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Abstract: The potential of by-products generated during extra-virgin olive oil (EVOO) 

filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has 

been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two 

GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging 

from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography 

(HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass 

spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter 

cake. The best isolation procedure to extract the phenolic fraction from the filter cake  

was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic 

compounds identified in the samples were characterized as phenolic alcohols or derivatives 
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(hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and 

hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and 

apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce 

enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. 

Keywords: olive oil by-products; filter cake; phenolic compounds; pressurized liquid 

extraction; HPLC-ESI-TOF/MS; GRAS solvents 

 

1. Introduction 

Olive oil production has a great economic impact for many Mediterranean countries that comprise 

more than 95% of the world olive-oil production. Moreover, 75% is being produced by Mediterranean 

Member States of the European Union [1]. Extra-virgin olive oil (EVOO) is produced from the olive 

fruit exclusively by mechanical or other physical means under conditions that do not lead to alterations 

in the oil [2]. This production process preserves the oil’s characteristic flavor, as well as its nutritional 

and health benefits. It is widely accepted that the consumption of EVOO is associated with a low 

incidence of cardiovascular diseases, neurological disorders and breast cancer, among others [3]. These 

health properties have been related to its chemical composition, including major components, such as 

triacylglycerols, that represent more than 98% of the total oil weight, and minor components, which 

are present in very low amounts (about 2% of oil weight) and comprise more than 300 different 

chemical compounds [4], including polyphenols with important associated bioactivities [5,6]. 

Phenolic compounds represent an important class of natural antioxidants. The term “phenolic 

compound” includes a large number of secondary plant metabolites that differ in chemical structure 

and reactivity, ranging from simple compounds to highly polymerized compounds. The phenolic 

composition of EVOO is influenced by complex multivariate interactions from genotype, agricultural, 

environmental and technological factors [7]. The steps in the production process include harvesting, 

washing and crushing of olives, malaxation of olive paste, centrifugation, storage and filtration. These 

steps influence the final qualitative and quantitative phenolic composition of olive oil. The loss of 

polyphenols during the production process is related to its partitioning between oil and by-products. 

EVOO production is associated with the generation of large quantities of wastes (olive-oil-mill 

wastewater (OMWW), olive pomace, storage by-products and filter cake), which could be an alternative 

source of these compounds [8]. In a previous work from our laboratory, we evaluated the effect of filter 

aids (organic or inorganic) on the retention of phenolic compounds from EVOO [9], demonstrating 

that, depending on the nature of the filter, substantial amounts of phenolic compounds were retained, 

thus becoming an interesting source of these compounds. 

In recent years, interest in EVOO by-products as natural sources of polyphenols has increased as  

a way to revalorize such by-products, while minimizing the environmental impact associated  

with its disposal. Different pilot-plant and industrial processes have been employed to obtain  

polyphenol-enriched extracts, mainly in hydroxytyrosol, from OMWW and olive-oil-milling waste 

(alperujo). The main processes proposed to recover the phenolic compounds from by-products include 

resin chromatography, microfiltration, ultrafiltration, nanofiltration and reverse osmosis, solid-liquid  
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or liquid-liquid solvent extractions [8–14]. However, more research is needed to produce purified 

antioxidant extracts rich in hydroxytyrosol and other possible bioactive compounds from EVOO  

by-products, e.g., by using more selective and environmentally-friendly extraction techniques, such as 

supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE). These extraction processes 

provide several advantages compared to the conventional ones, mainly related to higher selectivity, 

shorter extraction times and lower consumption of toxic organic solvents [15]. Although different olive 

by-products have been extracted by using these new processes, for example, residues of the olive oil 

deodorization process [16], olive cake [17] or olive leaves using hexane and supercritical CO2 or  

PLE [18,19], more work is clearly needed about the use of PLE to extract valuable compounds from 

olive filter-cakes, mainly considering that the recovery of bioactive compounds from olive waste 

products provided very good results using green solvents, such as water or ethanol [20]. Moreover,  

the possibility of using advanced chromatographic techniques coupled to different detectors,  

especially mass spectrometers, makes it possible to identify compounds responsible for the associated 

bioactivities; indeed, several studies have already investigated the chemical composition of olive oil 

by-products [9,17,19,21,22]. 

Because the antioxidant and healthy properties of olive polyphenols have attracted much scientific 

interest, the aim of this work is to develop a PLE process followed by the analytical characterization 

using high-performance liquid chromatography coupled to diode array detection and electrospray  

time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic composition 

of purified filter-cake extracts with future applications in the development of functional foods, as well 

as nutraceuticals. 

2. Results and Discussion 

To study the capabilities of PLE to extract phenolic compounds from filter cakes, two food-grade 

solvents categorized as generally recognized as safe (GRAS), such as water and ethanol, were 

investigated. As can be observed in Table 1, different combinations of solvent composition and 

temperatures were tested to optimize the extraction of phenolic compounds from filter cake. The 

percentages of ethanol in the mixture ethanol:water from zero to 85% and temperatures between  

40 and 175 °C were used in order to cover a wide range of dielectric constants from 21 (when 

ethanol:water 85:15 v/v at 175 °C was used) to 59.1 (using ethanol:water 15:85 v/v at 60 °C), covering, 

in this way, a wide range of polarities. The extraction temperatures were chosen above (120 and 175 °C) 

and below (40 and 63 °C) the boiling point of both solvents. It is worth highlighting that 175 °C was  

the maximum temperature at which the experiments could be performed without experimental 

problems (e.g., blockage of the lines of the PLE instrument). In addition, to carry out an efficient 

extraction of phenolic compounds, it was mandatory to eliminate previously the lipophilic fraction 

from the filter cake. To do that, 8 g of filter cake were loaded in the extraction cell, and a clean-up step 

before the PLE extraction was performed. As Table 1 shows, a high percentage (around 50%) of the 

lipophilic fraction was retained in the filter cake loaded in the extraction cell. Once this fraction was 

eliminated, the influence of the extraction temperature and solvent composition on the extraction yield 

(determined as dry weight/amount of sample in the cell after the clean-up step) were evaluated. Even 

though is not possible to achieve high extraction yields, the data obtained demonstrated that the PLE 
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extraction provides the highest extraction yield (5.8%) when a temperature of 120 °C and a composition  

of ethanol:water 50:50 v/v were employed, i.e., a solvent composition with an intermediate polarity  

(a dielectric constant of 34.7). 

Table 1. Extraction conditions, dielectric constant and extraction yield obtained from the 

pressurized liquid extraction (PLE) extraction of filter cake (to carry out the PLE, 8 g of 

filter cake were loaded in the extraction cell). 

T (°C) 

Ethanol in  

the Mixture 

Ethanol:Water (%) 

Dielectric Constant 

in the Mixture 

Ethanol:Water  

Amount of Lipophilic 

Fraction Eliminated in 

the Clean-Up Step (g) 

Amount of Sample 

in the Cell after 

Clean-Step (g) 

Extraction 

Yield (%) 

40 50 48.0 4.789 3.237 3.0 

175 85 21.6 4.823 3.192 4.3 

60 15 59.1 4.850 3.159 5.6 

120 0 50.4 4.129 3.887 3.5 

120 50 34.7 4.936 3.080 5.8 

To evaluate the differences among the different extraction conditions, all the filter cake extracts 

were analyzed by HPLC-DAD-ESI-TOF/MS in order to establish the differences in their phenolic 

composition. Figure 1 depicts the chromatographic profiles obtained under the extraction conditions 

described in Table 1. Basically, all of the filter cake extracts show similar profiles, making it possible 

to identify up to 25 compounds (vide infra). However, some differences can be observed in the peak 

intensity of several compounds depending on the extraction conditions. For instance, by comparing  

the chromatogram of the extract obtained at 120 °C using 100% water with the extract obtained using 

the same temperature (120 °C), but using ethanol:water, 50:50 (v:v), it can be seen that some 

compounds (e.g., Peak 20) are better extracted using 100% water, while other compounds (e.g.,  

Peaks 7, 16, 21) are better extracted using ethanol:water 50:50. This result shows the good possibilities 

of PLE in terms of selectivity variation. 

The identification of the phenolic compounds was attained combining their retention times,  

the information provided by the two detectors used in this work (DAD and MS) and data previously 

reported in the literature. Table 2 summarizes the compounds identified, including their retention time, 

the molecular formula generated by the TOF-MS analyzer, the mass error (ppm), the comparison 

between the theoretical and the experimental isotopic pattern (given as the σ-value) and the 

wavelength of the maximum of the ultraviolet-visible (UV–Vis) spectra. Although nine compounds 

remain unknown (Uk) (indicated as Uk 1–9), sixteen compounds were identified. Among them, two 

were characterized as phenolic alcohols or derivatives, five were identified as elenolic acid or 

derivatives, six were secoiridoids, two were characterized as flavones and one compound was 

identified as quinic acid (Peak 1), which is not a phenolic molecule. 
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Figure 1. Base peak chromatogram (BPC) obtained from the high-performance liquid 

chromatography coupled to diode array detection and electrospray time-of-flight mass 

spectrometry (HPLC-DAD-ESI-TOF/MS) analysis of the filter cake extracts obtained  

under different PLE extraction conditions. Peaks have been numbered according to the 

elution order. For the peak identification, see Table 2. Chromatographic conditions are 

described in the Experimental Section.  
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Table 2. Tentative identification of phenolic compounds and their derivatives in the filter cake PLE extracts. 

Peak Tentative Identification 
Molecular 
Formula 

Rt (min) [M–H]− cal [M–H]− exp Error (ppm) σ-Value 
λmax 
(nm) 

References 

1 Quinic acid C7H12O6 2.1 191.0561 191.0561 0.1 10.4  [21,22] 
2 Oxidized hydroxytyrosol C8H8O3 3.9 151.0401 151.0408 5.2 4.2 232, 280 [21,22] 
3 Uk 1 C14H20O8 8.0 315.1085 315.1098 −4.0 0.9 284, 354  
4 Hydroxytyrosol C8H10O3 8.3 153.0557 153.0568 7.4 13.3 232, 280 [9,17,19,21–25] 
5 Uk 2 C17H28O11 8.6 407.1559 407.1595 −8.8 8.2 280, 320  

6 
Hydroxylated product of the dialdehydic 
form of decarboxymethyl elenolic acid 

C9H12O5 9.2 199.0612 199.0625 −6.6 4.2 240 [21,22] 

7 Uk 3 C8H8O3 10.5 151.0401 151.0408 −6.8 10.5 240, 280  

8 
Dialdehydic form of decarboxymethyl 

elenolic acid 
C9H12O4 11.0 183.0663 183.0783 −7.0 8.8 240 [21–23] 

9 Uk 4 C17H20O8 12.0 351.1085 351.1090 −1.2 6.7 233, 288  
10 Uk 5 C16H26O10 12.7 377.1453 377.1457 −6.4 4.2 266  
11 Hydroxylated form of elenolic acid I C11H14O7 13.8 257.0667 257.0687 −8.0 1.4 240 [21,22,25] 
12 Elenolic acid C11H14O6 15.2 241.0718 241.0740 −9.1 3.0 240 [9,21–25] 
13 Hydroxylated form of elenolic acid II C11H14O7 15.7 257. 0667 257.0689 −8.5 1.2 240 [21,22] 
14 Decarboxymethyl-oleuropein aglycone C17H20O6 16.3 319.1187 319.1206 −6.0 1.3 230, 280 [9,17,21,22,24,25] 

15 
Hydroxy-decarboxymethyl  

oleuropein aglycone 
C17H20O7 16.9 335.1136 335.1170 −9.2 1.1 230, 280 [9,21,22,24,25] 

16 Uk 6 C19H24O7 18.2 363.1449 363.1466 −4.6 8.4 255  
17 Decarboxymethyl-ligstroside aglycone C17H20O5 19.3 303.1238 303.1238 0.0 20.5 230, 280 [17,21,22,24–26] 

18 
Hydroxy-decarboxymethyl-ligstroside 

aglycone 
C17H20O6 19.6 319.1187 319.1195 −2.4 3.7 230, 280 [21–24] 

19 Uk 7 C25H28O13 20.1 535.1457 535.1463 −1.1 3.9 277, 330  
20 Uk 8 C42H74O10 20.6 737.5209 737.5219 −1.4 29.9 331  
21 10-Hydroxy-oleuropein aglycone C19H22O9 22.7 393.1191 393.1216 −6.3 4.7 236, 282 [9,21,24] 
22 Luteolin C15H10O6 23.8 285.0405 285.0420 −5.4 2.0 254, 348 [9,17,21–25] 
23 Oleuropein aglycone or isomer C19H22O8 24.1 377.1242 377.1249 −2.5 0.3 236, 282 [9,17,21–25] 
24 Uk 9 C21H26O9 24.7 421.1504 421.1539 −8.2 10.6 255  
25 Apigenin C15H10O5 25.6 269.0455 269.0480 −9.0 12.5 268, 338 [9,17,21–25] 

Unknown compounds (Uk). 
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The oxidation product of hydroxytyrosol (Peak 2) and hydroxytyrosol (Peak 4), whose [M–H]− are 

151.0408 and 153.0568 m/z, respectively, were identified as phenolic alcohols in the filter cake  

extract. Both compounds have been previously described in olive oils by-products [9,17,19,21,22].  

Several polar compounds derived from elenolic acid (Peak 12, with 241.0740 m/z) were also  

identified. Thus, different peaks were assigned to the hydroxylated product of dialdehydic form of  

decarboxymethyl-elenolic acid (Peak 6), the dialdehydic form of decarboxymethyl-elenolic acid  

(Peak 8), the hydroxylated form of elenolic acid I (Peak 11) and the hydroxylated form of  

elenolic acid II (Peak 13). The presence of all these elenolic-acid and phenolic alcohol derivatives 

could be related to the hydrolysis of secoiridoids, followed by several reactions, such as oxidation, 

hydration and loss of the carboxylic and carboxymethyl groups [17,21,22]. Indeed, secoiridoids in their 

aglyconic forms, the main compounds in EVOO, are characterized by the presence of elenolic acid 

derivatives bonded to a phenolic alcohol structure. Hydrolysis of the ester bond between the phenolic 

portion and the rest of the molecule could explain the origin of the free acidic and alcoholic moieties. 

The chemical precursors of these compounds have also been detected in the samples analyzed: 

oleuropein aglycone (Peak 23) and its hydroxyl and/or decarboxymethyl derivatives (Peaks 14, 15 and 21), 

as well as ligstroside aglycone decarboxymethyl and hydroxydy-decarboxymethyl derivatives (Peaks 17 

and 18). These phenolic compounds have been previously reported as characteristic polyphenols in 

EVOO [22–25]. Finally, the molecular ions at 285.0420 m/z and 269.0480 m/z were assigned to 

flavones, namely luteolin (Peak 22) and apigenin (Peak 25). Some structures along with the extracted 

ion chromatogram of the main polyphenols compounds identified in the filter cake extract are shown  

in Figure 2. 

Figure 2. Extracted ion chromatograms (EIC) of some phenolic compounds  

characterized by high-performance liquid chromatography electrospray time-of-flight mass  

spectrometry (HPLC-ESI-TOF/MS). 

 

22.50 23.00 Time [min]
0.0

0.5

1.0

1.5

2.0

5x10
Intens.

15 16 17 18 Time [min]
0.0

0.5

1.0

1.5

5x10
Intens.

m/z 319 
Decarboxymethyl‐oleuropein aglycone

17 18 19 20 21 Time [min]
0.0

0.5

1.0

1.5

4x10
Intens.

m/z 303 
Decarboxymethyl‐ligstroside aglycone

m/z 393
10‐Hydroxy‐oleuropein  aglycone

23.0 23.5 24.0 24.5 Time [min]
0.0

0.5

1.0

1.5

2.0

5x10
Intens.

m/z 285 
Luteolin

3 4 5 6 Time [min]
0

1

2

3

5x10
Intens.

m/z 151
Oxidized hydroxytyrosol

8.5 9.0 9.5 Time [min]
0.0

0.2

0.4

0.6

0.8

1.0

5x10
Intens.

m/z 153
Hydroxytyrosol



Int. J. Mol. Sci. 2014, 15 16277 

 

 

An additional proof of the different selectivity that PLE can provide is obtained comparing the  

main phenolic content, expressed as the peak area, from the different PLE extracts. Figure 3 shows  

the peak area obtained for the main bioactive compounds characterized in the filter cake extracts 

(hydroxytyrosol, decarboxymethyl-oleuropein aglycone, decarboxymethyl-ligstroside aglycone, oleuropein 

aglycone, luteolin and apigenin) under the different extraction conditions studied in this work. In addition, 

an analysis of variance (ANOVA) at the 95% confidence level was performed to analyze statistically 

significant differences among the areas of these compounds. The results obtained showed that  

PLE extraction using 100% water at 120 °C, 50:50 (v/v) ethanol:water at 120 °C and 85:15 (v/v) 

ethanol:water at 176 °C are the most appropriate for extracting the compounds selected. The peak area 

obtained for hydroxytyrosol and decarboxymethyl-ligstroside aglycone was slightly higher when the 

extraction was carried out using 100% water at 120 °C; however, for all of the other compounds, the 

most effective extraction was achieved employing 50:50 (v/v) ethanol:water at 120 °C. This result 

combined with the fact that these conditions gave the highest extraction yield (see Table 1) 

demonstrate that the PLE methodology developed in this work, based on the use of ethanol:water 

(50:50 v/v) as the extraction solvent at 120 °C, is suitable for extracting phenolic compounds from 

filter cake. 

Conventional systems to extract phenolic compounds from olive by-products are based on different 

chemical/physical procedures using organic solvents. In general, these processes include adjusting the 

pH value, enzymatic hydrolysis, membrane technologies, thermal evaporation and recovering organic 

solvents using adsorbent resins [8–14]. These technologies have been addressed for reducing  

the organic matter and polyphenols to detoxify their effects on the environment. Although  

diverse combinations of these processes have been applied, their potential for recovering all  

EVOO polyphenols from olive wastes is still doubtful. These systems need successive stages to  

gradually increase the purity of the final products and have been mainly focused on obtaining  

hydroxytyrosol-rich extracts. 

However, the well-known bioactivity of other olive polyphenols has stimulated the development of 

new green processes for recovering all of these compounds. PLE is more suitable for extracting 

compounds with a wider range of polarity than conventional systems. Likewise, the recovery of bioactive 

polyphenol from other olive by-products has been developed using green technologies [18,19];  

the proposed extraction methodology based on PLE provides natural extracts from filter cake enriched in 

polyphenols with healthy benefits. It is interesting to mention that although the action mechanism of 

these bioactive compounds could have different cellular targets and synergic effects, the bioactivity of 

these molecules in chronic diseases seems to be mainly related to their antioxidant activity. Indeed, 

hydroxytyrosol and secoiridoids, mainly decarboxymethyl-oleuropein aglycone (also known as 

oleacein) and decarboxymethyl-ligstroside aglycone (or oleocanthal), have higher antioxidant activity 

than other phenols, linked to their o-diphenolic structure. Several studies have reported the application 

of these compounds against cancer [27–29], inflammation [26,30,31], atherosclerosis and metabolic 

syndrome [32,33], which makes the use of PLE methods, such as the one proposed in this work, 

especially interesting for the extraction of this type of compound. 
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Figure 3. Peak area of the main bioactive phenolic compounds characterized in filter cake 

(HYTY, hydroxytyrosol; D-OL-Agly, decarboxymethyl-oleuropein aglycone; D-Lig-Agly, 

decarboxymethyl-ligstroside aglycone; Ol-Agly, oleuropein aglycone; luteolin and apigenin) 

under different PLE conditions. Values with the same letter (a, b, c or d) show that there is no 

statistically significant difference between the area of these compounds at the 95% confidence  

level (p ≤ 0.05). 
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controller. Extractions were done using different combinations between solvent composition and 

temperatures to cover a wide range of dielectric constants. Thus, percentages of ethanol in the mixture 

ethanol:water from 0% to 85% and temperatures above (120 and 175 °C) and below (40 and 63 °C) the 

boiling point of both solvent were tested. 

Prior to use, solvents were sonicated for 15 min to avoid any possible oxidation and to remove the 

dissolved oxygen. All extractions were done using 11-mL extraction cells, containing 8 g of filter cake 

mixed homogeneously with 2.5 g of sand. A preliminary extraction (clean-step) based on the use of  

n-hexane as the solvent and 1500 psi and room temperature as the experimental conditions was carried 

out to remove the lipophilic fraction from the filter cake. After that, the extraction of phenolic 

compounds was performed according to the extraction conditions mentioned above combined with 

1500 psi and 20 min as the pressure and extraction time. An extraction cell heat-up step was carried 

out for a given time fixed by the system prior to any extraction (the warming up time ranged from 5 to 

9 min depending on the extraction temperature). 

The extract obtained was protected from light and stored at −20 °C until dried. For ethanol 

evaporation, a rotavapor R-210 from Büchi Labortechnik AG (Flawil, Switzerland) was used, whereas 

for water evaporation, a freeze-dryer (Virtis Unitop 400 SL, Gardiner, NY, USA) was employed. 

3.4. High-Performance Liquid Chromatography Coupled to Diode Array Detection and Electrospray 

Time-of-Flight Mass Spectrometry (HPLC-DAD-ESI-TOF/MS) Analysis 

High-performance resolution liquid chromatography (HPLC) coupled to a diode-array-detector 

(DAD) and an electrospray time-of-flight mass spectrometry (ESI-TOF-MS) was used to characterize 

the phenolic profile of extracts using an Agilent 1200-RRLC system (Agilent Technologies, 

Waldbronn, Germany) equipped with a vacuum degasser, autosampler and a binary pump. The 

analytical column used was a 150 mm × 4.6 mm internal diameter , 1.8-μm, Zorbax Eclipse Plus C18 

(Agilent Technologies, Palo Alto, CA, USA). The flow rate was 0.80 mL/min, and the temperature of 

the column was maintained at 25 °C. The mobile phase was a mixture of water with 0.25% (Solvent A) 

and methanol (Solvent B) eluted according to the following multistep gradient reported in a  

previous study [24]: 0 min, 5% Solvent B; 7 min, 35% Solvent B; 12 min, 45% Solvent B; 17 min,  

50% Solvent B; 22 min, 60% Solvent B; 25 min, 95% Solvent B; 27 min, 5% Solvent B and, finally,  

a conditioning cycle of 5 min with the same conditions for the next analysis. The injection volume  

was 10 µL. The compounds separated were monitored in sequence first with DAD (240 and 280 nm), 

and then, MS was performed using the microTOF (Bruker Daltonik, Bremen, Germany), which was 

coupled to the HPLC system. At this stage, the use of a splitter was required for the coupling with  

the MS detector, as the flow arriving to the TOF detector had to be 0.2 mL/min in order to ensure 

reproducible results and a stable spray. The TOF mass spectrometer was equipped with a model 

G1607A ESI interface (Agilent Technologies, Palo Alto, CA, USA) operating in negative ion mode. 

External mass spectrometer calibration was performed with sodium acetate clusters (5 mM sodium 

hydroxide in water/2-propanol 1/1 (v/v), with 0.2% of acetic acid) in quadratic þ high-precision 

calibration (HPC) regression mode. 

The calibration solution was injected at the beginning of the run, and all of the spectra were 

calibrated prior to polyphenol identification. The optimum values of the source and transfer parameters 
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were used for good sensitivity and a reasonable resolution of the mass range for compounds of  

interest (m/z 50–1000) in order to improve ionization performance [24]. The accurate mass data for  

the molecular ions were processed using the software, Data Analysis 3.4 (Bruker Daltonik), which was 

provided with a list of possible elemental formulas by using the Generate Molecular Formula Editor. 

The latter uses a carbon, hydrogen, nitrogen and oxygen (CHNO) algorithm that provides standard 

functionalities, such as minimum/maximum elemental range, electron configuration and ring-plus 

double-bond equivalent, as well as a sophisticated comparison of the theoretical with the measured isotopic 

pattern (σ-value) for increased confidence in the suggested molecular formula. The widely-accepted 

accuracy threshold for confirmation of elemental compositions was established at 5 ppm for most of 

the compounds. 

3.5. Statistical Analysis 

One-way analysis of variance (ANOVA) at a 95% confidence level (p ≤ 0.05) was performed to 

analyze statistically significant differences among the areas of the main phenolic compounds extracted. 

To do that, Origin (Version Origin Pro 8 SR0, Northampton, MA, USA) was employed. 

4. Conclusions 

The proposed PLE methodology based on the use of a mixture of two GRAS solvents, such as 

ethanol and water at 120 °C, has shown great potential to extract phenolic compounds (with healthy 

properties) from filter cake, a by-product generated during EVOO filtration. The phenolic composition 

of the extracts from filter cake was characterized by using HPLC-DAD-ESI-TOF-MS. Thus, the main 

compounds found in the extract were identified as phenolic alcohols or derivatives (hydroxytyrosol 

and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein 

and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The results 

from this work demonstrate that the PLE protocol developed could be considered as a fast and 

environmental-friendly extraction process to produce enriched phenolic extracts from filter cake with 

applications as bioactive food ingredients and nutraceuticals. 
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