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Chapter I

PhD dissertation

1 Introduction

The identification of people is an important issue in a large number of fields, from access control
to rooms and buildings to criminology and forensics identification, passing through payments and
identification in computer systems. With the advancement of the information society, the number
of people that must be identified has greatly increased; big companies and public administration
institutions reach hundreds of millions of individuals [iaf, uid].

Traditionally, this identification has been performed using different objects for each user:
ID cards, passports, intelligent cards, etc. However, objects can be lost, stolen or falsified, which
is a potential security risk. Another solution is the use of passwords. However, passwords can
be forgotten or stolen too. Thus, the use of passwords is also a risk. There are hybrid solutions,
such as credit cards, that combine objects and passwords, but this solution is still subject to the
problems of the two previous solutions. Therefore finding identification systems that are not based
on what we have or what we know but on who we are has been a great interest for the scientific
community [JFR07].

Biometric-based identification provides a solution to these problems since it is based on
intrinsic features, such as fingerprints, iris, face or DNA, of each person. In order to be suitable
for an identification system, a feature needs to be: universal, unique, invariable and easy to use.
Fingerprints are the most used features since they fulfill these properties [JFR07]: everybody has
fingerprints, except in rare cases of severe amputations; the fingerprints of each finger of each
person are different; fingerprints do not change along a person’s life; fingerprints are fast, cheap
and non-invasive to collect.

Fingerprints have been historically used for identification purposes. There are references
that fingerprints of criminals were taken in Babylon around 2000 BC and there are scientific studies
about fingerprints in the XVII century [Gre84, Bid85]. The first modern approach to fingerprint
extraction for identification did not appear until the XIX century [Hen00] but their study and use
continues nowadays.

A fingerprint is the pattern that the skin forms on a fingertip. This pattern is composed of
ridges and valleys that form different designs that can be used for recognition. Fingerprints have
different types of features that can be used to compare them. These features are usually divided into
three different levels: global (singular points, orientation maps and pseudoridges), local (minutiae)
and detail (pores and intra-ridge features).

1
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A comparison between two fingerprints in order to determine if they come from the same
person is usually called matching. Manual matching processes are tedious and time-consuming.
The goal of an automatic fingerprint identification system is to avoid the need of manual matching
or even human supervision in order to verify the identity of a person. A computer-based system can
perform the matching operations in a systematic and efficient way, that speeds up the identification
process.

An automatic matching algorithm receives two images of fingerprints and provides a score,
within a range, which defines how similar both fingerprints are. The comparison could be done
directly at image level but two images of the same fingerprint can exhibit significant differences due
to rotations, translations and deformation on the skin at the moment the images were taken. This
type of transformations may lead to low scores in an image-to-image comparison. Thus, a feature
extraction process is performed to obtain the information referring to some of the different features
previously commented and this information is used for the comparison. Among the fingerprint’s
features, the minutiae are by far the most used features for fingerprint recognition [PGT+15]
because they can be easily described and their number allows an efficient and reliable comparison.

Minutiae are the bifurcations and the ends of the ridges. They are characterized by their
position and angle in the image and by their type. Minutiae-based algorithms use these four values
to compare two sets of minutiae and produce a score. Most algorithms perform two different steps:
the first step builds a local structure per minutiae with information about its surrounding minutiae
and compares the structures of each pair of minutiae from the two fingerprints; the second step
produces the final score by combining the information obtained from the best matching pairs of
minutiae. The accuracy of these methods depends on the operations performed on each step, the
more complex they are, the more accurate and slower the algorithm is.

There are two different approaches to the fingerprint recognition problem and each of them
is a problem on its own [MMJP09]:

• Verification [JHB97]: verification is the problem that determines whether two fingerprints
belong to the same person or not. This is a 1:1 comparison, which requires only one compar-
ison.

• Identification [JHPB97]: identification is the problem that determines which person, among
a list of candidates, an input fingerprint belongs to. This is a 1:n comparison, which requires
n comparisons.

This thesis focuses on the identification problem which is the more challenging problem from
a computer engineering point of view, given the increasing amounts of data to manage, and from a
computer sciences point of view, since knowledge extraction techniques can be applied to improve
the performance. An Automatic Fingerprint Identification System (AFIS) has to be:

• Accurate: The identification error rate should be as low as possible in order to not accept
impostors and to not reject genuine users.

• Efficient: The time required to identify the user should be as little as possible since many
applications require a response in a few seconds.

• Scalable: The number of users can grow over time, but the expected time for response should
not, so the system needs to be able to cope with it by increasing hardware resources.

• Flexible: Fingerprints can have different characteristics, such as quality and size, but the
system should be able to deal with them.
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An AFIS usually has two different use cases: introduction of a new user into the database
and identification of a user against the database. The first case is commonly called enrollment.
In order to build a database of fingerprints, it is mandatory to scan the fingerprints of every user
of the system. Before storing the fingerprint, it can be preprocessed, extracting its features and
pre-computing data required by the matching algorithm. The second case occurs when a user tries
to identify himself against the system. An input fingerprint is provided, preprocessed in the same
way as the fingerprints in the database and compared against them in order to return the best
match found. The most common approach consists of using a verification algorithm that compares
the input fingerprint to each fingerprint in the database [MMJP09].

AFIS usually suffer from two difficulties, both related to the size of the database: high
identification time and accuracy loss. An identification process takes at least n times longer than
the underlying verification algorithm used, where n is the number of fingerprints in the database. In
the same way, there is usually only one matching fingerprint in the database (it could be none if the
input fingerprint belongs to a non-enrolled user), the probability of making an identification mistake
increases as the database increases. Actually, these problems are so serious that a direct brute-force
approach is not possible if the database is larger than a few thousands of users [PTSR+14]. However,
current societal necessities are reaching the order of hundreds of millions of people [iaf, uid]. There
is a strong need for systems that tackle these problems and provide reliable and scalable solutions.

The use of classification techniques can improve the performance of an AFIS both in time
and accuracy [DHS12]. The classification proposed by Henry [Hen00] is the most widely used. It
presents five types of fingerprints: left loop, right loop, whorl, arch and tented arch, as Figure 1
shows. Using a classification method to identify the type of each fingerprint can reduce the number
of matching operations required in the identification process since the input fingerprint would be
compared first against the fingerprints of its own type [MMJP09]. If it were not matched, it
would be compared against the rest of the database. This can happen for two reasons: the input
fingerprint is not present in the database or it was misclassified.

(a) Arch (b) Left loop (c) Right loop (d) Tented arch (e) Whorl

Figure 1: Five fingerprint classes defined by Henry [Hen00]

Misclassifying a fingerprint introduces a high cost for the identification process so the clas-
sifier used has to be reliable. One of the most powerful techniques to improve the accuracy of
multiple class classification is the use of a One-vs-One ensemble [GFB+11]. This technique involves
training a classifier that focuses on distinguishing between each pair of classes and classifying the
input combining the outputs of each classifier. However, the characteristics of the Henry classifi-
cation make this task more difficult because the fingerprints are not evenly distributed among the
classes. More than 90% of fingerprints are left loop (33.8%), right loop (31.7%) and whorl (27.9%),
while the rest belong to arch (3.7%) and tented arch (2.7%).

The difference in the number of samples of each class makes the process of training the
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classifier more difficult. This situation is usually known as learning from imbalanced data [HG09].
Imbalanced classification has been studied from a machine learning point of view [LFG+13, PBS15,
Kra16] but there is still the necessity for new methods that can deal with this situation when the
number of instances is large. Currently AFIS should handle hundreds of millions of fingerprints,
which means the same quantity of training samples for the classification method is available. In
order to apply these techniques to fingerprint classification, it is necessary to solve this problem
related to the size of the database.

Graphics Processing Units (GPUs) have proven to be a very useful tool in the acceleration
of computationally intensive algorithms. These devices introduce massive parallelism in the cal-
culations reducing run times in several orders of magnitude. Applications of this technology can
be found in different fields as molecular modelling [FEV+09], bioinformatics [STDV07] or shallow-
water simulation [LMUn+09]. Matching algorithms usually require a large number of computations
whose time performance should improve if they are redesigned to work on GPU devices while keep-
ing the same accuracy. GPU devices should also be useful in classification since different methods
have already been redesigned to work on them [GDNB10].

In this thesis we are going to study how GPU devices can be used to improve the perfor-
mance of fingerprint matching methods and imbalanced classification strategies that are suitable
to be introduced in a large scale AFIS. In order to do that, we first studied the characteristics of
GPU devices and matching methods. Then, we proposed GPU-based designs for two of the most
representative matching algorithms. After that, we studied how to solve the imbalanced learning
problem in large databases by providing a scalable solution for one of the most well-known tech-
niques to deal with imbalanced classification and the underlying classification algorithm that this
technique uses.

Section 2 describes in detail the background of the main topics covered by the thesis: GPU
devices and their characteristics (Section 2.1), fingerprint matching (Section 2.2) and classification
and imbalanced data (Section 2.3).

Section 3 presents the justification of this doctoral dissertation, describing the problems
addressed throughout the thesis. Section 4 marks the objectives pursued and Section 5 introduces
the methodology used to achieve them. Section 6 summarizes the works that comprise this thesis,
while Section 7 analyses their results in relation to the objectives. Section 8 presents the conclusions
obtained during the work collected in this thesis and Section 9 points out future lines of work derived
from the results obtained.
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Introducción

La identificación de personas es un problema importante en un gran número de campos, desde el
control de acceso a habitaciones y edificios a la criminoloǵıa, pasando por pagos e identificación
en sistemas informáticos. Con el avance de la sociedad de la información, el número de personas
que deben identificarse también se ha incrementado de forma considerable; grandes compañias y
administraciones públicas pueden alcanzar cientos de millones de individuos [iaf, uid].

Tradicionalmente, estas identificaciones se realizaban mediante el uso de distintos objetos
para cada usuario: tarjetas de identificación, pasaportes, tarjetas inteligentes, etc. Sin embargo,
estos objetos pueden perderse, robarse o falsificarse, lo que supone un potencial riesgo de seguridad.
Otra solución habitual es el uso de contraseñas, pero esta solución también presenta problemas ya
que estas contraseñas se pueden olvidar y, también, robar. Siendo, de este modo, un riesgo. Hay
soluciones h́ıbridas, que combinan objetos con contraseñas, como las tarjetas de crédito, pero esta
solución tiene los problemas combinados de ambas propuestas. Por tanto, encontrar sistemas de
identificación que no se basen en qué tenemos o qué sabemos si no en qúıen somos ha sido de grán
interés en la comunidad cient́ıfica [JFR07].

La identificación biométrica proporciona una solución a estos problemas ya que se basa en
marcadores intŕınsecas de cada persona, como pueden ser las huellas dactilares, el iris, la cara o el
ADN. Para ser adecuada para sistemas de identificación, un marcador necesita ser: universal, única,
invariable y fácil de usar. Las huellas dactilares son los marcadores biométricos más utilizados ya
que cumplen estas propiedades [JFR07]: todo el mundo tiene huellas dactilares, excepto en raros
casos de amputaciones severas, las huellas dactilares de cada persona son diferentes y su captura
es sencilla, económica y no invasiva.

Las huellas dactilares se han usado historicamente para propósitos de identificación. Hay
referencias de que se tomaban las huellas dactilares de criminales en Babilonia en torno al año
2000 aC. Hay estudios cient́ıficos sobre huellas dactilares en el siglo XVII [Gre84, Bid85], aunque
la primera técnica moderna para extracción e identificación de huellas dactilares no aparece hasta
el siglo XIX [Hen00], continuándose su estudio hasta nuestros d́ıas.

Una huella dactilar e el patrón que forma la piel de la punta del dedo. Este patrón se
compone de crestas y valles que forman distintos diseños que se pueden utilizar para reconocer a
una persona. Las huellas dactilares tienen distintos tipos de caracteŕısticas que se pueden utilizar
en su comparación. Dichas caracteŕısticas se dividen habitualmente en tres niveles: global (puntos
singulares, mapas de orientación y pseudocrestas), local (minucias) y detalle (poros y caracteŕısticas
intracresta).

Una comparación entre dos huellas dactilares para determinar si corresponden o no a la
misma persona se denomina habitualmente emparejamiento o matching. El proceso manual de
matching es tedioso y requiere bastante tiempo. El objetivo de un sistema de identificación au-
tomático consiste en evitar la necesidad de realizar un proceso de matching de forma manual o
requerir supervisión humana a la hora de verificar la identidad de una persona. Un sistema in-
formático de este tipo puede realizar las operaciones de matching de forma sistemática y eficiente,
lo que acelera el proceso de identificación.

Un sistema de matching automático recibe dos imágenes y proporciona una puntuación, den-
tro de un rango, que define como de similares son ambas huellas. La comparación podŕıa hacerse
directamente a nivel de imágen, pero dos imágenes de la misma huella pueden mostrar diferencias
significativas debido a rotaciones, translaciones y deformaciones en la piel en el momento en que las
imágenes se tomaron. Este tipo de transformaciones puede llevar a la obtención de puntuaciones
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bajas en una comparación de imagen a imagen. Para evitarlo, se realiza una extracción de carac-
teŕısticas en la que se obtiene información referente a algunas de las distintas caracteŕısticas de las
huellas previamente comentadas y es esta información la que se utiliza en las comparaciones. Entre
las caracteŕısticas de las huellas dactilares las minucias son las más populares para tareas de reco-
nocimiento [PGT+15] ya que se pueden describir fácilmente y su número permite una comparación
fiable y eficiente.

Las minucias son las bifurcaciones y los finales de las crestas. Se caracterizan por su posición
y ángulo en la imagen y por su tipo. Los algoritmos basados en minucias utilizan estos cuatro
valores para comparar dos conjuntos de minucias y producir una puntuación. La mayor parte de
los algoritmos realizan dos pasos: el primero de ellos construye una estructura local por minucia con
información sobre las minucias que la rodean y compara las estructuras de cada parea de minucias
de las dos huellas. El segundo paso computa la puntuación final combinando la información obtenida
de las mejores parejas de minucias. El nivel de acierto de estos métodos depende de las operaciones
calculadas en cada paso, cuanto mas complejas sean, más fiable y lento será el algoritmo.

Existen dos formas de aproximarse al problema del reconocimiento de huellas dactilares y
cada una de ellas es un problema en śı misma [MMJP09]:

• Verificación [JHB97]: verificación es el problema que consiste en determinar si dos huellas
pertenecen a la misma persona o no. Esto es, una comparación 1:1, que solamente require
una comparación.

• Identificación [JHPB97]: identificación es el problema que consiste en determinar a que per-
sona, entre una lista de candidatos, pertenece una huella de entrada. Esto es una comparación
1:n, que requiere n comparaciones.

Esta tesis se centra en el problema de identificación que es el problema más exigente desde
el punto de vista de la ingenieŕıa informática, dada la creciente cantidad de información a manejar,
y desde el punto de vista de la ciencia de datos, ya que se pueden aplicar técnicas de extracción
de conocimiento para mejorar el rendimiento. Un sistema automático de identificación de huellas
dactilares (Automatic Fingerprint Identification System, AFIS) tiene que ser:

• Preciso: El ratio de error de identifación debe ser tan bajo como sea posible para no aceptar
impostores y no rechazar usuarios genuinos.

• Eficiente: El tiempo requerido para identificar al usuario debe ser tan bajo como sea posible
ya que muchas aplicaciones requieren una respuesta en pocos segundos.

• Escalable: El número de usuarios puede crecer a lo largo del tiempo, pero el tiempo esperado
de respuesta no debeŕıa, por tanto, el sistema tiene que ser capaz de afrontar estos cambios
incrementando los recursos hardware necesarios.

• Flexible: Las huellas dactilares pueden tener distintas caracteŕısticas, como su calidad o
tamaño, pero el sistema debe ser capaz de trabajar con ellas y producir una respuesta.

Un AFIS normalmente tiene dos casos de uso: la introducción de un nuevo usuario en
la base de datos y la identificación de un usuario contra la base de datos. El primer caso se
denomina habitualmente registro. Para poder construir la base de datos de usuarios, es necesario
escanear las huellas dactilares de cada usuario del sistema. Antes de almacenar estas huellas, es
posible preprocesarlas, extrayendo sus caracteŕısticas y precomputando los datos necesarios para



1 Introduction 7

el algoritmo de matching. El segundo caso ocurre cuando un usuario trata de identificarse contra
el sistema. Se obtiene una huella de entrada que se preprocesa de la misma manera que las huellas
de la base de datos y, posteriormente, es comparada con esas mismas huellas para devolver la que
más se le parezca. El enfoque más habitual consiste en un proceso de verificación que compara la
huella de entrada con cada huella de la base de datos [MMJP09].

Los AFIS suelen padecer dos problemas, ambos relacionados con el tamaño de la base de
datos: un tiempo de identifación alto y perdida de precisión. Un proceso de identificación requiere
a menos n veces el tiempo del algoritmo de identificación que se utilice, donde n es el número de
huellas dactilares en la base de datos. Del mismo modo, solo hay una huella que se corresponde con
cada usuario de la base de datos (aunque podŕıa no haber ninguna si el usuario no se ha registrado),
la probabilidad de cometer un erro de identificación se incrementa conforme se incrementa el tamaño
de la base de datos. De hecho, estos problemas afectan de una forma tan seria a este tipo de sistemas
que una aproximación por fuerza bruta no es posible si la base de datos tiene más de algunos miles
de usuarios [PTSR+14]. Sin embargo, las necesidad es de la sociedad actual están alcanzando el
orden de los cientos de millones de personas [iaf, uid]. Hay una gran necesidad de sistemas que
puedan afrontar estos problemas y ofrezcan soluciones fiables y escalables.

El uso de técnicas de clasificación puede mejorar el rendimiento de un AFIS tanto en tiempo
como en precisión [DHS12]. La clasificación propuesta por Henry [Hen00] es la más habitual. En
ella se presentan cinco tipos de huellas: left loop, right loop, whorl, arch and tented arch, como
muestra la Figura 2 shows. Utilizando un algoritmo de clasificación para identificar el tipo de cada
huella se puede reducir el número de operaciones de matching necesarias para una identificación
ya que la huella de entrada se compara primero con las huellas de si propio tipo [MMJP09]. Si no
se encuentra al usuario en ese tipo, la búsqueda de extiende al resto de la base de datos. Este caso
puede ocurrir por dos razones: la huella de entrada no está en la base de datos o fue clasificada
erróneamente.

(a) Arch (b) Left loop (c) Right loop (d) Tented arch (e) Whorl

Figura 2: Cinco tipos de huellas dactilares definidos por Henry [Hen00]

Clasificar erróneamente una huella dactilar introduce un coste muy elevado para el proceso
de clasificación, por tanto el clasificador utilizado tiene que ser confiable. Una de las técnicas más
potentes para mejorar la precisón de clasificación con varias clases es el uso de un ensemble One-vs-
One [GFB+11]. Esta técnica entrena un clasificador que se centra en distinguir entre cada pareja de
clases y produce la clasificación final combinando los resultados de cada clasificador. Sin embargo,
las caracteŕısticas de la clasificación de Henry hacen que este problema sea más complejo ya que
el número de huellas de cada clase no esta distribuido de forma equilibrada. Más del 90 % de las
huellas son de tipo left loop (33,8 %), right loop (31,7 %) y whorl (27,9 %), mientras que el resto se
reparte entre arch (3,7 %) y tented arch (2,7 %).

La diferencia en el número de muestras de cada clase complica el proceso de entrenamiento
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de un clasificador. Esta situación se conoce como aprendizaje sobre datos desbalanceados [HG09].
La clasificación desbalanceada se ha estudiado desde el punto de vista del aprendizaje automáti-
co [LFG+13, PBS15, Kra16] pero aún son necesarios nuevos métodos que puedan afrontar problemas
con un gran número de instancias. Actualmente , un AFIS debeŕıa manejar cientos de millones de
huellas, lo que implica la misma cantidad de muestras para el clasificador. Para poder aplicar estas
técnicas a la clasificación de huellas dactilares, es necesario resolver este problema relacionado con
el tamaño de la base de datos.

Las unidades de tarjeta gráfica (Graphics Processing Units, GPUs) han demostrado ser una
herramienta útila para acelerar algoritmos computacionalmente intensivos. Estos dispositvos in-
troducen paralelismo masivo en los cálculos reduciendo los tiempos de ejecución en varios órdenes
de magnitud. Se pueden encontrar aplicaciones de esta tecnoloǵıa en campos tan distintos como
el modelado molecular [FEV+09], la bioinformática [STDV07] o la simulación de aguas poco pro-
fundas [LMUn+09]. Los algoritmos de matching habitualmente requieren un número elevado de
cálculos cuyo rendimiento, en tiempo, debeŕıa mejorar si se rediseñan para trabajar en dispositivos
GPU sin modificar su precisión. Los dispositivos GPU también pueden ser útiles en clasificación ya
que existen métodos que ya han sido rediseñados para trabajar sobre ellos [GDNB10].

En esta tesis se va a estudiar como los dispositivos GPU se pueden utilizar para mejorar el
rendimiento de métodos de matching de huellas dactilares y de estrategias de clasificación desbalan-
ceada que sean apropiados para utilizarse en un AFIS a gran escala. Para poder llevar esto a cabo,
primero se estudiaron las caracteristicas de los dispositivos GPU y de los métodos de matching.
Después se han propuesto diseños basados en GPU para dos de los algoritmos de matching más
representativos. Posteriormente, se ha estudiado como resolver el problema de aprendizaje desba-
lanceado en grandes bases de datos proponiendo una solución escalable para una de las técnicas
más conocidas en este campo y para el método de clasificación en el que está basada.

La Sección 2 describe en detalle los antecedentes de los principales temas que se cubren
en esta tesis: dispositivos GPU y sus caracteŕısticas (Sección 2.1), matching de huellas dactilares
(Sección 2.2) y clasificación y datos desbalanceados (Sección 2.3).

La Sección 3 presenta la justificación de esta tesis doctoral, describiendo los problemas
afrontados a lo largo de la misma. La Sección 4 marca los objetivos que se persiguen y la Sec-
ción 5introduce la metodoloǵıa empleada para alcanzarlos. La Sección 6 resume los trabajos que
componen esta tesis, mientras que la Sección 7 analiza sus resultados en relación a los objetivos. La
Sección 8 presenta las conclusiones obtenidas durante el trabajo realizado en la tesis y la Sección 9
señala ĺıneas de trabajo futuro que derivan de los resultados obtenidos.
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2 Preliminaries

In this section we are going to describe the required background for the main topics covered by this
thesis. First, we present the GPU devices architecture and characteristics (Section 2.1). After that,
we are going to study the main characteristics of matching algorithms (Section 2.2). Finally, we are
going to introduce the classification problem, focusing on imbalanced data scenarios (Section 2.3).

2.1 Graphics Processing Units

In the last decade, Graphics Processing Units (GPU) have emerged as a powerful parallel computing
piece of hardware. These devices group thousands of processing cores, providing large-scale paral-
lelism, even on desktop computing platforms. GPU devices were designed to render 3D graphics in
games and design applications. These devices are responsible for the floating point computations
involved in rendering in a very parallel and efficient way, using a Single Instruction Multiple Data
(SIMD) architecture and offloading the computational cost from the CPU device.

The use of GPU devices to run general purpose programs started with the first devices.
However, developers had to map scientific calculations onto problems that could be represented
by triangles and polygons, until NVIDIA presented CUDA [CUD] in 2006. NVIDIA CUDA is
the hardware/software architecture that allows the use of NVIDIA GPU devices for general pur-
pose computation, exposing their parallel processing nature to non-graphics-specialized developers.
NVIDIA CUDA presents the GPU as a parallel co-processor. A CUDA program alternates sections
of sequential code running on the CPU device, with parallel sections that run on the GPU device.
These parallel sections are introduced through function calls, which are called kernels.

Since GPU devices have a different architecture, we are going to describe the characteristics
of these devices from a hardware point of view, in Section 2.1.1. Once we are familiar with their
structure, we can present the characteristics and restrictions from the software design point of view,
in Section 2.1.2. An algorithm that is going to be implemented using CUDA needs to be designed
taking into account the characteristics and restrictions of GPU devices to achieve the best possible
performance. Finally, Section 2.1.3 introduces usual measures of performance for GPU devices.

2.1.1 GPU device architecture

GPU devices have a large number of cores that reaches up to thousands for some devices, but these
cores are different from the cores we can find in modern CPU devices, which are more similar to
arithmetic logic units. GPU cores are grouped into streaming multiprocessors (SMX). Each SMX
has a certain number of cores, registers and cache memories, so it can work independently from
the others. All the SMX of a device are equal, but there are differences if different devices are
compared.

As mentioned previously, GPU devices have a SIMD architecture. This means that the
same instruction is applied to different data at the same time, using different threads and cores.
However, not all the cores of a GPU device run the same instruction at the same time. A warp is
a group of 32 threads that run the same instruction simultaneously. If a SMX has more than 32
cores, which is something not unusual in the devices released in the last years, it can run several
warps at once.

The number of registers of a GPU device is much larger than the number of registers of
a CPU device. The reason for this is that the registers are assigned to a thread from the start
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until it finishes its computations. This allows GPU devices to perform extremely fast context
switching between warps. A SMX handles several warps switching among them to maximize the
time they perform useful computation. This way the delays related to memory access are hidden
with computation.

For this reason, the number of warps handled by a SMX is larger than the number of warps
that its cores can run at once. However, there are limits for the threads a SMX can handle, the
number of warps and the number of registers per thread. These maximum values vary depending
on the specific device.

The first level of cache memory, usually called L1, is also inside the SMX. This memory has
a particularity: it is programmable. CUDA programmers can specify information to be stored in
this cache memory. This is useful because that memory is shared among the threads, although
there are some restrictions at software level regarding which threads can share information with
others, as we will see in the next section.

GPU devices, as a separate piece of hardware, have their own memory and cannot access the
computer’s main memory. This means that all the information required to perform the computation
on GPU devices needs to be copied from one memory to another through the PCI Express port.
In the same way, the results required from the CPU device point of view also need to be copied.
These copies can be made asynchronously so the GPU device can perform computations with other
data during the transfer.

There are two other types of memory that have their own caches inside the SMX:

Texture memory The GPU is designed to render graphics so it is optimized to work with tex-
tures. CUDA provides functions to use textures to store data. This memory is optimized for
accesses that have 2-dimensional locality.

Constant memory This memory, as its name suggests, stores data that is not modified during
the execution of the kernels but can be read by them.

2.1.2 Programming GPU devices

A kernel is a function that is applied to different data in parallel on a GPU device. Each kernel
function is run on the GPU device through a set of threads. These threads are grouped into blocks
and the set of all blocks that run a kernel is called grid. Every thread in the grid runs a copy of
the same kernel, on different data. The data to be processed by a thread is determined by two
three-dimensional indexes, one to identify the block and the other one to identify the thread within
the block. When a kernel is called, the number of blocks and the number of threads per block need
to be specified.

The previous section stated that a SMX handles several warps. From this point of view,
each SMX handles several blocks. Handling complete blocks in a SMX allows CUDA to provide
synchronizing operations at block level, but since each SMX works independently, it is not efficient
to synchronize the whole grid.

In the same way, only the threads of the same block can share information through shared
memory. The amount of shared memory is limited to a maximum of 64 kB per SMX in current
devices. The amount of shared memory per block needs to be specified in the kernel function call,
in the same way as the dimensions of the kernel grid.

Regarding the programming style, there are factors that can also harm the performance
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Figure 3: Grid, threads, blocks and multiprocessors. Each block is run on the same multiprocessor

obtained. It was mentioned in the previous section that the threads of a warp run the same
instruction simultaneously. The evaluation of conditional predicates that produce different results
for the threads within a warp reduces the performance since the evaluation of the next instruction
needs to be serialized.

Another important aspect is the memory access pattern. The whole memory and cache
system of GPU devices is optimized for coalescent access, which means that consecutive threads
are expected to access consecutive positions of memory. If the memory access pattern is not
coalescent, the performance obtained drops significantly.

All these hardware and software considerations need to be taken into account in order to
take advantage of the resources that GPU devices offer.

2.1.3 Measuring the performance

There are two main measures of the performance in this field:

Speed Up This measure expresses the ratio between sequential and parallel running time of an
application that performs the same computing (Equation I.1). It is also used in parallel and
distributed computation.

S =
tsequential
tparallel

(I.1)

Occupancy This measure computes a percentage value per kernel that represents how close it is
to the maximum number of warps that can be handle by a SMX. There is a theoretical value
and a real value. The theoretical one can be determined by the characteristics of the device,
the parameters of the kernel and the number of registers that it needs. The real value is
measured by the actual use of the GPU device while running the kernel.

The speed up provides a real measure of how the performance of a process has been im-
proved by using a parallel scheme. If the speed up is greater than 1, this means that the parallel
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implementation outperforms the sequential one. On the other hand, if it is lower than 1, the se-
quential implementation is more efficient in terms of runtime. The theoretical maximum speed
up is the number of parallel processing units although this value is difficult to reach as there are
dependencies between parallel sections (which require synchronization points). Furthermore, the
additional communication overhead and modules that cannot be parallelized decrease the actual
speed up value.

In general purpose GPU computing, it is difficult to establish a maximum speed-up value,
as GPU and CPU devices have different architectures and their performance not only depends on
the number of cores of the device but also on the occupancy of the multiprocessors and several
parameters associated to each kernel launch, such as the number of thread blocks and their size.
Some of these factors, for example the number of blocks in the kernel call, might depend on the
data being processed. The number of cores, on the other hand, differs depending on the device.
Moreover, the occupancy can give more information about how the resources of the GPU are being
used.

The theoretical occupancy is computed based on the grid dimensions, the number of registers
required per thread and the amount of shared memory required per block. These values are used
to compute the maximum number of warps that can be handled at the same time by a SMX. If
this number of warps is equal to or greater than the physical limit of warps and blocks that can be
handled by a SMX, the kernel can achieve a theoretical 100% occupancy. If this number is lower,
the occupancy obtained is equal to the ratio between the maximum obtained and the physical limit.

On the other hand, the real occupancy depends on other values like the efficiency of the
read and write operations or the divergence caused by conditional orders in a warp. The maximum
value that the real occupancy can achieve is equal to the theoretical occupancy. If it is much
lower in comparison to the theoretical, it usually means that the kernels have not been efficiently
designed and that latencies are not hidden. Therefore, a suboptimal performance level is achieved.
Although a high theoretical and real occupancy is desirable, it is not critical in order to achieve
good performance. In fact, sometimes it is possible to achieve a better performance with a scheme
that has an associated lower theoretical occupancy, if this allows the GPU device to have a better
real occupancy.

2.2 Fingerprint matching

The matching algorithm is the core of an AFIS since it is in charge of determining how similar
every pair of fingerprint is. As mentioned before, most of the matching algorithms in the literature
are based on the minutiae of the fingerprint [PTSR+14]. This is mainly due to its reliability and
the manageable amount of data it involves. These algorithms build a local structure based on a
neighborhood for each minutia and can be divided into two main categories depending on how they
define it [MMJP09, PGT+15]:

• Nearest neighbor The neighborhood of a given minutia is defined by the k closest minutiae.

• Fixed radius The neighborhood of a given minutia is defined by all the minutiae inside an
imaginary circle of radius R centered on the minutia.

In the first case, the neighborhood has the same size for all the minutiae. This makes nearest
neighbor algorithms very efficient although usually very sensitive to missing and spurious minutiae.
The neighborhood size of the fixed radius algorithms depends on the density of minutiae and can



2 Preliminaries 13

be different for each minutia. This makes these kind of algorithms more complex than nearest
neighbor ones but more tolerant with respect to missing minutiae.

In this section we present a very representative algorithm of each type to clarify their char-
acteristics. These algorithms have also been redesigned to work on GPU devices.

2.2.1 Nearest neighbor Algorithm

The algorithm of Jiang [JY00] is one of the classic algorithms in the literature. It is a nearest
neighbor algorithm and was one of the first algorithms to introduce the combination of global and
local matching.

Jiang’s algorithm builds two data structures associated to each minutia, Mk, of the finger-
print: an array with the characteristics of the minutia and another array, Fk, with characteristics
of the neighborhood, Flk. The Fk array stores the characteristics of the minutia and depends on
the feature extractor employed, it stores the minutia coordinates within the fingerprint, (xk, yk),
the orientation of the minutia, ϕk, and its type, tk:

Fk = (xk yk ϕk tk)
T (I.2)

The Flk array stores information that relates the minutia Mk to the l minutiae of its neighbor-
hood. This information is composed of the distances between minutiae (Equation I.3), the relative
direction between them (Equation I.4), the difference of their angles (Equation I.5), the ridge count
between them and their type. These are stored in the format shown in Equation I.6.

dki =

√
(xk − xi)2 + (yk − yi)2 (I.3)

θki = dφ

(
tan−1

(
yk − yi
xk − xi

)
, ϕk

)
(I.4)

ϕki = dφ (ϕk, ϕi) (I.5)

Flk = (dki1 dki2 ... dkil θki1 θki2 ... θkil ϕki1 ϕki2 ... ϕkil nki1 nki2 ... nkil tk ti1 ti2 ... til)
T (I.6)

Where dki is the distance between minutiae k and i; θki is the relative direction between
minutiae k and i; ϕki is the difference of angles between minutiae k and i; dφ (α, β) is a function
that computes the difference between angles α and β; and nki is the ridge count between minutiae
k and i.

These two arrays, Fk and Flk can be precomputed and stored for each fingerprint in the
database, so they are only computed from the input fingerprint. Once the arrays have been com-
puted, the algorithm performs a two-step matching between each fingerprint in the database and
the input fingerprint.

The first step is the local matching that tries to find the pair of minutiae (one from each
fingerprint) which are the most similar, according to their neighborhoods. The algorithm defines
a similitude matrix, sl, where each position sl(i, j) stores the score achieved by the local matching
of the minutia Mi of one fingerprint and the minutia Mj of the other. This score is calculated by
a weighted sum of the elements of the Flk array.
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The second step performs a global matching. The algorithm fixes the coordinates of the
pair of minutiae that achieved the maximum value in the previous step and compares the relative
position and orientation of the rest of the minutiae. Using relative positions and orientations
minimizes the influence of the rotation and the displacement of the pictures of the fingerprints but
it is still sensitive to image distortion. Another matrix ml is built using the relative coordinates
and the sl matrix value of each pair of minutiae.

The final score is calculating by adding the maximum values of the ml matrix ensuring
that every minutia is used only once. To comply with this restriction, the algorithm looks for the
maximum iteratively, setting the row and column of the previous maximum to zero.

Jiang’s algorithm is very efficient because it only involves two operations with matrices
whose size depends on the number of minutiae of each fingerprint, which is usually not very high.
In addition, since it is a nearest neighbor method, Flk arrays are always the same size, which
enables efficient implementation of the algorithm.

2.2.2 Fixed radius algorithm

The Minutia Cylinder-Code matching algorithm [CFM10], called MCC, is the most complex algo-
rithm in this field. MCC uses a combination of local and global matching and tries to combine
the high efficiency that the nearest neighbor algorithms reach, because all minutiae have the same
number of neighbors, with better tolerance to deformations achieved by the fixed radius algorithms.
In addition, the authors designed the algorithm to reach different goals:

• Improve the accuracy of the algorithm when the fingerprints are deformed.

• Achieve interoperability with other algorithms by using standard characteristics (in this case,
minutiae).

• Get an efficient algorithm adapted for implementation in embedded systems.

As indicated by one of the objectives, the algorithm uses only minutiae in the calculations.
In fact, it only uses the position and orientation of minutiae and ignores the type. The authors base
this decision on the assumption that feature extractors can easily mistake this parameter thereby
making it unreliable.

To ensure that the neighborhood characteristics of a minutia, m are stored in a structure
that is always the same size, as in the nearest neighbor methods, the MCC algorithm builds a
cylinder associated to each minutia. This cylinder is centered on the minutia, has a fixed radius, R,
and has a height of 2π. The cylinder is discretized into cells as shown in Figure 4, where Ns and Nd

represent the number of cells used for the diameter and the height of the cylinder respectively. Each
cell has an associated two-coordinate position, pmi,j , that represents the center of the cell projected
on the cylinder base, and an angle, dϕk, defined by the height of the cell.

A numerical value Cm(i, j, k) is calculated for each cell. This value stores the sum of the
contributions of every minutia mt different from m in the neighborhood of pmi,j , Npmi,j

. The radius
of this neighborhood is 3σS where σS is the standard deviation of the spatial contribution. The
neighborhood can consider minutiae that are outside the cylinder but are closer than 3σS to pmi,j .
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Figure 4: Structure of a cylinder

The function Cm is defined as follows:

Cm (i, j, k) =





Ψ

(∑
mt∈Npm

i,j

(
CSm

(
mt, p

m
i,j

)
· CDm (mt, dϕk)

))

if ξm

(
pmi,j

)
= valid

invalid otherwise

(I.7)

where CSm

(
mt, p

m
i,j

)
is the spatial contribution of the minutia, which is higher when the minutia

location is closer to pmi,j , C
D
m (mt, dϕk) is the directional contribution of the minutia, which is higher

when the minutia direction is closer to the defined angle dϕk, and ξm

(
pmi,j

)
is a function that checks

if the Euclidean distance between m and pmi,j is equal to or lower than R and if pmi,j is inside the
convex hull [PS85] of the minutiae that form the fingerprint with a certain offset. Ψ is a sigmoid
function controlled by two parameters that limit the contribution of dense minutiae clusters and
ensure that the final value is in the R[0, 1] range. This function is defined as:

Ψ(v) = Z(v, µΨ, τΨ) =
1

1 + e−τΨ(v−µΨ)
(I.8)

Once the cylinder computation has finished, a cylinder can be discarded if it does not contain
enough useful information (valid cells) or if the number of minutiae that were used to make the
computation is too low. The discarded cylinders are usually associated to minutiae on the edges
of the fingerprint. These minutiae are more sensitive to errors and deformations so they are less
reliable.

When the algorithm has computed the cylinders of both fingerprints, a local matching
process can be started. This computation is made on every pair of cylinders storing the resulting
local similarity scores in a matrix. Two cylinders Ca and Cb are considered matchable if the
directional difference between the two minutiae is not greater than a certain value, δθ, and if the
intersection of valid cells of both cylinders is big enough. If the cylinders are matchable, their
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similarity is defined as:

γ(a, b) =

{
1− ‖ca|b−cb|a‖

‖ca|b‖+‖cb|a‖ if Ca and Cb are matchable

0 otherwise
(I.9)

Where ca|b is a vector that stores the value of the corresponding cell of Ca if the cell is valid in Ca
and Cb; cb|a is defined in the same way but storing the value of the cell of Cb.

After the local matching step, a global matching process, called consolidation, is performed.
The authors propose several methods of consolidation that are basically different ways to add some
of the values obtained by the local matching, usually the highest values.

To achieve the last goal, which is to build an algorithm adapted for implementation in
embedded systems, the authors explain a binary version of the algorithm in the paper. However,
this version loses accuracy compared to the full algorithm.

2.3 Classification and imbalanced data

In a classification problem a model is built in order to predict the label of a data sample from
its characteristics. In the case of fingerprints, such model can be used to obtain the class of a
fingerprint using characteristics extracted from the image [GDP+15b, GDP+15a]. Being able to
reliably classify fingerprints reduces the number of candidate fingerprints for an AFIS as many
candidate fingerprints from the database can be efficiently discarded in a step performed before the
matching process.

To build such a model, the data samples, usually called instances, are divided into two sets.
The first set is used to train the model while the second set is used to test its accuracy, hence
both sets are usually known as training and test set. Using this approach the model is not trained
with all the data, which means there is information that could be missing. In order to avoid this
situation it is common to split the datasets in several folds of the same size. The model is trained
as many times as folds, using a different fold as test set every iteration and the rest as train set.

The simplest classification algorithm consist of measuring the Euclidean distance between
a test instance and every training instance and then assigning the label, also known as class,
of the closest training instance to the test instance. This algorithm is known as the Nearest
Neighbor (NN) method [FHJ51]. There is an extension of this algorithm which considers a certain
value, k, of neighbors [CH67]. This kNN algorithm assigns the class to each instance in the
test set using the majority class among its neighbors. A simple algorithm like this is one of the
most important data mining techniques [WK10] and is used as te basis for other classification
algorithms [GW07, WNC07, NSB03] and data preprocessing methods [CBHK02, LGH12].

A trained classifier defines decision boundaries for the different classes. However, it is harder
to build accurate classifiers for multiclass problems, like fingerprint classification, than for only two
classes. The decision boundaries in the latter case can be simpler. This idea has been exploited in
order to improve the performance in multiclass classification.

The most common strategies that exploit this idea are called “one-vs-one” (OVO) [KPD90]
and “one-vs-all” (OVA) [AMMR95]. The first one creates as many binary problems as possible
combinations between pairs of classes. Each classifier learns how to distinguish between each pair.
The second one creates a binary problem per class. Each classifier learns how to distinguish each
class from the rest. In both cases the results of the classifiers are aggregated to produce the global
prediction.
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The distribution of instances among the classes can also have a large impact on the perfor-
mance of the classification [HG09]. If a class has a significantly larger number of instances than
the other, the decision boundaries are harder to define due to the lack about information of the
minority class. This problem is known as imbalanced classification [HG09, Kra16, PBS15], since
the data of the different classes is not balanced. In an OVA approach every classifier has to face this
situation, but it can also affect an OVO approach, depending on the distribution of the instances
among the classes. Imbalanced data can lead to having small classes ignored by the ensembles,
since it is unlikely that one of these classes reaches enough positive predictions.

There are different methods that tackle the problem of imbalanced data [LFG+13]:

• Algorithmic modification Modifying classification algorithms in order to tackle the prob-
lem by design [ZE01].

• Cost-sensitive learning Introducing costs for misclassification of the minority class at data
or algorithmic level [Dom99] [ZLA03].

• Data sampling Preprocessing the data in order to reduce the difference between the number
of instances of each class [BPM04] [CBHK02].

Data sampling strategies have the advantage of being completely independent of the clas-
sification algorithm used. Once the dataset has been preprocessed it can be used with different
classification methods in order to test their performance without making any changes. Preprocess-
ing algorithms try to reduce the difference between the number of instances of both classes either
by increasing the number of instances of the minority class (oversampling methods) or reducing
the number of instances of the majority class (undersampling methods).

The number of instances of the minority class can be increased by duplicating existing in-
stances or by creating new instances based on the information of the actual instances of the minority
class. The Random Over-Sampling (ROS) method [BPM04] is an example of the first case. This
algorithm randomly duplicates instances of the minority class. The SMOTE technique [CBHK02]
is an example of the second case. This algorithm is based on the kNN algorithm, as it computes
the neighborhood of each minority instance within the minority class. After that, it creates new
instances using random interpolation between an instance and one of its neighbors.

In the same way, the reduction of instances of the majority class can be done ran-
domly [LFG+13] by selecting random instances of the majority class. Other methods try to select
the most representative instances within the majority class[MFV02, GCH08].

Fingerprint classification suffers both problems, since it has 5 different classes and the distri-
bution of instances among them is extremely imbalanced. In addition, misclassification has a high
impact on the AFIS performance since it directs the search of the matching fingerprint in the wrong
section of the database. Fingerprint classification also introduces another issue for classification
algorithms: the volume of data.

As previously mentioned, there is a necessity for AFIS that can handle hundreds of millions
of fingerprints [iaf, uid]. This means that a system with that number of fingerprints has the same
number of instances that can be used to train the classification algorithm. However, considering
the large amount of computations that classification algorithms require, they need an extremely
long time to build their models. In recent years, this problem has been tackled using what has
been called Big Data approaches[Mad12, ZEd+11]. These solutions are based on the MapReduce
paradigm [DG08] and rely on tools like Apache Hadoop [Whi15] or Apache Spark [ZCD+12].
However, it would be interesting if preprocessing methods could be applied in advance and without
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the costly equipment that these platforms require, since it is common to try several preprocessing
settings in order to obtain the best results [TdRL+15]. In this scenario, oversampling methods
have the advantage of only using the instances of the minority class.
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3 Justification

The previous sections have stated the need for AFIS that can handle millions of fingerprints.
The main bottleneck of these systems is located at the comparison of the input fingerprint with
the fingerprints stored in the database. Different techniques, such as the use of GPU devices
and fingerprint classification, have the potential to improve the performance of the identification
process. However, these techniques present issues that need to be addressed in order to integrate
them as part of an AFIS.

Minutiae matching algorithms are, in general, not designed to work on GPU devices. The
computation of their data structures and the comparison operations need to be redesigned in order
to be suitable for the characteristics of these devices, which is a challenging and key task to achieve
a high performance level. Two different types of matching algorithms have been studied:

Nearest neighbor methods : these methods use regular structures since only the information of
a fixed number of minutiae is considered. Jiang’s method belongs to this family of techniques.

Fixed radius methods : these techniques use information of a variable number of minutiae.
MCC is an important representative of this family of methods.

The data access patterns and the amount of computation required differ from one type to the other.
This can lead to different performance levels on GPU devices, but there is no a priori information
about which type may better suit this type of hardware platforms. At the time this thesis was
started, no matching algorithm had been adapted to work on GPU devices, although there was an
approach based on FPGA [JC08], which is another parallel architecture.

Fingerprint is a multiclass classification problem with an imbalanced distribution of in-
stances. These issues have been studied in data mining and can be improved with OVO ensembles
and preprocessing techniques. However, classification of large amounts of data, as is the case of
fingerprints, is still a challenging problem, especially for preprocessing algorithms. There is a need
for scalable and reliable preprocessing methods.

GPU devices can also be useful to improve preprocessing algorithms without using MapRe-
duce platforms. The SMOTE technique is based on the kNN algorithm that has been successfully
adapted to GPU devices [GDNB10, ARBM12, KDD14]. The different characteristics of these ap-
proaches need to be studied in order to check if they present scalability issues for extremely large
databases. After this study, we can propose a new approach that can be used to build a scalable
SMOTE algorithm over it.

The aforementioned issues can be encompassed within the scope of this thesis: the study
of the capabilities of GPU devices to improve the performance of fingerprint identification and
classification.
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4 Objectives

After reviewing the state of the art and the potential open problems in the previous sections, it is
possible to focus on the objectives of this thesis. These objectives are:

• To study the suitability of GPU devices to implement fingerprint minutiae match-
ing algorithms. There are two main families of minutiae matching methods which have their
own characteristics and requirements. In order to prove the suitability of GPU devices a sig-
nificant algorithm of each type should be redesigned. Jiang’s algorithm and MCC algorithm
are significant representatives of the nearest neighbor and the fixed radius algorithm families,
respectively.

The proposed GPU-based designs have to keep the original results and consider GPU devices
of different characteristics. Furthermore, if several GPU devices are available, the design
should be able to scale and take advantage of them.

• To analyze the scalability of current GPU-based approaches of the kNN clas-
sification algorithms and the development of new scalable approaches Different
GPU-based designs have been proposed over the years but there are still open scalability
issues. It is required to study the different characteristics of these approaches in order to
identify the weak and strong points of each of them. Taking advantage of all these knowl-
edge, we can propose a new design that can provide high scalability and performance for large
datasets.

• To build a scalable preprocessing algorithm for large databases that does not
require the use of MapReduce platforms. Oversampling methods usually only require
instances from the minority class. A design scheme that allows these methods to run on
large datasets within a reasonable amount of time without using MapReduce platforms can
be applied to the fingerprint classification problem.
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5 Methodology

The methodology used in this thesis follows the guidelines of the scientific method. Nevertheless,
it is important to adapt the general guidelines to the specific problem studied. In this section that
adaptation is presented:

1. Observation: Detailed study of the fingerprint identification problem, its characteristics and
the main methods that tackle it. The study of the possibilities and characteristics of GPU
devices to be used in this problem and the study of the data mining techniques that can be
applied are also required.

2. Hypothesis formulation: The design of new methods that make use of GPU devices to
improve the performance on the open problems in fingerprint identification and classification.
The new methods should fulfill the previously mentioned objectives.

3. Observation gathering: Obtaining results for the new methods and measuring the perfor-
mance achieved.

4. Contrasting hypothesis: Comparison of the obtained results with the previously observed
and studied methods. The comparison has to be as fair as possible, using the same hardware
and databases.

5. Hypothesis proof or rejection: Acceptance, rejection and modification, according to case,
of the developed techniques as a consequence of the two previous steps. If necessary, formulate
a new hypothesis and repeat the process.

6. Scientific thesis: Extraction, redaction and acceptance of the conclusions obtained through-
out the research process. All the approaches and results gathered along the entire process
should be synthesized into the thesis dissertation.
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6 Summary

This section presents a summary of the proposals described in the publications associated
to this thesis. Afterwards, Section 7 will show an overview of the obtained results. The research
carried out for this thesis and the results obtained in each case are collected into the following
published papers:

• P.D. Gutiérrez, M. Lastra, F. Herrera, J.M. Beńıtez. A High Performance Fingerprint Match-
ing System for Large Databases Based on GPU. IEEE Transactions on Information Forensics
and Security 9:1 (2014) 62–71, doi: 10.1109/TIFS.2013.2291220.

• M. Lastra, J. Carabaño, P.D. Gutiérrez, J.M. Beńıtez, F. Herrera. Fast fingerprint identifi-
cation using GPUs. InformationSciences, 301 (2015) 195–214. doi: 10.1016/j.ins.2014.12.052

• P.D. Gutiérrez, M. Lastra, J. Bacardit, J.M. Beńıtez, F. Herrera. GPU-SME-kNN: Scalable
and memory efficient kNN and lazy learning using GPUs. Information Sciences 373 (2016)
165–182. doi: 10.1016/j.ins.2016.08.089

• P.D. Gutiérrez, M. Lastra, J.M. Beńıtez, F. Herrera. SMOTE-GPU: Big Data Preprocessing
on Commodity Hardware for Imbalanced Classification. Submitted to Progress in Artificial
Intelligence.

This section presents a summary of the different proposals presented in this dissertation
related to the objectives defined in Section 4. Sections 6.1 and 7.2 present GPU-based approaches
for different minutiae matching methods. Then, Section 6.3 shows the study of the different GPU-
based kNN methods and presents our approach. Finally, Section 6.4 details our design for large
database preprocessing on commodity hardware.

6.1 Nearest Neighbor Minutiae Matching on GPU devices

Nearest neighbor matching algorithms use information about the closest minutiae of each minutia to
perform the matching operation. These algorithms usually create a local structure to encode these
relationships, and Jiang’s algorithm is no exception. The number of neighbors is usually small,
which keeps the computational requirements low in identity verification environments. However,
when dealing with large-scale identification scenarios, the total number of comparisons becomes
computationally expensive.

GPU devices provide a massive source of parallelism that can be used to improve the per-
formance of Jiang’s algorithm in identification problems. In order to achieve a high performance
level, GPU devices need to be provided with enough workload. Jiang’s algorithm’s one-to-one
comparison is relatively simple and it does not provide the required workload level. It is therefore
mandatory to perform one-to-many comparisons.

A similar workload scheme is used in the kernels that compute both parts of the algorithm:
local and global matrices are computed column-like in one thread. This scheme ensures a coalescent
access to the data leading to a high performance improvement. The final step of the algorithm that
transforms the global matrix to obtain the matching score is also performed on GPU-device.

The database is processed chunk-wise. Our design takes advantage of asynchronous memory
transfers to copy the next chunk of the database while one chunk is still being computed. This
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scheme avoids idle periods on GPU device. Several GPU devices, if available, can work in parallel
over different chunks of the database improving the performance of the algorithm.

Our design has been tested on two different fingerprint databases of real and synthetic
fingerprint samples, with sizes ranging from 54 thousand to 800 thousand. Three different types of
GPU devices have been used to measure the performance obtained and up to 4 GPU devices have
been used in parallel.

The journal paper associated to this part is:

• M. Lastra, J. Carabaño, P.D. Gutiérrez, J.M. Beńıtez, F. Herrera. Fast fingerprint identifi-
cation using GPUs. InformationSciences, 301 (2015) 195–214. doi: 10.1016/j.ins.2014.12.052

6.2 Fixed Radius Minutiae Matching on GPU devices

The minutia cylinder code (MCC) algorithm is one of the most reliable fixed radius methods. It cre-
ates a structure, called cylinder, for each minutia that stores information related to the surrounding
minutiae. Then, it compares the similarity of pairs of minutiae from different fingerprints using
those cylinders and, finally, produces a score combining and refining the best similarity results.
This last step is called consolidation.

The reliability of the algorithm comes at a cost, being computationally expensive. GPU
devices can improve the performance of different steps of the algorithm. Our proposal uses different
kernels to compute the data structures involved: cylinders (to encode the information about the
neighborhood of each minutiae), the similarity matrix, and the operations related to the final score
combination process. These kernels group the computations in convenient ways in order to provide
a high performance level.

The massive parallelism provided by GPU devices allows the search of the best matching
fingerprint in the database as a set of one-to-many comparison steps instead of just many one-to-
one similarity tests, making the identification process more efficient. Scores referring to several
fingerprints are computed at once in the similarity computation and in the relaxation step of the
consolidation.

Since a small fraction of the algorithm is computed on CPU device, our design uses two
CPU threads to avoid idle times on the GPU device. This way, using asynchronous copies, the
data for the next matching process is copied while another matching operation is being computed.

The experimental set up uses different GPU types and also presents results of two GPU
devices collaborating. The performance of the algorithms was measured on different fingerprint
databases of real and synthetic fingerprint samples, with sizes ranging from 1000 to 100 000 finger-
prints.

The journal paper associated to this part is:

• P.D. Gutiérrez, M. Lastra, F. Herrera, J.M. Beńıtez. A High Performance Fingerprint Match-
ing System for Large Databases Based on GPU. IEEE Transactions on Information Forensics
and Security 9:1 (2014) 62–71, doi: 10.1109/TIFS.2013.2291220.

6.3 kNN classification algorithms on GPU devices

The kNN classification algorithm is one of the most important classification algorithms due to its
simplicity and high accuracy. It is also a computationally demanding algorithm, as the number
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of computations is linearly dependent on the size of the dataset. There are several GPU-based
approaches that tackle these computational problems for large datasets.

These approaches classify several instances at once, building a distances matrix. Subse-
quently, these techniques use different methods to perform the selection of the neighborhood of
each instance in parallel. Each step is computed on a separate kernel function and the kernel set
is processed consecutively. All approaches present issues related to one of these steps, or both.

Regarding the computation of the distance matrix, almost every existing approach requires
storing the whole matrix on GPU device memory. When this is not possible the dataset is split
into several chunks and computed iteratively. However the performance drops significantly since
the achieved GPU device occupancy level also lessens.

Regarding the neighborhood selection, most approaches are based on sorting methods. The
memory access patterns that these sorting methods require are not especially suited for GPU
devices and usually require a large number of synchronization operations. The performance of this
step lowers as the problem size increases.

We propose a scalable and memory efficient approach for the kNN rule, called GPU-SME-
kNN, which tackles the problems related to the dependence between dataset size and the memory
footprint of the distance matrix. The distance matrix is computed in portions of a user defined
size.

The neighborhood is computed incrementally as each portion of the matrix becomes avail-
able, allowing the reuse of the data structures. The selection method is based on the quicksort
algorithm and it is designed in a way that avoids synchronization inside blocks and performs global
memory access operations in a coalescent way.

This design is also suitable for other lazy learning algorithms based on kNN. Three of these
algorithms: center kNN, kNN adaptive and symmetric kNN are also studied.

Our approach is compared to several other GPU-based kNN approaches and to the
Keel [AFSG+09] modules for lazy learning algorithms. Two different large datasets where used
in the experiments up to a size of more than 4.5 million instances. These datasets were subsampled
to different sizes to study how the different algorithms scale.

The journal paper associated to this part is:

• P.D. Gutiérrez, M. Lastra, J. Bacardit, J.M. Beńıtez, F. Herrera. GPU-SME-kNN: Scalable
and memory efficient kNN and lazy learning using GPUs. Information Sciences 373 (2016)
165–182. doi: 10.1016/j.ins.2016.08.089

6.4 Big Data Preprocessing on GPU devices

As stated before, it would be interesting to perform preprocessing to deal with imbalanced data
over large datasets without the use of MapReduce platforms. Among the different solutions to deal
with this type of data, preprocessing algorithms seem to be the most interesting option since they
are independent from the classification algorithm used. Preprocessing algorithms can be divided
into over-sampling methods, if they increase the number of instances of the minority class, and
under-sampling methods, if they reduce the number of instances of the majority class.

Over-sampling methods have the advantage that they only need the data from the minority
class. With the proper design, these data can be handled on commodity hardware without the
need for MapReduce platforms, even in Big Data scenarios. GPU devices can be used to compute
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the most resource intensive operations in an acceptable time.

The SMOTE technique for over-sampling is one of the most popular oversampling algorithms
and it is based on the kNN algorithm. In the previous section we presented an approach for the
kNN algorithm that can handle large datasets efficiently. This approach is combined with a proper
memory handling scheme that reduces the memory footprint to the space required to store the
minority class and the neighborhood of each instance. Our design is also suitable for other methods,
like Random Over Sampling (ROS), which was also tested.

Our approach for sampling algorithms has been tested with different versions of four datasets,
ranging from 0.5 million instances to 10 million instances, and imbalanced ratios up to 49. These
experiments have been performed on three different hardware platforms: a server node, a desktop
PC and a laptop.

The journal paper associated to this part is:

• P.D. Gutiérrez, M. Lastra, J.M. Beńıtez, F. Herrera. SMOTE-GPU: Big Data Preprocessing
on Commodity Hardware for Imbalanced Classification. Submitted to Progress in Artificial
Intelligence.



26 Chapter I. PhD dissertation

7 Discussion of results

The following subsections summarize and discuss the results obtained in each specific stage of the
thesis.

7.1 Nearest Neighbor Minutiae Matching on GPU devices

Our GPU-based design for Jiang’s algorithm introduces a one-to-many comparison and an efficient
workload for every step that leads to a high runtime performance. The accuracy results of the
algorithm are not affected by the device used for the computations, since the operations performed
are the same.

Two different fingerprint databases have been used: one with real fingerprints
(DB14 [Wat93]) and 54 thousand samples and another one with synthetic fingerprints, created
by the SFinGe software [CMM02], with 800 thousand samples. A total of five GPU devices have
been used in the experiments: four server range GPU devices (two Tesla M2090 and two Tesla
K20), installed on the same server node, and a desktop device (GeForce GTX 680). The desktop
device cannot handle any whole database due to the lack of the required main memory size, 10
thousand and 100 thousand samples, of the respective databases, were used in those tests.

The careful design provides a huge performance speed-up ranging from 42X to 83X on a
single GPU device when compared to a single thread CPU-based version. These values increase
when sets of two and four GPU devices are working together on the same matching process reaching
an improvement of 287X.

If we translate these speed-up values into matching processes per second, we obtain that a
single GPU device can process more than 400 thousand fingerprints per second and the combination
of four devices reaches 1.5 million fingerprints per second. However, the accuracy of this algorithm
in the identification problem is not high enough to base a complete identification system on it, but
it can be used as a first step in a two-step fingerprint identification system that uses a more reliable
algorithm on the second step.

7.2 Fixed Radius Minutiae Matching on GPU devices

The proposed GPU-based design for the MCC algorithm introduces different kernel functions to
compute the main steps of the algorithm and combines several matching processes in a one-to-
many process suitable for identification tasks. The accuracy results of the algorithm do not change
independently of the platform used, since the operations performed are the same.

The experimental set up of this work uses two different GPU devices: a server range device
and a high-end desktop device. These results are compared to a single threaded CPU imple-
mentation of the algorithm on different databases, two from real fingerprints (DB4 [WW92] and
DB14 [Wat93]) and one created synthetically with SFinGe [CMM02]. The sizes of these databases
range from 1000 to 100 000 fingerprints. The SFinGe database has been subsampled at different
values to show the performance of the algorithm as the number of fingerprints increases. Four
different sets of parameters have been used in the experiments, two different cylinder sizes and two
alternative consolidation steps.

The results obtained in the experiments prove that GPU-devices are a useful tool to improve
the time performance of the MCC algorithm since the speed-up obtained ranges from 20X to 52.4X
for the server node and from 28.2X to 56.6X for the desktop device. The experiment using increasing
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database sizes shows that these speed-up ratios remain stable if enough workload is supplied to
the GPU device, a point that is reached at database size of 5000 fingerprints. The number of
fingerprints per second that a single GPU device can handle was also computed, reaching a rate of
more than 55 000 matching operations per second.

The largest speed-up values for each device are reached with different configurations of the
algorithm: the server range device obtains a better performance with the largest cylinder size and
the desktop devices works better with the smallest size. Each device also seems to adapt better to
a different consolidation step. These differences are related not only to the different architectures
of the devices, but also to the parameters of the kernel that control the one-to-many comparison
scheme. These parameters have been chosen in order to provide the best possible result on each
device and configuration.

The synthetic fingerprint database was also used to measure the performance obtained with
two server range devices. Two different setups were tested: in the first one, both GPU devices
collaborate in the same matching process; in the second one, each GPU device works independently
on different sections of the database. The results obtained show that the latter case achieves a
better performance than the former. The speed-up level doubles when the GPU devices are used
separately. This version is also easier to implement since it does not require the different GPU
devices to exchange information and it could be easily extended to more GPU devices if they were
available.

7.3 kNN classification algorithms on GPU devices

The scalable and memory efficient kNN classification algorithm (GPU-SME-kNN) that we presented
tackles the main issues that appear in the existing approaches available in the literature. The
distance matrix is computed in portions to avoid the linear dependence with the dataset size
and the neighborhood is computed in an incremental and efficient way using a quicksort-based
algorithm.

Our design is compared with one of the first approaches to the GPU-based kNN technique,
which is used as a baseline in most of the papers in the literature, and with two other methods that
use similar ideas to the ones we presented. The first one computes the distance matrix chunk-wise
too and the second one uses a different approach to adapt the quicksort algorithm to the selection
problem.

These methods were tested on two large datasets that were subsampled at different instance
sizes, ranging from 250 000 to more than 4.5 million, and different values for the k parameter: 5,
100 and 1000. The results obtained show how our design scales better in both dimensions, problem
size and k value. For some experiments our version is two times faster than the next best technique,
which is a significant speed-up considering that all the methods compared are accelerated by a GPU
device.

For the lazy learning algorithms included in our study the comparison was performed against
the Keel machine learning software [AFSG+09], which does not use multi-thread acceleration. It
was only possible to obtain results up to 650 thousand instances. The results of our design become
several orders of magnitude faster than the ones obtained using a traditional CPU-based software
like Keel as the size of the dataset increases.
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7.4 Big Data Preprocessing on GPU devices

We presented a design for over-sampling methods that combines GPU-based parallelism and an
efficient memory handling scheme to be able to perform preprocessing on Big Data datasets without
the use of a MapReduce platform. Our design has been applied to the SMOTE algorithm and the
Random Over-sampling (ROS) technique.

Two different settings for both methods have been tested with different versions of four
datasets, ranging from 0.5 million instances to 10 million instances, and imbalanced ratios up to
49. These experiments have been performed on three different hardware platforms: a server node,
a desktop PC and a laptop.

The results obtained show an improvement on the identification of the minority class using
both algorithms. However, SMOTE outperforms ROS in most scenarios of our study. Considering
the time required for the most time demanding experiment, server and desktop configurations took
around 25 minutes while the laptop took almost two hours to process a problem of 4.5 million
instances with more than 1 million instances of the minority class. Traditional implementations of
these algorithms were not able to produce results for those experiments after 8 hours of runtime.



8 Concluding Remarks 29

8 Concluding Remarks

In this thesis, we have addressed the problem of fingerprint identification and classification in
large databases. We have analyzed, designed and implemented different approaches based on GPU
devices to improve the performance of identification systems.

The initial objective was to study the suitability of GPU devices for implementing minutiae
matching algorithms, which constitute the main computational bottleneck of identification sys-
tems. We have proposed two different designs for significant algorithms of the two main families
of minutiae matching methods: nearest neighbor, with Jiang’s algorithm, and fixed radius, with
MCC algorithm. The designs were tested on different devices and the obtained results show a large
improvement on the performance of both methods on all devices. The design also maintained the
accuracy results since the same operations are performed on GPU and CPU devices.

The use of several GPU devices has also been studied, combining up to four different devices
working simultaneously. Two different approaches were proposed, one where the different devices
collaborate on the same matching process and another one where they worked on different sections
of the database. The latter approach has obtained a better performance reaching 1.5 million
fingerprint matching operations per second when using four GPU devices with Jiang’s algorithm.

The second objective was to analyze the scalability of current GPU-based designs for the
kNN classification method and the development of new scalable approaches that could be used for
large databases in preprocessing algorithms. We have studied the characteristics of the different
techniques in the literature identifying their weaknesses and strong points. That knowledge has
been used to build a scalable and memory efficient approach that can tackle large datasets without
losing performance and can be adapted to a broad variety of GPU devices.

The last objective was to build a scalable preprocessing algorithm for large datasets that
does not require the use of MapReduce platforms. We have designed a new GPU-based approach
for oversampling methods that has been applied to the well known SMOTE technique. This design
has been able to efficiently handle datasets with several millions of instances in a reasonable time
on commodity hardware. The experimental setup included a laptop computer, which was able to
perform all the tests successfully.
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Conclusiones

En esta tesis, hemos abordado el problema de la identificación y clasificación de huellas digitales
en grandes bases de datos. Hemos analizado, diseñado e implementado diferentes enfoques basados
en dispositivos GPU para mejorar el rendimiento de los sistemas de identificación.

El objetivo inicial era el estudio de la capacidad de los dispositivos GPU para implementar
algoritmos de matching de minucias, que constituyen el principal cuello de botella de los sistemas
de identificación. Se han propuesto dos diseños distintos para algoritmos significativos de las dos
principales familias de algoritmos de matching de minucias: vecino más cercano, con el algoritmo de
Jiang, y radio fijo, con el algoritmo MCC. Estos diseños han sido probados en distintos dispositivos
y los resultados obtenidos muestran una mejora considerable en el rendimiento de ambos métodos
en todos los dispositivos. Además, el diseño mantiene los resultados a nivel de acierto ya que tanto
los dispositivos GPU como los CPU realizan las mismas operaciones.

El uso de varios dispositivos GPU también ha sido estudiado, combinando hasta cuatro
dispositivos diferentes trabajando simultáneamente. Se han propuesto dos soluciones distintas, una
en la que los diferentes dispositivos colaboran en el mismo proceso de matching y otra en la
que cada dispositivo trabaja sobre distintas secciones de la base de datos. Esta última opción ha
obtenido mejores resultados, alcanzando 1,5 millones operaciones de matching por segundo, con
cuatro dispositivos GPU en el algoritmo de Jiang.

El segundo objetivo consist́ıa en analizar la escalabilidad de los diseños existentes para le
algoritmo de clasificación basado en kNN que utilizan dispositivos GPU y desarrollar nuevas pro-
puestas escalables que pudieran utilizarse en tareas de preprocesamiento de grandes bases de datos.
Se han estudiado las caracteŕısticas de las distintas técnicas disponibles en la literatura, identifican-
do sus ventajas y debilidades. En base a este conocimiento, se ha construido un método escalable
y eficiente en memoria que permite abordar grandes conjuntos de datos sin perder rendimiento y
que puede adaptarse a una gran variedad de dispositivos GPU.

El último objetivo era construir un algoritmo de preprocesamiento escalable para grandes
bases de datos que no requiera el uso de plataformas MapReduce. Se ha diseñado un método basado
en dispositivos GPU para algoritmos de sobremuestreo que se ha aplicado a la bien conocida técnica
SMOTE. Este diseño ha sido capaz de manejar eficientemente conjuntos de datos con varios millones
de instancias en un tiempo razonable utilizando hardware de nivel usuario. El marco experimental
inclúıa el uso de un ordenador portátil, que fue capaz de realizar todas las pruebas de forma
satisfactoria.
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9 Future Work

The work carried out during this thesis has highlighted new promising research lines, either to
further enhance the performance of the models proposed, or to apply them to new challenging
problems.

Information fusion approaches In order to improve the robustness of an identification system,
information from different sources can be combined. These sources can be different matching
algorithms [JPC99, NM06] or different fingerprints of the same person [JFR07]. A sample in the
database needs to achieve a high score in both matching operations to be considered a positive
matching. However, the identification time doubles since each different matching operation is
solved separately. If the first matching step is used to select a group of candidates and the second
matching process is only applied to those candidates, the time does not increase in such a significant
way [PTG+16].

Big data approaches Big data is expected to be one of the main challenges for data mining in
the near future [FdRL+14]. MapReduce platforms are the main tool to deal with these scenarios.
These platforms not only provide huge computational capabilities but also transparent scalability
and failure tolerance. It would be really interesting if a MapReduce platform could be installed in
a cluster with GPU devices. This way the GPU-based matching algorithms could scale easily and
take advantage of resources from different machines, allowing them to tackle larger databases.

Our on-going research tries to combine these two ideas: information fusion and big data. We
have developed a structure that allows Apache Spark [ZCD+12] to use our GPU-based methods.
This structure controls how many GPU devices are on each node and how many threads can access
them simultaneously. Then a wrapper transforms the data from sections of a Spark RDD to the
structures that the CUDA implementation uses.

Two fingerprints per individual and both GPU-based designs are combined in this proposal.
The first matching method is applied to one of the fingerprints first and then to the other, and later
the second matching method is applied in the same way. The number of candidate individuals is
reduced after performing each matching operation. The scores of the same candidate are aggregated
as soon as they are computed and this aggregated score is the one used to reduce the number of
candidates.

In distributed systems, the amount of information transferred over the network is an im-
portant factor. For this reason, the designs of the matching algorithms have been modified. For
this system, neither the global neighborhoods of Jiang’s algorhtm nor the cylinders of MCC al-
gorithm are precomputed for the database samples and are computed on demand. This change
lowers the performance of the GPU-based matching algorithms on a single machine, but the general
performance improves since different nodes work in parallel.

Our experimental set up covers a database with up to 4 million individuals (8 million finger-
print samples) and the preliminary results have required an average identification time of less tan
20 seconds on a 5 node cluster with 2 GPU devices per node. The accuracy of the system, without
using any threshold for the identification reaches 99% of positive matchings.

New classification approaches The imbalanced data problem associated to one-vs-one (OVO)
approaches is not the only approach to improve the classification accuracy. There are new and
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more sophisticated techniques based on OVO that could be interesting to try for the fingerprint
classification problem.

In the last few years, deep neural networks [LBH15] have also arisen as a very powerful
tool to solve many complex classification problems, especially those based on images [KSH+12]. It
would be interesting to test the performance of these methods on fingerprint classification.

Both ideas are not exclusive and could be combined using a deep neural network as base
learner for the OVO ensemble.

Multi-modal biometrics The use of different biometric features is a natural way of improving
the accuracy and reliability of the identification [RNJ06]. By using different features it is possible
to provide systems that can keep identifying even in cases of injuries or amputations. However,
the time required for the identification will increase since a separate identification is performed per
feature used.

Hybrid architectures: The number of computational cores available on CPU devices has in-
creased over the last years. Even when using several threads to provide workload to GPU devices,
CPU devices were not used at their full potential. An interesting approach would be to use these
extra CPU cores to perform matching operations working on chunks of the database different from
the ones computed on GPU devices.
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A high performance fingerprint matching system for
large databases based on GPU

Pablo D. Gutiérrez*, Miguel Lastra, Francisco Herrera and José M. Benı́tez

Abstract—Fingerprints are the biometric features most used
for identification. They can be characterized through some
particular elements called minutiae. The identification of a given
fingerprint requires the matching of its minutiae against the
minutiae of other fingerprints. Hence fingerprint matching is a
key process. The efficiency of current matching algorithms does
not allow their use in large fingerprint databases, to apply them, a
breakthrough in running performance is necessary. Nowadays the
Minutia Cylinder-Code (MCC) is the best performing algorithm
in terms of accuracy. Notwithstanding a weak point of this
algorithm is its computational requirements. In this paper we
present a GPU fingerprint matching system based on MCC. The
many-core computing framework provided by CUDA on NVIDIA
Tesla and GeForce hardware platforms offers an opportunity to
enhance fingerprint matching. Through a thorough and careful
data structure, computation and memory transfer design we have
developed a system that keeps its accuracy and reaches a speed-
up up to 100.8× compared to a reference sequential CPU imple-
mentation. A rigorous empirical study over captured and syn-
thetic fingerprint databases show the efficiency of our proposal.
These results open up a whole new field of possibilities for reliable
real time fingerprint identification in large databases. Additional
details are provided at http://sci2s.ugr.es/fingerprint-GPU.

Index Terms—Fingerprint identification, minutiae, matching,
MCC, GPU, CUDA.

EDICS Categories: BIO-PEVA, BIO-MODA-FIN,
BIO-UNIM

I. INTRODUCTION

F INGERPRINTS are the most widely used biometric fea-
tures in identification tasks thanks to the usability and

reliability of systems based on them [1]. Fingerprints are
used in a large number of applications, for example, forensic
identifications, ID cards, access control, etc. Furthermore,
fingerprints are also one of the most studied biometric features.
Proposals addressing their acquisition [2], processing [3],
classification [4] and matching [5] can be found over the last
years.

There are two different kind of issues in this field: verifi-
cation and identification. Verification systems try to determine
if two fingerprints were produced by the same finger with the
highest possible reliability. On the other hand, identification
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systems try to find which fingerprint in a database matches the
input fingerprint. Since the identification complexity is much
higher than verification, identification systems usually accept
an accuracy loss in order to achieve a faster matching process.

The time required to find a fingerprint increases linearly
with the size of the fingerprint database. One of the state of
the art algorithms for fingerprint identification, the Minutia
Cylinder Code (MCC) algorithm [5], takes about 45 millisec-
onds to perform a single comparison between two fingerprints
(matching) [5]. Extrapolating this result, it would take 45
seconds to identify a fingerprint in a database of 1000 indi-
viduals. Therefore, the processing time becomes unacceptably
long when the size of the database reaches the order of tens
or hundreds of thousands. The usual way to improve the
performance in these cases is using a threshold to reduce the
rate of penetration in the database during the search process.
This does not improve the performance of the worst case and it
can cause accuracy loss. Our work does address this scalability
problem.

Graphics Processing Units (GPUs) have proven to be a very
useful tool in the acceleration of computationally intensive
algorithms. These devices introduce massive parallelism in the
calculations reducing run times in several orders of magnitude.
Applications of this technology can be found in different fields
as molecular modelling [6], bioinformatics [7] or shallow-
water simulation [8].

The goal of this paper is to propose an accurate fingerprint
system that is also efficient. To achieve this, we propose
the use of GPUs to introduce parallelism in the fingerprint
matching process. This permits addressing the scalability
problem of the MCC algorithm without losing accuracy, taking
advantage of the shorter running times provided by the GPUs.
A careful redesign of the algorithm is required so that the
maximum performance can be attained out of this architecture.
The shorter matching times expected with this new design will
make the MCC algorithm more usable in real-world problems,
where the systems need to provide a result in a certain
short time and the data size increases exponentially. These
constraints require to process a high number of fingerprints
per second, something that cannot be achieved with traditional
techniques.

The robustness, effectiveness and performance of the de-
signed system have been thoroughly tested through a rigorous
study over large synthetic and captured fingerprint databases
and diverse hardware. The captured fingerprint databases, DB4
[9] and DB14 [10], have been provided by the NIST (National
Institute of Standards and Technology). The synthetic finger-
print database was created using SFinGe [11]. This database
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has a larger size, up to 100 000 fingerprints, which allowed
the scalability study. The performance of the proposal has
been studied comparing it to a reference single-thread CPU
implementation.

To the best of our knowledge there is no published work
where a high performance matching system has been proposed.
That is there is no previous proposal alike the one presented
in this paper.

Due to the space constraints not every experiment could be
included in the paper. Complementary material about the work
done for this paper (including the databases) can be found at
the URL http://sci2s.ugr.es/fingerprint-GPU.

The rest of the paper is organized as follows: Section II
explains the fingerprint recognition problem in detail and
analyzes the MCC algorithm. Section III discusses the charac-
teristics of GPUs and GPU programming. Section IV explains
the proposed technique to improve the performance using
GPUs. In Section V the experiments and results obtained are
shown. Finally, Section VI draws the conclusions and future
work.

II. FINGERPRINT IDENTIFICATION

The matching process is the main bottleneck of identifica-
tion systems, as the input fingerprint is compared with every
fingerprint in the database. Most of the fingerprint matching
algorithms in the literature are based on minutiae, Section II-A
introduces the main common characteristics of this kind of
algorithms. Section II-B explains the MCC algorithm [5] in
detail, which is the basis of the proposed GPU-based system.

A. Minutiae matching
A minutia is a change on the ridges of the fingerprint,

usually ridge endings and bifurcations. A minutia is defined
by its position, angle and type although other representations
like a spectral representation have also been proposed [12].
Minutiae-based algorithms are the most used mainly due to
their reliability and the amount of data involved. There are
two types of minutiae based matching algorithms: global and
local, but most of the algorithms use a combination of both
models. Local algorithms define a neighborhood and try to
match minutiae from two fingerprints with similar neighbors,
while global algorithms use the information of all the minutiae
at once.

Algorithms that focus on local matching processes can be
divided into two categories depending on how they define the
neighborhood of the minutiae:
• Nearest neighbor: The neighborhood of a given minutia

is defined by the K closest minutiae.
• Fixed radius: The neighborhood of a given minutia is

defined by the minutiae inside an imaginary circle of
radius R centered at the minutia.

In the first case, the neighborhood has the same size for every
minutia. This makes nearest neighbor algorithms very efficient
although, usually, very sensitive to missing and spurious
minutiae. The neighborhood size of the fixed radius algorithms
depends on the minutiae density and can vary for each minutia.
This makes this kind of algorithms more complex than nearest
neighbor but more tolerant with respect to missing minutiae.

Fig. 1. Structure of a cylinder.

B. Minutia Cylinder-Code algorithm

The Minutia Cylinder-Code algorithm (MCC) [5], is one
of the most elaborated algorithms in the fingerprint matching
field. MCC uses a combination of local and global matching
and also combines the high efficiency of nearest neighbor
algorithms with a higher tolerance to deformations achieved
by the fixed radius algorithms. Some of the goals of the
authors of the MCC algorithms were accuracy, even when
processing deformed fingerprints, and interoperability with
other algorithms by using standard characteristics (minutiae).

The MCC algorithm uses only the position and orientation
of minutiae and ignores the type. The authors base this
decision on the assumption that feature extractors can easily
mistake this parameter thereby making it unreliable.

A 3-dimensional structure, called cylinder, associated to
each minutia is built to store the neighborhood characteristics
of each minutia m. This cylinder is centered at the minutia, has
a fixed radius, R, and has a height of 2π. As these dimensions
are fixed all the cylinders have the same size, as in the nearest
neighbor methods.

Each cylinder is discretized into Ns × Ns × Nd cells as
shown in Figure 1. Ns defines the resolution of the discretized
2D space around minutia m (Ns × Ns) and Nd represents
the number divisions applied to the height of the cylinder
(2π) which represents angular distance. Each cell has an
associated 2D position pmi,j , which represents the center of the
cell projected on the cylinder base, and an angle dϕk defined
by the height of the cell.

A numerical value Cm(i, j, k) is computed for each cell
which stores the sum of the contributions of every minutia mt

in the neighborhood of pmi,j , Npmi,j . The contribution of each
minutia in Npm

i,j
is based on its location and direction. The

spatial contribution is higher when the location is closer to pmi,j
and the directional contribution is higher when its direction is
closer to the defined angle dϕk. A cell is considered as valid
only if Npm

i,j
contains enough minutiae inside the convex hull

[13] of the fingerprint.
Once the cylinder computation has been completed, a cylin-

der can be discarded if it does not contain enough useful
information (valid cells) or if the number of neighbor minutiae
contained in the cell structure is too low. The discarded
cylinders are usually associated to minutiae on the edges of
the fingerprint as these minutiae are more sensitive to errors
and deformations and therefore less reliable.
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GUTIÉRREZ et al.: GPU BASED FINGERPRINT MATCHING SYSTEM FOR LARGE DATABASES 3

With the cylinder set of the two fingerprints (A and B)
to be matched, a local matching process is started. This
computation is performed on every pair of cylinders and the
results are stored in a matrix. Two cylinders Ca and Cb are
considered matchable if the directional difference between the
two minutiae is not greater than a certain value, δθ, and if the
intersection of valid cells of both cylinders is big enough. If
the cylinders are matchable, their similarity is defined as:

γ(a, b) =

{
1− ‖ca|b−cb|a‖

‖ca|b‖+‖cb|a‖ , if Ca and Cb are matchable

0, otherwise
(1)

Where ca|b is a vector that stores the value of the correspond-
ing cell of Ca if the cell is valid in Ca and Cb; cb|a is defined
in the same way but storing the value of the cell of Cb.

After the local matching process, a global matching process,
called consolidation, is run. This process combines some pairs
of the similarity matrix, usually the best, to obtain the final
score achieved by the fingerprints.

III. GRAPHICS PROCESSING UNITS

Recently, graphics processing units (GPUs) have emerged as
a parallel computing resource offering hundreds or thousands
of processing cores and providing large-scale parallelism on
computing platforms. In this section, the characteristics of
GPUs and GPU programming are exposed. Section III-A pro-
vides a background about these devices and their programming
model. Section III-B explains the high and low level structures
used by GPUs to introduce parallelism. Finally, Section III-C
shows the memory hierarchy present in these devices.

A. Background

GPUs were initially designed to produce 3D graphics in
games and CAD applications. Its hardware is responsible for
the floating point computations involved in rendering in a
highly parallel and efficient way, offloading the computational
cost from the CPU. A Single Instruction Multiple Data (SIMD)
architecture is used in GPU devices to introduce parallelism.

The use of GPUs to run general purpose programs started in
an early stage but developers had to map scientific calculations
onto problems that could be represented by vertices and pixels,
until NVIDIA [14] launched CUDA [15] in 2006. NVIDIA
CUDA is the hardware/software architecture that allows the
use of NVIDIA GPUs as general purpose computation devices,
exposing their parallel processing nature to non-graphics-
specialized developers.

NVIDIA CUDA provides high level abstraction interfaces
that make GPUs more easily programmable from the numeric
software developer’s point of view without the need for
specialized graphics terminology.

The hardware side of the NVIDIA CUDA architecture
presents the GPU as an array of streaming multiprocessors
and the software side is an extension of the C programming
language (CUDA C) that exposes the GPU as a parallel co-
processor.

Fig. 2. Threads, blocks and multiprocessors. Each block is run on the same
multiprocessor.

B. Grids, blocks, threads and warps

Programs that are run on a GPU are called kernels and
contain the set of instructions that will be run across a set of
computing cores. GPU cores are grouped at the hardware level
into stream multiprocessors (SMX).

Threads are instances of a kernel and share therefore the
same code but each thread can work on a different dataset.
Threads are grouped into blocks (see Figure 2); the threads of
the same block:
• are always run on the same multiprocessor (see Figure 2)
• share a small high speed memory area called shared

memory.
All the thread blocks of the same kernel form a grid which
contains all the threads run to complete a certain task.

Each thread is identified by its thread index and the block
index that contains the thread. These indices can have up to
three dimensions.

At a lower level, threads are run in sets called warps.
Threads of the same warp should be running the same in-
struction (in parallel) at the same time because in case of
code divergence serialization occurs producing an important
performance penalty. Warps are run in parallel and warp
switching is very fast because all the register data of each
thread of each warp is kept and not overwritten because of
the context switch. Memory latencies are hidden by switching
to a different warp when the current one requires any memory
access.

C. Memory hierarchy

As on many architectures, registers are the fastest type of
memory and the number of registers needed by a kernel has
an impact on the level of parallelism achieved.

On the next level, each multiprocessor has a 64KB area
which is used as shared memory for threads of the same block
and also as L1 cache. Developers might choose from several
shared memory/cache predefined distributions.

Global memory is the slowest memory type and it is acces-
sible by all threads of all blocks. Its contents are automatically
cached in the L1 cache. This can also be done by the developer
by explicitly loading data from global memory to the shared
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data area. In general, when data is transferred to the GPU it
is transferred to global memory.

The less resources (registers and shared memory) required
by the threads the more threads can be kept ready to be run
or active (high occupancy). When a kernel function achieves
a high occupancy of the device, the memory latencies can be
hidden more effectively improving the performance obtained.

IV. A GPU-BASED ALGORITHM FOR FINGERPRINT
IDENTIFICATION

This section presents the GPU-based design of both the
required data structures and computational steps of the MCC
algorithm. Several performance enhancements and scalability
considerations are also treated in this section. Section IV-A
focuses on the adaptation of the different data structures to the
GPU. Section IV-B details the distribution of each calculation
of the algorithm on the GPU. Section IV-C shows specific
enhancements for identification systems. Finally, Section IV-D
focuses on the scalability problem.

A. Data Structures

Data structures are one of the key issues when designing
GPU based programs because data organization has a big im-
pact on the resulting performance. Coalesced memory accesses
is one of the factors which reduces memory access times by
allowing several memory operations issued by different cores
or GPU threads to be combined into one access.

The use of coalesced memory accesses does also have an
impact on the design of the computational structure of the GPU
program but suitable data structures are the basis to achieve
this goal.

As stated in Section II-B, the MCC algorithm requires
the storage of data related to every minutia (position (x, y),
orientation θ and validity v) and the cylinder cells associated
to each minutia (each cell stores one floating point value). For
each fingerprint, minutiae data is stored as float4 elements.
Float4 data types are native in GPU programs and represent
floating point 4-tuples that offer the optimum memory align-
ment. This representation allows retrieving all the information
of a minutia with a single memory access. It also reduces the
amount of memory transfer operations between the host and
the GPU and increases the throughput achieved.

Cell data is also packed in 4-tuples and stored in a lineal
array. A fingerprint database is therefore constructed using two
lineal arrays. The first one contains the minutiae data of each
fingerprint and the second one the values of the cells associated
to each minutia, in the same order as they are stored in the
first array.

B. Computation

The computational model offered by CUDA requires the
distribution of the input fingerprint data structures computation
and the subsequent matching process into a set of threads.
These threads have to be grouped into blocks that share a
small common memory area and that are run on the same GPU
multiprocessor. The mapping chosen for each computation step
will be detailed in the following sections.

Fig. 3. Computation mapping Ns = 8.

Fig. 4. Computation mapping Ns = 16.

1) Cylinder generation: The fingerprint to be compared
to the fingerprint database has to be represented in terms of
cylinders representing minutiae and cylinder cells. The number
of cells per cylinder (Ns × Ns × Nd) is one of the MCC
algorithm parameters. For this work the two configurations
proposed in [5] have been chosen: (Ns = 8, Nd = 6) and
(Ns = 16, Nd = 6).

For the first configuration, the total number of cells per
cylinder is below the maximum number of threads per block
(which is limited by the device to 1024 since the Fermi
GPU generation) and allows the computation of one cylinder
per thread block. All the computations associated to a cell
(Section II-B) are assigned to one thread. Figure 3 shows the
proposed scheme.

The main advantage of mapping the computations related
to one cylinder to the same thread block is that the process of
determining the validity of a cylinder, which is a reduction
process, will be run on the same multiprocessor and can
be fully implemented using the block shared memory. The
reduction process computes the count of the valid cells of the
cylinder.

When the number of cells per cylinder is increased by
setting Ns = 16, keeping the cell computation-thread mapping
requires the process to be split over several blocks. In our
system, cell layers were assigned to thread blocks. As each
cylinder has Nd layers, the same number of threads blocks is
created. Figure 4 shows a graphic scheme of the computational
structure.

Dividing this process into several blocks requires and addi-
tional reduction step to compute the validity of a cylinder in
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Fig. 5. Similarity matrix computation.

terms of the partial validity values computed for each layer.
2) Fingerprint matching: The fingerprint matching process

requires comparing an input fingerprint to a set of fingerprints
stored in a database. This process can be split into a set of
one to one matching processes. Each of these comparisons
or matching processes has been adapted to the parallel GPU
architecture.

In order to decide whether a fingerprint A matches another
fingerprint B, first a local similarity approach is applied by
computing a similarity value for each cylinder pair (i, j) where
i is the index of a cylinder of fingerprint A and j the index
of a cylinder of fingerprint B. This leads to the computation
of a similarity matrix where each thread block performs a set
of (i, j) similarity computations (see Figure 5), following the
Equation 1.

Each thread of a block will perform the comparison of a
bucket of cells of each cylinder. The threads are organized
into two dimensions inside each block. The first index is used
to identify which cells are computed by the thread while the
second dimension is used to identify the cylinder inside the
block, as it is shown in Figure 6. Depending on the value
of parameter Ns and on the type of consolidation different
numbers of threads per cylinder and cylinders per block have
been used in order to achieve the maximum performance.

After the local similarity computation, as a second step,
a global similarity is carried out. We have selected two
techniques among the ones proposed in [5]:
• Local Similarity Sort (LSS). This technique sorts the local

similarity values of the (i, j) pairs and computes the
average of the best n values. The value of n is defined
by the number of valid cylinders of each fingerprint.

• Local Similarity Sort with Relaxation (LSSR). This tech-
nique first carries out an LSS process, then selects the
nR positions with the highest values and performs an
iterative process with them. nR is greater than n, so, when
the iterative process ends, the algorithm selects the best
n elements out of the nR elements and computes their
average.

This average is the final result (score) of the matching process

Fig. 6. Similarity matrix computational scheme.

between two fingerprints.
The iterative relaxation process compares pairs of minutiae

from both fingerprints, as shown in Equation 2.

λit = wR·λi−1t +(1−wR)·




nR∑

k=1
k 6=t

ρ(t, k) · λi−1t


 /(nR−1) (2)

where λit is the value of item t of the set of nR elements
selected at iteration i, wR is a parameter of the algorithm
and ρ(t, k) is a function that measures the compatibility of
two pairs of minutiae. This function uses the positions of
the minutiae, its orientation and the angles that they form to
measure how likely it is for two minutiae from a fingerprint
to be the same as the other two from another fingerprint. The
initial value of λt is the similarity value of the element.

Considering the usual values of n and nR, GPU sorting
methods do not offer any significant speed-up as this stage.
However, the computation of each iteration of the relaxation
process can be parallelized to improve its performance.

The relaxation kernel is set up with nR thread blocks
to compute a whole iteration of this process at once. Each
thread of the kernel computes a set of compatibility tests
of one element with another and then performs a reduction
operation on shared memory that enables the last thread to
obtain the result of the whole iteration. This way the number
of threads per block can be fixed independently of parameter
nR that changes depending on the number of minutiae of the
fingerprint.

Once the iterative process has finished, the results are
returned to the CPU to perform the selection of the n best
values and compute the score.

C. Performance enhancements for identification systems

A fingerprint identification system’s goal is not to perform
one to one fingerprint matches but to find the matching
fingerprint in a database to match an input fingerprint. In this
section, the reduction of GPU idle periods and the packaging
of several matching processes into one will be treated. Both
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Fig. 7. Reducing the GPU idling periods.

Fig. 8. Packaging of several matching processes.

optimizations allow processing more input fingerprints per
time unit with respect to the initial system design.

As the CPU performs its part of the fingerprint matching
process, the GPU is idling and during that period it could
already start the computations for the next matching process.
To achieve this in our system, the GPU is supplied with
requests from two CPU threads. The two threads run the GPU
matching process of the input fingerprint first with database
fingerprints i and i+1. At the next iteration step with database
fingerprints i+2 and i+3 and so on. This reduces GPU idle
time. It is important to state that this enhancement does not
mean running two fingerprint matching processes in parallel at
the GPU level because the GPU will still dispatch sequentially
the tasks (see Figure 7 ).

Providing enough workload to the GPU is also essential
to obtain the highest performance. Moreover, replacing many
small workload packages by fewer bigger ones does provide a
performance boost in many cases. This fact led to a redesign
of part of the matching process which replaced the one to
one matching processes by sets of one to many matching
processes. This results in each kernel call processing the
input fingerprint and a set of the fingerprints stored in the
database (see Figure 8). It also allows the relaxation kernel
to process different fingerprints in the same block organizing
the threads into two dimensions. In an analogous way to the
similarity computation, the first index is used to identify the
compatibility test to compute and the second to identify the
fingerprint.

Grouping the matching processes and reducing the GPU
idling time are complementary enhancements which have been
used in our system providing a speed-up of over 2× with
respect to the ad-hoc GPU algorithm.

D. Scalability

1) Multi-GPU: Multi-GPU configurations are becoming
more mainstream due to the increasing availability of several
full speed PCI Express sockets on computer motherboards.
In our work we have also addressed these platforms and the

Fig. 9. Asynchronous memory transfers.

solution that has been designed offers almost a lineal speed-up
increase with respect to the number of GPUs.

The two strategies that can be chosen are to use the GPUs
to collaborate on the same task or to perform several isolated
tasks in parallel. In the fingerprint matching process, the tasks
are of two types: input fingerprint processing and the matching
process.

By using several GPUs in a collaborative way it is possible
to get the full acceleration of the computational task at which
they are applied but memory transfers from one GPU to the
rest and also, the reduced amount of workload available to
each GPU can be and important burden to reach the maximum
speed-up. By assigning different tasks to each GPU it is easier
to achieve good scalability but the time required for a single
task is not reduced.

In our system, a setup with two GPUs, both GPUs are used
in a collaborative way to process the input fingerprint. This
allows the reduction of the time required for this process. Each
GPU is assigned the computation of half of the minutiae to be
converted into cylinders. On the other hand, for the matching
process both approaches were tested: each GPU may perform
half of the matching process or each GPU may compute
the matching score of the input fingerprint with different
fingerprints of the database.

2) Fingerprint database size: When an input fingerprint is
to be matched to a fingerprint database, if the database can be
stored in the GPU’s memory the process of transferring this
database from main memory (or disk) can be considered part
of the system initialization process and is not critical. If, on
the other hand, really large fingerprint databases that do not fit
in the GPU global memory are to be considered, the transfer
mentioned above can become a bottleneck.

To overcome this problem we have used asynchronous
memory transfers (from the host computer) that can be per-
formed in parallel with the matching process. The database
is divided into chunks and therefore processed chunk-wise.
While the input fingerprint is matched to chunk i (computation
associated to chunk i), in parallel, chunk i+ 1 is loaded into
the GPU memory (transfer of chunk i + 1 ). This allows
processing arbitrary sized fingerprint databases without adding
any memory transfer overheads (see Figure 9).

Synchronization events are used to prevent the computation
process overtaking the memory transfer process and causing
a race condition, although the chunk size has been carefully
chosen to avoid delays caused by this synchronization require-
ment.

V. EXPERIMENTAL RESULTS

An exhaustive empirical evaluation has been carried out in
this work to study the performance of the proposed GPU-
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based algorithm. This evaluation has been performed on dif-
ferent hardware devices and using different kinds of databases
in order to test the robustness and effectiveness of the
system. Section V-A introduces the performed experiments.
Section V-B describes the hardware where the experiments
has been run and SectionV-C describes the databases that
were used. Section V-D shows the obtained results. Finally,
Section V-E concludes with an analysis of the results.

A. Experiments

The accuracy obtained by the GPU based algorithm is
the same as the one obtained by the CPU implementation.
The accuracy of the later has been tested on the FVC-
onGoing benchmark [16]. As a reference indicator, with our
implementation, we have achieved an EER of 0.62% against
a 0.57% of MCC-baseline. These are certainly very minor
differences (The complete benchmark results can be consulted
in the complementary material website). The GPU-based al-
gorithm and the CPU implementation have been tested on
databases that include plain and rolled as well as captured and
synthetic fingerprints. These databases have different sizes that
range from 1000 to 100 000 fingerprints and different average
number of minutiae per fingerprint. This allows the study of
the algorithms behavior with large databases.

A set of random fingerprints of each database has been
selected and identified against the database, measuring the
average time to perform an identification. The speed-up factor
has been used to represent the improvement obtained. This
factor is computed as the ratio of the single-thread CPU
implementation running time over the GPU implementation
running time.

The accuracy obtained by the GPU based algorithm is the
same as the obtained by the CPU implementation. The differ-
ent organization of the operations and the limited resolution
of both CPU and GPU floating point representation introduce
rounding differences in the matching score. Nevertheless, these
differences do not affect the identification process.

B. Hardware

Two different types of GPUs have been used in the experi-
ments:

1) Tesla GPU, an NVIDIA Tesla M2090 with 512 CUDA
cores, Fermi architecture and 6GB of memory.

2) GTX GPU, an NVIDIA GeForce GTX 680 with 1536
CUDA cores, Kepler Architecture and 2GB of memory.

Two Tesla GPU are installed in a server with an Intel Xeon
E5-2630 processor, while the GTX device is a desktop device
coupled with a commodity PC. Both computers have 24GB of
RAM memory with similar characteristics. On the other hand,
the reference CPU running times of the results were computed
on a server with an Intel Core i7 930 processor.

C. Datasets

The GPU-based algorithm has been tested on different
databases from different sources, including captured and syn-
thetic fingerprints. These databases have different sizes and
types of fingerprints.

TABLE I
KERNEL THREADS CONFIGURATION ON TESLA DEVICE

Similarity Relaxation
Threads per Cylinders Threads per Fingerprints

cylinder per block compatibility per block
Ns 8; LSS 4 64 - -
Ns 16; LSS 32 10 - -
Ns 8; LSSR 4 32 8 24
Ns 16; LSSR 32 10 8 24

TABLE II
KERNEL THREADS CONFIGURATION ON GTX DEVICE

Similarity Relaxation
Threads per Cylinders Threads per Fingerprints

cylinder per block compatibility per block
Ns 8; LSS 4 32 - -
Ns 16; LSS 8 32 - -
Ns 8; LSSR 4 32 8 16
Ns 16; LSSR 8 32 16 8

• The DB4 database has been provided by the NIST
(National Institute of Standards and Technology) [9] and
contains 2 000 pairs of rolled fingerprints. The average
number of minutiae is 135.84 and the maximum 275. It
contains two captures of each fingerprint.

• The DB14 database has also been provided by the NIST
[10] and contains 27 000 pairs of rolled fingerprints and
we used the first 19 000. The fingerprints of this database
have the highest number of minutiae of all the databases
that we have tested: an average of 206.9 and a maximum
of 610. It also contains two captures of each fingerprint.

• A SFinGe [11] based database was synthetically gen-
erated using the SFinGe software with 100 000 plain
fingerprints which were generated following the Galton-
Henry classification [1], [17]. The average number of
minutiae is 40.69 and the maximum 89. Two captures
of each fingerprint were created. This database and more
information about the parameters used in its creation are
available in the website associated to this paper.

D. Empirical results

This section provides the experiments and results carried out
with the datasets mentioned above. The results include running
times using LSS and LSSR global similarity processes and two
different values for the Ns parameter (Ns = 8 and Ns = 16).
The value of the kernel threads configurations are shown in
Tables I and II. All the running time values are expressed
in milliseconds. These results and some extra figures can be
found at the complementary material website.

1) Single GPU results: Tables III to VIII show the results
obtained by the GPU-based method using only one GPU on
the different databases.
• DB4 database: as it contains two captures of each finger-

print, the first one is used to build the database while the
second is used as input for the algorithm. The experiment
performed consists of a series of one hundred identifica-
tions of randomly selected fingerprints. 200 fingerprints
have been grouped in the matching process with Ns = 8,
250 with Ns = 16 on the Tesla GPU and 50 on the GTX
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TABLE III
DB4 RESULTS USING A TESLA DEVICE

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 23 914.0 692.0 34.6
Ns 16; LSS 93 539.0 1756.0 53.3
Ns 8; LSSR 102 474.1 2581.5 39.7
Ns 16; LSSR 174 963.7 3530.3 49.6

TABLE IV
DB4 RESULTS USING A GTX DEVICE

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 23 914.0 603.6 39.6
Ns 16; LSS 93 539.0 2004.5 46.7
Ns 8; LSSR 102 474.1 1810.7 56.6
Ns 16; LSSR 174 963.7 3187.8 54.9

TABLE V
DB14 RESULTS USING A TESLA DEVICE

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 633 546.0 25 415.9 24.9
Ns 16; LSS 2 205 491.2 42 103.0 52.4
Ns 8; LSSR 2 269 426.8 113 308.4 20.0
Ns 16; LSSR 3 749 775.2 105 424.8 35.6

TABLE VI
DB14 RESULTS USING A GTX DEVICE

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 633 546.0 21 854.6 29.0
Ns 16; LSS 2 205 491.2 49 868.2 44.2
Ns 8; LSSR 2 269 426.8 80 559.8 28.2
Ns 16; LSSR 3 749 775.2 91 140.5 41.1

TABLE VII
SFINGE RESULTS WITH A TESLA DEVICE

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 60 396.0 1998.8 30.2
Ns 16; LSS 239 241.4 4763.0 50.2
Ns 8; LSSR 141 631.1 3568.6 39.7
Ns 16; LSSR 331 559.1 6486.2 51.1

TABLE VIII
SFINGE RESULTS WITH A GTX DEVICE

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 60 396.0 1796.3 33.6
Ns 16; LSS 239 241.4 5888.1 40.6
Ns 8; LSSR 141 631.1 2775.4 51.0
Ns 16; LSSR 331 559.1 6994.6 47.4

GPU. Tables III and IV show the average result of one
identification.

• DB14 database: as it was done with the DB4 dataset, the
first scan of each fingerprint is stored in the database and
the second is used as input. One hundred identifications
have been performed in this case. 50 fingerprints have
been grouped in the matching process with Ns = 8 and
25 with Ns = 16. Tables V and VI show the average
result of one identification.
It can be observed that the higher the average minutiae

(a) Tesla device

(b) GTX device

Fig. 10. Speed-up evolution with the SFinGe database.

TABLE IX
SFINGE RESULTS USING TWO TESLA DEVICES COLLABORATING

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 60 396.0 1374.8 43.9
Ns 16; LSS 239 241.4 3250.5 73.6
Ns 8; LSSR 141 631.1 2932.7 48.3
Ns 16; LSSR 331 559.1 4689.5 70.7

TABLE X
SFINGE RESULTS USING TWO TESLA DEVICES WORKING IN PARALLEL

CPU time (ms) GPU time (ms) Speed-up
Ns 8; LSS 60 396.0 1024.0 59.0
Ns 16; LSS 239 241.4 2393.9 99.9
Ns 8; LSSR 141 631.1 1839.5 77.0
Ns 16; LSSR 331 559.1 3288.6 100.8

per fingerprint the less fingerprints need to be grouped to
achieve the optimum performance.

• SFinGe based database: one hundred input fingerprints
were randomly selected to be identified but in this experi-
ment we used different fingerprint database sizes (ranging
from 1000 to 100 000) to study how the GPU based
algorithm scaled with the database size. 600 fingerprints
have been grouped in the matching process with Ns = 8
and 150 with Ns = 16. Tables VII and VIII show
the average result of one identification in the complete
database. Figure 10 shows the evolution of the speed-up
as the size of the database increases.

2) MultiGPU results: The experiments using two Tesla
GPUs were performed with the SFinGe database. As it was
mentioned in Section IV-D1, there are two ways of using
several GPUs: collaborating in the same matching process (Ta-
ble IX) and performing different matching processes indepen-
dently (Table X). 1200 fingerprints have been grouped in the
matching process with Ns = 8 and 300 with Ns = 16 when
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Fig. 11. Fingerprints per second with the DB4 database.

the two GPUs collaborate and 100, in both configurations,
when they work in parallel.

E. Analysis of the results

The proposed GPU algorithm achieves a speed-up between
20× and 53.3× for the Tesla GPU and between 28.2× and
56.6× for the GTX GPU. This improvement in the perfor-
mance enables to increase the number of fingerprints that can
be evaluated in a predefined time, which is a critical factor
in any identification system (especially in large scale ones).
Figures 11 to 13 show the estimated number of fingerprints
that can be processed per second for each database. It is
possible to process up to 55 700 fingerprints per second on a
single GPU while the CPU algorithm only allows processing
up to 1600. In the worse case the CPU algorithm only
processes 5 fingerprints per second while the GPU algorithm
achieves 170 fingerprints in the same time.

The speed-up increases when several GPUs are used and
the results show that the use of different GPUs performing
different matching processes is more efficient than the use
of different GPUs collaborating on the same one. When the
GPUs are collaborating they have to exchange data to perform
different operations and this makes the calculation slower than
performing different matching operations on each GPU. When
the GPUs work in parallel the speed-up is almost doubled,
reaching up to 100.8×.

The speed-up achieved using the LSSR consolidation is
higher than using the LSS consolidation because the LSSR
consolidation is a very slow process in the CPU as it depends
quadratically on parameter nR. In the proposed algorithm this
parameter only defines the number of blocks in the kernel call
and as the kernel runs the blocks in parallel, the influence of
this value is smaller than in the CPU implementation.

As the experiments with the SFinGe database show,
the speed-up remains almost constant independently of the
database size. The use of asynchronous transfers when copying
the database to the GPU (introduced in Section IV-D2) makes
this possible.

Grouping several fingerprints depending on the value of
the Ns parameter allows in turn achieving a higher level of
occupancy in the GPU which increases the performance and
reduces the difference (in terms of speed-up) between the
two algorithm configurations that were tested: Ns = 8 and
Ns = 16.

The differences between the results of the different GPU
devices, Tesla and GTX, are explained by their different ar-

Fig. 12. Fingerprints per second with the DB14 database.

Fig. 13. Fingerprints per second with the SFinGe database.

chitecture. The Fermi architecture of Tesla devices uses faster
cores than the Kepler architecture of the GTX device which
has more but slower cores (in terms of clock rate) and has more
registers per multiprocessor. Furthermore, Kepler architecture
allows to have more blocks active per multiprocessor than
the Fermi architecture. These differences lead to a higher
occupancy value and make the GTX device outperform the
Tesla device for the Ns = 8 configurations. However, this
increase of the occupancy it is not enough to beat the higher
clock rate of the Tesla for the Ns = 16 configurations.

It is also important to state, as it was commented in
Section V-A, that the GPU algorithm achieves the same
accuracy rate than the CPU implementation but the different
organization of some floating point operations and also the
differences between the computing architecture of each device
causes minor score differences. However, these differences are
negligible and do not affect to the identification process.

VI. CONCLUSIONS

We have presented an efficient GPU based fingerprint
method using the MCC algorithm [5]. Our proposal implies
an effective design of the parallel algorithm with the inclusion
of smart techniques to overlap memory transfers with compu-
tation as well as packaging sets of independent identifications.

We obtained speed-up ratios up to 100.8× with respect to a
single-thread CPU implementation. We also showed that our
system has no scaling issues when the fingerprint database size
increases and that the speed-up ratios are highly independent
of the fingerprint type and the mean number of minutiae
per fingerprint. Furthermore, our proposal is able perform
an identification in a reasonable time for large databases,
processing up to 55 700 fingerprints per second with a single
GPU, maintaining the accuracy of the CPU implementation
and making the MCC algorithm usable in real-world situations.

As future work, we plan to study other aspects of the fin-
gerprint identification, as the reduction of database fingerprint
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candidates by using fast preselection methods [18]. We also
plan to study the use of several fingerprints from the same
person in the identification process to improve the accuracy
[19].
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Abstract

Fingerprints are widely used in a variety of biometric identification systems. The fingerprint matching
process is a processing step whose computational requirements limit the size of the fingerprint database that
can be dealt with.

Fingerprint matching algorithms based on minutiae are one of the most relevant families of biometric
identification techniques. The scalability of these models is determined not only by the number of fingerprints
but also the number of minutiae per fingerprint. Therefore, processing millions of fingerprints per second
requires being able to process hundreds of millions of minutiae per second.

In this paper we present a new design of the minutiae based fingerprint matching algorithm presented by
Jiang et al. specifically created for GPU based massively parallel architectures. The parallel design allows
speed-up ratios of up to 15 with one GPU compared to multi-threaded CPU implementations, and up to 54
using several GPUs in parallel and fingerprint processing rates of between 300 000 and 1 500 000 fingerprints
per second.

Keywords: Fingerprint matching, identification, GPU, CUDA

1. Introduction

The fingerprint matching process is the keystone of many biometric identification environments [24].
Different aspects of the fingerprint identification systems such as acquisition [2], classification [32] and
matching [5] have been widely studied, but designing systems able to produce reliable real-time results when
handling large databases with several million fingerprints is still an open problem.

There is a wide range of biometric features related to fingerprints, such as minutiae and orientation fields
[23], and other hand areas that are used in identification systems: finger veins [35], finger knuckles [20],
palmprint [7] and many more. Many identification techniques focus on extracted features but others use
image based operations [17]. This is of course an immense area of research and only a few samples of recent
research work in this field are provided.

Minutiae based fingerprint matching algorithms represent each fingerprint as a set of elements called
minutiae which are extracted from the fingerprint ridges. These minutiae are recorded at singular points
such as ridge endings, bifurcations, sharp direction changes, etc. Each minutia is represented by its 2D
position, direction and its type. The fingerprint matching process for this kind of algorithm consists of
deciding whether the minutiae set of the input fingerprint matches the minutiae set of any of the template
fingerprints stored in a database. The main challenge in this process is being able to handle the deformations,
rotations and translations which occur as a result of different conditions, or the different capturing devices
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used when fingerprints are captured while providing very reliable results. Minutiae based algorithms are
one of the most widely used techniques in biometric identification systems because of the quality of the
results and also because their associated acquisition process is less intrusive than those associated with
other biometric features.

This work focuses on creating a highly efficient fingerprint matching technique able to tackle millions of
fingerprints in a reasonable time (ideally in tenths of a second). The goal is to overcome the limits, in terms
of efficiency and cost, imposed by existing CPU based solutions [29].

The minutia based fingerprint matching technique presented by Jiang et al. [19] is composed of a local
structure matching phase, which accounts for rotations and translations, and a global matching phase to
reduce the number of false positive results and to increase the accuracy of the algorithm.

The use of parallel architectures has enabled us to process large amounts of data in a reasonable time.
Graphics Processing Units (GPUs) provide massive parallelism and are universally used as almost every
computer has one. These devices have been applied to several problems with intense floating point calcu-
lations such as bioinformatics [31], shallow-water simulation [21] and also fingerprint identification [3][16].
Some approaches have explored the idea of using FPGAs (Field Programmable Gate Arrays) for fingerprint
matching tasks [30] [18] but without state-of-the-art matching techniques and hardware or focusing on low
cost proposals that could be used in embedded systems for small-scale scenarios more suited to verification
systems [11][12].

In this work, we propose a massively parallel redesign of the algorithm created by Jiang et al. suited
to GPU based architectures. The process for creating the new fingerprint matching system requires dealing
with different non trivial tasks such as correctly identifying the sources of parallelism, creating an efficient
workload mapping between computational tasks and parallel computing elements to fully utilize the compu-
tational power offered by GPUs, avoiding any GPU idling periods by using asynchronous memory transfers
and overlapping the processing of different tasks (and memory transfers) and avoiding bottlenecks such as
those produced by memory allocations.

The speed-up factor of the many-core approach with respect to traditional multi-core systems is obtained
while maintaining the same accuracy of the original algorithm. The rates of over 300 000 fingerprint matching
operations per second obtained by our proposal with one GPU and up to 1 500 000 matching operations per
second using four GPUs, matching the performance of a cluster with 12 dual processor nodes with 12 physical
cores per node, allows the presented system to be used as part of a hybrid model to achieve the right balance
of accuracy and efficiency by combining it with other, slower but more accurate techniques such as the MCC
fingerprint matching algorithm [5]. These ideas will be discussed in Section 6.6.

The paper is structured as follows: Section 2 describes fingerprints as biometric characteristics and
their importance in the identification systems domain, Section 3 describes the original fingerprint matching
algorithm on which this work is based, Section 4 presents an introduction to GPU based general purpose
programming and its application to the fingerprint identification process, in Section 5 a detailed description
of the GPU based algorithm redesign is provided and Section 6 shows the results of the different experiments
that have been carried out, together with a comparison with parallel CPU implementations and finally, a
hybrid fingerprint matching model is discussed with a view to obtaining a balance between performance and
accuracy. The conclusions are presented in Section 7.

2. Fingerprint based biometrics

Biometric systems are designed to perform the recognition of people. The need to verify that a person
corresponds to the individual it is claiming to be (verification) or to determine which person is trying to
access a certain piece of information, restricted area or device is an issue that has been tackled for over a
century. The idea of identifying criminals by the fingerprints collected from crime scenes started in the 19th
century although evidences exist that some cultures used fingerprints many centuries B.C. As an example
a Chinese clay seal dated 300 B.C was found with a finger imprint and it is believed that in the Chinese
culture they were to some degree aware of the uniqueness of fingerprints 5000 years ago [22, 24].

In the modern era fingerprints started being studied scientifically in the 17th century [4, 15] and its
uniqueness was established in the 18th century [25]. The identification of criminals in the forensics field
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using fingerprints was the main use of this biometric feature and this includes the use of fingerprints as part
of criminal record databases.

Some of the reasons fingerprints are the most used biometric trait:

• They are assumed to be unique.

• They were introduced as identification method many centuries ago.

• They are inalterable unless they get scarred or affected by a burn.

• Fingerprints can be acquired using non intrusive methods .

• They could be captured and compared without the need of electronic devices. Ink impressions and
manual comparison were the techniques used in the pre-electronic era.

• A vast amount of research has been done to create efficient systems for capturing and comparing
fingerprints automatically.

Multimodal systems use more than just a single biometric characteristic to verify the identity of a person
or to identify an individual. Some of these additional characteristics are: iris texture, face, hand/finger
veins, voice, etc. The use of technology has allowed managing these traits but it has not decreased the
importance of fingerprints in the biometrics field. Many countries have fingerprints records of an important
part of the population acquired in the process of issuing the national ID card or passport.

Designing and implementing efficient and robust Automatic Fingerprint Identification (AFI) systems has
been a topic of interest not only to process crime scene latent fingerprints (left involuntarily on surfaces being
touched) but also because of the increasing national security related issues such as fast and automatic pas-
senger identification or even access control in private enterprises. Moreover, the introduction of commodity
hardware capable of fingerprint scanning is increasing the use this biometric feature as identification tool in
personal computers (mainly in laptops) and mobile devices. On some mobile phones the identification using
a fingerprint can already replace less secure and practical techniques such as line patterns, passwords, etc.

Any AFI requires a database of template fingerprints of the population that should be potentially iden-
tified. The second key stone of such a system is an efficient matching technique that can provide a response
in a reasonable time. Currently the main issue is still the matching process as it is performed on site and in
real time. The acquisition and processing of input fingerprints to be added to the database is only performed
once per individual and it not as demanding in terms of processing power as matching a fingerprint against
a big template database in real time.

An excellent compendium of the state of the art of fingerprint processing and matching can be found in
the Handbook of Fingerprint Recognition [24].

2.1. Feature extraction and acquisition

The acquisition of fingerprints using ink impressions on paper has been replaced by techniques based on
electronic devices. These devices scan fingerprints by either posing or rolling a finger on the device. When
fingers are rolled more information (area) is captured which may facilitate the process of identifying latent
fingerprints.

The ridges and valleys that are part of the structure of each fingerprint enable to extract several types
of features:

• Singular points: these are the points ridges are arranged around (usually a number between 0 and 5).

• Orientation maps: composed of the direction of the fingerprint lines at any point.

• Intra-ridge details such as skin pores can be detected using very high-resolution images.

• Minutiae: these are by far the most used fingerprint feature as they can be extracted even from ink
impressions and because they are considered the most reliable feature. Minutiae are ridge points
recorded where a change is detected: bifurcations, ridge ends, relevant direction changes, etc.
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Figure 1: Fingerprint minutiae set

A minutia is mainly defined by its coordinates on the fingerprint picture, orientation or angle and type
label, although additional characteristics can be recorded. A typical number of extracted minutiae would be
between 50 and 200 and a fingerprint can be fully represented using only the minutiae set if minutiae based
fingerprint matching techniques are used. Figure 1 depicts a fingerprint and the minutiae set extracted from
it.

2.2. Matching process

Minutiae based fingerprint matching techniques compute similarity scores between the minutiae sets
of two fingerprints. Calculating this score usually involves computing distances and differences between
neighboring minutiae. The similarity can be evaluated at a global scope, considering the relations of all the
minutiae of the fingerprints and/or at a local level where local relative relations with neighboring minutiae
are considered. State of the art matching techniques usually include both types of similarity evaluation to
compute a global score.

The rest of this work focuses on such a minutiae matching technique and its adaptation to GPU hardware
architectures.

3. Fingerprint matching process using local and global structures

Jiang et al. published a work [19] in which they presented a new minutiae based fingerprint matching
algorithm which allowed a large amount of fingerprints to be processed per second. This algorithm is based
on a two-step strategy in which, first a local matching phase is applied to find the best matching minutiae pair
using only local relations. Afterwards, a second phase performs another matching pass using global relations
to produce a matching score. This scheme addresses the potential distortions, rotations and translations
that any fingerprint might have suffered during the acquisition process.

3.1. Local matching step

Let n be the number of minutiae of a fingerprint (k0 . . . kn−1). The local structure matching step is
based on the comparison of local neighborhoods and for each minutia k of each fingerprint, the l-nearest
neighboring minutiae (lr0 . . . lrl−1) are considered to compute the local structure feature vector based on:

• the relative distance between k and each neighboring minutia lrj

dklrj =

√(
xk − xlrj

)2
+
(
yk − ylrj

)2

• the radial angle between k and each lrj

θklrj = dφ

(
tan−1

(
yk − ylrj
xk − xlrj

)
, ϕk

)
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Figure 2: Local structures using the 2 nearest neighbors

• the difference between the angles of k and each lrj

ϕklrj = dφ
(
ϕk, ϕlrj

)

where ϕ is the local ridge direction and dφ (α, β) is a function that computes the difference between two
angles.

Because of the relative nature of these measures, local structures are independent from rotation and
translations produced during the capturing process. Finally, the number of ridges and the minutiae types
are added to the local structures defining local structure feature vector Flk for each minutia.

Let the input fingerprint be represented by ni minutiae and let each template fingerprint stored in the
database be composed of nt minutiae. The value of nt will be different for each template fingerprint but
for simplicity, nt will be used to represent the number of minutiae of any template fingerprint. In order to
compute a local similarity score (SL) between two minutiae ka and kb, a weighted difference of their local
feature vectors Flka and Flkb

is computed. Taking into account the minutiae sets of both the input and the
template fingerprint, an SL ni×nt sized similarity matrix is obtained which stores the local similarity level
of any pair of minutiae of both fingerprints.

Matrix SL is defined as follows:

SL(ka, kb) =

{
bl−W |Flka−Flkb

|
bl , if |Flka

− Flkb
| < bl

0, otherwise
(1)

where bl and W are empirically defined constants provided in the original paper.
Figure 3 shows the pseudocode of the local matching process of a minutia of an input fingerprint and

a minutia of a template. Although this function contains a loop over the l-nearest neighbors, for l = 2 (or
any low value for l), the complexity of this function can be considered as O

(
1
)
. In that pseudocode each

minutiae ka is represented by a set of two local relationships (lnb.localRelation[j], j={1,2}) where each of
these relationships store the relative distance, radial angle,. . . between ka and its two neighbors. The feature
vector Flkb

is formed by the values that represent each neighboring relationship.
The local matching process of a pair of fingerprints requires the computation of all the possible one-to-one

minutiae matching processes between their minutiae (SL matrix). This process is shown in the pseudocode
of Figure 4 and has a complexity O

(
n2
)

with respect to the number of minutiae per fingerprint.
Finally, performing the local matching step with an input fingerprint against all the template fingerprints

of a database would have a complexity of O
(
n2m

)
where m represents the fingerprint database size and n

represents the number of minutiae per fingerprint.

3.2. Global matching step

After the local matching step, the two best matching minutiae of the previous phase are selected as
reference elements for the global matching process. During this stage, the global structure for each of these
two minutiae is computed using the same relative Euclidean and angular differences of the local phase with
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1 float minutiaeLocalMatching(localNBH lnbi,localNBH lnbt) {

2 //lnbi: local neighborhood of an input minutia

3 //lnbt: local neighborhood of a template minutia

4

5 float sum = 0

6 //Piecewise computation of the weighted difference of feature vectors

7 for j = 1 to l { //l-nearest minutiae

8 lri = lnbi.localRelation[j] //neighboring relationship j of lnbi

9 lrt = lnbt.localRelation[j] //neighboring relationship j of lnbt

10 sum += substractFeatureVectors(lri,lrt)

11 }

12 return (sum < bl)? (bl-sum)/bl : 0.0

13 }

Figure 3: Local matching process of a pair of minutiae

1 float fingerprintLocalMatching(localNBH[] lnbiArray,localNBH[] lnbtArray) {

2 //lnbiArray: all local neighborhoods of the input fingerprint

3 //lnbtArray: all local neighborhoods of a template fingerprint

4

5 maxSL = 0

6 for t1 = 1 to lnbiArray.size() {

7 for t2 = 1 to lnbtArray.size() {

8 SL[t1,t2] = minutiaeLocalMatching(lnbiArray[t1],lnbtArray[t2])

9 maxSL = max(maxSL,SL[t1,t2])

10 }

11 }

12 return maxSL

13 }

Figure 4: Local matching process of a pair of fingerprints
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Figure 5: Global structure

respect to the rest of the minutiae of each corresponding fingerprint (dklj , θklj , ϕklj ) to create global structure
vectors Fgk. The minutiae type and ridge count values are not used in this step. It is important to state
that the global structure of the input fingerprint encodes the relation of the best matching minutiae of the
input fingerprint with the rest of the ni minutiae. The same applies to the template fingerprint.

During the global matching phase a similarity matrix ML is computed which stores the similarity level
of any pair of minutiae based on the global structure matching and the local similarity score of the previous
phase. The computation of the matrix ML requires that each global structure of the input fingerprint be
compared to all the global structures of the template fingerprint.

Matrix ML is defined as follows:

ML(ka, kb) =

{
1
2 + 1

2 SL(ka, kb), if |Fgka − Fgkb
| < Bg

0, otherwise
(2)

where Bg is a vector with constant values defined in the original paper.
The final score Ms is computed as an average of the ML values imposing an important constraint,

ML(ka, kb) is set to 0 if there is any minutia c so that:

ML(ka, kc) > ML(ka, kb)

or

ML(kc, kb) > ML(ka, kb)

to ensure minutiae are not being used several times for different matches. Then, Ms is computed as follows:

Ms = 100

∑
i,tML(i, t)

max{ni, nt}
The complexity of the global matching process is the same as the local matching process: O

(
n2
)
. The

pseudocode scheme is also equivalent and is shown in Figure 6. At the minutia level, the difference of global
feature vectors Fgk for every pair of minutiae is computed.

4. Computing with GPUs and Fingerprint identification: A short snapshot

In this section general purpose computation using GPUs and its application to fingerprint identification
systems is presented. First, the general GPU based computing paradigm will be introduced and then how
it has been used successfully in the complex task of fingerprint identification in large environments will be
discussed.
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1 void fingerprintGlobalMatching(globalNBH[] gnbiArray,globalNBH[] gnbtArray) {

2 //gnbiArray: all global neighborhoods of the input fingerprint

3 //gnbtArray: all global neighborhoods of a template fingerprint

4

5 for t1 = 1 to gnbiArray.size() {

6 for t2 = 1 to gnbtArray.size() {

7 ML[t1,t2] = minutiaeGlobalMatching(gnbiArray[t1],gnbtArray[t2])

8 }

9 }

10 }

Figure 6: Global matching process of a pair of fingerprints

4.1. General purpose computing with GPUs

GPUs have become very common in a wide range of computational environments. These devices were
initially designed to efficiently process the computer graphics pipeline by providing programmable stages.
Nowadays, they are becoming a mainstream computational option in a growing number of areas.

GPUs are currently programmable using frameworks such as openCL [28] and CUDA [8] although there
are other higher level options available (at the expense of efficiency). CUDA is provided by Nvidia [27] for
its GPUs and includes a compiler which adds some extensions to C/C++ to allow parallel applications to be
run on Nvidia GPUs. These GPUs are composed of several Streaming Multiprocessors (SMXs) which are, in
turn composed of several processing units (CUDA cores).The Nvidia Tesla K20m model offers 2496 CUDA
cores grouped into 13 SMXs (streaming multiprocessors) which yields 192 processors per multiprocessor.
These cores are able to run a large amount of threads in parallel using an SIMD or SIMT scheme. Threads
are run in groups of 32 (warp) in such a way that any thread in the warp should be running the same
instruction (although generally over different data elements) at the same time. Threads are also grouped (at
a higher level) into blocks. Threads in the same block can synchronize and use a high speed shared memory.
This is achieved by running all the threads belonging to the same block on the same SMX.

The latest GPU hardware developments aim at increasing energy efficiency and the number of computing
cores. The Fermi architecture of Nvidia provided a maximum of 512 cores per GPU whereas current GPUs
with the Kepler architecture offer up to 2880 CUDA cores. The forthcoming Maxwell architecture will also
focus on increasing performance per watt. Without going into the greatest level of detail, the main difference
between the latest Nvidia GPU generations is the total number of CUDA cores, the number of cores per
multiprocessor and the clock speed of each core. In this regard, GPU design trends are following the same
pattern as in the CPU domain: increase in the parallel computation capabilities, reduction (or only low
increase) of the clock rate and die shrink (reduction of the transistor size). This is the result of having
reached certain power consumption levels which limit performance increases. An increase in the number
of cores helps accelerating compute-bound problems but not memory-bound ones where accessing the data
is the bottleneck. Moreover, if the next generation cores operate at a lower clock speed, memory-bound
problems can actually show no performance increase despite of the larger number of computing elements.

Problems which exhibit a high degree of data parallelism that may be divided into many instances
(threads) of the same code (kernel) running in parallel are candidates to be highly optimized by the use of
GPUs. In order to obtain a good performance it is important to obey certain rules:

• There should be no code divergence inside each warp, in order to avoid code execution serialization.

• Threads should be assigned an adequate workload level in order to achieve a sufficient instruction level
parallelism and keep the pipelines of the CUDA cores as full as possible.

• Threads should not require too many synchronization points between each other.
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• Memory access latencies should be avoided by providing a sufficient level of thread level parallelism.
When a warp needs to perform a memory access operation it is stopped and another warp is run
while memory is accessed. GPUs perform extremely low cost context switches by providing a very
large number of registers that avoid the need to restore the state of a warp after being stopped and
restarted. This means that enough threads have to be supplied in order to keep a large number of
threads ready to be run in case a memory operation needs to be performed.

• Memory access operations should be fully coalesced to allow memory accesses for different threads to
be performed with only one operation.

The problem to be solved using GPUs has therefore to be partitioned into large sets of threads. These threads
have to be grouped into thread blocks depending on the synchronization and shared memory requirements.
Both threads and blocks can be organized in up to three dimensions to better map the problem being solved.
The whole set of thread blocks created is called a grid.

According to the details provided above, boosting the efficiency of an algorithm through the use of GPUs
is not a simple matter of hardware improvement due to a higher number of cores, i.e. processing elements.
On the contrary, a great effort is necessary since the algorithms often require undergoing a thorough redesign
in order to obtain peak performance by using GPUs. In this work we have efficiently mapped a fingerprint
matching algorithm to the GPU architecture as described in the following sections.

Finally, to provide a full picture of the GPU based computing world, gaming oriented graphics cards can
also be used for general purpose high performance computing. The Nvidia GTX GPU family corresponds
to gaming oriented GPUs which nevertheless can provide, in some scenarios, performance similar to Nvidia
Tesla GPUs but that were not designed for high performance computing environments. GTX GPUs lack
ECC (Error Correcting Code) memory and the size of this memory is usually notably smaller, have a lower
double precision computing power and are clocked at higher frequencies theoretically offering less stability
guarantees. GTX GPUs also include only one memory transfer engine, which means only a memory transfer
operation can be performed at a time, while Tesla cards include two. Nonetheless, in applications were GPU
memory size and transfers are not an issue and double precision computations are not required, these type
of GPUs can provide performance similar to Tesla GPUs at a fraction of the cost.

AMD [1] is the other main high-performance GPU producing company in the market. The latest ar-
chitecture designed by AMD GPUs is called GCN (Graphics Core Next [14] ) and it is of course different
from the one developed by Nvidia. This does not mean that GPU software developments are completely
GPU vendor specific because both architectures are equivalent up to a certain level. The GCN architecture
provides computing units (CUs) composed of several SIMD units and each GPU is composed of a set of
CUs. This is equivalent to a GPU being composed of multiprocessors which group a set of CUDA cores.
In the GCN architecture, threads are run in groups of 64 called wavefronts which are also equivalent to
Nvidia’s thread warps. Moreover, both Nvidia and AMD GPUs can be programed with the cross-platform
framework openCL [28], which is an alternative to CUDA.

The GPU-based fingerprint matching system presented in this work is not intrinsically tied to only one
GPU vendor (Nvidia) and could be re-implemented on openCL and run on AMD hardware. The adaptation
would require fine-tuning the workload and work packaging parameters but the main structure could be
maintained.

4.2. Recent approaches on the use of GPUs for fingerprint identification

The problem of adapting the fingerprint identification process to GPU based architectures has not been
dealt with in many works. An image based proposal using GPUs was presented in [3] but the quality of
the extracted fingerprint features was not addressed by that work. The comparison of the GPU and CPU
based software presents some problems as the number of extracted features differs depending on the software
that is chosen and also because the hardware that was used is far from the current state-of-the-art of GPU
devices. According to the authors, the GPU implementation of the superior technique presented in that
paper is slower than the CPU version during the matching phase due to excessive memory transfers.

In [16] a GPU adapted redesign of the well-known MCC [5] fingerprint matching technique is presented.
This work provides very important speed-up factors with respect to CPU based systems and offers a high
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accuracy level but, due to its inherent computational intensity, still does not allow real-time fingerprint
matching for databases of millions of fingerprints.

5. Proposal: fast fingerprint identification using GPUs

As mentioned in the introduction, in order to design a GPU version of the fingerprint matching algorithm
presented by Jiang et al. [19], the main sources of parallelism have to be studied. In this case, considering
a one-to-one fingerprint matching process, the number of minutiae of both fingerprints and the quadratic
nature of the matrices that have to be computed supply a natural source of parallelism.

On the other hand, considering that this work focuses on matching using big fingerprint databases, the
database size also provides a very important source of parallelism.

Another important factor is the low arithmetic intensity of the operations required for both the local
and global matching steps. This fact represents an additional challenge as it requires a careful workload
distribution to fully use the performance offered by GPU hardware.

The proposed fingerprint matching system has been implemented in C++ using the C language extensions
provided by CUDA. The debugging and profiling modules of the Nvidia Nsight Eclipse Edition IDE [26]
were used in the development process.

5.1. Local matching step

The local matching step computes the SL matrix and the best matching minutiae pair from the input
fingerprint and a template fingerprint from the database. Moreover, the SL matrix computation requires
that all the local structures of the input and template fingerprints be processed and afterwards a reduction
operation has to be performed to obtain the maximum of that matrix.

We have chosen to use the two nearest neighbors for each minutia (l = 2) as indicated in [19]. This
means that each local structure is composed of two elements: lr0 and lr1 which are used to compute the
local feature vectors for each minutia. These vectors will be referred to as lnbi (local neighborhood structure
of minutiae i).

A näıve task assignment scheme would map each thread to the minutiaeLocalMatching function (Figure
3). The parallelism would be obtained by replacing the nested loops of each fingerprint local matching step
(Figure 4) by the parallel launch of n2 threads. Finally, due to the parallel computation of the SL matrix
the computation of the maximum value of this matrix would have to be moved to a separate process after
the whole SL matrix has been computed. This scheme is simple and direct but the performance obtained
in early tests shows that it does not provide enough thread level parallelism.

The improved mapping between threads and computational tasks chosen is shown in Figure 7. In
our GPU oriented design each thread computes the similarity between a local structure from the input
fingerprint lnbi and all the local structures from the template fingerprint lnbt0 . . . lnbtnt (each local structure
is composed of two elements). Figure 7 shows the matrix of all the possible comparison operations that
could be performed and the marked area represents the portion of work assigned to a single thread which,
as mentioned, implies pairwise processing one local structure from the input fingerprint and all the local
structures of the template. This scheme provides sufficient workloads for each thread to maintain an adequate
level of instruction level parallelism (loops are partially unrolled) and also allows a partial result of the
reduction operation to be obtained in order to compute the global maximum of the SL matrix. Each thread
performs a local computation of the maximum of the SL matrix, thereby avoiding the need for a dedicated
GPU kernel for this task. The global maximum of the set of local maxima computed by each thread is
computed by the CPU after the GPU completes the local matching computation.

As each thread processes a column of the SL matrix, memory access operations are guaranteed to be fully
coalesced as each thread of a warp accesses input local structures which are stored in consecutive memory
positions.

Figure 8 shows the function that is assigned to each thread, which has an increased instruction level
parallelism and allows a part of the maximum computation to be included in the same kernel. Figure 9
shows the structure of the local matching process of a pair of fingerprints using the new scheme.
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Figure 7: Local matching process

1 float optimizedMinutiaeLocalMatching(localNBH lnbi,localNBH[] lnbtArray) {

2 //Process the ith local neighborhood of the input fingerprint

3 //and all the local neighborhoods of the template fingerprint

4 lmax = 0.0

5 i=lnbi.index

6 for t = 1 to lnbtArray.size() { //This loop is marked to be unrolled

7 float sum = 0

8 for j = 1 to 2 { //l=2

9 lri = lnbi.localRelation[j]

10 lrt = lnbtArray[t].localRelation[j]

11 sum += substractFeatureVectors(lri,lrt)

12 }

13 SL[i,t] = (sum < bl) ? (bl-sum)/bl : 0.0

14 lmax = max(lmax,SL[i,t])

15 }

16 return lmax

17 }

Figure 8: Optimized local matching process of a pair of minutiae
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1 float optimizedFingerprintLocalMatching(localNBH[] lnbiArray,localNBH[] lnbtArray) {

2 maxSL = 0

3 //This loop is parallelized using lnbiArray.size() GPU threads

4 for t1 = 1 to lnbiArray.size() {

5 localMax[t1] = optimizedMinutiaeLocalMatching(lnbiArray[t1],lnbtArray)

6 }

7 for t1 = 1 to lnbiArray.size() {

8 maxSL = max(maxSL,localMax[t1])

9 }

10 return maxSL

11 }

Figure 9: Optimized local matching process of a pair of fingerprints

Figure 10: Template fingerprints workload packaging

Nevertheless, the aforementioned computing scheme requires ni threads to compute matrix SL and,
taking into account the usual values of ni, the thread level parallelism would be quite low. To increase the
thread level parallelism several template fingerprints are processed by each CUDA grid. This means that
the matching process between the input fingerprint and the fingerprint database is packaged into chunks
whereby, at each step the input fingerprint is matched against a bucket of template fingerprints. Considering
that we are focused on large fingerprint databases, this mechanism provides an adequate workload level to
achieve a good thread level parallelism.

In order to set the number of threads per block and to prevent blocks being too small (input fingerprints
with a low number of minutiae) which could make the maximum number of blocks per SMX a limiting
factor, a variable number of template fingerprints are processed per block and the block dimension has been
set to 128. The number of template fingerprints processed by each block depends on the number of minutiae
per fingerprint and fingerprints with a number of minutiae larger than 128 would require more than one
thread-block to be processed. Figure 10 shows an example of how one template fingerprint and part of
another one are assigned to one thread block. In that figure, the marked (and joined by a horizontal brace)
area represents the workload assigned to a whole thread block. Each thread compares an lnbi local structure
with all the local structures of one template fingerprint A. As the input fingerprint has less than 128 (block
size) local structures, the two last threads of the block compare lnb0 and lnb1 of the same input fingerprint
with the all the local structures of the next template fingerprint B.

To summarize the task assignment: each thread processes one local structure of the input fingerprint and
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Figure 11: Global matching process

all the local structures of one template fingerprint. Each thread block includes the computation associated
with 128 input fingerprint local structures.

5.2. Global matching step

The global matching step computes the ML matrix which has a different conceptual definition to SL,
but the computations required have a similar structure for both matrices. Each thread is assigned a
global structure from the input fingerprint gnbi and all the global structures from the template finger-
print gnbt0 . . . gnbtnt. Figure 11 shows how each thread is assigned the similarity computation of the global
structure of one fingerprint and all the global structures of the template one. In this case, as the computa-
tion of the average of ML has to ensure that a minutia is only paired with another minutia from the other
fingerprint, no local reduction process is performed during the computation of ML. This fact reduces the
arithmetical intensity with respect to the number of memory access operations.

As in the previous stage, each thread block has a fixed number of threads, and depending on the number
of minutiae of the fingerprint, a variable number of template fingerprints is processed by each thread block.

After matrix ML has been fully computed by iteratively using a parallel reduction kernel (which sets the
row and column corresponding to a minutiae pair to 0 once it has been used in the average computation)
the final score is obtained. At each iteration the local maximum associated with each input global structure
(one matrix column) of matrix ML is computed by each thread. The second step uses the high speed thread
block shared memory to iteratively perform a parallel reduction operation to compute the global maximum
using the previous local results. After an iteration finishes, the values of ML which are in the same row and
column as the maximum value that has just been computed are set to 0 (this operation is also performed
in parallel). The maximum values obtained at each step are the values required to compute the final score
Ms.

5.3. Fingerprint matching against a database

As has been mentioned above, the use case we are considering is a scenario in which each input fingerprint
has to be matched against a fingerprint database. This process is not divided into several one-to-one matching
processes because that scheme would not produce sufficient thread level parallelism. As has been stated in
the previous sections, the whole process is packaged into chunks where the input fingerprint and a set of
template fingerprints are processed each time. Moreover, depending on the number of minutiae of the input
fingerprint, each thread block may include the processing of several template fingerprints.

When an adequate value for the chunk size is used, this scheme provides the required thread level
parallelism. Nevertheless, during the whole matching process of a database chunk, there are certain moments
when the CPU computes its part of the process, for example when it is finishing the reduction of the SL
matrix, that the GPU is idle. These periods are relatively short but we have tried to avoid them. In order
to keep the GPU from idling, several workload packages are issued to the GPU in parallel. This allows the
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GPU to process the workload corresponding to one fingerprint database chunk while the CPU does its part
of the computation of a different chunk.

Each chunk or work package has to be transferred to the GPU to be processed and memory transfers
using the PCI Express bus could become a bottleneck if they are not handled properly. In our system
asynchronous memory transfers are scheduled in parallel to the matching processes. At the same time a
chunk i of the database is processed on the GPU, chunk i + 1 is transferred from the main memory to
the GPU. Due to the lack of dependencies between work packages and the capability of GPUs to overlap
computing phases and memory transfers, this scheme allows the cost of memory transfers to be completely
hidden.

The chunk size needs to be large enough to make the latency related to memory transfers and kernel
launch operations negligible. Once a certain chunk size is reached, further increasing it does not provide
any additional benefits in terms of run time and only increases the memory footprint because each kernel
needs to keep twice the chunk size allocated during the whole process.

5.4. MultiGPU matching process

As multi-GPU computing devices are becoming common due to the availability of several high-speed PCI
Express slots on many PC motherboards, we have extended our GPU fingerprint matching to support an
arbitrary number of GPUs. Each GPU requests its workload package and processes it as has been described
in previous sections. When the work has been finished, another workload package is requested from the
pending work queue.

This scheme allows multiple GPUs to collaborate efficiently in the fingerprint matching process of each
input fingerprint. As the workload is assigned dynamically, the performance differences between the GPUs
has a lower impact on the final performance than if it was assigned statically at the beginning of the process.
The workload assignment strategy follows a classic manager-workers scheme. The host computer acts as
manager and supplies work to the GPU workers upon request. As the processing task is divided into chunks
(see Section 5.3) faster GPUs will naturally request and process more chunks than slower ones.

In practice each GPU is used as an independent high performance co-processor (each with its own mem-
ory). Memory transfers are performed from/to the host computer memory to/from each GPU using DMA
operations over the shared PCI-E bus. As no communication is required between GPUs their processing
tasks are kept independent from each other which reduces the system complexity.

6. Experiments and analysis of results

To assess the effectiveness and efficiency of our proposal we have designed and carried out a thorough
empirical analysis. It is described in this section, in which we detail the hardware used (Section 6.1),
fingerprint databases (Section 6.2) and experiments (Section 6.3). After that, the results obtained are
presented (Section 6.4). The section concludes with the analysis of the obtained results (Section 6.5) and
the proposal of a GPU based multi-technique identification pipeline (Section 6.6).

6.1. Hardware

Our proposal has been tested on a variety of hardware platforms including different CPUs and GPUs.
These platforms are composed of a cluster node and a desktop computer.

The cluster node is equipped with two Intel Xeon E5-2630 processors at 2.30GHz and 128 GB of RAM
memory. Each of these processors has 6 cores that allow the running of up to 12 threads per processor using
hyperthreading (24 threads using both processors). This node is equipped with four Nvidia Tesla GPUs
where Tesla denotes the brand of Nvidia GPUs for high performance computing servers. These GPUs are
characterized by a higher amount of memory and stability (at the expense of a lower clock rate) compared
to their desktop GTX counterparts. Two different models of GPUs were used:

• Two Nvidia Tesla K20m: Kepler architecture with 2496 CUDA cores at 0.7 GHz and 5 GB of memory.

• Two Nvidia Tesla M2090: Fermi architecture with 512 CUDA cores at 1.3 GHz and 6 GB of memory.
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Scanner parameters

Acquisition area: 0.58” x 0.77” (14.6mm x 19.6mm).

Resolution: 500 dpi, Image size: 288 x 384.

Background type: Optical, Background noise: Default.

Crop borders: 0 x 0.

Generation parameters

Impression per finger: 25. Class distribution: Natural.

Set all distributions as: ”Varying quality and perturbations”

Generate pores: enabled, Save ISO templates: enabled.

Output settings

Output file type: WSQ.

Table 1: Parameter specification used with SFinGe tool

These four GPUs are connected to the same host computer by using four PCI Express slots.
The Fermi architecture provides higher clock frequencies but a lower number of cores. On the other

hand, the Kepler architecture, which is the latest with high-end products released by Nvidia, provides a
higher number of cores but at a lower clock rate than Fermi devices.

The desktop computer is equipped with an Intel Core i7-3820 at 3.6GHz processor and 24 GB of RAM.
This processor has 4 cores that allow the running of up to 8 threads using hyperthreading. An Nvidia
GeForce GTX 680 GPU is attached to this computer. This device belongs to the Kepler architecture family
and has 1536 CUDA cores at 1.06 GHz and 2 GB of memory. This GPU is a computer graphics oriented
device.

6.2. Datasets

Two different fingerprint databases have been used to test the proposed algorithm. These databases
have different sizes, sources, number of minutiae and fingerprint types.

• The DB14 database, provided by the NIST (National Institute of Standards and Technology) [33],
includes two samples of 27 000 rolled fingerprints, making a total of 54 000 fingerprints. The fingerprints
in this database generate a large number of minutiae with an average of 206.9 and a maximum of 610.
Minutiae were extracted using the mindtct [34] software.

• A synthetic fingerprint database generated using the SFinGe software [6]. Table 1 shows the parameters
used for SFinGe. Although this database contains 25 impressions of each fingerprint, only two samples
of 400 000 plain fingerprints were used in this work, making a total of 800 000 fingerprints. The
selection of impressions was configured to discard samples with less than 40 minutiae. The minutiae
of each fingerprint were extracted using the mindtct [34] software generating an average number of
51.8 minutiae per fingerprint and a maximum of 141.

6.3. Experimental framework

To measure the performance of our proposal, different experiments have been performed using the
databases and hardware introduced in the precedent sections. The experiments consisted of performing
a set of identifications of a fingerprint against the database and measuring the average time employed. One
hundred fingerprints were randomly selected from each database as input fingerprints.

The speed-up factor measures the improvement obtained by a parallel implementation of a system against
a sequential reference implementation. We have used this factor to measure the improvement achieved by
our GPU based system compared to a parallel reference CPU implementation. The CPU implementation of
the algorithm uses 24 threads when running on the server node and 8 threads when running on the desktop
computer. The experiments performed also show the performance using several GPUs processing fingerprint
matching tasks in parallel on different parts of the database.

To emulate a deployed system, the local structures of each template fingerprint have been precalculated
and preloaded before the identification process starts. This consumes a high amount of RAM memory
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CPU time (s) GPU time (s) Speed-up

K20 x1 26.576 3.548 7.49

M2090 x1 26.576 3.764 7.06

K20 x2 26.576 1.780 14.93

M2090 x2 26.576 1.888 14.07

4 GPU 26.576 0.943 28.20

Table 2: DB14 results with respect to the server node (54 000 template fingerprints)

CPU time (s) GPU time (s) Speed-up

K20 x1 10.802 0.688 15.69

M2090 x1 10.802 0.731 14.79

GTX 680 10.802 1.030 10.48

K20 x2 10.802 0.354 30.49

M2090 x2 10.802 0.376 28.71

4 GPU 10.802 0.199 54.20

Table 3: DB14 results with respect to the desktop computer (10 000 template fingerprints)

making it impossible to perform the same tests on the desktop computer and on the cluster node. Two
experiments have been carried out with each database, one on each computer, to compare the run times
obtained by the different CPUs. Each experiment uses a different amount of template fingerprints, limited
by the amount of memory available on each computer.

6.4. Empirical results

This section presents the results obtained from the set of experiments that have been carried out. It also
describes the parameter values that have been used and the number of template fingerprints used in each
experiment.

The run times included in the tables correspond to the average time of a single identification process
computed by performing 100 identifications using 100 different and randomly selected fingerprints from each
database as the input. This section also describes the parameter values that have been used and the number
of template fingerprints used in each experiment.

• DB14 database: The experiment performed on the server node uses all the fingerprints of the database
as templates, a total of 54 000 fingerprints. By contrast, the experiment performed on the desktop
computer uses only the first 10 000 fingerprints of the database as templates. The GPU algorithm
packs 350 template fingerprints per kernel launch for Tesla devices and 400 when the GTX 680 device
was used. Three kernels are run in parallel on every device.

Tables 2 and 3 present the results of each experiment with this database. The speed-up factors range
from 7 using one GPU to 28 using four GPUs with respect to the server node and from 15 to 54
with respect to the desktop computer. It is important to highlight that the reference CPU time was
obtained on a dual processor with 12 physical cores (usable as 24 cores using hyperthreading) in the
case of the server node and a Core-i7 CPU (8 cores using hyperthreading) using a multithreaded code
in both cases.

• SFinGe database: The experiment performed on the server node uses the whole database, a total of
800 000 fingerprints. On the desktop computer, only the first 150 000 fingerprints were used. Indepen-
dently of device type, 1250 template fingerprints were processed per kernel run. However, on Tesla
devices five parallel kernels were run while on the GTX 680 the best results were obtained with four
parallel kernels.

Tables 4 and 5 show the results of the experiments using the SFinGe database. The speed-up factors
with respect to the multithreaded CPU systems range from 5 and 47 depending on the type of CPU
and the number of GPUs used.
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CPU time (s) GPU time (s) Speed-up

K20 x1 11.580 2.188 5.29

M2090 x1 11.580 1.938 5.98

K20 x2 11.580 1.101 10.51

M2090 x2 11.580 0.972 11.91

4 GPU 11.580 0.533 21.71

Table 4: SFinGe results with respect to the server node (800 000 template fingerprints)

CPU time (s) GPU time (s) Speed-up

K20 x1 5.505 0.448 12.28

M2090 x1 5.505 0.393 14.02

GTX 680 5.505 0.617 8.92

K20 x2 5.505 0.230 23.97

M2090 x2 5.505 0.202 27.30

4 GPU 5.505 0.115 47.89

Table 5: SFinGe results with respect to the desktop computer (150 000 template fingerprints)

CPU time (s) GPU time (s) Speed-up

K20 x1 57.320 0.688 83.27

M2090 x1 57.320 0.731 78.46

GTX 680 57.320 1.030 55.63

K20 x2 57.320 0.354 161.81

M2090 x2 57.320 0.376 152.34

4 GPU 57.320 0.199 287.58

Table 6: DB14 results with respect to a single-threaded implementation on the desktop computer (10 000 template fingerprints)

CPU time (s) GPU time (s) Speed-up

K20 x1 26.395 0.448 58.89

M2090 x1 26.395 0.393 67.20

GTX 680 26.395 0.617 42.75

K20 x2 26.395 0.230 114.93

M2090 x2 26.395 0.202 130.91

4 GPU 26.395 0.115 229.59

Table 7: SFinGe results with respect to a single-threaded implementation on the desktop computer (150 000 template finger-
prints)

Since this section focuses on showing the performance and scalability of the proposed system, in order
to use as many fingerprints as possible, both samples of each fingerprint were stored in the databases and
used for the experiments. Using both samples as templates for each identification allowed duplicating the
size of the databases without having to generate more fingerprints.

In order to provide another perspective on the additional performance improvements GPUs provide,
Tables 6 and 7 show the speed-up with respect to a single-threaded implementation of the algorithm on the
desktop computer.

Finally, we provide some additional data about the experimentation process. The total number of
different threads per identification process run using the DB14 and SFinGe databases on each Tesla device
was 2E+7 and 8E+7 respectively. On the GTX device, as a reduced version of each database was used, the
total number of threads run on this device was 4E+6 and 1.5E+7, respectively. The average percentage of
time at least one warp was active on a multiprocessor [9] ranged from 84% to 90.5% during the computation
steps and from 74% to 86% in the reduction steps. The ratio of the average active threads per warp with
respect to the maximum number of threads per warp [9] ranged from 86.1% to 96.5% for the computation
steps and from 80.6% to 90.7% for the reduction steps.

The GPU memory requirements (on each GPU) depend on the size of the work packages or chunks as
it is necessary to keep stored the set of template fingerprints used in the current matching task and the
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Figure 12: Influence of the chunk size for each GPU type (SFinGe database)

next set that will be processed. The latter is transfered asynchronously while the current chunk is processed
(see Section 5.3). The other two factors that influence the memory requirements are the average number
of minutiae per fingerprint and the number of parallel matching kernels run on each GPU. The average
GPU memory footprint of the experiments ranged from 650 MB to 1.8 GB depending on the values of the
aforementioned experimental parameters.

The effect of different chunk size values is shown in Figure 12. Once a certain value is reached the run
time remains almost fixed but the memory requirements increase as the space for the chunk being processed
and the next chunk remains allocated during the whole matching process.

6.5. Analysis of the results

The results presented in the previous section show that very important speed-up ratios of up to two
orders of magnitude are obtained by applying GPUs to the fingerprint matching process (see Tables 2, 3,
4 and 5). It is important to highlight that the CPU implementations are multi-threaded ones that use all
the cores and hyperthreading capabilities of each CPU. GPU speed-up values are often presented compared
only to single-threaded designs but this is not the case here. It is also important to state that the server
node provides two physical CPUs.

The experiments also show how the performance scales almost linearly as more GPUs are added. This
fact allows for an efficient use of the full computational power of the four GPUs installed on the same host
computer. It also illustrates an effective way of building cost efficient and high density fingerprint matching
nodes.

These results are only possible by assigning an adequate workload amount per thread, an efficient map-
ping of the problem to the computational model provided by CUDA, avoiding GPU idle times and employing
an efficient asynchronous memory transfer design. The importance of the memory transfer scheme is high-
lighted by the fact that the results obtained using a consumer grade graphics card (GTX 680) showed a
lower performance despite the higher clock frequency due to the reduced parallel memory transfer capabilities
compared to the Tesla counterparts.

As an additional performance measure we provide the number of fingerprint matching tasks than can be
run per second. This information is extracted from the result tables of the previous section. Tables 8 and 9
show how, depending on the fingerprint database and device, the results range from less than one thousand
when using one GPU to more than a million.

Finally, in order to offer a full picture of the performance level obtained, Figures 13 and 14 show the
number of matching operations that can be performed per second with each device and database.

Comparing the results with those presented in [29], by using only two GPUs, the work presented in this
paper is roughly on a par with a cluster of 12 dual processor nodes with 12 cores per node. In [29], using a
400 000 sized fingerprint database, the system requires 0.4922 seconds for a matching operation against the
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DB14 SFinGe

Xeon CPU 2032 69 086

K20 x1 15219 365 702

M2090 x1 14 345 412 834

K20 x2 30 342 726 382

M2090 x2 28 598 822 639

4 GPU 57 294 1 499 996

Table 8: Fingerprints per second using the full-sized databases

DB14 SFinGe

Core i7 CPU 926 27 247

K20 x1 14 528 334 692

M2090 x1 13 687 381 892

GTX 680 9706 242 969

K20 x2 28 229 653 118

M2090 x2 26 578 743 932

4 GPU 50 171 1 304 752

Table 9: Fingerprints per second using the medium-sized databases for the desktop computer

(a) Server node using the full-sized database (b) Desktop computer using the medium-sized database

Figure 13: Matching operations per second using the DB14 database

(a) Server node using the full-sized database (b) Desktop computer using the medium-sized database

Figure 14: Matching operations per second using the SFinGe database
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database (812 678 matching operations per second ) and in our GPU based system, using only two GPUs and
a fingerprint database with 800 000 fingerprints the performance reaches up to 822 669 matching operations
per second (see tables 4 and 8). These results show that the hardware cost per matching operation and power
consumption per matching operation ratios are clearly favorable to the GPU based system. It is important
to highlight that the fingerprint databases mentioned in this comparison were the same. The experiment
using the cluster used the first 400 000 fingerprints and the GPU system the first 800 000 fingerprints of the
same fingerprint database.

6.6. Managing the performance vs. accuracy trade-offs with two level matching systems

In order to provide the reader with an insight of the accuracy of the presented fingerprint matching
technique, the information obtained as a result of its submission to the FVC onGoing project [10, 13] are
presented. This project provides an automated evaluation system for fingerprint recognition algorithms
which resulted as an evolution of several fingerprint verification competitions. The FVC onGoing web plat-
form serves as a fair testing environment which allows to compare different algorithms under the same
conditions (it uses sequestered datasets). Its main drawback is that it only allows the submission of CPU
based algorithms which excludes, for example, GPU based solutions. This means the efficiency indicators
obtained can not be taken into account for high performance computing platforms which require specific
pieces of hardware. This section will therefore only consider the accuracy related results of the aforemen-
tioned competition. Section 6.4 provides detailed information about the performance results on different
kind of GPU devices and datasets.

The GPU-based fingerprint matching technique presented in this paper offers a high performance in terms
of millions of fingerprints processed per second but its error rates are too high (2% Equal Error Rate in the
standard test of the FVC onGoing project) in applicability domains where high accuracy is required. Other
models exist that offer lower performance levels but provide better error rates such as the MCC technique
(0.4% ERR in the same test) for which a GPU based version exists [16]. A detailed comparison based on
the FVC onGoing tests is shown in Table 10 and Table 11. Those tables show the false non-matching rates
(FMNR) obtained allowing a certain false matching rate (FMR):

• FMR100: the lowest FNMR for FMR≤ 1%

• FMR1000: the lowest FNMR for FMR≤ 0.1%

• FMR10000: the lowest FNMR for FMR≤ 0.01%

• ZeroFMR: the lowest FNMR for FMR= 0%

• ZeroFNMR: the lowest FMR for FNMR= 0%

Algorithm ERR FMR100 FMR1000 FMR10000 ZeroFMR ZeroFMNR

MCC (Baseline) 0,411% 0,285% 0,602% 0,999% 1,840% 95,151%

Jiang 2,039% 2,608% 4,856% 7,648% 9,614% 100,000%

Table 10: FVC onGoing results (Standard test)

Algorithm ERR FMR100 FMR1000 FMR10000 ZeroFMR ZeroFMNR

MCC (Baseline) 1,765% 2,050% 3,618% 5,704% 6,071% 99,986%

Jiang 6,214% 11,175% 18,794% 24,441% 26,542% 100,000%

Table 11: FVC onGoing results (Hard test)

In identification scenarios there are equivalent rates as the ones used in verification tests.

• FNIR (False Negative Identification Rate). Under certain circumstances this rate can be considered
equal to the FNMR [24].
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Figure 15: Cumulative match characteristic (CMC) curve computed identifying 1% of the fingerprints of the SFinGe database
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Figure 16: Cumulative match characteristic (CMC) curve computed identifying 1% of the fingerprints of the DB14 database

• FPIR (False Positive Identification Rate). Under certain circumstances this rate can be considered
equal to:

1− (1− FMR)N

where N is the number of template fingerprints. If the FMR is very small FPIR ≈ N · FMR [24].

Nonetheless, in closed-set identification tests (where fingerprints of individuals not enrolled in the system
are not used) the accuracy of identification systems can also be represented using the Cumulative Match
Characteristic (CMC) curve. This curve shows the probability of the correct identity associated to the
input fingerprint being in the candidate set of t elements produced by the identification system (t values
are represented on the x-axis). Figure 15 and 16 represent the CMC curves of the Jiang and the MCC
fingerprint matching techniques using the DB14 and SFinGe databases. For this test only one sample of
each fingerprint was used as template and 1% of the second samples of each fingerprint where used as input.

Regarding the Jiang matching technique, Figure 15 shows that by setting the length of the candidate
list output by the identification process to less than 1% of the database size a 98% accuracy rate is reached.
Using a candidate list length of less than 8% of the database size a 99% accuracy rate is obtained. By
contrast, the MCC algorithm reaches a 98% accuracy rate using only the best 8 candidates and a 99%
accuracy level is achieved using a candidate list of length 0.07% of the database size.
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On the other hand, Figure 16 shows that on a database with fingerprints of lower quality a candidate list
with a size of the same order as the database size is required to achieve a high identification rate. Figure 16
also shows that MCC again provides the higher accuracy rates (at the expense of a higher computational
cost).

At the performance level, comparing the results of [16] with those presented in this work, the GPU-based
Jiang matching module processes over 7 times more fingerprints per second than the fastest GPU-based MCC
version (using the SFinGe database, a Tesla M2009 GPU and MCC-8-LSS). This performance difference
grows when MCC-16 is used (more cylinder cells per minutia) or a more computationally demanding global
similarity technique is used for MCC (LSSR).

These facts could lead to the design of a hybrid matching system to produce a complete high speed
fingerprint matching system for extremely large fingerprint databases. The faster and less accurate model
would be used as a first stage filter to provide a set of candidate template fingerprints that could match
the input fingerprint. In a second step, the more accurate but computationally demanding technique would
be applied to the candidate set to obtain the final matching score. This scheme reduces the database
penetration rate required for the second stage.

This coupling does of course require a careful binding system design to avoid the introduction of any
bottlenecks produced by additional memory transfers. It would also require carefully tuning the parameters
of each algorithm to find the right balance between the false match rate and false non-match rate at each
stage. The false non-match rate should be minimized at the first stage at the cost of a higher false match
rate taking into account the fact that only a preselection of the matching fingerprints will be created.

The proposed system would also require a highly optimized minutiae extraction system on a par with
the matching system. GPU based hardware is also a candidate architecture type to be used as a base for
the fingerprint capturing module but its connection to the rest of the system and the use of fingerprints of
different fingers simultaneously are points that need to be addressed.

Figure 17 shows a block diagram of the proposed hybrid matching system. The fact that several matching
modules are run in parallel reflects both the fact that several matching processes are run per GPU and that
the whole process can be distributed over several independent GPUs or even several independent GPU
nodes.

In summary, creating an efficient fully GPU based fingerprint processing pipeline presents some open
questions that are not within the scope of this work and which deserve to be analyzed in a future study.

7. Conclusions

The main objective of this work was to obtain an extremely fast fingerprint matching algorithm that
could be used on a two stage fingerprint matching system. The GPU based algorithm presented in this
work is a perfect candidate for the first stage building block of such a system, taking into account that up
to 1 500 000 fingerprint matching operations can be performed per second when four GPUs are used.

An in-depth and careful study of the sources of parallelism has been performed. This has enabled the
design of an effective algorithm with an adequate task granularization and mapping between computational
elements and algorithmic stages, efficient memory transfer operations and a task overlapping scheme.

The performance that was obtained matches that offered by a CPU based cluster composed of 12 dual
processor nodes. This performance is obtained without losing any accuracy with respect to the reference
CPU system and providing excellent scalability ratios as the number of GPU devices increases.

As future work we present an analysis for the design of a hybrid fingerprint matching system based on
different techniques. The model presented in this paper would be used as a first processing step (by adjusting
the matching threshold) to reduce the penetration rate in the fingerprint database required by another more
accurate model such as MCC.
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Figure 17: 2 level fingerprint matching system
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Abstract

The k nearest neighbor (kNN) rule is one of the most used techniques in data

mining and pattern recognition due to its simplicity and low identification er-

ror. However, the computational effort it requires is directly related to the

dataset sizes, hence delivering a poor performance on large datasets. The use

of graphics processing units (GPU) has improved the run-time performance of

the kNN rule but the computational requirements of current approaches limit

this performance as the dataset size increases.

In this paper, we propose a new scalable and memory efficient design for a

GPU-based kNN rule, called GPU-SME-kNN, that breaks the dependency be-

tween dataset size and memory footprint while delivering high performance. An

experimental study of GPU-SME-kNN is presented showing a high performance,

even in cases that other methods cannot address, while the computational re-

quirements are suitable for most commercial GPU devices. Our design has also

been applied to kNN-based lazy learning algorithms reducing run-times in a

significant way.

Keywords: kNN, GPU, CUDA.

∗Corresponding author
Email address: pdgp@decsai.ugr.es (Pablo D. Gutiérrez)

Preprint submitted to Information Sciences May 19, 2016

The published paper can be found here:  
http://www.sciencedirect.com/science/article/pii/S0020025516306739 
This draft is provided for copyright compliance



1. Introduction

The k nearest neighbor rule (kNN) [11] [30] is one of the most used data

mining and pattern recognition techniques. The simplicity and low identification

error of this rule makes it the reference tool to test classifiers and datasets [13].

It has been considered one of the top 10 algorithms of data mining [35]. The5

kNN rule is also the base of several classifiers that belong to the lazy learning

family of classifiers [3].

The kNN rule is based on the idea that an unknown instance will be similar

to other instances that are close to it in the space of characteristics. Although

this idea is simple its computation requires a large amount of operations that10

increases with the dataset sizes, in terms of both attributes and instances. When

addressing large problems, the time required to compute the results makes the

kNN rule virtually unusable. The lazy learning algorithms that are based on

the kNN rule suffer the same issues.

Currently, several real-world applications introduce scalability challenges15

which must be overcome by data mining techniques [28]. Given that many real

world applications routinely produce massive amounts of data it is absolutely

necessary to tackle the scalability challenges of the kNN rule, if this technique

is going to be applied to such datasets.

Graphics processing units (GPU) have proven to be useful in managing20

large amounts of data efficiently in different situations like fingerprint iden-

tification [23], continuous optimization [24] bioinformatics [29] and data min-

ing [10] [9] [8]. Moreover, the kNN rule has been successfully adapted to run on

GPU devices to improve its run-time performance [16] [5] [21].

GPU devices provide massive parallelism that can potentially reduce the25

run-time of computationally intensive tasks. On the other hand, these devices

have a limited amount of memory. Most approaches that tackle large datasets

reduce their performance when there is not enough memory to allocate the

complete datasets and kNN structures on the GPU device. Furthermore, some

2
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of these methods just do not work if the dataset is too large. Most approaches30

also require sorting all the distance values or use suboptimal methods in order

to locate the neighborhood, not taking advantages of all the possibilities that

the GPU devices offer.

In the literature, some authors have tried to overcome these limitations. Are-

fin et al. [5] reduce the usage of memory dividing the computations in square-35

shaped portions, but the data structures required still limit the run-time per-

formance. Komarov et al. [21] propose a quicksort-based selection method in

order to improve the performance of that part of the kNN rule, but their design

requires a high amount of synchronization operations that hinders the run-time

performance obtained.40

In this paper, we propose a design of the kNN rule, called GPU-based scal-

able and memory efficient kNN (GPU-SME-kNN), which addresses the afore-

mentioned issues. To do so, we introduce two novel approaches:

• An incremental neighborhood computation scheme that eliminates the

dependencies between dataset size and memory footprint. This scheme45

allows fully customization of its parameters and takes advantage of asyn-

chronous memory transfers, making the required structures fit into the

available memory for a broad range of GPU devices while delivering high

run-time performance independently of the number of instances of the

dataset. This is detailed in Sections 4.1 and 4.2.1.50

• An efficient quicksort-based selection design that avoids synchronization

operations and has an enhanced pivot-selection method to provide a high

performance and scalable solution. This is detailed in Section 4.2.2.

GPU-SME-kNN has been tested with two large datasets from the UCI 1

repository [6]: Poker, with 1 025 009 instances and KDDCup 1999 with 4 898 43155

instances. Increasing datasets sizes (up to the full size) and different values of

the k parameter have been used in order to thoroughly study the behavior of

1http://archive.ics.uci.edu/ml
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the GPU-based kNN rule in terms of scalability. The results focus on the run-

time performance and the memory requirements of the method. Given that our

algorithm is designed to improve the efficiency of the kNN rule, but it does not60

change its behavior, it is not necessary to evaluate its predictive capacity. GPU-

SME-kNN is compared with well-known GPU-based kNN approaches showing

a good performance.

The rest of the paper is organized as follows: Section 2 presents the kNN

rule and the lazy learning family algorithms. Section 3 introduces how GPU65

devices work and summarizes the previous approaches of GPU-based kNN rule.

Section 4 explains our design for the kNN rule. Section 5 shows the results

obtained on the experiments performed. Section 6 studies design modifications

that our algorithm requires to be applied to lazy learning algorithms and the

results obtained. Finally, Section 7 presents the conclusions.70

2. The k Nearest Neighbor rule and Lazy Learning

This section summarizes the main aspects of the k Nearest Neighbor rule

and family of lazy learning algorithms that will be referred to in the design

of the GPU-based method. Section 2.1 explains the kNN rule and Section 2.2

presents the lazy learning algorithms characteristics.75

2.1. The k Nearest Neighbor rule

The k Nearest Neighbor rule (kNN) [11] predicts the class of a test instance

as the majority class of the k training instances that have the smallest distances

to that test instance [12]. This means that each test instance is compared with

every training instance, measuring the distance between them. These distances80

are checked in order to find the k smallest values and the training instances

that correspond to the selected distances are used to predict the class of the

test instance.

Although different distance measures can be used [34] [26] [32], the well-

4
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known Euclidean distance is typically used:85

d(x, y) =

√√√√
D∑

i=1

(xi − yi)2 (1)

where d(x, y) is the distance between instances x and y and D is the number of

attributes of the problem.

The kNN rule is usually applied to a set of test instances. If M is the number

of test instances and N the number of training instances, the algorithm requires

M×N distance computations andM selections of k instances from an array ofN90

elements. When training and test set sizes increase, the distance computations

increase quadratically. The number of selection operations increases linearly

with the value of M and the computational cost of each operation increases

with the size of N in a way that depends on the specific selection method used

but which is, at least, linear. This increase of the number of operations makes95

the application of this rule really difficult for large datasets.

2.2. Lazy learning

Typically, the process of learning from data involves the generation of some

kind of model, from the training data. This model is used to classify the in-

stances of the test set. The family of lazy learners [3] skips this general model100

creation. When a test instance is evaluated, these algorithms compute a specific

model that relates that test instance with the training set and use that model

to classify it.

Lazy learning algorithms usually have greater storage requirements and high

computational cost when evaluating a test instance than other algorithms. Al-105

gorithms that build a model can discard the training instances once the model

is built reducing the memory requirements. Moreover, the evaluation of a model

is almost inexpensive compared to the cost of building that model, reducing the

computational cost for non lazy learning algorithms. The impact of these two

issues increases with the dataset size.110

This behavior can be observed on the kNN rule because it belongs to the

5
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family of lazy learners [15]. There are several lazy learning algorithms that are

based on the kNN rule and have the same computational issues.

3. Graphics Processing Units and NVIDIA CUDA

Graphics processing units (GPU) were originally created to offload the com-115

putations related to 3D graphics on games and design applications from the

CPU device into specialized hardware. Modern GPU devices provide a specific

processor with a Single Instruction Multiple Data (SIMD) architecture to han-

dle these computations efficiently. NVIDIA CUDA [1] is a hardware/software

architecture that allows the use of NVIDIA [2] GPU devices for general purpose120

programming.

CUDA presents GPU devices as parallel coprocessors with their own memory,

caches and registers that can cooperate with one or several CPU cores. In or-

der to take advantage of the characteristics of GPU devices, it is required to

redesign the algorithms, determine which operations of the algorithm match the125

characteristics of each device and the amount of data required to be transferred

between devices. To produce efficient GPU based programs or systems, it is

mandatory to know some technical aspects of GPU devices (Section 3.1). Once

these aspects have been studied we will briefly review the approaches to the

kNN rule that can be found in the literature (Section 3.2).130

3.1. Technical aspects of GPU devices

Functions are run on GPU devices dividing the workload into a set of threads

which share the same code but operate on different data. These functions are

called kernels and the set of threads of each kernel is called grid. Threads within

a grid are grouped into blocks of threads.135

At the hardware level, a GPU device has a set of computing cores that are

grouped into stream multiprocessors (SMX). When a grid is run on the GPU,

each block is assigned to one SMX, as shown in Figure 1. It is possible to

synchronize all threads that belong to a block. However, there is no efficient

synchronization method for threads in different blocks.140

6
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Figure 1: Threads, blocks and multiprocessors. Each block is run on the same multiprocessor.

Each block is divided into groups of 32 threads called warps, which are run

synchronously on a SMX. All threads within a warp execute the same instruction

(in a parallel way) at the same moment. In case of code divergence within

the warp, like a conditional instruction with different results, the execution is

serialized penalizing the run-time performance.145

Regarding data storage and access, as in CPU devices, a GPU device has a

memory hierarchy from large and slow memory banks to small and fast registers

including several cache levels. The fastest cache (L1) is available to developers

on demand. Each SMX has its own L1 cache but its size is limited. The L1

cache is commonly known as shared memory.150

Global memory is the last level of the hierarchy, and it is the largest memory

area of a GPU device but also the slowest. The most efficient way for a large

number of threads to simultaneously request data from global memory is to

perform these parallel requests in a coalescent way: consecutive threads in a

block have to request consecutive memory positions at the same time.155

In order to start the computation, the input data used by the kernels needs to

be copied from the computer main memory to the GPU device global memory.

This memory transfer can be done either synchronously or asynchronously. By

using asynchronous copies it is possible to run a kernel while copying data that

will be required in subsequent kernel calls.160

When a kernel function is called, the programmer has to set the number of

7
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threads per block, blocks per grid and shared memory required by the kernel.

The maximum number of simultaneous blocks per SMX and warps per SMX

is device dependent. The resources required by each block limit the number

blocks that can be run in parallel.165

3.2. GPU-based approaches to kNN

This section presents a brief summary of the most relevant proposed GPU-

based methods that tackle the computational issues of the kNN rule. All these

approaches divide the kNN rule into two parts: the computation of the distances

and the identification of the nearest neighbors. The differences among them rely170

on how these steps are solved.

As the distances are computed in a separate stage from the selection, a

distance matrix is built grouping the distance array related to each test instance.

In the second step, several selections are performed in parallel on the different

rows of the matrix.175

Kuang et al.[22] propose to compute one distance per thread for the distance

matrix calculation and sort the distances array of each test instance to get the

k nearest neighbors. The distance matrix is split into blocks of a predefined

number of threads that compute a distance operation. Each matrix row is

sorted using a radix sort method that is computed by a block of threads.180

Garcia et al.[16] use the previous distance matrix calculation scheme but

they use an insertion sort method instead of radix sort. Both approaches also

differ in the way the sorting is done. Garcia et al. compute one sort operation

per thread instead of one per block. The code of this implementation of the

kNN rule is available on-line and is used as reference for comparisons in other185

work [19] [31].

Kato et al.[20] propose a design that is also suitable for several GPU devices.

The distance matrix is split into blocks of rows where each thread computes the

distances for a matrix row. The selection method is performed with one block

per test instance. The neighborhood is built in shared memory using an insertion190

approach.

8
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GPU-FS-kNN, presented by Arefin et al.[5], divides the computation of the

distance matrix into squared chunks in both dimensions. Each chunk is com-

puted using a different kernel call, reusing the allocated GPU-memory. The

distance computation kernel divides the chunk into smaller square subsets, one195

per block. Training and test data of each square subset are copied to shared

memory and then each thread computes a Pearson distance. A selection step is

performed after each chunk is processed with a modified version of the insertion

sort technique. This process is performed using one thread per chunk row. The

neighborhood computed in a previous chunk is reused for the next chunks that200

correspond to the same test instances. The code of this algorithm of the kNN

rule is available on-line.

Jian et al.[19] use the same approach as Kuang et al. and Garcia et al. to

compute the distance matrix. For the selection step, they propose a method

that uses several blocks per test instance. Each block selects k distances and205

then the results of all blocks are combined iteratively.

Komarov et al.[21] modify the selection step with a quicksort-based selection.

Each block performs a selection operation with a large number of threads per

block. The matrix computation uses the Kuang et al. and Garcia et al. scheme.

The authors of this method have not made its code available. In order to210

compare our method to it, we have re-implemented this approach. The source

code is available with the rest of the code related to this work at: http://

sci2s.ugr.es/GPU-SME-kNN/

There are other approaches in the literature related to the kNN rule issues.

Some of them use FPGA devices [27] but they do not outperform GPU-based215

techniques in run-time. Only when power consumption is considered these de-

vices become an interesting option. There are also kNN versions for specific

problems, like text classification [18], but the optimizations performed are fo-

cused and dependent on the specific problem or the distance measure used and

cannot be applied to other situations. Some pieces of work consider the reso-220

lution of only one test query at a time[7] but this approach is not suitable for

cases where a large number of test queries is available, like in Lazy Learning

9
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algorithms.

The majority of these approaches assume that the distance matrix and the

rest of the data structures fit on GPU memory but this is not possible for large225

datasets, like the KDDCup 1999 dataset. The solution provided by Garcia et

al. for this issue is to divide the test set into parts and compute these parts

iteratively but without considering the use of asynchronous memory copies to

avoid idle times. Furthermore, this approach affects the run-time performance

of the different steps of the kNN rule and it is not suitable for the constantly230

increasing sizes of the datasets.

Arefin et al.’s algorithm is the exception in terms of memory requirements

assumptions, as the computation is performed chunk-wise. As the authors ex-

pose in their paper, the memory footprint is reduced because some structures

are reused during the computation of the algorithm. However, this method is235

still limited by the memory requirements because the complete dataset (training

and test sets) is copied to GPU memory. In that case, a smaller chunk size can

be used but this reduces the run-time performance.

Our design (Section 4) tackles the memory related issues present in the lit-

erature, overcoming the dependence between dataset size and memory required.240

Nevertheless, efficient kernels have been designed for each step of the computa-

tion which improves the run-time performance.

4. A GPU-based kNN rule for large datasets

There are two main issues inherent to large datasets processing: the compu-

tational complexity, in terms of amount of operations, and the memory required245

to store the structures of the algorithm. Our method introduces an incremental

neighborhood scheme to reduce the memory requirements. This scheme has to

be combined with an efficient memory transfer design between devices. These

points are addressed in Section 4.1.

The design of the kernel functions, Section 4.2, has a high impact on the250

run-time performance achieved. We split the distance computation into two

10
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different kernel functions: the first one computes the square of the distance and

the second one performs the square root operation, but only on the selected

neighbors. For the selection step, we propose a quicksort [17] based selection

that takes advantage of the iterative neighborhood computation characteristics.255

Section 4.3 presents how memory requirements of GPU-SME-kNN are de-

termined by the different algorithm parameters regardless of the dataset size.

4.1. CPU-GPU interaction model

The main steps of the kNN rule are the ones related to the computation of

the distance matrix and the selection of the k nearest neighbors.260

GPU devices have a small amount of memory compared to desktop and

server computers. Some structures, like the distance matrix, do not fit into

device memory. The solution to this problem is to split the computations in

steps and take advantage of the asynchronous memory copy operations to avoid

idle times.265

Our method splits the computations of the distance matrix and neighbor-

hood. The method of Arefin et al. [5] also splits these computations, however,

this technique requires to compute square-shaped portions of the matrix and to

copy the complete training and test sets to device memory. Depending on the

GPU device and the dataset used, the size of the matrix portion may need to270

be reduced, leading to a loss of run-time performance. Our method overcomes

these limitations providing a more customizable scheme that can be adapted to

almost every GPU device. The details are discussed in the next section.

4.1.1. Incremental neighborhood computation

The distance matrix is the most memory demanding data structure needed275

in the kNN rule. The size of this matrix is M ×N , where M is the number of

test instances and N the number of training instances.

The most common solution in order to make the distance matrix fit into

memory is to divide it into strips. The distance matrix is split into M/m

matrices of size m × N , where m is a portion of the test set small enough to280
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Figure 2: The distance matrix of size M ×N is partitioned in pieces of m× n elements.

make the matrix fit into device memory. The algorithm iterates through the

test set to complete the computation. This is the solution used by Garcia et al.

[16].

However, this solution is limited by the size of the training set because the N

instances of the training set and m instances of the test set need to be kept on285

device memory in order to perform the distance computation. In some scenarios,

the GPU device could not have enough memory even when setting m to 1.

Our design is based on the algorithm of Arefin et al. [5] where the matrix

is split in both dimensions. As shown in Figure 2, a portion, P j
i , of the matrix

of size m × n is computed on each step, where m and n are portions of the290

test and training sets, respectively. The algorithm iterates in both dimensions

performing N/n × M/m iterations, covering the whole training set for each

test chunk before moving to the next one. On Arefin et al’s method n and

m have the same value, in order to split the chunk easily into square-shaped

blocks. Our distance computation model, explained in detail in Section 4.2.1,295

allows arbitrary values of n and m that can be tuned to offer good run-time

performance and fit into the available memory for a broad range of GPU devices.

All the components in a strip of the matrix, P 0
i to P

N/n
i , are needed to

find the neighborhood of the chunk i of the test set. To reduce the amount

of memory needed, a local selection of the neighbors has to be performed. A300

selection operation can be computed for each chunk of the matrix, as shown in

Figure 3, and then a global selection is performed on the local solutions. This
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Figure 3: Local neighborhood selection scheme.

Figure 4: Incremental neighborhood selection scheme.

2-step computation scheme reduces the amount of memory needed. It keeps in

memory m× k values instead of m× n, taking into account that k is typically

smaller than n. However, this strategy might not be enough for very large values305

of N .

Our algorithm computes the neighborhood in an incremental way, combining

each chunk of the matrix with the resulting k neighbors of the previous chunks,

as Figure 4 shows. This approach does not need a global selection step because

the last local selection includes all the results obtained.310

Furthermore, the amount of memory required is fixed regardless of the sizes

of training and test sets, depending only on the values of m, n, k and the

number of attributes of the dataset. These four values define the sizes of all

data structures required for the computations and all of them are independent

of the dataset size. The size of m and n can be decided in an arbitrary way in315

order to maximize the run-time performance and make the data fit into device

memory. Section 4.3 details how to compute the exact memory footprint.
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4.1.2. CPU-GPU memory transfers

CPU and GPU devices have different and exclusive memory banks. The

input data and the results have to be copied between devices. The pseudocode320

presented on Algorithm 1 includes these interactions.

Algorithm 1: Proposed algorithm pseudocode.

input : Training and test sets, k

output: k nearest neighbors of each test instance in the training set.

1 copyTestP ieceAsync1

2 copyTrainPieceAsync1

3 for i← 1 to M/m do

4 checkTestCopyi

5 for j ← 1 to N/n do

6 checkTrainCopyj

7 computeDistanceMatrixi,j

8 if j = N/n then

9 copyTestP ieceAsynci+1

10 copyTrainP ieceAsync1

11 else

12 copyTrainP ieceAsyncj+1

13 end

14 computeSelectionj

15 end

16 copyNeighborhoodi

17 checkResultCopyAsynci

18 copyResultP iecei

19 end

copyTestP ieceAsync and copyTrainP ieceAsync represent the asynchronous

copy of the instances required to compute a chunk of the matrix. When using

asynchronous copies it is required to check if the copy has finished before using

14
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the data. In Algorithm 1, checkTestCopy and checkTrainCopy represent this325

check. Except for the initial copy to start the algorithm, these copies (lines 8

to 13) are made in parallel during the selection process (line 14).

checkResultCopy and copyResultP ieceAsync are, respectively, the safety

check and the asynchronous copy of the neighborhood for a certain piece of the

test set. The data structures used to keep the results in memory are the same330

for all the iterations. In order to avoid checking if the copy has finished on

every iteration of the training set related loop, the final neighborhood is copied

to a different structure, this operation is represented by copyNeighborhood in

Algorithm 1.

4.2. Kernel design335

Two different steps have been defined: the computation of a chunk of the

distance matrix and the incremental selection of the k nearest neighbors. How-

ever, the square root calculation of the distance measure is applied only to the

selected neighbors, in order to improve the run-time performance of the algo-

rithm.340

Therefore, three different kernel functions are used: the first kernel computes

a chunk of the distance matrix, line 7 on Algorithm 1, the second kernel performs

the selection of the k nearest neighbors, line 14 on Algorithm 1, and the third

kernel computes the square root operation on the selected neighbors while the

neighborhood is copied, line 16 on Algorithm 1. The following sections explain345

each kernel details.

4.2.1. Distance matrix computation

The distance matrix kernel computes the distances of one piece of the matrix

of size m × n, as commented on Section 4.1.1. Our method introduces a com-

pletely new distribution of the kernel threads that allows the customization of350

the parameters while delivering a high run-time performance. The kernel grid

has m blocks, one per test instance, and d threads. In Figure 2 zoomed-in area,

these d threads are represented as filled cells for the first block. Each thread of
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Figure 5: Dataset stored on memory. Atij represents attribute i of instance j.

the kernel computes several distances between 1 instance from the test set and

n/d instances from the training set. The number of threads per block, d, is set355

to a value that delivers good performance on the GPU device regardless of the

value of n that only defines the number of distance computations per thread.

None of the existing approaches uses such a thread distribution scheme. Most

of them compute one distance per thread, introducing a high level of parallelism

with extremely light threads. Kato et al. [20] is an exception, as all distances in360

a row are computed by one thread. This approach provides a higher workload

per thread but reduces the degree of parallelism. Our design tries to find the

right balance between both strategies in order deliver a better performance.

The input data is stored in a coalescent way to provide an efficient memory

access. The distances are computed in parallel so all threads will request first365

the first attribute of the instance, then the second and so on. The dataset is

stored in memory as an array of floating numbers as shown in Figure 5. As

each block is related to one test instance, a thread computes several distances

of the same test instance. Copying the values of the attributes of the test

instance to shared memory provides a more efficient access rather than each370

thread requesting these values independently.

4.2.2. Neighborhood selection

The quicksort algorithm [17] is a well known algorithm to sort an array. The

algorithm selects one element of the array (pivot) and divides the array into

two parts: the left part stores the elements smaller than the pivot while the375

right part stores the elements greater than the pivot. Repeating the process in
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Figure 6: Non coalescent memory writings when dividing the vector.

a recursive way for each part finally gets the array sorted.

The majority of approaches in the literature use a sorting method to compute

the neighborhood of the instances. This requires a high number of operations in

order to completely sort the array. Our algorithm relies on a selection method380

to reduce the number of operations. The previous sorting technique can be

adapted to select the k smallest elements of an array, repeating the process only

for one of the parts of the vector: on the left part if this part has more than k

elements or on the right part if the left part has less than k elements. In the

second case, the left part of the array and the pivot are part of the selected385

elements.

This selection method is also used by Komarov et al.[21] in their method.

However, this computational step has been improved in our method to avoid

synchronization operations hence providing better run-time performance.

The ad-hoc design of this algorithm for GPU devices is to use a kernel to390

create the left and right parts of the array in a parallel way and then call the

same kernel in a recursive way as it is done on CPU devices. This solution

would be suitable only for the latest NVIDIA devices, which allow recursive

kernel calls. However, the recursive step algorithm can be easily transformed

into an iterative solution that works for most GPU devices.395

Different structures are used for the distances array, the left part and the

right part. At the end of each iteration, the left part or the right part, depending

on their sizes, becomes the distance array and the former distance array is used

as one of the parts.

Aside from this, the creation of the left and right parts of the array does not400
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Figure 7: Local neighborhood selection

suit the characteristics of the GPU devices because it involves non coalescent

memory accesses. With a grid configuration of m blocks (one per test instance),

several comparisons can be done in parallel but, depending on the result of the

comparison, each thread will need to write on a different part of the memory

penalizing the run-time performance, see Figure 6. To solve this problem, the405

results are written in two steps. The first step writes the element to a shared

memory array in a non coalescent way grouping the elements smaller than the

pivot on one side and the elements bigger on the other side. The second step

writes the element to its final position in global memory using two coalescent

memory accesses, one for the left part and another for the right part of the410

array, as shown in Figure 7. The right part memory access can be skipped once

the left part has more than k elements, improving the run-time performance.

However, to find the position where each element has to be written is a

problem in itself. Each thread needs to know how many elements from the

threads with a lower index are greater or smaller than the pivot. CUDA provides415

functions, ballot and popc, to solve this problem but only within a warp. The

ballot function creates a 32-bit integer where each bit is the result of a predicate

evaluated by each thread of the warp, see Figure 7, while the popc function

counts the number of bits set to 1 in a 32-bit integer. Using the proper bit mask

for each thread, it is possible to get the writing position within the warp.420
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A grid of m blocks and 32 threads per block can select the neighborhood

but it might not provide enough workload for the GPU device. Generally, a

higher number of threads per block provides a better performance. There are

two ways of increasing the number or threads: using more than 32 threads to

build the array parts or processing different arrays on each warp.425

The first solution is used by Komarov et al.[21]. It requires sharing the

values obtained with ballot on each warp and to set synchronization points

to ensure the values are correct. These requirements would penalize the run-

time performance so we decided to use the second solution. The neighborhood of

each test instance is computed by a single warp and each block computes several430

neighborhoods. However, if the number of test instances is small, Komarov’s

et al. algorithm obtains better GPU occupancy ratios. Our design uses fewer

threads per selection step requiring a larger number of test instances to fully

occupy the resources of the GPU device.

The value of the pivot used in the quicksort algorithm has an impact on the435

run-time performance. The pivot value is usually selected as the median of the

first, last and center values of the array as an approximation of the median of

the array. Using the median value of the array as pivot produces equally sized

array parts, halving the size in each iteration, but we can use a more aggressive

strategy thanks to the incremental neighborhood scheme. If a distance is larger440

than the farthest neighbor from the last chunk, that instance is not going to be a

part of the neighborhood because there are already k smaller values. Setting the

pivot to the farthest neighbor distance of the previous iteration of the algorithm

focuses the effort on the interesting values providing a better performance. For

the first matrix chunk of each test chunk, this solution cannot be applied, since445

we do not have a previous neighborhood, so the usual heuristic is used.

When the left part of the array is smaller than k, those distances and the

pivot belong to the final neighborhood of that step. However, as the selection

algorithms continues and needs to reuse that memory area, these values are

copied to a different array of m× k elements.450
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4.2.3. Square root calculation

The square root operation is a costly operation and it is not required to

select the neighborhood of an instance. In our classification scenario, this op-

eration can be skipped. However, it is performed for two reasons: to provide

the accurate distance information in case any future application needs it and to455

be able to establish a fair comparison with other approaches that perform this

operation.

Other algorithms, like Garcia et al. [16], also use a specific kernel for the

square root computation, although it is only briefly commented in the corre-

sponding papers, as a minor optimization. In our design, this kernel has been460

combined with one of the required memory transfer operations, as commented

in Section 4.1.2. This provides better run-time performance than performing

two separate operations.

All the selected distances are located on coalescent memory, it can be con-

sidered as a long array. This array has a size of m× k elements. In order to get465

the highest possible occupancy of the GPU device, we split the array to create

m
128 blocks of 128 threads. Each thread performs a square root operation on k

distances and copies their respective indexes in the training set to the separate

structures.

4.3. Total memory required470

As mentioned before, the distance matrix size can be defined in an arbitrary

way depending on the values of the parameters k, m and n. The amount of

memory required for the rest of the operations also depends on these parameters

and on the number of attributes of the dataset, D.

This way, it is possible to define an expression that represents the amount of475

elements required to keep on memory for each configuration of the parameters:

D ×m+D × n+ 6(m× (n+ k)) + 4(m× k) (2)

The exact amount of memory can be obtained weighing each part of the equation

with the size, in bytes, of the type of elements (floating point numbers, integers)
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that are stored. The memory requirements of the experiments performed are

shown in Section 5.3.480

5. Experimental results of GPU-SME-kNN

Different experiments have been carried out and the results obtained are

presented here. Section 5.2 presents the hardware and datasets used and the

experiments performed, Section 5.3 shows the results obtained and Section 5.4

analyses the results.485

5.1. Experiments

Although the design of the algorithm for GPU and CPU devices changes sig-

nificantly, the same computations are performed in both devices. This means

that the same algorithm obtains the same results regardless of the device. Tak-

ing this into account, the experiments have been designed to highlight the effi-490

ciency differences between GPU-SME-kNN and the reference implementations.

Two large datasets have been selected for the experiments. These datasets

have been subsampled at different sizes to show how the behavior of the al-

gorithm changes as the size of the dataset increases. A 5-fold cross validation

scheme has been used with all sizes of the dataset. This scheme reduces the495

impact that the relative order of the instances within the dataset can have on

the performance. Different values of k have also been used. The results shown

in Section5.3 are computed as the average times of the values obtained.

The performance of GPU-SME-kNN has been compared with several existing

techniques:500

1. The technique of Garcia et al. [16], denoted as GPU-Garcia-kNN, available

on Github.

2. The technique of Arefin et al. [5], GPU-FS-kNN, is also available on-line,

but modified to use the Euclidean distance instead of the Pearson distance

in order to make a fair comparison.505
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3. The technique of Komarov et al. [21], denoted as GPU-Komarov-kNN, is

not available on-line, but we have implemented their design of the quick-

sort selection with our incremental neighborhood calculation scheme. Us-

ing the same scheme for the distance calculation the differences rely on

the design of the selection algorithm. In addition, our scheme allows this510

method to scale to problem sizes that the original one cannot address.

The parameters n and m have been set to 655̇36 and 2048, respectively,

in order to provide a matrix chunk of a size similar to the one used in [21].

A website associated to this paper has been created that includes the datasets,

results and code of GPU-SME-kNN and GPU-Komarov-kNN used in this work.515

The URL for this website is: http://sci2s.ugr.es/GPU-SME-kNN/

5.2. Hardware and datasets

The experiments have been performed on a server-class computer equipped

with a high-end GPU device. This computer has an Intel Xeon E5-2630 proces-

sor at 2.30 GHz. The GPU device is a NVIDIA Tesla K20m with 5GB of RAM520

memory and 2496 CUDA cores. Nevertheless, the proposed design can be run

on a computer with lower specifications.

Two large datasets from the UCI repository [6] have been used in the exper-

iments:

• The poker dataset has 1 025 009 instances, 10 attributes and 10 classes.525

The dataset has been subsampled at sizes ranging from 50 000 to 1 000 000

instances in steps of 50000 instances.

• The KDDCup 1999 dataset has 4 898 431 instances, 41 attributes and 5

classes. This dataset has been subsampled in steps of 250 000 instances

from 250 000 to 1 500 000 instances and in steps of 500 000 instances for530

larger sizes.

Different experiments have been performed with these datasets using a 5-

fold cross validation scheme for all sizes. The experiments use k values of 5, 100
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Figure 8: Poker dataset results with k = 5.

Figure 9: Poker dataset results with k = 100.

and 1000 for both datasets. Some k values might be too large to offer accurate

classification ranges but the objective is to assess the scalability of the evaluated535

methods in relation to k.

5.3. Empirical results

This section presents the experiments and the results obtained on the pre-

viously mentioned hardware and datasets. For all the experiments the value of

m was set to 16384 and the value of n to 2048, the number of threads per block540

for the distance matrix kernel, d is 256.
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Figure 10: Poker dataset results with k = 1000.

Figure 11: KDDCup 1999 dataset results with k = 5.

Figures 8 to 10 present the results for the poker dataset. Three different

values of k have been used with this dataset: 5, 100 and 1000.

Figures 11 to 13 present the results for the KDDCup 1999 dataset. The

algorithm of Garcia et al. was able to complete the experiments successfully545

for this dataset only up to 1 250 000 instances. For bigger sizes the experiments

failed due to memory requirement problems. Tables 1 to 3 compare the results

of all approaches for these values. GPU-FS-kNN also presents some issues with

this dataset and the largest value of k(1000). In this case, the software provided

by the authors behaves in an abnormal way for sizes larger than 1.5 million of550
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Figure 12: KDDCup 1999 dataset results with k = 100.

Figure 13: KDDCup 1999 dataset results with k = 1000.

instances and it does not provide accurate results.

5.4. Analysis of the results

As the results of the previous section presents, GPU-SME-kNN outperforms

the results of the other approaches. The strategy for dealing with large dis-

tance matrices causes high run-times performance differences. GPU-Garcia-555

kNN stores full distance matrix strips on GPU memory to compute the neigh-

borhood. The matrix strip width becomes smaller as the size of the training set

increases and this reduces the performance of the design. GPU-SME-kNN keeps

the width of the matrix, through the incremental neighborhood computation,
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Table 1: KDDCup 1999 dataset time results, in seconds, with k = 5

Size GPU-Garcia-kNN GPU-SME-kNN GPU-FS-kNN GPU-Komarov-kNN

250 000 29.052 25.192 45.127 60.837

500 000 121.281 90.243 180.955 196.098

750 000 284.577 194.467 409.278 407.561

1 000 000 528.100 338.979 732.452 719.672

1 250 000 862.306 522.745 1170.310 1093.420

Table 2: KDDCup 1999 dataset time results, in seconds, with k = 100

Size GPU-Garcia-kNN GPU-SME-kNN GPU-FS-kNN GPU-Komarov-kNN

250 000 37.931 26.182 50.388 59.856

500 000 158.213 93.964 193.651 194.744

750 000 366.198 202.579 432.981 405.127

1 000 000 667.465 352.820 772.101 725.162

1 250 000 1083.842 544.529 1233.264 1097.123

providing the desired performance regardless the training set size.560

The run-time performance differences with GPU-Garcia-kNN also rise when

value of k is increased. A higher value of k requires more space to store the

neighborhood, reducing the amount of memory available for the distance matrix

which produces the same effect that happens when the training set size increases.

However, the difference is also introduced by the selection method. GPU-Garcia-565

kNN uses an insertion method to select the neighborhood of a test instance on

each thread of the kernel. By increasing the value of k the probability of code

divergence also increases. The divergence happens when some threads in a

warp find a neighbor candidate at some position but not all threads find it. The

threads that did not find a neighbor have to wait until the threads that find one570

make the required computations.

The code divergence problem also affects GPU-FS-kNN. However, the mod-

ifications of the insertion scheme introduced in its selection method lower the

impact of the divergence on the run-time performance. Increasing the value of k
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Table 3: KDDCup 1999 dataset time results, in seconds, with k = 1000

Size GPU-Garcia-kNN GPU-SME-kNN GPU-FS-kNN GPU-Komarov-kNN

250 000 496.624 33.890 449.668 61.665

500 000 2297.120 119.163 1150.744 199.355

750 000 5691.280 259.552 1932.540 415.234

1 000 000 10 788.800 448.624 2992.348 736.441

1 250 000 17 885.280 694.892 4221.566 1125.497

Table 4: GPU-SME-kNN GPU memory usage in MB

k Poker dataset KDDCup 1999 dataset

5 1158 1162

100 1247 1251

1000 2091 2159

also reduces the performance because this method does not uses asynchronous575

memory copies. This introduces computation idle times while the results are

copied from GPU to CPU memory. The distance computation scheme of GPU-

FS-kNN, which is similar to our incremental neighborhood computation, allows

this method to complete almost all the experiments but the performance is

affected by the issues mentioned above.580

GPU-SME-kNN does not suffer from this kind of code divergence problems,

as a warp collaborates to select the neighborhood. Furthermore, this selection

method reduces the impact of the value of k: each iteration the same steps are

followed, the value of k only changes the number of iterations made. However,

the most important factor on the run-time performance of the selection step is585

the incremental neighborhood computation.

Our selection method requires a large number of memory accesses to read

the array and store the left and right parts. Although these accesses are pro-

grammed on a coalescent way and are efficient, a large number of iterations could

be required depending on the quality of the pivots provided by the heuristic,590

especially when k is set to a small value. The incremental neighborhood tech-
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nique provides the maximum distance to be considered a neighbor candidate,

reducing the number of iterations.

Our implementation of GPU-Komarov-kNN also uses this idea. However, we

cannot see the effect in the results because GPU-Komarov-kNN uses 512 threads595

per selection step [21] whereas GPU-SME-kNN uses 32. As we commented in

Section 4.2.2, by using 32 threads it is possible to avoid synchronization opera-

tions, improving the run-time performance of GPU-SME-kNN. In addition, the

use of a small number of threads improves the use of the resources of the GPU.

If the array size is lower than the number of threads per selection some threads600

do not perform any computation, but their resources cannot be released until

the selection process is finished. This situation is reached in a faster way when

a large number of threads per selection is used, taking into account that the size

of the array is approximately halved in each iteration of the algorithm. Small

values of k highlight this fact. On the other hand, when using large values of k605

GPU-Komarov-kNN outperforms other approaches. However, as we can see in

Figure 13, the differences against GPU-SME-kNN are significant. The situation

is similar in Figure 10 but, in this case, the results of the GPU-Garcia-kNN

technique affect the scale of the plot and it cannot be observed.

For scenarios with a small number of test instances the run-time performance610

differences between GPU-SME-kNN and GPU-Komarov-kNN would decrease.

The higher number of threads used in the selection step makes GPU-Komarov-

kNN reach the maximum occupancy of the GPU device faster than GPU-SME-

kNN. Therefore, under some circumstances, GPU-Komarov-kNN could outper-

form GPU-SME-kNN. However, in the presented 5-fold cross validation results,615

GPU-SME-kNN exhibits a better performance, especially as the number of test

instances increases.

In cases with similar number of training and test instances the run-time per-

formance differences between GPU-SME-kNN and GPU-Komarov-kNN would

be even larger. This situation can be found in different scenarios, for instance,620

some steps of lazy learning algorithms require computing the neighborhood of

the training test. Taking into account that the differences are already significant
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in the results presented in this section, only GPU-SME-kNN can compute these

steps in a reasonable time.

Table 4 shows that the amount of memory used by GPU-SME-kNN is similar625

for both datasets regardless of the difference of more than 3 500 000 instances.

The memory requirements difference is actually caused by the different number

of attributes of both datasets. In all cases, the amount of memory required is

relatively small making GPU-SME-kNN suitable for most current GPU devices.

6. GPU-based Lazy learning630

The design patterns used on the GPU-based method for the kNN rule should

also be suitable for lazy learning algorithms. The following sections detail the

algorithms that have been adapted (Section 6.1), the design modification that

they required (Section 6.2) and the results obtained (Section 6.3).

6.1. Algorithms635

We have selected three different algorithms from the ones available on the

KEEL software tool [4] in order to test our design. These algorithms are de-

scribed in this section.

6.1.1. CenterkNN

The CenterkNN technique [14] is a lazy learning algorithm based on the640

kNN rule that modifies the distance computation. The algorithm computes the

center of each class, as the average of the instances that belong to that class

and uses this value to modify the reference point used to measure the distance.

To compute the distance between a test instance, y, and a training instance,

x, the algorithm computes first the line that passes through x and the center of645

its class, cx, then, projects y onto that line and uses the resulting point py to

measure the distance. Figure 14 shows these values graphically.
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Figure 14: CenterkNN distance measure, the dashed line is the distance measured

6.1.2. kNN adaptive

The kNN adaptive algorithm [33] weighs the measured distance of the kNN

rule. The weight used is specific for each training instance. As a previous step650

before using the kNN rule, each training instance computes the distance to the

closest instance that does not belong to its own class within the training set.

That distance is used as weight when the kNN rule is applied. The distance

between a training and a test instance is divided by this weight. This weighting

scheme considers training instances that are close to the frontier of two classes655

less reliable as neighbors, than the ones in the center of clusters of the same

class.

6.1.3. Symmetric kNN

The Symmetric kNN algorithm [25] computes the kNN rule in both direc-

tions. In particular, the algorithm computes the kNN rule of each training in-660

stance compared to the training set, as a first step. When the distance between a

training instance and a test instance is computed, it is compared to the distance

of the farthest neighbor of the training instance. The test instance would be

part of the neighborhood of the training instance if the distance between them

is smaller than the distance from the training instance to the farthest neighbor665

of the training instance. A training instance is considered part of the symmetric

neighborhood when this happens.

This symmetric neighborhood is joined with the regular neighborhood, ob-

tained with the usual application of the kNN rule, to obtain the final neigh-

borhood that classifies the test instance. The join operation is made in a way670

that avoids double voting if there is an instance in both symmetric and regular
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neighborhoods.

6.2. GPU design modifications

The lazy learning algorithms can use the same distance matrix and incremen-

tal neighborhood calculation scheme as the kNN rule. However, these algorithms675

require a previous step where part of the information they need is calculated.

The specific modifications for each method are presented in this section.

6.2.1. CenterkNN

The CenterkNN algorithm requires the computation of the centers of each

class as a previous step to the kNN rule. The center of a class is computed680

as the average value for each attribute on a training instance that belongs to

that class. This step can be performed on the CPU device when the dataset

is loaded into RAM memory. These center values are copied to device memory

only once, before the first piece of the matrix is computed.

The projection of the test instance is computed in the distance kernel. The685

kernel keeps the same structure but it performs more operations to compute the

projected instance.

6.2.2. kNN adaptive

The weight values of the kNN adaptive technique can be computed as the

kNN rule with k = 1 ignoring the training instances that belong to the same690

class of the instance whose weight is being computed. A modified version of the

kNN rule that introduces a void value in the matrix when both instances have

the same class is used to compute the weight for each instance as a previous

step.

The original kNN rule is also modified in order to include the weighting of695

the distance. In this algorithm, the square root of the distance needs to be

computed for every training instance because the weight is different for each

one and can modify the selected instances.

The weights of the training instances are copied chunk-wise to a dedicated

array alongside the copy of the training chunk they correspond to.700
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6.2.3. Symmetric kNN

To apply the kNN rule in both directions, it is required to know the farthest

distance of the neighborhood of each training instance. A modified version of

the kNN rule that introduces a void value in the matrix when the training and

test instances have the same index is used to compute the neighborhood of the705

training set as a previous step.

The distance matrix kernel of the original kNN rule is modified to compare

the distance obtained with the farthest distance of the neighborhood. The sym-

metric part of the rule is satisfied when the distance computed by the kernel

is smaller than the one stored before. When that happens, the training in-710

stances vote, increasing the value of its class in a voting structure specific to

this algorithm.

The voting structure has a size of m× C where C is the number of classes.

This structure is set to 0 at the beginning of each strip of the matrix and it is

copied with the final neighborhood. The process that assigns the class to the test715

instance uses these votes as base and adds the votes of the final neighborhood,

checking if these instances have already voted to avoid double voting.

6.3. Empirical Results

The lazy learning algorithms have been tested against the CPU implemen-

tation available on the KEEL software[4]. These algorithms have been tested720

with the poker dataset up to 650 000 instances using a 5-fold cross validation

scheme. Figure 15 shows the results for the CenterkNN. The implementation

available on KEEL does not allow changing the k value for this algorithm which

is set to 1.

Figures 16 and 17 present the results for the kNN adaptive and the symmetric725

kNN algorithms. In both algorithms, k can be set to different values, and for

these experiments, the value selected was 5.

The results of the lazy learning algorithms show a similar behavior on the

three cases: our approaches reduce the time from hours to minutes. CenterkNN

shows the highest differences, as the computation of the projection introduces730
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Figure 15: CenterkNN results on poker dataset.

Figure 16: kNN adaptive results on poker dataset.

more floating point computations that can be addressed efficiently by GPU

devices. On the other hand, Symmetric kNN requires more comparisons and

data accesses, which are addressed less efficiently than floating point operations

on GPU devices, making the differences smaller. The performance of kNN

adaptive is similar to the symmetric kNN.735

7. Conclusions

We have presented a new GPU-based approach for the kNN rule that outper-

forms the approaches in the literature and provides a high scalability in terms
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Figure 17: Symmetric kNN results on poker dataset.

of dataset size and k value. GPU-SME-kNN keeps a stable level of memory

usage that allows to address any dataset regardless of its size, which was not740

possible by any of the previous GPU kNN methods. Furthermore, given that (1)

the memory footprint of the method can be totally controlled by user-defined

parameters and that (2) we do not use capabilities only present in the most

recent GPU cards, our method can be efficiently used across a very broad range

of GPU devices with varying amount of card memory and CUDA capabilities.745

We have also proven that our design is suitable for lazy learning algorithms

based on the kNN rule. The run-time performance of the three algorithms

presented, CenterkNN, kNN adaptive and Symmetric kNN, has been improved

in a significant way reducing the run-time from hours to minutes.

All own code is available as open source, along with the datasets and results,750

on the website: http://sci2s.ugr.es/GPU-SME-kNN/
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Abstract Nowadays, it is usual to work with large
amounts of data since our capacity of collecting and

storing information has increased significantly. The ex-

traction of knowledge from these scenarios is commonly

known as Big Data. MapReduce platforms have been

created to deal with Big Data problems and there are
machine learning libraries available for these platforms.

These libraries do not include tools to deal with imbal-

anced classification, like data sampling. Oversampling

techniques only use a small part of the data, even in Big
Data problems, that can be addressed on commodity

hardware taking advantage of the parallel computation

capabilities of Graphics Processing Units. SMOTE is

one of the most popular oversampling methods which is

based on the nearest neighbor rule. The proposed GPU-
based SMOTE can efficiently handle large datasets (sev-

eral millions of instances) on a wide variety of commod-

ity hardware, including a laptop computer.
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1 Introduction

Nowadays, it is usual to work with large amounts of

data since our capacity of collecting and storing in-

formation has increased significantly. The extraction of
knowledge from these scenarios is commonly known un-

der the term ”Big Data” [17,27]. This term applies to

situations that traditional Knowledge Discovery meth-

ods are unable to deal with. MapReduce [8] platforms,
such as Apache Hadoop [25] or Apache Spark [26], were

created to cope with the computational challenges that

these new scenarios create. There are machine learning

libraries [10,18,19,23] that have been created to work

with these platforms on Big Data problems but there
are still challenges that have not been solved, like im-

balanced classification [9].

In traditional knowledge discovery, it is not unusual

to find situations where the number of instances of each

class of a problem is significantly different, this problem
is usually known as imbalanced classification [13,15,20]

and poses challenges to traditional learning algorithms.

Considering a binary problem with a majority class and

a minority class it is likely that a learning algorithm ig-

nores the later and still achieves a high accuracy. There
are three main ways of dealing with these situations

[16]:

– Algorithmic modification Modifying learning al-
gorithms in order to tackle the problem by design.

– Cost-sensitive learning Introducing costs for mis-

classification of the minority class at data or algo-

rithmic level.
– Data sampling Preprocessing the data in order to

reduce the breach between the number of instances

of each class.

Manuscript Click here to download Manuscript smote.tex 
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2 Gutiérrez et al.

The algorithms that where used to sample the data

on traditional scenarios could be used for Big Data,

since the ideas behind them are not related to the num-

ber of instances of the problem, but traditional imple-

mentations cannot handle the large amounts of data
required. These algorithms can be redesigned to use

MapReduce platforms but these platforms require large

clusters [8] that are usually expensive and shared among

different users. Usually several configurations are tried
in order to obtain the best performance [24].

An interesting alternative would be if the data sam-

pling could be performed separated from the learning

process and in commodity hardware using the MapRe-

duce platforms only to get real classification results.

Graphics Processing Units (GPU) are available in
almost every medium or high end commodity computer.

These devices were created to compute 3D related com-

putations in an efficient way but their parallel architec-

ture makes them interesting for many other applica-
tions as varied as fingerprint identification [12], molec-

ular simluation [22] or data mining [21]. Libraries like

NVIDIA CUDA [1], have made these devices easier

to use for general purpose applications, presenting the

GPU device as a parallel co-processor. Modern GPU
devices should be powerful enough to perform the com-

putations required for data sampling algorithms in a

reasonable time.

In this paper we explore the use of GPU devices

combined with a proper data handling design in or-
der to perform data sampling algorithms based on the

well known SMOTE algorithm [7] in a reasonable time

and on commodity hardware, called SMOTE-GPU. Our

test covers datasets up to 10 millions of instances with
imbalanced ratios (the relation between the number of

instances of both classes) up to 49 and hardware con-

figurations ranging from a server class GPU device to

a medium range laptop.

The rest of the paper is organized as follows: Sec-
tion 2 shows the characteristics of GPU devices and

comments the main sampling solutions to deal with im-

balanced data and its suitability to be adapted to com-

modity hardware; Section 3 describes our design; Sec-
tion 4 presents the experiments and obtained results;

Section 5 shows the conclusions and future work.

2 Background

In this section we describe the main characteristics of
GPU devices (Section 2.1) and we discuss the suitabil-

ity for commodity hardware of different data sampling

algorithms (Section 2.2).

2.1 Graphics Processing Units

As commented before, GPU devices were created to of-

fload the computations related to 3D related computa-

tions from the CPU device to a specific and efficient de-
vice. These devices have a parallel architecture, usually

Single Instruction Multiple Data (SIMD), that allows

them to perform the same operation on different data

at once. This architecture is different to the architec-

ture that we find in CPU devices, making GPU device
programming quite different from traditional parallel

and distributed programming. NVIDIA CUDA is one

widely used library that allows general purpose pro-

gramming of NVIDIA GPU devices by presenting them
as parallel co-processors.

The functions that are run on GPU devices are

called kernels. When programming a kernel, the ker-
nel code includes the operations that a single thread

is going to perform. When the kernel is called, the

code that calls it specifies a set of threads that will run

the kernel, called grid. The grid is divided in blocks of

threads, each block has a three-dimensional block iden-
tifier and each thread within a block has another three-

dimensional thread identifier. These identifiers are ac-

cessible in the kernel code and are used to access data

from each thread and to make threads cooperate in
computations. The threads that belong to the same

block can cooperate and communicate using a programmable

cache that works as shared memory. The size of this

cache is limited, if a kernel requires a large amount

of shared memory, the number of blocks running at
once will be reduced, reducing also the performance ob-

tained.

The grid is distributed on the GPU cores in a trans-
parent way, but there are some lower level characteris-

tics that have to be taken into account in order to ob-

tain good performance. The GPU cores are organized in

streaming processors (SMX) that run sets of 32 threads,
called warps in a synchronous way. This means that a

warp of threads is always running the same instruction

and that if there is code divergence, for instance an if

clause with different results within the warp, that sec-

tion of code will be serialized. A block has to be run
on the same SMX, this is because the shared memory

is implemented at the SMX level. There are also limits

to the maximum number of warps and blocks that an

SMX can handle at once, if a block has a small number
of threads the resources will not be fully used, but a

large number of threads can also create this situation

since the SMX only can handle complete blocks. In both

situations the performance obtained is reduced.

A proper use of the GPU resources is usually a crit-

ical factor on the performance because of the way the
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GPU optimizes its memory accesses. GPU devices have

a large number of registers per SMX, this is because

each thread is assigned the registers that is going to

need to run the code before hand. Because of this, a

GPU device can switch from one warp to another in an
extremely fast way since all the required information is

always in registers. When the main memory is accessed

the GPU device switches to another warp and runs it,

this way, the latencies of memory accesses are hidden
with useful computation.

Since GPU devices are separated from CPU devices,

they have their own memory. This means that the data

used in GPU computations needs to be copied from the

computer’s main memory to the GPU device memory.
This computations can be performed asynchronously

at the same time other computations are performed on

the GPU device. Also, the GPU memory cache system

is optimized for coalescent accesses, subsequent threads

are expected to access subsequent memory positions. If
the memory is not accessed in this way it can also lead

to lower performance.

A good GPU-based design has to tackle all these

restrictions and dependencies, identify which parts of

the algorithm are suitable for the GPU device and try
to take advantage of the asynchronous memory trans-

ferences in order to obtain the best performance.

2.2 Imbalanced Classification

There are three main ways to deal with imbalanced clas-

sification: modifying the algorithm, introducing mis-
classification cost and data sampling. Data sampling is

the only one that can be performed in a separate way

from the classification algorithm, since the other two re-

quire direct or indirect modifications of the algorithm.
When sampling data there are two obvious strategies to

solve the imbalanced problem, under-sampling the ma-

jority class or oversampling the minority class. How-

ever, the memory requirements of each type of algo-

rithm are quite different making only one type suitable
to be run on commodity hardware.

Under-sampling methods, such as random under-

sampling or instance selection methods, balance the

number of instances of the classes by reducing the num-

ber of instances of the majority class. The instances se-
lected can be chosen in a random way or using some

type of expert knowledge over the majority class. This

requires to manipulate most of the data in order to per-

form the selection. In a Big Data scenario, the resources
required to handle the majority class are virtually the

same required to handle the whole problem, for this rea-

son this type of approach is not advised if we want to

perform this data transformation on commodity hard-

ware.

Oversampling methods, on the other hand, balance

the number of instances of the classes by increasing

the number of instances of the minority class. The new
instances can be obtained by duplicating existing in-

stances or using some type of interpolation between

existing instances or copying existing instances. Since

these algorithms only need to handle the information
referred to the minority class it is likely that this can

be performed on a single computer. The Synthetic Mi-

nority Oversampling Technique (SMOTE) [7] and the

Random Over-Sampling technique (ROS) are some of

the most common techniques of this type. The first one
is an interpolation technique while the second one is

based on duplicating instances.

The Random Over-Sampling technique creates a new

instance by selecting one real instance randomly and
duplicating it. This procedure is repeated until the num-

ber of instances of both classes has been balanced or a

user specified parameter value is reached.

The SMOTE technique is based on the idea of neigh-

borhood of the k-nearest neighbor(kNN) rule. When
used in classification, the kNN rule sets the class of an

instance as the majority class of the k closest instances

of the training set. SMOTE considers that a instance

can be interpolated between an instance and one of it
neighbors within the class. The algorithm computes the

neighborhood of each instance of the minority class,

chooses one of its neighbors and randomly interpolates

a new instance using the values of each attribute as

limits. When the number of artificial instances is larger
than the number of real instances present in the dataset,

the algorithm ensures that every real instance is used

to create an artificial one, at least, as many times as the

number of artificial instances is larger than the number
of real instances.

The main computational bottleneck of the SMOTE

algorithm is the neighborhood computation. The dis-

tance between each pair of instances needs to be mea-

sured and all those distances needs to be compared
in order to find the neighborhood. GPU devices have

proven to be efficient in the computation of the kNN

rule, reducing the time required for its computation in a

significant way. The next Section shows how we can run
these algorithms on commodity hardware combining a

proper data handling design and a GPU device.

3 Design for preprocessing on commodity

hardware: SMOTE-GPU

In this section we present how the memory requirements

for SMOTE can be adjusted to fit in commodity hard-
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ware and how the computations can be performed on

GPU devices.

3.1 Memory requirements

The usual applications that perform over-sampling al-
gorithms work in a pretty naive way, loading the com-

plete dataset in memory, separating it in different classes,

computing all the new instances and writing the whole

result on the hard drive. This approach works perfectly

for traditional problems but working on Big Data sce-
narios it is unlikely that the whole dataset fits in device

memory.

As commented in Section 2.2, over-sampling meth-

ods only require to work with the data of the minority

class. Our approach only keeps in memory that data.

When reading the dataset, each instance is written to
disk straight away after it is read, then, depending on

its class, it is only kept in memory, if the class corre-

sponds with the minority class.

In the same way, it is not necessary to create all the

artificial instances before writing them to disk. A single
extra instance can be reused to store the results of the

interpolation if the results are stored on the hard drive

just after that.

This way, the memory requirements for the appli-

cation, in terms of dataset storage, are reduced to the

size of the instances of the minority class plus one extra
instance. An over-sampling method that does not per-

form much computation with the data, like ROS, can

work with only these changes, but other methods, like

SMOTE, would still require too much time to perform

their computations.

3.2 SMOTE-GPU design

Applying the previously mentioned memory scheme,

the SMOTE algorithm needs to compute the neighbor-

hood of each instance to interpolate. As commented in
Section 2.2, there are several GPU implementations for

the kNN classification problem that can be adapted to

this situation.

The computation of the kNN rule on GPU devices is

split into two kernels, one kernel that builds a distance

matrix between test and training sets and another ker-
nel that searches for the k minimum distances obtained.

Most GPU-based designs struggle when the distance

matrix does not fit on GPU device memory. In [11],

the different versions that can handle large amounts of
data are studied and compared. The proposed GPU-

SME-kNN obtains the best performance among them,

being able to compute the kNN rule in datasets of more

than 4.5 millions of instances, so it can be considered a

good candidate for the SMOTE method.

GPU-SME-kNN [11] computes the distance matrix

using a block based scheme. The size of each block can

be defined by user-set parameters, so it can be adapted
to a large variety of GPU devices. Each block of the ma-

trix is computed in a kernel call, each row corresponds

to a thread block but, the number of threads per block

is fixed to a value d, smaller than the length of the ma-
trix block. Each thread computes several distances in a

coalescent way.

The selection of the neighborhood is computed se-

quentially after each block of the distance matrix is

computed. For the first matrix block of a strip the
neighborhood is computed, when the second block of

the strip is ready the new neighborhood is computed

combining the previous one and the matrix block, and

the process continues until the las block of the matrix
strip has been computed.

GPU-SME-kNN 1 uses a quicksort [14] based se-

lection. This type of selection allows to discard all the

elements of a block that do not improve the previous

neighborhood in lineal time, using as pivot the furthest
neighbor of the previous block.

Another particularity of GPU-SME-kNN is that it

uses a separate kernel to compute the square root oper-

ation required for the distance computation. The neigh-
borhood comparison can be performed obtaining the

same results without performing that operation that it

is only applied to the finally selected neighbors in order

to obtain the real distance results.

Finally, one of the key aspects of GPU-SME-kNN is
the use of asynchronous memory transfers. The data re-

quired for the distance computation corresponds with

the instances attributes values, this data is not used

during the selection process so the data required for
the computation of the next matrix block can be loaded

while the selection is computed. In the same way, the

final neighborhood can be copied to CPU main mem-

ory while the computations of the next matrix block is

performed. This way all the memory transfers between
CPU and GPU devices are overlapped with computa-

tion, except the initial transfer for the first matrix block

and the transfer of the last neighborhood.

The last step of the SMOTE technique is the in-
terpolation of the instances. This part is performed on

CPU for two reasons, the first one is to minimize the

memory requirements since each instance needs to be

write as soon as is computed; the second one is because

it would require to store large portions of the dataset, if
not all of it, on device memory. Furthermore, the data

is not accessed on a coalescent way which would lead to

1 http://sci2s.ugr.es/GPU-SME-kNN
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Table 1 Datasets information

Dataset Majority Minority Att. IR

ECBDL14-05mill-90 470400 9600 90 49
ECBDL14-10mill-90 9408000 192000 90 49
SUSY IR 16 2169740 135610 18 16
SUSY IR 4 2169740 542435 18 4
SUSY IR 8 2169740 271219 18 8
HIGGS IR 16 4663300 291457 28 16
HIGGS IR 4 4663300 1165825 28 4
HIGGS IR 8 4663300 582913 28 8
HEPMASS IR 16 4200100 262507 28 16
HEPMASS IR 4 4200100 1050029 28 4
HEPMASS IR 8 4200100 525013 28 8

bad performance, if this step were computed on GPU

devices.

SMOTE-GPU can be adapted to a broad range of

GPU devices and can work with large datasets with the

only prerequisite that the fit on CPU main memory.

The memory scheme proposed in Section 3.1 produces
a scenario, where all the data required for the over-

sampling process is stored in main memory, that com-

bined with this GPU-based kNN computation makes

possible the use of the SMOTE technique over large
datasets in a single machine.

4 Experimental study

Different experiments have been carried out to check

the results obtained by our design for SMOTE-GPU.

The section is organized as follows: the experiments are

described in Section 4.1; the different hardware configu-

rations are detailed in Section 4.2; the obtained results
are shown and discussed in Section 4.3.

4.1 Experimental framework

Two different types of experiments have been performed.

The first type focusses on the time needed to apply

the sampling technique to different datasets, while the

second types studies the classification results obtained

after applying the sampling method.

Four different datasets have been used: ECBDL14,

HEPMASS, Higss and Susy. The first one from the
ECBDL 14 competition [2], after a feature selection

process to reduce it to 90 features [24], and the other

three from the UCI repository [4,5]. The UCI datasets

have been modified to create datasets with different im-
balanced ratio. Table 1 shows the number of instances

of each class, the number of attributes of the problem

and the imbalance ratio for each dataset used. These

datasets have been split following a 5-fold cross valida-

tion scheme so every result shown in this paper corre-

sponds to the average of the results obtained on each

fold.

SMOTE and ROS have been used as over-sampling

method, with two different configurations. The first con-
figuration balances the number of instances of the mi-

nority class while the second one introduces 50% of

overhead for the minority class. The value of k for the

SMOTE algorithm is set to 5, the rest of the parameters

for the kNN algorithm have been the same specified in
[11].

We also wanted to compare the time performance

with the ones obtained by software available that per-

forms data preprocessing. We tried to run the SMOTE

implementation available on Keel [3] but we were not

able to obtain results for a single experiment on these
datasets after more than 8 hours of runtime on a server

node.

To check the accuracy of the over-sampled datasets

the decision tree from MLlib has been used. Since the

datasets are large, the depth of the trees has been set

to the maximum value that MLlib allows for this al-
gorithm, which is 30. The area under the ROC curve

(AUC) [6] has been used as measure to show the qual-

ity of the results since the classification accuracy of the

algorithm is not useful when the data is imbalanced.

4.2 Hardware configurations

Different hardware configuration have been use for the

sampling methods in order to prove their suitability

on hardware of different characteristics. The first con-

figuration corresponds to a cluster node that uses an

NVIDIA Tesla k20 GPU with 5 GB of memory and
2496 CUDA cores, an Intel Xeon E5-2630 processor

at 2.30 GHz and 128 GB of main memory. The sec-

ond configuration is a desktop computer that uses an

NVIDIA GeForce GTX 680 with 2GB of memory and
1532 CUDA cores, an Intel core i7 3820 processor at

3.60 GHz and 24 GB of main memory. The last con-

figuration correspond with a laptop computer that uses

an NVIDIA GeForce GTX 740m with 384 CUDA cores,

an Intel Core i5 3337U processor at 1.8 GHz and 8 GB
of main memory.

The accuracy MLlib experiments have been per-

formed on a small spark cluster with four worker nodes,

each worker has 8 threads and 28 GB of main memory.
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Table 2 Time results, in seconds, for the SMOTE algorithm

Server Desktop Laptop

ECBDL14-05mill-90 99.64 73.19 110.55
ECBDL14-10mill-90 2066.48 1553.82 2546.65
SUSY IR 16 164.22 128.91 233.99
SUSY IR 4 308.49 323.20 1149.29
SUSY IR 8 196.51 169.55 420.34
HIGGS IR 16 584.09 445.31 930.70
HIGGS IR 4 1387.20 1508.78 6701.97
HIGGS IR 8 730.63 661.74 2093.40
HEPMASS IR 16 504.58 391.31 799.39
HEPMASS IR 4 1174.35 1238.15 5477.82
HEPMASS IR 8 637.18 553.78 1742.41

Table 3 Time results, in seconds, for the ROS algorithm

Server Desktop Laptop

ECBDL14-05mill-90 55.90 40.25 58.43
ECBDL14-10mill-90 1101.16 777.76 1197.57
SUSY IR 16 90.71 63.21 94.88
SUSY IR 4 107.06 78.95 112.88
SUSY IR 8 97.60 68.47 102.82
HIGGS IR 16 281.42 204.17 305.73
HIGGS IR 4 340.56 245.06 362.14
HIGGS IR 8 301.10 215.81 324.14
HEPMASS IR 16 254.42 180.47 269.97
HEPMASS IR 4 299.76 214.69 317.97
HEPMASS IR 8 268.01 190.02 283.71

Table 4 Time results, in seconds, for the SMOTE algorithm
with extra 50% of minority class

Server Desktop Laptop

ECBDL14-05mill-90 122.35 91.58 134.15
ECBDL14-10mill-90 2535.94 1858.10 3087.82
SUSY IR 16 196.21 148.13 267.96
SUSY IR 4 333.55 332.90 1183.28
SUSY IR 8 226.92 185.30 447.18
HIGGS IR 16 648.01 512.93 1034.11
HIGGS IR 4 1440.68 1549.95 6782.25
HIGGS IR 8 803.61 710.07 2186.71
HEPMASS IR 16 582.31 448.76 910.48
HEPMASS IR 4 1233.46 1292.08 5561.03
HEPMASS IR 8 717.06 612.99 1840.47

4.3 Analysis of the results

Tables 2 to 5 show the average time results, in seconds,

obtained on each cluster for each algorithm.

The time to perform the complete process is in-
cluded in these results, considering also the time spend

in reading the dataset and writing the results on the

hard disk. As expected, the largest time is obtained by

the laptop computer. However, even for more time de-
manding experiment, it is shorter than two hours and

it is only around four times slower than the fastest time

obtained for the same experiment.

Table 5 Time results, in seconds, for the ROS algorithm
with extra 50% of minority class

Server Desktop Laptop

ECBDL14-05mill-90 56.34 39.30 59.28
ECBDL14-10mill-90 1105.64 787.02 1181.07
SUSY IR 16 90.67 64.75 97.82
SUSY IR 4 106.89 76.13 112.46
SUSY IR 8 96.73 69.72 101.96
HIGGS IR 16 286.13 208.64 300.95
HIGGS IR 4 332.43 241.33 356.74
HIGGS IR 8 300.47 221.16 322.44
HEPMASS IR 16 262.08 180.08 270.22
HEPMASS IR 4 303.07 212.66 317.32
HEPMASS IR 8 269.94 192.54 285.68

Table 6 Time results, in seconds, for the neighborhood com-
putation in the SMOTE algorithm

Server Desktop Laptop

ECBDL14-05mill-90 0.34 0.33 1.65
ECBDL14-10mill-90 57.75 64.85 390.17
SUSY IR 16 10.63 13.50 64.81
SUSY IR 4 149.77 201.35 979.60
SUSY IR 8 38.81 51.16 247.95
HIGGS IR 16 56.24 71.20 390.14
HIGGS IR 4 862.24 1119.96 6149.25
HIGGS IR 8 218.75 281.32 1543.06
HEPMASS IR 16 47.39 59.44 327.08
HEPMASS IR 4 701.65 911.01 4997.47
HEPMASS IR 8 180.41 230.96 1269.28

The desktop configuration is faster than the server

one in many cases. The reason for this is that the inter-

polation process is performed on CPU device and single

thread performance of the CPU device on the desktop
is higher than the CPU device on the server, as it was

shown in the hardware description. This behavior could

be expected for the ROS algorithm but it also happens

in SMOTE.

The NVIDIA Tesla k20 GPU from the server deliv-

ers a higher performance than the NVIDIA GTX 680

from the desktop but the faster CPU of the desktop
compensates this differences in most cases. The number

of instances to create has more importance now, com-

paring the results for the dataset SUSY IR 4 in Tables 2

and 4, corresponding to both SMOTE configurations.
The server is faster that the desktop in the first case

but slower in the second. The only difference between

both settings is the number of artificial instances cre-

ated. This means that, if the GPU device is powerful

enough, the bottleneck moves from the neighborhood
computation to the interpolation and data reading and

storage.

Table 6 shows the time required for the kNN algo-

rithm on each dataset and confirms what could be ex-

pected considering the different capabilities of the GPU
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Table 7 Area under the ROC classifying with decision tree

Original SMOTE ROS SMOTE +50% ROS +50%

ECBDL14-05mill-90 0.544881 0.567342 0.545054 0.573031 0.547924
ECBDL14-10mill-90 0.563563 0.594264 0.564074 0.605921 0.564196
SUSY IR 16 0.665744 0.717567 0.679827 0.723325 0.665962
SUSY IR 4 0.711592 0.734715 0.712165 0.735505 0.71156
SUSY IR 8 0.691066 0.726985 0.697648 0.729704 0.691832
HIGGS IR 16 0.570898 0.523949 0.597522 0.619572 0.571279
HIGGS IR 4 0.62884 0.52789 0.635897 0.637591 0.62936
HIGGS IR 8 0.598123 0.525692 0.61372 0.625987 0.598622
HEPMASS IR 16 0.769566 0.808801 0.769752 0.812846 0.77002
HEPMASS IR 4 0.808041 0.818099 0.807909 0.818907 0.808038
HEPMASS IR 8 0.79149 0.81361 0.79107 0.816336 0.791037

devices used. It can be seen how the server configura-

tion is faster than any other in this step. It also shows

that the importance of this step, in terms of time, is
much higher than in the other configurations, reaching

up to 90% of the total time in some cases. However,

the fact that a medium range three-years-old laptop

can handle these datasets in less than two hours shows
how powerful this design can be.

Considering that the time required to read and store

the data has now a significant importance on the global
performance of the algorithm it is important to state

that in all the experiments the data was stored in a

traditional magnetic hard drive. It is likely that using

a Solid State Disk these times would be reduced, espe-
cially for the server and desktop configurations.

Table 7 shows the values for the Area under the
ROC curve obtained using the MLlib decision tree with

the original dataset and the sampled datasets.

These results show how the oversampling methods

outperform the results obtained by the original dataset.

SMOTE with an extra 50% of the minority class achieves

the best results in all datasets. We can also observe

how the results of the first configuration of SMOTE
are better than ROS and than the original problem

for all datasets except for HIGGS. The ROS algorithm

seems to be leading to over-fitting when an extra 50%

of the minority class is created, in that case, only four
experiments improve the results obtained by the first

configuration of ROS.

5 Conclusions

In this work, we have shown that it is possible to per-

form data oversampling for BigData datasets on com-

modity hardware by combining an efficient data han-

dling scheme and the computational capacities of GPU
devices. Different settings for the methods have been

tested on different datasets up to 10 millions of in-

stances and imbalanced ratios up to 51.

The Area under the ROC curve results show that

the use of oversampling methods improves the detection

of the minority class in Big Data datasets. We have also
shown how our design can successfully work on a wide

range of devices, including a laptop, while requiring rea-

sonable times, around 25 minutes on high end devices

and less than two hours on the laptop, for the most
time-demanding experiment.
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[PTG+16] Peralta D., Triguero I., Garćıa S., Herrera F., and Benitez J. M. (2016) DPD-DFF: A
Dual Phase Distributed Scheme with Double Fingerprint Fusion for Fast and Accurate
Identification in Large Databases. Inf. Fusion 32: 40–51.

[PTSR+14] Peralta D., Triguero I., Sanchez-Reillo R., Herrera F., and Benitez J. M. (feb 2014)
Fast Fingerprint Identification for Large Databases. Pattern Recognit. 47(2): 588–602.

[RNJ06] Ross A. A., Nandakumar K., and Jain A. K. (2006) Handbook of multibiometrics,
volumen 6. Springer.

[STDV07] Schatz M., Trapnell C., Delcher A., and Varshney A. (2007) High-throughput sequence
alignment using Graphics Processing Units. BMC Bioinformatics .
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