
UNIVERSIDAD DE GRANADA

E.T.S. DE INGENIERÍAS INFORMÁTICA Y DE
TELECOMUNICACIÓN

Departamento de Lenguajes y
Sistemas Informáticos

Programa de Doctorado en
Tecnoloǵıas de la Información y la Comunicación

Métodos GPGPU para simulación y visualización de modelos
volumétricos interactivos

GPGPU methods for simulation and visualization of interactive
volumetric models

Tesis Doctoral

Alejandro Rodŕıguez Aguilera

Director: Alejandro José León Salas

Editor: Universidad de Granada. Tesis Doctorales
Autor: Alejandro Rodríguez Aguilera
ISBN: 978-84-9163-491-1
URI: http://hdl.handle.net/10481/48269

http://hdl.handle.net/10481/48269

Agradecimientos

Junto con esta memoria, se cierra un caṕıtulo importante de mi vida que, echando
la vista atrás, ha dado lugar a muchas experiencias positivas con las que he crecido
personal y profesionalmente. Hay mucha gente que me ha acompañado durante esta
etapa, y me gustaŕıa dedicar este espacio a agradecer a todos ellos el tiempo que
hemos compartido, y sobre todo, la buena amistad que hemos acabado labrando de
forma inevitable.

Tengo que empezar agradeciendo a Alejandro por abrirme el camino de la inves-
tigación. Con su confianza en mi buen hacer, su dirección y sobre todo, su amistad,
creo sinceramente que ha conseguido que mi doctorado haya sido un proceso muy
fruct́ıfero en todos los sentidos. De igual manera, agradezco a todos los miembros
del grupo de informática gráfica, mi grupo, su apoyo a lo largo de este exigente
proceso. También quiero agradecer a todos los compañeros del CITIC con los que
he compartido horas de trabajo y de ocio a partes iguales, o casi.

Una de las cosas que más valoro de esta etapa es la oportunidad que me ha
ofrecido de conocer y colaborar con muchas personas que siempre han ofrecido su
ayuda desinteresada, y me siento un privilegiado por ello. Todos los compañeros
del grupo DEFROST, que me acogieron de la mejor manera en Lille, con especial
mención a Christian por confiar en mı́ y darme la oportunidad de trabajar en un
proyecto tan interesante. Todos los miembros del grupo GMRV, que de igual manera
me acogieron la primera vez que fui a visitarles, y tan bien fue la cosa que ahora son
mis nuevos compañeros de trabajo y aún mejores amigos. Mención especial también
tengo que hacer a Miguel Ángel, que ha confiado en mı́ en ya múltiples ocasiones y
que no ha dudado en compartir su amplia experiencia conmigo.

Tampoco me olvido en estos momentos de todos los grand́ısimos amigos, los que
siguen aqúı y los que ya no están, que me han acompañado desde mucho antes
de empezar esta etapa, que me enriquecen como persona y que espero que sigan
caminando junto a mı́ mucho tiempo más.

Por último, y por ello más importante, gracias a mis papis, a mis hermanitos y
a Inés, por ser incondicionales y ofrecerme todo lo importante. Estoy muy orgulloso
de vosotros y os quiero un montón.

A todos vosotros, ¡Gracias!

v

Contents

Abstract ix

1 Introduction and overview 1

1.1 Introduction . 1

1.2 Parallel GPU computing . 2

1.3 Interactive simulation of deformable models 3

1.3.1 The ChainMail algorithm . 4

1.3.2 Soft robotics control . 5

1.4 Interactive direct volume rendering 5

1.4.1 Medical volume exploration 6

1.4.2 Rendering of deformed volume data 6

1.5 Objectives . 7

1.6 Contributions . 8

1.6.1 Publications . 8

1.7 Outline . 11

2 Parallel ChainMail simulation of heterogeneous medical models 13

2.1 A system proposal for interactive deformation of large medical volumes 13

2.2 SP-ChainMail: a GPU-based sparse parallel ChainMail algorithm for
deforming medical volumes . 26

2.3 Parallel deformation of heterogeneous ChainMail models: application
to interactive deformation of large medical volumes 48

3 Simulation-based control of soft robots 83

3.1 Real-time simulation of hydraulic components for interactive control
of soft robots . 83

4 Interactive medical visualization 93

4.1 A parallel resampling method for interactive deformation of volumet-
ric models . 93

4.2 Spatial opacity maps for direct volume rendering of regions of interest 119

vii

viii Contents

5 Conclusions and Future Works 131
5.1 Conclusions . 131
5.2 Parallel ChainMail simulation of heterogeneous medical models 131

5.2.1 Simulation-based control of soft robots 132
5.2.2 Interactive medical visualization 132

5.3 Future Works . 133
5.3.1 Parallel ChainMail simulation of heterogeneous medical models133
5.3.2 Simulation-based control of soft robots 133
5.3.3 Interactive medical visualization 134

Bibliography 135

A Resumen y Conclusiones 147

Abstract

In this thesis we address different computationally demanding problems in the fields
of simulation and visualization, exploring novel GPGPU methods to provide solu-
tions for interactive applications with a reduced time budget.

In the first part of this work, we tackle different limitations of the ChainMail
algorithm for deforming volumetric medical models. We propose a novel parallel
ChainMail algorithm for the efficient handling of large heterogeneous models, also
accounting for interactive topology changes. The use of a novel scheduling method
for the GPU addresses the sparse nature of the computation, allowing the use of
much larger models in interactive applications.

The second part is devoted to the online motion planning of soft robots addressed
as a computational simulation problem. Specifically, we propose an accurate and
efficient model for hydraulic actuators and its usage in an inverse kinematics frame-
work for the interactive control of actuated soft robots. An efficient estimation of
the fluid weight is provided by a novel parallel algorithm exploiting modern GPU
capabilities.

The last part of this work addresses problems related to the visualization of med-
ical datasets through direct volume rendering. First, we propose a novel resampling
algorithm for the interactive rendering of deformable medical models, capable of in-
teractively providing a regular grid representation of the deformed dataset as input
for the standard volume rendering pipeline. Next, we present a new tool for the
the selection and visualization of regions of interest avoiding any kind of parame-
ter tuning, aiming to eliminate trial-and-error approaches typically required for this
task.

ix

x Abstract

Chapter 1

Introduction and overview

1.1 Introduction

Modeling the physical behavior of real world phenomena has been of scientific inter-
est throughout human history. It is a key tool not only to improve our understanding
of the world, but also to provide a means to reproduce and predict the behavior of
many kinds of physical processes, providing important insights that can then be
employed for better decision-making, detailed study or training, among other ap-
plications. Computational modeling and simulation are among the most significant
developments devoted to scientific and engineering inquiry in the last decades and a
plethora of methods for physical simulation are extensively used in a wide range of
disciplines, as diverse as astrophysics, molecule folding, civil engineering and both
film and video-game industries.

A major issue of computational simulation methods arises with the complexity
of model employed to describe the phenomenon. A model too complex to compute
or too large to store may require an unacceptable amount of time to perform the
desired simulation. This limitation becomes especially apparent for interactive ap-
plications, in which the time budget to perform a simulation step can be limited
to a few milliseconds. Many of the interactive simulation applications also require
visual feedback, thus the connection between the simulation model and its visual
representation must be performed in an efficient manner to allow for the complete
application pipeline to comply with the strict time budget.

In the specific case of medical simulations, such as the simulation of physiologi-
cal processes or the simulation of surgical procedures (commonly known as virtual
surgery), a complex model of the human anatomy is required. The tissue distribu-
tion of biological forms is typically captured through 3D sensing technologies such as
computerized tomography (CT) procedures or magnetic resonance imaging (MRI)
techniques. As a result, the acquired data includes up to several million voxels
of information representing the tissue distribution inside the different organs and
anatomical structures. This huge amount of data can be used to obtain both the

1

2 1.2. Parallel GPU computing

bio-mechanical and the visual models for interactive applications, becoming a very
computationally demanding problem that has received a lot of attention from the
scientific community.

The efficiency in the computation of these applications has naturally been raised
over the years, both by improvements in the hardware and in the software. The in-
troduction of the graphics processing units (GPUs) allowed to accelerate the visual
feedback of these applications, but a major breakthrough was reached with the ap-
pearance of the programmable GPU pipeline, and more importantly, the subsequent
development of frameworks for general purpose computing on graphics processing
units (GPGPU) that extended their usage to many fields of modern computation,
including the physical simulation field.

In this thesis, we explore GPGPU techniques aiming to develop new methods and
improved algorithms for the simulation and visualization of interactive applications,
with special focus on medical applications and soft robotics. Let us first give a brief
overview to each of the main fields involved in the scope of this thesis.

1.2 Parallel GPU computing

The computing industry moved away from manufacturing processors with increased
clock frequency toward increasing the number of processors several years ago. This
event posed a great change in software development, and was regarded as a new
software revolution [1].

Along with this change, and in part motivated by it, we have seen the extension of
the use of GPUs from their original application, i.e., rasterization of visual geometric
primitives, to a wide range of applications in most computation fields, since their
massively parallel architecture offered the potential for dramatic speedups. Starting
with the inclusion of the programmable graphics pipeline and currently with the
development of general purpose platforms and languages such as CUDA [2, 3] and
OpenCL [4, 5] to program the GPUs, their application to accelerate computationally
demanding problems is expanding, and this is a trend expected to further develop
during the coming years [6].

Modern GPUs are designed following a highly parallel single instruction multiple
data (SIMD) architecture, motivated by the original rendering pipeline performed on
GPUs, which followed a very simple SIMD computation of geometric primitives [2,
7]. However, most general problems have more complex requirements regarding the
structure of the computation, the dependence between different stages and the data
sharing between different processes [8]. For this reason, many different strategies
regarding computation scheduling, data layout and memory access among others
have been developed over the years to efficiently leverage the GPU resources in a
variety of situations.

In the scope of this thesis, we focus on stencil computation and irregular paral-

Chapter 1. Introduction and overview 3

lel programs, two ubiquitous classes of computation schemes that appear in many
disciplines involving computation of large amounts of data, and play an important
role in the solutions developed on this thesis as will become apparent later.

The stencil computation scheme [9, 10] operates over an input array, structured
as a regular multidimensional grid of cell elements, typically 2- or 3-dimensional. A
sequence of iterations are performed over the grid, and the cells are updated using
the information of local neighboring cells in a fixed pattern, called the stencil. Many
problems across different disciplines can be adapted to this computation pattern,
such as finite difference computation [11], weather prediction [12] and partial differ-
ential equations solvers [10] among others. The structured and parallel nature of the
approach perfectly adapts to the computation paradigm of modern GPUs, however,
this approach is not free of limitations, and optimization strategies regarding shared
data access and memory bandwidth have been widely studied [13, 9, 14]. Another
issue studied in many problems is the sparse nature of the computation, i.e., the
number of cells that require an update in an average iteration is significantly lower
than the total number of cells in the grid, and several solutions have been proposed
to handle these cases and avoid the waste of GPU resources [15, 16].

Other common issue found when running parallel algorithms on the GPU is
the irregular parallel workload problem [17, 18], i.e., the workloads of the different
parallel tasks are notably different. These cases require more intelligent scheduling
approaches to balance the load across the parallel units. This problem adopts many
forms across many disciplines and efficient scheduling strategies must be found ac-
counting for the specifics of each case. In computer graphics, a well known form of
this problem arises in the central stage of rasterization, and many strategies have
been proposed [19, 20, 21, 22], always comprising a trade-off between load balancing
effectiveness and scheduling overhead.

1.3 Interactive simulation of deformable models

Many materials, including living tissue, exhibit a deformable and heterogeneous be-
havior to some extent, and a correct simulation of their dynamics is crucial in many
applications. Additionally, some of these applications rely on interactive responses
for proper functioning, e.g., the interaction between virtual tools and different tis-
sues in virtual surgery applications or the compliant behavior of soft materials in
simulation-based motion planing of soft robots. For this reason, a trade-off between
physical accuracy and performance must be reached, and many deformable models
have been proposed over several decades following different approaches [23, 24].

A great body of approaches propose physically-based models [25]. Many meth-
ods are based on particle systems [26, 27, 28], defining dynamic systems of discrete
particles that interact with each other through a set of constraints that define forces
or energies between the particles, approximating the properties of the modeled el-

4 1.3. Interactive simulation of deformable models

ements. For instance, the popular mass-spring method defines a set of mass nodes
interconnected with mass-less springs, and the dynamics of the system are then
computed by solving the partial differential equations that emerge from this for-
mulation [29, 30]. These methods are very general and can capture many physical
properties of different kinds of materials, however, they typically require a complex
parameter tuning to fit the exact behavior of a real world specimen. Approaches
based on the laws of continuum mechanics [31] overcome these limitations by defin-
ing the deformable behavior of a solid object in the continuum space which is then
discretized, typically using the finite element method (FEM) [32], to approximate
the real solution with a finite set of elements. Although the problem formulation in
this case is more complex, it has an increased accuracy of the modeled behaviors
and the tuning of the model parameters to match the real counterpart is much eas-
ier as they emerge from real, measurable material properties widely studied. These
approaches are capable of producing highly accurate simulations, however, the com-
putational cost is typically very high and, for interactive applications, models with
a reduced number of particles or elements must be used. These models, specially
the FEM approach, have been extensively used in interactive medical applications,
however, in some cases the disparity between the high resolution source dataset and
the low resolution model leads to an inevitable loss of complexity and heterogeneity
of the reference model.

1.3.1 The ChainMail algorithm

For cases where the loss of detail and complexity is critical, the ChainMail algorithm
proposed by Gibson [33] enabled physically realistic deformations following a two-
stage approach. A ChainMail model consists of a regular 3D grid of elements,
each connected to its 6 nearest neighbors through geometrical constraints. When
a deformation is applied, a first geometrical stage enforces the constraints through
the grid, and a second relaxation stage performs an iterative energy minimization
process on the grid until a rest state is reached. Its geometrical nature makes the
algorithm unconditionally stable and very efficient to compute, and models with a
number of elements several orders of magnitude greater than the approaches stated
above can be used in interactive applications. Several limitations are found due
to its simple formulation, however, by tuning the geometrical constraints and the
relaxation stage, it is capable of reproducing complex living tissue behaviors such as
non-linear stress-strain response, hysteresis and asymptotic relaxation [34]. It has
been used in many medical applications [35, 36, 37, 38, 39, 40, 41, 42, 43] and several
versions of the original method have been proposed [44, 45, 46, 47, 48, 49, 50, 51, 52].

The increase of resolution of interactive models for all the above mentioned meth-
ods has also been a subject of intensive research. The use of coarsening techniques
for FEM models [53, 54, 55] for instance, allows the use of high resolution meshes by
just a fraction of their computational cost. Naturally, the use of GPUs to accelerate

Chapter 1. Introduction and overview 5

parts of the computations has also been widely explored in the last years, both for
particle systems [56, 57] and FEM systems [58, 59], although for the ChainMail
algorithm only a first attempt was made by Rößler et al. [60].

1.3.2 Soft robotics control

In the field of robotics, an alternative to traditional articulated rigid robots emerged,
inspired on biological structures, under the name of soft robots [61, 62]. The salient
feature of soft robots is their compliant nature as they are primarily made of soft
materials such as fluids, gels and soft polymers, and the motivation for this choice
is the intrinsic increased dexterity and flexibility that allows them to support strain
while remaining operative. This is a desirable feature for situations with a certain
degree of uncertainty and safety requirements, typical (but not exclusive) of human-
centric operations where contact with the surroundings is sensible, although it may
be even desirable for a better operation [63, 64]. Under these circumstances, mini-
mizing stress concentrations in contact areas also minimize damage to the operated
environment, and it can be achieved by compliance matching, i.e., guaranteeing sim-
ilar mechanical rigidity of the contacting surfaces. While compliance matching may
become complex to achieve using conventional robots, it becomes trivial for soft
robots [62].

As an emerging field, it is not free of challenges [65]. One major issue lies in
the task control and motion planning area; the compliant nature of the supporting
structure of soft robots yields a theoretical infinite number of degrees of freedom,
which leads to heavily underactuated designs where the actuators become coupled
by the deformation, and direct control and motion planning become non-trivial
problems [66, 67]. One successful approach to perform the direct control of such
robots consists on creating a simulated counterpart of the soft robot using a FEM
discretization for modeling the mechanical behavior and structure of the fabricated
robot together with an accurate modeling of the actuators influence on the robot,
performing then an inverse kinematics problem given a target configuration [68].
This inverse problem can be efficiently solved using a quadratic programming opti-
mization procedure as demonstrated in [69], however, the models of both the robot
structure and the actuators must allow near real-time computations yet provide
accurate predictions to allow for interactive control of fabricated robots. For this
reason, the accurate and efficient modeling of different kinds of actuators has been
and still is subject of research [70, 71, 72].

1.4 Interactive direct volume rendering

As stated earlier, medical imaging techniques typically produce a volumetric repre-
sentation of the interior of a body. As a consequence, many direct volume rendering
(DVR) techniques have been proposed and improved over the years [73, 74, 75, 76].

6 1.4. Interactive direct volume rendering

The most extended DVR approach is the Ray-casting algorithm: given a view-
point and a volume dataset, a set of rays (one per pixel in the final output image) are
cast and the radiative energy is integrated by mapping the volume samples fetched
along a ray to emission and absorption coefficients through the use of a transfer
function, and the final composed value is set to the according pixel to form the out-
put rendering. A comprehensive explanation of the method is found in [74]. Many
advanced illumination techniques proposed over the years have increased the output
quality of the final compositions [77] and, although this method was initially too
costly for interactive applications, it’s GPU parallelization allowed for interactive
applications to use this rendering approach to provide visual feedback [78, 79].

1.4.1 Medical volume exploration

Direct volume rendering approaches provide useful information regarding spatial
properties and contextual information of different features, however, its wide adop-
tion for clinical applications is still limited [80, 81]. The main reason for this is the
level of expertise required to obtain desired visualizations of the data since the basic
tool to control the visible structures is the definition of transfer functions, which is
a process widely recognized as complex and time-consuming [82, 83].

This issue has motivated many techniques to interactively explore medical vol-
umes. Some approaches borrow ideas from traditional medical hand-drawn illustra-
tions, aiming to provide new tools for the generation of focus+context visualizations
of the data, such as novel manipulation operators [84] or context-preserving render-
ing models [85, 86]. Great efforts have also been directed to improve the generation
of meaningful transfer functions, either easing the generation process with semi-
automatic techniques [87, 88, 89] or fully automatic techniques [90, 91, 92, 93].
Other techniques aim to connect the control of 3D volume rendering parameters
with the classical 2D pipeline used in clinical workflows in an attempt to ease the
transition while exploiting the benefits of both metaphors, typically relying on fea-
tures of interest selected on the 2D slices to infer good visualization parameters for
the 3D rendering [94, 95, 96, 80].

These and other approaches bridge the gap between volume rendering and pro-
fessional workflows, but a general, standard set of techniques for an easy exploration
of medical volume datasets is yet to be reached.

1.4.2 Rendering of deformed volume data

The visual feedback for medical simulations is in many cases as important as the
simulation itself [97, 98]. Despite the mature state of the Ray-casting algorithm, its
usage for applications using deformed volume data remains a challenge. This is due
to the fact that high quality volume rendering approaches account for a regular grid
of data to achieve interactive frame rates.

Chapter 1. Introduction and overview 7

The traditional strategy to address this problem consists in segmenting and
meshing the original volume data to some desired isosurface levels and resort to
standard surface rendering. Besides the additional segmentation stage, the full de-
tail in the original data is lost and it is not possible to visualize isosurfaces not
segmented beforehand. Another strategy is to perform volume rendering using un-
structured meshes to avoid the loss of detail. Despite achieving interactive frame
rates through GPU computing, as demonstrated by Georgii et al. [99], the cost of
unstructured volume rendering grows with mesh resolution, thus for high resolu-
tion deformation methods, as the ones mentioned in Section 1.3, the computational
cost impedes interactivity. In addition, many of the improvements and advanced
rendering features have been developed for regular-grid volume data and their im-
plementation for unstructured meshes is typically more computationally demanding
and in many cases has not been studied, as stated by Correa et al. [100].

A different strategy was later proposed, motivated by the superior performance
and more advanced rendering features of DVR methods, following the idea of re-
sampling the deformed volume onto a regular grid which is then fed as input to
a standard DVR method [38, 101, 102]. Although the resampling of a large vol-
ume is a costly operation, it is possible to perform it interactively through massive
GPU parallelization for tetrahedral meshes as demonstrated by Gascón et al. [101].
Following this strategy, both the advanced rendering and exploration techniques
developed for DVR can be applied to visualize the deformed volume. The main lim-
itation of current methods following this strategy resides again in the performance,
since the computation cost depends on the mesh resolution, thus for high resolution
meshes interactivity is impeded.

1.5 Objectives

The main goal of this thesis aims to improve both the simulation and the visual-
ization of deformable models for interactive applications applying novel GPGPU
methods. Specifically, we propose objectives both in the simulation and the visual-
ization fields for medical applications and soft robotics.

In the field of simulation, we propose the following objectives:

• To develop a GPU accelerated ChainMail algorithm for interactive deformation
of large and heterogeneous medical models.

• To propose and apply an efficient method to compute the effect of fluid weight
on deformable models for the correct simulation and control of hydraulic soft
robots.

In the field of medical visualization, we propose the following objectives:

• To propose an efficient resampling method for high resolution volume defor-
mation techniques.

8 1.6. Contributions

• To develop an interactive method for intuitive selection and visualization of
regions of interest.

1.6 Contributions

The main contributions of this thesis cover the proposed objectives and, as a sec-
ondary result of our solutions, we also present additional contributions in the GPGPU
field. Our core contributions can be summarized as follows:

1. A novel ChainMail algorithm, obtained by reformulating the original algo-
rithm as a parallel stencil computation problem, hence allowing its efficient
computation using the GPU. Moreover, the proposed algorithm accounts for
the sparse nature of it computation, and the propagation and the relaxation
stages are modified to enable the use of heterogeneous materials on the model,
even in the presence of interactive topology changes.

2. An accurate, real-time computation of the fluid weight distribution of hy-
draulic components which, together with a model of their mechanical behavior,
is integrated withing a FEM simulation framework for online motion planning
of hydraulic actuated soft robots.

3. A parallel resampling method for deformed volumes, independent of the un-
derlying deformation method, more than one order of magnitude faster than
previous algorithms when applied to high resolution deformation models.

4. A ROI selection and visualization method based on interactively generated
spatial opacity maps, following a stencil computation approach.

5. A blocking method for efficient computation of sparse stencil computation
problems. This blocking method drastically reduces the unnecessary GPU
computation.

6. A new scheduling technique to address irregular-parallel workload problems,
used on the computation of the fluid weight inside hydraulic components.

1.6.1 Publications

The results corresponding to the contributions directly derived from this thesis are
published in five international journals indexed in JCR, including one ACM Trans-
actions on Graphics presented at SIGGRAPH Asia, one peer-reviewed international
conference and two peer-reviewed national conferences. The works here presented
were done in collaboration with several colleagues, and my implication can be in-
ferred from the position in the authors lists:

Chapter 1. Introduction and overview 9

• A. Rodŕıguez, A. León, G. Arroyo, and J. M. Mantas (2015). “SP-ChainMail:
a GPU-based sparse parallel ChainMail algorithm for deforming medical vol-
umes”. The Journal of Supercomputing, Volume 71, Issue 9, pp. 3482-3499.

– Status: Published [103]

– Impact factor (JCR 2015): 1.088

– Subject category: Computer Science, Hardware and Architecture (Q2:
23/51), Computer Science, Theory and Methods (Q2: 47/105).

• A. Rodŕıguez, A. León and G. Arroyo (2016). “Parallel deformation of
heterogeneous ChainMail models: Application to interactive deformation of
large medical volumes”. Computers in Biology and Medicine, Volume 79, pp.
222-232.

– Status: Published [104]

– Impact factor (JCR 2015): 1.521

– Subject category: Biology (Q2: 35/84), Computer Science, Interdisci-
plinary Applications (Q3: 54/105), Mathematical and Computational
Biology (Q2: 19/57), Engineering, Biomedical (Q3: 45/77).

• A. Rodŕıguez, A. León Salas, D. Mart́ın Perandrés and M. A. Otaduy (2015).
“A parallel resampling method for interactive deformation of volumetric mod-
els”. Computers & Graphics, Volume 53, pp. 147-155.

– Status: Published [105]

– Impact factor (JCR 2015): 1.120

– Subject category: Computer Science, Software Engineering (Q2: 41/106).

• R. Torres, A. Rodŕıguez, J. M. Espadero and M. A. Otaduy (2016). “High-
resolution interaction with corotational coarsening models”. ACM Transac-
tions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2016, Vol-
ume 35, Issue 6, Article No. 211.

– Status: Published [106]

– Impact factor (JCR 2015): 4.218

– Subject category: Computer Science, Software Engineering (Q1: 1/106).

• K. A. Mountris, J. Bert, J. Noailly, A. Rodŕıguez, A. Valeri, O. Pradier,
U. Schick, E. Promayon M. A. Gonzalez Ballester, J. Troccaz and D. Visvikis
(2017). “Modeling the impact of prostate edema on LDR brachytherapy: a
Monte Carlo dosimetry study based on a 3D biphasic finite element biome-
chanical model”. Physics in Medicine and Biology, Volume 62, Issue 6, pp.
2087-2102.

10 1.6. Contributions

– Status: Published [107]

– Impact factor (JCR 2015): 2.811

– Subject category: Engineering, Biomedical (Q1: 19/76), Radiology, Nu-
clear Medicine and Medical Imaging (Q2: 32/124).

• A. Rodŕıguez, E. Coevoet and C. Duriez. “Real-time simulation of hydraulic
components for interactive control of soft robots”. IEEE International Con-
ference on Robotics and Automation (ICRA 2017).

– Status: Published [108]

– CORE Conference Ranking 2014: CORE B

– H index (SJR 2015): 105.

• A. Rodŕıguez, A. León, L. López Escudero and M. Garćıa Sánchez (2014).
“A System Proposal for Interactive Deformation of Large Medical Volumes”.
Proceedings of Spanish Computer Graphics Conference (CEIG 2014).

– Status: Published [109]

• A. Rodŕıguez and A. León (2016). “Spatial Opacity Maps for Direct Volume
Rendering of Regions of Interest”. Proceedings of Spanish Computer Graphics
Conference (CEIG 2016).

– Status: Published [110]

Other contributions, not directly related to the goals of this thesis have been
developed for other projects and also published during the thesis period, includ-
ing one international journal indexed in JCR, one international journal and one
international conference:

• D. Mart́ın and G. Arroyo and A. Rodŕıguez and T. Isenberg (2017). “A
survey of digital stippling”. Computers & Graphics, Volume 67, pp. 24-44.

– Status: Published [111]

– Impact factor (JCR 2015): 1.120

– Subject category: Computer Science, Software Engineering (Q2: 41/106).

• A. Rodŕıguez and A. León (2016). “A framework for remote 3D interaction
with handheld devices: Application to a 3D heritage gallery prototype”. Sci-
entific Research and Information Technology (SCIRES-IT), Volume 6, Issue
1, pp. 79-86.

– Status: Published [112]

Chapter 1. Introduction and overview 11

• A. Rodŕıguez and A. León (2015). “Smartphone-based remote 3D interac-
tion for digital heritage applications”. Proceedings of Digital Heritage (DH
2015), pp. 297-300.

– Status: Published [113]

1.7 Outline

This dissertation is presented in the modality of “compendium”, and the scientific
contributions directly connected to the scope of this thesis, with me as leading
author, have been organized in the following chapters.

Chapter 2 groups the contributions related to our proposed ChainMail algo-
rithm, including details of the recasting of the ChainMail algorithm as a stencil
computation problem, the blocking scheme for efficient computation of sparse sten-
cil computations, the modified propagation and relaxation stages for the handling
of heterogeneous materials and the introduction of interactive topology changes in
the ChainMail models.

Chapter 3 includes our contribution regarding the modeling of hydraulic compo-
nents for direct control of soft robots and the modeling of the mechanical behavior
of the components, along with the formalization of our irregular-parallel leveraging
algorithm.

Chapter 4 groups contributions regarding visualization techniques. First, our
resampling method for large volumes is presented, including details of its parallel
implementation and several use cases with different deformation methods. Then,
our ROI selection and visualization method based on spatial opacity maps is pre-
sented, including details regarding its implementation, integration within the volume
rendering pipeline and an analysis and discussion of its ease of use and robustness.

Finally, in chapter 5 we present the main conclusions derived from the work
carried out in the development of this thesis and discuss future works.

Appendix A includes a brief summary of the present thesis to comply with the
current regulation regarding the international theses written in English, including
a brief introduction, the structure of the document and the conclusions already
presented in chapter 5.

12 1.7. Outline

Chapter 2

Parallel ChainMail simulation of
heterogeneous medical models

2.1 A system proposal for interactive deformation

of large medical volumes

• A. Rodŕıguez, A. León, L. López Escudero and M. Garćıa Sánchez (2014).
“A System Proposal for Interactive Deformation of Large Medical Volumes”.
Proceedings of Spanish Computer Graphics Conference (CEIG 2014).

– Status: Published [109]

13

14 2.1. A system proposal for interactive deformation of large medical volumes

CEIG - Spanish Computer Graphics Conference (2014) , pp. 1–10
Pere-Pau Vázquez and Adolfo Muñoz (Editors)

A System Proposal for Interactive Deformation of Large
Medical Volumes

A. Rodríguez1∗ and A. León1 and L. López1 and M. García1

1Laboratorio de Realidad Virtual, Universidad de Granada, España

Abstract
In the field of volume deformation, an open research topic is the interactive and physically plausible deformation
and rendering of large medical volumes. Many approaches to deform volumetric models have been proposed,
offering a trade-off between realism and model resolution depending on the goal.
In this paper, we study the main techniques to deform volumetric models, focusing on the works that address inter-
active realistic deformation of large models and we outline the requirements needed to build an integrated system
to interactively deform and visualize large volumes using the GPU. We also present a prototype of application
that shows the viability of implementing such a system. For this prototype, we propose an enhanced deformation
technique and a new fast deformed volume visualization scheme, assuring the system interactivity at any time.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, I.3.1 [Computer Graphics]: Hardware Architecture—Parallel processing

1. Introducción

El campo de la deformación de volúmenes es un área
de investigación con gran actividad en la que, desde hace
varias décadas, se proponen diversos métodos de deforma-
ción de volúmenes para multitud de aplicaciones. Gibson et
al. [GM97] presentaron un completo estado del arte de los
distintos métodos existentes hasta la fecha en el campo de
deformación de volúmenes. Meier et al. [MLM∗05] presen-
taron otro estado del arte centrado en modelos de deforma-
ción aplicados a sistemas de simulación de procedimientos
quirúrgicos.

Las técnicas propuestas, en función de la aplicación para
la que se desarrollan, sacrifican resolución en los modelos
con el objetivo de ofrecer mayor fidelidad biomecánica en
las deformaciones o, por el contrario, ofrecen modelos de
mayor resolución a expensas de perder realismo en la de-
formación. Entre las propuestas enfocadas en el desarrollo
de sistemas aplicados a cirugía virtual, los métodos más em-
pleados son los sistemas de simulación física FEM (Finite
Element Method) y Mass-Spring. Por otra parte, en las pro-
puestas enfocadas a mejorar la exploración de los datos ori-

∗ Este trabajo ha sido parcialmente financiado por la Universidad
de Granada bajo el programa "Formación de Profesorado Universi-
tario del Plan Propio".

ginales en procesos de diagnóstico o herramientas de docen-
cia, los métodos más empleados son los sistemas de defor-
mación espacial, donde destacan las técnicas de FFD (Free
Form Deformation), y los sistemas basados en restricciones
geométricas, siendo el más destacado el algoritmo Chain-
Mail 3D.

En este trabajo mostramos una propuesta de sistema que
permite realizar deformaciones físicamente plausibles de
grandes modelos volumétricos y visualizar de forma realis-
ta dichos modelos, teniendo como requisito fundamental la
respuesta interactiva del sistema frente a las operaciones del
usuario. Con este objetivo presentamos un análisis de los
principales métodos empleados en este campo, centrándo-
nos en las propuestas que hacen uso del algoritmo Chain-
Mail 3D. Estudiando los problemas que presentan estas úl-
timas propuestas, hemos extraído un conjunto de requisitos
que debería cumplir un sistema interactivo de deformación y
visualización realista de volúmenes.

Para comprobar la validez de nuestros requisitos, hemos
desarrollado un prototipo de nuestro sistema que, aprove-
chando las últimas características disponibles en la progra-
mación de propósito general en GPU (GPGPU) mediante el
uso de OpenCL, pone de manifiesto la viabilidad de crear tal
sistema. Para la implementación del prototipo, proponemos
una versión modificada del algoritmo ChainMail 3D y una

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

técnica ágil de remuestreo de los datos volumétricos adapta-
da para este algoritmo, junto con un visualizador de volúme-
nes basado en Ray-casting.

El presente trabajo se estructura de la siguiente forma: La
sección 2 muestra un estudio de las principales técnicas que
se han propuesto en el campo de deformación de volúmenes,
realizando una clasificación en función del principal obje-
tivo perseguido por dichas propuestas. La sección 3 mues-
tra un análisis de los sistemas completos de deformación de
volúmenes usando el algoritmo ChainMail, analizando los
problemas que presentan. La sección 4 presenta nuestra pro-
puesta de sistema, junto con los algoritmos desarrollados. La
sección 5 presenta los resultados experimentales obtenidos
con el prototipo desarrollado frente a los resultados ofreci-
dos por propuestas anteriores. Finalmente, la sección 6 con-
cluye este trabajo recogiendo las aportaciones del mismo y
las líneas de trabajo futuro posibles.

2. Trabajos Previos

A lo largo de los últimos años, se han propuesto varias
técnicas de deformación de volúmenes médicos con la inten-
ción de mejorar la exploración de los datos o con la intención
de crear herramientas de entrenamiento o enseñanza. Chen
et al. [CCI∗07] recopilaron en un extenso trabajo decenas de
técnicas para deformar objetos definidos por muestreo dis-
creto, entre los que destacan los volúmenes médicos.

En función de la meta que persiguen, se pueden diferen-
ciar tres grandes grupos de técnicas de deformación de volú-
menes médicos: técnicas de simulación física mediante inte-
gración temporal, técnicas de deformación espacial y técni-
cas basadas en restricciones geométricas.

2.1. Simulación física

Un importante conjunto de técnicas de deformación orien-
tadas a conseguir el mayor realismo posible en las defor-
maciones aplican algoritmos de simulación física mediante
integración temporal a modelos derivados de los datos volu-
métricos. Entre estas técnicas destacan los sistemas basados
en el método de elementos finitos (FEM) y los sistemas ba-
sados en el modelo Mass-Spring.

2.1.1. Sistemas FEM

Los métodos basados en elementos finitos operan sobre
el modelo tratándolo como un volumen continuo sobre el
que se aplican fuerzas. Discretizando el volumen mediante
una malla de nodos, se resuelve un sistema de ecuaciones
derivadas de la teoría de la elasticidad para las posiciones de
dichos nodos.

Este método ofrece deformaciones muy realistas, y se ha
usado ampliamente en los sistemas de cirugía virtual. Sa-
gar et al. [SBMH94] proponen un sistema de cirugía ocular

empleando el modelo de elementos finitos para las deforma-
ciones. Bro-Nielsen et al. [BNC96] establecen la teoría del
modelo lineal de elementos finitos aplicado a deformación
interactiva de tejidos, junto con un sistema de cirugía vir-
tual empleando dicha teoría. Cotin et al. [CDA99] proponen
un sistema de cirugía virtual con modelos de mayor resolu-
ción y comportamiento más realista precalculando deforma-
ciones mediante elementos finitos. Müller et al. [MDM∗02]
proponen una técnica para aplicar grandes deformaciones a
los sistemas lineales de elementos finitos, ya que estos pre-
sentaban artefactos visuales ante dichas deformaciones.

2.1.2. Sistemas Mass-Spring

En los sistemas basados en Mass-Spring el volumen se
representa como un conjunto discreto de nodos con masa
conectados por muelles, creando una malla para la defor-
mación. De esta forma, las fuerzas se aplican sobre elemen-
tos discretos y se propagan por el volumen a través de las
fuerzas que transmiten los muelles al deformarse, calculadas
mediante la ley de Hooke. Estos sistemas son más simples
de implementar y pueden trabajar con modelos más grandes
que los basados en FEM, ya que las ecuaciones utilizadas
para la resolución de la deformación son más sencillas pero,
como contrapartida, ofrecen un menor grado de realismo, ya
que el volumen se trata como un conjunto discreto de ele-
mentos, y las ecuaciones que los relacionan se definen de
forma heurística.

A pesar de la dificultad de reproducir comportamientos
reales de los tejidos, este método también se ha empleado
en muchos sistemas de simulación de este tipo. Nedel et al.
[NT98] proponen el uso de sistemas Mass-Spring para simu-
lar deformaciones musculares. Montgomery et al. [MBW01]
emplean un sistema Mass-Spring para simular disecciones
en ratas. Mollemans et al. [MSVCS03] proponen estructuras
Mass-Spring tetraédricas para simular tejidos volumétricos.

Estas técnicas, y otras derivadas de las mismas, se basan
en la integración temporal iterativa de funciones físicas de-
finidas sobre los modelos y ofrecen una simulación física
más próxima al comportamiento real de los tejidos a costa de
trabajar con un conjunto de datos reducido, debido al coste
computacional de dichos algoritmos. Varios trabajos recien-
tes proponen versiones aceleradas de estas técnicas usando
la GPU. Por ejemplo, Courtecuisse et al. [CJA∗10] propo-
nen una versión paralela de FEM aplicada a un sistema de
cirugía virtual del hígado y Mosegaard et al. [MS05] propo-
nen una versión paralela de Mass-Spring aplicada a cirugía
virtual del corazón. Estas propuestas permiten incrementar
la resolución de los modelos deformados, pero aún no ofre-
cen la velocidad necesaria para trabajar con los datos médi-
cos originales, además de requerir una etapa de preprocesa-
do supervisada costosa que impide su uso inmediato tras la
adquisición de los datos.

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

2.2. Deformación espacial

Siguiendo una estrategia diferente, se han propuesto téc-
nicas para aplicar las deformaciones sobre el espacio de los
datos, en lugar de sobre los datos en sí. De este grupo de
técnicas, destacan por su uso aquellas basadas en Free-Form
Deformation (FFD). El funcionamiento básico de este mé-
todo, presentado formalmente por Sederberg et al. [SP86],
consiste en aplicar deformaciones locales o globales al es-
pacio en el que se encuentra el modelo, de forma que al
visualizar dicho espacio, el modelo se ve afectado por las
deformaciones.

Esta técnica y sus posteriores mejoras y adaptaciones han
sido muy usadas en el campo de la exploración y manipu-
lación de modelos volumétricos con una resolución com-
parable a la del conjunto de datos original. Westermann
et al. [WRS01] proponen operadores locales y globales de
FFD para deformar volúmenes en tiempo real. McGuffin et
al. [MTB03] proponen operadores de manipulación espacial
para explorar datos volumétricos. Singh et al. [SSC03] pro-
ponen un esquema de deformación espacial basado en es-
queletos para deformar volúmenes en tiempo real. Correa et
al. [CSC06] proponen manipuladores espaciales para crear
ilustraciones médicas a partir de volúmenes de manera inter-
activa.

Estas técnicas ofrecen esquemas de deformación muy rá-
pidos ya que las funciones de deformación se aplican sobre
el espacio y no sobre los datos en sí, pero, por el mismo moti-
vo, no consiguen deformaciones acordes con las propiedades
físicas de los modelos y provocan que las operaciones de de-
formación realizadas por el usuario y la respuesta obtenida
no sean intuitivas.

2.3. Restricciones geométricas

Con el objetivo de mantener un comportamiento físico ra-
zonable en la deformación de los modelos, pero evitando el
excesivo cálculo de integración de los esquemas de simula-
ción, se han propuesto una serie de técnicas basadas en res-
tricciones geométricas, siendo ChainMail 3D el algoritmo
más empleado.

El algoritmo ChainMail 3D, originalmente propuesto por
Gibson [Gib97], y posteriormente mejorado por Schill et
al. [SGBM98] para soportar materiales heterogéneos, pro-
pone relacionar los elementos del volumen con sus vecinos
mediante restricciones geométricas. De esta forma, el mo-
vimiento de un elemento provoca una reacción en cadena
que resuelve las restricciones que se incumplen tras el movi-
miento de cada elemento.

Este esquema de deformación es muy apropiado para tra-
bajar con los conjuntos de datos originales porque, aunque
no consigue un realismo físico similar a los métodos de si-
mulación de deformaciones del tipo FEM y Mass-Spring
debido a que se basa en un modelo geométrico, tiene en

cuenta las propiedades físicas del modelo y se puede apli-
car a grandes volúmenes por su velocidad varios órdenes
de magnitud superior a dichos métodos. A pesar de no se-
guir un esquema de simulación física, se ha aplicado con
éxito a sistemas de cirugía virtual, como un sistema de ci-
rugía ocular [SGBM98] o cirugía de rodilla [GSM∗97], da-
do que realizar cambios topológicos en los modelos es muy
sencillo mediante la modificación de enlaces entre vecinos
y la eliminación de elementos. También se ha aplicado en
otros contextos como la generación de ilustraciones médi-
cas [MRH08]. Este esquema no necesita preprocesamiento
complejo, ya que se puede aplicar directamente sobre los
datos originales, deduciendo las relaciones entre elementos
y el comportamiento físico de los mismos en función de las
distintas densidades de los elementos.

El los últimos trabajos sobre la deformación de volúme-
nes, los autores se han planteado aprovechar la potencia de
cálculo de las GPUs para incrementar la respuesta interac-
tiva de las deformaciones. Siguiendo esta idea, Schulze et
al. [SBH07] presentan un sistema basado en ChainMail 3D
que permite manipular grandes volúmenes de elementos y
utiliza la GPU para realizar una visualización mediante Ray-
casting. Rossler et al. [RWE08] presentan un sistema simi-
lar, proponiendo una versión paralela del algoritmo Chain-
mail 3D, de forma que todo el cauce de trabajo se ejecuta en
la GPU.

Tras analizar estos trabajos previos, hemos constatado que
para poder trabajar de forma interactiva con conjuntos de da-
tos volumétricos sin sacrificar resolución, cosa que hasta la
fecha no es posible con los métodos FEM y Mass-Spring,
es razonable optar por un método basado en restricciones
geométricas para nuestro sistema, ya que además, permite
realizar una simulación físicamente plausible, cosa que no
obtenemos claramente con los métodos FFD. En la siguiente
sección presentamos los fundamentos del algoritmo Chain-
Mail 3D y proponemos un conjunto de requisitos que debería
cumplir un sistema interactivo de deformación físicamente
plausible de grandes volúmenes que permita además una vi-
sualización realista del modelo.

3. Deformaciones interactivas con ChainMail 3D

El algoritmo ChainMail [Gib97] define una estructura de
malla sobre los elementos volumétricos del modelo. Cada
elemento se conecta con sus 6 vecinos adyacentes. Para cada
vecino se define una región válida de movimiento de forma
que, mientras un vecino permanezca dentro de esa región,
el algoritmo considera que cumple las restricciones. En el
momento en el que sale de dicha región, se violan las res-
tricciones y esto obliga a una reubicación de vecinos con el
objetivo de que se cumplan de nuevo las restricciones.

Bajo este esquema, representado en la Fig. 1, el proce-
so de propagación de la deformación consiste en que cuan-
do un elemento se desplaza, comprueba secuencialmente si

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

Figura 1: Representación en 2D de la estructura de vecinos
generada para el algoritmo ChainMail. El elemento central
se conecta a sus 4 vecinos adyacentes, y define una región
de posicionamiento válida para cada uno.

sus vecinos respetan las restricciones y, en caso negativo, los
desplaza a sus respectivas regiones válidas. Cuando estos ve-
cinos son desplazados, pueden a su vez provocar nuevas vio-
laciones de restricciones y provocar nuevos desplazamientos
de vecinos, de manera que la deformación se propaga por el
volumen como se puede ver en la Fig. 2. El orden de resolu-
ción de restricciones propuesto en el trabajo original garan-
tiza que cada elemento sólo se desplaza una vez, con lo que
no es necesario revisitar elementos.

Una vez resueltas las restricciones, se introduce una etapa
de relajación que desplaza iterativamente los elementos a sus
posiciones de equilibrio en el punto medio de sus vecinos.
Definiendo las restricciones de los elementos y el esquema
de relajación, este método permite simular comportamientos
elásticos, plásticos y rígidos.

El algoritmo original no opera correctamente con mate-
riales heterogéneos, por lo que Schill et al. [SGBM98] pro-
ponen el algoritmo Enhanced ChainMail, una versión mejo-
rada que modifica el orden de resolución de las restricciones
en función de la gravedad de la violación de restricción, de
manera que la deformación se propaga antes por medios más
rígidos, permitiendo de esta manera gestionar modelos volu-
métricos heterogéneos.

El sistema propuesto por Schulze et al. [SBH07] opera
sobre grandes volúmenes médicos a máxima resolución ha-
ciendo uso del algoritmo Enhanced ChainMail para defor-
mar los modelos y empleando un algoritmo de visualización
de volúmenes basado en Ray-casting en GPU. No obstante,
el sistema presenta varios problemas que le restan interacti-
vidad:

El algoritmo de deformación está implementado en CPU,
mientras que la visualización se realiza en la GPU, por lo
que la transferencia de información introduce un retardo
al trabajar con grandes cantidades de información.
El tiempo necesario para resolver una deformación depen-

de del número de elementos involucrados. Esto provoca
que en deformaciones que impliquen un gran número de
elementos (grandes desplazamientos al realizar una ope-
ración de deformación), el sistema pierda interactividad
mientras se resuelve dicha deformación.
Para visualizar las deformaciones, los autores proponen
un esquema de remuestreo mediante un algoritmo de bús-
queda ejecutado en la CPU, que ofrece una representación
realista de las deformaciones, pero que, de la misma for-
ma que en el caso anterior, al realizar deformaciones que
impliquen un gran número de elementos, el tiempo reque-
rido para realizar el remuestreo y posterior envío a la me-
moria de la GPU, reduce en gran medida la interactividad
del método.

Rossler et al. [RWE08] proponen un sistema similar para
el que emplean una implementación paralela del algoritmo
Chainmail 3D que se ejecuta completamente en la GPU, de
forma que se elimina el problema de la transferencia de in-
formación entre memoria principal y la memoria de la GPU,
pero los otros dos problemas siguen presentes, por lo que el
sistema pierde la velocidad necesaria para mostrar resultados
interactivamente para grandes deformaciones.

Figura 2: Ejemplo de propagación de deformaciones con
ChainMail. Tras el movimiento del elemento de la derecha,
se viola la restricción geométrica con su vecino izquierdo,
lo que produce una reacción en cadena de movimientos.

Estos problemas, presentes en las propuestas de Schulze
y Rossler, provocan que el sistema sólo responda de manera
realmente interactiva para deformaciones relativamente pe-
queñas, ya que para deformaciones mayores, el sistema tar-
da varios segundos en ofrecer feedback visual ante la inter-
acción del usuario. Este es un problema importante ya que,
por lo general, la aplicación de una deformación deseada se
consigue aplicando deformaciones sucesivas sobre el mis-
mo o distintos elementos del volumen, siendo necesario te-
ner feedback visual durante el proceso completo. Teniendo
en cuenta nuestro análisis de las propuestas que consiguen
acercarse más a un comportamiento interactivo en la defor-
mación de grandes volúmenes, y sin perder de vista el pro-
blema de las grandes deformaciones en las soluciones apor-
tadas, planteamos una serie de requisitos que debe cumplir

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

el diseño de un sistema para la deformación interactiva y fí-
sicamente plausible de grandes volúmenes

3.1. Requisitos del sistema

Tras analizar los sistemas propuestos hasta la fecha, y
manteniendo las características que a priori podemos con-
siderar solventadas en los sistemas estudiados, enumeramos
los requisitos que debería cumplir un sistema de deforma-
ción y visualización de grandes volúmenes interactivo:

1. El sistema debe trabajar con una resolución similar, si no
igual, a la del conjunto de datos original, reduciendo al
mínimo el preprocesamiento necesario.

2. El sistema debe operar sobre los datos en la GPU directa-
mente, ya que dado el volumen de información manipula-
do, la necesidad de transferencia entre memoria principal
y memoria de la GPU impide la interactividad del siste-
ma.

3. El sistema debe ser interactivo en todo momento, inde-
pendientemente de que la deformación aplicada presente
un carácter local o requiera un desplazamiento importan-
te de parte del volumen.

4. El sistema debe mostrar feedback visual de las deforma-
ciones interactivamente para facilitar la labor de defor-
mación.

4. Propuesta de sistema

Tras identificar los requisitos que se han considerado fun-
damentales, así como definir el método de deformación que
más se ajusta a los mismos, presentamos un prototipo de
nuestro sistema que nos permite validarlos. Para realizar to-
das las operaciones en la GPU, aprovechando la potencia de
cálculo de la misma y eliminando el problema de transfe-
rencia de información entre memoria principal y memoria
de GPU, se ha optado por utilizar el framework OpenCL en
la implementación de los distintos componentes del siste-
ma. A continuación, presentamos una breve descripción de
OpenCL, así como una descripción de los algoritmos que se
han diseñado para implementar el prototipo.

4.1. OpenCL

OpenCL [SGS10] es un framework de desarrollo de apli-
caciones de propósito general en entornos heterogéneos de
computación con distintos tipos de dispositivos de procesa-
miento. En el caso de usarse para realizar operaciones en la
GPU, el funcionamiento se puede simplificar de la siguiente
manera.

Una aplicación consistirá en un host, encargado de ges-
tionar la ejecución, y uno o más dispositivos, encargados de
realizar el cálculo que les indique el host. En nuestro caso,
la CPU actuará como host de la aplicación y se encargará
de preparar el contexto de los dispositivos y de gestionar

el cálculo en el dispositivo. Para esto, el host define búfe-
res en la memoria de la GPU, que posteriormente inicializa
con los valores necesarios. Estos búferes son arrays de datos
que ofrecen el soporte para el almacenamiento de la entra-
da/salida de las funciones kernel, que son el código que se
ejecuta en la GPU siguiendo un esquema SIMD. Cuando el
host solicita la ejecución de un kernel, se lanzan tantas he-
bras en la GPU como elementos de cómputo se hayan indi-
cado, y cada hebra de GPU ejecutará el código del kernel
sobre los datos indicados, realizando esta ejecución en para-
lelo. Para esto, cada hebra de ejecución puede consultar su
identificador dentro del conjunto, lo que le permitirá saber
sobre qué datos debe operar.

OpenCL permite gestionar de manera explícita los dife-
rentes espacios de memoria de la GPU (global, constante,
local y privada), así como permite gestionar de manera ex-
plícita el número de hebras lanzadas y el esquema de agrupa-
ción de las mismas, de manera que se pueden optimizar estas
configuraciones en función del algoritmo a ejecutar. De igual
forma, permite realizar operaciones atómicas desde los ker-
nels sobre la memoria de la GPU, y se pueden realizar trans-
ferencias de datos entre el host y el dispositivo en cualquier
momento de la ejecución. Estas características hacen posi-
ble explotar al máximo la potencia de cálculo de las tarjetas
gráficas modernas para una gran variedad de aplicaciones.

4.2. Deformación Interactiva

Para desarrollar el método de deformación interactiva
en GPU, partimos del algoritmo propuesto por Rossler en
[RWE08]. Este algoritmo, al igual que el algoritmo Chain-
Mail 3D original, divide las deformaciones en dos etapas.

La primera es la etapa de propagación, que modifica la
idea original de ChainMail 3D a la hora del cumplimiento de
las restricciones geométricas para que el algoritmo sea para-
lelizable. En este caso, se comprueba para cada elemento si
un vecino se ha movido en la iteración anterior y, si es así,
se recoloca el elemento para que cumpla la restricción geo-
métrica existente con su vecino. Este proceso se repite itera-
tivamente hasta que todos los elementos respetan las restric-
ciones geométricas del modelo. Una vez acaba este proceso,
se ejecuta la etapa de relajación, similar a la original, pero
en paralelo.

Esta solución hace que el sistema no muestre feedback vi-
sual ni permita una nueva interacción hasta que todas las eta-
pas de la deformación han terminado, como se indica en la
Fig. 3. Esto provoca que, al igual que con el algoritmo origi-
nal, las deformaciones grandes dejen el sistema en un estado
inoperable durante un tiempo variable. Por consiguiente, no
se obtiene la respuesta interactiva necesaria en la fase de de-
formación, salvo para deformaciones relativamente peque-
ñas.

Para resolver este problema, proponemos una versión me-
jorada del algoritmo. Empleando un flag de actividad por

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

Figura 3: Cauce de deformación del algoritmo propuesto
por Rossler. El resultado de las deformaciones se visualiza
una vez que todo el proceso de deformación ha terminado.
Una nueva interacción sobre el modelo, de igual manera,
solo es posible una vez ha acabado el cauce de deformación
completo.

cada elemento para llevar un control de aquellos que ya han
sido alcanzados por la propagación, subdividimos las etapas
de propagación y relajación en iteraciones.

Este flag indicará si la propagación provocada por la úl-
tima interacción del usuario ha alcanzado a cada elemento.
Empleando esta información, conseguimos distinguir cada
una de las iteraciones de las etapas de propagación y relaja-
ción, de manera que las iteraciones de relajación se aplican a
los elementos que ya cumplen las restricciones geométricas
y han sido alcanzados por la propagación.

De esta manera, empleando dos copias de la información
de deformación al igual que en [RWE08], una para leer y otra
para escribir (al ser un proceso paralelo hay que garantizar el
acceso a los datos correctos, ya que se pueden producir lec-
turas y escrituras concurrentes en caso de no emplear copias
diferentes), las iteraciones de deformación crean una hebra
por cada elemento. Cada hebra comprueba si algún vecino
del elemento se ha movido en la iteración anterior y, en ca-
so afirmativo, el elemento se marca como alcanzado por la
propagación, comprueba la restricción con dicho vecino y
en caso necesario se desplaza para cumplir la restricción y
se marca como movido.

De manera similar, las iteraciones de relajación crean una
hebra por cada elemento que comprueba si todos sus veci-
nos han sido ya alcanzados por la propagación actual y en
caso afirmativo, aplican la función de relajación (explicada
en [Gib97]). Al final de cada iteración, ya sea de propaga-
ción o de relajación, la copia de información empleada para
escribir pasa a ser la copia de lectura y viceversa.

De esta forma, nuestro método permite solapar ambos
procesos, y permite introducir visualizaciones intermedias
sin necesidad de esperar a la completa finalización de las
etapas, pudiendo decidir el número de iteraciones de cada
etapa que se deben ejecutar antes de cada visualización. Este
nuevo esquema se representa en la Fig. 4.

Figura 4: Al subdividir las etapas del cauce en iteraciones,
se consigue obtener visualizaciones intermedias durante las
deformaciones. De igual manera, es posible aplicar nuevas
interacciones sobre el modelo en cualquier punto del cauce
de deformación al eliminar la secuencialidad entre las eta-
pas.

Esta subdivisión de las etapas en iteraciones permite obte-
ner la interactividad deseada en el sistema, ya que se pueden
visualizar estados intermedios de las deformaciones al no ser
necesario esperar a que se propague completamente una de-
formación. Estas visualizaciones intermedias pueden no ser
consistentes con el modelo ya que, al no haber acabado la
propagación, no todos los elementos cumplirán las restric-
ciones. No obstante, al propagarse la deformación desde el
punto de aplicación de la misma, la zona cercana al punto
de aplicación de la deformación, que se considera la zona de
interés en ese momento, presenta un estado consistente en
pocas iteraciones, de manera que se visualizan los resulta-
dos de la deformación en la zona de interes con mayor in-
teractividad, permitiendo además la aplicación de una nueva
deformación sin necesidad de esperar a que acabe la ante-
rior, por lo que se agiliza el proceso de interación por parte
del usuario.

4.3. Visualización Interactiva

Para garantizar el feedback visual durante las deformacio-
nes, es necesaria una técnica de visualización que permita
convertir el modelo deformado en cada iteración a una re-
presentación adecuada para visualización realista en tiempo
real en GPU. Como se explica en [RWE08], la visualiza-
ción de volúmenes deformados aplicando las deformaciones
en un paso previo a la consulta de los datos proporciona la
mejor visualización, ya que los datos originales permanecen

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

inalterados, pero se requiere invertir la función de deforma-
ción.

Esta función inversa es fácil de obtener cuando las defor-
maciones aplicadas son analíticas, como es el caso de las
FFD, pero en el caso de deformaciones físicas basadas en
las propiedades de los materiales, las inversas de las funcio-
nes de deformación no están definidas de forma analítica.
Para aproximar este resultado, en [RWE08] proponen un al-
goritmo de optimización que aproxima la deformación in-
versa, pero este método es costoso computacionalmente y
puede caer en mínimos locales, lo que dificulta el feedback
visual de resultados intermedios durante el proceso de defor-
mación.

Figura 5: Simplificación 2D del algoritmo de remuestreo.
En 1) se representa la rejilla original junto con la estructu-
ra ChainMail subyacente. En 2) se realiza una deformación
sobre los elementos, que en 3) son remuestreados sobre la
rejilla, y en 4) se rellenan los huecos que aparecen.

Para nuestro sistema proponemos un algoritmo paralelo
de remuestreo del modelo, de manera que en las etapas in-
termedias se puedan visualizar los cambios que se van pro-
duciendo. En la implementación de este algoritmo emplea-
mos las operaciones atómicas de OpenCL y la capacidad de
escribir sobre una textura 3D.

Se define una rejilla regular uniforme inicializada con
densidades cero de la misma resolución que la de los da-
tos originales, y se lanza una hebra por cada elemento del
modelo deformable. Cada hebra comprueba en qué vóxel de
la rejilla cae dicho elemento y realiza la operación atómica
MAX sobre la densidad del vóxel con la densidad del ele-
mento, de manera que si varios elementos caen en el mismo
vóxel, el de mayor densidad impone su valor, lo cual garanti-
za que, en caso de compresiones, los materiales más rígidos

(de mayor densidad) pierden menos volúmen que los más
elásticos.

Tras esto, se emplea la información de vecindad entre ele-
mentos para rellenar vóxeles intermedios. Para esto, cada una
de las hebras comprueba para cada vecino en las direcciones
crecientes de cada dimensión (en el caso 2D se comprue-
ban los vecinos derecha y arriba, ya que los vecinos abajo
e izquierda serán comprobados por otras hebras) el vóxel en
el que cae, y sobre los vóxeles intermedios en la dirección
del vecino se realiza la operación atómica MAX con la den-
sidad interpolada de ambos elementos. La Fig. 5 ilustra un
ejemplo simplificado en 2D del funcionamiento de este algo-
ritmo, en el que se puede ver la configuracion inicial, con los
elementos del modelo deformable centrados en los vóxeles
correspondientes y, tras la aplicación de una deformación, se
da valor de densidad a los vóxeles de la rejilla vacía en los
que caen los elementos del modelo deformable y finalmente
se da valor a los vóxeles intermedios entre vecinos.

Esta etapa de remuestreo se puede aplicar tras cualquier
iteración de propagación o relajación, empleando como en-
trada la copia de los datos que dicha iteración haya usado
como escritura. Una vez se obtienen los nuevos valores de
los vóxeles, se escriben en una textura 3D, sobre la que se
realiza una visualización mediante Ray-casting también im-
plementada en OpenCL.

4.3.1. Precisión de Subvóxel

Un problema del muestreo es que al trabajar a nivel de
vóxel, las deformaciones no se visualizan hasta que los ele-
mentos del modelo deformable pasan de un vóxel a otro. Esto
provoca que las deformaciones que ocurren dentro de un vó-
xel no se visualizan y el resultado final de una deformación
presenta una forma escalonada. Este efecto se puede apreciar
en la Fig. 6.

Para paliar este problema, proponemos una técnica para
alcanzar precisión de subvóxel. La idea es aplicar la técni-
ca de la deformación inversa propuesta en [RWE08], pero
de forma localizada dentro de cada vóxel, incluyendo en los
datos del vóxel la inversa de la distancia entre el centro del
vóxel y el elemento que da valor a dicho vóxel. Emplean-
do esta técnica, cuando se realiza el proceso de Ray-casting
sobre el volúmen, en una primera consulta, se lee este des-
plazamiento, que se aplica a la posición de muestreo del rayo
y se toma una nueva muestra en la posición desplazada. De
esta manera, el paso de un elemento por un vóxel se visua-
liza de forma suavizada, mejorando el feedback visual de la
deformación y reduciendo el escalonamiento como se puede
comprobar en la Fig. 7.

Esta técnica de visualización provoca pérdidas de infor-
mación volumétrica debido al proceso de muestreo, pero ga-
rantiza el feedback necesario durante la aplicación de las de-
formaciones. Una vez que la deformación se completa, se
puede aplicar un proceso más preciso de visualización de
deformaciones, que mantenga toda la información original.

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

Figura 6: Visualización de una deformación mediante re-
muestreo de vóxeles donde se aprecia la visualización esca-
lonada.

5. Resultados

Los métodos descritos en la sección anterior, junto con
un método de selección similar al propuesto en [SBH07] se
han integrado en un prototipo de sistema para comprobar
experimentalmente la interactividad de las operaciones de
deformación.

También se ha implementado una versión del algoritmo de
deformación propuesto en [RWE08] con objeto de comparar
ambos sistemas.

Para realizar las pruebas se ha diseñado un experimento,
consistente en aplicar deformaciones sucesivas a un volúmen
sintético de tamaño 144×144×144, variando el número de
elementos afectados por dichas deformaciones. En cada ca-
so, se ha medido el tiempo que el algoritmo de deformación
tarda en devolver el control al sistema, así como los frames
por segundo (FPS) que el sistema completo, incluyendo la
visualización, consigue en cada caso.

Las pruebas han sido realizadas en un equipo con procesa-
dor Intel Core i5-3570 (3.4 GHz) y una tarjeta gráfica AMD
Radeon R9 270X.

En la tabla 1 se muestran los resultados del experimento
usando el algoritmo de deformación propuesto en [RWE08],
donde se aprecia que a medida que se incrementa el número
de elementos afectados por la deformación, el sistema pierde
interactividad drásticamente debido al tiempo que el algorit-
mo de deformación permanece en ejecución.

En la tabla 2 se muestran los resultados del mismo test
usando nuestro algoritmo de deformación. En este caso, se

Figura 7: Ejemplo de la mejora visual obtenida al usar pre-
cisión de sub-vóxel. El mismo modelo deformado se visua-
liza sin emplear la técnica (arriba) y empleando la técnica
(abajo).

puede apreciar que se mantiene estable el número de imáge-
nes generadas por segundo, ya que el algoritmo de deforma-
ción devuelve el control al sistema con una frecuencia inde-
pendiente del tamaño de la deformación, lo cual permite una
interacción mucho más ágil sobre los datos.

La gráfica de la Fig. 8 muestra el número de frames por
segundo que se obtienen en función del número de elemen-
tos afectados por la deformación. Claramente se puede ob-
servar que incluso para un número bajo de elementos afecta-
dos por la deformación, el algoritmo de Rossler no consigue
un número de frames por segundo aceptable, decrementán-
dose este ratio conforme aumenta el número de elementos
afectados, hasta una cantidad que no permite la interactivi-
dad del sistema de deformación. Sin embargo, nuestro méto-

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

Tabla 1: Resultados del experimento para el algoritmo de
deformación propuesto en [RWE08].

Elementos
deformados

Tiempo en fase
de deformación (ms)

FPS del
sistema

4.096 16 34.7
32.768 43 18.3
262.144 168 6.2

2.097.152 837 1.2
2.985.984 1055 0.7

Tabla 2: Resultados del experimento para nuestro algoritmo
de deformación.

Elementos
deformados

Tiempo en fase
de deformación (ms)

FPS del
sistema

4.096 2 61
32.768 3 61
262.144 5 60.2

2.097.152 8 55.4
2.985.984 10 52.3

do permite mantener de forma estable el número de frames
por segundo, independientemente del número de elementos
afectados por la deformación.

Para probar el sistema sobre un volúmen médico real, se
ha simulado una incisión sobre una sección de una pierna.
El volúmen empleado, que se puede ver en la Fig. 9 tiene un
tamaño de 256×255×256 elementos. Durante todo el pro-
ceso de deformación, el sistema ha respondido siempre en-
tre 8 y 25 FPS, permitiendo refinar interactivamente el corte,
que se puede apreciar en la Fig. 9.

Figura 8: Gráfica comparativa de los frames por segundo
mantenidos por ambos algoritmos en función del número de
elementos afectados por la deformación.

6. Conclusiones y trabajos futuros

En este trabajo hemos recopilado las técnicas de deforma-
ción de volúmenes más empleadas en distintos ámbitos, cen-

Figura 9: Simulación de incisión sobre volúmen médico.
Arriba se ilustra el volúmen original, una sección de pierna
formada por 256×255×256 elementos. Abajo, el resultado
de generar interactivamente la incisión sobre el volúmen.

trando la atención en el algoritmo ChainMail, que propor-
ciona deformaciones físicamente plausibles en tiempo razo-
nable, capaz de trabajar sobre datos volumétricos médicos a
máxima resolución. Hemos analizado los sistemas propues-
tos que emplean esta técnica, estudiando los problemas que
presentan, y hemos esbozado los requisitos que debería cum-
plir un sistema completamente interactivo.

c© The Eurographics Association 2014.

A. Rodríguez, A. León, L. López & M. García / A System Proposal for Interactive Deformation of Large Medical Volumes

Hemos presentado un prototipo de sistema que, cumplien-
do estos requisitos, garantiza la interactividad en todo mo-
mento. Para ello, hemos propuesto un algoritmo de defor-
mación iterativo paralelo basado en ChainMail más rápido
que propuestas anteriores y que permite visualizar resulta-
dos intermedios. También hemos propuesto un sistema de
remuestreo de volúmenes paralelo para permitir la visuali-
zación interactiva de las deformaciones haciendo uso de las
últimas características ofrecidas por los lenguajes de GPG-
PU.

Tras comprobar la viabilidad de un sistema de estas ca-
racterísticas, queremos extender el prototipo para gestionar
volúmenes de mayor tamaño.

De igual forma queremos mejorar el algoritmo de defor-
mación para trabajar de forma más rápida y aproximar me-
jor las propiedades físicas de los modelos, ya que el algo-
ritmo propuesto en [RWE08], y por consiguiente el nues-
tro, no gestiona eficientemente los materiales heterogéneos.
Además, queremos implementar las operaciones de modifi-
cación topológica descritas originalmente para el algoritmo
e integrarlas en el sistema.

También queremos mejorar el algoritmo de visualización,
ya que actualmente genera artefactos visuales que dificultan
el análisis de los datos, y sólo ofrece una visualización básica
basada en acumulación de luz por Ray-casting.

References
[BNC96] BRO-NIELSEN M., COTIN S.: Real-time volumetric

deformable models for surgery simulation using finite elements
and condensation. In Computer graphics forum (1996), vol. 15,
Wiley Online Library, pp. 57–66. 2

[CCI∗07] CHEN M., CORREA C., ISLAM S., JONES M. W.,
SHEN P.-Y., SILVER D., WALTON S. J., WILLIS P. J.: Manipu-
lating, deforming and animating sampled object representations.
In Computer Graphics Forum (2007), vol. 26, Wiley Online Li-
brary, pp. 824–852. 2

[CDA99] COTIN S., DELINGETTE H., AYACHE N.: Real-time
elastic deformations of soft tissues for surgery simulation. Vi-
sualization and Computer Graphics, IEEE Transactions on 5, 1
(1999), 62–73. 2

[CJA∗10] COURTECUISSE H., JUNG H., ALLARD J., DURIEZ
C., LEE D. Y., COTIN S.: Gpu-based real-time soft tissue defor-
mation with cutting and haptic feedback. Progress in Biophysics
and Molecular Biology 103, 2 (2010), 159–168. 2

[CSC06] CORREA C., SILVER D., CHEN M.: Feature aligned
volume manipulation for illustration and visualization. Visualiza-
tion and Computer Graphics, IEEE Transactions on 12, 5 (2006),
1069–1076. 3

[Gib97] GIBSON S. F.: 3d chainmail: a fast algorithm for defor-
ming volumetric objects. In Proceedings of the 1997 symposium
on Interactive 3D graphics (1997), ACM, pp. 149–ff. 3, 6

[GM97] GIBSON S. F., MIRTICH B.: A survey of deformable
modeling in computer graphics. MERL Internal Report (1997).
1

[GSM∗97] GIBSON S., SAMOSKY J., MOR A., FYOCK C.,
GRIMSON E., KANADE T., KIKINIS R., LAUER H., MCKEN-
ZIE N., NAKAJIMA S., ET AL.: Simulating arthroscopic knee

surgery using volumetric object representations, real-time vo-
lume rendering and haptic feedback. In CVRMed-MRCAS’97
(1997), Springer, pp. 367–378. 3

[MBW01] MONTGOMERY K., BRUYNS C., WILDERMUTH S.:
A virtual environment for simulated rat dissection: a case study
of visualization for astronaut training. In Proceedings of the
conference on Visualization’01 (2001), IEEE Computer Society,
pp. 509–514. 2

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW
R., CUTLER B.: Stable real-time deformations. In Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (2002), ACM, pp. 49–54. 2

[MLM∗05] MEIER U., LÓPEZ O., MONSERRAT C., JUAN
M. C., ALCANIZ M.: Real-time deformable models for surgery
simulation: a survey. Computer methods and programs in biome-
dicine 77, 3 (2005), 183–197. 1

[MRH08] MENSMANN J., ROPINSKI T., HINRICHS K.: Inter-
active cutting operations for generating anatomical illustrations
from volumetric data sets. 3

[MS05] MOSEGAARD J., SØRENSEN T. S.: Gpu accelerated sur-
gical simulators for complex morphology. In Virtual Reality,
2005. Proceedings. VR 2005. IEEE (2005), IEEE, pp. 147–153.
2

[MSVCS03] MOLLEMANS W., SCHUTYSER F., VAN CLEY-
NENBREUGEL J., SUETENS P.: Tetrahedral mass spring model
for fast soft tissue deformation. In Surgery Simulation and Soft
Tissue Modeling. Springer, 2003, pp. 145–154. 2

[MTB03] MCGUFFIN M. J., TANCAU L., BALAKRISHNAN R.:
Using deformations for browsing volumetric data. In Visualiza-
tion, 2003. VIS 2003. IEEE (2003), IEEE, pp. 401–408. 3

[NT98] NEDEL L. P., THALMANN D.: Real time muscle defor-
mations using mass-spring systems. In Computer Graphics In-
ternational, 1998. Proceedings (1998), IEEE, pp. 156–165. 2

[RWE08] RÖSSLER F., WOLFF T., ERTL T.: Direct gpu-based
volume deformation. Proceedings of Curac (2008), 65–68. 3, 4,
5, 6, 7, 8, 10

[SBH07] SCHULZE F., BÜHLER K., HADWIGER M.: Interac-
tive deformation and visualization of large volume datasets. In
GRAPP (AS/IE) (2007), Citeseer, pp. 39–46. 3, 4, 8

[SBMH94] SAGAR M. A., BULLIVANT D., MALLINSON G. D.,
HUNTER P. J.: A virtual environment and model of the eye for
surgical simulation. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques (1994), ACM,
pp. 205–212. 2

[SGBM98] SCHILL M. A., GIBSON S. F., BENDER H.-J.,
MÄNNER R.: Biomechanical simulation of the vitreous humor in
the eye using an enhanced chainmail algorithm. In Medical Ima-
ge Computing and Computer-Assisted Interventation?ICCAI?8.
Springer, 1998, pp. 679–687. 3, 4

[SGS10] STONE J. E., GOHARA D., SHI G.: Opencl: A pa-
rallel programming standard for heterogeneous computing sys-
tems. Computing in science & engineering 12, 3 (2010), 66. 5

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deformation
of solid geometric models. In ACM Siggraph Computer Graphics
(1986), vol. 20, ACM, pp. 151–160. 3

[SSC03] SINGH V., SILVER D., CORNEA N.: Real-time volume
manipulation. In Proceedings of the 2003 Eurographics/IEEE
TVCG Workshop on Volume graphics (2003), ACM, pp. 45–51.
3

[WRS01] WESTERMANN R., REZK-SALAMA C.: Real-time
volume deformations. In Computer Graphics Forum (2001),
vol. 20, Wiley Online Library, pp. 443–451. 3

c© The Eurographics Association 2014.

Chapter 2. Parallel ChainMail simulation of heterogeneous medical models 25

26
2.2. SP-ChainMail: a GPU-based sparse parallel ChainMail algorithm for

deforming medical volumes

2.2 SP-ChainMail: a GPU-based sparse parallel

ChainMail algorithm for deforming medical

volumes

• A. Rodŕıguez, A. León, G. Arroyo, and J. M. Mantas (2015). “SP-ChainMail:
a GPU-based sparse parallel ChainMail algorithm for deforming medical vol-
umes”. The Journal of Supercomputing, Volume 71, Issue 9, pp. 3482-3499.

– Status: Published [103]

– Impact factor (JCR 2015): 1.088

– Subject category: Computer Science, Hardware and Architecture (Q2:
23/51), Computer Science, Theory and Methods (Q2: 47/105).

Chapter 2. Parallel ChainMail simulation of heterogeneous medical models 27

J Supercomput manuscript No.
(will be inserted by the editor)

SP-ChainMail: A GPU-based Sparse Parallel
ChainMail Algorithm for Deforming Medical
Volumes

Alejandro Rodŕıguez · Alejandro León ·
Germán Arroyo · José Miguel Mantas

Received: date / Accepted: date

Abstract ChainMail algorithm is a physically-based deformation algorithm
that has been successfully used in virtual surgery simulators, where time is a
critical factor. In this paper, we present a parallel algorithm, based on Chain-
Mail, and its efficient implementation that reduces the time required to com-
pute deformations over large medical 3D datasets by means of modern GPU
capabilities. We also present a 3D blocking scheme that reduces the amount of
unnecessary processing threads. For this purpose, this paper describes a new
parallel boolean reduction scheme, used to efficiently decide which blocks are
computed. Finally, through an extensive analysis, we show the performance
improvement achieved by our implementation of the proposed algorithm and
the use of the proposed blocking scheme, due to the high spatial and temporal
locality of our approach.

Keywords GPU programming · stencil computation · physically-based
deformation · parallel algorithms

1 Introduction

Over the last years, Graphics Processing Units (GPUs) have been widely used
to accelerate a huge variety of algorithms in different fields. This is due to
the fact that modern GPUs are designed following a highly parallel Single
Instruction, Multiple Data (SIMD) scheme, containing hundreds or thousands
of processors and dedicated memory.

Many approaches for physically-based deformation of medical volumetric
models take advantage of these capabilities such as the parallel implementa-
tion of the Finite Element Method proposed by Comas et al. [2] or the parallel

A. Rodŕıguez · A. León · G. Arroyo · J.M. Mantas
University of Granada
Granada, Spain
E-mail: alejandrora@ugr.es

2 Alejandro Rodŕıguez et al.

Mass-Spring system proposed by Georgii et al. [8], since they can be adapted
to operate in parallel over a huge amount of data elements. The ChainMail
algorithm, introduced by Gibson [10], is a two-stage physical deformation al-
gorithm which, unlike other physically-based deformation algorithms, follows
a purely geometrical approach that is therefore capable of handling several
orders of magnitude more elements. It has been successfully used to simulate
surgical procedures, such as a vitrectomy [19] or arthroscopic knee surgery [9],
where a low response time is a strong requirement.

In this paper we present a parallel version of the ChainMail algorithm
which efficiently handles deformations over large areas of the dataset. Our al-
gorithm allows a parallel implementation of the tasks that are computationally
intensive using the GPU, thus avoiding costly memory transfers to visualize
the deformations since the rendering is also carried out using the GPU. Unlike
previous approaches, our algorithm is capable of interleaving its two stages,
allowing intermediate visualizations of the current state of the deformation.
Therefore, our algorithm is able to provide a more interactive visual feedback.

We also propose a partitioning method that, taking into account the sparse
nature of our algorithm, splits up the computation of the dataset elements into
blocks that can be processed independently. This blocking method prevents
the processing of blocks that do not require any computation, reducing the
number of idle threads, thus decreasing the overall computation time.

Additionally, we present a novel parallel reduction approach that is limited
to reduction of boolean sets, but improves the performance of the general
parallel reduction approach.

This paper is organized as follows: In Section 2, previous related work is
reviewed. Our parallel ChainMail algorithm is described in Section 3, which
also includes a brief introduction to the original ChainMail algorithm, as well
as details about the implementation. In Section 4, the blocking method is de-
scribed and the required algorithms and data structures to efficiently handle
the blocks are detailed. Also, the proposed boolean reduction mechanism is
presented. In Section 5 we present an analysis of results, testing our approach
under different blocking configurations and several datasets, comparing its per-
formance against an optimized multithreaded implementation of the original
ChainMail algorithm. We extend the analysis to several hardware configura-
tions, demonstrating the portability and scalability of the blocking scheme and
the benefits achieved by our approach. Finally, our conclusions are exposed in
Section 6.

2 Related Works

In order to take advantage from General-Purpose Computing on Graphics Pro-
cessing Units (GPGPU), it is necessary to map the algorithms to the graphics
hardware, which is not always an easy task. Kirk et al. [11] presented an
excellent introduction to massively parallel general-purpose computation us-
ing modern graphics hardware, compiling recent developments, common tech-

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 3

niques and several practical examples. Due to the SIMD nature of modern
GPUs, a common approach to perform parallel computation is the iterative
stencil computation scheme [3]. This scheme consists of a sequence of itera-
tions over a given dataset, stored in a grid of cells. Each iteration performs
local neighborhood computations to obtain new values for the cells. Examples
of this approach are the stencil based GPU algorithm proposed by Micikevi-
cius [14] to perform 3D finite difference calculations, and the iterative parallel
approach proposed by De la Asunción et al. [4] to simulate shallow water
systems on the GPU.

The original ChainMail algorithm [10] has been used by many authors for
medical applications, such as angioplasty simulation [12] , heterogeneous de-
formation of medical datasets [20] and generation of medical illustrations [13].
Unfortunately, interactivity is only achieved if the amount of affected elements
is relatively small. Since the original ChainMail algorithm presents an impor-
tant computational stage which is inherently sequential, a direct mapping to
parallel platforms computation has a very limited impact on the performance.

A two-stage parallel approach based on the ChainMail algorithm was in-
troduced by Rößler [17], and has been also used in medical applications by
Fortmeier et al. [5,6]. This parallel approach achieves good performance for
small deformations, but suffers from a high amount of idle computation when
large deformations are applied, hurting the overall performance. Moreover, the
visualization can only be performed after the whole deformation is completed,
decreasing the visual feedback and interactivity during large deformations.

Unlike previous approaches, our algorithm handles both the propagation
and the relaxation stage at iteration level following a stencil computation
scheme, allowing overlapping both stages in order to generate partial visual-
izations of the deformations. Moreover, the use of our blocking scheme avoids
unnecessary computation, increasing the performance of the overall process.

Bandwidth and computation problems associated with the stencil compu-
tation approach have been widely studied. Many cache-based blocking schemes
palliate bandwidth problems. An example is discussed in the work of Nguyen
et al. [16], introducing a 3.5D spatial and temporal blocking scheme applied
to the input grid into on-chip memory to optimize bandwidth bounded ker-
nels. Brodtkorb et al. [1] proposed an early exit mechanism to avoid further
computation of blocks marked as non-contributing in the previous iteration.
Sætra [18] proposed methods to reduce the computational burden and required
memory in order to perform stencil operations over sparse domains.

Our blocking scheme extends the work of Brodtkorb et al. [1] to efficiently
handle the activation and deactivation of the blocks, further reducing the un-
necessary computation performed in each iteration of our stencil computation.

3 SP-ChainMail

The original ChainMail algorithm [10] defines a mesh structure over the ele-
ments of the volumetric model. Each element is connected to its six adjacent

4 Alejandro Rodŕıguez et al.

a) b) c)

d) e)

Fig. 1 2D depiction of an element deformation using the ChainMail algorithm. (a) Given
an initial configuration: (b) the element defines valid regions for its neighbors; (c) when
the element is displaced, it defines new valid regions; (d) the neighbors violating those new
constraints are shifted to fulfill them. (e) The final stable state is reached when all the
constraints are satisfied.

neighbors. A deformation is handled by two separate stages: propagation stage
and relaxation stage.

In the propagation stage, a valid spatial region is defined for each neighbor
of a given element. While a neighbor remains within that region, the state
is valid and no updates are needed. Since the regions are defined relative to
the current position of each element, the valid regions for the neighbors of an
element are displaced when that element is displaced. Due to this displacement,
a neighbor may be outside the new valid region. If this happens, the neighbor
is shifted to a new location in order to fulfill the constraint, as shown in Fig. 1.
The shifting of a neighbor may, in turn, lead to new constraint violations and
cause further displacement of elements, propagating the deformation through
the mesh elements.

Once all the constraints are satisfied, the relaxation stage begins: each
element is iteratively displaced towards its equilibrium position based on a
midpoint calculation of the positions of its neighbors. Rigid, plastic and elastic
behaviors can be achieved by tuning up the geometric constraints between
elements and modifying the relaxation scheme, as described by Gibson [7].

The ChainMail algorithm is implemented using the CPU since the propa-
gation stage of the algorithm is inherently sequential, and the deformed mesh
must be transferred to the graphics device memory to perform the visual-

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 5

ization. For large models, this memory transfer is expensive and impedes an
interactive visualization of the applied deformations.

3.1 Sparse Parallel ChainMail

In our approach, the volumetric model is arranged as a regular, structured 3D
grid of cells. Each cell corresponds to an element of the ChainMail mesh. Hence,
a cell stores the 3D position of its associated element and the connections with
its neighbors.

Two copies of the grid are used following a Jacobi sweep scheme [16]:
one grid is designated to stencil read operations and other grid is designated
to stencil write operations, swapping roles after each iteration. Both grids are
stored in the device memory (dedicated memory of the GPU). Operations over
cells corresponding to the propagation and relaxation stages are performed
following a stencil computation approach:

– In the propagation stage the original propagation mechanism is inverted
as explained by Rößler [17], adapting it to follow an iterative stencil-based
approach: for each cell, if a neighbor has been displaced on the previous
iteration, the new constraint is checked. If the constraint is not satisfied,
the element is shifted to meet the existing geometric constraint with its
neighbor. This process is repeated iteratively until all the constraints are
satisfied.

– In the relaxation stage, a minimization process is applied based on the
elastic and plastic properties of the model as explained by Gibson [7].
This energy minimization process also follows an iterative stencil-based
approach, since each cell updates its position as a result of a computation
regarding the current positions of its neighbors.

The computation performed for each cell during a propagation iteration,
as well as during a relaxation iteration, is independent from the computation
performed for the rest of the cells, allowing a parallel computation of each
iteration.

Unlike the previous solutions, we introduce a mechanism to handle the
stages at iteration level. This mechanism requires adding a control flag for each
cell. This flag tracks whether the cell has already been reached by the current
propagation front. Therefore, when a new external deformation is applied to a
cell, it is flagged as reached and the rest of the cells are flagged as not reached.
During subsequent propagation iterations, when an element is reached by the
propagation front, it is flagged as reached.

After each iteration of the propagation stage, this flag allows to identify the
cells that have already been reached by the propagation front. If a cell and its
neighbors have already been reached, the cell is ready to perform the relaxation
stage. Therefore, this flag allows overlapping the propagation and relaxation
stages by alternating propagation and relaxation iterations. This overlapping
mechanism allows to visualize partial results of the deformations and, since the

6 Alejandro Rodŕıguez et al.

Source Dataset

Loader to
GPU memory

New applied
deformation

SP-Chainmail

Launcher

Propagation
Kernel

Relaxation
Kernel

Visualization
(to screen)

Deformation
complete?

yes

no

Fig. 2 Overview of the simulation system. The SP-ChainMail algorithm runs in parallel
on the GPU, allowing partial visualizations of the deformations. Blue stages are carried out
using the GPU, and red stages are carried out using the CPU.

updated data after any propagation or relaxation iteration is already present
in the device memory, no memory transfers are required, allowing a more
interactive visual feedback. An overview of the proposed algorithm integrated
in a virtual surgery system is depicted in Fig. 2.

3.2 Parallel Implementation

In our approach, all the computationally intensive tasks are executed in par-
allel using the GPU. Hence, the 3D dataset is loaded into the device global
memory as an array of cells. Each cell stores the following information:

– Element data: position and constraint values.
– Neighbors flags: a set of six flags indicating whether the element is con-

nected or not with each of its neighbors (its six surrounding cells in the
grid).

– Activity flag : a flag indicating if the element has been displaced in the
preceding propagation iteration.

– Reach flag : a flag indicating if the element has already been reached by the
current propagation.

In order to cope with the Jacobi sweep scheme, we duplicate the whole
array supporting read and write operations. The current read array will be
referred to as global read array, and the current write array will be referred to
as global write array.

3.2.1 Propagation Stage

The propagation stage is implemented as a GPU kernel that is iteratively
invoked. Each kernel invocation computes a single iteration of the propagation,
generating one thread per cell. The kernel is described in Algorithm 1:

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 7

1 propagation_kernel (Cell readArray[], Cell writeArray[])
2 Integer id = get_thread_id();
3 Cell current = readArray[id];
4 current.activityFlag = False;
5 FOREACH neighbor IN activeNeighbors(current)
6 IF ((neighbor.activityFlag == True) AND (

restrictionsNotSatisfied(current, neighbor)))
7 relocate(current);
8 current.activityFlag = True;
9 current.reachFlag = True;

10 ENDIF
11 ENDFOREACH
12 writeArray[id] = current;
13 END

Algorithm 1 Pseudo-code of the propagation kernel. During the kernel
invocation, each instance of this kernel operates over a single cell, writing
the resulting updated cell to the current global write array.

1. The cell data corresponding to the current thread is read from the global
read array (lines 2-3).

2. For each neighbor, the following condition is checked (lines 5-6): the neigh-
bor has been shifted in the previous propagation iteration and the new
restrictions are violated.

3. If this condition is met, the current element is shifted in order to fulfill the
new constraints, and it is flagged as reached and active (lines 7-9).

4. Otherwise, the current element is flagged as inactive (line 4).
5. Finally, the cell data is written to the global write array (line 12).

If no elements are shifted during the kernel invocation, the propagation
stage finishes, and no more propagation iterations are needed.

3.2.2 Relaxation stage

The relaxation stage is also implemented as a GPU kernel that is iteratively
invoked. Each invocation of the kernel computes a single relaxation iteration,
generating one thread per cell. The kernel is described in Algorithm 2:

1. The cell data corresponding to the current thread is read from the global
read array (lines 2-3).

2. The following condition is checked (line 4): the current element has already
been reached but it is not active.

3. If this condition is met and all the neighbors of the current element have
already been reached (lines 5-11), the relaxation process is applied to the
current element (line 12).

4. Finally, the cell data is written to the global write array (line 15).

If none of the elements is shifted during a relaxation iteration and the
propagation stage has already finished, the relaxation stage also finishes and
the deformation is completed.

8 Alejandro Rodŕıguez et al.

1 relaxation_kernel (Cell readArray[], Cell writeArray[])
2 Integer id = get_thread_id();
3 Cell current = readArray[id];
4 IF ((current.reachFlag == True) AND (current.

activityFlag == False))
5 Boolean continue = True;
6 FOREACH neighbor IN activeNeighbors(current)
7 IF (neighbor.reachFlag == False)
8 continue = False;
9 ENDIF

10 ENDFOREACH
11 IF (continue == True)
12 applyRelaxationFunction(current);
13 ENDIF
14 ENDIF
15 writeArray[id] = current;
16 END

Algorithm 2 Pseudo-code of the relaxation kernel. During the kernel
invocation, each instance of this kernel operates over a single cell, writing
the resulting updated cell to the current global write array.

After an invocation of any of these kernels, the global arrays switch their
roles, allowing the next kernel invocation to read from the updated array. Since
the relaxation kernel only affects the elements already reached by the propaga-
tion, excluding those belonging to the current propagation front, both kernels
can be interleaved. The visualization of the current state of the deformation
is also possible by accessing the array data updated by the latest iteration.

Some details regarding our implementation have been omitted for the sake
of clarity. In order to improve the efficiency of the GPU kernels we have
adopted the following strategies:

– The foreach loops are completely unrolled.
– The GPU shared memory is used in order to optimize the access to neigh-

boring cells.
– The actual data of the cells are stored in a Structure-of-Arrays fashion,

more amenable to the regular memory access patterns of the kernels.

4 Computational Blocking Method

Our stencil approach presents a high spatial and temporal locality of the com-
putational burden since the deformations applied to the model propagate it-
eratively through the regular grid following a wavefront pattern. This leads
to a highly sparse computation in the propagation stage, resulting in a high
amount of unnecessary computation.

This unnecessary computation is produced because many of the elements
may have already been shifted in a previous iteration or have not yet been
reached by the current propagation. A less severe sparse computation is also
present in the relaxation stage because of the same reason. Due to this sparse

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 9

computation, many of the launched threads would be idle, wasting GPU re-
sources since these threads also need to read from the device global memory
to compute the data.

Since our solution follows an iterative stencil computation approach, we can
introduce a blocking method to reduce the number of idle threads, optimizing
the usage of the computation power offered by the GPU.

For this purpose, the computational domain is divided into blocks that can
be computed independently. The storage of the dataset in the device memory
remains the same, but each block is handled by an independent kernel launch
instead of a single kernel launch over the whole dataset.

In order to maintain this structure, we store the corresponding 3D offset for
each block. During a kernel launch for a particular block, the kernel receives
this offset information to access the data of the cells in that block.

After each iteration, the blocks are flagged as active or inactive. Active
means that the block may require further computation in the next iteration,
while inactive means that the block will not need further computation in the
following iteration. These flags allow launching the kernel only over active
blocks in order to avoid unnecessary computation. This blocking scheme is
applied to both stages of our algorithm in an efficient way as explained in the
following subsections.

4.1 Efficient Activation and Deactivation of Blocks

In order to handle the activation and deactivation of blocks, we extend the
solution proposed by Brodtkorb et al. [1], which involves the use of an auxiliary
boolean buffer in order to indicate whether a block requires computation in
the next iteration or not. In our approach, we use several of these buffers,
referred to as boolean maps, to update and control the state of the blocks.

Each boolean map is stored as a global array on device memory containing
one binary flag per block in the partition. A first boolean map is associated to
the propagation stage. A second boolean map is associated to the relaxation
stage.

In each iteration, for any of the both stages, the blocks that need to be
computed in the next iteration are flagged as active in the corresponding
boolean map. A new condition test, added to the end of the kernels code,
decides whether a block requires further computation or not by checking if
any element in the block has been updated. An element is considered updated
by a propagation iteration if it has been reached by the propagation front. An
element is considered updated by a relaxation iteration if it has been displaced
by the relaxation function. On the other hand, if none of the elements in a
block have been updated during the current iteration, the block is flagged as
inactive. Fig. 3 shows a 2D illustration of this mechanism.

10 Alejandro Rodŕıguez et al.

Propagation
Boolean Map

Relaxation
Boolean Map

Cell shifted in the
last relaxation
iteration

Cell reached in the
last propagation
iteration

Fig. 3 2D simplification of the boolean map mechanism. Blocks containing cells reached
in the last propagation iteration are flagged in the propagation boolean map, and blocks
containing cells shifted in the last relaxation iteration are flagged in the relaxation boolean
map.

4.1.1 Activation of Neighboring Blocks

When the propagation front or the relaxation process reaches the border of a
block, the neighboring block must be activated. Six additional boolean maps
are defined, each one associated to one of the borders for all the blocks.

Therefore, if an element belonging to the border of a block is updated in the
current iteration, the position of that block in the boolean map corresponding
to that border is set as active.

In the host memory (main memory), two lists of active blocks are main-
tained. At the end of each iteration, for any of the both stages, the correspond-
ing boolean maps are copied to the host memory and the corresponding list
is updated using the boolean maps as look-up tables. At the beginning of the
next iteration, only the blocks indexed in the corresponding list are processed
by the kernel.

Fig. 4 presents the steps and memory accesses during an iteration of the
algorithm. Notice that the dataset is always stored in the device memory and
operated from the GPU, and only the boolean maps are transferred to host
memory.

4.2 Parallel Boolean Reduction

As mentioned earlier, the boolean maps are updated by the kernels but, since
each launched thread handles only one cell, it is necessary to perform a gath-
ering process regarding each block. Instead of a parallel reduction approach as
in [1] and [18], we propose a novel two-step Parallel Boolean Reduction (PBR)
mechanism:

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 11

Device Memory Steps for one
iteration

Host Memory

Boolean Maps
.
.
.

Global Arrays

R/W Array

W/R Array

S
W

A
P
P
IN

G

.
.
.

Global Arrays

R/W Array

W/R Array

S
W

A
P
P
IN

G

.
.
.

Global Arrays

R/W Array

W/R Array

S
W

A
P
P
IN

G

List of
active blocks

1. Reset Boolean Maps

2. Launch of kernel for
active blocks

3. Execute Per-block kernels

4. Update list of
active blocks

Fig. 4 Steps and memory accesses during an iteration. The blue steps (steps 1 and 3) run
on the GPU, while the red steps (steps 2 and 4) run on the CPU. The only memory transfer
between device memory and host memory is performed in the step 4 in order to update the
active blocks list.

1. All the flags of the boolean maps are set as inactive before launching the
kernels corresponding to the active blocks, assuming that none of the blocks
will need further computation in the next iteration.

2. The kernels corresponding to the active blocks are launched. If an element
of a block is updated, a write operation is performed to set as active the
position of that block in the corresponding boolean map.

Although the concurrent writing of several threads to the same variable
does not guarantee the integrity of data, in this case all the threads write
the same value. This fact ensures the final state of the boolean values while
avoiding the additional latency introduced by a parallel reduction approach.
A depiction of both approaches operating over the same set of values is shown
in Fig. 5. A performance comparison of both methods is presented in the next
section.

5 Experiments and Results

In order to demonstrate the benefits of the proposed methods, several tests
have been conducted using different hardware configurations to also evaluate
the portability and scalability of the proposed blocking scheme. Three hard-
ware configurations have been used:

– GTS-250 configuration: Intel Core i3-530 2.93 GHz, 4 GB RAM, Nvidia
GeForce GTS 250 (Tesla microarchitecture, 128 cores) with 1 GB of video
memory GDDR3. OpenCL 1.1 driver included in CUDA 6.

– R9-270X configuration: Intel Core i5-3570 3.4 GHz, 8 GB RAM, AMD
Radeon R9 270X (1280 cores) with 2 GB of video memory GDDR5. OpenCL
1.2 driver.

12 Alejandro Rodŕıguez et al.

Parallel reduction PBR

Fig. 5 Left: parallel reduction of eight boolean values using the binary OR operation. Right:
parallel boolean reduction (PBR) of the same eight boolean values.

– GTX-670 configuration: Intel Core i7-3770 3.4 GHz, 16 GB RAM, Nvidia
GeForce GTX 670 (Kepler microarchitecture, 1344 cores) with 2 GB of
video memory GDDR 5. OpenCL 1.1 driver included in CUDA 6.

Two different datasets have been used for the tests. The first dataset,
referred to as Cube dataset, is a synthetic regular 3D cube, consisting of 96×
96 × 96 elements. The second dataset, referred to as Leg dataset is a section
of a leg from the Visible Human Project of the National Library of Medicine
(see Fig. 6), consisting of 160× 160× 160 elements.

5.1 SP-ChainMail Performance

To evaluate the performance of our approach, the SP-ChainMail algorithm
has been implemented, together with the blocking scheme, using OpenCL [15],
integrating it into a virtual surgery system prototype.

The original ChainMail algorithm [10] has also been implemented as a ref-
erence. The propagation stage of the original algorithm is inherently sequential
and cannot be parallelized for multicore processors, but the relaxation stage
has been parallelized using OpenMP by dividing the ChainMail elements in
balanced groups and assigning the computation of each group to one thread.

A deformation has been applied to each dataset, causing a propagation-
relaxation through the whole dataset affecting all the elements. For the Cube
dataset, the SP-ChainMail algorithm took 285 propagation iterations and
468 relaxation iterations until a completely stable configuration was reached.
The original ChainMail algorithm also required 468 relaxation iterations af-
ter the propagation (not measurable in iterations). For the Leg dataset the
SP-ChainMail algorithm took 477 propagation iterations and 788 relaxation
iterations. The original ChainMail algorithm also required 788 relaxation iter-
ations after the propagation. Each test has been repeated five times, although
no noticeable differences were encountered through the different executions
due to the deterministic behavior of the algorithms. The results presented
here report the average of the measured times.

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 13

Fig. 6 Left: The Leg dataset, used in the performance tests. Right: The Leg dataset de-
formed by the Sparse Parallel ChainMail algorithm, using the developed virtual surgery
system.

The original ChainMail was tested only on the GTX-670 configuration,
our most modern hardware configuration. Using 8 threads for the relaxation
computation (grouping the elements in 8 groups), the stable state was reached
after 10,648 ms for the Cube dataset and 49,283 ms for the Leg dataset.

We tested the SP-ChainMail implementation on both datasets using differ-
ent block sizes for the blocking scheme, resulting in different rates of reduction
on the total number of launched GPU threads. As can be seen in Table 1, a
smaller block size always implies a higher reduction in the number of launched
threads, which is expected since the smaller block sizes lead to a finer adjust-
ment of the active blocks to the actual propagation front.

Table 2 shows the measured times using the Cube dataset and Table 3
shows the measured times using the Leg dataset. The times reported represent
the time taken to reach the stable state for the same applied deformation to
the dataset. The speed-up with respect to the original ChainMail (running on
the GTX-670 configuration) is also reported in both tables.

The tests reveal that the SP-ChainMail outperforms the original Chain-
Mail even using relatively old GPUs, achieving notable speed-up factors higher
than 20x when using a modern GPU. Interestingly, the results show that
smaller blocks do not always lead to a higher speed-up although the number
of launched threads is smaller. This is due to the fact that the smaller kernel
launches do not create enough parallel threads to fully hide the memory access
latency, and this overhead, added to the overhead of managing more kernel
launches, gradually decimates the gain of the reduced computation load.

14 Alejandro Rodŕıguez et al.

Table 1 Thread launch reduction achieved using different block sizes.

Cube dataset Leg dataset

Block

size

of

Blocks

Launched

threads

Thread

launch

reduction

of

Blocks

Launched

threads

Thread

launch

reduction

No blocks - 666,206,208 - - 5,181,440,000 -

32x32x32 27 234,553,344 64.79% 125 1,018,888,192 80.33%

32x16x16 108 148,873,216 77.65% 500 639,262,720 87.66%

16x16x16 216 107,683,840 83.83% 1,000 465,821,696 91.01%

32x8x8 432 103,868,416 84.40% 2,000 451,835,904 91.27%

16x8x8 864 67,950,592 89.80% 4,000 297,355,264 94.26%

8x8x8 1,728 49,827,840 92.52% 8,000 219,824,128 95.75%

Table 2 Measured times of our SP-ChainMail implementation using the Cube dataset.
Speed-up factors relative to the original ChainMail are also shown.

GTS-250 R9-270X GTX-670

Block

Size

Time

(ms)
Speed-up

Time

(ms)
Speed-up

Time

(ms)
Speed-up

No blocks 8,159 1.31x 1,131 9.41x 1,545 6.89x

32x32x32 4,293 2.48x 693 15.36x 705 15.10x

32x16x16 3,476 3.06x 815 13.06x 635 16.76x

16x16x16 3,720 2.86x 1,015 10.49x 598 17.80x

32x8x8 3,923 2.71x 1,484 7.17x 893 11.92x

16x8x8 4,363 2.44x 1973 5.39x 1,064 10.01x

8x8x8 5,668 1.87x 2,678 3.97x 1,443 7.37x

Table 3 Measured times of our SP-ChainMail implementation using the Leg dataset. Speed-
up factors relative to the original ChainMail are also shown.

GTS-250 R9-270X GTX-670

Block

Size

Time

(ms)
Speed-up

Time

(ms)
Speed-up

Time

(ms)
Speed-up

No blocks 61,271 0.80x 7,601 6.48x 11,448 4.30x

32x32x32 20,658 2.39x 2,683 18.36x 2,810 17.53x

32x16x16 16,130 3.05x 3,207 15.36x 2,428 20.29x

16x16x16 17,261 2.85x 3,910 12.60x 2,243 21.97x

32x8x8 18,128 2.72x 5,742 8.58x 3,438 14.33x

16x8x8 19,030 2.59x 7,718 6.39x 4,207 11.71x

8x8x8 25,291 1.95x 11,240 4.38x 5,960 8.27x

5.2 Blocking Method Portability

For the GTS-250 configuration, any of the tested block sizes leads to a signifi-
cant speed-up with respect to the non-partitioned case (i.e., the SP-ChainMail
witouth using the blocking scheme), being the speed-up factor higher when us-
ing the Leg dataset, since the thread launch reduction is higher. As already

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 15

mentioned, the gain is gradually decimated as the block size is reduced, due
to the added overhead, as can be seen in Fig. 7.a and Fig. 7.d.

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

a) GTS 250: Cube dataset

1

1.5

2

4

6

8

T
im

e
(s

)

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

b) R9 270X: Cube dataset

0.5

1

1.5

1

2

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

c) GTX 670: Cube dataset

1

1.5

2

2.5

S
p

ee
d

u
p

1

1.5

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

d) GTS 250: Leg dataset

1

2

3

4

20

40

60

T
im

e
(s

)

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

e) R9 270X: Leg dataset

1

2

3

2

4

6

8

10

12

N
o

B
lo

ck
s

3
2
×

3
2
×

3
2

3
2
×

1
6
×

1
6

1
6
×

1
6
×

1
6

3
2
×

8
×

8

1
6
×

8
×

8

8
×

8
×

8

f) GTX 670: Leg dataset

2

4

S
p

ee
d

u
p

5

10

Fig. 7 Plots showing the time reduction and speed-up factor measured for the different
block sizes with respect to the non-partitioned SP-ChainMail case. The top row shows the
results using the Cube dataset. The bottom row shows the results using the Leg dataset.

R9-270X and GTX-670 configurations exhibit a similar behavior (Figs. 7.b,
7.c, 7.e and 7.f) but, since the more recent GPUs present in those config-
urations have a much higher amount of stream processing units, they require
an even higher amount of parallel threads to hide memory latency, and the
smaller block sizes cannot even fully populate the GPU cores, leading to a
loss of effective computation power. This loss is most severe in the case of the
R9-270X configuration, on which the use of small block sizes even yields a
worse performance than the non-partitioned case.

Despite this effect, the use of a reasonable block size (which depends on the
particular GPU architecture) leads to a noticeable speed-up using any of the
three configurations, showing the portability of the proposed blocking method
and the performance gain obtained through its use.

5.3 Scalability Test

Notice that the previous tests on the Leg dataset achieve a higher speed-up
than their counterparts using the Cube dataset, suggesting a good scalability

16 Alejandro Rodŕıguez et al.

of the blocking method regarding the dataset size. In order to further analyze
the scalability of our blocking method with respect to the dataset size, a second
test using synthetic regular datasets, with dimensions ranging from 32×32×32
to 224× 224× 224, has been performed.

32K
1.6M

3.2M
4.8M

6.3M
8.0M

9.5M
11.2M

0

5

10

15

Number of elements in dataset

T
im

e
(s

)

No blocks

16x16x16

Fig. 8 Measured times of the scalability test, using the GTX-670 configuration.

32K
1.6M

3.2M
4.8M

6.3M
8.0M

9.5M
11.2M

1

2

3

4

5

6

Number of elements in dataset

S
p

ee
d

-u
p

fa
ct

o
r

Fig. 9 Speed-up factor achieved for the increasing dataset size of the scalability test, using
the GTX-670 configuration.

The most modern configuration (the GTX-670 configuration) has been used
to perform this test. A deformation affecting all the elements of the dataset
has been applied, measuring the propagation time without using the blocking
method and measuring the propagation time of the same deformation using a
block size of 16 × 16 × 16, which achieved the best performance gain on the
GTX-670 configuration.

The measured times corresponding to this second test, presented in Fig. 8,
show a significant reduction of the propagation time for all the tested dataset
sizes, and they also show a good scalability of the proposed method since the
speed-up factor, shown in Fig. 9, also increases when increasing the dataset
size.

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 17

5.4 Memory Requirements

5.4.1 SP-ChainMail Memory Requirements

The memory requirements of our SP-ChainMail algorithm (corresponding to
the Global Arrays in Fig. 4) scale linearly with the number of elements in the
input dataset.

For each element, 30 bytes of device memory are required, which leads to a
total amount of 480 MB for an input dataset of 256× 256× 256 elements, and
a total amount of 3.75 GB for an input dataset of 512 × 512 × 512 elements,
an amount currently offered only by high-end GPUs. However, this limitation
is not reached in most scenarios, such as virtual surgery applications, since
the simulation is usually performed on a sub-region of the dataset, and SP-
ChainMail information would only be generated for the elements of the sub-
region in those cases.

5.4.2 Blocking Method Memory Requirements

The blocking method has very low host and device memory requirements.
In host memory (List of active blocks in Fig. 4), 64 bytes are required per

block. In device memory, only 8 bytes are required per block.
In our most memory demanding test (the Leg dataset with a 8 × 8 × 8

block size, generating 8,000 blocks in the partition) required 500 KB of device
memory and 62.5 KB of device memory. As mentioned in section 4.1.1, only
the boolean maps are transferred from device memory to host memory at
the end of each iteration. Even in our most memory demanding test, this
transfer consumes less than 1 ms, which is a negligible overhead considering
the achieved gain.

5.5 PBR performance Test

A performance test comparing the proposed Parallel Boolean Reduction (PBR)
algorithm with a general parallel reduction algorithm has been conducted.
Both algorithms have been applied to reduce several arrays of boolean ele-
ments of a wide range of sizes.

The measured times of both algorithms using the GTX-670 configuration
are shown in Fig. 10. The PBR algorithm shows a better performance for all the
array sizes, since less read/write operations are needed and no synchronization
steps are required.

6 Conclusions and Future Work

In this work we have presented a Sparse Parallel ChainMail algorithm. The
proposed algorithm has been implemented and integrated into a virtual surgery

18 Alejandro Rodŕıguez et al.

10 30 50 70 90 110
130

150
170

0

2

4

6

8

Array size (millions of elements)

T
im

e
(m

s)

PBR

Parallel reduction

Fig. 10 Comparison of the times required by the parallel reduction algorithm and the
PBR algorithm to perform a reduction over several boolean arrays, using the GTX-670
configuration.

system, allowing an interactive visual feedback during the manipulation of
large volumetric models. Following a stencil computation approach, our algo-
rithm adapts to the modern GPU computation paradigm.

We have proposed and implemented a 3D blocking method to deal with
the sparse nature of the SP-ChainMail computation, drastically reducing the
amount of idle GPU threads created.

A novel parallel boolean reduction mechanism has been used to efficiently
handle the activation and deactivation of blocks. This reduction approach has
been proven faster than a generic parallel reduction approach, and it can be
used in any context in which the reduced value has a boolean nature, i.e., there
are only two possible output values.

The tests conducted in this work show that our implementation consid-
erably outperforms a parallel multithreaded implementation of the original
ChainMail algorithm, and our blocking method effectively reduces the compu-
tation time required for the deformations, enhancing the interactivity of the
simulation system. The tests also show a good portability and scalability of the
blocking scheme, which increases its effectiveness as the dataset size increases,
while the required additional memory is negligible.

As future lines of research, we intend to include an auto-tuning mecha-
nism to determine the optimal block size automatically for each hardware and
software configuration. Another interesting future line of work is the gener-
alization and further testing of the blocking scheme for stencil computation
approaches. Moreover, it would be interesting to test the use of dynamic par-
allelism to perform the handling and launching of the blocks directly from the
GPU.

Acknowledgements This work is supported by the “Formación de Profesorado Univer-
sitario, Plan Propio de Investigación” program of the University of Granada. This work is
also supported by the project TIN2014-60956-R of the Spanish Ministry of Economy and
Competitiveness. JMM acknowledges the Spanish MINECO project MTM2014-52056-P.

SP-ChainMail: A Parallel ChainMail Algorithm for Deforming Volumes 19

References

1. Brodtkorb, A.R., Sætra, M.L., Altinakar, M.: Efficient shallow water simulations on
GPUs: Implementation, visualization, verification, and validation. Computers & Fluids
55, 1–12 (2012)

2. Comas, O., Taylor, Z.A., Allard, J., Ourselin, S., Cotin, S., Passenger, J.: Efficient
nonlinear FEM for soft tissue modelling and its GPU implementation within the open
source framework SOFA. In: Biomedical Simulation, pp. 28–39. Springer (2008)

3. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D.,
Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-
art multicore architectures. In: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, p. 4. IEEE Press (2008)

4. De La Asunción, M., Mantas, J.M., Castro, M.J.: Simulation of one-layer shallow water
systems on multicore and CUDA architectures. The Journal of Supercomputing 58(2),
206–214 (2011)

5. Fortmeier, D., Mastmeyer, A., Handels, H.: Image-based palpation simulation with soft
tissue deformations using chainmail on the GPU. In: Bildverarbeitung für die Medizin
2013, pp. 140–145. Springer (2013)

6. Fortmeier, D., Mastmeyer, A., Handels, H.: An image-based multiproxy palpation algo-
rithm for patient-specific VR-simulation. Studies in health technology and informatics
196, 107 (2014)

7. Frisken-Gibson, S.F.: Using linked volumes to model object collisions, deformation, cut-
ting, carving, and joining. Visualization and Computer Graphics, IEEE Transactions
on 5(4), 333–348 (1999)

8. Georgii, J., Echtler, F., Westermann, R.: Interactive simulation of deformable bodies on
GPUs. In: SimVis, pp. 247–258 (2005)

9. Gibson, S., Samosky, J., Mor, A., Fyock, C., Grimson, E., Kanade, T., Kikinis, R.,
Lauer, H., McKenzie, N., Nakajima, S., et al.: Simulating arthroscopic knee surgery using
volumetric object representations, real-time volume rendering and haptic feedback. In:
CVRMed-MRCAS’97, pp. 367–378. Springer (1997)

10. Gibson, S.F.: 3D ChainMail: a fast algorithm for deforming volumetric objects. In:
Proceedings of the 1997 symposium on Interactive 3D graphics, pp. 149–ff. ACM (1997)

11. Kirk, D.B., Wen-mei, W.H.: Programming massively parallel processors: a hands-on
approach. Morgan Kaufmann (2012)

12. Le Fol, T., Acosta-Tamayo, O., Lucas, A., Haigron, P.: Angioplasty simulation using
ChainMail method. In: Medical Imaging, pp. 65,092X–65,092X. International Society
for Optics and Photonics (2007)

13. Mensmann, J., Ropinski, T., Hinrichs, K.: Interactive cutting operations for generating
anatomical illustrations from volumetric data sets (2008)

14. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Proceed-
ings of 2nd Workshop on General Purpose Processing on Graphics Processing Units,
pp. 79–84. ACM (2009)

15. Munshi, A., et al.: The OpenCL specification. Khronos OpenCL Working Group 1,
l1–15 (2009)

16. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimization
for stencil computations on modern CPUs and GPUs. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–13. IEEE Computer Society (2010)

17. Rößler, F., Wolff, T., Ertl, T.: Direct GPU-based volume deformation. Proceedings of
Curac pp. 65–68 (2008)

18. Sætra, M.: Shallow water simulation on GPUs for sparse domains. In: Numerical Math-
ematics and Advanced Applications 2011, pp. 673–680. Springer (2013)

19. Schill, M.A., Gibson, S.F., Bender, H.J., Männer, R.: Biomechanical simulation of the
vitreous humor in the eye using an enhanced chainmail algorithm. In: Medical Image
Computing and Computer-Assisted Interventation, pp. 679–687. Springer (1998)

20. Schulze, F., Bühler, K., Hadwiger, M.: Interactive deformation and visualization of large
volume datasets. In: GRAPP (AS/IE), pp. 39–46. Citeseer (2007)

Chapter 2. Parallel ChainMail simulation of heterogeneous medical models 47

48
2.3. Parallel deformation of heterogeneous ChainMail models: application to

interactive deformation of large medical volumes

2.3 Parallel deformation of heterogeneous Chain-

Mail models: application to interactive defor-

mation of large medical volumes

• A. Rodŕıguez, A. León and G. Arroyo (2016). “Parallel deformation of
heterogeneous ChainMail models: Application to interactive deformation of
large medical volumes”. Computers in Biology and Medicine, Volume 79, pp.
222-232.

– Status: Published [104]

– Impact factor (JCR 2015): 1.521

– Subject category: Biology (Q2: 35/84), Computer Science, Interdisci-
plinary Applications (Q3: 54/105), Mathematical and Computational
Biology (Q2: 19/57), Engineering, Biomedical (Q3: 45/77).

Chapter 2. Parallel ChainMail simulation of heterogeneous medical models 49

Parallel deformation of heterogeneous ChainMail models:
application to interactive deformation of large medical volumes

Alejandro Rodrı́gueza,∗, Alejandro Leóna, Germán Arroyoa

aETSIIT, University of Granada, Granada, Spain

Abstract

In this work we present a new solution for correctly handling heterogeneous materials in Chain-

Mail models, which are widely used in medical applications. Our core method relies on two

main components: (1) a novel timestamp-based propagation scheme that tracks the propagation

speed of a deformation through the model and allows to correct ambiguous configurations, and

(2) a novel relaxation stage that performs an energy minimization process taking into account the

heterogeneity of the model. In addition, our approach extends the SP-ChainMail algorithm by

supporting interactive topology changes and handling multiple concurrent deformations, increas-

ing its range of applicability. Finally, we present an improved blocking scheme that efficiently

handles the sparse computation, greatly increasing the performance of our algorithm.

Our proposed solution has been applied to interactive deformation of large medical datasets.

The simulation model is directly generated from the input dataset and an user defined material

transfer function, while the visualization of the deformations is performed by rendering the re-

sampled deformed model using direct volume rendering techniques. In our results, we show

that our parallel pipeline is capable of interactively deforming models with several million ele-

ments. A comparison is finally discussed, analyzing the properties of our approach with respect

to previous work. The results show that our algorithm correctly handles very large heteroge-

neous ChainMail models in an interactive manner, increasing the applicability of the ChainMail

approach for more demanding scenarios both in response time and material modeling.

Keywords: ChainMail, Soft tissue deformation, Volume rendering, GPU

∗Corresponding author. Tel.: +34 687 63 22 88; email: alejandrora@ugr.es

Preprint submitted to Computers in Biology and Medicine November 25, 2016

1. Introduction

The use of computational simulation methods is nowadays extensively used in the fields of bi-

ology and medicine. In particular, many simulation applications related to the medical field such

as the simulation of physiological processes [1, 2] or the simulation of surgical procedures [3],

require a complex simulation of the human anatomy. The deformation of human tissues exhibits

complex heterogeneous and non-linear behaviors that have been approached by many different

solutions over the years [4, 5]. In the case of interactive applications, a trade-off between perfor-

mance and deformation accuracy has to be reached, since the requirements regarding to visual

and interaction feedback impose strong response time restrictions [6].

Patient-specific data captured through CT or MRI scans include up to several million voxels,

each one storing information related to different tissues and organs. Physically-based simulation

methods such as mass-spring models or finite element methods reproduce many heterogeneous

behaviors accurately, but the computational cost of these approaches limits the resolution of the

models to a small fraction of the captured medical data resolution which is usually several orders

of magnitude higher. This disparity hinders the modeling process and leads to an inevitable loss

of heterogeneity and complexity of the source data.

In order to increase the resolution of the deformation models, Gibson proposed the ChainMail

algorithm [7] by following a geometrical approach that enables physically realistic deformations.

Since it is a purely geometrical approach, it is unconditionally stable and is computed in a well

bounded execution time, making it suitable for interactive applications. Moreover, it is capable

of simulating many complex human tissue behaviors such as non-linear stress-strain response,

hysteresis and asymptotic relaxation. Thanks to these properties, its usage has spread to many

medical applications, as we review in Section 2.

In our previous work, we proposed the SP-ChainMail algorithm [8], a parallel version of the

original ChainMail algorithm. It allows to interactively deform models for very high resolutions

by computing its propagation and relaxation stages using modern GPU parallel capabilities and

integrating a blocking scheme to handle the sparse computation.

Both the original and the SP-ChainMail assume a homogeneous material for the model, thus

the heterogeneity of the medical data is incorrectly handled in many situations. This limitation

motivates our work, since an efficient and correct handling of the heterogeneity in the models

would lead to a wider range of applicability of the ChainMail approach in medical contexts.
2

In this work, we extend the SP-ChainMail algorithm to correctly manage heterogeneous ma-

terials in the model, interactive topology changes and multiple concurrent deformations while

preserving its efficient computation. We also propose a modification of the blocking scheme to

further improve the performance of the sparse parallel computation.

We have integrated the proposed algorithm into a GPU-based pipeline for direct deformation

of medical datasets. A ChainMail model is created from the input dataset, comprising all the

heterogeneous information present in the data since it is created at the same resolution. After

a deformation is applied, the deformed model is resampled in runtime into a voxel grid which

is then visualized using standard direct volume rendering. All the main stages of the proposed

pipeline are executed in parallel by the GPU, which allows to interactively deform and visualize

models up to several million elements.

The remainder of this paper is organized as follows. In Section 2 we review related work,

focusing on the ChainMail algorithm and its derived works. In Section 3 we present all the

aspects related to our proposed ChainMail algorithm. Section 4 describes the application of

the proposed algorithm for interactive manipulation of medical datasets, including the model

creation process from a source medical dataset and issues related to visualization and interaction

with the model. In Section 5, we present the results of several tests using the proposed pipeline,

including a comparative experiment with the SP-ChainMail algorithm. We also analyze and

discuss aspects related to the efficiency and memory requirements of our approach. Finally, our

conclusions are listed in Section 6.

2. Related Work

Interactive simulation of deformable models with biomechanical behaviors has been of inter-

est for several decades. During this period, many approaches have been proposed, although this

paper focuses on the ChainMail algorithm and its derived works. For a more general overview

of the different approaches, we refer the reader to the surveys of Meier et al. [4] and Moore et

al. [5].

The original ChainMail algorithm is a physically motivated approach that defines a Chain-

Mail model as a regular 3D mesh structure of elements arranged in a regular grid. Each element

is connected to its six nearest neighbors. These elements define geometrical limits for their

neighbors based on the current position of the elements and the properties of the tissue modeled
3

by them. Henceforth, we will refer to these geometrical limits simply as constraints. The valid

regions that an element imposes to its neighbors are thus defined through geometric constraints

for the position Pn = (xn, yn, zn) of the neighbor. The constraints are defined by the maxD and

minD parameters, which control the stretching and contraction limits, and the maxHorizD1 and

maxHorizD2 parameters, which control shear limits. Fig. 1 shows the parametrization for a right

neighbor, yielding the constraints:

xe + minDx ≤ xn ≤ xe + maxDx, (1)

ye − maxHorizDx1 ≤ yn ≤ ye + maxHorizDx1, (2)

ze − maxHorizDx2 ≤ zn ≤ ze + maxHorizDx2, (3)

where Pe = (xe, ye, ze) is the current position of the element. These constraints are applied

for a right neighbor, and analogous constraint equations are found for the other neighbors (back,

front, top, bottom and left) using Dy and Dz-based parameters.

Thus when an element is displaced and the constraints are violated, the neighbors violating

the constraints are shifted to valid positions, which may lead to new constraint violations, and the

deformation is propagated through the model as a chain reaction by enforcing those constraints.

After all the constraints are met, the resulting configuration is relaxed in a second stage by adjust-

ing the elements towards an optimal energy configuration. Non-linear elastoplastic deformations

and other complex behaviors can be achieved by tuning the geometric constraints between el-

ements and by modifying the relaxation scheme, as described in [9]. This algorithm has been

used in many medical applications such as arthroscopic knee surgery [10], simulation of an an-

gioplasty procedure [11], liver biopsy simulation [12, 13], non-rigid image registration [14],

automatic segmentation [15] and interactive generation of medical illustrations by cutting and

deforming medical models [16].

Other versions of the original algorithm have been proposed for different applications, such

as real time haptic rendering [17, 18, 19], biomechanical modeling of organs [20, 21, 22, 23] or

patient palpation simulation [24, 25].

One of the most important lacking features of the ChainMail algorithm is the support of

heterogeneous materials, since a homogeneous material is assumed for the entire model, i.e.,

maxDx, minDx, maxHorizDx1, maxHorizDx2, used in Eqs. (1) – (3) (and their analogous Dy and

4

Dz-based parameters) have to remain constant for all the elements of the model, which limits its

application to real data.

In order to overcome this limitation, Schill et al. [26] proposed a modification of the order of

propagation. A dynamic ordered list is maintained and, instead of a First-Moved-First-Processed

criterion for shifting the candidate elements, the element with highest constraint violation is

processed first. This propagation mechanism enables the use of heterogeneous materials in the

models, but makes the processing very slow since, after processing each element, all the new

candidate elements have to be inserted and sorted in the list prior to processing the next one.

Moreover, the relaxation stage is not modified and a homogeneous material is still considered,

which reduces the plausibility of the final achieved configuration. This algorithm has also been

used in medical applications such as vitrectomy simulation [26, 27] and heterogeneous deforma-

tion of large medical datasets [28].

The SP-ChainMail algorithm [8] increases the performance of the original algorithm by more

than one order of magnitude by mapping the computation of the propagations to the GPU. In

this algorithm, the propagation process is inverted: when an element is shifted due to a new

deformation, a parallel iterative process is launched on the GPU. For each iteration, a thread is

launched per element. Each thread checks whether any of the neighbors of the current element

has been moved in the previous iteration. If this condition is met, the new constraints imposed by

that neighbor are checked and the element is shifted if necessary in order to satisfy the constraints.

Each iteration is performed, and the process continues until no element is shifted during an

iteration.

This iterative approach propagates the deformations through the model following a wavefront

pattern, thus an element is always reached first by the propagation through the shortest path

from the source of the propagation to the element. In the presence of heterogeneous materials,

this treatment leads to incorrect and unpredictable behaviors, limiting its use to homogeneous

materials.

Our proposal extends the SP-ChainMail algorithm, modifying both the propagation and the

relaxation stages, generalizing its applicability to heterogeneous materials. Our solution also

implicitly copes with interactive topology changes in the model.

5

3. Heterogeneous Parallel ChainMail

In this section we describe our extended ChainMail algorithm as well as many important

aspects related to its parallelization.

After defining our specification of constraints and links in the model, we detail the new

propagation and relaxation stages which ensure the correct handling of heterogeneous materials

in the model. This is achieved by means of a novel timestamp system and a heterogeneous energy

minimization process respectively. We also explain how interactive topological operations are

managed by the algorithm.

Finally, we detail important improvements that allow the concurrent handling of different

deformation wavefronts and a faster computation of the sparse blocking scheme.

3.1. Heterogeneous constraints

As in the original ChainMail algorithm, the elements in our models are initially arranged in

a regular grid structure. Each element is connected to its six nearest neighbors (back, front, top,

bottom, left and right) given this initial configuration.

We define the geometric constraints imposed by one element to a neighbor as shown in Fig. 2.

A box center, relative to the current position of the element, is calculated attending to the initial

separation of the elements. Three parameters, namely Dx, Dy and Dz, specify the dimensions

of the axis aligned box that define a valid region for the neighbor, controlling the stretching and

shearing limits, yielding the constraints:

xe + xsep − Dx ≤ xn ≤ xe + xsep + Dx, (4)

ye + ysep − Dy ≤ yn ≤ ye + ysep + Dy, (5)

ze + zsep − Dz ≤ zn ≤ ze + zsep + Dz, (6)

for the position Pn = (xn, yn, zn) of the neighbor, where Pe = (xe, ye, ze) is the current position

of the element and ∆e = (xsep, ysep, zsep) is the initial separation of the element and its neighbor.

Isotropic materials for an element can be defined by assigning the same constraints to each

neighbor of its neighborhood, whereas anisotropic materials can be defined by assigning different

constraints depending on the direction of the neighbor.

6

Since every element may be defined with a specific material, the actual constraint parameters

are stored in the links, i.e., each link stores its own Dx, Dy and Dz parameters, which can be

different for each link. Thus the constraint parameters stored in a link are computed as a contri-

bution of the two connected elements by averaging their constraint parameters. These averaged

parameters stored in the link determine the constraints that both elements impose to each other.

For the sake of clarity we assume the same stretching and shearing limits for any material (i.e.,

Dxe = Dye = Dze ∀e ∈ L, being L the set of elements in the model) and thus a single parameter

per element is required, though the extension for generalized materials is straightforward.

An example of the computation of the heterogeneous constraints of a simple 2D model can

be seen in Fig. 3: the constraint parameters of the elements are averaged and stored on the

links between them (a); the averaged constraint parameter of elements A and B determines the

constraints imposed by element A on element B (b) and by element B on element A (c, left);

the averaged constraint parameter of elements B and C determines the constraints imposed by

element B on element C (c, right) and by element C on element B (d).

3.2. Heterogeneous propagation

In order to properly deal with heterogeneous materials using the ChainMail approach, the

propagation speed of a deformation through different tissues must be considered.

This evidence was first detected by Schill et al. [26]. Since the ChainMail algorithm follows

a purely geometric approach, the propagation speed is inversely proportional to the constraint

values. They addressed the issue using a priority queue; the neighbors of the last displaced

element are added to the queue, which is sorted attending to the amount of constraint violation.

Although this approach correctly propagates the heterogeneous deformations through the

volume, it is not suited for a parallel computation, since the next element to process is only

known after the last element has been processed and the priority queue has been updated, which

limits the processing to a strict serial computation.

To handle this phenomenon without losing the parallel nature of the SP-ChainMail algorithm,

our algorithm modifies the propagation process by taking into account the time required by the

wavefront to travel through the different materials. As we explain in the following subsection,

this allows to adjust already deformed elements in order to obey the priority of the constraints.

7

3.2.1. Timestamp-based propagation

Our iterative algorithm propagates the deformation applied to an element as a wave through

the model. Thus, when a deformation is applied, a wavefront is generated and evolved iteratively,

which is composed by the elements reached by the propagation in the current iteration. For each

iteration, the deformation propagates from the elements reached on the previous iteration to their

neighbors, thus the wavefront advances in all the directions by one step. Due to the nature of

this process, the elements are always reached first by the shortest path from the epicenter of

the deformation to the element. For this reason, if an already reached element is later reached

by the same wavefront through a path composed by links with stronger constraints (i.e., shorter

propagation times), its position needs to be readjusted.

In order to detect and correct this casuistry, each link stores the time required to travel through

it. This time is directly proportional to the constraint value assigned to it. As the wavefront itera-

tively travels through the model, the algorithm tracks the speed at each point of the wavefront by

accumulating the time required in each step and storing it in the reached elements as a timestamp

mark. This mark intuitively indicates the time elapsed since the beginning of the propagation

until that element was reached, and depends on the stiffness of the links in the path that led the

propagation from the source of the deformation to the element. A simple 2D example is shown

in Fig. 4, where a deformation is applied on element A, setting its timestamp mark to 0 and initi-

ating a propagation, first reaching element B, updating its timestamp mark to 1.5 = 0 + 1.5, and

finally reaching element C, updating its timestamp mark to 4.5 = 1.5 + 3.

When an element reached by a previous iteration is reached again by the wavefront and the

current accumulated time of the wavefront is smaller than the stored timestamp mark, the algo-

rithm imposes the current propagation of the wavefront over the previous one, since it traveled

through a path with stronger constraints.

Regarding to the implementation of this algorithm, this can be easily adapted as a GPU ker-

nel that is iteratively launched over the elements of the model. For each element we add the

timestamp mark, and for each link we add the propagation time, i.e., the time required to travel

through it, which is directly derived from the constraint value of the link. When a new defor-

mation is applied to the model, the timestamp of the element receiving the deformation is set to

0. After that, the iterative propagation process starts. In each iteration, the kernel is launched

creating one GPU thread per element. The kernel is described in Algorithm 1. Each thread it-

8

erates over the neighbors of its assigned element (lines 2-11). For each neighbor, a candidate

timestamp is calculated as the sum of the neighbor’s timestamp and the propagation time of the

link between them (line 4). If the candidate timestamp is smaller than the current timestamp of

the element, it is assigned as the new timestamp and the constraint regarding that neighbor is

checked, shifting the element if necessary (lines 5-10). If the candidate timestamp is greater or

equal than the current timestamp of the element, the neighbor is ignored.

1 BEGIN propagationKernel(elem)

2 N = getNeighbors(elem);

3 FOREACH n IN N

4 newTS = n.tStamp + pTime(elem, n);

5 IF (newTS < elem.tStamp)

6 elem.tStamp = newTS;

7 IF constraintViolated(elem, n)

8 shift(elem);

9 END IF

10 END IF

11 END FOREACH

12 END

Algorithm 1: Timestamp-based propagation kernel launched over the elements in the model.

This new propagation mechanism allows to readjust previously deformed elements since the

fastest path, attending to the propagation speed instead of the number of links, now enforces

its propagation to those elements even when they are reached in later iterations. Consider for

instance the “heterogeneous ring” example depicted in Fig. 5. A deformation is applied to the

top-left element, initiating the propagation through the model to satisfy the violated constraints,

indicated by the red links. Through the iterative process, the elements on the right are first

reached through the elastic path. When the two sides of the wavefront reach the bottom-right

element, (iteration 3) the behavior of the SP-ChainMail becomes unpredictable. Even in this

simple case, two outcomes are possible depending on the attended neighbor. If the element

attends to the constraints of its top neighbor, (bottom branch) the expected final configuration is

achieved. If the element attends however to the constraints of its left neighbor (top branch), the

propagation will continue through the left path, reaching the initially deformed element, leading

to an undesired final configuration. As the model becomes more complex, the probability of

9

reaching the correct configuration is drastically decreased. Our novel approach, however, takes

into account the propagation speed through the different materials and hence always reaches the

expected configuration.

Fig. 6 shows a more complex model deformed by our approach considering a homogeneous

material and a more realistic heterogeneous distribution of materials, showing the differences of

the timestamps propagated through it and the final deformed configuration in each case. The

heterogeneous distribution of materials is correctly handled due to the timestamp system, which

tracks the faster propagation of the deformation through stiffer tissue and prevents the bone tissue

to deform unrealistically.

If one or more of the materials used in the model apply different constraints for each dimen-

sion (different values for the Dx, Dy and Dz parameters), then the links store the different times

required to travel for each dimension and the timestamp system independently tracks and handles

the propagation for each dimension.

The algorithm as presented, requires resetting the timestamp of all elements whenever a new

propagation starts. In practice, we use a different approach that avoids the need for actively

resetting the timestamps and also allows to concurrently propagate the wavefronts of multiple

applied deformations as we explain in Sec. 3.5.

3.3. Heterogeneous Relaxation

The relaxation stage of the SP-ChainMail algorithm has also been modified in order to cope

with the heterogeneous material requirements and the parallel approach.

An energy minimization process is carried out during a relaxation iteration. We introduce

the stiffness of the materials in the computation of the energy stored in the model to take the

heterogeneity into account. The stiffness of a material is measured in terms of the constraints

assigned to it. Thus for an element, each of its neighbors defines an optimal position, i.e., a

position that would reduce the energy stored in the link between them to zero. Then, we define

the energy based on the Hooke’s law as follows.

Let e be an element connected to m neighbors, let ρe be its current position, let ci be the

constraint value of the link between e and its ith neighbor, and let pi be the optimal position for e

defined by its ith neighbor. Then, the potential energy of e is proportional to

10

Ue =

m∑
i=1

(‖ρe − pi‖
2 wi), (7)

with wi = 1
ci

. Solving ∂Ue
∂x = 0, ∂Ue

∂y = 0, ∂Ue
∂z = 0, we find that the new position ρ∗e that

minimizes the energy is given by a simple weighted mean of the optimal positions, computed as

ρ∗e =

∑m
i=1(piwi)∑m

i=1 wi
. (8)

In practice, we use wi = 1
ci+ε

with ε a very small positive value, since ci = 0 for completely

rigid materials. Using this weighting function, the materials experiment a hyperbolic weight

gain as they become stiffer, reaching a virtually infinite weight for a rigid material. The weighted

mean prevents the nodes belonging to the boundary between structures with different stiffness to

deform unrealistically.

Note that we have modified the definition of the potential energy of the elements, but the

minimization process, which is in turn a closed negative feedback system [9], remains the same

as in the original formulation. The system energy, defined by E =
∑n

i=1 Ui, with n the number of

elements in the model, is decreased in each iteration until a stable configuration is reached, thus

the process is free of instability or divergence issues.

As explained by Gibson [9] the definition of the optimal position of an element regarding

a neighbor permits to model different material properties, ranging from purely plastic to purely

elastic behavior depending on whether a single position or a 3D region is considered as optimal.

Moreover, different linear or non-linear functions can be used to measure internal stress for a

given link, resulting in different stress-strain response. Hysteresis during loading and unloading

can also be reproduced by using different functions for measuring internal stress during stretching

and compression.

This stage is also easily implemented as a GPU kernel launched over the elements in every

relaxation iteration.

3.4. Topology modification

As in the original ChainMail algorithm, topology changes such as cutting and carving can

be introduced by removing links or elements respectively. The propagation and relaxation stages

proposed in this work implicitly cope with interactive topology changes, since their impact is

automatically detected by both the propagation and the relaxation iterative processes.
11

These topology changes, either introduced directly on the model or detected during the inter-

action with virtual tools, are easily computed through a parallel process over the model:

• When a cut is detected, one thread for each link in the model is launched. Each thread

computes an intersection test between the corresponding link and the path defined by the

cut. If the test is positive, the link is removed from the model.

• When an operation of carving is detected, one thread per element is launched. Each thread

computes an inclusion test of the corresponding element with the carving volume. If the

test is positive, the element is removed from the model.

Once the topology change has been introduced, new deformations applied to the model are

correctly propagated even in the presence of heterogeneous materials. The timestamp system

automatically takes into account the removed elements and links when the deformation is being

processed. Take for instance the case shown in Fig. 7: On the left, the model is deformed by

pulling from the skin tissue at the bottom, propagating the deformation to the internal structures.

On the right, the same deformation is applied after performing a cut on the bottom part of the

model. The propagation of the deformation takes into account the modified topology and the

propagation has to travel around the cut (as shown by the propagation time heatmap). Thus,

the deformation is absorbed by the top part of the model and the bottom right part remains

undeformed as it is now reached later.

3.5. Concurrent Wavefronts

Since the original Chainmail algorithm was proposed, the application of several simultane-

ous nodal forces has been hard to achieve because it was not explicitly handled. For this reason,

the interaction was commonly limited to a single nodal deformation. Our timestamp-based prop-

agation algorithm as exposed in Sec. 3.2.1 requires to clear the residual timestamp marks from a

previous propagation, considering they may interfere with a new wavefront generated by a new

applied deformation. Instead of performing an explicit reset of the timestamps, we apply a differ-

ent strategy that also allows to concurrently propagate several wavefront, i.e., allow for several

deformations to propagate through the model at the same time.

We add a wavefront counter, a new property stored in each element. During the initialization

process, a global counter and all wavefront counters are set to 0. When a new deformation is

12

applied to the model, the global counter is increased by 1, the wavefront counter of the element

receiving the deformation is set to the current value of the global counter, and its timestamp

value is set to 0. Using this wavefront counter, the propagation kernel is modified as shown in

Algorithm 2 since three new possible cases arise:

1. If the wavefront counter of the neighbor is greater than the element’s counter, the times-

tamp of the element is residual and is consequently ignored. The wavefront counter of

the element is updated to the same value of the wavefront counter of the neighbor and the

timestamp of the element is set as the sum of the timestamp of the neighbor and the time

value of the link between them (lines 5-6). The constraint imposed by that neighbor is

checked and the element is shifted if necessary (lines 7-9).

2. If the wavefront counter of the neighbor equals the element’s counter, both elements have

been reached by the wavefront and the normal algorithm (from Algorithm 1) is executed

(lines 10-18).

3. If the wavefront counter of the neighbor is smaller than the element’s counter, it is ignored

since it has not yet been reached by the current wavefront.

13

1 BEGIN propagationKernel(elem)

2 N = getNeighbors(elem);

3 FOREACH n IN N

4 IF (n.wCounter > elem.wCounter)

5 elem.iCounter = n.wCounter;

6 elem.tStamp = n.tStamp + pTime(elem, n);

7 IF constraintViolated(elem, n)

8 shift(elem);

9 END IF

10 ELSE IF (n.wCounter == elem.wCounter)

11 newTS = n.tStamp + pTime(elem, n);

12 IF (newTS < elem.tStamp)

13 elem.tStamp = newTS;

14 IF constraintViolated(elem, n)

15 shift(elem);

16 END IF

17 END IF

18 END IF

19 END FOREACH

20 END

Algorithm 2: Complete propagation kernel allowing for concurrent wavefronts propagating through the model.

This complete propagation approach is particularly interesting for some common situations,

such as several deformations applied consecutively on the same spot or different nodal deforma-

tions applied on different parts of the model that do not interfere, e.g., simultaneously separating

both sides of an incision as shown in Fig. 8. In those cases, a single parallel propagation iteration

advances all the concurrent wavefronts at once, thereby harvesting more parallel power from the

GPU, since a higher amount of the launched threads perform useful computation. This strategy

does not really handle the interaction between different wavefronts, since simply the latest will

prevail, however, it is a step further into the handling of simultaneous deformations using the

ChainMail approach.

Also, as already stablished for the SP-ChainMail algorithm, an additional flag, referred to as

activity flag, indicating whether an element was updated in the previous propagation iteration,

allows the relaxation process to identify elements ready to start the relaxation process. If an

element is not active and its wavefront counter is equal to the wavefront counters of its neighbors,

14

applying the relaxation process to that element does not interfere with the propagation process.

The combination of these two mechanisms allows to apply new deformations to the model

without having to wait for the previous deformations to fully propagate, and also enables the

interleaving of propagation iterations with relaxation iterations, naturally blending both stages.

This feature is of high interest for applications demanding a high feedback frequency, since it is

possible to render partial results of the deformations on the model.

3.6. Improved sparse blocks computation

The SP-ChainMail algorithm [8] includes a blocking method applied to the computation

of the iterative stages to avoid unnecessary computation for elements not yet reached by the

propagation or already in a stable configuration. The computational domain is partitioned into

blocks, so a 3D offset is necessarily calculated to reference each block. The active blocks, i.e., the

blocks still requiring computation, are efficiently flagged in each iteration and the computation

of the next iteration is only performed over these active blocks by making one GPU kernel call

per block.

By choosing a smaller size for blocks in the partitioning, the amount of launched threads

is reduced since the active elements are more effectively enclosed. However, the experiments

show that after a given threshold, reducing the block size actually decreases the obtained gain,

and can even lead to a worse performance than the non-partitioned case. As discussed in [8],

this is produced because the GPU gets gradually misused as more kernel invocations with fewer

concurrent threads are performed.

We also apply this blocking scheme to reduce the computational load of our algorithm, but

in order to avoid the limitation mentioned above, we have introduced a small, yet significant

modification to the launching approach, similar to the proposal of Sætra [29]. After the current

iteration has finished and the boolean maps are updated, an array storing the 3D offsets corre-

sponding to each active block is updated and sent to the GPU. Using this array, a single kernel

launch computes all the blocks at once: the number of launched threads is simply calculated as

the number of active blocks multiplied by the number of elements per block, and each thread

uses its own id to deduce the corresponding block and read the corresponding 3D offset from the

array to access the correct element.

As we demonstrate in our experiments, this approach is better suited for the GPU computing

paradigm and small block sizes can be used without resulting in a performance penalty due to a
15

misuse of GPU resources.

4. Interactive deformation of medical models

The proposed algorithm has been applied to deform large models achieving interactive fram-

erates. All the data structures required by the algorithm are generated from a source volume

dataset.

In order to maintain the complexity of the source volume dataset, one ChainMail element is

created per each voxel. The initial position of each element is calculated attending to the space

existing between voxels in each dimension.

Attending to the density values or any defined segmentation process, elements corresponding

to empty or undesired areas of the source dataset can be discarded.

We assign material properties to the ChainMail elements based on the density of the corre-

sponding voxels in the source dataset in order to define the heterogeneous constraints for the

links in the model. This is done by specifying a material transfer function as we show in our

examples. We define the constraints as a percentage of the initial spacing between voxels in the

dataset. Under this assumption, we can rapidly generate high resolution heterogeneous models

from the source dataset. The relation between CT data and mechanical properties is known to be

accurate for bone tissue [30, 31], however, the estimation of the properties of soft tissue from CT

data is still an open problem. Thus, a more accurate estimation of these material properties could

be obtained through a more complex segmentation process based on known material properties

of the identified tissues, or other measuring techniques such as elastography [32].

In order to visualize the deformations interactively, we have coupled the proposed algorithm

with the resampling method described in [33]. When a new deformation has been applied, the

model is resampled into a voxel grid, which is then visualized using a standard ray-casting algo-

rithm. Both the resampling and the ray-casting algorithms are also implemented in parallel using

the GPU.

For direct interaction, we have implemented a simple isosurface mapping mechanism, relat-

ing the 3D position of the selected isosurface with the nearest ChainMail element, although more

immersive interaction mechanisms such as virtual tools can be also used.

16

5. Results and discussion

We have tested our approach in two interactive virtual examples: a sheep heart exploration

procedure and a wrist surgery simulation. We refer the reader to the video provided as additional

material (Online Resource 1) for further results of the proposed examples.

We have also conducted a test to evaluate the performance of our heterogeneous paral-

lel ChainMail algorithm and the improved blocking method, also comparing it with the SP-

ChainMail algorithm.

The proposed algorithm was implemented with OpenCL 1.2. The performed experiments

were run on an Intel Core i7-3770 machine, with 16 GB RAM and an Nvidia GeForce GTX 670

with 1344 cores, using a 800x700 viewport for the interaction and visualization.

5.1. Sheep heart exploration

For this setup, the inside of a sheep heart is explored. The source dataset is an MRI scan with

12.4 million voxels. The heart is accessed through the aorta, interactively exploring and probing

its chambers. The model consists of 12.4 million ChainMail elements, one per voxel, although

the air voxels are discarded.

The materials are defined through a material transfer function as shown in Fig. 9 (bottom),

assigning different elastic materials based on the density values of the source dataset. We perform

10 propagation iterations and 10 relaxation iterations before a new frame is rendered.

The high resolution of our ChainMail model allows for the deformations to adapt to the

complex topology in the inside of the heart as can be seen in Fig. 9 (top), when applying a

deformation to an internal feature.

With this configuration, the example runs at 12-26 fps. Each frame, the deformation takes

between 11 and 53 ms depending on the number of affected elements, the resampling of the

deformed volume takes an average of 10 ms and the rendering using raycasting takes an average

of 17 ms.

We have tested the same setup using a dynamic simulation based on the mass-spring model,

using a tetrahedral mesh and explicit integration, parallelized on the GPU as proposed by Georgii

et al. [34]. For a fair comparison, we set a mass-spring mesh leading to a running time similar

to the one achieved by our method. Thus we set a mesh with 42,875 mass nodes, connected by

196,520 tetrahedra.

17

Table 1 shows the average simulation time and the average number of shifted nodes per

simulation step for both methods when applying a small and a large deformation, affecting the

5% and 30% of the model respectively.

The computation time of our algorithm varies depending on the amount of shifted nodes.

This is due to the local nature of the method, which performs computation only on the affected

region, while the mass-spring approach displays a stable performance independently of the af-

fected region. More importantly, in contrast to our method, the mass-spring mesh is unable to

capture the fine topological features present in the dataset because of the disparity of resolution,

which leads to an average of 290 data voxels modeled by each mass node. To illustrate this issue,

Fig. 10 shows the same applied deformation using both methods. Using our method, shown on

the top row, the right side of the tissue “ring” can be deformed while the left part remains un-

deformed. Using the mass-spring model, shown on the bottom row, the hole in the tissue is not

correctly modeled and the deformation applied on the right part is transmitted to the tissue wall

on the left.

5.2. Wrist surgery

In this setup, we explore a human wrist by performing a cut on the skin and applying defor-

mations to reveal the internal structures. The source dataset is a CT scan of a human hand with

7.1 million voxels. Again, we generate one ChainMail element per voxel.

The materials are also defined through a material transfer function as shown in Fig. 11 (bot-

tom). The ChainMail elements corresponding to bone tissue are configured as rigid. The rest of

the tissues are modeled as elastoplastic materials with an elastic recovery corresponding to the

80% of the undergone strain. We perform 20 propagation iterations and 40 relaxation iterations

between frames.

As can be seen in Fig. 11, our model correctly handles the interactive topology changes, and

the different internal tissues deform along when the skin around the cut is deformed. The het-

erogeneous materials of the different tissues prevent bones from deforming during the relaxation

stage.

The example runs at 6-21 fps. The deformation takes between 25 and 84 ms depending on

the number of affected elements, the resampling takes an average of 7 ms and the rendering takes

between 14 and 61 ms depending on the chosen transfer function and the camera position.

18

5.3. Performance analysis

To evaluate the performance of our approach, we have conducted a test comparing it with the

SP-ChainMail algorithm. for a fair comparison, we have used a model with 2 million elements

(126x126x126) and a homogeneous material so that both algorithms perform the same number

of propagation and relaxation iterations.

A deformation affecting all the elements has been applied, and we have measured the time

required for the deformation to fully propagate and relax to an stable configuration, without

intermediate visualizations, requiring 376 propagation iterations and 619 relaxation iterations.

We have performed this measurement for both algorithms. We have used both algorithms

with no blocking scheme and with several block size configurations. The results of the test are

summarized in Fig. 12.

As the results show, the use of the timestamp-based heterogeneous propagation barely affects

the performance since the SP-ChainMail completes the deformation after 3321 ms when the

blocking scheme is not used, and our approach takes 3498 ms also with no blocking scheme,

roughly increasing the computation time by 5.32%.

Attending to the blocking scheme, the SP-ChainMail achieves the best performance for a

block size of 16x16x16, completing the deformation after 1312 ms, achieving a speedup of 2.53x.

When smaller block sizes are used, the achieved speedup is reduced, even leading to a worse

performance than the non-partitioned case. As already mentioned, this behavior is expected

because the GPU becomes misused for small block sizes since it leads to multiple small kernel

invocations.

In our approach, these invocations are combined into a single invocation, leading to higher

speedups and achieving the best performance for the smaller block size of 16x4x4, completing

the deformation after 458 ms, inducing a speedup of 7.63x.

Therefore, our approach not only allows for heterogeneous models, but also improves the

performance with respect to the SP-ChainMail thanks to the enhanced blocking scheme.

5.4. Memory requirements

Our approach heavily relies on GPU dedicated memory, since all the main structures are

stored and computed directly on the GPU. The memory requirements grow linearly with the

number of ChainMail elements in the model. Each element requires 58 bytes of dedicated mem-

ory, including position, constraint values, timestamp mark, wavefront counter, activity flag and
19

neighbor flags, and some structures are moreover duplicated to accommodate the Jacobi sweep

scheme [35]. All in all, 55.31 MB are required per each million elements.

The blocking scheme consumes a negligible amount of memory w.r.t. the main structures

since only 12 bytes of GPU dedicated memory and 64 bytes of host memory are required per

block. In our most demanding scenario, the sheep heart model using 16x4x4 blocks, 50,460

blocks were created, leading to a memory consumption of 592 KB of GPU memory and 3.08

MB of host memory.

6. Conclusions and Future Work

In this paper, we have presented an enhanced parallel ChainMail algorithm supporting het-

erogeneous materials and interactive topology changes. We solve the issue of heterogeneity in the

model by a novel timestamp-based propagation mechanism and a modified relaxation scheme.

We have also improved the blocking scheme in order to increase the performance of our algo-

rithm by a notable factor, efficiently handling the sparse nature of the GPU computation of our

approach.

Our results demonstrate that the proposed algorithm, in conjunction with a direct assignment

of material properties and a parallel resampling approach, allows to interactively visualize and

deform models consisting of up to several million elements.

In addition to these contributions, our algorithm is able to deal with different deformations

simultaneously for the same model. This is an important step further for ChainMail-based al-

gorithms, which have been limited to single nodal interactions since the original algorithm was

proposed.

Finally, although our algorithm improves the SP-ChainMail approach both in performance

and material flexibility, providing a more general and applicable solution, there are certain limi-

tations that we would like to address as future work.

An important limitation is found in the material characterization process. Although the

ChainMail approach allows to model complex tissue behaviors, the mapping of material prop-

erties measured from real world specimens is not trivial, and our direct assignment of materials

and model topology is oversimplified in order to achieve a minimum preprocessing effort as

already mentioned. Moreover, we have compared our approach with the mass-spring method,

however, we have focused on performance and resolution issues. As future work, we would
20

like to perform a comparison with other methods regarding behavior and model accuracy. Thus,

assisted methods for ChainMail material characterization should be explored, which combined

with the acquisition of real specimen measurements for validation would allow to perform such

a comparative study.

Although we allow multiple deformations to simultaneously propagate through the model,

when they overlap their interference is resolved simply prioritizing one of them. Therefore, a

better management of their interference should be explored to address those cases. Lastly, the

visualization of the interactive cuts with the used resampling algorithm leads to material loss,

thus a better visualization of topology changes would improve the realism and feedback during

the simulations.

Acknowledgements

This work is supported by the University of Granada, under the “Formación de Profeso-

rado Universitario, Plan Propio de Investigación 2012” program. This work is also supported

by the project TIN2014-60956-R of the Spanish Ministry of Economy and Competitiveness

with FEDER funds. The funding entities had no involvement in any stage of the develop-

ment of this work or in the decision to submit this manuscript. The heart and the hand models

were obtained from The Volume Library (lgdv.cs.fau.de/External/vollib/) and the ImageVis3D

(www.sci.utah.edu/software/imagevis3d) software package respectively. The authors would like

to thank the anonymous reviewers for their insightful comments.

Conflict of interest statement

None declared.

References

[1] Rahimi-Gorji, M., Pourmehran, O., Gorji-Bandpy, M., Gorji, T.. Cfd simulation of airflow behavior and particle

transport and deposition in different breathing conditions through the realistic model of human airways. Journal of

Molecular Liquids 2015;209:121–133. doi:10.1016/j.molliq.2015.05.031.

[2] Rahimi-Gorji, M., Gorji, T.B., Gorji-Bandpy, M.. Details of regional particle deposition and airflow structures

in a realistic model of human tracheobronchial airways: two-phase flow simulation. Computers in biology and

medicine 2016;74:1–17. doi:10.1016/j.compbiomed.2016.04.017.

21

[3] Liu, A., Tendick, F., Cleary, K., Kaufmann, C.. A survey of surgical simulation: applica-

tions, technology, and education. Presence: Teleoperators and Virtual Environments 2003;12(6):599–614.

doi:10.1162/105474603322955905.

[4] Meier, U., López, O., Monserrat, C., Juan, M.C., Alcaniz, M.. Real-time deformable models

for surgery simulation: a survey. Computer methods and programs in biomedicine 2005;77(3):183–197.

doi:10.1016/j.cmpb.2004.11.002.

[5] Moore, P., Molloy, D.. A survey of computer-based deformable models. In: Machine Vision and Image Processing

Conference, 2007. IMVIP 2007. International. 2007, p. 55–66. doi:10.1109/IMVIP.2007.31.

[6] Kerdok, A.E., Cotin, S.M., Ottensmeyer, M.P., Galea, A.M., Howe, R.D., Dawson, S.L.. Truth cube: Establish-

ing physical standards for soft tissue simulation. Medical Image Analysis 2003;7(3):283–291. doi:10.1016/S1361-

8415(03)00008-2.

[7] Gibson, S.F.. 3d chainmail: a fast algorithm for deforming volumetric objects. In: Proceedings of the 1997

symposium on Interactive 3D graphics. ACM; 1997, p. 149–154. doi:10.1145/253284.253324.

[8] Rodrı́guez, A., León, A., Arroyo, G., Mantas, J.M.. Sp-chainmail: a gpu-based sparse parallel chain-

mail algorithm for deforming medical volumes. The Journal of Supercomputing 2015;71(9):3482–3499.

doi:10.1007/s11227-015-1445-5.

[9] Frisken-Gibson, S.F.. Using linked volumes to model object collisions, deformation, cutting, carving, and joining.

Visualization and Computer Graphics, IEEE Transactions on 1999;5(4):333–348. doi:10.1109/2945.817350.

[10] Gibson, S., Samosky, J., Mor, A., Fyock, C., Grimson, E., Kanade, T., et al. Simulating arthroscopic knee

surgery using volumetric object representations, real-time volume rendering and haptic feedback. In: CVRMed-

MRCAS’97. Springer; 1997, p. 367–378. doi:10.1007/BFb0029258.

[11] Le Fol, T., Acosta-Tamayo, O., Lucas, A., Haigron, P.. Angioplasty simulation using ChainMail method. In:

Medical Imaging 2007: Visualization and Image-Guided Procedures. 2007,doi:10.1117/12.709582.

[12] Villard, P.F., Boshier, P., Bello, F., Gould, D.. Virtual reality simulation of liver biopsy with a respiratory

component. InTech; 2011.

[13] Villard, P.F., Vidal, F.P., ap Cenydd, L., Holbrey, R., Pisharody, S., Johnson, S., et al. Interventional ra-

diology virtual simulator for liver biopsy. International Journal of Computer Assisted Radiology and Surgery

2013;9(2):255–267. doi:10.1007/s11548-013-0929-0.

[14] Castro-Pareja, C.R., Daly, B., Shekhar, R.. Elastic registration using 3d chainmail: application to virtual

colonoscopy. In: Medical Imaging 2006: Image Processing; vol. 6144. 2006, p. 947–955. doi:10.1117/12.653644.

[15] Shekhar, R., Lei, P., Castro-Pareja, C.R., Plishker, W.L., DSouza, W.D.. Automatic segmentation of phase-

correlated ct scans through nonrigid image registration using geometrically regularized free-form deformation.

Medical physics 2007;34(7):3054–3066. doi:10.1118/1.2740467.

[16] Mensmann, J., Ropinski, T., Hinrichs, K.. Interactive cutting operations for generating anatomical illustrations

from volumetric data sets. Journal of WSCG 16th International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision 2008;16(1-3):89–96.

[17] Park, J., Kim, S.Y., Son, S.W., Kwon, D.S.. Shape retaining chain linked model for real-time volume haptic

rendering. In: Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH Symposium on.

2002, p. 65–72. doi:10.1109/SWG.2002.1226511.

22

[18] Park, J., Kim, S.Y., Kwon, D.S.. Mechanical representation of shape-retaining chain linked model for real-time

haptic rendering. In: Medical Simulation. Springer; 2004, p. 144–152. doi:10.1007/978-3-540-25968-8 16.

[19] Sang-Youn, K., Jinah, P., Dong-Soo, K.. The real-time haptic simulation of a biomedical volumetric object

with shape-retaining chain linked model. IEICE transactions on information and systems 2005;88(5):1012–1020.

doi:10.1093/ietisy/e88-d.5.1012.

[20] Li, Y., Brodlie, K.. Soft object modelling with generalised chainmail extending the boundaries of web-based

graphics. Computer Graphics Forum 2003;22(4):717–727. doi:10.1111/j.1467-8659.2003.00719.x.

[21] Villard, P.F., Jacob, M., Gould, D., Bello, F.. Haptic simulation of the liver with respiratory motion. In:

Proceeding of Medicine Meets Virtual Reality 17 (MMVR17); vol. 142. 2009, p. 401–406.

[22] Vidal, F.P., Villard, P.F., Lutton, E.. Tuning of patient-specific deformable models using an adaptive

evolutionary optimization strategy. Biomedical Engineering, IEEE Transactions on 2012;59(10):2942–2949.

doi:10.1109/TBME.2012.2213251.

[23] Vidal, F.P., Villard, P.F.. Development and validation of real-time simulation of x-ray imaging with respiratory

motion. Computerized Medical Imaging and Graphics 2016;49:1–15. doi:10.1016/j.compmedimag.2015.12.002.

[24] Fortmeier, D., Mastmeyer, A., Handels, H.. Image-based palpation simulation with soft tissue deformations using

chainmail on the GPU. In: Bildverarbeitung für die Medizin 2013. Springer; 2013, p. 140–145. doi:10.1007/978-

3-642-36480-8 26.

[25] Fortmeier, D., Mastmeyer, A., Handels, H.. An image-based multiproxy palpation algorithm for patient-specific

VR-simulation. Medicine Meets Virtual Reality 2014;:107–113doi:10.3233/978-1-61499-375-9-107.

[26] Schill, M.A., Gibson, S.F., Bender, H.J., Männer, R.. Biomechanical simulation of the vitreous humor in the

eye using an enhanced chainmail algorithm. In: Medical Image Computing and Computer-Assisted Interventation.

Springer; 1998, p. 679–687. doi:10.1007/BFb0056254.

[27] Schill, M.A., Wagner, C., Hennen, M., Bender, H.J., Männer, R.. EyeSi – A Simulator for Intra-ocular Surgery;

chap. Medical Image Computing and Computer-Assisted Intervention – MICCAI’99: Second International Con-

ference, Cambridge, UK, September 19-22, 1999. Proceedings. Springer Berlin Heidelberg; 1999, p. 1166–1174.

doi:10.1007/10704282 126.

[28] Schulze, F., Bühler, K., Hadwiger, M.. Interactive deformation and visualization of large volume datasets. In:

GRAPP (AS/IE). Citeseer; 2007, p. 39–46.

[29] Sætra, M.L.. Shallow water simulation on gpus for sparse domains. In: Numerical Mathematics and Advanced

Applications 2011. Springer; 2013, p. 673–680. doi:10.1007/978-3-642-33134-3 71.

[30] Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., Viceconti, M.. Mathematical relationships

between bone density and mechanical properties: a literature review. Clinical biomechanics 2008;23(2):135–146.

doi:10.1016/j.clinbiomech.2007.08.024.

[31] Taddei, F., Pancanti, A., Viceconti, M.. An improved method for the automatic mapping of computed tomogra-

phy numbers onto finite element models. Medical engineering & physics 2004;26(1):61–69. doi:10.1016/S1350-

4533(03)00138-3.

[32] Ophir, J., Alam, S.K., Garra, B.S., Kallel, F., Konofagou, E.E., Krouskop, T., et al. Elastography: imag-

ing the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics 2002;29(4):155–171.

doi:10.1007/BF02480847.

23

[33] Rodrı́guez, A., Salas, A.L., Perandrés, D.M., Otaduy, M.A.. A parallel resampling method for interactive

deformation of volumetric models. Computers & Graphics 2015;53:147–155. doi:10.1016/j.cag.2015.10.002.

[34] Georgii, J., Westermann, R.. Mass-spring systems on the gpu. Simulation modelling practice and theory

2005;13(8):693–702. doi:10.1016/j.simpat.2005.08.004.

[35] Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.. 3.5-d blocking optimization for stencil computations

on modern cpus and gpus. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE Computer Society; 2010, p. 1–13. doi:10.1109/SC.2010.2.

24

Table 1: Measured average time and shifted nodes per simulation step during a small and a large deformation of the

model using our approach and the mass-spring model. Total simulation nodes for each method are also shown.

5% deformation 30% deformation

Nodes Shifted nodes Time (ms) Shifted nodes Time (ms)

Our approach 12,487,168 123,428 11 1,423,685 53

Mass-Spring 42,875 1,923 45 12,652 45

Figure 1: The valid region (box) that an element (black) imposes to a right neighbor (gray) with the original ChainMail

algorithm is defined by the constraint parameters (maxDx, minDx, maxHorizDx1 and maxHorizDx2).

Figure 2: The valid region (box) that an element (black) imposes to a neighbor (gray), is defined by the constraint

parameters (Dx, Dy and Dz) and by the initial separation of both elements ∆e.

25

Figure 3: 2D example of heterogeneous constraints in a simple, heterogeneous model: the constraint values of each two

linked elements, depicted on top of the elements, are averaged and stored in the link between them (a), and the constraints

applied by each element to its neighbors are computed attending to these averaged values, leading to the 2D valid regions

represented by the squares (b, c and d).

26

Figure 4: 2D example of the timestamp propagation system with heterogeneous materials (a). When a new deformation

is applied to an element, the timestamp of the element is set to 0 (b), and the propagation starts. Again, the squares

represent the valid regions. When a new element is reached through a link (violated constraints in red, satisfied constraints

in green), its timestamp mark is updated as the sum of the timestamp of the linked neighbor and the propagation time

stored in the link between them (c and d).

Figure 5: An “heterogeneous ring” model, composed by an elastic material at the top and a rigid material on the lateral

and bottom parts, is deformed using both the SP-ChainMail algorithm and our algorithm. Even in this simple case, the

SP-ChainMail algorithm has an unpredicted behavior, leading to two possible outcomes, which in turn may result in

an undesired configuration. Our approach (below) correctly handles the heterogeneous materials due to the timestamp

system.

27

Figure 6: A 2D section of a leg (left) is compressed and deformed using a homogeneous material (middle) and a more

realistic distribution of heterogeneous materials (right). The propagation time is shown below each case using a heatmap,

ranging from dark blue at the source of the deformation, to a dark red at the last reached elements.

Figure 7: The same deformation is applied to a 2D section of a leg before and after applying a cut. The propagation

time is shown below each case using a heatmap, ranging from dark blue at the source of the deformation, to a dark red at

the last reached elements, showing that the topology modification is automatically taken into account by the timestamp

system.

Figure 8: Two simultaneous deformations are applied to both sides of an incision in a tissue sample. Our propagation

approach is able to handle and compute both deformations simultaneously.

28

Figure 9: The inside of a sheep heart model with 12.4 million elements (top-left) is explored and several deformations

are applied to an internal feature (top-right), which is correctly captured by the high resolution of our ChainMail model.

The constraints of the materials assigned to the sheep heart model, ranging from a 15% to a 35% variation from the initial

spacing, are specified using a material transfer function (bottom).

Figure 10: The same deformation is applied to a fine feature using our ChainMail approach (top row) and a mass-spring

model (bottom row). The topology of the feature is incorrectly captured by the mass-spring model, leading to an incorrect

transmission of the deformation from the right side of the tissue ring where the force is applied (blue dot) to the left wall

(highlighted by the black circle). In contrast, the high resolution of our method correctly captures the topology and avoids

that transmission.

29

Figure 11: A hand model with 7.1 million elements (left) is deformed by pulling from the skin on both sides of an applied

incision (right). The skin pulling propagates the deformation to the internal structures. The constraints of the materials

assigned to the hand model, ranging from a 0% to a 50% variation from the initial spacing, are defined through a material

transfer function (bottom).

30

No blocks

32x32x32

32x16x16

16x16x16

32x8x8

16x8x8

16x4x4

0

2,000

4,000

6,000

Block size

Ti
m

e
(m

s)

Our algorithm
SP-ChainMail

Figure 12: Performance comparison of our method and the SP-ChainMail algorithm using different block sizes for the

blocking method. The SP-ChainMail algorithm fails to optimize the usage of small block sizes, leading to a misuse of the

GPU resources. Our improved blocking scheme is able to efficiently manage the smaller block sizes, further improving

the overall performance.

31

Chapter 2. Parallel ChainMail simulation of heterogeneous medical models 81

82
2.3. Parallel deformation of heterogeneous ChainMail models: application to

interactive deformation of large medical volumes

Chapter 3

Simulation-based control of soft
robots

3.1 Real-time simulation of hydraulic components

for interactive control of soft robots

• A. Rodŕıguez, E. Coevoet and C. Duriez. “Real-time simulation of hydraulic
components for interactive control of soft robots”. IEEE International Con-
ference on Robotics and Automation (ICRA 2017).

– Status: Published [108]

– CORE Conference Ranking 2014: CORE B

– H index (SJR 2015): 105.

83

84
3.1. Real-time simulation of hydraulic components for interactive control of soft

robots

Real-time simulation of hydraulic components for interactive control of
soft robots

A. Rodrı́guez1 and E. Coevoet2 and C. Duriez2

Abstract— In this work we propose a new method for online
motion planning in the task-space for hydraulic actuated soft
robots. Our solution relies on the interactive resolution of
an inverse kinematics problem, that takes into account the
properties (mass, stiffness) of the deformable material used
to build the robot. An accurate modeling of the mechanical
behavior of hydraulic components is based on a novel GPU
parallel method for the real-time computation of fluid weight
distribution. The efficiency of the method is further increased
by a novel GPU parallel leveraging mechanism. Our complete
solution has been integrated within the open-source SOFA
framework. In our results, we validate our simulation with
a fabricated silicone cylinder and we demonstrate the usage of
our approach for direct control of hydraulic soft robots.

I. INTRODUCTION

The salient feature of soft robots is their compliant nature.
As consequence of their compliance, soft robots exhibit a
large number of passive degrees of freedom, leading to a
higher operational flexibility even for underactuated config-
urations, and an intrinsic robustness to uncertainty. Due to
these features, soft robots provide a real alternative to rigid
robots for different environments and tasks, mainly involving
safety conditions, or certain levels of uncertainty [1], [2].

In order to benefit from these features, advanced control
systems must be developed. Unlike their rigid counterparts,
the configurations and motions of soft robots are ruled by the
deformable mechanics of their underlying soft structure and
the properties of their base materials, thus a key component
in the control pipeline is a precise yet interactive modeling of
this compliant behavior. Additionally, a reliable simulation
framework also provides a platform to design and validate
prototypes prior to fabrication. Classic deformable solids
simulation allows to predict the pose of a robot for a
given state of its actuators. However, the inverse problem
arises when aiming for a direct control of soft robots: find
the necessary actuation to reach a desired robot pose. The
fundamental interactive control capabilities of point-to-point
movement or path tracking among others require a solution
to this inverse problem in real time [3].

Duriez [4] introduced a novel method for simultaneous
simulation and control of soft robots in an interactive manner
based on an inverse kinematics problem using the Finite
Element Method (FEM). This framework was further im-
proved by Largilliere et al. [5], efficiently solving the inverse
problem through a quadratic-programming (QP) algorithm

*This work was not supported by any organization
1University of Granada, Spain alejandrora@ugr.es
2INRIA, University of Lille 1, France

on the constraint space. The complete framework is inte-
grated within SOFA [6] and enables the design, simulation
and interactive control of soft robots piloted by cable actu-
ators controlled by servo-motors and/or pneumatic actuated
internal cavities. As evidenced by recent works, hydraulic
actuated soft robots exhibit a higher force output, and allow
a higher frequency of actuation change [7], increasing the
range of applicability of soft robots. Hydraulic actuation
has also been proven effective for medical environments [8]
among other fields [9].

In this work, we propose a real-time motion planning
generation scheme in task-space for hydraulic actuated soft
robots, allowing for both rapid prototyping and direct control
or hydraulic soft robots. The correct and efficient model-
ing of hydraulic components arises as a necessary piece
of this scheme, and requires a computationally demanding
estimation of the fluid weight distribution on the model
depending on the current configuration. We present a GPU
parallel method for efficient fluid weight distribution inside
dynamic cavities, along with a complete modeling of the
dynamic behavior of hydraulic components. Moreover, we
present a simple yet efficient leveraging mechanism for
the computation of irregular-parallel workloads, which is
applied to further increase the efficiency of the proposed
method. We have integrated our entire solution within the
Soft Robot framework of SOFA and we have validated our
weight distribution algorithm with a real soft model.

II. FEM-QP SOFT ROBOT CONTROL

We aim to develop a model for hydraulic components to
be integrated within the FEM-based soft robot control frame-
work proposed in [5]. In their work, cable and pneumatic
actuators are handled interactively, but the computational
complexity of estimating the fluid weight on the structure
of the robots prevented their use within the framework.

Let us first recall the principles of the framework, which
serves as base for our work. A soft robot is regarded as
a FEM model accounting for its structure and material
properties, a set of actuators and an arbitrary number of
control DOFs in the form of end effectors placed on the
structure. The configuration of the robot at a given time
is obtained by solving the static equilibrium between the
internal non-linear stress forces of the structure f(x), the
external and gravity loads fext and the contributions of each
actuator JTa λa, yielding

f(x) = −fext −
∑

a

(JTa λa), (1)

with JTa the direction of the effort applied by the actuator
on the FEM nodes and λa the contribution of the actuator.

We compute a linearization of the internal forces at each
time step i of the simulation

f(xi) ≈ f(xi−1) +K(xi−1)dx, (2)

where K(x) is the tangent stiffness matrix that depends
on the current position of the FEM nodes, and dx is the
difference between consecutive positions in time dx = xi −
xi−1.

To enable a direct control through motion planning, the
value of λa is unknown, and depends on the input desired
constraints δe for the end effectors. Thus, a three-step strat-
egy is followed.

Step 1 A configuration xfree of the model without actua-
tors influence is found by solving Eq. 1 with λa = 0 ∀a. For
the end effectors, also coupled to the model through JTe , a
constraint violation δfreee is found.

Step 2 The actuators contribution λa that minimizes the
violation is found by solving an inverse QP problem, effi-
ciently defined by projecting the mechanics into the smallest
possible constraint space

min.
λa

∥∥∥∥∥δe =
∑

a

(JeK
−1JTa λa) + δfreee

∥∥∥∥∥

2

(3)

s.t. A ≥ b

with A and b the constraint matrices on actuators, such as
limits on volume growth.

Step 3 The model configuration is corrected

x = xfree +
∑

a

(K−1JTa λa). (4)

Non-actuating constraints, such as cables with fixed length
or internal air chambers can also be introduced in the system,
with their corresponding λa set to fixed values.

Within this framework, hydraulic components add two
constraints JTp λp and JTwλw, corresponding to the pressure
term and the fluid weight term respectively. The pressure
term is equal to that of the pneumatic components, but the
fluid weight term is complex to obtain because it requires
an accurate computation of the fluid weight distribution on a
given configuration. We address this problem on Section III.

Moreover, both the pressure and the fluid weight terms
must be merged prior to performing the optimization routine.
Otherwise, they would be treated as independent constraints
and lead to an incorrect simulation. We address this issue in
Section IV.

III. FLUID WEIGHT DISTRIBUTION

The first step for a correct modeling of hydraulic cavity
components is an accurate computation of the added fluid
weight distribution on the cavity surface. Although this is an
easy task on analytical shapes, the typical piecewise FEM
models use unstructured triangle or quad meshes for their

Fig. 1. Our method discretizes the fluid volume inside the cavity using
a grid of regular columns covering the cavity geometry as shown on the
left. A 2D lateral view of a slab of the computed grid is shown on the
center. The parameters used to compute the volume of one column section
are shown on the right. Note that in the presence of non-convex cavities,
one column may generate more than one weight contribution.

geometrical description, and the exact computation of the
weight distribution in those cases become a highly complex
geometrical problem.

Instead, we address this as a mesh-on-grid discretization
problem. Two major advantages motivate this choice: we can
easily control the trade-off between accuracy and computa-
tional cost independently of the particular model by setting
the grid size, and more importantly, the problem becomes
very amenable to parallel computation, allowing us to obtain
very accurate approximations in real time, as we demonstrate
later in this work.

A schematic depiction of our approach is shown in Fig. 1.
Intuitively, we discretize the bounding box of the cavity into
regular fluid columns with fixed cross section area A = w ·d.
Then the problem is reduced to compute the height h of each
column section bounded by the cavity and distributing its
weight, easily computed per column as W = w · d · h · ρ · g,
with ρ the fluid density and g the gravity force. Of course, for
non-convex geometries a single column may produce several
column sections contributing to different parts of the cavity
(take for instance the 2D simplified case depicted in Fig. 1,
center) and thus our algorithm also addresses this casuistry,
as we explain below.

W.l.o.g., let us assume cavities defined by a closed triangu-
lar mesh. Our algorithm is composed by several consecutive
steps:

Step 1 The mesh is transformed to fit a discrete 2D grid
with arbitrary resolution. The grid is parallel to the XZ plane
with with its normal parallel to the gravity force in the Y
direction, and corresponds to the cross section of the grid of
3D columns.

Step 2 The mesh is partitioned in two groups: top triangles
and bottom triangles, attending to whether their normals
point upwards or downwards.

Step 3 The intersections between the top triangles and the
columns are computed. For each candidate column-triangle
pair, a barycentric test is performed to check whether the
column center intersects the triangle. The barycentric test can
be performed in 2D using the projected triangle on the grid
plane. In case of intersection, the barycentric coordinates are
used to compute the height where the intersection occurs. At
the end of this stage, a list of intersecting heights per column
is obtained.

Step 4 Similar to the previous step, the intersections
between the bottom triangles and the columns are computed.
The only difference is that for each intersection, not only the
height is stored, but also the triangle id and the barycentric
coordinates of the intersection point.

Step 5 Finally, per each column, the top-intersections and
the bot-intersections are sorted and matched to compute the
actual height of the different column sections. Then, the
weight force of each column section is distributed to the
nodes of its associated triangle, attending to the barycentric
coordinates of the intersection to perform the distribution.

Our algorithm is very close in nature to the LDI
method [10], which is used for similar purposes in the
computer graphics field and could likely be adapted to its use
for our purpose. Our method however is specifically designed
to our problem and thus avoids unnecessary rendering-related
steps present in the LDI method, but more importantly,
the LDI method relies on the fixed graphics pipeline while
ours is standalone, becoming thus more versatile and easily
adaptable to different platforms and languages.

A. Parallel leveraging

We have tested our algorithm running on CPU, but, as
we shown in our experiments, only small grid sizes can be
used under strong time restrictions, thus obtaining inaccurate
estimations. However, we can achieve much more accurate
results in the same time using a GPU computation. In fact,
all the stages of our algorithm are highly parallelizable, thus
we have implemented our algorithm using CUDA.

Steps 1, 2 and 5 are trivially computed in parallel by
launching one thread per mesh vertex, triangle and column
respectively.

Steps 3 and 4 on the other hand require a more complex
parallel leveraging. By computing in parallel the axis aligned
bounding box (AABB) of each triangle in the grid space we
easily discard many columns per triangle, greatly reducing
the candidate column-triangle pairs. The computation of each
column-triangle pair candidate is independent of each other
and theoretically they could run in parallel. However, the
presence of triangles of different sizes leads to an uneven
number of candidate columns per triangle, turning into an
irregular-parallel workload problem [11]. This is actually an
ubiquitous problem in a variety of disciplines, and different
approaches have been proposed attending to the specificities
of each context.

Our case has a special resemblance with a well known
issue in the computer graphics field, since a very similar
problem arises in the triangle rasterization stage, which is
central to the rendering pipeline. This stage was historically
performed by the fixed hardware implementation of the
GPUs, however, some recent software approaches aiming
to provide a higher flexibility have been presented. A very
easy approach consists on launching one thread per triangle
that computes all the candidates for that triangle [12], [13],
unfortunately, a very poor performance is observed for highly
uneven configurations. Other approaches provide complex
scheduling pipelines to dispatch pair candidates in a parallel

manner [14], [15]. Although these approaches provide a
stable behavior, their complex nature adds a scheduling
overhead that hurts performance, most evidenly when han-
dling very homogeneous cases, and also complicates their
implementation, although this is regarded as a minor issue.

We propose a new approach which is as simple as the
triangle-parallel approaches, but provides a fairly stable
behavior in all cases without this resulting in a heavy
computational overhead.

After computing the AABBs of the top or bottom triangles,
we compute the average number c of columns per AABB.
We then assign k = bαcc threads to each triangle (ensuring
k ≥ 1), and we perform a single gpu call of k · n parallel
threads, with n the number of triangles. The α parameter
allows to control the trade-off between parallel threads and
memory read operations as will become apparent later.
Through simple arithmetic using the threads ids and the
already computed triangle-specific AABBs, we efficiently
assign a subset of the candidates of each triangle to its
assigned threads as we show in Algorithm 1, thus avoiding
the construction of complex indirection structures required
by other methods.

Algorithm 1 Leveraging kernel
itri ← bThreadID/kc
triangle← trianglesArray[itri]
AABBSize ← triangle.AABBMax −
triangle.AABBMin
offset← triangle.AABBMin
icur ← ThreadID mod k
while icur < AABBSize.x ·AABBSize.y do

icol.x← offset.x+ icur mod AABBSize.x
icol.y ← offset.y + (icur/AABBSize.x)

mod AABBSize.y
Compute column-triangle pair candidate
icur ← icur + k

end while

This approach is very easy to implement with a neg-
ligible overload, yet it greatly homogenizes the workload
among the threads. Additionally, this scheme also suits well
the modern GPU programming paradigm since neighboring
threads access the same triangle information thus memory
read operations are efficiently performed, and each thread
computes several column-triangle candidates for the same
triangle thus this information only needs to be read once per
thread. In our experiments we found the best outcome for
α = 0.25 given an enough amount of triangles, i.e., in the
order of several thousands.

Fig. 2 shows the behavior of this approach in two very
simple cases with three even and three uneven triangles re-
spectively. In the first case the average number of candidates
per triangle is 21, thus k = 3 and 9 threads are launched.
In the second case, the average number of candidates per
triangle is 20.3, thus k = 5 and 15 threads are launched.
In both cases, all the threads are launched in a single GPU
call, addressing all the column-triangle candidates without

Fig. 2. Two simple cases with an even (top) and uneven (bottom) set of
triangles. After computing the triangles AABBs (left), the average number
of candidates per triangle is obtained and the number of threads to launch
per triangle is computed. All the threads are launched in a single GPU call,
which compute all the column-triangle candidates (right).

Fig. 3. Results of our weight distribution algorithm for different grid sizes
(from left to right, 302, 502, 2002 and 5002) applied on a spherical cavity
with 5120 triangles (top) and a bunny-shaped cavity with 90760 triangles
(bottom). The nodal weight distribution is shown using a heatmap ranging
from dark blue to dark red. Note that a distribution pattern appears due to
the meshing of both the sphere and the bunny.

the need of additional indirection structures. In the first case,
the workload on the threads is perfectly balanced. In the
second case, the thread workload remains uneven, but the
computational burden of each triangle is evenly split among
its assigned threads, homogenizing the average workload
with a negligible overload.

B. Performance and accuracy evaluation

We have tested our fluid weight distribution in order to
evaluate the performance of the algorithm and the accuracy
achieved. We use two models with different topological
complexity: a convex sphere model, created with 1cm radius
and 5120 triangles, and a non-convex bunny model of 2cm
height with 90760 triangles. We have applied our method
with different grid sizes to validate the volume estimation and
test its performance using both the CPU and the GPU imple-

TABLE I
VOLUME ESTIMATION OBTAINED AND TIME REQUIRED BY BOTH CPU

AND GPU IMPLEMENTATIONS OF OUR METHOD FOR TWO CAVITY

MODELS USING SEVERAL GRID SIZES.

Sphere Bunny
Grid
size

Volume
(cm3)

GPU
(ms)

CPU
(ms)

Volume
(cm3)

GPU
(ms)

CPU
(ms)

302 4.1835 0.29 0.63 1.1414 0.65 3.97
502 4.1828 0.31 0.93 1.6709 0.75 7.07
1002 4.1804 0.37 2.24 1.7154 0.84 9.57
2002 4.1799 0.57 7.63 1.7164 1.06 15.64
5002 4.1798 0.86 41.77 1.7165 1.27 54.16
10002 4.1798 2.65 160.75 1.7165 2.79 186.66
15002 4.1798 5.29 358.81 1.7165 4.90 394.95

mentations using an Intel Xeon W3550 system equipped with
a Nvidia GeForce GTX 960. The results are summarized in
Table I.

The theoretical volume of a sphere with r = 1cm is V =
4
3π = 4.1887cm3, however our mesh is not analytic and its
exact volume computed using the signed volume method [16]
is V = 4.1798cm3. Although the cavity volume estimation
is very good for all the grid sizes, the distribution is not well
approximated for low resolution grids, as seen in Fig. 3 (top),
however, for the 2002 grid both the volume estimation and
the distribution estimation are very precise, and for larger
grids the improvement is negligible. It is also worth noting
that the meshing of the cavity plays an important role during
the distribution process since larger triangles receive a higher
amount of fluid weight.

For the bunny model we also compute the exact volume
using the signed volume method, obtaining V = 1.7165cm3.
In this case, a very low grid resolution leads to a poor
volume estimation, but for the 1002 grid the cavity volume is
accurately approximated. The distribution estimation requires
higher grid resolutions as seen in Fig. 3 (bottom), mainly due
to the increased number of triangles of the mesh, reaching
a very precise estimation for the 5002 grid. Again, meshing
patterns appear during the distribution process.

Summing up, the method converges to the real solution
by increasing the grid size. Naturally, the computation time
also increases and the CPU version remains interactive only
for low resolution grid sizes, however, the GPU version
achieves very accurate estimations for both cases in less
than 2 milliseconds, enabling its use for real-time simulation
environments.

IV. UNIFIED HYDRAULIC CONSTRAINT

Hydraulic actuation applies two types of load on the de-
formable structure of the robot: pressure inside the cavity and
additional weight distribution created by the fluid (computed
thanks to the method presented above). Yet, in practice, these
two terms are coupled when one activates the actuator by
adding / removing the liquid. In the case of hydraulic com-
ponents, this equates to differentiating the pressure and fluid
weight terms w.r.t. the amount of contribution. Consequently,
both terms must be coupled in a single constraint defining
the behavior of the hydraulic component, and the function

governing this coupling has a highly non-linear nature. Our
goal is to keep the same formulation JTa λa (see equation
1) for the total contribution of hydraulic actuators. In the
following, we present how this term is obtained.

The derivative of pressure forces is easy to obtain since
it only depends on the geometry of the cavity walls. p =
F
A , thus we define JTp λp = pA. Therefore, for a given
configuration, we build JTp as (JTp)i =

∑
t,i∈t

Stnt

3 , with
nt the normal and St the area of a triangle incident on the
ith node. With this definition, JTp is homogeneous to a force
and λp represents the intensity of the pressure.

The derivative of the weight distribution with respect to
the volume change, on the other hand, is complex because it
depends on the cavity shape deformation. This deformation
depends on the equilibrium between the pressure forces
exerted from inside the cavity (which in turn depend on the
geometry of the cavity walls as explained above), and the
opposing stress forces exerted by the material surrounding
the cavity (which in turn depend on the material properties
and the current geometry configuration of the soft robot).

This is in fact a highly non-linear relation, but it can be
linearized around the current configuration, assuming small
weight variations. This assumption is valid since the soft-
robot control pipeline is recomputed every few milliseconds,
thus changes between iterations are indeed small. We also
validate this hypothesis experimentally in this work. We
define JTw = ∂W

∂v with W the fluid weight and v the cavity
volume. For a given configuration, we compute the weight
distribution per node wi as explained in Sec. III and set the
corresponding Jw entries with wi

vc
, with vc the current cavity

volume. λw represents then the cavity volume change.
Lastly, we need to merge both pressure and weight terms

because they are in fact coupled for hydraulic components
and otherwise they would be treated as independent con-
straints during the optimization routine. As we explained
earlier, K−1JTa λa = ∆x, thus K−1JTp λp gives the nodal
displacements due to the pressure term. These displacements
can be regarded as extrusion lengths for a given surface shape
with area a, extruded along the surface normal direction,
and would thus produce a volume change a · ∆x. Since
this surface information is already stored in Jp, we linearize
this relation as λw = JpK

−1JTp λp that couples both terms.
Therefore, we merge both terms into a single hydraulic
constraint λa with JTa = JTp + JTwJpK

−1JTp . Again, this
linearization remains accurate only for small changes from
a given configuration and must be updated every iteration.

V. RESULTS AND VALIDATION

We have integrated our solution within the SOFA soft
robot framework [5]. To validate our model, we fabricated an
empty silicone cylinder, we fill the cavity both with air and
water and inflate it with an extra 15 ml of content in each
case. We compare the obtained results with the simulated
version of the same setup, using a FEM model with 375
nodes and computing the fluid distribution inside the cavity
with a grid of 2002 cells. The final results are shown in
Fig. 4. Our model accurately reproduces the behavior of its

Fig. 4. Comparison of the fabricated silicon cylinder and the simulation
of the same setup. From top to bottom, filled with air in rest state, inflated
with 15 ml, filled with water in rest state and inflated with 15 ml.

Fig. 5. Comparison of a soft finger operated by an hydraulic actuator (left)
and a pneumatic actuator (right) for the same desired positions (yellow
sphere). The models exhibit very different ranges of actuation, but our
framework is able to reach the closest possible configuration in each case.

fabricated counterpart in every case, indicating that our fluid
weight distribution method achieves accurate and realistic
estimations despite being.

For the validation of our inverse problem modeling, we
perform a direct control of an actuated soft finger. To further
emphasize the differences between pneumatic and hydraulic
actuated soft robots, we compare both actuators on the soft
finger as shown in Fig 5. The user interactively inputs the
desired position of an end effector placed on the tip of the
finger and the inverse problem is solved using the constraints
built as explained in Section IV. As it is clearly depicted,
the range of possible configurations is very different in both
cases, and the models are accurately actuated to reach the
desired configuration, or reach the closest possible configu-
ration when the desired position is unreachable.

We also test a more complex example of a hanging soft

Fig. 6. Different configurations of a hydraulic actuated soft pendulum,
shown from the front (top row) and from below (bottom row). The motion
planning framework operates the actuators in real time to reach the desired
position (yellow sphere) which is controlled by the user.

pendulum operated by four hydraulic actuators, shown in
Fig 6, where the inflatable cavities can modify the weight
of the bottom part and the center of gravity. Again, the user
inputs the desired position of the end effector placed at the
bottom of the pendulum. The fluid distribution inside each
cavity is accurately computed with a grid of 2002 cells, and
the computation of the four cavities takes less than 2.1 ms.

The fluid weight is correctly considered during the motion
planning process, allowing the pendulum to extend and
contract along its vertical (Fig 6, first and second columns)
and bend towards any direction in the horizontal plane (Fig 6,
third to fifth columns) by inflating one or more of the
cavities.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented an online simulation and
motion planer for hydraulic actuated soft robots. The motion
planer is based on an inverse solver that has been integrated
within the SOFA framework. The main contributions are
a novel method for real-time computing of fluid weight
distribution and an accurate model for the dynamic behavior
of hydraulic actuated cavities in soft robots. Moreover, we
propose a novel GPU parallel leveraging algorithm for the
efficient computation of irregular-parallel workload prob-
lems, increasing the efficiency of our fluid weight distri-
bution approach. Our experiments and results show that
both the weight distribution algorithm and the dynamic
behavior model of the soft robots provide very accurate
estimations with interactive times, enabling the direct control
of hydraulic soft robots.

Our simulation matches the real behavior of a simple fab-
ricated specimen and, although we can successfully control
a simulated hydraulic soft robot, we would like to apply our
solution to control a fabricated soft robot as future work.
We also believe that a joint actuation of hydraulic and other
components may increase the capabilities of soft robots and
should be explored. Another interesting line for future work
is the inclusion of contact with the environment in the motion
planner, which could achieve an automatic avoidance of

contact with obstacles or even consider them to modify the
range of configurations of the robots. Moreover, we believe
that our parallel leveraging algorithm may be of use in other
contexts, such as software rasterization algorithms. We would
like to perform a comparison with other current leveraging
strategies and evaluate its performance and benefits.

ACKNOWLEDGEMENTS

This work is supported by the FPU 2012 program of the
University of Granada and by the project TIN2014-60956-R
of the Spanish Ministry of Economy and Competitiveness.

REFERENCES

[1] A. D. Marchese, R. K. Katzschmann, and D. Rus, “Whole arm
planning for a soft and highly compliant 2d robotic manipulator,”
in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on. IEEE, 2014, pp. 554–560.

[2] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, “Haptic
identification of objects using a modular soft robotic gripper,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 1698–1705.

[3] A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and
control of a soft and continuously deformable 2d robotic manipulation
system,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 2189–2196.

[4] C. Duriez, “Control of elastic soft robots based on real-time finite
element method,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013, pp. 3982–3987.

[5] F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt, and
C. Duriez, “Real-time control of soft-robots using asynchronous finite
element modeling,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015, pp. 2550–2555.

[6] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin,
“Sofa: A multi-model framework for interactive physical simulation,”
in Soft Tissue Biomechanical Modeling for Computer Assisted Surgery.
Springer, 2012, pp. 283–321.

[7] R. K. Katzschmann, A. D. Marchese, and D. Rus, “Hydraulic
autonomous soft robotic fish for 3d swimming,” in Experimental
Robotics. Springer, 2016, pp. 405–420.

[8] K. Ikuta, H. Ichikawa, and K. Suzuki, “Safety-active catheter with
multiple-segments driven by micro-hydraulic actuators,” in Medical
Image Computing and Computer-Assisted InterventionMICCAI 2002.
Springer, 2002, pp. 182–191.

[9] M. De Volder and D. Reynaerts, “Pneumatic and hydraulic microac-
tuators: a review,” Journal of Micromechanics and microengineering,
vol. 20, no. 4, p. 043001, 2010.

[10] B. Heidelberger, M. Teschner, and M. H. Gross, “Real-time volumetric
intersections of deforming objects.” in Proceedings of Vision, Model-
ing, Visualization (VMV), vol. 3, 2003, pp. 461–468.

[11] S. Tzeng, A. Patney, and J. D. Owens, “Task management for irregular-
parallel workloads on the gpu,” in Proceedings of the Conference on
High Performance Graphics. Eurographics Association, 2010, pp.
29–37.

[12] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “Freepipe: a pro-
grammable parallel rendering architecture for efficient multi-fragment
effects,” in Proceedings of the 2010 ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games. ACM, 2010, pp. 75–82.

[13] K. Fatahalian, E. Luong, S. Boulos, K. Akeley, W. R. Mark, and
P. Hanrahan, “Data-parallel rasterization of micropolygons with de-
focus and motion blur,” in Proceedings of the Conference on High
Performance Graphics 2009. ACM, 2009, pp. 59–68.

[14] C. Eisenacher and C. Loop, “Data-parallel micropolygon rasteriza-
tion,” Eurographics 2010 Short Papers, pp. 53–56, 2010.

[15] S. Laine and T. Karras, “High-performance software rasterization on
gpus,” in Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics. ACM, 2011, pp. 79–88.

[16] C. Zhang and T. Chen, “Efficient feature extraction for 2d/3d objects in
mesh representation,” in Image Processing, 2001. Proceedings. 2001
International Conference on, vol. 3. IEEE, 2001, pp. 935–938.

Chapter 3. Simulation-based control of soft robots 91

92
3.1. Real-time simulation of hydraulic components for interactive control of soft

robots

Chapter 4

Interactive medical visualization

4.1 A parallel resampling method for interactive

deformation of volumetric models

• A. Rodŕıguez, A. León Salas, D. Mart́ın Perandrés and M. A. Otaduy (2015).
“A parallel resampling method for interactive deformation of volumetric mod-
els”. Computers & Graphics, Volume 53, pp. 147-155.

– Status: Published [105]

– Impact factor (JCR 2015): 1.120

– Subject category: Computer Science, Software Engineering (Q2: 41/106).

93

94
4.1. A parallel resampling method for interactive deformation of volumetric

models

A parallel resampling method for interactive

deformation of volumetric models

Alejandro Rodŕıgueza, Alejandro Leóna, Domingo Mart́ına, Miguel A.
Otaduyb

aUniversity of Granada, Granada, Spain
bURJC, Madrid

Abstract

In this work, we propose a method to interactively deform high-resolution
volumetric datasets, such as those obtained through medical imaging. Inter-
active deformation enables the visualization of these datasets in full detail
using state-of-the-art volume rendering techniques as they are dynamically
modified. Our approach relies on resampling the original dataset to a target
regular grid, following a 3D rasterization technique. We employ an implicit
auxiliary mesh to execute resampling, which allows us to decouple mapping of
the deformation field to the volume from actual resampling. In this way, our
method is practically independent of the deformation method of choice, as
well as of the resolution of the deformation meshes. We show how our method
lends itself nicely to an efficient, massively parallel implementation on GPUs,
and we demonstrate its application on several high-resolution datasets and
deformation models.

Keywords:
Volume data, volume deformation, 3D rasterization

1. Introduction

The tissue distribution of biological forms is often captured and visual-
ized using volumetric representations, most notably in medical applications.

Email address: alejandrora@ugr.es (Alejandro Rodŕıguez)
1This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Preprint submitted to Computers & Graphics November 25, 2016

Figure 1: A cutting operation is applied to a sheep heart dataset consisting of 12.4 million
voxels, deformed using a Mass-Spring model. Our proposed resampling algorithm allows
us to deform and cut the model interactively. After each simulation step, our method
outputs a resampled regular grid of the same resolution as the input, which is visualized
with a standard Ray-casting algorithm, revealing internal features due to the open cut.
Resampling of this high-resolution dataset is executed in just 26 ms per frame.

Biological tissue is soft and deformable for the most part, hence applications
dealing with biological tissue require methods to deform such volumetric
representations. Some common examples in the medical field include im-
age registration, intra-operative navigation, or surgical planning. Nowadays
practical implementations of these applications are often limited to rigid data
or non-interactive solutions, due to the difficulty to deform volumetric rep-
resentations in an interactive manner.

Regardless of the particular deformation method of choice, one major
challenge for the development of applications using deformed volume data is
the visualization of dynamic volumetric representations. Traditionally, there
are mainly two strategies to address this problem: (i) Segment and mesh
the original volume data, and resort to visualization of surface meshes. This
strategy fails to capture the full detail in the original volume data, and it does
not allow interactive modification of the visualized isosurfaces as offered by
volume rendering techniques. (ii) Execute volume rendering using unstruc-
tured meshes. Despite achieving interactive framerates, as demonstrated by
Georgii et al. [1], the cost of unstructured volume rendering grows with mesh
resolution. In addition, as remarked by Correa et al. [2], advanced lighting
such as gradient-based lighting, which is an important feature in medical ap-
plications, becomes complex even in the case of static unstructured meshes.

In our work, we follow a different strategy. We propose to deform the orig-
inal volume data by dynamically resampling it onto a regular grid, and then

2

apply regular volume rendering. Of course, this strategy is not new to com-
puter graphics, as it constitutes the fundamental pipeline of raster graphics
with deferred shading. This strategy has already been applied to volume data
deformation, by other authors, e.g. Schulze et al. [3] and Gascón et al. [4], but
we achieve more than one order of magnitude speed-up compared to previous
methods. As a result, we can deform and render high-resolution volumetric
objects with high-resolution deformable meshes at interactive rates.

In our method, the input volumetric dataset is transformed into an im-
plicit sampling mesh of the same resolution. At runtime, two steps are per-
formed. First, after the deformation stage, the deformation field is applied
to the positions of the nodes of the sampling mesh. And second, the de-
formed sampling mesh is resampled onto the target regular grid. Both steps
are massively parallelized in our GPU implementation. With our two-step
method, we decouple the resampling from the evaluation of deformations,
and due to the implicit and regular nature of the sampling mesh, we elim-
inate the need for any type of indirection or auxiliary data structure, and
thus we maximize throughput, achieving better performance than previous
methods. Actual volume rendering is decoupled into yet a third step, which
is executed efficiently on the target regular grid.

The decoupling of deformation mapping, resampling, and volume render-
ing has several advantages over previous approaches. In contrast to methods
based on unstructured volume rendering, one major advantage is the possi-
bility to adopt advanced lighting models efficiently, such as gradient-based
volume lighting. Moreover, the size of the visualization viewport and the
resolution of the deformation model affect performance separately, and there
is no extra penalty in combining a large viewport with a high-resolution de-
formation model. When compared with all previous methods, one general
advantage of ours is that it can be coupled with any deformation technique
by means of a mapping of the underlying deformation structure to the im-
plicit sampling mesh. And yet a final but important advantage is that the
performance of the resampling algorithm is independent of the resolution
of the underlying deformation structure, thus allowing interactive visualiza-
tion when using deformation meshes several orders of magnitude denser than
previous methods. This feature becomes critical to support deformation algo-
rithms that support high-resolution meshes, such as GPU-parallel soft-tissue
simulation algorithms based on implicit FEM [5] or Mass-Spring [6], coarsen-
ing algorithms that govern a heterogeneous high-resolution tetrahedral mesh
through an efficient homogenized low-resolution simulation [7, 8, 9], or the

3

Figure 2: An overview of our method. In a preprocessing step, the sampling mesh is created
using the input dataset, and coupled with the underlying deformation structure, generating
static mapping information. After every deformation step, the resulting deformation is
mapped to the sampling mesh, which is then resampled to a regular grid.

ChainMail algorithm [3, 10], which can handle interactively models with mil-
lions of nodes.

In our examples we have tested diverse models such as the Finite Element
Method, the Mass-Spring Model and the ChainMail algorithm, and we also
include extensions to handle topological changes. We show that we can
successfully deform and visualize a volume with 12.4 million voxels, using a
mass-spring model with 2.4 million tetrahedra, at a rate of more than 20 fps
(Fig. 1).

The remainder of this paper is organized as follows: Section 2 reviews
related work. Our parallel resampling method is described in Section 3, in-
cluding the definition of the implicit sampling mesh, the mapping process and
the resampling algorithm, together with implementation details. Section 4
presents several results, coupling our pipeline with several deformation meth-
ods. Several experiments to analyze the properties of the method are also
presented. Finally, our conclusions are listed in Section 5.

2. Previous works

Existing techniques for visualizing deformable volumetric models can be
grouped into three main strategies.

A first group of approaches relies on the concept of spatial deformation.
Instead of applying a deformation to the model, an inverse deformation map
is applied to the rays that traverse the space containing the volume. Rezk-

4

Salama et al. [11] proposed a spatial deformation technique dividing the
space into a hierarchical set of deforming sub-cubes, thus defining a piecewise
approximated inverse deformation field. Westermann et al. [12] proposed a
set of local and global free-form space deformations, applying the inverse
deformations through tessellated slicing planes. H. Chen et al. [13] applied
Ray-casting to volumetric models deformed through a free-form deformation
(FFD) approach using an inverse ray deformation technique. M. Chen et
al. [14] introduced the concept of Spatial Transfer Functions as a tool to
define FFD operations. Correa et al. [15] presented a set of FFD spatial
operators enforcing an alignment with the features present in the models
to generate medical illustrations. These spatial deformation schemes enable
interactive frame rates, but at the price of low-resolution, non-physically
based deformation.

A second group of approaches deforms an unstructured volumetric mesh,
and then executes volume rendering on this unstructured mesh. Classic and
current unstructured volume rendering techniques aim for an accurate visual-
ization of non-regular volumetric models that can be deformed over time (see
the works of Miranda et al. [16] and Okuyan et at. [17] for recent GPU-based
unstructured volume rendering techniques). However, a direct application
to physically deformed medical volumes impedes interactive frame rates un-
der high-resolution deformation structures, since medical models may con-
tain several orders of magnitude more elements than those handled by these
techniques interactively. Inheriting many of the ideas of these approaches,
Georgii et al. [1] proposed a system to perform unstructured volume ren-
dering of tetrahedral meshes deformed by physical simulation schemes using
the GPU rendering pipeline, also allowing the use of 3D texture mapping
to increase the detail inside a tetrahedron. While the method achieves in-
teractive framerates for relatively large models (i.e., 100 ms per frame for
a tetrahedral mesh of 190,000 elements using a 512x512 viewport), its cost
grows bilinearly with mesh resolution and viewport size. Nakao et al. [18]
proposed the use of a dynamically refined proxy mesh to adapt the mesh
complexity to the deformations applied to the model. This scheme handles
large volumes and allows topological changes in the model but, as the authors
point out, the performance of the method depends on the number of nodes
of the deformable model, and can only support a few hundred interactively.

A third group of approaches, motivated by the superior performance of
direct volume rendering (DVR) techniques over the unstructured volume
rendering techniques, as well as the more advanced shading and illumina-

5

tion techniques available under DVR, performs a resampling of the deformed
volume onto a regular grid which is later fed as input to a standard DVR
pipeline. Schulze et al. [3] proposed a resampling algorithm based on a near-
est neighbor search to relocate and interpolate the deformed voxels. However,
the algorithm is designed to perform resampling only on small parts of the
volume, and performance degrades badly if the deformed volume is large. In
addition, the resampling process is highly dependent on the ChainMail defor-
mation technique. Gascón et al. [4] proposed a GPU-based tetrahedral mesh
rasterization algorithm with 3D texture mapping. After each simulation step,
the deformed tetrahedra are rasterized onto a regular grid, and target vox-
els are mapped to the original volume for a texture lookup. The parallel
implementation of the rasterization process achieves interactive frame rates
for high-resolution volumes, but performance degrades under high-resolution
meshes. In addition, the method only supports deformation techniques based
on tetrahedral meshes.

Our method also falls in this group, as it performs a parallel resampling of
the original volume data set onto a regular grid. However, thanks to the use
of an intermediate implicit sampling mesh that decouples the computation
of the deformation from the rasterization, we avoid costly indirections during
the actual rasterization, and the performance is independent of the resolution
of the underlying deformation structure.

3. Volume resampling pipeline

The key to the efficiency of our volume resampling method is the use of
an implicit sampling mesh that effectively decouples the data structure of
the particular deformation model of choice from the actual resampling of the
volume. Fig. 2 outlines the full resampling pipeline.

In a preprocessing step, the sampling mesh is generated from the input
dataset and it is coupled with the deformation method. At runtime, two steps
are performed after each deformation stage on a massively parallel manner
on the GPU: the mapping of the deformation to the sampling mesh, and the
resampling of the deformed sampling mesh.

This section starts with a description of the implicit sampling mesh, and
continues with descriptions of the deformation mapping and the actual re-
sampling.

6

Figure 3: A 5T tetrahedral decomposition generates five adjoining tetrahedra covering the
same volume as the original hexahedron.

3.1. Implicit sampling mesh

Given a regular grid as input dataset, we define a regular mesh of the same
resolution that carries in its vertices the data associated to grid points. This
regular mesh retains absolutely all the information present in the original
dataset. When the mesh is deformed, a continuous field can be reconstructed
on the entire volume occupied by the mesh through interpolation of the
original data values inside each mesh element.

Specifically, given an input dataset stored as a regular grid of l ×m× n
voxels, we create an array of l ×m × n vertices, each of them associated to
one voxel. Each vertex is assigned the data value of its corresponding voxel,
and is placed at a position in space given by its indices and the spacing of
the model in each dimension.

Given the initial layout of the vertices, every eight adjacent vertices define
a hexahedron. We implicitly decompose each hexahedron into five adjoining
tetrahedra, following a 5T decomposition, as shown in Fig. 3.

Each hexahedron can be decomposed into five adjoining tetrahedra (5T
decomposition) partitioning the entire volume of the hexahedron as shown
in Fig. 3. We transform the hexahedral mesh into an adjoining tetrahedral
mesh by applying mirrored 5T decompositions to adjacent hexahedra [19],
using the shared face as a mirror plane.

The proposed decomposition scheme produces a mesh that is continuous
and complete. These properties guarantee that, as long as the input defor-
mation is self-intersection free, every point inside the mesh is bounded always
by one and only one tetrahedron.

7

Thanks to the regularity of the mesh, we can infer the tetrahedra incident
on each vertex simply from its indices. As a result, the sampling mesh
is only implicitly defined, without the need to explicitly build it or store
it. Therefore, the implicit sampling mesh does not add any overhead to the
storage of the original dataset aside from the vertex positions, and it is visited
on-the-fly during the resampling step.

We have considered other options for the definition of the implicit sam-
pling mesh, in particular the hexahedral mesh defined inherently by the grid.
However, we have opted for our tetrahedral mesh because inclusion tests
and interpolation functions are simpler (non-planar faces are avoided), hence
more efficient at run-time. Despite having more elements than the hexa-
hedral mesh, the implicit definition of our tetrahedral mesh avoids storage
penalties.

3.2. Deformation mapping

The sampling mesh acts as an intermediate representation between each
particular deformation method and the resampling process. The deformation
method produces a deformation field that can be evaluated at any location
in space. In order to carry out this evaluation efficiently, we set a static
mapping between the deformation method and the sampling mesh.

In a preprocessing step, for each vertex of the sampling mesh, we store
static mapping information, i.e., appropriate pointers to the elements of the
deformation method, as well as static weights or coefficients needed for eval-
uating the deformation field. The particular pointers, weights and/or coef-
ficients stored per vertex depend on the particular deformation method of
choice.

At runtime, once the deformation model is updated, the mapping process
is executed to define the updated positions of the sampling mesh vertices,
according to the new deformation field. This mapping is executed on a mas-
sively parallel manner on the GPU, and the actual functions to be evaluated
depend again on the particular deformation method of choice.

In Section 4 we show examples with different deformation methods.

3.3. Volumetric resampling

At runtime, once the deformation is mapped onto the vertices of the
sampling mesh, we execute the resampling of the original dataset onto a
target regular grid. This process is executed in parallel for all the tetrahedra
of the sampling mesh, and each tetrahedron contains all the information

8

Figure 4: Steps of the resampling process on a 2D example. a) The AABB of the triangle
is computed. b) An Inclusion test is performed for each voxel in the AABB, using the
barycentric coordinates of its center. c) Output data values are assigned to the voxels
lying inside the triangle through barycentric interpolation.

needed in the process, i.e., the target positions of its four vertices and the
original data values to be interpolated.

For each tetrahedron of the sampling mesh, we perform the following
process. First, we select candidate target voxels by computing an axis-aligned
bounding box (AABB) of the vertices of the tetrahedron. Then, we traverse
all the candidate voxels, and compute their barycentric coordinates. For
voxels that lie inside the tetrahedron, we compute the output value through
barycentric interpolation of the data values stored in the four vertices of the
tetrahedron. A simplified 2D version of the resampling process is shown in
Fig. 4.

3.3.1. GPU implementation

This algorithm is well suited for massive GPU parallelization. We have
implemented it as a single GPU kernel that runs in parallel on the hexa-
hedral decomposition of the sampling mesh, thus each thread visits the five
tetrahedra defined implicitly on each hexahedron.

A high-level pseudo-code of the resampling kernel is outlined in Code 1.
Each thread loads the eight vertices of a hexahedron (lines 7-14), labeled as
indicated in Fig. 3. Then, to ensure that the complete mesh remains adjoin-
ing, the vertices are reordered as necessary, thus the labels of the vertices
are exchanged (lines 15-23) depending on the parity of the indices of the first
vertex (vertex 1 in Fig. 3). Note that this operation is handled at runtime,

9

1 kernel resample(tex3D outGrid)
2 int x,y,z;
3 x = getThreadIndexX();
4 y = getThreadIndexY();
5 z = getThreadIndexZ();
6 vertex v1, v2, v3, v4, v5, v6, v7, v8;
7 v1 = getVertex(x, y, z);
8 v2 = getVertex(x+1, y, z);
9 v3 = getVertex(x, y, z+1);

10 v4 = getVertex(x+1, y, z+1);
11 v5 = getVertex(x, y+1, z);
12 v6 = getVertex(x+1, y+1, z);
13 v7 = getVertex(x, y+1, z+1);
14 v8 = getVertex(x+1 ,y+1, z+1);
15 IF (x % 2 == 1)
16 swap(v1, v2);swap(v3, v4);swap(v5, v6);swap(v7, v8);
17 ENDIF
18 IF (y % 2 == 1)
19 swap(v1, v5);swap(v2, v6);swap(v3, v7);swap(v4, v8);
20 ENDIF
21 IF (z % 2 == 1)
22 swap(v1, v3);swap(v2, v4);swap(v5, v7);swap(v6, v8);
23 ENDIF
24 SampleTetrahedron (v1, v3, v4, v7, outGrid);
25 SampleTetrahedron (v7, v8, v4, v6, outGrid);
26 SampleTetrahedron (v4, v2, v1, v6, outGrid);
27 SampleTetrahedron (v1, v5, v7, v6, outGrid);
28 SampleTetrahedron (v7, v4, v6, v1, outGrid);
29 END
30

31 SampleTetrahedron (vertex v1, v2, v3, v4, Tex3D outGrid)
32 aabb boundingBox = outGrid.computeAABB(v1, v2, v3, v4);
33 FOREACH (voxel IN boundingBox)
34 float4 baryCoords = computeBaryCoords(voxel.center, v1, v2, v3, v4);
35 IF (centerLiesInsideTetrahedron(baryCoords))
36 char newValue = interpolateValue(baryCoords, v1, v2, v3, v4);
37 setValue(voxel, dataValue);
38 ENDIF
39 ENDFOREACH
40 END

Code 1: Pseudo-code of the resampling GPU kernel. Each thread handles one hexahedron
of the sampling mesh, the eight vertices of the hexahedron are loaded. After that, the
corresponding tetrahedra are deduced on-the-fly and sampled onto the output grid.10

without ever storing the tetrahedral mesh explicitly. Lastly, each tetrahedron
is actually sampled on the target grid (lines 24-28) as explained earlier.

Thanks to the regular and structured nature of our sampling mesh, con-
secutive threads access consecutive array positions and thus we achieve co-
alesced global memory read operations (lines 7-14). This coalesced access
scheme is achieved independently of the current configuration of the mesh
since it depends on the GPU thread ids alone. For this same reason, the
access to vertex-based data (such as deformed positions and volume data) is
easily optimized using shared memory since neighboring threads belonging
to the same thread warp access neighboring vertices. Moreover, the implicit
definition of the mesh eliminates the need for any indirection scheme for the
topology definition, saving both memory requirements and global and shared
memory accesses.

4. Results and discussion

We have tested our volume deformation method with several different
deformation models. In the following subsections we discuss implementation
details for each deformation model, along with performance data. We refer
the reader to the video provided as additional material for more results. We
also present the results of several tests performed in order to analyze the
properties and limitations of our method.

We have implemented our algorithm using OpenCL 1.2, running on an
Intel Core i5-3570 machine with 8 GB RAM, equipped with an AMD Radeon
R9 270X with 2 GB of video memory GDDR5.

4.1. ChainMail deformation

A parallel version of the ChainMail algorithm, similar to the one proposed
by Rößler [20] has been implemented. The ChainMail algorithm, introduced
by Gibson [21], applies elastic and plastic deformations to the model at the
same resolution of the input dataset by defining geometric constraints be-
tween neighbor elements of the model. Heterogeneous deformations can be
achieved by defining different restrictions to the elements, as explained in [22].

Since the ChainMail algorithm works at the resolution of the input dataset,
in this case the vertices of the sampling mesh are co-located with the Chain-
Mail elements and the mapping is straightforward.

We have integrated the possibility to execute simple topological changes
on the ChainMail model by implementing cutting and carving operations,

11

Figure 5: A foot dataset consisting of 16.7 million voxels is deformed using a corota-
tional finite element method using a mesh of 16,000 tetrahedra. Our resampling pipeline
generates a resampled regular grid in 39 ms, which is then visualized with a standard
Ray-casting algorithm.

following the approach in [23]. To apply the topological changes to the vol-
ume dataset for visualization purposes, we obtain acceptable results simply
by deleting tetrahedra that are cut or carved, thanks to the high resolution
of the implicit sampling mesh. We add a bitfield char value to each hexa-
hedron to flag individual tetrahedra as active or inactive, and we check this
bitfield as part of the resampling kernel in Code 1. When a new cutting/-
carving operation is applied to the model, we perform an intersection test
with the cut surface (or carving volume) for each tetrahedron, and flag new
inactive tetrahedra accordingly. With simple cut surfaces or carving volumes,
a brute-force GPU parallelization of per-tetrahedron tests turned out to be
fast enough. We refer the reader to the survey by Wu et al. [24] for more
information on advanced cutting methods.

Fig. 6 shows example applications of our method on two medical datasets.
The knee model with 13.2 million voxels is deformed at 35 ms per frame. 11
ms are devoted to ChainMail deformation, 0.5 ms to map the deformation to
the sampling mesh, and 23.5 ms to resample the volume. Cutting operations
are performed in less than 21 ms, and they affect performance only at frames
when the cut is actually executed, not in subsequent frames. The head model
with 6.6 million voxels is deformed at 16 ms per frame. Carving operations
are performed in less than 8 ms, and they also affect performance only while
carving is executed.

12

Figure 6: Interactive deformations of medical datasets using the ChainMail model.Top:
A cutting operation is applied to a knee model consisting of 13.2 million voxels, followed
by a deformation to visualize internal structures. Our pipeline resamples the volume
in 24 ms. Bottom: A carving operation is applied to a head model consisting of 6.6
million voxels. Our pipeline resamples the volume in 11 ms. The output regular grid
can be visualized with different direct volume rendering techniques, such as a standard
Ray-casting volume rendering technique (top, bottom-left and bottom-center) or a Ray-
casting-based isosurface extraction algorithm (bottom-right).

13

Table 1: Evaluation of the cost of the two steps of our algorithm (deformation mapping
and resampling) for different deformation methods and deformation mesh resolutions. The
cost of ray-casting the resampled model for a 700 × 700 viewport with 500 samples per
ray is also shown. Finally, the size of the sampling mesh and its required GPU memory
are also shown.
Deformation
algorithm

Deformation
nodes

Deformation
mapping

Parallel
resampling

Ray-casting
Sampling mesh
size (tetrahedra)

Sampling
mesh memory

ChainMail 13,200,705 0.4 ms 23.3 ms 8.2 ms 65,153,280 188.84 MB
Mass-Spring 2,000 5.7 ms 24.2 ms 7.5 ms 65,153,280 390.27 MB
Mass-Spring 512,000 7.4 ms 23.7 ms 8.3 ms 65,153,280 390.27 MB
FEM 125 5.9 ms 24.1 ms 7.3 ms 65,153,280 390.27 MB
FEM 3,200 5.9 ms 23.9 ms 7.2 ms 65,153,280 390.27 MB

4.2. Mass-Spring deformation

We have also tested our algorithm together with a dynamic simulation
based on the mass-spring model, using tetrahedral meshes and explicit in-
tegration, parallelized on the GPU as proposed by Georgii et al. [25]. To
implement the mapping from the mass-spring model to the implicit sampling
mesh, as a preprocessing step we identify for each implicit node the mass-
spring tetrahedron that contains it as well as its barycentric coordinates in
the tetrahedron. At runtime we simply perform a barycentric combination
of mass-spring node positions, which is trivially parallelized on the GPU.

We have also integrated simple cutting operations on the mass-spring
model, separating adjacent tetrahedra by their shared face. To apply the
cutting operations on the volume dataset, we follow the same approach as for
the ChainMail model described above, using a bitfield of active tetrahedra.

Fig. 1 shows an example of a heart simulated with the mass-spring model
that is deformed, cut, and resampled using our approach. With a volume
dataset of 12.4 million voxels and a mass-spring model of 2.5 million tetra-
hedra, full volume deformation takes only 45.7 ms per frame. Dynamic de-
formations using explicit integration take 19 ms, deformation mapping takes
5.3 ms, and actual resampling takes 21.4 ms. Cuts applied to the model are
computed in less than 50 ms.

4.3. FEM deformation

Finally, we have tested our algorithm with a corotational finite element
method (FEM) [26], using a quasi-static solver with tetrahedral elements.

The deformation field is mapped to the sampling mesh using the exact
same approach as for the mass-spring model described above. Fig. 5. shows
an interactive deformation of a foot.

14

4.4. Performance analysis

We have carried out several tests to analyze the performance and scal-
ability of our algorithm. The factors that we analyze are: the deformation
method and its resolution, the resolution of the input volume dataset, the
application of large deformations, and the size of the viewport. We also
analyze preprocessing and memory costs.

4.4.1. Deformation methods and their resolution

We have compared performance on the same input volume dataset for the
three deformation methods listed earlier in this section. We have used the
knee MRI dataset shown on the top row of Fig. 6, with a resolution of 189×
305×229 = 13, 200, 705 voxels (leading to a sampling mesh of approximately
65 million tetrahedra). We have tested the ChainMail model at the same
resolution as the volume, and the Mass-Spring and FEM models on two
different resolutions each. Table 1 reports the resolutions of the deformation
models, the time spent on mapping the deformation to the sampling mesh,
and the time spent on actual resampling. Timings were averaged over several
runs of the algorithm.

As the results indicate, the cost of deformation mapping is notably lower
than the cost of resampling. Furthermore, the cost of resampling is prac-
tically independent of the deformation model and its underlying resolution.
This result was expected, as our sampling mesh succeeds to decouple defor-
mation mapping from resampling. The cost of deformation mapping is also
fairly insensitive to the resolution of the deformation mesh.

With the ChainMail model, deformation mapping is negligible. With
the Mass-Spring and FEM models it grows slightly with the resolution of
the deformation model, but even with a Mass-Spring model with over half
a million nodes the cost remains low. It is important to note that we used
much coarser meshes with the quasi-static FEM solver running on the CPU
because with high-resolution meshes the actual deformation solver becomes
the bottleneck. This was not the case with our Mass-Spring solver because
of explicit time integration.

For the case of tetrahedral deformation meshes (either with the Mass-
Spring or FEM models), we also performed a more extensive scalability anal-
ysis as a function of mesh resolution. And we compared the results of our
algorithm to the results of the rasterization algorithm by Gascón et al. [4].
For this purpose, we used the foot dataset shown in Fig. 5. Fig. 7 shows scal-
ability plots with our method and with the method of Gascón et al. Ours is

15

1K 2K 4K 8K 16K
32K

64K
128K

0

100

200

300

400

500

Deformation mesh size (in tetrahedra)

T
im

e
(m

s)

Our method
Gascón et al.

Figure 7: Scalability comparison of our method and the one by Gascón et al. [4] w.r.t. the
resolution of the deformation mesh.

Table 2: Performance results of the large deformation test shown in Fig. 9. The table
show resampling times for the five proposed scenarios, samples per tetrahedron (average,
minimum, and maximum), resampling throughput measured as samples per millisecond,
grid size, and required memory.

Deformation
Resampling
time

Average samples per
tetrahedron (min, max)

Samples per
millisecond

Output
grid size

Output grid
memory

Undeformed 14.6 ms 1.07 (1, 3) 2,670,286 256× 256× 113 14.2 MB
Local deformation 14.8 ms 1.08 (1, 12) 2,667,913 256× 256× 113 14.2 MB
Rotated 23.6 ms 1.83 (2, 6) 2,821,122 360× 372× 216 55.2 MB
Spatially varying scaling 42.7 ms 3.25 (1, 8) 2,769,767 384× 384× 170 47.8 MB
Scaling 1.5x 51.2 ms 4.21 (3, 5) 2,997,839 384× 384× 170 47.8 MB

fairly independent of mesh resolution, while theirs is largely penalized under
high-resolution meshes. The reason is that their algorithm uses indirection
mechanisms that depend on the deformation mesh during resampling. Ours,
instead, takes advantage of the implicit sampling mesh to decouple deforma-
tion mapping and resampling, avoiding costly indirections.

4.4.2. Volume resolution

In order to study the scalability of our resampling algorithm w.r.t. the
resolution of the input volume dataset, we have measured the resampling
time for several datasets. For this purpose, we have generated synthetically
homogeneous data cubes of varying size. We have tested the three defor-
mation methods on each dataset, using a mesh with 512,000 nodes for the
Mass-Spring model and a mesh with 3,200 nodes for the FEM simulation.

16

1M 5M 10M
15M

20M
25M

30M

0

20

40

60

Dataset size (voxels)

T
im

e
(m

s)

ChainMail
Mass-Spring

FEM

Figure 8: Scalability of our resampling pipeline w.r.t. the size of the input volume dataset.
The three deformation methods have been applied to each tested dataset.

As shown in Fig. 8, our resampling pipeline (including times of both
deformation mapping and resampling) exhibits a linear growth with respect
to the size of the input dataset for the three tested deformation methods.
Notice that when coupled with the ChainMail algorithm, the growth rate is
slightly lower due to the simpler mapping scheme.

4.4.3. Performance under large deformations

We have conducted another experiment to analyze the behavior of our
resampling algorithm when large deformations are applied to the model. For
this purpose, we have used a head dataset consisting of 256×256×113 voxels
(Fig. 9.a)), and we have analyzed different deformed scenarios with respect
to the undeformed configuration. The first scenario comprises a localized
load on the nose (Fig. 9.b). The second scenario consists of a rotation of 45
degrees on each axis to maximize the misalignment of the sampling grid and
the output grid (Fig. 9.c), increasing the size of the axis-aligned bounding
box of the dataset by a factor of 3.9. The third scenario consists of a spatially
varying scaled model, using a scaling factor going from 1.0 at the bottom to
1.5 at the top of the head (Fig. 9.d). The last scenario consists of a uniform
scaling of the model by a factor of 1.5 (Fig. 9.e). In the last two cases, the
volume of the axis-aligned bounding box of the dataset grows by a factor of
3.375.

Table 2 analyzes the cost of resampling for this experiment. Note that
the amount of deformation affects only the cost of resampling, and the costs
of deformation mapping and volume rendering are equal in all five cases. The

17

Figure 9: a) A head dataset consisting of 7.4 million voxels undergoes different large
deformations. The model is b) deformed by a localized load on the nose, c) rotated 45
degrees on each axis, d) deformed using spatially varying scaling, and e) deformed using
uniform scaling with a factor of 1.5.

localized load produces the highest peak in maximum samples per element
for the elements affected but, due to its local scope, the performance of
the algorithm is barely affected. The rotated configuration maximizes the
misalignment of the sampling and the output grids, increasing the samples
tested per element, and the resampling time grows by a factor of 1.61.

As expected, for the uniform scaling, the cost grows roughly linearly with
the output volume. Both under uniform and spatially varying scaling, the
size of the dataset grows from 7.4 million to 25.1 million voxels, but under
spatially varying scaling the deformed model does not cover the entire grid.
For this reason, it yields a slightly lower resampling cost. It is particularly
interesting to analyze the throughput of the resampling algorithm, measured
in terms of the grid samples handled per millisecond, and the uniform scaling
case yields a higher throughput. The reason is that, under spatially varying
scaling, the deformed tetrahedra do not have equal volumes. These size
differences, together with the misalignment of the sampling and the output
grids produced by the inhomogeneous scaling, lead to imbalanced workloads
for the GPU threads, reducing the degree of parallelism. Notice how, for
this example, the number of samples per tetrahedron may vary by a factor
of 8. We can conclude that the performance of our method may become
suboptimal under an extreme imbalance in the sizes of deformed tetrahedra,
due to reduced parallelism.

18

4.4.4. Viewport size

Thanks to the decoupling of the resampling and the actual visualization,
in our algorithm, the size of the viewport affects only the performance of
visualization, not the resampling step. This is different from the behavior
of unstructured volume rendering methods, where the size of the viewport
affects the cost of all major steps, as analyzed by Okuyan et al. [17]. In
addition, unstructured volume rendering methods pay a performance penalty
when they use both high-resolution meshes and large viewports. This is not
the case with our algorithm, because mesh resolution and viewport size affect
the cost of disjoint steps.

In most of our experiments, we have used a viewport of 700× 700 pixels,
with 500 samples per ray. Under this resolution, the cost of ray casting was
of 7.4 ms per frame on average, and went up to 24.1 ms per frame on average
with the addition of on-the-fly gradient-based lighting. With a viewport of
1920 × 1080 pixels, the average cost per frame of ray casting was 40.3 ms,
and with gradient-based lighting it rose to 107.7 ms. All the images in the
paper were generated using gradient-based lighting.

4.4.5. Preprocessing

Although less relevant than the runtime cost, the preprocessing cost of our
method is low. It grows linearly with both the size of the volume dataset and
the resolution of the deformation method. In the most demanding scenario
we have tested, a volume with 30 million voxels and a Mass-Spring mesh
with 512,000 nodes, the preprocessing step took less than 15 seconds.

4.4.6. Memory

Last, our method is limited by GPU memory, as memory requirements
grow linearly with the size of the dataset. In single precision, each voxel
requires a total of up to 31 bytes: 2 to store its data value, 12 for its de-
formed position, 16 for indices and barycentric weights of deformation nodes
to implement the deformation mapping, and 1 to flag topological changes.
All in all, our algorithm requires 29.5 MB of memory per million voxels in
the original dataset. For the ChainMail algorithm, the memory requirements
are lower, as shown in Table 1, because there is no need to store deformation
mapping information.

The GPU memory required by the output regular grid is comparatively
lower, with only 2 bytes per voxel in our examples. This amounts to roughly
1.9 MB per million voxels.

19

If the memory limit is met and a higher visual detail is desired, a higher
resolution volumetric model could be mapped to the sampling mesh by ap-
plying 3D texturing to its tetrahedra, as in [4], instead of using direct inter-
polation of the data values stored at their vertices.

5. Conclusions and future work

We have presented an algorithm to interactively resample deformable vol-
umetric models onto a regular grid, which can be fed as input to standard
direct volume rendering techniques. Our algorithm relies on an implicit sam-
pling mesh, making the resampling process independent of the underlying
deformation method.

This independence has been demonstrated in our experiments, and it
grants two major advantages over previous approaches: First, a great variety
of deformation methods can be coupled with our algorithm by means of a
deformation mapping scheme. We have demonstrated the coupling with three
deformation methods in this paper. Second, the cost of the resampling step
is independent of the deformation method and its resolution, thus allowing
the interactive visualization of datasets deformed using dense meshes.

All the stages of our implementation run in parallel using the GPU, and
the execution time scales linearly with respect to the size of the input volume
dataset. However, the amount of required dedicated memory also scales
linearly with respect to the size of the dataset, hence for very large datasets
it is possible to reach the memory limits of commodity GPUs.

Our algorithm admits several lines of future work to further enhance its
performance and accuracy. They include the use of our regular sampling
mesh at medium-high resolution combined with 3D texture mapping, adap-
tive resampling only in regions where deformation exceeds a threshold, more
accurate handling of topological changes, or integration with advanced illu-
mination techniques.

References

[1] Georgii J, Westermann R. A generic and scalable pipeline for gpu tetra-
hedral grid rendering. Visualization and Computer Graphics, IEEE
Transactions on 2006;12(5):1345–52.

20

[2] Correa CD, Hero R, Ma KL. A comparison of gradient estimation meth-
ods for volume rendering on unstructured meshes. Visualization and
Computer Graphics, IEEE Transactions on 2011;17(3):305–19.

[3] Schulze F, Bühler K, Hadwiger M. Interactive deformation and visual-
ization of large volume datasets. In: GRAPP (AS/IE). Citeseer; 2007,
p. 39–46.

[4] Gascon J, Espadero JM, Perez AG, Torres R, Otaduy MA. Fast defor-
mation of volume data using tetrahedral mesh rasterization. In: Pro-
ceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM; 2013, p. 181–5.

[5] Allard J, Courtecuisse H, Faure F. Implicit fem solver on gpu for in-
teractive deformation simulation. GPU Computing Gems Jade Edition
2011;:281–94.

[6] Etheredge C. A parallel mass-spring model for soft tissue simulation
with haptic rendering in cuda. In: 15th Twente Student Conference.
2011,.

[7] Kharevych L, Mullen P, Owhadi H, Desbrun M. Numerical coarsening
of inhomogeneous elastic materials. ACM Transactions on Graphics
(TOG) 2009;28(3):51.

[8] Torres R, Espadero JM, Calvo FA, Otaduy MA. Interactive deformation
of heterogeneous volume data. In: Biomedical Simulation. Springer;
2014, p. 131–40.

[9] Nesme M, Kry PG, Jeřábková L, Faure F. Preserving topology and elas-
ticity for embedded deformable models. ACM Transactions on Graphics
(TOG) 2009;28(3):52.

[10] Fortmeier D, Mastmeyer A, Handels H. Image-based palpation simu-
lation with soft tissue deformations using chainmail on the gpu. In:
Bildverarbeitung für die Medizin 2013. Springer; 2013, p. 140–5.

[11] Rezk-Salama C, Scheuering M, Soza G, Greiner G. Fast volumet-
ric deformation on general purpose hardware. In: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware.
ACM; 2001, p. 17–24.

21

[12] Westermann R, Rezk-Salama C. Real-time volume deformations. In:
Computer Graphics Forum; vol. 20. Wiley Online Library; 2001, p. 443–
51.

[13] Chen H, Hesser J, Männer R. Ray casting free-form deformed-
volume objects. The Journal of Visualization and Computer Animation
2003;14(2):61–72.

[14] Chen M, Silver D, Winter AS, Singh V, Cornea N. Spatial transfer func-
tions: a unified approach to specifying deformation in volume modeling
and animation. In: Proceedings of the 2003 Eurographics/IEEE TVCG
Workshop on Volume graphics. ACM; 2003, p. 35–44.

[15] Correa C, Silver D, Chen M. Feature aligned volume manipulation for
illustration and visualization. Visualization and Computer Graphics,
IEEE Transactions on 2006;12(5):1069–76.

[16] Miranda FM, Celes W. Volume rendering of unstructured hexahedral
meshes. The Visual Computer 2012;28(10):1005–14.

[17] Okuyan E, Güdükbay U. Direct volume rendering of unstructured tetra-
hedral meshes using cuda and openmp. The Journal of Supercomputing
2014;67(2):324–44.

[18] Nakao M, Minato K. Physics-based interactive volume manipulation for
sharing surgical process. Information Technology in Biomedicine, IEEE
Transactions on 2010;14(3):809–16.

[19] Hacon D, Tomei C. Tetrahedral decompositions of hexahedral meshes.
European Journal of Combinatorics 1989;10(5):435–43.

[20] Rössler F, Wolff T, Ertl T. Direct gpu-based volume deformation. Pro-
ceedings of Curac 2008;:65–8.

[21] Gibson SF. 3d chainmail: a fast algorithm for deforming volumetric ob-
jects. In: Proceedings of the 1997 symposium on Interactive 3D graphics.
ACM; 1997, p. 149–ff.

[22] Schill MA, Gibson SF, Bender HJ, Männer R. Biomechanical simu-
lation of the vitreous humor in the eye using an enhanced chainmail
algorithm. In: Medical Image Computing and Computer-Assisted In-
tervention, MICCAI’98. Springer; 1998, p. 679–87.

22

[23] Frisken-Gibson SF. Using linked volumes to model object collisions,
deformation, cutting, carving, and joining. Visualization and Computer
Graphics, IEEE Transactions on 1999;5(4):333–48.

[24] Wu J, Westermann R, Dick C. A survey of physically based simulation of
cuts in deformable bodies. In: Computer Graphics Forum (to appear).
Wiley Online Library; 2015,.

[25] Georgii J, Echtler F, Westermann R. Interactive simulation of de-
formable bodies on gpus. In: SimVis. 2005, p. 247–58.

[26] Müller M, Gross M. Interactive virtual materials. In: Proceedings of
Graphics Interface 2004. Canadian Human-Computer Communications
Society; 2004, p. 239–46.

23

118
4.1. A parallel resampling method for interactive deformation of volumetric

models

Chapter 4. Interactive medical visualization 119

4.2 Spatial opacity maps for direct volume ren-

dering of regions of interest

• A. Rodŕıguez and A. León (2016). “Spatial Opacity Maps for Direct Volume
Rendering of Regions of Interest”. Proceedings of Spanish Computer Graphics
Conference (CEIG 2016).

– Status: Published [110]

120 4.2. Spatial opacity maps for direct volume rendering of regions of interest

CEIG - Spanish Computer Graphics Conference (2016)
Alejandro García-Alonso and Belen Masia (Editors)

Spatial opacity maps for direct volume rendering of regions of
interest

A. Rodríguez-Aguilera1 and A. León1

1Virtual reality lab, University of Granada, Spain

Figure 1: A single point selection on the 2D slices of a medical dataset is the sole input for our method. Our spatial opacity maps highlight
the selected feature and a simple automatic transfer function generation algorithm reveals relevant contextual information.

Abstract
Despite the mature state of the volume rendering field, its adoption in medical applications is hindered by its complex
parametrization and control, and 2D slice based tools are still preferred for clinical workflows.
In this paper, we introduce the concept of spatial opacity maps as an interactive tool for exploring volumetric data focusing
on the rendering of features of interest. In a region growing fashion, the maps are dynamically created from a user input on
the 2D slices, taking into account not only the density values of the structure but also the topology. Using this approach, an
inexperienced user is able to generate meaningful 3D renderings with no need to tweak non-intuitive visualization parameters.
The spatial opacity maps are independent of the current visualization parameters and they can be easily plugged into the volume
rendering integral and combined with other approaches for region of interest (ROI) visualization. We combine our approach
with a simple automatic transfer function generation algorithm to improve the visualization of the contextual data.

1. Introduction

During the last decades, the volume rendering pipeline has been
gradually improved to a great level of quality and maturity. State-
of-the-art techniques for volume rendering [EHK∗06, BRGIG∗14]
allow to interactively generate 3D visualizations of volumetric data
including advanced illumination, material and shadowing tech-
niques that provide rich information regarding depth and spa-
tial relationships in the data. However, as stated in recent works
[BKKG08, WVFH12], its wide adoption for clinical applications
is very limited, mainly due to the excessive level of expertise re-
quired to control the visualization parameters that, in the end lead

the clinicians to work with classical, 2D based approaches, which
are closer to their training knowledge and are thus more practical.

Despite this fact, volume rendering is undeniably useful in many
contexts as it is able to provide additional information regarding
spatial properties of features of interest and contextualized rela-
tions between different features in the data, which provide mean-
ingful information. Therefore, during the last years, there is a great
effort to minimize the complexity of controlling the visualization
of features of interest.

One way to achieve this goal that has proven useful is to combine
the classic 2D pipeline with the 3D volume rendering [WVFH12,

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

KBKK07], connecting them unidirectionally or bidirectionally in
order to achieve a complementary control of both metaphors.

In this work, we present the spatial opacity map as a novel tool
to easily highlight features of interest in volumetric data using the
slice-based selection metaphor as sole input for the method. The
opacity maps account for the spatial topology of the selected fea-
ture, which allows to preserve context information while focusing
on the visualization of the region of interest, and they are seam-
lessly integrated into the volume rendering integral to highlight the
feature of interest with no need to modify visualization parameters.
Moreover, since the opacity maps are defined as a separated, easy-
to-plug component for the volume rendering pipeline, they can be
easily combined with existing volume exploration techniques and
state-of-the-art rendering techniques.

The opacity maps are interactively generated through a parallel
GPU computation on the volume data as we explain in this work. In
our examples we show that even in a complete absence of manual
or assisted preprocessing, they are able to easily provide a mean-
ingful visualization regarding a selected structure of interest, but
they can also benefit from complimentary techniques, such as au-
tomatic transfer function generation methods, as the one proposed
in this work.

2. Related work

The study of techniques to ease the 3D exploration of volume data
and the highlighting of regions of interest (ROIs) has spanned many
approaches focusing on different parts of the control interface and
volume rendering pipeline.

A large body of approaches provides new tools and models for
the volume rendering stage. Viola et al. [VKG04] proposed an
importance-driven approach to perform focus+context rendering by
using pre-segmented object information to compose the final im-
age. Correa et al. [CSC06] proposed a set of manipulation operators
applied on the rendering stage, also relying on pre-segmented data.
Bruckner et al. [BGKG06] proposed a rendering model, providing
a substitute for the conventional clipping techniques by preserving
some of the context information during the interaction. Since the
most time-consuming manual task during 3D volume rendering is
the search for a good transfer function, many works propose inter-
active techniques to ease this process. Good examples are the work
of Kniss et al. [KKH01], where they proposed several manipulation
widgets for an assisted specification of multidimensional transfer
functions, and the work of Correa and Ma [CM11], introducing the
concept of visibility-driven transfer functions as a semi-automatic
method for easing the process of generating meaningful transfer
functions to maximize the visibility of regions of interest. Roettger
et al. [RBS05] proposed a feature selection tool introducing the
spatialized transfer functions, which are automatically generated
after classifying the different regions of the model to provide dif-
ferent colors to the different identified feature classes and allows
the user to highlight the identified classes by selecting them on
the transfer function. The main drawback of this approach is the
non-intuitive selection mechanism, since the generated spatialized
transfer functions lack a real physical or visual meaning w.r.t. the
real feature and thus the selection process becomes difficult. More-

over, the method requires an initial manual setup of the feature ra-
dius parameter and similar features may become merged into the
same class, thus impeding the selection of the individual features.
These and other approaches provide very powerful tools for the di-
rect volume rendering stage, but they either rely on pre-processed
segmentation or assisted trial and error exploration procedures di-
rectly over the 3D visualization.

Other works rely on the 2D selection of features using the 2D
slices of the model to generate 3D visualizations, exploiting the
fact that this is the standard exploration approach used in clini-
cal workflows. Kohlmann et al. [KBKK07, KBKG08] proposed a
system to generate meaningful volumetric views by 2D-selecting
features and automatically generating the camera position, zoom
factor and clipping plane. However, their approach also relies in a
good pre-defined transfer function for the model.

Our approach is also based on the selection of features on the 2D
slices to generate the spatial opacity maps, however, it also avoids
other inputs such as a manually tuned transfer function or any other
manual pre-processing of the data. Sherbondy et al. [SHN03] pro-
posed a similar interactive 2D-based exploration approach by ob-
taining the selected feature using a region growing approach. How-
ever, they apply the obtained binary segmentation as a mask to the
rendering, impeding the visualization of any kind of contextual in-
formation aside from the highlighted feature. Our spatial opacity
maps can be seamlessly plugged into the standard volume render-
ing pipeline, thus they can take advantage of any defined transfer
function to display contextual information as we demonstrate in our
results, and they can also be combined with existing focus+context
techniques, such as the ones previously referred in this section.
Huang and Ma [HM03] also exploit the region growing approach
by generating a transfer function based on the selected feature, but
generally, a lack of context information is observed since the trans-
fer function is defined to only reveal the opacity values present in
the feature, and undesired features with similar opacities to the se-
lected feature may occlude the region of interest. Our opacity maps
avoid these two issues because they highlight only the selected fea-
ture instead of all the features with similar opacity and, as already
mentioned, their compatibility with the standard volume rendering
pipeline offers the possibility to expose contextual data using dif-
ferent focus+context techniques.

3. Spatial opacity map

The principle of our spatial opacity maps and their generation pro-
cedure are founded on the well known seeded region growing seg-
mentation approach [AB94]. We define a homogeneity criterion be-
tween neighboring voxels based on their properties regarding a seed
voxel. In the original region growing approach this criterion is used
to determine the membership of the new voxel to the selected re-
gion attending to the value of the voxels, generating a binary mem-
bership classification as output. Instead, we apply it to compute an
opacity value for the new voxel based on the opacity value of its
neighbor and the homogeneity factor, thus the output of our ap-
proach is a 3D scalar field of opacity values over the volume.

The generation process starts when the user selects a point in a
2D slice. The voxel containing the point is considered as the seed

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

voxel, its value on the opacity field is set to the maximum opacity
value and the standard deviation of voxel values regarding its 1-
ring neighborhood is computed and stored. After that, the opacity
field is iteratively expanded by updating the 6 direct neighbors of
the voxels that had their opacity modified in the previous iteration
(in the first iteration, the 6 direct neighbors of the seed voxel are
candidates for updating).

Candidate voxels are updated using an opacity extinction func-
tion. Let ds be the density value of the seed voxel and let σs be its
stored standard deviation, let v be a candidate voxel with density
value dv and current opacity ov that needs to be updated due to a
previously modified neighboring voxel w with current opacity ow,
a new candidate opacity is computed as

o∗v = ow−Ev, (1)

with

Ev =
|ds−dv|−σs

λσs
. (2)

Ev automatically adapts the extinction behavior to the presence of
noise in the data of the selected feature, and can be further tuned
by setting the λ value. We have found however that with λ = 30 we
obtain good results in all the scenarios tested in this paper, thus we
have simply set it by default and the sole input in all the examples
shown in this work is a 2D selection in the slices.

Since a voxel can be visited several times by several neighbors,
its opacity value is only updated if o∗v > ov. If that is the case, the
voxel opacity is updated, thus its neighbors will require an update
on the next iteration.

3.1. Parallel implementation

The expansion process of a spatial opacity map is easily computed
using the GPU by processing all the voxels requiring an update
in parallel in each iteration. After setting the seed voxel, for each
expansion iteration a kernel is invoked, launching one thread per
voxel. The algorithm is shown in Algorithm 1.

Algorithm 1 Opacity expansion kernel
Input: Voxel v
ov← v.opacity
ow← 0
N← v.neighbors
for each n in N do

ow← max(ow,n.opacity)
end for
Ev←Equation 2
o∗v ← ov−Ev
ov← max(ov,o∗v)

Each thread loads the current opacity value of its assigned voxel
and the highest opacity value of its neighbors. Then, the candidate
opacity is computed using (1). If it is higher than the voxel’s current
opacity, it is updated.

The expansion reaches elements directly connected to the last
influenced voxels, thus on the nth iteration the kernel is launched

on a (n+ 1)3 region centered on the seed voxel, ensuring its reach
to all the candidate voxels.

3.2. The volume integral

In order to visualize a generated spatial opacity map, we plug it into
the volume rendering integral.

Let us first recall the base volume emission-absorption
model [EHK∗06]. The radiant energy C reaching the eye from a
given direction is defined as an integral along the direction ray

C =
∫ ∞

0
c(t) · e−

∫ t
0 κ(t̂)dt̂dt,

with c(s) and κ(s) the emission and absorption coefficients, defined
as scalar fields over the volume.

In practice, a numerical approximation of the integral is used,
first approximating the emissions and absorptions along the ray as
Ci = c(i ·∆t)∆t and Ai = 1−e−κ(i·∆t)∆t , now in the forms of colors
and opacities respectively, to finally yield

C̃ =
n

∑
i=0

Ci

i−1

∏
j=0

(1−A j), (3)

with n the number of samples.

Our opacity maps are in fact scalar fields o(s) that can be inte-
grated along with the existing volume properties. Thus, we redefine
the opacity component as A∗i = (1− e−κ(i·∆t)∆t)o(i).

Substituting this new opacity component in (3) yields a modified
volume rendering equation

C̃ =
n

∑
i=0

Ci

i−1

∏
j=0

(1−A∗j).

With this formulation, we seamlessly integrate the opacity maps
within the standard volume rendering pipeline, and thus we are
able to apply state-of-the-art rendering along with other existing
approaches applied to the standard pipeline.

4. Interactive visualization

The scalar field of a spatial opacity map can be configured to pro-
duce opacity values within the range [omin,omax], with 0 ≤ omin <
omax ≤ 1. Thus when a seed voxel is selected, its opacity value is
set to omax and the opacity value of the rest of the voxels is set to
omin before the iterative expansion starts.

Opacity maps encompass enough information to produce mean-
ingful renderings without modifying other visual parameters, but
their true potential shows up when they are combined with other
existing tools, both automatic and assisted. Moreover, the interac-
tive control of the expansion of the selected feature also proves
useful for further understanding of the anatomy, since it allows to
gradually explore complex topologies, which is of interest for fea-
tures such as vascular networks. In this section we explore these
different options.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

Figure 2: The initial volume rendering state using the default transfer function (leftmost column) is combined with our opacity maps when
the user selects and expands the desired feature. The final visualization is shown in the top row, and the selection of the data slices is shown
below each case.

4.1. Standalone visualization

The opacity maps make a clear distinction between ROI and con-
textual information, and thus a standalone visualization only ac-
counting for this information should emphasize this difference. We
test this by setting omin = 0.005 (highly transparent) and omin = 1
(opaque), so that the selected feature has the maximum visibility
while preserving the contextual data, and we leave the default trans-
fer function (Fig. 2, bottom left) untouched. Of course, a context-
free visualization of the feature of interest is also easily obtained
by setting omin = 0.

Fig. 2 shows several examples of the achieved renderings, ob-
tained simply by selecting the desired feature in the 2D slices. Sev-
eral features can be highlighted at the same time by a simple com-
bination of their opacity maps, as shown in Fig. 3.

4.2. Enhanced contextual visualization

Although the standalone visualization allows a clear distinction of
the ROI, all the contextual information is displayed homogeneously
and thus makes it difficult to distinguish certain relations between
features.

To provide a better visualization of the contextual informa-
tion while maintaining the parameter-free interaction, an automatic
transfer function generation method can be applied.

We exploit the data obtained from the seed voxel to generate a
simple transfer function to distinguish contextual data with similar
density values to those of the selected feature, referred as primary

Figure 3: Several opacity maps can be combined before perform-
ing the rendering stage. In this case, the two kidneys of a patient
are highlighted.

context information, from contextual data with density values far
from those of the selected feature, referred as secondary context
information:

We compute a Gaussian function with the form

g(x) = e
−
(x−µs)

2

2σ2
s ,

with µs the mean density value of the 1-ring neighborhood of the
seed voxel.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

Figure 4: From left to right, the fat layer of the back, the intestines and the scapula are selected. In each case, the transfer function is
automatically updated to reveal related contextual structures.

This function is then composed with the default transfer func-
tion t(x) to produce a final transfer function with the form f (x) =
t(x) ·(a+b ·g(x)), with a and b parameters that control the contrast
between the primary and secondary context information. These pa-
rameters can be adjusted, ensuring a≥ 0, b≥ 0 and a+b = 1.

We combine our opacity maps with these automatic transfer
functions by setting a = 0.01, b = 0.99, omin = 0.03 and omax = 1.

Fig. 4 shows the results using this combination on a CT scan. If
the fat layer on the back is selected, the automatic transfer func-
tion hides the internal organs and the skeleton. If the intestine is
selected instead, the transfer function automatically adapts to em-
phasize other internal organs while the intestine remains clearly
highlighted by the opacity map. When the scapula is selected, it
also becomes clearly highlighted, but in this case, the bones and
other dense tissues stand out over the previous internal organs.

The proposed configuration also adapts to the different proper-
ties of the dataset, for instance, a CT scan with much lower contrast
in Fig. 5. When the leg muscles, the kidney or the stent of the aorta
are highlighted, the internal soft tissues or skeleton are properly
provided as main contextual structures. Other results are shown in
Fig. 1.

4.3. Interactive expansion

The expansion process of the opacity map can be performed auto-
matically from the user-selected 2D point. However, enabling a di-
rect control over the expansion process can be in fact regarded as an
additional exploration tool that is specially useful when exploring
features with a complex topology. Additionally, this active control
allows the user to prevent the expansion from invading neighboring
structures, which may happen if their density ranges overlap.

Therefore, we let the user to freely perform expansion steps at
will, with the possibility to manipulate the 3D rendering at any in-
termediate point. This allows to better visualize the intricacies of
complex topology, such as the vessels in a vascular network shown
in Fig. 2 (rightmost column).

5. Results and discussion

We have implemented our method of parallel generation of the
opacity maps using OpenCL and applied it using a variety of med-
ical datasets. Along with the results shown throughout this work,
we have applied our method to several datasets with different con-
trast and noise conditions to test the robustness of our algorithm.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

Figure 5: In the presence of data with low contrast (leftmost), our method is also able to provide a clearly highlighted feature with contextual
information. When the stent of the aorta is selected (left-center), the bone structures are revealed. If the leg muscles or the kidney are selected
instead, the bones and stent are hidden, and other soft tissues are revealed.

In this section we analyze and discuss the properties of our method
to evaluate its behavior under different contrast and noise condi-
tions. We have also conducted a performance test to measure the
efficiency of our parallel implementation.

5.1. Method robustness

The main motivation for developing our method is to provide
the user with an intuitive, parameter-free tool to explore medical
datasets, and thus it should provide a proper response indepen-
dently of the noise and contrast conditions of the data. For this
reason, we have fixed the λ value for all the tested datasets (as ex-
plained in Sec. 3).

The datasets shown in Fig. 2 and Fig. 4 exhibit high contrast
and a low amount of noise on the bone and vascular tissues. For
these regions our method provides a very clear visualization of the
selected features, which was expected since this is the ideal case for
segmentation algorithms. The same outcome is observed for areas
where low contrast and low amount of noise, such as the kidney
and leg muscle areas shown in Fig. 5.

For datasets with a higher amount of noise and high contrast,
such as the abdominal organs of the CT scan shown in Fig. 2, we
also obtain a proper distinction of the desired features. For instance,
we are able to clearly differentiate several parts of the kidney as
shown in Fig. 6.

We find that our method fails for input datasets with low contrast
and moderate or high noise. For instance we are unable to produce a
clear view of the vascular network of the lungs in the dataset shown
in Fig. 7. We believe that under these conditions, a region growing
approach alone is not enough to capture features of interest, and
other approaches should be explored.

We also observe malfunction of the method when the selected
seed voxel belongs to a boundary between features, as seen in
Fig. 8. We estimate the noise of the data through the computation of
the standard deviation on the neighborhood around the seed voxel,

Figure 6: From left to right, the renal vessels, the medulla and the
cortex of the kidney can be highlighted by selecting the different
structures in the 2D slices, shown below each case.

thus we assume this neighborhood to belong to the same feature.
This leads to a poor noise estimation for seed voxels located on
boundary regions. A possible workaround for this issue was pro-
posed by Huang and Ma [HM03], but we want to further explore
solutions avoiding manual parameter tuning.

5.2. Performance

We have evaluated the performance of our algorithm using an Intel
Core i5-3570 machine with 8 GB RAM equipped with an AMD
Radeon R9-270X.

Due to the simple GPU scheduling mechanism proposed in
Sec. 3.1, the performance of the algorithm is independent of the
input dataset, and the computational burden of an expansion itera-
tion depends only on the size of the reached cubic region.

Fig. 9 shows the computation time for an expansion iteration
w.r.t. the cubic region size. Our implementation is able to provide

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

Figure 7: In the presence of noise in data with low contrast, our
algorithm is unable to capture the desired feature. The breastbone
(left) is captured, but its boundary becomes blurred. In the case
of the bronchi (right), neighboring structures are rapidly invaded
during the expansion process.

real-time responses for small and medium size features and interac-
tive responses for large features covering several million of voxels.
For reference: the kidney in Fig. 2, bounded by a cubic region with
7.4 million voxels, required a total expansion time of 64 ms; the
vascular network in Fig. 2, bounded by a cubic region with 89.3
million voxels, required a total expansion time of 714 ms; the stent
in Fig. 5, bounded by a cubic region with 7.1 million voxels, re-
quired a total expansion time of 62 ms; the leg muscles in Fig. 5,
bounded by a cubic region with 52.7 million voxels, required a total
expansion time of 375 ms.

We have also measured the percentage of launched threads ac-
tually performing useful computation for all our examples and, al-
though this amount varies depending on the topology of the se-
lected feature, it ranges between a 0.7% and a 12%. This is due to
the fact that the simplistic approach used for thread launching does
not cope with the sparse nature of the expansion approach, since
most of the launched threads perform computation on voxels that
are not on the current frontier of the expanding feature and thus
none of their neighbors had its opacity value updated.

Although our current implementation provides interactive re-
sponses, the performance would be greatly improved by using a
sparse-aware scheduling approach ([RLAM15, Sæt13]).

Figure 8: Our method assumes an input point inside the feature of
interest (left). If the selected point belongs to the boundary between
structures, the change of structure is regarded as data noise and the
method fails to capture the desired feature (right).

1M 50M
100M

150M
200M

250M
300M

0

10

20

30

Cubic region size (voxels)

Ti
m

e
(m

s)

Figure 9: Time required to perform an expansion iteration depend-
ing on the current size of the cubic region.

6. Conclusion and future work

We have proposed the spatial opacity maps as a novel tool for in-
teractive exploration of medical volume data. Our approach follows
a parameter-free interaction paradigm and proves robust for many
types of input datasets.

Although the spatial opacity maps as standalone tool are able to
provide meaningful visualizations of the desired features, the dis-
play of the contextual information is rather poor, but we have shown

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

A. Rodríguez-Aguilera & A. León / Spatial opacity maps for direct volume rendering of regions of interest

that improved visualizations can be achieved by combining our ap-
proach with other tools for medical image exploration. We have
provided a method to seamlessly integrate the opacity maps into
the standard volume rendering pipeline, and thus their combination
with existing methods is achieved with almost no extra effort.

We have also proposed a simple automatic transfer function gen-
eration procedure, achieving a notable improvement in the visual-
ization of contextual data, and we think that further combinations
will lead to better visualizations while maintaining the parameter-
free paradigm. For instance, we strongly believe that our method
could be easily combined with the importance-driven volume ren-
dering approach [VKG04] to serve as input for the latter and to im-
prove the focus+context contrast, and with other automatic func-
tion generation methods, such as the one proposed by Zhou and
Takatsuka [ZT09]. We would like to explore these and other com-
binations as future work.

The experiments carried out show that our implementation de-
livers interactive responses, although we will address the improve-
ment of the GPU scheduling mechanism to account for the sparse
nature of the computation in a way similar to the blocking method
proposed in [RLAM15]. We believe that this will enable response
times close to real-time even for large features.

Acknowledgements

We would like to thank the anonymous reviewers for their in-
sightful comments. This work is supported by the University
of Granada, under the “Formación de Profesorado Universitario,
Plan Propio de Investigación 2012” program. This work is also
supported by the project TIN2014-60956-R of the Spanish Min-
istry of Economy and Competitiveness with FEDER funds. The
datasets used in this work were obtained from The Volume Library
(lgdv.cs.fau.de/External/vollib/) and the Osirix repository (osirix-
viewer.com/datasets/).

References
[AB94] ADAMS R., BISCHOF L.: Seeded region growing. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on 16, 6 (1994), 641–
647. 2

[BGKG06] BRUCKNER S., GRIMM S., KANITSAR A., GROLLER
M. E.: Illustrative context-preserving exploration of volume data. Vi-
sualization and Computer Graphics, IEEE Transactions on 12, 6 (2006),
1559–1569. 2

[BKKG08] BRUCKNER S., KOHLMANN P., KANITSAR A., GROLLER
M. E.: Integrating volume visualization techniques into medical appli-
cations. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008.
5th IEEE International Symposium on (2008), IEEE, pp. 820–823. 1

[BRGIG∗14] BALSA RODRÍGUEZ M., GOBBETTI E., IGLESIAS GUI-
TIÁN J., MAKHINYA M., MARTON F., PAJAROLA R., SUTER S. K.:
State-of-the-art in compressed gpu-based direct volume rendering. In
Computer Graphics Forum (2014), vol. 33, Wiley Online Library,
pp. 77–100. 1

[CM11] CORREA C. D., MA K.-L.: Visibility histograms and visibility-
driven transfer functions. Visualization and Computer Graphics, IEEE
Transactions on 17, 2 (2011), 192–204. 2

[CSC06] CORREA C. D., SILVER D., CHEN M.: Feature aligned vol-
ume manipulation for illustration and visualization. Visualization and
Computer Graphics, IEEE Transactions on 12, 5 (2006), 1069–1076. 2

[EHK∗06] ENGEL K., HADWIGER M., KNISS J., REZK-SALAMA C.,
WEISKOPF D.: Real-time volume graphics. CRC Press, 2006. 1, 3

[HM03] HUANG R., MA K.-L.: Rgvis: Region growing based tech-
niques for volume visualization. In Computer Graphics and Appli-
cations, 2003. Proceedings. 11th Pacific Conference on (2003), IEEE,
pp. 355–363. 2, 6

[KBKG08] KOHLMANN P., BRUCKNER S., KANITSAR A., GRÖLLER
M. E.: Livesync++: Enhancements of an interaction metaphor. In Pro-
ceedings of Graphics Interface 2008 (2008), Canadian Information Pro-
cessing Society, pp. 81–88. 2

[KBKK07] KOHLMANN P., BRUCKNER S., KANITSAR A., KANITSAR
A.: Livesync: Deformed viewing spheres for knowledge-based naviga-
tion. Visualization and Computer Graphics, IEEE Transactions on 13, 6
(2007), 1544–1551. 1, 2

[KKH01] KNISS J., KINDLMANN G., HANSEN C.: Interactive volume
rendering using multi-dimensional transfer functions and direct manip-
ulation widgets. In Proceedings of the conference on Visualization’01
(2001), IEEE Computer Society, pp. 255–262. 2

[RBS05] ROETTGER S., BAUER M., STAMMINGER M.: Spatialized
transfer functions. In EuroVis (2005), Citeseer, pp. 271–278. 2

[RLAM15] RODRÍGUEZ A., LEÓN A., ARROYO G., MANTAS J. M.:
Sp-chainmail: a gpu-based sparse parallel chainmail algorithm for de-
forming medical volumes. The Journal of Supercomputing 71, 9 (2015),
3482–3499. 7, 8

[Sæt13] SÆTRA M. L.: Shallow water simulation on gpus for
sparse domains. In Numerical Mathematics and Advanced Ap-
plications 2011. Springer, 2013, pp. 673–680. doi:10.1007/
978-3-642-33134-3_71. 7

[SHN03] SHERBONDY A., HOUSTON M., NAPEL S.: Fast volume seg-
mentation with simultaneous visualization using programmable graph-
ics hardware. In Visualization, 2003. VIS 2003. IEEE (2003), IEEE,
pp. 171–176. 2

[VKG04] VIOLA I., KANITSAR A., GROLLER M. E.: Importance-
driven volume rendering. In Proceedings of the conference on Visual-
ization’04 (2004), IEEE Computer Society, pp. 139–146. 2, 8

[WVFH12] WIEBEL A., VOS F. M., FOERSTER D., HEGE H.-C.:
Wysiwyp: what you see is what you pick. Visualization and Computer
Graphics, IEEE Transactions on 18, 12 (2012), 2236–2244. 1

[ZT09] ZHOU J., TAKATSUKA M.: Automatic transfer function genera-
tion using contour tree controlled residue flow model and color harmon-
ics. Visualization and Computer Graphics, IEEE Transactions on 15, 6
(2009), 1481–1488. 8

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

Chapter 4. Interactive medical visualization 129

130 4.2. Spatial opacity maps for direct volume rendering of regions of interest

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis we have presented a variety of contributions in the fields of deformable
models, soft robotics, volume rendering and volume exploration. Our solutions are
focused on interactive systems, both in medical and robot control environments.
The limited time budget of these applications to provide feedback forces to sacrifice
realism, in terms of the accuracy of the underlying simulation and/or the level of
detail of the visual feedback, to meet the interactive performance requirements.
Motivated by this limitation, we have focused our efforts on exploiting the parallel
power of modern GPUs to improve the overall quality of the solutions and, along with
our main contributions, we present several contributions on GPGPU computing.

The dissertation has been presented in the modality of “compendium” and has
been structured in three blocks. Below we detail the specific conclusions and con-
tributions related to each block.

5.2 Parallel ChainMail simulation of heterogene-

ous medical models

In Chapter 2, we have presented a novel parallel ChainMail algorithm by recasting
the algorithm as a stencil computation problem. We have shown that this computing
scheme allows to greatly increase the performance of the algorithm through a parallel
computation of the propagation and relaxation stages on the GPU. We address the
long lasting problem of efficient computation of heterogeneous ChainMail models by
incorporating a timestamp-based mechanism to the propagation stage taking into
account that the propagation speed of a deformation through a deformable body
depends on the stiffness of the traversed material, including isotropic and anisotropic
materials, and generalizing the energy minimization process in the relaxation stage,
which models the elastic energy stored in the heterogeneous tissues based on the

131

132 5.2. Parallel ChainMail simulation of heterogeneous medical models

Hooke’s law. In terms of performance, our experiments show that our solution
outperforms previous ChainMail algorithms by factors up to 20x, allowing interactive
frame rates for models with up to several million elements.

To address the sparse nature of our stencil approach, we have proposed a block-
ing scheme for an efficient scheduling of the computation to the GPU, drastically
reducing the unnecessary computation and increasing the performance of the algo-
rithm. An experimental analysis showed that the blocking scheme exhibits good
portability and scalability and leads to speedups of a factor of 7x with respect to a
naive scheduling approach.

To sum up, the proposed algorithm addresses several limitations of the original
algorithm by increasing its performance, efficiently handling heterogeneous materi-
als and allowing for several deformations to propagate simultaneously through the
model, together with other minor improvements, and we believe that solutions based
on ChainMail models can build on these features to enhance and widen their appli-
cability. The proposed blocking scheme is demonstrated to increase the performance
and it is applicable to general stencil computation problems suffering from sparse
computation.

5.2.1 Simulation-based control of soft robots

In the emerging field of motion planning of soft robots, the complex behavior of their
compliant bodies, actuators and other involved components must be modeled in an
efficient yet accurate fashion to allow for interactive simulation solutions to compute
the required actuation in a few milliseconds. In Chapter 3 we have presented a
novel GPU parallel method for an efficient estimation of fluid weight distribution
inside dynamic cavities together with a novel modeling of the dynamic behavior of
hydraulic constraints. We have integrated our solution within the SOFA soft robots
framework [114], providing a system for online motion planning in the task-space for
hydraulic actuated soft robots. An experimental analysis of our complete solution
shows accurate estimations of both the fluid weight distribution and the dynamic
model, and shows promising results for interactive control of fabricated soft robots.

We also present a novel general, simple, parallel leveraging algorithm that in-
expensively alleviates the computation of irregular-parallel workload problems, and
we have shown its application to our fluid weight estimation algorithm.

5.2.2 Interactive medical visualization

In Chapter 4 we have addressed two computationally demanding problems for in-
teractive volume rendering in medical applications: the rendering of deformable
volumetric data and the visualization of regions of interest for medical image explo-
ration.

Chapter 5. Conclusions and Future Works 133

We have presented a parallel resampling algorithm for direct volume rendering
of deformed volumetric data. The core of the method is an intermediate, GPU-
friendly sampling mesh that decouples the resampling process from the underlying
deformation method. A notable advantage of this decoupling is that any defor-
mation method can be applied by mapping its deformation field to the sampling
mesh, and we show the coupling mechanisms for tetrahedral mass-spring and finite
element models, however, the major contribution of this method, as we show in
our experiments is that this decoupling effectively eliminates the performance de-
pendency on the resolution of the deformation existing on previous methods. This
allows for interactive rendering of volumetric models under high resolution defor-
mation schemes, such as our ChainMail algorithm, presented in Chapter 2, with no
additional computational cost.

We have introduced the concept of spatial opacity maps as a novel tool for ROI
exploration on medical volumetric data. With the objective of providing an easy
integration of 3D rendering techniques with existing clinical workflows of medical
volumetric data, which typically rely on 2D slice exploration, we follow a parameter-
free paradigm for the interactive generation of the maps by following a GPU parallel
region growing-based approach, with a single selection on a 2D slice as sole input to
our method. We also show how to seamlessly integrate the opacity maps into the
standard volume rendering pipeline, thus allowing their combination with existing
methods for an enhanced focus+context rendering, and we demonstrate this fea-
ture by combining their application with an automatic transfer function generation
procedure.

5.3 Future Works

5.3.1 Parallel ChainMail simulation of heterogeneous med-
ical models

In [109, 103, 104] we have proposed a novel ChainMail algorithm that addresses
several major limitations of the original method, however some drawbacks of the
original algorithm still yield severe limitations which are yet to be solved. Primarily,
developing a proper material characterization process to map properties of a real
material to a ChainMail model remains a challenging problem. A novel constraint
formulation to account for inter-element rotation has been recently addressed by
Teske et al. [115], but a generalized constraint model is yet to be found.

5.3.2 Simulation-based control of soft robots

In [108] we have proposed a solution for online motion planning in the task-space
for hydraulic actuated soft robots. We have demonstrated the accuracy of the fluid

134 5.3. Future Works

weight distribution algorithm and the simulation model, and we successfully control
a simulated hydraulic robot, however, we still need to apply our motion planning
solution to a fabricated robot to evaluate and validate its accuracy. We would
also like to explore the joint effect of hydraulic and other actuators on the same
robot, since our motion planning solution is capable of handling different types of
actuators and we believe that an increased capability can be reached by their joint
efforts. Regarding the proposed parallel-leveraging algorithm, we believe that it
could be applied to other algorithms such as GPU rasterization, and we would like
to perform an experimental comparison with other current leveraging strategies to
further explore performance and benefits of the different approaches.

5.3.3 Interactive medical visualization

Our resampling algorithm, described in [105], achieves great performance but it
is currently limited by GPU memory, thus we would like to extend its usage by
combining our sampling mesh with 3D texture mapping as explained in [101], as
it would allow to capture additional detail without increasing the sampling mesh
resolution once the memory limit is reached. Another interesting improvement is
the development of a better solution to handle topology changes, as our current
approach produces loss of material on the boundaries.

In [110], we have introduced the opacity maps for medical volume exploration of
regions of interest. We have demonstrated that they can be seamlessly integrated
in the volume rendering pipeline and can be thus integrated with other exploration
strategies and rendering techniques. We have only combined their usage with a
simple automatic transfer function generation procedure as proof of concept, how-
ever, we strongly believe that a combination with existing approaches such as the
importance-driven volume rendering technique [85] could be easily achieved and
would provide an improved focus+context visualization and we plan to further ex-
plore this and other combinations.

Bibliography

[1] Herb Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software,” Dr. Dobb’s journal, vol. 30, no. 3, pp. 202–210, 2005. (Cited on
page 2.)

[2] Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Portable Documents, Addison-Wesley
Professional, 2010. (Cited on page 2.)

[3] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
and Kevin Skadron, “A performance study of general-purpose applications on
graphics processors using cuda,” Journal of parallel and distributed computing,
vol. 68, no. 10, pp. 1370–1380, 2008. (Cited on page 2.)

[4] Aaftab Munshi et al., “The OpenCL specification,” Khronos OpenCL Working
Group, vol. 1, pp. l1–15, 2009. (Cited on page 2.)

[5] John E Stone, David Gohara, and Guochun Shi, “Opencl: A parallel program-
ming standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010. (Cited on page 2.)

[6] André R Brodtkorb, Trond R Hagen, and Martin L Sætra, “Graphics process-
ing unit (gpu) programming strategies and trends in gpu computing,” Journal
of Parallel and Distributed Computing, vol. 73, no. 1, pp. 4–13, 2013. (Cited
on page 2.)

[7] Matt Pharr and Randima Fernando, Gpu gems 2: programming techniques for
high-performance graphics and general-purpose computation, Addison-Wesley
Professional, 2005. (Cited on page 2.)

[8] David B Kirk and W Hwu Wen-mei, Programming massively parallel proces-
sors: a hands-on approach, Morgan Kaufmann, 2012. (Cited on page 2.)

[9] Justin Holewinski, Louis-Noël Pouchet, and Ponnuswamy Sadayappan, “High-
performance code generation for stencil computations on gpu architectures,”
in Proceedings of the 26th ACM international conference on Supercomputing.
ACM, 2012, pp. 311–320. (Cited on page 3.)

135

136 Bibliography

[10] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan
Carter, Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick,
“Stencil computation optimization and auto-tuning on state-of-the-art mul-
ticore architectures,” in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, 2008, p. 4. (Cited on page 3.)

[11] Paulius Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units. ACM, 2009, pp. 79–84. (Cited on page 3.)

[12] Takashi Shimokawabe, Takayuki Aoki, Chiashi Muroi, Junichi Ishida, Kohei
Kawano, Toshio Endo, Akira Nukada, Naoya Maruyama, and Satoshi Mat-
suoka, “An 80-fold speedup, 15.0 tflops full gpu acceleration of non-hydrostatic
weather model asuca production code,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Stor-
age and Analysis. IEEE Computer Society, 2010, pp. 1–11. (Cited on page 3.)

[13] Anthony Nguyen, Nadathur Satish, Jatin Chhugani, Changkyu Kim, and
Pradeep Dubey, “3.5-d blocking optimization for stencil computations on
modern cpus and gpus,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis. 2010, pp. 1–13, IEEE Computer Society. (Cited on page 3.)

[14] Yongpeng Zhang and Frank Mueller, “Auto-generation and auto-tuning of
3d stencil codes on gpu clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization. ACM, 2012, pp. 155–164.
(Cited on page 3.)

[15] André R Brodtkorb, Martin L Sætra, and Mustafa Altinakar, “Efficient shal-
low water simulations on GPUs: Implementation, visualization, verification,
and validation,” Computers & Fluids, vol. 55, pp. 1–12, 2012. (Cited on
page 3.)

[16] Martin L Sætra, “Shallow water simulation on gpus for sparse domains,”
in Numerical Mathematics and Advanced Applications 2011, pp. 673–680.
Springer, 2013. (Cited on page 3.)

[17] Stanley Tzeng, Anjul Patney, and John D Owens, “Task management for
irregular-parallel workloads on the gpu,” in Proceedings of the Conference
on High Performance Graphics. Eurographics Association, 2010, pp. 29–37.
(Cited on page 3.)

[18] Kshitij Gupta, Jeff A Stuart, and John D Owens, “A study of persistent
threads style gpu programming for gpgpu workloads,” in Innovative Parallel
Computing (InPar), 2012. IEEE, 2012, pp. 1–14. (Cited on page 3.)

Bibliography 137

[19] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu, “Freepipe: a
programmable parallel rendering architecture for efficient multi-fragment ef-
fects,” in Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive
3D Graphics and Games. ACM, 2010, pp. 75–82. (Cited on page 3.)

[20] Kayvon Fatahalian, Edward Luong, Solomon Boulos, Kurt Akeley, William R
Mark, and Pat Hanrahan, “Data-parallel rasterization of micropolygons with
defocus and motion blur,” in Proceedings of the Conference on High Perfor-
mance Graphics 2009. ACM, 2009, pp. 59–68. (Cited on page 3.)

[21] Christian Eisenacher and Charles Loop, “Data-parallel micropolygon rasteri-
zation,” Eurographics 2010 Short Papers, pp. 53–56, 2010. (Cited on page 3.)

[22] Samuli Laine and Tero Karras, “High-performance software rasterization on
gpus,” in Proceedings of the ACM SIGGRAPH Symposium on High Perfor-
mance Graphics. ACM, 2011, pp. 79–88. (Cited on page 3.)

[23] Ullrich Meier, Oscar López, Carlos Monserrat, Mari C Juan, and M Alcaniz,
“Real-time deformable models for surgery simulation: a survey,” Computer
methods and programs in biomedicine, vol. 77, no. 3, pp. 183–197, 2005. (Cited
on page 3.)

[24] P. Moore and D. Molloy, “A survey of computer-based deformable models,”
in Machine Vision and Image Processing Conference, 2007. IMVIP 2007. In-
ternational, 2007, pp. 55–66. (Cited on page 3.)

[25] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark
Carlson, “Physically based deformable models in computer graphics,” in
Computer graphics forum. Wiley Online Library, 2006, vol. 25, pp. 809–836.
(Cited on page 3.)

[26] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser, “A fast, flexi-
ble, particle-system model for cloth draping,” IEEE Computer Graphics and
Applications, vol. 16, no. 5, pp. 52–59, 1996. (Cited on page 3.)

[27] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark
Pauly, “Projective dynamics: fusing constraint projections for fast simula-
tion,” ACM Transactions on Graphics (TOG), vol. 33, no. 4, pp. 154, 2014.
(Cited on page 3.)

[28] Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure,
“Stable constrained dynamics,” ACM Transactions on Graphics (TOG), vol.
34, no. 4, pp. 132:1–132:10, 2015. (Cited on page 3.)

138 Bibliography

[29] Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan, “Fast
simulation of mass-spring systems,” ACM Transactions on Graphics (TOG),
vol. 32, no. 6, pp. 214, 2013. (Cited on page 4.)

[30] Huamin Wang, “A chebyshev semi-iterative approach for accelerating projec-
tive and position-based dynamics,” ACM Transactions on Graphics (TOG),
vol. 34, no. 6, pp. 246, 2015. (Cited on page 4.)

[31] Morton E Gurtin, An introduction to continuum mechanics, vol. 158, Aca-
demic press, 1982. (Cited on page 4.)

[32] Eftychios Sifakis and Jernej Barbic, “Fem simulation of 3d deformable solids:
a practitioner’s guide to theory, discretization and model reduction,” in ACM
SIGGRAPH 2012 Courses. ACM, 2012, p. 20. (Cited on page 4.)

[33] Sarah F Gibson, “3d chainmail: a fast algorithm for deforming volumetric
objects,” in Proceedings of the 1997 symposium on Interactive 3D graphics.
ACM, 1997, pp. 149–154. (Cited on page 4.)

[34] Sarah F Frisken-Gibson, “Using linked volumes to model object collisions, de-
formation, cutting, carving, and joining,” Visualization and Computer Graph-
ics, IEEE Transactions on, vol. 5, no. 4, pp. 333–348, 1999. (Cited on page 4.)

[35] Markus A Schill, Sarah FF Gibson, H-J Bender, and Reinhard Männer,
“Biomechanical simulation of the vitreous humor in the eye using an enhanced
chainmail algorithm,” in Medical Image Computing and Computer-Assisted
Interventation, pp. 679–687. Springer, 1998. (Cited on page 4.)

[36] Sarah Gibson, Joe Samosky, Andrew Mor, Christina Fyock, Eric Grimson,
Takeo Kanade, Ron Kikinis, Hugh Lauer, Neil McKenzie, Shin Nakajima, Hide
Ohkami, Randy Osborne, and Akira Sawada, “Simulating arthroscopic knee
surgery using volumetric object representations, real-time volume rendering
and haptic feedback,” in CVRMed-MRCAS’97. Springer, 1997, pp. 367–378.
(Cited on page 4.)

[37] Tanguy Le Fol, Oscar Acosta-Tamayo, Antoine Lucas, and Pascal Haigron,
“Angioplasty simulation using ChainMail method,” in Medical Imaging 2007:
Visualization and Image-Guided Procedures, 2007. (Cited on page 4.)

[38] Florian Schulze, Katja Bühler, and Markus Hadwiger, “Interactive defor-
mation and visualization of large volume datasets.,” in GRAPP (AS/IE).
Citeseer, 2007, pp. 39–46. (Cited on pages 4 and 7.)

[39] Jörg Mensmann, Timo Ropinski, and Klaus Hinrichs, “Interactive cutting
operations for generating anatomical illustrations from volumetric data sets,”

Bibliography 139

Journal of WSCG – 16th International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision, vol. 16, no. 1-3, pp. 89–96,
2008. (Cited on page 4.)

[40] Pierre-Frédéric Villard, Piers Boshier, Fernando Bello, and Derek Gould, Vir-
tual reality simulation of liver biopsy with a respiratory component, InTech,
2011. (Cited on page 4.)

[41] P. F. Villard, F. P. Vidal, L. ap Cenydd, R. Holbrey, S. Pisharody, S. Johnson,
A. Bulpitt, N. W. John, F. Bello, and D. Gould, “Interventional radiology
virtual simulator for liver biopsy,” International Journal of Computer Assisted
Radiology and Surgery, vol. 9, no. 2, pp. 255–267, 2013. (Cited on page 4.)

[42] Carlos R Castro-Pareja, Barry Daly, and Raj Shekhar, “Elastic registration
using 3d chainmail: application to virtual colonoscopy,” in Medical Imaging
2006: Image Processing, 2006, vol. 6144, pp. 947–955. (Cited on page 4.)

[43] Raj Shekhar, Peng Lei, Carlos R Castro-Pareja, William L Plishker, and War-
ren D D’Souza, “Automatic segmentation of phase-correlated ct scans through
nonrigid image registration using geometrically regularized free-form deforma-
tion,” Medical physics, vol. 34, no. 7, pp. 3054–3066, 2007. (Cited on page 4.)

[44] Jinah Park, Sang-Youn Kim, Seung-Woo Son, and Dong-Soo Kwon, “Shape
retaining chain linked model for real-time volume haptic rendering,” in Volume
Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH
Symposium on, 2002, pp. 65–72. (Cited on page 4.)

[45] Jinah Park, Sang-Youn Kim, and Dong-Soo Kwon, “Mechanical representa-
tion of shape-retaining chain linked model for real-time haptic rendering,” in
Medical Simulation, pp. 144–152. Springer, 2004. (Cited on page 4.)

[46] KIM Sang-Youn, PARK Jinah, and KWON Dong-Soo, “The real-time haptic
simulation of a biomedical volumetric object with shape-retaining chain linked
model,” IEICE transactions on information and systems, vol. 88, no. 5, pp.
1012–1020, 2005. (Cited on page 4.)

[47] Ying Li and Ken Brodlie, “Soft object modelling with generalised chainmail —
extending the boundaries of web-based graphics,” Computer Graphics Forum,
vol. 22, no. 4, pp. 717–727, 2003. (Cited on page 4.)

[48] Pierre-Frédéric Villard, Mathieu Jacob, Derek Gould, and Fernando Bello,
“Haptic simulation of the liver with respiratory motion,” in Proceeding of
Medicine Meets Virtual Reality 17 (MMVR17), 2009, vol. 142, pp. 401–406.
(Cited on page 4.)

140 Bibliography

[49] Franck Patrick Vidal, P-F Villard, and Evelyne Lutton, “Tuning of patient-
specific deformable models using an adaptive evolutionary optimization strat-
egy,” Biomedical Engineering, IEEE Transactions on, vol. 59, no. 10, pp.
2942–2949, 2012. (Cited on page 4.)

[50] Franck P Vidal and Pierre-Frédéric Villard, “Development and validation of
real-time simulation of x-ray imaging with respiratory motion,” Computerized
Medical Imaging and Graphics, vol. 49, pp. 1–15, 2016. (Cited on page 4.)

[51] Dirk Fortmeier, Andre Mastmeyer, and Heinz Handels, “Image-based palpa-
tion simulation with soft tissue deformations using chainmail on the GPU,”
in Bildverarbeitung für die Medizin 2013, pp. 140–145. Springer, 2013. (Cited
on page 4.)

[52] Dirk Fortmeier, Andre Mastmeyer, and Heinz Handels, “An image-based
multiproxy palpation algorithm for patient-specific VR-simulation,” Medicine
Meets Virtual Reality, pp. 107–113, 2014. (Cited on page 4.)

[53] Rosell Torres, Jose M Espadero, Felipe A Calvo, and Miguel A Otaduy, “In-
teractive deformation of heterogeneous volume data,” in International Sym-
posium on Biomedical Simulation. Springer, 2014, pp. 131–140. (Cited on
page 4.)

[54] Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun,
“Numerical coarsening of inhomogeneous elastic materials,” ACM Transac-
tions on Graphics (TOG), vol. 28, no. 3, pp. 51:1–51:8, 2009. (Cited on page 4.)

[55] Matthieu Nesme, Paul G Kry, Lenka Jeřábková, and François Faure, “Pre-
serving topology and elasticity for embedded deformable models,” in ACM
Transactions on Graphics (TOG). ACM, 2009, vol. 28, pp. 52:1–52:9. (Cited
on page 4.)

[56] Joachim Georgii and Rüdiger Westermann, “Mass-spring systems on the gpu,”
Simulation modelling practice and theory, vol. 13, no. 8, pp. 693–702, 2005.
(Cited on page 5.)

[57] CE Etheredge, “A parallel mass-spring model for soft tissue simulation with
haptic rendering in cuda,” in 15th Twente Student Conference, 2011. (Cited
on page 5.)

[58] Olivier Comas, Zeike A Taylor, Jérémie Allard, Sébastien Ourselin, Stéphane
Cotin, and Josh Passenger, “Efficient nonlinear FEM for soft tissue modelling
and its GPU implementation within the open source framework SOFA,” in
Biomedical Simulation, pp. 28–39. Springer, 2008. (Cited on page 5.)

Bibliography 141

[59] Jérémie Allard, Hadrien Courtecuisse, and François Faure, “Implicit fem solver
on gpu for interactive deformation simulation,” GPU Computing Gems Jade
Edition, pp. 281–294, 2011. (Cited on page 5.)

[60] F Rößler, T Wolff, and T Ertl, “Direct GPU-based volume deformation,”
Proceedings of Curac, pp. 65–68, 2008. (Cited on page 5.)

[61] Deepak Trivedi, Christopher D Rahn, William M Kier, and Ian D Walker,
“Soft robotics: Biological inspiration, state of the art, and future research,”
Applied Bionics and Biomechanics, vol. 5, no. 3, pp. 99–117, 2008. (Cited on
page 5.)

[62] Carmel Majidi, “Soft robotics: a perspective—current trends and prospects
for the future,” Soft Robotics, vol. 1, no. 1, pp. 5–11, 2014. (Cited on page 5.)

[63] Gang Chen, Minh Tu Pham, and Tanneguy Redarce, “Development and
kinematic analysis of a silicone-rubber bending tip for colonoscopy,” in In-
telligent Robots and Systems, 2006 IEEE/RSJ International Conference on.
IEEE, 2006, pp. 168–173. (Cited on page 5.)

[64] Jessica Burgner-Kahrs, D Caleb Rucker, and Howie Choset, “Continuum
robots for medical applications: A survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, 2015. (Cited on page 5.)

[65] Rolf Pfeifer, Max Lungarella, and Fumiya Iida, “The challenges ahead for
bio-inspired’soft’robotics,” Communications of the ACM, vol. 55, no. 11, pp.
76–87, 2012. (Cited on page 5.)

[66] Andrew D Marchese, Konrad Komorowski, Cagdas D Onal, and Daniela Rus,
“Design and control of a soft and continuously deformable 2d robotic manipu-
lation system,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 2189–2196. (Cited on page 5.)

[67] Andrew D Marchese, Robert K Katzschmann, and Daniela Rus, “Whole arm
planning for a soft and highly compliant 2d robotic manipulator,” in Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on. IEEE, 2014, pp. 554–560. (Cited on page 5.)

[68] Christian Duriez, “Control of elastic soft robots based on real-time finite ele-
ment method,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, 2013, pp. 3982–3987. (Cited on page 5.)

[69] Frederick Largilliere, Valerian Verona, Eulalie Coevoet, Mario Sanz-Lopez,
Jeremie Dequidt, and Christian Duriez, “Real-time control of soft-robots using
asynchronous finite element modeling,” in Robotics and Automation (ICRA),

142 Bibliography

2015 IEEE International Conference on. IEEE, 2015, pp. 2550–2555. (Cited
on page 5.)

[70] Frank Daerden and Dirk Lefeber, “Pneumatic artificial muscles: actuators for
robotics and automation,” vol. 47, no. 1, pp. 11–21, 2002. (Cited on page 5.)

[71] Deepak Trivedi, Amir Lotfi, and Christopher D Rahn, “Geometrically exact
models for soft robotic manipulators,” IEEE Transactions on Robotics, vol.
24, no. 4, pp. 773–780, 2008. (Cited on page 5.)

[72] Luis G Torres and Ron Alterovitz, “Motion planning for concentric tube robots
using mechanics-based models,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on. IEEE, 2011, pp. 5153–5159.
(Cited on page 5.)

[73] Klaus Engel, Markus Hadwiger, Joe M Kniss, Aaron E Lefohn, Christof Rezk
Salama, and Daniel Weiskopf, “Real-time volume graphics,” in ACM Siggraph
2004 Course Notes. ACM, 2004, p. 29. (Cited on page 5.)

[74] Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama, and Daniel
Weiskopf, Real-time volume graphics, CRC Press, 2006. (Cited on pages 5
and 6.)

[75] T Todd Elvins, “A survey of algorithms for volume visualization,” ACM
Siggraph Computer Graphics, vol. 26, no. 3, pp. 194–201, 1992. (Cited on
page 5.)

[76] Michael Meißner, H Pfister, Rüdiger Westermann, and CM Wittenbrink, “Vol-
ume visualization and volume rendering techniques,” Eurographics tutorial,
2000. (Cited on page 5.)

[77] Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo Ropinski,
“Advanced illumination techniques for gpu-based volume raycasting,” in ACM
SIGGRAPH 2009 Courses. 2009, SIGGRAPH ’09, pp. 2:1–2:166, ACM. (Cited
on page 6.)

[78] Klaus Engel, Martin Kraus, and Thomas Ertl, “High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading,” in Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware.
ACM, 2001, pp. 9–16. (Cited on page 6.)

[79] Jens Kruger and Rüdiger Westermann, “Acceleration techniques for gpu-
based volume rendering,” in Proceedings of the 14th IEEE Visualization 2003
(VIS’03). 2003, IEEE Computer Society. (Cited on page 6.)

Bibliography 143

[80] Stefan Bruckner, Peter Kohlmann, Armin Kanitsar, and M Eduard Groller,
“Integrating volume visualization techniques into medical applications,” in
Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE Inter-
national Symposium on. IEEE, 2008, pp. 820–823. (Cited on page 6.)

[81] Alexander Wiebel, Frans M Vos, David Foerster, and Hans-Christian Hege,
“Wysiwyp: what you see is what you pick,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 18, no. 12, pp. 2236–2244, 2012. (Cited
on page 6.)

[82] Gordon Kindlmann and James W Durkin, “Semi-automatic generation of
transfer functions for direct volume rendering,” in Proceedings of the 1998
IEEE symposium on Volume visualization. ACM, 1998, pp. 79–86. (Cited on
page 6.)

[83] Hanspeter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindlmann, Will
Schroeder, Lisa Sobierajski Avila, KM Raghu, Raghu Machiraju, and Jinho
Lee, “The transfer function bake-off,” IEEE Computer Graphics and Appli-
cations, vol. 21, no. 3, pp. 16–22, 2001. (Cited on page 6.)

[84] Carlos D Correa, Deborah Silver, and Min Chen, “Feature aligned volume
manipulation for illustration and visualization,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 12, no. 5, pp. 1069–1076, 2006. (Cited
on page 6.)

[85] Ivan Viola, Armin Kanitsar, and Meister Eduard Groller, “Importance-driven
volume rendering,” in Proceedings of the conference on Visualization’04. IEEE
Computer Society, 2004, pp. 139–146. (Cited on pages 6 and 134.)

[86] Stefan Bruckner, Soren Grimm, Armin Kanitsar, and M Eduard Groller, “Il-
lustrative context-preserving exploration of volume data,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 12, no. 6, pp. 1559–1569,
2006. (Cited on page 6.)

[87] Shiaofen Fang, Tom Biddlecome, and Mihran Tuceryan, “Image-based transfer
function design for data exploration in volume visualization,” in Proceedings
of the Conference on Visualization’98. IEEE Computer Society Press, 1998,
pp. 319–326. (Cited on page 6.)

[88] Stefan Roettger, Michael Bauer, and Marc Stamminger, “Spatialized transfer
functions.,” in EuroVis. Citeseer, 2005, pp. 271–278. (Cited on page 6.)

[89] Carlos D Correa and Kwan-Liu Ma, “Visibility histograms and visibility-
driven transfer functions,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, no. 2, pp. 192–204, 2011. (Cited on page 6.)

144 Bibliography

[90] Petr Sereda, Anna Vilanova, and Frans A Gerritsen, “Automating transfer
function design for volume rendering using hierarchical clustering of material
boundaries.,” in EuroVis, 2006, pp. 243–250. (Cited on page 6.)

[91] Jianlong Zhou and Masahiro Takatsuka, “Automatic transfer function gener-
ation using contour tree controlled residue flow model and color harmonics,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 15, no. 6,
pp. 1481–1488, 2009. (Cited on page 6.)

[92] Marc Ruiz, Anton Bardera, Imma Boada, Ivan Viola, Miquel Feixas, and Ma-
teu Sbert, “Automatic transfer functions based on informational divergence,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12,
pp. 1932–1941, 2011. (Cited on page 6.)

[93] Lile Cai, Wei-Liang Tay, Binh P Nguyen, Chee-Kong Chui, and Sim-Heng Ong,
“Automatic transfer function design for medical visualization using visibility
distributions and projective color mapping,” Computerized Medical Imaging
and Graphics, vol. 37, no. 7, pp. 450–458, 2013. (Cited on page 6.)

[94] Runzhen Huang and Kwan-Liu Ma, “Rgvis: Region growing based techniques
for volume visualization,” in Computer Graphics and Applications, 2003. Pro-
ceedings. 11th Pacific Conference on. IEEE, 2003, pp. 355–363. (Cited on
page 6.)

[95] Peter Kohlmann, Stefan Bruckner, Armin Kanitsar, and A Kanitsar,
“Livesync: Deformed viewing spheres for knowledge-based navigation,” Visu-
alization and Computer Graphics, IEEE Transactions on, vol. 13, no. 6, pp.
1544–1551, 2007. (Cited on page 6.)

[96] Peter Kohlmann, Stefan Bruckner, Armin Kanitsar, and M Eduard Gröller,
“Livesync++: Enhancements of an interaction metaphor,” in Proceedings of
Graphics Interface 2008. Canadian Information Processing Society, 2008, pp.
81–88. (Cited on page 6.)

[97] Megumi Nakao and Kotaro Minato, “Physics-based interactive volume manip-
ulation for sharing surgical process,” Information Technology in Biomedicine,
IEEE Transactions on, vol. 14, no. 3, pp. 809–816, 2010. (Cited on page 6.)

[98] Kup-Sze Choi, Hanqiu Sun, and Pheng-Ann Heng, “Interactive deformation
of soft tissues with haptic feedback for medical learning,” IEEE Transactions
on Information Technology in Biomedicine, vol. 7, no. 4, pp. 358–363, 2003.
(Cited on page 6.)

[99] Joachim Georgii and Rüdiger Westermann, “A generic and scalable pipeline
for gpu tetrahedral grid rendering,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 12, no. 5, pp. 1345–1352, 2006. (Cited on page 7.)

Bibliography 145

[100] Carlos D Correa, Robert Hero, and Kwan-Liu Ma, “A comparison of gradient
estimation methods for volume rendering on unstructured meshes,” Visual-
ization and Computer Graphics, IEEE Transactions on, vol. 17, no. 3, pp.
305–319, 2011. (Cited on page 7.)

[101] Jorge Gascon, Jose M Espadero, Alvaro G Perez, Rosell Torres, and Miguel A
Otaduy, “Fast deformation of volume data using tetrahedral mesh rasteriza-
tion,” in Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. ACM, 2013, pp. 181–185. (Cited on pages 7 and 134.)

[102] Martin Meike, Dirk Fortmeier, Andre Mastmeyer, and Heinz Handels, “Real-
time resampling of medical images based on deformed tetrahedral structures
for needle insertion vr-simulation,” in Bildverarbeitung für die Medizin 2015,
pp. 443–448. Springer, 2015. (Cited on page 7.)

[103] Alejandro Rodŕıguez, Alejandro León, Germán Arroyo, and José Miguel Man-
tas, “Sp-chainmail: a gpu-based sparse parallel chainmail algorithm for de-
forming medical volumes,” The Journal of Supercomputing, vol. 71, no. 9, pp.
3482–3499, 2015. (Cited on pages 9, 26, and 133.)

[104] Alejandro Rodŕıguez, Alejandro León, and Germán Arroyo, “Parallel defor-
mation of heterogeneous chainmail models: Application to interactive defor-
mation of large medical volumes,” Computers in Biology and Medicine, vol.
79, pp. 222–232, 2016. (Cited on pages 9, 48, and 133.)

[105] Alejandro Rodŕıguez, Alejandro León Salas, Domingo Mart́ın Perandrés, and
Miguel A Otaduy, “A parallel resampling method for interactive deformation
of volumetric models,” Computers & Graphics, vol. 53, pp. 147–155, 2015.
(Cited on pages 9, 93, and 134.)

[106] Rosell Torres, Alejandro Rodŕıguez, José M. Espadero, and Miguel A. Otaduy,
“High-resolution interaction with corotational coarsening models,” ACM
Trans. Graph., vol. 35, no. 6, pp. 211:1–211:11, 2016. (Cited on page 9.)

[107] K A Mountris, J Bert, J Noailly, A Rodriguez Aguilera, A Valeri, O Pradier,
U Schick, E Promayon, M A Gonzalez Ballester, J Troccaz, and D Visvikis,
“Modeling the impact of prostate edema on ldr brachytherapy: a monte carlo
dosimetry study based on a 3d biphasic finite element biomechanical model,”
Physics in Medicine and Biology, vol. 62, no. 6, pp. 2087–2102, 2017. (Cited
on page 10.)

[108] A. Rodriguez, E. Coevoet, and C. Duriez, “Real-time simulation of hydraulic
components for interactive control of soft robots,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on. IEEE, 2017. (Cited on pages
10, 83, and 133.)

146 Bibliography

[109] Alejandro Rodŕıguez Aguilera, Alejandro Leon, Luis López Escudero, and
Manuel Garćıa Sánchez, “A System Proposal for Interactive Deformation of
Large Medical Volumes,” in Spanish Computer Graphics Conference (CEIG).
2014, The Eurographics Association. (Cited on pages 10, 13, and 133.)

[110] Alejandro Rodŕıguez-Aguilera and Alejandro León, “Spatial Opacity Maps
for Direct Volume Rendering of Regions of Interest,” in Spanish Computer
Graphics Conference (CEIG). 2016, The Eurographics Association. (Cited on
pages 10, 119, and 134.)

[111] Domingo Mart́ın, Germán Arroyo, Alejandro Rodŕıguez, and Tobias Isenberg,
“A survey of digital stippling,” Computers & Graphics, vol. 67, pp. 24–44,
2017. (Cited on page 10.)

[112] Alejandro Rodŕıguez and Alejandro León, “A framework for remote 3d interac-
tion with handheld devices: Application to a 3d heritage gallery prototype,”
SCIRES-IT-SCIentific RESearch and Information Technology, vol. 6, no. 1,
pp. 79–86, 2016. (Cited on page 10.)

[113] Alejandro Rodŕıguez and Alejandro León, “Smartphone-based remote 3d in-
teraction for digital heritage applications,” in Digital Heritage, 2015. IEEE,
2015, vol. 1, pp. 297–300. (Cited on page 11.)

[114] Christian Duriez, Eulalie Coevoet, Frédérick Largilliere, Thor Bieze, Zhongkai
Zhang, Mario Sanz-Lopez, B Carrez, Damien Marchal, Olivier Goury, and
Jérémie Dequidt, “Framework for online simulation of soft robots with
optimization-based inverse model,” in SIMPAR: IEEE International Con-
ference on Simulation, Modeling, and Programming for Autonomous Robots,
2016. (Cited on pages 132 and 150.)

[115] Hendrik Teske, Kathrin Bartelheimer, Jan Meis, Rolf Bendl, Eva M Stoiber,
and Kristina Giske, “Construction of a biomechanical head and neck motion
model as a guide to evaluation of deformable image registration,” Physics in
Medicine and Biology, vol. 62, no. 12, pp. N271, 2017. (Cited on page 133.)

Appendix A

Resumen y Conclusiones

Introducción

Modelar el comportamiento f́ısico de los fenómenos del mundo real ha sido de interés
cient́ıfico a lo largo de la historia. Es una herramienta clave no sólo para mejorar
nuestra comprensión del mundo, sino también para proporcionar un medio para
reproducir y predecir el comportamiento de muchos tipos de procesos f́ısicos, pro-
porcionando ideas importantes que luego se pueden emplear para una mejor toma
de decisiones, estudio detallado O entrenamiento previo a actuaciones reales, entre
otras aplicaciones. El modelado computacional y la simulación están entre los de-
sarrollos más significativos dentro de la investigación cient́ıfica y de ingenieŕıa en las
últimas décadas y un amplio abanico de métodos de simulación f́ısica son utilizados
en una amplia gama de disciplinas tan diversas como la astrof́ısica, el plegamiento
de moléculas, la ingenieŕıa civil o las industrias del cine y los videojuegos.

Un problema importante de los métodos de simulación computacional surge con
la complejidad del modelo empleado para describir el fenómeno. Un modelo de-
masiado complejo de calcular o demasiado grande para almacenar puede requerir
una cantidad inaceptable de tiempo para realizar la simulación deseada. Esta lim-
itación se hace especialmente evidente en aplicaciones interactivas, en las que el
presupuesto de tiempo para realizar un paso de simulación puede limitarse a unos
pocos milisegundos. Muchas de las aplicaciones de simulación interactiva también
requieren retroalimentación visual, por lo tanto la conexión entre el modelo de sim-
ulación y su representación visual debe realizarse de manera eficiente para permitir
que la aplicación cumpla con el estricto ĺımite de tiempo.

En el caso espećıfico de las simulaciones médicas, como pueden ser casos la
simulación de procesos fisiológicos o la simulación de procedimientos quirúrgicos
(comúnmente conocida como ciruǵıa virtual), se requiere un modelo complejo de
la anatomı́a humana. La distribución tisular de las formas biológicas se captura
t́ıpicamente a través de tecnoloǵıas de detección 3D tales como la tomograf́ıa com-
putarizada o las técnicas de resonancia magnética. Como resultado, los datos

147

148

adquiridos incluyen hasta varios millones de vóxeles de información que representa la
distribución de tejido dentro de los diferentes órganos y estructuras anatómicas. Esta
enorme cantidad de datos puede usarse para obtener tanto los modelos biomecánicos
como los visuales para aplicaciones interactivas, convirtiéndose en un problema com-
putacionalmente muy exigente que ha recibido mucha atención de la comunidad
cient́ıfica.

La eficiencia en el cómputo de estas aplicaciones se ha incrementado a lo largo
de los años, tanto por mejoras en el hardware como en el software. La introducción
de las unidades de procesamiento gráfico (GPU) ya permitió acelerar la retroal-
imentación visual de estas aplicaciones, pero la aparición de las GPUs de cauce
programable, y más importante, el desarrollo posterior de entornos de desarrollo
para la computación de propósito general en gráficos (GPGPU), supuso un avance
significativo que permitió extender su uso a muchos campos de la computación mod-
erna, incluyendo el campo de simulación f́ısica.

En esta tesis exploramos las técnicas GPGPU con el objetivo de desarrollar
nuevos métodos y algoritmos mejorados para la simulación y visualización de apli-
caciones interactivas, con especial atención a aplicaciones médicas y de soft robotics,
y espećıficamente en los métodos de simulación basados en ChainMail para simu-
lación médica y modelado de elementos finitos para control de soft robots, y en las
técnicas de visualización directa de datos volumétricos deformables y técnicas de
exploración asistida de los mismos.

Estructura de la tesis doctoral

El principal objetivo de esta tesis doctoral es el estudio y aplicación de técnicas
GPGPU para la aceleración de procesos de alto coste computacional y su aplicación
a entornos de simulación interactiva. Las contribuciones de la tesis se han agrupado
en tres bloques temáticos: simulación médica mediante algoritmo ChainMail, con-
trol de soft robots basado en simulación y visualización médica interactiva. La tesis
se presenta en la modalidad de “compendio” y a continuación citamos las contribu-
ciones en cada uno de los bloques.

Bloque I: Simulación ChainMail paralela de modelos médicos
heterogéneos

• A. Rodŕıguez, A. León, L. López Escudero and M. Garćıa Sánchez (2014).
“A System Proposal for Interactive Deformation of Large Medical Volumes”.
Proceedings of Spanish Computer Graphics Conference (CEIG 2014).

• A. Rodŕıguez, A. León, G. Arroyo, and J. M. Mantas (2015). “SP-ChainMail:
a GPU-based sparse parallel ChainMail algorithm for deforming medical vol-
umes”. The Journal of Supercomputing, Volume 71, Issue 9, pp. 3482-3499.

Appendix A. Resumen y Conclusiones 149

• A. Rodŕıguez, A. León and G. Arroyo (2016). “Parallel deformation of
heterogeneous ChainMail models: Application to interactive deformation of
large medical volumes”. Computers in Biology and Medicine, Volume 79, pp.
222-232.

Bloque II: Control de soft robots basado en simulación

• A. Rodŕıguez, E. Coevoet and C. Duriez. “Real-time simulation of hydraulic
components for interactive control of soft robots”. IEEE International Con-
ference on Robotics and Automation (ICRA 2017).

Bloque III: Visualización médica interactiva

• A. Rodŕıguez, A. León Salas, D. Mart́ın Perandrés and M. A. Otaduy (2015).
“A parallel resampling method for interactive deformation of volumetric mod-
els”. Computers & Graphics, Volume 53, pp. 147-155.

• A. Rodŕıguez and A. León (2016). “Spatial Opacity Maps for Direct Volume
Rendering of Regions of Interest”. Proceedings of Spanish Computer Graphics
Conference (CEIG 2016).

Conclusiones

En esta tesis hemos presentado diferentes contribuciones en los campos de modelos
deformables, soft robots y visualización y exploración de volúmenes. Nuestras solu-
ciones están enfocadas hacia sistemas interactivos, tanto en entornos médicos como
de control de robots. El presupuesto de tiempo limitado para proporcionar retroal-
imentación de estas aplicaciones conlleva un sacrificio en términos de precisión de
la simulación subyacente y/o nivel de detalle de la retroalimentación visual, para
satisfacer los requisitos de rendimiento interactivo. Motivados por esta limitación,
hemos centrado nuestros esfuerzos en explotar el poder de cómputo paralelo de
las GPU modernas para mejorar la calidad global de las soluciones y, junto con
nuestras principales contribuciones, presentamos varias contribuciones relativas a
computación GPGPU. A continuación detallamos las conclusiones y contribuciones
espećıficas relacionadas con cada bloque.

Bloque I: Simulación ChainMail paralela de modelos médicos
heterogéneos

Hemos presentado un nuevo algoritmo ChainMail paralelo replanteando el algoritmo
como un problema de computación stencil. Hemos demostrado que este esquema
de cómputo permite aumentar significativamente el rendimiento del algoritmo a

150

través de un cómputo paralelo de las etapas de propagación y relajación en la GPU.
Abordamos el problema de la computación eficiente de modelos de ChainMail het-
erogéneos incorporando un mecanismo basado en marcas de tiempo a la etapa de
propagación teniendo en cuenta que la velocidad de propagación de una deformación
a través de un cuerpo deformable depende de la rigidez del material atravesado y
generalizando el proceso de minimización de enerǵıa en la etapa de relajación, que
modela la enerǵıa elástica almacenada en los tejidos heterogéneos basada en la ley de
Hooke. En términos de rendimiento, nuestros experimentos demuestran que nuestra
solución supera a los algoritmos ChainMail anteriores por factores de más de 20x,
permitiendo simulaciones interactivas para modelos de varios millones de elementos.

Para abordar la naturaleza irregular de la computación de nuestro enfoque sten-
cil, hemos propuesto un esquema de partición para una gestión eficiente de la com-
putación en la GPU, reduciendo drásticamente la computación innecesaria y aśı
aumentar el rendimiento del algoritmo. Un análisis experimental mostró que el
esquema de partición exhibe buena portabilidad y escalabilidad y permite una acel-
eración del cómputo de un factor de 7x con respecto al esquema de gestión naif.

En conclusión, el algoritmo propuesto aborda varias limitaciones del algoritmo
original aumentando su rendimiento, manejando materiales heterogéneos de forma
eficiente y permitiendo que varias deformaciones se propaguen simultáneamente a
través del modelo, junto con otras mejoras menores, y creemos que las soluciones
basadas en los modelos ChainMail pueden aprovechar estas caracteŕısticas para
mejorar y ampliar su aplicabilidad. Se ha demostrado que el esquema de par-
tición propuesto aumenta el rendimiento y es aplicable a problemas generales de
computación stencil que sufren de computación irregular.

Bloque II: Control de soft robots basado en simulación

En el campo emergente de control de soft robots, el complejo comportamiento de
sus cuerpos, actuadores y otros componentes involucrados debe ser modelado de
una manera eficiente pero precisa para permitir soluciones de simulación interactivas
para calcular la actuación requerida en unos pocos milisegundos. Hemos presentado
un nuevo método paralelo usando la GPU para una estimación eficiente de la dis-
tribución del peso del fluido dentro de las cavidades hidráulicas junto con un nuevo
modelo de su comportamiento dinámico. Hemos integrado nuestra solución dentro
del entorno de simulación de soft robots de SOFA [114], proporcionando un sis-
tema para la planificación interactiva del movimiento de soft robots con actuadores
hidráulicos. Un análisis experimental de nuestra solución muestra la exactitud de
las estimaciones de distribución de peso del fluido y el modelo dinámico.

También presentamos un nuevo algoritmo de distribución de trabajo general,
simple y paralelo que mejora el cómputo de cargas de trabajo irregulares en la GPU
y hemos mostrado su aplicación a nuestro algoritmo de estimación de distribución
de peso.

Appendix A. Resumen y Conclusiones 151

Bloque III: Visualización médica interactiva

Hemos abordado dos problemas computacionalmente exigentes de procesamiento in-
teractivo de volúmenes en aplicaciones médicas: la visualización de datos volumétri-
cos deformables y la visualización de regiones de interés para la exploración de
volúmenes médicos.

Hemos presentado un algoritmo de remuestreo paralelo para la visualización di-
recta de datos volumétricos deformados. El núcleo del método es una malla de
muestreo intermedia que desacopla el proceso de remuestreo del método de defor-
mación subyacente. Una ventaja notable de este desacoplamiento es que cualquier
método de deformación puede aplicarse mediante un mapeado de su campo de de-
formación a la malla de muestreo, tal y como mostramos en el caso de modelos de
masa-muelle y elementos finitos con elementos tetraédricos, sin embargo, la principal
contribución de este método, como se muestra en nuestros experimentos es que este
desacoplamiento elimina de forma efectiva la dependencia del rendimiento del algo-
ritmo respecto a la resolución del modelo de deformación, existente en los métodos
anteriores. Esto permite la visualización interactiva de modelos volumétricos emple-
ando esquemas de deformación de alta resolución, como nuestro algoritmo Chain-
Mail, sin un coste computacional adicional.

Hemos introducido el concepto de mapas de opacidad espacial como una nueva
herramienta para la exploración de regiones de interés en datos volumétricos médicos.
Con el objetivo de proporcionar una integración sencilla de las técnicas de visual-
ización 3D con los flujos de trabajo cĺınicos existentes, que normalmente se basan
en la exploración de cortes 2D, seguimos un paradigma sin parámetros para la gen-
eración interactiva de los mapas de opacidad basado en una computación paralela
de crecimiento de regiones, siendo la única entrada por parte del usuario la se-
lección de un ṕıxel en un corte 2D. También mostramos cómo integrar los mapas
de opacidad en el cauce estándar de visualización de volúmenes, permitiendo aśı
su combinación con los métodos existentes para una visualización contextual mejo-
rada, y demostramos esta ventaja combinando su aplicación con un procedimiento
de generación automático de la función de transferencia.

	Abstract
	Introduction and overview
	Introduction
	Parallel GPU computing
	Interactive simulation of deformable models
	The ChainMail algorithm
	Soft robotics control

	Interactive direct volume rendering
	Medical volume exploration
	Rendering of deformed volume data

	Objectives
	Contributions
	Publications

	Outline

	Parallel ChainMail simulation of heterogeneous medical models
	A system proposal for interactive deformation of large medical volumes
	SP-ChainMail: a GPU-based sparse parallel ChainMail algorithm for deforming medical volumes
	Parallel deformation of heterogeneous ChainMail models: application to interactive deformation of large medical volumes

	Simulation-based control of soft robots
	Real-time simulation of hydraulic components for interactive control of soft robots

	Interactive medical visualization
	A parallel resampling method for interactive deformation of volumetric models
	Spatial opacity maps for direct volume rendering of regions of interest

	Conclusions and Future Works
	Conclusions
	Parallel ChainMail simulation of heterogeneous medical models
	Simulation-based control of soft robots
	Interactive medical visualization

	Future Works
	Parallel ChainMail simulation of heterogeneous medical models
	Simulation-based control of soft robots
	Interactive medical visualization

	Bibliography
	Resumen y Conclusiones

