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Abstract: A wide range of food-derived bioactive peptides have been shown to exert  

health-promoting actions and are therefore considered functional foods or nutraceuticals. 

Some of these actions are related to the maintenance, reinforcement or repairment of the 

intestinal barrier function (IBF) whose role is to selectively allow the absorption of water, 

nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. 

Alterations in the IBF have been related to many disorders, such as inflammatory bowel 

disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus 

layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. 

Here we review the effects of food derived bioactive peptides on these IBF components.  

In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although 

limited, the available information indicates a potential for food-derived peptides to modify 

IBF and to contribute to disease treatment, but further research is needed to better isolate 

responsible peptides, and to help define their mode of action. 
  

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 22858 

 

 

Keywords: bioactive peptides; food proteins; functional foods; nutraceuticals; intestinal 

barrier function; mucus; immunoglobin A (IgA); innate immune response; inflammation 

 

1. Introduction 

Dietary proteins feature peptide sequences in their structure that are released as actual peptides by 

natural or artificial proteolysis and which may become physiologically active in the process. Processes 

that lead to bioactive peptide release include in vivo enzymatic digestion in the gastrointestinal tract both 

by human and microbiota enzymes, and in vitro food processing or ripening by starter cultures of 

microorganisms or by enzymes from animals, plants or microorganisms [1]. A range of health-promoting 

properties have been attributed to these bioactive peptides, including antihypertensive, anti-microbial, 

anti-oxidative, immune-modulatory, opioid and mineral binding properties [2–4]. Any protein source 

can originate bioactive peptides, milk being the best studied for obvious reasons, but bioactive peptides 

from egg, fish, meat, algae or soy have also been reported [2,5–8]. 

This review updates the reported effects of dietary bioactive peptides on intestinal barrier function 

(IBF) (Figure 1). Studies dealing with the effect on the microbiota have not been included. 

Figure 1. Overall effects of bioactive peptides on several components of the intestinal barrier 

function. ↑: enhanced; ↓: inhibited. 

 

2. Postbiotics 

Because fermentation by lactic acid bacteria and yeast results in hydrolysis of milk proteins, yoghurt, 

kefir and other fermentation products also contain bioactive peptides [1,4,9,10]. As a rule the studies 
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carried out with fermented milk proteins include, as a result of the process of production, compounds 

such as exopolysaccharide or bacteriocins, and sometimes parts of bacteria or dead bacteria. Thus 

caution must be taken when interpreting the data, even though peptides are likely to account for the 

reported effect. 

Products obtained after bacterial fermentation in which bacteria have been removed or killed are 

frequently termed postbiotics [11]. Studies have found that the administration of fermentation products 

containing live bacteria may be more beneficial than postbiotics. This is the case of studies in which 

these products were used to treat malnourished animals [12,13]. Nevertheless, the administration of 

postbiotics could be better and safer than the probiotic or fermentation products containing living 

bacteria in cases where the bacteria can induce reactions such as acute inflammation [11,14]. The best 

examples include the study in which patients with acute pancreatitis experienced increased mortality 

after administration of a combination of three probiotics [15] and the study with an organ culture system 

of human healthy and IBD intestinal mucosa, where probiotics induced tissue destruction [16]. 

3. Intestinal Barrier Function 

The intestine has the essential function of absorbing water and nutrients for the support of bodily 

functions, thus contributing also to ionic homeostasis. At the same time, it has to keep at bay a rather 

large amount of microorganisms (and microbial molecules) present at the lumen, which form the 

microbiota. Thus the intestinal mucosa has to serve a complex barrier function, selectively allowing or 

denying the influx of luminal contents. Intestinal barrier function is built around a central structure, the 

epithelium, which constitutes the main obstacle to gaining access to the mucosa and that is in charge of 

regulating the selective transport of water, ions and nutrients. The other components of IBF include the 

mucus layer, immunoglobin A (IgA), antimicrobial peptides, and the mucosal immune system. Even the 

microbiota may be viewed as part of IBF, inasmuch as it is one important modulatory factor involved in 

its regulation. All these elements work in a highly integrated and interdependent manner. For instance, 

the microbiota influences epithelial dynamics (i.e., proliferation and healing ability) both directly and 

indirectly [17]. Similarly, Toll-like receptor (TLR) 2 responds to microbiota derived peptidoglycan to 

enhance epithelial healing but it also stimulates trefoil factor (TFF) 3 production, which is a protective 

peptide that is part of the mucus layer [18]. 

Maintenance of IBF appears to be of paramount importance for the host. Evidence obtained in animal 

models as well as in humans is accumulating in support of a role of alterations of IBF in a vast array of 

conditions, which include intestinal disorders such as inflammatory bowel disease and irritable bowel 

syndrome but also obesity and metabolic syndrome, hepatic fibrosis and inflammation, sepsis, 

pancreatitis, and many others [17]. This in turn opens up the possibility of managing these diseases by 

reinforcing IBF, especially in terms of prevention. In this regard, the use of dietary products, such as 

diet-derived biopeptides in the management of chronic diseases is attractive because of the possibility 

of avoiding at least partly the side effects frequently associated with pharmacotherapy. Thus the 

investigative effort to develop new functional foods that are capable of providing benefit in these patients 

has increased notably in the last few years. 

Different bioactive peptides have been proposed to treat hepatitis and colitis, in which alteration in 

IBF are considered to play a role. Animal models of colitis and ileitis have been used to study the effects 
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of bovine glycomacropeptide [19–23], of an enzymatic hydrolysate of corn gluten [24], of pyroglutamyl 

leucine (a bioactive peptide from wheat gluten hydrolysate) [25] and of a β-casein hydrolysate generated 

by the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp. CRL 581 [26]. Three of 

these studies used the trinitrobenzenesulfonic acid (TNBS) model of colitis. This is based on the 

administration to rat or mice of a single intrarectal dose of TNBS dissolved in ethanol. TNBS acts as  

a hapten that elicits an immune response when bound to tissue proteins, while ethanol contributes to the 

disruption of the intestinal barrier so that TNBS gains access to the mucosal milieu. The result is 

inflammation of the colon that shares several clinical and molecular features with Crohn’s disease [27]. 

The β-casein and the corn gluten hydrolysates were administered starting 10 days before the induction 

of colitis and they ameliorated inflammation in both cases. The β-casein hydrolysate additionally 

reduced microbial translocation to the liver, indicating a better intestinal mucosal barrier function [26]. 

Bovine glycomacropeptide has been shown to be anti-inflammatory not only in this animal model [19] 

but also in another model of chemically induced colitis, namely dextran sulfate sodium (DSS) 

induced colitis [28], as well as in the lymphocyte transfer model of colitis [23], and additionally  

in TNBS ileitis [21]. Because this is a glycosylated peptide it has been proposed that a prebiotic effect 

could be involved [19], although this hypothesis has not been formally tested. Modulation of the 

immune response has been also observed and in this regard glycomacropeptide has been shown to 

increase macrophage activity, to favor Treg differentiation and to hamper Th1 cell activation (see 

below) [20,21,29,30]. Last, it is worth noting that hepatic anti-inflammatory effects have been described 

also for the gluten derived peptide pyroglutamyl leucine [31]. 

The intestine of newborns has to deal with the introduction of the microbiota and with its special 

immature conditions that confer IBF a critical role at this developmental stage for the proper maturation 

of the newborn. Fermented milk-based infant formulas contain both dead bacteria and the products 

resulting from the fermentation process [32]. This type of formulas has been shown to be beneficial at 

the intestinal level and for infants IBF. A large study with 971 infants (four to six months of age) fed  

a fermented infant formula showed a decrease in the severity of diarrhea episodes when compared to 

standard formula fed infants [33]. No differences in incidence or duration of diarrhea episodes were 

observed in this study. Because secretory IgA (sIgA) is quite easy to measure, this parameter has 

been studied and found to be modified by the administration of fermented infant formulas. Higher 

poliovirus-specific IgA titres in response to Pentacoq vaccination were found in infants fed a fermented 

infant formula, from birth to 4 months of age, compared to those fed a non-fermented one [34]. This was 

a small study in which 30 infants were enrolled and only 20 completed the study. In another randomized 

and double blind study, pre-term infants fed a fermented infant formula showed higher fecal sIgA levels, 

but only when they had been partially breast fed, suggesting that fermented formula can boost the 

maternal IgA response [35]. 

4. Mucus 

Mucus is the outermost protective layer of the intestinal mucosa. It consists of a gel overlying the 

epithelium and is based on the production and secretion of glycoproteins called mucins, mostly by goblet 

cells but also by regular enterocytes. Mucins bear substantial O-glycosylation and are either secreted 

(MUC2, 5AC, 5B and 6) by goblet cells or are membrane-associated (MUC1, 3, 4, 13 and 17), expressed 
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by both goblet and absorptive cells in their apical membrane [36]. The mucus layer allows the passage 

of solutes while preventing luminal microorganisms from getting access to the epithelium. In normal 

conditions bacteria are found in the outer part of the mucus layer, where mucins may be degraded to 

some extent, but they for the most part do not progress much further. Thus the inner part of the layer is 

largely devoid of bacteria [36,37]. However, in pathologic conditions such as intestinal inflammation 

bacteria are more regularly found in contact with enterocytes, indicating a lack of containment by the 

mucus layer [37]. Reciprocally, absence of the main mucin, MUC2, results in spontaneous colitis and 

reduced antimicrobial defense in mice [38]. 

Casein enzymatic hydrolysates are known to stimulate rat intestinal mucus secretion, an effect that 

depends on opioid receptor stimulation [39] and that is exerted by bioactive peptides since neither the 

intact protein nor free amino acids have any reaction at this level. Among bovine β-casein derived 

bioactive peptides, β-casomorphins are a family that has shown μ-opioid receptor agonist activity. This 

family consists of β-casomorphin-4, -5, -6, and -7, which are obtained by cleavage of the 60–66 fragment 

of bovine β-casein [40]. Bovine-casomorphin-7 is the best studied and appears to be also the most 

efficient in mucus regulation [41]. Several studies have shown that it induces mucus secretion and mucin 

expression in goblet cells. Luminal and intra-arterial β-casomorphin-7 perfusion of rat jejunum results 

in enhanced mucus secretion, an effect that is inhibited by naloxone (a specific opiate receptor antagonist), 

indicating the requirement of peptide absorption and engagement of opioid receptors [41]. Induction of 

secretion has also been observed in vitro using human intestinal mucin producing cells (DHE and 

HT29/MTX), in which casomorphin-7 also enhanced the expression of mucin 2 and 3 in DHE cells, 

and additionally of mucin 5AC in HT29/MTX cells [42]. Another study has shown that other milk-derived 

peptides of either human or bovine origin also induce mucus secretion, with bovine β-lactorphin  

(β-lactoglobulin f(102–105)) being more potent than bovine β-casomorphin-7, which in turn is as potent 

as β-casomorphin-5 (β-casein f(51–55)) [43]. 

Mucus production and secretion can be also induced after oral administration of fermented milk 

products and peptides derived thereof [44–46]. Feeding mice for two days with the non-bacterial fraction 

of milk fermentation products of Lactobacillus helveticus (L. helveticus) and for three days with yoghurt 

or L. casei DN114 001 fermented milk supplemented diets increased the number of small intestine 

mucosal goblet cells [45]. Similarly, in a recent study, a total peptide fraction from yoghurt was shown 

to induce the secretion and production of mucins in HT29/MTX cells. Characterization of the responsible 

peptides led to the identification of β-casein f(94–123). Subsequent administration of this peptide to rat 

pups from postnatal day 10 to postnatal day 18 led to an increase in the number of goblet cells along the 

small intestine, and induced Muc2 and Muc4 expression in the small intestine [44]. In this study a 

hyperplasic effect on Paneth cells and an increased expression of antibacterial factors (lysozyme and 

Rdefa5) was also reported. A hyperplasic effect of bioactive peptides was also found after the dietary 

supplementation of mice with yoghurt or L. casei DN114 001 fermented milk [46]. 

Immunoglobin A (IgA) 

Type A immunoglobulins are a specialized form of antibodies found particularly in mucosal sites, 

although they are also present in serum and elsewhere. IgA occurs mainly in the form of dimers bound 

by an immunoglobulin J chain and featuring also the so called secretory component, which allows the 
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epithelial cells to take up the dimers at the basolateral membrane and transport them for apical secretion. 

This form is called sIgA and is the predominant form of IgA. IgA is also secreted as monomers.  

One important feature of sIgA is that it is protected from proteolytic degradation, so that it is particularly 

well suited for luminal secretion as it endures the hostile environment in the gastrontestinal tract and 

other mucosal sites. Luminal sIgA is able to bind and block microbial antigens, thereby interfering with 

mechanisms of mucosal penetration and/or helping the immune system to fight off invading microbes 

once they are within reach. It also induces bacterial agglutination. Growing evidence indicates that IgA 

uses a high-affinity binding system to neutralize microbial toxins and pathogens, and a low-affinity 

binding system to prevent commensal bacteria from breaching the mucosal surface [47]. 

Reducing the production of IgA has important consequences for the host. For instance sIgA deficient 

mice show an increase in segmented filamentous bacteria [48] and in humans it has been associated with 

the development of inflammatory bowel disease-like inflammation [49]. It is important to note however 

that absence of IgA is at least partly compensated by adaptive measures such as an increased production 

of IgG and IgM antibodies [50]. 

Besides there are aforementioned studies in newborn children fed fermented infant formulas in which 

a stimulant effect on IgA production is described [34,35]. Studies in healthy animals consistently indicate 

that bioactive peptides from egg, milk, plants and fish proteins, as well as products that feature these 

peptides, potentiate IgA secretion [9,45,51–56]. In these studies IgA secretion is in general accompanied 

by an increase in the number of IgA+ cells in the small intestine and colonic mucosa. Furthermore, an 

increase in transforming growth factor (TGF)-β, interleukin-10 (IL-10) and IL-6, cytokines that induce 

an isotype switch in B cells from IgM to IgA [57], has been also described [9,45,52,53,56]. Animal 

models using pathogenic bacteria reinforce the evidence indicating that bioactive peptides enhance 

IgA secretion. Thus mice fed for 5 or 7 days the peptidic fraction of a Lactobacillus helveticus 

fermented milk were infected with Escherichia coli O157:H7 and showed more IgA+ B cells and higher 

intestinal and serum IgA after the infection than the control [58]. Similar results have been reported by 

Vinderola et al. in mice infected with Salmonella enteriditis serovar Typhimurium and fed with the  

non-bacterial fraction of milk fermented by Lactobacillus helveticus R389 [59]. Finally, a very 

interesting recent study focused not on milk derived peptides, but on a shark-derived protein 

hydrolysate, found an increase in the number of IgA producing cells in the intestine of healthy mice 

and in mice infected with enterotoxigenic E. coli, with concomitant up-regulation of the production of  

IL-6, tumor necrosis factor (TNF) α, TGF-β and IL-10 [52]. 

5. Intestinal Epithelial Cells 

Intestinal epithelial cells are the most abundant cells of the intestinal epithelium and, beside their 

digestive and absorptive functions, they contribute to IBF in variety of ways including the maintenance 

of a physical monolayer barrier using tight junctions, the sensing of intestinal bacteria, the secretion of 

antimicrobial peptides and their overall contribution to the local immune response. The intestinal mucosa 

maintains a state of so-called “physiological inflammation”, i.e., a low level activation of immune cells 

with infiltration of the lamina propria but devoid of clinical symptoms. Intestinal epithelial cells have 

been shown to contribute to this phenomenon through the production of cytokines as the result of their 

interaction with bacteria through TLRs. These receptors recognize not only microbial components, 
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including proteins, lipids, and nucleic acids derived from bacteria, viruses and parasites, but also 

damaged host cell components such as nucleic acids and other “internal” ligands [60]. 

In the above-mentioned study with a shark-derived protein hydrolysate, the effect on IL-6 production 

by intestinal epithelial cells was assessed. Interestingly, in an ex vivo assay with primary cultures isolated 

form naive mice IL-6 production was increased and the induction depended on the stimulation of TLR2 

and TLR4 [52]. Regulation of TLR-mediated signaling has been also described when colostrum isolated 

peptides were added to murine intestinal epithelial cells mICc12 transfected with the luciferase gene under 

the control of NF-κB, the main transcription factor involved in TLR signaling [61]. While colostrum 

was found to reduce TLR-mediated signaling, peptides present in a colostrum undigested permeate  

(molecular weight (MW) < 3.5 kDa) stimulated NF-κB in basal conditions. The addition of this product 

to cells stimulated with peptidoglycan or Pam3CSK4, which are TLR2/NOD2 and TLR2/TLR1 agonists 

respectively, showed specific effects increasing peptidoglycan induced signal and inhibiting the signal 

evoked by Pam3CSK4. Interestingly the enzymatic digestion of the permeate abrogated its effect, 

indicating the peptidic nature of responsible substance. An attempt to identify the possible bioactive 

peptides indicated the presence of peptides originated from casein, pointing out the presence of 

endogenous enzymes in colostrum. 

Intestinal epithelial cells are continuously renovated, and proliferation is key in the recovery of  

the epithelium after disruption by different insults that lead to intestinal inflammation. Therefore 

intestinal epithelial cell proliferation rate is very important to maintain IBF. In a study carried out 

with different fermented milk supernatants, yoghurt (obtained with Streptococcus thermophilus and 

Lactobacillus bulgaricus strain DN 540078) and Lactobacillus paracasei ssp. paracasei were shown to 

induce IEC6 cells proliferation and growth, yoghurt being more effective [62]. Bioactive peptides from 

bovine colostrum have also been shown to increase the proliferation of intestinal epithelial cells in vitro.  

In vivo digests of first day bovine colostrum obtained from calves increased the proliferation of human 

epithelial T84 cells [63]. In the same study in vitro digestion with pepsin and chymosin did not alter cell 

proliferation while digestion with trypsin inhibited it, suggesting that proteins of peptides inducing cell 

proliferation may be cleaved and therefore destroyed by trypsin. Colostrum has thus been proposed as a 

candidate source of bioactive peptides with potential aplication for gastrointestinal repair. 

6. Mucosal Immune System 

The intestinal mucosa is provided with an important branch of the immune system, which has the 

difficult task of protecting the intestinal tract while maintaining a non-inflammatory status despite the 

presence of massive amounts of bacteria and other microbes. The mucosal immune system of the 

intestine features various immune cell types such as neutrophils, monocyte/macrophages, dendritic cells, 

mast cells, innate lymphoid cells, B and T cells. As we have pointed above, epithelial cells are 

increasingly viewed as an integral part of the system. In addition to its direct role in microbe handling, 

the mucosal immune system is involved in other ways in intestinal homeostasis, since it contributes to 

IgA production and in the regulation of mucus generation and epithelial dynamics, as well as having an 

influence on the composition of the microbiota [17]. It is interesting that while idiopathic inflammation 

is not caused by any particular pathogenic microorganism, the occurrence of colitis (particularly in 

animals) requires the presence of luminal bacteria, indicating that the inflammatory response is directed 
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largely toward the microbiota. On the other hand, total absence of the microbiota in germ free animals 

results in atrophy of the mucosal immune system with reduced numbers of cells and inflammatory 

markers and a diminished epithelial turnover. This has been related to higher susceptibility to noxious 

stimuli such as DSS. In turn, the presence of a normal microbiota is associated with a so-called 

“physiological inflammation”, a seemingly contradictory yet expressive expression that indicates the 

response of the immune system (compared with germ free conditions) unaccompanied by an inflammatory 

reaction [64]. This is accomplished by different adaptations of the mucosal immune system that globally 

lead to tolerance to the microbiota. 

Reciprocally, a defect in the immune system may ultimately result in inflammation by weakening of 

IBF. For instance, inflammatory bowel disease-like inflammation has been described in a number of 

disorders associated with impaired lymphocyte function in humans [49]. Mice deficient in multiple 

components of the mucosal immune system are almost invariably prone to colitis or even develop 

spontaneous inflammation, including several TLRs and cytokines. Absence of neutrophils in rodents has 

also been related to increased susceptibility to colitis, although conflicting results have been reported. In 

line with the tolerance environment dominating the mucosal immune system, intestinal mucosal 

macrophages are unique in that they do not normally elicit inflammatory responses while maintaining 

intact their phagocytic and microbial killing capacity [65]. In addition, mucosal macrophages and 

dendritic cells are involved in tissue repair and immune tolerance in the gut. Monocytes are considered 

to contribute to inflammation nonetheless. As with neutrophils, conflicting results have been obtained 

with experiments of monocyte (and dendritic cell) depletion [66–69]. In humans, Crohn’s disease has 

been related to reduced/altered macrophage cytokine and bacterial clearance responses [70,71]. Interestingly, 

disorders of phagocyte function tend to result in Crohn’s disease-like chronic colitis [72,73]. 

Mainly two types of studies have been used to characterize the effects of bioactive peptides on 

immunity in vivo. In the first, one bioactive peptides are administered to healthy animals, resulting 

generally in immune-enhancing effects that potentiate IBF. Thus immune potentiating effects have been 

reported in healthy Balb/c mice fed an egg yolk low lipid peptic digest [55] or the non-bacterial fraction 

of milk fermented by Lactobacillus helveticus R389 [74]. The egg yolk hydrolysate increased the 

number of IL-10, IL-4, IL-12 and interferon (IFN) γ expressing cells and the phagocytic activity of 

murine peritoneal macrophages [55], while the number of IL-10, IL-2 and IL-6 positive cells and the 

secretion of IL-6 were increased in the small intestine of the animals fed the fermented milk [74].  

A fish protein hydrolysate and a yellow field pea seed hydrolysate have also been tested with similar 

results (increase cytokine production of small intestine lamina propria cytokine and increased phagocytic 

activity) [53,56]. It is important to point out that these immune stimulant effects of bioactive peptides in 

healthy animals are not accompanied by any pathological features in any case. 

In the second type mice or rats are given the product orally for days or weeks and then a bacterial 

toxin or toxic bacteria are administered in order to study the immune reaction, and inhibition is 

predominantly seen in this case. When the mice that received the shark hydrolysate were challenged 

with an experimental enterotoxigenic E. coli H10407, which induces diarrhea, they showed higher  

TGF-β serum levels and lower IL-17 levels in intestinal fluids [52]. Other pertinent studies include those 

performed with Balb/c mice fed the non-bacterial fraction of L. helveticus and challenged with either 

Salmonella enteriditis [59] or E. coli O157:H7 [58], both of which showed an improved mucosal 
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immune response with an increased production of IL-4. Furthermore, and additional down-regulation of 

IFN-γ response in mice challenged with E. coli was observed [58]. 

An anti-inflammatory effect has also been described for QEPVL, a casein derived peptide that results 

from L. helveticus milk fermentation. The administration of this peptide to old male Balb/c mice for 

three weeks inhibited the immune response to injected lipopolissacharide (LPS). The results showed 

increased levels of circulating of anti-inflammatory cytokines IL-10 and IL-4 and an inhibition of 

inflammation associated TNFα and IFNγ [75]. Additional in vitro studies indicated that QEPVL and 

also QEPV increase proliferation and cAMP levels in mouse primary lymphocytes [75]. cAMP has 

shown anti-inflammatory effects on immune regulation by increasing the expression of IL-10, among 

other mechanisms. 

Spleen cell preparations (frequently referred to as splenocytes) contain several cell types including 

macrophages, dendritic cells, B cells and T lymphocytes, and are commonly used for immunomodulatory 

studies in vitro. Because cytokines released by cells affect the behavior of other cell types, the use of 

splenocytes allows the observation of the overall effect in a mixed immune cell population. Splenocytes 

have been used to characterize the effect of bioactive peptides such as bovine glycomacropeptide [20] 

and an enzymatic hydrolysate from the algae Porphyra columbina [76]. A hydrolysate from  

Porphyra columbina, obtained by digestion with flavourizyme and a fungal protease concentrate, 

showed an increase in splenocyte proliferation in basal and concanavalin A (ConA) stimulated 

conditions and of IL-10 expression in basal, lipopolysaccharide (LPS) and ConA stimulated conditions. 

LPS evokes cytokine production in TLR4 expressing cells and, among splenocytes, macrophages  

are considered the main cytokine producers after LPS stimulation. In turn, ConA is a plant mitogen, 

which is able to stimulate T cells. Therefore these results may be globally viewed as indicative of  

anti-inflammatory effects on lymphocytes and macrophages. This hypothesis was further studied in 

isolated macrophages and T lymphocytes isolated from rat spleen. The hydrolysate increased the 

proliferation of both cell types and induced an anti-inflammatory cytokine profile inhibiting the 

expression of TNFα and IL-6 in macrophages while enhancing IL-10 production in both cell types.  

An increase in IFNγ was observed after exposure of ConA stimulated T cells to the hydrolysate, 

suggesting a pivotal role of macrophages in the overall response. Mechanistically, the hydrolysate induced 

IL-10 by c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and NF-κB 

dependent pathways in T lymphocytes [76]. 

We have described that bovine glycomacropeptide inhibits the production of IFNγ in rat splenocytes 

and increases their proliferation when stimulated with ConA [20]. It also induces cyclooxigenase 2, 

inducible nitric oxide synthase, IL-10 and FoxP3 expression. These results may be interpreted to indicate 

enhancement of macrophage activity and Treg differentiation, and inhibition of Th1 cell activation.  

It should be noted that conflicting results have been obtained in this regard, with inhibited splenocyte 

proliferation in the presence of both LPS and phytohemagglutinin (a T cell mitogen) being observed in 

one study [77]. Nevertheless, and in accordance with our results, in another study carried out with the 

human macrophague cell line U937, bovine glycomacropeptide potentiated proliferation and phagocytic 

activity [30]. In addition, in THP-1 cells (another monocyte/macrophague cell line) and in human 

peripheral blood macrophages this peptide enhanced pro-inflammatory cytokine production (IL-1β, 

TNFα and IL-8) [29]. In this last study, the characterization of signal transduction pathways involved 
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the activation of MAPKs p38, JNK and extracellular signal-regulated kinases (ERK) and particularly of 

the NF-κB signal transduction pathways. 

It should be noted that even though in vitro studies with isolated macrophages show in general 

immunostimulatory effects of bioactive peptides when added to cells in the basal state, anti-inflammatory 

actions are regularly found in stimulated macrophages. When a cell free supernatant obtained from milk 

fermented by L. helveticus was added to RAW264.7 cells (a murine macrophage cell line), an enhanced 

phagocytic activity together with an increase in cytokine (TNFα, IL-6 and IL-1β) and nitric oxide 

production was observed. Two of nine fractions collected from the supernatant using size exclusion 

chromatography produced the highest response when used to stimulate macrophages. Characterization 

of peptides in one of these fractions led to the identification of 4 β-caseins (f(145–160), f(145–154), 

f(143–154) and f(192–202)) and one α-lactalbumin (f(115–122)) peptide as possible candidates for this 

effect [78]. These observations are in agreement with the increased activity of peritoneal macrophages 

described in mice orally administered a L. helveticus fermented milk [51]. 

Soybean, amaranth, yellow field pea seeds, common bean (Phaseolus vulgaris L.) and almond derived 

peptides reportedly down-regulate pro-inflammatory cytokine production in activated macrophages and 

modulate their phagocytic activity. Thus, a higher macrophage phagocytic activity was observed when 

an alcalase soy protein hydrolysate was added to peritoneal macrophages [79]. In addition, soybean 

proteins digested with alcalase inhibit inflammatory markers (inducible nitric oxide synthase (iNOS), 

prostaglandin (PG) E2, cyclooxigenase (COX)-2) in the macrophage cell line RAW 264.7 activated with 

LPS [80,81]. This cell line was also used to describe the anti-inflammatory effect of commercially 

available soymilk products digested sequentially with pepsin and pancreatin [82]. A decreased nitric 

oxide and IL-1β production together with an inhibition in the expression of NOS and COX-2 was 

described in LPS stimulated macrophages. Similarly, yellow field pea seed and almond hydrolysates 

significantly inhibited NO production and the secretion of pro-inflammatory cytokines in activated 

RAW264.7 cells [56,83]. A 5 kDa fraction isolated from the almond hydrolysate retained this effect, 

modulating the production of IL-6, IL-1β, TNFα, iNOS and COX-2 in stimulated cells [83]. Industrial 

processes can modify the anti-inflammatory properties of hydrolysates. In this regard, extrusion has been 

shown to increase the anti-inflammatory effect of amaranthus hydrolysates in LPS stimulated macrophage 

cell lines (THP1 and RAW264.7). These studies show that both extruded and unprocessed pepsin/ 

pancreatin hydrolysates were anti-inflammatory, but the extrusion hydrolysate was more potent [84,85]. 

Prevention of NF-κB activation, as demonstrated by a reduced phosphorylation of IκB-α, was described 

as the mechanism of action. The inhibition of the NF-κB signal transduction pathway by bioactive 

peptides in macrophages also has been described as the mechanism of action of an alcalase hydrolysate 

of common bean and of lunasin, a soybean-derived peptide with antioxidant and anticarcinogenic 

properties [86–88]. In fact, lunasin has been shown to down-regulate LPS induced pro-inflammatory 

signaling in THP-1 interacting with αVβ3 integrin receptor and inhibiting the activation of phosphorylated 

Akt [86] and NF-κB [86,88]. 

The T cell response to hydrolysates has been assessed in vitro. Treg cells are one of the main 

producers of IL-10, an anti-inflammatory protein that induces the down-regulation of Th1 cells and  

the enhancement of B cell survival, proliferation and antibody production, among other actions.  

As commented above for bovine glycomacropeptide and Porphyra columbina hydrolysates, bioactive 

peptides seem to stimulate proliferation, to increase the expression of IL-10 in isolated T cells, and to 
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inhibit the Th1 response[20,29,76]. These effects have been shown for other products. For instance, 

while β-lactoglobulin acidic tryptic-chymotryptic peptides stimulate splenocyte proliferation and  

IFN-γ production, in vitro hydrolysis of these peptides with Lactobacillus paracasei NCC2461 

peptidases repressed lymphocyte stimulation, up-regulated IL-10 production, and down-regulated  

IFN-γ and IL-4 secretion [89]. Besides, studies with a yak milk hydrolysate indicate a different 

modulation of T cells. These peptides increase IFN-γ and IL-2, which are key cytokines for Th1 cell 

development, in a dose-dependent manner, with no obvious effects on IL-4 secretion, which is more 

closely related to Th2 cells [90]. 

7. Conclusions 

There is compelling evidence supporting the biological relevance of peptides released by either 

natural or artificial means from a number of dietary sources. These appear to act at different levels of 

the intestinal barrier, and the overall effect is consistent with reinforcement of IBF and protection of the 

host. However, the characterization of the biopeptides responsible for such actions is clearly insufficient. 

Given the variety expected from peptides generated from different sources and digestion processes, it is 

surprising that their actions appear to be very much alike (Figure 1) In order to gain acceptance as 

products useful in the management of IBF related diseases it is important to go deeper into the specific 

peptides involved in these effects and the mechanisms involved. 
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