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Resumen

Este resumen contiene una versión en español de los caṕıtulos 1 (intro-
ducción) y 7 (conclusiones), y ha sido incluido para cumplir con los requer-
imientos necesarios para poder optar a la mención de Doctorado Europeo.

Introducción

Los Sistemas Inteligentes intentan imitar el comportamiento de los seres
humanos. Muchos de los problemas reales a los que se enfrenta el hombre
consisten en encontrar una solución que maximice o minimice una determi-
nada medida objetivo cuyo valor depende de ciertas variables de decisión.
Este tipo de problemas pueden encontrarse en áreas tan importantes como
Economı́a, Industria, Comercio, Loǵıstica, Bioinformática o Telecomunica-
ciones entre otras.

Disponer de sistemas de ayuda a la decisión o de herramientas para
abordar la resolución de estos problemas de una forma eficiente y efectiva
es de suma importancia. Por ejemplo, una buena distribución de una ĺınea
de producción puede incrementar de forma drástica la productividad de una
industria; mejorar planificación del tráfico aéreo en los aeropuertos puede
llevar a un ahorro significativo en los costes de las compañ́ıas aéreas o a una
importante reducción del tiempo de espera de los clientes; la optimización
del uso de los recursos sanitarios podŕıa hacer posible el tratamiento de
pacientes con enfermedades tan graves como el cáncer en un tiempo menor,
etc.

Desafortunadamente, encontrar la mejor solución para muchos de es-
tos problemas suele ser una tarea bastante compleja. Dicha complejidad se
puede deber principalmente a cuatro razones: 1) el problema es NP-Duro y
por lo tanto no se conoce ningún algoritmo que pueda resolverlo de forma
óptima usando un tiempo y una cantidad de memoria polinomial con re-
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Resumen

specto al número de variables de decisión, 2) su dimensión es muy grande,
3) la modelización del problema o el conocimiento que se tiene sobre este es
impreciso o vago, o bien 4) la evaluación de las soluciones es muy costosa.

En muchas situaciones es posible que no dispongamos del tiempo y/o los
recursos computacionales que se requieren para encontrar la mejor solución
global, o bien, puede ocurrir que el modelo con el que trabajamos esté
definido de una forma vaga y por lo tanto, no tiene sentido resolver de
forma óptima un problema impreciso. En estos casos, satisfacer es que
mejor que optimizar, por lo que se hace necesario contar con herramientas
que proporcionen soluciones suficientemente rápido, suficientemente buenas
y suficientemente baratas. Dentro de este tipo de herramientas, sin duda
alguna, las metaheuŕısticas han alcanzado un alto prestigio como demuestra
el amplio número de revistas cient́ıficas, libros y conferencias dedicadas a
este tópico. A esto hay que añadir que estas técnicas han sido empleadas
con éxito en multitud de áreas y que se dispone de una gran cantidad de
software tanto para su diseño y desarrollo, como para su utilización.

Sin embargo, la aplicación práctica de las metaheuŕısticas aún presenta
ciertas dificultades que todav́ıa no han sido resueltas. Algunas de estas
dificultades son las siguientes:

• Dada una instancia de un problema de optimización, generalmente
es imposible predecir cual es la mejor metaheuŕıstica para resolverlo.
Esto se conoce como el Problema de la Selección de Algoritmos [131].

• Aunque conozcamos un buen algoritmo para un problema, éste puede
ser ineficiente para una instancia espećıfica.

• El funcionamiento de las metaheuŕısticas depende de ciertos parámetros
cuyo ajuste es complejo, hasta el punto de que el tiempo necesario para
implementar el método es menor que el tiempo que hay que invertir
para lograr un ajuste de parámetros que permita obtener el mejor
rendimiento posible.

• La definición de algunos problemas de optimización o de los requerim-
ientos de algunos usuarios pueden presentar incertidumbre y/o impre-
cisión. Las metaheuŕısticas, en su forma básica, no han sido diseñadas
para tratar con estos aspectos.
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Una forma relativamente intuitiva de reducir el impacto de estas difi-
cultades consiste en combinar diferentes heuŕısticas que tengan fortalezas y
debilidades complementarias para crear una sinergia entre ellas y, de esta
manera, construir mejores métodos de resolución de problemas. Otra posi-
bilidad seŕıa hibridizar las metaheuŕısticas con otras técnicas de la Inteligen-
cia Artificial, como es la Soft Computing, para poder tratar la incertidum-
bre y la imprecisión de una forma más efectiva. El éxito de esta clase de
algoritmos, llamados metaheuŕısticas h́ıbridas, es notorio como prueban su
creciente frecuencia de publicación y el hecho de que muchos de los mejores
resultados que podemos encontrar en la literatura, tanto para problemas
prácticos como académicos, han sido obtenidos por este tipo de métodos.

Dentro de las diferentes formas de hibridación, las estrategias coopera-
tivas constituyen una de las alternativas más prometedoras. Estos métodos
consisten en un conjunto de agentes cooperativos y autónomos que se ejecu-
tan simultáneamente intercambiando información entre ellos. Diversos es-
tudios muestran que dicha cooperación conduce a estrategias más eficientes
y efectivas que sus contrapartes secuencial e independiente (no hay inter-
cambio de información). Aparte de esto, su estructura permite una sencilla
paralelización, lo que facilita el uso de la gran cantidad de recursos com-
putacionales que hoy en d́ıa proporcionan grid y cloud computing. Estas
estrategias pueden ser centralizadas, si el env́ıo y recepción de información
que los agentes llevan a cabo se realiza a través de un coordinador cen-
tral que además controla su comportamiento, o bien, descentralizadas, si la
información se intercambia directamente entre ellos.

Otro aspecto interesante y raramente abordado en metaheuŕısticas es el
de como resolver un conjunto de instancias, ya que la mayoŕıa de los estudios
que se han realizado en este campo están orientados a resolver una única
instancia en cada momento, sin tener en cuenta las demás. Por ejemplo,
no es complicado imaginarse un servidor que recibe peticiones para resolver
instancias de un mismo problema de optimización. En esta situación, ¿qué
estrategia debeŕıa utilizarse para resolver eficientemente todas las instan-
cias? Un modo sencillo de proceder en este caso seŕıa elegir un algoritmo
particular y procesar las instancias una a una. Sin embargo, operando de
esta manera, se desaprovechaŕıa la valiosa información que se obtiene du-
rante y después de la resolución. A esto habŕıa que añadir que en este es-
cenario se agravaŕıan las dificultades comentadas anteriormente. Pensemos
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Resumen

que podŕıa ser necesario resolver instancias de diferentes caracteŕısticas, por
lo que el funcionamiento del algoritmo seleccionado puede ser bueno para
algunas pero inaceptablemente malo para otras. La falta de herramientas a
medida para este tipo de situaciones hace recomendable una mayor investi-
gación en este tema. La aplicación de estrategias cooperativas puede ser una
opción más que interesante ya que estos métodos suelen mostrar un com-
portamiento robusto cuando son aplicadas sobre un conjunto de instancias
de un mismo problema.

Las estrategias cooperativas constituyen el tema central del proyecto de
investigación co-Heurifuzzy (TIN2005-08404-C04-01), marco de trabajo de
esta tesis junto con los proyectos TIC-02970, financiado por el gobierno
de la comunidad autónoma andaluza, y TIN2008-01948, del Ministerio de
Ciencia e Innovación español. El objetivo global de estos proyectos es el
estudio, diseño y desarrollo de metaheuŕısticas basadas en técnicas de Soft
Computing para resolver problemas dif́ıciles en el contexto de los Sistemas
Inteligentes.

Dentro de este contexto global, en esta tesis nos centraremos en los
siguientes objetivos:

1. Realizar un estudio en profundidad de las estrategias cooperativas cen-
tralizadas.

2. Investigar nuevas áreas de aplicación para este tipo de métodos.

3. Validar de forma apropiada el funcionamiento de estas metaheuŕısticas
con respecto a algoritmos del estado del arte.

4. Desarrollar y analizar estrategias cooperativas que puedan gestionar
la resolución de un conjunto de instancias de instancias de una manera
efectiva y eficiente.

La descripción de las tareas realizadas para alcanzar los objetivos de esta
tesis se han estructurado en 5 caṕıtulos que se describen a continuación.
Los caṕıtulos 2 y 3 proporcionan los conocimientos básicos para compren-
der el área de investigación. En el primero de estos caṕıtulos comenzaremos
dando conceptos básicos sobre problemas de optimización y metaheuŕısticas.
Seguidamente se describirán brevemente algunos de los métodos basados en
trayectorias y en poblaciones más conocidos. El siguiente caṕıtulo tiene
como fin introducir las estrategias cooperativas. Aqúı, partiendo de un
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concepto más amplio como es el de las Metaheuŕısticas Hı́bridas, nos cen-
traremos en las estrategias cooperativas, su clasificación y revisaremos di-
versos enfoques actuales.

La primera contribución de esta tesis se describe en el caṕıtulo 4. En
el contexto de los problemas de optimización combinatoria, y usando una
estrategia cooperativa centralizada desarrollada previamente, estudiaremos
dos aspectos clave de estos métodos. Por una parte la composición de la
estrategia, donde intentaremos responder la siguiente pregunta:

¿Cómo afecta la composición de la estrategia cooperativa a su funcionamiento?
(estrategias heterogéneas (todos los agentes implementan una metaheuŕıstica
diferente) vs homogéneas (todos los agentes implementan el mismo algo-
ritmo))

y por otra parte, el esquema de cooperación. En este caso pretendemos
dar respuesta a la siguiente pregunta:

¿Cómo influye el esquema de cooperación en el comportamiento de la
estrategia?

El caṕıtulo 5 está relacionado con el objetivo 2 y en él estudiamos nuevas
áreas de aplicación para los métodos cooperativos centralizados. En este
sentido, elegimos los Problemas de Optimización Dinámica (PODs) y en
particular aquellos en los que la función objetivo cambia en función del
tiempo. Las principales razones que nos llevaron a esta decisión fueron: a)
el creciente interés en la resolución de este tipo de problemas debido a su
cercańıa a situaciones del mundo real (predicciones de mercado, predicciones
meteorológicas, etc.) y b) las estrategias cooperativas centralizadas no se
hab́ıan aplicado a estos problemas anteriormente. Nuestra investigación está
orientada a responder las siguientes cuestiones:

¿Tiene sentido aplicar las estrategias cooperativas centralizadas a este
tipo de problemas?

¿Cómo pueden adaptarse estos métodos a los PODs y qué aspectos de su
estructura deben modificarse?
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¿Cómo es su funcionamiento en comparación con otros métodos del es-
tado del arte para PODs?

En el caṕıtulo 6 presentamos una nueva estrategia cooperativa central-
izada que permite resolver un conjunto de instancias tanto de forma secuen-
cial (una a una) como simultánea (todas al mismo tiempo). La estrategia
se basa en un conjunto de agentes y un proceso básico de aprendizaje que
se retroalimenta de la información obtenida durante la resolución de las in-
stancias. Los estudios realizados en este caṕıtulo intentan contestar a las
siguientes preguntas:

Dado un conjunto de instancias, ¿es mejor resolverlo de forma secuen-
cial o simultánea?

¿Funciona mejor el mecanismo de aprendizaje cuando se resuelven las in-
stancias de forma simultánea puesto la información disponible es más abun-
dante?

El último caṕıtulo está destinado a discutir las conclusiones globales de
esta tesis aśı como las futuras ĺıneas de investigación. Esta memoria termina
con la bibliograf́ıa que se ha consultado para su preparación.

Conclusiones

Esta tesis se ha centrado en el estudio, diseño, desarrollo y aplicación de
estrategias cooperativas centralizadas para problemas de optimización. Los
objetivos que se propusieron fueron los siguientes:

1. Realizar un estudio en profundidad de las estrategias cooperativas cen-
tralizadas.

2. Investigar nuevas áreas de aplicación para este tipo de métodos.

3. Validar de forma apropiada el funcionamiento de estas metaheuŕısticas
con respecto a algoritmos del estado del arte.

4. Desarrollar y analizar estrategias cooperativas que puedan gestionar
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la resolución de un conjunto de instancias de instancias de una manera
efectiva y eficiente.

En lo que respecta al objetivo 1, partimos de una estrategia cooper-
ativa previamente desarrollada en la que los agentes son controlados por
un coordinador central que toma decisiones en base a una regla difusa, y
extendimos la investigación realizada en dos puntos clave. En primer lu-
gar, en el contexto de problemas de optimización combinatorios, estudiamos
como afecta la composición de la estrategia a su funcionamiento. Usando
como caso de prueba el problema del p-hub mediano con asignación simple y
sin capacidades analizamos el comportamiento del método cuando todos los
solvers implementan la misma heuŕıstica (estrategia homogénea) y cuando
cada uno implementa una diferente (estrategia heterogénea). Para tener una
referencia del funcionamiento de tales estrategias, estas fueron comparadas
con la versión individual de los distintos algoritmos de búsqueda utilizados
como solvers. En lo que concierne a este último punto, vimos que mediante
la cooperación homogénea basada en nuestro esquema puede reducirse no-
tablemente el error promedio de tres metaheuŕısticas diferentes. También
se compararon las distintas estrategias cooperativas frente al mejor método
individual, el cual vaŕıa de una instancia a otra. Los resultados obtenidos
mostraron que la cooperación, tanto homogénea como heterogénea, lleva a
valores promedios de fitness iguales o mejores que los de la mejor meta-
heuŕıstica individual, en prácticamente todos los casos. El último aspecto
que se analizó fue la diferencia de rendimiento entre los métodos cooperativos
estudiados, donde se debe destacar que a) aquellas estrategias homogéneas
cuyos agentes implementan la mejor metaheuŕıstica individual se muestran
como la alternativa más efectiva, y b) cuando se compara la composición
heterogénea frente a la homogénea, pudo comprobarse que la primera pre-
senta ciertas ventajas sobre la segunda. Estos resultados fueron publicados
como un caṕıtulo de libro de la serie Studies in Computational Intelligence
en [106].

El segundo punto en el que se extendió la mencionada investigación fue
el esquema de cooperación. Concretamente, incorporamos a dicha estrate-
gia una regla de control basada en búsqueda reactiva [8]. Los experimentos,
realizados sobre el mismo problema, mostraron como el esquema de coop-
eración reactivo consigue mejores resultados que la estrategia independi-
ente (donde los agentes no intercambian información) y que dicha estrategia
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cuando usa la regla de control difusa que se empleó en el caso anterior.
También probamos el funcionamiento de la estrategia cuando usa ambas
reglas, difusa y reactiva, al mismo tiempo. En este caso, la mayor comple-
jidad no se ve recompensada puesto que la regla reactiva por si sola ofrece
un rendimiento igual o mejor que la combinación de ambas. Por otra parte,
vimos como la regla reactiva es capaz de adaptar su comportamiento según
las caracteŕısticas de la instancia y comprobamos su efectividad para de-
tectar el estancamiento y para llevar a cabo las estrategias diversificación.
Estos resultados fueron incluidos en un caṕıtulo de libro de las series Lec-
ture Notes in Computer Sciences [105] y en un resumen extendido en la
conferencia Learning and Intelligent Optimization 2009 (LION III) [104].

Otro de los aspectos abordados en esta tesis fue el estudio de nuevos
escenarios en los que aplicar los métodos cooperativos centralizados (ob-
jetivo 2). Se eligieron como escenario los Problemas Dinámicos de Opti-
mización (PODs) y concretamente, aquellos cuya función objetivo cambia
en función del tiempo. La estrategia cooperativa desarrollada para tratar
con estos problemas teńıa la misma estructura que la usada anteriormente.
Los agentes implementaban un algoritmo basado en trayectorias, cada uno
de ellos con una configuración de parámetros diferente. Comprobamos que
este tipo de métodos puede ser fácilmente adaptados a PODs mediante la
incorporación de un mecanismo que controle los cambios de la función ob-
jetivo y programando el reinicio de ciertas memorias cada vez que uno de
estos cambios tiene lugar. Hasta donde alcanza nuestro conocimiento, los
métodos basados en trayectorias y el esquema de cooperación presentado no
hab́ıan sido aplicados anteriormente a PODs. El método estudiado obtuvo
resultados muy prometedores que mejoraban de forma significativa a dos al-
goritmos del estado del arte para estos problemas (Agents y multi-QPSO) en
la mayoŕıa de los casos de test considerados (objetivo 3). Además, se suele
creer y asumir que los métodos basados en poblaciones son más adecuados
parar tratar con PODs ya que supuestamente contar con un mayor número
de soluciones puede llevar a un mejor rastreo de los cambios que tienen lu-
gar en este tipo de entornos. Aunque esto todav́ıa puede considerarse cierto,
el éxito de esta estrategia cooperativa centralizada basada en métodos de
trayectoria puede tener un papel importante el campo de la optimización
dinámica. La revista Memetic Computing ha aceptado para su publicación
un art́ıculo en que el inclúıan estos resultados [60].
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Para completar el cuarto objetivo, propusimos un método basado en es-
trategias cooperativas para resolver un conjunto de instancias con la idea de
que el esfuerzo realizado y el conocimiento obtenido durante la resolución
de una instancia deben usarse para la solución de otras. Nuestra estrategia
puede verse como un sistema co-evolutivo donde las soluciones de diferentes
instancias son mejoradas iterativamente y donde diversos operadores son
gestionados dinámicamente en función de su rendimiento sobre las instan-
cias que ya han sido resueltas. Otro aspecto importante de esta estrategia
consiste en que permite operar en dos modos de funcionamiento diferentes:
secuencial, en el que las instancias se resuelven una a una, y simultáneo
o paralelo, en el que todas las instancias se procesan al mismo tiempo. La
experimentación se llevó a cabo utilizando SAT como banco de pruebas y en
ella, a parte de tres algoritmo espećıficos para este problema, se consideraron
las siguientes cuatro configuraciones de nuestra estrategia:

• NAS: secuencial sin adaptación (aprendizaje desactivado)

• AS: secuencial con adaptación (aprendizaje activado)

• NAP: simultáneo sin adaptación (aprendizaje desactivado)

• AP: simultáneo con adaptación (aprendizaje activado)

La principal conclusión que se desprendió de esta experimentación fue
que, incorporando algoritmos espećıficos del problema, nuestra estrategia
(especialmente la versión AP) mejora a los algoritmos de propósito espećıfico
(no adaptativos) tanto en términos de eficacia (número de instancias sin
resolver) como de eficiencia (evaluaciones de la función objetivo). La com-
paración de los modos de funcionamiento reveló que el caso simultáneo ofrece
un comportamiento más robusto en términos de eficacia (AP mejor que AS,
y NAP mejor que NAS) debido a un mejor uso de los recursos (evalua-
ciones) disponibles. A esto hay que añadir que la versión simultánea cuenta
con una ventaja adicional: supera al modo secuencial puesto que resuelve un
mayor número de instancias en menos tiempo debido a que, de una manera
impĺıcita, lleva a cabo la resolución de la instancias más fáciles en primer
lugar, dejando las dif́ıciles para las últimas etapas de la búsqueda. El uso
de la adaptación y el mecanismo de recompensa fueron claramente benefi-
ciosos. En particular, AS fue mejor que NAS, y AP fue mejor que NAP,
puesto que requirieron de un menor número de evaluaciones para resolver
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el mismo conjunto de instancias. El método desarrollado y los resultados
obtenidos fueron publicados en la revista Soft Computing [107].

Antes de terminar, debemos apuntar que para llevar a cabo la experi-
mentación de esta tesis, hicimos uso de dos herramientas desarrolladas den-
tro del Grupo de Investigación en Modelos de Decisión y Optimización:

• SiGMA: un sistema de ayuda a la decisión basado en optimización que
proporciona un gestor de algoritmos de búsqueda, potente y dinámico,
que facilita su gestión y comparación, aśı como el análisis de los resul-
tados obtenidos.

• DACOS, un sistema integrado de soporte en el diseño y análisis de
sistemas de optimización cooperativos y centralizados.

SiGMA se utilizó para el ajuste de los diferentes solvers que compońıan
las estrategias, mientras que DACOS se empleó en la configuración y ajuste
de los métodos cooperativos evaluados en esta tesis. El autor contribuyó a la
mejora de estas herramientas y por lo tanto a su publicación en las revistas
cient́ıficas Expert Systems with Applications [68] y Software: Practice and
Experience [41] (sometido), respectivamente.
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Abstract

This dissertation focuses on the study, design, development and application
of centralised cooperative strategies for optimisation problems. Those mod-
els consist on many parallel cooperating agents, where each agent carries out
a search in a solution space. Firstly, we study the most known trajectory-
based and population-based metaheuristics and next, the cooperative strate-
gies are introduced. The contributions of this thesis start analysing some
aspects of the centralised cooperative strategies as the composition and the
cooperation scheme. Using the Uncapacitated Single Allocation p-Hub Me-
dian Problem as test bed, we compare the performance of homogeneous and
heterogeneous strategies and give some insights about the benefits of each
type of composition. Using the same problem, we test a cooperation scheme
based on Reactive Search ideas proposed by the author and we compare it
against other techniques. The results show the better performance of the
reactive scheme. Another issue tackled in this dissertation is the applica-
tion of centralised cooperative strategies to Dynamic Optimisation problems,
where they have not been applied before. The method is evaluated over dif-
ferent benchmarks obtaining a very robust performance that improves two
state-of-the-art methods for these problems. Finally, a cooperative method
that allow the resolution of a set of instances is presented. The strategy is
based on a set of operators and a basic learning process that is fed up with
the information obtained while solving several instances. The output of the
learning process is an adjustment of the operators. The instances can be
managed sequentially or simultaneously by the strategy. The method has
been tested on different SAT instance classes and the results confirm that
a) embedding problem specific algorithms into our strategy, instances can
be solved faster than applying these algorithms instance by instance and
b) that the simultaneous resolution of instances performs better than the
sequential one.
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Chapter 1

Introduction

Intelligent Systems attempt to mimic the behaviour of human beings. Many
of the real-life problems that humans need to solve consist on finding a
solution that maximise or minimise a determined objective measure whose
value depends on certain decision variables. These type of problems appear
in such an important areas as Economy, Industry, Commerce, Logistics,
Bioinformatics or Telecommunications among others.

The importance of having efficient and effective resolution or decision
support tools for these problems is crucial. A better distribution of a pro-
duction line can improve the productivity of industry drastically; more ef-
ficient scheduling of air traffic in airports can lead to significant financial
savings for air companies or waiting time reduction for costumers; a more
optimised used of healthcare resources can make possible the treatment of
patients with important diseases as cancer in a shorter time, etc.

Unfortunately, finding the best possible solution for many of these prob-
lems is usually a complex task. This complexity can primarily be due to
four reasons: 1) the problem is NP-hard and hence an algorithm that can
obtain the global optimum using a polynomial amount of time or memory is
not known, 2) its dimension is very high, 3) the modelisation of the problem
or the knowledge about it is imprecise or vague, or 4) evaluating the cost of
a solution is very expensive.

In many situations we may not have the time and/or the computational
resources needed to find the best global solution, or for example, the model
is vague so talking about the optimum of an imprecise problem makes no
sense. In these cases, satisfying is better than optimising and hence, it is
necessary to have tools that can provide ’soon-enough, good-enough and
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cheap enough’ solutions. Within this type of tools, without any doubt,
metaheuristics have become very successful as the wide number of scientific
journals, books and conferences dedicated to this topic shows. Besides this,
they are applied in multiple areas and a large amount of software is available
for their design, development and use.

However, the practical application of metaheuristics still presents draw-
backs that have not yet been solved. Some of these drawbacks are the
following:

• Given a problem instance, it is generally impossible to predict which
is the best heuristics to solve it. This is known as the Algorithm
Selection Problem [131].

• Although we know a good algorithm for a problem, this can be ineffi-
cient for a specific instance.

• The performance of the metaheuristics depends on certain parameters
whose adjustment is complex to the point that the time needed to
implement a metaheuristic is much lower than the time required to fine
tune these parameters in order to obtain the best possible performance.
Furthermore, such tuning is not usually suitable for others problems
or even for others instances of the same problem.

• The definition of some optimisation problems or the requirements of
some users can present uncertainty and/or vagueness. Metaheuristics
in their basic definition are not designed to deal with these features.

A relatively intuitive way to reduce the impact of these drawbacks con-
sists on combining different heuristics that have complementary weaknesses
and strengths to create a synergy among them in such a way that better
problem solvers could be obtained. Another possibility is to incorporate
other techniques from Computational Intelligence as Soft Computing into
metaheuristics in order to deal with uncertainty and vagueness in a more
effective manner. This class of search algorithms, called hybrid metaheuris-
tics, are increasingly reported and have obtained many of the best results
published in the literature for both practical and academical problems.

Within the different forms of hybridization, cooperative strategies con-
stitute one of the most promising alternatives. These methods consist on a
set of self-contained cooperating agents that are run in parallel exchanging
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information among them. Many studies have shown that this cooperation
leads to more efficient and effective strategies if they are compared with its
sequential and independent (no information exchange) counterparts. Fur-
thermore, its structure makes really easy its parallelisation which facilitates
the using of the big amount of computational resources that nowadays grid
and cloud computing provide. These strategies can be centralised, if the
sending and reception of information carried out by the cooperating agents
is done through a central coordinator that controls its behaviour, or decen-
tralised, if the information is exchanged directly between them.

It is also interesting to know that a problem hardly tackled in meta-
heuristics is how to solve a set of instances, since the majority of the studies
done in this field are oriented to solve one instance at a time, indepen-
dently of the other ones. For example, it is not hard to imagine a server
that receives requests to solve instances of the same optimisation problem.
Under this situation, which strategy should be used to efficiently solve all
the instances?. A naive mode of operation would be to choose a particular
algorithm and to solve the instances one by one. However, working in this
way, valuable information obtained during and after the resolution process
of every instance is discarded. Besides, the drawbacks we pointed out are
exacerbated. For example, it could be necessary to solve instances of differ-
ent characteristics, thus the performance of the selected algorithm can be
excellent for some instances but unacceptably bad for others. The lack of
specialized tools for this type of situations makes advisable the research on
this topic. The application of cooperative strategies can be an interesting
option inasmuch they usually show a robust behaviour over a wide set of
instances of the same problem.

Cooperative strategies represent the central issue of the research project
co-HeuriFuzzy (TIN2005-08404-C04-01) which is the framework of this the-
sis together with the projects TIC-02970, financed by the Andalusian Re-
gional Government, and TIN2008-01948, from the Spanish Ministry of Sci-
ence and Innovation. The global objective of these projects is the study,
design and development of cooperative metaheuristics based on Soft Com-
puting techniques to solve hard problems in the context of the Intelligent
Systems.

Within this global context, in this dissertation we focus on the next
objectives:
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1. Make an in-depth study of centralised cooperative strategies.

2. Research on new application areas for this type of methods.

3. Validate the performance of these metaheuristics with respect to state-
of-the-art algorithm in a proper manner.

4. Develop and analyse cooperative strategies that can manage the reso-
lution of a set of instances in a effective and efficient way.

The description of the tasks done to achieve the objectives of this thesis
has been structured in 5 chapters that are described below. Chapters 2 and
3 provide the background needed to understand the research area. In the
first of these chapters, we start giving the basic concepts of optimisation
problems and metaheuristics. Then, some of the most known trajectory-
based and population-based methods are briefly described. Next chapter is
devoted to introduce the cooperative strategies. Departing from the wider
concept of Hybrid Metaheuristics we will focus on cooperative strategies,
their classification and a review of the current approaches.

The first contribution of this dissertation is described in chapter 4. In
the context of combinatorial optimisation problems, and using a centralised
cooperative strategy previously developed, we study two key aspects of these
algorithms. On one hand, the composition of the strategy, where we try to
answer the following question:

How does the composition of a centralised cooperative strategy affect its
performance? (heterogeneous (all agents implement a different metaheuris-
tic) vs homogeneous strategies(all agents implement the same algorithm))

and on the other hand, the cooperation scheme. In this case we address
the next question:

How does the scheme of cooperation influence the behaviour of the strat-
egy?

Chapter 5 is related to objective 2 and here, we study new application
areas for centralised cooperative methods. In this sense, we chose Dynamic
Optimisation Problems (DOPs), and in particular those in which the ob-
jective function changes over the time. Two main reasons lead us to this
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election: a) there is a growing interest on the resolution of these problems
due to its closeness to real-world situations (trade market predictions, mete-
orological forecast, etc.) and b) centralised cooperative strategies have not
been applied to these problems before. Our research is oriented to answer
the following:

Does it make sense to apply centralised cooperative strategies to this type
of problems?

How can these methods be adapted to DOPs and what aspects of their
structure should be modify?

How is their performance compared to other state-of-the-art methods for
DOPs?

In chapter 6 we present a new centralised cooperative strategy that allows
to solve a set of instances both sequentially (one by one) and simultaneously
(all instance at the same time). The strategy is based on a set of agents and
a basic learning process that is fed back with the information obtained while
solving the instances. The output of the learning process is an adjustment of
the operators used by the agents. The analysis done in this case is oriented
to address the questions:

Given a set of instances, is it better to solve it in a sequential or simul-
taneous way?

Does the learning mechanism perform better when the instances are solved
simultaneously since the information available is richer?

The last chapter is devoted to discuss the global conclusions of this
thesis as well as the future lines of research. The dissertation ends with the
bibliography consulted for its preparation.
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Chapter 2

Soft Computing and

Metaheuristics

In this chapter we will describe Soft Computing following the work pre-
sented by Verdegay, Bonissone and Yager in [147] where besides from re-
viewing which are its classic components, we will see that Metaheuristics
are a fundamental part of this area. Next part of the chapter is focused
on these optimisation methods. Firstly, some basic definitions related to
optimisation will be introduced in order to unify terms that will be used in
this dissertation. Afterwards some of the most known Metaheuristics will be
presented, we will describe their essential characteristics and provide some
references to guide the reader. Finally, a summary of the chapter will be
given.

2.1 Soft Computing

The necessity of solving some problems optimally or determining the best
solution among the available ones have lead to the scientific community to
develop and study theories as well as propose suitable methodologies for the
field in which the question arises. Within this general frame an important
part is occupied by the optimisation problems: those whose resolution con-
sists on finding the maximum or minimum value that a given function can
take in a previously defined set. Everything relating to these problems is
framed within Mathematic Programming area. This area embrace a wide
variety of models (linear and non linear cases, randomness, one or several
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decisors, etc.) although, without any doubt, the single objective linear case,
model studied by Linear Programming, is the one that has focused the most
attention and has shown the most successful practical applications.

Some Mathematical Programming problems can have elements that present
vagueness. To deal with these problem, fuzzy optimisation methods were
developed, being one of the most successful areas within the fuzzy context
both in practical and theoretical sense. However, despite the wide variety
of practical situations that can be tackled by fuzzy optimisation methods,
there are some scenarios in which these techniques can not solve the arisen
problems.

The big computational power available nowadays together with the fact
that some problems with a great practical value (scheduling, planning, rout-
ing, facility location, cutting-packing, etc.) can not be solved optimally, have
lead to an increasing use of heuristics techniques in those situations where
the exact algorithms can not give an answer using a reasonable amount
of time or memory. Following the principle ”satisfy is better than opti-
mise” a wide variety of highly efficient and effective heuristic methods have
been proposed in the literature. Some of these heuristics are Tabu Search,
Simulated Annealing, GRASP (Greedy Randomized Adaptive Search), Ge-
netic Algorithms and other more recent as Memetic Algorithms, Estimation
Distribution Algorithms, Variable Neighbourhood Search, Ant Colony Op-
timisation, Scatter Search, ... This list shows the big interest in this field
and the lack of a theoretical frame where locating, relating and comparing
these algorithms.

Lofti A. Zadeh presented in 1965 [157] the idea of fuzzy set, where the
membership of an element to set is given by a value in the interval [0,1]
instead of the values {0,1} as the classic set theory establishes. From this
moment, several applications and developments based on this basic idea have
arisen, having a big impact in many areas as industry, electronic devices,
transport, etc.

Zadeh was also who proposed the first definition of Soft Computing in
1994 [158], although the idea of establishing the area of Soft Computing has
already appeared in 1990 (see [159]). Until that time, the concepts that
involved Soft Computing were dealt in a isolated way with an indication
of using fuzzy methodologies. The definition proposed by Zadeh was the
following:
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Basically, soft computing is not a homogeneous body of con-
cepts and techniques. Rather, it is a partnership of distinct
methods that in one way or another conform to its guiding prin-
ciple. At this juncture, the dominant aim of soft computing is to
exploit the tolerance for imprecision and uncertainty to achieve
tractability, robustness and low solutions cost. The principal
constituents of soft computing are fuzzy logic, neurocomputing,
and probabilistic reasoning, with the latter subsuming genetic
algorithms, belief networks, chaotic systems, and parts of learn-
ing theory. In the partnership of fuzzy logic, neurocomputing,
and probabilistic reasoning, fuzzy logic is mainly concerned with
imprecision and approximate reasoning; neurocomputing with
learning and curve-fitting; and probabilistic reasoning with un-
certainty and belief propagation.

In this way, Zadeh defined Soft Computing by extension, by means of
different techniques and concepts developed to tackle problems that present
elements with imprecision, uncertainty or that are difficult to categorize.

Other authors tried to give a more precise definitions though the at-
tempts were not very successful. For example, in [92], taking into account
the difficulty of giving an exact and agreed definition for Soft Computing,
Li et al. described this area by its characteristics:

Every computing process that purposely includes imprecision
into the calculation on one or more levels and allows this impre-
cision either to change (decrease) the granularity of the problem,
or to “soften” the goal of optimization at some stage, is defined
as to belonging to the field of soft computing.

More recently, Verdegay, Yager and Bonissone [147] have presented a
more precise and illustrative definition of what is currently Soft Computing.
This is quoted below:

The viewpoint that we will consider here (and which we will
adopt in the future) is another way of defining soft computing,
whereby it is considered to be the antithesis of what we might
call hard computing. This viewpoint is consistent with the one
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in [158, 159]. Soft computing could therefore be seen as a se-
ries of techniques and methods so that real practical situations
could be dealt with in the same way as humans deal with them,
i.e. on the basis of intelligence, common sense, consideration
of analogies, approaches, etc. In this sense, soft computing is
a family of problem-resolution methods headed by approximate
reasoning and functional and optimization approximation meth-
ods, including search methods. Soft computing is therefore in
the theoretical basis for the area of intelligent systems.

From the perspective of this definition, soft computing can be extended
to in a second level of components among which probabilistic reasoning,
fuzzy logic and fuzzy sets, neural networks and genetic algorithms (GA)
was stood out as the most important ones from the beginning [19]. The
popularity of GA’s together with the wide number of extensions and versions
proposed, transformed the fourth component of the second-level in the so
called Evolutionary Algorithms (EA).

However, Evolutionary Algorithms are just a class of metaheuristics as
Hill Climbing, Tabu Search, Simulated Annealing, Variable Neighbourhood
Search, Greedy Randomized Adaptive Search Procedure, Scatter Search or
Ant Colony Optimisation, among others, can be. These heuristics also fulfil
the principle “it is better to satisfy than to optimise” since they provide
solutions with a reasonable quality for the users or the decisors, whereby
they are perfectly adapted to Zadeh’s sentence [158] : “... in contrast to
traditional hard computing, soft computing exploits the tolerance for im-
precision, uncertainty, and partial truth to achieve tractability, robustness,
low solution-cost, and better rapport with reality”. In this manner, instead
Evolutionary Algorithms, heuristic algorithms or better Metaheuristics can
be considered as the fourth component of Soft Computing.

The term heuristic come from the Greek word “heuriskein” whose mean-
ing is associated to the concept of finding and is related to the famous sen-
tence exclaimed by Arquimedes “eureka!”. As for the term Metaheuristic,
this was firstly used by Glover in 1986 [62] and results from adding the pre-
fix meta to the word heuristic. This prefix indicates that are methods in a
higher level of abstraction. Metaheuristics arose with the idea of extracting
the best parts of different successful heuristics to create generic methods
that could be applied to a larger number of problems and contexts. There
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is no agreed and formal definition of Metaheuristic, although the next two,
in our opinion, give a clear idea of what these methods are:

a) “An iterative generation process which guides a subordinate heuristic by
combining intelligently different concepts for exploring and exploiting
the search space” [119]

b) “An iterative master process that guides and modifies the operations
of subordinate heuristics to efficiently produce high quality solutions.
It may manipulate a complete (or incomplete) single solution or a
collection of solutions at each iteration. The subordinate heuristics
may be high (or low) level procedures, or a simple local search, or just
a construction method” [150]

Taking into account these definitions, it is clear that Evolutionary Al-
gorithms are included within the more general concept of Metaheuristic,
and therefore, they can be considered as one of the second-level compo-
nents of Soft Computing. In this way, Soft Computing embrace a wider
area which makes easier the development of new outlines, theoretical and
practical methodologies and frameworks that allow a better processing of
the uncertainty and imprecision. According to this, we could say that Soft
Computing, in its second level, has as main components Probabilistic Rea-
soning, Multivalued and Fuzzy Logics, Neural Networks and Metaheuristics.

The methodologies that integrate Soft Computing should be seen as the
result of the cooperation, association, complementarity or hybridization of
the components stated above. Upon considering the inclusion of Metaheuris-
tics as one of the elements of Soft Computing, it is important to analyse the
new theoretical and practical aspects derived from here. In this sense, we
should take into account that there exist a large variety of Metaheuristics
that can be classified in the next groups:

1. Evolutionary methods in which a population of solutions is evolved
by simulating the natural processes that take place in the evolution of
species.

2. Relaxation methods where the original model to solve is adapted by
the algorithm to facilitate its resolution.

3. Metaheuristics that base their working on the exploitation of the neigh-
bourhood structure of the solutions which compose the search space.
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Figure 2.1: Soft Computing components

4. Metaheuristics created combining two or more of the previous methods
or derived from them.

Although there is no a universally accepted classification for metaheuris-
tics, the taxonomy used above counts with a big consensus. Naming these
groups as MH(1),. . . ,MH(4), Soft Computing and its main components can
be represented as it is shown in Figure 2.1.

2.2 Metaheuristics

Once we have describe what Soft Computing consists on and which their
elements are, we will only focus on the component in which this thesis is
framed, that is, Metaheuristics. In the next part of this chapter some basic
concepts about optimisation besides some of the most known approaches
will be seen.

2.2.1 Basic Concepts

An instance of a optimisation problem P is define as (S, f) and is composed
by
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• a set of decision variables X = {x1, . . . , xn}

• the domains of the variables D1, . . . , Dn

• a set of constraints among variables

• a objective function f : D1 × . . . × Dn → R+

S = {s = (x1, v1), ..., (xn, vn)} with vi ∈ Di, i = 1, . . . , n, is the set of
feasible assignments and is composed by those s that fulfil all the constrains.
S is called search space.

To solve the problem is necessary to find a solution that minimise/maximise
the value of the objective function. From now on, we will suppose, without
lost of generality, that we are minimising. Formally, solving a optimisation
problem consists on finding a solution s∗ ∈ S such that f(s∗) ≤ f(w), ∀w ∈
S. The solution s∗ is named the optimum of (S, f).

Now, let (S, f) be an instance of a optimisation problem. The neighbour-
hood structure N is defined as a function N : S → 2S , which determines for
each solution s ∈ S the set N (s) ⊆ S of solutions “close” (in some sense) to
s.

The set N (s) is called the neighbourhood of the solution s. Examples
of neighbourhoods rise for instance, if a distance function is used:

dist : S × S → R

The neighbourhood of the solution s can be defined as:

N (s) = {y ∈ S | dist(s, y) ≤ ε}

The following definition can be also used:

N(s) = {y ∈ S | ρ(y, s) = True}

where ρ(a, b) is a boolean predicate.

In general, the solutions y are obtained from the application of an op-
erator O, which is usually denominated “Move” or “Pivot”, that modifies
in some sense the current solution s to obtain new solutions. This operator
usually includes a random process, and therefore successive applications of
O(s) allow to obtain different solutions y.
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Algorithm 1 Local Search.
procedure LocalSearch

s ← GenerateInitalSolution()
repeat

s′ ← s
s ← Improve(s′)

until f(s) < f(s′)
return s

Then, it makes sense to talk about the neighbourhood of s respect to O
and can be defined as:

NO(s) = {ŝi | ŝi = Oi(s)}

where Oi(s) stands the i-th application of O to s.

Once the neighbourhood of a solution s is properly defined as N (s), and
given a initial solution s0, it is possible to establish an iterative improve-
ment scheme that starts finding a solution s1 ∈ N(s0) such that s1 fulfils a
determined condition. For instance, that one which improves the fitness of
s0.

Subsequently, s1 becomes the current solution and the process is repeated
until a stopping criterion is met or it is not possible to obtain a solution
sk+1 ∈ N(sk) that satisfies the established conditions. In this moment, we
say that sk is a local optimum.

This class of methods also receives the name of local search [1] and in
Algorithm 1 its elemental pseudocode is shown. The function improve(x)

returns, if it possible, a new neighbouring solution y such that y is better
than s. Otherwise, it returns the current solution, that corresponds with a
local minimum. This basic scheme is named Hill Climbing.

There exist, at least, two basic strategies to implement the procedure
Improve(x): the strategy First, which returns the first solution of the neigh-
bourhood that improves the fitness of x, and the strategy Best, that ex-
plores the neighbourhood in a exhaustive way and returns the best solution
found. Both strategies, also call pivot rules, finishes when a local optimum
is reached whereby the final quality of the solutions is strongly influenced
by the definitions of S, f and N .
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Algorithm 2 Multi-Start Local Search.
procedure MultiStartLocalSearch

s ← GenerateInitalSolution()
restart ← 0
while restart < MAX do

repeat
s′ ← s

s ← Improve(s′)
until f(s) < f(s′)
if f(s) < f(best) then

best ← s

end if
s ← GenerateInitalSolution()
restart ← restart + 1

end while
return best

Despite its simplicity, these methods show an important drawback: they
usually get trapped in local minima. As a consequence it is necessary to
extend these algorithms by means of additional mechanisms that allow to
face such situation.

The simplest manner to extend this scheme is presented in Algorithm 2,
where simply the search is restarted from a new solution, when the current
one can not be improved.

This is known as Multi-Start [101, 102] and establishes guidelines to
restart in a intelligent way the descending searches. The Multi-Start search
procedures do various monotonous searches beginning from different initial
solutions. One of the most simple possibilities consists on generate a sample
of initial or starting solutions. This is equivalent to generate a starting ran-
dom new solution each time the search is stagnated in the region close to a
local optimum. We can talk about two phases. In the first one, a solution is
constructed whereas the second one tries to improve it by means of a local
search method. The initial solutions can be generated by a random process
or by more sophisticated methods that consider the problem properties to
obtain good quality solution.
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Another mechanism to avoid local optima consists on include the basic
scheme of a local search in a higher level, that is, in the metaheuristics.

As we said in Section 2.1, there are distinct ways of classifying the meta-
heuristics, among which the following ones [17] can be found: considering
the origin of the method, we can talk about “bioinspired” algorithms (ge-
netic algorithms, ant colony optimisation, particle swarm optimisation) vs.
“non bioinspired”; another possibility is to categorize metaheuristics by the
utilisation or not of memory; or in function of the use of a static or dynamic
objective function. One interesting classification consist on differentiated
those methods that keep a unique solution (trajectory-based metaheuris-
tics), that is, those methods that move along the search space of the problem
modifying iteratively the starting solutions, from those ones that keep a set
or population of solutions (population-based metaheuristics) [31].

The next part of the chapter is devoted to describe some of the most
known approaches. Making an exhaustive compilation of these methods is
out of the scope of this work so only essential characteristics of these ones
are described. We provide references that can guide the interested reader.

2.2.2 Simulated Annealing

Simulated Annealing [26, 88] is one of the most ancient metaheuristics and
was one of the first algorithms that contained a explicit strategy to scape
from local minima basing on the fundamental idea of allowing non improve-
ment movements. The acceptance probability of this type of moves is de-
creasing along the search, and depends on the fitness of the current solution
f(s) and a parameter control that modulates which proportion of bad so-
lutions is allowed. The general working scheme is described in Algorithm
3.

The algorithm starts generating a initial solution (which can be random
or also constructed heuristically) and setting up a temperature parame-
ter (T ) to a high initial temperature (T0). In each iteration, a solution s′
from N (s) is randomly chosen. This is accepted as new current solution in
function of its objective value f(s′), the fitness of s (f(s)) and the current
temperature T . In this way, s′ replace s every time its objective value is
better, otherwise it will do it with a certain probability that depends on the
temperature and f(s′)− f(s). This probability is usually computed making
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Algorithm 3 Simulated Annealing.
procedure SimulatedAnnealing

s ← GenerateInitalSolution()
T ← T0

while not stopping condition do
s′ ← RandomChose(N (s))
if f(s′) < f(s) then

s ← s′
if f(s) < f(best) then

best ← s
end if

else
prob accept ← p(T, s′, s)
s ← AcceptanceCriterion(s′, s, prob accept)

end if
Update T

end while
return best

use of the Bolztman’s distribution (exp(−f(s′)−f(s)
T )) [17].

The temperature T is reduced as search keeps on. In this way, the proba-
bility of allowing non improvement movements is high at the beginning and
decreasing gradually thus the strategy converges towards a Hill Climbing
method. This process is analogous to the annealing of the metals or the
crystal, that leads them to a low energy configuration if they are annealed
with a proper planning. The choice of the annealing policy is a very im-
portant aspect for the algorithm performance. Although it has been shown
theoretically that certain annealing policies drive to a global optimum, the
number of iterations needed to achieve it has an exponential order in the
size of the solution space. For this reason, in practical applications more
efficient policies that does not warrant this convergence are used.

2.2.3 Tabu Search

The metaheuristic Tabu Search [63, 65], proposed by Glover, is one of the
most used trajectory-based methods. Its working is divided on 3 phases:
preliminary search, intensification and diversification. In the first phase,
this heuristics explores the neighbourhood of the current solution (N (s)),
and move to the best solution s′ of that neighbourhood even if it is worse
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Algorithm 4 Tabu Search.
procedure TabuSearch()

s ← GenerteInitialSolution()
Initialise tabu lists
while not stopping condition do

PermittedSet(s) ← {s′ ∈ N (s) | tabuConditions(s′)=false OR
aspirationCriteria(s′)=true}
s ← ChooseBest(PermittedSet(s))
if f(s) < f(best) then

best ← s
end if
Update aspiration criteria and tabu lists

end while
return best

than s.

This type of movements within the search space can lead to the occur-
rence of cycles between two solutions. To avoid this situation, Tabu Search
forbids the last l movements. This anti-cycles mechanism is implemented by
keeping a short-term memory, call “tabu list”, where the inverse of the last
l movements are stored (the elements are inserted and removed in a FIFO
order).

In the intensification stage, the tabu list is cleaning and the search starts
from the best solution found, proceeding as in the preliminary search for a
certain number of movements. When the diversification phase takes place,
the tabu list is cleaning again and the l more frequent movements done un-
til that moment are placed on it. Then some preliminary search steps are
done starting from a random solutions. In this way, Tabu search alternates
more exhaustive optimisations in the promising regions found by the inten-
sification phase with the exploration of new regions in the diversification
stages.

The handling of list that store complete solutions is inefficient, so the
tabu list usually keep solution attributes. The attributes can be components
of the solutions, movements or differences between two solutions. When
more than one feature is considered, each of them is stored in a different
tabu list. These sets of attributes together with the tabu list allow to define
the permitted set, that is, those solutions that fulfil the tabu conditions.
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But the storing of solution features has an associated drawback, the lost
of information. Since the same attribute can be found in more than one
points of the search space, the fact of forbidding one of them can avoid
to search unexplored regions. To overcome this problem, some aspiration
criteria can be establish to allow the inclusion of certain solutions in the
permitted set even if they are forbidden by the tabu conditions. Allowing
solutions that are better than the best solution found is a common aspiration
criterion. In general tabu movements will be permitted if the aspiration
criterium determines that can be profitable. A basic example of Tabu Search
in displayed in Algorithm 4.

2.2.4 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedures (GRASP) can be consid-
ered an hybrid between constructive and local search heuristics as can be
seen in Algorithm 5. The working of this method alternates the construction
of a solution with an improvement process of that solution.

The construction of solutions does not follow a deterministic procedure
but is adapted dynamically and has a randomized component. Assuming
that a solution s can be build joining a subset of elements from the set “so-
lution components”, the solution is constructed iteratively adding element
by element. The next “piece” to add is chosen in the next way: the possible
components are ordered by a heuristic criterion that assigns them a deter-
mine score taking into account the benefit obtained when they are added
to s. Then, the element to be incorporated is randomly chosen from a list
constituted by the best scored components, call Restricted Candidate List
(CRL). It is important to note that the benefit is inferred in a blind man-
ner, since it only considers the profit obtained by adding the candidate to
the solution at that moment. Beside this, the heuristics scores are adapted
dynamically depending on the options available. A possible heuristic of this
type is the election of the most cheapest candidate, being the score of an
element the cost of adding it to the partial solution.

The influence of the heuristic in the search is given by the length of the
CRL. A list of length n makes the generation of the solution completely
random whereas a list of length 1 leads to a pure greedy construction. The
adjustment of this parameter is crucial since it determines to what extent the
search space is explored and therefore, the performance of the method. The
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Algorithm 5 Greedy Randomized Adaptive Search Procedure (GRASP).
procedure GRASP ()

while not stopping condition do
s ← CreateGreedySolution()
LocalSearch(s)
if f(s) < f(best) then

best ← s
end if

end while
return best

procedure CreateGreedySolution()
s ← ∅
l ← CalculateLengthCadidateList()
while ! solution constructed do

LRCl ← GenerateCandidateList(s)
x ← RandomChose(LRCl)
Add element x to s

end while

parameter can be set to a fixed value or adapted by a certain mechanism.

The second phase is just a local optimisation process where different
trajectory-based algorithms can be used (Hill Climbing, Simulated Anneal-
ing, Tabu Search, etc).

To obtain a good performance from a GRASP algorithm, the mechanism
to construct the solutions should permit the exploration of promising regions
of the search space, which can be achieved by choosing a proper heuristic and
a suitable length for the CRL. Furthermore, another important condition is
the location of the solutions generated in the construction stage in basins
close to local optima. This can be accomplish by combining constructive
heuristics and local searches with complementary features.

Although GRASP can be outperformed by more complex methods, it
simplicity makes them very fast algorithms that can find good solutions in
reasonable times which can be interesting in many practical situations.

2.2.5 Variable Neighbourhood Search

The Variable Neighbourhood Search, proposed by Nenad Mladenovic and
Pierre Hansen [113], is based on the idea of changing systematically the
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Algorithm 6 Variable Neighbourhood Search (VNS).
procedure V NS()
Nk, k = 1, ..., kmax are the chosen neighbourhood structures
s ← GenerateInitialSolution()
while not stopping condition do

k ← 1
while k < kmax do

s′ ← RandomChose(Nk(s))
s′′ ← LocalSearch(s′)

if f(s′′) < f(s) then
s ← s′′

if f(s) < f(best) then
best ← s

end if
k ← 1

else
k ← k + 1

end if
end while

end while
return best

neighbourhood structure in order to escape from local minima [72,73]. The
principles of this idea are the followings:

1. A local optimum with respect to a neighbourhood structure can not
be so for another.

2. A global optimum is a local mininum for all the possible structures.

3. The local minima with the same or a different neighbourhood structure
are relatively close in many problems.

Last principle is based on empirical evidences and implies that the local
optima provide information about the location of the global minimum be-
cause they probably share common characteristics. These facts suggest that
the using of different neighbourhood operators or structures for local search
can be a good strategy to solve optimisation problems.

The basic form of this metaheuristic is given in Algorithm 6. To apply
VNS is necessary to define the different neighbourhood structures that VNS
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will work with. A common option is to choose nested neighbourhoods, that
is, N1 ⊆ N2 ⊆ . . .Nkmax . Within the working of the method we can find
three phases. Firstly, the shaking stage where a solution s′ from the k-th
neighbourhood of the current solution is randomly picked up. In the second
phase, a local-search algorithm is applied taking s′ as starting solution. The
solution obtained from this local optimisation process is compared against
the current solution s. If the new solution is better, then it replaces s

and the search is restarted with k=1. Otherwise, k is incremented and a
new shaking phase with this new neighbourhood structure is done. The
local search method can use any neighbourhood structure without being
restricted to Nk, k = 1, ..., kmax.

The aim of the shaking movement is to take out the local search from the
local minimum and locate it in a good starting point. This point should be
in the basin of attraction of another local optimum but it is important that
both optimums are relatively close because good solutions usually have some
common attributes with the current local minimum. Big shaking movements
would convert the search in a simple multi-start method that does not take
into account the information obtaining during the optimisation process.

VNS carries out a progressive diversification that achieves by changing
the neighbourhood structure systematical. The success of these systematical
changes is due to the fact that different neighbourhood operators provide
different fitness landscapes for the search, whereby an adverse region for a
structure can not be for other one, as it happens with the local minima.

A well known variant of VNS is Variable Neighbourhood Descent. This
method is based on principle 1 and consists on a local search where the neigh-
bourhood structure of the current solution is changed if a better neighbour
is not found. Another version of VNS is the general VNS, in which the lo-
cal search phase is performed by a VND that uses different neighbourhood
structures to the ones used for the shake phase. Skewed VNS can be consid-
ered a minor variant of VNS. In this case, the solution obtain from the local
optimisation process is accepted to reallocate the search taking into account
not only its fitness but also its distance respect to the current solution.

2.2.6 Evolutionary Computation

Evolutionary Computation (EC) is based on natural selection and genetic
principles and was proposed by Holland [78]. These algorithms evolve a
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Algorithm 7 Evolutionary Computation.
procedure EvolutionaryComputation()

Generate initial population P
Evaluate all individuals in P
while not stopping condition do

P ′ ← Crossover(P )
P ′′ ← Mutation(P ′)
Evaluate all individuals in P ′′
P ← Selection(P ′′ ∪ P )

end while
return best individual found

population of solutions (also called individuals) applying certain operators
to create the population of the new generation. The operators are:

• Crossover : it combines parts of two or more parent solutions in order
to create new solutions that possibly can improve their parents.

• Mutation: it modifies randomly a solution to increase the diversity
and generate better individuals.

Apart from crossover and mutation operators another important process
in EC is the selection. Those individuals that show a better adaptation have
a higher probability of being chosen to continue in the next generation or of
being combined to create the individuals of the next population.

Multiple EC algorithms have been proposed from their origins until now.
Some of the most know are Evolutionary Programming [56,57], Evolutionary
Strategies [128] and Genetic Algorithms [66,78,112,129,148]. The majority
of the current variants of Evolutionary Programming are used for continu-
ous optimisation, as most of the Evolutionary Strategies. On the contrary,
Genetic Algorithms are usually applied to combinatorial problems.

An example of a basic EC method is displayed in Algorithm 7. The
working usually carried out by evolutionary methods is, in first place, to
create a new population of individual P . Then, at each generation, a new
population is obtaining by the recombination, mutation and selection of
individuals.

The main components of a EC method are the following [17]:

• Individuals of the population: EC algorithms work with populations
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of individuals. These individuals are usually solutions for the prob-
lem at hand, but other options are possible: partial solutions, set of
solutions or objects that give rise to solutions. The binary represen-
tation of solutions is the most common one, although representations
by permutations or real numbers are also possible.

• Evolutionary process: this process determines which individuals will
belong to the next generation. The selection scheme can vary from
the generational replacement, where only the offspring of the former
generation is chosen, to the selection of distinct proportions of indi-
viduals of the previous population and the offspring. Keep a elitist
set of solutions is a common characteristic of EC method with a fixed
number of individuals.

• Neighbourhood structure: which solutions can be combine among them
is another aspect to define in EC. When any individuals can be chosen
to apply the crossover operator, then the population is non structured.
There exists other models, as the cellular genetic algorithms [5], where
the population is structured and the individuals can only be combined
with those ones that belong to their neighbourhood.

• Information sources: although the most common crossover operators
uses two solutions to generate new offspring, others operators that
combine more than two parents have been proposed [49]. In works
as [115, 142], we can find mechanisms that generate new individuals
using population statistics.

• Infeasibility : in some cases the recombination of individuals can lead
to non feasible solutions, that is, solutions that do not fulfill the prob-
lem constraints. In this way, it is necessary to define mechanisms
that manage these situations. The most simple option is to reject
these individuals, although in problems where the generation of feasi-
ble solutions is hard (scheduling problems), a strategy that keeps these
individuals but penalizes them as a function of their quality, usually
leads to better results. Another possibility is to repair non feasible
solutions [50].

• Intensification strategy : EC methods are good global searches but
present some problems to intensify the search in promising regions.
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This has lead to many researchers to incorporate local search in EC
algorithms. The most known combination between EC and local
searches are the so called memetic algorithms [75, 114]. The local
search help to quickly detect favorable areas of the search space. An-
other way of improving the intensification capabilities of EC methods
is to use crossover operators that combine promising parts of the par-
ents instead of establish randomly which parts are taken to create the
offspring. This strategies are named linkage or building block learn-
ing [74,151].

• Diversification strategy : a drawback that EC algorithm can show is
the premature convergence to suboptimal solutions, specially if they
are coupled with local searches. Some techniques have been proposed
to overcome this problem. The mutation operator is the most basic
element to control the diversity of a population, so a relatively easy
way of increase/decrease the diversity is to adjust the probability of
application of these operator [7]. Other strategies designed to deal with
this drawback are crowding and preselection [98]. Fitness sharing is
another mechanism to enhance the diversification skills of EC methods.
This consists on reducing the fitness of individuals that are densely
concentrated in a region of the search space [67].

2.2.7 Ant Colony Optimisation (ACO)

These optimisation techniques were firstly proposed by Dorigo et al. [43,44,
46] and are inspired in the behaviour of some social insects. These insects
were taken as source of inspiration since despite their individual simplicity,
they present a quite organized social structure that allow them to achieve
tasks that one isolated individual would not be able to do by itself. Ant
Colony Optimisation (ACO) studies models to simulate in somehow the
behaviour of real ants by means of populations of artificial agents in order
to solve optimisation and distributed control problems.

Different aspects of ants’ social behaviours (search of food, work division
or cooperative transport), that have inspired some of these algorithms, can
be explained by the stigmergy, concept introduce by Pierre-Paul Grassé [70].
This author defined the term as “Stimulation of workers by the performance
reached”. In short, this concept indicates that the action done by some
agents left signals in the environment that are perceived by other agents
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Algorithm 8 Ant Colony Optimisation (ACO).
procedure AntColonyOptimisation()

Initialize pheromone
while not stopping condition do

Build solutions of ants
Update pheromone

end while

and that can determine future actions. Some studies have shown that many
self-organizational behaviour of social insects can be explained only by the
stigmergy. One of the most known examples the search and transport food
done by ants. When they look for a feeding source, they left a chemi-
cal substance (pheromone) in the ground that is perceived by the others
ants. These insects tend to follow those paths with a bigger concentration
of pheromones. Such behaviour leads them to transport food to their niche
in very effective and efficient way, since they find quasi optimal paths.

Last phenomenon is simulated by ACO algorithms to solve optimisation
problems. For example, many of these methods are based on the models
developed to explain the behaviour of ants when they need to choose between
two different bridges (with the same or different length) that finish in the
same feeding source [42, 69, 120]. A mathematical model to estimate the
probability that an ant takes the first bridge (p1) or the second one (p2),
assuming that m1 and m2 ants have pass through the bridges number 1
and 2, respectively, was proposed by Goss [69]. This is given by the next
equation:

p1 =
(m1 + k)h

(m1 + k)h + (m2 + k)h
, (2.1)

where the parameters k and h are fixed according to the experimental data.
The probability p2 is calculated by p2 = 1− p1.

ACO, whose basic scheme can be seen in Algorithm 8, is a construc-
tive metaheuristic where the solutions are built by adding components to
partial solutions following a probability distribution that is determine by
the pheromone and heuristics of the particular problem. The working of
these methods is the following: in first place the pheromone and different
parameters are initialised. After this, ACO goes into a two-phase loop. In
the first of these two phases, a set of m ants constructs solutions by adding
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elements from a finite set of solution components C. Starting from a empty
solution, at each iteration the solution is extended by joining a component
that does not violated the constraints. This subset of C is named N(s). The
construction process can be modeled as a path in a graph GC(V, E) where
the elements of the set C are represented as vertices or edges. The election
of a component from N(s) is done using a stochastic mechanism that has
as one of its parameters the pheromone associated to each element of N(s).
Different stochastic models to accomplish this election has been developed,
all of them taking as base the one seen in Equation 2.1.

In some ACO algorithms, after constructing all the solutions, a local
search process is applied to improve the performance of the method. The
use or not of local search usually depends on the problem and the ACO
algorithm.

The last phase in an ACO method is the update of the pheromone. The
objective of this phase is to increase the levels pheromone for promising
solutions and decreasing (evaporate pheromone) for the ones that are not.

The first ACO algorithm that can be found in the literature is the so
called Ant System (AS) [45] in which all ants participate in the pheromone
update. MAX-MIN Ant System is a variant of this method where some
elements are improved. For example, the pheromone traces are only up-
dated by the best ant and furthermore, the pheromone values are delimited
empirically and adapted to problem specific features. Another algorithm
developed from AS ideas is the Ant Colony System. In this case, the ants
perform a local update of the pheromones independent from the one done
during the construction process. After each step, the ants do this local
update by decreasing the pheromone quantity of the last edge visited in or-
der to increase the probability that other ants take different paths and so,
improving the diversification of the search.

2.2.8 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a metaheuristic inspired on the social
behaviour showed by some species of birds or fishes when they accomplish
some tasks as looking for food. This method, firstly developed by Eberhart
and kennedy in 1995 [87], maintains a set of solutions, called particles, that
are points within the search space of the problem. The particles, after being
initialized randomly, search for a local optimum guided by the particle that
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Algorithm 9 Particle Swarm Optimisation (PSO).
procedure ParticleSwarmOptimisation()

Initialize all particles in population P by setting their velocity
and location
while not stopping condition do

for all particle ∈ P do
Evaluate(particle)

end for
for all particle ∈ P do

UpdateBestPosition(particle)
end for
UpdateBestGlobalPosition()
for all particle ∈ P do

UpdateVelocity(particle)
CalculateNewPosition(particle)

end for
end while

has found the best solution (the leader) and by the best solution found
during their trajectories.

The basic form of this metaheurstic can be seen in Algorithm 9. This
strategy, after the initialisation stage, enters in a loop that finishes when
the stopping condition is met. As first step of this loop, the particles are
evaluated and then, the best solution found by each of them (pbesti) and the
best global position (gbest) are updated. Afterwards, the velocity of each
particle is recalculated by means of the next equation:

vi = ω · vid + c1 · r1 · (pbesti − xi) + c2 · r2 · (gbest− xi) (2.2)

where ω is a parameter called inertia weight that establishes the influence of
the previous velocity. A higher value implies a bigger diversification balance
of the strategy. The constants c1 and c2 are named acceleration coefficients
although they are also known as the cognitive and the social parameters,
respectively, since they determine the importance of the best local and global
positions, in that order. r1 and r2 are random values uniformly distributed
in the range [0,1]. Finally, in the last step of the loop the new position of
the particle is calculated by:

xi = xi + vi (2.3)
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PSO is a metaheuristic that besides having a very simple tuning (due to
its low number of parameters) shows a high performance, which facilitates its
application to different fields as neural network training [47], fuzzy control
systems [47], dynamic problem optimisation [15], etc.

Different versions of the PSO algorithm have been proposed. One ex-
ample is multi-swarm PSO [15], where the particles are divided in different
subsets that compete among them. In charged PSO [14], some of the parti-
cles have assigned a “electrostatic charge” whereas others are neutral. As it
happens in an atom, particles equally charged show a repulsive force among
them while on the contrary neutral particles do no experience this force. The
aim behind this idea is to gather neutral particles around the best global
position at the same time as charged particles explore the areas close to this
position.

2.2.9 Parallel Metaheuristics

In some occasions the computational times associated to the resolution of
large instances can be extremely high. In this way, the application of parallel
computation to Metaheuristics appeared in a natural way in its development
not only to speed up the resolution of big instances but also to build meth-
ods more robust that offer an acceptable performance in a wide number of
problem or instances [35].

In this context, Parallel Metaheuristics can be classified in 3 categories
according to the source of parallelism used:

• Type 1 or low level parallelism: this source of parallelism is commonly
found within an iteration of the search method. It can be obtained
through the concurrent execution of the operations or the concurrent
evaluation of several movements that are accomplished during the it-
eration of the search algorithm. The target of this strategy is to reduce
the computational time and not to improve the quality of the solution
or changing the search pattern of the method with the intention of
achieving a better exploration of the search space. Furthermore, the
reader should note that given the same quantity of iterations, both
the sequential and the parallel implementations produce the same re-
sults. Some of this implementations modify the sequential method to
exploit the extra computation power available, but without altering
the basic algorithm. One common example is to evaluate at the same
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time all the elements of the current solution’s neighbourhood instead
of just one. This type of parallelisation has been applied to methods
as genetic algorithms [55] or simulated annealing [18] among others.

• Type 2 or domain decomposition: in this category, the parallelism
is obtained decomposing the decision variables into disjoint subsets.
Each process works on one of these subsets and sets the others to a fix
value. It is important to note that this way of partitioning the deci-
sion variables may not allow to explore the whole search space, which
obliges in some occasions to repeat the division of the variables and the
search process. This strategy is generally implemented in a master-
slave model, where the master accomplishes the task of partitioning
the variables. The division is adjusted in every restart or at specific
intervals. Depending on the chosen method, the slaves can explore
concurrently their assigned subset keeping fixed the other variables or
can have access to the whole set. In the last case, the master should
accomplish complex tasks to combine the partial solutions obtained
in each subset and this way, build a complete solution of the prob-
lem. Tabu Search and GRASP have been parallelize following this
methodology in [38] and [51], respectively.

• Type 3 or multi-search: In this parallelization strategy several searches
explore the solution space concurrently. Each search thread can im-
plement the same or a different method, can start from the same or
a different initial solutions, etc. If the threads only exchange infor-
mation at the end of the search to determine the best solution, then
the strategy is called independent. If, on the contrary, the search algo-
rithms send and receive information during the search process then the
strategy is called cooperative multi-search. They can work with differ-
ent communication modes: synchronous, asynchronous, event-driven,
predetermined or dynamically chosen moments, etc. The speed up in
computation time is achieved by reducing the time of search for the
threads in a factor proportional to the number of available proces-
sors. Furthermore, this type of parallelization is often used to increase
the exploration capabilities of a metaheuristic. Examples of these ap-
proaches can be seen in [33,36].
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2.3 Summary

In this chapter we have presented the Soft Computing area, reviewing its
classic components. We have also seen that Metaheuristics should be con-
sidered as one of its main elements since, in this manner, the research field
is extended allowing a higher number of methods and models in the part of
Functional Approximation and Optimisation Methodologies than when only
Evolutionary Algorithms are considered.

In the second part of the chapter we have focused on the component
of Soft Computing that frames our dissertation, Metaheursitics. Here, we
have defined some basic concepts of optimisation. Afterwards, we have
described some of the most known Metaheuristics as Simmulated Anneal-
ing, Tabu Search, Greedy Randomized Adaptive Search Procedure, Variable
Neighbourhood Search, Evolutionary Computation, Ant Colony Optimisa-
tion, Particle Swarm Optimisation and Parallel Metaheuristics.

35





Chapter 3

Cooperative Strategies for

Optimisation

In this chapter we will start describing Hybrid Metaheuristics, different types
of hybridization according to a well known taxonomy as well as a review of
some of approaches that we can find within each of these types. Taking
as general context Hybrid Metaheuristics, we will define what will be our
concept of cooperative strategy locating these methods within that general
context. Three different classifications for cooperative strategies will be
given and we will finish with a summary of the content of the chapter.

3.1 Hybrid Metaheuristics

The first stages of research in metaheuristics were focused in the design and
application of “pure” or isolated metaheuristics. The researchers consid-
ered the metaheuristics that they were working with as “generally” best,
and they tend to follow specific philosophies strictly. However in last years
an increasing interest in the combination among different metaheuristics or
among these methods and others optimisation techniques has arisen. This
new type of search algorithms, called hybrid metaheuristics, can provide
more robust performance than their “pure” counterparts when dealing with
real-world and large-scale problems. In fact, many of the best results re-
ported in the literature for practical or academical problems have been ob-
tained by these class of metaheuristics. A proof of the success of these new
methods can be seen in Figure 3.1 where we show of the number of publica-
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Figure 3.1: Evolution during last ten years of the number of publications (jour-
nal and conference papers) within the field of Computer Science that contain in
the title the word hybrid plus one of the following terms: heuristic, optimization,
metaheuristic and algorithm

tions within the field of Computer Science that contain in the title the word
hybrid plus one of the following terms: heuristic, optimization, metaheuris-
tic and algorithm 1. The graphic clearly show that the number of journal
and conference articles about this subject has grown noticeably in the last
five years.

The motivation behind the hybridization of different algorithms is the
development of better performance strategies by combining the advantages
of “pure” or isolated methods. In the literature we can find combinations
of many different forms which have lead several authors to “order” them
attending to different criteria.

From our point of view, one of the most interesting taxonomies was
given by E.G Talbi in [143]. It is a hierarchical taxonomy that can be seen
in Figure 3.2, where the hybrids are classified by their structure. At the first
level, we can differentiate between Low-level and High-level hybridizations.
Low-level combinations refer to those cases where a determined component

1The data have been obtained from SCOPUS: http://www.scopus.com
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Figure 3.2: Hybrid metaheuristics taxonomy

of a metaheuristic is substituted for another metaheuristic, which leads to
a strong dependency between them. On the contrary, in High-level hybrids,
the algorithms keep their original identity and are able to work in an au-
tonomous way. Within the next level, relay hybridization includes those
methods where algorithms are applied sequentially in a pipeline, that is ,
the output of one algorithm is connected to the input of other one. On
the other hand, teamwork hybrids represent cooperative optimisation mod-
els where a set of agents cooperates while each of them accomplishes its
own search. In this way we can differentiate 4 different classes of hybrid
metaheuristics according to their structure. Next subsections are devoted
to describe in more detail these classes and some examples.

3.1.1 Low-Level Relay Hybrid (LHR)

This class includes those methods in which a a non-general purpose mech-
anism is embedded into a metaheuristic, usually to carry out the local im-
provements. Examples of these methods are hardly found in the literature.
Two samples of this hybrid can be seen in [2], where a memetic algorithm is
provided with a 2-opt optimisation, and [103], where a simulated annealing
algorithm is coupled with a deterministic local search that carries out the
exploration of the local optima.
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3.1.2 Low-level Teamwork Hybrid (LTH)

LTH hybridization usually combines metaheuristics that have an exploratory
profile, as population-based algorithms, with trajectory based heuristics,
that have a higher exploitation capability, due to the fact that they have
complementary strengths and weaknesses. We can find many proposals
where the most successful population-based algorithms have integrated, into
their working scheme, trajectory-based metaheuristics such as tabu search,
simulated annealing or hill climbing. The idea in these cases is to perform a
more global search by means of the first type of methods while the last ones
carry out a more local optimisation. These algorithms have shown a very
good results in many optimisation problems and in fact, most of the high-
performance population-based metaheuristics are coupled with local search
methods.

A common example of these hybrids is an evolutionary algorithm that
substitute their classic blind operators by heuristics that use the individuals
as starting points to later replace them by the obtained solutions that usu-
ally have a better quality. For example, the mutation operator of a genetic
algorithm has been substituted by a trajectory search as Hill Climbing [86],
Tabu Search [144] or Simulated Annealing [28]. In [29] we can find a lo-
cal search which incorporates problem specific knowledge and that is used
instead of the genetic operators. Within this type of operators we should
differentiate between Lamarckian, where the individual is replaced by the
local minimum found, and Baldwinian, where the local optimum is simply
considered to evaluate the individual. LTH hybrids have improved other
methods in hard problems as Graph Coloring [54] where a genetic algorithm
combined with a local search provided good results.

Classic crossover operators that do not use heuristic information have
been also replaced, for instance, by methods that incorporate problem spe-
cific information [71] or a greedy algorithm [97]. Similar types of crossovers
can be found in continuous optimisation. In [154] the authors introduce
a heuristic crossover that determines the direction of the search basing on
the fitness of the parents. Another example is presented in [130] where the
Simplex algorithm is used to combine solutions.

Besides evolutionary algorithms, this hybridization can be done with
other population-based methods as ant colonies [141], genetic programming
[118], particle swarm optimisation, etc. In all of these cases, the trajectory
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algorithms aims to intensify the search.
These hybrids can show premature convergence problems in some occa-

sions, especially if the trajectory-based method is applied in every iteration.
Conditional hybridization can avoid this stagnation by using the local op-
timizer when a preestablished criterium is fulfilled. Such conditions can be
static, if the hybridization is applied with a determine frequency, or dy-
namic, if the application is addressed by events (e.g no improvement for a
given number of iterations).

3.1.3 High-Level Relay Hybrid (HRH)

This class includes those hybrid metaheuristics composed by a set of self-
contained algorithms that are run sequentially and whose output is con-
nected to the input of the next one. One basic example, which gives usually
very good results, is the generation of the starting solution of a trajectory
methods by means of a greedy heuristic. A similar scheme can be applied
to population metaheuristics to generate the initial population and, in this
way, achieving a high diversity as happens in scatter search [64].

Trajectory-based and population-based metaheuristics can also be com-
bined as HRH hybrids. Population algorithms usually perform a global
search which makes them locate promising regions quickly. But once they
have located the region, its capability to intensify the search in those areas
is low. Therefore it would be useful to apply a local search in that loca-
tions. Furthermore, a usual situation in population based method is to have
a quite uniform population after a certain amount of time which leads to a
low probability of finding more fitted individuals. This is generally due to
the stagnation of the population in a basin of attraction. The fast exploita-
tion of these basins is advisable and thus, the use of trajectory algorithms
since it is experimentally proved that they can perform better that task. In
this sense, the local optimizers can be applied to:

• The whole population: It has a big computational cost but leads to
the best final solution.

• A subpopulation: Here, a compromise between the search time and
the quality of the best solution found is established. The selection of
the population can be done following criteria as the diversity of the
population, best individuals, etc.
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• The best solution of the population: The trajectory metaheuristic is
applied to the best solution of the population. In this case the compu-
tational complexity is reduced but it is not ensured to reach the best
final solution.

Other methods of intensification as path relinking [4] can be used in this
type of hybridization. This can also be applied to the whole population or
to a subset of elite solutions.

In the literature we can find examples of these methods, as [93] where a
Genetic Algorithm is introduced to improve the solution obtained by Sim-
ulated Annealing. In [99] a Simulated Annealing is used to increase the
quality of the solutions found by a Genetic Algorithm. Other example are
the so-called multi-memetic algorithms [75], where a set of methods (opera-
tors, local searches, metaheuristics) are coupled with a Genetic Algorithm.
Hyperheuristics [27] also fit this type of hybridization. These methods con-
sist on a set of low-level heuristics managed by a specific heuristic or plan
that determines which one should be applied in every moment. This decision
is made using information about the performance of the low-level heuristics.

3.1.4 High-Level Teamwork Hybrid (HTH)

In HTH a set of autonomous cooperating agents perform a parallel search
to obtain good quality solutions. In some occasions the agents only ex-
change information at the end of the search to determine the best solution,
which is usually named as “independent strategy”. In many other cases the
agents cooperate by sending and receiving information during the search
process. They can work with different communication modes: synchronous,
asynchronous, event-driven, predetermined or dynamically chosen moments,
etc. Moreover, this type of hybrids increase the exploration capabilities of a
metaheuristic. Some works as [33,36] showed that HTH hybridization allows
to obtain a more effective behaviour (better quality solutions) than their iso-
lated components. In these studies, we can also check that the combination
of agents implementing different search algorithms leads these strategies to
a more robust performance in relation to the variation of the instance prob-
lem characteristics. They also indicate that while the implementation of
the independent search is easier and their results are good, these can be
improved by introducing a cooperation scheme.
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Within this hybrid class, the well-known island models of Genetic Al-
gorithms [25] are also included, where a set of sub-populations evolve ex-
changing individuals among them . Several parameters control these HTH
hybrids:

• Topology : how the different populations are connected

• Migration rate: number of individuals that migrate

• Replacement strategy : which individuals are replaced by the solutions
sent from other subpopulations

• Migration interval : frequency of the migrations

In the majority of the models the solutions sent to other subpopulations
are copies of the original individuals but some authors has proposed models
in which the migrants really “leave the island”.

An island model for permutation problems is presented in [111] with
the peculiarity that the individuals are initialized by a heuristic in order to
generate well distributed and fully disjoint initial population in each island.
Also, Ref. [156] describes another island model for the shortest path routing
problem.

HTH hybrids can be also applied to trajectory based metaheuristics.
A common model for this hybridization is to run in parallel several local
optimizers and establish a cooperation scheme. For instance, Pelta et al.
proposed in [125] an hybrid where a set of trajectory algorithms are con-
trolled by a rule-driven coordinator. A similar strategy where a set of tabu
searches cooperate can be found in [85]. Here the cooperation is accom-
plished by maintaining a global reference set which uses the information
exchange to promote both intensification and strategic diversification.

The so called “Algorithm Portfolios” [82] is other type of HTH hybrid.
Here, a set of algorithms are run in parallel until the fastest one solves the
problem. Algorithms Portfolios are often coupled with other techniques from
Artificial Intelligence in order to control the amount of resources available for
each component which is usually done taking into account its performance.
Such techniques can be reinforcement learning [90], dynamic programming
[126] or bandit problem solvers [59] among others.

We can also find HTH hybrids of others metaheuristics as Variable Neigh-
bourhood Search [33], ant colonies [100], differential evolution [91], etc.
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3.2 Locating cooperative strategies within hybrid

metaheuristics context

The concept of cooperative strategy is widely used within the field of meta-
heuristics, being taken by many authors to name different types of methods.
Crainic and Toulouse define them as [37]:

“a set of highly autonomous programs (APs), each implementing a par-
ticular solution method, and a cooperation scheme combining these APs into
a single problem-solving strategy”

The next definition is given by Blum et al. [17]:

“Cooperative search consists of a search performed by agents that ex-
change information about states, models, entire sub-problems, solutions or
other search space characteristics”

In other works the authors consider cooperative strategies as a type of
parallel metaheuristics:

“These algorithms execute in parallel several search programs on the
same optimization problem instance” [146]

or

“Cooperative search algorithms are parallel search methods that combine
several individual programs in a single search system” [145]

The concept of cooperative strategy that we will use along the thesis will
be the same that Talbi call “teamwork” in his taxonomy, that is: models in
which we have many parallel cooperating agents, where each agent carries
out a search in a solution space. Therefore, the term “cooperative strategy”
in this dissertation embraces two classes of that taxonomy: LTH and HTH.
Another point that we should highlight is the fact that the particular im-
plementation of the cooperative strategy is not taken into account, that is,
we include both parallel and sequential implementations of these methods.
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Next section is devoted to explain different ways of classifying these type of
strategies.

3.3 Classifying cooperative strategies

The majority of the taxonomies given to classify cooperative strategies are
not exclusively dedicated to this type of methods but consider them as one of
their classes. For instance, in [143], apart from the hierarchical classification
we saw before, Talbi gives a flat taxonomy for hybrid metaheuristic that can
be applied to cooperative strategies. He consider the following categories:

• Homogeneous vs Heterogeneous: this class refers to the composition
of the strategy. When all the combined methods use the same meta-
heuristic the hybrid is homogeneous. Island models for Genetic Algo-
rithms [25] are good examples of this hybridization. In these cases,
different parameters are usually used for the methods. An example
can be found in [149] where a set of cooperating tabu searches start
with distinct settings (initial solution, tabu list size, etc.).

On the contrary, heterogeneous strategies obviously use different algo-
rithms. Combinations between evolutionary methods and local searches
[34,75] are probably the most known instances of this class.

• Global vs Partial : this is another perspective from which cooperative
strategies can be classified. Global refers to those methods where the
algorithms explore the whole solution space, being the most common
case in the literature.

Partial strategies decompose the search space of the problem and each
of the algorithms that constitute the strategy is assigned a specific
sub-space. This usually implies the existence of a mechanism to keep
the feasibility of the solutions (constraints, domain ranges, etc). An
example of this class of methods is shown in [83], where a set of Genetic
Algorithms are applied to job-shop scheduling problem. Here, each
algorithm evolves individuals of a specie which represent the process
plan for one job.

• Specialist vs General : in general hybrids, all the components work with
the same objective function which is the common case in the literature.
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On the contrary, specialist methods are formed by algorithms that
solve different problems. This hybridization can be found in [6]. This
approach for the quadratic assignment problem is composed by Tabu
Searches that work over this problem whereas a Genetic Algorithm
carry out a diversification task which is formulated as another problem.
A different case of specialist hybrids, relatively common, is the use
of a metaheuristic to optimise the parameters of another one. This
approach has been applied to optimise Genetic Algorithms [136] or
ant colonies [3] by Genetic Algorithms.

Another taxonomy for hybrid metaheurisitcs was proposed by G. Raidl
in [127] where he unified other classifications previously given for this type
of algorithms. As the former one, it can also be applied to cooperative
strategies. It considers four different classification criteria:

• What is hybridized? : from this point of view three distinct types of co-
operative strategies can be considered: combination of metaheuristics
with metaheuristics, metaheuristics with problem specific algorithms
or metaheuristics with other techniques coming from Operational Re-
search or Soft Computing methods.

• Level of hybridization: in these cases, two types of cooperative strate-
gies can be differentiated. On one hand, high-level or weak cou-
pling when the algorithms maintains their identities and on the other
hand, low-level or strong coupling, when individual components are
exchanged.

• Order of execution: by this criterion we have batch model, where
the algorithms are run sequentially and the information is always ex-
changed in one direction; interleaved, where the components are ex-
ecuted also sequentially but the interactions can be done in different
directions; and parallel, that besides from running the algorithms si-
multaneously can show many forms of communications among them.

• Control strategy : two different control strategies can be found. The
first one embraces integrative approaches in which one algorithm act as
an embedded component of another. The second one is collaborative
o cooperative control where none of the algorithms is a component of
the others.
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To finish with this section we are going to give another interesting way of
classifying cooperative strategies that was proposed in [35]. This taxonomy
for parallel metaheuristics, which generalise the ones presented in [32, 39],
defines three dimensions: Search Control Cardinality, Search Control and
Communications and Search Differentiation. Last two are related to the
cooperation issue. The first dimension distinguishes the algorithms in which
the global search is controlled by an individual process (1-C ) from those
where is done by several processes that work in a collegial manner (p-C ).
Since cooperative search strategies belong to this last category, from now
on, we will not consider the 1-C class.

The next dimension, Search Control and Communications, addresses the
classification in 4 classes taking into account the quality and the quantity
of information exchange. These are:

• Rigid synchronization (RS): it indicates that there is little or no infor-
mation exchange between processes. The independent strategy would
be framed here.

• Knowledge synchronization (KS): in this degree of the Search Control
and Communication dimension is characterised by synchronous oper-
ating mode. In this case the self-contained search algorithms indepen-
dently explores the search space and stop at a previously determined
intervals where an intensive communication phase takes place among
all of them.

• Collegial(C): in this stage, the search threads perform an asynchronous
communication. Each search algorithm is able to process, store and
treat its own information and is provided with mechanisms to de-
cide when to accomplish the information exchange. Here, each solver
searches on all or on a part of the domain and when an improving
solution is found (locally or globally, according to the chosen strat-
egy), it is broadcasted (together, eventually, with its own context and
history)to all or some of the other search processes. This information
can be also stored in a central memory and it is only broadcasted
that a better solution has been found. In all cases, the messages sent
correspond to the messages received.

• Knowledge Collegial (KC): as in the former case, the searches have its
own capabilities to deal with the information and to determine when
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to communicate. However, in this stage the exchanged information
is analysed and processed in order to infer new knowledge about the
global search process. To accomplish this inference, the majority of
these methods implement some form of global memory (pool, black-
board or data warehouse) through which the information exchange is
done.

The third dimension, called Search Differentiation, is related to the num-
ber of different starting solutions/populations and to the number of different
strategies implemented by the solvers (by different strategies this classifica-
tion means distinct algorithms or same algorithm with distinct configura-
tions). The authors identify the next four classes:

• Single (Initial) Point/Population Single Strategy (SPSS): it is the most
simple case, and it generally allows for only low level parallelism.

• Single Point/Population Different Strategies (SPDS): in this case there
are heterogeneous search threads that start from the same solution/s.

• Multiple Points/Populations Single Strategy (MPSS): it refers to those
strategies where the solvers start the exploration from different points
but implementing the same algorithm.

• Multiple Points/Populations Different Strategies (MPDS): this class is
the most general and includes all others as specific cases.

3.4 Summary

In this chapter we have introduced cooperative strategies. To that end, we
have started describing the general context in which these strategies are
framed, Hybrid Metaheuristics. In order to have a comprehensive vision
of this context we have used a taxonomy to explain the different types of
hybridization taking into account their structure. This classification was
organized in a hierarchical way where in the first level distinguished between
high-level and low-level hybrids. In the second level there are another two
classes, relay and teamwork. In this way we have four different categories
for each one of which some approaches proposed in the literature have been
reviewed.
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Besides this, three different taxonomies of cooperative strategies has been
given. Although they were proposed to classify a more general set of meth-
ods, they can also be applied to this sort of metaheuristics. In first place we
gave a flat taxonomy presented by Talbi where the algorithms are classified
attending to criteria as the composition, search space assign to each agent
and diversity among the objective functions the agents work with. Next
classification was proposed by Raidl and takes into account four aspects of
the cooperative strategies: what is hybridized, level of hybridization, or-
der of execution and control strategy. Finally, we commented a taxonomy
given by Crainic et al. where two out of three dimensions were devoted
to the cooperation issue: Search Control and Communications, and Search
Differentiation.

Taking into account the general context of Hybrid Metaheuristics, we
explained what will be our concept of cooperative strategy along this disser-
tation. It is given by the notion of teamwork in Talbi’s taxonomy, that is,
models in which we have many parallel cooperating agents, where each agent
carries out a search in a solution space. In this way we define the frame in
which the cooperative strategies that will be presented in the next chapters
are located.
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Chapter 4

Centralised cooperative

strategies: the roles of

solvers definition and

cooperation scheme

This chapter presents a study of two key aspects of centralised coopera-
tive strategies, the definition of the cooperating solvers and the cooperation
scheme established among them. The first issue, to be more concrete, is
focused on analysing the behaviour of the strategy when uses the same op-
timisation algorithm or different ones. As for the next aspect, a new coop-
eration scheme is proposed and compared against one previously presented.
The results obtained using the Uncapacitated Single Allocation p-Hub Me-
dian Problem as test bed give some insights about the performance of ho-
mogeneous vs heterogeneous cooperative strategies and about the influence
of the cooperation scheme as well as showing the benefits of the new scheme
of cooperation.

4.1 Motivations

Within cooperative strategy paradigm, we can find methods with many dif-
ferent forms but all of them share two essential characteristics: a set of search
algorithms to deal with the problem and a cooperation scheme to create a
synergy among them. We can say that these two elements compose the core
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of a cooperative strategy and therefore, they determine its performance in
an important way. With this idea in mind, in this chapter we aim to make
an in-depth study of those two components, in the context of combinato-
rial optimisation problems, in order to have a better understanding about
them. In this sense, we will continue with the research done a centralised
cooperative strategy based on Soft Computing that was previously devel-
oped in the MOdels of Decision and Optimization research group (MODO).
This strategy is composed by a set of solvers that are controlled by a rule-
driven coordinator. Apart from analysing new aspects, the research done
here is tested on a new problem, the Uncapacitated Single Allocation p-Hub
Median Problem (USApHMP), and the solvers coordinated by the strategy
implements different algorithms.

As we saw in 3.3, the set of cooperating agents(also called solvers) can be
homogenous or heterogeneous if all of them implements the same resolution
algorithm or a different one, respectively. How these two type of composition
affect to the performance of the cooperative strategy will be the first point
to study.

The second issue tackled in this chapter will be the cooperation scheme.
Our analysis will focus on the control rule base of the coordinator since it
is the main element of the cooperation scheme for the strategy used here.
To this end, a new control rule based on Reactive Search [8] is presented.
Reactive Search is a framework where optimization techniques are coupled
with a machine learning component that analyses the behaviour of these al-
gorithms and provides feedback by fine tuning its parameters. To asses the
performance of the new scheme, this is compared against a fuzzy rule pre-
viously presented in [40,125]. The comparison also allow us to analyses the
behaviour change experienced by the strategy when different cooperations
schemes are used.

The chapter is structured as follows. In Section 4.2 the centralised coop-
erative strategy used for this study is described, as well as the two different
control rules considered. Section 4.3 is devoted to the experimental frame-
work. Concretely, the USApHMP problem is defined and the implementa-
tion details of the heuristics used as solvers and of the strategy are given.
As for the analysis of the results, we will study in first place the composition
of the strategy in Section 4.4 and subsequently, the cooperation scheme in
4.5. Finally, the conclusions are discussed in 4.6.
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Figure 4.1: Scheme of the cooperative strategy

4.2 Description of the centralised cooperative strat-

egy

The proposed studies will be conducted over a centralised cooperative strat-
egy [40, 125] whose general scheme is presented in Figure 4.1. There is a
set of solvers, where each solver can implement the same or a different res-
olution strategy for the problem at hand. The coordinator processes the
information received from the solvers and produces subsequent adjustments
of their behaviour by sending “orders”. To achieve this exchange of data,
a blackboard model [52] is used. Concretely, two blackboards are avail-
able, one where the solvers write the reports of their performance and the
coordinator reads them, and another, where the orders are written by the
coordinator and read by the solvers.

After an initialization stage, the solvers execute asynchronously while
sending and receiving information. The coordinator checks through the in-
put blackboard which solver provided new information and decides whether
its behaviour needs to be adapted using a rule base. If this is the case, it
will calculate a new behaviour which will be sent to the solvers through the
output blackboard. As for the solvers, its working it is also very simple:
once execution has begun, performance information is sent and adaptation
orders from the coordinator are received alternatively.

Every cooperative strategy of this kind should define an information
management strategy providing: the type of information that solvers send,
the type of information the coordinator sends, and how such information is
processed. Such details are described in the next subsection.

55



Chapter 4. Centralised cooperative strategies: the roles of solvers definition
and cooperation scheme

4.2.1 The information management strategy

As we have just seen, the information flow in our strategy can be divided
in the three following steps: 1) performance information is sent to the co-
ordinator from the solvers, 2) this information is processed and stored by
the coordinator and 3) coordinator sends directives to the solvers. In this
subsection we are going to describe which information is managed in every
step and which transformations are made.

In the data flow solvers ⇒ coordinator, each report contains the next
items:

• solver identification;

• a time stamp t;

• the current solution of the solver at that time st;

• the best solution reached until that time by this solver sbest;

• a list with the local minima found by the method since the last report.

The coordinator stores the last two reports from each solver. From these
two reports, the coordinator calculates its improvement rate as:

∆f =
f(st)− f(st′)

t− t′
(4.1)

where t− t′ represents the elapsed time between two consecutive reports,
st′ is the current solution sent by the solver in the last report and f is the
objective function. The values ∆f and f(st) are then stored in two fixed
length ordered data structures, one for the improvements and the other for
the costs. The list of local minima is processed by the coordinator that keeps
the history of all local optima in a hash table. Each entry of this table has
also a collision counter with the number of times that a solution has been
visited by any search thread.

The behaviour of the solvers is controlled by a set of rules. These rules
allow the coordinator to determine if a solver is behaving correctly, as well
as the action that should be performed to correct such behavior. These rules
are of the type:

if condition then action.
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As we will deal with trajectory-based solvers, the action part of the rule
takes the form

action: send a new solution to the solveri

When the current solution of a local search method is changed, the search
trajectory continues from a new point in the search space. This is the be-
haviour implied by the action defined here. As new solution, several alter-
natives are possible: sending a new one, for example, a randomly generated
new one, or the best one seen by the coordinator up to time t. As the
strategy progresses, the solvers will therefore located in those regions of the
solution space determined by the coordinator in order to intensify or diver-
sify the search depending on the cooperation scheme or on the state of the
solvers.

4.2.2 Cooperation schemes

The cooperation scheme of this strategy is mainly defined by the control rule
that the coordinator uses. In this subsection we will describe two control
rules that will be used in the next part of these chapter. The first one is
a fuzzy rule that has been previously developed within the group MODO
being used in works as [40, 125] where yielded good results on different
problems. The second one is presented here and was designed basing on
reactive search [8] ideas.

The term reactive search refers to an algorithmic framework where op-
timization techniques are coupled with machine learning algorithms. In
particular, the machine learning component analyzes the behavior of the
optimization algorithm and provides feedback by fine tuning its parameters,
thus adapting it to the properties of the instance being solved. Parameter
tuning can be performed:

Offline: the machine learning component analyzes the behavior of the opti-
mization algorithm after a series of runs on different instances. The purpose
of this method is to learn a mapping between some instance features and a
satisfactory value of the algorithm’s parameters. In this case, the algorithm
simply replaces the researcher in performing offline adjustments when he
applies an algorithm to a new domain, with a trial-and-error approach.
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a) Definition for b) Definition for
improvement rates solution costs

Figure 4.2: Membership function of the two sets used in the fuzzy control rule.

Online: the machine learning component operates alongside with the op-
timization algorithm and tries to detect hints of bad performance, such as
repeated visits to the same configuration or low improvement rate. By per-
forming online adjustments to the optimization component, the system can
adapt to the local features of the search landscape.

Fuzzy rule

This rule was designed following the principle: “If a solver is working well,
keep it; but if a solver seems to be trapped, do something to alter its be-
haviour”. Its precise definition is as follows:

if the quality of the current solution reported by solveri is low
and the improvement rate of solveri is low then send perturbed
Cbest to solveri

The labels low are defined as fuzzy sets whose membership functions
µ(x), for both improvement rates and solution costs, are shown in Figure
4.2. The variable x corresponds to the relative position (resembling the no-
tion of percentile rank) of a value (an improvement rate or a cost) in the
samples stored in the respective fixed length data structure. The parame-
ters (a, b) are fixed to (80, 100) and (0, 20) for the data structure of costs
and improvements, respectively. This way of measure the quality of the im-
provement rates and the solution is independent of the problem, instance or
scale. Cbest denotes the best solution ever recorded by the coordinator.

What the rule says, is that, if the values reported by a solver are among
the worst stored in the two sets, then the coordinator sends the solution
Cbest (with a small perturbation) to the solver. By doing so, it relocates
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the solver to a more promising region of the search space, trying to increase
the chances of finding better solutions. The perturbation applied to Cbest is
usually done by a mutation operator.

Reactive Control Rule

Following the principles in [10,11], this rule uses the history of visited local
minima to detect search stagnation. In other words, the hash table kept
by the coordinator is used to determine if a solver is visiting an already
explored area of the search space. If this is the case, the coordinator drives
the searchers diversification by restarting the stagnated algorithm from a
perturbation of the best configuration found across all solvers. The definition
of this rule is the following:

if the collision counter cc of the last local minima visited by
solveri is bigger than λreaction, then the coordinator sends Cbest

to solveri perturbed by degree φ.

The threshold λreaction regulates the activation of the rule and φ is defined
as:

φ =

{
cc− λreaction, if cc− λreaction < φmax

φmax, if cc− λreaction ≥ φmax

The idea of this rule is that the more often a local minimum is visited,
the higher the probability that it belongs to a large attraction basin, and
therefore the perturbation needs to be higher in order to escape from that
optimum. The strength of the perturbation is controlled by the application
of different mutation operators.

4.2.3 Classifying the strategy

To finish the description of the centralised cooperative strategy, we are going
to classify it according to the three taxonomies given in Section 3.3:

• Talbi’s taxonomy:

– hierarchical taxonomy : high-level teamwork hybrid

– flat taxonomy : general and global method that can have both
homogeneous and heterogeneous nature.

• Raidl’s taxonomy:
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– what is hybridized? : the algorithm presents two hybridization
types in this sense. On one hand, metaheuristics are combine
with metaheuristics in the set of solvers, and on the other hand,
this set of solvers is hybridized with fuzzy logic or reactive search
depending on the cooperation scheme.

– level of hybridization: high-level

– order of execution: interleaved

– control strategy : collaborative

• Crainic et al’s taxonomy:

– search control cardinality : p-C

– search control and communications: KC since the information is
exchanged through the coordinator which uses this information
to infer when a solver is showing a bad performance.

– search differentiation: MPSS or MPDS depending on the defini-
tion of the solvers.

4.3 Experimental Framework

This part of the chapter is devoted to show different aspect of the exper-
imentation carried out to achieve the objectives proposed. We will start
defining the test bed used, the Uncapacitated Single Allocation p-Hub Me-
dian Problem (USApHMP). Next, the search methods used as solvers will
be described and finally, further implementation details will be given.

4.3.1 The Uncapacitated Single Allocation p-Hub Median

Problem

Hub location problems appear when is necessary to guide the flow from an
origin to a destiny, but it is not recommendable or very expensive to have a
connections between each pair origin-destiny. The objective of this kind of
problems is composed by two steps:

• Hub location: to determine which nodes should be the hubs and the
number of them, in order to distribute the flow across them.
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• Non-hub to hub allocations: to assign the rest of the nodes to the
hubs.

Generally, these task are performed by minimising an objective function
that describes the exchange flow and its cost. A general survey of this kind
of problems can be found in [24].

Here we focus on the Uncapacitated Single Allocation p-Hub Median
Problem (USApHMP). Uncapacitated means the hubs have not constraint
on the amount of traffic, single indicates the nodes can only be assigned to
a unique hub; and p-Hub signifies the number of hubs is fixed to p.

In this chapter we are going to use the quadratic integer formulation
given by O’Kelly in [116]. Let N be a set of n nodes. We define Wij as the
amount of flow from the node i to j, and Cij the cost of transporting a unit
between the nodes i and j.

Let Xij be decision variable defined as

Xij =

{
1 if node i is allocated to hub j

0, otherwise

The USApHMP can be formulated as:

min
∑

i,j,k,l∈N

Wij(χCikXik + αCklXikXjl + δCjlXjl) (4.2)

subject to

n∑

j=1

Xjj = p (4.3)

n∑

j=1

Xij = 1, ∀i = 1, . . . , n (4.4)

Xij ≤ Xjj , ∀i, j = 1, . . . , n (4.5)

Xij ∈ {0, 1}, ∀i, j = 1, . . . , n (4.6)

Parameters χ, α and δ stand for the cost of collection (generally χ = 1),
the cost of distribution (generally α < 1) and the cost of transfer (generally
δ = 1). The objective function (4.2) minimises the sum of the origin-hub,
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hub-hub and hub-destination flow costs. Constraint (4.3) ensures that exists
exactly p hubs. (4.4) indicates that a node can only be allocated to a unique
hub. Condition (4.5) guarantees that a non-hub point can only be allocated
to a hub and not to another non-hub node. Finally, (4.6) is the classical
binary constraint.

The USApMP belong to the class of the NP-hard problems. Moreover,
although the set of hubs is fixed, the assignment sub-problem is also NP-
Hard [96].

The instances chosen for the experimentation were obtained from the
resource ORLIB [12]. Concretely, we used the AP (Australian Post) data
set derived from a study of the postal delivery system. The instances utilised
can be divided in two groups, those with 50 o less nodes, and those with
more than 50. For the first set were considered instances with 2, 3, 4 and
5 hubs, while for the second one the different numbers of hubs were 2, 3,
4, 5,10,15 and 20. The value of the constants χ, α and δ are fixed to 3,
0.75 and 2 respectively. The optimum for those instances with a number of
nodes less than 50 was provided by the resource ORLIB, and for the other
instances we considered the best solution found by one of the state-of-art
algorithms for this problem presented in [89].

4.3.2 Description of the solvers

In this subsection, we will show the implementation of the different heuristics
used as optimisation algorithms in the experiments that will be seen later on.
Firstly, the neighborhood operator will be described as it forms the core of
the three different heuristic searches which were chosen: Tabu Search, Sim-
ulated Annealing (SA) and Variable Neighborhood Descent search(VND).

The cited heuristics used their very basic definitions. Moreover, all of
them, were implemented by the author as a lab assignment for a metaheuris-
tics course in the Computer Science Engineering degree of the University of
Granada. Before starting with the descriptions, we are going to show some
aspects of the used notation:

• f(s) is the fitness value of the solution s.

• Gj = {i|Xij = 1, i 6= j}. Gj is the group of those nodes that are
allocated to hub j.

• scurr is the current solution of the heuristic.
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• sbest represents the best solution obtained by the algorithm until that
moment.

• N (s,O) symbolises a neighbourhood of the solution s, that is, a set of
solutions generated from s by means of the operator O. This operator
can be seen as a function O : S × P → S, being S the solution space
and P a set of tuples of parameters.

• checkBestSol(s, sbest) is a procedure which updates sbest to s if the
value of the objective function for s is lower than for sbest. Otherwise,
this procedure does nothing.

Neighbourhood operator

The neighbourhood operator is composed of two distinct mechanisms: as-
signment change of non-hubs nodes and location change of hubs. The first
of them, consists on changing the allocation of a non-hub node to a different
hub. The following steps are the next:

1. Choose randomly a group Gj

2. Select randomly a node i ∈ Gj

3. Choose randomly another group Gk, k 6= j

4. Allocate the selected node to the new group: Xij ← 0, Xik ← 1

The other mechanism changes the location of a hub j to other node that
is currently allocated to such hub. If there is no nodes allocated to j, other
node is selected as hub and j is assigned to other group. To do this change
the next stages are followed:

1. Choose randomly a group Gj

2. If there is at least one node in the group (|Gj | > 0) then:

(a) Select randomly a node i ∈ Gj

(b) Allocate all nodes in Gj and its hub node j to the new hub node
i: ∀k ∈ Gj : Xkj ← 0, Xjj ← 0, Xki ← 1, Xji ← 1 and Xii ← 1

3. If the group has no nodes (|Gi| = 0), then:
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Algorithm 10 Variable Neighbourhood Search solver pseudocode
procedure V ariableNeighbourhoodSearchSolver

scurr ← GenerateInitialSolution()
best ← scurr

k ← 1, iter ← 1
repeat

Generate a neighbourhood N (scurr, Opk
) of NV ND solutions

neighbest ← ChooseBest(N (scurr, Opk
))

if f(neighbest) < f(scurr) then
scurr ← neighbest

checkBestSol(scurr,best)
k ← 1

else
k ← k + 1

end if
if k > kmax then

k ← 1
end if
iter ← iter + 1

until iter > itermax

return best

(a) Choose randomly another group Gk, k 6= j with at least one node.

(b) Select randomly a node i ∈ Gk.

(c) Make a new group with the selected node i. Xii ← 1

(d) Allocate the last hub j as a normal node to another hub selected
randomly. Xjr ← 1 where r is a random hub.

From now on, we will refer to this operator as Op, where p = (a, b) ∈ P is
a pair of values, being a and b the number of assignment changes of non-hub
nodes and location changes of hub nodes, respectively.

Implementation of VND search

We are going to begin with the description of the VND heuristic. The
pseudocode of this search is given in Algorithm 10:
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Algorithm 11 Simulated Annealing solver pseudocode
procedure SimulatedAnnealingSolver

scurr ← GenerateInitialSolution()
best ← scurr, iter ← 1
T0 = µ

(−log(σ)) ∗ f(scurr), temperature = T0, t ← 0
repeat

scurr ←ExploreNeighbourhood(scurr, temperature)
checkBestSol(scurr,best)
iter ← iter + 1, t ← t + 1
temperature ← T0

1+t

until iter ≥ itermax

return best

Three different pairs of values pk for the neighbourhood operator were
considered. These were p1 = (1, 1), p2 = (2, 1) and p3 = (3, 1). As it can be
seen in the pseudocode, the search finishes after itermax iterations.

Implementation of SA

The SA heuristic implemented it is a very simple version which uses the
annealing schema of Cauchy. Its pseudocode is given in Algorithm 11.

As former heuristic, the search is over when reaches itermax iterations.
The function explore neighbourhood, that can be seen in Algorithm 12, takes
over the exploration of the neighbour solutions with a determined tempera-
ture:

The function metrop is defined as:

metrop(δ, t) =

{
true, if δ < 0 OR u() < eδ/t

false, otherwise
(4.7)

where u() is a random number uniformly distributed in the interval [0, 1].
As for the operator Op used we should say that p is equal to (1, 1) and its
working has some peculiarities. This only makes one of the two type of
changes each time, concretely, makes a change of assignation with probabil-
ity 0.4 or of localisation with probability 0.6.
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Algorithm 12 ExploreNeighbourhood pseudocode
procedure ExploreNeighbourhood

s′best ← scurr

for i ← 0 to annealingsmax do
Generate a neighbourhood N (scurr, Op) with one solution.
Select the solution scand from the former neighbourhod.
δ ← f(scand)− f(scurr)
if metrop(δ, temperature) then

scurr ← scand

end if
end for
return s′best

Implementation of Tabu Search

To finish with this subsection, tabu search will be described. The pseudocode
is displayed in Algoritm 13

The operator Op used is the same as the former heuristic. When the best
non-tabu neighbourhood is chosen, its re-assigned node is stored in TLassig

or its re-localised hub is put in TLlocal, depending on the type of change
done.

The generation of the neighbourhood is achieved using the two tabu lists
TLassig and TLlocal. These lists are used to mark as tabu those neighbours
whose reassigned nodes are in TLassig or whose re-localised hubs are in
TLlocal. We should add that if a tabu neighbourh fulfils the aspiration level,
then its tabu label is removed. This aspiration level is satisfied when the
objective value of such solution is lower than f(best). As same as the two
last algorithms, it finishes when the search has done itermax iterations.

4.3.3 Further details of the cooperative strategy

When implementing this type of cooperative strategies, one can resort to real
parallel implementations, or simulate the parallelism in a single-processor
computer. The later is the strategy adopted here: we construct an array of
solvers and we run them using a round-robin scheme. In this way, each of
them is run for a certain number of evaluations of the objective function.
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Algorithm 13 Tabu Search solver pseudocode
procedure TabuSearchSolver

s ← GenerateInitialSolution()
best ← s

iter ← 0
Initialise the tabu lists TLassig and TLlocal with the sizes sizeassig

and sizelocal, respectively.
repeat

PermittedSet(s) ← {s′ ∈ N (s,Otabu) | tabuConditions(s′)=false

OR aspirationCriteria(s′)=true}, |N (s,Otabu)| = Ntabu

s ← ChooseBest(PermittedSet(s))
CheckBestSol(s, best)

until iter ≥ itermax

return best

This number is randomly generated from an interval freq interval. Once
a solver is executed, the communication with the coordinator takes place.
These steps are repeated until the stop condition is fulfilled.

Regarding the fuzzy rule base, firstly, the size of the memory of costs and
improvements was set to 4 per the number of solvers, that is, both memories
have a capacity of nine elements. It is triggered when the output value of
the antecedent is higher than 0.9. The modification done to Cbest, when it is
sent to the solvers, corresponds with one assignment change and one location
change. For the Reactive rule, λreaction was set to 10. The parameter
φmax is set to 3, that is, 3 different degrees of perturbation for Cbest are
considered. This degree of perturbation is determined by the number of
changes of assignment and location applied to this solution. When the
degree φ = i, then the operator applied to the solution is O(k,k) being k =
number of hubs/(φmax − i− 1), i = 1, . . . , φmax.

As for the setup of the different heuristics, the values assigned to the
different parameters can be seen in Table 4.1.

Next part is devoted to the analysis of the results. As we stated in the
motivation of the chapter, this analysis is two-fold. Firstly, the importance
of the solvers definition will be studied and secondly, the influence of the
cooperation scheme.
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Metaheuristic parameter = value
VND kmax = 3

NV ND = 80
SA µ = 0.4

σ = 0.4
annealingsmax = 20

Tabu sizeassig = n/8
sizelocal = n/8

(n is the number of nodes)

Table 4.1: Parameters’ settings for VND, SA and Tabu Search

4.4 Analysing the influence of the solvers defini-

tion

To accomplish this analysis the next two types of cooperative strategies
(homogeneous vs heterogeneous) and isolated solvers were compared:

1. SA: isolated simulated annealing strategy

2. Tabu: isolated tabu search strategy

3. VND : isolated variable neighborhood descent search strategy

4. H-SA: cooperative strategy composed by 3 identical copies of SA

5. H-Tabu: cooperative strategy composed by 3 identical copies of Tabu

6. H-VND : cooperative strategy composed by 3 identical copies of VND

7. Heterogeneous: cooperative strategy composed by one SA, one Tabu
and one VND

Every strategy is run 30 times (each one starting from a different initial
solution) and each run finishes when 25000 evaluations for instances with
50 nodes or less, and 200000 for instances with more than 50 nodes were
used. Instance with 10 nodes or 2 hubs are omitted due to its extreme
ease that allows to obtain the optimum in all the run with all the methods.
In this case the interval that determines the frequency of communication
(freq interval)was set to [100, 150]. At the end of each run, we measure an
error as error = 100× obtained value−optimum

optimum .
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Figure 4.3: Average error over 24 instances obtained by the seven methods com-
pared.

A global view of the results can be seen in Figure 4.3, where for ev-
ery method, the average error obtained over all the instances is displayed.
Viewing this graphic, a substantial improvement can be observed when co-
operation is used. Looking at the isolated vs homogeneous cooperation
strategies, we can see that H-Tabu experienced the largest decrease in error
(48%), following by H-SA (38%) and H-VND (31%). The Mann-Whitney’s
U non-parametric test with α < 0.05 confirmed that these differences have
statistical significance. If we compare the heterogeneous method versus the
homogeneous strategies, we can say that the average global error obtained
by the first one is significantly better than the achieved one by H-VND.
However, when such comparison is done versus either H-SA or H-Tabu in-
stead of H-VND, the differences are not significant (same non-parametric
test).

A detailed analysis per instance is shown in Tables 4.2 and 4.3 where the
average error for both the individual methods and their homogeneous coop-
erative versions are displayed. The corresponding improvement percentage
is also shown.
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imp imp
Nds Hbs SA H-SA SA Tabu H-Tabu Tabu
20 3 2,89(2,15) 0,10(0,33) 97∗ 2,24(2,20) 0,72(1,41) 68

4 3,42(1,98) 2,01(1,54) 41∗ 1,41(1,85) 1,45(1,55) -3
5 1,82(1,66) 0,74(1,13) 59∗ 0,25(0,67) 0,50(0,79) -99

25 3 2,17(2,26) 0,79(1,27) 64∗ 2,42(2,01) 1,12(1,65) 54∗

4 1,84(2,45) 0,43(0,83) 77 2,16(2,36) 0,82(1,72) 62∗

5 4,48(3,52) 1,44(2,72) 68∗ 2,56(3,55) 1,01(2,35) 60∗

40 3 0,43(0,91) 0,32(0,72) 26∗ 0,83(1,27) 0,32(0,72) 62
4 1,60(2,54) 0,00(0,00) 100 2,35(2,81) 0,30(1,16) 87
5 2,37(1,72) 1,18(1,58) 50∗ 3,72(2,73) 2,05(1,08) 45∗

50 3 1,99(2,34) 0,51(1,03) 75∗ 3,73(2,38) 1,04(1,76) 72∗

4 2,28(3,06) 0,69(2,11) 70 6,17(3,23) 1,54(2,66) 75∗

5 4,87(2,63) 2,90(2,06) 40∗ 6,93(3,41) 4,33(1,47) 37∗

100 3 0,52(1,06) 0,61(1,12) -16∗ 2,78(1,80) 0,87(1,25) 69∗

4 1,96(3,02) 0,00(0,00) 100∗ 4,45(2,42) 0,22(1,14) 95∗

5 2,55(1,25) 2,13(0,60) 16 3,84(2,03) 2,19(0,42) 43∗

10 5,56(3,10) 2,88(2,04) 48∗ 9,15(3,63) 4,13(2,39) 55∗

15 7,96(2,17) 5,95(2,32) 25∗ 11,29(2,79) 6,70(2,43) 41∗

20 6,24(2,38) 5,10(2,12) 18 8,41(2,37) 4,78(1,89) 43∗

200 3 0,23(0,70) 0,35(0,78) -52∗ 0,79(0,95) 0,00(0,00) 100∗

4 1,83(3,12) 0,23(1,13) 87 1,60(2,47) 0,44(1,57) 72∗

5 1,24(0,46) 1,10(0,59) 11∗ 2,21(2,39) 1,02(0,34) 54∗

10 4,56(2,36) 4,04(1,93) 11 8,34(3,50) 4,12(1,88) 51∗

15 8,33(2,42) 8,07(1,81) 3 12,58(2,40) 9,93(2,55) 21∗

20 9,13(2,87) 7,43(2,06) 19∗ 15,38(3,19) 10,13(2,31) 34∗

Table 4.2: Average(std. deviation) for individual and homogeneous cooperative
searches, and percentage of improvement (imp) for each instance ((avg.invidual−
avg.cooperative)/avg.individual ∗ 100). (*) indicates that the improvement is sig-
nificant (Mann-Whitney’s U non-parametric test α < 0, 05)
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imp
Nds Hbs VND H-VND VND
20 3 1,16(2,15) 0,19(1,05) 83∗

4 2,54(1,35) 1,43(1,31) 44∗

5 2,43(2,47) 0,70(1,00) 71∗

25 3 1,92(1,74) 0,11(0,55) 94∗

4 3,73(3,60) 1,87(2,45) 50
5 7,40(4,13) 4,43(3,45) 40∗

40 3 0,57(1,11) 0,00(0,00) 100∗

4 3,54(3,09) 0,79(1,83) 78
5 3,52(2,71) 2,60(1,60) 26

50 3 3,13(2,32) 0,79(1,57) 75∗

4 4,46(3,98) 3,65(3,04) 18
5 5,87(3,35) 4,28(1,31) 27∗

100 3 1,02(2,05) 0,09(0,47) 92∗

4 1,68(2,82) 0,37(1,39) 78
5 2,46(0,80) 2,13(0,45) 13
10 9,42(3,91) 5,14(2,69) 45∗

15 9,51(2,80) 7,57(2,54) 20∗

20 7,85(3,21) 7,00(2,46) 11
200 3 0,66(1,28) 0,17(0,61) 74∗

4 1,74(2,87) 0,39(1,20) 78
5 1,68(1,40) 0,98(0,28) 42∗

10 7,02(2,37) 5,56(2,05) 21∗

15 10,76(2,64) 10,64(1,69) 1
20 11,87(3,23) 11,75(2,19) 1

Table 4.3: Average(std. deviation) for individual and homogeneous cooperative
searches, and percentage of improvement (imp) for each instance ((avg.invidual−
avg.cooperative)/avg.individual ∗ 100). (*) indicates that the improvement is sig-
nificant (Mann-Whitney’s U non-parametric test α < 0, 05)
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Focusing on the simulated annealing algorithm, we can observe that the
homogeneous cooperation leads to better results in almost all cases. For
those instances with less than 50 nodes, we can find decreases in average
error above 25 percent, reaching the 100 percent in 40n-4h (40 nodes and 4
hubs). Only in two cases (25n-4h and 50n-4h) the differences in the average
error are not significant. When the size of the instances is enlarged, the
degree of improvement is lower although it is still important. This is higher
than 10 percent except for 200n-5h where the enhancement falls to 3%. From
a statistical point of view, in 5 out of 12 cases (100n-{5,10}h; 200-{4,5,15}h)
the cooperation does improve significantly the individual SA. It is also in-
teresting to note that there exist two cases 100n-3h and 200n-3h, where
cooperation produced worst results. The reason is as follows: as the same
cooling scheme is used both in the individual as in the cooperative scheme
and in the last one, each solver has 1/3 of the time available, the coopera-
tive strategy can not effectively reach a search phase where intensification is
performed. The cooperative search concentrates the trajectory around the
good points, but when sampling neighbor solutions (due to the not so low
temperature) transitions to worse solutions can be easily accepted.

When the cooperation is done with a set of tabu search solvers, the im-
provement with respect to an isolated tabu search is notorious. For those in-
stances with 50 or less nodes, the improvement produced by the cooperation
is greater than 37% except for 20n-{4,5}h where the individual metaheuristic
obtains a better performance. In statistical terms, all the differences between
homogeneous cooperation and isolated algorithms are significant with the
exception of instances with 20 nodes and 40n-3h. If we take as reference
the other group of instances, the ratio of improvement varies from 21% to
200n-15h and 100% in 200n-3h, being all of them statistically significant.

When VND is analyzed, it is easily seen that cooperation produced equal
or better results than the individual method. In small instances the percent-
age of improvement goes from 26% in 40n-5h to 100% in 40n-3h. If we con-
sider instances with 100 or more nodes, we found that in the two biggest ones
(200n-{15-20}h) the improvement obtained by cooperation is just slightly
appreciable, only a 1%, and obviously is not statistically significant. How-
ever, in the remaining cases, the enhancement obtained by homogeneous
VND is superior to 10%, even reaching a 92% in 100n-3h. Apart of the two
biggest instances, just seven cases are not statistically significant. These are
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Nodes Hubs heterogeneous
20 3 0,12(0,68)∗

4 1,47(1,51)
5 0,25(0,51)

25 3 0,42(1,04)∗

4 0,24(0,17)∗

5 1,87(2,49)
40 3 0,13(0,48)

4 0,50(1,53)
5 1,65(1,25)

50 3 1,02(1,60)
4 1,00(2,17)
5 3,96(1,77)

Nodes Hubs heterogeneous
100 3 0,26(0,79)

4 0,22(1,14)
5 2,07(0,60)∗

10 3,56(1,90)∗

15 6,60(2,30)
20 4,91(1,63)∗

200 3 0,07(0,38)
4 0,70(1,90)∗

5 0,97(0,49)
10 3,99(1,89)
15 9,25(1,80)
20 9,35(2,45)

Table 4.4: Average(std. deviation) for the heterogeneous cooperative search in each
instance. (*) indicates that heterogeneous search is significantly better than the
best individual metaheuristic (Mann-Whitney’s U non-parametric test α < 0, 05).

25n-4h, 40n-{4,5}h, 50n-4h, 100n-{4,20}h and 200n-4h.

In short, these results say that using just three copies of an individual
method plus a cooperation scheme, one can obtain an optimization scheme
that almost always will lead to an important improvement in performance.

When the cooperative strategy is made up from different solvers, the
analysis should be slightly changed. The average error and the standard
deviation obtained by the heterogeneous cooperative strategy are shown in
Table 4.4. We marked those instances where the method obtained better
results than the best individual method (the minimum of each row among
SA, Tabu, V ND in Tables 4.2 and 4.3). Again, cooperation allowed to ob-
tain equal or better results than the individual methods.

To conclude the analysis, we show in Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9
a number of scatter plots providing pairwise comparison among the seven
methods evaluated. Every instance is plotted as a pair (x, y) where x (y) is
the average normalized error obtained by the strategy named in the X (Y )
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Figure 4.4: Cooperative Strategies vs. Best Metaheuristic: comparison of the av-
erage deviation from the optimum (values are normalized). A triangle represents
an instance where both algorithms perform differently at significance level 0.05
(Mann-Whitney U test).
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Figure 4.5: Cooperative Strategies vs. Best Metaheuristic: comparison of the av-
erage deviation from the optimum (values are normalized). A triangle represents
an instance where both algorithms perform differently at significance level 0.05
(Mann-Whitney U test).
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Figure 4.6: H-Sa vs. H-Tabu and H-Sa vs H-VND :comparison of the average
deviation from the optimum (values are normalized). A triangle represents an
instance where both algorithms perform differently at significance level 0.05 (Mann-
Whitney U test).
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Figure 4.7: H-Tabu vs H-VND :comparison of the average deviation from the opti-
mum (values are normalized). A triangle represents an instance where both algo-
rithms perform differently at significance level 0.05 (Mann-Whitney U test).
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Figure 4.8: Heterogeneous vs. Homogeneous cooperation: comparison of the av-
erage deviation from the optimum (values are normalized). A triangle represents
an instance where both algorithms perform differently at significance level 0.05
(Mann-Whitney U test).
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Figure 4.9: Heterogeneous vs. Homogeneous cooperation: comparison of the av-
erage deviation from the optimum (values are normalized). A triangle represents
an instance where both algorithms perform differently at significance level 0.05
(Mann-Whitney U test).
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axis.

A circle is used when the difference between both algorithms in the
corresponding instance is not significant (the point lies very close to the
diagonal). A triangle is used in other case. If the marker is above the
diagonal, then the algorithm in X is better than the one in the Y axis.

When making the comparison between a cooperative strategy and an
individual method, instead of providing three plots (one per each single
method), we used the values of the best single metaheuristic. Of course,
this best method is not the same for every instance, so the comparison
target for the cooperative schemes is stricter.

These comparisons are shown in Figures 4.4 and 4.5. Just for the case
of H-VND, one can see that there are individual strategies that achieved
better error values. However, just in four cases, the differences have sta-
tistical significance. When the behaviour of the homogeneous cooperative
strategies is compared, Figures 4.6 and 4.7, one can see that H-SA provides
better results on a higher number of instances than H-VND and H-Tabu,
being many of the improvements are significantly better (several triangles
are shown). Also, H-Tabu provides better results than H-VND on a higher
number of instances.

Finally, Figures 4.8 and 4.9 allow to compare the heterogeneous vs. ho-
mogeneous composition of the set of solvers in the cooperative strategy. The
heterogeneous strategy achieves very similar results as H-Tabu, with many
instances lying in the diagonal. When compared against H-VND, the results
obtained are clearly better in almost every tested instance. Regarding the
behaviour against H-SA, one can see that the number of points below and
above the diagonal is roughly the same. However, when H-SA is better,
the corresponding difference is larger (the point is more separated from the
diagonal).

4.5 Analysing the influence of the cooperation scheme

The aim of our experimentation is to assess the benefits of the new control
rule proposed and the performance of the strategy when uses different control
rules. To this end, we will compare the following models:

• The independent strategy (I), which is the baseline case, where the
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reactive

fuzzy+reactive

fuzzy

independent

0 2 4 6 8

percentage error

Figure 4.10: Box diagram for the percentage error obtained by I, F, R and F+R
strategies over all instances. The algorithms grouped by a dotted rectangle do
not perform differently at significance level 0.05 (non-parametric Mann-Whitney
U-test)

solvers do not exchange information.

• The cooperative strategy that uses the Reactive rule (R).

• The cooperative strategy using the Fuzzy rule (F).

• The cooperative strategy using both rules (F+R).

Each strategy is run 30 times, starting from different initial random
solutions, for each instance. In this case freq interval was set to [500,
560]. The performance is assessed in terms of: quality of the solutions;
convergence speed; and how the rules modifies the threads.

4.5.1 Benefits of the Cooperative-Reactive hybrid

Looking at the general picture, we show in Figure 4.10 a box diagram with
information about the percentage error obtained by each method over all
instances, where the boxes are sorted by the median. The Kruskal-Wallis
non-parametric test for multiple comparisons has been used to asses the
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differences between the performances of the four strategies. The null hy-
pothesis could not be rejected at significance level 0.01. The statistical
information about the comparison between pairs of algorithms is also shown
in Figure 4.10: when two boxes are inside a dotted rectangle, a statistically
significant difference could not be shown between the percentage error dis-
tributions of the corresponding algorithms (non-parametric Mann-Whitney
U-test at significance level α = 0.05). Looking at the medians there is no
strong differences between the algorithms. However, if we take into account
the upper quartile represented by the whisker, the differences are more no-
ticeable, and show that the R strategy obtains the best performance. The
second position is occupied by F+R, followed by F and I in that order. Fur-
thermore, the statistical non-parametric test shows that R and F+R perform
significantly better that the two worst methods.

The following analysis focuses on detailed per-instance results. Fig-
ures 4.11, 4.12 and 4.13 show a number of scatter plots providing pairwise
comparisons among the four methods evaluated. Every instance is plotted
as a pair (x, y) where x (y) is the normalised mean percentage error ob-
tained by the strategy named in the X (Y ) axis. If the marker is above the
diagonal, then the algorithm in X is better than the one in the Y axis. A
triangle is used when there is a statistically significant difference between
the performance of the two algorithms for the corresponding instance (non-
parametric Mann-Whitney U-test at significance level α < 0.05). A circle is
used in the other case.

The first plot shows how F hardly improves over I. Only in two instances
the difference between both methods is statistically significant, which means
that this rule does not obtain good results for this problem. When the
coordinator uses R, it outperforms the I strategy. As we can see in the plot,
the performance of this coordination type is significantly better on seventeen
instances. When the control is carried out by F+R, the results are similar to
those obtained by R, although now the number of cases where this control
rule achieves a significant difference over I is reduced to fourteen.

If we compare the different rules among them, we observe that F+R
improves upon F. The contribution of F+R is significantly evident in thirteen
instances. However, when F+R is compared with R, apart from one instance,
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Figure 4.11: Comparison of the mean relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being
compared perform differently at significance level 0.05 (Wilcoxon’s unpaired rank
sum test).
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Figure 4.12: Comparison of the mean relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being
compared perform differently at significance level 0.05 (Wilcoxon’s unpaired rank
sum test).
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Figure 4.13: Comparison of the mean relative deviation from optimum (smaller
values are better). Triangles represent the instances on which the algorithms being
compared perform differently at significance level 0.05 (Wilcoxon’s unpaired rank
sum test).
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the null hypothesis of the equivalence of the performances could not be
rejected. The comparison between F and R confirms the intuition on the
importance of the reactive rule, since on fifteen cases there is a significant
improvement over F.

The next step is to identify the instances where there is a significant
difference between the different cooperation schemes. Table 4.5 shows the
mean percentage error for the different strategies as well as the std. devia-
tion. From the table, we can notice that the differences of R and F+R with
respect to F and I are larger when the size of the instances increases, i.e., for
a fixed number of nodes, when the number of hubs increases. If we consider
the best solution found, which can be seen in Table 4.6, something similar
happens. The difference in terms of both the number of times the optimum
is reached and the quality of the best solution found is bigger for instances
with a higher number of hubs, with the only exception of F in 200-{20}.

4.5.2 Study of the dynamic behaviour

Two different aspects of the dynamic behaviour of the strategy will be in-
vestigated now. The first is the performance of the strategies during the
search process. For this, we studied how the percentage error of the best
solution found for each method evolves over time. We will focus on the six
hardest instances, which are 100-{10,15,20} and 200-{10,15,20}. The results
are shown in Figures 4.14, 4.15 and 4.16.

The first issue we want to highlight is the early stagnation in local minima
experienced by I and F for the instances with one hundred nodes. This
behaviour can also be observed when the instances have two hundred nodes,
although in these cases it takes places in the last stages of the search. Unlike
these methods, R and F+R do not suffer from this problem and are able to
improve the quality of the solutions during the whole search process. Just
on instance 100-{10}, a small stagnation is noticeable. This fact confirms
that the reactive control rule is capable of driving the diversification of the
strategy in such a way that the solvers can escape from the different local
minima.
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mean std. dev
N H I F R F+R I F R F+R
20 3 0.25 0.44 0.00 0.00 0.74 1.00 0.00 0.00

4 1.87 1.63 0.50 0.16 1.54 1.58 1.02 0.53
5 1.02 0.85 0.01 0.00 1.04 1.33 0.04 0.00

25 3 0.90 0.72 0.21 0.20 1.38 1.29 0.77 0.77
4 0.76 0.59 0.14 0.19 1.26 1.26 0.17 0.17
5 1.84 1.06 0.00 0.00 2.79 2.14 0.01 0.00

40 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.33 0.38 0.00 0.00 1.29 1.26 0.00 0.00
5 0.79 1.19 0.28 0.57 1.08 1.18 0.77 1.02

50 3 0.17 0.08 0.00 0.25 0.64 0.46 0.00 0.77
4 0.84 1.20 0.00 0.00 2.08 2.45 0.00 0.00
5 2.86 3.12 1.66 2.44 2.05 2.29 2.11 2.16

100 3 0.00 0.09 0.00 0.09 0.00 0.47 0.00 0.47
4 0.21 0.00 0.00 0.00 1.14 0.00 0.00 0.00
5 1.76 1.83 1.44 1.50 0.81 0.76 1.11 1.08
10 2.89 2.58 1.06 1.08 1.74 1.23 0.98 0.98
15 5.12 4.94 1.75 2.47 1.56 1.61 1.16 1.44
20 4.35 3.87 2.50 2.68 1.39 1.64 0.96 0.79

200 3 0.00 0.07 0.00 0.00 0.00 0.38 0.00 0.00
4 0.22 0.22 0.00 0.00 1.13 1.13 0.01 0.01
5 0.77 0.79 0.74 0.62 0.43 0.46 0.53 0.52
10 2.94 2.97 2.36 2.76 1.18 1.12 1.39 1.68
15 6.68 6.12 4.51 5.03 1.58 1.76 1.49 2.17
20 6.81 5.54 4.41 4.88 1.69 2.16 1.13 1.82

Table 4.5: Mean and std deviation for I, F, R and F+R
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best solution
N H I F R F+R
20 3 25 23 30 30

4 11 13 24 27
5 10 16 29 30

25 3 20 21 27 28
4 4 7 16 13
5 11 12 29 30

40 3 30 30 30 30
4 28 27 30 30
5 7 5 24 21

50 3 28 29 30 27
4 20 19 30 30
5 8 8 18 12

100 3 30 29 30 29
4 25 30 30 30
5 2 2 11 10
10 0.49 0.49 3 2
15 1.48 1.27 0.75 0.42
20 2.38 1.14 0.73 0.64

200 3 30 29 30 30
4 20 16 28 26
5 0.17 1 3 1
10 1.66 1.30 0.11 0.15
15 3.15 1.89 1.56 1.48
20 3.24 2.42 2.77 2.82

Table 4.6: Best solution for I, F, R and F+R. In this table, when the value is an
integer it indicates the number of times that the optimum was reached. Otherwise,
the cost of the best solution found by that strategy
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Figure 4.14: Evolution of the mean percentage error of the best solution found by
I, F, R and F+R during the execution time
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Figure 4.15: Evolution of the mean percentage error of the best solution found by
I, F, R and F+R during the execution time

90



4.5. Analysing the influence of the cooperation scheme

100 nodes 20 hubs

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

2
4

6
8

10
12

14

number of evaluations

er
ro

r 
(%

)

I
F
R
F+R

200 nodes 20 hubs

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

4
6

8
10

12
14

number of evaluations

er
ro

r 
(%

)

I
F
R
F+R

Figure 4.16: Evolution of the mean percentage error of the best solution found by
I, F, R and F+R during the execution time
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Another interesting behaviour can be found in 200-{20}. In this instance,
F achieves a faster convergence than I, which leads to better results. This
can be considered as an indication that the use of this control rule is useful
for larger instances where the concentration of the solvers in the same region
of the search space is needed to, at least, obtain high quality local optima.
More experimentation is needed in order to confirm this fact.

The other aspect of the dynamic behaviour we have studied is the evo-
lution of the rule activation with time. Figures 4.17, 4.18 and 4.19 show
the evolution of the mean number of times the control rule is fired for I,
F, R and F+R. For this last one, the disaggregated behaviour for each rule
(F+R:F and F+R:R) is shown. As in the former case, we focus on the six
hardest instances.

Looking at those figures for instance with 100 nodes, we can observe
a much higher number of activations of R and F+R:R with respect to F
and F+R:F. However, that order is inverted when the number of nodes is
increased to 200. This effect is due to an important drop in the number
of triggers for R and F+R:R. This behaviour variation is explained by the
different performance of the solvers in the two cases. As we have seen
before, the independent strategy stagnates in the first phases of the search
process for instances with one hundred nodes. This situation is captured
by the reactive rule, which increases the number of triggers since the early
stages of the search. On the contrary, for 200-10,15,20, the independent
solvers experience a slower convergence, and stop improving at the end of
the process. This is also reflected in the behaviour of the reactive rule, that
delays its activation. In this way, we see that the reactive rule is able to
detect the difference between both instance sizes, adjusting its behaviour to
each case.

We can also observe that using the two rules simultaneously produces
an increase in their number of activations. This is due to the difference
between the objectives of both rules. Since the fuzzy rule tries to reallocate
the threads around promising regions of the search space, the probability
of solvers to find big local minima is higher, which leads the reactive rule
to be triggered more times. Although in a lesser degree, that interaction
in the opposite sense also happens. When the cooperation is driven by the

92



4.5. Analysing the influence of the cooperation scheme

100 nodes 10 hubs

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
20

0
40

0
60

0
80

0
10

00

number of evaluations

av
g 

ac
tiv

at
io

ns
F
R
F+R:F
F+R:R

200 nodes 10 hubs

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50

10
0

15
0

20
0

25
0

number of evaluations

av
g 

ac
tiv

at
io

ns

F
R
F+R:F
F+R:R

Figure 4.17: Evolution of the mean number of times the control rule is fired for
I, F, R and F+R. For this last strategy, the disaggregated behaviour for each rule
(F+R:F and F+R:R) is shown
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Figure 4.18: Evolution of the mean number of times the control rule is fired for
I, F, R and F+R. For this last strategy, the disaggregated behaviour for each rule
(F+R:F and F+R:R) is shown
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Figure 4.19: Evolution of the mean number of times the control rule is fired for
I, F, R and F+R. For this last strategy, the disaggregated behaviour for each rule
(F+R:F and F+R:R) is shown
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Reactive rule, the coordinator attempts to bring the solvers away from the
local minima, and put them in regions of the search space relatively far
from the best solution. If this distance is big enough and the solver does
not achieve a good improvement rate, then the fuzzy rule will be fired for
this thread.

4.6 Conclusions

This chapter has focused on an in-depth study of centralised cooperative
strategies, departing from the research done on a method where the set of
search agents are controlled by a central coordinator that takes decisions
basing on a fuzzy rule. We have extended this research in two key points.
In first place we have studied how the definition of the solvers can influ-
ence the performance of the cooperative strategy. In other words, using as
test bed the Uncapacitated Single Allocation p-Hub Median Problem (US-
ApHMP) we have analysed the behaviour of the method when all solvers
implement the same heuristic (homogeneous strategy) and when each solver
implements a different one (heterogeneous strategy). To have a reference
of the performance of such strategies, these have been compared with the
isolated individual version of the distinct heuristics used as solvers.

Concerning this last point, we saw that by means of homogeneous cooper-
ation based on our schema, the average error of three different metaheuristics
can be markedly reduced.

We also compared the different cooperative strategies studied versus the
best individual method which can vary from an instance to another. The
obtained results have shown that cooperation, both homogeneous one and
heterogeneous one, leads to equal to or better average fitness values than
the best individual metaheuristic in virtually all cases.

The last aspect analysed here was the existing performance differences
between the cooperative methods, where it should be highlight that a) those
homogeneous strategies whose solvers implement the best global individual
metaheuristic represent the best alternative in terms of performance and b)
when the comparison is done between the heterogeneous and the homoge-
neous composition, we checked that the first one presents some advantages
over the second ones.

The second point in which we extended the mentioned research was
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the cooperation scheme. Concretely, we have incorporated a new control
rule based on the reactive search framework into the centralised cooperative
strategy. The experiments, also done on instances of the USApHMP, have
showed that the proposed reactive cooperation scheme achieves better re-
sults with respect to a strategy based on independent solvers (where solvers
do not exchange information), and with respect to the same cooperative
strategy based on a fuzzy control rule previously proposed. We also tested
the cooperative strategy using both rules, reactive and fuzzy, at the same
time. In this case, the bigger complexity did not pay of because the reac-
tive rule alone performs at least as well as both rules together. Moreover,
the reactive rule is able to adapt its behaviour according to the characteris-
tics of the instance, and is effective for detecting stagnation and for driving
diversification strategies.

The behavior of the cooperative strategy coupled with the fuzzy rule
is somehow deceptive as it can not perform better than the independent
strategy. Further research is needed in order to assess if this is strictly
related with the p-hub problem, since previous works showed the benefit of
such combination [40,125].
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Chapter 5

New applications for

centralised cooperative

strategies: Dynamic

Optimisation Problems

This chapter focuses on the application of centralized cooperative strategies
to a new area, Dynamic Optimization Problems (DOPs), where they have
not been tested before. The strategy presented in the former chapter is
adapted and provided with trajectory-based solvers to deal with this type
of problems. Two state-of the art methods are considered for comparison
purposes: multi-QPSO and Agents. The main goals are: firstly, to draw
attention on centralised cooperation schemes for DOPs; and secondly, to
assess the possibilities of trajectory methods in the context of DOPs. The
results show how the proposed strategy can consistently outperform the
results of the two other methods.

5.1 Motivation

Recently, there is a growing research interest on the resolution of Dynamic
Optimization Problems (DOPs) [16,20,21], due to its closeness to real-world
situations (trade market prediction, metheorological forecast, robotics mo-
tion control, etc). The methods designed to deal with these problems should
take into account that both the problem and the solution may evolve in time,
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and besides, that it is more important to follow the optima as close as pos-
sible than to find the their exact position. From the optimization point of
view, the most basic approach to dynamism is to simply restart the search
whenever a change is detected, just as if it were a different problem. How-
ever, since the evolution in time usually occurs in a gradual way, facing
each change as if it were a completely new problem implies that important
information gathered in previous resolutions is wasted. The reuse of this in-
formation allows for rapid adaptation when a change in the problem occurs,
thus decreasing the time required to find a new solution. This is necesary
in many practical cases, where there is no time for performing exhaustive
explorations of the search space.

There are already some methods to deal with DOPs, but there are not
yet clear criteria about which method is better to apply or how to face a
new dynamic problem. The most commonly used methods have been evo-
lutionary algorithms, but recently, other approaches have been applied and
shown to outperform them in some cases ( [16]). Particle Swarm Optimiza-
tion (PSO)) is among the most competitive methods that have been applied
so far to dynamic optimization. In particular, the PSO variant with mul-
tiple swarms and quantum and trajectory particles (multi-QPSO, [16]) has
obtained very good results on the most commonly used test problems.

Most of the methods used, including PSO and evolutionary algorithms,
are population-based methods where the use of several solutions helps to
avoid local minima and to better detect when a change on the problem oc-
curs. This statement has been quite assumed and most research done in
DOPs focuses on the recommended populational methods with little atten-
tion put on the possibility to use trajectory-based methods. Another less
discussed aspect of the methods for DOPs is that most of them show some
form of cooperation. In evolutionary algorithms, for example genetic algo-
rithms, the evolution of the populations can be seen as a form of implicit
cooperation among their individuals. Moreover, the multi-QPSO method
shows cooperation among particles of the same swarm whereas, at the same
time, there is competition between the different swarms. Despite that, as
far as we know, little focus has been put on the cooperative aspect of the
methods, as well as the cooperative behavior, not being mentioned or con-
sidered in the development of new methods. Moreover, since the cooperation
present on the most used methods is implicit, it is not clear if it is being an
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important factor for achieving a good performance or not.

Taking into account that trajectory-based methods have been rarely con-
sidered in DOPs and the indications of the good behaviour showed by some
cooperation forms we decided to assess the possibilities of trajectory meth-
ods coupled with a cooperation scheme in this context, where populational
methods have traditionally been the recommended option. Concretely, we
focus on DOPs with a continuous search space and where the element that
change over the time is the objective function. To this end, we used again
the same centralised cooperative strategy showed in chapter 4 adapting it
in first place to continuous problems and subsequently to DOPs.

Another objective of this chapter is to test if a proper use of trajec-
tory methods coupled with a cooperation scheme can lead to competitive
results respect to the state of the art methods in DOPs [16]. Two additional
methods were considered for comparison purposes. The first method is the
multi-QPSO method discussed before that is known to be among the state
of the art methods for DOPs and that will be used as a baseline for com-
parison. The second method is an explicit decentralized cooperation scheme
presented on [122,123] where multiple agents cooperate to improve a set of
solutions stored on a grid.

This chapter is structured as follows. Section 5.2 shows the different
adaptations done to the centralised cooperative strategy to deal with both
continuous search spaces and DOPs as well as the method implemented by
the solvers. In 5.3, the benchmarks used for the experimentation, the two
compared methods and the implementation details are described. Then,
Section 5.4 focus on the experiments done to test the performance of the
methods and on the analysis of the results obtained. Finally, the conclusions
are presented in Section 5.5.

5.2 Description of the centralised cooperative strat-

egy for DOPs

In this section we will describe the different modifications done to the cen-
tralised cooperative strategy presented in chapter 4 in order to make it
suitable for both continuous search spaces and DOPs.
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5.2.1 From combinatorial to continuous search spaces

Before describing the changes, let us overview the whole working of the
strategy. As we saw, the strategy consists on a set of solvers/threads to
deal with the problem at hand. The coordinator processes the informa-
tion received from them and produces subsequent adjustments of their be-
haviour by sending “orders”. To achieve this exchange of data, a blackboard
model was used. After an initialization stage, the solvers are executed asyn-
chronously while sending and receiving information. The coordinator checks
which solver provided new information and decides whether its behaviour
needs to be adapted using the rule base. If this is the case, it will calculate
a new behaviour which will be sent to the solvers.

The reports that solvers send to the coordinator contains the next items:

• Solver identification

• A time stamp

• the current solution of the solver at that time

• The best solution reach until that time for this solver

• A list with the local minima found by the method since the last report

The coordinator stores the last two reports from each solver that uses
to calculate its improvement rate. This value together with the cost of the
current solution are stored in two memories. The list of local minima is
processed by the coordinator that keeps the history of all local optima in
a hash table. Each entry of this table has also a collision counter with the
number of times that a solution has been visited by any search thread.

It is in this hash table where one of the modification applied is found.
Since in continuous space two distinct but very close solutions can be within
the same local minima, if we use the former approach we would consider two
different optima. To solve this problem, the coordinator keeps the history
of all local optima found by the solvers in a memory denominated Visited
Region List (VRL). Now, the local minima are considered as the regions
defined by a hypersphere with radius ρ and centre in the points stored in
the VRL. As in the former case, each entry of the VRL also maintains a
register cc (collision counter) with the frequency of visiting that region by
any search thread.
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The reactive rule is used to coordinate the solvers although we take the
consequent of the fuzzy rule. This change is not related to the adaptation
to continuous problems but the simplicity of the strategy. Therefore, the
rule is the following:

if cc of the last local minimum visited by solveri is bigger than
λreaction, then the coordinator sends Cbest with a slight modifi-
cation to solveri.

Cbest is also taken by the solvers as its new current solution, starting the
search trajectory from this point.

5.2.2 From static to dynamic problems

The main issues to deal with when a centralised cooperative strategy should
be adapted from static to this type of dynamic problems are to check when
the fitness function has changed, on one hand, and restart those memories
that does not contain relevant information for the new search space, on the
other hand. These issues are handled in both the coordinator and solver
sides. Next we will explain the steps followed in each case:

• Solver side: The mechanism that detects fitness function changes
is implemented in solver’s side. The solver should keep a list with
all or recent local minima found. Then, before starting to explore
the neighbourhood of the current solution, the solver reevaluates the
stored local optima and checks if the fitness has changed. If so, it
stops the reevaluation and the state of the local solver is restarted
(the current solution and the list of local minima are reevaluated;
tabu lists, memories, counters, etc. are reset). Apart from this, solver
keeps a register, that we call FCC, with the number of times that the
fitness function has changed. The current value of this counter is sent
by the solvers to the coordinator in every report.

• Coordinator side: The coordinator also needs to know when the
fitness function changed to restart its state. For this purpose, the
coordinator keeps a counter CFCC that is initialised to zero. For
each received report, it checks if the FCC sent by the solver is higher
than CFCC. If so, it determines that a new fitness function change
has happened and updates CFCC to this value. It reinitialises all its
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memories and registers, excepting, of course, this counter. In the case
that the FCC is lower than CFCC, the coordinator notifies to the
solver through a report that a fitness function change has taken place.
This makes the solver uptades its FCC and restarts its state as we
explained before. IF FCC is equal to CFCC, the coordinator keeps
on with its normal working.

5.2.3 Description of the method implemented by the solvers

The method implemented by the solvers is a tabu search algorithm that can
be considered as a hybridization of two metaheuristics previously presented
in literature, DOPE [58] and DTS [77]. From the first one we have taken the
variable move step as well as some parts of its tabu neighbourhood explo-
ration method. From the second one, we have introduced its diversification
procedure.

Before starting with the description of the tabu search, we should point
out an important issue to determine in continuous optimization when we
search better solutions around a specific point: the size of the movement.
A small step size can lead to an important waste of objective function eval-
uations, whereas a big movement length make difficult find solutions with
enough accuracy. For this reason it is interesting to use a large step size at
the beginning of the search to do a better exploration of the search space,
then it is possible to reduce the size to obtain a better accuracy of the solu-
tion. In this way, in our algorithm, we start with a step size of length δinit

and every time the exploration of the neighbourhood of the current solution
does not lead to a better one, this size is halved. When two consecutive
steps get to improve the current solution the step size is multiplied by two.
The length of the movement is delimited by the interval [res, δinit], where
res is a parameter which determines the precision of the algorithm.

The pseudocode for this method is showed in Algorithm 14. Tabu search
starts with an initialization stage and after that, we find a loop which is
repeated until the stop condition is fulfilled. Firstly, this loop checks if the
step size has been reduced to a value lower than res. If so, it determines
that the current solution is a local optimum and checks if it is near to a
previously visited local minimum (the distance to a local optimum is lower
than LRR) or not. To escape from it, the method applies a diversification
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Algorithm 14 Continuous Tabu Search pseudocode
procedure ContinuousTabuSearch

δ ← δinit

x ← GenerateInitialSolution()
xbest ← x

fbest ← f(xbest)
consAdvances ← 0

while not stopping condition do
if δ < res then

δ ← δinit

if IsNearLocalMinimum(xbest) then
{If xbest is near to a local optimum, we apply the diversification
procedure}
x ← Diversification(xbest)
xbest ← x

fbest ← f(xbest)
consAdvances ← 0

else
{xbest is considered as a new local minimum}
acceptNoImp ← maxNoImp

AddLocalMinimum(xbest)
fbest ←∞
consAdvances ← 0

end if
end if

x ← ExploreNeighbourhood(x,acceptNoImp,δ)

if f(x) < fbest then
xbest ← x

consAdvances ← consAdvances + 1
if consAdvances = 2 then

δ ← IncreaseStep(δ)
consAdvances ← 0

end if
else

δ ← ReduceStep(δ)
acceptNoImp ← acceptNoImp− 1

end if
end while
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Algorithm 15 NeighbourhoodExploration(x,acceptNoImp, δ)
procedure NeighbourhoodExploration

xnew ← OptimisticMovement(x, lastMovement, δ)
if f(xnew) < f(x) then

return xnew

end if
xnew ← ADD(x, δ)
if f(xnew) < f(x) then

return xnew

end if
xnew ← TabuExploration(x, δ)
if acceptNonImp = 0 AND f(xnew) > f(x) then

return x

else
return xnew

end if

procedure 1, to restart the search in a non explored region, or allow a certain
number of non improvement movements, respectively.

After this, the method explores the neighbourhood and checks if the
chosen neighbour is better than the best solution seen until now. In this
case, the search is allocated at this point and the step size is increased if
two consecutive improvements has taken place. Otherwise, it is halved.

One of the main parts of this algorithm is the way in which it explores
the neighbourhood. Concretely, this method considers three different explo-
ration modes that are tested in a specific order. If a determined mode does
not lead to a successful movement, then the next one is tried. The three
exploration forms are described below:

1. Optimistic search: In first place our algorithm tries a step in the last
good direction, that is, the direction of movement chosen in the previ-
ous neighbourhood exploration, since we can hope that this trajectory
will be still good in the next iteration.

2. Approximate descent direction (ADD): If the last procedure does

1The diversification movement is done following the procedure 2.1 of [77]
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not lead to an improvement, then the heuristic attempt to find a good
descent direction using the ADD method [76].

3. Tabu exploration: In the case that the two former movements do
not work, the algorithm carries out a more exhaustive search within
the neighbourhood generating 2n neighbours. Concretely, for each one
of n vectors that compose the basis of the vectorial space defined by
the problem, we take two solutions in this direction, one in positive
sense and one in negative.Then, the best non-tabu move or the best
tabu move, if it fulfills the aspiration level, is taken as new current
solution of the method. The tabu list is composed of the reverse of
moves previously accepted, and a move becomes non-tabu after a given
number of iterations defined by the parameter tenure.

For a better understanding of the neighbourhood exploration, its pseu-
docode is given in Algorithm 15.

5.2.4 Classifying the strategy

The classification of this strategy respect to the three taxonomies sawn in
Section 3.3 is roughly the same as the one we stated in the former chapter,
excepting that in this case we only deal with an heterogeneous strategy.
This fact only alters the classification in Talbi’s flat taxonomy (heteroge-
neous nature) and the dimension search differentiation (MPDS) in the one
of Crainic et al.

5.3 Experimental framework

In this part of the chapter, we will show the instances of DOPs used as
benchmarks. Afterwards, the two state of the art methods, that will be
compared with the centralised cooperative strategy, are described. Next
subsection is devoted to explain the tabu search used by the solvers and
finally, some others implementation details will be seen.

5.3.1 Problems

The problems used to test our strategy are the Moving Peaks Benchmark
(MPB) and three commonly used real test functions (Ackley, Griewank and
Rastrigin). Their description is given below.
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The Moving Peaks Benchmark

The Moving Peaks Benchmark (MPB) is a test benchmark for DOP’s orig-
inally proposed in [20]. Its current version, and the most updated source of
information about it, is available at the webpage:

http://www.aifb.uni-karlsruhe.de/∼jbr/MovPeaks/
The MPB has become a de facto standard for analysing the performance

of any new DOP methods and it has been chosen as the first problem to
tackle for the purposes of this chapter.

Informally, the MPB consists on a set of m peaks, each of which has its
own height (h), width (w), and location (−→p ). The shape function of each
peak i is defined as:

fi(−→x ) = hi −wi

√∑

j

(xj − pj)
2 (5.1)

and the fitness function of the problem is defined as the composition of all
the peak functions, which, since it is a maximization problem, is as follows:

F(−→x ) = max{fi(−→x ) : ∀i} (5.2)

Changes to a single peak are described by the following expressions:

hi(t + 1) = hi(t) + hseverity·N(0, 1) (5.3)

wi(t + 1) = wi(t) + wseverity·N(0, 1) (5.4)
−→p i(t + 1) = −→p i(t) +−→v i(t + 1) (5.5)

where the shift vector −→v i(t + 1) is a linear combination of a random vector
−→r and the previous shift vector −→v i(t), normalized to length s, i.e.:

−→v i(t + 1) =
s

|−→r +−→v i(t)|
((1− λ)−→r + λ−→v i(t)) (5.6)

The random vector −→r is created by drawing random numbers for each
dimension and normalizing its length to s. Parameter s thus indicates the
distance that a single peak moves when a change in the environment occurs
(shift distance). Parameter λ indicates the linear correlation with respect
to the previous shift, where a value of 1 indicates “total correlation” and
a value of 0 “pure randomness”. Finally, parameters hseverity and wseverity
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Table 5.1: Standard settings for the Scenario 2 of the Moving Peaks Benchmark

Parameter Value

Number of peaks (m) ∈ [10, 200]
Number of dimensions (d) 5

Peaks heights (hi) ∈ [30, 70]
Peaks widths (wi) ∈ [1, 12]

Change frequency (∆e) 5000
Height severity (hs) 7.0
Width severity (ws) 1.0
Shift distance (s) ∈ [0.0, 3.0]

Correlation coefficient (λ) ∈ [0.0, 1.0]

indicate the magnitude of the change to h and w respectively, in the units
of those parameters.

One of the most used configurations for the MPB as a test suite is Sce-
nario 2, which is described in the web page of the MPB, and consists on the
set of parameters indicated in table 5.1. However, in order to reduce the
number of variables to control in the experiments performed, neither h nor
w were changed, and only the peaks position was varied (this is equivalent
to choose h = w = 0).

Continuous Test Functions

Three commonly used multimodal real test functions have also been selected:

• Ackley:

fAckley(x) = −20 exp


−0.2×

√√√√ 1
n

n∑

i=1

x2
i


−exp

(
1
n

n∑

i=1

cos(2πxi)

)
+20+e

(5.7)

• Griewank:

fGriewank(x) =
n∑

i=1

x2
i

4000
−

n∏

i=1

cos

(
xi√

i

)
+ 1 (5.8)
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• Rastrigin:

fRastrigin(x) =
n∑

i=1

(
x2

i − 3× cos(2π · xi)
)

+ 3n (5.9)

All these functions correspond to n−dimensional minimization problems
whose optimal value is at x = ~0. Unlike the MPB, where the number of
local optima is equal to the number of peaks, these functions are highly
multi-modal, which means that algorithms are more likely to get stuck in
sub-optimal points, and therefore, are harder to optimize functions. Ad-
ditionally, several functions of the same type can be combined to produce
an even harder problem, as it has been done in the experiments conducted
(section 5.4).

The dynamic behaviour is obtained by shifting position and height of
the optimal with the same rules as in the MPB, that is:

hi(t + 1) = hi(t) + hseverity·N(0, 1) (5.10)
−→p i(t + 1) = −→p i(t) +−→v i(t + 1) (5.11)

where elements are defined as in the case of the MPB, using Eq. 5.3, 5.5,
and 5.6.

Instead of modifying the functions fAckley, fGriewank, and fRastrigin to
contain hi(t) and pi(t), points x and fitness function f are transformed
according to Alg. 16.

Algorithm 16 Fitness evaluation of functions Ackley, Griewank and Ras-
trigin.
procedure FitnessFunction(x, t)
1: Calculate hi(t)
2: Calculate pi(t)
3: x′ ← x− pi

4: fitness ← f(x′)
5: fitness′ ← fitness + hi

6: Return fitness′

5.3.2 State of the art methods

This section presents two methods. Firstly, we will describe the multi-QPSO
algorithm with multiple swarms and quantum and trajectory particles that
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will serve as a baseline for the comparison. It is a method that have been
frequently used for DOPs and whose level of performance is known to be
among the best ones. It can be seen as a population-based method with
implicit cooperation.

Secondly, we will describe the Agents algorithm. It is also a populatio-
based method where a set of agents cooperate to improve the solutions stored
in a grid. Therefore, its behaviour can be seen as an explicit decentralized
cooperation scheme.

The two methods are now presented in the following subsections.

Multi-QPSO method

The multi-QPSO is a variant of the PSO that was firstly introduced in [16]
by Blackwell and Branke, which is specifically aimed at solving DOPs.

A swarm in the multi-QPSO is formed by two types of particles:

• Trajectory particles (also known as classical or neutral). These are the
particles used by the canonical PSO algorithm, which positions are
updated following the usual movement equations:

a(t + 1) = χ[η1c1· (xpbest−x(t)) + η2c2· (xgbest−x(t))]− (1−χ)v(t) (5.12)

v(t + 1) = v(t) + a(t + 1) (5.13)

x(t + 1) = x(t) + v(t + 1) (5.14)

where x, v and a are position, velocity and acceleration respectively.
xpbest is the best so far position discovered by each particle, and xgbest

is the best so far position discovered by the whole swarm. Parameters
η1, η2 > 2 are spring constants, and c1 and c2 are random numbers
in the interval [0.0, 1.0]. Since particle movement must progressively
contract in order to converge, a constriction factor χ, χ < 1 is used, as
defined by Clerc and Kennedy in [30]. This factor replaces other slow-
ing approaches in the literature, such as inertial weight and velocity
clamping [48].

• Quantum particles. These particles were introduced in the multi-
QPSO algorithm, and aim at reaching a higher level of diversity by

111



Chapter 5. New applications for centralised cooperative strategies:
Dynamic Optimisation Problems

Algorithm 17 Pseudocode of Agents method.
procedure AgentsMethod()

Initialise Matrix of Solutions randomly
Distribute Agents in the Matrix
while not stopping condition do

Move Agents
Change Solutions
Evaluate Solutions
Update solutions

end while

moving randomly within a hypersphere of radius r centered on xgbest.
This random movement is performed according to a probability dis-
tribution over the hypersphere, in this case, a uniform distribution:

x(t + 1) = randhypersphere(xgbest, r) (5.15)

The general idea of the multi-QPSO is to use a set of multiple swarms
that simultaneously explore the search space. This multi-swarm approach
has the purpose of maintaining the diversity, in addition to the use of quan-
tum particles. This is a key point for DOPs, since the optimum can change at
any time, and the algorithm must be able to react and find a new optimum.
In order to prevent several swarms from competing over the same area, an
inter-swarm exclusion mechanism is also used, randomizing the worst swarm
whenever two of them are closer than a certain distance. Intra-swarm co-
operation and inter-swarm competition are the two basic forms of implicit
cooperation of this method, as it was previously mentioned in section 5.1.

Agents method

This agents-based strategy is a decentralized cooperative method that
was originally described on [122, 123]. The strategy makes use of solutions
arranged in a matrix or “world” M . Each cell M(i, j) contains a solution
of the problem at hand, referred as M(i, j).V , and the cost of the solution
M(i, j).C. There is no topological relation between the positions of the
solutions in the matrix and their corresponding costs.

The second population is made by a set of k agents A = {a1, a2, . . . , ak}
that move in the world M following certain rules. It is assumed that k

is much lower than the number of solutions available. Each agent is rep-
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Algorithm 18 Update Solutions Method pseudocode (minimisation)
procedure UpdateSolutions()

for all ai ∈ A do
UpdateMemory(ai.currentSol,ai.cost)
Update position two worst solutions in CIR (worst1.(x, y),
worst2.(x, y))
if ai.currentSol is better than M(ai.x, ai.y).V then

previousSolution ← M(ai.x, ai.y)
M(ai.x, ai.y).V ← ai.currentSol
M(ai.x, ai.y).C ← ai.cost
Update best solution with ai.currentSol, ai.cost
%improvementHistory ← (averageMem− ai.currentSol)/averageMem
%improvement ← (previousSolution− ai.currentSol)/previousSolution
if (%improvementHistory > %BigImprovement) AND
(%improvement > %BigImprovement) then

M(worst1.x, worst1.y) ← ai.currentSol.
sol ← generateGradientSol(previousSolution, ai.currentSol).
Update best solution with sol
M(worst2.x, worst2.y) ← sol.

end if
end if

end for

resented by a 3-tuple: ai = {(x, y), currentSol, cost} where (x, y) indicates
the position in M where the agent lies and currentSol is the current solution
being manipulated by ai. The objective value of currentSol is stored in the
variable cost. We will refer to each component of a particular agent ai using
the dot notation, so ai.x will stand for the X coordinate in the world where
ai lies.

On top of the basic strategy, we add a centralised information repository
(CIR). It stores the cost and the position of the two worst solutions.

The global strategy is described in Algorithm 17. After a random ini-
tialisation of solutions and agents positions, several processes are applied.
On Move Agents, each agent ai moves to the best cell of the neighbourhood
of the current position (eight cells around the position ai.(x, y)). If there is
no better cell in the current neighbourhood then it moves randomly to one
of them.

Change Solutions is applied for every agent as follows: first step is to
copy the cell solution into the agent: ai.currentSol = M(ai.x, ai.y).V and
ai.cost = M(ai.x, ai.y).C. Then, ai generates a new random solution inside
a circle of radius PerturbationRadius around ai.currentSol.
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Now, this new solution ai.currentSol may improve M(ai.x, ai.y).V or
not and actions should be taken for each option. These actions are en-
capsulated within the Update Solutions stage, which is fully described in
Algorithm 18.

The procedure UpdateMemory sends the current agent’s solution and its
cost to a register Mem which is updated in a first-in first-out manner when
it is full. The length of Mem is fixed on MemSize. The other initial steps
are clear: the two registers in CIR for the two worst solutions are updated.
If the new solution obtained by the agent is better than the one stored in
the cell, then the cell’s solution and its cost are updated. Afterwards, the
algorithm checks whether the solution generated greatly improves the aver-
age of the costs stored in Mem and the previous solution in that position.
If so, the 2 worst solutions on the “world” are replaced following the dia-
gram shown on Figure 5.1. The figure shows the solution to which the agent
performed the improvement (previousSolution that is discarded) together
with the new generated solution (currentSolution, that is the one that has
obtained a big improvement in the fitness, ai.currentSol). ai.currentSol

will replace previousSolution in the grid where the agent is and it will also
overwrite the worse solution of the grid. Additionally, the second worse so-
lution in the grid will be replaced with the solution sol that is generated
in function of the euclidian distance (distance) that separated previousSolu-
tion and ai.currentSol. sol is made in the function generateGradientSol()
by generating in first place an intermediate solution (the smallest circle) that
is at three times the distance from previousSolution that ai.currentSol was.
Then, a perturbation of radius distance is applied over this intermediate
solution to obtain the solution sol inside the biggest circle of the figure.

The method receives the following parameters (the values they are set
to are also given):

• rows = 5: Number of rows in M .

• columns = 10: Number of columns in M .

• Agents = 4: Number of agents.

• PerturbationRadius = 14.0: Radius for the perturbation of solutions.

• MemSize = 140: Size of the Mem.
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Figure 5.1: When the improvement done by the agent from previousSolution to
ai.currentSol (currentSolution in the picture) is big, the worst solution in the
grid is also replaced with ai.currentSol. Furthermore, the solution sol is generated
inside the biggest circle to replace the second worst solution of the grid.

• BigImprovement = 60%: Percentage of improvement to be consid-
ered as big.

The Agents algorithm can bee seen as a population-based decentralized
cooperation algorithm since the improvements that one agent does in M can
be seen by the other agents. When an agent is moving to the best neighbor
solution of the “world” it will get attracted by good grid cell solutions that
were stored by other agents. Therefore, as the agents move through the grid
they will try to perform further improvements on the cells that other agents
have already improved.

5.3.3 Further details of the cooperative strategy

To finish with this section, we are going to give the details of the implemen-
tation done to deal with DOP’s. In first place, we simulate the paralellism
in the same way than in chapter 4. The parameter freq interval was set to
the interval [50, 60] basing on previous experimentation.

The cooperative strategy is composed by 12 solvers which implement
the method described in section 5.2.3 and they differ in terms of the length
of the initial step size, δinit, (three different values for this parameter are
considered) as well as the initial solution. The parameter setting for the
tabu search is displayed in Table 5.2. σ is defined as the maximum of the
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Parameter Description Value

δinit initial length of the operator step σ/2, σ/3, σ/5

resolution minimal step value 0.001

LRR radius for the local minimum regions 0.01 · σ
maximum number of

maxNoImp non improvement movements 3

tenure length of the tabu list of movements 1

Table 5.2: Parameter setting for the tabu search. The different values set to the
parameter δinit for each solver are also displayed.

difference between the lower and the upper limit of each variable.

Regarding the parameters of the coordinator, the radius for the visited
regions ρ was set to 0.15 · σ and the antecedent threshold λreaction to 1.
The mutation operator used to modify the best global solution consists on
selecting randomly a direction following a uniform distribution and then,
take the point at a distance r from the best global solution. In this case r

is set to 0.1 · σ.

5.4 Results

Experiments have been conducted over MPB and the three real test func-
tions changing the position of the optimal values (peaks) with 5 evenly
distributed percentages of change severity between a 2% and a 10% of the
full range of possible coordinate values for each problem. The rest of the
parameters in the case of MPB are taken from the Scenario 2 defined by
Branke in [22] and previously presented on Table 5.1. The real test func-
tions are configured to use 5 dimensions as in the case of MPB and 1, 3, 5
or 10 functions of the same type. Changes to the function’s optimum were
performed every 5000 function evaluations, and a run grouped 100 consec-
utive changes. Each experiment consisted in 30 independent runs, each of
them with its own random seed.

One of the most currently accepted measures for dynamic optimization
is the offline error, proposed in [22], which is the running average of the
difference between the optimum values and the best solution encountered so
far, at any time between two consecutive changes. When a change occurs,
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Severity Agents multi-QPSO CCS

2 4.610(2.683) 6.702(4.889) 3.576(2.462)[*]
4 4.789(2.701) 7.011(4.882) 4.042(2.469)[*]
6 5.040(2.819) 6.843(4.465) 4.477(2.515)[*]
8 5.270(2.821) 6.541(4.015) 4.811(2.582)[*]
10 5.445(2.911) 6.582(4.039) 5.035(2.580)[*]

Table 5.3: MFE results for the MPB problem

the offline error is reset. This measure is always greater than or equal to
zero and is defined as:

offline error =
1
T

T∑

t=1

(optimum− bestSolution) (5.16)

In this way, the offline error gives a good idea of the average distance
to the optimum of the solutions given by the algorithms throughout their
execution. The lower the value of its offline error, the better an algorithm
behaviour is considered.

For the experiments conducted, the offline error of each algorithm just
before a change was recorded, and this value was averaged over all the 100
changes of a run, for all the 30 independent runs. This procedure leads to
the Mean Fitness Error (MFE) defined by Richter and Yang [132] as:

MFE =
1
R

R∑

r=1

[
1
T

T∑

t=1

(
f(xs(k), k)− max

xj(t) ∈ P (t)
f(xj(t), k)

)]

k=bγ−1(t)c
(5.17)

where γ ∈ N is the change frequency, max
xj(t)∈P (t)f(xj(t), bγ−1tc) is the

fitness value of the best-in-generation individual xj(t) ∈ P (t) at generation
t, f(xs(bγ−1(t)c), bγ−1(t)c) is the maximum fitness value at generation t, T

is the total number of generations used in each run, and R is the number of
consecutive runs. In our case, since the algorithms proposed do not use a
clear concept of generation we will consider that a generation corresponds
to the period between two consecutive fitness function changes.

The results are presented in Tables 5.3, 5.4, 5.5 and 5.6. These tables
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Table 5.4: MFE results for the Ackley function

Functions Severity Agents multi-QPSO CCS

1 2 2.227(0.891) 2.219(1.084) 0.598(0.529)[*]
1 4 2.340(0.868) 2.778(1.303) 0.886(0.511)[*]
1 6 2.462(0.962) 2.933(1.382) 1.118(0.547)[*]
1 8 2.552(0.857) 3.017(1.463) 1.349(0.573)[*]
1 10 2.659(0.775) 3.074(1.462) 1.512(0.570)[*]
3 2 2.246(0.664) 1.711(0.755) 0.563(0.431)[*]
3 4 2.343(0.528) 2.108(0.835) 0.889(0.459)[*]
3 6 2.460(0.488) 2.202(0.837) 1.137(0.471)[*]
3 8 2.573(0.509) 2.248(0.786) 1.347(0.481)[*]
3 10 2.677(0.487) 2.312(0.756) 1.524(0.508)[*]
5 2 2.270(0.476) 1.488(0.633) 0.536(0.394)[*]
5 4 2.395(0.501) 1.818(0.699) 0.854(0.408)[*]
5 6 2.488(0.441) 1.886(0.661) 1.095(0.423)[*]
5 8 2.572(0.454) 1.916(0.600) 1.289(0.434)[*]
5 10 2.696(0.489) 1.977(0.576) 1.490(0.439)[*]
10 2 2.249(0.412) 1.299(0.623) 0.402(0.326)[*]
10 4 2.385(0.398) 1.491(0.646) 0.694(0.335)[*]
10 6 2.456(0.392) 1.598(0.595) 0.931(0.340)[*]
10 8 2.553(0.372) 1.685(0.545) 1.131(0.347)[*]
10 10 2.667(0.378) 1.693(0.487) 1.332(0.366)[*]

show the final MFE of the 30 independent runs, with the standard deviation
in parenthesis. Here, values with an asterisk ([*]) indicate that the corre-
sponding algorithm obtained the best (lowest) MFE. For every configuration
of the problem, the Kruskal-Wallis non-parametric test for multiple compar-
isons has been used to asses the diferences between the performances of the
three methods. The null hypothesis could not be rejected at significance
level 0.01 for all problem configurations. Apart from this, the Wilcoxon’s
unpaired rank sum test at a confidence level 0.05 was performed between
the best algorithm and each of the others, to assess if there were statistical
differences. If there was no difference, the other algorithm’s value is shown
with the word “[NO]”.

The MPB results on Table 5.3 show that multi-QPSO obtains very good
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MFE results, but both of the other methods with some kind of explicit
cooperation (Agents and the centralised cooperative strategy (CCS)) out-
perform multi-QPSO in the MPB. Moreover, CCS is significantly better
than the other two methods while the Agents algorithm follows closely, be-
ing better than multi-QPSO with a significant difference in performance. It
is also clear that as the severity increases the MFE gets worse (higher) with
the only exception of multi-QPSO where the MFE shows no correlation with
the severity. This is probably because while the other methods are able to
improve their MPB results when there is a lower severity, multi-QPSO is
probably unable to quickly keep track of the peak movements even with the
lowest tested severity.

For the Ackley real test function (Table 5.4), CCS shows far better re-
sults than the other two methods with a difference that is again statistically
relevant. Multi-QPSO and Agents shows mixed results with Agents outper-
forming multi-QPSO for most of the experiments with only one function,
while multi-QPSO becomes better as the number of functions increases. It
can also be seen that the severity affects all methods similarly but in a
smaller amount than in the MPB case, with only slighty worse results for
every method as the severity increases.

With the Griewank function (Table 5.5), all methods are able to obtain
a very low MFE but again CCS is better in almost all cases with just one
case (3 functions and a severity of 2%) where it is outperformed by multi-
QPSO and another one where there is no statistical difference with the
multi-QPSO result (5 functions and a severity of 2%). The severity also
affects the algorithms in a very similar way than in the ackley function with
slightly worse results as the severity increases.

Finally, Rastrigin (Table 5.6), the most difficult function, shows the
biggest difference between the methods. In this function, Agents is clearly
worse than the other two methods and CCS is again by far the best of the
three methods. In conclusion, all the tables have shown that CCS is almost
allways the algorithm with the lowest MFE in a statistically significative
manner. The only two exceptions for this statement are the two specific
cases of the Griewank function that were pointed out in the previous para-
graph. Being this a more difficult to optimize function, the severity also
affects the methods more than in the previous tests, because after a fitness
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Table 5.5: MFE results for the Griewank function

Functions Severity Agents multi-QPSO CCS

1 2 0.132(0.074) 0.099(0.042) 0.089(0.039)[*]
1 4 0.180(0.067) 0.156(0.057) 0.107(0.038)[*]
1 6 0.220(0.077) 0.202(0.087) 0.107(0.039)[*]
1 8 0.251(0.084) 0.235(0.103) 0.114(0.040)[*]
1 10 0.260(0.088) 0.268(0.127) 0.116(0.042)[*]
3 2 0.178(0.063) 0.094(0.036)[*] 0.101(0.0439)
3 4 0.226(0.064) 0.158(0.055) 0.119(0.046)[*]
3 6 0.252(0.070) 0.204(0.082) 0.124(0.049)[*]
3 8 0.265(0.074) 0.249(0.132) 0.127(0.046)[*]
3 10 0.278(0.079) 0.282(0.144) 0.131(0.048)[*]
5 2 0.161(0.069) 0.125(0.063)[NO] 0.119(0.049)[*]
5 4 0.220(0.064) 0.166(0.062) 0.134(0.048)[*]
5 6 0.254(0.071) 0.229(0.091) 0.135(0.051)[*]
5 8 0.270(0.076) 0.255(0.121) 0.142(0.052)[*]
5 10 0.282(0.079) 0.295(0.123) 0.147(0.053)[*]
10 2 0.182(0.061) 0.125(0.062) 0.122(0.043)[*]
10 4 0.241(0.061) 0.192(0.061) 0.141(0.043)[*]
10 6 0.252(0.063) 0.239(0.078) 0.143(0.044)[*]
10 8 0.264(0.064) 0.263(0.084) 0.148(0.047)[*]
10 10 0.275(0.065) 0.293(0.096) 0.153(0.046)[*]

function change occurs it is also more difficult to reposition the solution near
the good search space locations.

While the results in terms of the best values obtained for each fitness
function change are very important, it is also important to know how the
methods perform during the whole search process and not just before each
fitness function change.

To analyze this behaviour, a graph of the best results of all the methods
against the optimum for a sample run of each test function is generated. In
order to compair the methods in the worst scenario, the instances selected
are the most difficult ones where the number of functions is maximum and
the biggest severity (10%) of change is used. For each selected run, the first
20000 evaluations were plotted taking values every 100 evaluations. Since
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Table 5.6: MFE results for the Rastrigin function

Functions Severity Agents multi-QPSO CCS

1 2 10.503(3.019) 2.288(1.300) 0.882(0.861)[*]
1 4 13.189(3.091) 4.754(1.673) 1.224(0.962)[*]
1 6 13.895(3.160) 6.880(2.323) 1.745(1.046)[*]
1 8 14.245(3.226) 7.686(2.615) 2.228(1.188)[*]
1 10 14.473(3.212) 8.229(2.789) 2.496(1.273)[*]
3 2 10.814(2.883) 1.849(0.695) 1.094(0.802)[*]
3 4 13.121(2.849) 4.568(1.411) 1.397(0.866)[*]
3 6 14.058(2.915) 6.903(2.089) 1.925(0.950)[*]
3 8 14.327(2.943) 7.693(2.363) 2.353(1.032)[*]
3 10 14.358(2.965) 8.000(2.435) 2.536(1.086)[*]
5 2 10.525(2.759) 1.786(0.791) 1.041(0.722)[*]
5 4 13.076(2.763) 4.562(1.420) 1.334(0.761)[*]
5 6 13.969(2.764) 6.840(2.108) 1.854(0.828)[*]
5 8 14.078(2.807) 7.678(2.298) 2.294(0.971)[*]
5 10 14.161(2.817) 7.865(2.354) 2.473(1.003)[*]
10 2 10.189(2.585) 1.939(0.722) 0.826(0.601)[*]
10 4 12.473(2.597) 4.465(1.393) 1.133(0.672)[*]
10 6 13.175(2.626) 6.511(2.002) 1.667(0.802)[*]
10 8 13.310(2.615) 7.132(2.156) 2.054(0.872)[*]
10 10 13.379(2.640) 7.355(2.251) 2.194(0.913)[*]

the fitness function changes every 5000 evaluations, this 20000 evaluations
correspond to the evolution of the fitness for the first four fitness function
changes.

The results for MPB are shown on Figure 5.2. Since this is a maximiza-
tion problem, the best fitness obtained by the methods is always reduced
when a fitness function change occurs and then starts growing again as the
methods make progresses during the search. The first thing to notice in
the figure is that CCS never the best method at the first evaluations after a
fitness function change. Despite that, CCS is able to continue improving the
solutions at a higher pace for a much longer number of evaluations than the
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Figure 5.2: Best algorithm results vs optimum for the MPB problem with a 10%
of severity
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Figure 5.3: Best algorithm results vs optimum for the Ackley function with 10
functions and a 10% of severity
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other methods leading to the statistically better results we have seen before
when considering the moments just before a fitness function change. There-
fore, CCS is clearly better than the other methods only when the number of
fitness evaluations without fitness function changes is high enough, but for
fewer evaluations multi-QPSO and specially Agents are clearly better. In
three out of four of the function changes seen on the figure, Agents is the
best algorithm for the first 1000 evaluations after a fitness function change.

In the real test functions case, as they are minimization problems, the
fitness after a function change starts with a high value and it goes down as
the methods improve their solutions. The results for Ackley are presented on
Figure 5.3. In this case all three methods perform very similarly in the first
evaluations after a change. It is when more evaluations are available when
the differences among the methods appear. Agents seems to get stuck more
quickly with very little improvement on the second half of the search stage
for each change. On the contrary, multi-QPSO and CCS keep improving
on this second half of evaluations with the improvements of CCS showing a
particular good slope. In this way, CCS almost matches the optimal values
in the last evaluations of each function change with multi-QPSO following
closer and Agents at a big distance from the other methods. It is clear that
the intensification of the search done by CCS is much better than the one of
the other two methods. This suggest that the combination of the centralized
cooperation with the trajectory solvers gets a very good symbiosis. The
trajectory solvers are particularly well suited for intensification of the search
and the cooperation helps to avoid local optima which could explain the
increase of the slope in the improvement of fitness at several points of the
search process.

Figure 5.4 contains the results for the Griewank function where Agents
and multi-QPSO show a very similar behavior during the whole evolution
of the search. CCS again improves both of the other methods on the results
at the latter stages of each fitness function change. But this time, CCS is
also better at the first evaluations after a fitness function change because it
is able to regain good results with fewer evaluations.

Finally, Figure 5.5 shows the corresponding plot for the Rastrigin func-
tion. On the contrary to the previous cases, the performance order of the
three algorithms keeps almost the same for the whole evaluations with CCS
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Figure 5.4: Best algorithm results vs optimum for the Griewank function with 10
functions and a 10% of severity
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Figure 5.5: Best algorithm results vs optimum for the Rastrigin function with 10
functions and a 10% of severity
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greatly outperforming the other methods and Agents as the worse algorithm.
Despite the fact that this function is considered to be difficult to optimize,
CCS is able to get near optimal values in a consistent way. This can be ex-
plained by two factors. Firstly, the tabu search implemented by the solvers
of the CCS is probably well suited to optimize this kind of functions. This
suggest that the believe that trajectory based methods are not good for dy-
namic optimization should be reconsidered. At the very least, when these
trajectory based methods are combined with a cooperation scheme, the re-
sults shown here demonstrate that it is possible to obtain a good sinergy
that can both improve the optimization results and avoid getting stuck in
local minima.

5.5 Conclusions

In this chapter we have tackled the study of a new scenario to apply cen-
tralised cooperative methods. We have chosen Dynamic Optimisation Prob-
lems (DOPs) and concretely, those ones whose objective function change
over the time. Two main reasons lead us to this election: a) there is a
growing interest on the resolution of these problems due to its closeness to
real-world situations (trade market predictions, meteorological forecast, etc)
and b) as far as our knowledge is concerned centralised cooperative strategies
have not been applied to these problems before. The strategy developed to
deal with these problems had the same structure than the one used in chap-
ter 4. The solvers implemented a trajectory-based algorithm (tabu search)
with different parameter configurations. We saw that this type of methods
can be easily adapted to DOPs by adding a mechanism that controls the
objective function changes and programming the restart of certain memories
every time that one of this changes takes place.

The performance of the centralised cooperative strategy has been com-
pared with two other methods of the literature: multi-QPSO and Agents.
The multi-QPSO method was chosen as a reference, because it is a well
known method with good performance. In terms of cooperation, multi-
QPSO can be seen as a method with an implicit cooperation between the
different particles of each swarm. Agents was chosen because it also uses an
explicit cooperation scheme but it is also a population-based method that
does not use trajectory solvers.

127



Chapter 5. New applications for centralised cooperative strategies:
Dynamic Optimisation Problems

Agents used a decentralized cooperation scheme on opposition to the
centralized cooperation that was present on CCS. Despite that, Agents has
shown to be able to outperform multi-QPSO in the MPB and some of the
Ackley real test function experiments, while its results were worse than
multi-QPSO in the remaining Ackley configurations and the other two real
test functions. This suggests that the cooperation included in Agents pro-
vides some benefits over multi-QPSO on the easier problems, but since the
optimization done in Agents relies only on using simple random pertur-
bations of solutions it may not be enough to cope with the most difficult
problems even with the help of the cooperation.

On the other hand, the centralised cooperative strategy used an explicit
centralized cooperation scheme together with complex trajectory-based op-
timizers (tabu search). The method showed very promising results that are
able to outperform Agents and multi-QPSO in most of the test problems.
It was also very consistent with very good results for all test problems and
configurations. Therefore, this kind of cooperation deserves a bigger atten-
tion in future works, in order to further assess their performance on different
problems and to test different alternatives in terms of the cooperation policy
as it has been done on the static case.

Moreover, it has been believed and assumed that population based meth-
ods were best suited to deal with DOPs because it was supposed that a
bigger number of solutions could keep better track of a changing environ-
ment. While this still may hold true, the success of this centralised coopera-
tive strategy suggest that trajectory methods combined with a cooperation
scheme may have an important role to play in the dynamic optimization
field and further research should be put into this area. Furthermore, this
strategy can also be seen as a population algorithm if we take into account
that each trajectory solver (tabu) has one solution, despite that the num-
ber of solutions is very low in comparison with the usual values for typical
population-based algorithms. This also suggest that the sizes of the popu-
lations are of relative importance and while some methods may get better
scores when using more solutions, others could benefit of a bigger intensifi-
cation on a small number of solutions if they are able to avoid local optimum
with a low number of solvers/solutions. This is also an open research area
where there is a need to find a balance of population that can fit the needs
of both the method and the problem and hand. At the end, this balance is
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probably no more than the balance between intensification and diversifica-
tion that is common to most optimization tasks but also coupled with the
specific method needs and characteristics.
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Chapter 6

A centralised cooperative

strategy for solving multiple

instances

In this chapter we present a cooperative strategy designed to solve a set of
instances. The method is based on a set of operators and a basic learning
process that is fed up with the information obtained while solving several
instances. The output of the learning process is an adjustment of the op-
erators. The instances can be managed sequentially or simultaneously by
the strategy, thus varying the information available for the learning process.
The method has been tested on different SAT instance classes and the results
confirm that a) the usefulness of the learning process, b) that embedding
problem specific algorithms into our strategy, instances can be solved faster
than applying these algorithms instance by instance, and c) the simultaneous
resolution shows a more robust behaviour than the simultaneous one.

6.1 Motivation

As we pointed out in the introduction of this dissertation, metaheuristics
present some drawback when they come into practise whose impact can
be attenuated by Hybrid Metaheuristics and cooperative strategies. Apart
from these methods, in the literature we can find other proposals to alleviate
such problems. One of them is self-adaptation of parameters that aims to
reduce the human intervention in the practical application of metaheuristics
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by means of the automatic tuning of critical parameters or operators during
the search process to better solve the corresponding instance.

Many studies in these fields are oriented to solve one instance at a time,
independently of the other ones. But, what if we need to solve a set of
instances? For example, it is not hard to imagine a server that receives re-
quests to solve instances of the same problem. Under this situation, which
strategy should be used to efficiently solve all the instances?. A naive mode
of operation would be to choose a particular algorithm and to solve the
instances one by one. However, working in this way, valuable information
obtained during and after the resolution process of every instance is dis-
carded. Besides, the drawbacks we pointed out before are exacerbated. For
example, it could be necessary to solve instances of different characteristics,
thus the performance of the selected algorithm can be excellent for some
instances but unacceptably bad for others. Of course the instances could be
solved independently, but in parallel if time is a constraint.

To the best of our knowledge, there is a lack of such strategies in the
literature despite their potential interest.

In [59], Gagliolo et al. face the resolution of a set of instances using a
set of ad-hoc algorithms. In this approach the instances are solved one by
one and a feedback mechanism is used to modify the amount of resources
assigned to every algorithm. This modification is essentially based on per-
formance information.

The aim of this chapter is to further explore strategies that can effi-
ciently manage the solution of a set of instances. With this aim, we present
a self-adaptive strategy, that can manage the instances one by one or all
of them simultaneously. A learning mechanism promotes the use of those
operators that shows good performance and it is important to remark that,
depending on how the instances are processed, the information available for
learning and adaptation is low (when one instance at a time is processed)
or high (all instances are being solved in parallel). As a test bed, we use
the SAT problem and SAT-specific operators are employed. The strategy’s
behaviour is evaluated over a wide variety of instance types and we will
provide comparisons against some SAT-specific algorithms.

The rest of the chapter is organised as follows. We will start giving some
background about self-adaptation strategies in 6.2. Section 6.3 describes the
proposed strategy and the adaptation mechanism. The details of the test
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bed and the different classes of instances used, the SAT specific operators
and the implementation details are provided in Section 6.4. Then, in Section
6.5 we present the computational experiments performed to test the benefits
of our strategy and the results obtained as well as an analysis of its dynamic
behavior. Finally, Section 6.6 is devoted to conclusions.

6.2 Self-adaptation strategies

The research in this area is addressed to design mechanisms that tune critical
parameters during the search process in order to fit them to the correspond-
ing instance or stage of the search. This topic has been widely explored in
some fields such as evolutionary algorithms [95] or local search [9]. In the
case of evolutionary algorithms, some methods have been proposed to adapt
the mutation rate [7,94], crossover probabilities [152] or both of them [153],
exploration operator probabilities [140], the local search operator (‘memes’)
in memetic algorithms [75, 117, 138], etc. Reactive search [9], previously
described in 4.2.2, could be considered as an adaptation strategy for local
search algorithms. As we saw, its objective is to give a ready response to
events during the search through an internal online feedback loop for the
self-tuning of critical parameters. These ideas have been applied to some
local search methods such as Variable Neighborhood Search [23], Simulated
Annealing [53], or Tabu Search [11].

Other types of self-adaptation strategies can be found in some “Algo-
rithm Portfolios”. Here, a set of algorithms are run in parallel until the
fastest one solves the problem. The amount of resources available for each
one is given as a function of its performance. This resource assignment can
be done by modeling the performance of the candidate algorithms during a
certain period of time [81], by means of reinforcement learning [90], dynamic
programming [126] or bandit problem solvers [59] among others.

6.3 Scheme of the cooperative strategy for solving

multiple instances

In simple terms, our strategy can be seen as a method that co-evolves so-
lutions from different instances, jointly with a set of operators. Since many
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Figure 6.1: Scheme of the strategy

instances are going to be solved, we need to define an operational mode:
instances can be processed simultaneously or sequentially. Since many in-
stances are available, it is possible to reinforce or adapt the strategy in order
to promote those operators that are giving the best results. This learning
stage can be switched on or off.

The proposed strategy is depicted in Figure 6.1, where three layers are
shown.

Let us assume that we have a set of instances I from a particular op-
timisation problem to be solved. We define fj as the objective function of
such problem, where j ∈ I.

The first layer of the strategy is composed by a population of solutions
Pop = {s1

1, . . . , s
h
n}, where sj

i indicates that the solution i belongs to the in-
stance j ∈ I. A sub-population Popj is defined as Popj = {sl

i ∈ Pop|l = j}.
When necessary, we may omit the instance index for the sake of simplicity.

The second layer is composed by a set of Modification Solution Agents
(MSA) that cooperate to improve the solutions in Pop using certain oper-
ators. The set of MSAs available constitutes MSAPop.
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Every MSAi ∈ MSAPop is defined by a tuple:

MSA(Ok, Gaccept, credit) (6.1)

where Ok is an operator that belongs to the set of operators Θ = {O1, . . . , Om}
(they can be interpreted as mutation or move operators), credit ∈ < stores
the amount of “credit” obtained by the agent and Gaccept is an acceptance
criterion that can be stochastic (as in simulated annealing), tabu, fuzzy [121],
etc.

The third layer is where the learning and adaptation mechanism takes
places: its responsibility is to adapt the operators that every MSA’s uses.

As we stated before, two main characteristics define our strategy: the
operational mode and the learning stage. Both will be described next.

6.3.1 Operational Mode

The set of instances that needs to be solved can be processed simultaneously
or sequentially. Figure 6.2 shows both operational modes when 6 different
instances are used. When instances are solved sequentially, each one is
allocated a total of E evaluations, and we ensure that instance i processing
should finish when E× i evaluations have been done. In other words, we fix
a due time for every instance. In the parallel or simultaneous mode, 6× E

evaluations are allocated to solve all instances. Every instance has, at least,
E evaluations to be solved. When an instance is solved, its corresponding
subpopulation is removed from Pop. In this way, the strategy works over
those instances that have not yet been solved.

Figure 6.3 shows an example of the operation of the second layer using
four MSA and twelve solutions. The set of MSA is moved over Pop as
a window, modifying slots of four solutions at each iteration. A particular
MSAi receives as input a solution s, applies its operator Ok and obtains
a new solution s′. Then, if Gaccept(s, s′) = True then the new solution
replaces the older one and MSAi is given certain credit ∆credit(s, s′). If
Gaccept(s, s′) = False, then the current solution is kept.

In the example, three iterations are enough to cover all the solutions
from all the instances. When this occurs, the process is repeated. The
credit assignment process used here will be described later, but the reader
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a) Sequential mode

b) Parallel mode

Figure 6.2: Examples of both operational modes over 6 instances.
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Figure 6.3: Example of the working of the strategy with 4 MSA, 12 solutions and
2 operators.
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should be aware that many alternatives are possible. See [139] for an up to
date review.

A crucial difference between both operational modes is what happens
when an instance j was solved using E′ < E evaluations. When the se-
quential mode is applied, the remaining E − E′ evaluations are automati-
cally assigned to the next instance j + 1 that, as a consequence would have
Bj+1 = E + (E − E′) evaluations available (recall that just the due time
should be enforced). Then, if instance j + 1 is solved in E′′ < Bj+1, the
Bj+1 − E′′ non used evaluations are assigned to instance j + 2 and so on.
In the case that one of these instances is “hard”, then all the potential gain
in time is consumed in just one instance. When the simultaneous mode is
used, the concept of evaluations assigned to instances does not exist. While
the strategy have evaluations available, then it will simultaneously operate
over all the instances.

6.3.2 Learning Stage

The learning stage can be used or not with every operational mode. Two
elements need to be defined in this stage: how the adaptation takes place
and when it should be applied.

How to adapt

When the adaptation mechanism is triggered by certain condition, the third
layer assigns operators to the MSAi using the credit information to decide.
The learning and adaptation process is based on a vector of weights w,
where the component wk represents a performance measure associated with
operator Ok ∈ Θ (wk ∈ <, length(w) = |Θ|).

At the ith iteration of this layer, the adjustment procedure follows the
next three stages:

1. Weights update: for each operator Ok ∈ Θ:

(a) A reward rk(i) is calculated as the total amount of “credit”
gained, since the last update, for those MSA ∈ MSAPop that
had Ok as operator .
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Figure 6.4: Graphical example of one application of the adaptation mechanism with
3 operators and 6 MSA

(b) The new weight at iteration i, wk(i), is calculated as:

wk(i) ← wk(i− 1) + rk(i) (6.2)

(c) The weight is normalised (m = |Θ|):

wnorm
k =

wk∑m
i=1 wi

(6.3)

2. Assignment of number of operator copies: this stage is divided in two
steps. An example of the process is shown in Figure 6.4:

(a) An initial number of copies is determined as:

copies1
k = [wnorm

k × |MSAPop|] (6.4)
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a) Sequential mode

b) Parallel mode

Figure 6.5: Schemes of both operational modes with the learning stage activated.
Each time an instance is solved, adaptation takes place. In a) no modifications
are made while an instance is being solved. In b) the adaptation may affect the
ongoing solving processes.
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where [] stands for the integer part. As we can see in Figure 6.4,
in this step the mechanism determines the number of fragments
of size 1

|MSAPop| that corresponds to each normalised weight.

(b) Additional copies calculation: For each Ok ∈ Θ, a new weight is
calculated

wnew
k = wnorm

k − copies1
k

|MSAPop| (6.5)

The operators are sorted in decreasing order of wnew
k and then,

from top to bottom in this list, the remaining number of copies
are then assigned, one by one, to these operator. This value is
called copies2

k and random selection is used when a tie occurs.

3. MSA adaptation. Every operator Ok is randomly assigned to as many
MSA as indicated by the copies1

k + copies2
k value.

When to adapt

The answer to this question is simple: trigger the adaptation when an in-
stance is solved. Figure 6.5 shows a scheme highlighting the time steps where
adaptation is triggered. Given the adaptation scheme described before,
again we can observe crucial differences between both operational modes. In
the sequential case Fig. 6.5 (a) we can observe that the operator that solved
the first instance, have a higher chance of getting more copies. However,
this “learning” is just available to the second instance in the list. Moreover,
the definition of the MSA is kept fixed during the whole resolution of the
instance. In turn, when the simultaneous mode is used, the operators in
the MSA can be changed during the resolution. In this way, those non
successful operators can be literally filtered out from the resolution process.

6.3.3 Classifying the strategy

In this subsection, the categorization of the centralised cooperative strat-
egy were done following the same lines as in the former chapters. Such
categorization is the following:

• Talbi’s taxonomy:

– hierarchical taxonomy : low-level teamwork hybrid (the MSA are
not self-contained methods)
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– flat taxonomy : general and global method with heterogeneous
nature (operators are different).

• Raidl’s taxonomy:

– what is hybridized : this strategy has also two hybridization types.
In the, metaheuristics are combined with metaheuristics and these
ones, for their part, are hybridized with a self-adaptation mech-
anism.

– level of hybridization: low-level

– order of execution: batch

– control strategy : integrative

• Crainic et al’s taxonomy:

– search control cardinality : 1-C

– search control and communications: the categories in this dimen-
sion are not well fit to this strategy. This would be classified
in an intermediate class between KS (the communication is syn-
chronous and its frequency is previously determined) and KC (the
suitable number of copies for each operator is inferred from the
information sent by the MSA’s)

– search differentiation: SPDS

6.4 Experimental framework

The validation of our proposal will be done over instances of the well known
SAT problem because of the wide variety of available instance classes and
the existence of very simple ad-hoc high performance heuristics that can
be used as operators for our strategy. Both issues will take the first two
subsections of this part of the chapter.

6.4.1 The SAT problem

The SAT problem is one of the best known decision problems. It has been
applied to many fields such as the design and verification of hardware de-
vices, asynchronous circuit design, computer network design and scheduling.
An instance of SAT is defined by the following elements:
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• A finite set of boolean variables X = {x1, . . . , xn} that take values in
the domain B = {0, 1}.

• A set of boolean operators Ψ = {∧,∨,¬}, where ∧ is the conjunction,
∨ the disjunction and ¬ the negation.

• A finite set of literals L = {x1,¬x1, . . . , xn,¬xn}. A literal can be a
variable or its negation.

• A finite set of clauses C = {c1, . . . , cm}, where a clause is a set of
literals connected by ∧ or ∨.

• A boolean formula φ is composed by a set of clauses linked by ∧ or ∨.
If all clauses are connected by the conjunction and all literals in every
clause are linked by the disjunction, φ is in Conjunctive Normal Form
(CNF). We can suppose φ is a CNF formula without lost of generality,
because any boolean formula can be transformed into CNF.

A truth assignment for X is a mapping a : X → B. An assignment a

satisfies a clause ci if ∃l ∈ ci such that l maps to 1 under a. A model for φ

is a truth assignment that satisfies every clause in φ.
The SAT problem consists in, given a set of boolean variables X =

{x1, . . . , xn}, a set of clauses C = {c1, . . . , cm} and a boolean formula φ,
finding a model for φ =

∧m
i=1 ci. When SAT is treated as a optimisa-

tion problem, the objective function is given by the number of non-satisfied
clauses. Therefore, the aim is to minimize this function. If the boolean
formula is satisfiable, the optimum value is zero.

SAT instance benchmarks

The instance classes used for experimentation were selected from the SATLIB
library [80]. It is a very well known repository widely used to test SAT
solvers. Concretely, we chose those classes that have at least 100 instances.
The sets created for experimentation can be seen in Table 6.1, where we
show the name given to the group, the type of their instances, parameters
regarding the instance generation, number of variables and clauses, as well
as the size of the set. Additionally, we defined a ‘MIXED’ set composed by
25 elements randomly chosen from UF100 (Uniform Random 3-SAT with
100 variables), RTI, BMS and CBS, so there is a total of 100 instances.
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Short
name Class Parameters Vars Cls Size
UF150 Uniform random

3-SAT [80] 150 645 100
FLAT100 Graph colouring [80] vertices=100,

edge=239 300 1117 100
RTI Random Three

Instances [137] 100 429 500
BMS Backbone Minimal

Sub-instance [137] 100 varies 500
CBS Controlled Backbone

size [137] backbone size=90 100 403 1000
SW100 SAT-encoded ”Morphed” vertices=100,

Graph Colouring [61] edges=400,p= 2−4 500 3100 100
MIXED 25 instances from UF100,

CBS, RTI and BMS 100 varies 100

Table 6.1: Characteristics of the benchmark datasets.

6.4.2 SAT specific operators

Stochastic local searches have been widely used to solve SAT problems.
They usually start from a randomly generated variable assignment and make
local movements by flipping one variable until a model for the formula is
found or the stopping condition is fulfilled. The objective function used
for these methods is the number of unsatisfied clauses. The majority of
these local search algorithms differs in how they select the variable to flip.
We have used these variable-flip selection mechanisms to implement the
operators in our strategy. All of them are well-known incomplete SAT solvers
with a high performance on a broad number of instances of this problem.
Concretely, such variable selection mechanisms and the algorithms where
they are implemented are:

• gsat/tabu [109]: This mechanism derives from gsat [135], another
variable selection heuristic that flips the one that produces a bigger
decrease in the number of unsatisfied clauses, breaking the ties ran-
domly . Gsat/tabu adds a mechanism to ensure that if a variable has
been flipped, then its cannot be flipped back within the next t steps,
where t is named “tabu tenure”.
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algorithm parameters
wsat wp = 0.5

wsat/tabu wp = 0, tenure = 3 FLAT100 instances
tenure = 5 rest of instances

gsat/tabu tenure = 10 FLAT100 instances
tenure = 20 rest of instances

Table 6.2: Parameter settings of the operators

• wsat [134]: This heuristic picks randomly one of the unsatisfied
clauses cj . If there is a variable xi in cj that does not falsify any
clause when is flipped then select xi. Else, with probability wp flip
a random xi in cj and with probability 1 − wp flip the variable that
makes false the smallest number of unsatisfied clauses.

• wsat/tabu [110]: As wsat, if a variable xi from the clause cj does not
falsify any clause when is flipped, such variable is selected. However,
when this condition is not fulfilled by any one, only those variables
flipped since t or more steps ago are taken into account to be chosen
in the else part of the wsat selection strategy.

The operators’ parameters are set as shown in Table 6.2. The values are
chosen following those presented in [79], where these SAT solvers were ap-
plied to three out of the six instance classes used in this chapter (FLAT100,
RTI and UF150). For the rest of datasets, we fixed the parameters to those
values more frequently used. These coincide with the ones applied by the
author to classes RTI and UF150.

In order to implement the tabu mechanism of gsat/tabu and wsat/tabu,
we defined a vector of integers for each solution where the time (number of
evaluations done from the beginning of the search) of the last modification
for each variable is stored.

6.4.3 Further details of the cooperative strategy

In order to test our strategy, a number of implementation decisions have
been taken.

Firstly, we decided that for every instance, we will have 6 solutions. The
number of agents that integrate MSAPop is also fixed to 6, so the same
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MSA is applied to the same solution between two consecutive executions of
the third layer.

Regarding the credit assignment definition, let’s suppose we have a solu-
tion s from instance j, and then a MSA is applied to obtain a new solution
s′. The credit gained will be:

∆credit(s, s′) =

{
1, if fj(s′) = 0
0, otherwise

(6.6)

In this way, an agent is only rewarded when the instance is solved. In
this chapter, the meaning of “solved” is that all the clauses were satisfied.
Function fj is the objective function for the solutions of the jth instance. The
acceptance criterion is Gaccept(s, s′) = TRUE, that is, the current solution
is always replaced by the new one.

We should remark that this credit assignment definition is well suited for
decision problems like SAT. Nevertheless, the whole strategy can be applied
to optimisation problems by just considering two aspects: a) a proper def-
inition of the credit assignment function, where the alternatives described
in [139] can be explored; and b) when to trigger the operator adjustment and
learning mechanism. In this sense, simple rules like “every certain number
of iterations of the first layer” could be used.

Three operators are available for our strategy (|Θ| = 3), which corre-
sponds to the variable selection mechanisms used in gsat/tabu, wsat and
wsat/tabu, respectively.

The metaheuristic has been coded in JavaTM 1.6. We should also men-
tion that LiO library [108] was used to implement some aspects of the strat-
egy.

6.5 Results

The computational experiments done are oriented to check if given the same
amount of resources, our strategy (using embedded SAT solvers), can use
them in a more effective and efficient way than such SAT specific algorithms.
For this comparison, we will take into account the number of solved instances
and how fast they can solve them.

Seven algorithms will be compared:

• Three specific SAT solvers: wsat, wsat/tabu and gsat/tabu.
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• Four configurations of our strategy

1. NAS: sequential with no adaptation (learning off)

2. AS: sequential with adaptation (learning on)

3. NAP: simultaneous with no adaptation (learning off)

4. AP: simultaneous with adaptation (learning on)

We performed 30 runs per algorithm and dataset (shown in Table 6.1)
and we recorded the number of non-solved instances as well as the number
of evaluations performed 1. Before each run, the instances are randomly
shuffled in order to avoid potential biases in the results due to a particular
order. The stopping condition was set to 12 × 107 objective function eval-
uations for all data sets. This number is very large to allow the solution of
all the instances in the datasets (recall that one of them has 1000 instances)

The reader should note that NAS and NAP can be considered as Portfolio
approaches in the sense described in [82].

The first analysis relates with the efficacy of every method. We define
a single run as successful if all the instances in the dataset were solved.
Table 6.3 shows the number of successful runs and the average percentage
of non-solved instances by each method in each dataset.

Focusing first in the Global column, we can observe that the number of
successful runs is much lower for SAT-specific solvers than for any of our
methods. The efficacy of our strategy using the parallel operational mode
is excellent: all the instances were solved in all the runs (just 1 run was not
successful for AP). Moreover, even a sequential processing of the instances
allows to obtain better results. It is also interesting to note that there exists
a particular dataset where every SAT-specific solver completely failed to
achieve even one successful run.

An interesting point here is to consider how “bad” are those non-successful
runs. In other words, what is the average number of non-solved instances.
Again, we can observe in Table 6.3, under the Global column, that the val-
ues for our strategy are equal or lower than 0.02% which means that in

1The reader should note that the computational time per evaluation or local search

step is longer for gsat/tabu than for wsat and wsat/tabu. Nevertheless, we decide to use

the number of local search steps as an efficiency measure since it has been used in very

known works, as [79, 133]. A detailed study about the CPU time per step for these SAT

solvers can be found in [79].
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algorithm BMS CBS FLAT100 MIXED
Runs Inst Runs Inst Runs Inst Runs Inst

wsat 26 0.03 28 0.01 30 0.00 30 0.00
wsat/tabu 18 0.13 30 0.00 26 0.13 30 0.00
gsat/tabu 21.37 26 0.02 30 0.00 25 0.20

NAS 22 0.07 30 0.00 30 0.00 29 0.03
AS 22 0.05 30 0.00 30 0.00 30 0.00

NAP 30 0.00 30 0.00 30 0.00 30 0.00
AP 30 0.00 30 0.00 30 0.00 30 0.00

RTI SW100 UF150 Global
Runs Inst Runs Inst Runs Inst Runs Inst

wsat 30 0.00 36.70 30 0.00 174 5.25
wsat/tabu 29 0.01 26.17 30 0.00 163 3.78
gsat/tabu 30 0.00 30 0.00 28 0.07 169 3.09

NAS 30 0.00 30 0.00 30 0.00 201 0.01
AS 30 0.00 28 0.10 30 0.00 200 0.02

NAP 30 0.00 30 0.00 30 0.00 210 0.0
AP 30 0.00 29 0.03 30 0.00 209 0.01

Table 6.3: Number of successful runs (all instances in the data set are solved) and
average percentage of non-solved instances for each method over each dataset.
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Figure 6.6: Each bar represents the average rank returned by the Kruskal-Wallis
non-parametric test for the number of non-solved instances for the different meth-
ods considering all datasets. Algorithms in the Y axis are sorted by this value
(since we are minimizing, the lower the better). The performance of the algorithms
grouped by a dotted rectangle is not significantly different (U Mann-Whitney non-
parametrical test with α < 0.05)

the non-successful runs, most of the instances could be optimally solved.
On the contrary, for SAT specific algorithms, these percentages are much
higher, varying from 3.09% for gsat/tabu to 5.25% for wsat.

If we separate these results in terms of the datasets, we should highlight
the variance in performance experienced by SAT specific solvers versus the
more robust behaviour of our strategy, whose average percentage is zero or a
value very near to zero for all cases. The gsat/tabu solver has a good efficacy
in 5 out of 6 different datasets, showing bad results in the BMS case, where
it could not solve around 21% of the instances. Something similar happens
with wsat and wsat/tabu, although for these solvers, the worst performance
was in the SW100 dataset, where the average percentages of non-solved
instances were 36.70 and 26.17, respectively.

In order to confirm if the observed differences in the means of non-solved
instances have statistical significance we have conducted non parametric test
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analysis. Figure 6.6 shows a bar plot where the bars represent the average
rank returned by the Kruskal-Wallis non-parametric test. The algorithms
displayed in the category axis are sorted by this value (since we are minimis-
ing, the lower the better). Dotted rectangles group algorithms whose per-
formance is not significantly different (U Mann-Whitney non-parametrical
test). Three groups are clearly observed. The most effective algorithms are
NAP and AP, followed by NAS and AS, whereas the SAT solvers are the
worst taking into account this measure.

Regarding our strategy, it is clear that in terms of efficacy, the role of
the operational mode (sequential vs. simultaneous) is more important than
learning. Both AP and NAP are significantly better than AS and NAS.

From the point of view of the efficiency, i.e. the number of evaluations
required to solve all the instances, the results are presented in Table 6.4
where for each dataset and algorithm, the average, median and standard
deviation of the number of evaluations over all runs is shown. Averages over
all data sets are not shown as they are distorted by non-successful runs that
finish after the limit of evaluations is reached (see for example the differences
between the mean and the median in datasets FLAT100 and SW100 for the
methods wsat/tabu and AS respectively). The global statistical analysis
is displayed in Figure 6.7. In this plot, we can check that there are no
significant differences among SAT specific solvers, that is, from the point of
view of the average performance over all datasets is indifferent to choose one
of these three algorithms. Regarding the multi-instance methods, gsat and
wsat are significantly worse than all of them, whereas for wsat/tabu, can
achieve a performance equivalent to NAP. This graphic also clearly shows
that the improvement obtained by the adaptation mechanism is statistically
significant for both AS and AP. Finally, another important aspect is that
there are no significant differences between the simultaneous and sequential
operational modes.

Figures 6.8, 6.9, 6.10 and 6.11 complements Table 6.4 and shows one plot
per dataset with the information of the statistically significant differences.
We should first highlight the performance variation for SAT solvers as a
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Figure 6.7: Each bar represents the average rank returned by the Kruskal-Wallis
non-parametric test for the number of evaluations done by the different methods
considering all datasets. Algorithms in Y axis are sorted by this value (since we are
minimising, the lower the better). The performance of the algorithms grouped by
a dotted rectangle is not significantly different (U Mann-Whitney non-parametrical
test with α < 0.05)
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algorithm BMS CBS
average median std. dev average median std. dev

wsat 3,6×107 3,6×107 3,0×106 1,5×107 1,5×107 6,9×105

wsat/tabu 4,5×107 4,4×107 5,4×106 1,0×107 1,0×107 5,9×105

gsat/tabu 1,1×108 1,1×108 3,8×105 4,5×107 4,5×107 2,4×106

NAS 4,9×107 4,9×107 3,2×106 1,5×107 1,5×107 7,2×105

AS 3,9×107 3,9×107 4,4×106 1,1×107 1,1×107 6,3×105

NAP 5,0×107 5,0×107 4,4×106 1,4×107 1,4×107 6,7×105

AP 4,3×107 4,2×107 4,9×106 1,1×107 1,1×107 6,4×105

algorithm FLAT100 RTI
average median std. dev average median std. dev

wsat 4,2×106 4,2×106 5,5×105 1,7×106 1,7×106 1,8×105

wsat/tabu 2,1×107 4,3×106 4,4×107 1,1×106 1,1×106 1,4×105

gsat/tabu 1,5×106 1,5×106 2,5×105 4,9×106 4,8×106 4,7×105

NAS 2,8×106 2,7×106 4,3×105 1,8×106 1,8×106 1,9×105

AS 1,9×106 1,9×106 3,0×105 1,4×106 1,4×106 1,9×105

NAP 2,8×106 2,8×106 3,5×105 1,8×106 1,8×106 1,2×105

AP 2,1×106 2,1×106 3,5×105 1,3×106 1,3×106 1,3×105

algorithm SW100 UF150
average median std. dev average median std. dev

wsat 1,1×108 1,1×108 2,2×106 1,3×106 1,3×106 2,9×105

wsat/tabu 1,1×108 1,1×108 4,5×106 1,3×106 1,2×106 4,5×105

gsat/tabu 1,2×106 1,2×106 1,1×105 2,4×106 2,1×106 8,1×105

NAS 2,2×106 2,1×106 1,8×105 1,2×106 1,1×106 3,3×105

AS 8,8×106 1,7×106 2,7×107 1,2×106 1,3×106 2,9×105

NAP 2,2×106 2,2×106 2,8×105 1,4×106 1,2×106 4,3×105

AP 1,6×106 1,5×106 2,0×105 1,2×106 1,2×106 2,4×105

algorithm MIXED
average median std. dev

wsat 2,2×106 2,1×106 8,8×105

wsat/tabu 2,3×106 1,9×106 1,4×106

gsat/tabu 2,8×107 2,2×107 1,7×107

NAS 2,4×106 2,2×106 1,0×106

AS 2,8×106 2,2×106 1,6×106

NAP 2,6×106 2,3×106 1,2×106

AP 1,9×106 1,7×106 1,0×106

Table 6.4: Average, median and standard deviation of the number of evaluations
done by the different algorithms over each dataset.
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BMS

CBS

Figure 6.8: Each bar represents the average rank returned by the Kruskal-Wallis
non-parametric test for the number of evaluations done by the different methods
over each dataset. Algorithms in Y axis are sorted by this value (since we are
minimising, the lower the better). The performance of the algorithms grouped by
a dotted rectangle is not significantly different (U Mann-Whitney non-parametrical
test with α < 0.05)
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FLAT100

RTI

Figure 6.9: Each bar represents the average rank returned by the Kruskal-Wallis
non-parametric test for the number of evaluations done by the different methods
over each dataset. Algorithms in Y axis are sorted by this value (since we are
minimising, the lower the better). The performance of the algorithms grouped by
a dotted rectangle is not significantly different (U Mann-Whitney non-parametrical
test with α < 0.05)
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SW100

UF150

Figure 6.10: Each bar represents the average rank returned by the Kruskal-Wallis
non-parametric test for the number of evaluations done by the different methods
over each dataset. Algorithms in Y axis are sorted by this value (since we are
minimising, the lower the better). The performance of the algorithms grouped by
a dotted rectangle is not significantly different (U Mann-Whitney non-parametrical
test with α < 0.05)
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mixed

Figure 6.11: Each bar represents the average rank returned by the Kruskal-Wallis
non-parametric test for the number of evaluations done by the different methods
over each dataset. Algorithms in Y axis are sorted by this value (since we are
minimising, the lower the better). The performance of the algorithms grouped by
a dotted rectangle is not significantly different (U Mann-Whitney non-parametrical
test with α < 0.05)
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function of the dataset. Wsat is significantly the faster method for the BMS
set, but the worst in FLAT100 and SW100. Wsat/tabu is the most efficient
algorithm for CBS and RTI instances, whereas its performance drops until
the last position in FLAT100. Gsat/tabu shows even more extreme behavior
changes: it is significantly the fastest algorithm in FLAT100 and SW100 but
the slowest in the rest of datasets. This low level of robustness contrasts with
the one experienced by AS and AP, which are more robust along the different
datasets. Although none of these methods are ranked in first place (with
the exception of AP in UF150 and MIXED datasets), it can be observed
that they are always among the three best alternatives.

Focusing now in the features of our strategy, operational mode and learn-
ing on/off, we can clearly assert that both operational modes (sequential and
parallel) required the same amount of resources if learning is not used: NAS
and NAP always appear within a dotted rectangle (with the exception of
CBS dataset). When learning is activated, the strategy becomes more effi-
cient: AS is better than NAS and AP is better than NAP. The differences
between AS and AP are not so clear. The fist one is significantly better in
BMS and FLAT100 datasets, while the later is better in CBS, SW100 and
MIXED. However, we should recall that AP could solve all the instances in
all the runs, thus meaning that both, the parallel processing and learning
lead to a strategy that is both effective and efficient.

It is interesting to remark here the results for the MIXED dataset, which
may be considered the worst scenario for the simple adaptation mechanism
proposed. In some sense, the results here can be interpreted as the average
behavior of the methods over SAT because it contains a showcase of the
several types of instances that may appear. The strategy using learning and
the simultaneous processing of the instances is ranked first, thus confirming
the benefits of the two essential components of our proposal.

Although this is not our aim, we would like to point out that competi-
tiveness with state-of-the-art methods like [155] can not be claimed.

6.5.1 Analysing the dynamic behaviour of the strategy

The previous results confirmed the benefits of our proposal but they do
not shed any light on how they are achieved. In this subsection we will
study the dynamic behaviour of our strategy from two different aspects. On
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one hand, we will see how the number of solved instances varies during the
execution for specific SAT solvers, AS and AP. On the other hand, we will
also study the dynamic working of the adaptation mechanism using the so
called concentration plots, to visualise the evolution of the number of copies
for each operator when both operational modes are considered.

The number of solved instances as a function of the time can be associ-
ated with the “throughput” of the strategy. If we recall the idea of a server
processing several clients’ requests, then we will analyse a measurement
equivalent to the number of clients served as a function of time.

Number of solved instances as a function of time

Figures 6.12, 6.13, 6.14 and 6.15 shows for each algorithm and dataset, the
median value of the number of evaluations needed to solve certain number
of instances. Recall that the instances are shuffled in every run so the value
is not affected by a particular instances’ order.

It is easy to observe the variable behaviour of SAT-solvers when dif-
ferent datasets are considered. In general, the worst alternative seems to
be gsat/tabu, although it becomes the best alternative for SW100 and
FLAT100 datasets. Wsat is worse than wsat/tabu in CBS dataset, while
it is better in BMS. The three SAT-Solvers and the AS scheme show a lin-
ear tendency but with different slope. However, in terms of throughput,
the AS strategy behaviour is quite similar to the one observed for the best
SAT-solver in every dataset (although this best one is not always the same).

Setting apart datasets SW100 and FLAT100 where the benefits are not
so clear, the AP strategy (using parallel mode and learning activated) is
able to solve more instances in less time. In terms of throughput, AP needs
a lower time to serve up to 90 percent of the requests. The reason is simple.
The parallel resolution, implicitly, solves the easier instances in first place,
while the most complex ones are left for the final stages of the search pro-
cess; this fact explains the tendency change experienced by the AP curve.
However, when the solving process is carried out sequentially, the easy and
hard instances are mixed, and hence, their results can not be known until
their corresponding due times are reached. Another interesting aspect we
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Figure 6.12: Evolution of the median value of the number of evaluations required to
solve a determined number of instances. Some series were omitted for visualisation
purposes.
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FLAT100
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Figure 6.13: Evolution of the median value of the number of evaluations required to
solve a determined number of instances. Some series were omitted for visualisation
purposes.
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SW100
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UF150
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Figure 6.14: Evolution of the median value of the number of evaluations required to
solve a determined number of instances. Some series were omitted for visualisation
purposes.
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MIXED
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Figure 6.15: Evolution of the median value of the number of evaluations required to
solve a determined number of instances. Some series were omitted for visualisation
purposes.
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can observe is that the benefit is not obvious if a low number of instances
is considered. AP needs a higher time to start solving instances, due to the
round robin processing of all the elements in the dataset, whereas AS and
the SAT solvers concentrate such effort in just one instance.

Once again we should highlight the results in the MIXED dataset. In
this hardest case, the AP strategy has enough potential to manage different
types of instances efficiently and much better than the other alternatives.
If we consider the time needed to solve 90 instances, AP required around
5× 105 evaluations while the other methods almost needed 2× 106.

On the adaptation of operators

The adaptation mechanism proposed needs to detect which operator or op-
erators are better suited for each dataset. The goal is to assign the most
suitable operators in each case to every MSA. The results in the previous
section confirm the usefulness of the adaptation mechanism proposed, but
here, we want to study how the number of copies of each operator evolves
during the run. A way to visualise this, is to use concentration plots as
described in [124]. In these plots, we will have a data series for each possible
operator Ok ∈ Θ. Every point in the series represents the average number of
MSAs that are working with operator Ok at equally spaced intervals.These
averages are calculated over at least 15 runs.

Figures 6.16, 6.17, 6.18 and 6.19 shows the concentration plots of some
datasets, displaying the average concentration of the operators wsat, wsat/tabu
and gsat/tabu for both sequential (empty markers) and simultaneous (filled
markers) operational modes.

In some datasets, the evolution of the operator’s concentration is the
expected one, that is to say, the number of copies for each operator is related
to the average performance of its respective SAT solver in that instance type.
Such types are CBS, RTI and MIXED where the SAT solver ranking for
all of them is wsat/tabu - wsat - gsat/tabu, although the number of copies
distribution varies with the operational mode. Concretely, the parallel mode
(AP) gives more relevance to wsat/tabu operator, making clear that it can
detect faster the good operators.
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Some interesting peculiarities can be observed in the other datasets.
Focusing first on BMS, both AP and AS assign a bigger number of MSA
to wsat/tabu than wsat which contrasts with the results seen in Figure 6.8
where wsat was the best SAT solver for this instance type.

To understand this behaviour we need to study how hard are the in-
stances within a given dataset. We made 30 runs of each SAT specific solver
for every instance in those datasets which showed some peculiarities in its
behavior, and we recorded the median of the number of evaluations needed
to solve it. In this way, we can observe how many instances can be solved
using a given number of evaluations. The information is shown on Figures
6.20, 6.21, 6.22 and 6.23. We can observe that although wsat/tabu requires
less evaluations to solve more instances (e.g. wsat/tabu solves 250 instances
using less than 10000 evaluations, while wsat just solved around 120), there
exits a subset of them where this solver shows an extremely poor perfor-
mance. These hard instances made that, on average, the results were worst
than those for wsat in this dataset.

The fact that wsat/tabu solves easier instances faster than wsat also
explains why AP behaves worse than AS for BMS. Since the parallel mode
tends to solve the easier instances first, the learning/adaptation mechanism
promotes a bigger concentration of wsat/tabu operator than the sequen-
tial mode. When the harder instances arrive, AP can not “learn” until an
instance is solved (when the adaptation mechanism is triggered) and as a
consequence, it spends much time using not well suited operators until the
good ones are promoted. In the AS case, as the instances are mixed, the
learning/adaptation mechanism maintains a different dynamic leading to a
diverse set of operators (none of them reached 5 copies).

This “unexpected” distribution of the number of copies is also observed
in FLAT100, UF150 and SW100 due to similar reasons. For FLAT100 and
UF150, this happens for the two worst solvers. As we can see in Figures
6.22 and 6.23, in both cases the third ranked algorithm is faster for easier
instances (thus quickly obtains more copies), but slower than the second one
for harder instances. Apart from this, in SW100 we can observe that the
parallel mode shows a very interesting behaviour (Fig. 6.18). Concretely,
during the first stages of the search process, gsat/tabu is the most rewarded
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Figure 6.16: Evolution of the number of copies of each operator (wsat, wsat/tabu
and gsat/tabu) when sequential (empty markers) and simultaneous (filled markers)
operational modes are considered.
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FLAT100
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Figure 6.17: Evolution of the number of copies of each operator (wsat, wsat/tabu
and gsat/tabu) when sequential (empty markers) and simultaneous (filled markers)
operational modes are considered.
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SW100

0 500000 1000000 1500000

0
1

2
3

4

number of evaluations

av
er

ag
e 

nu
m

be
r 

of
 c

op
ie

s

wsat seq
gsat/tabu seq
wsat/tabu seq
wsat par
gsat/tabu par
wsat/tabu par

UF150

0 200000 600000 1000000 1400000

1
2

3
4

number of evaluations

av
er

ag
e 

nu
m

be
r 

of
 c

op
ie

s

wsat seq
gsat/tabu seq
wsat/tabu seq
wsat par
gsat/tabu par
wsat/tabu par

Figure 6.18: Evolution of the number of copies of each operator (wsat, wsat/tabu
and gsat/tabu) when sequential (empty markers) and simultaneous (filled markers)
operational modes are considered.
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MIXED
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Figure 6.19: Evolution of the number of copies of each operator (wsat, wsat/tabu
and gsat/tabu) when sequential (empty markers) and simultaneous (filled markers)
operational modes are considered.
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Figure 6.20: Histograms of the median value of the number of evaluations required
to solve individual instances in BMS dataset for SAT-specific solvers.
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Figure 6.21: Histograms of the median value of the number of evaluations required
to solve individual instances in SW100 dataset for SAT-specific solvers.
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FLAT100
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Figure 6.22: Histograms of the median value of the number of evaluations required
to solve individual instances in FLAT100 dataset for SAT-specific solvers.
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UF150
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Figure 6.23: Histograms of the median value of the number of evaluations required
to solve individual instances in UF150 dataset for SAT-specific solvers.
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operator but, after some time, that position is occupied by wsat/tabu. This
is more related with the characteristics of the adaptation mechanism than
to the heterogeneity among the instances. As the adaptation mechanism
deals with an integer number of copies, the copy lost by wsat (due to its bad
performance) should be given to one of the other two operators. Since in
that initial period gsat/tabu solves slightly more instances than wsat/tabu,
it receives that copy. Then, more instances become solved by wsat/tabu
and thus, this operator receives more copies.

These results indicate that the adaptation mechanism proposed effec-
tively rewards the most efficient operators at every stage of the run. In
general, the mechanism detects the most efficient alternative and quickly
assigns most of the copies to it. The rest of the copies are the ones that vary
along the run and as the results show, the variation is properly performed.

The role of the adaptation in SAT has been also studied in others works
as [13] and [84], but the learning was done in a off-line way. However, in our
case, the learning is done on-line due to the fact that we do not know which
is the type of instance we need to solve. Apart from this, we can say that
both off-line and on-line methods are complementary since these last ones
have some fixed parameters that can be tuned by the off-line methods.

6.6 Conclusions

A straight approach to solve a set of instances of a given problem is to
sequentially apply a given algorithm over each instance.

In this chapter we have proposed a different strategy to solve a set of
instances having in mind the idea that the effort and knowledge gained
while solving an instance should be used to solve others. Our strategy is a
co-evolving system where solutions for different instances are improved and
operators are dynamically scheduled as a function of their performance over
the instances that have been already solved. Also, the strategy allows to
work in two different operational modes: sequential, where the instances are
solved one by one, and simultaneous or parallel, in which all the instances
are processed at the same time.

The main conclusion is that using embedded problem specific algorithms,
our strategy (specially the AP version) outperforms ad-hoc SAT non-adaptive
algorithms both in terms of efficacy (number of solved instances) and effi-
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ciency (evaluations of the objective function).
The comparison of the operational modes revealed that the simultaneous

case showed a more robust behaviour than the sequential one in terms of
efficacy (AP better than AS, and NAP better than NAS) due to the better
use of the total amount of resources (evaluations) available. Apart from
this, the simultaneous mode shows an additional advantage: it outperforms
the sequential mode in terms of solving more instances in less time because
the simultaneous operational mode solves first the easiest instances, leaving
the hard ones to the last stages of the search. The use of the adaptation
and the rewarding mechanism proposed was clearly beneficial. In particular
AS was better than NAS, and AP was better than NAP, since they needed
to use a lower number of evaluations to solve the same set of instances.
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Chapter 7

Conclusions and Future

Work

7.1 Conclusions

This dissertation has focused on the study, design, development and appli-
cation of centralised cooperative strategies for optimisation problems. The
objectives proposed for this thesis were the following:

1. Make an in-depth study of centralised cooperative strategies.

2. Research on new application areas for this type of methods.

3. Validate the performance of these metaheuristics with respect to state-
of-the-art algorithms in a proper manner.

4. Develop and analyse cooperative strategies that can manage the reso-
lution of a set of instances in a effective and efficient way.

With regards to objective 1, departing from a previously developed co-
operative strategy where the agents are controlled by a central coordinator
that takes decisions basing on a fuzzy rule. We have extended this research
in two key points. In first place we studied, in the context of the combina-
torial optimisation problems, how the composition of a cooperative strategy
can affect its performance. Using as test bed the Uncapacitated Single Al-
location p-Hub Median Problem (USApHMP) we analysed the behaviour
of the method when all solvers implement the same heuristic (homogeneous
strategy) and when each solver implements a different one (heterogeneous
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strategy). To have a reference of the performance of such strategies, these
were compared with the isolated individual version of the distinct heuristics
used as solvers. Concerning this last point, we saw that by means of homoge-
neous cooperation based on our scheme, the average error of three different
metaheuristics can be markedly reduced. We also compared the distinct
cooperative strategies studied versus the best individual method which can
vary from an instance to another. The obtained results showed that co-
operation, both homogeneous one and heterogeneous one, leads to equal
to or better average fitness values than the best individual metaheuristic
in virtually all cases. The last aspect analysed here was the existing per-
formance differences between the cooperative methods, where it should be
highlighted that a) those homogeneous strategies whose solvers implement
the best global individual metaheuristic represent the best alternative in
terms of performance and b) when the comparison is done between the het-
erogeneous and the homogeneous composition, we checked that the first one
presents some advantages over the second ones. These results were pub-
lished as a book chapter of the series Studies in Computational Intelligence
in [106].

The second point in which we extended the mentioned research was the
cooperation scheme. Concretely, we incorporated a control rule based on
the reactive search framework [8] into the centralised cooperative strategy.
The experiments were also done on instances of the USApHMP and showed
that the proposed reactive cooperation scheme achieves better results with
respect to a strategy based on independent solvers (where solvers do not
exchange information), and with respect to the same cooperative strategy
based on the fuzzy control rule used in the former case. We also tested the
cooperative strategy using both rules, reactive and fuzzy, at the same time.
In this case, the bigger complexity did not pay off because the reactive rule
alone performs at least as well as both rules together. Moreover, the reac-
tive rule is able to adapt its behaviour according to the characteristics of the
instance, and is effective for detecting stagnation and for driving diversifica-
tion strategies. These results were included in a book chapter of the series
Lecture Notes in Computer Sciences [105] and in an extended abstract on
the conference Learning and Intelligent Optimization 2009 (LION 3) [104].

Another aspect tackled in this dissertation was the study of new sce-
narios where centralised cooperative methods (objective 2) can be applied.
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The chosen scenario was Dynamic Optimisation Problems (DOPs) and con-
cretely, those ones whose objective function change over the time. The
cooperative strategy developed to deal with these problems had the same
structure than the one used formerly. The solvers implemented a trajectory-
based algorithm with different parameter configurations. We saw that this
type of methods can be easily adapted to DOPs by adding a mechanism
that controls the objective function changes and programming the restart
of certain memories every time that one of these changes takes place. As
far as our knowledge is concerned this kind of trajectory solvers and this
scheme of cooperation had not been tested before in DOPs. The method
showed very promising results that were able to significantly outperform
two state of the art algorithms (Agents and multi-QPSO) in most of the
test problems (objective 3). Moreover, it has been believed and assumed
that population based methods were best suited to deal with DOPs because
it was supposed that a bigger number of solutions could accomplish a bet-
ter track of a changing environment. While this still may hold true, the
success of this centralised cooperative strategy based on trajectory methods
could have an important role to play in the dynamic optimization field. An
article containing these results is accepted for publication in the Memetic
Computing journal [60].

To fulfill the objective 4, we proposed a method based on cooperative
strategies to solve a set of instances having in mind the idea that the ef-
fort and knowledge gained while solving an instance should be used to solve
others. Our strategy is a co-evolving system where solutions for different in-
stances are improved and operators are dynamically scheduled as a function
of their performance over the instances that have been already solved. Also,
the strategy allows to work in two different operational modes: sequential,
where the instances are solved one by one, and simultaneous or parallel, in
which all the instances are processed at the same time. The experimentation
was done using the SAT problem as benchmark and, apart from three SAT
specific solvers, the next four configurations of our strategy were consider:

• NAS: sequential with no adaptation (learning off)

• AS: sequential with adaptation (learning on)

• NAP: simultaneous with no adaptation (learning off)

• AP: simultaneous with adaptation (learning on)
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The main conclusion was that using embedded problem specific algo-
rithms, our strategy (specially the AP version) outperforms ad-hoc SAT
non-adaptive algorithms both in terms of efficacy (number of solved in-
stances) and efficiency (evaluations of the objective function). The compar-
ison of the operational modes revealed that the simultaneous case showed a
more robust behaviour than the sequential one in terms of efficacy (AP bet-
ter than AS, and NAP better than NAS) due to the better use of the total
amount of resources (evaluations) available. Besides this, the simultaneous
mode shows an additional advantage: it outperforms the sequential mode
in terms of solving more instances in less time because the simultaneous
operational mode solves first the easiest instances, leaving the hard ones to
the last stages of the search. The use of the adaptation and the reward-
ing mechanism proposed was clearly beneficial. In particular AS was better
than NAS, and AP was better than NAP, since they needed to use a lower
number of evaluations to solve the same set of instances. The developed tool
and the results obtained are reported in the Soft Computing journal [107].

Before finishing, we should point out that to carry out the experimenta-
tion done in this thesis we make use of two different tools developed in the
Model of Decisions and Optimisation research group:

• SiGMA: an optimisation-based decision support system that provides
a powerful and dynamic manager for algorithmic solvers facilitating
its management and comparison as well as the analysis of their results

• DACOS: an integrated system for helping in the design and analysis
of centralised cooperative optimization systems

SiGMA was used for the tuning of the different solvers that composed the
strategies, whereas DACOS was employ in the configuration and set up of the
cooperative methods evaluated in this thesis. The author contributed to the
improvements of these tools and hence to their publication in the scientific
journals Expert Systems with Applications [68] and Software: Practice and
Experience [41] (submitted), respectively.

7.2 Future Work

This last section is devoted to provide the new ideas, improvement pos-
sibilities and research lines that have arisen from the work done in this
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dissertation. These ideas will be associated with chapters with the aim of
facilitating its understanding.

Firstly, studies done in chapter 4 can be extended in multiple ways. Re-
garding the composition of the strategy, other possibilities can be considered.
For instance, it would be interesting to assess the behaviour of the cooper-
ative method when a population-based algorithm is incorporated as solver
or when all solvers are population-based. More research on the cooperation
scheme should also be done. The behaviour of the strategy presented can
be improved by designing new antecedents (condition) or consequents (ac-
tion) for the control rule. For the antecedent, the utilization of techniques
as Machine Learning could provide rules that adapt its working according
to certain features of the current instance by means of a previous learning
phase. Self-adaptation can be another methodology to take into account.
The design of a mechanism that adjusts the parameters of the rules as a
function of the state of the search can be an interesting aspect to study.
Undoubtedly, the action part of the rule also deserves more research. In
this dissertation we have seen two different ways to relocate solvers within
the search space but many other possibilities are still unexplored (an in-
termediate point between the best global solution and the best solution of
the solver, a point in an unexplored region, etc.). Until now, we have only
discussed about actions in which the coordinator controlled the location of
the solvers. Another alternative, that can be complementary to the last
one, is the tuning of important parameters of the solvers by the coordi-
nator. This can allow to increase/deacrease the exploitation/exploration
balance of a method depending on the necessities of the whole search or
make more similar the behaviour of a solver to another which is showing a
better performance.

As for the application of centralised cooperative strategies to DOPs,
there are still many unanswered questions. We want to study what type
of cooperations responses better to the changes in the problem. Analysing
the performance of the centralised cooperative strategy in other type of
dynamism (constraints changes over the time, etc) is another aspect that
can deserve future research. We are also interested in studying another
application scenarios apart from DOPs. Continuous optimisation is another
field in which as far as we know this type of methods have not been applied.
Some preliminary experiments showed that a similar approach to the one
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use for DOPs can obtain competitive results with respect to state-of-the-art
algorithms.

From the work presented in chapter 6, several venues of research are
opened. Testing the strategy over a different problem can be one of them.
A drawback of SAT is that the fitness function is far from smooth. Measuring
the fitness as the number of non-satisfied clauses lead to a reduced number
of different fitness values, thus forcing us to take a drastic credit assignment
scheme: an operator is rewarded if it solved an instance. Anyway, we should
remark again that this scheme was successful for this problem. Potential
candidates for testing are knapsack problems, where the type and difficulty
of the instances can be easily controlled, and those problems belonging to
the class of continuous optimisation. Secondly, credit assignment is a key
point to address and its definition would depend on the type of problem
considered. In the strategy described in section 5.2, the credit obtained
by a particular operator is associated with its performance (the number of
solved instances in our case). However, we consider that the computational
cost implied by each operator should be taken into account. For example a
linear operator and a quadratic one should not be rewarded with the same
credit when they both produce a gain of ∆ units. Finally, the adaptation
mechanism deserves further research. An interesting possibility could be
the self-adjustment method proposed in [59], but also, we are interested
in including this idea of having multiple instances in the context of multi-
memetic algorithms, to check whether the evolutive adaptation produced
from several instances leads to more robust strategies.

7.3 Publications

Derived from this thesis

International Journals and Book Chapters

• A. D. Masegosa, D. Pelta, I. G. del Amo, and J. L. Verdegay. On the
Performance of Homogeneous and Heterogeneous Cooperative Search
Strategies. In Nature Inspired Cooperative Strategies for Optimization
(NICSO 2008), volume 236 of Studies in Computational Intelligence,
pages 287–300. Springer Berlin, 2009.
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• A. D. Masegosa, F. Mascia, D. Pelta, and M. Brunato. Cooperative
strategies and reactive search: A hybrid model proposal. In Learning
and Intelligent Optimization (LION 3), volume 5851 of Lecture Notes
in Computer Science, pages 206–220. Springer Berlin, 2009.

• I. J. Garćıa, J. R. González, and A. D. Masegosa. A cooperative
strategy for solving dynamic optimization problems. Memetic Com-
puting, 2010. doi: 10.1007/s12293-010-0031-x. In press.

• A. D. Masegosa, D. A. Pelta, and J. R. González. Solving multiple
instances at once: the role of search and adaptation. Soft Computing,
2010.doi: 10.1007/s00500-010-0564-4 In press.

• A. D. Masegosa, A. Sancho-Royo, and D. Pelta. An adaptive meta-
heuristic for the simultaneous resolution of a set of instances. In Na-
ture Inspired Cooperative Strategies for Optimization (NICSO 2007),
volume 129 of Studies in Computational Intelligence, pages 125–137.
Springer Berlin, 2008.

• J. R. González, D. A. Pelta, and A. D. Masegosa. A framework
for developing optimization-based decision support systems. Expert
Systems With Applications, 36(3P1):4581–4588, 2009.

• I. J. G. del Amo, D. A. Pelta, A. D. Masegosa, and J. L. Verdegay.
A software modeling approach for the design and analysis of cooper-
ative optimization systems. Software: Practice and Experience, 2009.
(Submitted).

Conference Publications

• A. D. Masegosa, F. Mascia, D. Pelta, and M. Brunato. Control rules
in cooperative strategies. In Learning and Intelligent OptimizatioN
Conference (LION 3), 2009. Extended abstract.
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Related with this thesis (collaborator)

Book Chapters

• A. D. Masegosa, E. Muñoz, D. Pelta, and J. M. Cadenas. Us-
ing knowledge discovery in cooperative strategies: two case studies.
In Nature Inspired Cooperative Strategies for Optimization (NICSO
2010),Studies in Computational Intelligence. Springer Berlin, 2010.
In press.

Conference Publications

• A. D. Masegosa, A. Sancho-Royo, and D. Pelta. Una metaheuŕıstica
h́ıbrida auto-adaptativa multi-capa para la resolución simultánea de
múltiples instancias. In I Jornadas sobre Algoritmos Evolutivos y
Metaheuŕısticas (JAEM 2007), pages 57–63. 2007.

• J. R. González, A. D. Masegosa, I. J. Garćıa, and D. Pelta. Co-
operation rules in a trajectory-based centralised cooperative strategy
for dynamic optimisation problems. Submitted to IEEE International
Conference on Evolutionary Computation (CEC2010). 2010.
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IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[44] M. Dorigo and G. D. Caro. The ant colony optimization meta-
heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas
in Optimization, pages 11–32. McGraw-Hill, 1999.

[45] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimiza-
tion by a colony of cooperating agents. IEEE Transactions on Systems,
Man, and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[46] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Books.
The MIT Press, 2004.

[47] R. Eberhart and J. Kennedy, editors. Swarm Intelligence. Academic
Press, 2001.

[48] R. C. Eberhart and Y. Shi. Comparing inertia weights and con-
striction factors in particle swarm optimization. In IEEE Interna-
tional Congress on Evolutionary Computation (CEC2000), pages 84–
88, 2000.
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