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1 Introduction and preliminaries

Examples of singular functions, that is, monotone increasing continuous functions whose derivatives vanish almost
everywhere, have been known since the end of the 19th century (see [1]). Since then, these functions have been
studied from a wide variety of fields very distant from one another. Some classes of these functions have been
considered in Probability Theory (see [2–4]) as well as in Number Theory, where what is known as Minkowski’s
question mark function is specially relevant (see [5–8]). It relates to the alternate dyadic and continuous fraction
systems of representation. Another example of singular function that relates to representation number systems can
be found in [9]. Possibly the best known and most widely studied singular function is Cantor’s (see [10] and the
references therein) which can be studied with the aid of the 2- or 3-base representation systems, although it is often
geometrically built as the limit of a sequence of functions with polygonal graphs. This is also the case of the functions
firstly studied by Cahen [11], which Salem [7] introduced using geometric ideas similar to those of Cantor. Other
references related to these functions can be found in [7, 12–16].

In recent times, a parameterized family of continuous functions has been considered by Okamoto in [17], and
revisited in [18] to see if they are also singular. They contain Bourbaki and Perkins’ nowhere differentiable functions
as well as Cantor’s singular function. In this paper, we study a wide family of two-parametric singular functions
fa;b and explore new properties, several of them closely related to fractal analysis and strong negations. We borrow
a few ideas from [18, Sec.4], starting with an exact definition of what we mean by fa;b .

Definition 1.1. Let a; b 2 �0; 1Œ and fa;b be defined on the unit interval Œ0; 1� by iterations of piecewise affine
functions ffng

1
nD0, as follows:

Let f0.x/ D x, and suppose that fn has been properly defined on the whole unit interval. Then, for fnC1 we
define
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8̂̂̂<̂
ˆ̂:
fnC1

�
k
3n

�
WD fn

�
k
3n

�
; k D 0; : : : ; 3n;

fnC1

�
3kC1

3nC1

�
WD .1 � a/ fn

�
k
3n

�
C afn

�
kC1
3n

�
; k D 0; : : : ; 3n � 1;

fnC1

�
3kC2

3nC1

�
WD .1 � b/ fn

�
k
3n

�
C bfn

�
kC1
3n

�
; k D 0; : : : ; 3n � 1;

and complete its definition for each x 2
h
k
3n
; kC1
3n

i
as the segment that joints the points

�
k
3n
; f

�
k
3n

��
and�

kC1
3n

; f
�
kC1
3n

��
in its graph.

Now, let fa;b.x/ D limn!1 fn.x/ for all x 2 Œ0; 1�.

Let us mention that f 1
2 ;
1
2

is the Cantor function and f 2
3 ;
1
3

is the function defined by Bourbaki (see [17, 19]). We will

consider 0 < a < b < 1 such that .a; b/ ¤ .1
3
; 2
3
/.

Theorem 1.2 ([18, Th.5]). fa;b is a continuous, strictly monotone, and singular function.

This paper is structured in the following way: In Section 2 we show new properties of fa;b ; from the viewpoint of
fractal geometry theory. We prove that the graph of fa;b is a compact set (an attractor) that appears as the fixed point
of a suitable contraction mapping, which directly implies its monotony and continuity. Moreover, we characterize
fa;b as the unique bounded function satisfying a given system of functional equations. We will provide further proof
of the singularity of fa;b with the sole aid of probabilistic techniques, using the result that the sequence of Fourier
coefficients of its associated measure dfa;b does not converge to zero (for a given monotone function S , dS denotes
its Stieltjes measure). In the same section, we also establish the Hausdorff dimension of sets related to fa;b , one of
them is a measure zero set whose image by fa;b has measure one, and its dimension is obtained as an application
of the Besicovitch-Eggleston theorem. To this end, we previously introduced a representation system called a; b-
system. In Section 3 we generalize all the results to a 4-parametric family of functions. Once more, we calculate
Hausdorff dimensions for the sets associated with these functions again. The last section is devoted to applications
of the family of singular functions studied. With these and the representation system referred to above, we find a
bi-parametric family of Katok foliations. In addition, we establish its relation to harmonic analysis on fractals and to
strong negations in fuzzy logic.

2 Properties of fa;b

2.1 Analytic properties

First, as we pointed out above, we examine new properties of fa;b from a geometric point of view. But the tool
we shall use is the Hausdorff-Pompeiu metric (see [20, 21]). A straightforward way to introduce this metric is as
follows:

Let K
�
Œ0; 1�2

�
denote the space of compact subsets in Œ0; 1�2. For each A and B in K

�
Œ0; 1�2

�
we put

� .A;B/ WD sup fdist .b; A/ W b 2 Bg ;

and then K
�
Œ0; 1�2

�
is complete metric space endowed with the metric

D .A;B/ WD max f� .A;B/ ; � .B;A/g :

Thus, the graph of fa;b is a self-affine subset of the unit square Œ0; 1�2 ; obtained as the fixed point of a suitable
contraction C in the space K

�
Œ0; 1�2

�
, via the Contaction Mapping Theorem.

The underlying idea is graphically expressed in Fig. 1.
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Fig. 1. The transform of the unit square by C

1
3

2
3

a

b

The graph of the polygonal fn is defined by iteration as the image, by a contraction C that is defined below, of the
graph of fn�1 with the start f0 D identity.

For convenience, let us put a1 D aI a2 D b � aI a3 D 1 � b:

Proposition 2.1. The mapping

C W K
�
Œ0; 1�2

�
�! K

�
Œ0; 1�2

�
C.T / W D C1t .T / [ C2 .T / [ C3 .T / ;

where C1; C2 and C3 are contractions given by

C1 W Œ0; 1�
2
�! Œ0; 1�2 ; C1 .x; y/ D

�
x
3
; ay

�
C2 W Œ0; 1�

2
�! Œ0; 1�2 ; C2 .x; y/ D

�
1Cx
3
; aC a2y

�
C3 W Œ0; 1�

2
�! Œ0; 1�2 ; C3 .x; y/ D

�
2Cx
3
; b C a3y

�
;

(1)

(a; b; a2; a3 2 �0; 1Œ) is a contraction for the Hausdorff metric in K
�
Œ0; 1�2

�
.

The graph of fa;b is the unique invariant set for the iterated function system defined by (1), that is the fixed point
of C . The next result follows as a consequence of the definition of fa;b and its graph is a compact set.

Corollary 2.2. The function fa;b is monotonic and continuous.

Now, since each affine contraction represents a functional equation, according to the Banach fixed point theorem, we
have fa;b determined by the following functional equations.

Theorem 2.3. The function fa;b is the unique bounded solution of the system of functional equations8̂̂<̂
:̂
h
�
x
3

�
D ah.x/

h
�
1Cx
3

�
D aC a2h.x/

h
�
2Cx
3

�
D b C a3h.x/

(2)

Corollary 2.4. The area under the graph of fa;b is
R 1
0
fa;b.x/dx D 2a1Ca2

2
:

In [22], for Okamoto’s one-parameterized function it is proved that fa D fa;1�a is non-differentiable almost
everywhere at the critical parameter value. In [19], the performance of f 0a is explored almost everywhere for different
values of a. For fa;b ; we have the following general result.

Theorem 2.5. The derivative f 0
a;b
.x/, when it exists, can only vanish.

Proof. If f 0
a;b
.0C/ exists, then it must vanish. To prove it, we take into account that fa;b

�
1
3n

�
D an and

fa;b
�
2
3n

�
D ban�1. This implies that the slope of the segments joining the point .0; 0/ with

�
1
3n
; an

�
,
�
2
3n
; ban�1

�
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and
�

1

3n�1
; an�1

�
are, repectively, .3a/n, 3b.3a/

n�1

2
and .3a/n�1. If f 0

a;b
.0C/ exists and does not vanish, then the

limits of the quotients .3a/
n

.3a/
n�1 D 3a and 3b.3a/

n�1

2.3a/
n�1 D

3b
2

exist and are equal to 1. That is, .a; b/ D
�
1
3
; 2
3

�
which

is a contradiction.
A similar argument allows us to obtain f 0

a;b
.1�/ D 0, if it exists.

By repeting this reasoning or using the system of functional equations (2), it follows that if exist, the numbers
f 0
a;b
. m
3k
�
/ and f 0

a;b
. m
3k
C
/ are zero.

Let us suppose that x cannot be expanded in the form m

3k
: If f 0

a;b
.x/ exists and does not vanish,

lim
k!1

fa;b .ykC1/ � fa;b .xkC1/

ykC1 � xkC1
W
fa;b .yk/ � fa;b .xk/

yk � xk
D 1

for sequences .xk/ and .yk/ that converge to x such that xk � x < yk :
Let us take

xk WD max
�
j

3k
W j D 0; : : : ; 3k and

j

3k
� x

�
;

and

yk WD min
�
j

3k
W j D 0; : : : ; 3k and x <

j

3k

�
;

then we have
fa;b .ykC1/ � fa;b .xkC1/

ykC1 � xkC1
W
fa;b .yk/ � fa;b .xk/

yk � xk
2 f3ai W i D 1; 2; 3g :

Thus, if 3ai ¤ 1 for the three values, this is a contradiction. If some of them equal 1, then the other two differ
from 1, because we have avoided the case a D 1=3 and b D 2=3. Therefore, if we obtain 3ai D 1, we shall change
that quotient by

fa;b

�
ykC

1

3kC1

�
� fa;b .xkC1/

ykC
1

3kC1
� xkC1

W
fa;b .yk/ � fa;b .xk/

yk � xk
;

or by
fa;b .yk/ � fa;b

�
xk�

1

3kC1

�
yk � xk�

1

3kC1

W
fa;b .ykC1/ � fa;b .xk/

ykC1 � xk
:

This quotient is 3.aiCaj /
2

; with i ¤ j , and differs from 1.
For each k we have described the possibility of taking the quotient on a finite set (where 1 is not included).

Consequently, the limit f 0
a;b
.x/ must be zero.

Note that the theorem above provides a new proof for the singularity of fa;b :

2.2 Singular functions as the convolution of distribution functions

We shall prove that fa;b can be obtained as an infinite convolution S of atomic probabilities, and that the sequence
of Fourier coefficients of dS does not converge to zero. A number of definitions and results to be used later are
recorded bellow.

If F1 and F2 are distribution functions, then the function F.x/ D
R
R F1.y�x/dF2.y/ is called the convolution

of the distribution functions F1 and F2. This is a new distribution function denoted as F D F1�F2. The convolution
F1�F2 provides the distribution function of the sum of two independent random variables with distribution functions
F1 and F2.

Let F be a distribution function, then its characteristic function eF is the expected value of eixt , that is,

eF .t/ D E heixti D C1Z
�1

eixtdF.x/;

the nth moment Mn of F is defined as
RC1
�1

xndF.x/ y �2 DM2 �M 2
1
:
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By imposing conditions on the distribution functions, Jessen and Wintner in their paper [3], obtain convergence
criteria for the convolution of distribution functions. To be more specific, in [3] they obtain the following results.

Lemma 2.6 ([3, Th. 4]). If M2.Fn/ is finite for every n; then the convergence of two series
1P
nD1

E .Fn/ and

1P
nD1

�2 .Fn/ implies the weak convergence of Hn.x/ D F1 � F2 � � � � � Fn.x/ (i.e. Hn.x/ �! H.x/ for each

x at which H is continuous).

Theorem 2.7 ([3, Th. 35]). If F D F1 � F2 � � � � is a convergent infinite convolution of distribution functions Fn
each of which is purely discontinuous, then F is either purely discontinuous, or singular, or absolutely continuous.

The next result can be found in [23, pg. 46].

Theorem 2.8. Let n D maxzfFn.zC/ � Fn.z�/g, then the infinite convolution F.x/ D .F1 � F2 � � � � / .x/ is
continuous if and only if the series

P
n�1

.1 � n/ diverges.

Finally, in [26] the following useful result is proven.

Lemma 2.9. If Fn and F have characteristic functions eF n and eF , respectively, and .Fn/ is weakly convergent to
F , then eF n.x/! eF .x/ for each x.

Definition 2.10. Let be the infinite convolution function S WD F1�F2�F3�� � � , where F1; F2; F3; ::: are distribution
functions given, for each positive integeer n, by

Fn.x/ D

8̂̂̂<̂
ˆ̂:
0; x < 0

a; 0 � x < 1
3n

b; 1
3n
� x < 2

3n

1; x � 2
3n

This function S is well defined. In fact, let us note that, for every n:

E .Fn/ D
a2 C 2a3

3n
; M2 .Fn/ D

a2 C 4a3

32n
; �2 .Fn/ D

a2 C 4a3

32n
�
.a2 C 2a3/

2

32n
:

The convergence of the corresponding series ensures, by Lemma 2.6, the weak convergence of the convolution, that
is, S.x/ exists for every x.

Theorem 2.11. With the notation as in the above definition, we have:

a) The characteristic function of S is eS.t/ D 1Q
nD1

�
a1 C a2e

i t
3n C a3e

i 2t
3n

�
.

b) The sequence of Fourier coefficients of eS , i.e. Sp D
R 1
0
e2�pixdS.x/, does not converge to zero.

c) S is a singular function.

Proof. a) The characteristic function of Fn is a1 C a2e
i t
3n C a3e

i 2t
3n . If H D F � G; then their respective

characteristic functions satisfy the relation eH D eFeG; and as a consequence, by Lemma 2.6, we obtain that the

characteristic of S is eS.t/ D 1Q
nD1

�
a1 C a2e

i t
3n C a3e

i 2t
3n

�
.

b) Let us denote by Sp WD eS.2�p/ the Fourier coefficients of dS . The expression of eS allows us to obtain that
S3qp D Sp for all q � 0: Since the measure is not equal to the Lebesgue measure, then there exists n > 0 such that
Sp ¤ 0; and, as a consequence, the Fourier coefficients do not converge to zero.

c) The functions in the convolution are purely discontinuous, thus S is also pure. But it is neither discontinuous,
by Theorem 2.8, nor absolutely continuous, because by b) it does not satisfy the Riemann-Lebesgue theorem.
Therefore, it must be singular.

Brought to you by | Universidad de Granada
Authenticated

Download Date | 3/9/17 12:35 PM



1044 E. de Amo et al.

For a nonnegative integer m < 3n; let us consider its expansion in the base 3 m D r03
0 C r13

1 C r23
2 C � � � C

rn�13
n�1; with ri 2 f0; 1; 2g : Set c.m/ (resp., u.m/ and d.m/) the number of times that the digit 0 appears (resp.,

1s and 2s) in the above expansion of m.

Lemma 2.12. The distribution function F1 � F2 � � � � � Fn has the following associated probability

Pn

� m
3n

�
D a

c.m/

1
a
u.m/

2
a
d.m/

3
:

Proof. The proof is reached by induction. The statement is true for the first values. Let us suppose that it is true for
n � 1, and we will prove it for n. (Let us denote by Pn the associated probability with Fn.)

If m is congruent with zero module 3, i.e. m D 3k; then

k D r13
0
C r23

1
C r33

2
C � � � � � � C rn�13

n�2;

m D 0C r13
1
C r23

2
C r33

3
C � � � � � � C rn�13

n�1;

and

Pn

� m
3n

�
D Pn

�
3k

3n

�
D Pn�1

�
k

3n�1

�
� Pn.0/ D a1Pn�1

�
k

3n�1

�
:

Taking into account that the expansion of m has one less 0 than the expansion of k; and the same number of 1s and
2s, by applying the induction hypothesis we obtain the desired result.

For the cases m � 1 (mod 3) and m � 2 (mod 3) we proceed in a similar way.

Applying the above lemma and making an inductive hypothesis we obtain the following result.

Lemma 2.13.
a) F1 � F2 � � � � � Fn

�
3n�1�1
3n

�
D a:

b) F1 � F2 � � � � � Fn
�
2�3n�1�1

3n

�
D b:

Now, we show the relationship between fa;b and S:

Theorem 2.14. fa;b is the infinite convolution function S .

Proof. We have to prove that the graph of Gn D F1 � F2 � � � � � Fn and Cn.d/ are the same set, where d denotes
the segment .0; 1/ .1; 1/ and C is given by (2.1), but for a finite set of points. Namely, the intersection of Cn.d/ and
the line x D k

3n
for 1 � k � 3n � 1 has two points:

�
k
3n
; Gn

�
k
3n

��
and

�
k
3n
; Gn

�
k
3n

�
��
; where the minus sign

means left-side limit: For the other values of x; the graph of Gn and the set Cn.d/ coincide.
Set Cn.x/ WD max fy W .x; y/ 2 Cn.d/g : It is immediate that G1.13 / D C 1.1

3
/; G1.

2
3
/ D C 1.2

3
/. Thus we

will show that for n; it follows that Cn. k
3n
/ D Gn.

k
3n
/ for 0 � k < 3n: Let us suppose that it is also true for n� 1:

For 0 � m < 3n�1; we consider these possibilities:

a) Gn
�
m
3n

�
D

mP
kD0

Pn

�
k
3n

�
D

mP
kD0

a1Pn�1

�
k

3n�1

�
D a1Gn�1

�
m
3n

�
D a1Cn�1

�
m
3n

�
D Cn

�
m
3n

�
, where

the second equality is true because when we write k with one more digit, this must be zero.
b) If Gn

�
mC3n�1

3n

�
D a1 C a2Gn�1

�
m

3n�1

�
D a1 C a2Cn�1

�
m

3n�1

�
D Cn

�
m

3n�1

�
; the proof is similar to

the above.
c) If Gn

�
mC2:3n�1

3n

�
D a1C a2C a3Gn�1

�
m

3n�1

�
D a1C a2C a3Cn�1

�
m

3n�1

�
D Cn

�
m

3n�1

�
; the proof

also follows similarly.
This ensures that the statement is also true for n.
IfGn are step functions that coincide with fa;b at points in the form m

3n
with 0 � m < 3n; then lim

n!1
Gn.x/ D

fa;b.x/ for all x 2 Œ0; 1� :

Remark 2.15. Theorems 2.11 and 2.14 give further proof of Okamoto and Wunsch’s result [18, Th. 5] using
exclusively probability theory methods. In fact, fa;b is a singular function and additionally we know its characteristic
function, as well as the fact that the sequence of its Fourier coefficients does not converge to zero.
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3 Fractal sets associated with fa;b

This section is devoted to describing several sets related to the function fa;b and to computing their Hausdorff
dimensions. We need some additional results.

We are going to introduce a representation system of real numbers in Œ0; 1� :The method employed is based on
the imitation of the action of fa;b on the Y axis. With notations already used above, let us divide the unit interval into
subintervals Œ0; a� ; Œa; b� and Œb; 1�. Thus, if y 2 Œ0; 1� ; then y can be written as one of the following expressions:

y D

8̂<̂
:
b1 C a1z

b2 C a2z

b3 C a3z

;

with b1 D 0; b2 D a; b3 D b, and z 2 Œ0; 1�. We can now apply the above algorithm to z 2 Œ0; 1�, and by iteration
we have the formal relation

y D d1 C s1d2 C s1s2d3 C s1s2s3d4 C � � �

with di D bj ; j D 1; 2; 3; and si D ak for a suitable j and k; such that if di D bj ; then si D aj .
Observe that if y WD b2Ca2 z, with z 2 f0; 1g, then y has two formal equalities. But this fact is of no relevance

to our task because it is true on a denumerable set, hence on a set of measure zero. The nature of the construction
also ensures that for different points their corresponding formal equalities are different, as well.

Proposition 3.1. The series d1Cs1d2Cs1s2d3Cs1s2s3d4C� � � converges to y, that is, the formal equality above
is in fact an equality.

Proof. Note that s1 : : : sndnC1 � max fa1; a2; a3; bg
nC1. Thus, by construction

0 � y � .d1 C s1d2 C s1s2d3 C s1s2s3d4 C � � � C s1s2 : : : sndnC1/

D O
�
max fa1; a2; a3; bg

n
�
;

which implies that the series converges to y:

Next, the family of parameterized singular functions is described with the help of the a; b-representation system.

Definition 3.2. The series in the proposition above is named as the a; b-representation of y 2 Œ0; 1� :

Theorem 3.3. The random variables dn.x/ are independent and equally distributed with probability function

P .dn D 0/ D a1; P .dn D a/ D a2; P .dn D b/ D a3:

Applying the Law of Large Numbers we obtain the following result.

Corollary 3.4. With the above notation the set of points whose proportion of times that dn D 0 is a1, for dn D a is
a2 times or dn D b is a3; has measure 1.

We are now going to exhibit a set of measure zero whose image under fa;b is of measure one and vice versa.

Theorem 3.5. There exists a set of measure zero and Hausdorff dimension

�
a1 ln a1 C a2 ln a2 C a3 ln a3

ln 3
that is mapped on a set of measure one by fa;b .

Proof. The nature of the construction of the representation for a point x D
1P
nD1

cn
3n

in Œ0; 1� and its image fa;b .x/

entails that if cn D 0; 1; 2; then dn D 0; a; b, respectively. Therefore, the set of points whose proportions of 0s, 1s
and 2s are a1; a2 and a3; respectively, has measure zero and is mapped on a set of measure 1.

The Hausdorff dimension is calculated in [20, Chp. 10].

Brought to you by | Universidad de Granada
Authenticated

Download Date | 3/9/17 12:35 PM



1046 E. de Amo et al.

In addition, we shall give another analogue property using the measure of the normal numbers in Œ0; 1� :
We recall that a number is normal in the 3-base if the proportions of 0s, 1s and 2s in this base is 1/3 for each

case, and that the set of normal numbers in the 3-base is of measure 1 (see, for instance, [24] or [25]).

Theorem 3.6. There exists a set of measure one that is mapped by fa;b on a set of measure zero and Hausdorff
dimension

ln 27
� ln .a1a2a3/

:

Proof. A normal number in the base 3 has the same proportion for each of the three digits in its expansion. Their
images will have the same proportion in the random variables dn: Corollary 3.4 shows that the proportions must be
a1; a2 and a3, on a set of measure 1. Thus, the image of normal numbers is a measure zero set.

To calculate the Hausdorff dimension for this zero-measure set, we use that the measure dfa;b concentrates its
mass on it. Thus, applying [20, Lemma 4.9], by substitution of balls by neigbourhoods in the following way: If

x D d1 C s1d2 C s1s2d3 C s1s2s3d4 C � � � ;

then we use the representation method and, in the n-th iteration, we do z D 0 and z D 1; obtaining the extremes of
an interval containing x, namely:

Œd1 C � � � C s1s2 : : : sn�1dn; d1 C � � � C s1s2 : : : sn�1dn C s1s2 : : : sn� :

Clearly, its Lebesgue measure is s1s2 : : : sn, and, by construction, its df �1
ba

-measure is 1
3n

.
Therefore, the Hausdorff dimension is given by the number

sup

(
ˇ > 0 W lim

n!1

1=3n

.s1s2 � � � sn/
ˇ
< C1

)
:

Taking logs, because it must be finite,

lim
n!C1

n ln
�
3 .a1a2a3/

ˇ
3Co.1/

�
< C1;

and the supremum ˇ of these values is ln27
� ln.a1a2a3/

:

4 Generalization

Although their description is complex, a geometric generalization of the preceding functions can be easily carried
out. We directly proceed in the following way, avoiding proofs in the results that follow. They can be derived from
the techniques and ideas already used in the proofs of the preceding results.

Definition 4.1. Let a; b; a0; b0 2 �0; 1Œ such that a < b and a0 < b0: We set the function faba0b0 D fa0;b0 ı f �1a;b .

Theorem 4.2 (Functional Equations). faba0b0 is the only bounded function defined in Œ0; 1� satisfying8̂<̂
:
h .ax/ D a0h.x/;

h .aC a2x/ D a
0 C a0

2
h.x/;

h .b C a3x/ D b
0 C a0

3
h.x/:

(3)

Theorem 4.3. The function faba0b0 is continuous.

Corollary 4.4.
1Z
0

faba0b0.x/dx D
a1a
0
1
C a2a

0
2
C a2a

0
1

1 �
�
a1a
0
1
C a2a

0
2
C a3a

0
3

� :
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Theorem 4.5. faba0b0 is an increasing and singular function whose derivative f 0
aba0b0

.x/, when it exists, can only
vanish.

Theorem 4.6.
i) There exists a set of measure zero and Hausdorff dimension a01 lna01Ca

0
2 lna02Ca

0
3 lna03

a01 lna1Ca02 lna2Ca03 lna3
that is mapped on a set of

measure one by faba0b0 .
ii) A set of measure one exists that is mapped by faba0b0 on a set of measure zero and Hausdorff dimension

a1 lna1Ca2 lna2Ca3 lna3
a1 lna01Ca2 lna02Ca3 lna03

.

5 Applications

In this section we apply the main results obtained in this paper to provide nontrivial examples in Measure Theory
and Fractal Analysis. On the one hand, we will construct an example of Katok foliation, and on the other hand, we
study singular functions and their interaction with harmonic functions defined on a self-similar set.

5.1 Katok Foliation

The first example of a pathological foliation was constructed by Katok. A different version of this construction on
the square appeared in Milnor’s work [27], which showed examples of foliations of the unit square such that a full
measure set intersects each leaf of the foliation at exactly one point.

Here we introduce all the necessary notions required for the precise formulation of our results.

Definition 5.1. A pair .E; f˛/ is a Katok foliation if:
a. E � Œ0; 1�2 is a set of measure 1;
b. f˛ is a family of analytic functions from �0; 1Œ to Œ0; 1�I
c. the graphs of the functions f˛ fill the interior of Œ0; 1�2;
d. the graphs of the functions f˛ are pairwise disjoint;
e. the graph of each function f˛ intersects with E at one point at most.

Lemma 5.2. For each x 2 �0; 1Œ ; the function gx.t/ WD ft2;t .x/ is analytic at t 2 �0; 1Œ and gx.0/ D 0; gx.1/ D 1:

Proof. If x D d1 C s1d2 C s1s2d3 C s1s2s3d4 C � � � ; then gx.t/ is obtained by the substitution of di ; si with one
of the values 0; t; t2; 1 � t; t .1 � t /, depending on di . For each substitution, we obtain an expansion series in
powers of t . It is clear that gx.0/ D 0 and gx.1/ D 1 W the series expansion begins with a term in the tn power, thus
gx.0/ D 0. For the latter, we can write in the form tnC a series of positive terms, with 0 � gx.t/ � 1: Hence, by
continuity, the equality follows.

Lemma 5.3. For x; xK2 �0; 1Œ ; x ¤ xK; the graphs of gx and gx0 in �0; 1Œ are disjoint.

Proof. If .t; gx.t// and .t; gx0.t// are equal, the series expansion in the t2; t-representation system of x and x0 is
the same. But this would imply x D x0, a contradiction.

Proposition 5.4. The functions ft2;t are singular, and their graphs fill the interior of the unit square Œ0; 1�2.

Proof. Singularity follows from the above results. Let x 2 �0; 1Œ : The function gx is continuous with gx.0/ D 0

and gx.1/ D 1, and as a consequence, it takes all the values 0 < y < 1.
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Theorem 5.5. The pair .E; gx/ ; where

E WD

(
.t; y/ W the proportion of variables di in

the t2; t-representation of y is t2; t .1 � t /; 1 � t

)
and gx defined as above, is a Katok foliation.

Proof. E is a set of measure 1 by Fubini’s theorem. The analyticity was already obtained above. To deduce that the
graph of each function in the foliation intersects at most at one point is a consequence of the fact that the variables
di (that only depend on x) appear in the same proportion in the image of gx : Because this proportion is a limit, it is
possible that it does not exist. If it exists, then we find a value t with the desired proportions.

Remark 5.6. In exchange of t2; t for tu; tv with u > v; one can obtain a bi-parametric family of foliations.

5.2 Fractal Analysis

Applications of fractal sets in physics phenomena have brought about an important development of fractal techniques
in the last twenty years, specifically in harmonic functions in fractals. A good introduction to this topic can be found
in [28]. A study of the harmonic functions on the Sierpinski triangle can be found in [29]. In this subsection we
study the harmonic functions on these sets and their relationship with singular functions which are the object of our
research in this paper.

We focus our study on a self-similar subset in the unit square Œ0; 1�2 ; which is determined as the fixed point of
a suitable contraction in the metric space K

�
Œ0; 1�2

�
; endowed with the Hausdorff metric.

Definition 5.7. For r such that 0 < r < 1=2; let us set functions:8̂̂̂̂
<̂̂
ˆ̂̂̂:
G1 W Œ0; 1�

2
�! Œ0; 1�2 ; G1.x; y/ D .rx; ry/ ;

G2 W Œ0; 1�
2
�! Œ0; 1�2 ; G2.x; y/ D .1 � r C rx; ry/ ;

G3 W Œ0; 1�
2
�! Œ0; 1�2 ; G3.x; y/ D .r C .1 � 2r/ x; r C .1 � 2r/ y/ ;

G4 W Œ0; 1�
2
�! Œ0; 1�2 ; G4.x; y/ D .rx; 1 � r C ry/ ;

G5 W Œ0; 1�
2
�! Œ0; 1�2 ; G5.x; y/ D .1 � r C rx; 1 � r C ry/ ;

and let

G W K
�
Œ0; 1�2

�
�! K

�
Œ0; 1�2

�
; G.T / D

5[
iD1

Gi .T /:

The only fixed point of G will be denoted by Nr .

Nr is a fractal set, and we will study harmonic functions on it. This type of sets has already been used to show the
first example of copulas with fractal support (see for instance [30] or [31]). Let us recall that the fixed point Nr in
the Banach contraction mapping is obtained as the limit by iterations of G starting at any choosen point. Taking as
the starting point the compact unit square, for r D 1=3, the first two are as Figure 2 shows.
We name the vertices of Œ0; 1�2: p1 D .0; 1/ ; p2 D .1; 1/ ; p3 D .0; 0/ and p4 D .1; 0/ ; and for the vertices in the
first iteration:

q1 D .r; 1/ q2 D .1 � r; 1/ q3 D .0; 1 � r/ q4 D .r; 1 � r/

q5 D .1 � r; 1 � r/ q6 D .1; 1 � r/ q7 D .0; r/ q8 D .r; r/

q9 D .1 � r; r/ q10 D .1; r/ q11 D .r; 0/ q12 D .1 � r; 0/

(see Figure 3).
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Fig. 2. The two first iterations of the unit square in the case r D 1=3

Fig. 3. Vertices considered in the unit square

p1 p2

p3 p4

q1 q2

q3
q4 q5

q6

q7 q8 q9 q10

q11 q12

For the sake of our paper, we state that a function h defined in C is harmonic if

h.p1/ D s1; h.p2/ D s2; h.p3/ D s3; h.p4/ D s4

implies that 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

h.q1/ D
22s1C3s2C3s3C2s4

30
; h.q2/ D

3s1C22s2C2s3C3s4
30

;

h.q3/ D
22s1C3s2C3s3C2s4

30
; h.q4/ D

14s1C6s2C6s3C4s4
30

;

h.q5/ D
6s1C14s2C4s3C6s4

30
; h.q6/ D

3s1C22s2C2s3C3s4
30

;

h.q7/ D
3s1C2s2C22s3C3s4

30
; h.q8/ D

6s1C4s2C14s3C6s4
30

;

h.q9/ D
4s1C6s2C6s3C14s4

30
; h.q10/ D

2s1C3s2C3s3C22s4
30

;

h.q11/ D
3s1C2s2C22s3C3s4

30
; h.q12/ D

2s1C3s2C3s3C22s4
30

:

And the same occurs on each of the squares that appear at each stage.G can be extended to C by continuity, because
the set of vertices of the squares form a dense set. These functions will be denoted by hs1s2s3s4 . These functions
and the rest that follows in this section, depend on the parameter r , but we omit it for simplicity. We will study their
performance on the diagonal of the set, and we will do it for the particular case of h˛10˛; which we denote by h˛
for short. Actually, the only condition we impose is that s1 D s4 D ˛; because it is necessary to take it into account:

hs1s2s3s4..x; y// D s3 C .s2�s3/ h
�
s1�s3
s2�s3

�
10

�
s4�s3
s2�s3

�..x; y//:
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When we are restricted to the diagonal, it is necessary to study the subsets G1.Œ0; 1�2/, G3.Œ0; 1�2/ and G5.Œ0; 1�2/ W
they are the new squares having a non-empty intersection with it. The self-similarity of the set and the way the
function takes the values at the vertices of the new squares, allow us to write the following equations:8̂̂<̂

:̂
h˛ ..rx; rx// D h 2C6˛

30
4C12˛
30 0

2C6˛
30

..x; x// ;

h˛ ..r C .1 � 2r/ x; r C .1 � 2r/ x// D h 18˛C6
30

14C12˛
30

4C12˛
30

18˛C6
30

..x; x// ;

h˛ ..1 � r C rx; r C 1 � r C rx// D h 22C6˛
30 1

14C12˛
30

22C6˛
30

..x; x// ;

that can be rewritten as:8̂<̂
:
h˛ ..rx; rx// D

4C12˛
30

h 1
2
..x; x// ;

h˛ ..r C .1 � 2r/ x; r C .1 � 2r/ x// D
4C12˛
30

C
1
3
h 6˛C2

10
..x; x// ;

h˛ ..1 � r C rx; r C 1 � r C rx// D
14C12˛
30

C
16�12˛
30

h 1
2
..x; x// :

Definition 5.8. Set g˛ W Œ0; 1� �! Œ0; 1�, g˛.x/ WD h˛ ..x; x// for all x 2 Œ0; 1� :

The above equalities for these functions give:8̂<̂
:
g˛ .rx/ D

4C12˛
30

g 1
2
.x/ ;

g˛ .r C .1 � 2r/ x/ D
4C12˛
30

C
1
3
g 6˛C2

10
.x/ ;

g˛ .1 � r C rx/ D
14C12˛
30

C
16�12˛
30

g 1
2
.x/ ;

and if ˛ D 1=2, then they become the functional equations for g 1
2

:8̂<̂
:
g 1
2
.rx/ D 1

3
g 1
2
.x/ ;

g 1
2
.r C .1 � 2r/ x/ D 1

3
C
1
3
g 1
2
.x/ ;

g 1
2
.1 � r C rx/ D 2

3
C
1
3
g 1
2
.x/ :

Now attending to the functional equations of fr;1�r (with 0 < r < 1=2) we have the following result.

Proposition 5.9. f �1
r;1�r

and g 1
2

coincide on the unit interval.

Corollary 5.10. g˛ is a singular function.

Proof. The equalities already established for the family of functions g˛ ensure the way to divide the unit interval
Œ0; 1� into subintervals where the corresponding function is the scale copy of g 1

2
: Thus, we complete the proof,

because the inverse of a singular function is also singular.

Corollary 5.11. There exists a set of measure zero and Hausdorff dimension ln27
� ln r2.1�2r/

that is mapped on a set
of measure one by g˛ .

Corollary 5.12. There exists a set of measure one that is mapped on a set of measure zero by g˛;r and Hausdorff
dimension

�
2r ln r C .1 � 2r/ ln.1 � 2r/

ln 3
:

Remark 5.13. This study can be generalized to the set C 0 determined as the fixed point of the mapping generated
by the following functions:8̂̂̂̂

<̂̂
ˆ̂̂̂:
G1 W Œ0; 1�

2
�! Œ0; 1�2 ; G1.x; y/ D .rx; ry/ ;

G2 W Œ0; 1�
2
�! Œ0; 1�2 ; G2.x; y/ D .r

0 C .1 � r 0/x; ry/ ;

G3 W Œ0; 1�
2
�! Œ0; 1�2 ; G3.x; y/ D .r C .r

0 � r/ x; r C .r 0 � r/ y/ ;

G4 W Œ0; 1�
2
�! Œ0; 1�2 ; G4.x; y/ D .rx; r

0 C .1 � r 0/ y/ ;

G5 W Œ0; 1�
2
�! Œ0; 1�2 ; G5.x; y/ D .r

0 C .1 � r 0/ x; r 0 C .1 � r 0/ y/ ;
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with 0 < r < r 0 < 1:
The results are analogous, but the functions we now obtain are the inverses of fr;r 0 ; and the fractal dimensions

of the related fractal sets are ln27
� ln rr 0.1�r 0�r/ and � r ln rCr 0 ln r 0C.1�r�r 0/ ln.1�r�r 0/

ln3 ; respectively.

5.3 Strong Negations

In the framework of Fuzzy Logic, a strictly decreasing mapping n W Œ0; 1� �! Œ0; 1� is a strong negation if n2.x/ WD
n ı n .x/ D x for all x in Œ0; 1� (see [32]). Next, we are going to introduce a family of strong negations related to the
functions we have studied.

Theorem 5.14. For 0 < a < b < 1; the function na;b W Œ0; 1� �! Œ0; 1� given by

na;b.x/ WD fab.1�b/.1�a/.1 � x/

for all x in Œ0; 1� is a strong negation.

Proof. Continuity and monotony are evident. Through functional equations (3), we deduce that na;b is the only
function defined in Œ0; 1� that is bounded and satisfies the relations:8̂<̂

:
h ..1 � b/ x/ D 1 � aC ah.x/

h .1 � bC .b � a/ x/ D 1 � b C .b � a/h.x/

h .1 � aC ax/ D .1 � b/h.x/:

(4)

By the definition of na;b and properties of fab.1�b/.1�a/:

na;b ..1 � b/ x/ D fab.1�b/.1�a/.b C .1 � b/.1 � x//

D 1 � aC afab.1�b/.1�a/.1 � x/

D 1 � aC ana;b.x/:

The others follow is an analogous way. Finally, its uniqueness follows from that of fab.1�b/.1�a/ in (3) or from the
fixed point Banach theorem.

To show that n2
a;b
.x/ D x it is sufficient to use equations (4). From them, we deduce that n2

a;b
satisfies the

functional equations 8̂<̂
:
h ..1 � b/ x/ D .1 � b/ h.x/;

h .1 � bC .b � a/ x/ D 1 � b C .b � a/h.x/;

h .1 � aC ax/ D 1 � aC ah.x/:

(5)

However, the solution of this system is unique in the unit interval, and this is the identity function. Thus, n2
a;b

equals
identity in Œ0; 1�.

6 Conclusions

We have studied a wide family of two-parametric singular functions. To this end, we introduce a biparametric
representation system that allows us to give an explicit expression of these functions and to calculate the Hausdorff
dimension of several sets with distinguished properties for fa;b .

In addition, we have examined some applications of the study of these families of singular functions obtaining
Katok foliations, results concerning its relations with fractal harmonic analysis and with strong negations.

For further investigations we are interested in the study of these functions in the context of homeomorphisms
between the supports of copulas with fractal support [31], as they appear in the disintegration of the measure
associated to some self-similar copulas, and in the study of functions generated as fa;b ; but with random a and b.
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