Práctica 2. Estimación de las pérdidas de energía térmica de una persona en un ambiente dado.

Física del Medio Ambiente. Prof. Diego Pablo Ruiz Padillo

Material: Termómetro de infrarrojos.

1) Cálculo del flujo de calor por conducción entre zapatos/suelo y entre la piel/ropa.

Para ello se utilizará la expresión derivada de la ley de Fourier.

1.a) Flujo de calor entre zapatos y suelo:

$$J_q = \frac{(T_c - T_s)\lambda_z A_{pie}}{E_{suela}}$$

1.b) Flujo de calor entre la piel y la ropa: Consideramos el cuerpo humano como un cilindro de altura L igual a la altura total $\underline{\sin cabeza}$. El radio externo r_e se tomará como el radio medio con ropa, y el radio interno r_i como el radio medio hasta la piel.

$$J_{q} = \frac{(T_{c} - T_{r})2\pi\lambda_{r}L}{\ln\binom{r_{e}}{r_{i}}}$$

2) Cálculo del flujo de calor por convección desde la ropa al aire que rodea a la persona.

Se considera al cuerpo humano como una superficie vertical calentada. Por lo tanto, se determina la altura a la cual comienza el régimen turbulento (Gr = 10 ⁹) y en base a este valor se determina el coeficiente de convección medio, distinguiendo entre las zonas laminar y turbulenta de flujo. Los valores de h a tomar para cada régimen de flujo son:

$$h_{lamin ar} = 1.07 \sqrt[4]{\frac{(T_r - T_a)}{x}}; h_{turbulento} = 1.13 \sqrt[3]{(T_r - T_a)}$$

El flujo se obtendrá, por tanto, a partir de la expresión:

$$J_q = \overline{h}(T_r - T_a)A$$

Donde A es el área del cuerpo humano, que se estima mediante la fórmula de Dubois:

$$A_{cuerpo} = 0.202 M^{0.425} H^{0.725}$$

3) Cálculo del flujo de calor por convección desde la cabeza al ambiente.

Se utilizará la expresión

$$J_q = A_{cabeza}h(T_c - T_a)$$
 donde $h = 0.5(T_c - T_a)^{1/4}$

Para el cálculo del área de la cabeza considerar a ésta como una esfera.

4) Cálculo del flujo de calor por radiación desde la ropa al ambiente.

Se utilizará la siguiente expresión, donde todas las magnitudes están expresadas en el S.I. y el flujo se obtiene en watios. No olvide expresar la temperatura en grados Kelvin.

$$J_q = 0.7 A_{cuerpo} \varepsilon \sigma (T_r^4 - T_a^4)$$

La emisividad de la persona (ϵ) puede tomarse como 0,7.

5) Cálculo de la pérdida total de calor sensible

Se obtiene sumando los resultados obtenidos en 2), 3) y 4). Obtenga este valor y estime las pérdidas de energía en Kcal/día.

6) Estimación de la pérdida de calor latente por evaporación y respiración:

Para obtener un balance completo de las pérdidas de calor del cuerpo humano es necesario considerar la pérdida de calor latente. En reposo ésta se llega a suponer el 10% del total, pero con actividad física puede llegar a un 50% del total. Estime a partir de los resultados del apartado 5) entre qué valores fluctúa el flujo total de calor perdido por el cuerpo humano en reposo y con actividad física fuerte.

7) Discusión de resultados.

Comente los resultados obtenidos en el apartado anterior. Compare las pérdidas de calor con las necesidades calóricas diarias de una persona media. ¿Qué conclusiones puede extraer?

Nomenclatura:

 T_a = Temperatura ambiente.

 T_s = Temperatura de la suela de los zapatos.

 T_c = Temperatura del cuerpo (piel).

 T_r = Temperatura de la ropa.

 λ_r = Conductividad térmica de la ropa. Un valor típico es de 0,051 kcal/hm°C.

 λ_z = Conductividad térmica de la suela de los zapatos. Un valor típico es de 0,1 kcal/hm°C.

M = Masa de la persona (kg).

H = Altura de la persona (m).

Nota: Las expresiones que aparecen en este guión de prácticas incluyen coeficientes con dimensiones. Al utilizarlas use siempre el Sistema Internacional de Unidades.