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Introduction

0.1 Motivation of the problem

This thesis is concerned with Liouville type equations on compact surfaces. More
precisely, our analysis is focused on three fundamental issues in the analysis of partial
differential equations: existence, multiplicity and compactness of solutions.

The study of the Liouville equation dates back to 19th century through the work
of the same Liouville, [84], in which the entire solutions of the equation

−∆u = 2eu in R2 (0.1)

are classified.
This kind of equations gave rise to a lot of interest in the middle of the 70’s

due to its geometric meaning. Let (Σ, g) be a surface Σ equipped with a certain
metric g and g̃ a conformal metric to g on Σ, namely g̃ = gev. If Kg, Kg̃ are the
Gaussian curvatures relative to these metrics, then the logarithm of the conformal
factor satisfies the equation

−∆gv + 2Kg = 2K(x)ev in Σ, (0.2)

where K = Kg̃. Here ∆g denotes the Laplace-Beltrami operator in (Σ, g).
On the other hand, the classical Uniformization Theorem asserts that every sim-

ply connected Riemann surface is conformally equivalent to one of the following three
Riemann surfaces: the open unit disk, the complex plane or the Riemann sphere.
As a consequence, we can conclude that every compact orientable surface carries a
conformal metric with constant Gaussian curvature. Hence we can assume from now
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Introduction 2

on that Kg is constant.
At this point, one may ask the following question: given a function K defined

on Σ, is there any conformal deformation of the metric g such that K becomes
the Gaussian curvature of the new metric? This problem, known as the prescribed
Gaussian curvature problem, is reduced to study the existence of solutions for the
equation (0.2). This problem was proposed by Kazdan and Warner for general
surfaces in [72] and by Nirenberg in the special case of the standard sphere.

Integrating (0.2) and taking into account the Gauss-Bonnet Theorem, we obtain
that

λ := 2
ˆ

Σ
Kg dVg = 2

ˆ
Σ
Kev dVg = 4πχ(Σ), (0.3)

where χ(Σ) is the Euler characteristic of Σ. By this formula, we can observe how the
topology of the surface Σ gives necessary conditions on the choice of the function K.
Indeed, the sign of the function K in at least some point of Σ is prescribed by χ(Σ).

If λ 6= 0, the problem (0.2) can be reformulated as follows

−∆gu = λ

(
Keu´

Σ Ke
udVg

− 1
|Σ|

)
in Σ. (0.4)

Obviously, any solution of (0.2) solves (0.4). Reversely, observe that (0.4) is
invariant under addition of constants. So, given a solution of (0.4), we can add a
constant appropriately to obtain a solution of (0.2).

This problem is the so-called mean field equation of Liouville type. Due to the
invariance by addition of constants, sometimes it is helpful to suppose that

ˆ
Σ
KeudVg = 1. (0.5)

In the seminal work [115], Troyanov proposed the construction of conformal met-
rics with prescribed Gaussian curvature on surfaces with conical singularities. This
problem can be considered as the singular analogue of the question discussed above.
A metric g̃ defined on Σ admits a conical singularity of order α > −1 at p ∈ Σ, if

g̃ ∼ |x− p|2αg as x→ p. (0.6)
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In such case, Σ admits a tangent cone with vertex at the point p of total angle
ϑ = 2π(1 + α).

Let G(x, y) be the Green function of the Laplace-Beltrami operator on Σ associ-
ated to g, i.e.

−∆gG(x, y) = δy −
1
|Σ| in Σ,

ˆ
Σ
G(x, y)dVg = 0, (0.7)

where δy denotes a Dirac delta at the point y ∈ Σ. Moreover, given p1, . . . , pm ∈ Σ
and α1, . . . , αm ∈ (−1,+∞) we define

hm(x) = 4π
m∑
j=1

αjG(x, pj) = 2
m∑
j=1

αj log
(

1
d(x, pj)

)
+ 2παjH(x, pj), (0.8)

where H is the regular part of G.
Following the approach of [115], if K is the Gaussian curvature of a metric g̃

which admits p1, . . . , pm ∈ Σ conical singularities with their corresponding orders
α1, . . . , αm ∈ (−1,+∞), then v is a solution of (0.2) in Σ \ {p1, . . . , pm} such that

2πχ(Σ) + 2π
m∑
j=1

αj =
ˆ

Σ
KevdVg, (0.9)

and
v ∼ 2α log |x− pj| as x→ pj. (0.10)

Moreover, by the change of variable u = v + hm, we obtain the equation

−∆gu+ 2Kg = 2K̃(x)eu − 4π
|Σ|

m∑
j=1

αj in Σ \ {p1, . . . , pm}, (0.11)

where

K̃ = Ke−hm . (0.12)

Observe that
K̃(x) ' d(x, pj)2αjK(x) close to pj.

Obviously, K and K̃ have the same sign in Σ \ {p1, . . . , pm}.
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In addition, it holds

2πχ(Σ) + 2π
m∑
j=1

αj =
ˆ

Σ
K̃eudVg.

By standard regularity theory, we can show that a weak solution u for (0.11) in
the whole domain Σ is smooth. Observe that ev = e−hmeu which is consistent with
(0.6).

Therefore, we have proved that the singular prescribed Gaussian curvature prob-
lem amounts to solve the PDE

−∆gv + 2Kg = 2K(x)ev − 4π
m∑
j=1

αjδpj in Σ. (0.13)

Next, integrating (0.13) and taking into account the Gauss-Bonnet formula (0.9) is
verified. Let us introduce the parameter λ as

λ = 4πχ(Σ) + 4π
m∑
j=1

αj = 2
ˆ

Σ
KevdVg. (0.14)

Frequently, λ
4π is called the Euler characteristic of the singular surface (Σ, g̃).

Recall that we can assume that Kg is a constant, so we can rewrite (0.11) as

−∆gu = λ

(
K̃eu´

Σ K̃e
udVg

− 1
|Σ|

)
in Σ, (0.15)

where K̃ is defined in (0.12) if λ 6= 0. This problem is called the singular mean field
equation of Liouville type.

During recent years, the relevance of Liouville type equations has experienced
a great increase occasioned by its connection with many current physical theories.
Next, we describe briefly some of them.

• Periodic vortices in Electroweak theory of Glashow-Salam-Weinberg:
mean field problems of Liouville type are present in the study of vortex type
configurations in the Electroweak theory of Glashow-Salam-Weinberg in the
selfdual regime, ([76]). This theory unifies the description of weak and electro-
magnetic interaction between elementary particles. In the analysis of quantum
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electroweak instabilities, Ambjorn and Oleson modeled Electroweak vortices by
virtue of the selfdual Bogomol’nyi type equations. Moreover, these problems
can be rewritten as the following elliptic system −∆gv = 4g2ev + g2ew − 4π∑m

i=1 αiδpi ,

−∆gw = −2g2ev − g2

2 cos2 θ
ew + g2ϕ2

0
2 cos2 θ

,
(0.16)

where θ ∈ (0, π2 ) indicates the Weinberg mixing angle, g is the coupling constant
and ϕ0 is the symmetry breaking parameter.

The expressions ev and ew make reference to the magnitude for two gauge
fields, whereas the points pi are the vortex points and αi ∈ N correspond to
their multiplicity. Regarding periodic vortices, namely solutions of the system
imposing periodic boundary conditions, it is possible to reduce these equations
to the following mean field system with singular data

−∆gv1 = µ ev1´

T2 ev1
+ (4πN − µ) ev2´

T2 ev2
− 4π∑m

i=1 αiδpi in T2,

∆gv2 = µ
2

(
ev1´

T2 ev1
− 1
|T2|

)
+ 4πN

2 cos2 θ

(
ev2´

T2 ev2
− 1
|T2|

)
in T2,

(0.17)

where T2 is the flat 2-torus. With respect to the previous system, the following
relation holds

v1 = v − v, v2 = w − w, µ = 4πN − g2ϕ2
0|T2|

sin2 θ
.

Now, if one fixes the component v2, the solvability of the first equation of
(0.17) ammounts to solve (0.15). Hence the existence of Electroweak periodic
vortices depends strongly on the existence of solutions for the singular mean
field equation. We refer the reader to [9, 35, 112, 113, 120] for a complete
description and several results in this context.

• Periodic vortices in Chern-Simons-Higgs theory: The second physical
application of Liouville mean field equations is connected to Chern-Simons-
Higgs theory. As discussed in [54], Chern–Simons theories are relevant in the
study of several physical phenomena, such as high critical temperature super-
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conductivity, the quantum Hall effect or conformal field theory. Specifically,
the abelian Chern-Simons gauge theory proposes a selfdual model whose elec-
trodynamics, under the control of the Chern-Simons parameter, yield vortices
which carry electric charge as well as magnetic flux (see [54, 76, 112]). Indeed,
the study of the existence of periodic selfdual Chern-Simons vortices, leads to
solve the following Liouville type equation ([65])

−∆u = 1
ε2 e

u(1− eu)− 4π
m∑
i=1

αiδpi in R2, (0.18)

under the assumption
´
R2 e

u(1 − eu) dx ≤ C. Here the parameter ε is the
Chern-Simons term and p1, . . . , pm are the vortex points corresponding to the
zeroes of the Higgs field φ, with multiplicty αi ∈ N. The value eu defines
the Higgs field φ by the relation u = log |φ|2. In this context, consider u a
solution of (0.18) such that euε → 0 as |z| → +∞. This type of solutions are
called non-topological, and give rise to vortexes asymptotically equilavent to
the symmetric vacuum state φ = 0. We point out that, in [101], it is proved
that given a sequence of non-topological solutions uε such that uε − 2 log ε is
bounded, then it converges to a solution u of the singular mean field equation

−∆u = λ

(
K̃eu´

T2 K̃eu dVg
− 1
|T2|

)
in T2,

as ε→ 0, where λ is a positive parameter, K̃ is defined in (0.12) and T2 is the
flat 2-torus.

• Stationary solutions of a reaction-diffusion system: Liouville type equa-
tions arise also in some biological processes such as chemotaxis. This is defined
as the phenomena whereby a collection of organisms (cells or bacteria) moves
according to the presence of certain chemicals. Such processes are tipically
modelled by reaction-diffusion PDE’s type, as Keller-Segel system, [74], which
is written as
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 ut = ∇ · (∇u− u∇v) in Ω× (0, T ),
τvt = ∆v − αv + u in Ω× (0, T ),

(0.19)

where Ω ⊂ RN is a bounded domain with smooth boundary and α, τ are
positive constants. For the system are given initial data and non-flux boundary
conditions (homogeneous Neumann condition)


∂u
∂n

= 0 = ∂v
∂n

on ∂Ω,
u(0, ·) = u0, v(0, ·) = v0, in Ω,

(0.20)

System (0.19) models the dynamic of a population migration in the domain
driven by the gradient of the chemical substances. The value u corresponds to
the concentration of population, whereas v does to the density of the chemical
substance. If N = 2, one can show that the stationary solutions satisfy the
relation

log u− v = log σ, with σ > 0,

see [99] for more details. In this situation, the time-independent system (0.19)-
(0.20) yields the Liouville type equation

 −∆v + αv = σeu in Ω,
∂u
∂n

= 0 on ∂Ω.

We refer the reader to [57, 107] for a further discussion and some results. A
particular case of the last problem will be discussed in the subsection 0.4.1.

• Stationary turbulence for Euler flow with vortices: mean field equations
arise also in statistical mechanics in the study of the turbulent behavior of a
Euler flow with vortices of the same orientation. According to the vortex theory
proposed by Onsager (see [102]), a finite dimensional Hamiltonian system can
describe the Euler flow in a bounded planar domain Ω when the vorticity field is∑s
j=1 βjδqj , where qj are the vortices and βj their respective vorticity intensity.
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One can try to analyze the stationary turbulence where the number of vortexes
s tends to infinity and βj → 0 in such way that the total vorticity is bounded.
In this way, it is proved that the limit of the vortex model is the equation

 −∆u = λ eu´
Ω e

u dx
in Ω,

u = 0 on ∂Ω,

where λ > 0 and u
λ
is the stream function for an Euler flow confined in the

domain with vorticity eu´
eu
. In this model, −λ corresponds to negative values

of the statistical temperature, a range which is expected to describe the high
energy (turbulent) behavior of the flow. For a rigorous derivation of the model,
see [18, 75].

Now, consider an Euler flow in Ω under the influence of m sinks of vorticity
−4παi

λ
located at points pi, which are in the opposite direction with respect to

the location of the rest of vortices. Now, the limit of the singular vortex model
is the problem with singular data

 −∆u = λ eu´
Ω e

u − 4π∑m
i=1 αiδpi in Ω

u = 0 on ∂Ω.

Now the total vorticity equals eu´
eu
− 4π∑m

i=1
αi
λ
δpi . In [117], the authors give a

rigorous deduction of this singular model.

We highlight that under these perspectives the restrictions (0.3) and (0.14) are
not present.

0.2 An overview of the regular case

In this section we collect some fundamental results concerning equation (0.2). Let
us first present the classification result of entire solutions given by Liouville in [84].

Let π : S2 → C be the stereographic projection and h a meromorphic function on
C such that h′(z) 6= 0 and the order of its poles is 1. Consider the conformal map
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C h−→ C π−1
−−→ S2,

where C is equipped with the Euclidean metric |dz|2 and S2 with the round metric
g0. The pull-back metric of g0 along (π−1 ◦ h) is

(π−1 ◦ h)∗g0 = 4|h′(z)|2
(1 + |h(z)|2)2 |dz|

2.

Hence the function

ϕ(z) = log 4|h′(z)|2
(1 + |h(z)|2)2 ,

solve (0.1), where eϕ is the conformal factor of π−1 ◦ h. Reversely, all solutions of
(0.1) are of this form, see [120] for different proofs of this fact.

In particular, if a finite curvature condition holds, namely
ˆ
R2
eu dx < C, (0.21)

then h must be a Möbius transformation. Therefore, the solutions of (0.1) yield to
the family

ϕµ(z) = log 4µ
(1 + µ|z − z0|2)2 , with z ∈ C. (0.22)

Notice that function ϕµ, known as bubble, coincides with the conformal factor of the
stereographic map, composed with a translation and a dilation. This classification
was given by Chen and Li in [25] relying on the moving planes method; Chou andWan
gave a simpler proof in [40] by means of complex analysis arguments. In addition, a
solution of (0.1) satisfying (0.21) verifies

2
ˆ
R2
eu dx = 2

ˆ
S2

1 dVg0 = 8π. (0.23)

The free parameter µ involved in (0.22) just reflects the scale invariance of (0.1)
under the transformation

ϕµ(x) 7→ ϕµ(µx) + 2 log µ for any µ > 0.



Introduction 10

The scale invariance allows ϕµ(x) to concentrate around the point z0, where ϕµ(x)
attains its maximum. Actually, eϕµ ⇀ 4πδz0 weakly in the measures sense as µ →
+∞. As we will discuss in the sequel, this concentration phenomena may occur in
general for sequences of solutions Liouville type.

Now, let us review some contributions concerning equation (0.2) on compact
surfaces without boundary.

If χ(Σ) = 0, the solvability of the problem is completely settled in [72]. Specifi-
cally, the problem admits a non-trivial solution if, and only if, K changes sign and´

Σ K dVg < 0. In case χ(Σ) < 0, besides the fact that K must be negative some-
where, other necessary conditions for the existence of solutions are also given in
[72]. However, the problem is not completely settled. For instance, given a strictly
negative K, Berger shows that (0.2) admits a solution. If one considers a function
K(x) = k(x)+ρ, where k(x) ≤ 0 and ρ is a small parameter, the problem is solvable.
Different results in this direction are given in [3, 13, 50].

The problem of prescribing the Gaussian curvature on S2, proposed initially by
Nirenberg, is more delicate. Indeed, the available results are partial, [3, 22, 23, 30–
32, 72], and a complete answer on the existence question is still unknown. Kazdan
and Warner deduce that a solution of (0.2) verifies the following necessary condition

ˆ
S2
∇ζ · ∇KeudVg0 = 0, where −∆g0ζ = 2ζ in S2. (0.24)

If the function K is even, one can reformulate the problem in RP 2. Actually,
(0.2) admits a solution if and only if K is positive somewhere, see [97].

The inclusion of symmetric functions on S2 provides more conditions for the
solvability of the Nirenberg problem and cases of non-existence. Given an axially
symmetric function K, if (0.2) admits a solution, then (0.24) implies that K ′ changes
sign. Kowever, Chen and Li show that this condition is not sufficient, see [30]. In
particular, if one assumes that K is axially symmetric on S2, not constant and
monotone in the region where K > 0, then there is no solution for (0.2).

The study of the case χ(Σ) > 0 enables us to reformulate the problem (0.2)
into (0.4), which admits a variational structure. A reasonable approach, meaningful



Introduction 11

also from the physical point of view, is to study (0.4) for any positive parameter λ
independent of the restriction (0.3).

Another related significant issue is the study of compactness for solutions of
Liouville type equations. Roughly speaking, given {un} a sequence of solutions, one
desires to find conditions that allow one to pass to the limit. By standard regularity,
it is enough to show L∞ boundedness. This problem is typically studied by means
of a blow–up analysis, which determines for what values of λ the sequence un is
uniformly bounded or may blow–up.

The main tool in this analysis is the classical blow–up alternative established first
by Brezis and Merle, [17], and completed by Li and Shafir, [78], for the solutions of
the problem

−∆un = Vn(x)eun in Ω, (0.25)

where Ω ⊂ R2 is an open domain and 0 < Vn(x) ∈ C0(Ω), satisfying
ˆ

Ω
eun dx < C. (0.26)

As in [17], we say that a point q ∈ Ω is a blow–up point relative to un if there
exists {qn} ⊂ Ω with qn → q such that un(qn) → +∞. In this way, let {un} be
a sequence of solutions of (0.4) and Vn → V in C0(Ω) sense, then the following
alternative holds, up to subsequence:

1. either un is uniformly bounded in L∞loc(Ω);

2. or un → −∞ uniformly on compact sets of Ω;

3. or there exists a finite set S = {q1, . . . , qr} ⊂ Ω of blow–up points.

In such case, un → −∞ in compact sets of Ω \ S and Vneun ⇀
∑r
i=1 β(qi)δqi in

the weak sense of measures where β(qi) = 8πmi with mi ∈ N and i = 1, . . . , r.

By the blow–up procedure around a maximum of un, one is led to an entire
solution of the global problem (0.1). This is the reason why the local mass β(qi)
corresponds to multiples to the entire mass given by (0.23).
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As observed by Wolansky, the third alternative holds with β(qi) = 8π, if the
oscillation is bounded on ∂Ω, namely

sup
∂Ω

un − inf
∂Ω
un ≤ C, (0.27)

and ||∇Vn||L∞(Ω) ≤ C. In other words, Wolansky shows that around a blow–up point
there is only one bubble.

This is still the case for sequences of solutions of (0.4) satisfying (0.5), as shown
by Yan Yan Li ([77]). He uses the moving plane method outside the blow–up points
to obtain the boundary condition (0.27). In any case, as a consequence of the above
blow–up alternative, sequences of solutions form a compact set if λ 6= 8kπ.

Here it is worth to comment some contributions which deal with the existence
of blowing–up solutions for (0.4). Namely, given λ = 8kπ, one can construct a
sequence un of solutions of (0.4) such that λn → λ and with k blow–up points.
These construction use singular perturbative methods à la Lyapunov-Schmidt, see
[34, 36, 49, 56]. Those results complement the aforementioned compactness theorems.

The previous compactness result enables us to define the global Leray-Schauder
degree of (0.4) for λ ∈ (8kπ, 8(k + 1)π) with k ∈ N and K > 0. Because of its
homotopy invariance, the degree is independent of the function K and the metric g.
In fact, it follows from [77] that the degree only depends on λ and the topology of
Σ, so it is denoted by d(k, χ(Σ)). An accurate blow–up analysis, [34], allows Chen
and Lin in [35] to obtain the explicit formula

d(k, χ(Σ)) =
(
k − χ(Σ)

k

)
=


(k−χ(Σ))···(2−χ(Σ))(1−χ(Σ))

k! if k > 0,

1 if k = 0.
(0.28)

As Malchiodi shows in [88, 89], the Leray-Schauder degree can be interpreted
by means of a variational formulation of (0.4). Moreover, following the ideas of
the influential work of Djadli and Malchiodi ([53]) a very general existence result is
obtained for every compact surface and for every positive K in C1(Σ) with λ 6= 8kπ,
[52, 88]. The proof uses min-max arguments, see subsection 0.4.3 for more details.
For instance if Σ = S2, observe that by (0.28), d(k, χ(S2)) = 0 with k ≥ 2, whereas
the variational approach yields existence of solutions.
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In the works [45, 46], De Marchis proves a result of generic multiplicity of solutions
of (0.4). Let λ ∈ (8kπ, 8(k+1)π) with k ∈ N; then, for a generic choice of the metric
g and the positive function K,

#{solutions of (0.4)} ≥


pk if χ(Σ) = 2,∑k
r=0

(
k − r − χ(Σ) + 1

k − r

)
pr if χ(Σ) = 0.

(0.29)

where p0 = 1, p2m+1 = p2m = ∑m
j=0 pj for any m ∈ N.

Let us point out that the above estimate on the number of solutions improves the
one that suggests the Leray-Schauder degree, (0.28). As we see, in this case, Morse
theory gives more information about the structure of the critical points than degree
theory.

0.3 An overview of the singular case

This section is devoted to introduce different results concerning equation (0.15). Let
us first consider the entire problem

−∆u = |x|2αeu in R2, (0.30)

satisfying the integral condition
ˆ
R2
|x|2αeudx < C, (0.31)

where α > −1. The solutions of (0.30) such that (0.31) holds are classified by
Prajapat and Tarantello in [104] and are given by the expression

ϕµ(z) = log 8(1 + α)µ
(1 + µ|z1+α − c|2)2 , with z ∈ C, (0.32)
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where µ is a positive parameter, c ∈ C; if α /∈ N∪ {0} then c must be equal to 0. In
addition, a solution of (0.30) satisfying (0.31) verifies

ˆ
R2
|x|2αeu dx = 8(1 + α)π. (0.33)

The functions ϕµ are scale invariant under the transformation

ϕµ(z) 7→ ϕµ(µz) + 2(1 + α) log µ for any µ > 0.

As µ→ +∞, the following concentration phenomena holds

i) if c = 0, then

|x|2αeϕµ ⇀ 8(1 + α)πδ0 in the weak sense of measures;

i) if c 6= 0 and α ∈ N ∪ {0}, then

|x|2αeϕµ ⇀
α+1∑
i=1

8πδqi in the weak sense of measures;

where {q1, . . . , qα} are the set of (α + 1)-roots of c.

Similarly as we have proceeded for the regular case, we discuss now problem
(0.13). The case λ ≤ 0 has been treated in [115], which obtains existence results
analogous to the regular case ones, [12, 72]. Under the assumption K < 0, McOwen
gives an existence result for surfaces with positive Euler characterstic, see [94].

Again, when one considers the equation on the sphere, the problem becomes
delicate. For m = 2 and positive constant curvature, Troyanov ([114]) shows that
(0.13) admits a solution only if α1 = α2, the so-called american football. In particular,
(0.13) does not admit solutions for m = 1 (taking α2 = 0). In other words, the
tear drop conical singularity on S2 does not admit constant curvature. Besides, for
m = 2, Chen and Li ([26]) give necessary conditions on K for the solvability of
(0.13); whereas Eremenko in [55] studies the case of prescribing constant positive
curvature with three conical singularities. We also refer the reader to [95], where
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the authors give a criterion for the existence of a metric of constant curvature on S2

with conical singularities.
As we are interested in any positive parameter λ, we can transform equation

(0.13) into (0.15), which admits variational structure. In addition, by the invariance
under addition of constants of (0.15), let us suppose that

ˆ
Σ
K̃eu dVg = 1. (0.34)

Regarding the compactness question, the presence of the singularities implies that
the corresponding critical value set becomes more involved. In fact, the condition λ /∈
8πN is no longer sufficient to guarantee uniformly upper boundedness of solutions.
In [8, 9, 111] it is shown that if K > 0, then the solution set of the problem (0.15)
is compact for λ /∈ Λm, where Λm is the critical value set defined as follows

Λm =

8πr +
m∑
j=1

8π(1 + αj)nj | r ∈ N ∪ {0}, nj ∈ {0, 1}

 \ {0}. (0.35)

This result is proved by a blow-up analysis of the sequence of solutions of the
problem

−∆un = |x|2αnVn(x)eun in Ω, (0.36)

where 0 < Vn ∈ C1(Ω), αn > −1, and the following finite integral condition holds:
ˆ

Ω
|x|2αnVn(x)eun dx ≤ C. (0.37)

Let un be a sequence of solutions of (0.36) satisfying (0.37), Vn → V in C0(Ω)
sense and αn → α > −1. Then, the following alternative holds, up to subsequence
(see [9])

1. either un is uniformly bounded in L∞loc(Ω);

2. or un → −∞ uniformly on compact sets of Ω;

3. or there exists a set S = {q1, . . . , qr} ⊂ Ω of blow–up points.
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In such case, un → −∞ in compact sets of Ω\S and |x|2αnVneun ⇀
∑r
i=1 β(qi)δqi

in the weak sense of measures, where β(qi) = 8πmi if qi 6= 0 and β(qi) =
8(1 + α)π + 8πm̃i if qi = 0 with mi ∈ N and m̃i ∈ N∪ {0} for any i = 1, . . . , r.

Applying the blow–up technique around each point qi, either (0.1) or (0.30) ap-
pears in the limit. Notice that the values 8π and 8(1 +α)π are the local masses that
arise from the corresponding quantization (0.23) and (0.33).

Bartolucci and Tarantello prove that the oscillation bounded mean condition,
(0.27), holds for solutions of (0.15), so the third statement of the previous blow–up
alternative holds with β(qi) = 8π for qi 6= 0 and β(qi) = 8(1 + α)π for qi = 0.

The construction of blowing–up solutions for (0.15) according to the third blow–
up alternative has been treated in [36]. This construction allows Chen and Lin to
calculate the Leray-Schauder degree of (0.15), see [36]. Consider the function g

g(x) = (1 + x+ x2 + x3 + · · · )−χ(Σ)+m
m∏
i=1

(
1− x1+αi

)
= 1 + b1x

n1 + b2x
n2 + · · · ,

where bi ∈ Z and ni ∈ R+ with ni < nj if i < j. In this case, the homotopy invariance
of the degree implies that d(k, χ(Σ),m) is constant for every λ ∈ (8niπ, 8ni+1π) for
any i = 0, 1, . . ., and independent of the function K as long K is a C1 positive
function. Indeed,

d(k, χ(Σ),m) =
m∑
i=0

bi,

where b0 = 1.

Let us now discuss the variational approach to (0.15). This problem is the Euler-
Lagrange equation of the energy functional

Jλ(u) = 1
2

ˆ
Σ
|∇u|2dVg + λ

|Σ|

ˆ
Σ
u dVg − λ log

ˆ
Σ
K̃eudVg, (0.38)

defined in the domain

X =
{
u ∈ H1(Σ) :

ˆ
Σ
K̃eu dVg > 0

}
. (0.39)

By a proper modification of the Moser-Trudinger inequality, Troyanov proves
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that Jλ is coercive if λ < 8πmini=1,...,m{1, 1 + αi}, then a solution can be found as a
minimizer, see [115]. If λ = 8πmini=1,...,m{1, 1 + αi}, Jλ is bounded below, but is no
longer coercive. This case is discussed in [92].

Instead, Jλ does not remain bounded from below for λ > 8πmini=1,...,m{1, 1+αi}.
In order to find saddle-type critical points, min-max arguments seem to be the
natural technique to handle the problem. Under the assumption K > 0 and αi > 0
for every i = 1, . . . ,m, Bartolucci, De Marchis and Malchiodi give a general positive
answer to the existence question for surfaces with positive genus and λ ∈ (8π,+∞)\
Λm, see [5].

The study of the multiplicity of solutions of (0.15) is studied in [5] for posi-
tive genus surfaces and positive potentials. In this way, using a Morse-theoretical
approach, for λ ∈ (8kπ, 8(k + 1)π) \ Λm and for a generic choice of (g,K), then

#{solutions of (0.15)} ≥
(
N + g− 1

g− 1

)
, (0.40)

where g is the genus of the surface Σ and χ(Σ) = 2− 2g.
In the special case of the standard sphere, also for the case of positive potentials,

Malchiodi and Ruiz, ([90]), obtain an improvement on the Moser-Trudinger inequal-
ity which allows them to prove that (0.15) is solvable under some extra assumptions
involving the order of the singularities in the case λ ∈ (8π, 16π)\Λm. Moreover, Bar-
tolucci, Lin and Tarantello, [6], prove that (0.15) does not admit solution assuming
that K is a positive constant, m = 1, α1 > 0 and λ ∈ (8π, 8π(1 + α1)). Applying an
argument based on vanishing moments, in the case m ≥ 2, Bartolucci and Malchiodi
show existence for (0.15) if λ ∈ (0, 8πmini{1, 1 + αi}) \ 4πN and m ≥ 2, see [7].
In addition, if m = 2 and α1 < α2, the authors show that there is no solution for
λ ∈ (8π(1 + α1), 8π(1 + α2)) and positive constant potentials.

The case of negative orders αi has been less studied from a variational point of
view. Actually, the unique contributions are given by Carlotto and Malchiodi, [21],
and Carlotto, [20], for positive K. They find a topologic sufficient condition for the
solvability of (0.15), whereas the first author deduce an algebraic criterion which
implies such sufficient condition.
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0.4 Objectives

In this thesis we present several results for the case in which the function K is
allowed to change sign. The absence of sign restriction opens a large number of
related current questions and engaging problems to solve. As far as we know, this
case has not much been considered in the literature. For that reason, the questions
to be analyzed in the present work are some of the most fundamental ones in the
analysis of PDEs: existence, multiplicity and compactness of solutions. Let us point
out that from a geometric point of view, there is no reason for K to be strictly
positive.

Actually, this thesis contains the first studies on the sign changing case for general
singular surfaces with an arbitrary number of conical singularities, [47, 48]. In fact,
this question was proposed in Remark 2.8 of [5], which points out that the difficulties
are inherited by the lack of concentration-compactness-quantization results.

Our study on the sign changing case has begun to generate a real interest. In
fact, this situation has been treated recently by D’Aprile, De Marchis and Ianni
using perturbative methods, [44].

0.4.1 Prescribing Gaussian curvature in a subdomain of the
sphere

Let Ω be a subdomain of S2, considered with the standard metric. We will study the
existence of solutions for the problem

 −∆g0u+ 2 = 2K(x)eu in Ω,
∂u
∂n

= 0 on ∂Ω,
(0.41)

where K is a continuous function defined on Ω.
It is important to first observe that with this boundary condition (0.41) is not

invariant under conformal transformations of the sphere, as is the Nirenberg problem.
This problem has already been studied in [22, 61, 79, 118]. By integrating equa-

tion (0.41) we obtain that

λ := 2|Ω| = 2
ˆ

Ω
K(x)eudVg0 . (0.42)
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In particular, no solution exists if K is negative. From now on we will assume

(A1) K(x) > 0 for some x ∈ Ω.

Moreover, (0.42) implies that (0.41) can be rewritten in the form
 −∆g0u = λ

(
Keu´

ΩKe
udVg0

− 1
|Ω|

)
in Ω,

∂u
∂n

= 0 on ∂Ω.
(0.43)

Problem (0.43) is the Euler-Lagrange equation of the energy functional

Iλ(u) = 1
2

ˆ
Ω
|∇u|2 dVg0 + 2

ˆ
Ω
u dVg0 − λ log

ˆ
Ω
Keu dVg0 , (0.44)

defined in the domain

X =
{
u ∈ H1(Ω) :

ˆ
Ω
Keu dVg0 > 0

}
. (0.45)

Observe that assumption (A1) implies that X is not empty. As problem (0.43),
the functional Iλ is invariant under addition of constants.

In [22] it was shown that Iλ is always bounded from below and coercive if λ < 4π,
i.e. |Ω| < 2π). Therefore, a solution is obtained by minimization. The case λ = 4π
is critical, Iλ is still bounded from below but loses coercivity. Moreover, the problem
may present loss of compactness due to bubbling of solutions. If Ω is a hemisphere,
for instance, one cass pass to a problem in S2 by reflection and apply the known
results for the Nirenberg problem, see [22].

In this thesis we consider the case λ ∈ (4π, 8π), that is, |Ω| > 2π. The case

(Q1) K(x) < 0 for any x ∈ ∂Ω,

was already treated in [61]. Under (Q1) Iλ is still bounded from below and coercive,
and a solution can be found by minimization.

Instead, if K(x) > 0 on some point x ∈ ∂Ω, then Iλ is no longer bounded from
below. In order to find critical points of saddle type, min-max arguments appear as
the natural technique to handle the problem. A first result in this direction was given
in [118], where the existence of a solution for (0.41) is shown under the assumption
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(Q2) ∂Ω is disconnected and K(x) > 0 for any x ∈ ∂Ω.

In this chapter we extend the existence results of [61] and [118] under a unique
general condition, namely

(A2) K(x) 6= 0 for all x ∈ ∂Ω.

Theorem 0.4.1. Assume (A1) and (A2). If Ω is a smooth domain of S2 such that
|Ω| ∈ (2π, 4π), then problem (0.41) admits a solution.

Let us emphasize that our assumption (A2) contains both (Q1) and (Q2) as
particular cases. Moreover, our proofs fix some gaps in the proof of [118], as will be
explained in Chapter 2. This result has been presented in the publication [86].

0.4.2 Prescribing Gaussian curvature in singular surfaces

We now address the problem (0.15) in the case in whichK is a sign changing function.
We give new existence and generic multiplicity results by means of variational meth-
ods. In order to obtain these results, it is unavoidable to establish a compactness
property, also in this thesis.

Let us introduce a first hypothesis on K:

(H1) K is a sign changing C2,α function with ∇K(x) 6= 0 for any x ∈ Σ with
K(x) = 0.

Let us define the sets

Σ+ = {x ∈ Σ : K(x) > 0}, Σ− = {x ∈ Σ : K(x) < 0}, Γ = {x ∈ Σ : K(x) = 0}.

Assumption (H1) implies that the set of nodal curves Γ is regular and that

N+ = #{connected components of Σ+} < +∞. (0.46)

In what follows we will also assume that

(H2) pj /∈ Γ for all j ∈ {1, . . . ,m}.
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So we can suppose, up to reordering, that there exists ` ∈ {0, . . . ,m} such that

pj ∈ Σ+ for j ∈ {1 . . . , `}, pj ∈ Σ− for j ∈ {`+ 1, . . . ,m}. (0.47)

As commented in previous sections, given a positive function K, the set of solu-
tions is compact if λ does not belong to the critical set Λm defined in (0.35). In the
next theorem we obtain an analogous conclusion without the sign restriction on K,
with a slight modification on the set of critical values

Λ` =

8πr +
∑̀
j=1

8π(1 + αj)nj : r ∈ N ∪ {0}, nj ∈ {0, 1}

 \ {0}. (0.48)

Theorem 0.4.2. Assume that α1, . . . , αm > −1 and let Kn be a sequence of functions
with Kn → K in C2,α sense, where K verifies (H1), (H2). Let un be a sequence of
solutions of the problem

−∆gun = K̃ne
un − fn in Σ, (0.49)

with fn → f in C0,α sense and K̃n = Kne
−hm with hm given by (0.8). Then, up to a

subsequence, the following alternative holds:

1. either un is uniformly bounded in L∞(Σ);

2. or un diverges to −∞ uniformly;

3. or there exists a finite set S = {q1, . . . , qr} ⊂ Σ+ of blow–up points.

In such case, un → −∞ in compact sets of Σ\S and K̃ne
un ⇀

∑r
i=1 β(qi)δqi in

the weak sense of measures where β(qi) = 8π if qi /∈ {p1, . . . , p`} and β(qi) =
8(1 + αj)π if qi = pj for some 1 ≤ j ≤ `.

Therefore, limn→+∞
´

Σ K̃ne
un ∈ Λ`, defined in (0.48).

We point out that that the conical singularities located in Σ− do not play any
role in the compactness result, and for that reason we replace Λm by Λ` in this case.



Introduction 22

Observe also that equation (0.15) can be written in the form (0.49) by adding a
suitable constant to un = u, if Kn = K and fn = λ

|Σ| .
The proof of Theorem 0.4.2 is an adaptation of the results [31, 33] for positive

solutions. Let us emphasize, though, that in our case un need not be bounded
from below and this causes several difficulties in our proofs, see Section 3.1 for more
details.

For what concerns existence and multiplicity of solutions, we shall restrict our-
selves to the case of positive orders αj. Our proofs make use of variational meth-
ods. Indeed, problem (0.15) is the Euler-Lagrange equation of the energy functional
(0.38).

Recall that if λ < 8π, then Jλ is coercive and a minimizer exists, whereas Jλ is
not bounded from below if λ > 8π. This range is our main concern, and we shall
use min-max scheme to find solutions of (0.15) which are saddle-type critical points
of Jλ.

In order to state our existence result we introduce an additional assumption on
K

(H3) N+ > k or Σ+ has a connected component which is not simply connected,

where N+ is defined in (0.46).

Theorem 0.4.3. Let α1, . . . , α` > 0, with ` defined in (0.47), and λ ∈ (8kπ, 8(k +
1)π) \ Λ`. If (H1), (H2), (H3) are satisfied then (0.15) admits a solution.

For K > 0, then Σ+ = Σ and N+ = 1, (H3) is then satisfied if the surface Σ has
positive genus; this case has been covered in [5]. In this form we reobtain the result
of [5].

Figure 1

p2

p3

p1

Σ−

Σ+

Σ+
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Figure 2

p2

p3

p1

Σ− Σ+

Figure 1 shows an example of potential K with N+ = 2. In this situation,
Theorem 0.4.3 only applies for the case k = 1. For the situation described by Figure
2, Σ+ has a connected component which is non-contractible. Therefore, (H3) holds
and Theorem 0.4.3 applies for any k ∈ N.

If Σ+ has trivial topology Theorem 0.4.3 is not applicable. We can give a result
also in this case, following the ideas of [90], which considers positive potentials. For
that, we define the set

Θλ = {pj ∈ Σ+ : λ < 8π(1 + αj)}, (0.50)

and we introduce the hypothesis

(H4) Θλ 6= ∅.

Theorem 0.4.4. Let α1, . . . , α` ≥ 0, where ` is defined in (0.47), and λ ∈ (8π, 16π)\
Λ`. If (H1), (H2), (H4) are satisfied then (0.15) admits a solution.

In Figure 3 we show an example of applicability of Theorem 0.4.4 if λ < 8π(1+α1).
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p1
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p3

p4

Σ−

Σ+

Figure 3

Remark 0.4.5. There are many examples of applications of these results to the
geometric problem commented in the Introduction. Just to show an example, consider
the problem of choosing a conformal metric in Σ = T2 with Gaussian curvature
K and one conical point p of order α. Assume that assumptions (H1), (H2) are
satisfied. Then Theorem 0.4.3 implies that the problem is solvable if one of the
following assumptions are satisfied

1. α ∈ (k, k + 1) with k ∈ N and Σ+ has more than k connected components.

2. α ∈ (k, k + 1) with k ∈ N and Σ+ has a component which is not simply
connected.

Let us now consider the same problem but with m conical points, all of them of order
α. Then Theorem 0.4.4 implies that the geometric problem is solvable if 1 < mα <

1 + α and at least one conical points is placed in Σ+.
Many other examples can be constructed.

In our next result for the special case Σ = S2, we present a class of functions K
for which (0.15) does not admit solution. Actually, these functions satisfy (H1) and
(H2) but neither (H3) nor (H4) are fulfilled. In order to make clear the statement of
the theorem, we will not enter in details on the definition on K.
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Theorem 0.4.6. Let p ∈ S2 and α > 0 with m = 1, p1 = p, α1 = α and K̃ = e−h1K,
then there exists a family of functions K such that (H1) and (H2) hold but equation
(0.15) does not admit a solution for λ ∈ (8π,+∞),

Σ−

Σ+

p1

Figure 4

As it will be clear from the definition of K (see (3.92)) in the statement of the
previous theorem p ∈ Σ− (then Jλ = ∅) and Σ+ is contractible. In particularN+ = 1.
In this way, neither (H3) nor (H4) are verified. Figure 4 illustrates a sign changing
function K defined in S2 such that N+ = 1 and a conical singularity located at Σ−.

This theorem can be considered as the singular extension of the non-existence
theorem for the regular Nirenberg problem given by Chen and Li in [30], introduced
in the subsection 0.2. In fact, the strategy is to choose a function K such that K̃ is
sign changing, rotationally symmetric with respect to the point p, monotone in the
region where it is positive and K̃(−p) = max

S2
K̃

As a consequence of Theorem 0.4.6, the function K can not be realized as the
Gaussian curvature of any conformal metric with one singularity.

Finally, we present two multiplicity results for generic choices of the couple (K, g),
which cover the situations studied by our existence theorems, Theorem 0.4.3 and
Theorem 0.4.4, under nondegeneracy assumptions on the solutions. Roughly speak-
ing, the number of solutions increases as the topology of Σ+ becomes more involved.
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The statements of such results are rather cumbersome and by that reason they are
postponed to Section 3.3. In the proofs, some tools of algebraic topology are needed
to compute the Betti numbers of the low sublevels of the energy functional.

The results described above have been published in two papers, [47], [48].

0.4.3 Methodology: strategy of the proofs

As commented previously, our proofs use min-max arguments to show existence of
critical points of the associated energy functionals. We present an outline which
provides a common strategy for the proofs and recalls some well-known facts which
encompass the used arguments.

• Existence: Regarding existence Theorems 0.4.1, 0.4.3 and 0.4.4, we follow
the main basis of Morse theory, which, intuitively, asserts that the topology
of the sublevels of a functional does not change if there are no critical points.
Let E be an open subset in a Hilbert space and F ∈ C1(E,R), we denote the
sublevel

Fa = {e ∈ E : F(e) ≤ a},

where a ∈ R. Roughly speaking, a topological change of the sublevels implies
the existence of a critical point. In this way, our first goal is to obtain a precise
topological description of the sublevels of Iλ, and Jλ. We will see that the
very low sublevels of the energy functionals have non-trivial topology, while
the very high ones are trivial, what confirms the existence of a topological
variation between high and low levels.

In a certain sense, functions at low energy level tend to concentrate around
a finite number of points, and we use this point configurations to study the
topology of F−L, with large L enough. Therefore, the principal purpose is
to find a compact non-contractible topological space Z, space of weighted of
point configurations, to describe the topology of F−L. We shall construct a
continuous map Ψ which projects F−L into Z and a reverse one Φ, such that
the composition

Z Φ−→ F−L Ψ−→ Z (0.51)
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is homotopically equivalent to the identity map on Z. In this situation, it
is said that F−L dominates Z (see [64], page 528). As a consequence, the
topology of F−L is richer than that of Z. Indeed, the non-contractibility of Z
implies that Φ(Z) is not contractible in F−L. Moreover, the map induced by
Φ

Hq(Z) Φ∗−→ Hq(F−L), for q ∈ N,

is injective, where Hq(Z) is the homology group with Z2 coefficients.

The topological variation of the sublevels implies the existence of a Palais-
Smale sequence {un}, namely Iλ(un) → cλ > −∞ and I ′λ(un) → 0, where cλ
is the min-max value, see [4] for instance. However, this fact does not imply
directly the existence of a critical point. In fact, the Palais-Smale property
is not known to hold in this kind of problems. Fortunately, this difficulty
can be overcome by using the so-called monotonicity trick of Struwe, [109],
which guarantees the boundedness, and hence convergence, of the Palais-Smale
sequence for almost all values of the parameter λ. To extend the existence of
critical points for the rest of values of the parameter, a compactness property
for the solutions is needed. This issue is commented below.

• Compactness: Taking into account what commented above, we are led with
the following problem: given un a sequence of solutions of (0.43) or (0.15) for
λ = λn → λ0, is it uniformly bounded?

As we have introduced in the Sections 0.2 and 0.3, this question has been
addressed in [17, 78] for the regular problem, and in [8, 9] for the equation
with vortices, always for positive potentials K(x). Here, the assumption on
the positivity of K is not just a technical issue, as can be inferred from some
recent examples of blowing-up solutions in [13, 50]. Those solutions concentrate
around local maxima of K at 0 level, a situation which, a priori, could be
reproduced in the proposed problems. However, the assumptions on where
and how K can change sign, (A2) and (H1) respectively, allows us to rule out
this phenomena.

In the first problem we conclude compactness by energy estimates. This ar-
gument seems to be completely new in this kind of problems, but cannot be
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interpreted as an usual compactness result due to the extra assumption on
bounded energy level. Moreover, this energy comparison argument is restricted
to the specific form of (0.4) and does not work for more general problems.

In order to study the compactness question for (0.4), we adopt a different
strategy. First we derive uniform integral estimates in subsets of Σ+ or Σ−,
which allow one to obtain a priori estimates in the the region {x ∈ Σ : K(x) <
−δ}, for δ > 0 small. Then the moving plane technique is used to compare
the values of u on both sides of the nodal curve Γ. This, together with the
aforementioned integral estimate, implies boundedness in a neighborhood of Γ.
Conclusively, we rely on blow–up analysis in the region {x ∈ Σ : K(x) > δ}
and the quantization results, introduced in the previous section, can be applied.

• Multiplicity: The estimates of the number of solutions are given in generic
terms. In other words, the multiplicity results are valid under the assumption
that all solutions are non-degenerate. A transversality argument, see [106] for
instance, guarantees that this is the case for a generic choice of (g,K). More
precisely, for (g,K) in an open and dense subset ofM2 × C2,α(Σ), whereM2

stand for the space of all C2,α Riemannian metrics on Σ equipped with the
C2,α norm.

Under these conditions, we can employ the weak Morse inequalities, which,
together with the computations of the homology of a pair, enables us to prove
that

#{critical points of Iλ in {a ≤ Iλ ≤ b} } ≥
∑
q≥0

dim
(
Hq(Ibλ, Iaλ)

)
.

The above formula suggests to study rigorously the homology of the high and
low sublevels. Hence, we can make use of the topological description of the
sublevels given in the existence part. Indeed, by (0.51),

∑
q≥0

dim
(
Hq(Ibλ, Iaλ)

)
≥
∑
q≥0

dim(Hq(Z).

To deduce the Betti numbers of Z, we need to make use of some tools from
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algebraic topology. Actually, one of the main problems is to study the homogy
groups of Z, which will be the set of barycenters on a disjoint union. We bypass
the difficulty through a formula which relates the homology of the barycenters
on a disjoint union to the homology of the barycenters on the disjoint spaces,
see Proposition 1.2.2.





Chapter 1

Notation and preliminaries

In this chapter we fix the notation used in this thesis and collect some preliminary
known results.

From now on (Σ, g) is a compact surface without boundary equipped with a
Riemannian metric g, whereas (S2, g0) is the 2-sphere equipped with the standard
metric. We denote by d(x, y) the distance between two points x, y ∈ Σ induced by
the ambient metric. The symbol Bp(r) stands for the open ball of radius r > 0 and
center p ∈ Σ, Ap(r, R) denotes the corresponding open annulus and

Ωr = {x ∈ Σ : d(x,Ω) < r}.

Given f ∈ L1(Σ), we denote the mean value of f by
ffl

Σ f = 1
|Σ|

´
Σ f , where |Σ| is the

area of Σ.

Let us recall the definition of the energy functionals

Iλ(u) = 1
2

ˆ
Ω
|∇u|2 dVg + 2

ˆ
Ω
u dVg − λ log

ˆ
Ω
Keu dVg, (1.1)

defined in the domain

X =
{
u ∈ H1(Ω) :

ˆ
Ω
Keu dVg > 0

}
. (1.2)

Here Ω is a subdomain of S2. Moreover, we have defined

31
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Jλ(u) = 1
2

ˆ
Σ
|∇u|2dVg + λ

|Σ|

ˆ
Σ
u dVg − λ log

ˆ
Σ
K̃eudVg, (1.3)

defined in the domain

X =
{
u ∈ H1(Σ) :

ˆ
Σ
K̃eu dVg > 0

}
, (1.4)

where Σ is a compact surface without boundary. The Euler-Lagrange equations of
those functionals are (0.43) and (0.4), respectively.

The symbol q will be employed to denote the disjoint union of sets; while M

stands for the symmetric difference of sets. If two topological spaces X, Y are home-
omorphic, we will write X ∼= Y .

Throughout the thesis, the sign ' will refer to homotopy equivalences, while
∼= refers to homeomorphisms between topological spaces or isomorphisms between
groups.

Given a metric space M and k ∈ N, we denote by Bark(M) the set of formal
barycenters of order k onM , namely the following family of unit measures supported
in at most k points

Bark(M) =
{

k∑
i=1

tiδxi : ti ∈ [0, 1],
k∑
i=1

ti = 1, xi ∈M
}
. (1.5)

We consider Bark(M) as a topological space with the weak∗ topology of measures.
Positive constants are denoted by C, and the value of C is allowed to vary from
formula to formula. If we want to stress the dependence of the constants on some
parameters, we include subscripts to C, as Cε. Moreover, we will write oα(1) to
denote quantities that tend to 0 as α → 0 or α → +∞; whereas we will use the
symbol O(1) for bounded quantities.

1.1 Analytic preliminaries

A powerful tool in our study is the Moser-Trudinger inequalities and its variations,
which will allow us to deduce fundamental properties about the functionals Iλ and
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Jλ.
Let us start by recalling the classical Moser-Trudinger inequality for compact

surfaces, which was established in [96].

Theorem 1.1.1. Let Σ be a compact surface without boundary, then there exists a
universal constant C > 0 such that

ˆ
Σ
e4πu2 ≤ C,

for any u ∈ H1(Σ) with
´

Σ |∇u|
2 ≤ 1 and

´
Σ u = 0.

Now, we introduce a weaker version of the previous Moser-Trudinger inequality:

Proposition 1.1.2. Let Σ be a compact surface without boundary, then there exists
C > 0 such that

log
ˆ

Σ
eudVg ≤

1
16π

ˆ
Σ
|∇u|2 dVg + C , ∀u ∈ H1(Σ) with

ˆ
Σ
u dVg = 0. (1.6)

Proof. Clearly,

u ≤ 1
4a + a · u2 ∀a > 0.

Choosing a = 4π´
Σ|∇u|

2 , we have

eu ≤ exp
{´

Σ |∇u|
2

16π

}
exp

{
4πu2´

Σ |∇u|2

}
.

Integrating this inequality on Σ and taking logarithms, one obtains

log
ˆ

Σ
eu dVg ≤

1
16π

ˆ
Σ
|∇u|2 dVg + log

ˆ
Σ
e

4πu2´
Σ |∇u|2 dVg.

It suffices to apply Theorem 1.1.2 to the function u√´
Σ |∇u|2

to conclude the proof.

The constant multiplying the Dirichlet energy is optimal. In other words, for α
less than 1

16π , using the standard bubbles (0.22) peaked at some point of Σ, one can
check that (1.6) does not hold. (See Lemma 2.1.2 and Appendix)
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As a direct consequence of the previous proposition, we have that

Jλ(u) ≥ 8π − λ
16π

ˆ
Σ
|∇u|2 dVg − C,

for all u ∈ X. In particular, Jλ is coercive for λ ∈ (0, 8π), and a solution for (0.15)
can be found as a minimizer.

For larger values of the parameter λ the previous inequality does not give any
information. In particular, it can be seen that the functional is not bounded from
below for λ > 8π. See Lemma 3.2.4 and Lemma 3.2.11.

Next we introduce a localized version of the Moser-Trudinger inequality related
to Proposition 1.1.2.

Proposition 1.1.3. Let Σ be a compact surface with or without boundary, Σ1 ⊂ Σ
and δ > 0 such that (Σ1)δ ∩ ∂Σ = ∅. Then, for any ε > 0 there exists a constant
C = Cε,δ such that for all u ∈ H1(Σ) with

´
Σ u dVg = 0,

16π log
ˆ

Σ1

eu dVg ≤
ˆ

(Σ1)δ
|∇gu|2 dVg + ε

ˆ
Σ
|∇gu|2 dVg + C. (1.7)

Proof. Our argument follows closely the proof used in Theorem 2.1 in [26] (see also
[90]).

First, we consider a smooth cutoff function g with values into [0, 1] satisfying
 g(x) = 1, ∀x ∈ Σ1,

g(x) = 0, ∀x ∈ Σ \ (Σ1)δ/2.
(1.8)

Clearly, gu ∈ H1
0 (Σ). Applying inequality (1.1.1) to gu we obtain

16π log
ˆ

Σ1

eu dVg ≤ 16π log
ˆ

Σ
egu dVg ≤

ˆ
Σ
|∇(gu)|2 dVg + C.

Using the Leibnitz rule to the gradient we have

ˆ
Σ
|∇(gu)|2 dVg ≤

ˆ
(Σ1)δ
|∇u|2 dVg + 2

ˆ
Σ
gu∇g∇u dVg + Cδ

ˆ
Σ
u2 dVg. (1.9)
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By Cauchy’s inequality,

ˆ
Σ
gu∇g∇u dVg ≤ ε

ˆ
Σ
|∇u|2 dVg + Cε,δ

ˆ
Σ
u2 dVg. (1.10)

Combining (1.9) and (1.10), we get

16π log
ˆ

Σ1

eu dVg ≤
ˆ

(Σ1)δ
|∇u|2 dVg + ε

ˆ
Σ
|∇u|2 dVg + Cε,δ

ˆ
Σ
u2 dVg. (1.11)

Let us now estimate the last term of (1.11). Take η such that |{x ∈ Σ : u(x) ≥ a}| =
η. Let (u− a)+ = max{0, u− a} and applying (1.11), we obtain

16π log
ˆ

Σ1

eu dVg ≤ 16π log
{
ea dVg

ˆ
Σ1

e(u−a)+
dVg

}
(1.12)

≤ 16πa+
ˆ

(Σ1)δ
dVg |∇u|2 dVg + ε

ˆ
Σ
|∇u|2 dVg + Cε,δ

ˆ
Σ

(
(u− a)+

)2
dVg.

By Hölder and Sobolev inequalities

ˆ
Σ

(
(u− a)+

)2
dVg ≤ η1/2

(ˆ
Σ

(
(u− a)+

)4
)1/2

dVg ≤ cη1/2
ˆ

Σ
|∇u|2 dVg, (1.13)

and by Poincaré inequality

aη ≤
ˆ
a≤u

u dVg ≤
ˆ

Σ
|u| dVg ≤ c

(ˆ
Σ
|∇u|2

)1/2

dVg. (1.14)

Hence for every δ > 0, from (1.14) by Cauchy’s inequality,

a ≤ δ

ˆ
Σ
|∇u|2 dVg + c2

4δη2 . (1.15)

Finally, let η satisfying

η1/2 ≥ Cε,δ
ε
. (1.16)
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From (1.12), (1.13), (1.15) and (1.16), we conclude the proof.

As a consequence of the last result, we present a version of the Chen-Li inequality
[26] (see also [3]). This version was first stated in [118]. Roughly speaking, it states
that if eu is spread in several regions of Σ, one can obtain a better constant in the
weak Moser-Trudinger inequality. This is essential in the min-max scheme developed
in Section 3.2.

Lemma 1.1.4. Let ε > 0, δ > 0, ` ∈ N, γ ∈ (0, 1
`+1) and Σ1, . . . ,Σ`+1 be subsets of

Σ with (Σi)δ ∩ (Σj)δ = ∅, for i 6= j. If
´

Σi e
u dVg´

Σ e
u dVg

≥ γ, for i = 1, . . . , `+ 1, (1.17)

then, there exists a constant C = Cε̃,δ,γ such that for all u ∈ H1(Σ) with
´

Σ u dVg = 0

(16(`+ 1)π − ε) log
ˆ

Σ
eu dVg ≤

ˆ
Σ
|∇u|2 dVg + C. (1.18)

Proof. First, we take Σ1, . . . ,Σ`+1 verifying (1.17) and apply Proposition 1.1.3 for
each one

16π log
ˆ

Σ
eu dVg ≤ 16π log

(
1
γ

ˆ
Σi
eu dVg

)
≤
ˆ

(Σi)δ
|∇u|2 dVg+ε

ˆ
Σ
|∇u|2 dVg+Cε,δ,γ

with i = 1, . . . , `+ 1.
Finally, we make the addition in i,

16π` log
ˆ

Σ
eu dVg ≤

ˆ
⋃`

i=1(Σi)δ
|∇u|2 dVg + (`+ 1)ε

ˆ
Σ
|∇u|2 dVg + Cε,δ,γ

≤ (1 + `ε)
ˆ

Ω
|∇u|2 dVg + Cε,δ,γ,

concluding the proof.
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On the other hand, we can introduce analogous versions of the previous inequal-
ities for subdomains of some surface Σ. The first inequality is the classic Moser-
Trudinger inequality for domains, see [96, 97, 116]. The second one is the Propo-
sition 2.3 of [22], which was conceived for plane domains and so for subdomains of
any general compact surface.

Theorem 1.1.5. Let Ω be a compact surface with smooth boundary, then there exists
C > 0 such that

ˆ
Ω
e4πu2

dVg ≤ C, ∀u ∈ H1
0 (Ω), (1.19)

and
ˆ

Ω
e2πu2

dVg ≤ C, ∀u ∈ H1(Ω) with
ˆ

Ω
u dVg = 0. (1.20)

Repeating the proof of Proposition 1.1.2, we can show the following weaker in-
equalities as a consequence of the previous ones.

Proposition 1.1.6. Let Ω be a compact surface with smooth boundary, then there
exists C > 0 such that

log
ˆ

Ω
eu dVg ≤

1
16π

ˆ
Ω
|∇u|2 dVg + C, ∀u ∈ H1

0 (Ω), (1.21)

and

log
ˆ

Ω
eu dVg ≤

1
8π

ˆ
Ω
|∇u|2 dVg + C, ∀u ∈ H1(Ω) with

ˆ
Ω
u dVg = 0. (1.22)

The constant in (1.22) appears multiplied by two in relation to (1.21), since we
can center a bubble on a point of ∂Ω, so that its volume and Dirichlet energy are
divided approximately by two. However, this is not allowed in (1.21) because of its
boundary condition.

As an easy application of the previous proposition, we have

Iλ(u) ≥ 4π − λ
8π ‖u‖2

H1(Ω) + C,
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for all u ∈ X. In particular, Iλ is coercive for λ ∈ (0, 4π), and a solution for (0.43)
can be found as a minimizer.

The following localized version of Moser-Trudinger type inequalities will be of
use.

Proposition 1.1.7. Let ε > 0, δ > 0 and Ω1 ⊂ Ω such that (Ω1)δ ∩ ∂Ω = ∅. Then,
there exists a constant C = Cε,δ, such that for every u ∈ H1(Ω) with

´
Σ u dVg = 0,

16π log
ˆ

Ω1

eu dVg ≤
ˆ

(Ω1)δ
|∇u|2 dVg + ε

ˆ
Ω
|∇u|2 dVg + C.

Proof. The result follows directly from the proof of Proposition 1.1.3, applying in-
equality (1.21).

Proposition 1.1.8. Let Ω be a compact surface with smooth boundary and Ω1 ⊂ Ω.
For any ε > 0, δ > 0, there exists a constant C = Cε,δ, such that for every u ∈ H1(Ω)
with

´
Ω u dVg = 0,

8π log
ˆ

Ω1

eu dVg ≤
ˆ

(Ω1)δ
|∇u|2 dVg + ε

ˆ
Ω
|∇u|2 dVg + C.

Proof. We use an analogous argument to the one used in Proposition 1.1.3. Let g as
defined in (1.8) and applying (1.22) to gu, we obtain

8π log
ˆ

Ω1

eu dVg ≤ 8π log
ˆ

Ω
egu dVg ≤

ˆ
Ω
|∇(gu)|2 dVg + gu+ C.

Now, we estimate the average of gu as

gu ≤ Cδ + C

ˆ
Ω
u2 dVg.

Then, as we did in (1.11), we have

8π log
ˆ

Ω1

eu dVg ≤
ˆ

(Ω1)δ
|∇u|2 dVg + ε

ˆ
Ω
|∇u|2 dVg + C

ˆ
Ω
u2 dVg + C.

It suffices to estimate
´

Ω u
2 dVg exactly in the same way from the previous proof.
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Observe the difference between the choice of Ω1 in both propositions. Whereas
in the first result Ω1 stays away from the boundary of Ω, there is no restriction in
that sense in the second one.

Finally, we introduce the Chen-Li inequality related to Proposition 1.1.7 and
Proposition 1.1.8. In a certain sense, it states that if eu is spread into two regions of
Ω or if eu has mass inside Ω, then the energy functional is bounded from below.

Lemma 1.1.9. Let ε > 0, δ > 0 and 0 < γ < 1/2. Let Ω1, Ω2 and S be subsets of
Ω, where Ω is a compact surface with smooth boundary, such that (Ω1)δ ⋂(Ω2)δ = ∅
and Sδ ⋂ ∂Ω = ∅. If

´
Ω1
eu dVg´

Ω e
u dVg

≥ γ,

´
Ω2
eu dVg´

Ω e
u dVg

≥ γ, (1.23)

or
´
S
eu dVg´

Ω e
u dVg

≥ γ, (1.24)

then, there exists a constant C = Cε,δ,γ, such that for all u ∈ H1(Ω) satisfying´
Ω u dVg = 0,

(16π − ε) log
ˆ

Ω
eu dVg ≤

ˆ
Ω
|∇u|2 dVg + C.

Proof. For S satisfying (1.24), this is just Proposition 1.1.4 with ` = 1.
Take Ω1,Ω2 verifying (1.23) and apply Proposition 1.1.8 to each one

8π log
ˆ

Ω
eu dVg ≤ 8π log

(
1
γ

ˆ
Ωi
eu dVg

)
≤
ˆ

Ωδi
|∇u|2 dVg + ε

ˆ
Ω
|∇u|2 dVg + Cε,δ,γ

with i = 1, 2.
Finally, we add both expressions

16π log
ˆ

Ω
eu dVg ≤

ˆ
Ωδ1
⋃

Ωδ2
|∇u|2 dVg + 2ε

ˆ
Ω
|∇u|2 dVg + Cε,δ,γ

≤ (1 + 2ε)
ˆ

Ω
|∇u|2 dVg + Cε,δ,γ),

concluding the proof.
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Lemma 1.1.10. Let Ω be a smooth compact surface (with or without boundary) and
{un} ⊂ H1(Ω) a sequence such that

un ⇀ u0 ∈ H1(Ω).

Then
eun → eu0 in Lp(Ω) with p ∈ [1,∞)

Proof.
Let a, b ∈ R, by the mean value theorem we have that

∣∣∣ea − eb∣∣∣ ≤ e|a|+|b| |a− b| . (1.25)

Consider {un} ⊂ H1(Ω), u0 ∈ H1(Ω) and p ∈ [1,∞), by (1.25) one obtains

|eun − eu0 |p ≤ ep(|un|+|u0|) |un − u0|p . (1.26)

Now, integrating the last inequality and applying Hölder then

ˆ
Ω
|eun − eu0 |p ≤

ˆ
Ω
ep(|un|+|u0|) |un − u0|p ≤

(ˆ
Ω
e2p(|un|+|u0|)

)1/2 (ˆ
Ω
|un − u0|2p

)1/2

.

(1.27)
On the other hand, for some ε > 0 we get the following inequality

eu ≤ e
u2ε
2 e

1
2ε = C1e

u2ε
2 (1.28)

which allows to take C0 such that

0 ≤ ε

2 ≤
2π´

Ω |∇(2p |un|+ |u0|)|2
(1.29)

Combining (1.28), (1.29) and (1.27) and applying the Moser-Trudinger inequality
(1.20) (or Theorem 1.1.1)

ˆ
Ω
e2p(|un|+|u0|) ≤ C1

ˆ
Ω
e
ε
2 (2p(|un|+|u0|))2 ≤ C1

ˆ
Ω
e

2π(|un|+|u0|))
2´

Ω|∇(|un|+|u0|)|2 ≤ C2,
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By the Rellich-Kondrachov Theorem, un → u0 in L2p(Ω). Therefore,
ˆ

Ω
|un − u0|2p → 0,

which immediately implies ˆ
Ω
|eun − eu0|p → 0,

as we wanted.

1.2 Topological and Morse-theoretical preliminar-
ies

In this subsection we recall a classical theorem on Morse inequalities. Further-
more we give a short review of basic notions of algebraic topology needed to get the
multiplicity estimates. Finally, we state a recent result concerning the topology of
barycenter sets with disconnected base space.

Given a pair of spaces (X,A) we will denote by Hq(X,A) the relative q-th homol-
ogy group with coefficient in Z2 and by H̃q(X) = Hq(X, x0) the reduced homology
with coefficient in Z2, where x0 ∈ X. We adopt the convention that H̃q(X) = 0 for
any q < 0.
Finally, if X, Y , are two topological spaces and f : X → Y is a continuous function,
we will denote by f∗ : Hq(X)→ Hq(Y ) the pushforward morphism induced by f .

Let us first recall a result in Infinite Morse theory, see e.g. Theorem 4.3 [19].

Theorem 1.2.1. Suppose that H is a Hilbert manifold, I ∈ C2(H;R) satisfies the
(PS)-condition at any level c ∈ [a, b], where a, b are regular values for I. If all the
critical points of I in {a ≤ I ≤ b} are nondegenerate, then

#{critical points of I in {a ≤ I ≤ b} with index q} ≥ dim(Hq({I ≤ b}, {I ≤ a}))
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for any q ≥ 0.

In what follows we collect some well-known definitions and results in algebraic
topology and we refer to [64] for further details.

Wedge sum. Given spaces C andD with chosen points c0 ∈ C and d0 ∈ D, then the
wedge sum C ∨D is the quotient of the disjoint union CqD obtained by identifying
c0 and d0 to a single point. If {c0} (resp. {d0}) is a closed subspace of C (resp. D)
and is a deformation retract of some neighborhood in C (resp. D), then

H̃q(C ∨D) ∼= H̃q(C)
⊕

H̃q(D), (1.30)

see [64, Corollary 2.25].

Unreduced suspension. The unreduced suspension (often, as in [64], denoted by
SC) is defined to be

ΣC = (C × [0, 1])/{(c1, 0) ' (c2, 0) and (c1, 1) ' (x2, 1) for all c1, c2 ∈ C}. (1.31)

For the reduced homology of the unreduced suspension the following formula holds,
[64, page 132, ex. 20],

H̃q+1(ΣC) ∼= H̃q(C). (1.32)

Join. The join of two spaces C and D is the space of all segments joining points in
C to points in D. It is denoted by C ∗D and is the identification space

C∗D = C×[0, 1]×D/(c, 0, d) ∼ (c′, 0, d), (c, 1, d) ∼ (c, 1, d′) ∀ c, c′ ∈ C, ∀ d, d′ ∈ D.

Being C ∗D ' Σ(C ∨D), [64, page 20, ex. 24], we have that

H̃q(C ∗D) ∼= H̃q(Σ(C ∨D)). (1.33)
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At last, we present a recent result obtained in [1, Theorem 5.19] concerning the
space of formal barycenters on a disjoint union of spaces.

Proposition 1.2.2. For C, D two disjoint connected spaces and k ≥ 2, Bark(CqD)
has the homology of

Bark(C) ∨ ΣBark−1(C) ∨Bark(D) ∨ ΣBark−1(D)∨

∨
k−1∨
`=1

(Bark−`(C) ∗Bar`(D)) ∨
k−1∨
`=2

(ΣBark−`(C)) ∗Bar`−1(D).





Chapter 2

The mean field problem on a
subdomain of the sphere

This chapter is devoted to the proof of Theorem 0.4.1. This theorem claims the
existence of solutions for the Neumann boundary problem

 −∆g0u+ 2 = 2K(x)eu in Ω,
∂u
∂n

= 0 on ∂Ω,
(2.1)

where Ω ⊂ S2 and K satisfies

(A1) K(x) > 0 for some x ∈ Ω;

(A2) K(x) 6= 0 for all x ∈ ∂Ω.

As explained in the introduction, (2.1) is equivalent to the mean field equation
 −∆g0u = λ

(
Keu´

ΩKe
udVg0

− 1
|Ω|

)
in Ω,

∂u
∂n

= 0 on ∂Ω,
(2.2)

where λ = 2|Ω|. Therefore, Theorem 0.4.1 can be obtained as a direct consequence
of the following result:

Theorem 2.0.1. Let λ ∈ (4π, 8π) and assume (A1) and (A2). Then, problem (2.2)
admits a solution.

45
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This result has been presented in the publication [86].
At first, let us denote the boundary points such that K is strictly positive by

(∂Ω)+ = {x ∈ ∂Ω : K(x) > 0}.

By assumption (A2), the set (∂Ω)+ is a union of simple closed curves. Moreover, if
(∂Ω)+ 6= ∅, the set is not contractible.

Let us recall that the underlying energy functional of (2.2) is

Iλ(u) = 1
2

ˆ
Ω
|∇u|2 dVg0 + 2

ˆ
Ω
u dVg0 − λ log

ˆ
Ω
Keu dVg0 ,

defined in the domain

X =
{
u ∈ H1(Ω) :

ˆ
Ω
Keu dVg0 > 0

}
.

The proof of Theorem 2.0.1 uses the variational argument introduced in subsec-
tion 0.4.3. Roughly speaking, we will show that functions u with very low energy level
concentrate around a point of Z = (∂Ω)+. This fact allows us to map continuously
I−Lλ into (∂Ω)+ for large values L. Next, we can construct the reverse projection
employing bubbles around any fixed point p ∈ (∂Ω)+. The nontrivial topology of
(∂Ω)+ implies that the low energy levels of Iλ are also not contractible. In that sit-
uation, the min-max structure, jointly with the monotonicty trick of Struwe, yields
the existence of a critical point of Iλ for almost every value of λ.

Finally, a compactness criterion via energy estimates concludes the proof. Typi-
cally, compactness of solutions is obtained via a quantization result, in the spirit of
Brezis-Merle and Li-Shafrir [17, 78]. However, the fact that K may change sign is
a serious obstacle for this quantization; this question will be considered in depth in
Section 3.1.

In [118] it is claimed that if un is an unbounded sequence of solutions of (2.2)
with λ = λn, then

λn → 4kπ, k ∈ N.

However the derivation of this result in [118] is correct only for strictly positive
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K. Indeed, even for K vanishing at a point, other limit values can be achieved, as
shown in [9]. Observe, moreover, that in our setting no assumption is made on the
set of zeroes of K, apart from being disjoint with ∂Ω.

Here we bypass this problem by noting that our solutions have bounded energy.
This energy control implies already a certain concentration behavior of the sequence
of solutions, if unbounded. Since K is strictly positive on (∂Ω)+, the blow–up quan-
tization of [78] yields the desired contradiction.

2.1 Proof of Theorem 0.4.1

The following proposition will become crucial not only in the min-max argument,
but also for the compactness result (see Proposition 2.1.9). Its proof is based on
an energy comparison argument and an application of the Moser-Trudinger type
inequalities, stated in Chapter 1.

Proposition 2.1.1. Let λ be a fixed constant in (4π, 8π), {un} a sequence in X such
that Iλ(un) < C. If

‖un‖H1(Ω) →∞, (2.3)

then, up to a subsequence,

eun´
Σ e

un
⇀ δp with p ∈ (∂Ω)+.

Proof. Let C > 0 be such that K(x) < C for all x ∈ Ω. We define

Eλ(u) = 1
2

ˆ
Ω
|∇u|2 dVg0 + 2

ˆ
Ω
u dVg0 − λ log

ˆ
Ω
Ceu dVg0 , in H1(Ω).

Clearly,
Iλ(u) > Eλ(u),

for all un ∈ X, hence Eλ(un) is also bounded from above. We introduce the measures

σn = eun´
Ω e

un dVg0

,
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which satisfies that σn ⇀ σ in the sense of weak convergence of measures, up to
subsequence.

Let τ > 0 and the open subset Ωτ = {x ∈ Ω : d(x, ∂Ω) > τ}. Suppose σ(Ωτ ) > 0.
By the weak convergence of measures, we have

0 < σ(Ωτ ) ≤ lim inf
n→∞

σn(Ωτ ).

From this inequality, since (1.24) holds, we can use Lemma 1.1.9 for any ε > 0
to obtain

Eλ(un) >
(

1
2 −

λ

16π − ε

)
‖un‖2

H1(Ω) + C ′. (2.4)

By (2.3), (2.4) contradicts the boundedness of Eλ(un). Therefore σ (Ωτ ) = 0 for
every τ > 0, i.e., σ is supported in ∂Ω.

Now, assume by contradiction that there exist p, q ∈ supp(σ) with p, q ∈ ∂Ω and
p 6= q. Given r > 0 such that Bp(2r)∩Bq(2r) = ∅, there exists ε0 > 0 which verifies
σ(B̂p(r)) > 2ε0 and σ(B̂q(r)) > 2ε0 where we define B̂p(r) = Bp(r) ∩ Ω.

This last fact implies that σn(B̂p(r)) > ε0 and σn(B̂q(r)) > ε0 for some n ∈ N.
Now, we can apply Lemma 1.1.9 for any ε > 0 to obtain again (2.4) which violates
the hypothesis on the boundedness of the energy level.

So,
σ = δp,

as claimed. Moreover, since un ∈ X,

0 <
´

Ω Ke
un dVg0´

Ω e
un dVg0

→ K(p),

which implies that p ∈ (∂Ω)+.

Let us observe that Proposition 2.1.1 yields easily the existence of a solution if
K is negative in ∂Ω. Indeed, in such case (∂Ω)+ = ∅, and Proposition 1.1.9 implies
that Iλ is coercive. It is well-known that it is also weak lower semicontinuous, and
therefore it attains its infimum. In this way we reobtain the result of [61].
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Therefore, we will assume in what follows that K is positive on some connected
component of Ω, so that (∂Ω)+ 6= ∅.

In such case, we are able to construct functions with arbitrary low energy level,
as follows.

Lemma 2.1.2. For any µ > 0 and p ∈ (∂Ω)+, let us define

ϕµ,p : Ω→ R, ϕµ,p(x) = 2 log
(

µ

1 + µ2d(x, p)2

)
.

Then, for any L > 0, there exists µ(L) such that for any µ ≥ µ(L), p ∈ (∂Ω)+,
Iλ(ϕµ,p) < −L.

Proof. See the Appendix.

The above lemma implies, in particular, that Iλ is unbounded from below. But
it gives much more information: indeed, given any L > 0, we can choose µ so that
the following continuous map is well-defined

Φµ : (∂Ω)+ → I−Lλ

p 7→ ϕµ,p.

Observe that those functions concentrate, as µ→ +∞, around p ∈ (∂Ω)+. Now
we plan to show that, indeed, any function u in a low sublevel of Iλ must behave
in that fashion. This idea is made explicit by a reverse map, that is, a continuous
map Ψ : I−Lλ → (∂Ω)+, for L large. This map, together with Φµ, will give us useful
information about the topology of low energy sub-levels of Iλ.

First, let us introduce the center of mass of the function eu, defined as

P (u) =
´

Ω xe
u dVg0´

Ω e
u dVg0

∈ R3. (2.5)

In our next result we show that low sub-levels have center of mass in an arbitrary
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small neighborhood of Ω+ in R3, denoted by

N((∂Ω)+, δ) = {x ∈ R3 : dist(x, (∂Ω)+) < δ},

where dist refers to the Euclidean distance in R3.

Proposition 2.1.3. Given any δ > 0, there exists L(δ) > 0 such that for any
L > L(δ), we have that P

(
I−Lλ

)
⊂ N((∂Ω)+, δ).

Proof. Take un ∈ X with Iλ(un) → −∞. Obviously, it must be an unbounded
sequence. By Proposition 2.1.1,

eun dVg0´
Ω e

un
⇀ δp, p ∈ (∂Ω)+ ⇒ P (un) =

´
Ω xe

un dVg0´
Ω e

un dVg0

→ p.

Because of the smoothness of Ω, there exists δ0 > 0 and a continuous retraction

Π : N((∂Ω)+, δ0)→ (∂Ω)+.

In view of Proposition 2.1.3, there exists L0 = Lδ0 such that for any L > L0, we
can define the reverse map

Ψ = Π ◦ P : I−Lλ → (∂Ω)+. (2.6)

Next proposition will be the key point for our min-max argument.

Proposition 2.1.4. Fix any L > L0 and take µ > µ(L) where µ(L) is given in
Lemma 2.1.2. Then the composition Ψ ◦ Φµ : (∂Ω)+ → (∂Ω)+ is homotopically
equivalent to the identity map. Moreover, Φµ((∂Ω)+) is not contractible in I−Lλ .

Proof. Let us define the homotopy

H : [0, 1]× (∂Ω)+ → (∂Ω)+

(t, p) 7→ H(t, p) = Ψ ◦ Φµ(t)(p) = Ψ ◦ ϕµ(t),p,
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where µ(0) = µ and µ(t) is an increasing continuous function with µ(t) → ∞ as
t→ 1.

Let us show first that H(t, ·) → Id|(∂Ω)+ as t → 1. Take pn → p ∈ (∂Ω)+,
µn → +∞; by the proof of Lemma 2.1.2,

eϕµn,pn dVg0´
Ω e

ϕµn,pn dVg0

⇀ δp.

As a consequence,
P ◦ ϕµn,pn → p.

The second assertion of Proposition 2.1.4 follows easily from the former and the
fact that (∂Ω)+ is a non-contractible set.

Take any v ∈ X fixed, and define:

C =
{

log{t exp{ϕµ,p}+ (1− t) exp{v}} : p ∈ (∂Ω)+, t ∈ [0, 1]
}
.

It is easy to check that C is contained in X. As topology is concerned, C is a
cone with base Φµ((∂Ω)+) ∼ (∂Ω)+, so that ∂C = Φµ((∂Ω)+). In other words, C is
the union of a finite number of circular cones, each of them containing a connected
component of Φµ((∂Ω)+) in its base, such that their vertices coincide at v.

We now define the min-max value of Iλ on suitable deformations of C, namely

Definition 2.1.5.
αλ = inf

η∈Γ
max
u∈C

Iλ(η(u)),

with
Γ =

{
η : C → X continuous : η(u) = u ∀ u ∈ Φµ((∂Ω)+)

}
.

Lemma 2.1.6. αλ ≥ −L0, where L0 is given in the definition of (2.6).

Proof. Take L > L0; for any deformation η ∈ Γ, ∂C = Φµ((∂Ω)+) is contractible in
η(C). Moreover, Proposition 2.1.4 establishes that Φµ((∂Ω)+) is not contractible in
I−Lλ . Therefore, η(C) * I−Lλ , that is, there exists û ∈ C with Iλ(η(û)) ≥ −L. This
concludes the proof.
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Therefore, take L > L0 and µ > µ(L) where µ(L) is given in Lemma 2.1.2.
Lemma 2.1.6 implies that αλ > max{Iλ(u) : u ∈ Φµ((∂Ω)+)}, which provides us
with a min-max structure. Therefore, we can conclude the existence of a Palais-Smale
sequence at level αλ. However, as commented in subection 0.4.3, the boundedness
of Palais-Smale sequences is still unknown for this kind of problems. The derivation
of a solution follows an argument first used by Struwe, [109]. This argument has
been used many times in this and other types of problems, see [51–53], so we will be
sketchy. An essential ingredient is the following lemma

Lemma 2.1.7. The function λ 7→ αλ
λ

is monotonically decreasing.

Proof. Just observe that, for λ < λ′,

Iλ(u)
λ
− Iλ′(u)

λ′
= 1

2

(1
λ
− 1
λ′

)ˆ
Ω
|∇u|2 dVg0 ≥ 0.

Since αλ is a min-max value for Iλ, the previous estimate implies the monotonicity
of αλ

λ
.

In this setting, we obtain the following:

Proposition 2.1.8. There exists a set E ⊂ (4π, 8π) such that

1. (4π, 8π) \ E has zero Lebesgue measure, and

2. for any λ ∈ E there exists a solution uλ of (2.2) with Iλ(uλ) = αλ.

Proof. Define

E = {λ ∈ (4π, 8π) : the map λ 7→ αλ is differentiable at λ} .

By Lemma 2.1.7, (4π, 8π) \ E has zero measure. Fixed λ ∈ E, take ε > 0
sufficiently small. Observe that the above min-max scheme is valid for values of the
parameter in the interval (λ− ε, λ+ ε). In this situation, it is well-known that there
exists a sequence un satisfying:

1. un is bounded in H1(Ω),
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2. Iλ(un)→ αλ,

3. I ′λ(un)→ 0.

That is, for almost all values of λ we can assure the existence of a bounded (PS)
sequence. This kind of argument was first devised in [109] (see also [51–53]).

Since un is bounded, up to a subsequence, un ⇀ uλ. Standard arguments show
then that actually un → uλ strongly and that uλ is a critical point for Iλ, see
Lemma 1.1.10.

So far, we have proved the existence of a solution for (2.2) for almost all values
of λ ∈ (4π, 8π). Now, our intention is to extend this existence result for any λ ∈
(4π, 8π).

Proposition 2.1.9. Let λn, λ0 ∈ (4π, 8π), λn → λ0, and un solutions of (2.2) for
λ = λn. Assume also that Iλn(un) is bounded from above. Then, up to a subsequence,
un → u0, and u0 is a solution of (2.2) for λ = λ0.

Proof. If un is bounded, up to a subsequence, un ⇀ u0. In Lemma 1.1.10 it is proved
that the convergence is strong and that u0 is the required solution.

Assume now that un is unbounded. By Proposition 2.1.1, there exists p ∈ (∂Ω)+

with
eun´

Ω e
un dVg0

⇀ δp.

Clearly, ´
Ω K(x)eun dVg0´

Ω e
un dVg0

→ K(p) > 0.

Take τ > 0 so that K(x) > 0 in Bp(τ) ∩ Ω. First, observe that
´

Ω\Bp(τ) K(x)eun dVg0´
Ω K(x)eun dVg0

→ 0. (2.7)

Moreover, by the quantization result of Li-Shafrir in [78] (see also [107] for the
Neumann boundary case), we obtain that

λn

´
Bp(τ)∩ΩK(x)eun dVg0´

Ω K(x)eun dVg0

→ 4kπ, k ∈ N. (2.8)
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Equations (2.7), (2.8) imply that λn → 4kπ with k ∈ N, a contradiction.

We can now finish the proof of Theorem 2.0.1. Take any λ0 ∈ (4π, 8π) and
λn ∈ E, λn → λ. Let un denote the solutions of (2.2) for λ = λn given by Proposition
2.1.8. Recall that Iλn(un) = αλn , which is bounded (for instance, by Lemma 2.1.7).
Proposition 2.1.9 allows us to conclude.

2.2 Final remarks and open problems

Remark 2.2.1. The arguments of the proofs works perfectly well if Ω is a subdomain
of any compact surface Λ, and g0 is any Riemannian metric on Λ. In this general
case, though, equation (2.2) loses its geometrical interpretation.

Observe that we can assume that Λ is isometrically embedded in Rk; therefore,
the barycenter map (2.5) would take values in Rk, and N((∂Ω)+, δ) would denote the
corresponding neighborhood in Rk. Those are the only modifications needed in order
to adapt the above arguments to this general setting.

Remark 2.2.2. A natural extension of the problem studied in this chapter is its
singular version, i.e. to add a linear combination of Dirac delta measures located at
points of Ω in (0.41). More precisely, the Neumann boundary problem

 −∆g0u+ 2 = 2K(x)eu − 4π∑m
i=1 αiδpi in Ω,

∂u
∂n

= 0 on ∂Ω,
(2.9)

where p1, · · · , pm ∈ Ω and αi > −1 for any i = 1, · · · ,m. The previous equation
allows us to seek a metric of Ω with p1, . . . , pm ∈ Ω conical points with αi > −1 order
such that K the is Gauss curvature of Ω.

Integrating (2.9)

λ = 2|Ω|+ 4π
m∑
i=1

αi = 2
ˆ

Ω
K(x)eu dVg0 .

If αi > 0 for any i = 1, . . . ,m, λ ∈ (4π, 8π) and (A1), (A2), our approach prove
that this problem admits solution. The same ideas of the proof of Theorem 2.0.1
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work also in this case.

Open Problem 2.2.3. In this chapter we have established a compactness property
assuming that solutions have bounded level energy. This fact is shown a posteriori
by the min-max scheme. A possible problem is to deduce a complete compactness
result without the energy level condition, in spirit of Theorem (0.4.2). This result
would enable us to establish the generic a multiplicity of (2.2), employing the same
topological description of the low sublevels.

Following the proof of our compactness result, one can show that solution se-
quences of (2.2) (or (2.9)) remain L∞-bounded Ω \ (∂Ω)δ for every δ > 0 if λ ∈
(4π, 8π) (λ ∈ (4π, 8π) \ Λm). However, our argument does not apply at ∂Ω, as in
the upcoming chapter, see Section 3.3.

Open Problem 2.2.4. Another related problem is to try to weaken the hypothesis
on the sign of K on the boundary, namely (A2). If one allows K to change sign on
∂Ω, one can adapt the proof of Proposition 3.2.1 with minor modifications, in order
to project continuously I−Lλ into (∂Ω)+. As K changes sign on ∂Ω, then (∂Ω)+ is
no longer a union of connected sets homeomorphic to the unit circle. As we have
seen, if we choose some K such that (∂Ω)+ is not contractible, min-max structure
guarantees the existence of a critical point for almost every value of the parameter λ.
Again, a compactness result would be needed to conclude the existence of solution.

Another question to be analyzed is the case in which (∂Ω)+ contractible, where the
min-max argument does not work. Under symmetry assumptions on K, one could
try to prove a non-existence result in the spirit of Theorem 0.4.6.





Chapter 3

The singular mean field problem
on compact surfaces

We dedicate this chapter to study the existence, compactness and multiplicity of
solutions for the singular mean field problem

−∆gu = λ

(
K̃eu´

Σ K̃e
udVg

− 1
|Σ|

)
in Σ, (3.1)

where Σ is an arbitrary compact surface without boundary. Recall that K̃ = Ke−hm

where hm is given by the expression (0.8) and K is a sign changing potential. The
positive integer m corresponds to the number of conical singularities located at dif-
ferent points pi ∈ Σ with order αi; whereas ` ≤ m is the number of singularities
located at the region where K is strictly positive. Previously, the nodal sets have
been denoted by

Σ+ = {x ∈ Σ : K(x) > 0}, Σ− = {x ∈ Σ : K(x) < 0}, Γ = {x ∈ Σ : K(x) = 0}.

Let us recall the hypotheses on K and the singular points pi’s

(H1) K is a sign changing C2,α function with ∇K(x) 6= 0 for any x ∈ Σ with
K(x) = 0;

(H2) pj /∈ Γ for all j ∈ {1, . . . ,m};

57
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(H3) N+ > k or Σ+ has a connected component which is not simply connected;

(H4) Θλ 6= ∅;

where the set Θλ is defined as

Θλ = {pj ∈ Σ+ : λ < 8π(1 + αj)}. (3.2)

We will follow the strategy formulated in Section 0.4.3, which has been already
used in the previous chapter. This approach is mainly based on the variational
formulation of the equation (3.1). Actually, solutions of the singular mean field
problem can be found as critical points of the energy functional

Jλ(u) = 1
2

ˆ
Σ
|∇u|2dVg + λ

|Σ|

ˆ
Σ
u dVg − λ log

ˆ
Σ
K̃eudVg, (3.3)

defined in the domain

X =
{
u ∈ H1(Σ) :

ˆ
Σ
K̃eu dVg > 0

}
. (3.4)

Without loss of generality, we can restrict its domain to functions with 0 mean.
In other words, we can consider Jλ defined in X̄,

X̄ =
{
u ∈ X :

ˆ
Σ
u dVg = 0

}
. (3.5)

This chapter is organized as follows. In Section 3.1, we show a compactness
result for singular Liouville type equations. Section 3.2 is devoted to describe the
topology of the energy sublevels of Jλ. From Section 3.1 and Section 3.2 we conclude
the existence results.In Section 3.3 we state the multiplicity results which have been
announced in the final part of the Introduction. These results cover the setting of the
two existence theorems. Finally, we focus on constructing a class of functions such
that the problem does not admit any solution. This argument employs the so-called
moving sphere method on entire solutions, see Section 3.4.

These results have been presented in two publications [47], [48].
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3.1 Compactness of solutions

For sign changing functionsK the first related compactness result is [31]. That paper
is concerned with the scalar curvature prescription problem, a higher dimension
analogue of our problem which has also attracted much attention in the literature.
Later, an evolution of this technique has been given in [33]. The general idea is to
first derive uniform integral estimates, which allow one to obtain a priori estimates
in the the region {x ∈ Σ : K(x) < −δ}, for δ > 0 small. Then the moving
plane technique is used to compare the values of u on both sides of the nodal curve
Γ = {x ∈ Σ : K(x) = 0}. This, together with the integral estimate, implies
boundedness in a neighborhood of Γ. Finally, one reiles on [8, 9, 78] for the region
{x ∈ Σ : K(x) > δ}.

The approach of [31] has been partially adapted to problem (3.1) in [32]. However,
this result uses the stereographic projection to pass to a global problem in the plane
and is hence restricted to Σ = S2. Moreover, the derivation of the integral estimate
[32, Lemma 2.2] is not completely clear. One of the goals of this section is to settle
the question of compactness: we show compactness for (3.1) in any compact surface
under assumption (H1).

Our approach follows the ideas of [33]. The main difficulty with respect to [33]
comes from the fact that un is not positive nor uniformly bounded from below, a
priori. This is a problem for the integral estimate in [32, 33], and also for the use of
the moving plane method near the nodal curve. In our proofs we first estimate the
negative part of un by using Kato inequality. This is the key for the proof of the
integral estimate and is also essential to perform the comparison argument by the
moving plane method.

Let us now recall Theorem 0.4.2. Assume that un is a sequence of solutions of

−∆gun = K̃ne
un − fn in Σ, (3.6)

where fn → f in C0,α sense and K̃n = Kne
−hm . Recall that the function hm has

already defined as

hm(x) = 4π
m∑
j=1

αjG(x, pj),
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where G(x, pj) are the Green functions, solutions to (0.7), and αj > −1 for any
j = 1, . . . ,m. In addition, it is supposed that Kn → K in C2,α sense and the
function K satisfies (H1), (H2). Then, up to a subsequence, one of the following
alternatives holds

1. either un is uniformly bounded in L∞(Σ);

2. or un diverges to −∞ uniformly;

3. or there exists a finite set S = {q1, . . . , qr} ⊂ Σ+ of blow–up points.

In such case, un → −∞ in compact sets of Σ \S and K̃ne
un ⇀

∑r
i=1 β(qi)δqi in

the weak sense of measures where β(qi) = 8π if qi /∈ {p1, . . . , p`} and β(qi) =
8(1 + αj)π if qi = pj for some 1 ≤ j ≤ `

Therefore, limn→+∞
´

Σ K̃ne
un ∈ Λ`, where

Λ` =

8πr +
∑̀
j=1

8π(1 + αj)nj : r ∈ N ∪ {0}, nj ∈ {0, 1}

 \ {0}. (3.7)

We begin by establishing the following propositions.

Proposition 3.1.1. Given δ > 0, there exists C > 0 such that un(x) ≤ C for all
x ∈ Σ− \ Γδ, n ∈ N.

Proposition 3.1.2. There exist ε, C > 0, such that un(x) ≤ C for all n ∈ N and
x ∈ Γε.

The proof of Theorem 0.4.2 will be finally accomplished by studying the possible
blow-up of the sequence un in Σ+ \ Γε.

One of the difficulties in our study is that we do not know a priori whether the
term

ˆ
Σ
|K̃n|eundVg (3.8)

is bounded or not. By standard regularity results, this would give a priori W 1,p

estimates (p ∈ (1, 2)) on un. Instead, if we integrate (3.6) we only obtain that



Chapter 3. The singular mean field problem on compact surfaces 61

´
Σ K̃ne

un is bounded. Observe that ifKn > 0, then (3.8) holds directly by integrating
(3.6).

Our first lemma shows that such kind of estimate is indeed possible for u−n =
min{un, 0}. This fact will be useful to prove both Propositions 3.1.1 and 3.1.2.

Lemma 3.1.3. Under the conditions of Theorem 0.4.2, define vn = u−n −
ffl

Σ u
−
n .

Then there exists C > 0 such that

a) ‖vn‖W 1,p ≤ C for any p ∈ (1, 2);

b) vn(x) ≥ −C for any x ∈ Σ.

Proof. We apply the well-known Kato inequality to the operator ∆g (see for instance
[108])

−∆gu
−
n ≥

(
K̃ne

un − fn
)
χ{un≤0} ≥ −Cg(x), (3.9)

where
g(x) = 1 +

∑
j≥`+1
αj<0

d(x, pj)2αj .

Observe that g ∈ Lq(Σ) for q ∈ [1, 1 + δ) if δ > 0 is sufficiently small.
Since the Radon measures µn = −∆u−n ≥ −Cg(x) are given as a divergence (in

the sense of distributions), then
´

Σ d µn = 0. From that we conclude that
´

Σ d |µn| is
bounded. By elliptic regularity estimates, vn is bounded inW 1,p(Σ) for any p ∈ (1, 2).

For the second part we use the Green representation for vn. Let G(x, y) be the
Green function for the operator ∆g in Σ; observe that G(x, y) = − 1

2π log(rd(x, y)) +
H̃(x, y), where H̃ : Σ × Σ → R is a bounded function. Here we have chosen r ∈
(0, diam(Σ)−1). Then,

vn(x) =
ˆ

Σ
G(x, y)d µn(y) = − 1

2π

ˆ
Σ

log(rd(x, y))d µ+
n (y)

− 1
2π

ˆ
Σ

log(rd(x, y))d µ−n (y) +
ˆ

Σ
H̃(x, y)d µn(y).

By the choice of r > 0,
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− 1
2π

ˆ
Σ

log(rd(x, y))d µ+
n (y) ≥ 0.

Moreover, by (3.9),

− 1
2π

ˆ
Σ

log(rd(x, y))d µ−n (y) ≥ −C 1
2π

ˆ
Σ

log(rd(x, y))g(y) dy ≥ −C,

and finally ∣∣∣∣∣
ˆ

Σ
H̃(x, y)d µn(y)

∣∣∣∣∣ ≤ ‖H̃‖L∞
ˆ

Σ
d|µn| ≤ C.

As a first consequence of Lemma 3.1.3, we present an integral estimate in domains
entirely contained in the positive or negative region. This result is an extension of
the Chen-Li integral estimate for positive solutions, see [33]. In our case un may
change sign, but we can perform the estimate thanks to Lemma 3.1.3.

Lemma 3.1.4. Under the conditions of Theorem 0.4.2, for every open subdomain
Σ0 completely contained in Σ+ or Σ−, there exists C > 0 so that

∣∣∣∣∣
ˆ

Σ0

K̃ne
undVg

∣∣∣∣∣ ≤ C.

Proof. Take Σ1 a smooth domain such that Σ0 ⊂ Σ1 ⊂ Σ1 ⊂ Σ±. Let ϕ be the first
eigenfunction of the Laplace operator in Σ1, that is,


−∆ϕ = λ1ϕ in Σ1,

ϕ > 0 in Σ1,

ϕ = 0 on ∂Σ1.

Next, we multiply (3.6) by ϕ2, and integrate by parts over Σ1 to obtain
ˆ

Σ1

K̃nϕ
2eun = −

ˆ
Σ1

un∆(ϕ2) +O(1). (3.10)

Let us denote f = ∆(ϕ2) = 2(|∇ϕ|2 − λ1ϕ
2). Observe that

´
Σ1
f = 0. Then
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ˆ
Σ1

u−n f =
ˆ

Σ1

(
u−n −

 
Σ
u−n

)
f,

so that, by Lemma 3.1.3, a),
∣∣∣∣∣
ˆ

Σ1

u−n f

∣∣∣∣∣ ≤
∥∥∥∥∥u−n −

 
Σ
u−n

∥∥∥∥∥
L1(Σ1)

‖f‖L∞(Σ1) ≤ C. (3.11)

On the other hand, for any γ > 0,

ˆ
Σ1

u+
n |f | ≤ C

ˆ
Σ1

u+
n = C

ˆ
Σ1

u+
n

|ϕ2K̃n|γ

|ϕ2K̃n|γ
.

By Young inequality we obtain
ˆ

Σ1

u+
n |f | ≤ ε

ˆ
Σ1

|u+
n |

1
γϕ2|K̃n|+ Cε

ˆ
Σ1

1
|ϕ2K̃n|

γ
1−γ

. (3.12)

We can take γ > 0 sufficiently small so that the second integral term in the right
hand side is finite (recall that, by Hopf principle, ϕ ∼ d(x, ∂Σ1) near the boundary).
Then, by (3.10), (3.11) and (3.12)

ˆ
Σ1

|K̃n|ϕ2eun ≤ C + ε

ˆ
Σ1

|u+
n |

1
γϕ2|K̃n|.

We now use the inequality (t+)
1
γ ≤ C + et to conclude that
ˆ

Σ1

|K̃n|ϕ2eun ≤ C,

finishing the proof.

In order to prove Proposition 3.1.1, we will need the following result, which is
based on a mean value inequality for subharmonic functions.

Lemma 3.1.5. Let w be a function defined in Σ0 ⊂ Σ, x0 ∈ Σ0, and assume that
−∆gw(x) ≤ −A for all x ∈ Σ0, for some positive value A > 0. Take R > 0 such
that

R < min
{1

5d(x0, ∂Σ0), 1
2diam(Σ0)

}
.
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Then there exists C > 0 depending only on Σ0 and A such that

sup
x∈Bx0 (R/4)

w(x) ≤ C

(
1 +

 
Bx(R)

w

)
.

Proof. Define v as the solution of the problem
 −∆gv = A, in Σ0,
v = 0, on ∂Σ0.

Clearly v is smooth and w+v is a subharmonic function. We now apply the mean
value inequality for subharmonic functions (see [80, Theorem 2.1] for its version on
manifolds) to conclude.

Proof of Proposition 3.1.1. Take Σ0 ⊂ Σ0 ⊂ Σ−, x ∈ Σ0 and fix r > 0 sufficiently
small. We apply Lemma 3.1.5 to w = u+ and we obtain

sup
Bx(r)

u+
n (x) ≤ C + C

ˆ
Bx(4r)

u+
n = C + C

ˆ
Bx(4r)

u+
n

p

−K̃1/p
n (x)

−K̃1/p
n (x)

≤ C + C

ˆ
Bx(4r)

e
un
p ≤ C + C

(ˆ
Bx(4r)

−K̃n(x)eun
)1/p

ˆ
Bx(4r)

1

−K̃
1
p−1
n (x)


p−1
p

.

It suffices to choose a large enough p and use Lemma 3.1.4 to conclude that sup
Bx(R)

u+
n (x) <

C.

We now turn our attention to Proposition 3.1.2. The proof follows the argument
of [33], with the main difference that our solutions un are not positive. This difficulty
can be bypassed thanks to the following lemma, whose proof is based on Lemma 3.1.3.

Lemma 3.1.6. Under the hypotheses of Theorem 0.4.2, and given δ > 0, there exists
C > 0 such that

un(x0)− un(x1) ≤ C (3.13)
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for every n ∈ N, x0 ∈ Σ− \Γδ, x1 ∈ Σ. Moreover, for any r0 > 0, there exists C > 0
such that

|∇un(x)| ≤ C ∀x ∈ Σ− \ (Γδ ∪
m⋃

i=`+1
Bpi(r0)). (3.14)

Proof. By Lemma 3.1.3, b), we have that

un(x1)−
 

Σ
u−n ≥ u−n (x1)−

 
Σ
u−n ≥ C. (3.15)

Taking into account Lemma 3.1.5, we have that for small r > 0,

un(x0)−
 

Σ
u−n ≤ C

(
1 +

 
Bx0 (r)

(
un(x)−

 
Σ
u−n

))

Moreover, by Proposition 3.1.1, un(x) ≤ u−n (x) + C for all x ∈ Bx0(r). Making
use of Lemma 3.1.3, a), we conclude

un(x0)−
 

Σ
u−n ≤ C

(
1 +

 
Bx0 (r)

∣∣∣∣∣u−n (x)−
 

Σ
u−n

∣∣∣∣∣
)
≤ C (3.16)

This, together with (3.15), allows us to show (3.13).
We not turn our attention to the proof of (3.14). Given r0 > 0, take any p > 2

and fix x such that Bx(r) ⊂ Σ− \ (Γδ ∪ ⋃mi=`+1 Bpi(r0)). Recall the inequality (see
[59, Theorem 9.11])

∥∥∥∥∥un −
 

Σ
u−n

∥∥∥∥∥
W 2,p(Bx( r2 ))

≤ C

||K̃ne
un − fn||Lp(Bx(r)) +

∥∥∥∥∥u−n −
 

Σ
u−n

∥∥∥∥∥
Lp(Bx(r))

 .
Combining (3.16) and Lemma 3.1.3, b), un−

ffl
Σ u
−
n ∈ L∞(Bx(r)), whereas Propo-

sition 3.1.1 implies that K̃ne
un − fn is uniformly bounded. Therefore un −

ffl
Σ u
−
n ∈

W 2,p(Bx( r2)). In particular (3.14) holds.

Proof of Proposition 3.1.2. The proof is of local nature, so that we can restrict our-
selves (by using isothermal coordinates) to planar domains.
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Let Ω ⊂ R2 be an open bounded domain and un be a solution sequence for the
problem

−∆un = Wne
un in Ω, (3.17)

with Wn → W in C2,α(Ω). Assumption (H1) is translated to W in the form

W is a C2,α(Ω) function, sign changing and ∇W (x) 6= 0 in Γ.

Our proof is based on the method of moving planes, which allows us to compare
the values of un close to Γ. For the sake of clarity, we drop the subindex n in the
notation of the rest of this proof.

By the assumptions on W for small δ > 0, there exists β > 0 s.t.

|∇W (x)| ≥ β for any x with |W (x)| ≤ δ. (3.18)

First of all, we can transform the region through a Kelvin transform, a translation
and a rotation. We define the new system of coordinates as x = (x1, x2) and x1 =
γ(x2) which corresponds to the curve Γ. Let Ωε be the region enclosed by the curve
∂lΩε = {x | x1 − γ(x2) = ε} and the half-plane {x1 ≥ −2ε} along with its reflection
image about the line x1 = −2ε. It is possible to choose the transformation such that,
for some ε > 0 small, the following hold (see figure):

(i) x0 becomes the origin;

(ii) Ωε is located to the left of the line x1 = ε and it is tangent to it;

(iii) ∂lΩε is uniformly convex;

(iv) ∂W
∂x1
≤ −1

2β, for every x ∈ Ωε;

(v) Ωε ∩ {p`+1, . . . , pm} = ∅.
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x1 = −2ε

x1 = ε

x1

∂lΩε

Γ x2

x0

Ωε is the whole shaded region
Ωε ∩ {W < 0}

Ωε ∩ {W > 0}

Figure 5

Define m = min
x∈∂lΩε

u(x), M = max
x∈∂lΩε

u(x) and ũ as a C2 extension of u from ∂lΩε

to the whole ∂Ωε such that m ≤ ũ ≤ M and, by (3.14), |∇ũ| ≤ C. Let w be the
harmonic function


∆w = 0, in Ωε,
w = ũ, on ∂Ωε,
m ≤ w ≤M in Ωε.

(3.19)

Due to (3.13), the oscillation of u on ∂lΩε is bounded, i.e.,

M −m = max
∂lΩε

u−min
∂lΩε

u ≤ C. (3.20)

Consequently, the oscillation of w is also bounded in Ωε. We also define a new
auxiliary function v as

v(x) = u(x)− w(x) + C0(ε+ γ(x2)− x1), (3.21)

for some C0 > 0 to be determined. It is clear that the function v verifies
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∆v + f(x, v(x))− C0γ
′′(x2) = 0, in Ωε, (3.22)

with

f(x, v(x)) = W (x)ev(x)+w(x)−C0(ε+γ(x2)−x1).

We claim that for a suitable C0

v(x) ≥ 0 in Ωε and v(x) = 0 on ∂lΩε. (3.23)

The boundary condition is direct. In order to prove the first part, we distinguish
two cases:

• Case 1: ε
2 < x1 − γ(x2) ≤ ε

Taking into account (v), by (3.14) we have that
∣∣∣∣∣ ∂u∂x1

∣∣∣∣∣ ≤ C and
∣∣∣∣∣ ∂w∂x1

∣∣∣∣∣ ≤ C.

Consequently,
∂v

∂x1
= ∂u

∂x1
− ∂w

∂x1
− C0 ≤ C − C0. (3.24)

It suffices to choose C0 sufficiently large to obtain that ∂v
∂x1

is negative. Since
v = 0 on ∂lΩε, it is clear that (3.23) holds.

• Case 2: x1 − γ(x2) ≤ ε
2 and x1 ≥ −2ε

By (3.13), we have that

v(x) = u(x)− w(x) + C0(ε+ γ(x2)− x1) ≥ min
Ωε

u−max
∂lΩε

u+ C0
ε

2 ≥ −C + C0
ε

2 .

So, choosing C0 sufficiently large, (3.23) holds.
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Now we are ready to apply the method of moving planes to v in the x1 direction.
Thus, we start from x1 = ε and move the line perpendicular to x1−axis towards the
left. Namely, let Tλ = {x ∈ R2 : x1 ≥ λ} the half-plane, Mλ = {x ∈ R2 : x1 = λ}
its boundary and xλ = (2λ− x1, x2) the reflection point of x with respect to the line
Mλ.

x1 = −2ε

x1 = ε

x1

∂lΩε

Γ

x0
xxλ

Ωε is the whole shaded region
Ωε ∩ {W < 0}

Ωε ∩ {W > 0}

Figure 6

xλ = (2λ− x1, x2)

Mλ

Tλ

Our goal is to prove that

v(xλ) ≥ v(x), (3.25)

for every x ∈ Tλ ∩Ωε for λ ∈
[
ε
2 − ε1, ε

]
, with some ε1 ∈ (0, ε) to be determined. By

(3.23) and (3.24), (3.25) holds for λ ∈
(
3 ε4 , ε

]
.

By a standard argument (see [58]), we can affirm that the moving planes argument
can be carried on provided that

f(x, v) ≤ f(xλ, v) for every x ∈ Ωε with ε > λ >
ε

2 − ε1. (3.26)

It is easy to check that (3.26) holds if
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∂f(x, v(x))
∂x1

= eu
(
∂W

∂x1
+W

(
∂w

∂x1
+M ′τ

))
≤ 0, if x ∈ Ωε, x1 > −ε1. (3.27)

In other words, if f is monotone decreasing along the direction (1, 0), near x0.
If W (x) ≤ 0, it is enough to choose C0 > − ∂w

∂x1
to verify

∂W

∂x1
+W

(
∂w

∂x1
+ C0

)
≤ W

(
∂w

∂x1
+ C0

)
≤ 0.

In the case that W (x) > 0 by the assumptions on W , for every ε1 > 0 there
exists a neighborhood Vε1 of Γ such that W (x) ≤ ε1.

Since ∂w
∂x1

+ C0 is bounded from above, then

∂W

∂x1
+W

(
∂w

∂x1
+ C0

)
≤ −β2 + ε1

(
∂w

∂x1
+ C0

)
≤ −β2 + ε1C,

therefore we can take ε1 small enough to obtain the desired conclusion. We choose
ε1 < ε.

In this way, the method of moving planes works up to λ = ε
2 − ε1. Therefore,

(3.25) implies that v(x) is monotone decreasing in the (1, 0)−direction. In fact, we
can repeat the previous argument rotating the x1−axis by a small angle. Thus, there
exists a fixed cone ∆0 such that for any x ∈ Bx0(ε1/4) we have

v(y) ≥ v(x), ∀y ∈ ∆x,

where ∆x denotes a translation of the cone ∆0 with x at its vertex. By (3.21), we
can transform the previous inequality into

u(y) + C(ε1) ≥ u(x) ∀ y ∈ ∆x0 . (3.28)

The proof can be concluded combining (3.28) and the integral estimate given in
Lemma 3.1.4.

Proof of Theorem 0.4.2. Take ε > δ > 0 and the open set Σ1 = Σ+ \ Γδ, where ε is
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given by Proposition 3.1.2. By Propositions 3.1.1 and 3.1.2, un is uniformly bounded
from above in Σ \ Σ1. Moreover, by Lemma 3.1.4,

´
Σ1
K̃ne

un is bounded. By the
compactness criterion of [9], stated in Section 0.3 there are two possibilities:

Case 1: un is bounded from above in Σ. As a consequence, K̃ne
un is bounded

in L∞(Σ). Elliptic regularity estimates imply that un−
ffl

Σ un is bounded in W 1,p(Σ)
for all p > 1. If

ffl
Σ un is bounded, we obtain 1); if, on the contrary,

ffl
Σ un diverges

negatively, we obtain 2).

Case 2: The sequence un is not bounded from above. Applying the results of [9]
concerning the blow–up analysis for (3.6) in Σ1, we can assume that there exists a
finite blow-up set S = {q1, . . . , qr} ⊂ Σ1. Moreover, by enlarging δ if necessary, we
can assume that un → −∞ uniformly in ∂Σ1, and

K̃ne
un ⇀

r∑
i=1

β(qi)δqi in the sense of weak convergence of measures in Σ1,

with β(qi) ≥ 8π.
Now, let us define v the solution of the problem

 −∆v = C1 in Σ \ Σ1,

v = 0 on ∂Σ1.

where C1 is an upper bound of the term K̃ne
un in Σ\Σ1. Standard regularity results

imply that v ∈ L∞(Σ \ Σ1). By the maximum principle, for any C > 0 there exists
n0 ∈ N such that un ≤ v − C in Σ \ Σ1 for n ≥ n0. This implies that un → −∞
uniformly in Σ \ Σ1; in particular,

K̃ne
un ⇀

r∑
i=1

β(qi)δqi in the sense of weak convergence of measures in Σ. (3.29)

It is worth to point out that, at this point of the proof, we cannot apply yet
the quantization part of the concentration-compactness Theorem of [9] if we do not
check the mean oscillation condition on ∂Σ1.

By (3.29), employing the Green’s representation formula for un, we have that
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un − un →
r∑
i=1

β(qi)G(x, qi) + hm,

uniformly on compact sets of Σ \ S, where hm is defined in (0.8). In this way, the
sequence un− un admits uniformly bounded mean oscillation on any compact set of
Σ \ (S ∪ {p1, . . . , p`}). Indeed, there exists a constant C > 0 such that

max
∂Σ1

un −min
∂Σ1

un < C.

By virtue of this condition, we can apply the quantization result of [9] to conclude
that β(qi) = 8π if qi /∈ {p1, . . . , p`} and β(qi) = 8π(1 + αi) if qi = pi ∈ {p1, . . . , p`}.
Moreover, up to subsequence, we obtain that

lim
k→+∞

ˆ
Σ1

K̃ne
un ∈ Λ`.

3.2 Two Existence Results

In this section we will find solutions of (3.1) as critical points of the energy functional
Jλ. This will be accomplished, as commented in Section 0.4.3, by a careful study
of the topology of low energy levels of Jλ. Indeed we will find a certain topological
space Z, L sufficiently large and two continuous maps:

Z Φ−→ J−L
Ψ−→ Z, (3.30)

whose composition is homotopically equivalent to the identity map. In order to
obtain existence of solutions for (3.1), it suffices that the set Z is not contractible.
Instead, for multiplicity, a deeper knowledge of the topology of Z will be needed (see
next section).

By Lemma 1.1.4 functions u at a very low energy level will concentrate around
at most k points if λ ∈ (8kπ, 8(k + 1)π). Being more specific, we will show that if
Jλ(un)→ −∞, then
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K+eun´
Σ K

+eun
⇀

k∑
i=1

tiδpi ,

where ti ≥ 0, ∑i ti = 1. Moreover, the points pi belong to Σ+. We denote
by Bark(Σ+) the set of such configurations. We shall also use a retraction from
Σ+ onto a subset Z, which allows us to avoid the singular points. Hence the set
Bark(Z) ' Bark(Σ+) will play the role of Z. The first map in (3.30) is built by
means of certain test functions, whereas the second uses a convenient projection and
topological retractions from Σ+ onto Z.

This procedure has been carried out in [5, 52, 53] for the case of positive potentials
K. The main difference with respect to the positive case is in the fact that the points
of concentration are restricted to the region Σ+. This fact changes dramatically the
topology of the barycenter set and also the existence result obtained. We conclude
by showing that assumption (H3) implies that Bark(Σ+) is not contractible.

For the special case k = 1, we are able to give a more accurate description of J−Lλ
depending on the order of the conical points. That argument will be uses to prove
Theorem 0.4.4, which allows us to consider the case in which Σ+ is contractible.
Since (H3) does not hold, we cannot apply the first existence result. The key idea
comes from [90], where an improvement of the Moser-Trudinger inequality involving
the order of singularities is proved. In a certain sense, if u ∈ J−Lλ , then K̃+uχΣ+´

Σ K̃
+eu

concentrate around a point of Σ+ with the exception of those pi such that 8π(1+αi) >
λ. We can conclude the existence of solutions since Σ+ \ {pi : 8π(1 + αi) > λ} is not
contractible.

Let us introduce some notation related to the connected components of Σ+, which
will be made of use along this chapter. We will denote by Ai the non-contractible
connected components of Σ+ and Ch be the contractible ones, i = 1, . . . , N , h =
1, . . . ,M and N,M ∈ N ∪ {0}, N +M = N+. Obviously,

Σ+ =
N∐
i=1

Ai q
M∐
h=1

Ch.

Recall that a bouquet of g circles is a set Bg = ⋃g
j=1 S

′
j where S ′j are simple closed
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curves verifying that S ′i ∩ S ′j = {q}. If Ai has genus gi and bi boundaries, it is well
known that Ai can be retracted to an inner bouquet Bgi , where gi = 2gi + bi − 1.
Instead, Ch is homotopically equivalent to any point yh ∈ Ch. Therefore

Σ+ '
N∐
i=1

Bgi q {y1, . . . , yM}, with gi = 2gi+bi−1 for i = 1, . . . , N . (3.31)

B

B−1

A A−1

C

D

b1

b2

b3

Figure 7

In Figure 7 we represent a 2-torus via its fundamental polygon, with three disks
removed b1, b2, b3. This set can be retracted to the boquet ABCD of four loops.

3.2.1 A topological description of the low sublevels of Jλ
The first case

The first result allows us to project continuously functions u with a low energy
level onto the set of formal barycenters on a union of bouquets and a simplex con-
tained in Σ+, namely

Z =
N∐
i=1

Bgi q YM ⊂ Σ+ \ {p1, · · · , p`} and YM = {y1, . . . , yM}, (3.32)
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where Bgi ⊂ Ai is a bouquet of gi circles, with gi defined in (3.31), and yh ∈ Ch.

Proposition 3.2.1. Let λ ∈ (8kπ, 8π(k+1)), k ∈ N, and assume (H1), (H2). Then
for L > 0 sufficiently large there exists a continuous projection

Ψ : J−Lλ −→ Bark(Z).

Moreover, if K̃+eun´
Σ K̃

+eundVg
⇀ σ, for some σ ∈ Bark(Z), then Ψ(un)→ σ.

Remark 3.2.2. Under assumption (H3), the topological set Bark(Z) is not con-
tractible, defined in (3.32). In case N = 0, Bark(Z) is the (k − 1)-skeleton of
(M − 1)-symplex, which is non-contractible if k < M (see Exercise 16 in Section 2.2
of [64]).

Let us consider the set S = {s1, s2, s3, s4} ⊂ Σ to clarify the latter statement. We
can represent si as the vertices of a tetrahedron in R3. Obviously, the set Bar1(S)
corresponds to the four vertices, Bar2(S) to the six straight edges and Bar3(S) to
the four triangular faces; whereas Bar4(S) is the whole symplex. Therefore, Bark(S)
is not contractible if k < 4 and it is contractible if k ≥ 4, as the last remark states.

Before proving Proposition 3.2.1, let us introduce an extra lemma to construct
a continuous projection from the low subvelels of Jλ into the barycenters of order k
on Σ+.

Lemma 3.2.3. Under the assumptions of Proposition 3.2.1, for L > 0 there exists
a continuous projection

Ψ̃ : J−Lλ −→ Bark(Σ+),

such that K̃+eun´
Σ K̃

+eundVg
⇀ σ, for some σ ∈ Bark(Σ+), then Ψ̃(un)→ σ.

Proof. This lemma is proved in the spirit of [53], but following closely the approach
of [10].

Claim: If Jλ(un)→ −∞, up to a subsequence,

σn := K̃+eun´
Σ K̃

+eundVg
⇀ σ ∈ Bark(Σ+).
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Suppose by contradiction that there exist k + 1 points x1, . . . , xk+1 ⊂ supp(σ).
For r > 0 such that Bxi(2r) ∩ Bxj(2r) = ∅ for i 6= j. Therefore, there exists ε > 0
such that σ(Bxi(2r)) > 2ε. As a consequence, σn(Bxi(r)) ≥ ε, and we can apply
Lemma 1.1.4, which violates the hypothesis that Jλ(un) diverges negatively.

By the claim, given a neighborhood V of Bark(Σ+) in the weak topology of
measures, there exists L0 > O large enough such that if L > L0, then

K̃+eu´
Σ K̃

+eu dVg
∈ V, ∀u ∈ J−Lλ . (3.33)

In the appendix of [10], it is proved that Bark(Σ+) is a Euclidean Neighborhood
Retract. Observe that the σ-weak topology of measures is metrizable on bounded
sets, see Theorem 3.28 of [16]. By Lemma E.1 of [14], there exists V a neighborhood
of Bark(Σ+) in the weak topology of measures, and a continuous retraction X : V →
Bark(Σ+). Finally, by (3.33), we define Ψ̃ as

Ψ̃ : J−Lλ −→ V −→ Bark(Σ+)
u 7−→ K̃+eu´

Σ K̃
+eu,dVg

7−→ ∑k
i=1 tiδxi .

Proof of Proposition 3.2.1. Observe that we can retract continuously Ai onto Bgi

and Ch onto a single point yh ∈ Ch. Consequently, we can define the retraction

r : Σ+ −→ Z. (3.34)

We are now in conditions to define the map Ψ as the composition of Ψ̃, defined
in Lemma 3.2.3, with the function r∗ : Bark(Σ+) −→ Bark(Z), the pushforward
induced by the retraction r, then

Ψ : J−Lλ −→ Bark(Z)
u 7−→ ∑

i siδxi ,

where the values si are defined by Ψ̃.
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On the other hand, for λ ∈ (8kπ, 8π(k + 1)), k ∈ N, we consider test functions
concentrated in at most k points of Z with arbitrary low energy. For b > 0 small
enough, we consider a smooth non-decreasing cut-off function χb : R+ → R+ such
that

χb(t) =

 t for t ∈ [0, b],
2b for t ≥ 2b.

(3.35)

For µ > 0 and σ = ∑k
i=1 tiδxi ∈ Bark(Z), we define

φµ,σ : Σ→ R φµ,σ(x) = log
∑

ti

(
µ

1 + (µχb(d(x, xi)))2

)2

,

ϕµ,σ(x) = φµ,σ(x)−
ˆ

Σ
φµ,σ dVg. (3.36)

Lemma 3.2.4. Let λ ∈ (8kπ, 8(k + 1)π), k ∈ N. Then

(i) given L > 0 there exists µ(L) > 0 such that for µ ≥ µ(L), ϕµ,σ ∈ X̄, where X̄
is defined in (3.5), and Jλ(ϕµ,σ) < −L for any σ ∈ Bark(Z);

(ii) for any σ ∈ Bark(Z)

K̃+eϕµ,σ´
Σ+ K̃+eϕµ,σdVg

⇀ σ as µ→ +∞.

Proof. See Appendix.

The second case

We now deal with the case in which Σ+ has only simply connected component and
N+ ≤ k; however, we are restricted to λ ∈ (8π, 16π). Indeed in this situation (H4) is
not satisfied and so Proposition 3.2.1 does not provide a map from J−Lλ onto a non-
contractible set, see Remark 3.2.2. As we showed before, functions at low energy level
will concentrate around one point of Σ+. Here we will show that, roughly speaking,
it avoids the singular points pi with 8π(1 + αi) > λ, namely the points contained in
Θλ defined in (3.2). Hence, Z will be Σ+ \ Θλ, which is not contractible. For that,
a suitable barycenter map is needed:
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Proposition 3.2.5. Let λ ∈ (8π, 16π), assume (H1), (H2) hold and C1 > 2 is a
constant, then there exist τ > 0, L0 > 0 and a continuous map

β : J−L0
λ → Σ+, (3.37)

satisfying the following property: for any u ∈ J−L0
λ there exist σ̄ > 0 and ȳ ∈ Σ such

that d(ȳ, β(u)) < 5C1σ̄ and
ˆ
Bȳ(σ̄)∩Σ+

K̃eu dVg =
ˆ

Σ+\Bȳ(C1σ̄)
K̃eu dVg ≥ τ

ˆ
Σ+
K̃eu dVg. (3.38)

Remark 3.2.6. Proposition 3.2.5 is an adapted version of Proposition 3.1 of [90].
However, it is worth to point out that, even though the original proposition holds
true also on a manifold with boundary, we cannot apply directly such result because
our functional Jλ is defined on functions in H1(Σ) and not in H1(Σ+). However we
will follow the arguments of [90] modifying them in order to handle the fact that K̃
changes sign; so Σ− has positive measure and Σ+ is not necessarily connected.

Proof. Let us define

A0 = {f ∈ L1(Σ) | f(x) ≥ 0 a.e.,
ˆ

Σ
f dVg = 1},

σ : Σ×A0 −→ (0,+∞),

where σ = σ(x, f) is such that
ˆ
Bx(σ)

f dVg =
ˆ

Σ\Bx(C1σ)
f dVg.

Notice that the value σ(x, f) is not uniquely determined.
Now let us define T : Σ×A0 −→ (0,+∞) by

T (x, f) =
ˆ
Bx(σ(x,f))

f dVg.

Notice that T (x, f) does not depend on σ and it is uniquely determined.
Step 0: T is continuous.
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Let us suppose by contradiction that there exist (xn, fn) ∈ Σ×A0 such that

(xn, fn)→ (x, f) ∈ Σ×A0 but |T (xn, fn)− T (x, f)| 6→ 0 as n→ +∞.

Being 0 < σ(xn, fn) < 1
2 diam(Σ), up to a subsequence σ(xn, fn)→ σ∞, as n→ +∞.

Now if σ∞ = σ(x, f), then

meas(Bxn(σ(xn, fn)) M Bx(σ(x, f)))→ 0 as n→ +∞, (3.39)

and so by the convergence of fn to f in L1 we have

|T (x, f)− T (xn, fn)| ≤
ˆ

Bx(σ(x,f))\Bxn (σ(xn,fn))

f dVg +
ˆ

Bxn (σ(xn,fn))\Bx(σ(x,f))

fn dVg

+
ˆ

Bxn (σ(xn,fn))∩Bx(σ(x,f))

|fn − f | dVg
n→+∞−→ 0, (3.40)

which gives the desired contradiction.
On the other hand if σ∞ > σ(x, f), then for n sufficiently large

Bx(σ(x, f)) ⊂ Bxn(σ(xn, fn))
Σ \Bx(C1σ(x, f)) ⊃ Σ \Bxn(C1σ(xn, fn)).

(3.41)

Then for n sufficiently large

|T (x, f)− T (xn, fn)| ≤
ˆ

Bxn (σ(xn,fn))

|fn − f | dVg +
ˆ

Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg

and so in turn by the convergence of fn to f we have that

lim inf
n→+∞

ˆ

Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg > 0. (3.42)

By the definition of σ, the convergence of fn to f and (3.41) we get
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ˆ

Bx(σ(x,f))

f dVg =
ˆ

Σ\Bx(C1(σ(x,f)))

f dVg =
ˆ

Σ\Bx(C1(σ(x,f)))

fn dVg + o(1)

≥
ˆ

Σ\Bxn (C1(σ(xn,fn)))

fn dVg + o(1) =
ˆ

Bxn (σ(xn,fn))

fn dVg + o(1)

=
ˆ

Bxn (σ(xn,fn))

(fn − f) dVg +
ˆ

Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg

+
ˆ

Bx(σ(x,f))

f dVg + o(1)

≥
ˆ

Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg +
ˆ

Bx(σ(x,f))

f dVg + o(1)

which, combined with (3.42), gives the desired contradiction.

At last, the case σ∞ < σ(x, f) can be treated exactly as the latter case, just
reversing the roles of Bxn(σ(xn, fn)) and Bx(σ(x, f)).

Step 1: There exists τ > 0 such that maxx∈Σ T (x, f) > 2τ for all f ∈ A0.

Let us introduce

A = {h ∈ L1(Σ), h(x) > 0 a.e.,
ˆ

Σ
h dVg = 1}.

It is easy to see that A is dense in A0.

We claim that there exists τ̃ > 0 such that maxx∈Σ T (x, f) > 2τ̃ for all f ∈ A.
So, Step 1 follows from these facts and Step 0. Indeed, fix f ∈ A0 and let {hn} ⊂ A
such that hn → f in L1(Σ) and let xn ∈ Σ such that T (xn, hn) = maxx∈Σ T (x, hn),
then T (xn, hn) > 2τ̃ . Up to a subsequence xn → x0 ∈ Σ as n→ +∞ and so, by the
continuity of T , T (xn, hn)→ T (x0, f) ≥ 2τ̃ . The thesis follows taking τ = τ̃

2 .

In order to show the claim, let us take f ∈ A and x0 ∈ Σ s.t. T (x0, f) =
maxx∈Σ T (x, f), and fix x ∈ A(σ(x0, f), C1σ(x0, f)). We state the following inequal-
ities
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d(x, x0) + C1σ(x, f) ≥ C1σ(x0, f), (3.43)

d(x, x0)− C1σ(x, f) ≤ σ(x0, f). (3.44)

Suppose by contradiction that for some ε > 0 such that d(x, x0) + C1σ(x, f) <
C1σ(x0, f) − 2ε; by the triangular inequality, Bx(C1σ(x, f)) ⊂ Bx0(C1σ(x0, f) −
2ε). Taking into account the definition of σ, then Bx0(C1σ(x0, f)) 6= Σ. Therefore,
Ax0(C1σ(x0, f)− 2ε, C1σ(x0, f)) is non-empty. So,

T (x, f) =
ˆ
Bx(σ(x,f))

f dVg =
ˆ

Σ\Bx(C1σ(x,f))
f dVg

>

ˆ
Σ\Bx0 (C1σ(x0,f))

f dVg = T (x0, f),

contradicting the definition of x0. Therefore, (3.43) is proved.
Now, suppose by contradiction that for some ε > 0 such that d(x, x0)−C1σ(x, f) >

σ(x0, f)+2ε. This implies that Bx0(σ(x0, f)+2ε) ⊂ (Σ\Bx0(C1σ(x, f))). As before,
the set Ax0(σ(x0, f), σ(x0, f) + 2ε) is not empty. Again, we have that

T (x, f) =
ˆ
Bx(σ(x,f))

f dVg =
ˆ

Σ\Bx(C1σ(x,f))
f dVg >

ˆ
Bx0 (σ(x0,f))

f dVg = T (x0, f),

which is a contradiction that proves (3.44).
Substracting (3.44) from (3.43), we can deduce σ(x, f) ≥ C1−1

2C1
σ(x0, f) ≥ 1

4σ(x0, f)
for every x ∈ Ax0(σ(x0, f), C1σ(x0, f)). For a given C1 > 2, there exists k = k(C1)
such that Ay(σ,C1σ) ⊂ ∪ki=1Bxi(1

4σ) for every σ > 0 and any y ∈ Σ, were xi ∈
Ay(σ,C1σ).

In this situation, we obtain

ˆ
Ax0 (σ(x0,f),C1σ(x0,f))

f dVg ≤
k∑
i=1

ˆ
Bxi (σ(xi,f))

f dVg =
k∑
i=1

T (xi, f) ≤ kT (x0, f).

On the other hand,
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ˆ
Bx0 (σ(x0,f))

f dVg =
ˆ

Σ\Bx0 (C1σ(x0,f))
f dVg = T (x0, f).

Since
´

Σ f dVg = 1, it is immediate that T (x0, f) ≥ 1
k+2 , which completes the proof

of this step.

Step 2: Let us define

S(f) = {x ∈ Σ | T (x, f) ≥ τ}.

By Step 0 and Step 1 S(f) is a non empty compact set for any f ∈ A0.

Let us define also
σ̄(f) = sup

x∈S(f)
σ(x, f).

Let us prove that even if σ is not continuous, up to eventually redefine σ(·, f) in a
point, there exists

ȳ ∈ S(f) such that σ(ȳ, f) = σ̄.

Indeed let {xn} ⊂ S(f) such that σ(xn, f) → σ̄(f), then since S(f) is compact, up
to a subsequence, xn → ȳ ∈ S(f). Thus

ˆ
Bxn (σ(xn,f))

f dVg =
ˆ

Σ\Bxn (C1σ(xn,f))
f dVg

and so ˆ
Bȳ(σ̄(f))

f dVg =
ˆ

Σ\Bȳ(C1σ̄(f))
f dVg.

Now if σ(ȳ, f) < σ̄(f) we can redefine σ(·, f) at ȳ as σ(ȳ, f) = σ̄(f), and the proof of
our claim is completed. Clearly this modification does not affect the previous steps.

For u ∈ X, take f ≡ fu = K̃+eu´
Σ K̃

+eu dVg
.

Step 3: For any ε > 0 there exists L0 > 0 large enough such that diamS(f) ≤
(C1 + 1)σ̄ < ε for all u ∈ J−L0

λ , L ≥ L0.
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By definition of σ̄, S(f) and Σ+

ˆ
Bȳ(σ̄)∩Σ+

K̃eu dVg ≥ τ

ˆ
Σ+
K̃eu dVg ≥ τ

ˆ
Σ
K̃eu dVg and

ˆ
Σ+\Bȳ(C1σ̄)

K̃eu dVg ≥ τ

ˆ
Σ+
K̃eu dVg ≥ τ

ˆ
Σ
K̃eu dVg.

Then Proposition 1.1.4 implies that σ̄ → 0, as L → +∞, uniformly for u ∈ J−Lλ .
Thus we can choose L0 > 0 such that σ̄ < min

{
ε

C1+1 ,
mini(diamDi)

6

}
for any u ∈ J−Lλ ,

where Di are the connected components of Σ+.
Now take x, y ∈ S(f), where f = K̃+eu´

Σ K̃e
u dVg

, u ∈ J−L0
λ , we claim that

d(x, y) ≤ C1 max{σ(x, f), σ(y, f)}+ min{σ(x, f), σ(y, f)}. (3.45)

Let us prove (3.45). Let us suppose by contradiction that Bx(C1(σ(x, f))) ∩
By(σ(y, f) + ε) = ∅ for some ε > 0. Clearly we can take ε < mini(diamDi)

6 and
such that By(σ(y, f) + ε) does not exhaust the whole Σ+. Let us now show that
Ay(σ(y, f), σ(y, f) + ε) ∩ Σ+ is a nonempty open set.
Let us prove first that there exists z ∈ ∂By(σ(y, f) + ε) ∩ Σ+.

By contradiction we suppose that ∂By(σ(y, f) + ε) ∩ Σ+ = ∅.
Since

´
By(σ(y,f))∩Σ+ f dVg > 0, By(σ(y, f) + ε) ∩ Σ+ 6= ∅, so Di ⊂ By(σ(y, f) + ε)

for some i. This would imply that mini(diam(Di)) < 2(σ(y, f) + ε) ≤ 2σ̄ + 2ε <
2
3 mini(diam(Di)) which is impossible.

Next, being Σ+ open, Bz(ε) ∩ Ay(σ(y, f), σ(y, f) + ε) ∩ Σ+ is a nonempty open
set. Then

ˆ
Bx(σ(x,f))∩Σ+

K̃eu dVg =
ˆ

Σ+\Bx(C1σ(x,f))
K̃eu dVg

≥
ˆ
By(σ(y,f)+ε)∩Σ+

K̃eu dVg >

ˆ
By(σ(y,f))∩Σ+

K̃eu dVg.

By interchanging the roles of x and y, we would also obtain the reverse inequality.
This contradiction proves (3.45).

Then by (3.45) and the definition of σ̄ we have d(x, y) ≤ (C1 + 1)σ̄ for any given
x, y ∈ S(f).
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Step 4: Definition of β and conclusion.
We consider Σ isometrically embedded in RN and we define

η : J−L0
λ → RN , η(u) =

´
Σ[T (x, f)− τ ]+x dVg´
Σ[T (x, f)− τ ]+dVg

where f ≡ fu = K̃+eu´
Σ K̃

+eu dVg
.

Notice that in the above terms the integrands vanish outside S(f).
From now on, for r > 0, according to our notation we will denote by (Σ+)r =

{x ∈ Σ | d(x,Σ+) < r}. Clearly, Bȳ(σ̄) ∩ Σ+ 6= ∅, namely

ȳ ∈ (Σ+)σ̄, (3.46)

moreover by Step 3 diam(S(f)) ≤ (C1 + 1)σ̄ and therefore being ȳ ∈ S(f)

S(f) ⊂ (Σ+)(C1+2)σ̄ and S(f) ⊂ B̄RN
ȳ ((C1 + 1)σ̄).

Being η(u) a barycenter of a function supported in S(f), we have

|η(u)− ȳ| ≤ (C1 + 1)σ̄. (3.47)

Let U ⊃ Σ, U ⊂ RN an open tubular neighborhood of Σ, and P : U → Σ an
orthogonal projection onto Σ. Moreover by Step 3 there exists L0 > 0 sufficiently
large such that η(u) ∈ U for any u ∈ J−L0

λ . Thus we can define

β̃ : J−L0
λ → Σ β̃(u) = P ◦ η(u).

Next, we claim that, eventually for a larger L0,

d(ȳ, β̃(u)) ≤ 2C1σ̄. (3.48)

Let Tȳ(Σ) be the tangent space to Σ at ȳ. For any x ∈ S(f) ⊂ BRN
ȳ ((C1 + 1)σ̄),

we have that

min {|ȳ + y − x| : y ∈ Tȳ(Σ)} ≤ Cσ̄2,
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where C depends only on the C2 regularity of Σ. Since η(u) is a barycenter of a
function supported in S(f), it is clear that

min {|ȳ + y − η(u)| : y ∈ Tȳ(Σ)} ≤ Cσ̄2.

By taking a larger L0, if necessary, by Step 3 σ̄ is small enough such that

|β̃(u)− η(u)| = min
x∈Σ
|η(u)− x| ≤ 2Cσ̄2 ≤ σ̄. (3.49)

Since C1 > 2, let ν = 2C1
C1+2 > 1, again, by Step 3 we can take L0 large enough

such that σ̄ satisfies that for x, y ∈ Σ, if |x− y| ≤ (C1 + 2)σ̄, then d(x, y) ≤ ν|x− y|.
This together with (3.47) and (3.49) proves (3.48).

Combining (3.46) and (3.48) we obtain that

d(β̃(u),Σ+) < (2C1 + 1)σ̄. (3.50)

Besides by the regularity of ∂Σ+ there exists γ > 0 and a continuous projection
π : (Σ+)γ → Σ+ such that

π|Σ+ = Id|Σ+ and d(x, π(x)) = d(x,Σ+). (3.51)

Again for L0 > 0 large enough 2(C1 + 1)σ̄ < γ and so, by (3.50), β̃(J−L0
λ ) ⊂ (Σ+)γ.

Then we can define β : J−L0
λ → Σ+ as

β(u) = π ◦ β̃(u).

At last by (3.48), (3.51), (3.50) and C1 > 2 we have

d(ȳ, β(u)) ≤ d(ȳ, β̃(u)) + d(β̃(u), π ◦ β̃(u))

≤ 2C1σ̄ + d(β̃(u),Σ+)

≤ (4C1 + 1)σ̄ < 5C1σ̄.

Remark 3.2.7. With the above construction, if fn = K̃+eun´
Σ K̃

+eundVg
⇀ δx for some
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x ∈ Σ+ then one also has β(un)→ x.

Proof. Let us take σn = σ(fn) and xn ∈ S(fn). Up to subsequence, we have that
σn → σ0 xn → x0.

In order to prove the remark, it suffices to check that σ0 = 0 and x0 = x. Suppose
by contradiction, that σ0 > 0. By construction, then

ˆ
Bx0 (σ/2)∩Σ+

fn dVg > τ,

ˆ
Σ+\Bx0 ((C1−1)σ)

fn dVg > τ,

which contradicts the hypothesis.
Now, suppose that x0 6= x, then 0 < δ < d(x0, x)/2. Since σn → 0, it holds

ˆ
Bx0 (δ)∩Σ+

fn dVg > τ,

which is a new contradiction.

Next we show that the functional Jλ is bounded from below on the functions in
β−1(Θλ), where β is the map constructed in Proposition 3.2.5 and Θλ is defined in
(3.2).

Proposition 3.2.8. Let α1, . . . , αm > 0 and λ ∈ (8π, 16π). Assume (H1) and (H2),
then there exist C1 > 0 sufficiently large, L0 > 0, τ > 0 such that Proposition 3.2.5
applies and there exists L > L0 such that Jλ(u) > −L for any u ∈ J−L0

λ satisfying
that β(u) = pi ∈ Θλ.

Proof. We will follow very closely the proof of Proposition 4.1 in [90], adapting it to
our different definition of β.

Let ε > 0 to be fixed later depending only on λ and a universal constant C0. In
turn let C1 > 4 large enough so that ε−1 + 1 < log4C1 and let L0 > 0 and τ > 0
such that Proposition 3.2.5 applies.

Let us suppose by contradiction that there exists a sequence un ∈ X such that
Jλ(un) → −∞ and β(un) = pi ∈ Θλ as n → +∞. Clearly, we can assume without
loss of generality that

´
Σ undVg = 0.

Let ȳn ∈ Σ, σ̄n > 0 be as in Proposition 3.2.5, such that d(ȳn, pi) < 5C1σ̄n. It
is easy to see, applying Proposition 1.1.4 that σ̄n → 0. Consequently, by virtue of
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(H2), for n large enough ȳn ∈ Σ+. Then we fix δ > 0, smaller than the injectivity
radius and such that Bȳn(δ) ⊂ Σ+ for any n sufficiently large, and we choose

N ∈ N such that ε−1 < N < log4C1. (3.52)

Since σ̄n → 0 we have that for n sufficiently large C1σ̄n < δ and so

∪Nm=1Aȳn(4m−1σ̄n, 4mσ̄n) ⊂ Aȳn(σ̄n, C1σ̄n) ⊂ Bȳn(δ).

Then there exists sn ∈ [2σ̄n, C1
2 σ̄n] such that

ˆ
Aȳn ( sn2 ,2sn)

|∇un|2 dVg ≤
1
N

ˆ
Bȳn (δ)

|∇un|2 dVg. (3.53)

From now on, in order to simplify the notation, we drop the dependence on n.
Let us define

D1 =
ˆ
Bȳ(s)
|∇u|2dVg, D2 =

ˆ
Σ\Bȳ(s)

|∇u|2dVg, D = D1 +D2.

The proof proceeds in three steps.
Step 1: We apply Proposition 1.1.3 to a convenient dilation of u given by

v(x) = u(sx+ ȳ).

We have
ˆ
Bȳ(s)
|∇u|2dVg =

ˆ
B0(1)
|∇v|2dVg, −

ˆ
Bȳ(s)

udVg = −
ˆ
B0(1)

vdVg,

ˆ
Bȳ( s2 )∩Σ+

K̃eudVg ≤ C

ˆ
Bȳ( s2 )∩Σ+

|x− pi|2αieu dVg

≤ Cs2αi
ˆ
Bȳ( s2 )∩Σ+

eudVg ≤ Cs2αi+2
ˆ
B0( 1

2 )
evdVg.

In the above computations we have used that |ȳ− pi| ≤ Cs. Then, recalling that
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by definition of τ (see Proposition 3.2.5)
ˆ
Bȳ( s2 )∩Σ+

K̃eudVg ≥ τ

ˆ
Σ+
K̃eudVg ≥ τ

ˆ
Σ
K̃eudVg

and applying Proposition 1.1.3 to v (with H̃ = 1) we get

log
ˆ

Σ
K̃eu dVg ≤ C + 2(1 + αi) log s+ log

ˆ
B0( 1

2 )
ev dVg

≤ C + 2(1 + αi) log s+ 1
16π − ε

ˆ
B0(1)
|∇v|2 dVg +−

ˆ
B0(1)

v dVg(3.54)

= C + 2(1 + αi) log s+ 1
16π − εD1 +−

ˆ
Bȳ(s)

u dVg.

Step 2: Exactly as in Proposition 4.1 of [90], we estimate −́
∂Bȳ(s) u dVg. By the

trace embedding ũ = u − −́
Bȳ(s) u dVg ∈ L1(∂Bȳ(s)) and thanks to the Poincaré-

Wirtinger inequality we get

∣∣∣∣∣−
ˆ
∂Bȳ(s)

ũ dx

∣∣∣∣∣ ≤ C‖ũ‖H1 ≤ C

(ˆ
Bȳ(s)
|∇u|2 dVg

) 1
2

.

Therefore,

∣∣∣∣∣−
ˆ
∂Bȳ(s)

u dx−−
ˆ
Bȳ(s)

u dVg

∣∣∣∣∣ ≤ C

(ˆ
Bȳ(s)
|∇u|2 dVg

) 1
2

≤ εD1 + C ′. (3.55)

Now notice that, since the above inequality is invariant under dilation, the constant
C is independent of s and hence C ′ depends only on ε.

Step 3: By virtue of the fact that K̃(x) ∼ d(x, pi)2αi near pi, and |x − pi| ≤
C|x− ȳ| in Σ+ \Bȳ(s), we get the following estimate
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ˆ
Σ+\Bȳ(s)

K̃eu dVg =
ˆ

Σ+\Bȳ(s)

K̃(x)
|x− ȳ|2αi

|x− ȳ|2αieu dVg ≤ (3.56)

C

s2αi

ˆ
Σ+\Bȳ(s)

ev̂ dVg ≤
C

s2αi

ˆ
Σ
ev̂ dVg,

where v̂(x) = û(x) + 4αiw(x),

w(x) =


log s x ∈ Bȳ(s),
log |x− ȳ| x ∈ Aȳ(s, δ),
log δ Σ \Bȳ(δ),

 −∆gû = 0 x ∈ Bȳ(s),
û(x) = u(x) x /∈ Bȳ(s).

In order to apply the Moser-Trudinger inequality to v̂ we observe that

−
ˆ

Σ
v̂ dVg ≤ C +−

ˆ
Σ
û. (3.57)

Since −́Σ u dVg = 0 and û− u is compactly supported in Bȳ(s),

∣∣∣∣∣−
ˆ

Σ
û dVg

∣∣∣∣∣ =
∣∣∣∣∣−
ˆ

Σ
(û− u)

∣∣∣∣∣ ≤ C

(ˆ
Bȳ(s)
|∇û−∇u|2 dVg

) 1
2

≤ εD + Cε. (3.58)

We now estimate using (3.53) and (3.52) the Dirichlet energy

ˆ
Bȳ(s)
|∇v̂|2 dVg =

ˆ
Bȳ(s)
|∇û|2 dVg ≤ C0

ˆ
Aȳ( s2 ,2s)

|∇u|2 dVg ≤ C0εD, (3.59)

where C0 is independent on the radius s, since the inequality is dilation invariant.

On the other hand integrating by parts we obtain
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ˆ
Σ\Bȳ(s)

|∇v̂|2 dVg =
ˆ

Σ\Bȳ(s)
|∇û|2 dVg + 16α2

i

ˆ
Σ\Bȳ(s)

1
|x− ȳ|2

dVg

+8αi
ˆ

Σ\Bȳ(s)
∇u · ∇(log |x− ȳ|) dVg (3.60)

≤ D2 − 32πα2
i log s− 16παi−

ˆ
∂Bȳ(s)

u dVg + C.

Finally applying to v̂ the Moser-Trudinger inequality, Proposition 1.1.2, and in
turn (3.59), (3.60), (3.57), (3.58) we get

log
ˆ

Σ
ev̂ dVg ≤

1
16π

ˆ
Bȳ(s)
|∇v̂|2 dVg + 1

16π

ˆ
Σ\Bȳ(s)

|∇v̂|2 dVg +−
ˆ

Σ
v̂ dVg + C

≤ C0εD
16π + D2

16π − 2α2
i log s− αi−

ˆ
∂Bȳ(s)

u dVg + εD + C. (3.61)

Now, recalling that Bȳ(s) ⊂ Bȳ(C1σ̄), the definition of ȳ (see Proposition 3.2.5),
(3.56) and (3.61) we have that

log
ˆ

Σ
K̃eu dVg ≤ log

ˆ
Σ+
K̃eu dVg ≤ log

(
1
τ

ˆ
Σ+\Bȳ(s)

K̃eu dVg

)

≤ −2αi(1 + αi) log s+ C0εD + D2

16π − αi−
ˆ
∂Bȳ(s)

u dVg + C.(3.62)

At last, adding (3.54) (multiplied by αi) to (3.62) and using (3.55) and the assump-
tion αi ≤ 1 we have

(αi + 1) log
ˆ

Σ
K̃eu dVg ≤

( 1
16π − ε + C0ε

)
D + C,

so plugging this estimate in the functional we derive that

Jλ(u) ≥
(

1
2 − λ

(
1

(16π − ε)(αi + 1) + C0

αi + 1ε
))ˆ

Σ
|∇un| dVg − C.

In order to conclude it suffices to take ε small enough, depending only on λ and C0
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(C0 is a universal constant), such that
(

1
2 − λ

(
1

(16π−ε)(αi+1) + C0
αi+1ε

))
> 0. Indeed,

recalling that we were working with a sequence un, we get Jλ(un) ≥ −C which leads
to the desired contradiction.

Next, we can apply the last proposition to map continuously functions u with
a low energy level onto the set of formal barycenters on a union of bouquets and a
simplex contained in Σ+ \Θλ. Let us define the set

Θλ,Ai = Θλ ∩ Ai for i = 1, . . . , N , Θλ,Ch = Θλ ∩ Ch for h = 1, . . . ,M, (3.63)

where Θλ is defined in (3.2), and let us assume that, up to reordering, Mλ ∈
{1, . . . ,M} is such that Θλ,Ch 6= ∅ if h ∈ {1, . . . ,Mλ} and Θλ,Ch = ∅ if h ∈
{Mλ + 1, . . . ,M}.

And let us introduce

Z̃ =
N∐
i=1

Bgi+|Θλ,Ai | q
Mλ∐
h=1

B|Θλ,Ch | q ŶMλ
, (3.64)

Bgi+|Θλ,Ai | ⊂ Ai, B|Θλ,Ch | ⊂ Ch are bouquets of gi + |Θλ,Ai| and |Θλ,Ch| circles
respectively, with gi defined in (3.31), for i = 1, . . . , N and h = 1, . . . ,Mλ, and
ŶMλ

= ∐M
h=Mλ+1{yh} with yh ∈ Yh for h = Mλ + 1, . . . ,M .

Proposition 3.2.9. Let λ ∈ (8π, 16π) and assume (H1), (H2). Then for L > 0
sufficiently large there exists a continuous projection

Ψ : J−Lλ → Bar1(Z̃) ∼= Z̃.

Moreover, if

K̃+eun´
Σ K̃

+eundVg
⇀ σ, for some σ ∈ Bar1(Z̃),

then Ψ(un)→ σ.

Remark 3.2.10. Observe that Z̃ is not contractible if and only if either N ≥ 1 or
Mλ > 1, i.e. if (H3) holds, or if Θλ 6= ∅, namely (H4) holds.
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Proof. By Proposition 3.2.8, we have constructed a continuous projection

β : J−Lλ → Σ+ \Θλ,

with the property that if K̃+eun´
Σ K̃

+eun dVg
⇀ δx for some x ∈ Σ+ \Θλ then β(un)→ x.

As we did with Σ+, we can rewrite Σ+ \Θλ as

N∐
i=1

A′i q
Mλ∐
h=1

C ′h q
M∐

h=Mλ+1
Ch,

where A′i = Ai \Θλ,Ai and C ′h = Ch \Θλ,Ch .
The sets A′i can be retracted to an inner bouquet Bgi+|Θλ,Ai | ⊂ A′i and C ′h to

B|Θλ,Ch | ⊂ C ′h, in a similar way to the proof of Proposition 3.2.1, we can define a
retraction

r : Σ+ \Θλ −→ Z̃.

Finally, we can define Ψ as the composition of β with the pushforward r∗ :
Bar1(Σ+ \Θλ) −→ Bar1(Z̃), then

Ψ : J−Lλ −→ Bar1(Z̃)
u 7−→ δx.

Since r is a retraction, the second part of the proposition is satisfied.

Next, for λ ∈ (8π, 16π), we introduce appropriate test functions that will allow
us to map a compact subset Z̃ of Σ+ \Θλ into low sublevels of Jλ.

Let α̃ = maxn≤` | pn /∈Θλ αn or α̃ = 0 if Θλ = {p1, . . . , p`} or ` = 0. Fix α ∈
(α̃, λ8π − 1), µ > 0 and z ∈ Z̃, we define

φ̃µ,z : Σ→ R, φ̃µ,z(x) = 2 log
(

µ1+α

1 + (µχb(d(x, z)))2(1+α)

)
,

ϕ̃µ,z(x) = φ̃µ,z(x)−
ˆ

Σ
φ̃µ,z dVg. (3.65)

where χb is defined in (3.35).
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Since Z̃ is a compact subset of Σ+ \Θλ, we can claim the following lemma.

Lemma 3.2.11. Let λ ∈ (8π, 16π) and let Z̃ be a compact subset of Σ+ \Θλ, then

(i) given any L > 0, there exist a small b and a large µ(L) such that, for any
µ ≥ µ(L), ϕ̃µ,z ∈ X̄ and Jλ(ϕ̃µ,z) < −L for any z ∈ Z̃;

(ii) for any z ∈ Z̃,

K̃+eϕ̃µ,z´
Σ K̃

+eϕ̃µ,zdVg
⇀ δp as µ→ +∞.

Proof. See Appendix.

3.2.2 Proof of Theorems 0.4.3,0.4.4

The compactness result stated in Theorem 0.4.2, combined with the arguments
in [87], allows us to prove the next alternative bypassing the Palais-Smale condition,
which is not known for the functional Jλ.

Lemma 3.2.12. Let λ /∈ Λ` and assume (H1), (H2). If Jλ has no critical levels
inside some interval [a, b], then Jaλ is a deformation retract of J bλ.

Remark 3.2.13. Actually the deformation lemma in [87] is originally proved for
the regular case and for K positive, but it adapts in a straightforward way to the
singular one, even for K sign changing.

Indeed, in the latter case since Jλ decreases along the flow and Jλ(u) → +∞ as
u approaches the boundary of X̄, we have that X̄ is positively invariant under the
flow.

In turn, since Theorem 0.4.2 implies that the functional Jλ stays uniformly
bounded on the solutions of (3.1), the above Lemma can be used to show that
it is possible to retract the whole space X̄ onto a high sublevel J bλ (see [89, Corollary
2.8], also for this issue minor changes are required).

Lemma 3.2.14. Let λ /∈ Λ` and assume (H1), (H2). If b > 0 is sufficiently large,
the sublevel J bλ is a retract of X̄ and hence is contractible.
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In order to show the contractibility of X̄ it suffices to fix v ∈ X̄ we can construct
a map g : X̄ × [0, 1] → X̄, defined as g([u, t]) = log(tv + (1 − t)u). In this way, we
can retract X̄ to the function v.

Let us introduce some notations in order to unify the proofs of Theorem 0.4.3
and 0.4.4. Define

Z =

Bark(Z) if λ ∈ (8πk, 8π(k + 1)), k ≥ 2,

Bar1(Z̃) if λ ∈ (8π, 16π),

where Z and Z̃ are defined in (3.32) and in (3.64) respectively.

Moreover, we set

ω ∈

Bark(Z) if λ ∈ (8πk, 8π(k + 1)), k ≥ 2,

Bar1(Z̃) if λ ∈ (8π, 16π),

Φµ(ω) =

ϕµ,σ if λ ∈ (8πk, 8π(k + 1)), k ≥ 2,

ϕ̃µ,z if λ ∈ (8π, 16π),

where ϕµ,σ is defined in (3.36) and ϕµ,z in (3.65).

We have already defined a couple of maps such that

Z Φµ−→ J−L
Ψ−→ Z,

is homotopically equivalent to the identity. Recall that Ψ is defined in Proposition
3.2.1 for k ≥ 2 and Proposition 3.2.9 for k = 1.

Proposition 3.2.15. If α1, . . . , α` > 0 and under assumptions (H1), (H2) and (H3)
or (H4), for any λ ∈ (8kπ, 8(k+1)π), then the composition Ψ ◦ Φµ|Z is homotopically
equivalent to the identity map. Moreover, Φµ(Z) is not contractible in J−Lλ for L
sufficiently large.
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Proof. Let us introduce the homotopy

H : [0, 1]×Z −→ Z

(t, ω) 7−→ H(t, ω) = Ψ ◦ Φµ(t)(ω),

where µ(0) = µ for some µ > 0 large enough and µ(t) is an increasing continuous
function with µ(t)→ +∞ as t→ 1.

Combining Lemma 3.2.4 with Proposition 3.2.1 or Lemma 3.2.11 with Proposi-
tion 3.2.9 we obtain that

H(t, ω) −→ ω as t→ +∞,

so H realizes the desired homotopy equivalence.
In turn, by virtue of assumption (H3) or (H4), Z is not contractible, see Re-

mark 3.2.2 and Remark 3.2.10. The above assertion implies easily that Φµ(Z) is also
not contractible.

This, together with Lemma 3.2.12 and Lemma 3.2.14, allows us to conclude the
proofs of Theorem 0.4.3 and Theorem 0.4.4.

3.3 Two multiplicity results

In this section we present two results which deal with the multiplicity of solutions for
the singular mean field problem. More precisely, we are able to estimate the number
of solutions under the setting of the existence theorems. These results are valid
under a nondegeneracy assumption on the solutions of (3.1). Due to a transversality
argument, for a generic choice of K and g, any solution of (3.1) is non degenerate. In
that way, we show that the Morse inequalities can be applied to estimate the number
of solutions of (3.1). These inequalities, together with the topological description of
the sublevels of Jλ, motivates the computation of the Betti numbers (namely, the
dimension of the homology groups) of the spaces Bark(Z), Bark(Z̃) introduced in
the Section 3.2. Therefore, we will see how the number of solutions for the mean
field problem depends strongly on the topology of Σ+ and the singularities pi’s.
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Let us defineM as the space of all Riemannian metrics on Σ equipped with the
C2,α norm and

K` =

K : Σ→ R :
K satisfies (H1), (H2)
K(pi) > 0 for i ≤ `, K(pi) < 0 for i ≥ `+ 1

 , (3.66)

also equipped with the C2,α norm.

Theorem 3.3.1. Let ` ∈ {0, . . . ,m} and let us assume that α1, . . . , α` > 0. If
λ ∈ (8kπ, 8(k+ 1)π) \Λ`, k ∈ N, then for a generic choice of function K and metric
g (namely for (K, g) in an open and dense subset of K` ×M), then

#{solutions of (3.1)} ≥
∑
q≥0

dq,

where if k + 1−M ≤ N , then

dq =


(
N +M − 1
N +M − p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ k + 1),

0 otherwise;

while if k + 1−M ≥ N , then

dq =



(
N +M − 1
N +M − p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ N),

(
N +M − s
M − s

) ∑
a1 + . . . + aN = k −N − s + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k −N − s (1 ≤ s ≤M),

0 otherwise;

with sa,g =
(
a+g−1
g−1

)
and gi defined in (3.31).

Moreover we adopt the following convention: if N = 0
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∑
a1 + . . . + aN = h

ai ≥ 0

sa1,g1 . . . saN ,gN =

 1 if h = 0,
0 if h 6= 0.

Notice that if k + 1−M = N the two formulas coincide.

We point out that #{solutions of (3.1)} → +∞ as N+ = N + M → +∞.
Moreover, observe that if K > 0 then N+ = 1 and the above formula coincides with
that given by Bartolucci, De Marchis and Malchiodi in [5].

The above result gives no information if Σ+ has trivial topology; however, our
second multiplicity result can be applied also in this case.

Theorem 3.3.2. Let ` ∈ {0, . . . ,m} and let us assume that α1, . . . , α` > 0. If
λ ∈ (8π, 16π) \Λ`, then for a generic choice of function K and metric g (namely for
(K, g) in an open and dense set of K` ×M), then

#{solutions of (3.1)} ≥ N+ − 1 +
N∑
i=1

gi + |Θλ|,

where the set Θλ is defined in (3.2) and gi in (3.31).

3.3.1 Morse inequalities for Jλ

The aim of this subsection is to prove a Morse-theoretical result for Jλ, which
will be crucial to get the multiplicity estimates of Theorem 3.3.1 and Theorem 3.3.2.

Proposition 3.3.3. Let ` ∈ {0, . . . ,m} and let us assume α1, . . . , α` > 0. If λ ∈
(8π,+∞) \ Λ`, then for a generic choice of the function K, g (namely for (K, g) in
an open and dense subset of K` ×M)

any solution of (3.1) is non degenerate,
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where to emphasize the dependence on K and g we write

X̄K,g = {u ∈ H1
g (Σ) :

ˆ
Σ
udVg = 0,

ˆ
Σ
Ke−hmeudVg > 0}

with hm defined in (0.8).

Proof. Let us fix (K̄, ḡ) ∈ K` ×M.
Next, we introduce the space S of all C2,α symmetric matrices on Σ. S is a

Banach space endowed with the C2,α norm,
The setM of all C2,α Riemannian metrics on Σ is an open subset of S.
It is easy to verify that for small δ > 0, and any g ∈ Gδ := {g ∈ S : ‖g‖2 < δ},

ḡ + g is a Riemannian metric and the sets H1
ḡ+g(Σ), L2

ḡ+g(Σ), L1
ḡ+g(Σ) coincide

respectively with H1
g (Σ), L2

g(Σ), L1
g(Σ) and the two norms are equivalent.

Being K̄ ∈ K`, it satisfies (H1), (H2). Thus, it is not hard to see that for
δ > 0 small enough K̄ + K satisfies (H1), (H2) for any K ∈ Hδ := {h ∈ C2,α(Σ) :
‖h‖C2,α(Σ) < δ}.

Furthermore, by Theorem 0.4.2, it suffices to take a smaller δ so that there exists
R > 0 such that for any (K, g) ∈ Hδ × Gδ all the critical points (with zero mean
value) of Iλ,K̄+K,ḡ+g are contained in the ball B = B0(R) ⊂ H1

ḡ (Σ).

Finally, let us introduce the map F : Hδ × Gδ × B → X̄K,g as

F (K, g, u) = S−1
g (F̃g(K,Sg(u))), (3.67)

where

F̃g : Hδ × X̄K,g̃+g −→ X̄K,g̃+g

(K,w) 7→ w − Ag
(
λ (K̄+K)e−hmew´

Σ(K̄+K)e−hmewdVḡ+g
− λ´

Σ dVḡ+g
+ w

)
.

Here Sg : X̄K,g → X̄K,g̃+g defined as Sg(u) = u−
ffl
u dVg̃+g; whereas Ag is the linear

operator such that

(Agu, v)H1
g̃+g

= (u, v)L2
g̃+g(Σ) ∀v ∈ H1

g̃+g,∀u ∈ L2
g(Σ).

Indeed, Ag is the adjoint operator i∗g+g̃ of the compact embedding ig+g̃ : X̄K,g̃+g →
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L2
g̃+g(Σ). By integrating by parts, one can see that the main term of the explicit

expression of Ag is the inverse of the laplacian operator. Since the operator Ag is of
class C1, then the map F also is.

It is not difficult to check that u is a critical point of Jλ,K+K̃,g+h̃ if and only if
(K, g, u) ∈ Hδ × Gδ × B are such that F (K, g, u) = 0.

Once δ is fixed, by the computations of [46], the following results hold:

i) For any (K, g) ∈ Hδ × Gδ and u ∈ B, the map u 7→ F (K, g, u) is Frendholm of
index 0.

ii) The set

{u ∈ B : F (K0, g0, u) = 0, (K0, g0) belongs to a compact subset of Hδ × Gδ}

is relatively compact in B.

iii) Given (K0, g0, u0) ∈ Hδ × Gδ × B such that F (K0, g0, u0) = 0 and for any
v ∈ X̄K,g there exists (Kv, gv, uv) ∈ C2,α(Σ)×M× X̄K,g such that

F̃ ′(K,g)(K0, g0, u0)[Kv, gv] + F̃ ′u(K0, g0, u0)[uv] = v.

Now, let us recall the following transversality theorem, given in [106] for instance.

Theorem 3.3.4. Let X, Y, Z be three real Banach spaces and let U ⊂ X, V ⊂ Y be
open subsets. Let F : V × U → Z be a map of class Ck with k ≥ 1 such that it hold
the folling statemnts

1. for any y ∈ V , F (y, ·) : x 7→ F (y, x) is a Fredholm map of index l with l ≤ k;

2. z0 is a regular value of F , that is the operator F ′(y0, x0) : Y ×X → Z onto at
any point (x0, y0) such that F (y0, x0) = z0;

3. the set of x ∈ U such that F (y0, x0) = z0 with y in a compact set of V is
relatively compact in U .

Then the set {y ∈ V : z0 is a regular value of F (y, ·)} is a dense open subset of V .
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By i)-iii), if we take as F the map defined (3.67), and set X = Z = X̄K,g, Y =
M× C2,α(Σ), V = Hδ × Gδ, U = B and z0 = 0, hypothesis of Theorem 3.3.4 are
satisfied. Therefore, we deduce that the following set is an open and dense subset of
Hδ × Gδ

(K, g) ∈ Hδ × Gδ :
any u ∈ Jb

λ,K̄+K,ḡ+g solution of the equation

−∆ḡ+gu = λ

(
(K̄+K)e−hmeu´

Σ(K̄+K)e−hmeudVḡ+g
− 1´

Σ dVḡ+g

)
is non degenerate

 .
Since this holds for any choice of (K̄, ḡ) the thesis follows.

As recalled in the previous section we do not know whether Jλ satisfies the (PS)
condition or not, thus Theorem 1.2.1 cannot be directly applied. However, as already
pointed out in [5], the (PS)-condition can be replaced by the request that appropriate
deformation lemmas hold for the functional.

In particular, a flow defined by Malchiodi in [89] allows to adapt to Jλ the classical
deformation lemmas [19, Lemma 3.2 and Theorem 3.2] needed so that Theorem 1.2.1
can be applied for H = X̄ and I = Jλ. It is worth to point out that, even if the flow
is defined for K positive, arguing as in Remark 3.2.13 it is not hard to check that
the same construction applies also in the sign changing case.

In conclusion, under the assumptions of Theorem 3.3.1, let a, b be regular values
of Jλ and assume that all the critical points in {a ≤ Jλ ≤ b} are non degenerate,
then

#{critical points of Jλ in {a ≤ Jλ ≤ b}} ≥
∑
q≥0

dim(Hq(J bλ, Jaλ)), (3.68)

for any q ≥ 0.
By the topological description of the sublevels of J−Lλ , we can estimate this ho-

mology groups (see subsetcion 0.4.3).

Proposition 3.3.5. Let λ ∈ (8kπ, 8(k + 1)π), k ∈ N, and assume (H1), (H2).
If b > 0 is such that J bλ is contractible, then there exists L > 0 sufficiently large

so that
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#{solutions of (3.1) } ≥
∑
q≥0

dim(Hq+1(J bλ, J−Lλ )) ≥
∑
q≥0

dim(H̃q(Bark(Z))),

where Z is defined in (3.32).

Proof. By assumption J bλ is contractible thus, from the exactness of the homology
sequence,

. . .→ H̃q+1(J−Lλ )→ H̃q+1(J bλ)→ Hq+1(J bλ, J−Lλ )→ H̃q(J−Lλ )→ . . .

we derive that

Hq+1(J bλ, J−Lλ ) ∼= H̃q(J−Lλ ), for any q ≥ 0,
H0(J bλ, J−Lλ ) = 0.

Since Ψ∗ ◦ Φ∗ = Id|H∗(Bark(Z)), and so

dim(H̃q(J−Lλ )) ≥ dim(H̃q(Bark(Z))).

The inequality (3.68) completes the proof.

Proposition 3.3.6. Let λ ∈ (8π, 16π) and assume (H1), (H2). If b > 0 is such that
J bλ is contractibe, then there exists L > 0 sufficiently large so that

#{solutions of (3.1) } ≥
∑
q≥0

dim(Hq+1(J bλ, J−Lλ )) ≥
∑
q≥0

dim(H̃q(Bar1(Z̃)))

where Z̃ is defined in (3.64).

Proof. The proof is completely analogous to the one of the previous proposition,
where Z̃ and ϕµ,z play the role of Z and ϕµ,σ respectively, while Proposition 3.2.9
and Lemma 3.2.11 must be applied instead of Proposition 3.2.1 and Lemma 3.2.4.
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3.3.2 Proof of the multiplicity results

This subsection is dedicated to prove Theorem 3.3.1 and Theorem 3.3.2. In view of
Proposition 3.3.5 and Proposition 3.3.6, we just need to compute the dimension of
Bark(Z), Bar1(Z̃) introduced in the previous section.

We set
dq(k,N,M) = dim(H̃q(Bark(Z))), (3.69)

with the convention that dq(k,N,M) = 0 if q < 0.

Proposition 3.3.7. Let k ∈ N, N,M ∈ N∪{0}, with N +M ≥ 1, and q ∈ N∪{0},
then
if k + 1−M ≤ N ,

dq(k,N,M) =


(
N +M − 1
N +M − p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ k + 1),

0 otherwise;

if k + 1−M ≥ N ,
dq(k,N,M) =


(
N +M − 1
N +M − p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ N),

(
N +M − s
M − s

) ∑
a1 + . . . + aN = k −N − s + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k −N − s (1 ≤ s ≤M),

0 otherwise;

where sa,g =
(
a+g−1
g−1

)
and gi is defined in (3.31).

Moreover we adopt the following convention: if N = 0

∑
a1 + . . . + aN = h

ai ≥ 0

sa1,g1 . . . saN ,gN =

 1 if h = 0,
0 if h 6= 0.



Chapter 3. The singular mean field problem on compact surfaces 103

Notice that if k + 1−M = N the two formulas coincide.

Proof.

Step 1. The thesis holds true if k = 1 or N = 0. If k = 1, Bar1(Z) ∼= Z and so
by direct computation we have:

dq(1, N,M) =


N∑
i=1

gi (=
N∑
i=1

s1,gi) if q = 1,

N +M − 1 if q = 0,

0 otherwise.

If N = 0, Bark(Z0,M) is the (k − 1)-skeleton of a (M − 1)-symplex and so the
following formula holds

dq(k, 0,M) =


(
M − 1
k

)
if q = k − 1,

0 otherwise,

where we adopt the convention that
(
a
b

)
= 0 if a < b.

Step 2. The thesis holds true if M = 0 for any k ≥ 2, N ≥ 1: that is,

dq(k,N, 0) =


(
N − 1
N − p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ min{k + 1, N}),

0 otherwise.
(3.70)

We will demonstrate (3.70) by induction on N , for any fixed k ≥ 2.
If N = 0, the formula holds by Step 1. Now, assume by induction that (3.70)

holds true for a certain N and let us show its validity for N + 1. Being

XN+1 = XN qBgN+1 ,

by Proposition 1.2.2, (1.30) and (1.32) we get
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dq(k,N + 1, 0) =

dq(k,N, 0) + dq−1(k − 1, N, 0) + dim(H̃q(Bark(BgN+1))) + dim(H̃q−1(Bark−1(BgN+1)))+
k−1∑
`=1

dim(H̃q(Bark−`(XN) ∗Bar`(BgN+1))) +
k−1∑
`=2

dim(H̃q(ΣBark−`(XN) ∗Bar`−1(BgN+1))),

(3.71)

Let us compute all the terms in (3.71).

The first two can be obtained using the inductive assumption. Next, again by
the computations in [5, Proposition 3.2], we know that

dim(H̃q(Bark(BgN+1))) =

 saN+1,gN+1 if q = 2k − 1,

0 otherwise,
(3.72)

and so

dim(H̃q−1(Bark−1(BgN+1))) =

 saN+1,gN+1 if q = 2k − 2,

0 otherwise.
(3.73)

Moreover, by (1.33), using (3.72) and the inductive assumption we have that

k−1∑
`=1

dim(H̃q(Bark−`(XN) ∗Bar`(BgN+1))) =

=


(
N − 1
N − p

) ∑
a1 + . . . + aN + ` = k − p + 1

ai ≥ 0, ` ≥ 1

sa1,g1 . . . saN ,gN saN+1,` if q = 2k − p (1 ≤ p ≤ N),

0 otherwise,
(3.74)

and
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∑k−1
`=2 dim(H̃q(ΣBark−`(XN) ∗Bar`−1(BgN+1))) =


(

N − 1
N − p+ 1

) ∑
a1 + . . . + aN + ` = k − p + 1

ai ≥ 0, ` ≥ 2

sa1,g1 . . . saN ,gN saN+1,`−1 if q = 2k − p (2 ≤ p ≤ N + 1),

0 otherwise.
(3.75)

In conclusion, combining (3.71), (3.72), (3.73), (3.74) and (3.75) we obtain that
dq(k,N + 1, 0) =


(

N

N + 1− p

) ∑
a1 + . . . + aN+1 = k − p + 1

ai ≥ 0

sa1,g1 . . . saN+1,gN+1 if q = 2k − p (1 ≤ p ≤ min k + 1, N + 1),

0 otherwise,

so (3.70) holds true for N + 1 and this completes the proof of (3.70).
Step 3. Conclusion.
We will prove the formula by induction on M , with k ≥ 2 and N ≥ 1 fixed.
If M = 0 the thesis is true by Step 2. Now, let us suppose that (3.70) holds for

M and we prove that then it is also true for M + 1. Being

ZN,M+1 = Z q {yM+1},

and H̃∗(Bark({yM+1})) = 0, by (1.30) and (1.32) we get

dq(k,N,M + 1) = dq(k,N,M) + dq−1(k − 1, N,M).

Hence by the inductive assumption we can compute dq(k,N,M + 1), obtaining that

if k + 1− (M + 1) ≤ N ,
dq(k,N,M + 1) =


(
N + (M + 1)− 1
N + (M + 1)− p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ k + 1),

0 otherwise;
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if k + 1− (M + 1) ≥ N ,
dq(k,N,M + 1) =



(
N + (M + 1)− 1
N + (M + 1)− p

) ∑
a1 + . . . + aN = k − p + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k − p (1 ≤ p ≤ N),

(
N + (M + 1)− s

(M + 1)− s

) ∑
a1 + . . . + aN = k −N − s + 1

ai ≥ 0

sa1,g1 . . . saN ,gN if q = 2k −N − s (1 ≤ s ≤M + 1),

0 otherwise.

So the formula holds for M + 1 and this concludes the proof.

Lemma 3.3.8. Let N , M ∈ N ∪ {0}, N + M ≥ 1 and let Z̃ be the set defined in
(3.64), then

dim(H̃q(Bar1(Z̃))) =


N +M − 1 q = 0,∑N
i=1 gi + |Θλ| q = 1,

0 otherwise.

Proof. Being Bar1(Z̃) ∼= Z̃ it is immediate to see that

dim(H̃q(Z̃)) =


N +M − 1 q = 0,∑N
i=1(gi + |Θλ,Ai|) +∑M

h=1 |Θλ,Ch| q = 1,
0 otherwise,

hence the thesis follows observing that

N∑
i=1

(gi + |Θλ,Ai|) +
M∑
h=1
|Θλ,Ch| = |Θλ|,

where Θλ,Ai and Θλ,Ch are defined in (3.63).

Proof of Theorem 3.3.1 is immediate from Proposition 3.3.3 and Proposition 3.3.5,
which allow us to use the computation of Proposition 3.3.7; whereas Theorem 3.3.2
is deduced from Proposition 3.3.6 and Lemma 3.3.8 instead.
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3.4 Proof of the non-existence theorem

In this section we will prove the existence of a family of functionsK for which problem
(3.1) does not admit a solution. First of all, let us introduce a non-existence result
for the problem

−∆u = R(x)eu in R2, (3.76)

where R is a sign changing function. In [30], Chen and Li deduce that there is no
solution for the regular Nirenberg problem (equation (0.4) with λ = 4π and Σ = S2)
if K is axially symmetric, sign changing and monotone in the region where K is
positive. In order to do it, the authors performed a stereographic projection to
transform the equation (0.4) into (3.76). In particular, for that case, the solutions
behave at infinity as

u ∼ −4 log |x|, (3.77)

and that R has a finite limit as |x| → +∞.
Actually, we will show that this approach, with proper modifications, allows us

to deal with solutions of (3.76) under the less restrictive assumption

u ∼ −η log |x|, (3.78)

for some η > 4 and if the function R satisfies

lim
|x|→+∞

R(x)|x|4−η ∈ (0,+∞). (3.79)

Let r0 > 0 and R ∈ C0
rad(R2), we assume that

R is positive and non-increasing for r < r0, negative for r > r0. (3.80)

Theorem 3.4.1. Assume that R ∈ C0
rad(R2) is a bounded function verifying (3.80).

Then there is no solution for the problem (3.76) such that (3.78) holds.

The key point to derive this generalized result is to modify properly Lemma 2.1
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in [30], taking into account the new asymptotic behavior. Applying properly the
moving spheres method, we can obtain the following estimate.

Lemma 3.4.2. Let R ∈ C0
rad(R2) be a bounded function satisfying (3.80). Without

loss of generality, we can assume r0 = 1. Let u be a solution of (3.76) such that
(3.78) holds, then

u(µx) > u

(
µx

|x|2

)
− η log |x| ∀x ∈ B0(1), 0 < µ ≤ 1. (3.81)

Proof. Step 1: We claim that (3.81) is true for µ = 1.
Let v(x) = u

(
x
|x|2
)
− η log |x|, then v verifies

−∆v = |x|η−4R

(
1
|x|

)
ev.

By (3.80), ∆u < 0 and ∆v ≥ 0 in B0(1), then −∆(u− v) > 0 in B0(1). Since u = v

in ∂B0(1), then
u > v in B0(1)

by using the maximum principle.
Step 2: At this point, we move ∂B0(µ) towards µ = 0. Let uµ(x) = u(µx) +

2 log µ and vµ(x) = uµ
(

x
|x|2
)
− η log |x|, then

−∆uµ = R(µ|x|)euµ , −∆vµ = |x|η−4R

(
µ

|x|

)
evµ .

Taking the auxiliary function wµ = uµ − vµ, we obtain that

∆wµ + |x|η−4R

(
µ

|x|

)
eφµ(x)wµ(x) =

[
R

(
µ

|x|

)
|x|η−4 −R(µ|x|)

]
euµ(x) (3.82)

for x ∈ B0(1) where φµ is a function between uµ(x) and vµ(x). Observe that by
(3.80), we have that

R

(
µ

|x|

)
|x|η−4 −R(µ|x|) ≤ 0, for |x| ≤ 1 and µ ≤ 1.
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Therefore
∆wµ + Cµ(x)wµ ≤ 0, (3.83)

where Cµ(x) is a bounded function if µ is bounded away from 0. Moreover the strict
inequality in (3.83) holds somewhere. Thus, applying the strong maximum principle,
to get (3.81) it is enough to show that

wµ(x) ≥ 0 in B0(1). (3.84)

From Step 1 (3.84) is true for µ = 1. Next, we decrease µ. By contradiction, suppose
that there exists µ0 > 0 such that (3.84) is true for µ ≥ µ0 and fails for µ < µ0. For
µ = µ0 we can use the strong maximum principle and then the Hopf lemma in (3.82)
to obtain that

wµ0 > 0 in B0(1) and ∂wµ0

∂r
< 0 on ∂B0(1).

In addition, by the minimality of µ0 for any sequence µn ↗ µ0 there exists
xn ∈ B0(1) verifying wµn(xn) < 0. This, combined with the fact that wµn = 0 on
∂B0(1), implies that there exists some yn on the segment connecting xn and xn

|xn| so
that ∂wµn

∂r
(yn) > 0. Up to a subsequence xn → x0 ∈ B0(1) with wµ0(x0) ≤ 0, so

x0 ∈ ∂B0(1) and yn → x0. Thus ∂wµ0
∂r

(x0) ≥ 0 and we get the desired contradiction.
Therefore (3.84) holds for any µ ∈ (0, 1].

In this way, the proof of Theorem 3.4.1 is a direct consequence of the previous
estimate.

Proof of Theorem 3.4.1. Applying Lemma 3.4.2 we get (3.81). Letting µ → 0 in
(3.81) we obtain that log |x| > 0 for |x| < 1 which is a contradiction.

Now we are ready to prove our non-existence result applying the previous The-
orem. Without loss of generality, suppose that p = (0, 0, 1) ∈ (S2)+ \ p1. Let us
introduce the set F ⊂ C0(S2) defined as

F =

F ∈ C
0(S2) :

F is sign changing, rotationally symmetric
with respect to (0, 0, 1), monotone in the region
where it is positive and F (−p) = max

S2
F

 . (3.85)



Chapter 3. The singular mean field problem on compact surfaces 110

Given a function F ∈ F , defined on (3.85), the strategy is to construct a function
KF defined in S2 such that the stereographic projection of K̃ = Ke−h1 in R2 is
a radial function satisfying the monotonicity condition (3.80). In this situation,
Theorem 3.4.1 applies.

Let us transform problem (3.1) into (3.76). Let π be the stereographic projection
from S2 \ {(0, 0, 1)} to R2 defined by

π(x1, x2, x3) = (y1, y2), yi = xi
1− x3

, i = 1, 2. (3.86)

The inverse map π−1 : R2 7→ S2 \ {p} is

π−1(y1, y2) = 1
1 + |y|2 (2y1, 2y2, |y|2 − 1). (3.87)

For any function ψ on S2

ˆ
S2
ψ(x)dVg =

ˆ
R2
ψ(P−1(y)) 4

(1 + |y|2)2dy.

Let u be a solution of (3.1), we introduce the following variable change

v(y) = u(π−1(y)) + λ

8π log
(

4
(1 + |y|2)2

)
, (3.88)

then v verifies

−∆v = K̃(π−1(y))fλ(y)ev in R2, (3.89)

with asymptotic growth at infinity

v ∼ − λ

2π log |y|, (3.90)

where

fλ(y) = λ

(
4

(1 + |y|2)2

)1− λ
8π

, (3.91)

with λ
2π > 4 and let us set R(y) = K̃(π−1(y)).
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Notice that the assumptions (H1) and (H2) on K guarantee that R satisfies (H1)
and (H2) in R2. Besides, by our choice of p

lim
|y|→+∞

R(y)fλ(y)|y|4−η ∈ (0,+∞).

Proof of Theorem 0.4.6. Let us fix a function F = F (ϕ) in Fp expressed in spherical
coordinates, where without loss of generality we can suppose p = (0, 0, 1). Let h be
the regular part of the function h1, introduced in (0.8) and define

KF (ϕ) = F (ϕ)eh(ϕ)gλ(π(ϕ)) with ϕ ∈ (0, π] , KF (0) < 0, (3.92)

where π : (0, π] → R2 is the stereographic projection of S2 into R2 and gλ(y) =(
4

(1 + |y|2)2

) λ
8π−1

for y ∈ R2. By (3.92) we have that

K̃F (ϕ) = KF (ϕ)e−h1(ϕ) = F (ϕ)ϕ2αgλ(π(ϕ)) with ϕ ∈ (0, π] ,

where log(ϕ)2α corresponds to the singular part of −h1 in spherical coordinates.
Now, as before, by means of the stereographic projection we transform (3.1) into

−∆v = K̂F,λ e
v in R2,

where v satisfies (3.90) and

K̂F,λ(y) = K̃F (π−1(y))λg−1
λ (y) = λF (π−1(y))(π−1(y))2α

is bounded and verifies condition (3.80), being F ∈ Fp.
To conclude it suffices to apply Theorem 3.4.1 with R(y) = K̂F,λ(y).

3.5 Final remarks and open problems

Remark 3.5.1. Prompted by our work, D’Aprile, De Marchis and Ianni have re-
cently constructed solutions for the problem (3.1) in the sign changing case via per-
turbative methods. More precisely, the construction assumes that K satisfies (H1),
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(H2), (H3) and λ = 8kπ − ε for some small ε > 0, which depends on the function
K and Σ. In addition, another construction is given under the hypotheses of our
Theorem 0.4.4 for λ ∈ (16π − ε, 16π). Morever, this method allows the authors to
derive a completely new existence result if (H1), (H2), (H4) hold and λ = 16π + ε,
extending the result of Theorem 0.4.4.

On the other hand, if Σ+ is contractible and m = 1, ` = 0, we have showed
that for a family of functions K the singular mean field equation does not admit a
solution. Neverthless, if λ = 8kπ − ε, the problem is solvable assuming conditions
on the convexitiy and concavity of K around local maximas and minimas. For more
details, see [44].

Open Problem 3.5.2. In this way, it seems to be reasonable to ask if the variational
argument could be applied to cover the two new existence results stated in [44], which
our theorems are not able to cover, i.e. to analyze the sharpness of the hypotheses
(H3) and (H4) for the existence of solutions for problem (3.1).

Open Problem 3.5.3. In view of our non-existence result, for axially symmetric
function K, the fact that K̃ ′(ϕ) changes sign in Σ+ is necessary for the solvability of
(3.1). A natural question is to determine if that condition is also sufficient, as Xu
and Yang show for the regular Nirenberg problem (see [119]).

Remark 3.5.4. From our compactness result, the sequence fk = K̃euk turns out to
be bounded in L1(Σ), even in the event of blow-up. It was already known that if un
blows–up, and fk is bounded in L1(Σ), then there exists a finite blow–up set with
a minimal mass under less restrictive assumptions on K, see Chapter 5 of [112].
However, these results do not give any location of the possible blow-up points nor
any precise information about the quantization.

It is worth to point out that the estimates given by Lemma 3.1.3 uses strongly the
fact that the problem is defined on a surface without boundary. Since the condition
fk is bounded in L1(Σ) derives strongly from these estimates, our result seems to
depend on the fact that Σ does not have boundary.

Open Problem 3.5.5. A future study could be to establish an analogous compact-
ness theorem for surfaces with boundary. For instance, one can consider the BVP
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 −∆gun = K̃n(x)eun − fn in Ω,
B(un) = 0 on ∂Ω,

where B corresponds to either Dirichlet or Neumann boundary conditions. The dif-
ficulties to bypass seem to be clear: we do not have any control on the integrals in
all the surface and the moving planes method needs to be adapated if Γ ∩ ∂Ω 6= ∅.

Open Problem 3.5.6. An interesting question is to extend our result for the case
in which conical singularities with negative order are included αi < 0. As we have
mentioned, Carlotto and Malchiodi have studied the problem for positive potentials
K and all negative orders, [20, 21]. They prove that J−Lλ inherits the topology of the
following set of formal barycenters

Bark,λ(Σ) =
{

k∑
i=1

tiδxi : ti ∈ [0, 1],
k∑
i=1

ti = 1, xi ∈ Σ and 8π
k∑
i=1

(1 + αi) < λ

}
,

where αi = 0 if xi is a regular point. The problem to determine whether Bark,λ(Σ)
is contractible or not is really delicate. In that sense, some necessary conditions for
the contractibility of Bark,λ(Σ) are given in [20].

We point out that our compactness theorem can be of use in this case, because it
is valid for every αi > −1.





Chapter 4

Conclusions and future
perspectives

In this thesis we have dealt with some mean field problems of Liouville type. As we
have mentioned, these problems arise in differential geometry and current physical
theories. In particular, our contribution is focused on the sign changing potential
case, a case which has been little studied. By means of variational methods, in
Chapter 2 we have studied the existence of solutions for the mean field equation in
a subdomain of the sphere; whereas in Chapter 3 has been considered the presence
of conical singularities on compact surfaces.

From our study, we have obtained the following main conclusions:

• The crucial role of the topology of the positive components. We have
determined the existence of critical points of the energy functionals through a
topological characterization of their low sublevels. In some cases, we have seen
that the low sublevels inherits the topology of a non-contractible compact set.
More precisely, in Chapter 2 we showed that the topology of I−Lλ dominates
the non-trivial topology of (∂Ω)+; whereas J−Lλ has a richer topology than the
topology of the barycenters on a compact set Z ⊂ Σ+, see Section 3.2. Under
our assumptions, (∂Ω)+ and Bark(Z) were not contractible and this implied
the existence of solutions via suitable variational methods.

As we can observe, the approach used in this thesis reveals that the existence
of solutions for this kind of problems is strongly linked to the topology of the
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region where K is strictly positive. This crucial idea allowed us to consider
accurate assumptions on the sign of K and, jointly with the non-existence
result (Theorem 0.4.6), to say that our results are somehow sharp.

This idea has been confirmed by the multiplicity results for (0.15). More pre-
cisely, the more involved the topology of Σ+ is (namely, the more number of
connected components, boundaries or holes), the more number of solutions the
problem has.

• The validity of the compactness result. A property that guarantees the
compactness of solutions completed our existence results. The problem con-
sidered in Chapter 2 has taken profit of energy estimates to deduce compact-
ness. However, in Section 3.1, the compactness of solutions has been presented
as a consequence of a new blow–up alternative in spirit of Brezis-Merle or
Bartolucci-Tarantello, Theorem 0.4.2.

Our proof has corrected different unclear deductions and introduced new tech-
niques with respect to previous results, [31–33]. It is strongly inspired in the
pioneer work [31] (see also [33]), but the adaptation of these results to the
2-dimensional case is not straightforward. A first attempt is given in [32], but
it is restricted to the sphere and contains a gap due to the fact that u is not
bounded from below. In our problem the solutions may change sign and the
lack of control of their lower bound becomes a serious obstacle. Here, the Kato
inequality has appeared as an efficient tool and has allowed us to control the
oscillation of the negative part of the solutions.

• A new research door. The sign changing potential case has opened a new
door on the study of Liouville type equations. In order to attack other problems
or study qualitative properties, it is required to clarify fundamental issues, such
as compactness and multiplicity. Indeed, prompted by our work, D’Aprile, De
Marchis and Ianni have recently considered the sign changing case by means
of perturbative methods. They are able to show existence and asymptotic
behavior of solutions which cover some of our results.

We hope to obtain extensions of the results presented in this thesis. Some open
problems have already been suggested in subsection 2.2 and subsection 3.5 con-
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cerning mainly (0.43) and (0.15) or similar versions. However, let us now com-
ment different Liouville-type problems of interest to be studied in the future.

4.1 Gaussian-geodesic prescription problem.

If we consider a Liouville problem in a surface with boundary, then boundary
conditions are in order. Homogeneous Dirichlet and Neumann boundary con-
ditions have already been considered in the literature. However, motivated by
its geometric meaning, in this proposal we consider a nonlinear boundary con-
dition. It would be interesting to find out if such problem has also a motivation
from a physical point of view.

Indeed, our aim is to prescribe not only the Gaussian curvature in Σ, but also
the geodesic curvature on ∂Σ. More precisely, given a metric g̃ = gev, if Kg, Kg̃

are the Gaussian curvatures and hg, hg̃ the geodesic curvatures of ∂Σ, relative
to these metrics, then v satisfies the boundary value problem −∆gv + 2Kg = 2Kg̃e

v in Σ,
∂v
∂n

+ 2hg = 2hg̃ev/2 on ∂Σ.
(4.1)

Some versions of this problem have been studied in the literature. For instance,
if either Kg̃ or hg̃ are equal to 0, some results are available, see for instance
[24, 79, 85] and the references therein.

The case of constants Kg̃, hg̃ has also been considered. For instance, Brendle
([15]) uses a parabolic flow to show that this problem admits always a solution
for some constant curvatures. By using complex analysis techniques, explicit
expressions for the solutions and the exact values of the constants are deter-
mined if Σ is a disk or an annulus, see [63, 68]. However, the non-constant case
has not been much considered. As far as we know, the only available works
are [39, 62], which give some partial results.

The case of a disk is particularly challenging, since can be seen as a version
of the Nirenberg problem. Also here, the main difficulties are due to the non-
compact effect of the group of conformal transformations of the disk.
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Integrating (4.1) and applying the Gauss-Bonnet theorem, one obtains
ˆ

Σ
Kg̃e

v +
ˆ
∂Σ
hg̃e

v/2 = 2πχ(Σ).

If the curvatures have different sign, for instance, we do not have any control
on the boundedness of the integral terms, due to a possible compensation
between both terms. In this situation both terms are competing, and the
study of their interaction seems a challenging question. Because of that, the
study of compactness of solutions needs arguments different from the usual
ones. The presence of infinite mass blowing-up solutions would also be an
interesting question; this presence is confirmed by the explicit computations
given in [63, 68].

In addition, it is not clear what is the natural variational setting for that
problem. To find a reasonable energy functional and study its geometrical
properties is one of the main tasks of this proposal.

One could also consider the presence of conical singularities in the model.
Here everything is to be done, departing from singular versiones of the Moser-
Trudinger inequalities with boundary terms.

4.2 Sinh-Gordon and Tzitzéica equations.

Other interesting problem is the following mean field equation

−∆gu = λ1

(
h1e

u´
Σ h1eu

− 1
|Σ|

)
− αλ2

(
h2e
−αu´

Σ h2e−αu
− 1
|Σ|

)
in Σ,

where α, λ1, λ2 are positive parameters. This equation arises in statistical me-
chanics and studies the 2D-turbulence, as proposed Onsager in [102], and also
in Geometry. The problem is the so-called sinh-Gordon equation for α = 1,
which is related to constant mean curvature surfaces, and Tzitzéica equation
for α = 2, which appears in the context of affine geometry. Under the posi-
tivity assumption on h1, h2, the existence of solutions by means of variational
methods and the compactness of solutions has been studied recently for some
cases, ([66, 67]). See also [60, 103, 105]. One could propose to study these
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problems under the sign changing condition, taking into account the interac-
tion between the nodal regions of the two potentials which makes more difficult
the compactness question.

4.3 Blowing–up solutions. Let us recall that in Section 3.1 we have been able
to exclude blowing-up of solutions at the nodal set Γ = {x ∈ Σ : K(x) = 0},
provided that ∇K does not vanish in that set. As already commented, this
assumption is not just technical: from [13, 50] we get the existence of solutions
blowing up at a point p with K(p) = 0, ∇K(p) = 0. Being more specific, in
those papers the point p corresponds to a nondegenerate local maximum of K.

However, the asymptotic behavior of the blowing-up solutions at 0 values of
K is not completely clear. In [13] Borer, Galimberti and Struwe show, via
a blow-up analysis, that there are at most two possible asymptotic profile of
the solutions. Del Pino and Román ([50]) are able to construct blowing up
solutions of the first type, but it is not clear if the second type can be realized.
In the latter case, one ends up with the entire problem:

−∆w = (2 +HessK(p)(x, x))ew in R2,

whose solutions seem not to be known. The study of this entire problem would
be the first step to be made.

Another question of interest is to find out if the bubbling phenomenon appears
(either of first or second type) for points p with K(p) = 0, ∇K(p) = 0, different
from local maxima. In order to build blowing-up solutions the singular pertur-
bation method could be of help, but its application to this problem seems far
from trivial, as can be seen from [50].

4.4 Liouville-type systems.

Finally, let us focus on some Liouville-type systems. In particular, the Toda
system has been extensively studied. Consider the problem
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
−∆gu = 2λ1

(
h1eu´
Σ h1eu

− 1
|Σ|

)
− λ2

(
h2ev´
Σ h2ev

− 1
|Σ|

)
in Σ,

−∆gv = 2λ2

(
h2ev´
Σ h2ev

− 1
|Σ|

)
− λ1

(
h1eu´
Σ h1eu

− 1
|Σ|

)
in Σ.

This problem arises in Geometry and from the non-abelian Chern-Simons the-
ory (see [54, 112]). Again, the known results deal with the case of positive
potentials. For instance, since this system admits a variational structure, a
very general existence result is stated in [10]. As we have done throughout this
thesis, the approach is based on the study of the toology of the low energy
sublevels. The compactness question has been treated for the regular Toda
system in [69]. In this case different asymptotic behavior of blowing–up solu-
tions are possible, see [11, 42, 43, 69, 82, 83, 98], to cite a few. The case of
sign changing potentials h1, h2 is completely open. Everything it to be done,
from the compactness question to the description of the topology of the energy
sublevels.



Appendix

In this appendix we include the proof of some asymptotic estimates, which have been
omitted before in order to make the reading more fluent.

Concretely, we prove Lemma 2.1.2, Lemma 3.2.4 and Lemma 3.2.11 which show
that the energy functionals Iλ and Jλ are not bounded from below for large values
of λ. In order to do it, we evaluate the integral terms at the test functions with
arbitrary low energy level considered in Chapter 2 and Chapter 3.

Let us first recall the definition of our test functions. For the case studied in
Chapter 2, Ω ⊂ S2, consider the test function concentrated in a point p of (∂Ω)+

ϕµ,p : Ω→ R, ϕµ,p(x) = log
(

µ

1 + µ2d(x, p)2

)2

.

For b > 0 small enough, let χb : R+ → R+ be a smooth non-decreasing cut-off
function such that

χb(t) =

 t for t ∈ [0, b],
2b for t ≥ 2b.

In the second case, Chapter 3, let Z defined in (3.32), we consider test functions
concentrated in at most k points of Z. For µ > 0 and σ = ∑k

i=1 tiδxi ∈ Bark(Z), we
define

φµ,σ : Σ→ R φµ,σ(x) = log
∑

ti

(
µ

1 + (µχb(d(x, xi)))2

)2

,

ϕµ,σ(x) = φµ,σ(x)−
ˆ

Σ
φµ,σ dVg.

At last, we introduce a test function concentrated in one point of the compact
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set Z̃ defined in (3.64), where Θλ is defined in (0.50). Let α̃ = maxn≤` | pn /∈Θλ αn or
α̃ = 0 if Θλ = {p1, . . . , p`} or ` = 0. For any α ∈ (α̃, λ8π − 1), µ > 0 and z ∈ Z̃, we
define

φ̃µ,z : Σ→ R, φ̃µ,z(x) = 2 log
(

µ1+α

1 + (µχb(d(x, z)))2(1+α)

)
,

ϕ̃µ,z(x) = φ̃µ,z(x)−
ˆ

Σ
φ̃µ,z dVg.

Let us claim that the following estimates hold

ˆ
Ω
|∇ϕµ,p|2 dVg0 ≤ 16π log µ+O(1); (A.1)
ˆ

Ω
ϕµ,p dVg0 = −λ log µ+O(1); (A.2)
ˆ

Ω
K(x)eϕµ,p dVg0 = O(1). (A.3)

Proof of Lemma 2.1.2. Combining the above estimates, we obtain that

Iλ(ϕµ,p) ≤ 2(4π − λ) log µ+O(1).

Since λ ∈ (4π, 8π), for any L > 0, there exits µ(L) > 0 such that Iλ(ϕµ,p) < −L for
every µ > µ(L) as it was desired.

Analogously, we claim that

ˆ
Σ
|∇φµ,σ|2 dVg ≤ (32kπ + ob(1)) log µ+ Cb; (A.4)

ˆ
Σ
φµ,σ dVg = −2|Σ| log µ+O(| log b|) +O(b2 log µ); (A.5)

ˆ
Σ
K̃(x)eφµ,σ dVg = O(1). (A.6)
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Proof of Lemma 3.2.4. It suffices to apply (A.4), (A.5) and (A.6) to obtain that

Jλ(ϕµ,σ) = Jλ(φµ,σ) ≤ 2(8kπ − λ) log µ+O(| log b|) +O(b2| log µ|) +O(1).

The last inequality indicates that for every L > 0, there exists a value µ(L) such
that Jλ(ϕµ,σ) < −L for µ > µ(L) and λ ∈ (8kπ, 8(k+ 1)π) with k ∈ N as we wanted
to prove (i).

Now, consider the function

σµ,xi(x) =
(

µ

1 + (µχb(d(x, xi)))2

)2

, with x ∈ Σ,

where xi ∈ Σ. It is easy to show that

σµ,xi´
Σ σµ,xidVg

⇀ δxi ,

as µ → +∞. Since eφµ,σ = ∑k
i=1 tiσµ,xi and

´
Σ σµ,xi dVg = O(1) (as shows (A.5)),

statement (ii) is verified.

Now, let us state that

ˆ
Σ
|∇φ̃µ,z|2 dVg ≤ (32(1 + α)2π + ob(1)) log µ+ Cb; (A.7)

ˆ
Σ
φ̃µ,z dVg = −2(1 + α)|Σ| log µ+O(| log b|) +O(b2 log µ); (A.8)

ˆ
Σ
K̃(x)eφ̃µ,z dVg ≥

1
Cb
µ2(α−αi) + oµ(1), (A.9)

where αi is the order of a singularity pi /∈ Θλ. If pi ∈ Θλ, αi = 0. Observe that,
α > αi for all i = 1, . . . ,m by the definition of α.

Proof of the statement (i) of Lemma 3.2.11. Employing (A.7), (A.8) and (A.9), it
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follows that

Jλ(ϕ̃µ,z) = Jλ(φ̃µ,z) ≤ 16(1 + α)2π log µ− 2λ(1 + α) log µ− 2λ(α− αi) log µ+O(| log b|)

+O(b2 log µ) = 2 [(1 + α)(8π(1 + α)− λ) + λ(αi − α)] log µ+O(| log b|) +O(b2 log µ).

Since λ > 8π(1 + αi) and α > αi, the statement (i) has been proved.

Proof of claims (A.1)-(A.9). Given σ = ∑k
i=1 tiδxi ∈ Bark(Z), z ∈ Z̃, p ∈ (∂Ω)+, let

us fix b > 0 small enough such that

• K is strictly positive in Bp(b) ∩ Ω;

• Bxi(2b)∩Byj(2b) = ∅ and Bxi(2b) ⊂ Σ+ \ {p1, . . . , pm} for any i, j ∈ {1, . . . , k}
with i 6= j;

• Bz(2b) ⊂ Σ+ \Θλ.

Now, applying the inequality |∇d(x, z)2| ≤ 2d(x, z), we have that

|∇φ̃µ,z(x)| = 2(1 + α)µ2(1+α)d(x, z)2α|∇d(x, z)2)|
1 + (µd(x, z))2(1+α)

≤ 4(1 + α)µ2(1+α) d(x, z)1+2α

1 + (µd(x, z))2(1+α) for every x ∈ Bz(b).

Employing this last inequality, we use normal coordinates centered at z and the
estimate

dVg = (1 + ob(1))dx, d(z, x) = (1 + ob(1))|x|, for x ∈ Bz(b),

to calculate

ˆ
Bz(b)
|∇φ̃µ,z|2 dVg ≤ 16(1 + α)2µ4(1+α)

ˆ
B0(b)

(1 + ob(1)) |x|2+4α dx

(1 + (µ|x|)2(1+α))2

= 16(1 + α)π(1 + ob(1)) log(1 + (µb)2(1+α)) + (µb)2(1+α)

1 + (µb)2(1+α) . (A.10)
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Then

|∇φ̃µ,z(x)| = 2µ2(1+α) |∇χ
2(1+α)
b (d(x, z))|

1 + (µχb(d(x, z))2(1+α)

= 4(1 + α)µ2(1+α)χ
1+2α
b (d(x, z))|χ′b(d(x, z)|
1 + (µχb(d(x, z))2(1+α) ≤

Cµ2(1+α)b1+2α

1 + (µb)2(1+α) ≤
C

b
.

Consequently,

ˆ
Bz(2b)\Bz(b)

|∇φ̃µ,z|2 dVg ≤ Cb. (A.11)

Since ∇φ̃µ,z vanishes in Σ \Bz(2b), (A.10) and (A.11) implies (A.7).
Repeating the previous argument for φµ,σ and considering Bxi(b) instead of Bz(b)

in (A.10) and Bxi(2b) \ Bxi(b) instead of Bz(2b) \ Bz(b) for every i = 1, . . . , k, we
obtain the same estimates with α = 0 which allow us to show (A.4).

Next, notice that

φ̃µ,z = log µ2(1+α)

(1 + (2µb)2(1+α))2 in Σ \Bz(2b),

and

log µ2(1+α)

(1 + (2µb)2(1+α))2 ≤ φ̃µ,z ≤ log µ2(1+α) in Bz(2b).

If we write

ˆ
Σ
φ̃µ,z dVg = |Σ| log µ2(1+α)

(1 + (2µb)2(1+α))2 +
ˆ
Bz(2b)

(
φ̃µ,z − log µ2(1+α)

(1 + (2µb)2(1+α))2

)
dVg,

we can conclude that

ˆ
Σ
φ̃µ,z dVg = |Σ| log µ2(1+α)

(1 + (2µb)2(1+α))2 +O
(
b2 log(1 + (2µb)2(1+α))

)
,

which proves directly (A.8). Now, if one repeats the same reasoning, considering
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α = 0 and φµ,σ instead of φ̃µ,z, then
ˆ

Σ
φµ,σ dVg = |Σ| log µ2

(1 + (2µb)2)2 +O
(
b2 log(1 + (2µb)2)

)
.

This estimate implies immediately (A.5).

In order to compute the exponential terms, notice that K̃ is strictly positive and
bounded in Bxi(2b) for any i = 1, . . . , k, so there exists a positive constant Cb such
that

1
Cb

ˆ
Bxi (2b)

eφµ,σ dVg ≤
ˆ
Bxi (2b)

K̃eφµ,σ dVg ≤ Cb

ˆ
Bxi (2b)

eφµ,σ dVg.

As before, one can use normal coordinates centered at xi to obtain

ˆ
Bxi (b)

(
µ

1 + (µχb(d(x, xi)))2

)2

dVg =
ˆ
B0(b)

(1 + ob(1)) µ2 dx

(1 + µ2|x|2)2 = (1 + ob(1))π,

and by a change of variables

ˆ
B0(b)

µ2 dx

(1 + µ2|x|2)2 = 2π
ˆ µb

0

t

(1 + t2)2 = π.

Observe that this result coincides with the quantization of a entire solution of the
Liouville problem (0.1) under a finite curvature condition, namely the area of the
2-sphere. Now, we can conclude that

ˆ
Bxi (b)

(
µ

1 + (µχb(d(x, xi)))2

)2

dVg = (1 + ob(1))π (A.12)

Observe that

µ2

(1 + 4µ2b2)2 ≤ eφµ,σ ≤ µ2

(1 + µ2b2)2 in Σ \ ∪ki=1Bxi(b),

which implies
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µ2

(1 + 4µ2b2)2

ˆ
Σ\∪ki=1Bxi (b)

K̃ dVg ≤
ˆ

Σ\∪ki=1Bxi (b)
K̃eφµ,σ dVg ≤

µ2

(1 + µ2b2)2

ˆ
Σ\∪ki=1Bxi (b)

K̃dVg.

Taking into account that K̃ ∈ L1(Σ), the last inequality proves

ˆ
Σ\∪ki=1Bxi (b)

K̃eφµ,σ dVg = oµ(1). (A.13)

So, from (A.12) and (A.13), (A.6) holds.

On the other hand, if one chooses σ = δp with p ∈ ∂Ω and Σ = S2, it is obvious
that

ϕµ,p(x) = φµ,σ(x) + 2 log µ if x ∈ Bp(b).

Indeed, ∇ϕµ,p(x) = ∇φµ,δp(x) for x ∈ Bp(b), then by straightforward calculations

ˆ
Bp(b)
|∇ϕµ,p|2 ≤ 32π(1 + ob(1)) log µ+O(1)).

Since ϕµ,p is independent of b and |∇ϕµ,p| < C in Ω \ Bp(b), (A.1) is a consequence
of the previous estimate by the smoothness of ∂Ω.

In addition, we have proved that
ˆ
Bp(b)

ϕµ,p dVg = −2λ log µ,

and

ˆ
Bp(b)

eϕµ,p dVg = O(1),

so (A.2) and (A.3) are directly proved due to ϕµ,p is bounded in Ω \Bp(b).

Finally, we deal with the proof of (A.9). First, suppose that Bz(b)∩{p1, . . . , p`} =
∅, so there exists Cb > 0 such that
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ˆ
Bz(b)

K̃eφ̃µ,z dVg ≥
1
Cb

ˆ
Bz(b)

µ2(1+α)

(1 + (µd(x, z))2(1+α))2 dVg.

Taking normal coordinates we have

ˆ
B0(b)

(1 + ob(1)) µ2(1+α) dx

(1 + (µ|x|)2(1+α))2 ≥ (1 + ob(1)) µ2(1+α)

(1 + (µb)2(1+α))2 ≥ (1 + ob(1)) 1
C
µ2α.

(A.14)
Now, suppose that |z− pi| < b2 where pi ∈ {p1, . . . , pm} \Θλ, we should estimate

ˆ
Bpi (b)

K̃
µ2(1+α) dVg

(1 + (µd(x, z))2(1+α))2 ≥
1
Cb

ˆ
Bpi (b)

d(x, pi)2αi µ2(1+α) dVg
(1 + (µd(x, z))2(1+α))2 .

We compute

ˆ
Bpi (b)

|x− pi|2αi
µ2(1+α)

(1 + (µ|x− z|)2(1+α))2 dx =
ˆ
B0(b)
|x|2αi µ2(1+α)

(1 + (µ|x− z|)2(1+α))2 dx.

Let us divide the domain into the tree sets

B1 =
{
|x| <

√
b|z|

}
, B2 =

{√
b|z| < |x| ≤ 1√

b
|z|
}
, B3 =

{
1√
b
|z| < |x| ≤ b

}
.

Since |x− z| = (1 + ob(1))|z| in B1, then

ˆ
B1

|x|2αi µ2(1+α) dx

(1 + (µ|x− z|)2(1+α))2 ≥
1
Cb

µ2(1+α)

(1 + (µ|z|)2(1+α))2

ˆ
B0(
√
b|z|)
|x|2αi dx

≥ 1
Cb

µ2(1+α)|z|2αi+2

(1 + (µ|z|)2(1+α))2 .

Since 0 <
√
b|z| < |x| ≤ 1√

b
|z| in B2, we can multiply by |z| and apply a change of

variables to obtain
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ˆ
B2

µ2(1+α)|x|2αi
(1 + (µ|x− z|)2(1+α))2 dx ≥

1
Cb

ˆ
µ(B2−z)

µ2α|z|2αi
(1 + |y|2(1+α))2dy

≥ 1
Cb
µ2α|z|2αi

ˆ µ|z|
Cb

0

t dt

(1 + t1+α)2 .

Therefore

ˆ
B2

µ2(1+α)|x|2αi
(1 + (µ|x− z|)2(1+α))2 dx ≥

1
Cb
µ2α|z|2αi µ2|z|2

1 + µ2|z|2
.

Note that |x − z|2 = (1 + ob(1))|x|2 in B3, through a change of variables we are
left with

ˆ
B3

µ2(1+α)|x|2αi
(1 + (µ|x− z|)2(1+α))2 dx ≥

1
Cb

ˆ
B3

µ2(1+α)|x|2αi
(1 + (µ|x|)2(1+α))2 dx

≥ 1
Cb
µ2(α−αi)

ˆ µ/Cb

Cbµ|z|

t2αi+1

(1 + t2(1+α))2 dt.

In this way, we obtain that

ˆ
B3

µ2(1+α)|x|2αi
(1 + (µ|x− z|)2(1+α))2 dx ≥

1
Cb
µ2(α−αi) 1

(1 + (µ|z|)2+4α−2αi)2 .

Finally, plugging the above inequalities, we obtain that
ˆ
Bpi (b)

|x− pi|2αi
µ2(1+α)

(1 + (µ|x− z|)2(1+α))2 dx

≥ 1
Cb

(
µ2(1+α)|z|2αi+2

(1 + (µ|z|)2(1+α))2 + µ2(α−αi)

(1 + (µ|z|)2+4α−2αi))2

)
≥ µ2(α−αi)

Cb
. (A.15)

Since,

µ2(1+α)

(1 + (2µb)2(1+α))2 ≤ eφ̃µ,z ≤ µ2(1+α)

(1 + (µb)2(1+α))2 in Σ \Bz(b),

and K̃ ∈ L1(Σ), then
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ˆ
Σ\Bz(b)

K̃eφ̃µ,z dVg = oµ(1). (A.16)

The estimate (A.9) is a direct consequence from (A.14), (A.15) and (A.16).

Proof of the statement (ii) of Lemma 3.2.11. For every ε > 0 and z ∈ Z̃, by (A.16),
it is shown that

´
Σ\Bz(ε) K̃e

φ̃µ,z dVg´
Σ K̃e

φ̃µ,z dVg
=

´
Σ\Bz(ε) K̃e

ϕ̃µ,z dVg´
Σ K̃e

ϕ̃µ,z dVg
→ 0,

as µ→ +∞. This fact concludes the proof.



Resumen

Esta tesis se centra en el estudio de ecuaciones de tipo Liouville en superficies com-
pactas. En concreto, nuestro trabajo está focalizado en tres objetos de análisis
fundamentales en el campo de las ecuaciones en derivadas parciales: existencia, mul-
tiplicidad y compacidad de soluciones.

El interés en la ecuación de Liouville data del siglo XIX a través del trabajo del
propio Liouville, [84], el cual clasifica las soluciones del problema

−∆u = 2eu en R2.

Este tipo de ecuaciones despertaron mucho interés en los años 70 debido a su
significado geométrico. Sea (Σ, g) una superficie Σ equipada con una cierta métrica
g y g̃ una métrica conforme a g sobre Σ, es decir g̃ = gev. Si Kg, Kg̃ son las
curvaturas Gaussianas relativas a dichas métricas, entonces el logaritmo del factor
conforme satisface la ecuación

−∆gv + 2Kg = 2K(x)ev en Σ. (R.1)

Aquí ∆g denota el operador de Laplace-Beltrami en (Σ, g).
Por otro lado, el clásico Teorema de Uniformización asegura que toda superficie

de Riemann simplemente conexa es conformemente equivalente a una de las tres
superficies de Riemann: el disco unidad abierto, el plano complejo o la esfera de
Riemann. Como consecuencia, se puede concluir que toda superficie compacta ori-
entable admite una métrica con curvatura Gaussiana constante. Por tanto, podemos
asumir de ahora en adelante que Kg es constante.

En este punto, uno se puede formular la siguente pregunta: dada una función K

131
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definida en Σ, existe alguna deformación de la métrica g tal que K se convierta en la
curvatura de la nueva métrica? Dicho problema es conocido como el problema de la
curvatura Gaussiana prescrita, y se reduce al estudio de la existencia de soluciones de
la ecuación (R.1). Esta cuestión fue propuesta por Kazdan y Warner para superficies
arbitrarias en [72] y por Nirenberg en el caso especial de la esfera.

Integrando la ecuación (R.1) y teniendo en cuenta el Teorema de Gauss-Bonnet,
se obtiene que

λ = 2
ˆ

Σ
Kg dVg = 2

ˆ
Σ
Kev dVg = 4πχ(Σ), (R.2)

donde χ(Σ) es la característica de Euler de Σ. Mediante esta fórmula, podemos ver
cómo la topología de Σ da condiciones necesarias para la elección de la función K.
De hecho el signo de la función K en al menos un punto de Σ está prescrito por
χ(Σ).

Si λ 6= 0, el problema (R.1) se puede reformular como sigue

−∆gu = λ

(
Keu´

Σ Ke
udVg

− 1
|Σ|

)
in Σ. (R.3)

Este problema es usualmente denominado como ecuación de campo medio de tipo
Liouville.

En un trabajo precursor [115], Troyanov propone la construcción de métricas con-
formes con curvatura de Gauss prescrita sobre superficies con singularidades cónicas.
Este problema se puede considerar el análogo singular al problema de la curvatura
Gaussiana prescrita, discutido previamente. Se dice que una métrica g̃ definida en
Σ admite una singularidad cónica de orden α > −1 en p ∈ Σ, si

g̃ ∼ |x− p|2αg cuando x→ p.

En otras palabras, Σ admite un cono con vértice p de ángulo total ϑ = 2π(1 + α).
Entonces, el problema de prescribir una curvatura K y una serie de singularidades
cónicas p1, . . . , pm ∈ Σ con órdenes α1, . . . , αm ∈ (−1,+∞) equivale a resolver la
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siguiente ecuación

−∆gv + 2Kg = 2K(x)ev − 4π
m∑
j=1

αjδpj en Σ, (R.4)

donde δpj denota una delta de Dirac sobre el punto pj ∈ Σ. Además, integrando
(R.4) y teniendo en cuenta la fórmula de Gauss-Bonnet

λ := 4πχ(Σ) + 4π
m∑
j=1

αj = 2
ˆ

Σ
KevdVg.

Al asumir que Kg es constante, utilizando el cambio de variable

u = v + hm

se puede rescribir (R.4) como

−∆gu = λ

(
K̃eu´

Σ K̃e
udVg

− 1
|Σ|

)
en Σ, (R.5)

donde λ está definida en (R.2) y K̃

K̃ = Ke−hm , con hm(x) = 4π
m∑
j=1

αjG(x, pj), (R.6)

en el que G(x, y) es la función de Green asociada a ∆g, ver (0.7) para más detalles.
Se tiene que

K̃(x) ' d(x, pj)2αjK(x) cerca de pj.

Obviamente, K y K̃ tienen el mismo signo en Σ \ {p1, . . . , pm}.
Este problema es conocido como ecuación de campo medio singular de tipo Liou-

ville. La principal ventaja de la última formulación es que esta admite estructura
variacional y permite la búsqueda de soluciones de (R.5) como puntos críticos del
siguiente funcional de energía

Jλ(u) = 1
2

ˆ
Σ
|∇u|2dVg + λ

|Σ|

ˆ
Σ
u dVg − λ log

ˆ
Σ
K̃eudVg, (R.7)

definido en el dominio
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X =
{
u ∈ H1(Σ) :

ˆ
Σ
K̃eu dVg > 0

}
. (R.8)

Durante los últimos años, la relevancia de esta clase de ecuaciones ha experimen-
tado un gran crecimiento por su conexión con actuales teorías en Física. Por citar
algunas, las ecuaciones de tipo campo medio aparecen en el estudio de configura-
ciones de tipo vórtice en la teoría Electroweak de Glashow-Salam-Weinberg en
régimen autodual. Referimos al lector a [9, 35, 76, 112, 112, 113, 120] para obtener
una amplia descripción del modelo y varios resultados en este contexto. Este tipo
de problemas surgen también en la teoría de Chern-Simons-Higgs. Como se
discute en [54], las teorías de Chern–Simons son relevantes en el estudio de varios
fenómenos físicos tales como la superconductividad crítica de alta temperatura, el
efecto Hall cuántico o la teoría conforme de campos. En concreto, los problemas
de campo medio aparecen en la búsqueda de vórtices periódicos autoduales de tipo
Chern-Simons.

En algunos procesos biológicos también emergen las ecuaciones de tipo Liouville.
Como muestra, la quimiotaxis es el fenómeno en que un grupo de organismos (células
o bacterias) se mueve de acuerdo a la presencia de ciertos químicos. Las ecuaciones de
tipo reacción-difusión, como el modelo de Keller-Segel, son apropiados para inves-
tigar esta clase de procesos. En concreto se puede ver que las soluciones estacionarias
de dicho modelo dan lugar a una ecuación con no-linealidades exponenciales en un
dominio con condiciones de frontera Neumann. Ver [57, 74, 99, 107] para ampliar
esta motivación. Por último, las ecuaciones de campo medio surgen en el estudio
del comportamiento turbulento del flujo de Euler con vórtices. Una forma
conocida de analizar la turbulencia estacionaria es la de hacer tender el número
de vórtices a infinito. En esta situación, el límite del modelo es un problema de
tipo Liouville definido en un dominio con condiciones Dirichlet. Para una rigurosa
derivación del modelo, ver [18, 75].

Objetivos
Dentro del análisis de la ecuación de campo medio, esta tesis presenta diversos

resultados que consideran el caso en que la función K puede cambiar de signo.
La ausencia de restricciones sobre el signo abre un gran número de problemas a
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estudiar. Hasta donde se sabe, esta situación no ha sido prácticamente considerada
con anterioridad. Por esta razón, las cuestiones que son analizadas en este trabajo
son algunas de las más fundamentales en el estudio clásico de EDPs: existencia,
multiplicidad y compacidad de soluciones. Cabe reseñar que desde un punto de
vista geométrico no hay razón para exigir que K sea estrictamente positiva.

Esta tesis contiene los primeros estudios sobre el caso de cambio de signo para
superficies singulares con un número arbitrario de puntos cónicos, [47, 48]. En par-
ticular, este problema estaba propuesto en Remark 2.8 de [5], el cual señala que
las dificultades son heredadas de la falta de resultados de concentración-compacidad-
cuantización.

Nuestro estudio ha comenzado a generar un interés real. Motivado por nuestro
trabajo, esta situación ha sido recientemente tratada por D’Aprile, De Marchis and
Ianni usando métodos perturbativos, [44].

Primer problema: El problema de campo medio en un subdominio de
la esfera

Sea Ω un subdominio de S2 con la métrica usual, en primer lugar se estudiará la
existencia de soluciones del problema

 −∆g0u+ 2 = 2K(x)eu en Ω,
∂u
∂n

= 0 sobre ∂Ω,
(R.9)

donde K es una función continua definida en Ω.
Es importante observar que con esta condición de frontera, (R.9) no es invariante

bajo transformaciones conformes.
Este problema ha sido estudiado en [22, 61, 79, 118]. Integrando la ecuación

(R.9) se obtiene que

λ = 2|Ω| = 2
ˆ

Ω
K(x)eudVg0 . (R.10)

En particular, no existe solución si K es negativa. De ahora en adelante asumiremos
que

(A1) K(x) > 0 para algún x ∈ Ω.
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Más aún, (R.10) permite que (R.9) puede ser reescrita de la forma
 −∆g0u = λ

(
Keu´

ΩKe
udVg0

− 1
|Ω|

)
en Ω,

∂u
∂n

= 0 sobre ∂Ω.
(R.11)

El problema (R.11) es la ecuación de Euler-Lagrange del funcional de energía

Iλ(u) = 1
2

ˆ
Ω
|∇u|2 dVg0 + 2

ˆ
Ω
u dVg0 − λ log

ˆ
Ω
Keu dVg0 ,

definido en el dominio

X =
{
u ∈ H1(Ω) :

ˆ
Ω
Keu dVg0 > 0

}
.

Observa que la hipótesis (A1) implica que X es no vacío. Al igual que el problema
(R.11), el funcional Iλ es invariante por adición de constantes.

En [22] se demuestra que Iλ está acotado inferiormente y es coercivo si λ < 4π, i.e.
|Ω| < 2π). De este modo, se obtiene solución por un argumento de minimización. El
caso λ = 4π es crítico, Iλ permanece acotado inferiomente pero deja de ser coercivio.
De hecho, el problema puede presentar pérdida de compacidad debido a la presencia
de soluciones que explotan.

En esta tesis se considera el caso λ ∈ (4π, 8π), es decir |Ω| > 2π. Para este
problema, la condición

(Q1) K(x) < 0 para todo x ∈ ∂Ω,

ya fue considerada por [61]. Asumiendo (Q1), se puede ver que Iλ está acotado
inferiormente y es coercivo. De nuevo, mediante un argumento de minimización se
puede encontrar una solución.

En cambio, si K(x) > 0 en algún punto x ∈ ∂Ω, entonces Iλ no está acotada
inferiormente. Para encontar puntos críticos de tipo silla, los argumentos de tipo
min-max emergen como una técnica adecuada para tratar el problema. Un primer
resultado en esta dirección fue dado en [118], donde la existencia de soluciones para
(R.9) es demostrada bajo la hipótesis

(Q2) ∂Ω es disconexo y K(x) > 0 para todo x ∈ ∂Ω.



Resumen 137

En esta tesis se extenderá los resultados de existencia de [61] y [118] mediante
una única condición general, en concreto,

(A2) K(x) 6= 0 para todo x ∈ ∂Ω.

Teorema 4.0.1. Asume (A1) y (A2). Si Ω es subdominio suave de S2 tal que
|Ω| ∈ (2π, 4π), entonces el problema (R.9) admite una solución.

Cabe resaltar que nuestra suposición (A2) contiene a (Q1) y (Q2) como casos
particulares. Además, nuestra prueba corrige algunos errores presentes en la prueba
de [118], como se explica en el Capitulo 2.

Este resultado ha sido incluido en la publicación [86].

Segundo problema: El problema singular de campo medio en superfi-
cies compactas

Ahora nos trasladamos al análisis del problema (R.5). En concreto, nuestras
aportaciones tratan el caso en que K es una función que cambia de signo. En este
trabajo, se dan nuevos resultados de existencia y multiplicidad genérica por medio de
métodos variacionales. Para obtener dichos resultados, es imprescindible establecer
un resultado que determine la compacidad de las soluciones del problema, presentado
en lo sucesivo. Además, se incluye un resultado de no existencia de soluciones cuando
no se satisfacen los supuestos dados. En cierto sentido, podemos decir que nuestras
hipótesis son en cierto modo precisas.

Se introduce la primera hipótesis sobre K:

(H1) K es una función C2,α que cambia de signo con ∇K(x) 6= 0 para todo x ∈ Σ
donde K(x) = 0.

Se definen los conjuntos

Σ+ = {x ∈ Σ : K(x) > 0}, Σ− = {x ∈ Σ : K(x) < 0}, Γ = {x ∈ Σ : K(x) = 0}.

Observa que la suposición (H1) implica que el conjunto de curvas nodales Γ es
regular y que

N+ = #{componentes conexas de Σ+} < +∞. (R.12)
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En lo que sigue se asume que

(H2) pj /∈ Γ para todo j ∈ {1, . . . ,m}.

Es posible reordenar las singularidades de tal forma que

pj ∈ Σ+ para j ∈ {1 . . . , `}, pj ∈ Σ− para j ∈ {`+ 1, . . . ,m}. (R.13)

Ahora se define el conjunto de valores críticos como

Λ` =

8πr +
∑̀
j=1

8π(1 + αj)nj : r ∈ N ∪ {0}, nj ∈ {0, 1}

 \ {0}. (R.14)

Si K es una función positiva, el conjunto de soluciones del problema (R.5) es com-
pacto para λ /∈ Λm, ver [9, 17, 78]. En el próximo teorema se obtiene una conclusión
análoga en nuestro ambiente.

Teorema 4.0.2. Se asume que α1, . . . , αm > −1 y sea Kn una sucesión de funciones
con Kn → K en sentido C2,α, donde K verifica (H1), (H2). Sea un una sucesión de
soluciones del problema

−∆gun = K̃ne
un − fn en Σ, (R.15)

con fn → f en sentido C0,α y K̃n = Kne
−hm con hm dado en (R.6). Entonces, salvo

subsucesiones, se verifica la siguiente alternativa:

1. o un es uniformemente acotado en L∞(Σ);

2. o bien un diverge a −∞ uniformemente;

3. o bien existe un conjunto finito S = {q1, . . . , qr} ⊂ Σ+ de puntos de blow–up.

En tal caso, un → −∞ en conjuntos compactos de Σ\S y K̃ne
un ⇀

∑r
i=1 β(qi)δqi

en el sentido débil de las medidas donde β(qi) = 8π if qi /∈ {p1, . . . , pm} y
β(qi) = 8(1 + αj)π si qi = pj para cualquier 1 ≤ j . . . `.

En particular, limn→+∞
´

Σ K̃ne
un ∈ Λ`, definido en (R.14).
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Nótese que la ecuación (R.5) se puede escribir en la forma (R.15) por adición de
una constante apropiada a un = u, con Kn = K y fn = λ

|Σ| .

Por lo que respecta a la existencia y multiplicidad de soluciones, nos restringire-
mos al caso de órdenes positivos αj. Nuestras demostraciones emplean herramien-
tas propias de los métodos variacionales. De hecho, el problema (R.5) es la ecuación
de Euler-Lagrange del funcional de energía de (R.7).

Si λ < 8π, entonces Jλ es coercivo y se puede encontrar solución como mínimo
de Jλ, mientras que Jλ no está acotado inferiormente si λ > 8π. En esta tesis se
considerará este último caso.

Antes de establecer nuestro resultado de existencia, es preciso añadir una hipóte-
sis sobre K:

(H3) N+ > k o Σ+ tiene una componente conexa no simplemente conexa,

donde N+ está definida en (R.12).

Teorema 4.0.3. Sea α1, . . . , α` > 0, con ` definido en (R.13) y λ ∈ (8kπ, 8(k +
1)π) \ Λ`. Si (H1), (H2), (H3) se satisfacen, entonces (R.5) admite una solución.

Obsérvese que si Σ+ tiene topología trivial, entonces el Teorema 4.0.3 no se
puede aplicar. Sin embargo, siguiendo las ideas de [90], el cual considera potenciales
positivos, podemos aportar también un resultado que cubra este caso. Para ello, se
define el conjunto

Θλ = {pj ∈ Σ+ : λ < 8π(1 + αj)},

y se introduce la hipótesis

(H4) Θλ 6= ∅.

Teorema 4.0.4. Sea α1, . . . , α` ∈ (0, 1], donde ` está definido en (R.13) y λ ∈
(8π, 16π)\Λ`. Si (H1), (H2), (H4) se satisfacen, entonces (R.5) admite una solución.

Remark 4.0.1. Existen muchos tipos de aplicaciones de estos resultados al prob-
lema geométrico comentado previamente. Sólo por mostrar un ejemplo, considera el
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problema de buscar una métrica conforme en Σ = T2 con curvatura Gaussiana K
y un punto cónico de orden α. Asumimos que las suposiciones (H1), (H2) se satis-
facen. Entonces Teorema 4.0.3 implica que el problema admite solución si y sólo si
se verifican alguna de estas dos condiciones

1. α ∈ (k, k + 1) con k ∈ N y Σ+ tiene más de k componentes conexas;

2. α ∈ (k, k + 1) con k ∈ N y Σ+ tiene una componente no simplemente conexa.

Consideremos el mismo problema pero con m puntos cónicos, todos de orden α.
Entonces el Teorema 4.0.4 implica que el problema geométrico es resoluble si 1 <

mα < 1 + α y al menos uno de los puntos cónicos está situado en Σ+.
Muchos otros ejemplos podrían ser construidos.

En nuestro próximo resultado para Σ = S2, se presenta una clase de funciones K
para la cual (R.5) no admite solución. De hecho, estas funciones satisfacen (H1) y
(H2) pero no (H3), ni tampoco (H4). Para hacer más claro el enunciado del teorema,
no entraremos en detalles sobre la definción de K.

Teorema 4.0.5. Sea p ∈ S2 y α > 0 con m = 1, p1 = p, α1 = α y K̃ = e−h1K,
entonces existe una familia de funciones K tal que (H1) y (H2) se cumplen pero la
ecuación (R.5) no admite solución para λ ∈ (8π,+∞),

Como consecuencia del Teorema 4.0.5, la función K no puede ser la curvatura
Gaussiana de S2 para ninguna métrica con una singularidad de orden α > 0.

Finalmente, se presentan dos resultados de multiplicidad para elecciones genéricas
del par (K, g), los cuales cubren los casos estudiados por nuestros resultados de
existencia. Intuitivamente, estos resultados muestran que el número de soluciones
crece conforme la topologia de Σ+ se vuelve más complicada. Como el enunciado de
estos resultados requiere introducir notación extra, no enunciaremos los mismos en
este resumen. Emplazamos al lector a la Sección 3.3.

Los resultados descritos anteriormente se han incluido en las publicaciones [47],
[48].

Metodología: estrategia de las demostraciones
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Como se ha comentado anteriormente, nuestras pruebas utilizan argumentos de
tipo min-max para demostrar existencia de puntos críticos asociados a los respectivos
funcionales de energía. A continuación se presenta un esquema que provee una
estrategia común de las demostraciones e introduce algunos hechos conococidos que
engloban a los argumentos empleados.

• Existencia: Respecto a los teoremas de existencia Theorems 4.0.1, 4.0.3 y
4.0.4, se siguen las bases de la teoría de Morse, la que, de forma intuitiva,
asegura que la topología de los subniveles de energía no varía si no existen
puntos críticos. Sea E un subconjunto abierto en un espacio de Hilbert y
F ∈ C1(E,R), se denota como subnivel

Fa = {e ∈ E : F(e) ≤ a},

donde a ∈ R. Se puede decir por tanto que una variación de la topología de los
subniveles implica la existencia de un punto crítico. Así pues, nuestro primer
objetivo es obtener una descripción topológica precisa de los subniveles de Iλ
y Jλ. Se verá que los subniveles de energía bajos tienen topología no trivial,
mientras que los altos son triviales, lo que confirma la existencia de un cambio
de topología entre niveles altos y bajos.

En cierto sentido, funciones a nivel de energía baja tienden a concentrarse
alrededor de un número finito de puntos. Esta configuración de puntos se
utiliza para estudiar la topología de F−L con L > 0 suficientemente grande.
De esta forma, el objetivo principal es encontrar un espacio topológico no
compacto Z, para describir la topología de F−L. A continuación se construye
una función continua Ψ que proyecta F−L en Z y otra Φ en sentido contrario,
tal que la composición

Z Φ−→ F−L Ψ−→ Z (R.16)

sea homotópicamente equivalente a la identidad en Z. De esta forma se dice que
la topología de F−L es más rica que la de Z. De hecho, la no contractibilidad
de Z implica que Φ(Z) es no contraible en F−L.

El cambio de topología de los subniveles implica la existencia de una suce-
sión de Palais-Smale {un}, es decir Iλ(un) → cλ > −∞ y I ′λ(un) → 0, donde
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cλ es el valor min-max, ver [4] por ejemplo. Sin embargo, este hecho no im-
plica directamente la existencia de puntos críticos. Esta dificultad puede ser
solucionada por el comúnmente conocido como truco de monotonía de Struwe,
[109], el cual garantiza acotación, y por tanto convergencia, de la sucesión de
Palais-Smale para casi todo valor del parámetro λ. Para extender la existencia
de puntos críticos a todos los valores del intervalo, se precisa de una propiedad
de compacidad. Este objetivo se introduce a continuación.

• Compacidad: Teniendo en cuenta lo anteriormente comentado, uno se en-
frenta al siguente problema: dado un una sucesión de soluciones de (R.11) o
(R.5) para λ = λn → λ0, es uniformemente acotada?

Esta cuestión fue estudiada en [17, 78] para el problema regular, y en [8, 9]
para la ecuación con vórtices, siempre con la suposición de potenciales K(x)
positivos. La condición sobre el signo de K no es sólo una cuestión técnica,
como se puede deducir de recientes ejemplos de soluciones que explotan dados
en [13, 50]. Estas soluciones se concentran en máximos locales de K al nivel
0, una situación que, a priori, podría reproducirse en nuestros problemas. Sin
embargo, la suposición sobre dónde y cómo K cambia de signo, (A2) and (H1)
respectivamente, nos permite descartar este fenómeno.

Para el primer problema podemos concluir compacidad por medio de estimas
de energía. Este argumento parece completamente nuevo para este tipo de
problemas, pero no puede ser interpretado como un resultado completo de
compacidad debido a la suposición extra sobre el nivel de energía. De hecho,
este argumento está restringido a la forma específica del problema (R.11) y no
funciona para problemas más generales.

Para estudiar la cuestión de la compacidad para (R.3), se adopta una estrate-
gia diferente. En primer lugar se deriva una estima integral uniforme en sub-
conjuntos de Σ+ o Σ−, la cual permite obtener estimas a priori en la región
{x ∈ Σ : K(x) < −δ}, para un δ > 0 pequeño. Después, a través del método
de moving-plane se obtiene una comparación entre valores de u sobre los dos
lados de la curva Γ. Esto, junto a la estima integral mencionada anteriormente,
implica acotación uniforme en un entorno de Γ. Para concluir, se pueden aplicar
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los resultados de blow–up en la región {x ∈ Σ : K(x) > δ} para obtener las
cuantizaciones exactas y como consecuencia el criterio de compacidad.

• Multiplicidad: Las estimas del número de soluciones son válidas bajo la
suposición de no degeneración de soluciones. Un argumento de transversalidad,
ver [106] por ejemplo, garantiza que para una elección genérica de (K, g), las
soluciones del problema (R.5) son no degeneradas. De forma precisa, (g,K)
está en un conjunto abierto y denso de M2 × C2,α(Σ), donde M2 denota el
espacio de todas las métricas de Riemann C2,α en Σ equipado con la norma
C2,α.

Bajo estas condiciones, podemos utilizar las desigualdades débiles de Morse,
las que, junto al cálculo de los grupos de homología de un par, nos permite
probar que

#{puntos críticos de Iλ en {a ≤ Iλ ≤ b} } ≥
∑
q≥0

dim
(
Hq(Ibλ, Iaλ)

)
.

La fórmula anterior sugiere estudiar de forma rigurosa la homología de los
subniveles de energía altos y bajos. Entoneces, se puede hacer uso de la de-
scripción topológica de los subniveles dados en la parte de existencia. De hecho,
por (R.16), ∑

q≥0
dim

(
Hq(Ibλ, Iaλ)

)
≥
∑
q≥0

dim(Hq(Z).

Para calcular los números de Betti de Z, se necesita hacer uso de algunas
herramientas de topología algebraica. En particular, una de las dificultades
principales es estudiar los grupos de homología de Z, el cual será el conjunto
de baricentros de una unión disjunta. Esta dificultad se resuelve a través de
una fórmula que conecta la homología de los baricentros sobre la unión disjunta
a la homología de los baricentros sobre cada uno de los espacios disjuntos.
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