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Instead of trying to produce a programme to simulate the adult mind,

why not rather try to produce one which simulates the child’s? If this

were then subjected to an appropriate course of education one would

obtain the adult brain.

Alan M. Turing, Computing Machinery and Intelligence (1950)
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Óscar, Javier, Vı́ctor, Bernar, Miguel E., Álex, Alejandro and Jorge;
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de la Junta de Andalućıa TIC-04526 and TIC-276.





Agradecimientos

Este trabajo ha sido desarrollado en el Departamento de Ciencias de

la Computación e Inteligencia Artificial de la Universidad de Granada

entre los años 2005–2010. Su finalización no habŕıa sido posible sin la
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Introduction

Motivation

With the growth of the Internet and the huge spread of the digital computer in

the 1990s and the 2000s, a very high amount of information, mainly composed of

electronic Text Documents, have been made available in an exponential manner.

In order to give easier access to electronic information, and reduce that “infor-

mation overload” several solutions have been proposed in the literature. One

example of these solutions are Information Retrieval systems which are able to

return from a collection the set of documents that matches some user needs, cap-

tured by means of a query. Another solution are Text Categorization systems,

aimed to present the information organized in a set of topics or categories. They

are designed to automatically label the documents with categories (correspond-

ing to certain generic topics, often with a very defined semantic meaning), which

can be previously learnt by the system with a set of preclassified examples in

this topic, making the navigation easier in the collection. In this work we shall

study this second problem, that is to say, how documents can be automatically

organized in a set of classes.

In fact, the field of Supervised Document Categorization [119] (often called

Automated Indexing, Text Filtering or Text Routing) is active since 1961 [83],

and can be roughly defined as the task of labeling documents with the categories

of a predefined set, using a function learnt (the classifier) with examples already

classified. For obvious reasons, this problem falls between the domains of Machine

Learning (mainly for the techniques used to build the classifiers) and Information

Retrieval (which provided the tools for document processing and their treatment

by computers) areas. This is probably why it has attracted –mainly since 1995–
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lot of researchers of both communities with great interest in this kind of problems,

producing a notably amount of publications [118].

The applications of the developments made on this area are fairly diverse.

Perhaps the figurehead of them is spam email detection [114]. The problem of

discriminating between real and junk email is present on every email account,

and the benefits of using such a categorization system are translated into a huge

amount of time and money saved everywhere. This task is a problem of binary

Text Categorization (that is to say, the set of categories has size equal to two:

“spam” and “not spam”) where even the simplest models, as the Näıve Bayes

[85] have obtained good results.

Another important application is Automatic Indexing of official or scientific

documents [73]. In this case, the documents should be organized in a set of hun-

dreds or thousands of categories, a task that is made manually in many scenarios.

Besides, instead of having a flat set of labels, sometimes they are identified with

the descriptors of a thesaurus [21], which adds some metadata and large hierar-

chy. In contrast with the previous case, here we can assign an arbitrary subset of

labels to each document, and the set of categories is notably larger than a simple

dichotomy. The problem of classifying documents in a hierarchy of classes is very

typical of this area and implies using models which are more elaborate than the

classical Machine Learning ones [96].

Beyond the categorization of just flat documents, a trending topic in Text

Categorization in the last years is Structured Document Categorization. Here we

use “structured” for both XML categorization [9] (the document is not atomic,

but composed of different structural units), and link-based Document Categoriza-

tion (where we have a structure of explicit relationships among the documents)

[79]. The last methods have found direct applications as solutions to the graph

labeling (labeling a set of linked documents using link information in addition

to just the textual content) and the webspam detection problems [25] (detecting

group of pages whose content is spam, often linked among them to confuse the

user and appear on the first places of the results given by a web search engine).

The Bayesian networks [102] framework was chosen as a very appropriate

tool to provide possible solutions in this dissertation. These probabilistic models

have shown great success in presenting interesting solutions to both problems
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of Machine Learning (concretely classifiers) [1] and Information Retrieval [15].

Moreover, the Näıve Bayes classifier [85] (and, in general, many of the probabilis-

tic classifier models) can be studied using this framework. Thus, we have used

this formalism to benefit from all the general research done in these models [99].

Main Contributions of the Dissertation

The first contribution of the dissertation is to give several new Text Categoriza-

tion methods based on noisy OR gates [102] as a discriminative counterpart of the

multinomial Näıve Bayes classifier. The Näıve Bayes classifier is widely used in

the Machine Learning and the Text Categorization communities, and represents

a good starting point to work with probabilistic models. In order to overcome

several limitations of the approach, we also provide an ad-hoc pruning proce-

dure that refines the learning process of our OR gate model. We claim that the

proposed OR gate models maintain the simplicity of the Näıve Bayes approach,

increasing its discrimination power.

The second contribution of the dissertation is the introduction of the thesaurus-

based indexing problem. This problem has been previously treated on the liter-

ature, but either as a supervised categorization problem (with no use of the

hierarchy or the metadata) or as an unsupervised indexing problem. We shall

present a formalization of a thesaurus, independent of the classification model

described afterwards, and suitable for many of the most commonly used thesauri.

Together with this formalization, we shall state the problem of thesaurus based

categorization, and we shall propose two solutions, one using training informa-

tion, and other with no use of it, both built on a Bayesian network-based model

of the thesaurus and its related information. In fact, the model with training

information is shown as an extension of the unsupervised one, making use of the

previously presented OR gate-based classification model. We shall try to show

that a probabilistic model of the relationships of the categories and the metadata

of the thesaurus, together with training information, can provide a categorization

power comparable or superior to the state-of-the art in Supervised Text Catego-

rization (the Linear Support Vector Machine [60]).
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Our contribution ends with a proposal of several models for the Structured

Text Categorization problem. Firstly we shall make some XML document trans-

formations in order to reduce to flat documents and apply the noisy OR gate

models. On the other hand, we shall show two solutions for the link-based doc-

ument categorization problem; one for the multiclass case (where a document

is labeled with one among several categories), and other for the multilabel one

(where the number of associated categories is free). Both proposed models are

based on a Bayesian network learnt directly from the relationships among the

categories, present on the training data, and making use of a probabilistic classi-

fier for the content (like, for instance, the Näıve Bayes). In this way, the models

can also be seen, as an extension of a classic probabilistic model for the case of

the link-based classification.

Chapter Overview

This dissertation is arranged into three parts. The first one, Part I, is an In-

troduction to the main results, providing a preface (this introduction), and two

chapters with the foundations needed to understand the content. Concretely,

the chapter 1 provides a brief introduction to the supervised Text Categorization

problem, presenting the main problem, describing several models with detail, and

explaining how to evaluate different solutions. In order to complete the founda-

tions part, chapter 2 introduces the basic concepts of probability theory used

here, and those from the Bayesian networks language, as graphical separation,

learning algorithms or inference algorithms. In this last case, one learning and

and one inference algorithms are presented because they will be used later.

Part II contains the main contributions of this dissertation, presented on pre-

vious section. Thus, in chapter 3 we describe the OR gate classifier, together

with its pruning procedure. In chapter 4 we deal with the thesaurus-based clas-

sification problem explained before. Finally, in chapter 5 both the structured

and the link-based document classification problems are discussed, along with

our suggested solutions.
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Finally, Part III contains the last chapter of this dissertation, where the con-

clusions and the future lines of work are stated, as well as we review the list of

publications supporting the contributions of this thesis.
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Introducción

Motivación

Con el crecimiento de la Internet y el gran éxito de los ordenadores en los 90 y

principios de los 2000, ha aparecido, de forma exponencial, una gran cantidad

de información, compuesta fundamentalmente de documentos textuales. Para

dar un acceso más fácil a la información electrónica, y reducir la “sobrecarga

de información” se han propuesto varias soluciones en la literatura. Un ejem-

plo de estas soluciones son los sistemas de Recuperación de Información, capaces

de devolver documentos de una colección, que sean relevantes a las necesidades

de un usuario, formuladas con una consulta. Otra solución son los sistemas de

Clasificación Documental, dirigidos a presentar la información organizada en un

conjunto de clases o categoŕıas. Estos sistemas se diseñan para etiquetar automti-

camente a los documentos con categoras (correspondientes a temas genérico con

un significado semántico muy definido), que puede ser aprendido por el sistema

con un conjunto de ejemplos preclasificados, haciendo la navegacin por la coleccin

ms fcil. En este trabajo estudiaremos este segundo problema, esto es, cómo se

pueden organizar automáticamente un conjunto de documentos en una lista de

categoŕıas.

De hecho, el campo de la Clasificación Documental Supervisada [119] (también

llamado algunas veces Indexación Automática, Filtrado Textual o Text Routing)

está activo desde 1961 [83], y puede ser definido, a grandes rasgos, como el pro-

ceso automático de etiquetado de un conjunto de documentos con las categoŕıas

de una lista predefinida, utilizando una función aprendida con ejemplos ya clasi-

ficados. Por razones obvias, este problema se encuentra entre los dominios del

Aprendizaje Automático (debido fundamentalmente a las técnicas usadas para la
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construcción de clasificadores, heredadas de aquél) y la Recuperación de Infor-

mación (que provee las herramientas para el procesado automático de documen-

tos y su tratamiento algoŕıtmico). Probablemente por esto este campo ha atráıdo

–fundamentalmente desde 1995– gran cantidad de investigadores de ambas comu-

nidades con bastante interés en este tipo de problemas, produciendo una notable

lista de publicaciones [118].

La aplicación de lo desarrollado en este área son bastante diversas. Tal vez el

mascarón de proa de las mismas es la detección de correo basura (spam) [114]. El

problema de discriminar entre correo real y basura se encuentra en toda cuenta de

correo, y los beneficios de utilizar un sistema de clasificación para ello se traducen

en una enorme cantidad de tiempo y dinero ahorrado en todas partes. Esta

tarea es un problema de Clasificación Documental binaria (esto es, el conjunto

de categoŕıas tiene tamaño igual a dos: “spam” y “no spam”) donde incluso los

modelos más simples, como el Näıve Bayes [85] han obtenido buenos resultados.

Otra aplicación importante es la Indexación Automática de documentos ofi-

ciales o cient́ıficos [73]. En este caso, los documentos deben de organizarse en

conjuntos de cientos o miles de categoŕıas, teniendo que ser esta tarea realizada

de forma manual en muchos escenarios. Además, en vez de tener una lista normal

de clases, a veces éstas se identifican con los descriptores de un tesauro [21], lo

que añade unos ciertos metadatos además de una estructura de jerarqúıa. Al con-

trario que en el caso anterior, aqúı podemos asignar un subconjunto de etiquetas

de tamaño arbitrario a cada documento, y el conjunto de categoŕıas es notable-

mente mayor que una simple dicotomı́a. El problema de clasificar documentos en

una jerarqúıa de clases es muy t́ıpico de este área e implica el uso de modelos que

son más elaborados que los modelos clásicos de Aprendizaje Automático [96].

Más allá que la clasificación de documentos planos, un tema de actualidad en

Clasificación Documental en los últimos años es el de la Clasificación de Docu-

mentos Estructurados. Aqúı usamos “estructurados” tanto para la clasificación

de documentos XML [9] (donde el documento no es atómico, sino que puede estar

organizado internamente alrededor de una estructura bien definida), como para

la Clasificación Documental basada en enlaces (en la que tenemos una estruc-

tura con relaciones expĺıcitas entre los documentos) [79]. Estos últimos métodos

tienen aplicación directa a los problemas de etiquetado de grafos (etiquetar un
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conjunto de documentos enlazados usando la estructura de enlaces además de sólo

usar el texto) y de detección de webspam [25] (detectar grupos de páginas cuyo

contenido es spam, en ocasiones enlazadas entre ellas para confundir al usuario y

para aparecer en los primeros puestos de los resultados de un buscador web).

Se eligió el formalismo de las Redes Bayesianas [102] para desarrollar todas

las soluciones propuestas en esta tesis. Estos modelos probabiĺısticos han tenido

gran éxito al resolver tanto problemas de Aprendizaje Automático (en especial

los de clasificación) como de Recuperación de Información [15]. Además, el clasi-

ficador Näıve Bayes [85] (y, en general, muchos de los modelos probabiĺısticos de

clasificación) se pueden estudiar usando este marco. Por tanto, se usa este for-

malismo para beneficiarse de toda la investigación general realizada previamente

en estos modelos [99].

Principales Contribuciones de esta Memoria

La primera contribución de esta tesis es presentar nuevos métodos de Clasificación

Documental basados en puertas OR ruidosas [102] como una contrapartida dis-

criminativa al clasificador Näıve Bayes multinomial. El clasificador Näıve Bayes

se usa bastante en las comunidades de Aprendizaje Automático y en la de Clasifi-

cación Documental, y representa un buen punto inicial para trabajar con modelos

probabiĺısticos. Para mejorar algunas limitaciones del modelo, también presen-

tamos un procedimiento de poda ad hoc que refina el proceso de aprendizaje de

nuestro modelo de puerta OR. Afirmamos que el modelo de puerta OR propuesto

mantiene la simplicidad del Näıve Bayes, incrementando su poder de discrimi-

nación.

La segunda contribución de esta tesis es la introducción del problema de in-

dexación basada en un tesauro. Este problema se ha tratado anteriormente en

la literatura, pero o bien como un problema de clasificación supervisada (sin

usar la jerarqúıa o los metadatos), o como un problema de indexación no su-

pervisada. Presentaremos una formalización de un tesauro, independiente del

modelo de clasificación que se describe posteriormente, y apropiado para muchos

de los tesauros usados en el mundo. Junto a esta formalización, presentaremos

el problema de clasificación en tesauros propiamente dicho, y propondremos dos
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soluciones: una usando información de entrenamiento y otra sin usarla, ambas

construidas usando un modelo de red bayesiana del tesauro y de su información

relacionada. De hecho, el modelo con información de entrenamiento se muestra

como una extensión del no supervisado, haciendo uso del clasificador puerta OR

anteriormente presentado. Trataremos de probar que un modelo probabiĺıstico

de las relaciones entre las categoŕıas y los metadatos que tiene el tesauro, junto

con la información de entrenamiento, puede tener un poder de clasificación com-

parable o superior al modelo que representa el estado del arte en Clasificación

Documental (la Máquina de Vectores Soporte Lineal [60]).

Nuestra contribución finaliza con la proposición de varios modelos para proble-

mas de clasificación estructurada. Primeramente realizaremos transformaciones a

documentos XML para convertirlos en texto plano y poder aplicar el clasificador

puerta OR presentado. Por otra parte, mostraremos dos soluciones al problema

de clasificación basada en enlaces; uno para el caso multiclase (donde un do-

cumento se etiqueta con una de entre varias categoŕıas) y otro para el modelo

multietiqueta (donde el número de categoŕıas asociado a cada documento es li-

bre). Ambas propuestas se basan en redes bayesianas aprendidas directamente

de las relaciones entre las categoŕıas presentes en los datos de entrenamiento, y

hacen uso de un clasificador probabiĺıstico para el contenido (como, por ejemplo,

el Näıve Bayes). De este modo, nuestros modelos pueden ser vistos como una

extensión de un modelo probabiĺıstico clásico para el caso de clasificación basada

en enlaces.

Visión General de los Caṕıtulos

Esta memoria se divide en tres partes. La primera, Parte I, es una Introducción

a los resultados, compuesta por un prólogo (esta introducción), y dos caṕıtulos

conteniendo los fundamentos necesario para comprender el resto de contenidos.

Concretamente, el caṕıtulo 1 provee una breve introducción a la Clasificación

Documental Supervisada, presentando el problema principal, describiendo var-

ios modelos con detalle, y explicando cómo evaluar diferentes soluciones. Para

completar la parte de fundamentos, el caṕıtulo 2 introduce los conceptos básicos

de Teoŕıa de la Probabilidad usados aqúı, y algunos de redes bayesianas como
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separación gráfica, algoritmos de aprendizaje o de inferencia. En ese último caso,

presentamos en detalle un algoritmo de aprendizaje que será usado más tarde.

La Parte II contiene las contribuciones principales de esta memoria, presen-

tadas en la sección previa. Aśı, en el caṕıtulo 3 describimos el clasificador puerta

OR, junto con su procedimiento de poda. En el caṕıtulo 4 se trata el problema

de clasificación basada en tesauros explicado anteriormente. Finalmente, en el

caṕıtulo 5 se tratan tanto el problema de la clasificación estructurada, como el

de la clasificación basada en enlaces, junto con nuestras soluciones aportadas.

Finalmente, la Parte III contiene el último caṕıtulo de esta memoria, conte-

niendo las conclusiones y las ĺıneas futuras de trabajo, además de la revisión de

la lista de publicaciones que apoyan las contribuciones de esta tesis.
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Chapter 1

Text Document Categorization

1.1 Introduction

The task of Automated Text Categorization [119] (also known as Text Classifica-

tion) is the process of assigning predefined categories to text documents. This is

a very important field in Computer Science, with strong relationships with other

areas like Artificial Intelligence, Machine Learning and Information Retrieval. In

fact, the number of publications in this area has grown notably since the 1960s,

with a huge peak at the beginning of the 2000s, giving more than 500 references in

all years (see figure 1.1, extracted from [118], for more details about the number

of publications in this area per year).

In this dissertation we shall put our interest on algorithmic methods for Text

Categorization (that is to say, those that could be run out by a computer). This

is why, from beyond, we shall not be using the “Automated” qualifying (or any

of its derivatives), because it is assumed on this context.

Text Categorization algorithms are widely present on many current applica-

tions. For instance, email spam detection [114] (where each email can be labeled

with “spam” or “not spam”), assigning a set of predefined keywords (labels) to

a scientific paper, organizing news stories on a predefined set (national, interna-

tional, sports, . . . ), etc. In fact, in almost every environment with a huge number

of text documents, where one user can search by a set of predefined subjects, this

kind of methods are indeed necessary.
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Figure 1.1: Number of publications in Automated Text Categorization, per year.
Only publications until 2008 are listed.

This chapter proposes a general view of all the concepts, definitions, and

some of the more relevant works on Text Categorization, as a basic knowledge to

understand this dissertation, as well as to contextualize it. Therefore, we shall

organize the chapter as follows: in section 1.2 we shall review the main definitions

concerning this problem, along with some general conventions which will make

easier this task. In section 1.3, we shall review some approaches to the building

of text classifiers, mainly inspired by Machine Learning techniques.

The peculiarities and difficulties of this problem will be presented on section

1.4, where we shall explain why this is not the same problem as the classic Machine

Learning one.

Having different categorization models is not very useful if there are not stan-

dard procedures to compare those approaches. In this way, section 1.5 will study

the problem of the evaluation of this task (i.e. how well a classifier performs), and

section 1.6 will review some testing corpora which are made publicly available in

order to make a standard benchmark set, where researchers can test their own

algorithms.
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1.2 Main Concepts, Definitions and Notation in

Text Categorization

In this section we define the different entities that take part in the Text Cat-

egorization process. Some of them are concepts which are already known, and

therefore we shall explain what we understand by those terms. Besides, we shall

explain here the notation which is followed on this entire dissertation.

1.2.1 Documents, Corpora and Categories

A (text) document is a succession of words together with some punctuation

that form a text. Note that we identify a document with its textual content, and

not with the physical document. Moreover, we do not identify different parts in

the document and this is why we shall refer to this kind of document as “flat

document” (for the case of documents with a internal structure, we shall explain

what a Structured Document is in chapter 5).

A corpus is another name for “document collection”. We shall use both terms

indistinctly.

A document representation is a typification of a text document, in a format

which is easier to understand by computers. We shall present the usual document

representations on next subsection.

A category or a class is a word or a set of words, often associated to a

concept (i.e. it has a semantic meaning), which can be used to label documents,

according to their contents.

1.2.2 Document Preprocessing

The action of document preprocessing is a set of initial document transfor-

mations which are useful to manage a document in subsequent stages of Text

Categorization. This preprocessing, inherited by that proposed in the Informa-

tion Retrieval field [108], often includes the following procedures, applied in this

order:

1. Case folding: all the text in the document is set to lower case.
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2. Removal of punctuation marks: because they are not going to help in

the process of Text Categorization.

3. Removal of stopword: this process consists of the removal of words which

do not have any useful meaning by themselves (e. g. articles, prepositions,

pronouns). Those words are called stopwords, and there are standard lists

of them for every language. Concretely, in the English language, the 571

stopwords list included in the SMART Retrieval system [117] is the most

used one.

4. Stemming: a process for reducing inflected (or derived) words to their

stem, base or root form. This process is performed automatically by an

algorithm, being the Porter’s one [105] the most used approach. A term

which has been stemmed does not necessarily produces a meaningful word

as its output. For simplicity, we shall refer to the stemmed word as a term.

Document preprocessing can include, as its final step, the arrangement of all

the remaining terms in lexicographical order. Therefore, the position of each

term in the document is ignored, and the document is considered as a set of

preprocessed terms, with no particular order. This is called the bag of words

model, where a document is represented as an unordered collection of terms.

This model is similar to the “first-order word approximation” used by Shannon

in [123], and reduces a document to a list of unrelated terms usually losing, as

a consequence, the contextual meaning and the structure of some expressions

present on the text.

Note that preprocessing a document and converting it to the bag of words

model is not a one-to-one transformation (that is to say, it is impossible to recover

the original document from its bag of words form). This is not a problem, but

it implies that the form of a preprocessed document is very different than the

original one. This fact is also useful if one researcher want to distribute a corpus,

but he does not want to give access to the original documents. This is the case

of the Reuters RCV1 collection, composed of news articles of the Reuters news

agency, distributed by Lewis [78] after its preprocessing.



1. Text Document Categorization 21

1.2.3 Representing Documents with Vectors

The usual representation of a document after its preprocessing is the vector

representation. This representation is very simple, and consists of identifying

each term of the document collection with a dimension in a real vector space.

Thus, every document becomes a real vector, with a real number as a coordinate,

meaning the weight or the importance of the term in the vector.

There is not a unique formula to compute the value of a coordinate for a

certain vector, but it is generally agreed that a coordinate of a term is equal to

zero if this term does not belong to the document.

We reproduce here a generalization of the formula for the weight of the term

i in document j, shown in [7]:

wij = lij gi nj.

In the formula, lij is a local weight of the i-th term in the j-th document. gi is

a global weight, a value which is computed once for each term (i-th term in this

case). Finally, nj is a factor of normalization which depends only on the current

document (the j-th one).

The simplest representations of a document are these two:

• Binary representation: a document is a vector with values in {0, 1},
where the i-th coordinate is equal to 1 if the i-th term appears in d, and 0

otherwise.

• Frequential representation: a document is a vector with values in N ∪
{0}, where the i-th coordinate is equal to the frequency of the i-th term on

that document (and 0 if the term does not belong to the document).

In both examples, it is clear that gi = 1 and nj = 1, and the variable part is

the lij value.

Another typical representation, which is useful, for example, for Support Vec-

tor Machines or Logistic Regression classifiers [50], follows the so-called tf-idf

scheme. In it, the lij is set to a function of the frequency of a term in the doc-

ument (called the tf), and the gi (the idf) is a function of the inverse document
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frequency of a term. This tf-idf is a technique that has several definitions [116],

and has been used extensively in Information Retrieval with good results. The

traditional scheme of this representation is to use the frequency of the term in

the document as the tf, and setting the idf of the i-th term to:

idfi = log

(
M

n(ti)

)
,

where M stands for the number of documents in the collection, and n(ti) for the

number of documents which contain term ti. This scheme gives a higher weight

wij to rare terms in the collection, lowering it for common terms (note that the

idf grows for rare terms, which are terms that occur in few documents).

Finally, in some cases, a tf-idf vector is normalized. This is generally done

by dividing the vector by its Euclidean or l2-norm (that is to say, nj gets the

inverse of the norm value), obtaining a unit vector (the l2-normalization). Other

normalization schemes are also possible, as the l1-normalization.

1.2.4 The Supervised Text Categorization Problem

The problem of text categorization consists of, roughly speaking, deciding

which categories to assign to those documents whose labels are unknown. This

problem can be unsupervised or supervised, being this last one the aim of our

focus. In this subsection, we shall state the problem without using any formula

or special notation, just describing the task.

Building a classifier is a task which consists of finding an automatic method

(classifier) that, given a new unlabeled document, is capable to assign it only one

or several labels. In order to achieve this task, the classifier is provided with a

training set, which is composed of previously labeled documents. This training

set is the only information that can be used to build the classifier.

If only one label is preassigned to the documents in the training corpus, and

then, only one label can be assigned to any new documents to classify, we call this

problem a multiclass problem. A multiclass problem is called a binary problem for

the specific case that the size of the set of labels is equal to two. If we are in the

case that any number of labels can be assigned to a document, this will be called
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a multilabel problem. Analogously we could also say multilabel/multiclass/binary

corpus.

In order to test the effectiveness of a classifier inferred from training data, we

are also provided of a test set. Documents belonging to the test set should be

classified with the inferred model, in order to compare their original labels to those

obtained by the classifier with an evaluation measure. This is a procedure that

is useful to compare several approaches to build classifiers on different datasets.

Finally, we shall introduce two sub-modalities on this problem: hard cate-

gorization and soft categorization. Doing hard categorization means finding a

classifier which is capable of assigning one (or more, if needed) label to a docu-

ment. On the other hand, soft categorization is the problem of finding a method

that can give a numeric real value for each pair composed of one category and

one document. The soft categorization is a more general approach to build clas-

sifiers. In fact, as we shall see on next section, it is very easy to build a hard

categorization method from a soft categorization one.

1.2.5 Notation

We shall note as D = {d1, . . . , dm} a document collection. Thus, di will be a single

document. Observe that, for our purposes, a document and its representation will

be the same entity. This is because we shall be always using the same kind of

representation for each model, unless specified the opposite. Therefore, D will

be either a set of text documents or more often, a set of vectors representing

documents.

The set of categories will be noted C = {c1, . . . , cp}, where cj will be a certain

category. The set of terms, on the other hand, will be T = {t1, . . . , tq}. With

abuse of notation, we shall often write di ∈ ck to express that a certain document

di is labeled with category ck. We shall also use the notation ti ∈ dj to express

the fact that the term ti occurs on the document dj.

A labeled corpus will be a set D such that, ∀di ∈ D, ∃cj ∈ C : di ∈ cj.

This is the general case (multilabel corpus), where more than one category can

be assigned to a document. If D verifies that ∀di ∈ D,∃!cj ∈ C : di ∈ cj, the

corpus is a multiclass one (only one label is assigned to every document). A
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multiclass corpus where |C| = 2 is called a binary labeled corpus. When we refer

to a “training corpus” it is assumed that we are dealing with a labeled corpus. A

“test corpus” will be a corpus whose labels are unknown during the categorization

process, but they are available for evaluation purposes.

We can now redefine some of the previously proposed problems, using the

presented notation. The problem of supervised classification: given a training

(labeled) set DTr, a set of categories C, and a test set DTe, consists of building

the mapping

f : D −→ C,

for the binary and the multiclass case, and

f : D −→ 2C \ ∅,

for the multilabel one, where D is the set of all possible documents. The function

f should be built using only information available on DTr and its labeling, and

its quality can be measured comparing the labeling assigned to the documents in

DTe, with the real labels, using a evaluation measure (like one of the proposed

on section 1.5).

Due to its complexity, the problem of multilabel categorization is often ex-

pressed as finding n different binary fi, i = 1, . . . , n capable of assigning or not

each document to the i-th category (understanding that if a document is assigned

a negative label ci, it means that it is not labeled with that category):

fi : D −→ {ci, ci},

Thus, the multilabel problem for n categories takes the form of n binary

classification problems.

The previous approaches are examples of the statement of the problem as

a hard categorization one. That is to say, a classifier is defined as capable of

assigning (or not) a label to every document, but all the assignments result similar

(there is not a measure of the strength of that assignment).
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We can redefine the problem of supervised document categorization, in term

of soft categorization. A classifier will be then a function g, defined as follows:

g : D× C −→ R

In this case, g(dj, ci) is a real value, called the CSV (Categorization Status

Value), which measures the strength1 of the assignment.

Obviously, the treatment of the multilabel problem is similar here, being de-

composed on different and independent binary problems. Note that g represents

the n classifiers, and this is why we do not need to write gi.

A way to obtain a hard categorization classifier f from a soft one g is to

estimate from training data a real value τ , called a threshold, and defining the

new f classifier as follows (we show a binary case for brevity):

f(d) =

{
c if g(d, c) ≥ τ
c if g(d, c) < τ

There are several ways that the parameter τ can be set to a certain value. In

all of them, training data is often used in several partitions to find the threshold

that maximize an evaluation measure.

1.3 Approaches to Building Text Classifiers

1.3.1 Some Important Classifiers

We present here three classic approaches to Text Categorization. The Multino-

mial Näıve Bayes –characterized for being fast and simple– the Support Vector

Machine classifier (in its linear version) –which is the state-of-the-art in Text

Categorization–, and the Rocchio method, which is highly intuitive and it is used

quite a lot. In certain occasions, some of these models will be used on the follow-

ing chapters as a baseline (a comparison).

1This “strength” is an intrinsic characteristic of the classifier, and the only requirement is
that it is greater if the classifier “trusts” more in this assignment.
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1.3.1.1 The Multinomial Näıve Bayes

We should firstly clarify that, in the context of text classification, there exist two

well-known different models called Näıve Bayes, the multivariate Bernoulli Näıve

Bayes model [67; 72; 109] and the multinomial Näıve Bayes model [75; 85]. In

this section we shall only consider the multinomial model. Both of them rely on

the Näıve Bayes assumption, which means that the terms are independent, in

terms of probability, given the class.

The Näıve Bayes belongs to the probabilistic classifiers framework. In it,

the CSV computed for the document dj and the category ci is the probability

p(ci|dj). For the case of the Näıve Bayes, the probabilities p(dj|ci) are computed,

and using Bayes’ Theorem (see chapter 2, section 2.1.1.2), the final p(ci|dj) are

given by p(ci|dj) = p(ci)p(dj|ci)/p(dj). All the probability notation used here is

defined on chapter 2.

In this model a document is an ordered sequence of terms drawn from the same

vocabulary, and the Näıve Bayes assumption here means that the occurrences of

the terms in a document are conditionally independent given the class, and the

positions of these terms in the document are also independent given the class1.

Thus, each document dj is drawn from a multinomial distribution of words with

as many independent trials as the length of dj. Then,

p(dj|ci) = p(|dj|)
|dj|!∏

tk∈dj
njk!

∏
tk∈dj

p(tk|ci)njk , (1.1)

where tk are the distinct words in dj, njk is the number of times the word tk

appears in the document dj and |dj| =
∑

tk∈dj
njk is the number of words in

dj. As p(|dj|) |dj |!Q
tk∈dj

njk!
does not depend on the class, we can omit it from the

computations, so that we only need to calculate

p(dj|ci) ∝
∏
tk∈dj

p(tk|ci)njk . (1.2)

The estimation of the term probabilities given the class, p̂(tk|ci), is usually carried

1The length of the documents is also assumed to be independent on the class.
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out by means of the Laplace estimation:

p̂(tk|ci) =
Nik + 1

Ni• +M
, (1.3)

where Nik is the number of times the term tk appears in documents of class ci,

Ni• is the total number of words in documents of class ci, i.e. Ni• =
∑

tk
Nik, and

M is the size of the vocabulary (the number of distinct words in the documents

of the training set).

The estimation of the prior probabilities of the classes, p̂(ci), is usually done

by maximum likelihood, i.e.:

p̂(ci) =
Ni,doc

Ndoc

, (1.4)

where Ndoc is the number of documents in the training set and Ni,doc is the number

of documents in the training set which are assigned to class ci.

The multinomial Näıve Bayes model can also be used in another way: instead

of considering only one class variable C having n values, we can decompose the

problem using n binary class variables Ci taking its values in the sets {ci, ci}.
This is how we get from multilabel to binary problems as explained in section

1.2.4.

In this case n Näıve Bayes classifiers are built, each one giving a posterior

probability pi(ci|dj) for each document. In the case that each document may

be assigned to only one class (single-label problems), the class c∗(dj) such that

c∗(dj) = arg maxci{pi(ci|dj)} is selected. Notice that in this case, as the term

pi(dj) in the expression pi(ci|dj) = pi(dj|ci)pi(ci)/pi(dj) is not necessarily the

same for all the class values, we need to compute it explicitly through

pi(dj) = pi(dj|ci)pi(ci) + pi(dj|ci)(1− pi(ci)) .

This means that we have also to compute pi(dj|ci). This value is estimated using

the corresponding counterparts of eqs. (1.2) and (1.3), where

p̂(tk|ci) =
N•k −Nik + 1

N −Ni• +M
. (1.5)
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N is the total number of words in the training documents and N•k is the

numbers of times that the term tk appears in the training documents, i.e.

N•k =
∑
ci

Nik .

There is a computational issue related to this model of a certain importance,

that should be clarified. In eq. (1.2) the term
∏

tk∈dj
p(tk|ci)njk needs to be

computed logarithmically, in order to avoid numeric problems. In fact, if we are

dealing with a multiclass problem, we do not need to return to non-logarithmic

space, and we can just return the category with greater log p(dj|ci) value.

1.3.1.2 The Rocchio Method

The Rocchio method [110] is a categorization model, coming from the Information

Retrieval field, adapted from the framework of relevance feedback. It is a very

simple model and therefore, it is very used for comparison purposes.

It relies heavily on a free interpretation of the cluster hypothesis (proposed

by van Rijsbergen [108]):

Hypothesis 1 (Cluster hypothesis). Closely associated documents tend to be

relevant to the same requests.

The Rocchio model (see, for instance [59]) adapted to Text Categorization

assumes that closely associated documents tends to belong to the same category.

This is applied to the Rocchio model building the centroid of the documents of

each category and testing, for each unlabeled document, which group is near. In

order to be more realistic, the final centroid is built from two previously built

centroids: the positive centroid (the average of the documents of the category),

and the negative (average of the documents not belonging to that category). We

choose a point in the space with the balance of being close to the positive centroid

but far from the negative one.

Numerically, we can express the learning process as the computation of n
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centroids hi:

hi =
β

|{dj ∈ ci}|
∑
dj∈ci

dj
‖dj‖

− γ

|{dk /∈ ci}|
∑
dk /∈ci

dk
‖dk‖

(1.6)

Where ‖dj‖ means the Euclidean norm of vector dj, and |{dj ∈ ci}| is the

number of documents which belong to category ci. β and γ are positive real

parameters whose values are dependent on the collection (even β = γ can be a

good election). For these computations, dj document vectors are built normally

following the tf-idf scheme, explained before.

In the final step of the computation of centroids, the components of hi which

are negative are set to zero. After this, a soft categorization classifier g can be

defined as the dot product between document and centroid vector, both normal-

ized:

g(dj, ci) =
dj · hi
‖dj‖‖hi‖

=

∑
k djk hik√∑

k d
2
jk

√∑
k h

2
ik

Where djk and hik represents the k-th coordinate of the vectors dj and hi, respec-

tively.

Clearly this is equivalent as measuring the cosine of the angle between d and

hi, which is very used as a dissimilarity measure (a substitute for “distance”) in

Information Retrieval. Moreover, knowing that d and hi are vectors with all the

coordinates positive, it holds that g(d, ci) ≥ 0,∀d ∈ D,∀ci ∈ C. So, the CSV of

any vector and category lies on the interval [0, 1].

Although eq. (1.6) is the original formula to build the centroid vector, we

should note some remarks. First of all, hi vector is always normalized to compute

the value g(d, ci), and then, only one parameter should be needed:

hi =
β

|{dj ∈ ci}|
∑
dj∈ci

dj
‖dj‖

− γ

|{dk /∈ ci}|
∑
dk /∈ci

dk
‖dk‖

= β

 1

|{dj ∈ ci}|
∑
dj∈ci

dj
‖dj‖

− γ

β

1

|{dk /∈ ci}|
∑
dk /∈ci

dk
‖dk‖


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Thus, the only required parameter is the proportion γ/β, because the role

of β is just to be a scaling factor for the vector (and this transformation is lost

when doing normalization). There are some works with nice results which find

optimum values for these parameters, trying to optimize an evaluation measure

[68; 95].

The second remark is that the value of γ (and hence, the γ/β one) can be set

to 0. This results in a classifier which only measures the distance to the positive

centroid of the category (and no extra parameters are needed). This classifier

has been named sometimes in the literature as the Find Similar method (see, for

instance [46]). This Find Similar classifier is very close to the Centroid classifier

method, but it is not exactly the same. In Centroid classifier, the centroid vector is

often obtained by adding all the unnormalized vectors of the category, and then

normalizing the centroid by its Euclidean norm. In Rocchio and Find Similar

methods, the centroid is built adding normalized vectors, and dividing by the

number of added vectors. In both cases, the resulting centroid is a normalized

vector and the classification procedure is the same (a dot product between unit

vectors), but the way the centroid vectors are built is different.

1.3.1.3 Linear Support Vector Machines

Support Vector Machines are relatively new classifiers. Introduced in 1992 by

Boser, Guyon and Vapnik [8], they are based on some Statistical Learning Theory

principles (see [128] for more details on this area). These methods have been very

popular in many fields (bioinformatics, text, handwriting recognition, etc).

Linear Support Vector Machines are linear classifiers, which is a set of more

general methods. A linear classifier makes a decision based on the lineal combi-

nation of feature values, that is to say, takes this form:

f(d) = g(d · w)

Where w is a vector of “weights”, and d is the feature vector, both w, d ∈ Rn.

In this notation, v1 · v2 means the dot product of vectors v1 and v2.

For the specific case of linear SVMs, f is:



1. Text Document Categorization 31

f(d) = sign(d · w − b)

Where sign(x) function equals to one iff x > 0, equal to minus one iff x < 0

and is zero for x = 0. b ∈ R is a weight called the bias.

Ignoring the case d · w = b, it is obvious that f is a map to {−1, 1}. In

Support Vector Machine notation, a binary problem is identified with the set of

labels C = {−1, 1} (where −1 plays the role of c, and 1 is c).

The geometric interpretation of this classification rule is very simple. w can

be seen as the normal vector of a (n-dimensional) hyperplane. This hyperplane

divides the space into two subsets. Those points which lie on the part of the

space where the normal is pointing to, will be classified with a positive label (1),

and on the contrary they will be mapped to −1. A 2-dimensional example of how

a hyperplane separates data can be seen graphically in figure 1.2:

Figure 1.2: How a hyperplane can separate two different sets of data.

Until this point we know how to categorize data with a learnt SVM, but we

left the three following issues unanswered:

1. How is this hyperplane learnt?
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2. If the data is separable, which hyperplane should we choose?

3. What if the data is not separable?

We shall try to solve the first question giving a method to learn SVM, based

on the answer to the second one (i.e. which hyperplane is better). The case of

non-separable data will be reviewed afterwards, because it is a extension of the

separable one.

So, let us assume that our data is separable. Assuming certain training data,

a “good” hyperplane should be capable to assign the training data its own label

when being used to classify it. From a geometrical point of view, a good hyper-

plane should perfectly separate the elements from the two categories, {−1, 1}.
In certain occasions, there are several hyperplanes which are perfect solution to

this problem, as seen, for example in figure 1.3 (where w1, w2 and w3 are good

candidates).

w1

w2

w3

Figure 1.3: Several hyperplanes that perfectly separate the same set of examples.
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A classic algorithm to obtain a separating hyperplane (assumed that the data

is separable) is Rosenblatt’s primal perceptron algorithm [111], which is guar-

anteed to converge. By using this method, we obtain one particular (random)

hyperplane, among the valid solutions to this problem, with no particular setting.

The SVM learning algorithm pursues the maximization of the margin, that is

to say, the decision boundary should be as far away from the data as possible. In

figure 1.3, both w1 and w3 hyperplanes are too close to one data point. However,

w2 seems to be at a reasonable distance, and it is an optimum solution using this

criterion. This is what we intuitively call the margin. Let us define it analytically.

Let be w the optimum hyperplane. Assume l training points. All of them

should then verify yi(wxi + b) > 0. We define γi = 1
‖w‖(wxi + b), as the dis-

tance of the i-th point, xi to the hyperplane solution. Given a certain hyperplane

wx+b = 0, we define the margin γ as γ = mini γi. We formulate the optimization

problem:

Find w, b, which maximize γ such that yi
1
‖w‖(wxi + b) ≥ γ, ∀i = 1, . . . , l

Note that w, b of hyperplane wx+b = 0, solution to the optimization problem,

can be scaled by a real positive constant. We then choose ‖w‖ = 1
γ
. Given the

previous chosen value of ‖w‖, and knowing that min ‖x‖ ⇔ min 1
2
‖x‖2, for all

vector x, we reformulate the problem as a minimization one:

Find w, b, which minimize 1
2
‖w‖2 such that yi(wxi + b) ≥ 1,∀i = 1, . . . , l.

The problem can be written on an unconstrained form, using the set α =

{αi, i = 1, . . . , l, αi > 0} which is called the set of Lagrange multipliers. The

resulting problem is then:

min
w,b

{
1

2
‖w‖2 + penalty

}
= min

w,b

{
1

2
‖w‖2 +

l∑
i=1

max
αi≥0

αi(1− yi(wxi + b))

}
.

Taking out the maximum, and swapping max and min
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max
αi≥0

min
w,b

{
1

2
‖w‖2 +

l∑
i=1

αi(1− yi(wxi + b))

}
.

We define, for a certain hyperplane, and given a fixed set of multipliers,

J(w, b;α) = 1
2
‖w‖2 +

∑l
i=1 αi(1−yi(wxi+ b)), then, we obtain the partial deriva-

tives equal to zero in order to perform optimization:

∂J(w, b;α)

∂w
= w −

l∑
i=1

αiyixi = 0

∂J(w, b;α)

∂b
= −

l∑
i=1

αiyi = 0

We perform substitution inside the “min” expression obtaining what is called

the dual problem:

max
αi≥0Pl

i=1 αiyi=0

{
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj(xi · xj)

}
. (1.7)

This problem can be solved by traditional optimization procedures, and when

the optimal elements α are found, then w and b are computed, finding the desired

hyperplane solution.

The non-separable case, solved by Cortes and Vapnik [31], only introduces

some positive slack variables ξi, such that:

wxi + b ≥ 1− ξi if yi = 1
wxi + b ≤ −1 + ξi if yi = −1
ξi ≥ 0,∀i = 1, . . . , l

This is known as the soft-margin extension. In this extension, instead of just

minimizing 1
2
‖w‖2, we find the minimum of 1

2
‖w‖2 + C(

∑l
i=1 ξi)

k, where C is a

constant, chosen by the user, which represent the cost or penalty of errors, and

k is a positive number. With this problem setting, and k = 1 or 2, the resulting

optimization problem is also a quadratic problem. k = 1 also has the advantage

that neither the slack variables, ξi, nor their Lagrange multipliers appear on
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the dual problem (see [12] for more details), resulting on a similar optimization

problem, similar to that presented on eq. (1.7):

max
0≤αi≤CPl
i=1 αiyi=0

{
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj(xi · xj)

}
. (1.8)

Problem in eq. (1.8) is almost the same problem as the one shown in eq.

(1.7), but giving an upper bound to each αi. Thus, it can be solved using the

same optimization algorithms, and the solution is also given using optimum αi

to find w and b.

For a more detailed discussion on how this classifier is motivated, and what

optimization algorithm can be used to find the optimum αi values, we refer the

reader to [12; 128].

1.3.2 Other Relevant Approaches to Build Classifiers

There are other notable approaches to build text classifiers, which have been used

on the literature. We list here some of the most cited references, although we

shall not be using any of these methods on the following chapters.

• Manually built rule systems: these methods rely on a set of logic rules, in

disjunctive normal form, with the following pattern:

IF

(∨
i

(∧
j

tij ∈ d

))
THEN classify d as c

where tij ∈ T. The set of rules was manually specified by human experts1.

Obviously, a different set of rules needs to be specified for each corpus. This

is the case of the CONSTRUE system [52] (built for the Reuters collection),

• Automatically inducted rule systems: these classifiers take the same form

than the previous, but some automatic data mining methods are used to

1Observe that we used the term automated in our definition of Text Classification (in sec-
tion 1.1), with the meaning that a classifier was an algorithm capable of labeling documents.
However, nothing keep us from manually building that algorithm, as in this case.
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build the set of rules. Some examples of this approach are the WASP-1 [5],

CHARADE [97] and RIPPER [24] systems.

• Models based on decision trees. Those methods use some well-known deci-

sion tree learning algorithms (ID3, C4.5, C5, etc), to infer a classifier from

training data. In order to make this task easier, a term selection procedure

is often applied, to reduce the dimensionality of the dataset.

Some experiments with classical decision trees algorithms as comparison

methods are found on [60; 77; 134]. There are few papers on decision trees

to categorize text where the procedure is innovative (for example in [130],

a decision tree is combined with a boosting algorithm) being in almost

all publications a comparative procedure used to be tested against a new

classifier.

• Other probabilistic models: apart from the multinomial Näıve Bayes, pre-

sented in section 1.3.1.1, there are other probabilistic classifiers.

Among the alternative Näıve Bayes approaches, the work by Lewis [76] is

a good compilation of several uses of this model in Information Retrieval

and Text Categorization. Other important approaches that use the Näıve

Bayes are [106] and [64].

Beyond this well known model, we have the limited dependence classifier by

Sahami [113] which has been presented in some occasions [46] as a “Bayesian

Network classifier”. This is a very powerful model which often improves

Näıve Bayes results.

Among the general Bayesian network classifier, the work by Klopotek [66]

is clearly innovative, and is an isolated reference on this sub-area.

• General Support Vector Machines based models: on this area are remarkable

the first works by Joachims [60], where several polynomial and radial basis

function based models were tested on Reuters and Ohsumed. A deeper

reference on the usage of SVMs in the problem of Text Categorization is

perhaps its book [61].
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In all the relevant publications on this sub-area it is very difficult to find

a work where the difference in using a linear SVM (explained in section

1.3.1.3) and a polynomial (with degree greater than 1) or another kernel,

makes a huge improvement on the results, which is computationally worth-

while.

• Memory based classifiers, being the more representative the k-NN. It is a

classic approach on Machine Learning, and has been used as a comparison

in lot of works (see, for instance [60; 130; 135]).

To label an unknown document d, the k-NN algorithm matches the vector

of the document to classify with all the documents in a training set. Then,

it computes the k-nearest neighbors (this is why the method is called k-NN)

to predict the label of the document to be classified. In this algorithm, k

is a free parameter, and its optimum value can be set by doing previous

experimentation on the training set (see, for instance, [78]).

In order to compute the distance (dissimilarity), the usual approach used

is the cosine-similarity [108] between documents. The k-NN method has

linear “learning” time, but its classification time increases linearly with the

number of training samples.

• Other methods, based on neural networks (see, for instance [112; 132]), or

regression methods (like the LLSF classifier [133]).

1.4 Difficulties of the Problem

Text Document Categorization implies several difficulties [61] that can be summed

up in the following five:

1. The high dimensionality of the characteristic space (variables) presented in

documents (one variable for each term). If each term is identified with one

variable, it is not very difficult to find problem instances with thousand

of characteristics, which contrasts with “classic” Machine Learning prob-

lems (where the number of variables is low, often under 100). This high
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dimensionality can lead to two kinds of problems: estimation (when more

parameters have to be estimated, less confidence on the model) and com-

putational (several classic models used on Machine Learning are not easily

applicable here due to its poor performance on so large problem instances).

2. Sparse vectors. Although the representation of a document as a vector is

very similar to the classic pattern representation in traditional classifiers,

this vector will be very sparse. This is because a document only contains

a small subset of words from the whole lexicon (the set of all words of the

collection of documents).

3. Heterogeneity. Due to phenomena like polysemy (several different meanings

for a term) and synonymy (several different terms with the same meaning),

two documents of the same category could have no common terms, and two

documents of different categories could be composed of a very similar set

of terms.

4. Ambiguity on the labeling process. This is a difficulty inherent to this kind of

systems. If we build a news classifier and we receive some (unlabeled) news

article about David Beckham, it could be labeled as “sports” or “celebrity

news” (even in the circumstances that it is not allowed, we should be able

to categorize documents in more than one class). On the other hand, one

article about the results of the last Euroleague Basketball could be first

classified into “sports”, or more specifically, into “basketball” (this is a case

where the categories show a certain hierarchy).

5. The evaluation procedures for classifiers, assumed a multilabel or hierarchi-

cal problem, should not be only those used on traditional classification (F1,

breakeven point, . . . ), but also include other standard measures which take

into account hierarchy or relationships among categories.

1.5 Evaluation of Classifiers

In this section we review the most common approaches to the evaluation of Text

Classification. Most of these measures have been used in experimentation sections
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assigned c assigned c
d ∈ c TP FN
d ∈ c FP TN

Table 1.1: Contingency table for binary classification

on this work, and therefore we explain them carefully. We distinguish between

two different evaluation methodologies: category and document centric.

Category centric seem to be the most common measures. In them, a category

is assigned a list of documents, and this is what we evaluate (each document is

a correct or wrong assignment). Document centric measures are less common,

but also used. They look at the category assignments for each document, and

measures are computed based on it.

1.5.1 Category-centric Measures

Let us assume first that we have a binary classification problem. On classifying

a single document, we find four different scenarios (we assign the document to

the category or not, and the document really belongs or not to it). This results

in two good assignments and two different kinds of errors.

Let us review these scenarios: from the category point of view, we can make

assignments of documents which really belong to the category (producing true

positives or TP), or assigning documents which are not in the category (giving

false positives or FP). Conversely, we can say that a document does not belong to

the category, finding afterwards that this fact is real (resulting in a true negative

or TN), and finally, not assigning the category to documents which really belong

to it (being this a false negative or FN).

For clarity, we show the contingency table 1.1, where we have counted all

those quantities in this binary classification problem (C = {c, c}).
One initial method to compute how good is a classifier would be using the

accuracy. It is a measure that computes the proportion of “good assignments”.

For the case of a binary classifier (showed in previous contingency table 1.1),

accuracy (ACC) can be defined as follows:
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ACC =
TP + TN

TP + FP + TN + FN

However, accuracy is not very good to measure the performance of a text

classifier. The reason for this, pointed by Yang [135], is that the large value of

the denominator on these problems makes the measure more insensitive to the

variation of (TP+TN) than other approaches. Instead, a good way to summarize

these four quantities is to compute the following evaluation measures:

precision =
TP

TP + FP

recall =
TP

TP + FN

The precision can be seen as a measure of purity of the results, that is to

say, how many good results are there among all the assignments. The recall, on

the other hand, represents the degree of completeness of the true labelings. Note

that we can easily get recall = 1 if we assign all the documents to the category

(precision would be low due to the false positives). Conversely, with a few (and

true) assignments we could get a high precision (even 1), but with a low recall

(due to the abundance of false negatives). From now on, we shall use “prec” for

precision and “rec” for recall.

An ideal classifier should obtain both a precision and a recall equal to 1.

We shall use a measure that combines these measures in one, giving us an idea

of how good is the classification. This measure is the Rijsbergen’s Fα-measure,

concretely the F1 (α = 1) which is the harmonic mean between precision and

recall. We present several equivalent forms of this measure:

F1 =
2 prec rec

prec + rec
=

2TP

2TP + FN + FP

The F1 measure is the perfect candidate if we are doing hard categorization,

because we can compute the precision and recall measures easily with this kind

of decisions (the document belongs or not to the category). But, what measure

should we choose if we are in a problem of soft categorization? For the binary

base, we have, for each document dj a CSV value g(dj, c). If we sort that list in
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decreasing CSV and we traverse it from the beginning, measuring precision and

recall at each point, it is a fact that recall will always grow or maintain its value.

On the other hand, after the first true positive found, the precision will decrease

or keep its value1. We define the precision-recall breakeven point as the point in

which precision equals to recall. If no such point exists, the average between the

two closest values of precision and recall is computed instead.

If we have several categories (i.e. C = {c1, . . . , cp}, p > 2), there are two

ways to combine measures among categories: micro and macroaveraging. Essen-

tially, microavegaging consists of computing the measures considering a global

contingency table (adding all individual contingency tables for every category),

and macroaveraging is the average of each measure, first computed by class. A

microaveraged measure is determined by the values obtained in very common

categories (because of their higher contribution to the global contingency table),

and a macroaveraged one takes more into consideration rare categories (because

all of them are treated equal).

Thus, we could have the micro/macro averaged versions of the precision/recall

breakeven point and the F1, for soft and hard categorization (respectively) of mul-

ticlass (or multilabel) classifiers. Let TPi, TNi, FPi be the true positives, true

negatives and the false positives of category ci respectively. Then, the microav-

eraged F1 (µF1) and the macroaveraged F1 (MF1) can be computed as follows:

µF1 =
2
∑

i TPi∑
i(2TPi + FNi + FPi)

, MF1 =
1

|C|
∑
i

2TPi
2TPi + FNi + FPi

The precision recall breakeven point measure can also be micro or macroav-

eraged. In both cases, we traverse the sorted list of all g(dj, ci) values, joined for

all ci categories. For the microaveraged case, every new true positive, negative

or false positive found is added to recompute a “global” precision and recall (and

we then, stop this process when precision equals to recall). In the macroaveraged

case, the average of individual precision/recall breakeven point values for each

category is computed.

1Precision and recall decrease and grow monotonically, respectively.
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1.5.2 Document-centric Measures

With these measures, we can also measure, from the document point of view,

how categories are assigned to each document. This is a method inspired in

Information Retrieval systems and in their measures [108], where a document is

considered a query, the assigned categories are the retrieved documents, and the

true categories are the relevance judgments.

For this case, we can also define precision and recall. Precision would be the

number of true retrieved categories divided by the number of retrieved categories,

and recall would be the number of true retrieved categories divided by the total

number of true categories. We can also compute a F1 measure with those new

definitions of precision and recall.

If we are dealing with a huge number of categories, and we are trying to help

a human indexer, instead of using the whole list of retrieved categories, we can

compute precision and recall at a certain number of retrieved categories. So, we

could have, for instance, prec@5, rec@10, F1@5,. . . And for all, we can have micro

and macroaveraged versions (following previous definitions).

A way to summarize precision and recall, computed from the point of view

of the documents, is the medium average precision on the 11 standard points of

recall (MAP). It has been used by Yang [135] for Text Categorization problems,

and is a very well known measure in the Information Retrieval community (almost

every evaluation package includes it). The procedure to compute this measure

is the following: a threshold is repeatedly tuned so as to allow recall to take up

values of {0.0, 0.1, . . . , 0.9, 1}, and precision is computed for these 11 values of

threshold, and afterwards averaged over those resulting values.

1.6 A Review of Several Testing Corpora

In this section we make a small review of typical corpora used in the supervised

Text Categorization problem. These corpora have been prepared for flat Text

Categorization. In more advanced problems of categorization we shall be using

several specific corpus which will be described in that chapter.
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1.6.1 Reuters-21578

This is a collection of documents, compiled by David D. Lewis (see, for instance

[77]), that appeared on the Reuters agency newswire in 1987. The documents

were assembled and indexed with categories. The documents were marked with

SGML, which is often removed for experimentation.

The corpus is named after the number of documents it contains (a total of

21578), and has several standard splits. The most used one, the ModApte, divides

the set of documents into a training and a test set. Categories only assigned to

documents in the test set are removed, and the resulting number of categories

obtained is 90.

This is the de facto collection to make text categorization. It has a decent

number of categories, it is a multilabeled corpus, it has been exhaustively tested,

and it is an unbalanced problem (there are categories with many documents and

other with few).

There are several authors which take a subset of the Reuters collection, of

documents labeled with the 10 most popular categories. However, it has been

proved [34] that this election is unfair, and results on a very easy corpus, where

even bad algorithms could obtain very good results.

1.6.2 Ohsumed

The Ohsumed collection [55] is a set of 348566 references from MEDLINE, the on-

line medical information database collected by William Hersh. For every record,

coming from one of 270 medical journals over a five-year period (1987-1991), we

are given some data and the assigned MeSH term, which is the assigned category

(see chapter 4).

Because the number of categories of the MeSH thesaurus is huge, it is of-

ten chosen a subset of 23 categories (heart diseases), which are the root of some

categories in a hierarchy. Documents which do not belong to that subtree of cat-

egories, are discarded. This is the methodology followed in [60]. It is a multilabel

corpus.
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The available fields are title, abstract, MeSH indexing terms, author, source,

and publication type. The traditional split used for experiments consist in taking

years 1987-88 for training, and 1990-91 for testing purposes.

It should be noted that the National Library of Medicine has agreed to make

the MEDLINE references in the test database available for scientific experimen-

tation.

1.6.3 20 Newsgroups

20 Newsgroups, collected by Ken Lang [71], is a collection of about 20000 UseNet

news postings into 20 different newsgroups (which act as categories). It is almost

a multiclass corpus, but about 10 percent of the articles are crossposted (they

belong to two different categories). One of the common evaluation procedures

for this corpus is to give the percentage of correctly assigned documents, having

into consideration the fact that a crossposted article counts positive in any of its

categories (but not in both).

There is no standard split to work with it, and then, a random split or a cross

validation scheme is needed to perform experiments.

1.6.4 RCV1 corpus

RCV1 corpus is a relatively more recent corpus also proposed by Lewis [78],

based on Reuters news stories. It contains about 35 times as many documents

(806791 for the final version, RCV1-v2) as the Reuters-21578. The documents are

preprocessed, with stopwords removed, and terms already stemmed. The terms

are also unsorted (in order to avoid document reconstruction and legal issues).

The number of categories (“topic codes”) is 103 (after the split). The corpus

includes other two disjoint set of categories called “industry codes” (870) and

“region codes” (366). The second two are less used than the first one as labels in

categorization experiments.

A standard split is also provided, to avoid the lack of a partition which hap-

pened in the old Reuters corpus. The called LYRL2004 split gives a training set



1. Text Document Categorization 45

with over 23000 documents, and a test set with 781000. Note that the dimen-

sions are more updated to the actual problems, rather than the numbers of the

old corpus.
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Chapter 2

Probability Theory and Bayesian

Networks

2.1 Probability Theory

2.1.1 Basic concepts

We review here some basic concepts of probability theory for the discrete case.

Most of the definitions here have been taken or adapted from [99]. For a more

extensive treatment on this subject, including the continuous case we refer the

reader to [107].

2.1.1.1 Probability Function and Probability Spaces

A sample space is a countable1 set Ω = {x1, x2, . . . }, which represents the set of

all possible outcomes of an experiment.

A function P : 2Ω −→ R, (where 2Ω is the set consisting of all the subsets,

called the events, of Ω) is called a probability function if satisfies the following

assumptions (Kolmogorov’s probability axioms):

1. 0 ≤ P (A) ≤ 1,∀A ⊆ Ω.

2. P (Ω) = 1.

1We shall refer to a set as countable if it has the same cardinality (number of elements) as
some subset of the set of natural numbers, N.
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3. If E1, E2, . . . is a countable sequence of mutually disjoint events (i.e. Ei ∩
Ej = ∅, ∀i 6= j), then it holds:

P (∪iEi) =
∑
i

P (Ei).

If P is a probability function, then the pair (Ω, P ) is called a probability space.

2.1.1.2 Conditional Probability and Bayes Theorem

Let be A,B ⊆ Ω, such that P (B) 6= 0. Then, the conditional probability of A

given B, noted P (A|B) is given by:

P (A|B) =
P (A ∩B)

P (B)
.

We say that two events A,B, where P (A) 6= 0, and P (B) 6= 0 are independent

if P (A|B) = P (A).

Two events A,B, where P (A) 6= 0, and P (B) 6= 0 are conditionally indepen-

dent given C if P (A|B ∩ C) = P (A|C).

If E1, . . . , En is a set of mutually disjoint events such that ∪iEi = Ω (i.e. they

are a partition of the sample space), and P (Ei) > 0,∀i = 1, . . . , n, then, for any

event A:

P (A) =
n∑
i=1

P (A ∪ Ei) =
n∑
i=1

P (A|Ei)P (Ei). (2.1)

This property is called the total probability law, and can be proven with basic

set theory.

Theorem 2.1.1. (Bayes) Given two events A,B ∈ Ω, such that P (A) 6= 0 and

P (B) 6= 0, we have

P (A|B) =
P (A)P (B|A)

P (B)
.

2.1.1.3 Random Variables

A (discrete) random variable is a function that maps events to values of a counta-

ble set (for example, the integers), with each value in the range having probability
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greater than or equal to zero. We shall represent a random variable with a capital

letter, and the value where events are mapped, as lowercase letters.

A random variable induces a (new) probability function over its values. We

shall use the notation X = x to represent the set of events of Ω mapped, by X,

to x. If we define PX({x}) := P (X = x), then PX is a probability function. For

the sake of convenience, we shall not use the PX notation, and we shall simply

write P (X = x), which will be called the probability distribution of X (or just

the distribution of X). If we know that X is a random variable we could directly

name the distribution of X as P (X) with no ambiguity.

Sometimes, given a certain random variable X and x one of its values, we

shall write, for brevity, p(x) instead of P (X = x). This quantity will be referred

as the probability of x.

For a certain random variable A, we shall call the set of values A can have,

the “range of A” (and sometimes will be noted as ΩA).

Given two random variables, X, Y , defined on the same sample space, and

two values x of X and y of Y , we can compute the probability of the intersection

event (the elements both mapped to x via X and to y via Y ). We shall note

the probability of this intersection event as P (X = x, Y = y). This will be

called the joint probability distribution of X and Y . We can also define a joint

probability distribution of an arbitrary set of random variables {X1, X2, . . . , Xn}
as P (X1 = x1, X2 = x2, . . . , Xn = xn).

Now, we shall introduce the operation that is called the marginalization.

Given a joint probability distribution P (X = x, Y = y), we can obtain the

distribution P (X = x) (called the marginal probability distribution1 of X) by

summing on all y values in the range of Y , i.e.:

P (X = x) =
∑
y

P (X = x, Y = y).

This is another expression for the law of total probability, presented on eq.

(2.1).

1The term “marginal” is used when a distribution is obtained by marginalization of another
joint distribution, but in fact it is also a “conventional” distribution.



50 2.1 Probability Theory

Finally, understanding the analogy between random variable and events, we

can also define the conditional probability distribution of a random variable X

given Y as:

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.

Again, the case can be extended to a set of two or more variables. A very

interesting result that permits the calculation of the joint distribution of a set of

random variables using only conditional probabilities is called the chain rule:

P (X1 = x1, . . . , Xn = xn) =
n∏
i=1

P (Xi = xi|Xi−1 = xi−1, . . . , X1 = x1),

which can be easily proven by direct application of Bayes’ Theorem.

2.1.1.4 Conditional Independence and Observations for Random Vari-

ables

Two of the “classic” notions on probability theory, already mentioned on section

2.1.1.2 are the concept of independence and conditional independence.

From the point of view of random variables, we can rewrite the definition of

independent events. We say that the two events X = x and Y = y (being X, Y

two random variables, and x, y two values of X, Y ) are independent if:

p(x, y) = p(x) p(y).

We shall also need the following definition:

Two random variables X and Y are independent if and only if

P (X = x, Y = y) = P (X = x)P (Y = y),

for all x, y values of X and Y , respectively.

For problems with at least three random variables we can observe sometimes

the phenomenon of conditional independence. Let us have three random variables

X, Y and Z. We shall say that X and Y are conditionally independent given Z if
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and only if every pair of values x (of X) and y (of Y ) is conditionally independent

for each z (of Z) such that p(z) > 0, that is to say:

∀x, y, z, p(z) > 0 ⇒ p(x, y|z) = p(x|z) p(y|z).

This concept is not limited to just three variables, and it is extensible to larger

sets of variables.

We shall say that a variable is observed if is set to one of its values of its range.

If we want to test independence with respect to an observed variable, we only

need to test independence with respect to that assigned value. Note that ob-

serving a variable can change the independence relationships among a set of

variables.

We shall note that a variable A is independent of other variable B, after the

observation of C with A ⊥ B|C. If A is independent of B (without any additional

observation), we shall just write A ⊥ B.

Two very interesting properties of the independence relationships are the fol-

lowing. Given W,X,Y,Z, sets of random variables,

• (symmetry) (X ⊥ Y|Z)⇒ (Y ⊥ X|Z).

• (decomposition) (X ⊥ Y,W|Z)⇒ (X ⊥ Y|Z).

We shall not give the proof here. Instead, we refer the reader to [102].

2.2 Bayesian Networks

2.2.1 Motivation

Let be a set of random variablesX1, . . . , Xn. The joint distribution P (X1, . . . , Xn),

in the general case, needs to store an exponential number of parameters (for ex-

ample, if all Xi are binary variables, the number of parameters is 2n). In terms

of computational storage and computing power this is an unfeasible task.

However, the general case assumes that there is not any independence rela-

tionship among the variables, which would decrease the storage needs for the
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distribution. In fact, a probability distribution modeling some real world phe-

nomena naturally contains many independence relationships. The limit case, a

set of totally independent variables (i.e. P (X1, . . . , Xn) =
∏n

i=1Xi), requires only

n parameters.

The reduction of the parameter number is not only useful for computational

purposes, but to make a better estimation from data. In order to make a more

reliable estimation of the probability distribution of the variables, less data is

required if the number of independence relationships is larger.

2.2.2 Definition

Given a set of random variables U = {X1, . . . , Xn}, a dependency model M is a set

of independence relationships that is enough to determine, for any A1,A2,A3 ⊂
U (where A1,A2,A3 are disjoint, and A1,A2 are not empty) if the independence

relationship A1 ⊥ A2|A3 is true or not.

If we have a set of random variables arranged (one on each node) in a directed

acyclic graph (DAG) [44], we shall use the following notation. If there is a link

from a node X to a node Y , we shall say that “X is the child of Y ” or, alterna-

tively, “X is the parent of Y ”. Extending this notation, we could also define the

set of descendants of a node (their children, the children of them, and so on), and

the ascendants (the parents, their parents, and so on). Although formally they

are different concepts, in this context “random variable” and “node” are usually

interchanged for brevity. Thus, we could be talking of “the set of parents of the

variable X” or “the probability distribution of the node X”.

The Markov assumption says that a random variable of the graph is indepen-

dent of its non-descendants, given its parents (and only its parents).

A DAG G of random variables is an I-Map of a distribution P (on the same

set of variables) if all the Markov assumptions implied by G are satisfied by P .

One I-map is minimal if after the removal of one arc it stops being an I-map.

A probability distribution P on a DAG D forms a Bayesian network [14; 57;

58; 102] if and only if D is a minimal I-map of P . Therefore, a Bayesian network

over a set of random variables can be seen as a set of independence relationships

stored by means of a DAG.
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Theorem 2.2.1. (Factorization of a Bayesian Network) The joint distribution of

a Bayesian network P (X1, . . . , Xn) factorizes as follows:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi))

Where Pa(Xi) is the set of parents of the variable on the graph (none if the

node has no parents).

Proof. By the chain rule, P (X1, . . . , Xn) =
∏n

i=1 P (Xi|Xi−1, . . . , X1). Without

loss of generality, we can assume that X1, . . . , Xn follows an order consistent with

that defined by the graph (i.e. Pa(Xi) ⊂ {Xi−1, . . . , X1} and {Xi−1, . . . , X1} \
Pa(Xi) ⊂ NonDesc(Xi), where NonDesc represents the set of non descendants

of a variable).

Since the graph is an I-map, it holds that Xi ⊥ NonDesc(Xi)|Pa(Xi) by its

definition. By the property of decomposition, and the previous assumption, it

also holds that Xi ⊥ {Xi−1, . . . , X1} \ Pa(Xi)|Pa(Xi).

Thus, P (Xi|X1, . . . , Xi−1) = P (Xi|Pa(Xi)).

Surprisingly, the converse result also holds, relating a distribution which fac-

torizes that way with the set of independences represented by a Bayesian network:

Theorem 2.2.2. Let be a distribution P on a graph such that P (X1, . . . , Xn) =∏n
i=1 P (Xi|Pa(Xi)). Then, the graph is an I-map of P .

We shall not prove this theorem here (see, for instance [102] instead).

To sum up, we shall say that a Bayesian network is made of two components.

The former is a DAG G = (V,E) where the nodes (the finite set V ) are the

random variables concerning the problem we are modeling, and the edges (E ⊂
V × V ) indicate dependence relationships among variables. The latter is a set of

probability distributions (one for node), representing the conditional probability

distribution of the node, conditioned to the possible values of any of the parents

(the nodes without any parents store the prior probability distribution of their

own values).

Bayesian networks verify the set of Markov assumptions, but the concept of d-

separation (a graphical criterium of independence) is often used instead, because
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it seems to be more useful, in order to perform computations. We shall not prove

the equivalence between the set of Markov assumptions and the independences

obtained by d-separation (for a proof see, for instance, [102]).

2.2.3 Graphical Criteria of Independence

Bayesian networks provide a concise set of graphical criteria to check if two sets

of random variables are independent, given another set.

We give here some definitions before stating this criterion:

We shall say that a node in a Bayesian network, for two incident arcs on it is

a head-to-head node, if both arcs point to it. On the contrary, we shall say that

the node is tail-to-head (see figure 2.1).

Figure 2.1: On the left side, a head-to-head node. On the right, the three possible
configurations for a tail-to-head one.

We shall say that X is d-separated (or just separated) of Y given Z1, . . . , Zk if

all path (traversing the arcs of the networks in both directions) between X and

Y is blocked by any node of Z1, . . . , Zk. The two possible ways one node blocks a

path (d-separation) are:

• An observed tail-to-head node exists on the path.
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• A unobserved head-to-head, with all its descendants also unobserved, exists

on the path.

After these two definitions we present the main result relating d-separation

and independence:

Theorem 2.2.3. Given a Bayesian network, if A and B are two variables of it,

separated by C, then A ⊥ B|C holds on it.

An alternative definition of I-map in terms of d-separation is the following.

One DAG over a set of random variables is an I-map of a dependency model M

if the d-separation over two sets of variables implies that they are independent.

Thus, a Bayesian network of nodes Xi, i = 1, . . . , n is a useful expression

to find probabilities p(x1, . . . , xn) because the set of variables satisfies the list

of independences represented by the graph. This graphical expression of the

distribution has helped to develop algorithms to apply some tools of Probability

Theory (as the Bayes’ Theorem, or the marginalization rule) in order to compute

probability values (which will be explained in section 2.2.4). Moreover, inferring

the probability distribution from data, assuming that there is a Bayesian network

representing the set of independences among the variables is also possible, and

a very studied problem [11] (in fact, one example of these algorithms will be

reviewed on section 2.2.5).

2.2.4 Inference Algorithms for Bayesian Networks

Inference in Bayesian networks [26; 58; 102] is the method by which, given a prior

knowledge (called evidence), we can discover another one; that is to say, we can

compute the probabilities of certain results happening.

Formally, given a set of random variables X = {X1, . . . , Xn}, E ⊂ X, being

E = {E1, . . . , Em} (evidential variables), and a set of values e = {e1, . . . , em},
such that ei ∈ ΩEi

, an inference algorithm or a propagation algorithm is a method

that computes the probability value

p(xi|e), xi ∈ ΩXi
, ∀Xi ∈ X\E.

Note that the set of observed variables can be an empty set.
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If the probability value p(xi|e) is computed in an exact manner, the algorithm

is called an exact propagation algorithm. If we compute an approximation p̂(xi|e)

to p(xi|e), the algorithm is called approximate [13].

The need for approximate algorithms is due to the computational complex-

ity of inference in Bayesian networks. The problem of exact inference for the

general case of Bayesian networks is NP-hard [30]. Although the approximate

inference problem is also NP-hard [33], these methods require less computational

overhead, and perform relatively well in cases where it is not possible to make

exact inference.

Exact inference algorithms [26; 102] are easy to understand, and they are

based on the probability theory concepts explained before. Among them we have

the variable elimination algorithm or the clique tree propagation (see, for instance

[102]).

Some examples of approximate inference algorithms are the Monte Carlo

methods [13], among which we have the importance sampling algorithm [84]. Other

approaches are likelihood weighting or probabilistic logic sampling (see, for instance

[99]).

2.2.5 Learning algorithms for Bayesian Networks

2.2.5.1 Concept

The task of learning a Bayesian network consist of recovering the graph structure

and the set of probability distributions, provided a set of samples from the joint

distribution.

Formally, if we get a set (x(1), . . . ,x(m)) of samples from the set of variables

X = {X1, . . . , Xn}, our objective is to find the Bayesian network which best

represents the data. In order to find an “optimal” solution, we must state that

the problem comprises two different steps:

1. The learning of the structure of the Bayesian networks.

2. The learning of the set of parameters.
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The second problem has been very well studied, and has an exact solution

(see, for instance, [99]).

The first problem can be solved using two different approaches:

1. Detecting the set of independences among the variables (which leads to get

the Bayesian network structure).

2. Searching for a network which represents correctly the samples we get.

The first scheme detects independences by making some tests, and adding the

detected independences to a list. Then, a Bayesian network which represents the

majority (or all) of these independences is given as an output.

The second scheme (called search and score) searches in the space of all pos-

sible Bayesian network structures, assigning to each of it one a real value (score)

computed with a certain function (metric), which measures the adequacy of the

network to the data.

In both cases, the search space (the set of all possible directed acyclic graphs

among n variables) is of hyper exponential size, which gives an idea of the in-

tractability of the problem. In fact, the search for the optimal graph structure

using a score is not computationally affordable. In the work by Chickering, Geiger

and Heckerman [29] the first result on the complexity of learning Bayesian net-

works is presented. That result is stated as follows: the algorithm for learning

networks with, at most k parents (k > 11), having a posterior probability greater

than a certain constant, using the BDe metric is NP-hard.

In order to find a good network structure, approximate search algorithms are

used. Among them we can find lot of heuristic and metaheuristics approaches

which usually find good solutions (although they are probably local optimum). A

very simple approach to search for a network structure, using the easiest heuristic

search algorithm is the hill climbing algorithm, presented in the following section.

1The algorithm for learning optimal networks where the graph is a tree (k = 1) is polynomial,
and perfectly known [102].
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2.2.5.2 The Hill Climbing Algorithm

This procedure is an application of the “classic” heuristic search algorithm. This

algorithm starts with an initial solution to this problem (for example the “empty”

network, i.e. a network whose graph has no arcs). To perform hill climbing, a

neighbor operator is needed. A neighbor of a solution to the problem is a point

in the search space which is close to the current solution (that is to say, we can

obtain a neighbor from the solution by doing minimal perturbations on it).

For the case of Bayesian networks, we can consider that a neighbor of one

network is the same network, either with a new arc added1, or the initial network,

with one of its arcs removed. We could consider other different neighbors, but

these two are enough for our purposes. Our operator, then, would generate all

the different neighbors of the current solution. See figure 2.2 for an example of

the neighbors of a small network.

The algorithm will choose the neighbor which makes the best improvement

of the score, compared to the current solution. That is to say, we “climb the

hill following the steeped path”. If at any moment, we cannot find a neighbor

which improves our solution, we shall stop our algorithm and return the current

solution.

The skeleton of this procedure is represented on algorithm 1.

2.3 Canonical Models

2.3.1 Introduction

Building probabilistic graphical models, like Bayesian networks, requires the spe-

cification of a large number of parameters. Concretely, for each node Y in the

network, we shall state the probability distributions P (Y = y|Pa(Y )), where,

one more time, Pa(Y ) represents the set of parent nodes of Y .

For the specific case of binary variables Y = {y, ȳ}, and |Pa(Y )| = n, the

number of parameters to estimate is 2n−1. Therefore, we are interested in keeping

a small number n of parents in order to perform good estimations. In certain

1Note that the arc should be added avoiding cycles.
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Figure 2.2: Set of neighbors (on the corners) for a given Bayesian network (on
the center).

domains, the previous requirement is not very easy to assume. In the treatment

of text documents with Bayesian networks (as we shall see in subsequent chapters)

you can find a node with hundred or thousand of parents. A reasonable solution

to this problem is given using canonical models [42].

These models permit, after several assumptions, building Bayesian networks

where the nodes have lot of parents, avoiding the estimation of an exponential

number of parameters on the number of variables (in fact, they often require only

to estimate a number of parameters which is a linear function on the number of

parents).

Informally, building a canonical model over a node Y , with parents X =

{X1, . . . , X|Pa(Y )|} implies having a method to compute efficiently the probability

values p(y|x), where x is any configuration among all the possible in the set X

of parents of Y .

We shall recall two models in this section: the noisy OR gate model, and the



60 2.3 Canonical Models

Algorithm 1 Hill climbing algorithm for learning a Bayesian network structure

Input: metric, set of samples S = (x(1), . . . ,x(m))
currentNetwork← empty Bayesian network
loop
L← NEIGHBORS(currentNetwork)
nextEval← −∞
nextNetwork← ∅
for all candidate ∈ L do

if (metric(S, candidate) > nextEval) then
nextNetwork← candidate
nextEval← metric(S, candidate)

end if
end for
if nextEval ≤ metric(S, currentNetwork) then
/∗ Return current network since no better neighbors exist ∗/
return currentNetwork

end if
currentNetwork ← nextNetwork

end loop

additive model, which will be used in subsequent chapters.

2.3.2 Noisy OR Gate Model

The noisy OR gate model [57; 102] is a causal model which represents dis-

junctive interaction among the different causes of one effect (again, the causes

are the parents of the variable). We shall assume that both the causes (X =

{X1, . . . , X|Pa(Y )|}) and the effect (Y ) are binary variables (i.e. they can occur or

not).

This interaction occurs if any of the causes can produce the effect in an in-

dependent manner, and with no possibility of an inhibition among them if more

than one are present at the same time. We need two additional conditions to use

this kind of model.

• The effect event is false (its probability is zero) if all of its causes are set to

false.
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• If an event is a consequence of two conditions C1 and C2, then, the mecha-

nism that inhibits the occurrence of that event with the occurrence of the

condition C1, is independent of the mechanism that inhibits the occurrence

of that event when the condition C2 is given.

We show the formula for the probability that the effect Y occurs, given its

parents Xi:

∀Xi ∈ X, p(y|X) = 1−
∏

Xi∈R(x)

(1− w(Xi, Y )) .

Here, R(x) represents the set of variables of the current configuration of X

which have been observed. Obviously p(y|X) = 1− p(y|X).

In the previous formula w(Xi, Y ) is a positive weight, between 0 and 1, rep-

resenting the probability that the effect Y occurs, being true the cause Xi, and

false all Xj, j 6= i (from a certain point of view, a measure of the “causality”

among cause and effect).

If the weights w(Xi, Y ) are all equal to 1, the model acts like a pure OR gate

(any of the causes can make the effect happen, with probability 1, with its only

occurrence).

2.3.3 The Additive Model

The additive model is a canonical causal model, used on Information Retrieval

[15], and it represents an interaction among variables, where the following prop-

erties hold:

• The occurrence of an additional cause (apart from those which are known)

never lowers the likelihood of the occurrence of the effect.

• The probability of occurrence of the effect will be maximum if all the causes

occur.

• All the causes are independent.
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Analytically, we can represent the probability that Y occurs as:

∀Xi ∈ X, p(y|X) =
∑

Xi∈R(x)

w(Xi, Y ) , (2.2)

where the value w(Xi, Y ) represents the importance (weight) associated to each

variable Xi over the effect Y . Again, R(x) also represents the set of variables of

the current configuration of X which have been observed. Thus, if more parents

are observed, the probability of Y = y will be higher.

Obviously, we should add a restriction on the weight values: they can be

defined in any way, satisfying

∀i = 1, . . . , |Pa(Y )|, w(Xi, Y ) ≥ 0,

and ∑
Xi∈Pa(Y )

w(Xi, Y ) ≤ 1.

If we have no reason to believe than one parent is more important than the

others, we can simply define w(Xi, Y ) = 1
|Pa(Y )| , which is equivalent of applying

the Keynes principle of indifference [99].

If we have a certain prior information about the importance of a parent,

namely f(Xi), we can define the weights by normalizing that importance between

0 and 1, dividing by the total sum of importances. Thus:

w(Xi, Y ) =
f(Xi)∑
j f(Xj)

Those two ways to define weights satisfy the previous weight requirements,

and will be used later, in chapter 4.
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Chapter 3

An OR Gate-Based Text

Classifier

3.1 Introduction

This chapter is devoted to the construction of several text classifiers based on

Bayesian networks, concretely on the model known as the noisy OR gate. This is

a very well known model, and with a wide usage on knowledge engineering [43].

We shall organize this chapter as follows. The use of this kind of probabilistic

models (noisy OR gates) should be well motivated, so we shall start with a section

(in 3.2) which presents the advantages of using this kind of classifier on this

domain, and shows the need of doing more research in basic Text Categorization.

Given that there exists two different modalities of probabilistic classification –

generative and discriminative–, we present them in section 3.3, explaining these

two approaches. In section 3.4 we list some related works (usages of the noisy OR

gate in Text Classification) which result in being alternatives to our model. After

the prelude part, in section 3.5 we shall describe the proposed new model. In

fact, while being developed, we shall describe two different parameter estimation,

which will end giving two different models.

In order to fix the potential drawbacks of the models, and before doing ex-

perimentation, we shall present several improvements in both of them, adding a

pruning procedure, which can be seen as a refinement of the training algorithm.



68 3.2 Motivation

This will result in two new versions of the presented classifiers, which will be

detailed on section 3.6.

Finally, section 3.7 is focused on the experimental results, testing the pre-

sented models on some standard corpus, and section 3.8 contains the concluding

remarks and several proposals for future work, ending the chapter.

3.2 Motivation

Prior to describe the models, which is the objective of the chapter, this section

tries to answer the two following questions that one can ask when reviewing our

work in this area:

• Why doing some research on basic Text Categorization?

• Why are we interested in using a model based on noisy OR gates?

The two following subsections are entitled with each one of the two previous

questions, respectively, trying to find a reasonable answer for each one of them.

3.2.1 Why doing some research on basic Text Categoriza-

tion?

This question is motivated by the current state of the art in Text Categorization.

As we said in chapter 1, the results obtained by methods like support vector

machines (even in the linear case, the simplest one) are always on the top of the

list of best performing models on the standard testing corpus [46]. Other methods

like, for instance, the logistic regression classifier, tend also to be on high places

on the ranking of models. Therefore, in both cases, the numeric results obtained

by these models are impressive (the linear support vector machine, for example,

reaches a F1 = 0.92 for some categories of Reuters) which are nearly as perfect

as an expert human indexer performing that task.

Then, what is the point in developing new models from scratch? The main

drawbacks of linear support vector machines are the following:
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• The learning procedure is an iterative method which minimizes the empirical

risk. Although this estimation can be seen as a special case of Bayesian

decision theory [91], this explanation is found a posteriori, and the basic

method only tries to find a “good” separating hyperplane on the training

data, without looking at the distribution of the data. That is to say, the

algorithm is like a “black box” that makes a regression on the training

data, finding an optimum vector. In fact, those vector coordinates are not

an obvious function on individual term frequencies.

• Besides, because the procedure relies on an optimization algorithm, it might

be of a long execution time for certain problems (the case of Text Catego-

rization, for example, where both the number of variables and instances is

high, and vectors should be read from disk).

• Although they rely on a very strong theory (Statistical Learning Theory),

learning algorithms are difficult to develop.

• The set of outputs given from this algorithm are not easily combinable with

other classifiers, because they can be any real number. Although Platt [103]

proposed fitting a logistic function to the output of the classifier, this is not

its original formula (and this procedure is highly expensive in time, because

it requires training several classifiers on the training set via cross validation

to tune the thresholds).

• The learnt function is almost impossible to update, in case that new training

data were made available.

It occurs the same for logistic regression [50], where a real vector is fitted

to the data, in order to maximize the likelihood of the model, given the data,

using some classic optimization procedure. It is a black-box, long time consuming,

and difficult to develop algorithm. For this case, its output is probabilistic, which

makes it more interpretable (and easier to use it, in posterior stages, or combining

with other classifiers).

On the other hand, there are simpler methods as the Näıve Bayes, which tend

to perform reasonably well [85] on complex environment. Unjustly called “the
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punching bag of classifiers”, it has been shown that, with few changes on the

algorithms, and keeping its simplicity, a simple Näıve Bayes can reach the same

level that a linear support vector machine [106]. The Näıve Bayes has a very

simple and fast training procedure, is easy to update if new data is available, its

output is a probability, and it is widely used on real applications. Its training

procedure relies on the fact that the terms in the documents are assumed to follow

any particular statistical distribution (as, for example multinomial or Bernoulli

distributions) and so, some estimation is carried out (which results on the training

algorithm).

We would like to prospect for the same direction given by the Näıve Bayes.

That is to say, simple algorithms: where the training is reduced to an estimation

procedure, and for testing it only requires to compute a posterior distribution,

with very few parameters. We think that this line is not exhausted for the problem

of Text Categorization, being almost all the modern results coped by statistical

machine learning, but few simple algorithms. This is our main reason for doing

this kind of “basic” research, on a field that, as a first sight (and simplistic),

seems to be run out [118].

3.2.2 Why are we interested in using a model based on

noisy OR gates?

There are several answers to this question. To begin with, the noisy OR gate is

part of a bigger family of probabilistic models called the “models of multicausal

interaction” [102] or simply “canonical models” [42]. The main aim of these

models is to represent, in a more compact way, probability distributions which,

in the general case, would be impossible to estimate (and store). For example, a

noisy OR gate of n parents with binary variables can be represented with only

n parameters, opposite to the 2n − 1 parameters of the general case. In a few

words, canonical models come to approximate general Bayesian networks, for the

case of nodes with many parents.

The choice of one of those models in real tasks is motivated by some previous

assumptions which have to be taken, in order to use one of these models with

data. If the assumption is reasonable for our data, and the model represents the



3. An OR Gate-Based Text Classifier 71

interactions among variables we want to modelize, the canonical model can be a

good candidate for some tasks.

For the particular case of noisy OR gates, they are models which have ac-

quired great success in knowledge representation [43], particularly on the fields of

medical problems, where its simplicity has avoided estimating a large number of

parameters. Dealing with text documents is linked with using a huge number of

variables, and all the possibilities to reduce the number of estimations are surely

welcomed.

For the general case of canonical models, and some related applications of

IR, canonical SUM models (like those presented on chapter 2) have been used

with great success in tasks of classic Information Retrieval [15] and Structured

Information Retrieval [32]. We think that both the application (Document Clas-

sification) we are working on, and the method (noisy OR gates) we are using, are

naturally close to these works.

Finally, we shall give a more objective reason to use noisy OR gates. If we

think in the simplest probabilistic model, the Näıve Bayes, it is known that it

relies on the conditional independence of the terms, given the category (the so-

called Näıve Bayes hypothesis). In order to overcome this simplification, several

methods have been proposed to make classifiers where higher than one order

dependences are taken. In fact, Sahami [113] proposed the limited dependence

classifier which lies between the Näıve Bayes and the general Bayesian network

classifier (a classifier where the network is inverted with respect to the Näıve Bayes

one). Note that this general network assumes that all the terms are instantiated

(to positive or negative), and therefore, no relationships among the terms are

needed.

In figure 3.1 we can see those three dependence models: the Näıve Bayes

(which can be stated as a 1-dependence model) labeled with (a), a generic k-

dependence model (k > 1, where each term variable has, at most, k parents)

labeled with (b), and finally the general Bayesian network classifier, a hypothet-

ically better classifier, where the dependences among the terms and the category

variables would be better estimated (all the terms are dependent among them,

given the category variable). If we think in the complete Bayesian network as the

ideal model of classification, it is perfectly clear that we do not have enough data
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available to make estimators, and the number of required parameters would be

very high (exponential on the number of variables). So, our way to approximate

this classifier is training a discriminative canonical model on the data, which,

at least will try to represent the same set of independences than the Bayesian

network classifier.

...

C

T1 T2 Tn ...

C

T1 T2 Tn ...

C

T1 T2 Tn

(a) (b) (c)

Figure 3.1: Three possible network structures for probabilistic classifiers.

3.3 Generative and Discriminative Methods

As we explained in chapter 2, a very popular approach to text categorization are

probabilistic classifiers. Among them, we can find several versions of Näıve Bayes

classifiers [64; 76; 85; 106], the limited dependence classifiers [113] or the family

of logistic regression-based classifiers [50].

The classical approach to probabilistic text classification may be stated as

follows: we have a class variable C taking values in the set {c1, c2, . . . , cn}1 and,

given a document dj to be classified (described by a set of attribute variables,

which usually are the terms appearing in the document), the posterior probability

1Recall that the simplest case is C = {c, c} (the binary case, where we choose between a
category and its opposite), and when the number of values is greater than 2, we deal with a
multiclass problem. If the number of assigned labels to each document is greater than 1, we
have a multilabel problem, and we often reduce it to a set of binary problems, with one class
variable Ci = {ci, c} for each label. In that case, each probability distribution is estimated
independently and will be noted as pi, to emphasize this fact. When discussing general cases,
like this section, we shall deliberately skip the i subindex, to avoid confusion.
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of each class, p(ci|dj), is computed in some way, and the document is assigned to

the class having the greatest posterior probability. Learning methods for proba-

bilistic classifiers are often characterized as being generative or discriminative.

Generative methods estimate the joint probability distribution of all the vari-

ables, p(ci, dj), and therefore p(ci|dj) is computed according to the Bayes’ rule:

p(ci|dj) =
p(ci, dj)

p(dj)
=
p(ci) p(dj|ci)

p(dj)
∝ p(ci) p(dj|ci) . (3.1)

The problem in this case is how to estimate the probabilities p(ci) and p(dj|ci).
In contrast, discriminative probabilistic classifiers model the posterior probabili-

ties p(ci|dj) directly.

The Näıve Bayes classifier is the simplest generative probabilistic classifica-

tion model that, despite its strong and often unrealistic assumptions, performs

frequently surprisingly well. It assumes that all the attribute variables are con-

ditionally independent on each other given the class variable. In fact, the Näıve

Bayes classifier can be considered as a Bayesian network-based classifier [1], where

the network structure is fixed and contains only arcs from the class variable to

the attribute variables, as shown in figure 3.2.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Ci

Figure 3.2: Network structure of the Näıve Bayes classifier.

Here, we shall propose another simple Bayesian network-based classifier, which

may be considered as a discriminative counterpart of Näıve Bayes (presented in

chapter 1) in the following senses:

1. it is based on a type of Bayesian network similar to the Näıve Bayes one,

but with the arcs in the network going in the opposite direction;

2. it requires the same set of simple sufficient statistics than Näıve Bayes, so

that the complexity of the training step in both methods is the same; the

complexity of the classification step is also identical.
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If we assume the list of variables T = {T1, T2, . . . , TN} for the set of terms, the

objective of probabilistic classification is to estimate the probability distribution

P (C|T1, T2, . . . , TN).

3.4 Related work

In this section we briefly review other approaches to text categorization based on

noisy OR gates, or in similar models.

In [129], a classifier very similar to this is presented. A noisy OR gate with one

class variable as effect, and term as causes. In this case, the training procedure is

completely different than our approach, using the EM algorithm [35] to find the

set of parameters that maximize the likelihood of the data. The model is tested

on the Reuters collection, with notable results compared to linear support vector

machines.

In [63] the previous model of [129] is presented on a more general framework

(what they name the set of symmetric causal independence models). Moreover,

they show that the maximum found by [129] is a global one (due to the concavity

of the likelihood function). Some other related models are also presented, and a

set of experiments with the Reuters dataset and others are also carried out with

good results.

The model presented here was firstly shown by us on the field of Structured

(XML) Document Categorization (the problem presented in chapter 5), in [16],

although its results in flat document categorization were better than in trans-

formed documents.

3.5 The OR Gate Bayesian Network Classifier

The document classification method that we are going to propose, presented

before in [18], is based on another restricted type of Bayesian network with the

following topology: each term tk appearing in the training documents (or a subset

of these terms in the case of using some method for feature selection) is associated

to a binary variable Tk taking its values in the set {tk, tk}, which in turn is

represented in the network by the corresponding node. There are also n binary
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variables Ci taking its values in the sets {ci, ci} (as in the previous binary version

of the Näıve Bayes model) and the corresponding class nodes. The network

structure is fixed, having an arc going from each term node Tk to the class node

Ci if the term tk appears in training documents which are of class ci. Let nti be

the number of different terms appearing in documents of class ci. In this way we

have a network topology with two layers, where the term nodes are the “causes”

and the class nodes are the “effects”, having a total of
∑n

i=1 nti arcs. An example

of this network topology is displayed in figure 3.3. It should be noticed that the

proposed topology, with arcs going from attribute nodes to class nodes, is the

opposite of the one associated to the Näıve Bayes model.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

C2 C3 C4 C5C1

Figure 3.3: The OR gate classifier network structure.

It should also be noticed that this network topology explicitly requires mod-

eling the “discriminative” conditional probabilities pi(ci|pa(Ci)), where Pa(Ci)

is the set of parents of node Ci in the network (the set of terms appearing in

documents of class ci) and pa(Ci) is any configuration of the parent set (any as-

signment of values to the variables in this set). We have said in section 3.2 that,

as the number of configurations is exponential with the size of the parent set1,

we use a canonical model to define these probabilities, which reduces the number

of required numerical values from exponential to linear size. More precisely, we

use a noisy OR Gate model [102].

Recall that (see chapter 2) the conditional probabilities in a noisy OR gate

are defined in the following way:

pi(ci|pa(Ci)) = 1−
∏

Tk∈R(pa(Ci))

(1− w(Tk, Ci)) , (3.2)

pi(ci|pa(Ci)) = 1− pi(ci|pa(Ci)) , (3.3)

1Notice that |Pa(Ci)| = nti.
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where R(pa(Ci)) = {Tk ∈ Pa(Ci) | tk ∈ pa(Ci)}, i.e. R(pa(Ci)) is the sub-

set of parents of Ci which are instantiated to its tk value in the configuration

pa(Ci). w(Tk, Ci) is a weight representing the probability that the occurrence of

the “cause” Tk alone (Tk being instantiated to tk and all the other parents Th

instantiated to th) makes the “effect” true (i.e., forces class ci to occur).

Note that the definition of the probability distributions is independent on the

kind of problem considered. We will define n binary distributions for Ci variables,

even for a multiclass problem. As we shall see in next subsection, this is not a

drawback to work in this kind of problems.

3.5.1 Classification as Inference

Once the weights w(Tk, Ci) have been estimated, and given a document dj to be

classified, we instantiate in the network each of the variables Tk corresponding

to the terms appearing in dj to the value tk (i.e. p(tk|dj) = 1 if tk ∈ dj), and all

the other variables Th (those associated to terms that do not appear in dj) to the

value th (i.e. p(th|dj) = 0 ∀th 6∈ dj). Then, we compute for each class node Ci

the posterior probabilities pi(ci|dj). As in the case of the Näıve Bayes model, we

would assign to dj the class (or classes) having the greatest posterior probability.

The combination of network topology and numerical values represented by

OR gates allows us to compute very efficiently and in an exact way the posterior

probabilities:

pi(ci|dj) = 1−
∏

Tk∈Pa(Ci)

(1− w(Tk, Ci)p(tk|dj))

= 1−
∏

Tk∈Pa(Ci)∩dj

(1− w(Tk, Ci)) . (3.4)

In order to take into account the number of times a word tk occurs in a

document dj, njk, we can replicate each node Tk njk times, so that the posterior

probabilities then become:

pi(ci|dj) = 1−
∏

Tk∈Pa(Ci)∩dj

(1− w(Tk, Ci))
njk . (3.5)
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Note that, after categorization, we have a set of values pi(ci|dj) representing

the CSV for the category i and the document j. If we want to make multiclass

classification, we can use the following classification rule: choose the category Cl

such that,

l = arg max
k∈{1,2,...,|C|}

pk(ck|dj),

or, in other words, choose the category with greatest posterior probability.

3.5.2 Training as Weight Estimation

The estimation of the weights in the OR gates, w(Tk, Ci), can be done in several

ways. The simplest one is to compute w(Tk, Ci) as p̂(ci|tk), the estimated condi-

tional probability of class ci given that the term tk is present. We can do it by

maximum likelihood:

w(Tk, Ci) =
Nik

N•k
, (3.6)

or using Laplace correction:

w(Tk, Ci) =
Nik + 1

N•k + 2
. (3.7)

Recall (see chapter 1) that Nik is the number of times that tk appears in

documents of class ci, N•k is the numbers of times that the term tk appears in

the training documents, i.e. N•k =
∑

ci
Nik. N is the total number of words in

the training documents.

Another, more accurate way of estimating w(Tk, Ci) is directly as p̂i(ci|tk, th ∀Th ∈
Pa(Ci), Th 6= Tk). However, this probability cannot be reliably estimated, so that

we are going to compute an approximation in the following way:

p̂i(ci|tk, th ∀h 6= k) = pi(ci|tk)
∏
h6=k

pi(ci|th)
pi(ci)

. (3.8)

This approximation results from assuming a conditional independence state-
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ment similar to that of the Näıve Bayes classifier, namely

pi(tk, th ∀h 6= k|ci) = pi(tk|ci)
∏
h6=k

pi(th|ci). (3.9)

In that case

pi(ci|tk, th ∀h 6= k) =
pi(tk, th ∀h 6= k|ci)pi(ci)

pi(tk, th ∀h 6= k)

=
pi(tk|ci)

(∏
h6=k pi(th|ci)

)
pi(ci)

pi(tk)
∏

h6=k pi(th ∀h 6= k)

= pi(ci|tk)
∏
h6=k

pi(ci|th)
pi(ci)

.

The values of pi(ci|tk) and pi(ci|th)/pi(ci) in equation (3.8) are also estimated

using maximum likelihood. Then, the weights w(Tk, Ci) are in this case:

w(Tk, Ci) =
Nik

N•k

∏
h6=k

(Ni• −Nih)N

(N −N•h)Ni•
. (3.10)

Another option is to relax the independence assumption, consider interactions

among the terms, in the following way:

pi(tk, th ∀h 6= k|ci) =
pi(tk|ci)
nti

∏
h6=k

pi(th|ci) . (3.11)

We are assuming that the joint probability of the events {tk, th ∀h 6= k} is

smaller than the pure independence assumption would dictate. The weights

w(Tk, Ci) would be in this case

w(Tk, Ci) =
Nik

ntiN•k

∏
h6=k

(Ni• −Nih)N

(N −N•h)Ni•
. (3.12)

In any case, the set of sufficient statistics necessary to compute the weights

are Nik ∀tk, ∀ci, i.e. the number of times each term tk appears in documents of

each class ci, the same required by multinomial Näıve Bayes.
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Some preliminary experimentation showed that the best performing methods

were those based on equation 3.7 (for estimation based on p̂i(ci|tk)) and equation

3.12 (for estimation based on p̂i(ci|tk, th ∀h 6= k)), and so, they will be chosen as

our two different OR gate models. From this point, and for simplicity notation,

we will use this convention to name our two different proposed models:

• The noisy OR gate model, where the weights w(Tk, Ci) are estimated fol-

lowing equation (3.7), will be called the OR gate ML model, or simply OR

ML (where ML stands for “maximum likelihood”).

• The noisy OR gate model, where the the weights w(Tk, Ci) are estimated

following equation (3.12), will be called the OR gate TI model, or just OR

TI (where TI stands for “term interaction”).

3.5.3 A brief note on scaling probability results for OR

gate models in multilabel problems

When doing binary or multiclass categorization, the decision rule is to choose

the category with greater posterior probability. For the case of multilabel, the

problem gets harder.

If we want to make “hard categorization”, for probabilistic models which

are trained maximizing the likelihood of the data, one possibility is to choose

classifying a document dj on category ck if pk(ck|dj) > 0.5, and not classifying it

by ck otherwise. Here, the decision rule is associated to a threshold, which, for

this case is 0.5 (because the parameters has been trained in that way).

The case with our models is different. To begin with, probability values

pi(ci|dj) are not directly comparable among different values of i and dj, because

they seem to be on a different scale. One of the reasons for this problem is that

different category variables have also a different number of parents, and then,

computations are not normalized for each node.

In case that one wanted to use this model for multilabel categorization, we

give two solutions to overcome this problem:

• The easier solution, which has a heuristic justification explained here. The

output probability values are normalized, dividing by the probability value
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of the most probable category. That is to say, the final probability values

p(ci|dj) are computed the following way:

p(ci|dj) =
pi(ci|dj)

maxck{pk(ck|dj)}
.

This results that the more probable category gets automatically a proba-

bility of 1, which may not be very realistic. In fact, it can introduce some

unwanted false positives on the zone of assignments of higher probability.

Anyway, our experience says that this heuristic produces reasonably good

results if we want to make “soft categorization” and compute per category

breakeven measures. We will refer to it as “the max heuristic”.

• If we want to make “hard categorization”, the previous decision rule does

not work well, even with the max heuristic. For example, in some problems

there are categories which always obtain high probability values (because

they have a large number of parents), and then, they always get values

very close to 1 (0.9, 0.85, . . . ) with previous normalization. In fact, if we

set the threshold in smaller values like 0.5, we get a large number of false

positives, so it is clear that the threshold should be set to a high value. It

is obvious that smaller categories would verify the opposite (they will need

a small threshold). For that case, an optimum threshold τi ∈ [0, 1] can be

trained for each category, via cross validation on the training set, and after

that, it can be applied to the results on the test set, either assigning ck if

pk(ck|dj) > τk, or scaling the different pk(ck|dj) values with different linear

continuous piecewise functions which verify

fk(τk) = 0.5, fk(0) = 0, fk(1) = 1 ∀k = 1, 2, . . . , |C|.

This possibility is explored on chapter 5, section 5.13.2.2, where more details

of its properties are explained. Using this “scaling heuristic”, and finding

a set of reasonably adjusted set of thresholds is the only possibility if we

want to make hard categorization. After the scale, we can use the previous

decision rule (assign ck to dj if pk(ck|dj) > 0.5).
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3.6 Improving the Models Pruning Independent

Terms

As we explained on chapter 2, there are several assumptions that should verify

our data, in order to apply a noisy OR gate model. Among them, the causes

(terms in our model) should be independent among them, and one cause could

make the effect (the category is assigned to the document) by itself.

The independence assumption among terms is not real, but it is similar to the

Näıve Bayes assumption. Almost every text categorization model works using the

prior fact that terms are considered independent. The second assumption is not so

clear. In fact, there are lot of terms which are not giving any information about

the category (because its distribution is uniform for all categories), and terms

which do not give evidence about a certain category, because its occurrence in

this category is almost negligible. On the other hand, the presence of certain

terms give “negative” information (the likelihood of being in other category is

augmented), but this fact is not very well captured by the noisy OR gate model.

In order to improve our models, we propose a simple pruning procedure which

can be summed up as follows: after estimating the parameters, for each category

remove as parents the terms which are independent with the category variable.

This procedure guarantees that the remaining terms have a more likely “causal

link” with the category (though it could be on the opposite direction).

To assess if a pair term/category (Tk, Ci) are independent, we propose using a

simple independence test, based on the χ2 statistic. We first compute the mutual

information on the term and category:

I(Tk;Ci) =
∑

t∈{tk,tk}

∑
c∈{ci,ci}

p(t, c) log
p(t, c)

p(t)p(c)

that, coherently with previous notation results in:
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I(Tk;Ci) =
Nik

N
log

(
NikN

N•kNi•

)
+
N•k −Nik

N
log

(
(N•k −Nik)N

N•k (N −Ni•)

)
+

Ni• −Nik

N
log

(
(Ni• −Nik)N

(N −N•k)Ni•

)
+

N −N•k −Ni• +Nik

N
log

(
(N −N•k −Ni• +Nik)N

(N −N•k) (N −Ni•)

)
(3.13)

The independence test is based on a proposition by Kullback [69] and can be

reformulated as follows:

Theorem 3.6.1. (Kullback) If X and Y are independent random variables (with

nx and ny values, respectively), with {(X1, Y1), (X2, Y2), . . . (XN , YN)} a set of

samples, then 2N I(X;Y ) ∼ χ2
(nx−1)(ny−1),1−α holds for N −→∞, at a significance

level of α.

The pruning algorithm is then very simple:

Algorithm 2 Pruning algorithm for our noisy OR gate models

Input: α, significance value
for all Category Ci ∈ C do

Train an OR gate model on Ci
for all Term Tj ∈ Ci do

if 2N I(Tj, Ci) > χ2
1,1−α then

Keep Tj in Pa(Ci)
Renormalize w(Tj, Ci), if needed

else
Remove Tj from Pa(Ci)

end if
end for

end for

The renormalization step of w(Tj, Ci) is needed for the OR TI model, because

the number of parents nti of the category node Ci could have changed. If the

number of parents nti after the selection has changed to nt′i, then the weights can
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be easily renormalized to w′(Tj, Ci) by doing

w′(Tj, Ci) =
nti
nt′i

w(Tj, Ci).

Therefore, this procedure gives us two new classification algorithms, both with

a free parameter (α, the level of significance of the χ2 test). They will be noted

as OR ML-α and OR TI-α (the pruned versions of the models presented before,

with a certain α value.

3.7 Experimentation

For the evaluation of the proposed model we have used three document test col-

lections: Reuters-21578, Ohsumed and 20 Newsgroups. Reuters-21578 (ModApte

split) contains 12,902 documents (9603 for training and 3299 for testing) and 90

categories (with at least 1 training and 1 test documents). Ohsumed, including

20000 medical abstracts from the MeSH categories (10000 for training and 10000

for testing) of the year 1991, and 23 categories. 20 Newsgroups corpus contains

19997 articles for 20 categories taken from the Usenet newsgroups collection,

where only the subject and the body of each message were used. Note that there

is no fixed literature split for this collection. All the three collections were pre-

processed in the same way using stemming (Porter’s algorithm) and stopword

removal (SMART’s system 571 stopword list). No term selection was carried out.

The evaluation takes into account that the classification process will generate

an ordered list of possible categories, in decreasing order of probability1, instead

of a definite assignment of categories to each document. Then, as performance

measures, we have firstly selected the typical measures used in multi-label cate-

gorization problems (as they are Reuters-21578 and Ohsumed): breakeven point2

(BEP) and the average 11-point precision3 (Av-11). Another measure commonly

used is F1
4. However F1 requires a precise assignment of classes to each docu-

1We are therefore using an instance of the so-called category-ranking classifiers [119].
2The point where precision equals recall, by moving a threshold.
3The precision values are interpolated at 11 points at which the recall values are 0.0, 0.1,. . .,

1.0, and then averaged.
4The harmonic mean of precision and recall.
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ment, so that we shall use instead F1 at one (F1@1) and also F1 at three and five

(F1@3, F1@5) document level: the F1 value obtained by assuming that the system

assigns to each document either the first or the first three or five most probable

classes. Both breakeven and F1 values will be computed in micro-average (micr.)

and macro-average (macr.). In all the measures, a higher value means a better

performance of the model.

For comparison purposes, we have executed experiments using Näıve Bayes

and the well-known Rocchio method [59], used as a perspective. In front of them,

we have tested our OR gate classifiers without pruning (ML and TI versions), and

both of them with three different pruning values α ∈ {0.9, 0.99, 0.999}, noted as

OR ML-α and OR TI-α, respectively. In all the cases, the OR classifiers used the

“max heuristic” (as explained in section 3.5.3). Tables 3.1, 3.2 and 3.3 display

the values of the performance measures obtained.

Several conclusions can be drawn from these experiments: the proposed OR

gate models are quite competitive, frequently outperforming Rocchio and Näıve

Bayes even without pruning. Particularly, the ML model seems to perform well

in terms of macro averages: it gives a more balanced treatment to all the classes,

and this is especially evident in those problems where the class distribution is

quite unbalanced, as Reuters and Ohsumed. At the same time, the OR gate TI

model performs generally well also in terms of micro averages.

The pruning procedure clearly improves the performance of both models, espe-

cially when the parameter α is high (0.99 or 0.999). The TI model with pruning

seems to be, in general, the best performing model with significant differences

from the other models.

3.8 Concluding Remarks and Future Works

We have described a new approach for document classification, the so called “OR

Gate classifier”, with different variants based on several parameter estimation

methods. It is based on a Bayesian network representation which is, in some sense,

the opposite that the one associated to the Näıve Bayes classifier. The complexity

of the training and classification steps for the proposed model is equivalent to that

of the Näıve Bayes too. In fact we can think of the OR gate model as a kind
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micr.BEP macr.BEP Av-11
Reuters

NBayes 0.73485 0.26407 0.84501
Rocchio 0.47183 0.42185 0.84501
OR ML 0.66649 0.55917 0.81736
OR ML-0.9 0.67682 0.57018 0.82921
OR ML-0.99 0.69579 0.58157 0.84982
OR ML-0.999 0.70272 0.60120 0.85726
OR TI 0.76555 0.54370 0.89725
OR TI-0.9 0.75801 0.63098 0.89123
OR TI-0.99 0.80288 0.61690 0.92160
OR TI-0.999 0.81197 0.63634 0.92445

Ohsumed
NBayes 0.58643 0.49830 0.76601
Rocchio 0.42315 0.44791 0.68194
OR ML 0.48017 0.58792 0.64739
OR ML-0.9 0.51504 0.55192 0.71334
OR ML-0.99 0.53939 0.56857 0.73821
OR ML-0.999 0.55494 0.57980 0.75179
OR TI 0.53122 0.56450 0.72925
OR TI-0.9 0.54300 0.57188 0.73229
OR TI-0.99 0.59350 0.59208 0.77908
OR TI-0.999 0.60426 0.59730 0.78433

20Newsgroups
NBayes 0.71778 0.73629 0.88834
Rocchio 0.60940 0.63875 0.86583
OR ML 0.80732 0.81333 0.87889
OR ML-0.9 0.60460 0.63679 0.84806
OR ML-0.99 0.68346 0.69127 0.86603
OR ML-0.999 0.71844 0.73520 0.86478
OR TI 0.77689 0.79779 0.86208
OR TI-0.9 0.77126 0.77870 0.85807
OR TI-0.99 0.78221 0.78740 0.86269
OR TI-0.999 0.80165 0.81396 0.87832

Table 3.1: Micro and macro averaged breakeven points and average 11-point
precision.
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micr.F1@1 micr.F1@3 micr.F1@5
Reuters

NBayes 0.75931 0.49195 0.35170
Rocchio 0.70047 0.47399 0.34979
OR ML 0.67297 0.45352 0.33493
OR ML-0.9 0.67810 0.46043 0.34386
OR ML-0.99 0.70413 0.47403 0.35002
OR ML-0.999 0.71359 0.47809 0.35097
OR TI 0.75369 0.51461 0.36825
OR TI-0.9 0.74198 0.51840 0.37051
OR TI-0.99 0.78900 0.52418 0.37337
OR TI-0.999 0.78988 0.52965 0.37550

Ohsumed
NBayes 0.53553 0.53979 0.42718
Rocchio 0.46064 0.46313 0.40912
OR ML 0.41676 0.46329 0.40292
OR ML-0.9 0.48459 0.49678 0.41725
OR ML-0.99 0.50294 0.51237 0.43134
OR ML-0.999 0.51768 0.51977 0.43177
OR TI 0.49048 0.50883 0.42773
OR TI-0.9 0.48528 0.51738 0.43381
OR TI-0.99 0.53700 0.55280 0.44622
OR TI-0.999 0.53848 0.56440 0.44779

20Newsgroups
NBayes 0.80881 0.48705 0.33212
Rocchio 0.77233 0.48323 0.33153
OR ML 0.81000 0.47266 0.32614
OR ML-0.9 0.76718 0.46066 0.32072
OR ML-0.99 0.79046 0.46960 0.32459
OR ML-0.999 0.78830 0.46915 0.32461
OR TI 0.77858 0.47284 0.32695
OR TI-0.9 0.77302 0.47140 0.32644
OR TI-0.99 0.78387 0.46990 0.32511
OR TI-0.999 0.80402 0.47758 0.32835

Table 3.2: Micro F1 values.
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macr.F1@1 macr.F1@3 macr.F1@5
Reuters

NBayes 0.39148 0.28935 0.23116
Rocchio 0.39148 0.28935 0.23116
OR ML 0.11263 0.20092 0.26404
OR ML-0.9 0.12253 0.22908 0.27741
OR ML-0.99 0.14301 0.25440 0.28718
OR ML-0.999 0.14888 0.27181 0.31298
OR TI 0.45762 0.39169 0.30959
OR TI-0.9 0.44075 0.38363 0.29449
OR TI-0.99 0.45746 0.37399 0.27648
OR TI-0.999 0.48456 0.35303 0.25872

Ohsumed
NBayes 0.40627 0.47260 0.40732
Rocchio 0.45421 0.50604 0.44945
OR ML 0.19980 0.42017 0.45870
OR ML-0.9 0.34397 0.43999 0.49561
OR ML-0.99 0.38470 0.53225 0.50289
OR ML-0.999 0.41318 0.54539 0.50024
OR TI 0.43602 0.53615 0.50103
OR TI-0.9 0.45655 0.55249 0.49105
OR TI-0.99 0.50015 0.56898 0.47225
OR TI-0.999 0.50792 0.57549 0.46814

20Newsgroups
NBayes 0.80985 0.54983 0.39048
Rocchio 0.77095 0.54086 0.39113
OR ML 0.80880 0.58083 0.44502
OR ML-0.9 0.77119 0.55058 0.41603
OR ML-0.99 0.78987 0.54678 0.40899
OR ML-0.999 0.78589 0.53540 0.39617
OR TI 0.78682 0.59099 0.44722
OR TI-0.9 0.78163 0.59288 0.44592
OR TI-0.99 0.78558 0.57701 0.44012
OR TI-0.999 0.80603 0.56266 0.41578

Table 3.3: Macro F1 values.
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of discriminative version of Näıve Bayes, which is not a discriminative but a

generative method.

According to the results of the experimental comparison carried out using

several standard text collections, we found that the models without pruning can

compete with Näıve Bayes, especially in terms of macro averages and in those

cases where the class distribution is unbalanced. The models with pruning are

even better than Näıve Bayes, getting much better results than that.

As future works, we would like to test another estimations, apart from the ML

and TI approaches. For example, a Bayesian estimation could be performed, if

we could combine a prior knowledge of the term and the category in the distribu-

tion. Besides, those estimations are based on a particular event model, but other

alternatives could be proposed. Finally, we remark the need of a better normal-

ization procedure, having more theoretical support (i.e. being less heuristical).

We think that the models could be improved with any of these proposals.



Chapter 4

Automatic Indexing From a

Thesaurus Using Bayesian

Networks

4.1 Introduction

A thesaurus is a tool which is intrinsically designed to avoid ambiguities of any

class in a document. It is composed of a set of terms with orthogonal meanings,

along with a set of hierarchical relationships among them. A thesaurus can be

very useful in different areas of Text Mining [6] and IR, removing the ambiguity,

and identifying the context of a document.

Assigning some descriptors from a thesaurus to a document is a very common

task for keeping organized a collection of information. Two real world examples

will motivate this task, and will show the need of computerized aided methods

to make these activities in a (semi)-automatic way.

1. In the parliaments of the countries of the EU (European, national and re-

gional), all the documentation is indexed with several descriptors of the

Eurovoc thesaurus (more than 6000 categories) in order to be easily acce-

sible and searchable. This task has a very high economic cost, because it is

usually done manually by teams of documentalists.
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2. All the scientific medical journals indexed by MEDLINE require the arti-

cles to be indexed with their corresponding MeSH headings. This is usually

a task done by the author themselves, using tools to navigate MeSH the-

saurus. This is a tedious task and this method does not guarantee, for

example, that the paper is indexed with the more specific headings.

For the first case, there should be available a large amount of manually in-

dexed documents, where the descriptors assigned are obtained from the pool of

descriptors selected by a team of human indexers (for example by intersecting

them). In many of the cases, there will be very similar documents (parliamen-

tary initiatives about certain laws, or certain geographical locations involved in

current events), which will be finally indexed by the same descriptors. It should

be desirable a system which could use all the previous learnt information and

manually suggest those descriptors to the indexers. On the other hand, if no

similar indexed text is found on the records, a system should also suggest des-

criptors based on the content, and update its knowledge with the final decisions

made by indexers.

For the second case, a system, which automatically assigns MeSH headings

using only information of the thesaurus (coupling terms of the paper and those

from the thesaurus), could be desirable, trying to make a compromise between

assigning few general MeSH headings and many specific ones.

The scope of our research is therefore, automatic subject indexing from a

controlled vocabulary [51; 89] represented by the set of descriptors, and acting

as a hierarchical text classifier [96; 119]. On the first introductory part, we will

present in section 4.2.1 some basic definitions of thesauri (along with a example

in 4.2.2), a formal characterization in section 4.2.3, a list of real-world thesauri

in 4.2.3, and the standard formal language to manually define them.

After the introduction, we will introduce the task of Thesaurus Based Au-

tomatic indexing, where we shall clearly state this problem and their difficulties

(sections 4.3.1 and 4.3.2). We will review some approaches in the literature to

similar problems, present a baseline and discuss the possible evaluation measures

(sections 4.3.4 to 4.3.5).
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The sections concerning the Bayesian network are organized as follows: after

a brief introduction (given in section 4.4) we describe the proposed Bayesian

network model of a thesaurus in section 4.5, whereas the extension of the model

to cope with training data is presented in section 4.6. The experimental evaluation

is explained in section 4.7. Finally, section 4.8 ends this chapter containing the

final remarks and some proposals for future work.

4.2 Basics of Thesauri

4.2.1 Definitions

Broadly speaking, a thesaurus consists of a set of terms (which can be relevant

to a certain domain of knowledge) and a set of relationships between them. Its

main aim is to represent concepts without ambiguity in order to avoid confusion

and misunderstanding.

The basic unit of a thesaurus is often called the descriptor1. A descriptor

is a word or phrase which identifies an important notion in a certain domain of

knowledge, i.e. it designates essential entities in the area covered by the thesaurus.

A thesaurus is not always tied to a closed area of knowledge. In fact, following

[127], we can divide thesauri into two different kinds: conceptual thesauri, with

abstract and conceptual terms as descriptors (e.g. Eurovoc), and natural language

thesauri, which tend to be more specific covering a certain area of knowledge (e.g.

AGROVOC or MeSH).

Other basic thesaurus units are the non-descriptors. These are words or ex-

pressions which basically denote the same notion as a descriptor in the thesaurus

language.

Besides, a thesaurus also includes the following three types of semantic rela-

tionships:

• Hierarchical relationships, involving one descriptor and a more specific or

broader one.

1It is also sometimes called a concept or an index term.
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• Equivalence relationships, between non-descriptors and descriptors, listing

the equivalent terms for a certain concept, and the possible uses of a des-

criptor. The equivalence relationships may in fact cover relationships of

various types: identical, similar or opposite meanings, and even inclusion.

• Associative relationships, between descriptors, which can also be of various

kinds: cause and effect, agency or instrument, concomitance, constituent

elements, location, etc. They generally link two descriptors that do not meet

the criteria for either equivalence or hierarchical relationships, and are used

to suggest another descriptor that would be helpful for the thesaurus user

to search with.

In the first case, the hierarchy defined by the thesaurus specifies the BT

(broader term) and NT (narrower term) relationships. The NT designates a more

specialized descriptor for a particular one. For each BT, there is the corresponding

NT relationship (they are reciprocal). In other words, if the broader term of “A”

is “B”, then the narrower term of “B” is “A”. If a descriptor has no broader

term, it is sometimes called a top term. On the other hand, if a descriptor has

no narrower term, it is often called a basic descriptor.

In the second case, the equivalence relationships are UF (used for) and USE:

UF between the descriptor and the non-descriptor(s) it represents, and USE bet-

ween a non-descriptor and the descriptor which replaces it.

For the third case, a thesaurus specifies a related term relationship (RT). This

is a symmetrical relationship: if a descriptor “A” is related to “B” by means of

an RT relation, then “B” and “A” should also be in RT.

Certain thesauri also include a scope note (SN) for several descriptors which

defines or limits the specific use of a term, although they are usually addressed

to manual indexers.

4.2.2 A Small Example

We give here an example, based on a real thesaurus (Eurovoc), which will be

reviewed later. Eurovoc is a multilingual thesaurus that provides a means of in-

dexing the documents in the documentation systems of the European institutions

and of their users. We show here a fragment of it.
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Figure 4.1 displays the BT relationships between some descriptors of Eurovoc

and the USE relationships between the non-descriptors and these descriptors. In

the example there are two complex descriptors, health service and health policy,

and three basic descriptors, medical centre, medical institution and psychiatric

institution.

Health service is the broader term of medical centre, medical institution and

psychiatric institution; health policy is in turn the broader term of health service

and also of other five descriptors which are not displayed1. The associated non-

descriptors are: medical service for health service; health and health protection for

health policy; dispensary and health care centre for medical centre; clinic, hospi-

tal and outpatients’ clinic for medical institution; and psychiatric hospital for

psychiatric institution.

ND:health ND:health
protection

D:health
policy

D:health
service

ND:health
care centre

ND:dispensary

centre
D:medical

institution
D:medical

ND:hospitalND:outpatient
clinic

ND:clinic

institution
D:psychiatric

service
ND:medical

ND:psychiatric
hospital

Figure 4.1: BT (bold lines) and USE (dashed lines) relationships for the descrip-
tors and non-descriptors in the example about health.

1These non displayed descriptors are health care system, health costs, health expenditure,
health statistics and organisation of health care.
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4.2.3 A Formalization of Thesauri

Here, we give a mathematical formulation of the main existing relationships in

a thesaurus. This is only the formalization of the previous explanation and, in

posterior developments, we shall assume that any thesaurus follows this model.

We firstly state that a thesaurus may be formalized as an eight-tuple:

(Ω,∆,Γ,W∆,WΓ,USE,RT,BT),

where the sets Ω = {ω1, . . . , ωn}, ∆ = {δ1, . . . , δm} and Γ = {γ1, . . . , γk} represent

the terms (words), descriptors and non-descriptors in the thesaurus, respectively.

There is a map W∆ : ∆ → 2Ω \ {∅}, where 2Ω is the set of all subsets of Ω.

Similarly, there is another map WΓ : Γ→ 2Ω \{∅}. Clearly, W∆(δ) (resp. WΓ(γ))

denotes the set of terms associated to a descriptor δ (respectively a non-descriptor

γ).

There is also a map USE : Γ → ∆, such that ∀γ ∈ Γ, USE(γ) ∈ ∆ is the

descriptor associated with the non-descriptor γ. Therefore, the inverse map UF

can also be defined as UF(δ) = USE−1(δ) (the set of non-descriptors associated

with the descriptor δ).

The relation map RT : ∆ → ∆ is defined between pairs of descriptors, ve-

rifying ∀δ1, δ2 ∈ ∆, if RT(δ1) = δ2 ⇒ RT(δ2) = δ1. Thus, the binary relation

corresponding to RT is symmetrical.

Finally, there is another function BT : ∆→ ∆ ∪ {∅} (where ∅ represents the

empty descriptor) such that BT(δ) ∈ ∆ is the broader descriptor containing δ

and BT(δ) = ∅ means that the descriptor δ is not contained in a more general

one (i.e. it is a top term). NT(δ) = BT−1(δ) is the set of narrower (more specific)

descriptors which are contained in δ.

If BT−1(δ) = ∅, then the descriptor δ does not contain a more specific des-

criptor (it is a basic descriptor). If BT−1(δ) 6= ∅, we say that δ is a non-basic or

complex descriptor. More generally, when a descriptor δ is polyhierarchical (as in

Eurovoc, for instance), then BT(δ) is not a single descriptor but a subset of the

set of descriptors and hence, BT is not a function but a correspondence.

Note that the function/correspondence BT must satisfy the following pro-

perty:
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1191 CALATHEA

1192 CALATHEA ALLOUIA

1193 CALATHEA LUTEA

1194 CALCAREOUS SOILS

1195 CALCITONIN

1196 CALCIUM

1197 CALCIUM CARBONATE

1198 CALCIUM CYANAMIDE

1199 CALCIUM FERTILIZERS

1200 CALCIUM HYDROXIDE

1201 CALCIUM NITRATE

1202 CALCIUM OXIDE

1203 CALCIUM SULPHATE

Figure 4.2: Fragment of the list of descriptors in the AGROVOC thesaurus.

BT

k︷ ︸︸ ︷
◦ · · · ◦BT(δ) 6= δ, ∀δ ∈ ∆,∀k = 1, 2, . . . ,

where ◦ represents composition. This property guarantees that the BT relation-

ships constitute a true hierarchy, avoiding, for example, the existence of cycles in

it.

4.2.4 Defining Thesauri with a Standard Language

Most of the thesauri mentioned on this work are public and they are freely avai-

lable for non-commercial purposes. Thus, they can be obtained in several non-

standard formats: XML, ASCII (plain text), PDF, etc. Defining a thesaurus

following some standard language is very important if we want to build a generic

software application which does not rely on specific thesauri. This application

can be aimed to, for instance, navigating and consulting the thesaurus, easily

obtain descriptors and relationships, or aiding in the indexation of texts with the

descriptors of the thesaurus (which we shall discuss later).

Currently there is an accepted standard: the Simple Knowledge Organisation

System or SKOS [90], developed by the W3C, is a family of formal languages for

thesaurus representation, structured controlled vocabulary and any other taxo-
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nomy. SKOS is built on RDF and RDFS, and its main objective is to enable easy

publication of controlled structured vocabularies for the Semantic Web. SKOS is

currently under a proposed recommendation for the W3C since the first quarter

of 2008.

4.2.5 Real World Thesauri

There are several industrial and sociopolitical thesauri, used in different domains

of knowledge. Here, some of them are described, along with their special charac-

teristics. The table 4.1 gives an idea of the size (number of descriptors, relation-

ships and non-descriptors) of some of these thesauri.

4.2.5.1 Eurovoc

Eurovoc [48] is an official thesaurus of the European Union. It covers the fields

in which the European Comunities are active, being its main aim to provide a

means of indexing the official documents in the documentation systems in the

institutions. It is used by the European Parliament, the Office for Official Publi-

cations of the European Communities, the national and regional parliaments in

Europe, and other non-EU countries.

Eurovoc is a plurilingual thesaurus, which means there exist different editions

of it, in the 21 official languages of the Union. All of them share the same

descriptors, making it easy to provide “conceptual indexation” and search of a

document, no matter the language it is written in.

The first level of the hierarchy is called the tematic field, being 21 in Eurovoc.

The second level is the microthesaurus (it contains 127 microthesauri), and each

tematic field is composed of certain microthesauri.

In its version 4.2, it comprises 6645 descriptors, with 512 top terms. For the

relationships, it contains 6669 of the hierarchical kind (BT/NT), and 3636 RT.

Some of the descriptors are polyhierarchical (they can have more than one des-

criptor as a broader term), and RT relationships are, by definition, incompatible

with hierarchical ones.
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It is a conceptual thesaurus, in the sense that very different fields in the

sociopolitical life (geographical areas, medical terminology, agriculture,...) can

be indexed with it.

4.2.5.2 AGROVOC

AGROVOC [4] is a multilingual, structured and controlled vocabulary designed

to cover the terminology of all subject fields in agriculture, forestry, fisheries, food

and related domains (e.g. environment). It is been developed since 1980 by the

Food and Agriculture Organization of the United Nations (FAO), and has been

translated into 17 languages. It is free for non-commercial use.

Its structure is similar to Eurovoc, using a new relationship called “spatially

included in” (used only for geographical descriptors).

In its English edition, AGROVOC contains 28435 descriptors and 10932 non-

descriptors. 32176 BT/NT and 27589 RT relationships can be found on it. A

small fragment of this thesaurus can be seen in figure 4.2.

AGROVOC is used all over the world (about ninety countries), mostly for

indexing and retrieving data in agricultural information systems.

4.2.5.3 NAL Thesaurus

The NAL Agricultural Thesaurus [98] (NALT) was built in 2002 by the National

Agricultural Library to meet the needs of the USDA, Agricultural Research Ser-

vice (ARS). The subject scope of agriculture is broadly defined in the NALT,

and includes terminology in the supporting biological, physical and social scien-

ces. Biological nomenclature comprises a majority of the terms in the thesaurus

and is located in the “Taxonomic Classification of Organisms” Subject Category.

Political geography is mainly described at the country level.

This thesaurus is currently used at several sites. In 2003, NAL implemented

the thesaurus as the controlled indexing vocabulary for their in-house biblio-

graphic database, AGRICOLA, in conjunction with the implementation of a

new electronic library management system. In 2004, E-Extension, the proto-

type database of state cooperative extension publications, chose the NAL Agri-

cultural Thesaurus as their controlled vocabulary. Other non-USDA sites use
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the thesaurus, such as the Agricultural Network Information Center (AgNIC),

which adopted it in 2002. AgNIC partners use the thesaurus as a vocabulary

for indexing and as a search aid to their web sites through web services on their

portal.

It is organized into 17 subject categories, indicated by the “Subject Category”

designation in the thesaurus. This organization can be used to browse the the-

saurus in a specific discipline or subject area. It includes 42326 descriptors, 25985

non-descriptors, 44545 BT/NT hierarchical relationships, and 17324 symmetrical

RT relationships.

The NAL Agricultural Thesaurus is also freely available online from NAL

website and as a web service to other web-connected programs.

Name Eurovoc AGROVOC NAL

Descriptors 6645 28435 42326
Relationships (BT/NT+RT) 10305 59765 61869

Non-descriptors 6769 10932 25985

Table 4.1: Comparative numbers for real thesauri: the number of descriptors and
non-descriptors (only English ones, if the thesaurus is multilingual) is shown,
together with the number of relationships (the size of the graph the thesaurus
represents).

4.2.5.4 MeSH

MeSH [101] is a significant thesaurus in biomedicine, built by the American Na-

tional Library of Medicine (NLM) in 1960. It has been updated subsequently and

translated into many languages. It has three main aims: indexing biomedical li-

terature (published in Index Medicus), cataloging monographs and multimedia

content stored in the NLM and presenting a vocabulary for the Index Medicus

user, in order to make precise and accurate searching over the index.

MeSH contains over 22000 headings (descriptors in MeSH terminology) and

the three types of relationships described before: hierarchical or BT/NT (MeSH is

divided into 15 trees), synonymous (non-descriptors are called entry terms here),

and related terms.
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MeSH has a tree structure, which determines the level of superiority or inferio-

rity to individual descriptors and establishes hierarchical relationships between

conceptually related terms. Although the basic concepts explained before are

present on MeSH, it includes several aditional features that makes MeSH diffe-

rent from other thesauri:

• Check tags: tags to describe the attribute of the study.

• Publication type: type of publication or type of study.

• Related concepts: several added semantic relationships.

An introduction to the MeSH thesaurus and, in general, biomedical informa-

tion can be found in [54].

4.3 Thesaurus Based Automatic Indexing

4.3.1 Statement of the Problem

We define the problem of automatic indexing in a thesaurus-based set of categories

as a problem of text categorization on the set of classes defined by a thesaurus

(the set of descriptors), using or not the information contained on the thesaurus

(terms and relationships).

Thus, we can propose three different approaches to the problem:

1. A solution which only uses information from the thesaurus.

2. A solution which uses information from preclassified documents.

3. A solution which uses both kinds of information.

A system implementing the first solution (a document clustering problem, in

the sense of Golub [51]) should be capable, given a thesaurus and a document,

to suggest descriptors from the thesaurus to index the document. For the second

(a classical problem of supervised Text Categorization using Machine Learning

methods) and third solution, we need to have a previously indexed corpus of
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documents. The third approach, which is a mixed approach between the first

and the second one, should combine the expert and previous knowledge given by

the preclassified corpus, and the static knowledge given by the taxonomy of the

thesaurus and its relationships.

The second approach probably is not the best option. We could have treated

this problem as a simple Machine Learning problem. However, the corpus avai-

lability is not sometimes very easy, and presents the following problems:

• The preclassified corpus should contain at least one document indexed for

each descriptor (which will make the corpus a large one, because the number

of categories of a thesaurus is much larger than the number of categories of

the state-of-the-art Text Categorization corpora). In order to make good

estimations, the number of documents assigned to each category should also

be reasonable (it is not enough with one or two documents). This is not

regrettably possible because sometimes we have a corpus available which

does not cover at all the whole set of categories of the thesaurus.

• Ignoring hierarchical relationships (and the RT ones) makes all the cate-

gories independent, which is not obviously true for this problem. From a

certain point of view, a document indexed with a descriptor belongs to all

the set of more general descriptors.

• For this problem, there are several keywords which may generate some auto-

matic descriptor assignments, and they could not be inferred from data (for

example, a document refering to “Madrid” could be automatically indexed

by the descriptor “Spain” if that relationship appears in the thesaurus).

Because thesauri are mainly used to add several “index terms” to documents

the problem must be, in all of the cases, a multilabel categorization approach.

However, it is a clear fact that this is a very difficult problem from a “multilabel”

point of view (the results are expected to be rather poor), and a category-ranking

approach could be better for a semi-automated approach.
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4.3.2 Difficulties of the Problem

This peculiar problem differs from a “classical approach” of Text Categorization

presenting the following difficulties:

• The high dimensionality of the set C of categories: as we could see in

the description of the real world thesauri, presented on the previous section,

we are managing several thousands categories. The existing test collections

for Text Categorization (where the existing approaches are tested) have a

few number of categories (none of the classical test collections are over one

thousand categories, being most of them under one hundred).

• The lack of data test collections: up to date, there is not a freely

available test corpus of documents classified over a thesaurus (except per-

haps, OHSUMED [55]). This makes very difficult the task of testing new

approaches, because of the absence of a “standard” comparison procedure.

• The problem of feature selection: a thesaurus itself contains a lot of

information. Which is useful to make more accurate classification? Should

certain kinds of relationships not be considered? Should non-descriptors

terms be considered as a source of meta-information for a certain category?

Apart from that, standard feature selection methods for documents could

not be useful here, due to the hierarchical relationships in the set of classes

(two classes can be disjoint, in the sense that they are different, but seman-

tically related by an “is a” or other semantic relationship).

• The problem of comparison: when discussing a new categorization

method, a baseline is a very simple approach for the problem it is being

solved, which is supposed to be worse than our proposal. Sometimes classi-

cal methods as Näıve Bayes [83] are used for this purpose. Other times, a

well-working model is used as this baseline. Which is the suitable baseline

for this kind of experimentation? In 4.3.4 we present a very simple solution

for the first approach to the problem stated on 4.3.1 (a solution which only

makes use of thesaurus information).
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• The problem of evaluation: this is a very important point, to make con-

clusive results. If the problem is considered to be a category-ranking pro-

blem, a very common way to evaluate are the precision/recall measures, and

the MAP measure (the average precision on the standard eleven points of re-

call). We shall discuss later, in section 4.3.5, the advantages and drawbacks

of every evaluation measure, selecting the more appropriate to evaluate this

problem.

Obviously, the consideration of this evaluation procedure is not clearly sa-

tisfying the semantic links among categories. For example, imagine that a

document into the test set is classified to a category A, which is the broader

term of B. If A does not appear in the results of the correct classes of this

document, but B does, using pure precision/recall evaluation, the category

A will be considered as wrong, even when it is almost the desired category,

with a certain degree of generality.

• The problem of related class influence: as in hierarchical classification

systems, a class can be associated to a certain document by means only

of hierarchy-related classes. For example, if all the narrower terms of a

descriptor seem to be relevant for a certain document, the system should

decide returning the broader descriptor instead. This fact means that the

training set does not need to be complete (in the sense of containing at least

one document of each class), and so, a certain descriptor can be returned

in the results, even if it does not appear in the entire training set.

4.3.3 Related Work in Automated Indexing

We give here some references for related works on automatic indexing, where the

set of categories belongs to a thesaurus:

• In [93], an indexer is built for the DESY [40] thesaurus (a thesaurus in the

high energy physics domain used at the CERN) using several classification

methods. This work is also presented, in a shorter form, in [92].

• An old approach to indexing in Eurovoc, without considering the structure

of the thesaurus can be found in [70].
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• In [125], the automatic indexer for Eurovoc used in the European Par-

liament is described and evaluated. In [124] and [127], the same authors

propose an algorithm for automatic indexing of Eurovoc documents in a

multilingual environment. This method of automatic indexing is also used

as a tool to calculate multilingual document similarity in [126].

• In [87] an algorithm to assign keywords from a thesaurus is presented and

tested in AGROVOC. It is also shown in [89] and in [88].

4.3.4 A Simple Baseline: a Modified Vector Space Model

In this section we present a baseline for the problem of unsupervised classification

(i.e. given a document and a thesaurus, associate to the document the most

probable descriptors). Due to the lack of a training set, this procedure needs to

be done comparing the text of the descriptors (and not descriptors) to the text of

the document. Roughly speaking, a method of this kind will return with higher

confidence values those descriptors which have less distance to the document.

The easiest way to measure the distance between two documents is the Vector

Space Model (VSM) which is one of the most successful models in IR. It was

firstly proposed by G. Salton, A. Wong and C. S. Yang [115] in the 70s, and it is

used until nowadays. Each document is represented as an n-tuple of nonnegative

real numbers. Moreover, each coordinate corresponds to one of the n different

terms present in the collection. Thus, the value of the coordinate describes the

importance of the term in the document, i. e., a very important term in the

document has a higher value of the coordinate than less important ones. The

value (weight) of the importance of the term i on the document j (the i-th

component of the j-th document vector) is denoted by wij, and it is often defined

as:

wij = tfij idfi =
fij

maxk fkj
log

D

Di

,

where fij is the absolute frequency of the i-th term in the j-th document. On

the other hand, idfi stands for inverse document frequency of i-th term, as the
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logarithm of the number of documents between the number of documents that

term appears in, and it measures the rarity of the term in the collection.

Note that this scheme for the values wij is not unique, and G. Salton and C.

Buckley proposed several variants in [116]. Anyway, the setting used here is a

standard one.

Finally, similarity between two documents is defined as the cosine of the angle

between the two vectors:

sim(di, dj) =
〈di, dj〉
‖di‖‖dj‖

=

∑n
k=1wkiwkj√∑n

k=1w
2
ki

∑n
k=1w

2
kj

Applying the VSM to the case of unsupervised classification over the descrip-

tors of a thesaurus is very simple and can be done using the following algorithm:

1. Each descriptor is associated to a vector in the space (it is represented the

same way as a document).

2. When classifying a new document d, descriptors are ranked in decreasing

order of similarity sim(d, desci), for all descriptors desci of the thesaurus.

Building the vectors for the descriptors (the first step of the algorithm) can

be done in the two following ways:

• VSM with independent classes: [73; 135] we associate to each descrip-

tor the terms of its own descriptors, and the ones belonging to its non-

descriptors (without any kind of distinction). Obviously, no relationships

between classes are taken into account.

• Hierarchical VSM: (HVSM) [2; 3] each descriptor is represented by the

vector containing its own terms, the terms of its associated non-descriptors,

and the terms of the corresponding broader term added recursively, until

a top term is found1. Hierarchical VSM is supposed to be more accurate,

because BT/NT relationships are used.

1We can describe this model thinking that every descriptor “contains” its own information,
and all the information contained by its broader term, recursively. So, a descriptor is the
“specialization” of its broader term.
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This approach is very similar to the one used in [3], for a problem of hier-

archical classification of documents, adapted to the case of the set of categories

defined by a thesaurus.

4.3.5 Evaluation of the Task

Here we explore the different alternatives to evaluate this task, commenting the

advantages and drawbacks of each one. Based on these conclusions, we shall use

some chosen measures for the evaluation of the experiments which will be carried

out in the empirical test of the models.

To begin with, we have stated that this is a multilabel document categorization

problem. We can suppose that, without loss of generality, we can make traditional

multilabel evaluation. The main two measures used to evaluate this task on the

literature [119] are the precision/recall breakeven point and the Fα with α = 1,

both in their micro and macro versions. The first one (breakeven point) can

be used with a classifier which returns a CSV1 value for each pair (document,

category), and the second one (F1 per category) needs a “hard” classification (an

assignment of a subset of the set of categories, C, to each document). Because

we shall be using probabilistic classifiers, we shall not do hard classification and

then, F1 per category could not be used.

The two previous measures, F1 and precision/recall breakeven point are used

from the viewpoint of the categories, i.e. they are the average of the individual

F1 and precision/recall breakeven point obtained for each one of the categories,

considered as a binary problem. Knowing that the set of documents in such a

corpus tends to be very unbalanced, and maybe many categories do not get any

assignments, the classical methodology, is not appropriate for the evaluation of

the real task performed by the human indexer.

But, what is the more natural approach to the task of indexation on this

kind of environment? Consider a trained model, and a certain document d to

categorize. It should be desirable to present a list of descriptors to the indexer

1We recall that the CSV is a real number that measures the confidence of how a document
is assigned to a category by the classifier (the greater this number is, the bigger confidence the
classifier reports).
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in order to help him make his decision. This can be done in two different (and

independent) ways:

1. We present the indexer the whole list of descriptors, ranked by their pro-

bability value p(ci|d), obtained with the model. If the model is good, the

indexer would not need to traverse the whole list to find all the interesting

list of descriptors, because they will be on the top of the list. Alternatively,

there should be few “noise” (incorrect assignments) on this top part of the

list.

2. Another alternative is to take the previous list, and cut it at a certain po-

sition, assuming that, although we could lose some interesting descriptors,

the returned set would be accurate.

To evaluate the first proposal, we can use an IR approach. We think a docu-

ment to be categorized as a query given to an IR system. The list of returned

descriptors will be the list of documents returned by the IR system, and the list

of true assignments would be the relevance judgements corresponding to that

query. Thus, we can compute, for each document, a precision/recall curve, in or-

der to obtain, finally, an averaged precision/recall curve for the set of documents

to categorize. This curve can be summed up with the well-known mean average

precision (MAP) on the standard 11 points of recall: (0.0, 0.1, 0.2, . . . , 0.9, 1.0).

The second proposal can be evaluated in a similar way. In this case, we do not

have a list of ranked descriptors, but a set of proposed assignments (cutting the

previous list at a certain given position). The resulting set will have a precision

and a recall value, with respect to the true assignments to the document, and

both values can be combined with the F1 measure. Finally, all the F1 values can

be averaged over the set of documents. Note that this F1 “per-document” is not

the same value than the “per-category” one. Besides, the choice of the position

of the cut in the list will affect this value. Consequently, we shall use F1@X to

denote the F1 value obtained when the list of ranked descriptors is cutted in the

Xth descriptor, taking the first X as proposed assignments, and discarding the

rest. This measure can also be, obviously, “micro” or “macro” averaged.
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Note that any of the three proposed alternatives (precision/recall breakeven

point, MAP and F1@X) give values between 0 and 1, and represente a better

performance of a model, when they are higher.

4.4 A Bayesian Network Model for Automatic

Thesaurus Indexing

We present here two different categorization models to solve the problem of in-

dexing a set of documents over the set of descriptors belonging to a thesaurus.

The model presented here is basically the same we showed on [22]. The first of

the models has the characteristic that no training is required to start using the

system (it uses only information from the thesaurus). Thus, we shall exploit only

the hierarchical and lexical information from the thesaurus to build the classifier.

As we stated in section 4.3.1, this is an advantage because the model is ready-to-

use with almost any thesaurus and without having preclassified documents (in a

large hierarchy, the amount of preclassified documents necessary for training may

be huge). On the other hand, this is also a weakness because any kind of infor-

mation not considered in the thesaurus (e.g. other relations, specific information

handled by documentalists,...) will not be taken into account and, therefore, we

should not expect very high success rates in comparison with classifiers that are

built using training data [28; 45; 74; 112].

In this sense our initial proposal is more similar to the work in [2; 3], where

a method to populate an initially empty taxonomy is presented. The working

framework is that a documentalist would prefer to confirm or discard a given

classification hypothesis proposed by the system rather than examining all the

possible alternatives.

However, the model can also naturally incorporate training data in order to

improve its performance: this leads to the second model, which can be seen

as a natural extension of the first. The information provided by preclassified

documents can be appropriately merged with the hierarchical and equivalence

relationships among the descriptors in the thesaurus, in order to obtain a classifier

better than the one we would obtain by using only the training documents.
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Another important characteristic of our model is that is based on Bayesian

networks. To the best of our knowledge, no Bayesian network-based models other

than Näıve Bayes have been proposed to deal with this kind of problems [67]. We

create a Bayesian network to model the hierarchical and equivalence relationships

in the thesaurus, and next we extend it to also use training data. Then, given

a document to be classified, its terms are instantiated in the network and a

probabilistic inference algorithm, especifically designed and particularly efficient,

computes the posterior probabilities of the descriptors in the thesaurus.

4.5 The Basic Model: The Bayesian Network

Representing a Thesaurus

In this section we describe the Bayesian network model proposed to represent

a thesaurus, including the graphical structure, the conditional probabilities and

the inference mechanism.

4.5.1 Bayesian Network Structure

A simple approach for modeling a thesaurus as a Bayesian network would be to

use a type of representation directly based on the graph displayed in the figure

4.1, containing descriptor and non-descriptor nodes, then adding term nodes re-

presenting the words in the thesaurus and connecting them with the descriptor

and non-descriptor nodes that contain these words. This would result in a net-

work structure as the one displayed in the figure 4.3. The problem with this type

of topology is that each descriptor node receives two or three kinds of arcs with

different meaning, those from its non-descriptor nodes and those from its term

nodes and, for the case of complex descriptor nodes, also those arcs from the

narrower descriptor nodes that they contain.

As this would make much more difficult the process of assigning the associated

conditional probability distributions to the nodes, we propose a different topology.

The key ideas are:
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Figure 4.3: Preliminary Bayesian network in the example about health.

(1) to explicitly distinguish between a concept and the descriptor and non-

descriptors used to represent it, and,

(2) to clearly separate, through the use of additional nodes, the different infor-

mation sources (hierarchy and equivalence relationships) influencing on a

concept.

According to the first key idea, each concept, labeled identically as the des-

criptor representing it, will be a node C in the network. We shall also distinguish

between basic and complex concepts: the former do not contain other concepts,

whereas the later are composed of other concepts (either basic or complex). Each

descriptor and each non-descriptor in the thesaurus will also be nodes D and

ND in the network. All the words or terms appearing in either a descriptor or

a non-descriptor will be term nodes T . To accomplish with the second key idea,

for each concept node C we shall also create two (virtual) nodes: EC , which will

receive the information provided by the equivalence relationships involving C;

and HC , which will collect the hierarchical information, i.e. the influence of the

concepts contained in C.

With respect to the links, there is an arc from each term node to each des-

criptor and/or non-descriptor node containing it. There are also arcs from each
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non-descriptor node, associated to a concept node C, to the corresponding virtual

node EC (these arcs correspond with the USE relationships), as well as from the

own descriptor node representing the concept C to EC . There is also an arc from

each concept node C ′, excluding those nodes which are associated with a top des-

criptor, to the virtual node(s) HC associated with the broader complex concept(s)

C containing C ′ (these arcs correspond with the BT relationships). Finally, there

are arcs from the virtual nodes EC and HC to its associated concept node C.

We shall denote T the set of term nodes, DE and ND the sets of descriptor

and non-descriptor nodes, respectively, C the set of concept nodes, and E and H

the sets of virtual equivalence and hierarchical nodes, respectively. All the nodes

will represent binary random variables. The domain of each variable is: {t+, t−}
∀T ∈ T; {de+, de−} ∀DE ∈ DE; {nd+, nd−} ∀ND ∈ ND; {c+, c−} ∀C ∈ C;

{e+, e−} ∀E ∈ E; {h+, h−} ∀H ∈ H. For term nodes, their values indicate

whether the term appears in the document to be classified. For descriptor and

non-descriptor nodes, the values represent whether the corresponding descriptor

or non-descriptor may be associated with the document. For concept nodes and

their associated virtual nodes the values mean whether the concept is appropri-

ate/relevant to classify the document. Pa(X) will represent the parent set of a

node X in the graph. The proposed network topology is completely determined

by specifying the parent set of each node: for each term node T ∈ T, Pa(T ) is the

empty set; for each descriptor and non-descriptor node DE ∈ DE and ND ∈ ND,

Pa(DE) and Pa(ND) are in both cases the set of term nodes associated with

the words that appear in DE and ND, respectively; for each virtual equivalence

node EC ∈ E, Pa(EC) is the set of descriptor and non-descriptor nodes that

define the concept C; for each virtual hierarchical node HC ∈ H, Pa(HC) is the

set of concept nodes contained in the corresponding complex concept C; finally,

for each concept node C ∈ C, Pa(C) = {EC , HC}, the set of its two associated

virtual nodes. For the previous example the corresponding subnetwork is shown

in Fig. 4.4. It should be noticed that this model is slightly different and more

general than the one we proposed in [17].
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Figure 4.4: Bayesian network in the example about health.

4.5.2 Conditional Probability Distributions

The probability distributions that must be specified are the prior probabilities

for term nodes, p(t+), and the conditional probabilities for the remaining nodes:

p(de+|pa(DE)), p(nd+|pa(ND)), p(c+|pa(C)), p(e+|pa(E)) and p(h+|pa(H)). In

all the cases pa(X) represents a configuration of the parent set Pa(X) of the node

X.

For the prior probabilities of term nodes we propose using a constant value,

p(t+) = p0, ∀T ∈ T (although we shall see later that this is not an important

issue at all).

As the treatment of the descriptor and non-descriptor nodes will the same, in

order to simplify the exposition, from now on we shall denote D = DE∪ND and

we shall refer to both descriptor and non-descriptor nodes as descriptor nodes.

An element in D will be denoted as D. For the conditional probabilities of a

descriptor node D given the terms that it contains, p(d+|pa(D)), we propose

using a canonical additive model [15], which has been successfully employed in
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the IR field:

∀D ∈ D, p(d+|pa(D)) =
∑

T∈R(pa(D))

w(T,D), (4.1)

where w(T,D) is the weight associated to each term T belonging to the descriptor

D. R(pa(D)) is the subset of parents of D which are observed in the configuration

pa(D), i.e., R(pa(D)) = {T ∈ Pa(D) | t+ ∈ pa(D)}. So, the more parents of D

are observed the greater its probability of relevance. These weights can be defined

in any way, the only restrictions are that w(T,D) ≥ 0 and
∑

T∈Pa(D) w(T,D) ≤ 1.

To define the weight of a term in a descriptor, w(T,D), we propose a normal-

ized tf-idf scheme, as those frequently used in IR:

w(T,D) =
tf(T,D) ∗ idf(T )∑

T ′∈Pa(D) tf(T ′, D) ∗ idf(T ′)
.

The inverse descriptor frequency of a term, idf(T ), is

idf(T ) = ln

(
m

n(T )

)
,

where n(T ) is the number of descriptors and non-descriptors in the thesaurus that

contain the term T and m is the total number of descriptors and non-descriptors.

The term frequency of a term in a descriptor, tf(T,D), is the number of times

that this term appears in the descriptor (which will be almost always equal to 1,

because the descriptors usually contain very few words).

For the conditional probabilities of each virtual equivalence node EC given the

descriptor nodes that define the concept C, p(e+
c |pa(EC)), it is not appropriate

to use the previous additive model, because each descriptor alone is supposed to

be able to represent the concept, and this behaviour cannot be obtained using an

additive model. So, we propose to use another kind of canonical model, namely

an OR gate [102]:

∀EC ∈ E, p(e+
c |pa(EC)) = 1−

∏
D∈R(pa(EC))

(1− w(D,C)) . (4.2)

R(pa(EC)) = {D ∈ Pa(EC) | d+ ∈ pa(EC)} and w(D,C) is the probability that
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the descriptor D alone (the other descriptors being non relevant) makes concept

C relevant, with 0 ≤ w(D,C) ≤ 1.

For the weights of the descriptors in the concepts, w(D,C), a reasonable

choice is a high value near 1.0, because any descriptor associated with a concept

represents it perfectly (descriptors and non-descriptors associated with a concept

are assumed to be synonymous in the language of the thesaurus)1.

For the conditional probabilities of each virtual hierarchical node HC given the

concept nodes it comprises, p(h+
c |pa(HC)), we can use again the previous additive

canonical model, because the more relevant are all the concepts contained in the

complex concept C associated to HC , the more clearly this broader concept is

appropriate2:

∀HC ∈ H, p(h+
c |pa(HC)) =

∑
C′∈R(pa(HC))

w(C ′, HC). (4.3)

R(pa(HC)) = {C ′ ∈ Pa(HC) | c′+ ∈ pa(HC)} and w(C ′, HC) is the weight of the

concept C ′ in HC , with the weights verifying:

w(C ′, HC) ≥ 0, and
∑

C′∈Pa(HC)

w(C ′, HC) ≤ 1.

For these weights w(C ′, HC), we propose to use uniform weights (there is no

prior reason to believe that a concept is more important than another one with

respect to the broader concept containing them). Therefore:

w(C ′, HC) =
1

|Pa(HC)|
.

Finally, for the conditional probabilities of each concept node given its asso-

ciated virtual nodes, p(c+|{ec, hc}), we again propose an OR gate (a concept may

1In order to discriminate between concepts having a different number of descriptors that
match with the document to be classified, it is preferable not to use a value equal to 1.0.

2This strategy is motivated by the common guidelines being used to manually classify
documents: we should use the most specific concepts available to bring out the main focus of
a document and, if the document covers several specific concepts, then we should use as many
specific concepts from different subtrees as required by the content of the document. However,
when several specific concepts are needed that fall within the same subtree structure, the broader
concept should be assigned instead.
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become relevant either because of its own lexical information (its descriptor and

non-descriptors) or because most of the narrower concepts contained in it become

relevant): ∀C ∈ C,

p(c+|{ec, hc}) =


1− (1− w(EC , C))(1− w(HC , C)) if ec = e+

c , hc = h+
c

w(EC , C) if ec = e+
c , hc = h−c

w(HC , C) if ec = e−c , hc = h+
c

0 if ec = e−c , hc = h−c

(4.4)

where w(EC , C) and w(HC , C) are the weights or importance attributed to the

equivalence and hierarchical information, respectively, with 0 ≤ w(EC , C) ≤ 1

and 0 ≤ w(HC , C) ≤ 1.

4.5.3 Inference

The procedure used to classify a given document Q would be as follows: first we

instantiate in the network the term nodes corresponding to the words appearing

in Q as observed and the remaining term nodes as not observed1. Let q be

such a configuration of the term nodes in T. Next, we propagate this information

through the network and compute the posterior probabilities of the concept nodes,

p(c+|q). Finally, the descriptors associated with the concept nodes having greater

posterior probability are used to classify the document.

We can take advantage of both the network topology and the canonical models

being considered in order to compute the posterior probabilities of the concept

nodes. As all the term nodes are instantiated to either observed or non-observed,

then all the descriptor nodes which are parents of a virtual equivalence node are

conditionally independent given q. In the same way, the virtual nodes EC and

HC associated to a concept node C are also conditionally independent given q.

Therefore, taking into account that the canonical model for both virtual equiva-

lence nodes and concept nodes is an OR gate, we can compute these probabilities

1For that reason the values of the prior probabilities of the term nodes are not important.
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as follows [102]:

p(e+
c |q) = 1−

∏
D∈Pa(EC)

(
1− w(D,C)p(d+|q)

)
. (4.5)

p(c+|q) = 1− (1− w(EC , C)p(e+
c |q))(1− w(HC , C)p(h+

c |q)). (4.6)

The probabilities of the descriptor nodes can be calculated, according to the

properties of the additive model being used, as follows [15]:

p(d+|q) =
∑

T∈Pa(D)

w(T,D)p(t+|q).

As p(t+|q) = 1 ∀T ∈ Pa(D) ∩Q and p(t+|q) = 0 ∀T ∈ Pa(D) \Q, we obtain:

p(d+|q) =
∑

T∈Pa(D)∩Q

w(T,D). (4.7)

The computation of the posterior probabilities of the virtual hierarchical nodes

is also very simple, using again the properties of the additive canonical model

considered:

p(h+
c |q) =

1

|Pa(HC)|
∑

C′∈Pa(HC)

p(c′+|q). (4.8)

Therefore, we compute first the posterior probabilities of all the descriptor nodes

using (4.7), then the posterior probabilities of the virtual equivalence nodes using

(4.5). Next, we can compute in a top-down manner the posterior probabilities

of the virtual hierarchical nodes and the concept nodes using (4.8) and (4.6),

respectively.

4.5.4 Implementation

Now, let us study in more detail how to implement in an efficient way the proposed

model. We start from the term nodes associated with the words appearing in the

document to be classified. For each one of them, we accumulate the weights of

these term nodes in the descriptor nodes containing them. After this process,
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each visited descriptor node D contains the value

v[D] =
∑

T∈Pa(D)∩Q

w(T,D),

which coincides with p(d+|q), according to (4.7). The posterior probabilities of

the non visited descriptor nodes are equal to zero.

Next, starting from each of the visited descriptor nodes, we would visit the

virtual equivalence node containing it and compute progressively the product∏
D∈Pa(EC)

(1− w(D,C)v[D]) .

After this step each visited virtual equivalence node contains, according to

(4.5), the value

v[EC ] = 1− p(e+
c |q)

(the non visited virtual equivalent nodes have a posterior probability equal to

zero).

Finally, we traverse the subgraph induced by the set of visited virtual equiva-

lence nodes and their descendants in a topological ordering (parents before chil-

dren). If the visited node is a basic concept node C, we directly compute p(c+|q),
by setting

v[C] = w(EC , C)(1− v[EC ])

(because there is no hierarchical information for basic concept nodes). If the

visited node is a virtual hierarchical node HC , we compute its probability by

accumulating in v[HC ] the values already computed for its parent concept nodes

and dividing by the number of parents, according to (4.8). If the visited node is

a complex concept node C, we compute its probability by setting

v[C] = 1− (1− w(EC , C))(1− v[EC ])(1− w(HC , C)v[HC ]).

The algorithm implementing this process is displayed in Algorithm 3. It can
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be easily seen that the complexity of this algorithm is linear in the number of

arcs in the graph or, more precisely, linear in the number of arcs of the subgraph

induced by the term nodes appearing in the document Q and their descendant

nodes. It is worth mentioning that in the actual implementation the Bayesian

network is never explicitly constructed; instead, we directly use the BT, NT

and USE relationships in the thesaurus, augmented with two inverted file-like

structures to store, for each word in the thesaurus, the lists of descriptors and

non-descriptors containing it.

4.6 Extending the Basic Model to Cope with

Training Information

The model proposed so far does not use training information, in the form of

preclassified documents. However, it is quite simple to include this type of infor-

mation into the Bayesian network model, thus obtaining a supervised classifier.

Following with the previously used idea of clearly separating the different sources

of information relative to each concept, then we would add a new parent node TC ,

called virtual training node, to each concept node C (in addition to those virtual

nodes HC and EC representing hierarchical and equivalence relationships), repre-

senting the information obtained for this concept from the training documents.

In other words, this node TC would contain the posterior probability distribution

for the relevance of the concept, predicted by a (probabilistic) supervised classi-

fier. This information would be merged with those obtained from hierarchy and

equivalence through an OR gate.

Although, in principle, we could use any supervised classifier able to give

a probability distribution as the output, we are going to use a classifier which

is particularly coherent with the content of the previous chapter, and with the

canonical models being considered: the OR gate Bayesian network classifier, in

its multinomial version (noted by “ML” in chapter 3).

Remember that the network structure is fixed, having arcs going from each

term node T to the virtual training node TC if this term appears in training
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Algorithm 3 Inference Algorithm for the Basic BN model

for all term node T ∈ Q do
for all descriptor node D child of T do

if v[D] exists then
v[D]← v[D] + w(T,D)

else
create v[D]
v[D]← w(T,D)

end if
end for

end for
/* at this point each v[D] contains the value p(d+|q) for all descriptor node D
such that v[D] exists */

for all descriptor node D such that v[D] exists do
EC : node child of D
if v[EC ] exists then
v[EC ]← v[EC ] (1− w(D,C) v[D])

else
create v[EC ]
v[EC ]← 1− w(D,C) v[D]

end if
end for
/* at this point each v[EC ] contains the value 1− p(e+

c |q) for all node EC */

insert in a list L the concepts C descendants of all the virtual equivalence
nodes EC such that v[EC ] exists, and their descendants in topological order

for all node B ∈ L do
if B is a basic concept node C then
v[C]← w(EC , C) (1− v[EC ])

else if B is a virtual hierarchical node HC then
v[HC ]← 0
for all node G ∈ Pa(HC) such that v[G] exists do
v[HC ]← v[HC ] + v[G]/k[HC ]
/* k[HC ] stores the number of parents of HC */

end for
else

/* the node is complex */
v[C]← 1− (1− w(EC , C)) (1− v[EC ]) (1− w(HC , C) v[HC ])

end if
end for
/* at the end of this process each v[C] contains the value p(c+|q) */
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Figure 4.5: Extended Bayesian network to include training information, in the
example about health.

documents which are associated with the concept C1. Figure 4.5 displays the

corresponding network for the example about health.

Concerning the numerical information, we include a new parameter w(TC , C),

0 ≤ w(TC , C) ≤ 1, representing the contribution of the training information to

the relevance of the concept C, so that the new conditional distribution of a

concept node is

∀C ∈ C, p(c+|pa(C)) = 1−
∏

XC∈R(pa(C))

(1− w(XC , C)) , (4.9)

where XC represents either EC , HC or TC . The posterior probability of each

concept given a document, p(c+|q), is therefore calculated as:

p(c+|q) = 1−(1−w(EC , C)p(e+
c |q))(1−w(HC , C)p(h+

c |q))(1−w(TC , C)p(t+c |q)). (4.10)

1Notice that these terms are no longer restricted to be part of the descriptors in the the-
saurus, they are the terms found in the training documents.
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On the other hand, the conditional distributions of the new virtual training

nodes are defined in the same way as explained in chapter 3 (using the “maximum

likelihood” approach).

4.7 Experimental Evaluation

Our experiments have been carried out using a database provided by the Parlia-

ment of Andalusia at Spain, containing 7933 parliamentary resolutions manually

classified using descriptors from an adapted version of the Eurovoc thesaurus.

This specific version contains 5080 descriptors, 6975 non-descriptors and 7120

distinct words (excluding stopwords). The BN representing the thesaurus would

therefore contain more than 30000 nodes. The average number of assigned des-

criptors per document is 3.8 (the number of descriptors assigned to a document

ranges from 1 to 14). We have not used the full text of the documents but only a

short summary (typically two or three lines of text). In our experiments we always

use stemming (provided by Porter’s algorithm for Spanish language implemented

in the Snowball package [104]) and stopword removal.

The evaluation takes into account that our aim is not a complete but only a

partial automation of the classification process, showing to the user an ordered list

of the most probable descriptors1 Then, as performance measures, and following

our analysis made in section 4.3.5 we have firstly selected the typical measure used

in multilabel categorization problems: precision/recall breakeven point, which

will be computed in micro-average and macro-average. The two presented IR-

style measures will also be used too: the F1 measure at a five document level (i.e.

F1@5, the F1 obtained by assuming that the system assigns to each document

the five most probable descriptors), and the average 11-point precision. As in the

case of the breakeven point, we shall compute the micro and macro averages of

the F1 measure. In all the measures, a higher value means a better performance

of the model, and all of them are real numbers on the interval [0, 1].

1We are therefore using an instance of the so-called category-ranking classifiers [119].
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4.7.1 Experiments without Using Training Documents

In order to assess the quality of the proposed Bayesian network based model

without using training data, we have also experimentally compared it with the two

simple VSM models presented on section 4.3.4, used as basic benchmark methods.

Let us recall that the first one (VSM) ranks concepts for a document based on

word matching between the document and the lexical information associated to

the concepts in the thesaurus (each concept is indexed using the words appearing

in the descriptor and non-descriptors which are associated with it), so hierarchical

information is neglected. The second one, the hierarchical information (HVSM), is

based on the idea that the meaning of a concept in the thesaurus is a specialization

of the meaning of the broader concepts containing it1 (all the words appearing

in the descriptors and non-descriptors of the broader concepts of a given concept

are also used to index the “document” associated with this concept).

Several combinations of parameters have been tested for our Bayesian network-

based model (BN). In particular, the parameters chosen to be variable have been

the weights w(HC , C) and w(D,C). As stated in section 4.5.2, we have chosen

high values for the weight w(D,C) (0.8 and 0.9), together with the value 1.0. In

order to test the value of the hierarchical information, we have selected several

high values (0.8, 0.9 and 1.0) and a low value (0.0). On the other hand, the

value of the weight of the equivalences w(Ec, C) has been fixed to 1.0. Then,

a value BN, 0.9, 0.8 in the table 4.2 means the Bayesian network model with

w(D,C) = 0.9 and w(HC , C) = 0.8.

With respect to the efficiency of the inference process, all the 7933 resolutions

were classified in around 10 seconds on a computer equipped with an Intel Core2

duo 2GHz processor.

The main conclusion that may be obtained from these experiments is that

the Bayesian network approach is useful in this classification problem, since it

always provides much better results than both the simple and hierarchical vector

space models. The model performance is in general quite acceptable, taking into

1In the language of our Bayesian network model, these broader concepts would be the
descendants of the concept being considered.
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account that no training documents have been used. Concerning the vector space

model, in this case the use of the hierarchical information is self-defeating and

produces results worse than those of the simple VSM1.

The parameters chosen show better performance for a weight of the descriptors

near 1.0, than the 1.0 itself. Although the usage of a hierarchy weight distinct

to 0.0 does not strongly boost the results, it performs little improvements in the

measures, specially in the average precision.

Models Micro BEP Macr BEP Av. prec. Micro F1@5 Macro F1@5
BN, 0.8, 0 0.26244 0.20394 0.29967 0.30811 0.17661
BN, 0.9, 0 0.28241 0.20234 0.30700 0.31419 0.18419

BN, 0.8, 0.8 0.26068 0.21208 0.30500 0.30845 0.17521
BN, 0.9, 0.9 0.26881 0.20903 0.31321 0.31473 0.18433
BN, 0.9, 1.0 0.26636 0.20880 0.31261 0.31381 0.18265
BN, 1.0, 1.0 0.25584 0.20768 0.27870 0.30963 0.18865

VSM 0.15127 0.18772 0.18061 0.20839 0.17016
HVSM 0.13326 0.17579 0.17151 0.20052 0.14587

Table 4.2: Performance measures for the experiments without using training
documents (the two best values for each column are marked in boldface).

4.7.2 Experiments Using Training Documents

In this section we shall evaluate the results obtained by the model using training

documents. We also want to evaluate how the system improves its performance

as more training data are available. In all the computed measures through the

experiments, we shall use 5-folds cross-validation over the same 5 partitions of the

collection. The presented measures, then, will be the average of the five obtained

values. The evaluation will be carried out with the same five measures chosen for

the previous experimentation, in order to make both comparable.

In the first part of the experimentation, the supervised approach of our

Bayesian network will be compared against four pure supervised approaches to

multilabel classification. Concretely, we will use the multinomial Näıve Bayes

1This contrasts with the results obtained in [2] in the context of hierarchical classification of
documents into web directories, where the hierarchical VSM generally outperformed the simple
VSM.
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model [75; 85], the Rocchio classifier [59], Support Vector Machines (SVM) [60]

and a standalone OR gate classifier model1, constructed using information only

from training documents (and not taking into consideration neither the thesaurus

lexical information nor its hierarchical structure)2.

The first set of experiments, whose results are displayed in table 4.3, com-

pares the four supervised approaches with the model using training documents,

tuning some parameters. As stated before, w(D,C) should have a high value,

near 1.0. This parameter will be fixed to 0.9 (a value which provides good re-

sults on the previous experimentation). On the other hand, the weight of the

training information, w(TC , C), will be high, and also fixed (to 1.0 in this case).

Therefore, the two free tunable parameters we shall consider in the model will

be the weight of the hierarchy, w(HC , C), and the weight of the equivalence rela-

tionships, w(EC , C). In table 4.3, the supervised version of our Bayesian network

model will be noted as “SBN a, b”, where a will be the weight w(Ec, C) and b will

be w(HC , C). From a certain viewpoint, we want to study the contribution of

these two sources of information (hierarchical and lexical) to the baseline model

(the standalone OR gate classifier). This leads us to the two following questions.

Does information from the terms of the thesaurus help in the supervised case?

And the second one, does information from the hierarchical relationships of the

thesaurus helps now?

These experiments show up that adding hierarchical information (“Sup. BN,

0.0, X”) to the OR gate model clearly improves the classification results. More-

over, adding textual information (“Sup. BN, X, 0.0”) without hierarchical infor-

mation also boots classification results. In this case, the hierarchy added to the

lexical information of the thesaurus does not make a significant advance, but it

improves the results, being the “Sup. BN, 0.5, 0.1” and the “Sup. BN, 0.8, 0.1”

the two best performing configurations we have tested.

The results in Table 4.3 show that our Bayesian network model systematically

obtains better results than two classical supervised classifiers (Rocchio and Näıve

Bayes) and one ‘uninformed’ version of itself (standalone OR gate), and even

1The one presented in chapter 3, with the “maximum likelihood” estimation.
2In all the cases we used our own implementations of these algorithms, except in the case

of SVM, where the software package SVM light [62] was used.
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Models Micro BEP Macr BEP Av. prec. Micro F1@5 Macro F1@5
Näıve Bayes 0.42924 0.17787 0.61840 0.50050 0.20322

Rocchio 0.34158 0.35796 0.43516 0.40527 0.33980
OR gate 0.40338 0.44855 0.56236 0.41367 0.24629

SVM 0.63972 0.47890 0.69695 0.57268 0.40841
SBN 0.0, 0.9 0.54825 0.43361 0.66834 0.54066 0.33414
SBN 0.0, 0.8 0.55191 0.43388 0.67149 0.54294 0.33781
SBN 0.0, 0.5 0.55617 0.43269 0.67571 0.54578 0.34088
SBN 0.0, 0.1 0.55735 0.43282 0.67761 0.54652 0.34228
SBN 0.9, 0.0 0.55294 0.47207 0.65998 0.56940 0.36761
SBN 0.8, 0.0 0.57936 0.47820 0.68185 0.58163 0.38589
SBN 0.5, 0.0 0.58372 0.48497 0.70176 0.57875 0.38009
SBN 0.1, 0.0 0.56229 0.46171 0.68715 0.55390 0.35123
SBN 0.8, 0.1 0.57887 0.47809 0.68187 0.58144 0.38610
SBN 0.5, 0.1 0.58343 0.48487 0.70197 0.57887 0.38146
SBN 0.5, 0.5 0.58285 0.48716 0.70096 0.57859 0.37868
SBN 0.8, 0.8 0.56801 0.47946 0.67358 0.57508 0.37300
SBN 0.9, 0.9 0.53963 0.47200 0.64957 0.56278 0.35742
SBN 1.0, 1.0 0.49084 0.45875 0.59042 0.53235 0.32173

Table 4.3: Performance measures for the experiments using training documents
(the three best values for each column are marked in boldface).

outperforms SVM in some cases. Nevertheless, it should be noticed that in any

case the performance measures obtained are not very high. This can be explained

if we consider the fact that performance decreases as the number of categories

in the problem being considered increases [5; 134], and in our case the number

of categories is quite high (in the order of thousands). However, as we explained

earlier, our goal is not to replace the human experts but to help them, by providing

an ordered list where the correct descriptors can be found in the first positions

in the list. In order to show that this is indeed the case, we have carried out

another experiment to compute the average recall values1 obtained by the different

classifiers when we display to the user the n top-ranked categories, for n = 5, 7,

10, 12, 15, 17 and 20. The results are displayed in Figure 4.6.

1The proportion of correctly assigned categories with respect to the total number of true
categories associated with each document
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Figure 4.6: Microaveraged recall values computed for incremental number of
displayed categories

We can observe in the figure that one of our models finds 65% of the true

categories among the first five categories in the list, 75% among the first ten

and 80% among the first fifteen (from a list of 5080 possible categories). We

believe that any human indexer would consider useful a system having these

characteristics.

The second part of the experimentation will test the classification models in

an environment where not all the training data is available. In these experiments,

for a same test partition, all the classifiers will be trained with the 10%, 20%,

..., 100% of the training data, in order to study if our Bayesian network model

keeps its advantage with the classical models, and if it needs less data to achieve



126 4.7 Experimental Evaluation

a good performance. We have selected, for comparison, two of the best perform-

ing parameter configurations, “SBN 0.5, 0.1” and “SBN 0.8, 0.1” which will be

referred in the experiments as configuration 1 and 2, respectively.

For each measure (micro and macro averaged BEP, average precision and

micro and macro averaged F1 at five), we have obtained a graph, with the values

of the measure at those training set percentages. In all cases, the results are also

averaged over the five test partitions. The results are displayed in figures 4.7, 4.8,

4.9, 4.10 and 4.11.
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Figure 4.7: Microaveraged breakeven point computed for incremental percentage
of training data.



4. Automatic Indexing From a Thesaurus Using Bayesian Networks 127

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  20  30  40  50  60  70  80  90  100

Naive Bayes
Standalone OR-Gate

Rocchio
Supervised BN (conf. 1)
Supervised BN (conf. 2)

SVM

Figure 4.8: Macroaveraged breakeven point computed for incremental percentage
of training data.

The results speak for themselves: the Bayesian network model shows a great

difference with two of the classical supervised approaches (Rocchio and naive

Bayes) and with the OR gate model, in all the cases; in particular, when few
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Figure 4.9: Average precision at 11 standard recall points computed for incre-
mental percentage of training data.

training information is available, our model also outperforms SVM in most of the

cases. Our model also tends to stabilize before and to obtain results close to the

maximum in an early stage of the curve.

4.8 Concluding Remarks

4.8.1 Conclusions

We have developed a Bayesian network-based model for hierarchical classification

of documents from a thesaurus. The experimental results obtained using a large
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Figure 4.10: Micro F1 at five computed for incremental percentage of training
data.

set of parliamentary resolutions from the Parliament of Andalusia and the Eu-

rovoc thesaurus are encouraging: the model without training clearly outperforms

the two simple benchmark methods considered; by integrating the initial model

within a more general scheme where training data, in the form of preclassified

documents, may also be used, we have also outperformed standard text classifi-

cation algorithms, as Rocchio and Naive Bayes, obtaining results comparable to

those of Support Vector Machines.



130 4.8 Concluding Remarks

 0.1

 0.2

 0.3

 0.4

 0.5

 10  20  30  40  50  60  70  80  90  100

Naive Bayes
Standalone OR-Gate

Rocchio
Supervised BN (conf. 1)
Supervised BN (conf. 2)

SVM

Figure 4.11: Macro F1 at five computed for incremental percentage of training
data.

4.8.2 Future Work

For future research, we are planning to improve the initial model in two different

ways: first, by considering the context of the terms/descriptors appearing in a

document. The idea is to avoid assigning to a document a descriptor whose

appearance may be incidental or their meaning within the document being quite

different from the intended meaning within the thesaurus. Second, by taking also

into account the associative relationships between descriptors in the thesaurus.

This initial model could also be combined with other supervised text classifiers

different from the OR gate classifier. Perhaps the relative weights of the lexical
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information in the thesaurus (descriptors and non-descriptors) should depend on

the amount of training data (the more training data, the less influence of the

lexical information in the thesaurus). More generally, instead of fixing manually

all the parameters, i.e. the weights of the different canonical (additive and OR)

probability models being used, it would be interesting to try to estimate or learn

these parameters from the training data.

The Bayesian network model proposed in this chapter is focused on classifi-

cation using descriptors of a thesaurus. However, it could also be used in other

classification problems where the different classes have associated some kind of

descriptive text (which would play the role of descriptors), for example the pro-

blem of classifying documents into hierarchical web directories. Moreover, the

model could also be used with a minor modification in hierarchical text classi-

fication problems, provided that the document can be associated with internal

categories (and not only with the leaves categories): by removing the virtual

equivalent nodes (as well as descriptor nodes). We plan to test our model in

these kinds of problems, as well as with other thesauri larger than Eurovoc, as

AGROVOC or MeSH.

From a methodological point of view, we are also interested in building of

several test collections. As we presented before, official thesauri are used in

many institutions, and it would be interesting to collect, for a certain thesaurus,

a considerable amount of manually indexed documents into a test collection,

together with the edition of the thesaurus used to classify them. This could help

researchers developing new models, and make this model comparable with new

propositions.

Besides, the question of what is the suitable way of evaluating this task,

taking into acount the hierarchy remains as an open question. As explained

before, traditional precision-recall metrics (and derivatives) do not consider the

hierarchical relationships among classes. A more precise measure should take this

structure into account, not penalizing a result if it is related with the true value

on its ancestral line. We think that more work could be done in this task.
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Chapter 5

Structured Document

Categorization Using Bayesian

Networks

5.1 Introduction

In this chapter we deal with a subproblem of supervised Document Categoriza-

tion, which we shall call Structured Document Categorization. Because this is not

a standard terminology, we shall make a brief introduction to what we understand

as “structured”.

As stated before, in chapter 1, the “classic” Document Categorization pro-

blem consisted of finding a reasonable labeling for a set of flat text documents,

called the test corpus. To make this labeling we are provided of another corpus,

the training corpus, whose examples are already labeled (with binary labels, mul-

ticlass labels, or even multilabeled). The classic methods exploit the content of

the labeled documents, in order to find a good classifier which assigns the label to

unlabeled documents, as a function of the content itself (the terms). The classic

problem is very well studied [118], and the state-of-the-art methods often outper-

form humans doing the same task, for small corpora. These documents are what

we have called “flat text documents” (or simply “flat documents”) in previous

chapters. The term “flat” is used here as “absence of any kind of organization”
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(apart from the organization given by the documents themselves) or just as an

antonym of “structured”.

Thus, unlike flat documents, structured documents add some kind of orga-

nization to the text itself. Nowadays, with the advent of the Internet and the

explosion of information several ways to organize such amount of information

have arisen, and gain credibility. These methods to add some organization are

very commonly used, and result in document models which are more realistic

than simply independent flat text document. We enumerate three of the main

methods to organize text document collections:

1. The documents can be allocated in a hierarchical directory, in order to

make their access easier.

2. The information in each document can be divided and organized, in-

ternally, making a document a non-atomic entity, and allowing the user

to access to any of its parts.

3. The corpus of documents can allow to make explicit relationships (links)

among documents, indicating that the content of the linked document is

somewhat related to the document that links it.

The first method does not allow structured information itself. Thus, it keeps

documents organized in a set of hierarchically organized categories, but the pro-

blem of classification in such a environment is mainly devoted to develop a mathe-

matical model of the explicit relationships among categories. In fact, the problem

of document categorization in a hierarchy of classes is a very active field of re-

search, and the model developed by us in chapter 4 is, from a certain point of

view, a model of such a kind.

The second and the third methods modify explicitly the content of the corpus,

adding to the textual information some kind of meta-information. These two final

methods to represent documents are those which we refer to when we speak of

Structured Document Categorization.

Roughly speaking, the problem of Structured Document Categorization can be

defined as a problem of text document classification, in which a certain internal

structure in the documents exists (inside each document, independently, as in the
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second case of non-atomic documents, or with explicit relationships -links- among

documents).

As a nomenclature convention, from this point, we shall refer to an internally

structured document simply as a “structured document”, knowing that the struc-

ture underlying on the third kind of documents is inherent to the whole set of

documents (a more precise terminology for the third kind of organization would

be “structured corpus”). Thus, the third problem will be referenced in the follo-

wing sections as Link-based Document Classification, in order to be distinguished

of the previous one.

The outline of this chapter is presented as follows: to begin with, we firstly

deal with the problem of (Internally) Structured Document Categorization. We

present this subproblem, studying first a language to define internal document

structure in section 5.2. After that, we define the problem of internally Structured

Document Categorization (5.3.1) and we make a review of the existing methods

for it (section 5.3.2). On section 5.4 we present our methods for classification

(which will essentially consist of reducing this problem to one of the classic “flat

classification”, using a special setting), and after that we include a section of

experimentation (section 5.5) of this methodology with a suitable corpus. Partial

conclusions of this part are shown at section 5.6.

Secondly, in section 5.7 the problem we are going to deal with is the one where

we have a set of linked documents. The problem will be presented, and we shall

review some previous work on this Link-based Classification in sections 5.8.1 and

5.8.2, respectively. On this subproblem, we shall present two different models,

both based on Bayesian networks. The first one, developed in section 5.9, will be

a very simple network, with fixed structure, designed to make multiclass classifi-

cation. Conversely, the second one (presented in 5.12) will be a model where the

structure of the Bayesian network will be learnt directly from data, and it will be

used to cope with multilabeled corpus. Each model will be tested and evaluated

with a suitable corpus (in 5.10 and 5.13, respectively), and results will be pre-

sented. Finally, some conclusions about every one of the two subproblems will

be stated in sections 5.11 (for the multiclass model) and 5.14 (for the multilabel

model).
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5.2 Structured Documents

5.2.1 What is a Structured Document?

The kind of textual information considered until this point has been composed

of independent and atomic units called documents. These units can represent

literary works, scientific articles, annotated multimedia files, etc. If we think of

the concept of document, there are multiple examples where, even being possibly

considerable atomic, it is more natural to treat a document as a set of different

parts. We can think in the following examples:

• A book can be divided in chapters (if it is a literary work). In the case of

dealing with a play (theatrical literature) we shall surely have more divi-

sions, for instance, acts, scenes, lines, speeches, etc.

• A scientific paper often starts first with a title, then with an abstract fol-

lowed by a set of sections, each one usually divided into several subsections

(and so on), and finally, the set of bibliographical references.

• The written transcriptions of a trial, which normally follows a structure

that, even not being rigid on the order of the different parts, has several

compulsory divisions that form it.

Scientific paper

Section Title Subsection Subsection

Section Title

Subsection

Subsection

Subsection
Abstract

Section

Section
Section

Bibliography

Section Title

  Title

Figure 5.1: Example of a structured document.
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This kind of documents presents a different panorama to the one described

on chapter 1. Then, a corpus was a synonym for a set of documents D =

{D1, . . . , Dm}, but now we have a set of structural units U = {U1, . . . , Up}. One

structural unit is a continuous1 fragment of a flat text document (the structural

document considered as a whole, with no structural divisions).

We can preserve the link among units and documents, introducing the mem-

bership relation Ui ∈ Dj, meaning that a structural unit Ui belongs (is a fragment

of) to one document Dj. Obviously, it holds that ∀Ui ∈ U, ∃!Dj : Ui ∈ Dj (each

structural unit belongs to only one document).

Moreover, the set of structural units should form a tree, or a forest [44], that

is to say, we can define for each structural unit, the map container,

container : U −→ U ∪ {∅},

which represents the structural unit that contains one given. It should be verified,

∀Ui, Uj, Uk ∈ U ∧ container(Ui) 6= ∅, that:

(1) container

k︷ ︸︸ ︷
◦ · · · ◦ container(Ui) 6= Ui, ∀Ui ∈ U, ∀k = 1, 2, . . . (non existence

of cycles), and,

(2) container(Uj) = Uk ⇒ ∃!Dl : Uj, Uk ∈ Dl (all the units of the same tree

belong to only one document).

Finally, every structural unit can contain text, other units (of which it its

their container), both of them, or none (if the unit is empty, and is placed, for

example, on a specific part of the document). Further specifications on what

can be the type of the content of a unit can be stated with the languages for

describing structured documents.

Each structured unit is associated to a set of tags, G = {g1, . . . , gq} (each

unit has one tag) which, in some occasions, add some semantic meaning to the

structural division (for example, for scientific papers, we could have G = {“title”,

“author”, “abstract”, “section”, . . . }.
1That is to say, if we consider the text of the document as a succession of words, if a unit

contains two chosen words, it should also contain all the words between the two first.



138 5.2 Structured Documents

Note that the concept of structure that we have defined is flexible. In fact,

structured information is information that is analyzed [41]. This means that

building a structured document for some given flat documents implies choosing

an ideal set of tags, G which should be informative of the kind of unit it repre-

sents. If we choose a set G, only with criteria based on the final presentation of

the document (font size, font aspect, etc), we could probably obtain very little

information of the structure. On the other hand, choosing where structural units

are placed (that is to say, dividing those document in a set U) is not an easy task.

Not all the divisions are useful, neither they all help to organize better a set of

documents. For this case, it is clear that how you divide up your data matters

[41].

One example of the relationships among structural units of a structured do-

cument can be visualized in figure 5.1 (the text has been omitted for clarity

reasons).

5.2.2 Languages for Structured Documents

Now we deal with the practical definition of a structured document. It is very

well known that the de facto standard to define structured documents is the

Extensible Markup Language (XML) language. This language was created by the

World Wide Web Consortium (W3C, an international organism that watches over

the improvement of the Internet), using the previous specifications of the SGML

(a language used previously for the same task). The first version of XML was

announced on 1998 and it is now widely used. Its syntax is very easy, independent

of the platform used, and it completely supports internationalization.

Moreover, the Extensive term (for which the first X of XML stands for) means

that XML has not a restricted set of tags (that is to say, you can use any set G

for any document collection).

The syntax of XML is very simple. After one header including the XML

version number and the encoding of the text used (UTF-8, ISO-8859-2, etc), the

proper content of the file is presented. We shall use a markup of the type <tag>

(to start a structural unit of type “tag”), and </tag> (to finish that structural

unit). The only imposed restrictions are the following:
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• Every tag <tag> that is opened, should be closed with its corresponding

</tag> mark.

• The XML elements should not overlap. If one unit of type <tag1> contains

another unit <tag2>, the correct syntax will be: <tag1> ... <tag2> ...

</tag2> ... </tag1>. Note that the first unit is closed after the nested one

is finished, not the opposite.

• The whole XML document should be contained inside only one unit, called

the root element.

If an XML document verifies this restriction we shall say that it is well formed

XML. Some of the methodologies that we shall present in section 5.4 will require

this correct setting, and all of the software tools used to process XML documents

also need this.

5.3 Structured Document Categorization

5.3.1 Statement of the Problem. Taxonomy of Models

Given a set of training documents D (which can be seen as a set of structural

units U where each unit belongs to a document, and verifies all the rules stated in

section 5.2), the problem of Structured Document classification consists in finding

one classifier f which, being based on the training data, will be able to categorize

a new document D of the same nature (formed by structural units). That is to

say, finding a classifier able to assign a document D one or several categories

f(D) (depending on the kind of the problem chosen).

In fact, and as in the case of flat document classification, the problem can be

binary (the classifier can choose between one class and its negation), multiclass

(there are more than two categories to be assigned, but only one is chosen),

and multilabel (a subset of categories is assigned to every new document to be

categorized).

As we shall see in the next section (5.3.2,containing a review of models), the

two different approaches to this problem are the following:
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1. A reduction of this problem to a flat Document Classification one, where

the structural information is used to build a new set of features. This

approach is easy because all the previous development in this field can be

used, and only some transformations on the documents need to be done.

2. A combination of flat classifiers, launched on the set of leafs of a structural

tree. This is a rather computationally expensive approach, because it needs

more classifiers to be trained, and executed (usually one for each structural

unit, or for each structural unit with a decent size).

On the first type we find the tagging approach (each term of the document is

“tagged” with a prefix indicating structural information), and all the approaches

that add new features built only with structural information. For the second

type, we have the splitting and stacking approaches. In the former, a separate

model is built for each distinct document part and then they are combined in

a way that is natural to the underlying classification algorithm. In the latter

approach, predictions based on different structural components are combined by

a meta classifier built on these predictions.

In this dissertation, we shall not be using any of the two meta-classification

approaches (the combination methods of the second point). Instead of that,

in section 5.4, we shall review some reduction procedures, trying to build new

document representations, and applying some classic classifiers, or some of those

presented in chapter 3. We shall also present new reduction approaches, and

several variations of the classic ones, along with an experimental evaluation of

them.

5.3.2 Previous Works on Structured Document Catego-

rization

This area is a relatively new and unexploited field of research. The first work

on classification of documents where the structure was used [138] dates from

2000 and it presents a tree structure to model structured documents. After that,

each term is tagged with the path to the node (building then a new feature set),

applying afterwards a Näıve Bayes classifier (the first application of the tagging
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method). Another idea presented on this work was to train a different classifier

for each different path, and combine them. This last approach resulted in being

worse than the tagging one.

The splitting approach is used in [36], where a SVM with a Fisher kernel is

applied to the leaf nodes, on the top of a Näıve Bayes classifier, with great results

over the flat baselines.

In [9] a deep review of this field is presented, and a good set of experiments

is done with several datasets of different nature.

A very specific case of Structured Document Categorization is e-mail classi-

fication, where the structure is rather fixed (an e-mail is composed of a sender

address, a set of recipients, the subject, the header, the body and sometimes the

attached files). On this subproblem, some works have treated it as a Structured

Document Categorization problem with two different approaches: training of a

different classifier for each one of the parts of the e-mail (as in [65]), or adding

the structural features to the body of the e-mail [10] (that is to say, the problem

of Structured Document Categorization is thus reduced to a classic Document

Categorization problem).

5.4 Development of Several Structured Docu-

ment Reduction Methods

In this section we deal with the problem of finding new structured document

representations on the space of flat documents (i.e., given a structured document,

we obtain a transformed flat document, where some of the structural information

has been used to build new features). These methods, along with the results

presented, are the same we showed in our INEX’07 paper [16].

It is obvious then, that these methods are independent of the classifier used,

and so, it is possible to make all possible combinations between reduction proce-

dures and classifiers, which gives us a huge amount of categorization approaches.

In order to clearly present all the reduction procedures, we shall use the small

XML document displayed in figure 5.2 (the beginning of “El Quijote”) as a guiding

example of the transformations applied to the XML.



142 5.4 Development of Several Structured Document Reduction Methods

<book>

<title>El ingenioso hidalgo Don Quijote de

la Mancha</title>

<author>Miguel de Cervantes Saavedra</author>

<contents>

<chapter>Uno</chapter>

<text>En un lugar de La Mancha de cuyo nombre

no quiero acordarme...</text>

</contents>

</book>

Figure 5.2: “Quijote”, XML Fragment used for examples, with header removed.

We now explain the different approaches to map structural files into flat ones.

5.4.1 Method 1: “Only text”

This is the näıve approach. It consists of removing all the structural marks from

the XML file, obtaining a plain text file. Used with the previous example, we get

the document displayed in figure 5.3.

El ingenioso hidalgo Don Quijote de la Mancha Miguel

de Cervantes Saavedra Uno En un lugar de La Mancha de

cuyo nombre no quiero acordarme...

Figure 5.3: “Quijote”, with “only text” approach.

This method should be taken as a baseline. Thus, removing all the structural

information, we have a starting point whose classification accuracy should be

improved using more advanced representations.
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5.4.2 Method 2: “Adding”

This method adds structural features to the document, separated from the textual

features. That is to say, structural units are introduced as “additional terms” into

the document. This is basically a natural extension of the procedure presented

in [10]. Our method includes the possibility of adding structural features at a

certain depth.

Thus, we can see a structural unit in an “local” way (an unit is characterized

only by its tag), or we can consider the influence of the list of units to the

root element, until a certain depth level (an unit is characterized by its tag,

followed by the tag of the container, and so on). Using the previous example, the

text unit can be seen standalone (“adding 1”, with depth = 1), contents text

(“adding 2”, depth = 2) or book contents text (“adding 0”, maximum depth

value).

We show in figure 5.4 the transformed flat document of the example document

using “adding” with depth = 2. Leading underscores are used to distinguish

between textual terms and terms representing structural marks. In order to

understand better this procedure, we have made, in figure 5.5, the same procedure

using “adding” with depth = 1. Note that, if the list of successive containers of a

unit has a length less than the depth of the method adding, we just add the set

of containers until the root is found.

_book _book_title El ingenioso hidalgo Don Quijote

de la Mancha _book_author Miguel de Cervantes Saavedra

_book_contents _contents_chapter Uno _contents_text

En un lugar de La Mancha de cuyo nombre no quiero

acordarme...

Figure 5.4: “Quijote”, with “adding 2”.
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_book _title El ingenioso hidalgo Don Quijote de la

Mancha _author Miguel de Cervantes Saavedra _contents

_chapter Uno _text En un lugar de La Mancha de cuyo

nombre no quiero acordarme...

Figure 5.5: “Quijote”, with “adding 1”.

5.4.3 Method 3: “Tagging”

This approach is the same as the one described in [9; 138], and also named

“tagging”. It considers that two occurrences of the same term are different if they

appear inside two different structural units. To model this, terms are “tagged”

with a representation of the structural unit they appear in. This can be easily

simulated appending a prefix to the term, representing its container.

Again, we add the possibility of experimenting at different depth levels, as we

did in the method “adding”.

The only drawback of this procedure is that the data preprocessed by this

method can be very sparse, and then, a very large lexicon could be built from

medium sized collections.

For our example document this method, with depth = 1, obtains the flat

document displayed in figure 5.6.

title_El title_ingenioso title_hidalgo title_Don title_Quijote

title_de title_la title_Mancha author_Miguel author_de

author_Cervantes author_Saavedra chapter_Uno text_En text_un

text_lugar text_de text_La text_Mancha text_de text_cuyo

text_nombre text_no text_quiero text_acordarme...

Figure 5.6: “Quijote”, with “tagging 1”.
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5.4.4 Method 4: “No text”

This method tries to unveil the categorization power using only structural units,

processed in the same way as in the “adding” method. Roughly speaking, it is

equivalent to “adding” and then removing textual terms. In figure 5.7 we can see

the “notext 0” processing of the previous example.

_book _book_title _book_author _book_contents

_book_contents_chapter _book_contents_text

Figure 5.7: “Quijote”, with “notext 0”.

5.4.5 Method 5: “Text replication”

The previous methods deal with a structured collection, having no previous

knowledge about it. That is to say, they do not take into account the kind of

mark, in order to select one action or another. This approach assigns an integer

value to each tag, proportional to its informative content for categorization (the

higher the value, the more informative). This value is used to replicate terms,

multiplying their frequencies in a mark by that factor. Notice that only values

for structural marks directly containing terms must be supplied.

In the previous example, suppose we assign the following set of replication

values:

title: 1, author: 0, chapter: 0, text: 2

Note that a value of 0 indicates that the terms in that unit will be removed.

The resulting text is displayed in figure 5.8.

This method is very flexible, and it generalizes several ones, as the “only text”

approach (one may select 1 for all replication values). The method consisting of

just selecting text from certain tags can be simulated here using 1 and 0 replication

values if the text into an unit is to be considered or not, respectively.
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El ingenioso hidalgo Don Quijote de la Mancha En En un

un lugar lugar de de La La Mancha Mancha de de cuyo cuyo

nombre nombre no no quiero quiero acordarme acordarme...

Figure 5.8: “Quijote”, with “replication” method, using values proposed before.

The main drawback of “text replication” is that we need some experience with

the collection, in order to build the table of replication values before processing

the files.

5.5 Experiments with a Structured Document

Corpus

We present here an experimental evaluation carried out with the Wikipedia XML

corpus [37], on the background of the INEX’07 XML Document Mining track.

The results presented here are basically those obtained in our participation on

the track [16].

The INEX’07 Document Mining corpus is composed of 96611 documents ex-

tracted from the Wikipedia XML Corpus [37] with a 50% training/test split.

The number of categories is 21, corresponding to several portals (for example

Portal:Law, and Portal:Trains) of the Wikipedia. The corpus is relatively large

(720 MB) compared with the standards in Text Categorization, and has over 4

million of structural units. Besides, the corpus is a single-label one (that is to

say, each document is assigned to only one category).

Previous to the classification, and in order to select the best combinations of

classifiers and representations, we have carried out some experiments using only

the training set, by means of cross-validation (dividing the training set into 5

parts). The selected evaluation measures are the microaverage and macroaverage

breakeven point (for soft categorization) and microaverage and macroaverage F1
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(for hard categorization). In every case, the “only text” representation will be

used as a baseline to compare results among different alternatives.

On the other hand, the different classifiers used will be the Naive Bayes in

its multinomial version, and the OR Gate in the two different versions presented

on chapter 2: with maximum likelihood estimation (ML) and with the term

interaction formula (TI).

A cautious exploration of the collection gave us enough information to propose

a set of different replication values (obtained intuitively). Table 5.1 displays the

replication values used in the experiments with the “text replication” approach,

for the different tags. Tags with unspecified replication values are always set to

1.

Tag id=2 id=3 id=4 id=5 id=8 id=11
conversionwarning 0 0 0 0 0 0
emph2 2 3 4 5 10 30
emph3 2 3 4 5 10 30
name 2 3 4 5 20 100
title 2 3 4 5 20 50
caption 2 3 4 5 10 10
collectionlink 2 3 4 5 10 10
languagelink 0 0 0 0 0 0
template 0 0 0 0 0 0

Table 5.1: Replication values used in the experiments.

5.5.1 Numerical results

The results are shown in table 5.2.

Key of the abbreviations used on the table:

• OR Gate (ML): or gate classifier, with the maximum likelihood approach.

• OR Gate (TI): or gate classifier, with the approach that considered inter-

actions among terms.

• µBEP and µF1: micro averaged precision/recall breakeven point, micro

averaged F1 measure, respectively.
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Method Reduction Selection? µBEP MBEP µF1 MF1
Näıve Bayes Only text no 0.76160 0.58608 0.78139 0.64324
Näıve Bayes Only text ≥ 2 docs. 0.72269 0.67379 0.77576 0.69309
Näıve Bayes Only text ≥ 3 docs. 0.69753 0.67467 0.76191 0.68856
Näıve Bayes Adding 1 None 0.75829 0.56165 0.76668 0.58591
Näıve Bayes Adding 1 ≥ 3 docs. 0.68505 0.66215 0.74650 0.65390
Näıve Bayes Adding 2 None 0.73885 0.55134 0.74413 0.54971
Näıve Bayes Adding 2 ≥ 3 docs. 0.66851 0.62747 0.71242 0.59286
Näıve Bayes Adding 3 None 0.71756 0.53322 0.72571 0.51125
Näıve Bayes Adding 3 ≥ 3 docs. 0.64985 0.59896 0.68079 0.53859
Näıve Bayes Tagging 1 None 0.72745 0.49530 0.72999 0.50925
Näıve Bayes Tagging 1 ≥ 3 docs. 0.65519 0.60254 0.71755 0.60594
Näıve Bayes Repl. (id=2) None 0.76005 0.64491 0.78233 0.66635
Näıve Bayes Repl. (id=2) ≥ 2 docs. 0.71270 0.68386 0.61321 0.73780
Näıve Bayes Repl. (id=2) ≥ 3 docs. 0.70916 0.68793 0.73270 0.65697
Näıve Bayes Repl. (id=3) None 0.75809 0.67327 0.77622 0.67101
Näıve Bayes Repl. (id=4) None 0.75921 0.69176 0.76968 0.67013
Näıve Bayes Repl. (id=5) None 0.75976 0.70045 0.76216 0.66412
Näıve Bayes Repl. (id=8) None 0.74406 0.69865 0.72728 0.61602
Näıve Bayes Repl. (id=11) None 0.72722 0.67965 0.71422 0.60451

OR Gate (ML) Only text None 0.37784 0.38222 0.59111 0.37818
OR Gate (TI) Only text None 0.79160 0.76946 0.79160 0.74922
OR Gate (TI) Only text ≥ 3 docs. 0.77916 0.78025 0.77916 0.73544
OR Gate (TI) Only text ≥ 2 docs. 0.79253 0.78135 0.79253 0.75300
OR Gate (ML) Adding 1 None 0.40503 0.43058 0.58777 0.39361
OR Gate (ML) Adding 1 ≥ 3 docs. 0.39141 0.41191 0.57809 0.36936
OR Gate (ML) Adding 2 None 0.40573 0.43335 0.58908 0.39841
OR Gate (ML) Adding 2 ≥ 3 docs. 0.39204 0.41490 0.57951 0.37346
OR Gate (ML) Notext 2 None 0.40507 0.42914 0.48818 0.38736
OR Gate (ML) Tagging 1 None 0.37859 0.40726 0.57274 0.35418
OR Gate (ML) Tagging 1 ≥ 3 docs. 0.36871 0.38475 0.56030 0.32546
OR Gate (TI) Tagging 1 None 0.73784 0.74066 0.73789 0.70121
OR Gate (TI) Repl. (id=2) None 0.78042 0.76158 0.78042 0.73768
OR Gate (TI) Repl. (id=3) None 0.78127 0.76095 0.78127 0.73756
OR Gate (TI) Repl. (id=4) None 0.78059 0.75971 0.78059 0.73511
OR Gate (TI) Repl. (id=5) None 0.77977 0.75833 0.77978 0.73245
OR Gate (TI) Repl. (id=11) None 0.77270 0.74943 0.77270 0.72186
OR Gate (TI) Repl. (id=11) None 0.73041 0.70260 0.73041 0.66733

Table 5.2: Results of our different approaches over the Wikipedia XML corpus.

• MBEP and MF1: macro averaged precision/recall breakeven point, macro

averaged F1 measure, respectively.

• ≥ i: only terms appearing in at least i documents are selected.

5.5.2 Conclusions from the Results

At a first sight, the best classifier in the four measures is a flat text classifier, the

OR Gate in its TI version, without using any special document transformation

(it seems than none of the proposed methods in section 5.4 help this classifier).
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However, it is a clear fact that the “replication” approach helps the Näıve

Bayes classifier. One of the main drawbacks of this classifier are the bad results

obtained, generally in macro measures (due to the nature of the classifier, that

benefits the classes with higher number of training examples). This fact can be

solved easily using a replication approach as stated in the table of results.

On the other hand, adding and tagging methods do not seem to give good

results, using these classifiers.

5.6 Final remarks

The main relevant results presented here are the following:

• We have shown different methods of representing structured documents into

plain text ones. We must also recall that some of them are new.

• According to the results, we found that we could improve categorization

of structured documents using a multinomial Näıve Bayes classifier, which

is widely known and it is included in almost every text-mining software

package, in combination with the replication method.

On the other hand, the present paper raises the following questions that can

be stated as future lines of research:

• How are the results of our models compared with a SVM using only the

text of the documents?

• Can the naive Bayes classifier be improved more using a more sophisticated

feature selection method?

• Having in mind that the replication approach is the one that has given the

best results, what are the optimum replication parameters that can be used

in Wikipedia? In other words, what marks are more informative and how

much?
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• Is there a way to make a representation of the structure of documents that

could be used to improve the results of the OR Gate classifier (specially in

its more promising TI version)?

• Do the “adding”, “tagging” and “no text” approaches help other catego-

rization methods, like, for instance, Rocchio or SVMs?

Managing structure in this problem has been revealed as a difficult task.

Besides, it is not really clear if the structure can make a good improvement

of categorization results.

5.7 Linked Text Documents

The information present on the Internet is not a set of isolated and independent

documents. Instead, a typical web page, apart from the textual content, includes

in its content explicit links to other web pages. These links, called hyperlinks are

shortcuts on the text to automatically navigate from the current document to the

linked one. Although linked documents are not the only example of linked text

documents, they are probably the most extensive and easy to understand one.

We can define a corpus of linked files as a corpus of flat text documents where

a graph structure between the different documents is also given. Note that we

have not specified the kind of the graph (directed or undirected). If the graph is

made of explicit links, it is generally a directed graph (like for example, the case

of hyperlinked documents). If the graph is inferred from underlying non-explicit

relations it is normally an undirected graph (for example, two documents can be

linked if they share the same author).

Thus, if we are given a graph of relationships among documents, along with

a training (labeled) and a test corpus, we can observe the following facts:

1. Here, the classical i.i.d. assumption on the corpus is violated. If two

documents are linked, they cannot be statistically independent.

2. In the more general setting, the graph is only one, linking training and

test documents (i.e. you can have some information for some of the test
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documents before accessing their content, inspecting only the links to or

from labeled documents in the training set).

The first fact has a very direct conclusion: in order to make Document Catego-

rization, we can extract some features of the linked documents (or the document

that link one). A very common application of this principle is using the anchor

text (the text associated to the link) as additional features of the linked document,

adding some terms that may not occur on the document.

The second fact increases the dramatism of the previous affirmation. So, if

we want to ignore all textual features, we could still make some categorizations

of unlabeled documents, only looking at the labels of the neighbors, in order to

infer the own label. From a certain point of view, we can see the labeling of the

neigbors as features, and train a classifier on it. The methods that make use

of these procedures (using or not textual features) are called, in general, graph

labeling [25] procedures.

5.8 Link-based Categorization

5.8.1 Statement of the Problem

If we are given a set of training documents D, where some graph structure (edges

between pairs of documents) is also provided, the problem of Structured Docu-

ment classification consists in finding one classifier f which, being based on the

training data (documents and their relationships), will be able to categorize a

new document D, using its textual information and the labeling of the graph

(either the one formed with the labels of the training documents, or including the

labels that are an output of our classifier in an intermediate step). That is to say,

finding a classifier using the graph structure and the content of the documents,

able to assign a new document D one or several categories f(D) (depending on

the kind of the problem chosen). Of course, the problem again can be binary,

multiclass, or multilabel.

This means that we can look at the entire graph and its labeling in any moment

of the categorization process. Obviously, this assumption is somewhat unrealistic

for a real categorization task. If you think, for example, in a batch categorization
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of web page documents, where a single page is given in every stage of the process,

a more realistic assumption will be to consider only the information available in

that precise moment (that is to say the set of documents linked by the one being

categorized). Obtaining the inverse information (the set of documents that point

to one) is not an easy task because it assumes we already know the entire graph

on the beginning of the process (which will require a whole preprocessing of the

corpus before doing categorization). Anyway, in some of the cases we shall only

use output links, not always for this reason, but because they seem to be more

informative.

Note that the problem of Link-based Document Categorization does not try

to find the graph structure among the documents in any way. The set of graph

nodes and edges is an input data, and our objective is only to find the labels of

the nodes in the graph, but not its structure.

5.8.2 State of the Art

Contrary to the Structured Document Categorization, this is a very active field

of research. The problem has been studied since 1998 in [27] where it was stated

that classical categorization methods did not get good results for the corpora of

linked documents.

The paper by Yang [137] gives a panoramic of Link-based Document Catego-

rization, for the specific case of hyperlinked documents (web pages), presenting

an extensive experimentation.

In the last years, there has been a notable movement in this community, in the

subfield of collective classification [56]. This approach tries to solve the problem of

graph labeling with an iterative method also using the content of the documents.

First, some labels are estimated on the test set, and after that, a combination

or propagation is done until some kind of convergence is obtained. Following the

work presented in Getoor et al. [122], we can make a taxonomy of the several

methods with some key references:

• Methods based on Iterative Classification Algorithm (ICA), which is

a very simple approach, and uses the labeling of the neighbors to estimate

the current label [23; 79; 80; 100].
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• Methods using a Relaxation Labelling algorithm, a more advanced pro-

cedure, which makes use of the labeling of the neighbors, along with their

probability to make more accurate estimates in each iteration [27; 81; 120;

121; 122].

• Methods using a Gibbs Sampling procedure, which try to find a good

labeling, sampling each node label iteratively taking into account the pro-

bability distribution given by the label of the neighbors and the output of

the classifier [82; 86; 121; 122].

• Methods using a Loopy Belief Propagation procedure (LBP), which

use the Pearl’s propagation algorithm and any of its variants [81; 120; 121;

122; 139].

For more details on these methods, we refer the reader to the reference [49].

5.8.3 Presentation of our Models

Our main direction in developing new models will be modeling with Bayesian

networks the structure of the document to classify, and the labels of the neighbors.

In our first model, which will be presented in section 5.9, the probabilities of the

classes, given the document contents (the terms) are firstly computed using a

base probabilistic classifier (for example, a Näıve Bayes). After that, we shall

combine them with the labeling of the linked documents (either if they were from

the training file, or from the test file and their labels are only estimated). The

Bayesian network structure is, in this case, fixed, but the number of nodes is

variable for each document (there will be a variable for each linked file). This is

basically the model that we presented in [19].

Our second model, which will be presented in section 5.12, is rather more

flexible, and it has been developed for the multilabel case. In this model, the

structure of the Bayesian Network is not fixed, and it is learnt from data. This is

a computationally harder approach but its results are, on the other hand, much

better. For this case, the interactions represented are among the categories of the

document itself, and the categories of the related (linked) documents (therefore,

the number of variables will be fixed for each document, because we do not have



154
5.9 A New Model for Multiclass Link-based Classification Using Bayesian

Networks

into consideration how many files of a certain category are linked). This model

was presented in [20].

Recall that, in both cases, we use the notation “linked” to note that a docu-

ment is related to any other. This does not necessarily means that the “linked”

document is (hyper-)linked by the current document, and, in certain occasions,

we could be ignoring the directions of the links, or using the incoming links,

instead of the outgoing ones.

5.9 A New Model for Multiclass Link-based Clas-

sification Using Bayesian Networks

5.9.1 The Basic Model

We present here a new model [19] developed to solve this problem in its multiclass

version [38]. The method is an extension of a probabilistic classifier (we shall use

in the experiments the Näıve Bayes classifier (in its multiclass version, i.e. the

variable C ranges in {c0, c1, . . . , cn}, but other probabilistic classifiers could also

be employed) where the evidence is not only the document to classify, but this

document together with the set of related documents. Note that, in principle,

we shall try to use only information which is available in a natural way for a

text classifier. Considering that different documents are processed through batch

processing, the information easily available to a system, given a document, is the

set of documents it links (not the set of documents that link it).

Consider a document d0, which is linked to documents d1, . . . , dm. We shall

consider the random variables C0, C1, . . . , Cm, all of them taking values in the set

of possible category labels {c0, c1, . . . , cn}. Each variable Ci represents the event

“The class of document di is”. Let ei be the evidence available concerning the

possible classification of each document di (the set of terms used to index the

document di or the class label of di). The proposed model can be graphically

represented as the Bayesian network displayed in figure 5.9.

The independencies represented by the Bayesian network are the following:

given the true class of the document we want to classify, the categories of the

linked documents are independent among each other. Moreover, given the true
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C0

Cm

em

C1

e1

... ...

... ...

e0

Figure 5.9: Bayesian network representing the proposed model.

category of a linked document, the evidence about this category due to the do-

cument content is independent of the original category of the document we want

to classify.

Our objective is to compute the posterior probability p(C0|e), where e is all

the available evidence concerning document d0, e = {e0, e1, . . . , em}. We can start

computing this value using Bayes’ rule:

p(C0 = c0|e) =
p(C0 = c0) p(e|C0 = c0)

p(e)
∝ p(C0 = c0) p(e0, e1, . . . , em|C0 = c0).

(5.1)

As it can be seen on figure 5.9, the variable C0 separates all the different ei

making them independent, so the joint distribution becomes:

p(e0, e1, . . . , em|C0 = c0) =
m∏
i=0

p(ei|C0 = c0),



156
5.9 A New Model for Multiclass Link-based Classification Using Bayesian

Networks

And we can rewrite equation 5.1 as follows:

p(C0 = c0|e) ∝ p(C0 = c0)
m∏
i=0

p(ei|C0 = c0) ∝ p(C0 = c0|e0)
m∏
i=1

p(ei|C0 = c0).

(5.2)

Each individual value p(ei|C0 = c0) can be expressed, using the law of total

probability, and taking as exclusive events Ci = c0, Ci = c1, . . . , Ci = cn (with

i > 0) as this:

p(ei|C0 = c0) =
∑

cj={c0,c1,...,cn}

p(ei|Ci = cj, C0 = c0) p(Ci = cj|C0 = c0) (5.3)

Recall that variables Ci (with i > 0) separate ei and C0, making p(ei|Ci =

cj, C0 = c0) = p(ei|Ci = cj). Applying Bayes’ rule, we can write the equation 5.3

as:

p(ei|C0 = c0) = p(ei)
∑

cj={c0,c1,...,cn}

p(Ci = cj|ei)
p(Ci = cj)

p(Ci = cj|C0 = c0) (5.4)

From equations 5.4 and 5.2, we can give a final expression (equation 5.5) for

p(C0 = c0|e) using only values that can be available.

p(C0 = c0|e) ∝ p(C0 = c0|e0)
m∏
i=1

 ∑
cj={c0,c1,...,cn}

p(Ci = cj|C0 = c0)
p(Ci = cj|ei)
p(Ci = cj)


(5.5)

As we can observe in equation 5.5, the posterior probability of C0 has two com-

ponents: a part which only depends on the evidence associated to the document

d0 to be classified (p(C0 = c0|e0)) and another part related with the information

about the class labels of each one of the documents linked with d0, which can

be obtained using its own local evidence (p(Ci = ci|ei)). This information is

combined with the estimated probabilities of a linked document being of class ci
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given that the document linking to it is of class c0.

The posterior probabilities p(C0 = c0|e0) and p(Ci = ci|ei) can be obtained

using some standard probabilistic classifier, whereas the probabilities p(Ci = ci)

and p(Ci = ci|C0 = c0) can be estimated from the training data simply by

following these formulas:

p(Ci = ci) =
Ni

N

and

p(Ci = ci|C0 = c0) =
L0i + 1

L0• + |C|
where Ni is the number of training documents classified by category i, N is the

total number of documents, L0i is the number of links from documents of category

0 to category i, L0• is the total number of links from documents of category 0, and

|C| is the number of categories. Note that in the estimation of p(Ci = ci|C0 = c0)

we have used Laplace smoothing. In all our posterior experiments, using Laplace

gives better results than not using it.

Therefore, we can think of the proposed model as a method to modify the

results offered by a base probabilistic classifier taking into account the information

available about the linked documents and the relationships between categories

(the prior probabilities p(Ci = ci) and the values p(Ci = ci|C0 = c0)).

5.9.2 Extension to Inlinks and Undirected Links

The independences represented by the Bayesian network are not directly related

to the direction of the links. Instead of outlinks, we could think of the previous

model as a model that takes into consideration the incoming links. Thus, the Ci

and ei (i > 0) variables would represent the documents that link to one (instead

of the files linked by one), and the formula (5.5) would still be valid. In the case

of the incoming links, we should reestimate the dependencies among categories

as follows:

p(Ci = ci|C0 = c0) =
Li0 + 1

L•0 + |C|
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where Li0 is, as previously stated, the number of links from documents of category

i to category 0, and L•0 is the total number of links to documents of category 0.

Moreover, in the collective classification literature, the direction of the links

is often not considered, so, we also could propose a model where Ci and ei (i > 0)

represent the documents linked or being linked (that is to say, neighboured) by

the document to classify. In that case, the probabilities would be these:

p(Ci = ci|C0 = c0) =
Li0 + L0i + 1

L•0 + L0• + |C|
.

Therefore, these would be our three models: the original one (with incoming

links), and the extensions using outlinks and undirected links.

5.10 Experiments on the INEX’08 Corpus

5.10.1 Study of the Corpus

The INEX’08 Document Mining corpus [38] is a document collection for what it

was developed our model presented in 5.9. It is composed of 114336 documents

extracted from the Wikipedia XML Corpus [37], with a size of the graph (number

of edges) of 636187. The percentage of training documents is more or less 10%

of the documents (there is 11437 training documents), with the 90% for testing

purposes. The number of categories of this corpus is 15. This corpus is also a

single label one (that is to say, we are dealing with a multiclass categorization

problem, where each document is assigned to only one category).

As we are testing a model which makes use only of the link information, we

shall ignore the structural information, represented by the XML markup of the

files. This information could also be used to improve classification with a model

like that described in section 5.4, but in this case we shall not use it. In fact, we

shall see that information from the links can be a very valuable data.

Before making any experiment with categorization models, we shall try to

have a deeper look at the information provided by the graph of links. The funda-

mental question is whether those links are supposed to help in the final process of

text categorization. Given the nature of the corpus (documents coming from an
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Encyclopedia), we could think that articles on one category should tend to link

articles on the same category. This kind of dependence can clearly be represented

by our model, as we shall see later.

A careful review of the different kinds of dependencies represented by hyper-

links (regularities) is given by Yang [137], and following her terminology we can

state that we should be in an “encyclopedia regularity”. We reproduce here her

definition:

One of the simplest regularities is that certain documents with a class

label only link with documents with the same class label. This regu-

larity can be approximately found in encyclopedia corpus, since ency-

clopedia articles generally reference other articles which are topically

similar.

In order to verify experimentally this fact, we have plotted, in figure 5.10, a

matrix where the rows and columns are one of the 15 categories. Each matrix

value mi,j represents the probability that a document of class i links a document

of class j, estimated from the training document collection.

As it can be seen (the matrix has a strong weight in its diagonal), documents

of one category tend to link documents of the same category. Moreover, doing

the same plot with the probability that a document of class i being linked by a

document of class j, and another one with the probability of a document of class

i links or is linked by a document of class j, we obtain a similar result (a matrix

with a high weight for the diagonal values).

Thus, although we could think that only the outlinks tend to be useful, we

can affirm that also inlinks are useful, and also consider the links without any

direction.

5.10.2 Experimental Results

With this experiment, we are going to study if our model can be above a certain

baseline (a flat classifier). First of all we study the two executions on the test set,

a baseline (Multinomial Näıve Bayes) and our multiclass method (combined with

Näıve Bayes). The results obtained are the following (the evaluation measure

used is the recall, measuring the proportion of correct assigned labels):
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Figure 5.10: Probability that a document of class i links a document of class j,
on the INEX’08 corpus.

• A classical Näıve Bayes algorithm on the flat text documents obtained

0.67674 of recall.

• Our proposal using the previous Näıve Bayes as the base classifier obtained

0.6787 of recall (using outlinks).

• Our model (inlinks): 0.67894 of recall.

• Our model (neighbours): 0.68273 of recall.

Although all our methods improve the baseline, the results achieved are not

really significant. In order to justify the value of our model, we are asking now

ourselves which is the predicting power of our proposal, by making some addi-

tional computations in an “ideal setting”. This “ideal setting” is, for a document

being classified, to be surrounded (linking, linked by or both of them) with doc-

uments whose class membership is perfectly known (and hence we can set for

a related document dk of category ci, P (Ck = ci|dk) = 1 -the true class- and

P (Ck = cj|dk) = 0 -the false categories- ∀cj 6= ci). Remember that, in previous
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experiments, a surrounding document whose category was not known should be

first classified by Näıve Bayes, and then that estimation (the output probability

values) was used in our model.

So, the procedure is the following: for each document to classify, look at the

surrounding files. For each one, if it is a training file, use that information (perfect

knowledge), and if it is a test file, use also its categorization information taken

from the test set labels to have our file related to documents with perfect knowl-

edge. This “acquired” knowledge is obviously removed for the next document

classification.

In this “ideal setting” we have made two experiments: one combining näıve

Bayes with our model (like the second one of the previous two), and one which

combined a “blind classifier” (the one that gives equal probability to each cate-

gory) with our model. The first should be better than the two previous ones, and

the second one could give us an idea of the true contribution to the predictive

power of our model, despite the underlying basic classifier used.

• Model for outlinks in an “ideal setting” using Näıve Bayes as a base classi-

fier: 0.69553 of recall.

• Model for outlinks in an “ideal setting” using a “blind classifier”: 0.46500

of recall.

• Model for inlinks in an “ideal setting” using Näıve Bayes as a base classifier:

0.69362 of recall.

• Model for inlinks in an “ideal setting” using a “blind classifier”: 0.73278 of

recall.

• Model for neighbours in an “ideal setting” using Näıve Bayes as a base

classifier: 0.70212 of recall.

• Model for neighbours in an “ideal setting” using a “blind classifier”: 0.66271

of recall.

The first experiment provides the desired result: the recall is improved (al-

though not so much). The small improvement could be due, in some part, to the
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extreme values given in this corpus by the Näıve Bayes classifier (very close to 0

and 1). The introduction of these values in equation 5.5, as the first factor in the

final posterior probability of each document, makes difficult to take into account

(in the categories of the values close to 0) the information provided by the second

factor (the combination of the information given by all the linked files), vanishing

in some cases because of the low value of the first factor.

However, the second experiment showed us that, only using link information,

and ignoring all content information of the document to classify, in this “ideal

setting” of knowing the true class of each surrounding document, our method can

reach 0.46500, 0.73278 or 0.66271 of recall. In the case of the inlinks, ignoring

the content of the document to classify and perfectly knowing the values of the

categories of the surrounding documents, gives better results than using this

content. Besides, these values are clearly high, which gives us the idea of the

predictive power of link information in this problem.

5.11 Conclusions and Future Works

We have proposed a new model for classification of multiclass linked documents,

based on Bayesian networks. We have also justified the possibly good performance

of the model in an “ideal” environment, with some promising results.

To improve those results in the future, we could use a classifier (probabilistic)

with a better performance. Such a classifier could be a logistic regression proce-

dure, a higher dependence network or just a SVM with probabilistic output (using

Platt’s algorithm [103]). The probability assignments should also be “softer”, in

the sense that several categories should receive positive probability (näıve Bayes

tended to concentrate all the probability in one category, zeroing the others and

making the information provided by the links not useful, in some way).

As future work we would like to study this problem as a collective classification

problem (see section 5.8.2), and try to apply this method in one of the particular

solutions (those that need a “local classifier”) that are being given to it.
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5.12 A New Model for Multilabel Link-based

Classification Using Bayesian Networks

This section describes a new methodology that models a link-based categorization

environment using Bayesian networks, for the problem of multilabel categoriza-

tion. This problem is different and more complex than the previus one, and

therefore we shall develop a new model appropriate for it.

In this development, we shall only use data from incoming links, because we

carried several experiments on the corpus, and found them much more infor-

mative than outgoing ones. Anyway, information from outgoing links (or even

considering undirected links) could also be used in this model.

5.12.1 Modeling link structure between documents

In this problem, we shall deal with a multilabel corpus. The methodology pro-

posed by the state-of-the art is to treat this problem as several independent binary

classifiers. In this case, the classifiers should not really be independent, because

we assume that, in a general setting, there can be explicit relationships among

different categories which makes this problem even more difficult. In fact, as we

will see in 5.13, the corpus includes documents coming from different categories

which form a hierarchy, and relationships (links) among documents of different

categories are surely present on the collection.

We shall build automatically from data, a Bayesian network-based model

which could represent almost1 all the relationships among the categories of a

certain document, and the set of categories present on the related (linked) docu-

ments.

Therefore, for a problem of n categories, we will consider the following set

of 2n random variables: first of all, for every category i we will have one binary

variable Ci, representing that the current document belongs or not to category

1A Bayesian network cannot represent some independences in a set of random variables,
and the learning method that we will choose will search in a restricted search space, limiting
the number of parents of each node. Anyway, this model could possibly represent the majority
of the relationships present on the data.
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Ci. That is to say, variable Ci ranges in states {ci, ci}, and models the probability

of a document being (or not) of class Ci.

On the other hand, each category will have another associated random vari-

able: LCi, (with states {lci, lci}), representing if there is a link, or not, from

documents of category i to the current document. This set of variables is to sum

up the labeling of the neighbors, but in this case, its size does not depend on

the number of surrounding documents of the current document to classify (it is

fixed).

Therefore, to learn a model from the data, we shall use the training doc-

uments, each one as an instance whose categories (values for variables Ci) are

perfectly known, and the links from other documents. If a document is linked

by another training document of category j, we shall set LCj = lcj, setting it to

lcj otherwise. Note that a training document could be linked by test documents

(whose categories are unknown). In that case, this evidence is ignored, and cat-

egories which do not have any document linked to the current document, are set

their variables to lcj.

So, we could learn a Bayesian network from training data (see next subsection)

and, for each test document dj, we could compute p(ci|ej), where ej represents

all the evidence given by the information of documents that link this.

Thus, the question is the following: for a certain document dj, given p(ci|dj)
and p(ci|ej), how could we combine them in an easy way? We want to compute

the posterior probability p(ci|dj, ej), the probability of a category given the terms

composing the document and the evidence due to link information.

Using Bayes’ rule, and assuming that the content and the link information

are independent given the category, we get:

p(ci|dj, ej) =
p(dj, ej|ci) p(ci)

p(dj, ej)
=

p(dj|ci) p(ej|ci) p(ci)
p(dj, ej)

=
p(ci|dj) p(dj) p(ej|ci) p(ci)

p(ci) p(dj, ej)
=

p(ci|dj) p(dj) p(ci|ej) p(ej)
p(ci) p(dj, ej)

=

(
p(dj) p(ej)

p(dj, ej)

)(
p(ci|dj) p(ci|ej)

p(ci)

)
.
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The first term of the product is a factor which does not depend on the category.

So, we can write the probability as:

p(ci|dj, ej) ∝
p(ci|dj) p(ci|ej)

p(ci)

And we can rewrite the first expression in this final form:

p(ci|dj, ej) =
p(ci|dj) p(ci|ej) / p(ci)

p(ci|dj) p(ci|ej) / p(ci) + p(ci|dj) p(ci|ej) / p(ci)
(5.6)

We must make some final comments about this equation to make it more

clear:

• As we said before, the posterior probability p(ci|dj) is the one obtained

from a binary probabilistic classifier, which is going to be combined with

the information obtained from the link evidence. In the experiments section

5.13 we shall be specific about what probabilistic classifier we shall use.

• The prior probability used here, p(ci), is the one computed with propagation

over the Bayesian network learnt with link information.

• Because the variables Ci are binary, it is clear that p(ci|ej) = 1 − p(ci|ej),
p(ci) = 1− p(ci) and p(ci|dj) = 1− p(ci|dj).

5.12.2 Learning the link structure

Given the previous variable setting, from the training documents, their labels

and the link file, we can obtain a training set for the Bayesian network learning

problem, composed of vectors of binary variables Ci and LCi (one for each training

document).

We have used WEKA package [131] to learn a generic Bayesian network (not

a classifier) using a hill climbing algorithm (with the classical operators of addi-

tion, deletion and reversal of arcs) [11], with the BDeu metric [53]. In order to

reduce the search space, we have limited the number of parents of each node to

a maximum of 3.
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Once the network has been learnt, we have converted it to the Elvira [47]

format. Elvira is a software developed by some Spanish researchers which has

implemented many algorithms for Bayesian networks. In this case, we have used

it to carry out the inference procedure. This is done as follows:

1. For each test document dj, we set in the Bayesian network the LCi variables

to lci or lci, depending whether dj is linked by at least one document of

category i, or not, respectively. This is the evidence coming from the links

(represented before by ej).

2. For each category variable, Ci, we compute the posterior probability p(ci|ej).
This procedure is what is called evidence propagation.

Due to the size of the problem, instead of exact inference, we have used an

approximate inference algorithm [13], firstly to compute prior probabilities of each

category in the network, p(ci), and secondly, to compute the probabilities of each

category given the link evidence ej, for each document dj in the test set, p(ci|ej).
The algorithm used is called Importance Sampling algorithm, and is faster than

other exact approaches.

5.13 Experiments on the INEX’09 Corpus

5.13.1 Study of the Corpus

The INEX’09 XML Document mining corpus is a multilabel corpus, with a diff-

erent nature than the INEX’08 one. While the INEX’08 one came from a 2005

Wikipedia snapshot [39] converted to XML, the 2009 corpus comes from a more

recent snapshot where the documents tend to be longer, and the set of links is

surely more dense. The XML markup is different, but we shall ignore it as we

did in 5.9, because we are only trying to figure out how link information help to

improve categorization results.

For this corpus there are 54572 documents, corresponding to a test/train split

of 10968 documents in the training corpus (about 20% of the total), and 43604

in the test one. The number of categories is 39, and we are given their names.
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Also, a link file is shown, which gives specific relations among documents (which

may be in the training corpus or not).

Therefore, the main difference between this INEX track in 2008 and 2009 is

the fact that the training corpus is made of multilabeled documents, that is to

say, a document can belong to one or more categories. The rest of the rules are

esentially the same, although the document collection and the set of categories

are also different.

Several experiments in the same direction that those done in 5.10 showed

us the same fact for the 2009 corpus, although we do not reproduce them here.

Apart from those experiments, the names of the categories (which are explic-

itly given in the training set), tend to show categories which are probably com-

ing from a hierarchy (for example Portal:Religion, Portal:Christianity and

Portal:Catholicism). The two known facts about the relations are summarized

here:

• In this linked corpus, due to its nature, a “hyperlink regularity” is supposed

to arise [137].

• There are some categories strongly related a priori, because the probable

existence of a (partially unknown) hierarchy.

5.13.2 Results

To make the experiments, we have used, as base classifier two different proba-

bilistic classifiers. The Bayesian network classifier will use their values as a base

to compute the final probability, as stated in equation 5.6.

First of all, the binary Näıve Bayes, in its multinomial version (see chapter

1 for more details), and the “term interaction” version of our OR gate classifier

(explained in chapter 3). They will be also used as baseline, and will be noted as

“NB” (for the Näıve Bayes) and “OR” (for the OR gate).

The performance measures were suggested by the corpus authors [37], and

they are Accuracy (ACC), Area under Roc curve (ROC), F1 measure (PRF) and

Mean average precision by document (MAP). As stated in the first chapter, some

of them will measure “hard categorization”, and some “soft categorization”.
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5.13.2.1 Results without scaling

The results of the models on the testing set are displayed in table 5.3, where M

means the “macro” version of the measure, and µ means the “micro” one.

MACC µACC MROC µROC MPRF µPRF MAP
NB 0.95142 0.93284 0.80260 0.81992 0.49613 0.52670 0.64097

NB + BN 0.95235 0.93386 0.80209 0.81974 0.50015 0.53029 0.64235
OR 0.75420 0.67806 0.92526 0.92163 0.25310 0.26268 0.72955

OR + BN 0.84768 0.81891 0.92810 0.92739 0.31611 0.36036 0.72508

Table 5.3: Preliminary results.

In both cases, the Bayesian network version of the classifier outperforms the

“flat” version, though the results of the OR gate are surprisingly poor in ACC

and PRF. This fact is due to the nature of the classifier, and to the kind of

evaluation: For the OR gate, the fact that p(ci|dj, ej) > 0.5 holds does not mean

necessarily that dj should be labeled Ci, whereas in the Näıve Bayes does (this

was the criterion used by the evaluation procedure to assign categories to the test

documents).

In fact, for the OR gate classifier is not known, a priori, what is the appropriate

threshold τi that assigns dj to class Ci if p(ci|dj, ej) > τi. This is not a major

problem to compute, for example, averaged break-even point measures [119],

where no hard categorization is needed. In this case, the threshold 0.5 has been

adopted, and we need to re-adapt the model to this setting in order to perform

well.

In the following section we can see how we estimated a set of thresholds (using

only training data) and how we scaled the probability values, in order to match

the evaluation criteria, dramatically improving the results.

5.13.2.2 Scaled version of the Bayesian OR gate results

To make this version of the OR gate results, we have followed this procedure:

using only training data, a classifier has been built (both in its flat and Bayesian

network versions), and evaluated using cross validation (with five folds). In each

fold, for each category, we have searched for the threshold of probability that
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gives the higher F1 measure per class and, afterwards, all thresholds have been

averaged over the set of cross validation folds.

This is what is called in the literature the Scut thresholding strategy [136].

Thus, we obtain, for each category a threshold τi between 0 and 1 (different for

each of the two models). We should then to transform the results to a scale where

each category threshold is mapped to 0.5.

So, the probabilities of the or gates are rescaled using a linear continuous

function fi, which verifies fi(0) = 0, fi(1) = 1 and fi(τi) = 0.5. The function is:

fi(x) =

{ 0.5x
τi

if x ∈ [0, τi]

1− 0.5
1−τi (1− x) if x ∈ (τi, 1]

Then, the new probability values are computed, using the old values p(ci|dj, ej),
as p̂(ci|dj, ej) = fi(p(ci|dj, ej)). Once again, we would like to recall that these new

results are only “scaled” versions of the old ones, with thresholds being computed

only using the training set. The new results are displayed in table 5.4.

MACC µACC MROC µROC MPRF µPRF MAP
OR 0.92932 0.92612 0.92526 0.92163 0.45966 0.50407 0.72955

OR + BN 0.96607 0.95588 0.92810 0.92739 0.51729 0.55116 0.72508

Table 5.4: Results using thresholds.

Note that, using the scaling procedure, ROC and MAP values remains equal,

whereas PRF and ACC, on the contrary, are improved considerably, and gives

results which are much more better.

5.14 Conclusions and future works

Although in section 5.9 we proposed a method that captures some “fixed” re-

lations among categories, given this different problem setting and its higher di-

mensionality, for the multilabel we have learnt those relations automatically from

data, leading to a more flexible approach.
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Given the previous results, we can state the following conclusion: the use of

the Bayesian network structure for links can improve noticeably a basic “flat-text”

classifier, for the case of a multilabel corpus.

This statement is clear, particularly on the case of the OR gate classifier, where

some measures, like micro PRF are improved near 10%. Accuracy is improved

3-4%, while ROC stands more or less equal. Only MAP is slightly decreased (less

than 1%). The changes on the Näıve Bayes classifier are more irrelevant, but

they are all positive too.

The results could probably be improved with the usage of a better probabilistic

base classifier. For example, a logistic regression or some probabilistic version of

a SVM classifier (like the one proposed by Platt [103]), which are likely to have

better results than our base models (although they can be much more inefficient).

We expect to carry out more experiments with different basic classifiers on this

corpus in the future.
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Conclusions and Future Works

This last chapter presents the general conclusions of the dissertation. We recall

that the specific conclusions of each contribution were previously given at the end

of each corresponding chapter. Besides, two lists of publications are included (of

the results presented in this thesis, and other publications not directly related

with this content), together with some future works.

In chapter 3, we presented the OR gate-based classifier, as an alternative to

the multinomial version of the Näıve Bayes classifier. We think it is a lightweight

approach to classification, fast for both training and classification purposes, and

easily updatable (in the case that new training information were made available,

once trained the classifier). Moreover, the pruning procedure explained there

gives, with the supporting experimentation, some evidence that our classifier is

reasonably better than the Näıve Bayes approach (and other classic classifiers).

In particular, macro measures obtain really promising results, indicating that no

category is left apart, even those being very few populated (which is precisely the

Achilles’ heel of the Näıve Bayes).

The developments on the thesaurus-based categorization, shown in chapter 4

are undoubtly very clear: on the one hand, we can firmly state that the infor-

mation present on the thesaurus (metadata and relationships) is very relevant in

order to make categorization (and it is relatively well captured by our model),

and on the other hand, that classic models fail when treating this problem as a

plain supervised categorization one, because of the huge number of categories and

the lack of training examples. The experiments presented with the parliamentary

initiatives collection are very extensive, and show that the Näıve Bayes or even

the Linear SVM (the state-of-the-art in Document Categorization) are clearly

outperformed by our Bayesian network-based model. Furthermore, the chapter
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has presented the problem of thesaurus-based automatic indexing, which is –in

our opinion– an achievement by itself, and opens a new subfield of research in

Document Categorization.

The Structured Document Categorization results, presented in chapter 5, are

of diverse consideration. First of all, our approach to the XML categorization

problem seems to be useful, but model-dependent (the OR gate classifier does

not benefit from the “text replication” approach despite the Näıve Bayes does).

For the problem of link-based categorization, we can state that the main lesson

learnt is that the labels of the neighboring documents help to categorize the

current one. In that problem, we have tried a fixed-structure Bayesian network

approach, and a learnt-structure one, being the latter the most promising one

(though the former also improved a baseline). In the link-based categorization,

our method is a new approximation to this problem, and again, with a different

method (Bayesian networks, in our case).
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Future Work

We present, here in this section, some ideas to continue developing this work

in the future. In first place, concerning the OR gate-based classifier, we think

that several different approaches in weight training could be tested. In fact, we

have seen that the methods that operate a conditional likelihood minimization

[63; 129], though computationally hard, work reasonably well, even reaching the

levels of the Linear SVM. Perhaps, a hybrid methodology for the weight training

could keep a lightweight procedure in the training stage (i.e. not introducing

complexity), and could improve the results on the classification part. Indeed,

the question that arises is that wether we could approach to the categorization

power of the Linear SVM algorithm, which is the state-of-the-art in Document

Categorization, giving outstanding results in all the benchmark collections. In

order to extend our model, we also think that other canonical models [42] could

be used in this task (as, for example the noisy MAX gate, the noisy AND, or a

combination among different canonical models).

The work in thesaurus-based categorization could be extended to deal with the

particularities of very specific thesaurus. For the case of the medical thesaurus,

MeSH [55], our model could be improved with only doing very few changes, in
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order to represent some very small differences that this thesaurus has, compared

with others. Moreover, a more extensive experimentation could be done with

the presented models, in a larger corpus (as, for example. the Acquis corpus,

categorized with the Eurovoc thesaurus). With this experimentation, a training

model for the different free parameters (weights), could also be developed, in

order to improve our categorization results, and make a categorization algorithm

free of any manually-specified values.

Finally, the set of works developed with structured categorization could be

extended in several ways. For the XML categorization, we think that finding one

way to obtain the optimal replication values (in the “text replication” approach)

could be interesting, in order to make more solid conclusions in this field. For

the link-based categorization problem, there is a room for improvement, in the

approach where the Bayesian network was learnt, because some other learning

and propagation algorithms could be tested, combined with a different and richer

neighborhood representation of the document (instead of just binary vectors).



Conclusiones y Trabajos Futuros

Este último caṕıtulo presenta las conclusiones generales de la memoria. Debe

tenerse en cuenta que las conclusiones espećıficas de cada contribución ya se

dieron anteriormente al final del caṕıtulo correspondiente. También se incluyen

dos listas de publicaciones (de los resultados presentados en esta tesis y de otras

publicaciones no tratadas aqúı), junto con un listado de posibles trabajos futuros.

En el caṕıtulo 3, presentamos el clasificador basado en puertas OR como una

alternativa a la versión multinomial del clasificador Näıve Bayes. Creemos que es

un enfoque para clasificación, computacionalmente hablando, muy ligero, tanto en

el aprendizaje, como en el proceso de clasificación propiamente dicho, y también

fácilmente actualizable (para el caso en el que nueva información de entrenamiento

aparezca una vez entrenado el clasificador). Además, el procedimiento de poda

explicado ah́ı da, junto a la experimentación que lo justifica, cierta evidencia de

que nuestro clasificador es razonablemente mejor que el enfoque Näıve Bayes (y

otros clasificadores clásicos). En particular, en las medidas “macro”, obtenemos

resultados muy prometedores, indicando que no se perjudica demasiado ninguna

categoŕıa, incluso a aquellas que están poco pobladas (que es precisamente el

talón de Aquiles del Näıve Bayes).

Los avances realizados en clasificación basada en tesauros, mostrados en el

caṕıtulo 4 son ciertamente muy claros: por una parte podemos constatar que

la información presente en un tesauro (metadatos y relaciones) es muy relevante

para hacer clasificación (y se captura relativamente bien por nuestro modelo),

y por otra parte, que los modelos clásicos fallan al tratar este problema como

un problema de clasificación supervisada normal debido al alto número de cat-

egoŕıas y a la falta de ejemplos de entrenamiento. Los experimentos realizados

con la colección de iniciativas parlamentarias son muy exhaustivos y enseñan
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que el Näıve Bayes o incluso la SVM lineal (el “estado del arte” en clasificación

documental) son claramente sobrepasados por nuestro modelo basado en redes

bayesianas. Además, el caṕıtulo ha presentado el problema de indexación au-

tomática basada en tesauros, que es –en nuestra opinión– un logro por śı mismo,

y abre un nuevo subárea de investigación dentro de la clasificación documental.

Los resultados en clasificación de documentos estructurados, presentados en

el caṕıtulo 5, son de diversa consideración. Lo primero de todo, nuestra aproxi-

mación al problema de la clasificación XML parece ser útil, pero dependiente del

modelo (el clasificador puerta OR no se beneficia de la solución “text replication”

a pesar de que el Näıve Bayes śı lo hace). Para el problema de clasificación basada

en enlaces, podemos afirmar que la lección principal aprendida es que las etique-

tas de los documentos vecinos ayudan a clasificar el documento actual. En ese

problema, hemos probado un enfoque basado en redes bayesianas con estructura

fija, y otro con la estructura aprendida, siendo el segundo el más prometedor

(aunque el primero también era capaz de mejorar un modelo básico). En este

tema nuestra aportación es una nueva solución al problema y, de nuevo, en la que

utilizamos una técnica distinta (redes Bayesianas, en nuestro caso).
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10. A. E. Romero, Geometry and Information Retrieval, International Semi-

nar on Applied Geometry in Andalusia, Granada 2006 (Satélite del ICM,

Madrid 2006).

11. L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, A. E. Romero, Gar-

nata Implementing the SID and CID Models at INEX’06. En: Norbert

Fuhr, Mounia Lalmas, Andrew Trotman (Eds.): Comparative Evaluation

of XML Information Retrieval Systems, 5th International Workshop of the

Initiative for the Evaluation of XML Retrieval, INEX 2006, Dagstuhl Cas-

tle, Germany, December 17-20, 2006, Revised and Selected Papers. Lecture

Notes in Computer Science 4518, pp. 165–177, Springer 2007, ISBN 978-

3-540-73887-9.

12. L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, A. E. Romero, A flex-

ible object-oriented system for teaching and learning structured IR. Proc. of

the First International Workshop on Teaching and Learning of Information

Retrieval (TLIR 2007), pp. 32–38, 2007.

13. L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, C. Mart́ın, A. E.

Romero, An Information Retrieval System for Parliamentary XML Docu-

ments based on Probabilistic Graphical Models. En: O. Pourret, P. Naim,

B. Marcot (Eds.), Bayesian Networks: A practical guide to applications,

pp. 203–223, John Wiley & sons, ISBN: 978-0-470-06030-8, 2008.



185

14. L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, C. Mart́ın, A. E.

Romero, The Garnata Information Retrieval System at INEX’07. En: Nor-

bert Fuhr, Jaap Kamps, Mounia Lalmas, Andrew Trotman (Eds.): Focused

Access to XML Documents, 6th International Workshop of the Initiative

for the Evaluation of XML Retrieval, INEX 2007, Dagstuhl Castle, Ger-

many, December 17-19, 2007. Selected Papers. Lecture Notes in Computer

Science 4862, pp. 57–69, Springer 2008, ISBN 978-3-540-85901-7.

15. L. M. de Campos, J. M. Fernández-Luna, J. F. Huete, C. J. Mart́ın-

Dancausa, A. E. Romero, New Utility Models for the Garnata Information

Retrieval System at INEX’08. En: Shlomo Geva, Jaap Kamps, Andrew

Trotman (Eds.): Advances in Focused Retrieval, 7th International Work-

shop of the Initiative for the Evaluation of XML Retrieval, INEX 2008,

Dagstuhl Castle, Germany, December 15-18, 2008. Revised and Selected

Papers. Lecture Notes in Computer Science 5631, pp. 39–45, Springer

2009, ISBN 978-3-642-03760-3.

Trabajos futuros

Presentamos aqúı, en esta sección, algunas ideas para continuar desarrollando este

trabajo en el futuro. En primero lugar, para el clasificador basado en puertas OR,

pensamos que podŕıan probarse diferentes esquemas de entrenamiento de los pe-

sos. De hecho, hemos comprobado que los métodos que realizan una minimización

de la verosimilitud condicional [63; 129], aunque son computacionalmente comple-

jos, trabajan relativamente bien, incluso llegando a los niveles de la SVM lineal.

Tal vez una metodoloǵıa h́ıbrida para el entrenamiento de pesos pudiera man-

tener un proceso ligero en la fase de entrenamiento (esto es, que no introdujera

demasiada complejidad) y mejorase los resultados en la de clasificación. Sin duda,

la cuestión que surge es la de si podemos aproximarnos al poder clasificador del

algoritmo de la SVM lineal, que es el “estado del arte” en clasificación documen-

tal, y que da resultados sobresalientes en todas las colecciones de prueba. Para

extender nuestro modelo, también pensamos que podŕıamos usar otros modelos
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canónicos [42] (como, por ejemplo la puerta MAX ruidosa, la puerta AND, o una

combinación entre diferentes modelos).

El trabajo en clasificación basada en tesauros podŕıa extenderse para tratar

con las particularidades de algunos tesauros muy espećıficos. Por ejemplo, en

el caso del tesauro médico, MeSH [55], nuestro modelo podŕıa ser mejorado con

hacer tan sólo unos pocos cambios, para representar algunas pequeñas diferencias

que este tesauro tiene, comparada con otros. Además, se podŕıa hacer una exper-

imentación más extensiva en una colección mayor (como, por ejemplo, el corpus

Acquis, etiquetado con el tesauro Eurovoc). Con esta experimentación se podŕıa

desarrollar un modelo de entrenamiento para los diferentes parámetros (pesos),

para mejorar nuestros resultados de clasificación y hacer un algoritmo libre de

valores especificados manualmente.

Finalmente, la lista de contribuciones desarrolladas para clasificación estruc-

turada se podŕıa extender de varias formas. Para el problema de la clasificación

XML, creemos que podŕıa ser interesante una forma de obtener valores óptimos

de replicación (en el esquema “text replication), para establecer conclusiones más

sólidas en este campo. Para el problema de clasificación basada en enlaces, hay

bastante posibilidad de mejora, sobre todo en el modelo en el que la red bayesiana

se aprend́ıa, debido a que se podŕıan probar otros algoritmos de aprendizaje y

propagación, combinadas con una representación más rica del vecindario del do-

cumento (en vez de tan sólo vectores binarios).
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