
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down the equivalent Fokker Planck equation for the Langevin dynamics, with
a delta-like initial condition centered at a value slightly larger than x = 0, and
computing the probability flux F at the origin as a function of the time T (more
detailed sketch of the analysis is presented in Appendix D.2 for the sake of
completeness). The resulting first-return probability distribution function is

P (T ) = 4µε2ν

Γ(ν − 1)(1 + β)(4µT )−ν−1e−
x2

4µT

∼ T−ν−1 = T−
3+β

2 , (4.2.8)

where ν = (1 + β)/2, implying α = 3+β
2 . Observe that, in the limit of vanishing

potential amplitude, λ = 0, this result reproduces the statistics of a freely-
moving random walk, P (T ) ∼ T−

3
2 , while in the opposite perfectly-balanced

limit, λ = µ (i.e. β = 1) the result is P (T ) ∼ T−2 in agreement with the ex-
pectations for the un-biased branching process. It is noteworthy that –despite
the fact that the random walk in a logarithmic potential gives a non-universal
avalanche duration exponent– for the undriven DRW case, in which the loga-
rithmic potential derives from a change of variables in Itô calculus, there exists
a perfect balance between the coefficients of the equation; they both depend on
the noise amplitude and, compensating each other, they generate the universal
value α = 2. However, in the presence of an external field, β = 1− h/µ break-
ing down the perfect balance between coefficients, non-universal continuously-
varying avalanche exponents appear (see Figure 4.2.3); in particular,

α = 2− h

2µ. (4.2.9)
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Figure 4.2.3: Size-avalanche and duration-avalanche distributions for the un-
driven demographic random walk as described by Eq.(4.2.4), as well as for di-
verse values of the external driving field (marked with symbols) h = 0.01 (blue
squares), h = 0.1 (yellow stars), h = 0.2 (green crosses) and h = 0.3 (red trian-
gles), with reference curves (solid lines) t−2+h/(2µ) and s−3/2+h/(4µ) (as derived
in the text), respectively, illustrating the agreement with theoretical predictions.
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In any possible discrete/particle model with absorbing states, this change of
exponents stems from the fact that –owing to the external driving– avalanches
from different initial seeds (each of them spontaneously generated by the exter-
nal driving field) can merge, which allows their combination to survive longer
and be larger, leading to smaller effective exponents α and τ (see Table 4.1).

Turning back to the general discussion, using the above result together with
simple scaling, we can readily derive the associated avalanche size exponent,
τ . In order to have a unified notation let us use a generic variable v(t), which
can be in particular, x(t) for the RW, or ρ(t) for the DRW. The size of any
given avalanche is defined as the area under the curve defined by the random
walk, i.e. S =

∫ T
0 v(t) dt, and we are interested in the distribution of such sizes

as a function of T , P (S|T ). Given that the typical displacement of a random
walk in time t scales as v ∼

√
t, for the DRW (for which there is an additional

square-root factor) we have v ∼
√
v
√
t, and thus, v ∼ t; hence, we can write,

in general, v ∼ tφ, with φ = 1/2 and φ = 1 for the RW and the DRW (either
driven or undriven), respectively.

It is natural to define a new rescaled variable ṽ(t/T ) = v(t)/T φ which de-
scribes a random excursion in the interval [0, 1]. In these terms,

S =
∫ T

0
v(t)dt ∼ T φ+1

∫ 1

0
ṽ(z)dz. (4.2.10)

Thus, the average avalanche size, 〈S〉 obtained averaging over all possible avalanche
shapes, ṽ(z), scales also with T φ+1, implying γ = φ+ 1.

Using the previous result, P (S|T ) can be written as a scaling form P (S|T ) =
T−γG (S/T γ) where the factor T−γ comes from the normalization condition, and
the unspecified scaling function G obeys G(z) ≥ 0 for all z and

∫∞
0 G(z)dz = 1.

Having computed the conditional probability P (S|T ), we can obtain P (S) as

P (S) =
∫ ∞

0
dTP (S|T )P (T )

∼ C

∫ ∞
0

dT T−γT−αG (S/T γ)

∼ CS−(γ+α−1)/γ
∫ ∞

0
duu

(α−1)
γ G (u) , (4.2.11)

and, thus, τ = (γ + α − 1)/γ (which is nothing but the scaling relation Eq.
(1.2.13)). Plugging the value of α and γ derived above one obtains the well-
known result τ = 4/3 for the standard random walk3 and, for the DRW,

τ = 3
2 −

h

4µ, (4.2.12)

which reduces to the well-known result τ = 3/2 for the un-driven case.
3In the case of the standard RW case the scaling function GRW has been exactly derived

(see e.g. [44]), but its specific form is not essential for our purposes here.
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A summary of the exponents for the different cases is contained in Table 4.1.

Unbiased
RW

Demographic
RW

Driven
Demographic RW

P (T ) ∼ T−α α = 3/2 α = 2 α = 2− h/2µ

P (S) ∼ S−τ τ = 4/3 τ = 3/2 τ = 3/2− h/4µ

P (S|T ) ∼ T γ γ = 3/2 γ = 2 γ = 2

Table 4.1: Summary of the avalanche exponents for the standard RW, the de-
mographic RW, and the driven demographic RW (in the presence of an external
field, allowing for the spontaneous generation of activity at a fixed rate h).

Results beyond critical exponents have also been obtained in the literature,
for example, the average shape of random-walk excursions is a semi-circle for
standard un-biased random walkers [3] while it is a parabola for demographic
walkers [57]. This can be easily seen by rescaling the walks to ṽ and the times
to t/T to collapse curves as described above. In this way ṽ(t/T ) = F(t/T )
where F(t/T ) is a scaling function. Given that, v(t) ∼ tγ−1, dividing by T γ−1,
ṽ(t/T ) ∼ (t/T )γ−1, at least for small times, t << T . Considering that a similar
relation holds for the reverse time walk starting from t/T = 1, then the avalanche
shape is F(t/T ) = [(t/T )(1 − t/T )]γ−1 which is a semicircle for γ = 3/2 (RW)
and a parabola for γ = 2 (DRW and driven DRW).

In summary, we have explicitly shown that the mean-field values of avalanche
exponents in systems with absorbing states can be computed in a general way
by mapping them into a random walk confined by a logarithmic potential,
Eq.(4.2.6). Of course, this same conclusion could have been reached by arguing
in a heuristic way that all of high-dimensional processes involving absorbing
states should be effectively described by an un-biased branching process, and
then constructing a continuous description of it (i.e. a Fokker-Planck or equiv-
alently a Langevin equation) which would be nothing but Eq.(4.2.4).

An interesting corollary is that the exponents do change in the presence of
spontaneous creation of activity, even if the rate is arbitrarily small. This re-
sult could be relevant to understand empirical results; for instance in cortical
networks, avalanches of neural activity have been reported to exhibit branching
process statistics [5]; still inspection of some of the most careful estimations
reveals possible deviations from τ = 3/2 [68], which could be potentially as-
cribable to a non-vanishing inherent spontaneous-activation. Thus, special care
should be taken to ensure that such (theoretical) power laws are a fingerprint
of criticality, because the spontaneous creation of activity (h) leads to generic
power laws across the entire absorbing phase. The picture is not entirely nega-
tive since, just at the critical point, true scale-invariant avalanches are present
(in a spatial extended system) and the well-known fingerprints of criticality (e.g.
long-range correlations, among others) are retrieved.



4.3
Reactive and noisy dynamics
in the Wilson-Cowan model

Following [7], we consider the Wilson-Cowan mean field description of a large-
scale neocortical homogeneous population of excitatory and inhibitory neu-

rons [78] (that has already been used in appendix B.1 to explain a particular case
of the synchronization transition of chapter 2). The equations describing the
dynamics of the activity (density of active neurons) for the two subpopulations
E and I read [78]: {

dE
dt = −αE + (1− E) f (s)
dI
dt = −αI + (1− I) f (s) ,

(4.3.1)

where f(s) is a sigmoid arbitrary response function, that for simplicity we fix to

f (s) =
{

tanh (s) s ≥ 0
0 s < 0

and s is the incoming current

s = ωEE − ωII + h.

which is simply the sum of all synaptic inputs, i.e. the sum of the whole ex-
citatory and inhibitory activity weighted by their respective synaptic efficacy
(ωE and ωI), plus an external small constant input current h. These simple
equations state that for low incoming currents the activity of each population
decays exponentially with a time scale specified by 1/α; on the other hand the
activity grows up to a maximum saturation value (E, I = 1) as a function of
the incoming current s. According to this mean field approach, the connections
between the cells within the described populations are assumed to be random
and dense enough so that spatial heterogeneity can be neglected.

Despite its simplicity, the Wilson-Cowan model encompasses a plethora of
different possible scenarios, depending on the parameter values. The possibility
to visually display and readily understand those scenarios using phase plane
methods (together with the feasibility to analytically approach some issues)
granted a big success to the model, considering that its collection of behaviors
turned out to be very effective in describing a striking variety of experimentally
observed neural behaviors, concerning both spontaneous and evoked activity,
such as the existence of multiple stable states (Up-Down states), oscillatory
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behavior, simple and multiple hysteresis loops, together with the prediction
that a weak stimulus produces dumped propagating waves whereas a stronger
stimulus generates a more localized response [11, 34, 78]. Leaving aside fancy
behaviors, the model can be further simplified and reduced to an elementary
setting, where only one stable fixed point exists and depending on whether
excitation or inhibition dominates, the steady state is respectively active or
inactive. More specifically, by considering that the coupling constants depend
uniquely on the pre-synaptic cell type, i.e. ωEE = ωEI = ωE and ωII = ωIE =
ωI (and fixing the decay constant α and the small external current h) the system
is left with a two dimensional parameter space, which consists of the excitatory
and inhibitory synaptic strengths. Under this symmetry, the unique steady
state only depends on ω0 = ωE − ωI . In Fig.4.3.1 we plot the value of the fixed
point, in the variable Σ = (E + I)/2, for different values of ω0, while keeping
ωs = ωE+ωI constant. The system shows a phase transition in the critical value
ω0 = 0 separating an active (excitation dominated) from an inactive (inhibition
dominated) phase. Note that since a small external field h is present, the fixed
point does not loose its stability at criticality.
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Figure 4.3.1: Left figure: sketch of the Wilson Cowan model. The excitatory
population interacts with a single parameter, ωE and the same applies to the
inhibitory population, with ωI . Right figure: Phase transition for the model,
the phase of the system depends on the difference ω0 = ωE − ωI ; if ω0 > 0 the
system is in the active phase. From left to right the system is in the ’down’
state, critical point, a ’low-stable’ up state and in the ’up’ state (green, purple,
blue and red, respectively).
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Strikingly, this remarkably simple and intuitive behavior is overturned when
finite size effects are taken into account. In [7], Benayoun et al considered a sim-
ple (all-to-all) spiking neuron model such that (i) each neuron is either active or
quiescent (ii) the probability that each quiescent neuron becomes active depends
on (a sigmoid function of) the total synaptic input and (iii) each active neuron
decays at a constant rate. Starting from this microscopic simple binary-neuron
rate model Benayoun et al were able to recover Wilson-Cowan (mesoscopic)
dynamics, through a Van Kampen system-size expansion [72]. Thus they de-
termined the correct stochastic term to be added to Eq. (4.3.1) to consider the
effects of the finiteness of the population described. After a coarse graining of
the master equation, the full stochastic equations read{

dE
dt = −αE + (1− E) f (s) + σ

√
αE + (1− E) f (s)ηE

dI
dt = −αI + (1− I) f (s) + σ

√
αI + (1− I) f (s)ηI

(4.3.2)

where ηE,I are Gaussian white variables and the stochastic term is a demo-
graphic noise (given by the second moment of the jump probabilities), which
decays with system-size and vanishes in the thermodynamic limit.

4.3.1
Phenomenology

Benayoun et al [7] showed that, in a regime of balance between excitation and in-
hibition, or equivalently, when the difference between excitatory and inhibitory
synaptic weights is very small with respect to their sum ω0 � ωs, low levels of
noise (i.e. large but not infinite system sizes) generate highly bursty (pseudo-
scale-invariant) behavior. This seems to be in outstanding counter-trend with
respect to the mean field case, which would predict a single sustained steady
state, instead of shows an alternation of highly bursty time intervals –inter-
spersed with periods of silence– extremely reminiscent of the experimental ev-
idences showing self-similar bursts of activity in the resting state of cortical
dynamics. In fact a measure of the avalanches size and duration, defined in
complete analogy with the experimental setup, gives power-law distributions.

4.3.2
Criticality and balance

As a starting point, we address the problem of fully specifying the difference
between "critical" and "balanced". First of all we should better talk about "quasi-
criticality" [9], given both the inherent limitedness of the system size and the
existence of a small external field h. The condition for the system to be quasi-
critical is ω0 � 1, while the system is balanced when ω0 � ωs, thus quasi-
criticality is not necessary nor sufficient for balance.
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In order to clarify this issue and discriminate the effects of criticality and bal-
ance we plot in Fig.4.3.2 the phase plane of the deterministic system (Eq.4.3.1).
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Figure 4.3.2: (a) E-I phase portrait for an stable state near the critical point
(ωE = 1

5 , ωI = 0). The stable fixed point –wherein the nullclines intersect– is
represented as a circle. At last, the eigenvectors direction in the stable ’up’ state
are indicated by black arrows, (b) E-I phase portrait for a balanced-amplification
condition (ωE = 7, ωI = 34

5 ). The nullclines are in close proximity to each other,
in contrast with the former case, (c) E-I phase portrait for an stable state far
from the critical point (ωE = 4, ωI = 1). and, (d) E-I phase portrait for
the same situation in the active phase but, with (ωE = 20, ωI = 17). The
proximity between the nullclines make it easy to look that the systems evolves,
near the critical point, around a (1 + ε)-dimensional movement; i.e. any small
perturbation resulted in great dynamical fluctuations.
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In the first row (Fig.4.3.2a and b) the parameters set the system in a (close
to) critical sate, (the stable fixed point, i.e. the point where the nullclines inter-
sect, is evidenced with a dot) corresponding to the the blue arrow in Fig.4.3.1,
while in the second row (Fig.4.3.2c and d) the deterministic system sponta-
neously evolves towards a stable highly active phase (red arrow in Fig.4.3.1).
Moreover, the first column (Fig.4.3.2a and c) shows non-balanced configurations
(i.e. small values of the sum ωs) while the second column (Fig.4.3.2b and d)
shows balanced ones.

At this heuristic level we can remark that in the balanced case there is some
sort of “scar” in the phase portrait, such that two shear stresses flowing in
opposite directions, coexist very close to each other. In other words, the vector
field ( ~̇E, ~̇I) shows a discontinuity all along a manifold (a line in this case) that
corresponds to a whole (infinite) set of (unstable –or marginally stable– ) points
in which the nullclines superimpose. As we shall explain in further details in
what follows, this "scar" is responsible for the amplification of the fluctuations
around the fixed point introduced by demographic noise: as soon as a small
noise drives the system "slightly" away from the fixed point (i.e. outside of its
local basin of attraction), these strong flows hardly pull the system towards
very low (or very high) levels of activity. Conversely, in the case of a critical,
but non-balanced system (Fig. 4.3.2a) it is immediately evident that another
completely different mechanism generates large fluctuations.

4.3.2.1 Linearized dynamics is non-normal

Following Murphy et al. [53] this phenomenon can be explained under the ratio-
nale of non-normal or reactive dynamics. Considering that the dynamics in the
balanced case naturally determines a preferential direction along the diagonal
[7], let us change variables to Σ = (E + I)/2, ∆ = (E − I)/2. Thus, Eq. 4.3.1
becomes {

dΣ
dt = −αΣ + (1−Σ) f (θ)
d∆
dt = −∆ (α+ f (θ))

(4.3.3)

with θ = ω0Σ + (ωs)∆+ h. Elementary algebra can be employed to verify that
the fixed point lays in (Σ0, 0), i.e. always in the diagonal in the (E, I) reference
frame. A standard linear stability analysis around the fixed point gives the
Jacobian

J =
(
−λ1 ωff

0 −λ2

)
(4.3.4)

where the eigenvalues are λ1 = (α+f(θ0))+(1−Σ0)ω0f
′(θ0) and λ2 = (α+f(θ0))

and ωff = (1− Σ0)(ωE + ωI)f ′(θ0).
Note that, near the critical point, where ω0 is small and positive, immediately

λ1 and λ2 are also small [7], inducing a weakly stable fixed point. Therefore, such
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“weakness” of the stability of the fixed point is related –at first glance– to the
distance to the critical point (ω0). Nevertheless, the structure of the Jacobian
makes it visible that its diagonal does not enclose all the information of the
dynamics, as the out-diagonal term (the so-called feed-forward term) cannot be
eliminated4. Triangular matrices such as J are called non-normal, meaning that
J∗J 6= JJ∗, where J∗ is the conjugate transpose of J5. The effect of a big feed-
forward term in Eq.(4.3.4) is straightforward to verify since, when operating
on a small perturbation along the ∆ direction, the linearized dynamics gives a
small response in the same direction plus a much bigger response along the Σ
direction, corresponding to the strong shear flows clearly visible in Fig. 4.3.2.
Non-normal matrices also have the property of being "reactive" [73], since the
dynamics they describe can show unusually long-lasting transient behavior, i.e.
the system can be strongly driven away from the fixed point before coming to
its steady state. Thus, in this case, the stability of the fixed point has to be
compared with the feed-forward term ωff . A big feed-forward term is able to
strongly affect the dynamics when the stability of the fixed point is weak with
respect to the feed-forward component (even if the eigenvalues are not close to
zero), i.e. when the non-normality is big with respect to the stability. Since
the eigenvalues depend on the control parameter through ω0 –while ωff only
depends on ωs– the requirement for the appearance of the mechanism is the
balanced condition ω0 � ωs even far from the quasi-critical condition ω0 & 0.

※ On the eigenvectors of the Jacobian We should remark that the change of
variables (E, I)→ (Σ,∆), that we performed for evident convenience, turns out
to be a Schur transformation6, indeed generating a triangular Jacobian. The
(non-orthogonal) basis of eigenvectors in the variables (Σ,∆) is(

1
0

)
,

(
1
ξ

)
with ξ = ω0

(ωE+ωI) , leading to almost equal eigenvectors for ξ → 0.
Moreover, the weight of the non-normality is basically the weight of the feed-

forward interaction with respect to the eigenvalues, which means that, fixing ω0,
it grows with ωs (going –very– roughly as 1 − O(ω0)/O(ωs)). In other words the
balance condition ω0 � ωs means exactly that the non-normality is big with
respect to the stability of the fixed point. From the balanced condition of
Figure 4.3.2 we can imagine that, if we perturbed the stable fixed point one
step further from the basin of attraction, the trajectory would perform a big
transient excursion in the direction of the scar.

4Triangular matrices are not diagonalizable.
5Note that in the quantum mechanics all non-normal matrices are “explicitly forbidden”,

since all physical operators are Hermitian and all Hermitian matrices are normal.
6The Schur decomposition is a matrix decomposition A = MJM−1 where M is a unitary

matrix and J is an upper triangular matrix (the Schur form) of A.
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4.3.3
The roles played by the noise

By numerical simulation of Eqs.(4.3.2), when the system is endowed with some
tiny noise (see upper panel of Figure 4.3.3), it is confirmed the existence of
a fixed (stable) point Σ∗. Little bigger values of noise produce fluctuations
around such stable fixed point but, beyond some particular value of the noise
amplitude, σ, the stability is disturbed and the system is able to reach to the
origin. Thus, the dynamics keeps wandering, and noise-induced fluctuations are
strongly amplified –under balance conditions– by the mechanism of reactivity
along the Σ direction (i.e. along the diagonal in the (E, I) reference-frame of
Fig.4.3.2). In particular, intermediate values of σ give rise to up and down
states, reminiscent of experimental findings of cortical areas in the brain. Even
more, one can appreciate that the higher the value of the noise the more time
elapses the system close to the origin, showing excursions to the ’up’ state; such
fluctuations most closely resembles to the emergence of avalanches of activity,
growing, spreading and coming back to the absorbing state.
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Figure 4.3.3: Up figure: Temporal series of Σ in a balanced-amplification condi-
tion (ωE = 7, ωI = 34

5 ) for increasing levels of noise (from left to right). Above
a certain threshold the system is allowed to reach the absorbing state, showing
an avalanching behavior for high values of noise. Down figure: Probability of
different types of avalanches for different values of the noise amplitude (σ, see
Legend); size avalanches, time avalanches and, size versus time avalanches. Note
that, in the three cases, the nature of the avalanches highly depends on the noise
amplitude. Other parameter values: α = 0.1, h = 10−3
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From such avalanche-like dynamics, defining duration and size of the activity
over a small threshold, it is possible to confirm the result of [7] on the scale-
invariance of the activity, i.e. both follow a power law of the form P (T ) ∼ T−α
and P (S) ∼ S−τ , where α and τ are the corresponding exponents (see lower
panel of Figure 4.3.3). Furthermore, it allows for an accurate analysis of the
exponent of the power-laws. Although the power law is composed by a mixture of
different trends, for high values of the noise (or at least for small avalanche sizes),
the exponents are compatible with the well known exponents for a standard
random walk, i.e. α = 3/2 and τ = 4/3.

Despite the fact that the mechanism that generates large fluctuations has
been defined, the system shows large silent time-intervals (with extremely low
activity as shown in Fig.4.3.3), whose existence is a necessary condition in order
to define avalanches. However, the origin of such –highly probable- silent inter-
vals is misunderstood yet but, as indicated by the temporal series it is related
and (probably) induced by high values of noise.

4.3.3.1 The reduced system

The empirical observation that the system keeps wandering along the diagonal
in the (E, I) reference-frame suggests to study a reduced one variable system,
where the dynamics is strictly constrained to evolve along the diagonal (i.e.
∆ = 0, E = I = Σ). Since in this approximation θ is small, it is possible to take
the Taylor expansion tanh(θ) ≈ θ and, thus, the reduced system in the variable
ρ reads

dρ

dt
= h+ (−α− h+ ω0) ρ− ω0ρ

2 + σ
√

(ω0 + α− h)ρ− ω0ρ2 + hηρ, (4.3.5)

where ηρ is a Gaussian white variable. For very low levels of activity (ρ ≈ 0),
the noise amplitude in Eq.(4.3.5) is dominated by the square root term and
the reduced dynamics is approximately equivalent to the Langevin equation for
the Contact Process in a fully connected network (considering

√
ρ+ h ≈ √ρ,

already presented in the above section or in chapter 1)

ρ̇ = h+ aρ− bρ2 + σ̃
√
ρη, (4.3.6)

with a = (−α− h+ ω0), b = ω0 and σ̃ = σ
√

(ω0 + α− h).
Previously, it has been shown that Eq.(4.3.6) can be mapped into a random

walk confined by a logarithmic potential, attracting the dynamics of the system
to the noise-induced singularity in the origin. This would explain the unusually
large permanence times of the original two-variable system into low activity
regimes, responsible for the avalanching behavior.
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Figure 4.3.4: (a) Log-normal scale, y-axis is inverted. Histogram of the Σ −
signal of one Wilson-Cowan column for different values of the noise amplitude
(σ, see legend). The potential change from a single potential well (for low noise,
not shown) to a bistable situation alternating between ’up’ and ’down’ states
and, finally, to a new single potential focused on the ’down’ state Inset: same
data but in log-log scale. Dashed lines corresponds to ∆ − potential, showing
extremely small and parabolic-like potentials. (b) Histogram of the Σ − signal
of one Wilson-Cowan column for the additive noise case and different values
of the noise amplitude (σ, same color code). (c) Theoretical potential from
previous one-dimensional effective equations in ρ. The similarity among them
is undeniable. Parameter values: ωE = 7, ωI = 34

5 , α = 0.1, h = 10−6

The original dynamics of Eq.(4.3.2) can be directly compared with the
simplified one introduced above (Fig.4.3.4). On one hand, the time series of
the dynamics of the complete system (resulting from a numerical integration
of the model) defines the effective bivariate probability distribution P (Σ,∆).
Marginalizing over ∆, one obtains the stationary distribution of the dynam-
ics along the diagonal P (Σ) =

∫∞
0 P (Σ,∆)d∆, from which it is straightfor-

ward to define (the projection along the diagonal of) an effective potential, as
Veff (Σ) = − lnP (Σ). On the other hand, the stationary potential for the re-
duced dynamics in ρ can be calculated through a Fokker-Planck approach (as
stated in chapter 1) giving rise to

V (ρ) ∝
(

(1− 2h
σ2 ) ln ρ− 2a

σ2 ρ+ b

σ2 ρ
2 + c

)
(4.3.7)
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In Fig.4.3.4 the effective potentials deriving from the complete and the re-
duced dynamics are shown to be fairly similar. Also, the bivariate probability
distribution P (Σ,∆) for a system with additive noise confirms such hypothesis,
because it shows no signs of being singular at the origin. Thus we can con-
clude that the bistability of the potential, causing the system to remain tightly
trapped when it is close to the origin, is generated by the square root multi-
plicative noise term. The presence of a small driving h makes sure that the
system never falls into the absorbing state, but keeps trying to escape from the
logarithmic potential well.

Also, for the reduced system in Eq.(4.3.6), the avalanche distributions have
been fully determined above from the first return time to the origin of the ran-
dom walk confined to the logarithmic potential. They are power-law distributed,
with continuously varying non-universal exponents that depend on the driving
(h) and on the noise amplitude (σ), that are α = 2− 2h/σ2 and τ = 1.5−h/σ2.
However, the avalanche distributions of the Wilson-Cowan dynamics under the
balance condition (enclosed in Eq.(4.3.2)) does not follow such critical expo-
nents (as shown in Fig. 4.3.3). This is due to the neglected term

√
ρ+ h; note

that vanishing values of ρ, we always have an additive noise with amplitude
√
h,

leading to the observed random walk exponents.

4.3.3.2 Beyond the diagonal

As shown in Fig.4.3.3 the statistics of avalanches in the full system are composed
by a mixture of different trends, showing bumps and following the exponents
for a standard random walk. Also, the temporal series provide “up and down”
states, as well as certain degree of avalanching behavior depending on the noise
amplitude. A possible reason for this can be figured out observing the vector
field ( ~̇E, ~̇I) in Fig.4.3.2. Indeed, the whole semi-plane I > E is attracted to
the origin by a (roughly) parabolic potential with a noise-induced minimum
close to the origin, that joins discontinuously along the diagonal with the other
half system, which is another attractive potential with another deterministic
minimum, i.e. the up-state.

Therefore, when inhibition dominates (I > E), the system is rapidly trapped
very close to the origin (by the logarithmic potential sketched above). On the
contrary, when the activity is excitatory dominated (E > I), the system is
strongly pulled towards high activity states. Such behavior suggests some type
of “tunneling effect” between both minima.

In order to test this hypothesis, and corroborate our conjecture on the role
played by the various ingredients (i.e. non-normal dynamics, multiplicative
and additive noise) cooperating to produce the noise induced bursty behavior
in Wilson-Cowan balanced system, we propose a simple effective model, that
contains an essential version of all the mechanisms described.
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4.3.3.3 Minimal model

Enclosing the all the dynamics described above, we propose a minimal one-
dimensional model to mimic the behavior of the system,

i) The system follows the next system of effective equations for the activ-
ity with multiplicative/additive noise, separated by some arbitrary small
threshold value (T )

{
ρ̇ = h+ aρ− bρ2 + σ

√
ρη ρ > T

ρ̇ = −aρ+ ση ρ < T
(4.3.8)

ii) The system can instantly take the value ρ = 0 or ρ = a
b with probability

p, mimicking the shear flow close to the diagonal and allowing some type
of “tunneling effect”.

Setting up the system in the active phase (i.e. with a > 0) this “toy” model are
able to reproduce the complex behavior of the avalanches shown in Fig.4.3.3.
In this sense, Fig. 4.3.5 shows the avalanche size and duration probability
distributions for different values of p. Just as our original model, there is a
region with a power-law behavior following the Random Walk universality class,
and (sometimes) a “bump” that reflects the existence of an (weakly) up stable
state. Finally, for huge avalanches there exists an exponential cut-off.
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Figure 4.3.5: Avalanches for the (1 + ε)-dimensional model. Avalanche size dis-
tribution for differents values of p. There is a region of random walk movement,
followed by a bump related to the tunneling effect. Inset: Same behavior for the
avalanch duration distribution. Parameters values: a = 0.5, b = 1, σ = 10−3,
h = 10−3, T = 2.5 · 10−4.



4.4
Reactive dynamics in the
Tsodyks-Markram model

With the aim to generalize the –just described– mechanism of “balanced
amplification” to another neural dynamics, we hypothesize that inhibition

is not the only regulatory mechanism that induces a reactive behavior: non-
normal forms –and more in general, noise-induced behavior– might be a common
trait in neurophysics. In particular, a balanced-like system must therefore be
found in the proposed Landau-Ginzburg model (widely described in chapter 2).

In this way, the inhibition is now withdrawn from the picture, and Short-
Term Synaptic Plasticity (STP), encoded by the combined effect of synaptic
depression and synaptic recovery [45], is considered. This mechanism, under
some homeostatic conditions represented here by particular choices of synaptic
and neuronal timescales, should show a nontrivial reactive behavior.

We employ similar equations to those that have been proposed in appendix
B.1, i.e. a density (Wilson Cowan-like) variable (ρ), that describes the excitatory
activity of the network, and a synaptic density variable (R), describing the (short
term) dynamic behavior of the synapses,{

ρ̇ = −αρ+ (1− ρ)S[ρR−Θ] + σ
√
ρη + h

Ṙ = 1
τR

(ξ −R)− 1
τD
ρR

(4.4.1)

where S(ρ) is a sigmoid (transduction) function (in particular, S (ρ) = tanh (ρ)),
Θ is a small is a threshold value, τR (resp. τD) is the characteristic recovery
(depletion) time, ξ is the baseline level of non-depleted synaptic resources, h is
an external driving field and α > 0 controls the spontaneous decay of activity.
Also, η is a a (zero-mean, unit-variance) Gaussian noise.

By similarity with the Wilson-Cowan model, where only one fixed active/i-
nactive point exists (depending on whether excitation or inhibition dominates,
respectively), the specific parameters of the Landau-Ginzburg model are chosen
to be consistent with the case B described above. In such a case, between the
up and the down states, an intermediate regime of bistability including three
fixed points is found for intermediate values of ξ (in between two saddle-node
bifurcations): the up and the down ones, as well as an unstable fixed point in
between.

Thus, it is just in such intermediate regime where the reactive dynamics is
present. In particular, this specific case is achieved by taking the limit of small

154
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(but non-vanishing) values of Θ, α, τD and τR and also, with some extra fine
tuning (i.e. the condition τD

τR
� 1 and 1

τD
≈ α, where the last one represents

some equilibrium between the synaptic depression timescale and the neuronal
decay timescale) to reach the non-normal condition shown in Figure 4.4.1a. As
in the Wilson-Cowan model, there exists an stable ’up’ state with a characteristic
“shear” flow surrounding the stable fixed point and dropping the system (in a
noise-induce phenomenon) to the ’down’ state. Of course, if the dynamics of the
system is non-reactive the fixed point presents an incoming flow in all directions
(see Figure 4.4.1b).
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Figure 4.4.1: Phase portrait for the “balanced” TM model. (a) Non-normal
condition with two fixed points with reactive dynamics. A characteristic “shear”
flow surrounds the two stable fixed points, ’up’ and ’down’. Parameters: h =
10−6, Θ = 0.03, α = 0.01, τD = 100, τR = 2000, χ = 1 (b) Stable fixed point
with incoming flow in all directions. Parameters: h = 10−6, Θ = 0.03, α =
0.01, τD = 0.2, τR = 1000, χ = 13.

By numerical simulation of Eqs.(4.4.1), there exists a clear distinction be-
tween the two cases indicated in Figure 4.4.1. As shown in Figure (4.4.2) both
cases have two stable states –’up’ and ’down’– in the intermediate regime but
for the first case, the “weak” stable “up” state for low amplitudes of the noise
can be easily destabilized for intermediate values of the noise. It also produces
a clear bursty quasi-periodic dynamics –with amplified fluctuations– when the
amplitude is even greater. Otherwise, for the second one (see Figure (4.4.2)b)
the ’up’ state is tightly stable and equal values of the noise amplitude slightly
disturb the dynamics of the system around the ’up’ state, with no trace of noise-
induce fluctuations. In this way, we have shown that the reactive dynamics can
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also play a key role in the emergence –or the source of– large fluctuations in the
well-known Tsodyks-Markram model for synaptic plasticity, and can be key of
multiple noise-induced phenomena in neuroscience.

Figure 4.4.2: Temporal series for both cases shown in the above figure. (a) Re-
active system for different values of the noise amplitude (detailed in the legend).
For the lower one (red line) the system feature a stable ’up’ state, that can be
destabilized (green line) up to generate bursty dynamics (blue line) for increas-
ing values of noise amplitude. Such fluctuations are no more than excursions
between the two metastable states. (b) For identical values of the noise ampli-
tude, only an ’up’ stable state exists. The lack of non-normal effects around the
stable state prevents noise-induced fluctuations.



4.5
Conclusions

We hope that the brief summary on the generation of avalanches in the Di-
rected Percolation universality class will help in interpreting empirical

results considering the possibility of non-universal continuously-varying expo-
nents, even though most of the results derived here appear in the literature as
independently derived for individual universality classes or for the branching
process itself. Such continuously-varying exponents stems from the presence of
small external driving, that might induce avalanche merging and, to the best
of our knowledge, has not been noticed in the past. Also, we believe that such
simple and unified perspective can help to shed light on the frequent confusion
(mostly in the neuroscience literature) within the concepts developed in this
chapter about branching processes and their relation with random walks, and
in particular to:

i) clarify the overall picture,

ii) underline the superuniversality of the behavior as well as the dependence
on external driving, and

iii) avoid the common existing confusion between unbiased branching pro-
cesses (equivalent to a random walker in a balanced logarithmic potential)
and standard (unconfined) random walkers.

Thereby, empirical findings have reported size and lifetime exponents for
neuronal avalanches compatibles with those of the universality class of a critical
branching process (i.e. τ = 3

2 and α = 2) [5, 6, 23, 43, 56, 58]. However, in some
specific empirical analysis particular exponents could be compatible with those
of an unbiased random walk [39, 62] (i.e. τ = 4

3 or α = 3
2) and, therefore, in no

way implies a critical behavior of the system. In particular, due to the similarity
of τ in both cases, α can be a better distinctive and empirically verifiable feature
as well as some perils of thresholding must be avoided (see appendix B.3.2 for
a further explanation).

Likewise, special care should be taken to ensure that the emergence of power
laws constitutes a fingerprint of criticality (it is a necessary, but not a sufficient
condition). As first counter-example, the generic power laws –across the en-
tire absorbing phase– are produced by the spontaneous creation of activity (h).
Thus, even if true scale-invariant avalanches emerge (in a spatial extended sys-
tem) if the system is poised at criticality, other factors must also be present (e.g.
long-range correlations, divergent susceptibility or maximum dynamic range).
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In this sense, the mechanism of balanced amplification, recently proposed by
Benayoun et al. [7], and thoroughly scrutinized here provides a (non-critical)
candidate to model some features of neuronal avalanches. Thus, the Wilson-
Cowan model for excitatory and inhibitory neuron populations, placed in a
condition of an exquisite balance between excitatory and inhibitory couplings, is
able to describe (without any need of fine tuning to a critical point) transitions
between up (active) and down (quiescent) states as they occur in the brain
during sleep or under anesthesia [17, 69], as well as large fluctuations that closely
resembles the empirical scale-free avalanches of brain dynamics [5].

Theoretical analysis shows that such mechanism requires the existence of a
stable fixed point (even far away from the critical point) with a “non-normal”
stability matrix (i.e. with eigenvectors that does not form an orthonormal basis)
in concomitance with inherent stochasticity. Thus, the “balanced amplification”
condition is able to generate some type of discontinuous “scar” in the directions
of the (reactive) dynamical evolution of the system producing very large noise-
induced fluctuations. However, temporal series suggests that the system, in
order to show avalanching behavior, remains trapped very close to the origin,
that is the effect of the logarithmic potential along the balanced dynamical
trajectory, i.e. the one-dimensional trajectory where excitatory and inhibitory
activity are completely equal. Deviations from such diagonal drop the system
from minimum to minimum, mimicking something similar to a “tunneling ef-
fect”, and where the remaining time in each one depend on their relative depth.
Additionally, such depth is fully determined by the intensity of the noise.

Nevertheless, unlike the microscopical mechanism proposed by Benayoun et
al. [7], the mean-field description shows scale-free avalanches composed either by
a mixture of different trends or (for high values of the noise) showing compatible
exponents with the well known standard random walk universality class, i.e. α =
3/2 and τ = 4/3. Thus, although reactive dynamics may be of key importance
in neural mechanisms (such as in up and down states) and in fostering large
fluctuations, it does not seem a plausible candidate to account for a large number
of the founded empirical results already outlined in previous chapters.

On the other hand we have shown that the reactive dynamics applies to a
wider scenario extensible to further neural mechanisms, which includes synaptic
plasticity such as encoded in the Tsodyks-Markram model, showing dynamics
very similar to the aforementioned up and down states because of the destabi-
lization of the stable (active) states of the system.
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5.1
Introduction

“Evolution is not just "chance
caught on the wing". It is not just a
tinkering of the ad hoc, of bricolage, of
contraption. It is emergent order hon-
ored and honed by selection.”

Stuart A. Kauffman

The central dogma of molecular biology is that each single gene is transcribed
into RNA, which in turn is translated into a protein, which –usually in co-

operation with other proteins– can regulate the expression of other genes, giving
rise to a complex network of regulatory interactions [16]. Genetic regulation,
protein-protein interactions, as well as cell metabolic and signaling pathways are
essential biological processes that can all be represented as networks [13]. The
network picture encapsulates the complexity of cellular processes and provides
us with a natural framework for a systems-perspective approach to extremely
complicated biological problems. As a matter of fact, the study of information
processing in living systems has shifted from the analysis of single pathways
to increasingly complex regulatory networks, allowing for a visualization of the
collective effects of a host of units acting at unison. Since the pioneering work
of Kauffman [5, 18, 31, 35, 36], genetic regulatory systems have been modeled
as random Boolean networks, in which the expression level of each gene is rep-
resented by a binary (on/off) variable and where mutual regulatory interactions
are described as arbitrary random Boolean functions operating synchronously
at discrete time steps. Even if admittedly simplistic and limited in a number
of ways (e.g. gradual levels of gene expression might be essential to understand
some cellular processes), such a binary description is particularly useful when
dealing with large networks because it simplifies the overwhelming complex-
ity of the original system to a problem with a logical structure. In particular,
the Boolean approach has shed light on important conceptual problems such
as the possibility of diverse (phenotypic) states emerging from a unique given
genetic network, as well as the possibility of transitions among them (as hap-
pens in cell differentiation and reprogramming), and the emergence of cycles in
cell states. More specifically, the trajectory of the segment polarity network in
the fly Drosophila melanogaster [1] and the yeast cell cycle [42] are two specific
examples in which the most relevant features have been fully elucidated on the
basis of Boolean models [12] (for a broad discussion we refer to [4, 18, 20, 31, 36]).
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Random Boolean networks (RBNs) can operate in different regimes includ-
ing ordered and chaotic phases as well as a critical point (or line or surface)
separating them. Ordered or frozen phases (typically obtained for small net-
work connectivities) are characterized by a small set of stable attractors which
are largely robust to perturbations, while in the disordered or chaotic phase
(typically obtained for densely connected networks) perturbations rapidly pro-
liferate all through the network. As formalized mathematically by Derrida and
Pomeau, separating these two phases there is a critical line (that used to be
called the“edge of chaos”) at which perturbations propagate marginally [19]. It
was conjectured some time ago that critical RBNs might be optimal to represent
actual biological networks; the underlying idea is that operating at criticality
might provide such systems with an optimal trade-off between been exceedingly
ordered/stable –and thus barely responsive to environmental changes, signals
and clues– and too disordered/noisy –and thus enormously sensitive to the
effects of noise, lacking the required robustness and accuracy that biological
machinery demands [37]; the criticality hypothesis states that the marginal sit-
uation between these two impractical tendencies –that we shall call subcritical
and supercritical, respectively, in what follows– constitutes an excellent compro-
mise. This conjecture, which was developed in the machine-learning and neural-
network community [11, 40, 45], proposes that –by operating nearby criticality–
networks exhibit an optimal trade-off between stability to perturbations and sen-
sitivity/responsiveness to signals and –at larger timescales– between robustness
and evolvability [3, 56], and allows for an optimization of information storage
and transmission [39, 50], response and sensitivity, computational capabilities,
and a number of other functional advantages [3, 15, 25, 37–39, 54, 56, 61].

Remarkably, the development of powerful experimental high-throughput
technologies in molecular biology has paved the way to experimental analy-
ses of gene-expression patterns in large regulatory networks. Recent empirical
results, analyzing hundreds of micro-array experiments to infer regulatory inter-
actions among genes and implementing these data into Boolean models, seem
to support the hypothesis that regulatory networks of S. cerevisiae, E. coli, B.
subtilis, the macrophage, as well as some subnetworks of D. melanogaster and
A. thaliana are indeed very close to criticality (in the sense of marginal propa-
gation of perturbations) [9, 46], while some other empirical analyses leave the
door open to regulatory networks being ordered [37, 55].

Recent work, aimed at rationalizing why and how criticality might come
about in living systems, relies on adaptive/evolutionary models, in which com-
munities of agents –each of them modeled as a Boolean network– are selected
for if they succeed at performing some complex tasks which may change in time.
For instance, Hidalgo et al. [34] showed –by employing an information theoretic
approach– that critical networks may emerge as optimal solutions in such a set-
ting (however, the networks employed as a specific example in [34] where fully
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connected and thus lacked the structural richness of usual RBNs). Similarly,
Goudarzi et al. [29] considered an ensemble of RBN’s able to experience “muta-
tions” in their topological structure and employed a genetic algorithm to select
for those able to perform a given computational task; i.e. networks which have
learned have a larger fitness than those that have not. Under these conditions
the ensemble of networks converges to a state in which all networks operate close
to criticality. In other words, critical networks emerge as the optimal solution
out of the combined selective pressures of having to learn different tasks (i.e.
having to produce different outcomes/attractors) and being able to readily shift
among them following changes in the inputs in real time.

Given that living cells typically posses very low copy numbers of important
regulatory molecules (e.g. for the 80% of genes in E. coli genome the copy
number of their associated proteins is less than 100 [33]) stochastic effects are
unavoidable and ubiquitous in gene regulatory networks [53]. Even if noise is
usually assumed to be detrimental to reliable information transfer and, more in
general, to cell functioning, stochastic effects can lead to beneficial outcomes;
for instance, noise accounts for the observed (phenotypic) variability in identical
(isogenic) populations [23] and can help cells to adapt to fluctuating environ-
ments [6, 22, 43, 60]. Within the framework of RBN the role of stochasticity
and noise has been addressed in a number of works (e.g. [17, 49, 58].

Here, we further delve in the problem of investigating the mechanisms and
the conditions under which networks may become critical (or not), focusing
on the role played by noise, and ask the question whether –in the presence
of strongly noisy conditions– regulatory networks, modeled as RBNs having to
perform some complex computational task, should operate in ordered, critical or
supercritical regimes. In other words: what is the role of noise in the emergence
of criticality? Does it foster or hinder critical behavior? In order to gauge
the effect of noise on the dynamics of RBNs having to perform a complex task
we consider a setting very similar to that of Goudarzi et al. [29] as described
above, but including different additional sources of stochasticity. In particular,
our approach differs from the previous one in three main aspects: (i) we consider
asynchronous updating [28, 30, 52] rather than the usual deterministic one, thus
introducing the effect of stochasticity in the updating timings, (ii) both the
structure and the dynamics of the networks are subjected to noise (be it intrinsic
or external), and (iii) we do not consider an evolutionary algorithm to search
for the best possible network connectivity, but rather we work in a constant-
connectivity ensemble and explore how the network performance depends on
the network connectivity, i.e. on the network dynamical state.

As we shall illustrate, criticality emerges as the solution providing the fastest
route to learning complex tasks even in the presence of asynchronous updating,
but, on the other hand, once additional sources of stochasticity are explicitly
taken into account ordered dynamical states perform better than critical ones.



5.2
Boolean network approach

As said before, the pioneering work of Kauffman [5, 18, 31, 35, 36] paved the
way to employ a Boolean modeling for genetic regulatory systems. In this

approach, a binary variable –with possible values 0 or 1 (off/on), σi = {0, 1}–
ape the expression level of a gene, while the (direct) links stand for the regulatory
interactions, activation or repression (Figure 5.2.1 shows two examples of real
gene-regulatory networks). Side by side, there exists an ensemble of possible
states for the N nodes, or a realization of possible states, which comprise the
attractors of the dynamics, emulating the cellular states.

Rex1

Egrla

IL-6

Zfp322a

LIF
Jak/Stat3

MAPK signalling

Esrrb

Sall4

Nanog Sox2

FGF signalling

C-Fos

Oct4

Fgf4

Figure 5.2.1: Large scale gene-regulatory network of E. Coli (left, [27]) and small
gene regulatory network for the mouse embryonic stem-cell subnetwork (right,
[48]). Genes are represented as nodes and gene regulatory interactions as links.
Observe that these networks are directed and genes can have gradual levels of
gene expression regulating another downstream genes.

Also, the evolution of the state of each node is given by a Boolean func-
tion, which also depends on the state of the Kin neighbor nodes regulating it,
mimicking the dynamics of mutual regulatory interactions [20, 31]. At the same
time, nodes contribute to regulating the state of Kout out-neighbors (see Table
in Figure 5.2.2 for an example of a random Boolean function).
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Thus, nodes are updated according to:

σi(t+ 1) = fi(σni1(t), σni2(t), ..., σniKin
(t)), (5.2.1)

where nij identifies the j − th neighbor of node i, time is incremented, and
the process is iterated. The updating process can be arbitrary operating syn-
chronously (i.e. updating all the nodes simultaneously) at discrete time steps
or not (updating one variable –randomly or with some predefined sequence– at
every step 4t = 1/N), but, in any case a time step of the dynamics corresponds
to update all the nodes, on average.

In particular, considering the case of a regular network (in which every ver-
tex has the same number of neighbors), it is clear that there are 22K possible
coupling functions. Hence, depending on the specific situation, there are differ-
ent ways to assign the Boolean functions (randomly selected, choosing a subset,
etc.), but it is specially important the case of taking a random bias toward “on”
or “off” states, p, as the averaged fraction of 1’s in the outputs of the random
Boolean function, that can be fixed a priori and acts as a control parameter.

If that is the case, in the infinite size limit, Random Boolean Networks
(RBNs) are known to exhibit a critical point –in the sense of marginal propa-
gation of perturbations [19, 31]– at a value of the connectivity

KC(p) = 1
2p(1− p) , (5.2.2)

being ordered/subcritical for K < KC(p) and disordered/supercritical other-
wise. In particular, in the unbiased case, p = 1/2, KC = 2 (see Figure 5.2.2)
which is often quoted as “the” critical connectivity for RBNs.

※ The Hamming distance as a mark of the dynamical state In order to
move towards a custom measure of the dynamical states of the network, let us
bear in mind two initial states, defined as,

Σ0 = {σ1 (0) , σ2 (0) , . . . , σN (0)} , Σ̃0 = {σ̃1 (0) , σ̃2 (0) , . . . , σ̃N (0)}

and, on this basis, it is possible to define a proper measure based in a “dam-
age spreading” algorithm to elucidate the dynamical state of a RBN. In partic-
ular, consider Σ0 and Σ̃0 two set of identical states, except for a flipped node,
and compute its Hamming distance, defined as,

H
(
Σ0, Σ̃0

)
= 1
N

N∑
i=1
|σi − σ̃i| (5.2.3)

Thus, in order to determine the dynamical state of any specific network –and
to quantify possible deviations from criticality– we explicitly compute whether
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individual site perturbations do grow or shrink on average. This is quantified
by measuring the branching parameter, B, defined as the averaged Hamming
distance after one timestep, between the original and all possible network per-
turbations at one site; branching parameters B > 1 (resp. B < 1) reflect
supercritical (resp. subcritical) networks while the marginal case B = 1 is the
trademark of criticality [19, 31]. In brief:

• If B > 0 the Hamming distance grows exponentially. The network is
disordered (chaotic phase).

• If B = 1 the perturbations propagate marginally. The network is critical.

• If B < 1 the trajectories converge and the network is ordered (frozen
phase).

average connectivity K

Ordered phase   disordered phase

criticality
(K~2) i1 i2 i3 OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Boolean
approach

Figure 5.2.2: Sketch of a Boolean network. Dynamical phases depends on the
mean connectivity of the network, from ordered (or frozen) phase for low con-
nectivity to disordered (or chaotic) phase for high connectivity, separated by a
critical point lying in Kc = 2 for the particular case p = 1/2. The table shows
an example –for one node– of logical operations.

※ Assessing the network dynamical state in Erdős-Rényi networks. However,
all this is applicable to the simple case of regular networks. A first target must
be the estimation of the scaling of the critical point as function of the system
size in an Erdős-Rényi (ER) generic network with N nodes, L directed links, and
averaged connectivity or degree K = L/N . Whereas this network comes from a
binomial degree distribution (P (k)), the two first central moments are µ = k̄ and
σ2 = k̄ − k̄2

N . On the other hand, a correction in the critical point –measured
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by the recently explained Derrida curve method– comes from effects due to
second neighbors (or higher orders). Namely, the number of second neighbors,
z2, and the number of neighbors, z1, are defined by z2 =< k2 > − < k > and
z1 =< k >, respectively. Straight away, in our case, z2 = k̄ − k̄2

N and thus,
considering the critical point from Eq. (5.2.2),

√
z2 =

√
k̄ − k̄2

N
= 1

2p(1− p) (5.2.4)

which in turn, taking a Taylor series expansion in N , the corrections of kc
follows the form,

Kc = KMF
c +O

(
N−1

)
(5.2.5)

i.e. critical values are shifted –for finite networks– toward slightly larger
connectivity values by corrections of order O(N−1).

As shown in Figure 5.2.3, the critical point of an Erdős–Rényi Boolean net-
work –with p = 1

2 and measured employing the method explained above– con-
verges towards Kc = 2 in the infinite size limit. Also, the finite size effects
follows the expected behavior εN−β with ε = 4.4(1.1), β = −1.00(4) in the
asynchronous updating, and ε = 2.3(0.1), β = −1.02(2) in the synchronous one
(regardless of the updating scheme, in the infinite size limit).
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101 102 103 104
KcMF

Figure 5.2.3: Variation of the critical point measured employing the branching
parameter, B, for an Erdős–Rényi network versus system size (blue points: syn-
chronous updating and black points: asynchronous updating). Inset: Distance
to the mean-field critical point (Kc = 2) versus system size, in log-log scale.



5.3
Adaptive evolution of boolean
gene-regulatory networks

As said above, we consider a setting very similar to that of [29] to train Ran-
dom Boolean networks to perform a computational task, but we introduce

a number of changes –to be detailed in this section– devoted mostly to imple-
ment stochasticity in various ways. In this central work [29], Goudarzi et al.
train an ensemble of RBN, representing bacterias or specific gene regulatory
networks and predefining some input and readout nodes, to synthesize infor-
mation from the environment and provide a response. By allowing a genetic
algorithm with random mutations in the structure of the networks they showed
that the closer to criticality the better the way to process the information and
successfully attain the imposed computational tasks. Thus, criticality emerges
in a highly changing environment, i.e. when a lot of tasks must be reproduced.

※ Network architecture and dynamics. In order to implement computational
tasks or learning rules in RBNs we consider a slight variation of the just-
described general architecture, in which some predefined input and output nodes
are included (see Figure 5.3.1). By construction, input nodes are imposed to
have Kin = 0, so that they are not influenced by others and Kout > 0, so that
they are not isolated, while –on the contrary– output nodes have Kout = 0 and
Kin ≥ 1 (in particular, we take ninput = 3 input nodes and one single output or
readout node (noutput = 1). The set of (N − ninput) non-input nodes is called
the network core. Self-loops and multiple edges with the same directionality
linking two nodes are explicitly excluded, and otherwise the wiring pattern is
randomly set. In the same way, a bias p = 1/2 is taken as initial condition in
all analyses here, i.e. all the network core and the readout node have random
boolean functions of its signaling nodes. Additionally, in contrast with most
studies of RBNs and in order to implement a first source of stochasticity, nodes
are updated in an asynchronous way [28, 30, 52], i.e. a given node is randomly
selected with homogeneous probability and its state is updated according to a
Boolean function depending on the state of the input nodes.
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Figure 5.3.1: Network training sketch. (A) Dynamical phases in general random
Boolean networks (RBNs) in the case for which KC ≈ 2 (p = 1/2). (B) Con-
strained network architecture: three input nodes are imposed (i1,2,3) to receive
information from the environment and one output/readout node (O) to produce
a response. The overall computational task to be learned can be summarized in
a predefined truth table O = F (i1, i2, i3) where O is the output state and i1,2,3
the input ones. (C) During the network dynamics and adaptive evolution, there
can be noise sources (internal or external) disturbing the network states as well
as its topological structure. (D) The aim is to find the optimal connectivity to
learn and perform successfully the computational tasks either in the absence of
additional stochasticity as well as in the presence of noise.

※ Assessing network criticality. We employ the standard method of plotting
the Derrida curve –as described above– in order to determine the dynamical
phase of any specific RBN –specified by its topology and the set of its Boolean
functions– and assess how far it operates from criticality.

Let us remember, however, that the method is based in damage spreading
dynamics and involves the next steps:

i) Take a network M in one specific state, and a copy of it M ′ in which a
single randomly chosen node has inverted its state.
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ii) Compute the Hamming distance, H, [19, 31] between these two networks
after one time step (t = 1; nodes are updated following the same random
order in both cases).

iii) Average the Hamming distance for many different “flipped” nodes.

iv) Average the previous result over network states. The branching parame-
ter, B, is defined as the averaged H after perturbing the different nodes
in the network (in some cases, we present results for perturbations only
at input/core nodes). If B < 1 perturbations shrink on average and the
network is said to be subcritical (or in the ordered phase), while if B > 1
perturbations proliferate and grow on average and the network is super-
critical (chaotic or disordered phase). Finally, in the intermediate case,
B = 1, in which perturbations propagate marginally, the network is criti-
cal.

Observe that in networks with some fixed input and output nodes, we can
measure B in different ways, depending on whether we flip inputs nodes or not
and on whether we compute the Hamming distance in the whole network or just
in the core (excluding input nodes); therefore the concept of criticality might
refer to just the core or o the full network. Finally, in order to determine the
critical regime of an ensemble of networks –and not just an individual one– it is
necessary to measure the ensemble average, B̄, of B.

※ Computational tasks. The task to be learned can be codified in a “truth
table”, i.e. for each specific input (out of a total of I = 2ninput) there is an output
value to be reproduced. A given truth table defines a specific computational
task. An example is the odd-even classifier (rule R150 in in the Wolfram’s
classification of cellular automata [62]), which assigns a Boolean variable to
each input accounting for its parity. Another examples that we consider are
rules number R51 and R60 in Wolfram’s classification (as shown in Figure 5.3.2).
These rules can be categorized accordingly to their “complexity”, understanding
as such, the number of nodes in the input that do change the output state when
altered (and how often do so for different values of the remaining nodes). In
particular, out of the three rules that we study here, the most complex one is the
odd-even classifier (R150) whose output obviously depends on all input nodes,
R60 is an intermediate case, while the less complex one is R51 whose output
is the opposite of one particular input unit, being insensitive to the others. A
more precise definition on how to quantify task complexity –unnecessary for our
purposes here– is discussed in [29].
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Complexity

i1 i2 i3 OUT
0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Rule 51

i1 i2 i3 OUT
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Rule 60

i1 i2 i3 OUT
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Rule 150

Figure 5.3.2: The task to be learned can be codified in a “truth table”. Computa-
tional tasks in increasing order of complexity (R51, R60 and R150, respectively).

※ Network fitness. The goal of the trained networks is to produce –for each
specific input configuration i– a time-averaged value of the output state, 〈σoutput(i)〉,
which is as close as possible to the desired output, σ∗output(i); the difference be-
tween these two values,

∣∣∣〈σoutput (i)〉 −
〈
σ∗output (i)

〉∣∣∣, –which is a real number– is
a measure of the network performance, conditioned to a given input state. The
overall network fitness is defined as the average of such difference for I = 2ninput

inputs:

F = 1− 1
I

I∑
i=1

∣∣∣〈σoutput (i)〉 −
〈
σ∗output (i)

〉∣∣∣ . (5.3.1)

※ Network training. The network is trained to “learn” to produce the correct
output when exposed to each of the I = 2ninput specific input states; i.e. the
network learns the computational task as defined by a given truth table. To
implement this, we sequentially expose the network to I randomly chosen inputs.
The resulting random order of inputs can be viewed as a form of stochasticity,
mimicking environmental variability. Moreover, the environment is assumed to
change rapidly so that, in order to cope with that, networks are trained to reach
the correct output within just tmax = 10 timesteps, after which the input is
changed (while the network state is left unaltered). The first half of this time
interval allows for the network to converge, while in the second half we measure
the average state of the output node 〈σoutput〉 and compute the network fitness,
F .
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※ Network mutations. Having established the fitness of a given network, M ,
we now allow it to “mutate” by rewiring some existing link –thus preserving its
overall connectivity K– and generate a slightly modified networkM ′. Described
in detail, the mutation process follows the succeeding scheme:

i) Given a original network, M , we perform a rewiring, which consists in
choosing a link (say from node i to node j), removing it, and introducing
a new one (from i to j′) assuming this one did not exist before (and keeping
the topological constraints described above).

ii) This change of the network topology, requires of some modifications in the
random Boolean functions fj and fj′ (see Figure 5.3.3). For fj one needs
to eliminate the input σi; thus fj changes from being a function of Kin(j)
arguments to a function of Kin(j) − 1. The new function coincides with
the original one fixing σi = 0, i.e. for the case when the driving node i
was off. After this, each output in its table is chosen for mutation with
probability 1/2 and selects a new random value, defining the “mutated”
Boolean function. Similarly, for node j′ a new argument, σi, is introduced
to the Boolean function fj′ : all values for σi = 1 (“on” i node) are assigned
randomly, while for σi = 0 (the new input is off) we keep the preexisting
Boolean-function values.

iii) This whole rewiring process is performed the first time with prob. one;
after that a second rewiring is attempted with prob. 1/2; if it occurs, then
a third one happens with prob. 1/3 and so on, giving rise to a mutated
network, M ′. This allows for the possibility of large mutations, involving
many re-wirings.

Observe that this “mutation process” keeps the out degree sequence, as well as
the overall connectivity K fixed, so it can be understood as a sort of “micro-
canonical ensemble” [10]. Note that this differs from previous studies [29] where
the overall network connectivity is allowed to change along the evolutionary
dynamics. Our approach permits us to analyze the network performance as a
function of network connectivity.
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Figure 5.3.3: Examples of Boolean functions modification –initially with 3 in-
puts– by adding or removing an input node: (a) Link i1 is removed (the con-
nectivity Kin decreases from 3 to 2) the rows 2, 3, 6, and 7 (corresponding to
σi1 = 1) are canceled out (marked with × and reddish color); the outputs in
rows 0, 1, 4, and 5 can be flipped with probability p = 0.25; (b) Addition of a
new link corresponding to input i2 (green color; Kin increases from 2 to 3): out-
puts for rows 4, 5, 6, and 7 are randomly chosen (represented as �). Color code:
white cells remain fixed, reddish ones are removed, and blueish ones involve a
random choice.

※ Network evolution and convergence. The network with the largest fitness
value, between M and M ′, is selected (while the original one is kept if the two
fitnesses coincide). This mutation and selection process defines an evolutionary
time step (to be distinguished from a time step of the dynamics; there is a factor
tmaxI between both). The evolutionary process is iterated until F reaches its
maximal possible value F = 1. Observe, however, as the I inputs are randomly
chosen at each evolutionary step, observation of F = 1 at a given step does
not necessarily imply F = 1 at successive time. Therefore, in order to impose
that the network robustly “learns” the computational task, we continue to mea-
sure its fitness, when exposing it to a much large number of randomly chosen
inputs (100I, instead of just I as in the fitness-computation Eq. (5.3.1)); if
F = 1 all across this long checking time window, the network is classified as
having learned. Otherwise, the mutation/selection process is restarted until an
optimally performing network is found. The final number of evolutionary steps
required to reach an optimal network is called convergence time, T .

※ Ensemble averages. Keeping fixed specific values of the network size N and
connectivity K, the previous evolutionary process is iterated a large number of
times (typically from 103 to 5·105) giving rise to an ensemble of trained networks.
The ensemble averaged convergence time, T̄ = T̄ (N,K), is a proxy for the
network performance: the best network ensemble is the one with the smallest
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T̄ . In this set of networks –once they have been trained– we also measured
the ensemble-average of the branching parameter, B̄. In the approach [29], K
is allowed to change during the evolutionary process; thus the fastest learning
networks are selected for; instead, we explore different fixed-K ensembles and
determine a posteriori which is the optimal one. Both approaches are obviously
equivalent to determine the optimal connectivity K.

※ Dynamics under noisy conditions. To investigate the effect of fluctuations
in the system dynamics, we allow the dynamics to be exposed to noise. In
particular, we consider that either

i) with a small probability, η, nodes can invert their state every time they
are updated (accounting for errors/fluctuations in gene expression levels)
or

ii) with some small probability, ξ, (which is proportional to the network con-
nectivity) the network topology experiences a mutation process at each
evolutionary step, and the mutated network is selected regardless of its
fitness value (this describes physical damage in the network produced, for
example, by the lack or excess of some regulatory factors).

For the sake of simplicity, we refer to the first possibility as “dynamical” noise
and to the second one as “structural” noise.

In the former case, considering a general ER network with dynamical noise,
(η, the probability of flip a node once its state is updated) the critical point can
be analytically inferred. Let D the Hamming Distance between two networks,
M and M ′, where M ′ is identical to M but D nodes (i = 1, 2, 3, ..., D) –being
D small, D ∼ 1

N , to ensure that two perturbed nodes are not connected– have
been flipped. The damage spreading process follows the equation,

D(t+ 1
N

)−D(t)

= D

[
K

N
2p(1− p) (1− 2η) + 2ηK

N
(1− 2p(1− p))− 1

N
(1− 2η)

]
+ 2η
N

(1−D)

= 1
N

[D (2kp(1− p) + 2ηk(1− 4(1− p))− 1 + 2η) + 2η (1−D)]

=
D= 1

N

1
N

[ 1
N

(2Kp(1− p) + 2ηK(1− 4(1− p))− 1 + 2η) + 2η − 2η
N

]
= 1
N

[
k

N
2p(1− p) + 2ηK(1− 4(1− p))− 1

N
+ 2η

]
(5.3.2)

where the first term reflects the probability of choose a site pointed by a i
perturbed site, changing its state and incrementing D in one unit with proba-
bility k

N 2p(1 − p) (and flipping it again with probability η in M and η in M ′).
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The second term reflects the probability of choose a node pointed by a i per-
turbed site, that doesn’t change its state –with probability k

N (1 − 2p(1 − p))–
without noise, but finally the node change the state with probability 2η. Last
term reflects the probability of choose a i node and “save” it (each one with
probability 1

N ) but, the node can be flipped again with probability 2η. Finally,
it should be considered the probability of change a node that is not pointed by
a i node (with probability 2η). So, by taking D(t+ 1

N ) = D(t),

Keff
c = 1− 2ηN

2p(1− p) + 2η(1− 4(1− p) (5.3.3)

In the particular case with p = 1
2 ,

Keff
c = KMF

c − 2KMF
c ηN (5.3.4)

However, if p 6= 1
2 , we can take the Taylor series expansion of η around η = 0,

Keff
c = KMF

c − 2KMF
c ηN −KMF

c

(1− 2p)2

p (1− p) η (5.3.5)

In Figure 5.3.4 we show the theoretical prediction and simulation of an ER
network with noise and p = 1

2 , following the inferred Eq. (5.3.4).
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Figure 5.3.4: Effective critical point for an ER network of size N = 256 as func-
tion of the level of dynamical noise. Observe the excellent fit between the theo-
retical prediction (red dashed line) and computational prediction (blue points)
of the critical point employing the Derrida curve method.
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This result only shows the simple case between D(t+1) and D(t). But, what
happens when the network go on S Monte Carlo steps? Taking, for simplicity,
the usual case with p = 1

2 ,

Ḋ = D

(
K

2N −
1
N

)
+ 2η
N

(5.3.6)

D (t+ 1)−D (t) = D (t)
(
K

2N −
1
N

)
+ 2η
N

D (t+ 1) = D (t)
[
K

2N −
1
N

+ 1
]

︸ ︷︷ ︸
g(K)

+
[2η
N

]
︸ ︷︷ ︸
b

(5.3.7)

Iterating,

D (t+ S) = D (0) [g (K)]2 +
S−1∑
i=0

bg (K) =

D (0) [g (K)]2 + b
1− [g (K)]M

1− g (K) (5.3.8)

And finally, take into account that –in the critical point–D (t+ S) = D (t) =
D (0) = D∗,

D∗ = b

1− g (K) =
2η/N

− K
2N + 1

N

→
D∗= 1

N

K

2N = 1
N
− 2η (5.3.9)

Keff
c = 2− 4ηN (5.3.10)

which is the same previous result with KMF
c = 2, i.e. with p = 1

2 .
Consequently, for further analysis, it should be noted that the critical point

diminishes linearly with the level of noise and system size. However, take present
that this effect is really insignificant for the size of networks discussed below (up
to N = 64) (in the light of the Figure 5.3.4, that shows the critical connectivity
for an ER with N = 256 nodes as function of the level of noise) and thus, the
possible effects of the emergent sparsity should be carefully analyzed.



5.4
Emergent properties

5.4.1
Convergence times and phases of learning networks

Even in the absence of explicit noise sources, the dynamics based on asyn-
chronous updating –which is the one we adopt here– has a stochastic component
(i.e. nodes are updated in a random order), which could be more adequate to
represent real genetic networks than synchronously updated RBNs as it avoids
spurious effects associated with perfectly synchronous updating [30].

We consider a complex computational task –the odd-even classifier– and
analyze networks of variable N and K. We let them evolve to learn this task
and measure the average convergence time, T̄ , to do so (ensemble averages
performed over up to 5 · 105 network realizations). Results are shown in Figure
5.4.1 for sizes from N = 6 to N = 64 as a function of the network connectivity
K (from K = 0.5 to K = 3.5). First of all (upper Fig. 5.4.1B), observe
that for all values of N , T̄ exhibits a characteristic (pseudo)parabolic shape
with a minimum at some optimal connectivity value, KT , at which networks
learn the computational task in the fastest possible way. It is important to
stress that networks with connectivities other than KT also learn, even if after
longer evolutionary times. In Fig. 5.4.1A the same data are represented, but
rescaling T̄ for each N with its minimum, T̄min(N) (this is done to help the
eye to compare the location of the different minima). In Fig. 5.4.1C we plot
|KT − 2| as a function of N (blue squares); the value K = 2 corresponds to
the usually accepted critical connectivity for RBNs in the infinite size limit.
Observe that the optimal connectivities seem to converge to this value, K = 2,
as a power-law function of N . The precision of our numerics does not allow
us to discriminate if the convergence is exactly to K = 2 or to a nearby value
(within 2.00± 0.05). In the same plot, we also present results for the branching
parameter, B̄ (as defined above), for the same network ensembles. Importantly,
B̄ is computed in the ensemble of networks that have learned –and not in the
Erdős-Rényi ensemble– and Hamming distance measurements are restricted to
the network core (excluding input nodes, which do not change in the course of
the dynamics). In particular, dotted lines in Fig. 5.4.1A stand for measurements
of B̄, after perturbing nodes in the core, while dashed-dotted lines correspond
to perturbations at input nodes. Observe that these two sets of curves exhibit
qualitatively different behaviors.
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Figure 5.4.1: (A) Averaged convergence time, T̄ , divided by its minimum value
T̄min plotted as a function of the network connectivity K for different network
sizesN (solid lines). Similarly, the non-normalized convergence times are plotted
in (B). Discontinuous lines in (A) represent the value of the branching parameter,
B̄ as measured in the network after the learning process is completed; dashed-
dotted lines stand for B̄ averaged after perturbing only input nodes, while dotted
lines have been obtained after perturbing nodes in the network core. Note that
as T̄ /T̄min and B̄ are both dimensionless quantities, they have been plotted in
the same scale; the same color code has been used for all curves. (C) Scaling
of the connectivity at which the minimum T̄ is obtained, KT , as a function of
N (blue squares), plotted together with the position of the critical point KC as
estimated from the condition B̄ ≈ 1 (orange diamonds). In both cases, there is
a convergence toward a value close to 2 in the large N limit (blue squares) (the
red line is a guide to the eye and corresponds to a decay O(N−1) toward 2. (D)
∆ = KC −KT plotted as a function of N showing explicitly that the distance
to criticality diminishes with network size; i.e. the larger the network the closer
to criticality the fastest learning networks.

We have chosen to present results in this way to stress the fact that –after
learning– networks are not homogeneous, and not all nodes respond in the same
way; in particular, the network is more responsive to input perturbations than
to core ones. For example, networks with connectivity K = 2 are supercritical
to input perturbations (fostering network sensitivity to external changes) and
subcritical for core perturbations (as required for a robust convergence to the
attractor/output).



Chapter 5. Boolean gene regulatory networks under noisy conditions 185

To obtain the overall branching parameter B̄ (given N and K) –for all nodes
in the network– we need to average these two contributions (weighted with
ninput = 3 and N − 3 nodes, respectively). For these averaged curves (which are
not explicitly shown in Fig. 5.4.1A for the sake of clarity) the crossing B = 1
indicates overall critical dynamics, and corresponds to a critical connectivity
KC . As shown in Fig. 5.4.1C (orange diamonds), KC is larger than K = 2 and
shifts toward lower connectivity values as N grows; indeed, its distance toK = 2
decreases with N , suggesting that learning networks have critical connectivity
K ≈ 2 (within our resolution) in the infinite size limit, as happens with random
networks.

Moreover, we have measured the difference ∆ = KC −KT to gauge how far
optimal connectivities (in the sense of achieving the fastest possible learning) are
from critical dynamics (in the sense of the branching parameter as close as possi-
ble to 1). As shown in Fig. 5.4.1D (magenta circles), ∆ decreases monotonously
upon increasing N , indicating that –for sufficiently large networks– the optimal
connectivity is as close to criticality as desired, but for any finite size they are
slightly subcritical (∆ > 0). Thus optimal learning occurs for slightly subcritical
networks, but as close as criticality as wanted for sufficiently large system sizes.

Figure 5.4.2A illustrates results for other, less complex (see above) compu-
tational tasks. As before, there is a well-defined minimum for T̄ in all cases, but
these times are significantly shorter for lesser complex tasks. Observe also that
for the simplest, R51 rule, T̄ hardly depends on K (Fig. 5.4.2C), indicating
that, as the task complexity decreases K progressively becomes a lesser relevant
parameter. Observe also (Fig. 5.4.2D) that the distance of optimal networks
to criticality, ∆, decreases with increasing network complexity. Therefore, it is
reasonable to conjecture that for more complex tasks than the ones we consid-
ered (e.g. involving larger values of ninput), the benefits derived from operating
at optimality/criticality are progressively more crucial.
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Figure 5.4.2: Figure analogous to Fig. 5.4.1, but obtained for different com-
putational tasks of different complexity (from the most complex R150 to the
intermediate R60 and the simplest R51 rule; the names come from Wolfram’s
classification of cellular automata [62]). (A) T̄ /T̄min for N = 16 (solid lines)
and the 3 considered rules. Discontinuous lines are as in Fig. 5.4.1. (differ-
ent colors stand for different rules). (B) Non-normalized T̄ for N = 16; the
same color code has been used for all curves. (C) Optimal-time connectivities
for fast learning, KT (red squares) and critical connectivities KC (blue circles)
for the different rules. Observe that in all cases, optimal networks are slightly
subcritical for this relatively small size N = 16. As shown in (D) the distance
to criticality decreases upon increasing the task complexity.

Summing up, in order to achieve the fastest possible learning of complex
tasks, RBNs with a connectivity such that their dynamics turns out to be critical
(or slightly subcritical for finite sizes) are the best possible option.

The larger the network size and the more complex the task, the more
convenient to be close to criticality.
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5.4.2
Noisy conditions

5.4.2.1 Dynamical noise

Figure 5.4.3 is analogous to Figure 5.4.1 but has been obtained in the presence
of dynamical noise, η 6= 0 (results for η = 0 are also plotted for the sake of
comparison). Observe that we present results for a fixed size N = 16 and
variable noise strengths (from η = 10−5 to η = 10−3).
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Figure 5.4.3: Figure analogous to Fig. 5.4.1 and Fig. 5.4.2 but for analyzing
the dependence on the strength η of the dynamical noise. (A) T̄ /T̄min for N =
16 (solid lines) as a function of K for different values of η (different colors).
Discontinuous lines are as in Figs. 5.4.1 and 5.4.2 (however, different colors
stand now for different η values). (B) Non-normalized T̄ for N = 16; the same
color-code has been used for all curves. (C) Optimal-time connectivities for fast
learning, KT , (diamonds) and critical connectivitiesKC (circles) for the different
values of η and various network sizes (N = 12 blue, N = 16 orange, N = 24
purple). In all cases, optimal networks are slightly subcritical for this relatively
small sizes. However, in contrast with the noiseless cases above, here (D) the
distance to criticality ∆ does not decrease upon enlarging the size (except for
exceedingly small noise strengths, e.g. 10−5, for which noise effects are not
visible in the time windows we consider) actually it remains almost constant or
–for large values of η such as 10−3– it grows with N , and in any case, it grows
with the noise strength (same color code used in C and D).



188 Chapter 5. Boolean gene regulatory networks under noisy conditions

It is noteworthy that for larger values of η (e.g. 0.01) the dynamics is so
noisy that the probability for the networks –resulting out of the evolutionary
process– to pass the robustness filter we have imposed (i.e. to have fitness
F = 1 for 100I evolutionary steps) is exceedingly small. Therefore, networks
do not achieve perfect learning in such extremely noise conditions. On the
other hand, for exceedingly small noise strengths, we essentially see the same
results as for η = 0, within the simulation checking time windows we consider.
For intermediate noise-strength levels (such as the ones reported in Fig. 5.4.3)
networks are more likely to pass the filter. In such cases, (see Fig. 5.4.3B), the
optimal connectivity is observed to shift toward lower values of K as the noise
level is increased (see also Fig. 5.4.3C where KT is plotted as a function of η for
various system sizes). In parallel, the convergence times, T̄ (Fig. 5.4.3B), also
grow with noise.

On the other hand, the branching parameter measured by perturbing core
nodes does not show a strong dependence on η (see dotted lines in Fig. 5.4.3A)
while the values of B̄ obtained by perturbing just the inputs (dashed-dotted
lines in Fig. 5.4.3A) are more severely affected. The resulting critical points
obtained by averaging these two contributions are plotted in Fig. 5.4.3C, and
always close to K = 2 (for the considered sizes). Comparing these values with
the optimal connectivities for learning, i.e. measuring, ∆ = KC − KT , one
observes (see Fig. 5.4.3D) that ∆ increases monotonously with η. This occurs
for the different system sizes we studied allowing us to conclude that

it takes longer to learn in more noisy conditions and that the larger the
dynamical-noise strength the more subcritical the optimal networks.

5.4.2.2 Structural noise

Figure 5.4.4 shows results analogous to those in Fig. 5.4.3. We present results for
a fixed size N = 16 and variable noise strengths (from ξ = 10−3 to ξ = 10−2). In
parallel with the site-noise case, there is a noise intensity threshold above which
the mutation probability is exceedingly high for the networks to learn, while
for too small strengths, the same results as for ξ = 0 are observed within the
operational checking time windows we have. For intermediate noise amplitudes,
the larger ξ the longer the learning process takes (see Fig. 5.4.4B). In these
cases, the optimal connectivity is observed to shift toward lower values of K as
the noise level is increased (see Fig. 5.4.4D where KT is plot as a function of ξ).
Also, as above, the branching parameter, B̄ does not have a strong dependence
on ξ (Fig. 5.4.4A). The associated critical point KC is slightly above K = 2 for
small noises, and moves progressively to smaller connectivity values as ξ grows.
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Also, as in the previous case, ∆ increases monotonously with η, so that, as
above,

we can safely conclude that, in general, the larger the structural noise
strength the more subcritical the optimal networks.

Figure 5.4.4: Figure analogous to Fig. 5.4.3. but analyzing the dependence
on the strength ξ of the structural noise. (A) T̄ /T̄min for N = 16 (solid lines)
as a function of K for different values of ξ (different colors). Discontinuous
lines are as in Fig. 5.4.3. (different colors stand now for different ξ values).
(B) Non-normalized T̄ for N = 16 (C) Optimal-time connectivities for fast
learning, KT (diamonds) and critical connectivities KC (circles) for the different
values of ξ and various network sizes (N = 12 blue, N = 16 orange, N = 24
purple). Observe that in all cases, optimal networks are slightly subcritical
for this relatively small sizes. However, in contrast with the noiseless cases
above, and in parallel with the case of dynamical noise, here (D) the distance
to criticality ∆ does not decrease upon enlarging the size (except for extremely
low values of the noise, as in Fig.5.4.3), actually it remains almost constant and,
in any case, it grows with the noise strength. Same color code used in C and D.



190 Chapter 5. Boolean gene regulatory networks under noisy conditions

Summing up, we conclude that while in the case of noiseless dynamics the
optimal solution –to achieve the fastest possible learning– is obtained at con-
nectivities for which the network is about critical (actually slightly subcritical,
but closer and closer to criticality as the network size and/or the complexity
of the task are increased), the situation is different in the presence of addi-
tional stochasticity, be it dynamical or structural noise. Under noisy condi-
tions, the optimal solutions lie clearly well within the ordered/subcritical phase.
A straightforward interpretation of this result is that the network dynamics
needs to compensate for the excess of noise, and does so by reducing its internal
level of uncertainty, i.e. by shifting deep into the ordered/subcritical phase.

5.4.3
Empirical networks

We have collected a set of empirical data from the literature and compiled a set of
real directed networks. This includes public empirical datasets with biological
genetic regulatory networks [57], and networks of metabolic interactions [24].
Specific examples of networks collected from the literature are the metabolic
networks of C.reinhardtii (K = 2.05) [14]), and B.subtilis (K = 1.03) [47], and
the gene regulatory networks of E.coli (K = 1.24, K = 2.32) [7, 49], A.thaliana
(K = 2.755) [44], M.tuberculosis (K = 1.19, K = 1.98) [8, 51], P.aeruginosa
(K = 1.48) [26], and S.cerevisiae (K = 1.85) [32]. Figure 5.4.5 presents a
scatter plot of all networks in our dataset, representing the averaged connectivity
K and network size N of each one. As it can be seen, the averaged connectivity
of this dataset is well below the value K = 2, the critical connectivity for large
random networks, suggesting that they could operate in subcritical regimes. It
is noteworthy that it has been suggested that some empirical networks with high
connectivity values (such as some of the outliers in Fig. 5.4.5) might result from
systematic errors in correlation analyses (giving rise to false positives) [41].
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Figure 5.4.5: Size N versus mean connectivity K for empirical biological net-
works of different types. In particular, it includes genetic and metabolic
networks of species such as Escherichia coli, Saccharomyces cerevisiae, Pseu-
domonas aeruginosa, Bacillus subtilis, etc. Observe that all networks are sig-
nificantly sparse, with most mean connectivities lying between K = 1 and
K = 2. The outliers, with K > 10 come all from BioGRID [57]; the most
extreme case has K = 41.90 and corresponds to the genetic network of “Es-
cherichia coli K-12 W3110” (but, it might be that these networks are plagued
with false-positive connections [41]). In the inset, we plot the probability that a
network from our empirical ensemble is at a certain relative distance to the crit-
ical point of a random Boolean model with its corresponding connectivity, i.e.
δ = (K −Kc(p))/Kc(p), assuming a fixed value of the bias p (in particular, we
show results for p = 1/2, p = 0.8 and 0.9); observe that regardless of the value
of the considered bias (which in general is unknown to us) most of the networks
lie within the subcritical regime (assuming their dynamics was random).

Being more precise –given the absence of knowledge on dynamical aspects of
the specific dynamics of each empirical network– it is not possible to properly
ascertain the dynamical state (critical or not) of each of them. For instance,
in random Boolean networks the critical point is located as discussed above
at KC = 1

2p(1−p) [4, 20, 31]; thus the minimal possible critical connectivity is
K = 2 (corresponding to the unbiased case p = 1/2. Note that for finite random
networks, the critical connectivity shifts to values slightly larger than 2 (positive
corrections of order N−1). Therefore, if the collected (finite) empirical network
obeyed random Boolean dynamics –at the light of Figure 5.4.5– almost all of
them would be certainly subcritical. However, we know that the dynamics of real
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networks may involve, for instance, canalizing updating functions and for such
networks the critical connectivity can be smaller than K = 2 [20]. Therefore,
even if no definite conclusion can be extracted from these empirical data about
the possible criticality (or absence of it), we can certainly conclude that empirical
networks are quite sparse (significantly sparser than critical random networks)
suggesting that –in the absence of further information about their dynamics–
the most likely scenario would be that they operate in ordered regimes (however,
see below for a critical discussion).



5.5
Conclusions

The hypothesis that living systems may operate in the vicinity of critical
points of their internal dynamics has inspired and tantalized scientists for

some time. In particular, it has been claimed that genetic regulatory networks
might operate close to criticality, achieving in this way an optimal balance be-
tween sensitivity to signals and stability to noise, and/or between adaptability
and robustness on large evolutionary scales. A few works have recently explored
different mechanisms allowing for network to self-organize or evolve to critical
or quasi-critical dynamics.

Here –inspired by the set up proposed by Goudarzi et al. [29]– we have shown
that random Boolean network models that are trained to perform a given com-
putational task, can learn it much faster if they have a connectivity K such
that they are close to criticality, as defined by a marginal averaged propagation
of perturbations. This does not mean that networks far from criticality cannot
learn; indeed they do, but it takes much longer to do so. Two important dif-
ferences between the present work and previous ones are as follows. First, we
work with networks with constant connectivity, i.e. the allowed mutations keep
K constant, while in [29] there is no such a constraint. These makes that the
evolutionary process implemented there converge directly to the optimal connec-
tivity KT , as the fastest learning networks, have sooner large fitness value and
are this selected for. On the other hand, by studying the constant-connectivity
ensemble, we are able to put forward that learning is compatible with rather
diverse connectivity patterns, compatible with the network being critical, sub-
critical or supercritical. The second important difference is that we implement a
stochastic updating scheme, which introduces stochasticity in the dynamics; we
find, however, that results are mostly insensitive to this change. Moreover, we
have seen that in all cases, the distance to criticality of the optimal-connectivity
networks diminishes monotonously upon enlarging system size and upon en-
larging the task complexity. Indeed, very simple tasks, establishing simple re-
lationships between (a few) inputs and the output, can be readily learned by
networks in the ordered/subcritical regime, where such a direct correspondence
can be robustly realized. On the other hand, complex tasks, in which the output
is sensitive to many different possible changes in the input nodes, requires of
much larger responsiveness/susceptibility, and thus, shift the network optimal
connectivity toward larger values, closer and closer to criticality. In any case,
we do not find under any circumstances the optimal connectivity to lie within
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the disordered/supercritical regime; it seems as if the requirement to learn a
task was incompatible with the network being disordered.

Biological systems must have homeostasis, i.e. the capacity to maintain their
internal conditions even in the presence of fluctuations and noise, be it internal
or external. In the second part of our study posed ourself the question of how
do these results depend upon the explicit introduction of noise. To this end,
we have introduced more extreme forms of noise, be it dynamical or structural,
within the same RBN model.

Dynamical noise allows network nodes to invert their dynamical state with
a small probability each time they are updated, introducing perturbations that
can potentially propagate through the system, compromising the network per-
formance. Similarly, structural noise, implying that the network topology itself
is exposed to random changes with some small probability, also producing po-
tential damage in the learned patterns. Both of these noise sources have clear
correspondence with stochastic effects in real biological networks. In both cases,
there is a threshold in noise strength above which networks do not learn the com-
putational task in a reliable and robust way; i.e. they end up being plagued with
errors, hindering network learning. Such thresholds clearly depend on the crite-
rion imposed to declare that networks have learned; put differently, if the time
in which one checks for network robustness are increased, i.e. if the criterion
becomes more stringent, the noise-strength thresholds diminish. Remarkably, in
both of the cases, dynamical and structural noise, we find that the optimal con-
nectivity to achieve the fastest possible learning lies deep-inside the subcritical
region, far away from criticality, and the distance to criticality increases upon
enlarging the noise strength and does not diminish upon increasing the system
size (as happens in the absence of explicit noise).

Our results suggest that real biological networks, in order to perform the
complex tasks required for information processing and survival in a noisy world,
should operate in sub-critical regimes rather than in critical ones as it has been
argued. As a matter of fact, the collection of empirical (genetic and metabolic)
networks that we have compiled from the recent literature shows a rather sparse
averaged connectivity in most cases, with only a few outlier networks. If the
dynamics underlying these networks could be modeled by random Boolean func-
tions, one could safely conclude that they are typically subcritical. However, in
most cases, the dynamics remains mostly unknown, and a clear cut conclusion
about the dynamical state of each specific network instance cannot be derived.
To fill this gap, recent analyses have employed high throughput data from hun-
dreds of microarray experiments to infer regulatory interactions among genes.
This type of approach leads to more detailed information on dynamical aspects
(e.g. switching off a given gene it is possible to follow the cascade of modifica-
tions it generates through the whole network). The resulting data, implemented
into Boolean models, seem to support the hypothesis that regulatory networks
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for a number of species (S. cerevisiae, E. coli, etc) are close to criticality [9, 46],
but some other analyses leave the door open for the networks to operate in an or-
dered/subcritical phase [37, 55]. Therefore, given the present state of affairs, one
can only conclude that more accurate and extensive experimental approaches
would be extremely valuable to shed further light on this fascinating problem.

An important observation to be made is that the tasks we have employed
to be learned are relatively simple (as they only involve a maximum of 3 input
nodes and a single readout). Thus, one can wonders what would happen if a
more extensive use of the network potentiality was necessary (by employing for
instance, two or more tasks simultaneously, of involving a much larger number
of inputs in each single task).

Following our results for the noiseless case –where we found that upon con-
sidering far more complex tasks, involving many more input and output nodes,
the dynamics becomes progressively more critical– it would not be surprising
that if one could analyze much more complex tasks –as the ones probably con-
trolling real biological networks– the dynamics could become closer to criticality
even in the presence of noise. Furthermore, in such more complex cases, one
should also relax the criterion to declare that networks have learned, and look
for “fuzzy” types of learning (i.e. accept networks with fitnesses slightly smaller
than one). The combination of much more complex rules together with less rigid
criteria for learning, could very likely shift the optimal solutions toward more
critical states. A detailed analysis of these issues is left as an open challenge for
future analyses.

It is also noteworthy that –even if network topology is known to play a very
important role in the outcome of RBNs [2, 3, 21, 41, 56, 59], here we have fo-
cused mostly on random Erdős-Rényi networks and left the analysis of important
topological features of empirical networks –such as scale-free connectivity dis-
tributions, and hierarchical and modular organization– for future work. These
aspects might also play an important role in determining the network dynamical
state. Finally, we also plan to extend the studies beyond the limit of the Boolean
approach and to implement more complex and biologically realistic tasks. Our
summary, of the obtained results is that the criticality hypothesis remains as
a valid and fascinating possibility, but that it needs to be critically evaluated
under each set of specific circumstances, avoiding making exceedingly general
claims.
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6.1
Introduction

“An infinite number of monkeys
typing into GNU emacs would never
make a good program.”

Linus Torvalds

Large-scale DNA-sequencing techniques and proteomics methods have allowed
to dissect and understand deeply the basic components –genes and proteins–

of the cellular processes. Nevertheless, each cell is an integrated device con-
formed by large amounts of interacting genes, proteins and metabolites. Thus,
in order to understand the emergent properties of cellular function we must
allow for a global outlook, rather than the study of its isolated individual com-
ponents and interactions [4, 48]. But even so, together with the dynamics of the
system, i.e. its temporal behavior, the study of synthetic biology is of particular
interest, at it requires the comprehension of the structure of the system, i.e.
the interactions and biochemical pathways that took place there in, as well as
the understanding of their effect in the emergent properties of the cell function
[30, 31].

Recently, interesting gene knock-out experiments (silencing individual genes
and following the cascade of differences between two replicas) have allowed to
highlight some types of “avalanches”, representing cascading failures, that were
reported to follow a power law size distribution. For example, on those gene
knock-out experiments, the total number of affected genes [42], as well as the
number of affected metabolite ions [18], seems to decay with an exponent com-
patible with τ = 3/2 entailing the possibility of collective effects of a host of
units acting at unison.

On the basis of a reductionist position, the central dogma of molecular biol-
ogy states that each isolated gene, which constitute the basic unit of heredity,
is transcribed into RNA, which, in turn, is translated into a protein, which can
regulate the expression of other genes, usually inter-related with other proteins
conforming a complex network of regulatory interactions [12] entailing causal
topological relations and the transfer of sequential information between such
genes. Thereby, genetic regulation, protein-protein interactions, as well as cell
metabolic and signaling pathways are essential biological processes that can all
be represented as (directed) networks [10].

Many biological and real data have been represented by networks for some
time now. For example, this approach has pervaded other fields like neuroscience
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[23], ecological [44], epidemic networks [40], among many examples [37] and,
specifically, those in which we are interested, gene-regulatory, protein-protein
and metabolic networks [7, 26]. Thus, the complexity of cellular processes is de-
picted in such networks providing a systems-perspective approach to extremely
complicated biological problems. In fact, the study of information processing in
living systems has benefited from the complex perspective rather than the anal-
ysis of single pathways, providing a richer understanding through the emergent
collective phenomena from a large number of basic inter-related units.

In particular, an important progress to understand the cell regulatory mech-
anisms was the discovery of the scale-free structure of most of the internal net-
works of the cell such as metabolic, protein-protein or gene-regulatory networks
[7]. However, there also exists networks within the cell that are not scale-free.
For instance, most of the genetic networks shows a mixed scale-free and exponen-
tial structure for the outgoing distribution (indicating the number of regulated
genes) and the ingoing distribution (indicating the number of interacting genes
and entailing a finite capacity of information processing), respectively. Most
networks within the cell shows further properties such as a small-world effect
(arising from the small average path length), a highly modular structure and an
outstanding response to external stimuli, as well as dynamical and structural
robustness [7].

On the other hand, the pioneering ideas of Kauffman [22, 27, 28], paved the
way to the identification of cellular states as attractors of the dynamics of ge-
netic regulatory systems, being modeled as random Boolean networks, in which
the genes are the network nodes and the mutual regulatory interactions are
described by direct links involving arbitrary random Boolean functions. Such
simple setup has shed light on important conceptual problems such as the emer-
gence of different phenotypes (or states) from a unique genetic network, the
existence of transitions among them (as exemplified in cell differentiation and
reprogramming), and the emergence of cycles in cell states. On this point,
two real examples are the predicted expression patterns of the fly Drosophila
melanogaster [2] and the yeast cell cycle [33].

In either case, it seems clear that gene-regulatory networks, composed by a
large number of specific interactions, involve some type information transmission
(or flow) encoded in mutual regulatory interactions, determining the cellular
response to different stimuli [7, 45]. Thus, it is foreseeable that the analysis and
study of interacting systems with such information flow can shed light onto the
particular structure and emergent properties of genetic systems.

Nevertheless, all of the empirical founded networks, that have been generated
over millions of year of evolution, can only reflect a static evolutionary stage.
Thus, it would be interesting to identify and scrutinize some examples of how its
dynamical evolution operates, as well as having certain synthetic self-organized
networks able to reproduce some properties that of gene networks. For this
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purpose, free software networks of packages, constituting a software ecosystem,
are an excellent model for the study of the evolution of such systems, as high-
lighted in the recent literature [16, 17, 39, 46]. Such networks are composed by
packages (acting as nodes and conforming the basic unit of software) that are
inter-related due to the need to reuse code of others in order to work properly
(the so-called dependencies; i.e. package i needs some neighbor packages to
be functional). A crucial question in such systems is the convergence (or not)
between the solutions found by software networks and real gene regulatory net-
works to achieve an optimal storage and transmission of information through
the particular topology of the networks.

In this chapter, we first characterize the evolving structure of the network
of dependencies between software packages in the different Debian GNU/Linux
distributions released to date. After that, we explore the emergent properties
and vulnerability of such networks and their role in the functionality of the
system. In parallel, it is also interesting to see the parallelisms between the
architecture and emergent properties of software networks and that of regulatory
interactions between genes.



6.2
Debian as “mirror” model

Debian is an open-source operating system that has evolved –in a relatively
short period of time– through the contribution of many developers, form-

ing an intricate structure between a vast number of packages, which conform
the basic unit of software in the whole operating system. Such packages must
decrypt the information coming from another packages1, in order to satisfy the
so-called dependencies, i.e. pieces of software relying on another one.

Thus, each node represents a pack-
age whose dependence on certain
(neighbor) nodes is symbolized by di-
rected links [16]. One specific ex-
ample, represented in Figure 6.2.1
and extracted from Buzz 1.1, shows
different dependences between pack-
ages. In order to build such depen-
dency network, in particular, we have
employed the relationships between
the binary x86 packages included in
Debian GNU/Linux from its begin-
ning, for the available 14 distribu-
tions (from Buzz 1.1 to Stretch 9).
However, for this purpose, beyond
the dependencies, reflecting require-
ments, there exists additional rela-
tions between packages named con-
flicts, which reflect incompatibilities
between them [24], that also needs to
be considered.

xlib

octave

less

ncurses

ldso

libc5

gnuplot

Figure 6.2.1: Subgraph show-
ing particular dependences between
packages from Buzz distribution

To fix this problem we must take into account a special type of package,
called “virtual”, which provides functionalities in our network (e.g. both firefox
and konqueror provide the same service, www-browser, if necessary). Interest-
ingly, as explained in the Debian Policy Manual [25] conflicts are used (in many
cases) to avoid duplications in virtual facilities of the system. So, in order to

1It can be easily argued a shift in the links direction according to the interpretation, i.e. in
terms of dependencies or information transmission.
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exclude such duplications, we should only select a particular (random) choice
of each “virtual” package, averaging over them, to explore the whole ensemble
of networks. Now we can safely say that we have generated the Debian poten-
tial network indicating the requirements (or dependency network) between the
different packages.

On the other hand, since its very beginnings, with the humble Buzz distribu-
tion with 486 packages, Debian has shown an spectacular (exponential) growth
in the total number of packages conforming each stable distribution (as shown
in Figure 6.2.2), until reach a surprisingly large number of packages

(
∼ 4.9 · 104)

in the last distribution, Stretch. One of our main purposes is to scrutinize the
evolutionary process related to such growth, as well as the structural emergent
properties (or those that already exist) of Debian networks.

Bu
zz

 1
.1

Re
x 

1.
2

Bo
 1

.3 Ha
m

m
 2

.0

Sl
in

k 
2.

1

Po
ta

to
 2

.2 W
oo

dy
 3

.0

Sa
rg

e 
3.

1

Et
ch

 4
.0

Le
nn

y 
5.

0

Sq
ue

ez
e 

6.
0

W
he

ez
y 

7

Je
ss

ie
 8

St
re

tc
h 

9

#
 P

a
ck

a
g
es

103

104

105

Distribution
0 2 4 6 8 10 12 14

Figure 6.2.2: Evolution of the total number of packages represented on a log-
arithmic scale (vertical axis) for the different Debian distributions (horizontal
axis). It follows an exponential growth appear, of the form N (R) ∝ e

R
τi , where

N is the total number of packages, R is the release number of each distribu-
tion, and τi the particular growth rate. Two exponential growths, separated by
Woody distribution can be appreciated with τ1 = 2.306 (1) and τ2 = 5.132 (1),
respectively.
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6.2.1
Evolutionary process of Debian networks

The selection between random choices of “virtual” packages is done over 104

realizations for every distribution, giving us the possibility of analyze, for now,
the averaged incoming and outgoing degree distributions. As shown in Fig.6.2.3b
and Fig.6.2.3c, the incoming cumulative degree distribution follows a power
law, P (k) ∼ k−α+1 with characteristic exponent α and the outgoing degree
distribution fits very well to a stretched (or compressed) exponential2, P (k) ∼
exp(−(kτ )β) with characteristic exponent β.
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Figure 6.2.3: a) Exponent of the power law fit for the incoming degree distri-
bution of dependencies (blue circles) and for the stretched exponential one (red
circles). Inset: Mean out-degree for all distributions from Buzz to Stretch. b)
Cumulative degree distribution for the incoming dependencies for the first dis-
tribution of Debian (Buzz) and for the last one (Stretch) in log-log scale and, c)
logarithm of the degree distribution for the outgoing dependencies for the Buzz
and Stretch distributions, showing a half-normal distribution decay (β = 2)
for Buzz and a stretched exponential distribution (β = 0.5) for the stretched
distribution.

In the evolutionary process of the Debian network, is expected some trend
of both exponents, as reflected in Fig.6.2.3a. Observe that the incoming degree
distribution has a stable behavior and its exponent remains very close to α = 2

2We have employed a Levenberg–Marquardt algorithm to curve-fitting the cumulative dis-
tribution function in the power law case, P (k) ∼ k−α, and the stretched exponential for the
outgoing distribution, P (k) ∼ exp(−( k

τ
)β).
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for all distributions (blue points). However, the exponent of outgoing degree
distribution –arising from a normal decay with β = 2 in Buzz– reaches a sta-
tionary state after the 8th distribution (Sarge) with β ≈ 0.5 (red points). At
last, we should ask ourselves what happens with the mean out-degree connectiv-
ity, 〈kout〉, of the different networks. As can be seen in the inset of the Fig.6.2.3a,
Debian software networks are very sparse networks, with 〈kout〉 between 1.5 and
5. Also, it can be appreciated a sustained growth of the mean connectivity, a
trend that leads to an apparent stationary state after 8th distribution with a
mean out-connectivity between 4.5− 5.

This features are very close to those observed for real gene-regulatory net-
works, which present an interesting (biological) example of mixed scale-free and
exponential characteristics in the outgoing and incoming degree distributions
with similar exponents [3, 10, 26], respectively. In the same way, they also are
very sparse networks, with mean incoming connectivity (associated to the expo-
nential distribution) around 1.5− 3.5 in most of the cases, as outlined in Figure
5.4.5 of the previous chapter.

6.2.1.1 Emergence of a non-trivial structure

Even though the networks have a non-trivial scale-free structure, it is to be
expected that the different functional areas play a key role in the evolutionary
process. In all cases, the modular structure seems really significant, and the
modularity index3 (Q, averaged over 104 realizations) grows continuously in the
last six distributions (from 9th “Etch” and after, see blue points in Fig. 6.2.4a).
Nevertheless, we should explore the possibility that such modularity can be an
artifact of the degree sequence. For this, the network is ”swapped” by changing
links between random nodes under certain rules, giving us a randomized struc-
ture to compare. To that end, from the original degree sequence of a Debian
network (D), we select a copy (D′) and a swapping process is performed in this
one to maintain both the ingoing and the outgoing connectivity unaltered. This
swap of links cover the next steps:

i) Select randomly a package A and one of its dependences a.

ii) Select, all different, a random package B and one of its dependences b with
the conditions: (i) A cannot depend on b and (ii) B cannot depend on a.

iii) Swap both links, i.e. A depends on b and B depends on a.

iv) Iterate the process until randomize the whole network.

3The measure of the modularity index (Q) is done through the Louvain method [9] on
directed networks [14], and the average path length on the graph employing the igraph R
package.[13]
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Such “swapped” networks shows a sustained decrease of the modularity in-
dex until 7th-8th distributions “Woody” and “Sarge”, as shown in Fig. 6.2.4a
(red points), and its standard deviation (σ) decrease monotonically with the
system size (upper inset). In a different manner, the standard deviation of
the original networks shows a pronounced peak around such distributions, sug-
gesting a strong change in the network structure. At last, we have measured
the Z-score of the modularity index4, in order to estimate the difference be-
tween modularity indexes regarding to the standard deviation of the ensemble
of possible networks, a measure that shows a dramatic increase over time. As
a corollary we can state categorically that the (emergent) modular structure
plays an important role in the development of software networks and that not
a simple artifact of the particular degree distribution of the networks.
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Figure 6.2.4: (a) Modularity index (Q) of the different Debian distributions
(blue points) and the ensemble of networks preserving the degree sequence
(“swapped”, red points). A monotonic increase of the modularity index can
be appreciated over time, while Q decreases for the swapped ones. Together
with these results, the standard deviation of the modularity index shows an
abrupt increase around 7th-8th distribution and a sustained decrease for the
“swapped” networks (upper inset). Consequently, the Z-score, shows a steep
rise until z = 800σ in the last distribution “Stretch” (lower inset) (b) Aver-
age path length (L) of the different Debian distributions (blue points) and the
“swapped” networks (red points). It shows a small increase for the original net-
works and an abrupt change in the “swapped” ones, together with a pronounced
peak in the standard deviation for the “swapped” networks around the 6th-7h
distributions (upper inset). Additionally, Z-score also grows after this abrupt
change in the ensemble of networks.

4The Z-score of a quantity is defined as difference with the mean in terms of the standard
deviations, z = x−µ

σ
.
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Another useful insight is the evolution of the average path length (L) over
the different distributions (also averaged over 104 realizations). It can be seen
in Figure 6.2.4b a small increase in this quantity (blue points), featuring that
its value remains constrained between 2 and 4, suggesting some type of small
world effect allowing to the neighbors to be genuinely close and facilitating the
transfer of information. Pay close attention that, in the “swapped” networks
(blue points in Fig. 6.2.4b), the average path length shows a great increase
around 6th-7h distributions “Potato” and “Woody” (red points), together with
a pronounced peak on its standard deviation (see lower inset) suggesting some
type of dramatic structural reorganization of the ensemble of networks. It also
should be noted that the Z-score for the average path length grows monotonically
after 7th distribution “Woody”.

For these particular observables, we have analyzed the gene-regulatory net-
works of E.Coli, M. Tuberculosis, B.Subtilis, P.Aeruginosa and S.Cerevisiae
[1, 5, 19, 34] getting values of Q and L between (0.55− 0.8) and (2.0− 3.5), re-
spectively (data not represented properly on a graph). Again, such values bear
an acceptable resemblance to the measured values of Debian dependency net-
works. Such high modularity values have been hypothesized to play a key role
in gene regulation [47], fostering the flow of information and providing effective
responsiveness to external stimuli [6, 43].

※ Loosing hierarchy. Beyond the importance of the modularity [16], it has
been highlighted the relevance of a high hierarchical organization in information
flow networks [49]. Thus, in order to analyze the evolution of the hierarchical
structure of the networks, we define three levels of hierarchy: (i) “sinks” that
are those packages that only depend on another packages (ii) “middle nodes”
which depend on another packages and some packages depend on them and
finally, (iii) “sources”, that are packages with no dependences, and which may
be interpreted as information containers.

At this point, the fraction of such type of packages can be monitored over the
different releases. As shown in Figure 6.2.5, the “source” packages only represent
a small fraction of the whole network and, more interestingly, the “sinks” –which
constitute most of the network in the first distributions– decrease astoundingly
quickly for successive releases, demonstrating a clear loose of the (pronounced)
hierarchical structure of the initial distributions.

An even greater hierarchical structure is prominent in real gene networks [43,
49] (where more than 85% of the nodes are “sinks”), which has been hypothesized
to confer an effective and robustness way to transfer information and coordinate
processes [49].
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Figure 6.2.5: Evolution of the three main hierarchies identified in the network:
“sinks”, “middle nodes” and “sources” (see legend). Observe that the “sources”
of information, i.e. nodes that not depend on another nodes, constitute a small
fraction of the network. However the “sinks”, situated in the lowest point of the
hierarchy are being lost over time, very probably due to the reuse of packages.

※ Evolution of resilience in Debian networks. One plausible assumption in
the traveled way of Debian releases is that the network should be driven toward
a resilience, non-breakable, target, and that, the structural changes observed
above satisfy this process of improvement. To check this possibility, we propose
to carry out the next experiment: to attack a small fraction of the network
(making 1% of the total number of packages unusable) and to observe what
happens with its dependent packages. That is to say, once a package is dam-
aged, all the packages that depend on this one cause a cascading failure affecting
to some fraction of the whole network. This proportion of the whole network
that has been damaged is called the “vulnerability” and it is computed over the
different distributions. Figure 6.2.6a shows the different values of the vulner-
ability across the evolution of Debian, exhibiting –again– a big increase of it
around the 7th-8th distributions, where the major changes on the modularity
index (Q), the average path length (L) and the stationary state of the outgoing
degree distribution turned up for it. But then, apparently, Debian networks
are becoming less and less resilient over time. We are asking ourselves, what is
being optimized, or where is going, the evolutionary dynamics of such software
networks?
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But before going into such issue, a similar analysis, mimicking empirical gene
knockout experiments, i.e. a study of avalanches of damage, can be performed
by attack a single node of each network, and following the cascade of failures.
Results of such damage spreading are shown in Figure 6.2.6b, where it may
be seen the emergence (or convergence) to a power law distribution, with an
exponent close to τ = 1.5, of the total number of damaged packages for the
last distributions and, in particular, exemplified for Etch (blue line). Perhaps
surprisingly, the scale-free behavior shown by the distribution of failures for
the last distributions bears a very close resemblance to the real gene knockout
experiments recently reported [18, 42] (and shown in Figure 6.2.6b).
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Figure 6.2.6: (a) Vulnerability index for the different Debian distributions. An
abrupt increase of the vulnerability can be appreciated around the 7th-8th dis-
tributions affecting to a large fraction of the network and, possibly, making it
totally unusable in practice if there are any problems. (b) Scale-free avalanches
of damage after attack one random node of the network for Bo (red), Woody (or-
ange) and Etch (blue) distributions. Dashed lines are guides to the eye (black,
τ = 1.5 and violet, τ = 2) and (c) Total number of metabolite changes for
different mutants replica (i.e. with single-gene deletions) of E. Coli. It seems
to follow a power law distribution with exponent τ ≈ 3/2 (the dashed lines are
guides to the eye). Data from [26].
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6.2.2
Network information and the size of packages.

As we have seen, there exists an important and apparent contradiction with
the (reasonable) evolution toward a resilient target in concomitance with an
optimal information flow across the network. An important property –beyond
the structure of the network– emerge from the study of the information about the
size of the different packages, concerning the total amount of information that
is present in the Debian potential network. In this sense, it can be analyzed the
evolution of the total size of the network according to the system size. Thereby,
Figure 6.2.7 shows the increase of the size of the system with the number of
packages. A linear growth can be estimated for the first distributions, as well
as a clear slowing down for this trend after 7th distribution (as a comparison, a
square-root dependence is depicted). As a direct consequence, this implies that
twice the number of packages, not twice the total information contained in the
network.
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Figure 6.2.7: Total number of packages versus total system size for each Debian
distribution (black dots). An initial linear growth, presenting a clear slowing
down can be appreciated as a general trend. Dashed lines are guides to the eye
showing a linear growth (reddish one) and a square-root growth (purplish one).
Inset: Cumulative distribution of the size of individual packages across different
distributions featuring a tendency to an ever larger size.
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To understand this a little better, there are new aspects of the isolated pack-
age structure that need further explanations to address an accurate and precise
knowledge of the issue. The Debian software package format, in particular, in
the same way as further package management systems, consists of payload data
(the software in itself) together with extra control information encapsulated
in particular control files, which contains meta-information (the dependences
needed, as well as mechanisms designed to avoid errors during unpacking and
installation processes) ensuring a proper transmission of information [32]. Re-
ally, this control files are what comprise and ensure the resilience of the network,
minimizing risks in the transmission of the information of the system and thus,
doing not matter the growth of the vulnerability appreciated in Figure 6.2.6a.

This raises a clear analogy with cellular organisms and viruses, for which the
C-value of an organism is defined as the amount of DNA per haploid nucleus
in the genome. In essence, a measure of the genome size of an organism. Such
relation between the total number of genes and the genome size is of common
wisdom and has been known for a long time in biology for many living things
[21], from prokaryotes to eukaryotes and plasmids, as well as viruses. The
growth of the total amount of information for living systems was expected to
exhibit some type of constancy or relationship with the number of genes of an
organism but, as shown in Figure 6.2.8 it bears no relationship with the genome
size of living things, giving place to the C-value paradox or, more recently, to the
C-value enigma. The paradox surrounds the next question: why genome size
does not correlate with the complexity of an organism? Or in other words, it
seems clear that the more complex the organism the larger the genomes should
be, but it is not the case for eukaryotes. They not correlate properly and,
hence, the cells of those organisms contains much more DNA than expected.
This apparently paradox was solved in 1971 with the discovery of the non-
coding DNA in eukaryotes [38], i.e. a DNA sequence that do not encode protein
sequences. However, the functionality and role of such non-coding DNA has
not been fully elucidated and its utility or futility are still under discussion [11]
provoking controversy and promoting the enigma.
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6.3
Conclusions

With the aim of developing artificial systems able to mimic the mecha-
nisms operating in living systems, new grounds have been has broken

in the fields of biomedical therapies, biosensing modular circuits and biosyn-
thetic pathways [8, 29, 41]. At this stage, various disciplines such as systems
biology, biophysics and evolutionary biology play a key role, so the clarification
of the collective properties stemming from the interactions of a large number of
units such as genes, proteins or metabolites should provide insight into further
developments in the field. Regarding this, a pioneering creation of a genetic tog-
gle switch and a synthetic oscillatory network entailed a significant contribution
showing the potential of this branch [15, 20]. Further particular applications,
such as biosensing, mimicking the myriads of regulatory circuits of the cell to
process external stimuli, require a thorough understanding of the different reg-
ulatory interactions at the transcriptional, translational and post-translational
levels [29], as well as fully elucidate their collective properties and features.
Since the current knowledge still has some serious flaws [36], more exhaustive
empirical measurements and analytical theory/modeling would be needed.

Here, employing the software network of the Debian operating system, we
have scrutinized its evolutionary dynamics, as well as the specific emergent prop-
erties achieved through the collective action of thousand of developers. Based
on causal topological relations and the transfer of sequential information, the
software ecosystem of Debian networks –whose evolution has occurred on a very
short evolutionary time, approximately 20 years– constitute an excellent anal-
ogy with gene networks. In particular, Debian networks are quite sparse and
show a mixed scale-free and exponential structure for the ingoing distribution
(representing the number of dependent packages) and the outgoing distribution
(representing the number of processing packages and entailing a finite capacity
of information processing), respectively. Especially interesting is the increase of
the modular structure of the networks for the different releases that have been
proposed to be an effective strategy for allowing, at the same time, the growth
of resilient networks, minimizing the risk of collapse if some packages experi-
ence failures [16]. In turn, the evolutionary trend confirms a clear loss of the
hierarchy of the networks, probably coming from the reuse of code as the new
software develops. In this way, the reuse of code (or software) to optimize the
development of the operating system must be part of a concerted action with
the effective and robust transfer of information and coordination processes that
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the hierarchy confer. Additionally, the small average path length can be taken
as an indication of small-world effects.

On the other hand, as might be expected, the cascading failure resulting from
individual package deletion follow a power law size distribution but, interest-
ingly, its slope converge to 3/2 in the last distributions of Debian. Likewise, the
vulnerability of the system from a random attack to a fraction of it shows a sharp
increase around the Woody distribution, in accordance with all the major (and
mostly dramatic) changes that have taken place throughout the evolutionary
dynamics of Debian systems. Last but not least, Debian seems to be reaching
some type of stationary state –after undergoing major changes close to Woody
distribution– as emerging of the different properties in the last distributions.

Also, in the light of the increasing amount of information per package in
high complexity networks of the last distributions, bearing no relationship with
the total number of packages, we hypothesize an increasing relevance of the
control files as an effective strategy in order to minimize the disruptions during
the information processing, that allows for an emergent optimized structure for
the information flow throughout the network.

Inspired by previous works [16, 17, 49] we have found that software syn-
thetic networks are able to recreate many of the emergent properties observed
in real gene regulatory processes. For instance, the particular structure of the
(ingoing and outgoing) degree distribution, a high level of modularity that has
emerged throughout its evolution, as well as similar values of the -small- aver-
age path length indicating small-world effects. In turn, both systems show a
highly hierarchical structure (much more pronounced in genetic networks) that
has been hypothesized to confer an effective and robustness way to transfer in-
formation and coordinate processes [49]. The counterintuitive trend found in
Debian networks, promoting the loss of hierarchy throughout their evolution, is
thus of particular interest. This aspect raises an important question, how can
the system lose hierarchical structure and increase modularity at the same time?

Regarding gene knockout experiments, showing identical behavior to the ex-
periments done in the software networks, it is possible to provide an explanation
relying on structural effects only. The dynamics may play no role whatsoever,
in what appears to be an emergent topological property.

On the other hand, although a great effort has been made to understand the
role of the non-coding DNA, it is actually perceived as the dark-matter of the
genome [11], since its particular function remains still unknown. In this sense,
it has provoked extended discussions about its functionalities or its futility [35].
Thus, our analogy can support the vision that, at least one of its roles, can be
the monitoring and minimization of gene disruption during the transcriptional
process. However, further work is needed on the analogy with the non-coding
DNA, in order to clarify the biological function of the “dark matter” of the
genome.
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In either case, it seems that common solutions emerge, both in synthetic
networks and in real biological networks, to the general problem designing cir-
cuitry that optimizes storage, information processing (of both internal and ex-
ternal stimuli), and robustness. Thus, it might be of interest to consider the
suggestion of borrowing and implementing some features and strategies coming
from real gene regulatory networks in operating systems, maybe contributing to
optimize software networks in future developments.
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7.1
Concluding remarks

“Things happen by revolutions, not
gradually, precisely because dynamical
systems are poised at the critical state.”

Per Bak

The criticality hypothesis frames a fascinating idea, living systems may op-
erate in the vicinity of a phase transition, i.e. at the borderline between

order and disorder, shedding much light on the comprehension of several collec-
tive natural phenomena and, more recently, in specific features of real biological
systems. Likewise, it has revealed its rapport with many functional benefits
crucial for the survival, proliferation and refinement of living matter evolving
by natural selection.

On this basis, throughout this thesis we have delved deeper into the idea of
possible clues of criticality in living matter, as well as their emergent collective
phases and phenomena. In particular, we have considered particular real bio-
logical systems –neural and genetic– susceptible to be analyzed together with
specific quantitative features, i.e. experiments, trying to elucidate –in them–
how far and how accurate the criticality hypothesis is.

※ Neural dynamics operates at the edge of a synchronization phase transition
In the context of neural systems, criticality hypothesis conjectures that the
underlying dynamics of cortical networks is such that it is posed at the edge
of a continuous phase transition, separating qualitatively different phases or
regimes, with different degrees of order [2, 9, 20, 41]. However, what these
phases are, and what the nature of the putative critical point is, are questions
that still remain to be fully settled.

In this sense, the Landau-Ginzburg model of cortical dynamics –focused on
a regulatory dynamics controlled by synaptic plasticity or inhibition– allow us
to classify the possible emerging phases of cortical networks under very general
conditions by the consideration of intrinsic stochasticity and spatial dependence.
Even though Buice and Cowan developed a very similar approach based on con-
tinuous phase transitions from a quiescent to an active phase [6], we believe
that this scenario does not properly capture the essence of cortical dynamics as,
in actual networks of spiking neurons, there are spike-integration mechanisms,
i.e. many inputs are required to trigger further activity. Indeed, as the Wilson-
Cowan model captured, the threshold of the sigmoid response function precludes
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the existence of a continuous quiescent/active phase transition. Moreover, based
on the “spiking” nature of the activity dynamics, our theory underlies the fun-
damental role of oscillations and partial synchronization –suggesting that kind
of phase transition– in neural dynamics.

From an experimental viewpoint, our model constitutes –in a specific case–
a sound description of the cortex during deep sleep or during anesthesia, when
up and down transitions are observed [10, 44]. But, better yet, just at the
synchronization critical point, our model shows the best performance reproduc-
ing empirically observed resting-state networks [43], the existence of long-range
temporal correlations in alpha oscillations [28], as well as power-law distributed
avalanche sizes and durations with the same statistics as in empirical networks,
i.e. the critical exponents compatible with those of an unbiased branching pro-
cess [2]. Moreover, our results are compatible with the amazingly detailed model
put together by the Human Brain Project consortium [29], in which the calcium
concentration is well-known to modulate the level of available synaptic resources
setting the network state. Additionally, our model is able to reproduce remark-
ably well empirical in vitro results for neural cultures with different levels of
mesoscopic structural heterogeneity [37].

※ The architecture of cortical networks induces an extended critical-like
synchronization region In the spirit of neural field models, and to preserve
the essence of a minimal design, we show that simple models of synchronization
dynamics (the Kuramoto model), operating on top of empirical human brain
networks, exhibit an unexpectedly rich phenomenology.

Such phenomenology is a broad critical-like region (reminiscent of a Griffiths
phase [33]) with oscillatory behavior of the order parameter, which stems from
the existence of relatively isolated structural communities or moduli. Even more
remarkably, oscillations in the level of internal coherence are also present within
these moduli, suggesting the existence of a whole hierarchy of nested levels of
organization, as also found in the recent literature [7, 32, 43, 46].

In this respect, in the absence of frequency dispersion, perfect coherence is
achieved in hierarchical networks by following a “matryoshka doll” (i.e. bottom-
up) ordering dynamics, which is further frustrated in the presence of intrinsic
frequency dispersion. This allows the system to remain trapped into metastable
and chimera-like states with traits of local coherence at different hierarchical
levels, rendering accessible –in a robust though flexible way– a large variety
of functional attractors and dynamical repertoires without ad hoc fine-tuning
to a critical point. In addition, stochasticity allows the system to wander in
such complex synchronization landscape overcoming the “potential barriers” be-
tween mutually incoherent moduli as well as re-introducing “desynchronization”
effects, leading to an even more enriched dynamics.
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Interestingly, such intermediate broad regime reproduce the real dynamics
found in alpha oscillations and in the resting state of human brains [4, 28],
characterized by very slow fluctuations, of typical frequency < 0.1Hz. Also, the
attractor “surfing” behavior, that has been suggested to give access to highly
varied functional configurations in real neural dynamics [9, 18, 41] is largely
facilitated in the broad intermediate regime, without any need of fine-tuning of
a critical point to guarantee the functional advantages usually associated with
criticality. Likewise, it justifies the observed critical-like regions in different
models of neural dynamics [13, 21, 40].

※ Non-critical mechanisms of power laws From a theoretical viewpoint, crit-
ical exponents of an unbiased branching process have been founded to be fully
compatible with the empirical scale-free avalanches discovered by Beggs and
Plenz [2]. Since all systems with absorbing states can exhibit avalanche behav-
ior, turning out to be scale invariant at critical points, and simple quiescent-
to-active phase transitions show the branching-process exponent values [19, 30],
they can be used to account for the neural scale-free avalanches. In this sense,
we hope that the brief summary exposed here helps avoiding frequent confu-
sions in the neuroscience literature, as well as underlining the superuniversality
of the directed percolation universality class, which, in fact, is also related with
synchronization effects [35, 39].

On the other hand, at the very least, we intended to highlight the relevance
of showing the lifetime exponent in empirical/theoretical findings, as well as to
avoid misleading measures of avalanches over temporal series.

Conversely, as counterpoint, we have shown the emergence of generic (non-
critical) power laws in a theoretical model with small external driving [5]. Also,
in a more realistic way, we have thoroughly understood the “balanced ampli-
fication” mechanisms proposed by Benayoun et al. [3, 36] in populations of
excitatory and inhibitory neurons, as well as to present the same phenomena
by employing synaptic plasticity as the chief regulatory mechanism. In essence,
such non-critical mechanisms requires the existence of a stable active fixed point,
enriched with a reactive dynamics allowing for very large noise-induced fluc-
tuations leading the system to get trapped into the origin by the effect of a
logarithmic potential. Thus, “balanced amplification” provides a (non-critical)
candidate to model up and down states, such as those occurring in the brain
during sleep or under anesthesia [10, 44].

Nevertheless, despite the “balanced amplification” mechanism is able to show
scale-free avalanches, their exponents are compatible with the random walk uni-
versality class. Thus, although reactive dynamics may be of key importance in
neural mechanisms (such as in up and down states) and in fostering large fluc-
tuations, it does not seem a plausible candidate to account for the large number
of founded empirical findings explained by different theoretical approaches.



230 Chapter 7. Conclusions

※ The dynamics of GRN is ordered or critical but not chaotic Genetic
regulatory networks constitute another sound suggested case that might operate
close to criticality, exploiting its many benefits.

Thus, we have shown that random Boolean network models –with an in-
herent stochastic updating dynamics [16] and mimicking real gene regulatory
networks [15, 17, 22, 23]– that are trained to perform a given computational
task, can learn it much faster if they have a connectivity K such that they are
close to criticality. In this sense, from an evolutionary point of view, although
the learning process is compatible with being subcritical, critical or supercrit-
ical, for sure criticality is fostered in a system whose evolution is guided by
natural selection.

Biological systems must have homeostasis, i.e. the capacity to maintain
their internal conditions even in the presence of fluctuations and noise. So, in
the same set up, we have added extreme forms of dynamical or structural noise,
mimicking dynamical perturbations or physical damages in the transcriptional
network. Under this effects, we find that the optimal connectivity to achieve
the fastest possible learning lies deep-inside the subcritical region, far away
from criticality, and the distance to criticality increases upon enlarging the noise
strength and does not diminish upon increasing the system size. That is to say,
real biological networks surviving in a noisy world, should operate in sub-critical
regimes rather than in a critical one.

Furthermore, we have collected many empirical (genetic and metabolic) net-
works which show a rather sparse connectivity, leading to subcritical dynamics
if the dynamics underlying these networks is assumed to be modeled by random
Boolean functions [11, 24]. Our results seems compatible with the Kauffman net
model for eukaryotic cells [42], as well as for the yeast transcriptional network
[25].

Hence, the criticality hypothesis remains as a valid and fascinating possi-
bility, but it needs to be critically evaluated under each set of specific circum-
stances, avoiding making exceedingly general claims. Also, together with the
need of more accurate and extensive experimental approaches, one can only
conclude that better and more accurate dynamical models are needed to model
gene regulatory networks, as well as to infer the impact of important topological
features (such as hierarchical and modular organization) of empirical networks.

※ Mimicking and shedding light on the regulatory circuitry of cell organisms
The comprehension of the structure (and the evolution) of real gene networks
is key for the emergent collective properties of the cell function [26, 27]. For
this purpose, Debian networks, as collective information flow networks, offer a
unique opportunity to study the evolution and the emergent properties of gene
networks [12, 45].
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We have found that such software synthetic networks are able to recreate
many of the emergent properties observed in real gene regulatory processes
[1]. For instance, the particular structure of the (ingoing and outgoing) degree
distribution, a high level of modularity that has emerged throughout network
evolution, as well as similar values of the -small- average path length indicating
small-world effects. In turn, both systems shows a high hierarchical structure
(much more pronounced in genetic networks) that has been hypothesized to
confer an effective and robust way to transfer information and coordinate pro-
cesses.

Also, they are able to reproduce the power laws founded in gene ’knock-out’
experiments [14, 38], allowing for a compelling explanation (without any sign of
critical dynamics) relying only on structural effects. In the same way, Debian
synthetic networks can support the conjecture that, at least, one of the roles
of the non-coding DNA in eukaryotic cells [8, 31] can be the monitoring and
minimization of gene disruption during the transcriptional process. In essence,
playing a similar role to the control files in Debian packages.

※ How living matter works Certainly, the criticality hypothesis is a tantalizing
and powerful solution to the mystery of how collective properties (ubiquitously)
emerge in concomitance with the large amount of functional benefits required
by living systems.

In this sense, we do not aim to fully elucidate the accuracy of this central
controversy, but hopefully we have contributed to shedding light on the (syn-
chronization) phase transition in which the cortex might operate, and that, as
far as we are concerned, is able to reproduce all chief empirical findings for neu-
ral avalanches. It also represents an example of a phase transition far away of
the archetypal active/quiescent one, very interesting for systems with ceaseless
activity or dynamics. But, even better, such edge of synchronization can be
stretched whether heterogeneous or modular structures are present, suggesting
a broad living region –that is relevant for other hierarchically organized systems–
rather than the narrow line that SOC proposes.

Likewise, the empirical evidence was regarded as essential in order to pro-
vide a theoretical approach that goes further than an abstract hypothesis, i.e.
beyond a simple qualitative view. The criticality hypothesis must provide a
large number of quantitative measures and predictions (along with the already
discovered, which, in our opinion, are not fully convincing enough). To that end,
larger systems, more accurate and integral experiments –arising from an inter-
disciplinary perspective– are needed. In particular, the quest for a “smoking
gun”, which might be brain function, is a priority objective to duly justify the
criticality hypothesis. In particular, we hope that our Landau-Ginzburg model
does its part in the quest for such “holy grail” of criticality.
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Therefore, the criticality hypothesis should not be magnified yet. It is an
undeniable fact that living things cannot be too quiescent, nor can they be too
variable: in order for the criticality hypothesis to be considered as a valid expla-
nation, many specific quantitative features should arise from this perspective.
Otherwise, it merely suggests a tautology, i.e. that our limited models –in which
the most complex dynamics arise at criticality– provide complex analogies to
the most complex systems we know, the living matter of Earth. We indeed
believe that criticality hypothesis is accurate in several cases (see [34] for more
specific examples), but biology is rich enough to foster living matter also operat-
ing in different phases (beyond criticality, we should not forget that such phases
emerge from a collective action of an enormous host of acting units, that already
is a fascinating and captivating issue). For instance, we have serious doubts –in
the light of the Boolean approach– about the critical dynamics in gene regula-
tory networks, which are exposed to numerous external stress factors. In the
same way, gene knock-out experiments are still far from being an evidence of
critical dynamics in gene networks, because they are susceptible of alternative
(and compelling) interpretations. This only reinforces the idea that more accu-
rate and integral experiments are needed in order to clarify how successful the
criticality hypothesis is.

Thus, in our view, this thesis points to further work on how adaptive, home-
ostatic or self-regulatory mechanisms can account for the brain to operate in
the edge of a synchronization phase transition, as well as for the role of more
realistic spatial dependences and dynamical models of neural dynamics (with
explicit time delays, for example). In the same way, the possibility of a syn-
chronization transition related with neural dynamics should be clarified and
carefully analyzed both from the experimental and the theoretical viewpoint,
and ideally through the correct definition of a universality class. On the other
hand, we should explore the development of dynamical models that can –as
closely as possible– replicate the gene regulation dynamics (maybe) at critical-
ity. Likewise, the charming idea of broad critical-like regions allowing for very
rich dynamical repertoires and stemming from the modular structure of further
biological systems, as possibly gene regulatory networks, should be scrutinized
and clarified. Indeed, only the design, replication and framing of more experi-
mental findings and evidences –supporting or refuting the criticality hypothesis
in living matter– is, per se, a major challenge and a great source of work.

Finally, we believe that the criticality hypothesis might be able to elucidate
why Nature, and living matter is complex, as well as to account for quantitative
features of living matter, solving a key mystery with huge implications. After
all, in agreement with Russell and Dirac, if a theory possesses some beauty (and,
certainly, criticality does) it should also possesses some truth. Although, it may
also be that –the also complex– God, under the (highly unlikely) assumption
that it exists, is a statistical physicist.



7.2
Papers derived from this

thesis

[1] Villegas, P., Muñoz, M. A. & Bonachela, J. A. «Unveiling the
emergent structure of grn from debian networks». In preparation (2018).

[2] di Santo, S., Villegas, P., Burioni, R. & Muñoz, M. A. «Self-
organized bistability: is it a relevant concept for brain dynamics?». In
preparation (2018).

[3] di Santo, S., Villegas, P., Burioni, R. & Muñoz, M. A. «On a
misleading definition of neural avalanches». In preparation (2018).

[4] Villegas, P., di Santo, S., Burioni, R. & Muñoz, M. A. «Reactive
and noisy dynamics in simple models of neural systems». Submitted (2018).

[5] di Santo*, S., Villegas*, P., Burioni, R. & Muñoz, M. A.
«Landau-Ginzburg theory of cortex dynamics: scale-free avalanches
emerge at the edge of synchronization». Proc. Natl. Acad. Sci. USA (2018).
(*Joint 1st authors).

[6] di Santo, S., Villegas, P., Burioni, R. & Muñoz, M. A. «Simple
unified view of branching process statistics: Random walks in balanced
logarithmic potentials». Phys. Rev. E 95, 032115 (2017).

[7] Villegas, P., Ruiz, J. M., Hidalgo, J. & Muñoz, M. A. «Intrinsic
noise and deviations from criticality in Boolean gene-regulatory networks».
Sci. Rep. 6, 34743 (2016).

[8] Villegas, P., Hidalgo, J., Moretti, P. & Muñoz, M. A. «Complex
synchronization patterns in the human connectome network». In Battis-
ton, S., De Pellegrini, F., Caldarelli, G. & Merelli, E. (eds.)
Proceedings of ECCS 2014: European Conference on Complex Systems,
69–80 (Springer International Publishing, Cham, 2016).

[9] Moglia, B., Albano, E. V., Villegas, P. & Muñoz, M. A. «Inter-
facial depinning transitions in disordered media: revisiting an old puzzle».
J. Stat. Mech. Theory Exp. 2014, P10024 (2014).

[10] Villegas, P., Moretti, P. & Muñoz, M. A. «Frustrated hierarchi-
cal synchronization and emergent complexity in the human connectome
network». Sci. Rep. 4, 5990 (2014).

233

https://doi.org/10.1073/pnas.1712989115
https://doi.org/10.1073/pnas.1712989115
https://link.aps.org/doi/10.1103/PhysRevE.95.032115
https://link.aps.org/doi/10.1103/PhysRevE.95.032115
https://link.aps.org/doi/10.1103/PhysRevE.95.032115
http://dx.doi.org/10.1038/srep34743
http://dx.doi.org/10.1038/srep34743
https://doi.org/10.1007/978-3-319-29228-1_7
https://doi.org/10.1007/978-3-319-29228-1_7
http://dx.doi.org/10.1088/1742-5468/2014/10/P10024
http://dx.doi.org/10.1088/1742-5468/2014/10/P10024
http://dx.doi.org/10.1038/srep05990
http://dx.doi.org/10.1038/srep05990
http://dx.doi.org/10.1038/srep05990


234 Chapter 7. Conclusions

※ Contributions to conferences

[1] Villegas, P., Moretti, P. & Muñoz, M. A. «Kuramoto dynamics,
glassy synchronization and rare regions in the human connectome». In
Quantitative Laws II: From physiology to ecology, from interaction struc-
tures to collective behavior (Como, (Italy), 2016).

[2] Villegas, P., Moretti, P. & Muñoz, M. A. «Neuronal avalanches:
synchronization and criticality in the brain». In I Conferences for young
researchers: fostering the interdisciplinarity (Granada, (Spain), 2016).

[3] Villegas, P., Hidalgo, J., Moretti, P. & Muñoz, M. A. «Complex
synchronization patterns in the human connectome network». In FISES
2015 (Badajoz, (Spain), 2015).

[4] Villegas, P., Hidalgo, J., Moretti, P. & Muñoz, M. A. «Hier-
archical synchronization and complex patterns in the human connectome
network». In 13th Granada Seminar on Computational and Statistical
Physics (La Herradura, (Spain), 2015).



Chapter 7. Conclusions 235

References
[1] Barabasi, A.-L. & Oltvai, Z. N. «Network biology: understanding

the cell’s functional organization». Nat. Rev. Gen. 5, 101–113 (2004).

[2] Beggs, J. M. & Plenz, D. «Neuronal avalanches in neocortical circuits».
J. Neurosci. 23, 11167–11177 (2003).

[3] Benayoun, M., Cowan, J. D., van Drongelen, W. & Wallace, E.
«Avalanches in a stochastic model of spiking neurons». PLoS Comp. Biol.
6, e1000846 (2010).

[4] Biswal, B., Zerrin Yetkin, F., Haughton, V. & Hyde, J. «Func-
tional connectivity in the motor cortex of resting human brain using echo-
planar mri». Magn. Reson. Med. 34, 537–541 (1995).

[5] Bray, A. «Random walks in logarithmic and power-law potentials,
nonuniversal persistence, and vortex dynamics in the two-dimensional XY
model». Phys. Rev. E 62, 103 (2000).

[6] Buice, M. A. & Cowan, J. D. «Field-theoretic approach to fluctuation
effects in neural networks». Phys. Rev. E 75, 051919 (2007).

[7] Bullmore, E. & Sporns, O. «Complex brain networks: graph theo-
retical analysis of structural and functional systems». Nat. Rev. Neurosci.
10, 186–198 (2009).

[8] Carey, N. Junk DNA: A Journey Through the Dark Matter of the
Genome (Columbia University Press, New York, 2015).

[9] Chialvo, D. R. «Emergent complex neural dynamics». Nat. Phys. 6,
744–750 (2010).

[10] Destexhe, A. «Self-sustained asynchronous irregular states and Up
Down states in thalamic, cortical and thalamocortical networks of nonlin-
ear integrate-and-fire neurons». J. Comput. Neurosci. 27, 493–506 (2009).

[11] Drossel, B. «Random boolean networks». In Schuster, H. G. (ed.)
Reviews of nonlinear dynamics and complexity, vol. 1, chap. 3, 69–110
(Wiley VCH, Weinheim, 2008).

[12] Fortuna, M. A., Bonachela, J. A. & Levin, S. A. «Evolution of a
modular software network». Proc. Natl. Acad. Sci. USA 108, 19985–19989
(2011).



236 Chapter 7. Conclusions

[13] Friedman, E. J. & Landsberg, A. S. «Hierarchical networks, power
laws, and neuronal avalanches». Chaos 23, 013135 (2013).

[14] Fuhrer, T., Zampieri, M., Sévin, D. C., Sauer, U. & Zamboni, N.
«Genomewide landscape of gene–metabolome associations in escherichia
coli». Mol. Sys. Biol. 13, 907 (2017).

[15] Goudarzi, A., Teuscher, C., Gulbahce, N. & Rohlf, T. «Emergent
criticality through adaptive information processing in boolean networks».
Phys. Rev. Lett. 108, 128702 (2012).

[16] Greil, F. & Drossel, B. «Dynamics of critical kauffman networks un-
der asynchronous stochastic update». Phys. Rev. Lett. 95, 048701 (2005).

[17] Gros, C. Random Boolean networks (Springer, Berlin Heidelberg, 2011).

[18] Haimovici, A., Tagliazucchi, E., Balenzuela, P. & Chialvo,
D. R. «Brain Organization into Resting State Networks Emerges at Crit-
icality on a Model of the Human Connectome». Phys. Rev. Lett. 110,
178101 (2013).

[19] Henkel, M., Hinrichsen, H. & Lübeck, S. Non-equilibrium Phase
Transitions: Absorbing phase transitions. Theoretical and mathematical
physics (Springer, Berlin, 2008).

[20] Hesse, J. & Gross, T. «Self-organized criticality as a fundamental
property of neural systems». Front. Sys. Neurosci. 8 (2014).

[21] Kaiser, M. & Hilgetag, C. C. «Optimal hierarchical modular topolo-
gies for producing limited sustained activation of neural networks». Front.
Neuroinform. 4 (2010).

[22] Kauffman, S. «Metabolic stability and epigenesis in randomly con-
structed genetic nets». J. Theor. Biol. 22, 437–467 (1969).

[23] Kauffman, S. A. The origins of order: Self-organization and selection
in evolution (Oxford university press, New York, 1993).

[24] Kauffman, S., Peterson, C., Samuelsson, B. & Troein, C. «Ge-
netic networks with canalyzing boolean rules are always stable». Proc.
Natl. Acad. Sci. USA 101, 17102–17107 (2004).

[25] Kauffman, S., Peterson, C., Samuelsson, B. & Troein, C. «Ran-
dom boolean network models and the yeast transcriptional network». Proc.
Natl. Acad. Sci. USA 100, 14796–14799 (2003).



Chapter 7. Conclusions 237

[26] Kitano, H. «Systems biology: a brief overview». Science 295, 1662–1664
(2002).

[27] Kitano, H. «Computational systems biology». Nature 420, 206–210
(2002).

[28] Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M. & Il-
moniemi, R. J. «Long-range temporal correlations and scaling behavior
in human brain oscillations». J. Neurosci. 21, 1370–1377 (2001).

[29] Markram, H. et al. «Reconstruction and simulation of neocortical mi-
crocircuitry». Cell 163, 456–492 (2015).

[30] Marro, J. & Dickman, R. Nonequilibrium phase transitions in lattice
models (Cambridge University Press, Cambridge, 2005).

[31] Mercer, T. R., Dinger, M. E. & Mattick, J. S. «Long non-coding
rnas: insights into functions». Nat. Rev. Gen. 10, 155–159 (2009).

[32] Meunier, D., Lambiotte, R. & Bullmore, E. «Modular and hierar-
chically modular organization of brain networks». Front. Neurosci. 4, 200
(2010).

[33] Moretti, P. & Muñoz, M. A. «Griffiths phases and the stretching of
criticality in brain networks». Nat. Comm. 4, – (2013).

[34] Muñoz, M. A. «Colloqium: Criticality and dynamical scaling in living
systems». arXiv preprint arXiv:1712.04499 (2017).

[35] Muñoz, M. A. & Pastor-Satorras, R. «Stochastic theory of synchro-
nization transitions in extended systems». Phys. Rev. Lett. 90, 204101
(2003).

[36] Murphy, B. K. & Miller, K. D. «Balanced amplification: a new
mechanism of selective amplification of neural activity patterns». Neuron
61, 635–648 (2009).

[37] Okujeni, S., Kandler, S. & Egert, U. «Mesoscale architecture shapes
initiation and richness of spontaneous network activity». J. Neurosci. 37,
3972–3987 (2017).

[38] Rämö, P., Kesseli, J. & Yli-Harja, O. «Perturbation avalanches
and criticality in gene regulatory networks». J. Theor. Biol. 242, 164–170
(2006).

[39] Rosenblum, M. G., Pikovsky, A. & Kurths, J. Synchronization –
A universal concept in nonlinear sciences (Cambridge University Press,
Cambridge, 2001).



238 Chapter 7. Conclusions

[40] Rubinov, M., Sporns, O., Thivierge, J.-P. & Breakspear, M.
«Neurobiologically realistic determinants of self-organized criticality in
networks of spiking neurons». PLoS Comp. Biol. 7, e1002038 (2011).

[41] Shew, W. L., Yang, H., Petermann, T., Roy, R. & Plenz, D.
«Neuronal avalanches imply maximum dynamic range in cortical networks
at criticality». J. Neurosci. 29, 15595–15600 (2009).

[42] Shmulevich, I., Kauffman, S. A. & Aldana, M. «Eukaryotic cells
are dynamically ordered or critical but not chaotic». Proc. Natl. Acad.
Sci. USA 102, 13439–13444 (2005).

[43] Sporns, O. Networks of the Brain (MIT Press, Cambridge, 2010).

[44] Steriade, M., Nunez, A. & Amzica, F. «A novel slow (< 1 Hz)
oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing
components». J. Neurosci. 13, 3252–3265 (1993).

[45] Yan, K.-K., Fang, G., Bhardwaj, N., Alexander, R. P. & Ger-
stein, M. «Comparing genomes to computer operating systems in terms
of the topology and evolution of their regulatory control networks». Proc.
Natl. Acad. Sci. USA 107, 9186–9191 (2010).

[46] Zhou, C., Zemanová, L., Zamora-López, G., Hilgetag, C. &
Kurths, J. «Hierarchical Organization Unveiled by Functional Connec-
tivity in Complex Brain Networks». Phys. Rev. Lett. 97 (2006).



Annexes

239





Appendix A

Introduction to critical phenomena

A.1 On the Itô-Stratonovich dilemma . . . . . . . . . . . . . . 243
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

241





A.1
On the Itô-Stratonovich

dilemma

Let’s consider a general Langevin equation of the form,

φ̇ = a (φ) + b (φ) ξ (t)
The Itô-Stratonovich dilemma arises as a result of the “appropriate” integra-

tion of Langevin equations with delta-correlated noise, ξ (x, t), with 〈ξ (t)〉 = 0
and 〈ξ (t) ξ (t′)〉 = σ2

2 δ (t− t′). In a nutshell, instead of δ (t− t′) it is possible

to consider a function with a sharp peak (e.g. 〈ξ (t) ξ (t′)〉 = 1
2τ e
−|t−t

′|
τ , because

it remained doubtful whether a delta-function have some physical sense), both
causing a jump in φ (t). However, while the noise is affecting the system, the
value of b (φ) is wholly indeterminate. A possible prescription is to consider the
value before the jump, or the mean value during the jump [1–3].

The first one, the Itô convention, is equivalent to the next Fokker-Planck
equation,

Ṗ (φ, t) = − ∂

∂φ
a (φ)P (φ, t) + σ2

2
∂2

∂φ2 b
2 (φ)P (φ, t)

while the second one, the Stratonovich convention, is equivalent to,

Ṗ (φ, t) = − ∂

∂φ
a (φ)P (φ, t) + σ2

2
∂

∂φ
b (φ) ∂

∂φ
b (φ)P (φ, t)

In addition, the change of variables in the Langevin equation, under the
Stratonovich choice, is exactly the same as in ordinary calculus but, in the
other case, new transformation laws should be formulated. Pleasantly, both
formalisms are equivalent, under the following transformations [1],

An Itô SDE φ̇ = a (φ) + b (φ) ξ (t)
is equivalent to the
Stratonovich SDE φ̇ =

[
a (φ)− 1

2b (φ) ∂φb (φ)
]

+ b (φ) ξ (t)

or conversely,

the Stratonovich
SDE φ̇ = α (φ) + β (φ) ξ (t)

is equivalent to the
Itô SDE φ̇ =

[
α (φ) + 1

2β (φ) ∂φβ (φ)
]

+ β (φ) ξ (t)
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However, not all is rosy: the physical modeling of noisy phenomena, most of
the time, draw from a Langevin equation with multiplicative noise, and not from
a Fokker-Planck equation that distinguish between them. Thus, both formalisms
lead to completely different results, and the proper prescription should be chosen
a priori. Generally, there exists specific examples to argue that the Itô conven-
tion is the most suitable option for systems with internal noise, i.e. that cannot
be switched off and thus, the isolated system is inconceivable (such as decay
processes, chemical reactions or emissions of photons) while the Stratonovich
convention is the appropriate in the case of external noise, where it can be
switched off and a (φ) constitutes the deterministic dynamics of the isolated
system (noise generators in electric circuits or growth of species under external
perturbations like weather) [1, 3]. Finally, take present that, for the simple
case in which b (φ) is a constant, both conventions are fully equivalent and the
dilemma blurs completely.

References
[1] Gardiner, C. W. Handbook of stochastic methods: for physics, chemistry

and the natural sciences; 3rd ed. Springer Series in Synergetics (Springer,
Berlin, 2004).

[2] Toral, R. & Colet, P. Stochastic numerical methods: an introduction
for students and scientists (John Wiley & Sons, Weinheim, 2014).

[3] Van Kampen, N. G. Stochastic processes in physics and chemistry, vol. 1
(Elsevier, 1992).



Appendix B

Landau-Ginzburg theory of cortical
dynamics

B.1 Robustness against dynamical and structural changes . . . . 247
B.1.1 Changes in the dynamics . . . . . . . . . . . . . . 247

B.2 Detrended fluctuation analysis . . . . . . . . . . . . . . . . 251
B.3 On the definition of avalanches . . . . . . . . . . . . . . . 253

B.3.1 Oscillations coexisting with scale invariance . . . . . 253
B.3.2 On avalanches measure . . . . . . . . . . . . . . . 254

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

245





B.1
Robustness against dynamical

and structural changes

B.1.1
Changes in the dynamics

In this appendix we confirm the robustness of the results and conclusions pre-
sented in the main part with respect to the modification of diverse ingredients
and modeling details. In particular, we first discuss the full model including
synaptic plasticity, but without truncating the equation for activity in a series
expansion and, second, we consider inhibition as encapsulated in the well-known
Wilson-Cowan equations as a chief regulatory mechanism (rather than synaptic
plasticity).

B.1.1.1 Non-truncated excitatory-activity equation

The dynamics in a mesoscopic region of the cortex or “unit” is described by a
Wilson-Cowan equation [14] for the excitatory activity –such that the activity
grows with the incoming current through a sigmoid response function– together
with the Tsodyks-Markram TM model for synaptic plasticity [9]:{

ρ̇ = −αρ+ (1− ρ) tanh (aρR+ p) + h

Ṙ = 1
τR

(ξ −R)− 1
τD
ρR.

(B.1.1)

In Figure B.1.1, we illustrate that a linear-stability analysis reproduces a Hopf
bifurcation scenario, as in the most relevant case (case A) discussed in the chap-
ter. When noise and spatial coupling are added, and the system is studied on
a two-dimensional lattice, a synchronous irregular regime of network spikes, as
well as an asynchronous irregular regime of nested oscillations –fully analogous
to their corresponding counterparts in the the main text– are found, as graphi-
cally illustrated by the lower panels of Figure B.1.1. This unveils the existence
of a synchronization transition and confirms that the simplified truncated equa-
tion for the activity considered in the main text is a valid approximation of the
full dynamics. Here we do not show a detailed analysis of the synchronization
transition nor of the emergence of scale-free avalanches; but, let us remark that
we have not found any substantial qualitative difference with respect to the case
discussed in the paper in any of our exploratory checks.
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ρ

R R R

ρ

t t

Figure B.1.1: Analysis of the model of Eq. B.1.1. Upper panels: deterministic
phase portrait with ξ = 5, 12, 28 (from left to right). respectively. showing a
down state, a limit cycle and up state regimes, as in the case A of the main
text. Other parameters are α = a = 1, τ−1

D = 0.033, τR = 500, p = −0.34,
h = 0.06. Varying parameter values, it is possible to find either a similar Hopf
bifurcation (case A) or a saddle node bifurcation (case B), as in the model with
the truncated expansion. Lower panels: Temporal evolution of the total activity
ρ(t) on a two-dimensional lattice with N = 642 (after having introduced noise
and coupling); in the (left) synchronous (network spiking) and in the (right)
asynchronous (nested oscillations) regimes, respectively, revealing the presence
of a synchronization phase transition in between the two regimes; parameter
values: ξ = 5 and ξ = 13, respectively.
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B.1.1.2 Beyond the TM model. The Wilson-Cowan approach

In this section we consider the Wilson-Cowan equations [14] , including both
excitatory and inhibitory neural populations for each mesoscopic region or unit.
In this case, inhibition plays the role of chief homeostatic mechanism, regulating
the level of the overall network activity. More specifically, we consider a version
of the Wilson-Cowan dynamics, including also intrinsic noise as corresponds
to large but finite (mesoscopic) regions. Such a model was derived in a very
interesting work from an underlying microscopic model [2], and is described by
the following set of stochastic equations for the densities of excitatory (E) and
inhibitory (I) neurons:


Ėi = −αEi + (1− Ei) tanh [ωEEEi − ωIEIi + h]

+σ
√
αEi + (1− Ei) tanh [ωEEEi − ωIEIi + h]

İi = −αIi + (1− Ii) tanh [ωEIEi − ωIIIi + h]
+σ
√
αIi + (1− Ii) tanh [ωEIEi − ωIIIi + h] ,

(B.1.2)

where α is the decay rate for the activity, h is an external driving field, σ
is the noise amplitude, and ωij (with i, j = E, I) are the couplings between
population i and j within a single unit; particularly important here is the auto-
excitation coupling ωEE , which we take as a control parameter. First of all, these
equations are analyzed in the (noiseless) mean field limit. By increasing ωEE ,
the system exhibits a transition from a “down” state to an “up” state (see Fig.
B.1.2). Thus, a saddle-node bifurcation separates a state of high activity from a
state of low activity, we found no track of a possible Hopf bifurcation. However,
very interestingly, as soon as noise is switched on (i.e σ 6= 0), a noise-induced
phenomenon appears: trajectories nearby the up-state fixed point, can escape
from its basin of attraction as a result of fluctuations, and are then almost deter-
ministically driven towards the down state, where a similar mechanism makes
them escape with some probability. This phenomenon has been recently scruti-
nized in a very interesting work, where the role of non-normal forms has been
emphasized [2]. This mechanism, generates in an effective way a noise-induced
limit cycle between up and down states, which plays the same role as the deter-
ministic limit cycle (Hopf bifurcation) of case A. As a matter of fact, computer
simulations of units described by Eq.(B.1.2), and coupled diffusively, give rise
to the phenomenology illustrated in Fig.B.1.2: as the control parameter ωEE is
increased, the system undergoes a phase transition from a synchronous phase
with very distinctive network spikes, to an asynchronous regime with nested
oscillations, as it happens in the model with synaptic plasticity. Thus, also in
this case, the phases are the same as in the main text and a synchronization
transition appears between them.
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Figure B.1.2: Upper panels: mean-field analysis of the Wilson-Cowan set of
Eqs. (B.1.2) describing both excitatory and inhibitory neural populations at
each single unit, with parameters such that a noise-induced limit cycle (see
[7]) in between a down and an up state can emerge once a non-vanishing noise
is switched on. Observe that there is (left) a stable down-state fixed point
(ωEE = 4) and a (right) stable up state (ωEE = 16); however the basin of
attraction of the up state is small, and a relatively small fluctuation can in-
duce the system state to go beyond the saddle-node line, where determinis-
tic trajectories take the system toward the down state. In the lower panels
we illustrate results of a computer simulation for a two-dimensional lattice of
coupled noisy units, Eq.(B.1.2), corresponding to (left) synchronous/network-
spiking and (right) asynchronous/nested-oscillation regimes. Parameter values:
D = 1, ωEI = 4.65, ωIE = 14.0, ωII = 2.8, h = 10−3 and α = 0.1. Control
parameter ωEE = 15 for SI regime and ωEE = 16 for the AI regime.



B.2
Detrended fluctuation analysis

In this section we present an additional criterion to discriminate whether the
system lays at a critical point or in either the subcritical or the supercritical
phases. The method is based on the fact that, at the critical point of a (sec-
ond order) phase transition, the (time-dependent) order parameter, as measured
in any finite system, shows long-range temporal correlations (long-memory ef-
fects), which can be quantified by measuring its Hurst exponent [8]. The Hurst
exponent of a time series is a measure of the dispersion of a process on a scal-
ing support. For example the Hurst exponent of an uncorrelated signal (white
noise) is α = 1/2, since the root mean square translation distance after n steps
of a Wiener process, i.e. an unbiased random walk (the process obtained by
integrating white noise), is proportional to

√
n. For correlated signals (colored

noises) one expects bigger Hurst exponents (as a reference, α ' 1 is found for
pink noise). The Hurst exponent can be calculated by splitting the time series
into adjacent windows, plotting the square-root displacement from the mean as
a function of the window size and evaluating the exponent of the resulting power
law (see below). More specifically, “detrended fluctuation analysis” (DFA) is a
technique for measuring the Hurst exponent in a non-stationary time series:
the “detrending” operation allows to remove fictitious memory effects related to
non-stationarity, and it basically consists in subtracting the local "trend" (usu-
ally a linear fit) of the signal before performing the analysis on each window.
DFA consists of two steps: the data series ρ(t) is shifted by its mean ρ̄ and
integrated (cumulatively summed):

P(τ) =
τ∑
t=1

(ρ(t)− ρ̄) ; (B.2.1)

then segmented into k windows of various sizes n, and for each window size, a
fluctuation function F (n) is calculated, as

F (n) =

√√√√ 1
T

k∑
h=1

n∑
τ=1

(
P(n)(τ + (h− 1)n)−X(n)

P

)2
(B.2.2)

where X(n,h)
P is the linear regression of P(n)(τ), with τ ∈ [(h − 1)n, hn], the

superscript indicates the dependence on the window size n and T = kn is the
total length of the time series. If F (n) ∼ n−α, then α is the Hurst exponent
[7, 12].
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We performed a DFA on the global signal ρ(t) coming out of our computer
simulations for different values of the control parameter ξ (in the synchronous
and asynchronous phases as well as at the critical point). Results are shown in
Fig.B.2.1: (i) the fluctuations in the asynchronous phase grow approximately as
the square root of the window length, as predicted for white noise behavior; (ii)
in the synchronous phase, above a certain characteristic length, the dependence
is very weak, remarking the existence of a certain degree of order, i.e. a char-
acteristic time scale at which there is order, i.e. synchronization; (iii) just at
the critical point the growth of the fluctuations is anomalously large, confirming
the existence of long-range correlations, signature of criticality. Therefore from
the global activity signal we are able –through a DFA analysis-- to discriminate
whether long-range correlations, characteristic of criticality, emerge or not.

F(
n
)

Figure B.2.1: Detrended fluctuation analysis of the macroscopic signal for con-
trol parameter ξ = 2, 2.47, 3.5 in the synchronous, critical, and asynchronous
regimes, respectively. The considered system size is N = 214. Other parameter
values are taken as in the main text. Close to the transition point the DFA
shows an Hurst exponent close to 1, implying long-range autocorrelations, a
fingerprint of criticality.



B.3
On the definition of avalanches

B.3.1
Oscillations coexisting with scale invariance

Usually, scale-free avalanches of activity can be measured at the critical point
of an absorbing-state phase transition. When the concept of “avalanche” is
employed to describe the critical point of a synchronization phase transition, the
marginal oscillatory nature of the system unavoidably introduces a characteristic
time scale –i.e. the period of the oscillation– which, in principle, is in contrast
with the idea of scale-invariance. However, the two concepts can coexist –at
least within certain limited scales– as illustrated in Fig. B.3.1. We show how the
structure (e.g. the peaks) in the avalanche-time distribution (inset) corresponds
to the period of oscillation of a macroscopic variable (the total number of spikes,
in the main plot); for instance, an isolated network synchronization event has a
typical duration of 2000 (in arbitrary units), a sequence of two, about 5000, etc.
On the other hand, the whole distribution, once these peaks are ignored can be
approximately described as a power law with the expected exponent values.
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Figure B.3.1: Analysis of the structure underlying the avalanche-duration dis-
tributions. The main figure shows the total number of spikes at time t. Irregular
oscillations of the global activity can be recognized, as the system is close to the
edge of the synchronization phase transition. The characteristic period of an iso-
lated oscillation corresponds to the peak in the avalanche duration distribution,
while its multiples correspond to smaller peaks. System size N = 1282.
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B.3.2
On avalanches measure

As it has already been widely discussed in the literature, not all power laws are
a signature of criticality [1, 10, 11]. In this section we highlight some possi-
ble sources of error while investigating the relation between self-similarity and
criticality in the brain.

B.3.2.1 Non critical avalanches

In a simple continuous-time stochastic process describing the activity of a sys-
tem, the duration of an avalanche could be defined as the extent of the time
interval during which activity stays over a threshold (i.e. an avalanche be-
gins/ends when the activity signal crosses beyond/below threshold). Let us
suppose, for argument’s sake that the original signal was a Wiener process (un-
biased random walk), this would correspond to determining the statistics of first
passage times through a barrier (i.e. the threshold); this is well known (both
numerically and analytically) to be scale-invariant, as a consequence of the lack
of any characteristic scale, but not critical in the sense of lying at the edge of a
phase transition.
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Figure B.3.2: Illustration of the first return time statistics of a Random Walk.
Left panel: sketch of the process together with the illustration of the sizes and
durations of three avalanches. Threshold is set to 0. Right panels (from up
to down): size and duration distributions, and average size of a given dura-
tion, showing good agreement between numerical results (open symbols) and
analytical ones (full lines).
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Thus let us note that if the global activity of a neural system happens to fluc-
tuate around a stable sustained state, when performing an analysis of avalanch-
ing behavior through a thresholding procedure, cascades of activity would result
scale free distributed, just as an effect of fluctuations. In fact, this scenario, at
a macroscopic scale, is equivalent to an Ornstein-Uhlenbeck process:

ẋ(t) = −ax(t) + h+ ση(t), (B.3.1)

where η(t) is a delta-correlated, white noise with zero mean and unitary vari-
ance; the linear term (force) −ax corresponds to the derivative of a parabolic
potential bounding the walker close to h/a. Note that with a = 0 this is nothing
but the usual free random walker or Wiener process [4]. The force introduces
an upper cutoff in the first return times (i.e. avalanche duration) statistics,
which, otherwise, follows the same exponents as the unbiased random walk.
Thus, studying avalanches by analyzing fluctuations about a given threshold in
a process with a well-defined steady-state value, one recovers power-laws, up to
a scale controlled by 1/a. These, however, are not critical in the sense of lying
at the edge of a continuous phase transition.

B.3.2.2 On avalanche size

Also, particular attention is needed for the correct definition of the “size” of an
avalanche: for example in a few recent publications [5, 13], the authors used a
definition of size which leads to a misclassification of the power law exponent
and thus, to a possible misinterpretation of the results. Indeed, the defined size
of an avalanche is the integral of the activity during the avalanche (instead of the
integral of the activity over threshold during the avalanche); this is illustrated in
Fig.B.3.3. Proceeding in this way, the actual size is corrected with an additional
term proportional to the avalanche duration (as also illustrated in the Figure).
This additional term complicates the scaling analysis.

In particular, given that a standard random walk (or a Ornstein-Uhlenbeck
process describing fluctuations around a mean value) has first-return times dis-
tributed as P (T ) ∼ T−3/2 (α = 3/2), the wrong measure have a correction to
the true asymptotic behavior which scales with an exponent τ ≈ 3/2, which
actually comes from including in the measure of the size an extra part propor-
tional to the duration of the avalanche [5, 13]. Observe, therefore, that this 3/2
has nothing to do with a critical branching process (beside the numerical coin-
cidence): it is a spurious effect, coming from the first-passage time distribution
of an effective Ornstein-Uhlenbeck process. In particular, both sizes and times
turn out to be distributed with the same exponent with this definition of size,
which is not the case in critical branching processes. One needs to go to huge
system sizes, to see the actual scaling.
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Finally, we should remark that another couple of recent papers underline
the “perils” associated with thresholding, which can certainly be a source of
confusion [3, 6].
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Figure B.3.3: Analysis of first-passage times in a stochastic process; θ (magenta
dashed line) is the threshold value employed to define crossings. S is the proper
avalanche size (area above threshold, colored in blue in figure), T is its duration,
Σ (delimited by the green contour) is the misleading definition of the avalanche
size, as used in [13]. One has Σ = S+σ, with σ colored in orange in figure (note
that σ ∝ T ).
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C.1
Ott-Antonsen ansatz

Remember the equation 3.2.13,

∂f

∂t
+ ∂

∂θ
{f [ω + kR sin (ψ − θ)]} = 0

and the assumption that f (θ, ω, t) can be expanded in Fourier series as,

f (θ, ω, t) = g (ω)
2π

[
1+

∞∑
n=1

(
f̂n (ω, t) einθ + f̂∗n (ω, t) e−inθ

)]
(C.1.1)

Thus, by inserting the Fourier series in our continuity equation, it can be
shown that,

i) ∂f
∂t

∂f

∂t
= ∂

∂t

{
g (ω)
2π

[
1 +

∞∑
n=1

(
an (ω, t) einθ + ān (ω, t) e−inθ

)]}

Multiplying by
∫ 2π
0 dθe−iθ in both sides,

∫ 2π

0
dθe−iθ

∂f

∂t
= ∂

∂t

{
g (ω)

∞∑
n=1

[(
an
∫ 2π

0

dθ

2πe
i(n−1)θ + ān

∫ 2π

0

dθ

2πe
i(−n−1)θ

)]}

and remembering that,
∫ 2π

0
dθ
2πe

inθ = δn,0 is the Kronecker delta function,

∫ 2π

0
dθe−iθ

∂f

∂t
= g (ω) ∂

∂t

∞∑
n=1

anδn−1,0 + ānδ−n−1,0︸ ︷︷ ︸
0

 = g (ω) ȧ (ω, t)
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ii) ∂
∂θ (f · ω)

∫ 2π

0
dθe−iθ

∂

∂θ
(f · ω) =∫ 2π

0
dθe−iθ

∂

∂θ

{
ω
g (ω)
2π

[
1 +

∞∑
n=1

(
an (ω, t) einθ + ān (ω, t) e−inθ

)]}
=

ωg (ω)
∞∑
n=1

in

(
an
∫ 2π

0

dθ

2πe
i(n−1)θ − ān

∫ 2π

0

dθ

2πe
i(−n−1)θ

)
=

iωg (ω)
∞∑
n=1

anδn−1,0 − ānδ−n−1,0︸ ︷︷ ︸
0

 = iωg (ω) a (ω, t)

iii) ∂
∂θ

[
f · k2i

(
Ze−iθ − Z̄eiθ

)]

∫ 2π

0
dθe−iθ

∂

∂θ

[
P · k2i

(
Ze−iθ − Z̄eiθ

)]
=

g (ω) k2i

∫ 2π

0

dθ

2πe
−iθ ∂

∂θ

{(
Ze−iθ − Z̄eiθ

)
+
∞∑
n=1

[
an
(
Zei(n−1)θ − Z̄ei(n+1)θ

)
+ ān

(
Zei(−n−1)θ − Z̄ei(−n+1)θ

)]}
=

g (ω) k2i

∫ 2π

0

dθ

2πe
−iθ

{(
−iZe−iθ − iZ̄eiθ

)
+ i

∞∑
n=1

[
an
(
(n− 1)Zei(n−1)θ − (n+ 1) Z̄ei(n+1)θ

)
+ ān

(
(−n− 1)Zei(−n−1)θ − (−n+ 1) Z̄ei(−n+1)θ

)]}
=

g (ω) k2i


−iZ

∫ 2π

0

dθ

2πe
−2iθ︸ ︷︷ ︸

0

− iZ̄
∫ 2π

0

dθ

2π


+ i

∞∑
n=1

[
an
(

(n− 1)Z
∫ 2π

0

dθ

2πe
i(n−2)θ − (n+ 1) Z̄

∫ 2π

0

dθ

2πe
inθ
)

+ ān
(

(−n− 1)Z
∫ 2π

0

dθ

2πe
i(−n−2)θ − (−n+ 1) Z̄

∫ 2π

0

dθ

2πe
−inθ

)]}
=
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g (ω) k2i

−iz̄ + i
∞∑
n=1

an
(n− 1) zδn−2,0 − (n+ 1) z̄δn,0︸︷︷︸

0


+ ān

(−n− 1)Zδ−n−2,0︸ ︷︷ ︸
0

− (−n+ 1) Z̄δ−n,0︸ ︷︷ ︸
0



 =

g (ω) k
2i

(
−iZ̄ − ia2Z

)
= g (ω) k2

(
a2Z − Z̄

)

�



�
	ȧ+ iωa+ k

2

(
a2Z − Z̄

)
= 0 q.e.d.

For the second condition, introducing the Fourier series expansion in the
definition of Z,

Z =
∫ +∞

−∞
dω

∫ 2π

0
eiθf (θ, ω, t) dθ =∫ +∞

−∞
g (ω) dω

∫ 2π

0

dθ

2πe
iθ

[
1 +

∞∑
n=1

(
aneinθ + āne−inθ

)]
dθ =

∫ +∞

−∞
g (ω) dω

∞∑
n=1

(anδn+1,0 + ānδ−n+1,0) =
∫ +∞

−∞
g (ω) dωā (ω, t)
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C.1.1
Lorentz distribution of natural frequencies

Be a Cauchy-Lorentz distribution for g (ω),

g (ω) = γ

π
[
γ2 + (ω − Ω0)2

] ⇒ Z =
∫ +∞

−∞

γ

π
[
γ2 + (ω − Ω0)2

]dωā (ω, t)

The integral can be done taking a contour in the ω lower half-plane. But
taking g (ω) = (2πi)−1

[
(ω − Ω0 − iγ)−1 − (ω − Ω0 + iγ)−1

]
, one can see that

the integral corresponds to the residue in the pole ω = Ω0 − iγ. Thus, Z =
ā (Ω0 − iγ, t).

Employing the above equation, evalu-
ated in ω = Ω0 − iγ, we have,

Ż + (γ − iΩ0)Z + k

2
(
Z̄Z2 − Z

)
= 0

with the additional condition,

Ż = d

dt

(
Reiψ

)
=
(
Ṙ+ iψ̇R

)
eiψ

Figure C.1.1: Integration con-
tour

Finally, the next set of differential equations can be derived,

(
Ṙ+ iψ̇R

)
eiψ + (γ − iΩ0)Reiψ + k

2
(
R3 −R

)
eiψ = 0

Ṙ

R
+ iψ̇ + γ − iΩ0 + k

2
(
R2 −R

)
= 0

{
Ṙ = −γR+ k

2R
(
1−R2)

ψ̇ = Ω0



C.2
Complex networks

C.2.1
Critical point in homogeneous graphs

We need two particular assumptions of a network with enough connections and
formed only by a giant component, assuming a global order parameter, ReiΨ.
Besides, we are going to take into account a “mean-field” hypothesis, replacing
the local field of each vertex by a global field acting over all the nodes, as usually
done in the “annealed” approximation, being the connectivity matrix [1, 3],

aij ≈
kikj
〈k〉N

(C.2.1)

Under this assumptions, the global field becomes,

ReiΨ ≈ rie
iψi

kj
≈ 1
N

∑
i

ki
〈k〉

eiθi = 1
N

∑
i

ki
〈k〉

(cos θi + i sin θi) (C.2.2)

Taking the stationary state condition
(
θ̇i = 0

)
in this last equation, we have

now,

ωi = kiσR sin (θi −Ψ)⇒ ωi
kiσR

= sin (θi −Ψ)

and in a well suited frame of reference (with Ψ = 0),

θi = arcsin
(

ωi
kiσR

)
; |ωi|

kiσR
≤ 1⇒ |ωi| ≤ kiσR
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Using the fact that cos (arcsin (x)) =
√

1− x2,

R = 1
N

N∑
i=1

ki
〈k〉

√
1−

(
ωi
kiσR

)2
Θ
(

1− ωi
kiσR

)

where Θ (x) is the Heavside step function.
If we take the continuum limit (N →∞), considering some frequency dis-

tribution1,

R = 1
〈k〉
∑
k

kP (k)
∫ kσR

−kσR
dωg (ω)

√
1−

(
ω

kσR

)2
= 1
〈k〉
∑
k

kP (k)U (kσR)

(C.2.3)

From this equations we can see that the higher the connectivity, k, the higher
the effective coupling strength, (∼ kσ), synchronizing for smaller values of σ.
For simplicity without loss of generality, we are going to consider the particular
case of a uniform distribution of natural frequencies,

g (ω) = 1
2γ ω ∈ (−γ, γ)

in which case, the functionU (kσR), sets out the form,

U (kσR) =


1

2γ
∫ kσR
−kσR dωg (ω)

√
1−

(
ω
kσR

)2 = πkσR
4γ kσR ≤ γ

1
2γ
∫ γ
−γ dωg (ω)

√
1−

(
ω
kσR

)2 =
γkσR

√
1−( γ

kσR)2+(kσR)2 arcsin( γ
kσR)

2γkσR kσR > γ

(C.2.4)

In the same way as the “all-to-all” coupling scheme, those oscillators with
|ωi| ≤ σri will synchronize, being the coupling condition now,

γ ≤ kσR⇒ k ≥ γ

σR

where x is defined as x ≡ kσR.
1It is worth stressing that the complete graph (aij = 1 ∀i 6= j y P (k) = δk,N ), being the

coupling strength σ → σ
N
, enables us to recover the Eq. (3.2.10).
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Again, there are two contributions for the coupled and uncoupled states,
from Eq. (C.2.3),

R = 1
〈k〉

 ∑
k≤ γ

σR

kP (k)U (x) +
∑
k> γ

σR

kP (k)U (x)


= 1
〈k〉

 ∑
k≤ γ

σR

kP (k) kσπR4γ +
∑
k> γ

σR

kP (k)
γx

√
1−

(
γ
x

)2 + x2 arcsin
(
γ
x

)
2γx



= 1
〈k〉


σπR

4γ


∑
k≤ γ

σR

k2P (k) +
∑
k> γ

σR

k2P (k)

︸ ︷︷ ︸
〈k2〉

−
∑
k> γ

σR

k2P (k)


+
∑
k> γ

σR

kP (k)
γx

√
1−

(
γ
x

)2 + x2 arcsin
(
γ
x

)
2γx


= 1
〈k〉

σπR
4γ

〈
k2〉− σπR

4γ
∑
k> γ

σR

k2P (k) +
∑
k> γ

σR

kP (k)
γkσR

√
1−

(
γ
x

)2 + xkσR arcsin
(
γ
x

)
2γx


= 1
〈k〉

σπR
4γ

〈
k2〉+

∑
k> γ

σR

k2P (k)

−σπR4γ +
γσR

√
1−

(
γ
x

)2 + xσR arcsin
(
γ
x

)
2γx


= 1
〈k〉

σπR
4γ

〈
k2〉− ∑

k> γ
σR

k2P (k) σπR4γ

(
1− 2

π

γ

x

√
1−

(γ
x

)2
+ arcsin

(γ
x

))
= σπR

4γ 〈k〉

〈k2〉− ∑
k> γ

σR

k2P (k)F
( γ

kσR

)
beingF (y) = 1− 2

π

[
arcsin (y) + y

√
1− y2

]
.

Thus, we have,

R = πσR

4γ 〈k〉

〈k2
〉
−
∑
k> γ

σR

k2P (k)F
(

γ

kσR

) (C.2.5)

where F (x) = 1 − 2
π

[
arcsin (x) + x

√
1− x2

]
is a positive function for 0 ≤

x < 1 verifying the limit lim
x→1

F (x) = 0. So, we have the solution R = 0 for
σ < σc and another solutions of partial synchronization forσ > σc.
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Besides, taking the lower limit when σ → σc, it is possible to obtain the
critical coupling strength, σc,

σc = 4γ
π

〈k〉
〈k2〉

(C.2.6)

and, remembering the case of an uniform distribution of frequencies in the
“all-to-all” coupling scheme,

σc = Kc
〈k〉
〈k2〉

(C.2.7)

C.2.2
Equally frequency distributed oscillators ωi = 0

At first, remember the Kuramoto model embedded in a complex network struc-
ture, without any type -or equally distributed- of natural frequencies,

θ̇i = σ
∑
j

Aij sin (θj − θi)

which in the infinite size limit (t→∞), always shows a synchronization
transition for all non-vanishing values of the coupling strength, k, i.e.∀k > 0.
Thus, the approximation it can be considered that the difference between phases
is negligible (θi ≈ θj ∀i, j), with the purpose of take the Taylor series expansion,

θ̇i = σ
∑
j

Aij sin (θj − θi) = σ

∑
j

Aijθj − θi
∑
j

Aij


= σ

∑
j

Aijθj −
∑
j

δij

(∑
l

Ajl

)
θj



θ̇i = −σ
∑
j

Lijθj

where Lij =
[
δij

(∑
l
Ajl

)
−Aij

]
, corresponds exactly with the Laplacian

matrix of a network, real and symmetric by definition.
Consider now thee eigenvalues decomposition, L = V ΛV T , whereV is the

matrix whose columns are eigenvectors of L, and which make up and orthonor-
mal basis in RN ; being Λ the eigenvalues matrix,
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V =
((
v1
) (
v2
)
...
(
vN
))

Λ =


λ1 0 · · · 0

0 λ2
...

... . . . 0
0 · · · 0 λN


where V TV = I y

∑
i
vliv

l′
i = δll

′ .

Working with vectors, the differential equation in θ̇i could be determined,

~̇θ = −σL~θ ⇒ ~θ (t) = e−σL(t−t0)~θ (t0) = V e−σΛ(t−t0)V −1~θ (t0)

and finally,

θi (t) =
∑
l

∑
j

e−σλltvliv
l
jθj (0)

This sum must be closely scrutinized, to see that,

θi (t) =
∑
l

∑
j

e−σλltvliv
l
jθj (0) =

∑
j

e

−σ λ1︸︷︷︸
0

t

v1
i︸︷︷︸

1/
√
N

v1
j︸︷︷︸

1/
√
N

θj (0)+
∑
j

e−σλ2tv2
i v

2
j θj (0)+. . .

the first term looks like 1
N

∑
j
θj (0) = 0, and it could be easily equal to zero

by choosing a well suited frame of reference. Thus, we will have,

θi (t) =
N∑
l=2

∑
j

e−σλltvliv
l
jθj (0)

excluding in the l-sum the first eigenvalue λ1 = 0. On the other hand,
remember that our complex order parameter is, 〈z〉 =

〈
1
N

∑
i
eiθi
〉
, where the

average 〈. . .〉 is done over initial conditions, and in the knowledge that –imposing
this conditions over l = 1– the stationary state is θi = 0. Considering the Taylor
expansion of the complex exponential,

〈z〉 ≈
〈

1
N

∑
i

(
1 + iθi −

1
2θ

2
i

)〉
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It is possible to replace the sum for θi (t) on this average noticing that
the leading order, θj (0), is linear and thus, its average over initial conditions
vanishes. Corrections will be of second order, namely,

〈z〉 ≈ 1− 1
2N

〈∑
i

θ2
i

〉

that is always real. Besides, every non-vanishing term in Taylor expansion
will be real, because the imaginary terms are odd functions of θj (0). Thus,
being 〈z〉 a stationary real value real

(
θ̇i = 0

)
, 〈z〉 = reiψ, is a proper measure

of r, and it could be analyzed computationally.
Replacing again the sum of θi (t) in the second-order corrections, we have,

〈z〉 = 1− 1
2N


∑
i

∑
ll′

∑
jj′

e−k(λl+λl′ )tvliv
l
′

i v
l
jv
l
′

l

〈
θj (0) θj′ (0)

〉︸ ︷︷ ︸
σ2δ

jj
′


complying (by being a scalar product of orthonormal vectors)

∑
i
vliv

l
′

i = δll′

and
∑
j
vljv

l
′

j = δll′ ,

〈z〉 = 1− σ2

2N

N∑
l=2
e−2kλlt

Regarding the continuum limit, taking into account a spectral density of
eigenvalues [2], ρ (λ) = e−

1
λa ,

1− σ2

2N

N∑
l=2
e−2kλlt ≈

∫
dλe−

1
λa e−2kλt =

∫
dλe−f(λ)

where the function f (λ),

f (λ) = 1
λa

+ 2kλt f
′ (λ) = −aλ−a−1 + 2kt

f
′ (λ0) = 0⇔ λ0 =

(2kt
a

)− 1
1+a

f
′′ (λ) = a (a+ 1)λ−a−2 ⇒ f

′′ (λ0) = a (a+ 1)
(

2kt
a

) 2+a
1+a > 0
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Employing the saddle-point approximation in the above integral,∫
dλe−f(λ) ≈ e−f(λ0) = e−(1+a)( 2kt

a )
a

1+a

〈z〉 ≈ 1− σ2

2N e−(1+a)( 2kt
a )

a
1+a

Finally, in a Hierarchic Modular Network (HMN), a = 1 [2], the next ap-
proximation should be fulfilled,

1− 〈z〉 ∝ e−2
√

2kt
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D.1
Irrelevance of non-linear terms

For the directed percolation class in the mean-field limit, where spatial hetero-
geneity is neglected, Eq.(4.2.1) reduces to

ρ̇(t) = aρ− bρ2 +√ρη(t). (D.1.1)

At criticality, i.e. a = 0, there is still a non-linear (saturation) term −bρ2 which
introduces a characteristic maximal activity scale, thus apparently precluding
scale-invariance. The way out of this apparent conundrum is that when studying
avalanches in discrete/particle models, activity is created at a single location,
and in the continuous limit, this corresponds to vanishing density of activity,
ρ = 0. Thus, one needs to consider a large but finite system size, say Ω (e.g. one
could think of a fully connected network with Ω nodes), and perform a finite-
size scaling analysis. Defining y by ρ = y/Ω then –up to leading order in Ω–
Eq.(D.1.1) reduces to ẏ(t̃) = √yη(t̃) where t̃ = Ωt. In other words, employing
the correct rescaled variables y and t̃ the saturation term is never “seen” by the
expanding avalanche, which is compatible with the density being equal to zero,
as the avalanche invades an infinitely large system. Observe that in the main
text we keep the notation with ρ and t, for the sake of simplicity.

Similarly, the voter-model (or compact directed percolation [5] or neutral
theory) class –characterized by two symmetric absorbing states– is described,
as said above, by the Langevin equation [1]

ρ̇(t) = D∇2ρ(r, t) +
√
ρ(1− ρ)η(r, t), (D.1.2)

which, again, ignoring spatial dependencies and rescaling the variables, readily
becomes the DRW equation, Eq.(4.2.4). The very same reasoning applies also
to the other universality classes discussed in the Introduction (i.e. dynamical
percolation and the Manna class); also in these cases the corresponding non-
linear terms, describing saturation effects vanish upon properly rescaling the
system.

On the other hand, beyond the mean-field limit, the non-linearities are es-
sential and control the “renormalized” values of the avalanche exponents (see
e.g. [4]), which differ for the various universality classes [6, 8], and avalanches
can develop non-symmetric shapes [7].
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D.2
First-return time distributions

Following the general result of A. Bray [2] (see also F. Colaiori [3]), here we
summarize the computation of avalanche exponents for a random walk in a
logarithmic potential. The general Fokker-Plank equation reads

∂P (x, t)
∂t

= µ
∂

∂x

(
∂P (x, t)
∂x

+ β

x
P (x, t)

)
. (D.2.1)

To calculate the probability distribution F (T ) of the return times at which a
walker starting close to the origin (P (x, 0) = δ(x− ε), ε→ 0) first hits back the
origin, the absorbing boundary condition P (0, t) = 0 needs to be imposed. Note
that F (T ) is minus the probability flux at 0, F (T ) = −j(0, t = T ), with

j(0, t = T ) = −µ
[
∂P (x, t)
∂x

+ β

x
P (x, t)

]
x=0

. (D.2.2)

One can try a solution of the Eq.(D.2.1) of the form P (x, t) = r(x) exp(−µk2t)
and note that the resulting equation can be converted into a Bessel Equation
with the change of variable r(x) = x

1−β
2 R(x),

x2R′′(x) + xR′(x) +
(
k2x2 − ν2

)
R(x) = 0, (D.2.3)

where ν = (1 + β)/2. The general solution of this last equation is a linear
combination of Bessel functions of the first kind of order ±ν. Putting the pieces
back together, employing the orthogonality property of the Bessel functions,
and imposing the initial condition, leads to

P (x, t | ε, 0) =
(
x

ε

)1−ν
ε

∫ ∞
0

dkk[AJν(kε)Jν(kx)

+ BJ−ν(kε)J−ν(kx)]e−µk2t, (D.2.4)

where A and B are numerical constants. The integral in Eq.(D.2.4) gives the
modified Bessel function of the first kind I±ν and, it is easy to compute the flux
at the origin in the small ε limit [2, 3], leading to Eq.(4.2.8).
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E.1
Introducción

“La crisis consiste precisamente en el
hecho de que lo viejo muere y lo nuevo
no puede nacer: en este interregno se ve-
rifican los fenómenos desproporcionados
más variados”

A. Gramsci

Imaginemos1 por un momento que todas las leyes fundamentales de la Natu-
raleza pudieran ser entendidas, siendo reducidas a sus mecanismos micros-

cópicos más básicos (por ejemplo, las partículas elementales o las interacciones
fundamentales). ¿Sería posible resolver cualquier problema físico a partir de es-
te conocimiento? Podemos predecir, de manera efectiva, el movimiento de una
partícula clásica confinada en un potencial, así como el movimiento de dos partí-
culas en interacción, pero el problema de los tres cuerpos –que no es integrable–
presenta serios problemas. Para empeorar las cosas, los problemas usuales tra-
tados por la física estadística comprenden un gran número de interacciones (del
orden de 1024, el número de Avogadro), haciendo imposible resolver analítica-
mente las ecuaciones de movimiento del sistema. En lugar de ello, bebiendo de
las fuentes de la física estadística, podemos abordar dichos problemas físicos
de muchos componentes desde un punto de vista macroscópico, con observables
como la densidad media de partículas, la magnetización o su varianza, junto con
su respuesta a estímulos externos.

A través de un análisis probabilístico de estos sistemas con un gran número
de elementos en interacción (átomos, electrones...) en equilibrio termodinámico2,
la física estadística explica las leyes fenomenológicas y las propiedades macros-
cópicas (emergentes) de la materia, descritas en fases (sólidas o gaseosas, por
ejemplo). Tales fases apenas guardan relación con la naturaleza de sus com-
ponentes microscópicos, pero muestran propiedades emergentes colectivas [3].
Dichas fases indican el nivel de orden (o desorden) del sistema, determinado
por la presencia (o ausencia) de ciertas simetrías o correlaciones. Por ejemplo,

1Todas las referencias citadas en esta sección corresponden a las mostradas en el capítulo
1.

2Sin flujos macroscópicos de materia o energía, que no es más que una burda simplificación
de la realidad. La mayoría de los sistemas naturales están fuera del equilibrio, es decir, son
sistemas de no equilibrio que permanentemente intercambian materia y energía, y cuyo estudio
requiere de conceptos más generales.
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tanto los diamantes como el grafito, compuestos por átomos de carbono, repre-
sentan distintas fases debido a la estructura microscópica particular –es decir,
la simetría inherente– del cristal. Igualmente, los copos de nieve y las gotas de
agua representan distintas fases, que en este caso provienen del nivel de orden
del sistema. En este sentido, la física estadística también explica los cambios
entre estados de la materia y las transiciones de fase, en donde las simetrías
pueden romperse espontáneamente –generando fases ordenadas– en una escala
macroscópica, pero no en la escala de los componentes microscópicos.

Las transiciones de fase son ubicuas en la Naturaleza. En la vida diaria, el
agua constituye el ejemplo más claro de cambios entre estados de la materia (por
ejemplo, la fusión de cubitos de hielo o el agua hirviendo) y el ciclo del agua
(que implica el intercambio de energía entre los tres estados del agua) es crucial
para hacer posible la vida en la Tierra. El uso inteligente de una transición de
fase –mediante la máquina de vapor– desencadenó la revolución industrial que
marca el inicio de nuestra sociedad moderna.

Todas las transiciones de fase habituales (evaporación, fusión, sublimación o
la evaporación) son transiciones de primer orden o discontinuas que tienen lugar
en un régimen de coexistencia de fases, es decir, durante la transición existen
algunas partes del sistema en cada fase macroscópica (el hielo no se convierte
instantáneamente en agua líquida). Adicionalmente, existe cierta reminiscencia
en el estado del sistema que depende de su historia, la denominada histéresis.
Un caso ilustrativo que tiene lugar en el entorno de estas transiciones de fase es
el agua superenfriada, donde el agua líquida, instantáneamente, se convierte en
hielo al aplicarle un estímulo externo.

No obstante, existen también transiciones continuas o de segundo orden que
no muestran ningún signo de histéresis (el ejemplo paradigmático es la transi-
ción paramagnética/ferromagnética del hierro en la temperatura de Curie o la
transición del helio líquido al helio superfluido, que se muestra en la Fig. E.1.1).
Éstas se caracterizan por tener correlaciones de largo alcance (y calor específi-
co divergente) mostrando un comportamiento distintivo que se caracteriza por
leyes de potencias de los distintos observables en torno al punto crítico. Por
ejemplo, el fenómeno de la opalescencia crítica, que se produce justo en el punto
crítico, provoca que el líquido, que normalmente es transparente, se vuelva tur-
bio –debido a las grandes fluctuaciones en la densidad– cuando la temperatura
se acerca a su valor crítico.



Apéndice E. Resumen en castellano 283

S
p
ec

if
ic

 h
ea

t 
C

 (
J
/
m

g
 d

eg
)

0

2

4

6

8

10

12

14

16

18

20

22

24

Scale x106

Scale x103

Scale x1

T-Tc T-Tc T-Tc
0 1.0-1.0

(degrees)

0 2 4 6-2-4

(milidegrees)

0 20-20

(microdegrees)

Figura E.1.1: Fluctuaciones de energía del Helio líquido frente a la distancia a la
temperatura crítica (2,17K, el denominado punto Lambda). A esta temperatura
el helio líquido se convierte en helio superfluido. Debe destacarse, al margen de la
divergencia, la ausencia de diferencias entre las distintas escalas de temperatura,
es decir, la invariancia de escala alrededor del punto crítico. Datos de [17].

※ Universalidad En una transición de fase continua, las propiedades (ma-
croscópicas o colectivas) que emergen en el sistema dependen de muy pocos
parámetros (la dimensión espacial y las simetrías inherentes). Si consideramos
que las fluctuaciones pueden despreciarse (lo que es concebible, por ejemplo, en
escenarios con una dimensión muy alta), solo las simetrías (y sus posibles cam-
bios) juegan un papel importante en las propiedades macroscópicas del sistema
en el punto crítico [11], surgiendo el siguiente corolario,

debido a la naturaleza finita del número de parámetros relevantes, el com-
portamiento de la mayoría de los sistemas reales en un punto crítico puede
captarse a través de aproximaciones simples (la teoría de Landau para sis-
temas en equilibrio) y, por tanto, tales sistemas deben compartir la misma
clase de universalidad.

Un bonito ejemplo real de este comportamiento se muestra en la Figura
E.1.2, donde las curvas de coexistencia líquido-gas de muchos fluidos diferentes
–desde el Ne al CH4– colapsan en una sola curva.
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Figura E.1.2: Curva de coexistencia líquido-gas para muchos fluidos. Las mag-
nitudes relevantes, es decir el parámetro de orden (la densidad) y el parámetro
de control (la temperatura), han sido re-escaladas por sus valores críticos, co-
lapsando todos los datos en una única curva universal. Se observa que el sistema
atraviesa una transición de fase para cierta temperatura crítica (Tc) que clara-
mente depende del compuesto específico. Adaptada de [11].

Esto sugiere la existencia de leyes para sistemas colectivos más allá de los
detalles microscópicos particulares. En este sentido, la idea de clase de univer-
salidad, es decir el hecho de que muchos modelos compartan el mismo compor-
tamiento crítico (y por tanto, propiedades emergentes) independientemente de
sus detalles microscópicos, emerge naturalmente.

Lo más interesante de todo es que, debido a su naturaleza estadística, el
estudio y las aplicaciones de los fenómenos asociados a transiciones de fase (o
”criticalidad”) que procede de la física ”pura” ha permeado muchos campos le-
janos a ella: sociología, ecología, neurociencia o las ciencias de la Tierra. En
particular, los fenómenos críticos constituyen un punto de partida para expli-
car o arrojar luz en muchos fenómenos poco entendidos –hasta ahora– como
la emergencia de la ley de Gutenberg–Richter en los terremotos, la actividad
neuronal del córtex, las erupciones solares o los incendios, entre otros [4–6, 12].
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E.1.1
”Criticalidad” más allá de la física

Históricamente, como se ha discutido en el caso de la física, la mayoría de campos
de las ciencias naturales (tales como la biología, la química o las ciencias de la
Tierra) han centrado sus esfuerzos en un punto de vista reduccionista, es decir,
el intento de explicar sistemas completos a través de un profundo entendimiento
de sus componentes individuales e interacciones. Este punto de vista lleva a
la asunción de que un sistema no es más que la suma de sus partes, por lo
que el objetivo final de la Ciencia queda reducido –a partir de un conocimiento
exhaustivo de escalas espaciales y unidades funcionales cada vez más pequeñas–
a proporcionar un marco ordenado que arroje luz en los fenómenos naturales.

No obstante, el enfoque reduccionista presenta serios y evidentes problemas
para explicar y prever el comportamiento de sistemas con un alto nivel de com-
plejidad, como las células, las redes neuronales, los procesos ecológicos, los copos
de nieve o el objetivo de converger con campos vírgenes como las ciencias socia-
les (la sociología o la economía, por ejemplo). Por tanto, el importante problema
de cómo el orden puede emerger del desorden en los fenómenos naturales, o en
los seres vivos, ha permanecido como un misterio durante mucho tiempo (como
planteó Schrödinger en “¿Qué es la vida? El aspecto físico de la célula viva”
[58]).

En un trabajo seminal publicado en 1972 y titulado “Más es Diferente” el
premio Nobel Philip Anderson confronta este punto de vista notando que los
sistemas complejos son irreducibles en sus partes constituyentes [3].

La habilidad de reducir todo a simples leyes fundamentales no im-
plica la habilidad de empezar a partir de aquellas leyes y reconstruir
el universo. La hipótesis construccionista fracasa cuando afronta la
doble dificultad de ”escala” y ”complejidad”.

Esta perspectiva conduce a mirar los problemas desde una perspectiva global,
dejando de lado un comportamiento detallado y exhaustivo de los componentes
individuales. Pero, la pregunta clave en este caso es, ¿cómo hacer esto? En
particular, en este trabajo, Anderson señala que las rupturas de simetría son
un claro ejemplo de fenómenos emergentes. Por tanto, es previsible que la física
estadística –que une escalas físicas microscópicas y macroscópicas– y la teoría
de transiciones de fase, tengan algo que decir en todo esto.

Los ejemplos de fenómenos colectivos (es decir, la emergencia de compor-
tamientos coordinados en sistemas con un gran número de individuos que in-
teractúan entre sí) es ubicua en la Naturaleza: los movimientos "en manada"
aparecen en una gran variedad de especies (bandadas de pájaros, bancos de pe-
ces, langostas, colonias de hormigas, fitoplancton, krill o las myxobacterias). En
el mismo sentido, diversas macroestructuras emergen para otras especies (por



286 Apéndice E. Resumen en castellano

ejemplo, colonias de hormigas, termiteros, colmenas o telarañas; ver la Figura
E.1.3) y enormes patrones emergen espontáneamente en la superficie terrestre
(por ejemplo, patrones en las dunas de arena, la Calzada del Gigante, o los
–recientemente explicados– círculos de hadas de Namibia) así como los fractales
son también ubicuos en la Naturaleza en todas sus escalas (desde las conchas
marinas a los copos de nieve, las líneas costeras o los fiordos).

Figura E.1.3: De izquierda a derecha: fronda de un helecho, fósil de Ammonite
(Cleoniceras cleon), ciclón extra-tropical cerca de Islandia en 2003 y la Galaxia
Remolino. A pesar del sinfín de escalas que separan estos sistemas (desde mm a
cientos de años luz) y las diferentes interacciones físicas que involucran, un gran
patrón (una espiral logarítmica) emerge en todos ellos.

La Vida es evidentemente una fuente importante de complejidad, es decir, de
fenómenos emergentes, una característica común que se expande a lo largo de la
biología, las ciencias de la Tierra o las ciencias sociales; por tanto, cabe esperar
que la mayoría de sistemas exhiban comportamientos (macroscópicos) colectivos
con diversos niveles de orden (fases) que surgen de sus componentes (microscó-
picos). Pero, debe enfatizarse una pequeña pero importante apreciación, algunos
de ellos pueden mostrar niveles organizativos intermedios: menos estructurados
que un cristal, pero mucho más ordenados que un gas, los sistemas naturales (y
los seres vivos) parecen estar –bajo ciertas circunstancias– entre el orden y el
desorden [4, 6, 31, 48], es decir alrededor de un punto crítico. Por ejemplo, los
sistemas biológicos deben ser resilientes frente a perturbaciones externas (una
propiedad de una fase ordenada), pero también deben tener suficiente capacidad
de respuesta frente a estímulos externos (siendo desordenados, careciendo de la
robustez y la precisión que una maquinaria biológica requiere). La hipótesis de
la "criticalidad" indica que la situación marginal entre estas dos tendencias in-
viables constituye una solución y un compromiso óptimo, fomentando beneficios
adicionales, por ejemplo, de las interacciones de largo alcance.
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En este sentido, se ha hipotetizado que este delicado balance entre el or-
den y el desorden confiere a los sistemas críticos un gran número de ventajas
funcionales, tales como un gran repertorio de respuestas dinámicas, una mayor
susceptibilidad a cambios ambientales, una óptima transmisión y almacenamien-
to de información así como un excelente solución intermedia entre estabilidad y
flexibilidad. Esta perspectiva de que los sistemas biológicos puede extraer im-
portantes beneficios de operar cerca de un punto crítico, es decir en el borde de
una transición de fase de segundo orden (o continua), ha atraído un gran interés
reciente [1, 4, 46], así como cierto escepticismo [10, 69].

No obstante, bajo esta hipótesis se han encontrado evidencias de "criticali-
dad" en muchos sistemas naturales tales como erupciones solares [12], pilas de
arena [6], terremotos [5], mediciones de lluvia [32], incendios [40], vórtices en
superconductores [23] o la formación de gotas [33], entre otros. Más reciente-
mente, con el advenimiento de tecnologías de alto rendimiento, han aparecido
evidencias empíricas en seres vivos, tales como comunidades de bacterias [72],
el corazón humano [73], redes de neuronas [74], colonias de hormigas [76], el
sistema auditivo [77] o la expresión genética [52], entre otros muchos [48].
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Parece como si la "criticalidad" impregnase la Naturaleza, extendiendo su
sombra sobre los fenómenos naturales y la materia viva. Por tanto, nuestro
principal objetivo aquí es profundizar en la hipótesis de la "criticalidad", ex-
tendiendo sus horizontes teóricos a través del análisis de las (posibles) fases y
transiciones de fase en la materia viva. Pero, no sólo a través de modelos abs-
tractos, sino también replicando y contrastando las –muchas veces insuficientes–
evidencias experimentales con el objetivo de tratar de entender características
cuantitativas más específicas de la materia viva.

A pesar de todo, es importante tener en cuenta que los sistemas biológicos
están intercambiando continuamente materia y energía y, por tanto, es difícil
visualizar una descripción apropiada que se base sólo en postulados de equi-
librio (recordemos que los conceptos explorados en la física estadística parten
de la condición de equilibrio termodinámico). Por consiguiente, los postulados
de equilibrio deben extenderse a descripciones de no equilibrio [30, 43] que se
describen brevemente en el capítulo 1.

No obstante, a pesar de ser provocativa y cautivadora a la vez, esta hipóte-
sis parece ser quimérica. Entre todas las posibilidades, ¿cómo pueden la materia
viva (y los sistemas naturales) permanecer ajustados finamente a un valor es-
pecífico y concreto? En este contexto, la teoría de criticalidad-autoorganizada
(SOC, por sus siglas en inglés) proporciona un marco conceptual que explica, sin
ninguna necesidad de un ajuste fino, la prevalencia en un punto crítico. Además,
desde su origen, SOC ha estado estrechamente relacionada con el estudio de los
fenómenos naturales ("el objetivo de la ciencia de la criticalidad autoorganizada
es profundizar en la comprensión de la cuestión fundamental de por qué la natu-
raleza es compleja, no simple, tal y como implican las leyes de la física", Cómo
funciona la Naturaleza, Per Bak [4]), sugiriendo explicaciones razonables a mu-
chos de los anteriores ejemplos. Mencionamos a las referencias [48, 70] para una
perspectiva extendida y reciente sobre más ejemplos concretos y un completo
resumen del tema.

En este punto, nos preguntamos si la hipótesis de la "criticalidad" puede
operar en sistemas reales con actividad incesante. Asimismo, aunque SOC pro-
porciona una convincente explicación a la innecesariedad de un ajuste fino, nos
preguntamos si la "criticalidad" puede operar en la materia viva más allá de un
solo punto, de alguna manera. Por otro lado, ¿existen mecanismos alternativos
que expliquen ciertos hechos experimentales que se atribuyen a la "criticalidad"?
¿Es la "criticalidad" la solución evolutiva óptima, incluso en la presencia de per-
turbaciones externas?

Sin pérdida de generalidad, intentaremos arrojar luz en estas cuestiones a
través del estudio de sistemas genéticos y neuronales, haciendo uso de diversos
estudios experimentales, aproximaciones teóricas provenientes de la mecánica
estadística, los sistemas complejos y los procesos estocásticos, así como análisis
computacionales extensivos.
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E.1.1.1 Dinámica neuronal

El cerebro de los mamíferos está compuesto por un gran número de neuronas
con muchas conexiones entre ellas. En particular, un cerebro adulto contiene
8,6 · 1010 neuronas entrelazadas por hasta 1015 sinapsis, pero de la misma for-
ma, otras especies animales como los elefantes (∼ 2,57 · 1011), las ardillas grises
(∼ 4,5 · 108) o la rata topo (∼ 2,7 · 107), cuentan con un formidable número de
neuronas. Incluso el córtex cerebral humano, que juega un papel fundamental en
funciones cognitivas superiores como la memoria, el razonamiento, la abstrac-
ción, el lenguaje o la consciencia, presenta un sorprendente número de neuronas
corticales (∼ 1,6 · 1010, de manera interesante, la especie de delfín Globicephala
melas –que ronda las ∼ 3,7 · 1010– excede el caso del córtex humano).

No obstante, las células neuronales (cuya estructura detallada es entendida
en profundidad desde los trabajos pioneros de Ramón y Cajal y Golgi, entre
otros) son capaces de generar señales eléctricas, disparando potenciales de ac-
ción, que estimulan las conexiones sinápticas salientes, y propagan la actividad
a las neuronas vecinas. Así, es posible imaginar dos fases neuronales distintas:
una quiescente, en la que el estado colectivo de las neuronas esté casi siempre
apagado, es decir, la actividad no se propaga y otra activa, en la que el estado
colectivo de las neuronas está siempre encendido, es decir, la actividad se propa-
ga rápidamente. Por tanto, parece razonable apostar porque el estado colectivo
de las neuronas no puede estar de forma continua en la fase activa o quiescente,
dando lugar a algún tipo de fenómeno crítico. De hecho, se ha observado experi-
mentalmente que tanto poblaciones neuronales in vitro como in vivo muestran
disparos irregulares (al unísono) intercalados con períodos de inactividad, y que
las desviaciones de esta actividad –ya sea por exceso o por defecto– son un
síntoma de enfermedades como la epilepsia, el Parkinson, la esquizofrenia o el
autismo [80].

En este sentido, es crucial el descubrimiento de Beggs y Plenz de avalanchas
neuronales en el cerebro humano (ver la Figura E.1.4), en donde, los potenciales
de campo (LFP, por sus siglas en inglés) disparan y, en conexión con un gran
número de neuronas, producen picos de actividad a nivel colectivo separados
por períodos de inactividad [9]. Esta observación es robusta (y universal) entre
especies [54, 61], escalas y técnicas experimentales [9, 44, 67]. De hecho, se ha
observado que la duración y el tamaño de estas avalanchas (es decir, el número
total de neuronas que disparan) sigue una ley de potencias3 –sugiriendo algún
tipo de invariancia de escala– que muestra escalado del sistema por tamaño
finito, es decir, el tamaño máximo de avalancha se incrementa con el tamaño
del sistema. Por supuesto, el paradigma de la "criticalidad" autoorganizada –in-
cluyendo variantes conservadas y no conservadas– ha supuesto una constante

3Con los exponentes de un ”branching process” de campo medio, α ≈ 2 y τ ≈ 3
2 para la

duración y el tamaño, respectivamente.
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fuente de interpretación de estos fenómenos en neurociencia, dando lugar a mo-
delos interesantes inspirados en SOC [15, 38, 45] que explican las avalanchas
neuronales de actividad observadas experimentalmente.

Figura E.1.4: (Izquierda) Población neuronal in vitro de la corteza somatosenso-
rial de una rata, donde su actividad se monitoriza empleando una micromatriz.
Los puntos negros representan electrodos. (Derecha) Distribución del número
total de disparos (tamaño) separados por períodos de inactividad. Aparecen
claramente leyes de potencias y su valor máximo solo depende del número de
electrodos, es decir, del tamaño del sistema, sugiriendo invariancia de escala.
Adaptada de [9, 53].

A partir de las series temporales del cerebro, también se ha descubierto que la
actividad cortical muestra leyes de potencia en el espectro de potencia que siguen
la forma 1/f [39]. Este decaimiento particular es una evidencia de correlaciones de
largo alcance, y puede considerarse un sello distintivo de cierto comportamiento
crítico. Por otro lado, se ha observado que el rango dinámico (relacionado con la
susceptibilidad, es decir, la habilidad del sistema para responder ante estímulos
externos) es máximo tanto en poblaciones neuronales in vitro como in vivo (que
también presentan avalanchas neuronales) [28, 63].

Es importante subrayar que no hay aún ninguna explicación teórica comple-
tamente satisfactoria de por qué estos hechos experimentales son compatibles
con los exponentes particulares de un "branching-process". En particular, no es-
tá claro si estos exponentes aparecen como una consecuencia genérica de como
se definen las avalanchas temporales para ser medidas (estableciendo umbrales,
discretizaciones temporales para poder discriminar su inicio y final o por un
efecto de sub-muestreo debido a limitaciones tecnológicas y experimentales). De
esta manera, se han propuesto también explicaciones alternativas. [69].

En general, usualmente se asume que una transición de fase inactiva/acti-
va justifica la presencia de los exponentes de "branching-process" [30, 43]. No
obstante, algunos resultados recientes han subrayado la evidencia de que las
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avalanchas neuronales emergen junto con ritmos colectivos y oscilaciones neu-
ronales [18], de una manera que sugiere que el punto de transición pueda ser de
sincronización [29, 79]. Por otro lado, existen otras explicaciones que relacionan
la dinámica cortical a un punto crítico de percolación ([67]) o que lo relacionan
con el modelo de Ising ([25]). Resumiendo, a pesar de que existe un gran número
de evidencias empíricas y teóricas que justifican la hipótesis de un cerebro críti-
co, aún no hay una explicación teórica completamente convincente, suponiendo
un campo de investigación abierto en el que es necesario más trabajo.

E.1.1.2 Redes de regulación genética

El último antepasado común universal (LUCA, por sus siglas en inglés) es el
hipotético ser vivo de la tierra del que todos descienden. Dicho (venerable) an-
cestro común, una bacteria unicelular, por supuesto, que vivió hace unos 3.5-3.8
mil millones de años, se estima compuesto por unos 355 genes [75]. Actualmente,
el genoma bacteriano (artificial) mínimo (es decir, el conjunto de genes que lo
componen), es una bacteria autorreplicante que contiene 437 genes, una cantidad
mucho más pequeña que otras bacterias, mamíferos o plantas de la Naturaleza
como, por ejemplo, la E. Coli (∼ 5 · 103 genes), los humanos (∼ 2,1 · 104 genes)
o el arroz (∼ 4− 5 · 104 genes).

Este tablero de juego (el genotipo) puede dar lugar a diversos estados celu-
lares (fenotipos, que resultan de la expresión de un genotipo fijo). Por tanto, la
bacteria más simple puede mostrar una compleja e intrincada danza que implica
la coordinación de miles de genes que se silencian y expresan.

En este sentido, Kauffman planteó una visión pionera al considerar que los
estados celulares podían identificarse como atractores de la dinámica de las redes
genéticas [36]. En este enfoque particular, modelando los genes como nodos de
una red que se conectan (de una manera dirigida) a través de sus interacciones,
se supone que, justo en el punto crítico (también denominado el "límite del
caos") se obtiene la mejor manera de describir las redes biológicas reales. En este
caso, la fase ordenada implica una dinámica convergente, es decir la respuesta
a estímulos externos se borra al converger a una única base de atracción (o
fenotipo) mientras que la fase desordenada conduce a grandes divergencias y a
estados celulares completamente distintos. De nuevo, la "criticalidad" confiere
un balance óptimo entre presentar una dinámica demasiado ordenada o estable
y demasiado desordenada o ruidosa [36, 52, 64].

Los experimentos al respecto, no obstante, son muy limitados en este caso.
Los estudios basados en micromatrices de ADN (que miden y comparan distin-
tos niveles de expresión en células similares [22]), así como los experimentos de
inactivación genética (donde se silencian genes individuales y se sigue la cascada
de diferencias que se produce entre dos réplicas) han proporcionado algunas evi-
dencias al respecto. Por ejemplo, el tamaño de avalancha en estos experimentos
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de inactivación genética [56], así como el número de metabolitos afectados, pa-
rece decaer como una ley de potencias con exponente τ = 3/2, siendo compatible
con una transición de fase activa/inactiva. Por otro lado, a partir de numerosos
experimentos con micromatrices se han inferido diversas estructuras que dan
lugar a redes complejas y, que en general, presentan una distribución exponen-
cial de reguladores y una distribución de ley potencial (o libre de escala) en el
número de genes regulados ([2]). A través de diversas aplicaciones de modelos
Booleanos sobre dichas redes, en diversas especies de bacterias, se ha observado
que quizás puedan operar cerca de un punto crítico [8].
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Figura E.1.5: (Izquierda) El gen optix coordina (y por tanto su inactivación
provoca un cambio drástico) la pigmentación del color de la mariposa J. coenia.
Figura de [82]. (Derecha) Número total de cambios metabólicos para diferentes
réplicas mutantes (es decir, suprimiendo genes de forma individual) de E. Coli.
Parece seguir una ley de potencias con exponente τ ≈ 3/2 (las líneas punteadas
son guías visuales). Datos de [26].

A pesar de ser uno de los ejemplos clásicos de "criticalidad" en la materia
viva, como ya indicaba Kauffman, debe tenerse especial cautela con los efectos
(y peligros) de establecer umbrales en los experimentos de inactivación genética
[48]. Son necesarias más y mejores medidas experimentales, tanto en avalanchas
de daño como para generar redes genéticas más grandes, así como experimentos
similares a los que analizan el rango dinámico en la redes neuronales, para poder
discernir si, finalmente, las redes de regulación genética operan cerca de un punto
crítico.

En particular, en esta tesis, trataremos de arrojar luz sobre ciertos proble-
mas aún abiertos que conciernen a la hipótesis de la "criticalidad" en ambos
campos. En particular, el desarrollo de un modelo mínimo (a la Landau) de la
dinámica cortical que sea capaz de combinar tanto las avalanchas como las os-
cilaciones neuronales en un marco común, así como clarificar diversos métodos
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que sean susceptibles de generar dinámicas con leyes de potencias lejos de un
punto crítico. Trataremos también de entender los efectos de las redes –modu-
lares y complejas– corticales reales (el conectoma humano) en la perspectiva
común analizada (el paradigma de sincronización). Finalmente, abordaremos el
problema de la "criticalidad" en modelos Booleanos de redes de regulación gené-
tica, con el objetivo de entender un poco mejor el proceso evolutivo que da lugar
a su estructura particular y cómo las perturbaciones externas pueden afectar a
dicha estructura.



E.2
Conclusiones

“Las cosas suceden a través de re-
voluciones, no gradualmente, precisa-
mente porque los sistemas dinámicos se
sitúan en un punto crítico.”

Per Bak

La hipótesis4 de la "criticalidad" plantea una idea fascinante, los seres vivos
pueden operar en el entorno de un punto crítico, es decir, en el límite entre

el orden y el desorden, arrojando luz en la comprensión de muchos fenómenos
colectivos en la Naturaleza y, recientemente, en ciertas características específi-
cas de los sistemas biológicos. Asimismo, ha mostrado su relación con muchos
beneficios funcionales cruciales para la supervivencia, la proliferación y el refi-
namiento de la materia viva que evoluciona por selección natural.

Sobre esta base, a lo largo de esta tesis hemos profundizado en la idea de
posibles pistas de "criticalidad" en la materia viva, así como en sus fases y fenó-
menos colectivos emergentes. En particular, hemos considerado ciertos sistemas
biológicos particulares -neuronales y genéticos- susceptibles de ser analizados
junto con características cuantitativas específicas, es decir, experimentos, e in-
tentando dilucidar cómo de lejos se encuentra y cómo de precisa es la hipótesis
de la "criticalidad".

※ La dinámica neuronal opera en el límite de una transición de fase de
sincronización En el contexto de los sistemas neuronales, la hipótesis de la
"criticalidad" conjetura que la dinámica subyacente de las redes corticales es
tal que se sitúa al borde de una transición de fase continua, separando fases (o
regímenes) cualitativamente diferentes, con diferentes grados de orden [2, 9, 20,
41]. Sin embargo, cuáles son estas fases y cuál es la naturaleza del punto crítico,
son preguntas que aún deben resolverse por completo.

En este sentido, nuestro modelo a la Landau de la dinámica cortical -enfocado
en una dinámica reguladora controlada bien por la plasticidad sináptica o la
inhibición- nos permite clasificar las posibles fases emergentes de las redes cor-
ticales en condiciones muy generales, simplemente considerando cierta estocas-
ticidad intrínseca y cierta dependencia espacial. Aunque Buice y Cowan han

4Todas las referencias citadas en esta sección corresponden a las mostradas en el capítulo
7.
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desarrollado un enfoque muy similar basado en transiciones de fase continuas,
de una fase inactiva a una fase activa [6], creemos que este escenario no capta
adecuadamente la esencia de la dinámica cortical, ya que, en las redes neuro-
nales reales, existen mecanismos de integración y disparo, es decir, se requiere
cierto umbral de actividad para poder disparar. De hecho, como captura el mo-
delo de Wilson-Cowan, el umbral de la función de respuesta sigmoide impide la
existencia de una transición de fase continua activa/inactiva. Además, en base a
la naturaleza de impulsos de la dinámica de la actividad neuronal, nuestra teo-
ría subraya el papel fundamental de las oscilaciones y la sincronización parcial
–sugiriendo ese tipo de transición de fase- en la dinámica neuronal.

Desde un punto de vista experimental, nuestro modelo constituye –en un caso
específico– una buena descripción del córtex durante etapas de sueño profun-
do o bajo el efecto de anestesia, donde se observan transiciones "up and down"
[10, 44]. Pero, mejor aún, justo en el punto crítico de sincronización, nuestro
modelo es óptimo para reproducir las observaciones experimentales de redes en
estado de reposo [43], la existencia de correlaciones temporales de largo alcance
en las oscilaciones alfa [28], así como el tamaño y la duración de las avalanchas
–distribuidas como leyes de potencias– que reflejan la misma estadística que en
los resultados experimentales, es decir, los exponentes críticos son compatibles
con los de un "branching process" [2]. Además, nuestros resultados son compa-
tibles con el modelo extremadamente detallado que ha desarrollado el proyecto
"Human Brain Project" [29], en donde se sabe que la concentración de calcio
modula el nivel de recursos sinápticos disponibles que regulan el estado del sis-
tema. Adicionalmente, nuestro modelo es capaz de reproducir perfectamente los
resultados empíricos in vitro para poblaciones neuronales con diversos niveles
de heterogeneidad estructural a nivel mesoscópico [37].

※ La arquitectura de las redes corticales induce una región crítica amplia
de sincronización En el espíritu de los modelos de campos neuronales, y para
preservar la esencia de un diseño minimalista, mostramos que ciertos modelos
simples de sincronización (el modelo de Kuramoto), operando sobre las redes
empíricas del cerebro humano, exhiben una fenomenología inesperadamente rica.

Dicha fenomenología es una amplia región crítica (que recuerda a una fase
de Griffiths [33]) en la que emerge un comportamiento oscilatorio del parámetro
de orden, que se deriva de la existencia de comunidades o módulos estructurales
relativamente aislados. Aún más destacable es que también existen oscilacio-
nes en el nivel de coherencia interna de los módulos de la red, lo que sugiere
la existencia de una jerarquía completa de niveles anidados, como también se
desprende de diversos estudios recientes [7, 32, 43, 46].

Al respecto, en ausencia de dispersión en la frecuencia de los osciladores,
se consigue una coherencia perfecta en las redes jerárquicas siguiendo una di-
námica de ordenamiento de "muñeca matryoshka" (es decir, ascendente), que
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se ve frustrada en presencia de cierta dispersión intrínseca de frecuencias. Esto
permite que el sistema quede atrapado en estados metaestables, y similares a
"quimeras", con cierta coherencia local en los diversos niveles jerárquicos, lo que
hace accesible, de una manera robusta y flexible, una gran variedad de atracto-
res funcionales y repertorios dinámicos sin un ajuste ad-hoc a un punto crítico.
Además, la estocasticidad permite que el sistema pueda recorrer un paisaje de
sincronización complejo con múltiples barreras de potencial entre módulos mu-
tuamente incoherentes, así como generar efectos de desincronización, lo que lleva
a una dinámica enormemente enriquecida.

Curiosamente, esta fase intermedia reproduce la dinámica real que se en-
cuentra en las oscilaciones alfa y en el estado de reposo del cerebro humano
[4, 28], caracterizada por fluctuaciones muy lentas, de frecuencia típica< 0,1Hz.
Además, los posibles saltos entre atractores, que se ha sugerido como mecanismo
(en la dinámica neuronal real) que permite acceder a configuraciones funcionales
muy variadas [9, 18, 41] se facilita en gran medida en el amplio régimen inter-
medio, sin necesidad de afinar a un punto crítico para garantizar las ventajas
funcionales asociadas a la "criticalidad". Asimismo, justifica las regiones críticas
observadas en diferentes modelos recientes de dinámica neuronal [13, 21, 40].

※ Mecanismos no críticos de leyes de potencias en la dinámica neuronal
Desde un punto de vista teórico, los exponentes críticos de un "branching pro-
cess", son compatibles con las avalanchas empíricas descubiertas por Beggs y
Plenz [2]. Dado que todos los sistemas con estados absorbentes pueden exhibir
avalanchas, que presentan invariancia de escala en un punto crítico, y las tran-
siciones de fase activa/inactiva muestran los exponentes de "branching process"
[19, 30], se han propuesto como explicación de las avalanchas neuronales. En es-
te sentido, esperamos que el breve resumen expuesto ayude a evitar confusiones
frecuentes en la literatura neurocientífica, así como subrayar la superuniversali-
dad de la clase de universalidad de percolación dirigida, que, de hecho, también
está relacionada con las transiciones de fase de sincronización [35, 39].

Por otro lado, como mínimo, intentamos resaltar la necesidad –puesto que
las leyes de potencias son una condición necesaria, pero no suficiente para la
existencia de "criticalidad"– de mostrar diversos exponentes en los hallazgos
empíricos/teóricos, así como de evitar una medida inadecuada de avalanchas
sobre series temporales.

Por el contrario, hemos demostrado la emergencia de leyes de potencias
genéricas (no críticas) en un modelo teórico con un pequeño estímulo externo
[5]. Además, de una manera más realista, hemos entendido profundamente los
mecanismos de "balanced amplification" propuestos por Benayoun et al. [3, 36]
en el caso de poblaciones de neuronas excitadoras e inhibidoras, así como su
extensión al caso de plasticidad sináptica como mecanismo regulador. Dicho
mecanismo requiere la existencia de un punto fijo estable enriquecido con una
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dinámica reactiva que permita grandes fluctuaciones inducidas por el ruido,
que llevan al sistema a permanecer atrapado en un potencial logarítmico. Así,
proporciona un candidato (no crítico) para modelar las transiciones entre estados
"up and down" como los que aparecen en el cerebro durante el sueño o bajo los
efectos de anestesia [10, 44]

Sin embargo, a pesar de que el mecanismo de "balanced amplification" puede
mostrar avalanchas libres de escala, sus exponentes son compatibles con la cono-
cida clase de universalidad del "random walk". Por lo tanto, aunque la dinámica
reactiva puede ser clave en diversos mecanismos neuronales (tales como esta-
dos "up and down") y fomentar grandes fluctuaciones, no parece un candidato
plausible para dar cuenta del gran número de hallazgos empíricos explicados por
otros enfoques teóricos.

※ La dinámica de las redes genéticas es ordenada o crítica, pero no caótica
Las redes de regulación genética constituyen otro caso que podría funcionar
cerca de la "criticalidad", explotando sus múltiples beneficios.

Así, hemos demostrado que los modelos de redes booleanas aleatorias –con
una dinámica de actualización estocástica inherente[16], que mimetiza las redes
genéticas reales [15, 17, 22, 23]– entrenadas para realizar una tarea computacio-
nal determinada, pueden aprender mucho más rápido si tienen una conectividad
K tal que estén cerca de la "criticalidad". En este sentido, desde un punto de
vista evolutivo, aunque el proceso de aprendizaje es compatible con ser subcrí-
tico, crítico o supercrítico, sin duda la "criticalidad" se fomenta en un sistema
cuya evolución esté guiada por selección natural.

Los sistemas biológicos deben tener homeostasis, es decir, la capacidad de
mantener sus condiciones internas incluso en presencia de fluctuaciones y rui-
do. Por tanto, en el mismo experimento computacional, hemos añadido formas
extremas de ruido dinámico o estructural, imitando perturbaciones dinámicas o
daños físicos en la red de transcripción. Bajo estos efectos, encontramos que la
conectividad óptima para lograr el aprendizaje más rápido posible se encuen-
tra profundamente dentro de la región subcrítica, lejos de la "criticalidad", y la
distancia al punto crítico aumenta al aumentar la intensidad del ruido y no dis-
minuye al aumentar el tamaño del sistema. Es decir, las redes biológicas reales
que sobreviven en un mundo ruidoso deberían operar en regímenes subcríticos
más que en un punto crítico.

Además, hemos recopilado muchas redes empíricas (genéticas y metabólicas)
que muestran una conectividad bastante baja, lo que lleva a una dinámica sub-
crítica, bajo la consideración de que la dinámica subyacente a estas redes viene
dada por funciones booleanas aleatorias [11, 24]. Nuestros resultados parecen
compatibles con lo observado en una red de Kauffman para células eucariotas
[42], así como para la red de transcripción de la levadura [25].

Por lo tanto, pese a que la hipótesis de la "criticalidad" sigue siendo una
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posibilidad válida y fascinante, debe evaluarse críticamente en cada conjunto de
circunstancias específicas, evitando hacer afirmaciones excesivamente generales.
Además, junto con la necesidad de enfoques experimentales más precisos y ex-
tensos, solo se puede concluir que se necesitan modelos dinámicos mejores y más
precisos para modelar las redes de regulación génica, así como para inferir el im-
pacto de las características topológicas importantes (tales como las estructuras
jerárquicas y modulares) de las redes empíricas.

※ Arrojando luz sobre los circuitos regulatorios de los organismos celulares
La comprensión de la estructura (y la evolución) de las redes genéticas reales es
clave para las propiedades colectivas emergentes de la función celular [26, 27].
Para este propósito, las redes de paquetes de Debian, como redes de flujo de
información, ofrecen una oportunidad única para estudiar la evolución y las
propiedades emergentes de las redes genéticas [12, 45].

Hemos encontrado que dichas redes de software sintéticas son capaces de
recrear muchas de las propiedades emergentes que se observan en redes reales
de regulación genética [1]. Por ejemplo, la estructura particular de la distribución
de grados (entrante y saliente), un alto nivel de modularidad que ha surgido a
lo largo de su evolución, así como valores similares de la -pequeña- longitud de
camino medio que indica efectos de mundo pequeño. A su vez, ambos sistemas
muestran una estructura altamente jerarquizada (mucho más pronunciada en
el caso de las redes genéticas) que se ha hipotetizado que confiere una forma
efectiva y robusta de transferir información y coordinar procesos.

Además, son capaces de reproducir las leyes de potencias encontradas en
experimentos de inactivación genética [14, 38], permitiendo una explicación con-
vincente (sin ningún signo de "criticalidad") y atendiendo solo a efectos estruc-
turales. Del mismo modo, las redes sintéticas de Debian pueden respaldar la
conjetura de que, al menos, uno de los roles del ADN no codificante en células
eucariotas [8, 31] puede ser la monitorización y la minimización de errores du-
rante el proceso de transcripción. En esencia, desempeñando un papel similar a
los archivos de control en los paquetes de Debian.

※ Sobre cómo funciona la materia viva Ciertamente, la hipótesis de la "cri-
ticalidad" es una solución tentadora y poderosa al misterio de cómo las propie-
dades colectivas (que emergen por doquier en la Naturaleza) surgen de forma
conjunta con la gran cantidad de beneficios funcionales requeridos por los siste-
mas vivos.

En este sentido, no pretendemos dilucidar por completo la exactitud y la
certeza de esta hipótesis, pero es de esperar que hayamos contribuido a arrojar
luz sobre la transición de fase (de sincronización) en la que el córtex cerebral
podría operar, y que, en lo que a nosotros respecta, es capaz de reproducir to-
dos los principales hallazgos empíricos para las avalanchas neuronales. También
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constituye un ejemplo de una transición de fase muy alejada de la usual activa/i-
nactiva, algo muy interesante para sistemas con actividad o dinámica incesante.
Pero, aún mejor, dicho punto crítico de sincronización puede extenderse si exis-
ten estructuras heterogéneas o modulares subyacentes, lo que sugiere una amplia
región de dinámica donde operar -relevante para otros sistemas jerárquicamente
organizados- en lugar de la línea estrecha que propone SOC.

Del mismo modo, hemos considerado esencial la evidencia empírica para pro-
porcionar un enfoque teórico que vaya más allá de una hipótesis abstracta, es
decir, más allá de una simple visión cualitativa. La hipótesis de la "criticalidad"
debe proporcionar un gran número de medidas y predicciones cuantitativas (jun-
to con las ya descubiertas, que, en nuestra opinión, no son lo suficientemente
convincentes). Para ello, se necesitan sistemas más grandes, experimentos más
precisos e integrales, desde una perspectiva interdisciplinar. En particular, la
búsqueda de una prueba irrefutable, que podría ser la función cerebral, es un
objetivo prioritario para justificar debidamente la hipótesis de la "criticalidad".
Especialmente, esperamos que nuestro modelo Landau-Ginzburg haga su parte
en la búsqueda de tal "santo grial" de la "criticalidad".

Por lo tanto, la hipótesis de la "criticalidad" no debe ser aún magnificada. Es
un hecho innegable que los seres vivos no pueden ser ni demasiado quiescentes
ni demasiado variables, por lo que para ser considerada como una explicación
convincente, múltiples características cuantitativas específicas deberían surgir
de esta hipótesis. De lo contrario, no deja de ser una tautología, es decir solo
sugiere que tenemos modelos limitados –cuyo punto de máxima complejidad es
el punto crítico– que dan lugar a una analogía compleja con los sistemas más
complejos que conocemos, la materia viva en la Tierra. No obstante, creemos
que en muchos casos esta hipótesis es acertada (ver [34] para ejemplos más
específicos), pero la biología es lo suficientemente rica para fomentar que la
materia viva opere en diferentes fases (más allá de la "criticalidad", no debemos
olvidar que tales fases emergen de un comportamiento colectivo de una enorme
cantidad de agentes interactuantes, que ya de por sí es un tema fascinante y
cautivador). Por ejemplo, tenemos serias dudas, a la luz del enfoque Booleano,
sobre la dinámica crítica en las redes de regulación genética, que están expuestas
a numerosos factores de estrés externo. Del mismo modo, los experimentos de
inactivación genética todavía están lejos de ser una evidencia de que exista
dicha dinámica crítica, pues son susceptibles de interpretaciones alternativas (y
convincentes). Esto solo refuerza la idea de que se necesitan experimentos más
precisos e integrales para aclarar cómo de acertada es la hipótesis de criticidad.

Por lo tanto, en nuestra opinión, esta tesis plantea futuras vías de trabajo so-
bre cómo los mecanismos adaptativos, homeostáticos o autorreguladores pueden
explicar que el cerebro opere al borde de una transición de fase de sincronización,
así como el rol de estructuras topológicas más realistas y dinámicas neuronales
más complejas (con retardos temporales, por ejemplo). De la misma manera,



300 Apéndice E. Resumen en castellano

la posibilidad de una transición de sincronización relacionada con la dinámica
neuronal debe ser aclarada y analizada cuidadosamente tanto desde un punto de
vista teórico como desde un punto de vista experimental, e idealmente aclarar
desde un punto de vista formal a qué clase de universalidad pertenece. Por otro
lado, debe explorarse el desarrollo de modelos dinámicos que puedan replicar las
dinámicas de regulación genética (tal vez) cerca de un punto crítico. Del mismo
modo, debería analizarse y aclararse la idea de una región crítica amplia que
permita repertorios dinámicos ricos, y derivada de la estructura modular, en
otros sistemas biológicos, tales como redes genéticas. De hecho, solo el diseño, la
replicación y la explicación de más hallazgos y evidencias experimentales -que
apoyen o refuten la hipótesis de la "criticalidad" en la materia viva- es, en sí
mismo, un gran desafío y una gran fuente de trabajo.

Finalmente, creemos que la hipótesis de la "criticalidad" debe ser capaz de
dilucidar por qué la Naturaleza y la materia viva son complejas, así como expli-
car sus características cuantitativas, resolviendo un misterio clave con enormes
implicaciones. Después de todo, de acuerdo con Russell y Dirac, si una teoría
posee algo de belleza (y, ciertamente, la "criticalidad" la tiene) también debería
poseer algo de verdad. Aunque, también puede ser que -el también complejo-
Dios, bajo la suposición (altamente improbable) de que exista, sea un físico
estadístico.
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