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Resumen

Introducción

El reconocimiento de la conducta humana [1] ha despertado mucho
interés recientemente debido a su aplicación para impulsar cambios
de comportamiento en los dominios de la salud y el bienestar [2]. No
obstante, la mayoría de los sistemas de reconocimiento del compor-
tamiento humano disponibles hasta la fecha sufren dos limitaciones
que los hacen poco adecuados para trabajar en el mundo real: están di-
señados para trabajar sobre una con�guración predeterminada de sen-
sores y para ser usados en el dominio de una aplicación especí�ca. Sin
embargo, los sistemas de reconocimiento que trabajan en condiciones
reales están sujetos a fallos o defectos de los sensores [3] y a cambios en
el despliegue [4] que son imprevisibles durante la fase de diseño y que
afectan directamente al buen funcionamiento del sistema de reconoci-
miento. Asimismo, el reconocimiento de expresiones más informativas
sobre el contexto humano requiere analizar múltiples componentes del
comportamiento tales como los aspectos físicos y mentales [1], los cuales
por el momento solo se han investigado de forma aislada.

En vista de estas limitaciones, existe la necesidad de (1) describir
exhaustivamente el conjunto heterogéneo de recursos que participan en
el sistema de reconocimiento de la conducta humana, (2) seleccionar
dinámicamente los sensores de recambio para garantizar la continuidad
del reconocimiento, (3) describir de forma íntegra la información sobre
el contexto humano, y (4) inferir automáticamente expresiones descrip-
tivas del contexto para el análisis del comportamiento. Las ontologías
[5] son descripciones formales que tienen una semántica implícita, lo
que proporciona interoperabilidad y permite el razonamiento. Además
las ontologías superan los modelos no-semánticos en términos de �exibi-
lidad, extensibilidad, generalidad, expresividad y en el desacoplamiento
del conocimiento del código. Por lo tanto, existe una clara oportunidad
de mejorar los sistemas de reconocimiento de la conducta mediante el
uso de ontologías y razonamiento ontológico. Por eso, el objetivo de
esta tesis es investigar sobre la posible aplicación de ontologías y ra-
zonamiento ontológico con el �n de resolver algunas de las limitaciones
más importantes a las que los sistemas de reconocimiento del compor-
tamiento humano se ven sujetos durante su operación en condiciones
reales.
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Selección de sensores basada en ontologías para el
reconocimiento continuo del comportamiento

Esta tesis presenta MIMU-Wear, una ontología OWL 2 [6] que propor-
ciona interoperabilidad sintáctica y compatibilidad semántica para los
sistemas de reconocimiento del comportamiento. MIMU-Wear describe
exhaustivamente las plataformas vestibles (también conocidas como
�wearables�) equipadas con sensores inerciales y magnéticos (conocidos
como MIMU por su nombre en inglés �magnetic and inertial measure-
ment units�). Esta ontología describe las capacidades de los MIMUs
por ejemplo sus propiedades de medición y las características de las
plataformas vestibles sensorizadas, incluyendo su localización en el
cuerpo y sus propiedades de supervivencia. MIMU-Wear ofrece una
semántica implícita que permite la interpretación automática de las de-
scripciones de los recursos, la abstracción de la tecnología subyacente y
la abstracción del método de selección de sensores de la infraestructura
del sistema de reconocimiento.

La ontología MIMU-Wear construye sobre SSN [7], una ontología
estándar del W3C, y está diseñada de una manera modular conectando
varias ontologías para dominios especí�cos: la MIMU Ontology describe
las características de los MIMUs; la MIMU Capabilities Ontology mod-
ela las capacidades de medición o sensado de los MIMUs; la MIMU
Magnitudes Ontology representa las diferentes magnitudes observadas
por los MIMUs; la MIMU Units Ontology representa las unidades de
medida necesarias para describir las capacidades de los MIMUs; la
Wearable Sensor Platform Ontology modela las características de las
plataformas vestibles sensorizadas; la Human Body Ontology modela
las partes del cuerpo humano que representan las localizaciones donde
se portan las plataformas vestibles; y la Wearable Survival Range On-
tology modela las condiciones de supervivencia los sistemas vestibles.

La modularidad de MIMU-Wear permite que esta ontología seare-
utilizable en otros dominios. La Wearable Sensor Platform Ontology
se podría usar para describir la localización en el cuerpo humano de
cualquier sensor vestible, no sólo de MIMUs, por ejemplo la ubicación
en el tórax de una banda para medir electrocardiograma. Del mismo
modo, la MIMU Ontology se podría utilizar para describir cualquier
MIMU, es decir no sólo los vestibles sino también los incluidos en las
plataformas de inteligencia ambiental. Por ejemplo, las características
de un MIMU integrado en una taza o una puerta en un escenario de
inteligencia ambiental podrían modelarse fácilmente usando la MIMU
Ontology. Además, el hecho de que MIMU-Wear monte sobre SSN, una
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ontología estándar del W3C y ampliamente utilizada por la comunidad
cientí�ca, facilita la adopción generalizada de MIMU-Wear, ya que po-
dría integrarse directamente con cualquier otra ontología que haga uso
de SSN.

Esta tesis propone un nuevo método que permite seleccionar dinámi-
camente sensores de recambio entre los disponibles en las platafor-
mas vestibles para cuando un MIMU perteneciente al sistema de re-
conocimiento del comportamiento sufre alguna anormalidad y necesita
ser remplazado. Este método de selección de sensores se basa en la on-
tología MIMU-Wear y aplica técnicas de razonamiento ontológico y de
consultas a la ontología. Las reglas SWRL [8] de�nen las característi-
cas de los sensores candidatos a remplazar un MIMU en el sistema de
reconocimiento y permiten inferir que sensores son buenos candidatos
y cuáles no. El método de selección de sensores establece el proceso
de ejecución iterativa de diferentes consultas SPARQL [9] sobre las de-
scripciones ontológicas de los MIMUs con el �n de seleccionar el MIMU
más adecuado para la sustitución del defectuoso. El método de consul-
tas iterativas permite que si no se encuentra ningún resultado para una
consulta, se ejecute otra menos restrictiva o con un criterio de búsqueda
diferente.

La evaluación del método de selección de sensores en un escenario
realista en el área de reconocimiento de la actividad demuestra que
la sustitución de un MIMU anómalo asegura la continuidad de re-
conocimiento. Es decir, la �abilidad del sistema de reconocimiento se
recupera con respecto a la situación de fallo después de la sustitución
del sensor anómalo. Para el caso de estudio, la �abilidad del sistema de
reconocimiento cae más de un tercio con respecto a su valor de referen-
cia cuando uno de los sensores falla. La sustitución del sensor afectado
con el sensor seleccionado a través del método ontológico muestra una
mejoría, que en el mejor de los casos permite restaurar prácticamente
las capacidades de reconocimiento del sistema y en el peor de los casos
consigue al menos que la �abilidad del sistema supere la que se obten-
dría en caso de seleccionar el sensor de remplazo de forma arbitraria.

El método de selección de sensores propuesto en esta tesis ayuda a
mantener el sistema de reconocimiento funcionando de forma continua
aunque los sensores sufran alguna anomalía. Sin embargo, este es sólo
uno de los posibles escenarios en los que se puede aplicar la ontología
MIMU-Wear y el método basado en consultas ontológicas. MIMU-Wear
también se podría utilizar al arranque del sistema de reconocimiento
para identi�car qué sensores deben ser activados en función de la �a-
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bilidad esperada del sistema y del rendimiento pretendido. Del mismo
modo, la ontología se podría utilizar para la auto-calibración de algunos
parámetros de la red de sensores de acuerdo con las restricciones de en-
ergía u objetivos de e�ciencia. En todos estos escenarios, un método
basado en el razonamiento ontológico y la consulta de la ontología sim-
ilar al que se propone en esta tesis se podría aplicar de forma sencilla.

Inferencia de contexto basada en ontologías para el análisis
del comportamiento humano

Esta tesis presenta la Mining Minds Context Ontology, una ontología
OWL 2 para modelar de forma exhaustiva expresiones descriptivas de
contexto. Esta ontología está diseñada para modelar los contextos más
comunes en escenarios de salud y bienestar y que se dan en estilos de
vida sedentarios y activos. Por lo tanto, esta ontología modela múlti-
ples primitivas de contexto, tales como la actividad física, la locación
y la emoción, así como contextos más abstractos, tales como inactivi-
dad, hacer ejercicio, trabajo en la o�cina o comer, los cuales pueden
derivarse de la combinación de estas primitivas.

La Mining Minds Context Ontology permite representar cualquier
combinación de primitivas de contexto (contextos de bajo nivel), in-
cluso para diferentes dominios, con el �n de inferir representaciones
más abstractas de contexto (contextos de alto nivel). La incorporación,
sin precedentes hasta la fecha, de las emociones en la de�nición del
contexto permite representar contextos de alto nivel que sólo pueden
identi�carse cuando la persona evidencia una emoción especí�ca. No
obstante, para asegurar su aplicabilidad en múltiples escenarios, la on-
tología ha sido de�nida de forma que se permita la identi�cación de
algunos contextos de alto nivel incluso en ausencia de información so-
bre las emociones.

Esta tesis presenta un método basado en ontologías para derivar
información de contexto de alto nivel de la combinación de varios con-
textos de bajo nivel. Este nuevo método se basa en la Mining Minds
Context Ontology y aplica razonamiento OWL 2 DL para inferir con-
texto de alto nivel a partir de primitivas básicas de contexto de bajo
nivel. La High-Level Context Architecture es la arquitectura del sis-
tema que implementa el método de identi�cación de contexto y que
permite inferir automáticamente y en tiempo real expresiones descrip-
tivas del contexto. La High-Level Context Architecture consta de cuatro
componentes: el High-Level Context Builder que genera los conceptos
ontológicos para representar el contexto del usuario; el High-Level Con-
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text Reasoner que veri�ca y clasi�ca el contexto de alto nivel; el High-
Level Context Noti�er que noti�ca a terceros sobre la identi�cación de
un nuevo contexto de alto nivel; y el Context Manager que almacena
la información de contexto.

La evaluación del método de inferencia de información más descrip-
tiva del contexto permite demostrar que con esta información se puede
mejorar el funcionamiento de los sistemas de reconocimiento de la con-
ducta. El método propuesto no sólo resulta e�caz para derivar nueva
información contextual sino que también es robusto a los errores in-
troducidos por los sistemas de reconocimiento de los contextos de bajo
nivel. De hecho, los estudios desarrollados en este trabajo demuestran
que el error introducido en el contexto de bajo nivel tiene un menor
impacto en los contextos de alto nivel.

La High-Level Context Architecture es el motor del proceso de
inferencia de comportamiento abstracto en Mining Minds [10], una
plataforma digital en el ámbito de la salud y el bienestar. A pesar
de que el método de inferencia de contexto ha sido ideado para esta
plataforma, la High-Level Context Architecture se ha de�nido de una
manera que permite su uso en cualquier otro ámbito. De hecho, en caso
de que el método de inferencia del contexto tuviera que aplicarse a un
nuevo dominio y eso requiriera identi�car nuevos contextos, la High-
Level Context Architecture no necesitaría modi�cación alguna y sólo se
tendría que extender la ontología. Esto se debe a una de las propiedades
principales de las ontologías: el desacoplamiento del conocimiento y del
código.

Conclusiones

El propósito de esta tesis fue investigar sobre la posible aplicación de
ontologías y razonamiento ontológico con el �n de resolver algunas de
las limitaciones más importantes de los sistemas de reconocimiento del
comportamiento humano cuando son operados en condiciones reales.
Para ello se de�nieron cuatro objetivos que se han se han alcanzado
con éxito. Concretamente, las contribuciones de esta tesis son las sigu-
ientes:

1. MIMU-Wear: Una ontología OWL 2 modular que describe ex-
haustivamente las plataformas vestibles equipadas con sensores
MIMU.

2. MIMU Ontology: Una ontología OWL 2 que describe las carac-
terísticas de los MIMUs, por ejemplo sus propiedades de medición.
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3. Wearable Sensor Platform Ontology: Una ontología OWL 2
que modela las características de las plataformas vestibles
sensorizadas, incluyendo su localización en el cuerpo y sus
propiedades de supervivencia.

4. Human Body Ontology: Una ontología OWL 2 que modela las
partes del cuerpo humano.

5. Un método basado en la ontología MIMU-Wear, las reglas
SWRL y las consultas SPARQL que permite seleccionar sen-
sores de forma dinámica para ayuda a mantener el sistema de
reconocimiento funcionando de forma continua.

6. Mining Minds Context Ontology: Una ontología OWL 2 para
modelar de forma exhaustiva expresiones descriptivas de con-
texto. Esta ontología está disponible en http://www.miningminds.
re.kr/icl/context/context-v2.owl.

7. Un método basado en la Mining Minds Context Ontology y en
el razonamiento OWL 2 DL para la inferencia automática de
contexto más descriptivo que permite explicar mejor el compor-
tamiento.

8. HLCA: Una arquitectura del sistema que implementa el método
de identi�cación de contexto y su realización en Java.

Estas contribuciones suponen un primer paso hacia una nueva gen-
eración de sistemas de reconocimiento del comportamiento humano
para el mundo real. Algunas de las posibles líneas de trabajo futuras
versan sobre la incorporación de los sensores disponibles en textiles
inteligentes al proceso de selección, la consideración de la incertidum-
bre en el reconocimiento del comportamiento humano y la provisión de
interoperabilidad entre diversos sistemas de reconocimiento.

http://www.miningminds.re.kr/icl/context/context-v2.owl
http://www.miningminds.re.kr/icl/context/context-v2.owl
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Abstract

Human behavior recognition has attracted much attention during the
recent years due to its multiple applications in the health and well-
ness domain. Despite their popularity, most existing behavior recogni-
tion systems su�er two main constrains which make them practically
unsuitable to work in real-world conditions: they are bounded to a
speci�c sensor deployment setup and they are de�ned to operate in a
single application domain. Human behavior recognition systems may
certainly undergo changes unforeseen at system design time, with sen-
sors subject to diverse types of anomalies such as failures or deployment
changes; thus, a pre-de�ned, well-known and steady sensor setup can-
not be guaranteed. Moreover, the categories of behavior recognized by
these systems tend to be quite primitive and with limited applicability;
however, their appropriate combination could lead to more meaningful
and richer expressions of context for human behavior analysis. In the
light of these limitations, there is a clear necessity of comprehensively
describing the set of heterogeneous resources involved in the human
behavior recognition system, dynamically selecting replacement sen-
sors to ensure continuity of recognition, exhaustively describing human
context information, and automatically inferring meaningful and rich
expressions of context for human behavior analysis.

This thesis investigates novel mechanisms to solve the above limita-
tions of human behavior recognition systems in order to facilitate their
seamless, robust and accurate use in realistic conditions. Ontologies are
considered here to be the cornerstone technology to realize this idea.
The extraordinary characteristics of ontologies, which provide implicit
semantics, support interoperability and enable automatic reasoning, �t
particularly well with the necessities posed by the problem considered
here. Besides, ontologies largely exceed other similar and non-semantic
models in terms of �exibility, extensibility, generality, expressiveness,
and decoupling of the knowledge from the implementation, thus making
it a perfect option to create more advanced behavior-aware systems.

This work proposes MIMU-Wear, an OWL 2 ontology which com-
prehensively describes mainstream wearable sensor platforms consist-
ing of magnetic and inertial measurement units (MIMUs), including
the MIMUs capabilities and the characteristics of the wearable sensor
platform. This ontology provides implicit semantics enabling the auto-
matic interpretation of the resource descriptions, their abstraction from
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the underlying technology, and the abstraction of the sensor selection
method from the actual sensing infrastructure. The dynamic selection
of sensors is enabled through ontology reasoning and querying. The
proposed sensor selection method builds on the MIMU-Wear Ontol-
ogy, applies ontological reasoning to infer candidate replacement sen-
sors from a set of heuristic SWRL rules, and iteratively poses SPARQL
queries on the ontological sensor descriptions to select the most appro-
priate MIMU for the replacement of an anomalous one. The proposed
ontology-based sensor selection method proves to ensure continuity of
recognition as it helps recovering the system capabilities after the re-
placement takes place. MIMU-Wear could also serve at system startup
to identify which sensors should be activated based on the necessities
of the behavior recognition system or for the self-calibration of some
parameters of the sensing network according to energy constraints or
e�ciency goals, and based on processing power or memory resources.

This thesis further proposes the Mining Minds Context Ontology, an
OWL 2 ontology for exhaustively modeling rich and meaningful expres-
sions of context. This ontology enables any combination of cross-domain
behavior primitives, also referred to as low-level contexts, in order to
infer more abstract human context representations, also called high-
level contexts. The context ontology extends beyond the state-of-the-
art while uniting emotion information as a novel behavioral component
together with activity and location data to model new contextual infor-
mation. An ontological method based on descriptive logic is developed
for deriving high-level context information out of the combination of
cross-domain low-level context primitives, namely activities, locations
and emotions. The proposed method not only proves e�cient while de-
riving new contextual information but also robust to potential errors
introduced by low-level contexts misrecognitions. This method can be
used for determining any type of high-level context information from
diverse sources of low-level context data. Thus, it can be easily applied
to any new domain, only requiring the extension of the ontology itself.

The proposed models and methods enable comprehensive descrip-
tions and dynamic selection mechanisms for heterogeneous sensing re-
sources to support the continuous operation of behavior recognition
systems; likewise, exhaustively descriptions and automatic inference of
abstract human context information is supported to enhance the oper-
ation of behavior-aware systems. Hence, these ontologies and ontology
reasoning-based methods pave the path to a new generation of behavior
recognition systems readily available for their use in the real-world.



1
Introduction



2 Chapter 1: Introduction

1.1. Human Behavior Recognition

From a behavioral science perspective, the behavior of an organism,
also a human being, can be de�ned as �everything it does, including
covert actions like thinking and feeling� [1]. According to this de�ni-
tion, to explain human behavior, one must understand the interactions
between the individual and their environment, including physical, cog-
nitive and social aspects. Behavior analysis is a comprehensive approach
to the study of the behavior of organisms and its primary objectives are
�the discovery of principles and laws that govern behavior, the exten-
sion of these principles over species, and the development of an applied
technology� [1]. Some reasons to study human behavior are applying
behavioral principles to raising and educating children, building hu-
manoid robots able to adjust their behavior based on consequences or
feedback, and modifying aspects of human behavior in self-control and
coaching scenarios. In fact, human behavior change has particularly
drawn the attention of research and industry lately due to its enor-
mous application potential in areas such as health and wellbeing [2].

Human behavior recognition, the task of detecting and identifying
the people's conducts, is an essential step for the analysis of human
behavior. The use of information and communication technologies has
increasingly been fostered during recent years to facilitate the auto-
matic and seamless recognition of human behavior. Some commercial
behavior-aware products assess the number of steps the user took, their
intake and burnt of calories, the quality of their sleep or their stress
level. Fitbit Surge [11], Jawbone R© UP3TM [12], Garmin vívo�t R©3 [13],
and Empatica Embrace [14] are some examples of behavior tracking
solutions that recently made their journey to the market. However,
the most prominent behavior-aware systems have been provided at re-
search level. These prototypes tackle more advanced and complex prob-
lems of behavior-awareness in the health and wellness domains, such
as detecting cardiovascular illnesses [15], alerting about physical con-
ditions [16], tracking changes in the physiological responses of patients
with chronic diseases [17], persuading people to change their unhealthy
life habits [18], and coaching them in �tness and sports [19].

Behavior recognition systems normally consist of two di�erent parts
embedded into a single or multiple hardware components: (1) electronic
sensor devices capable of measuring and translating human physical
and physiological responses into digital data; and (2) digital processing
systems in charge of the gathering, storage and analysis of the data.
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Diverse sensing technologies have been explored in behavior recogni-
tion systems to identify some primitive components of human behavior.
Video systems have been considered for the recognition of physical ac-
tivity [20] and the analysis of facial expressions [21]. Audio recorders
and microphones have been used to detect speech and recognize some
emotional states from speech [22]. Positioning technologies, like GPS
and indoor navigation systems, have been utilized to track the user lo-
cation and derive movement patterns [23]. Wearable sensors measuring
physical and physiological human characteristics, such as body motion
or vital signs, have extensively been considered for the recognition of
physical activity [24]. In fact, wearable sensors, particularly magnetic
and inertial measurement units (a.k.a., MIMUs), take over most of
the market nowadays. MIMUs are very cheap and tiny sensors nor-
mally embedded into ergonomic wearable platforms that can be worn
by users to track the motion of the body parts where these devices
are placed on. MIMUs have been used to determine the physical activ-
ity from body motion [25, 26] and to measure cardiac and respiratory
parameters, which could indicate cognitive load and stress, from body
motion [27, 28].

The automatic processing and analysis of the measured signals to
recognize some primitive components of human behavior can follow dif-
ferent approaches: data-driven, knowledge-driven and hybrid methods.
In data-driven approaches, signal processing and machine learning tech-
niques are used to detect patterns matching some known categories of
behavior. For example, extracting places and activities from GPS traces
using hierarchical conditional random �elds [29], recognizing activities
of daily living from acceleration data based on statistical feature quality
group selection [30] and recognizing emotions from speech using support
vector machines [31]. In knowledge-driven approaches, logical represen-
tations of knowledge like ontologies and rules are utilized to model and
infer di�erent human behaviors. For example, detecting emotions using
a multimodal approach based on rules [32] and recognizing activities of
daily living based on ontologies [33]. Both data-driven and knowledge
driven techniques are further combined in hybrid methods to determine
some components of human behavior like activity [34] or location [35].
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1.2. Limitations of Real World Human Behavior
Recognition Systems

Although several systems recognizing human behavior have been pro-
posed to date, as presented in Section 1.1, most of these systems do not
ful�ll the requirements posed by their use in real-world scenarios. In
fact, existing behavior recognition system su�er two main limitations:
(1) these systems are bounded to a speci�c sensor deployment setup;
and (2) these systems are applied to a speci�c application domain.

1.2.1. Sensor Setup-Speci�c Systems

Behavior recognition systems are mainly conceived to operate in closed
environments, where sensor setups are pre-de�ned, well-known and
steady. However, these conditions cannot be guaranteed in practical
situations, where the recognition system may undergo changes unfore-
seen at system design time and sensors may be subject to diverse types
of anomalies. Sensors may su�er some failures, i.e., they may be sub-
ject to damage due to their regular use or the environmental conditions,
and in worst case they may break or stop working [3]. Sensors may also
undergo deployment changes, i.e., variations introduced by the people
normal usage of the sensor such as displacements on the position where
the wearable sensor platform is located on the user's body [36, 4]. Con-
sequently, methods supporting the dynamic selection and replacement
of sensors are required in order to ensure the fully functional operation
of human behavior recognition systems in realistic conditions.

Very few solutions have been proposed for the dynamic sensor se-
lection problem mainly combining probabilistic and machine-learning
driven strategies to identify the best combination of sensors. For exam-
ple, fusion techniques are used to select a subset of sensor data streams
to minimize power consumption while keeping a certain level of recog-
nition [37]. Similarly, stochastic methods are applied to tune the recog-
nition system through sensor selection [38]. Other approaches, not only
explore the number of sensors to be used, but also the number of sam-
ples to be collected from them by using scheduling and down-sampling
approaches [39]. However, these models present important limitations
as they develop the selection process on the properties of the sensor data
streams rather than capabilities and nature of the sensors and devices.
More importantly, in all cases the sensor ecosystem must be known in
advance, thus not supporting changeable scenarios with opportunistic
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additions or removals of sensor devices [40].
Ensuring the operational continuity of human behavior recognition

systems working in dynamic environments requires advanced sensor re-
placement functionalities. Mechanisms to abstract the selection of the
most adequate resources are needed to enable the sensor replacement
functionalities. Precisely, a comprehensive and interoperable descrip-
tion of the heterogeneous resources is required, including aspects such
as the sensors' characteristics, their deployment and their availability.
These resource descriptions in combination with sophisticated search
techniques could support the selection of the best replacement for an
anomalous sensor.

1.2.2. Domain-Speci�c Systems

The vast majority of existing solutions relying on digital technologies for
automatic human behavior recognition are domain speci�c and apply
to a sole dimension of behavior. In other words, most human behav-
ior recognition systems are only capable of identifying some physical
activity-related parameters, such as step counts or calories burned;
some location-related information like movement patterns; or some
mental-related parameters, such as emotions or stress. While these
primitives could be considered in isolation for a preliminary analysis
of a person's behavior, their appropriate combination can lead to more
meaningful and richer expressions of context for human behavior anal-
ysis. Consequently, there is a need for developing new methods for the
automatic identi�cation of richer human context information which bet-
ter describes human behavior and which may enhance the operation of
behavior-aware systems in realistic conditions.

E�orts are being put towards the creation of commercial frameworks
capable of digesting di�erent types of behavior-related contextual in-
formation, such as Google Fit [41] and Apple HealthKit [42]. However,
these initiatives rely on third party applications and systems for in-
ferring behavior information. Some other attempts have been made in
research towards a more comprehensive and multifaceted recognition of
human behavior. For example, a middleware that recognizes activities
and indoor mobility has been proposed to support pervasive elderly
homecare [43]. An approach combining motion reconstruction, location
detection and activity identi�cation has been developed for pro�ling the
user's daily life [44]. A platform to gather users' psychological, physio-
logical and activity information has been proposed for analyzing their
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mental health [45]. Despite the availability of solutions which combine
di�erent primitive components of human behavior, these systems are
still far away from identifying rich human context information. Even
more important is the fact that these solutions are bound to a spe-
ci�c application domain since the information they provide cannot be
in principle automatically interpreted and used in di�erent behavior-
aware systems.

Recognizing meaningful and rich expressions of human context,
which cover multiple primitive components of behavior such as physi-
cal and mental aspects and which can be used by any behavior-aware
system working in realistic conditions, requires an extensive and inter-
operable description of human context information. Such description
is needed to enable novel mechanisms which automatically infer richer
human context out of more basic context primitives. Thus, the com-
bination of the comprehensive and interoperable description of human
context information and the advanced methods for the automatic recog-
nition of rich human context could enhance the real-world operation of
behavior-aware systems.

1.3. Motivation for the Use of Ontologies to Support
Real World Human Behavior Recognition

In the light of the limitations of human behavior recognition systems
presented in Section 1.2, there is a clear necessity of (1) comprehensively
describing the set of heterogeneous resources involved in the human be-
havior recognition process, (2) dynamically selecting replacement sen-
sors to ensure continuity of recognition, (3) exhaustively describing hu-
man context information, and (4) automatically inferring meaningful
and rich expressions of context for human behavior analysis.

The most simplistic approach for describing heterogeneous resources
in human behavior recognition systems would consist in using text, like
the descriptions of the sensor characteristics in speci�cation sheets.
However, such a solution is only viable if the dynamic selection of re-
placement sensors is done by humans. Likewise, free-text tags describ-
ing the resources are also insu�cient for any machine-based interaction,
where the dynamic selection of replacement sensors has to be executed
automatically. In this case, the syntax and semantics of the resource
description rather need to be clearly de�ned. EXtensible Markup Lan-
guage (XML) descriptions could be considered to this end. Nonetheless,
XML does not provide the full potential for machines to acquire and
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interpret the emerging semantics from data; thus, the meaning of the
data has to be previously agreed in between machines. Conversely, an
ontology-based formal data representation provides implicit semantics
which enable the automatic interpretation of the data. An ontology is a
formal explicit speci�cation of a shared conceptualization or model of
the world, i.e., a machine-readable representation of consensual knowl-
edge [5]. Thus, an ontology is a prede�ned speci�cation of terms that
de�ne concepts, relationships and constraints within a domain, in this
case in the human behavior domain.

Using ontological models, the resource descriptions for heteroge-
neous sensors of di�erent vendors are su�ciently rich to be automat-
ically interpreted. This property of ontologies ensures interoperability
among diverse human behavior recognition systems. Moreover, these
features of the ontological descriptions enable the abstraction of the het-
erogeneous resources from their underlying technology. Hence, mecha-
nisms to automatically select the most adequate resources, which match
several given conditions, can be easily applied. Actually, the ontological
descriptions of the available resources can be searched to �nd a replace-
ment for an anomalous sensor by applying ontology querying mecha-
nisms. In the process of answering the ontological query, reasoning is
intrinsically applied to infer new knowledge from pre-de�ned rules and
to verify its consistency. Therefore, ontological models in combination
with rules and ontological querying can in theory support the dynamic
selection of replacement sensors to ensure continuity of recognition. In
conclusion, ontologies seem to be the perfect candidate to comprehen-
sively describe heterogeneous resources abstracting them from the un-
derlying technology and to support sensor replacement functionalities
in human behavior recognition systems.

Following the same line of argument, ontologies can also be con-
sidered to exhaustively describe context information for human behav-
ior analysis. The implicit semantics provided by ontologies enable the
derivation of new context information from existing one, a key charac-
teristic for the recognition of richer human context out of more basic
context primitives. Moreover, ontological context information inden-
ti�ed by diverse third party recognition systems can be automatically
interpreted and used to infer more meaningful context. This is of utmost
importance to provide interoperability among di�erent behavior-aware
systems. Ontological reasoning can be inherently applied on ontology-
based models; thus, simplifying the inference task. Several reasoners are
available and can be used with the ontologies modeling human context.
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In the automatic recognition of human context, the reasoner using the
de�ned ontology can automatically validate for con�icts and inconsis-
tencies in the de�nition of some human contexts. Moreover, the reasoner
can also automatically classify an unknown type of context into some
of the categories de�ned in the ontology. For all these reasons, and
considering the recognized potential for ontologies to model and infer
context [46], ontologies and ontological reasoning seem to be the appro-
priate means to comprehensively describe human context information
and to automatically identify meaningful and rich expressions of human
context which could enhance the real-world operation of behavior-aware
systems.

There are also many other motivations for the use of ontologies
and ontological reasoning in the description of heterogeneous resources
in human behavior recognition systems, the dynamic selection of re-
placement sensors, the description of human context information, and
the automatic inference of rich expressions of context for human be-
havior analysis. Ontologies surpass non-semantic models in terms of
�exibility, extensibility, generality, expressiveness, and decoupling of
the knowledge from the code. The hierarchical structure of ontologies,
with subclasses inheriting the properties from their ascendant classes,
facilitate its evolvability and maintenance. In fact, new concepts can
be easily added to the ontology and related to the existing ones. More-
over, multiple methods exist for the automatic validation of con�icts
and semantic inconsistencies of the newly added concepts. Using on-
tologies is also bene�cial from the implementation perspective since no
changes are required in the implementation of an architecture when-
ever the model is extended; thus, only requiring the adaptation of the
ontology itself. Finally, one should not forget to mention the downside
of using ontologies: the overhead in the knowledge representation and
the complexity of de�ning the models. Nevertheless, all the presented
advantages fairly overcome these two drawbacks of ontologies.

1.4. Thesis Goal and Objectives

Taking into consideration the limitations of human behavior recognition
systems presented in Section 1.2 and the bene�ts provided by ontolo-
gies described in Section 1.3, there is a clear opportunity to create more
advanced behavior-aware systems by using ontologies and ontological
reasoning. Thus, the goal of this thesis is to investigate on the appli-
cation of ontology engineering and reasoning in order to solve some of
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the most prominent limitations of human behavior recognition systems
working in realistic conditions. In this way, this work seeks to contribute
to paving the path to a new generation of behavior recognition systems
readily available for their use in the real-world.

This thesis aims at achieving this goal via the following supporting
objectives:

Objective 1: Design and development of an ontology for the
comprehensive and interoperable description of sensing tech-
nologies used in behavior recognition systems.

The �rst objective of this thesis is designing and developing an ontol-
ogy for the comprehensive and interoperable description of heteroge-
neous resources composing behavior recognition systems. Speci�cally,
the objective is describing the magnetic and inertial measurement units
(MIMUs) embedded into wearable platforms, which are the mainstream
sensing technologies in behavior recognition systems. An ontology has
to be proposed to exhaustively model the capabilities of the MIMUs,
such as their measurement properties, and the characteristics of the
wearable sensor platforms including their on-body location and their
survival properties. This ontology will provide implicit semantics en-
abling the automatic interpretation of the resource descriptions and
ensuring interoperability among diverse human behavior recognition
systems. Thus, the ontological descriptions of the wearable sensor plat-
forms consisting of MIMUs will abstract the heterogeneous resources
from their underlying technology. Consequently, these descriptions will
support the abstraction of the the sensor selection method from the
actual sensing infrastructure. Therefore, the ontology will enable the
dynamic sensor selection functionalities required to ensure the opera-
tional continuity of human behavior recognition systems.

Objective 2: De�nition and validation of a method based on
ontology reasoning and querying to dynamically select sensing
technologies to support continuity of behavior recognition.

The second objective of this thesis is de�ning and validating a method
based on ontology reasoning and querying to dynamically select the
sensing technologies used in behavior recognition systems. Speci�cally,
the objective is de�ning a method for selecting some of the available
MIMUs, embedded into wearable platforms, whenever a MIMU part
of the human behavior recognition system su�ers some abnormality
and demands a replacement. The selection method will build on the
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ontology which thoroughly describes the MIMUs, including their ca-
pabilities and the characteristics of the wearable sensor platforms in
which they are embedded (as de�ned in Objective 1). Rules have to be
established to de�ne the characteristics of the candidate replacement
MIMUs which could be used in the human behavior recognition system.
Ontology query mechanisms will be used to search in the descriptions
of the available MIMUs for the ones which match the required charac-
teristics. In the processing of the ontological query, reasoning will be
applied to infer the knowledge about the candidate replacements from
the de�ned rules. Thus, the appropriate ontology queries have to be
de�ned to allow the selection of the best MIMU which could replace
the one su�ering from anomalies. Finally, the novel ontology-based se-
lection method has to be validated to prove that the dynamic selection
and posterior replacement of an anomalous MIMU ensure the continu-
ity of recognition, i.e., the reliability of the human behavior recognition
system holds after the replacement takes place.

Objective 3: Design and development of an ontology for the
exhaustive modeling of rich and meaningful expressions of
context for human behavior analysis.

The third objective of this thesis is designing and developing an ontol-
ogy for the exhaustive modeling of rich and meaningful expressions of
context building on cross-domain information. Speci�cally, the objec-
tive is modeling the most commonplace contexts for health and wellness
scenarios which involve sedentary and active lifestyles. The proposed
ontology has to thoroughly model multiple primitive components of
context, such as the physical activity, the location and the emotion,
as well as more abstract daily contexts which can be derived from the
combination of these primitives. This ontology will provide the implicit
semantics required for the derivation of new richer context information
from basic existing context. Thus, this ontology will enable the infer-
ence of meaningful human context information better describing human
behavior and which can be useful to enhance behavior-aware systems.

Objective 4: De�nition and validation of a method based on
ontology reasoning to automatically infer rich and meaningful
human context to enhance the operation of behavior-aware
systems.

The fourth objective of this thesis is de�ning and validating a method
based on ontology reasoning to automatically infer rich and meaning-
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ful human context to enhance the operation of behavior-aware systems.
Therefore, a method applying ontological reasoning has to be de�ned
to automatically identify richer human context out of more basic con-
text primitives. The context inference method will build on the context
model de�ned by the ontology which comprehensively describes rich
and meaningful expressions of context based on primitive cross-domain
contextual information (as de�ned in Objective 3). Ontology reason-
ing will be applied to the knowledge modeled in the context ontology
to automatically validate for con�icts and inconsistencies in the de�-
nition of the contexts. Moreover, ontology reasoning will also be used
to automatically classify an unknown type of context into some of the
categories de�ned in the ontology. Finally, the ontological reasoning-
based method for the inference of rich context has to be validated to
prove that it can enhance the operation of behavior-aware systems.

1.5. Thesis Outline

This thesis is structured in �ve chapters.
Chapter 1 introduces human behavior recognition, analyzes the

principal limitations of human behavior recognition systems under re-
alistic conditions, motivates the use of ontologies and ontological rea-
soning to support real-world human behavior recognition, presents the
thesis goal, and details the supportive objectives to achieve this goal.

Chapter 2 presents background in prior research about ontologies
for modeling sensor networks, methods for semantic sensor selection,
ontologies for human context modeling, and approaches for semantic
context inference.

Chapter 3 proposes several ontologies to comprehensively model
mainstream sensing technologies in behavior recognition systems, de-
�nes a method based on ontology reasoning and querying to dynami-
cally select the sensing technologies to be used in behavior recognition
systems, and evaluates the proposed ontology-based sensor selection
method to prove that it ensures the operational continuity of human
behavior recognition systems working in dynamic environments.

Chapter 4 proposes an ontology for the exhaustive modeling of rich
and meaningful expressions of context, de�nes a method based on onto-
logical reasoning to automatically identify abstract human context out
of more basic context primitives, and evaluates this context inference
method to prove that it can enhance the operation of behavior-aware
systems in realistic conditions.
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Finally, Chapter 5 presents the achievements and the contributions
of this thesis, as well as possible future extensions of the presented
research work and some �nal remarks.



2
State of the Art
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2.1. Ontologies for Sensor Networks

In the last decade many ontologies have been devised for the modeling
of sensors and sensor networks. These ontologies provide a description
of the sensor networks, the sensing devices, the measured information
or data, the processes executed in the sensor network, and enable sensor
data fusion.

The Sensor Web Enablement (SWE) initiative [47] of the Open
Geospatial Consortium (OGC) has approved a set of standards and
best practices for the sensors to interoperate with the Web, in what is
called the Sensor Web. The OGC SWE has developed a set of stan-
dard models and XML schemas for sensors and processes in SensorML
[48], and for sensor data in Observations and Measurements (O&M)
[49, 50]. These standards provide syntactic interoperability but lack se-
mantic compatibility. Therefore, semantic web technologies are used to
augment the OGC SWE standards in what is know as the Semantic
Sensor Web [51].

OntoSensor [52] is an ontology which builds on the ideas of the
OGC SensorML standard and extends the Suggested Upper Merged
Ontology (SUMO) [53]. The objective of OntoSensor was to create a
sensor knowledge repository enabling the fusion of heterogeneous data.
Therefore, OntoSensor provides a description of the data observed by
the sensors, including the geo-location of the observations, the accuracy
of the observed data or the process to obtain the data.

The GLOSENT (GLObal SENsor neTwork) architecture [54] facil-
itates the integration of wireless sensor networks by utilizing seman-
tics to resolve hardware heterogeneities. The proposed ontology mod-
els large systems of wireless sensor networks where sensor nodes are
interpreted as sets of components, including sensor components and
processing components, like a memory component or a radio compo-
nent. Therefore, the GLOSENT architecture relies on the ontological
representation of the wireless sensor networks and their data.

The W3C Semantic Sensor Network Incubator group (SSN-XG) has
de�ned the SSN Ontology [7] in order to provide the layer of abstraction
required to address semantic compatibility missing in the OGC SWE
standards. The SSN Ontology describes the capabilities and properties
of the sensors, the act of sensing and the resulting observations. The
SSN Ontology covers large parts of the SensorML and O&M standards,
omitting the concepts which are sensor speci�c, like calibrations, pro-
cess descriptions and data types. The SSN Ontology was developed with
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focus on four types of use cases: data discovery and linking, device dis-
covery and selection, provenance and diagnosis, and device operation,
tasking and programming. Therefore, the SSN Ontology has been used
in many research projects and applied to several di�erent domains in
the last years. Some of the most recently published works which uti-
lize the SSN Ontology are the OpenIoT Project [55, 56], the Semantic
Gateway as Service (SGS) [57] and GeoSMA [58].

The SSN Ontology has been extended in the Wireless Semantic
Sensor Network (WSSN) ontology [59]. Speci�cally, the communica-
tion data policy which is not characterized by the SSN ontology has
been added in the WSSN ontology. The newly described pattern for
communication is required to ensure the main objective of the WSSN
ontology of adapting the nodes communication to optimize the lifetime
of the network.

A more recent solution for handling the heterogeneity of wireless
sensor networks is MyOntoSens [60]. This ontology formalizes a se-
mantic open data model for the generic description of sensor and sen-
sor data. MyOntoSens builds on some ideas of OntoSensor, SSN and
SensorML, and divides the concepts in three categories: wireless sen-
sor network, node and process. In the modeling of the wireless sensor
network, standardized attributes like the application domain, cover-
age zone, location and radio technology are considered. This enables
the automatic discovery of available neighboring wireless sensor net-
works, wireless sensor networks sharing similar properties or devised
for the same application domain. The MyOntoSens ontology has been
recently utilized in [61]. Moreover, a Body Area Network (BAN) dedi-
cated instance of the MyOntoSens ontology is being standardized as a
Technical Speci�cation within the SmartBAN Technical Committee of
the European Telecommunications Standards Institute (ETSI).

The SmartBAN open data model ontology [62] is part of the ETSI
initiative which standardizes to support the development and imple-
mentation of BAN technologies in the domains of health, wellness,
leisure and sport. The SmartBAN ontology aims at developing smarter
control and monitoring operations as well as standardized eHealth ser-
vices. Therefore, the SmartBAN ontology has been designed to be uti-
lized together with existing healthcare and telemedicine information
models and standards. The SmartBAN ontology builds on three sub-
ontologies: WBAN (SmartBAN or BAN cluster), Nodes (i.e., Hub, sen-
sors, actuators) and Process and Measurements.

Finally, the Sensing Network Element Ontology Description Model



16 Chapter 2: State of the Art

for Internet of Things [63] has been developed quite recently. This on-
tology describes the sensing devices, their capabilities and the sensory
data to automatically discover and interact with the elements of the
Internet of Things. The structure, main classes and properties of this
ontology are quite similar to the ones described in the SSN ontology;
however, domain knowledge about the Internet of Things has been in-
troduced.

2.2. Semantic Sensor Selection

The interoperability provided by the ontological description of the sen-
sor network enables a set of interesting applications, such as semantic
sensor selection.

One of the �rst attempts to perform semantic sensor selection was
developed in the SENSEI project [64]. An ontology was proposed to
model the description of wireless sensor and actuator networks, includ-
ing the resource type, location, temporal availability, generated out-
puts, required inputs, pre-conditions and post-conditions, and quality
and cost parameters [65]. Declarative requests, specifying the speci�c
context or sensor information requested by an application were auto-
matically interpreted and matched against the speci�c parameters of
the sensor and actuator descriptions.

A similar approach is presented in a much more recent work. Hsu
et al. [66] propose an infrastructure which allows the sensor selection
based on the sensor characteristics, such as accuracy, sensing range, or
residual energy. The SSN ontology is used in this work to represent the
properties of the sensor. A web interface is o�ered to the user to select
the parameters for the search, including the location, the sensing type,
the required number of sensors and some optional requirements like the
minimum accuracy.

In CASSARAM [67], another model for semantic sensor selection,
ontologies are combined with �ltering techniques to improve the sensor
ranking in the selection process. CASSARAM builds on sensor descrip-
tions represented using the SSN ontology and considers in the selection
both user preferences and sensor characteristics such as reliability, ac-
curacy, location, or battery life.
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2.3. Ontologies for Human Context Modeling and In-
ference

A number of surveys have reviewed the use and foundations of ontolo-
gies for context modeling. For example, a survey on context-aware sys-
tems [68] describes the basic design principles of context-aware architec-
tures and depicts the di�erent context models. Special focus is placed
in this survey on the analysis and comparison of several approaches
using ontologies. Another review of context modeling and reasoning
techniques [69] discusses the requirements for modeling di�erent con-
text information and introduces the concept of high-level context ab-
stractions. This survey describes and compares several ontology-based
models of context information. Finally, a more recent survey on context-
aware computing for the Internet of Things [70] evaluates 50 projects
including the majority of research and commercial solutions proposed
in the �eld of context-aware computing from 2001 to 2011. An extensive
evaluation of research prototypes, systems and approaches building on
ontology-based modeling and reasoning solutions is presented in this
survey.

Many ontologies have been speci�cally proposed to model and
recognize user context. The most well-known context ontologies and
ontology-based context frameworks are described in the following. One
of the most prominent ontologies for modeling context in pervasive en-
vironments is SOUPA (Standard Ontologies for Ubiquitous and Perva-
sive Applications) [71]. The core of the SOUPA ontology de�nes generic
vocabularies for several domains: person, agent, belief-desire-intention,
action, policy, time, space, and event. Similarly, CONON (CONtext
ONtology) [72] is a noticeable ontology for smart home environments.
The CONON upper ontology captures the general features of di�erent
context entities: person, activity, computational entity and location.
Both SOUPA and CONON ontologies are generic and can be extended
to describe the context in the application-speci�c domain. For exam-
ple, the Context Broker Architecture (CoBrA) [73] adopts the SOUPA
ontology, whereas the SOCAM (Service-oriented Context-Aware Mid-
dleware) [74] builds on the CONON ontology. The CoBrA ontology
describes places, agents, events in an intelligent meeting room. The on-
tology proposed in SOCAM models persons, activities, locations and
devices for smart home and vehicle environments.

Apart from these early well-known solutions, more recent context
ontologies and ontology-based context frameworks have been proposed.
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The Pervasive Information Visualization Ontology (PIVOn) [75] is com-
posed of four ontologies for the description of intelligent environments:
user, device, environment and service. The user model describes the
static characteristics of the users, their agenda, and their situation in-
cluding the user location, the current task and goals. The mIO! on-
tology [76] models context-related knowledge for the adaptation of ap-
plications in mobile environments. This ontology de�nes concepts like
information on location and time, user information and its current or
planned activities, as well as devices located in his surroundings. The
Context Aggregation and REasoning (CARE) middleware [77] performs
ontological and statistical reasoning to support the context-aware adap-
tation of internet services in a mobile computing environment. The on-
tology, which models the user context within the CARE middleware,
describes the user activities (actions and movements), interests, con-
tacts, calendar items and places. For example, the context business
meeting is de�ned as including any activity performed in a conference
room within a company building, and having at least two actors, each
of which is an employee. Thus, the ontology in the CARE middelware
models context based on activities and locations.

Some other works focus on the detection of a speci�c category of
context, mainly activities, sometimes utilizing in their de�nition other
type of contexts such as locations. ActivO is the ontology used in
COSAR [78], an activity recognition system that supports hybrid sta-
tistical and ontological reasoning. The ActivO ontology models a set
of activities and the context data required to recognize them (the per-
son performing the activity, the location of the activity and the time
extent in which the activity takes place). The authors of the ActivO
ontology have also proposed a very similar approach but using OWL2
for modeling and reasoning [34]. Furthermore, some activities involve
the interaction with objects. Thus, contextual information about the
interaction (time and location) can be used to model and infer the
activities. An ontology-based approach is used to model activities for
smart homes in [79]. The proposed ontology models activities based on
a sequence of user-object interactions and the location of the objects.
For instance, the activity making tea is composed of the primitives get
cup, get tea, pour water, get milk and get sugar, which take place in the
kitchen. Composite activities in smart homes are modeled and recog-
nized in [80]. Ontological and temporal knowledge modeling formalisms
are combined to describe composite activities, like for example make
tea and then wash hands. The work in [81] describes an ontology-based
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technique for multilevel activity recognition. The proposed ontology
models atomic gestures (actions which cannot be decomposed), manip-
ulative gestures (execution of simple atomic gestures), simple activities
(temporal sequences of manipulative gestures) and complex activities
(concurrent execution of simple activities). One example of complex
activity could be clean up which is composed of the simple activities
put in dishwasher and clean table. Finally, [82] proposes a fuzzy on-
tology for the representation of activity and the reasoning on vague,
incomplete, and uncertain knowledge. The ontology core models three
domains: users, environment including locations, and actions, activi-
ties and behaviors. Actions are atomic events, activities can be a single
action or a composed set of actions, and behaviors are a sequence of ac-
tivities and/or actions. For example, the behavior co�ee break includes
the action exit o�ce, the activity make co�ee or take co�ee, and the
action enter o�ce.
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3.1. Overview

An enormous e�ort has been made during the recent years towards the
recognition of human behavior based on wearable sensors. Despite the
wide variety of proposed systems, most existing solutions have in com-
mon to solely operate on prede�ned settings and constrained sensor
setups. Real-world human behavior recognition applications and users
rather demand more �exible sensor con�gurations dealing with poten-
tial adverse situations such as defective or missing sensors. In order
to provide interoperability and recon�gurability, heterogeneous sensors
used in wearable behavior recognition systems must be fairly abstracted
from the actual underlying network infrastructure. Section 3.2 presents
MIMU-Wear, an extensible ontology that comprehensively describes
wearable sensor platforms consisting of mainstream magnetic and iner-
tial measurement units (MIMUs). MIMU-Wear describes the capabili-
ties of MIMUs such as their measurement properties and the character-
istics of wearable sensor platforms including their on-body location. A
novel method to select an adequate replacement for a given anomalous
or nonrecoverable sensor is presented in Section 3.3. The proposed sen-
sor selection method is based on the MIMU-Wear Ontology and builds
on a set of heuristic rules to infer the candidate replacement sensors
in di�erent conditions. Then, queries are iteratively posed to select the
most appropriate MIMU sensor for the replacement of the defective
one. An exemplary application scenario is presented in Section 3.4 to
evaluate the potential of MIMU-Wear for supporting the seamless op-
eration of wearable human behavior recognition systems.

3.2. MIMU-Wear: An Ontology for the Description
of MIMU-based Wearable Platforms

MIMU-Wear is an extensible ontology that describes wearable sen-
sor platforms consisting of magnetic and inertial measurement units
(MIMU). MIMU-Wear is an OWL 2 ontology [6] designed in a modu-
lar manner with an upper ontology and several plugable domain on-
tologies (see Figure 3.1). The MIMU-Wear Ontology builds on the
standard W3C Semantic Sensor Network (SSN) Ontology [7], an on-
tology which describes sensor networks of any nature and available
at http://purl.oclc.org/NET/ssnx/ssn. The SSN Ontology does not
model the sensor speci�c concepts, such as sensor types, features, prop-
erties, units of measurement or locations, and these need to be de�ned

http://purl.oclc.org/NET/ssnx/ssn
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Figure 3.1: Structure of the MIMU-Wear Ontology for the descrip-
tion of MIMU-based wearable platforms.

in external ontologies. MIMU-Wear extends the SSN Ontology and
describes these concepts for the case of MIMUs and wearable sensor
platforms. The reuse of this existing ontology facilitates the design of
MIMU-Wear since the key concepts are already modeled and can be
directly inherited. Moreover the use of the SSN Ontology increases the
chances of a higher adoption for the MIMU-Wear Ontology. The SSN
Ontology is already used in the research community (as presented in
Section 2.1), and therefore, the novel MIMU-Wear could be directly
integrated with the available ontologies using SSN.

The two main domain ontologies of MIMU-Wear are the MIMU On-
tology (see Section 3.2.1) and the Wearable Sensor Platform Ontology
(see Section 3.2.2). The MIMU Ontology describes the capabilities of
MIMUs, for example, the physical property measured by a magnetome-
ter. The Wearable Sensor Platform Ontology models the characteristics
of wearable sensor platforms, including the location where the wearable
is placed on the human body. The MIMU Ontology and the Wearable
Sensor Platform Ontology model the basic common concepts and im-
port several domain ontologies which describe in more detail concepts
like the magnitude, the units, the measurement and the survival prop-
erties, and the human body.

An important bene�t of the modularity of the MIMU-Wear is its
easy extensibility. The di�erent modules are self-contained and enable
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extending each of the ontology parts in an independent manner. An-
other important bene�t of the MIMU-Wear modularity is its reusabil-
ity in other domains. The Wearable Sensor Platform Ontology could
be used to describe the location on the human body of any wearable
sensors besides MIMUs. Using this ontology, the location of an ECG
sensor in a belt could be easily described. Similarly, the MIMU On-
tology could be used to describe any MIMUs, this means not only the
wearable ones but also the ones embedded in ambient intelligence plat-
forms. Using this ontology, the characteristics of a MIMU integrated in
a cap or door in an ambient assisted living scenario could be modeled.
The same way the MIMU Ontology and the Wearable Sensor Platform
Ontology are easily combined here, the MIMU-Wear Ontology could be
extended to cover new domains like the physiological wearable sensors
or the ambient MIMUs.

3.2.1. MIMU Ontology

The MIMU Ontology models the characteristics of the MIMUs, for
example, the magnitude observed by a gyroscope or the measurement
range of an accelerometer. The SSN Ontology is here extended to model
the particular features of the MIMUs. Thus, the particular vocabular-
ies for the properties measured by the MIMUs and the measurement
capabilities of the MIMUs, which are not part of the SSN Ontology, are
here extensively de�ned.

The main class of the MIMU Ontology is the class MIMU which rep-
resents the set of all the potential MIMU sensors (see Figure 3.2). The
class MIMU is de�ned to be a subclass of the class ssn:SensingDevice
in the SSN Ontology. The pre�x ssn in the class name indicates
that the element belongs to the SSN Ontology. Speci�cally, the class
ssn:SensingDevice is a subclass of the class ssn:Sensor and of the
class ssn:Device, and represents any physical sensors. Anything that
observes is considered a sensor in the SSN Ontology (ssn:Sensor). This
de�nition of sensor is very broad and can include any hardware device,
computational model, and even a human being. In order to narrow down
the de�nition of sensors, the class ssn:SensingDevice represents the
sensors which are also devices (ssn:Device), this means the physical
sensors like MIMUs.

Not only is the class MIMU de�ned to be a subclass of the class
ssn:SensingDevice, but also of the anonymous class ssn:observes
only MimuMagnitude. The property ssn:observes links the class
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Figure 3.2: MIMU Ontology: overview of the class MIMU and
its relation to the class MimuMeasurementCapability and the class
MimuMagnitude.

ssn:Sensor with the class ssn:Property and models n the SSN On-
tology the property observed or measured by a sensor. MimuMagnitude
is the subclass of the class ssn:Property representing the di�erent
magnitudes observed by the MIMUs and it is de�ned in the MIMU
Magnitudes Ontology (see Section 3.2.1). An anonymous class is a
class without a given name and modeled through some restrictions.
In this case, a universal restriction on the property ssn:observes de-
�nes the anonymous class ssn:observes only MimuMagnitude. Uni-
versal restrictions indicate that the property can only take a set of
values. For this example, the property ssn:observes can only take as
values the members of the class MimuMagnitude. This restriction does
not state that the property ssn:observes for the class MIMU must al-
ways be de�ned, but if it exists, it has to link to a member of the
class MimuMagnitude. Conversely, existential restrictions enforce that a
given property must always exist. Universal restrictions are modeled via
the quanti�er owl:allValuesFrom in OWL 2 and the quanti�er only
in protégé [83], and existential restrictions via owl:someValuesFrom in
OWL 2 and some in protégé. For simplicity and since the ontology has
been modeled in protégé, the simpli�ed protégé nomenclature is used
in this article.
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Completing the de�nition of the class MIMU requires modeling the
relation between a MIMU and its speci�c sensing capabilities. In the
SSN Ontology, the sensing capabilities of a sensor are represented
via the class ssn:MeasurementCapability and linked to the sen-
sor (ssn:Sensor) via the property ssn:hasMeasurementCapability.
Thus, the class MIMU is de�ned to be a subclass of the anony-
mous class ssn:hasMeasurementCapability only MimuMeasurement-
Capability. The class MimuMeasurementCapability is a subclass of
the class ssn:MeasurementCapability de�ned in the MIMU Capabili-
ties Ontology (see Section 3.2.1). From these assertions and the declared
knowledge in the SSN Ontology, it can be inferred that all the members
of the class MimuMeasurementCapability are related along the property
ssn:forProperty to an individual of the class MimuMagnitude. This
means that a given set of measurement capabilities of a MIMU are ap-
plicable for the magnitude observed by the MIMU; thus, relating the
measurement capabilities and the measured magnitude.

In order to model the di�erent types of MIMUs, three disjoint sub-
classes of the class MIMU are de�ned: Accelerometer, Gyroscope and
Magnetometer. These classes need to be further speci�ed to obtain a
greater level of detail by de�ning the anonymous classes from which
they are subclasses of. The class Accelerometer is asserted to be a
subclass of ssn:observes value acceleration, where acceleration
is a member of the class MimuMagnitude in the MIMU Magnitudes
Ontology. This means that any individual of the class Accelerometer
has inferred being a subclass of the anonymous class ssn:observes
value acceleration. In other words, any accelerometer is automat-
ically de�ned as the MIMU which measures acceleration. Similarly,
the class Gyroscope is asserted to be a subclass of ssn:observes
value rate_of_turn, where rate_of_turn is a member of the class
MimuMagnitude in the MIMU Magnitudes Ontology. In the same way,
the class Magnetometer is asserted to be a subclass of ssn:observes
value magnetic_field, where magnetic_field is a member of the
class MimuMagnitude in the MIMU Magnitudes Ontology. Thus, a gy-
roscope is the MIMU which measures rate of turn, and a magnetometer
the one which measures magnetic �eld.

Apart from de�ning the restricted property values, to com-
plete the de�nition of the three subclasses of the class MIMU,
it is necessary to assert universal restrictions on the property
ssn:hasMeasurementCapability as it is done for the class MIMU. The
class Accelerometer is asserted to be subclass of ssn:hasMeasurement-
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Capability only AccelerometerMeasurementCapability, where
AccelerometerMeasurementCapability is a subclass of the class
MimuMeasurementCapability de�ned in the MIMU Capabilities On-
tology. Similarly, the class Gyroscope is asserted to be a subclass of
ssn:hasMeasurementCapability only GyroscopeMeasurement-
Capability and the class Magnetometer is asserted to be a subclass
of ssn:hasMeasurementCapability only MagnetometerMeasurement-
Capability, where GyroscopeMeasurementCapability and
MagnetometerMeasurementCapability are subclasses of the class
MimuMeasurementCapability de�ned in the MIMU Capabilities On-
tology. From these assertions and the declared knowledge in the SSN
Ontology, it can be inferred that the class AccelerometerMeasurement-
Capability is related along the property ssn:forProperty to the in-
dividual acceleration, the class GyroscopeMeasurementCapability
is related along the property ssn:forProperty to the individual
rate_of_turn, and the class MagnetometerMeasurementCapability is
related to the individual magnetic_field.

MIMU Capabilities Ontology

The MIMU Capabilities Ontology models the sensing capabilities of
MIMUs. The main class of this ontology is the class MimuMeasurement-
Capability which is a subclass of the class ssn:Measurement-
Capability and represents the measurement capabilities of a MIMU
in speci�c conditions (see Figure 3.3). A sensor might have several ca-
pability descriptions such as its accuracy or resolution, and these are
modeled in the SSN Ontology through the class ssn:Measurement-
Property. Thus, each measurement capability of a MIMU is de-
scribed through a set of measurement properties represented by
the class MimuMeasurementProperty which is a subclass of the class
ssn:MeasurementProperty. The class MimuMeasurementCapability is
de�ned to be a subclass of the anonymous class ssn:hasMeasurement-
Property only MimuMeasurementProperty. Therefore, the class Mimu-
MeasurementCapability and the class MimuMeasurementProperty are
linked via the property ssn:hasMeasurementProperty.

Using existential and universal restrictions, the class Mimu-
MeasurementProperty is further speci�ed for the particular mea-
surement properties of MIMUs (see Figure 3.3). The class Mimu-
MeasurementProperty is de�ned to be a subclass of the anonymous
classes hasQuantityValue only xsd:float, hasRangeMaxValue only
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Figure 3.3: MIMU Capabilities Ontology: overview of the class
MimuMeasurementCapability and the class MimuMeasurement-
Property, and the relation between them.

xsd:float and hasRangeMinValue only xsd:float. The data prop-
erties hasQuantityValue, hasRangeMaxValue and hasRangeMinValue
are functional, this means, properties that can have only one unique
value. These properties take as value a xsd:float which is a datatype
of the W3C XML Schema De�nition Language (XSD) [84]. The uni-
versal restrictions on these properties indicate that not all these data
properties are mandatory to de�ne the MIMU measurement property,
in some cases asserting the value of one of them might be enough;
however, if they are asserted, they can only take as value a �oat. The
class MimuMeasurementProperty is also de�ned to be a subclass of the
anonymous classes hasUnit only UnitOfMeasure and hasUnit some
UnitOfMeasure, where UnitOfMeasure is the main class of the MIMU
Units Ontology (see Section 3.2.1), and hasUnit is a functional object
property used to de�ne the units in which the value of the speci�c
measurement property is represented. In this case, the existential and
universal restrictions on the functional object property hasUnit indi-
cate that this property needs to be always asserted and to take a single
value of the class UnitOfMeasure.

This generic de�nition of the class MimuMeasurementProperty is
not enough. Therefore, the subclasses of the class ssn:Measurement-
Property are further speci�ed to de�ne in detail the most com-
mon measurement properties of the MIMUs. Particularly, the disjoint
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Figure 3.4: MIMU Capabilities Ontology: overview of the subclasses
of the class MimuMeasurementProperty.

classes MimuMeasurementRange, MimuSensitivity, MimuResolution,
MimuFrequency, MimuDrift and MimuNoise are here de�ned (see Fig-
ure 3.4). For each of these classes, existential restrictions are as-
serted for the properties hasQuantityValue, hasRangeMaxValue and
hasRangeMinValue, and restricted property values are asserted for the
property hasUnit.

The class MimuMeasurementRange is the subclass of the class
ssn:MeasurementRange and the class MimuMeasurementProperty which
particularizes the concept of measurement range for the case of MIMUs.
The measurement range of a MIMU is de�ned as the set of values
comprised between an upper limit and a lower limit which can be
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measured by the MIMU. Therefore, the measurement range is de-
scribed as a pair of values, i.e., the maximum value and the mini-
mum value of the interval in which the MIMU can measure. In or-
der to model these two values, the class MimuMeasurementRange is de-
�ned to be a subclass of the anonymous classes hasRangeMaxValue
some xsd:float and hasRangeMinValue some xsd:float. The val-
ues de�ning the measurement range are provided in the appro-
priate units for each of the types of MIMUs (m/s2 for the ac-
celerometer, deg/s for the gyroscope, and gauss for the magnetome-
ter). Therefore, the class MimuMeasurementRange is de�ned to have
three disjoint subclasses: the class AccelerometerMeasurementRange,
the class GyroscopeMeasurementRange, and the class Magnetometer-
MeasurementRange. These classes model the di�erent measurement
ranges for each of the types of MIMUs and de�ne the correspond-
ing units for each of them. The class AccelerometerMeasurementRange
is asserted to be a subclass of the anonymous class hasUnit value
m_per_square_s (see Figure 3.5). The class GyroscopeMeasurement-
Range is asserted to be a subclass of the anonymous class hasUnit
value deg_per_s. The class MagnetometerMeasurementRange is as-
serted to be a subclass of the anonymous class hasUnit value gauss.

The class MimuSensitivity is the subclass of the class
ssn:Sensitivity and the class MimuMeasurementProperty which par-
ticularizes the concept of sensitivity for the case of MIMUs. The sensi-
tivity of a MIMU, also known as linearity, measures the calibration of
the MIMU, and is here modeled as its value in the measurement unit.
Thus, the class MimuSensitivity is de�ned to be a subclass of the
anonymous class hasQuantityValue some xsd:float, and this value
of the sensitivity is provided in the appropriate units for each type
of MIMU. Therefore, the class MimuSensitivity is de�ned to have
three disjoint subclasses: the class AccelerometerSensitivity, the
class GyroscopeSensitivity, and the class MagnetometerSensitivity.
The class AccelerometerSensitivity is de�ned to be a subclass of the
anonymous class hasUnit value m_per_square_s (see Figure 3.5), the
class GyroscopeSensitivity of the class hasUnit value deg_per_s,
and the class MagnetometerSensitivity of the class hasUnit value
gauss.

The class MimuResolution is the subclass of the class
ssn:Resolution and the class MimuMeasurementProperty which par-
ticularizes the concept of resolution for the case of MIMUs. The numeric
resolution of a MIMU is de�ned as the number of bits that represent
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Figure 3.5: MIMU Capabilities Ontology: Overview of the class
AccelerometerMeasurementCapability and the subclasses of the class
MimuMeasurementProperty which de�ne it.
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the measurement of the MIMU. Thus, the class MimuResolution is
de�ned to be a subclass of the anonymous classes hasQuantityValue
some xsd:float and hasUnit value bit (see Figure 3.5).

The class MimuFrequency is the subclass of the class ssn:Frequency
and the class MimuMeasurementProperty which particularizes the con-
cept of frequency for the case of MIMUs. The frequency of a MIMU is
de�ned as the rate in which the measurements are executed and is repre-
sented as a value in Hz. Thus, the class MimuFrequency is de�ned to be a
subclass of the anonymous classes hasQuantityValue some xsd:float
and hasUnit value hz (see Figure 3.5).

The class MimuDrift is the subclass of the class ssn:Drift and
the class MimuMeasurementProperty which particularizes the concept
of drift for the case of MIMUs. The alignment error which appears on
the data sheets of MIMUs could be interpreted as a drift and measures
the misalignment between the axes of the MIMUs. This alignment er-
ror is represented as a value in degrees. Thus, the class MimuDrift is
de�ned to be a subclass of the anonymous classes hasQuantityValue
some xsd:float and hasUnit value deg (see Figure 3.5).

The class MimuNoise is the subclass of the class MimuMeasurement-
Property which represents the noise of the MIMU. This is an im-
portant measurement property of the MIMUs which is not part of
the SSN Ontology. The class MimuNoise is de�ned to be a sub-
class of the anonymous class hasQuantityValue some xsd:float.
The value of the density of noise is provided in the appropriate
units for each type of MIMU (m/s2/

√
Hz for the accelerometer,

deg/s/
√
Hz for the gyroscope, and gauss/

√
Hz for the magnetome-

ter). Therefore, the class MimuNoise is de�ned to have three disjoint
subclasses: the class AccelerometerNoise, the class GyroscopeNoise
and the class MagnetometerNoise. The class AccelerometerNoise is
asserted to be a subclass of the anonymous class hasUnit value
m_per_square_s_and_root_hz (see Figure 3.5). The class Gyroscope-
Noise is asserted to be a subclass of the anonymous class hasUnit
value deg_per_s_and_root_hz. The class MagnetometerNoise is as-
serted to be a subclass of the anonymous class hasUnit value
gauss_per_ root_hz.

Finally, to conclude with the modeling of the measurement ca-
pabilities and the measurement properties of the MIMUs, the class
MimuMeasurementCapability needs to be linked to the subclasses of
the class MimuMeasurementProperty, namely MimuMeasurementRange,
MimuSensitivity, MimuResolution, MimuDrift, MimuFrequency and
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MimuNoise. In fact, the class MimuMeasurementCapability and the
class MimuMeasurementProperty are already linked via the property
ssn:hasMeasurementProperty. However, some of the subclasses of
the class MimuMeasurementProperty are more particular and only ap-
ply to some speci�c types of MIMU. For this reason, the classes
AccelerometerMeasurementCapability, GyroscopeMeasurement-
Capability and MagnetometerMeasurementCapability, which are the
three disjoint subclasses of the class MimuMeasurementCapability,
are created to de�ne the capabilities of the di�erent types of
MIMUs. The class AccelerometerMeasurementCapability is asserted
to be a subclass of the anonymous class ssn:hasMeasurement-
Property only (AccelerometerMeasurementRange or Accelerometer-
Sensitivity or MimuResolution or MimuFrequency or MimuDrift or
AccelerometerNoise) (see Figure 3.5). Similarly, the class Gyroscope-
MeasurementCapability is asserted to be a subclass of the anonymous
class ssn:hasMeasurementProperty only (GyroscopeMeasurement-
Range or GyroscopeSensitivity or MimuResolution or Mimu-
Frequency or MimuDrift or GyroscopeNoise), and the class
MagnetometerMeasurementCapability is asserted to be a subclass of
the anonymous class ssn:hasMeasurementProperty only
(MagnetometerMeasurementRange or MagnetometerSensitivity or
MimuResolution or MimuFrequency or MimuDrift or Magnetometer-
Noise).

MIMU Magnitudes Ontology

The class MimuMagnitude is the main class of the MIMU Magnitudes
Ontology and represents the di�erent magnitudes or physical proper-
ties that can be observed by a MIMU. For the class MimuMagnitude
three di�erent individuals are de�ned: acceleration, rate_of_turn,
and magnetic_field. The name of the individuals indicate the magni-
tude the MIMU is able to measure. These members are asserted to be
di�erent one from each other since they represent di�erent concepts.

In this work, the magnitudes measured by the MIMU have been
de�ned in a simple domain ontology. The MIMU Ontology could be
easily extended to include any available ontology which describes mag-
nitudes. For example, the MyMobileWeb Measurement Units Ontology
(MUO) could be used to represent the acceleration and the individ-
ual muo:acceleration of the class muo:PhysicalQuality would be the
equivalent to the presented individual acceleration. If multiple magni-
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tude ontolgies would be used for the same scenario description, ontology
matching would be required to map the concepts of di�erent domain
ontologies into the proposed MIMU Magnitudes Ontology.

MIMU Units Ontology

The class UnitOfMeasure is the main class of the MIMU Units On-
tology and represents the di�erent measurement units required to
describe the capabilities of a MIMU. For the class UnitOfMeasure
several individuals are de�ned: m_per_square_s (representing m/s2),
gauss (gauss), deg_per_s (deg/s), hz (hertz), bit (bit), deg (degree),
m_per_square_s_and_root_hz (m/s2/

√
Hz), gauss_per_root_hz

(gauss/
√
Hz), deg_per_s_and_root_hz (deg/s/

√
Hz). All these individ-

uals are asserted to be di�erent from each other since they represent dif-
ferent concepts. The name of the members of the class UnitOfMeasure
indicate the name of the unit of the International System of Units which
they represent.

The units modeled in the MIMU Units Ontology and used in the
MIMU Capabilities Ontology are the only ones required for this speci�c
domain. However, this simple ontology could be extended in the future
to include other unit systems. The extension of this ontology would
imply creating new subclasses of the class UnitOfMeasure and estab-
lishing the conversion between the di�erent measurement systems and
units. Moreover, external ontologies like the MyMobileWeb Measure-
ment Units Ontology (MUO) or the SysML-QUDV could be plugged
into the MIMU Ontology to describe the units. In the case of coexisting
more than one units ontology, the concepts should be matched into the
proposed MIMU Units Ontology.

3.2.2. Wearable Sensor Platform Ontology

The Wearable Sensor Platform Ontology models the characteristics of
wearable sensor platforms. In order to describe the survival conditions
of wearable systems and the localization of the wearable sensor plat-
form on the body of the user, the SSN Ontology is here extended.
The Wearable Sensor Platform Ontology neatly de�nes vocabularies to
model the survival range of the wearables and their locations, which
are not part of the SSN Ontology.

The main class of the Wearable Sensor Platform Ontology is the
class WearableSensorPlatform (see Figure 3.6). This class is a subclass
of the class ssn:Platform and particularizes the concept of platform
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Figure 3.6: Wearable Sensor Platform Ontology: overview of the class
WearableSensorPlatform and its relation to the class WearableSystem
and the class HumanBodyPart.

for the case of wearable sensor platforms. The platform (ssn:Platform)
as described in the SSN Ontology is the entity that hosts a system
(ssn:System), and a system is any part of the sensing infrastructure.
In other words, the system may be mounted or deployed on a platform,
here the entity to which the system is attached. For example, a bracelet
that tracks the user activity would be the platform into which the
sensing system composed of some accelerometers is embedded. The
wearable system is modeled through the class WearableSystem which
is the subclass of the class ssn:System and of the anonymous class
ssn:onPlatform only WearableSensorPlatform.

One of the most important characteristics of wearable sensor plat-
forms is that they are worn or located on the body of the user. Thus,
the class WearableSensorPlatform is asserted to be a subclass of the
anonymous class placedOn only HumanBodyPart, where the property
placedOn is used to de�ne the spatial attributes of the wearable plat-
form and the class HumanBodyPart is the main class of the Human Body
Ontology (see Section 3.2.2).

Finally, to represent the survival conditions of a wearable system
such as its battery lifetime, the class WearableSystem is declared to be
a subclass of the anonymous class ssn:hasSurvivalRange Wearable-
SurvivalRange. The class WearableSurvivalRange is the subclass of
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the class ssn:SurvivalRange which describes the survival conditions of
wearables and is de�ned in the Wearables Survival Range Ontology (see
Section 3.2.2). The property ssn:hasSurvivalRange links the survival
conditions to the system.

Human Body Ontology

The Human Body Ontology models the human body parts repre-
senting the potential locations where the wearable sensor platforms
are worn. The main class of the Human Body Ontology is the class
HumanBodyPart which represents each one of the body parts (see Fig-
ure 3.7). The main division of the body is done in four parts: head,
trunk, upper limbs and lower limbs. Therefore, four classes are de-
�ned as subclasses of the class HumanBodyPart: Head, Trunk, UpperLimb
and LowerLimb. Moreover, each of the main body parts can be fur-
ther partitioned into subdivisions, which are also parts of the human
body and therefore subclasses of the class HumanBodyPart. The class
HeadSubdivision has been speci�ed to de�ne the subdivisions of the
head: face and scalp. The class TrunkSubdivision has been speci�ed
to de�ne the subdivisions of the trunk: thorax, abdomen and back.
The class UpperLimbSubdivision has been speci�ed to de�ne the sub-
divisions of the upper limbs: shoulder, arm, elbow, forearm, wrist, and
hand. The class LowerLimbSubdivision has been speci�ed to de�ne the
subdivisions of the lower limbs: hip, thigh, knee, leg, ankle, and foot.

In order to set the links between each of the main body parts and
their corresponding subdivisions, the object property hasPart has been
de�ned as well as its inverse property partOf which relates the subdi-
visions to their containing main body part. The link between the class
HeadSubdivision and the class Head is created by using the property
partOf and asserting that the class HeadSubdivision is a subclass of
the anonymous class partOf only Head. From this assertion, it can be
inferred that the inverse property hasPart links the class Head to the
class HeadSubdivision, i.e., the class Head is a subclass of the anony-
mous class hasPart only HeadSubdivision. Moreover, it can also be
inferred that the class Face and the class Scalp, which are subclasses
from the class HeadSubdivision, are also subclasses of the anonymous
class partOf some Head. Finally, cardinality restrictions have been as-
serted to complete the de�nition of the relation between the main body
parts and their subdivisions. Cardinality restrictions are used to con-
strain the number of values of a particular property, for example, a head
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Figure 3.7: Human Body Ontology: overview of the hi-
erarchy of subclasses for the class HumanBodyPart, includ-
ing its direct subclasses Head, Trunk, UpperLimb, LowerLimb,
HeadSubdivision, TrunkSubdivision, UpperLimbSubdivision and
LowerLimbSubdivision, and their subclasses.

has exactly one face. Therefore, the class Head has been de�ned as be-
ing a subclass of the anonymous class (hasPart exactly 1 Face) and
(hasPart exactly 1 Scalp) (see Figure 3.8). The relations between
the rest of body parts and their subdivisions have been established us-
ing the same modeling principle (see Figure 3.9 for the de�nition of the
class Trunk, Figure 3.10 for UpperLimb and Figure 3.11 for LowerLimb).
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Figure 3.8: Human Body Ontology: overview of the class Head and
the class HeadSubdivision.

Figure 3.9: Human Body Ontology: overview of the class Trunk and
the class TrunkSubdivision.
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Figure 3.10: Human Body Ontology: overview of the class
UpperLimb and the class UpperLimbSubdivision.
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Figure 3.11: Human Body Ontology: overview of the class
LowerLimb and the class LowerLimbSubdivision.
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Not only are the di�erent body parts subdivided in a hierarchical
manner, they are also connected to other parts. Several object prop-
erties have been de�ned in the Human Body Ontology to describe the
connections among body parts and their subdivisions. The top prop-
erty is connectedTo and it has eight subproperties de�ning the connec-
tions of body parts according to the standard human directional terms:
superior or inferior, anterior or posterior, medial or lateral, proximal
or distal. The property superiorlyConnectedTo relates a body part
with another one located towards the top of the body or human head,
and has as inverse the property inferiorlyConnectedTo. The prop-
erty anteriorlyConnectedTo relates a body part with another one
located towards the front of the body, and has as inverse the prop-
erty posteriorlyConnectedTo. The property laterallyConnectedTo
relates a body part with another one located towards the lateral of
the body, and has as inverse the property mediallyConnectedTo. The
property proximallyConnectedTo relates a body part with another one
located towards the main mass of the body, and has as inverse the prop-
erty distallyConnectedTo.

To complete the ontology de�nition, the connections among
the body parts need to be established using the subproperties of
connectedTo. For example, in the case of the trunk (see Figure 3.9),
this is modeled via the class Trunk and it has three subdivisions repre-
sented through the classes Thorax, Abdomen and Back. The thorax and
the abdomen conform the anterior part of the trunk and the back the
posterior part of it. Therefore, the class Back is de�ned to be a subclass
of the anonymous class anteriorlyConnectedTo some Thorax and the
anonymous class anteriorlyConnectedTo some Abdomen. The connec-
tion between the class Thorax and the class Back can be directly in-
ferred from the inverse properties. Thus, the class Thorax is inferred to
be a subclass of the anonymous class posteriorlyConnectedTo some
Back. Similarly, the class Abdomen is inferred to be as a subclass of the
anonymous class posteriorlyConnectedTo some Back. Moreover, the
thorax is located on top of the abdomen, and the class Abdomen is as-
serted to be a subclass of the anonymous class superiorlyConnectedTo
some Thorax. The corresponding inverse links can be directly inferred.
Then, the class Thorax is inferred to be a subclass of the anony-
mous class inferiorlyConnectedTo some Abdomen. The connections
between the subdivisions of the head are established through the same
subproperties of connectedTo (see Figure 3.8). In the case of the up-
per and lower limbs, the same modeling principle applies but the prop-
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erty proximallyConnectedTo and its inverse distallyConnectedTo are
used to establish the connections (see Figure 3.10 and Figure 3.11).
For example, the Forearm is a subclass of the anonymous class
proximallyConnectedTo some Elbow, since the forearm is more dis-
tant from the trunk than the elbow. The connections between the main
body parts can also be established through the eight subproperties of
the property connectedTo. The main di�erence with the previous ex-
amples is the usage of the property lateralyConnectedTo. The trunk
is in the middle of the body and the upper limbs are in a lateral position
from the trunk. Thus, the connection between the class Trunk and the
class UpperLimb is created by using the property lateralyConnectedTo
and de�ning the class Trunk as a subclass of the anonymous class
lateralyConnectedTo some UpperLimb.

The property symmetricTo is used to model the relations between
body parts symmetrically located on the human body. For example,
the individual user_left_upperlimb of the class UpperLimb is related
to the individual user_right_upperlimb of the class UpperLimb along
the property symmetricTo.

The Human Body Ontology models the human body so that the
location of a wearable sensor platform on speci�c body parts can be ex-
haustively described. The Wearable Sensor Platform Ontology could be
easily extended to include any available ontology modeling the human
body. Two possible candidates are the Foundational Model of Anatomy
ontology (FMA) [85], one of the most complete knowledge source for
bioinformatics which represents the phenotypic structure of the human
body, and the Uber anatomy ontology (Uberon) [86], an anatomy on-
tology that integrates any type of animal species. These ontologies are
much more extensive than the Human Body Ontology and cover many
concepts which are not required to model the location of wearable sen-
sor platforms on the human body. However, the appropriate concepts
could be mapped into the Human Body Ontology to enable their coex-
istance in the Wearable Sensor Platform Ontology.

The Human Body Ontology is extensible and new concepts can be
added in a simple fashion. In future versions of this ontology, some
characteristics of the body parts could extend the de�nition of the
class HumanBodyPart. These new concepts would be directly inherited
by all the subclasses representing the di�erent body parts, such as the
UpperLimb or Back. One example of the new characteristics that could
be modeled in the Human Body Ontology is the mobility level of a
body part. A system taking into account possible injuries of the user in
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the selection of the wearable sensor platforms would require this infor-
mation. In such a scenario, marking the injured body parts and with
reduced mobility would be relevant to avoid selecting a replacement
sensor platform worn on these body parts.

Wearables Survival Range Ontology

The Wearables Survival Range Ontology models the survival con-
ditions of a wearable system. The main class of this ontology
is the class WearableSurvivalRange which is a subclass of the
class ssn:SurvivalRange and represents the survival range of wear-
able systems (see Figure 3.12). The survival conditions of a wear-
able system are described through a set of survival properties
represented by the class WearableSurvivalProperty, which is a
subclass of the class ssn:SurvivalProperty. Moreover, the class
WearableSurvivalRange is declared to be a subclass of the anonymous
class ssn:hasSurvivalProperty only WearableSurvivalProperty.

The class WearableSurvivalProperty is further speci�ed to model
the most common survival properties of the wearable systems. Par-
ticularly, the class WearableBatteryLifetime is de�ned to repre-
sent the lifetime of the battery in a wearable system. The class
WearableBatteryLifetime is a subclass of the class Wearable-
SurvivalProperty and the class ssn:BatteryLifetime for which some
restrictions are asserted. The class WearableBatteryLifetime is a
subclass of the anonymous classes hasQuantityValue some xsd:float
and hasQuantityValue only xsd:float, where hasQuantityValue is
a functional data property, and xsd:float is the datatype of the W3C
XML Schema De�nition Language (XSD) [84]. These universal and ex-
istential restrictions on the property hasQuantityValue indicate that
there must be a value for this property and it has to be of type �oat.
Moreover, the class WearableBatteryLifetime is also asserted to be a
subclass of the anonymous class hasUnit value s, where hasUnit is a
functional object property used to de�ne the units in which the battery
lifetime is measured, and s is the individual of the class UnitOfMeasure
which represents the seconds.

The Wearables Survival Range Ontology only de�nes the lifetime
of the battery as a property of the wearable system. However, this
ontology could be easily extended in the future to model more sur-
vival properties of the wearable systems, such as memory resources
or processing power. These properties are certainly important for the
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Figure 3.12:Wearables Survival Range Ontology: overview of the class
WearableSurvivalRange and the class WearableSurvivalProperty.

self-con�guration of the wearable sensor system at runtime. In this sce-
nario, sensors need to be associated to a wearable systems and knowing
the system memory is crucial to ensure that the sensors can be sup-
ported. Thus, in the future the class WearableSurvivalProperty could
be subclassed to model these concepts.

3.2.3. Description of MIMU-based Wearable Platforms Using
MIMU-Wear

The presented MIMU-Wear Ontology models the basic concepts to de-
scribe wearable sensor platforms consisting of MIMUs. However, in or-
der to describe a speci�c model of a MIMU or a precise wearable sen-
sor platform, the de�nition of some more restrictive classes is required.
Moreover, to describe the particular operation mode of a MIMU or the
location of wearable sensor platform, instances of the classes described
in the MIMU-Wear Ontology need to be generated. In the following,
the use of the MIMU-Wear Ontology to describe MIMU-based sensor
platforms is presented. An example of its application in the description
of a real scenario is analyzed in Section 3.4.2.

To represent a speci�c model and brand of MIMU, the threes sub-
classes of the class MIMU - Accelerometer, Gyroscope and Magnetometer
- can be further subclassed in order to group the MIMUs with common
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properties. In the de�nition of a particular model of MIMU there is
no need to assert the value of the property ssn:observes since this
is directly inferred from its superclass. However, further de�nition of
the subclasses of the class MimuMeasurementCapability is required to
model the MIMUmeasurement capabilities. For example, an accelerom-
eter of a precise brand and model is described as a subclass of the
class Accelerometer. The axiom ssn:observes value acceleration
is directly inferred for this subclass. This means that the class group-
ing these type of accelerometers is inferred to be as a subclass of
the MIMUs which measure the acceleration magnitude. However, in
the description of this accelerometer is necessary to de�ne its speci�c
measurement range as one of its capabilities. To model the measure-
ment range as a capability of the accelerometer, a subclass of the class
AccelerometerMeasurementCapability should be created and linked
to a new member of the class AccelerometerMeasurementRange via
the property ssn:hasMeasurementProperty. For the member of the
class AccelerometerMeasurementRange, the values of the data prop-
erties hasMaxValue and hasMinValue should be asserted to indicate
the value in m/s2 that de�ne the interval of the accelerometer dy-
namic range. The units do not need to be asserted since the axiom
hasUnit value m_per_square_s is directly inferred from the super-
class AccelerometerMeasurementRange.

The individuals of the class MIMU and the individuals of its sub-
classes represent the particular MIMUs. The description of a precise
MIMU is created by de�ning the corresponding individual of the ap-
propriate subclass of the class MIMU. Several general axioms de�ning
the MIMU are already inferred from the class de�nition when creating
the individual. However, the capabilities of the MIMU for the current
working mode need to be speci�ed. This means, asserting the speci�c
value taken by the property hasMeasurementCapability.

In a working scenario, it could be the MIMU vendor the one that
provides the ontological description of their particular model of MIMU.
This means that the vendor provides the description of the appropriate
subclass of the class MIMU - Accelerometer, Gyroscope or Magnetometer
-. The MIMU description would be created using the MIMU Ontology
part of MIMU-Wear in an approach based on Linked Data [87]. This
would enable to create the MIMU descriptions in a distributed fashion,
make them available to the public and reuse them in di�erent scenarios.
Moreover, it would be quite e�cient to generate the descriptions for any
speci�c MIMU by only creating an individual of the class representing
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the particular model of MIMU and which has already been provided
by the vendor.

Similarly, the wearable sensor platforms can be further de�ned
to represent speci�c models. In this case, a subclass of the class
WearableSensorPlatform is created and linked to the correspond-
ing new subclass of the class WearableSystem. For a speci�c model
and brand of wearable sensor system, universal restrictions and car-
dinality restrictions on the property ssn:hasSubsystem have to be
asserted to link to the particular models of MIMU integrated in the
wearable platform. These assertions relate the subclasses of the class
WearableSensorPlatform in the Wearable Sensor Platform Ontology
with the subclasses of the class MIMU in the MIMU Ontology; thus,
linking the two main parts of MIMU-Wear. The vendor of the wearable
sensor platform could create the ontological description of their par-
ticular model of wearable and make it publicly available. In fact, this
vendor could directly use the description provided by the vendor of the
MIMU and particularize it for the speci�c setup in a strategy based on
the Linked Data concept.

The individuals of the class WearableSensorPlatform and the in-
dividuals of its subclasses represent the speci�c wearable sensor plat-
forms. Therefore, a description of a speci�c wearable sensor platforms
is created by de�ning the corresponding individual of the appropriate
subclass of the class WearableSensorPlatform. The user of a wear-
able sensor platform would be able to generate the description of their
particular wearable device by simply creating an instance of the class
describing the wearable which is provided by the vendor. The descrip-
tion of the wearable should be completed for the deployment scenario,
including the location of the sensor. This means that the property
placedOn which links the class WearableSensorPlatform with the class
HumanBodyPart, should be asserted for the speci�c wearable. For exam-
ple, in the case of a bracelet, the value of the property placedOn would
be an individual of the class Wrist, particularly the one representing
the wrist of the user wearing the bracelet. In order to link a wearable
sensor platform to a particular body part, the model of the body of the
user should be previously created. This means de�ning the individuals
for the di�erent body parts of the user, so that they could be integrated
in the description of the wearable.

The deployment is a dynamic condition of the wearable sensor plat-
form. The user can wear on the wearable, or take it o� and leave it
resting aside. Therefore, the property placedOn in the description of



3.3. A Method for Sensor Selection based on MIMU-Wear 47

the wearable sensor platform should be updated every time there is a
change to re�ect the real time situation.

3.3. A Method for Sensor Selection based on MIMU-
Wear

This section presents a novel sensor selection method to enable the
replacement of anomalous MIMU sensors in wearable behavior recog-
nition systems whenever a sensor is detected to have su�ered some
anomaly. The goal of the sensor selection method is to ensure continu-
ity of behavior recognition. Due to the failure or the fault of one of the
MIMU sensors, the performance of the wearable behavior recognition
system might decrease. Using a replacement sensor which can provide
the human behavior recognition system with a similar sensing func-
tionality, the performance of this behavior recognition system could in
principle get restored to its original value.

The proposed sensor selection method is based on the MIMU-Wear
Ontology and requires that all the available MIMU-based wearable sen-
sor platforms are described using this ontology. Several rules are estab-
lished in order to de�ne the candidate replacement MIMU sensors to be
used in the wearable behavior recognition system (see Subsection 3.3.1).
The rules might depend on the application scenario and need to be par-
ticularized and prioritized for each speci�c case. The combination of the
rules and the MIMU-Wear Ontology provides the inference features
required to determine the replacement sensors. Posing the adequate
queries on the descriptions of the available MIMU-based wearable sen-
sor platforms will allow selecting the best MIMU sensors which could
replace the ones su�ering anomalies in a wearable behavior recognition
system (see Subsection 3.3.2).

3.3.1. Rules for Candidate Sensor Replacements

Rules are required to determine the MIMU sensors which are possible
candidates for the replacement of an anomalous sensor in a wearable
behavior recognition system. In the proposed sensor selection method,
SWRL rules are utilized to de�ne the candidate replacement sensors.
SWRL [8] is characterized to integrate with OWL 2 and therefore,
it bene�ts from the full potential of ontological reasoning o�ered by
OWL 2.
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The rules de�ned to determine the candidate replacement sensors
build on the MIMU-Wear Ontology and utilize the concepts represented
in it. In order to model the relation of one sensor with its potential
candidate replacement ones, the object property hasReplacement has
been de�ned. This property links two individuals of the class MIMU;
thus, it has the class MIMU as part of its domain and its range. More-
over, several subproperties of the property hasReplacement have been
de�ned to particularize the conditions in which the candidate sensor
has been proposed for replacement. The name of the properties are
self-explanatory and describe the characteristics of the candidate re-
placement sensor. For example, the property hasReplacementSameType
is utilized to link a MIMU sensor with another one which is a candi-
date replacement since it measures the same type of magnitude. This
means that an accelerometer is proposed as candidate using the prop-
erty hasReplacementSameType, if the faulty sensor is an accelerometer,
or a gyroscope in the case of an anomalous gyroscope, or a magnetome-
ter in the case of a failure in a magnetometer.

The rules for candidate sensor replacements depend on the appli-
cation scenario and the particular requirements of the human behavior
recognition system. Therefore, depending on the characteristics of the
behavior recognition problem a di�erent set of rules should be used.
Several rules which are generic and might apply to multiple scenarios
are presented in the following. One should note that the results pro-
duced by some of these rules might be contradictory since they tackle
di�erent problems. Moreover, the list of rules is not exhaustive and
only intends to showcase di�erent possibilities o�ered by the proposed
sensor selection method.

The identi�cation of candidate sensor replacements should be done
on the basis of the sensing functionalities o�ered by the MIMU sensors.
The most prominent of these functionalities is the kind of magnitude
measured by the sensor which determines the type of MIMU. Therefore,
Table 3.1 shows three rules de�ned for the identi�cation of candidate
sensor replacements based on the type of anomalous MIMU sensor.

The �rst idea one could consider to �nd a replacement for an anoma-
lous MIMU in a wearable behavior recognition system would be trying
to get the signal of any other MIMU able to measure the same type
of magnitude. Rule#1 describes this situation: if ?s1 and ?s2 are two
di�erent MIMUs which observe the same magnitude, represented in the
rule as ?m1 and ?m2, then ?s2 is a candidate replacement for ?s1.



3.3. A Method for Sensor Selection based on MIMU-Wear 49

In case there is no other MIMU able to measure the same type
of magnitude, transfer learning could be applied [88]. In this case, the
requirement would be �nding a replacement sensor of another modality
capable of measuring a di�erent type of magnitude. Rule#2 states that
the magnitude observed by two di�erent MIMUs has to be di�erent in
order for ?s2 to be a candidate replacement for ?s1.

In a more particular case of transfer learning where this technique
could only be applied from the acceleration signal to the rate of turn
signal, a failing accelerometer could be replaced by a gyroscope as spec-
i�ed in Rule#3.

Table 3.1: Rules for identi�cation of candidate sensor replace-
ments based on the MIMU types.

ID Description Rule

1 Same MIMU
type

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1,
?m2) ∧ di�erentFrom(?s1,?s2) → hasRe-
placementSameType(?s1,?s2)

2 Di�erent
MIMU type

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ di�erentFrom(?m1,
?m2) → hasReplacementDi�Type(?s1,?s2)

3 Gyroscope to
replace an Ac-
celerometer

Accelerometer(?s1) ∧ Gyroscope(?s2) →
hasReplacementAccGyro(?s1,?s2)

In the rules presented in Table 3.1, the kind of magnitude measured
by the sensor, which determines the type of MIMU, is only consid-
ered for the identi�cation of candidate sensor replacements. However,
the sensing functionalities o�ered by a MIMU sensor are not only rep-
resented by the measured magnitude, but also by their measurement
capabilities. Therefore, Table 3.2 presents some rules which enable the
identi�cation of candidate sensor replacements based on the measure-
ment capabilities of the MIMUs. These rules extend the rules presented
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in Table 3.1 and incorporate restrictions on the measurement properties
which de�ne the measurement capabilities of the MIMUs.

Rule#4 identi�es candidate replacements which are able of measur-
ing the same type of magnitude and have an equal or greater measure-
ment range. Imposing this condition on the measurement range, one
can expect that all the values of the signal collected originally will also
be registered by the replacement MIMU, i.e., there will be no signal
clipping. The rule states that if ?s1 and ?s2 are two di�erent MIMUs
which observe the same magnitude (?m1 and ?m2), and the upper limit
of the measurement range of the second sensor (?max2) is greater or
equal than the upper limit of the measurement range of the �rst sensor
(?max1), and the lower limit of the measurement range of the second
sensor (?min2) is less or equal than the lower limit of the measurement
range of the �rst sensor (?min1), then ?s2 is a candidate replacement
for ?s1.

Similarly, Rule#5 identi�es candidate replacements which are able
of measuring the same type of magnitude and have an equal or greater
value for the sensitivity. Therefore, if the MIMU ?s2 has a sensitivity
(?p2) that takes a value ?v2 which is greater than or equal to ?v1
which is the sensitivity (?p1) of the sensor ?s1, then ?s2 is a candidate
replacement for ?s1.

In the case of Rule#6 the condition is imposed on the resolution of
the candidate replacement which needs to be equal or greater than the
original one (swrlb:greaterThanOrEqual(?v2, ?v1), where ?v1 and ?v2
are the values of the resolution of the MIMUs ?s1 and ?s2).

In Rule#7 and Rule#8 the candidate replacement MIMUs of the
same type need to have, respectively, less or equal drift, and less or
equal noise levels (swrlb:lessThanOrEqual(?v2, ?v1), where ?v1 and
?v2 are the values of the drift or the noise of the sensors ?s1 and ?s2).

Finally, Rule#9 identi�es candidate replacements which belong to a
di�erent MIMU type but execute the measurements at the same rate or
frequency. Therefore, if the sensor ?s2 has a frequency (?p2) that takes
a value ?v2 equal to ?v1 which is the frequency (?p1) of the sensor ?s1,
i.e., swrlb:equal(?v2, ?v1), then ?s2 is a candidate replacement for ?s1.

Rule#4, Rule#5, Rule#6, Rule#7, Rule#8 and Rule#9 could be
merged in any combination in order to pose simultaneously several
conditions in more than one of the measurement properties which de�ne
the measurement capabilities of the MIMUs.
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Table 3.2: Rules for identi�cation of candidate sensor replace-
ments based on the measurement capabilities of the MIMU.

ID Description Rule

4 Same MIMU
type with
equal or
greater Mea-
surement
Range

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1, ?m2)
∧ ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1) ∧
ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuMeasurementRange(?p1) ∧
MimuMeasurementRange(?p2) ∧
hasRangeMaxValue(?p1,?max1) ∧
hasRangeMaxValue(?p2,?max2) ∧
hasRangeMinValue(?p1,?min1) ∧
hasRangeMinValue(?p2,?min2) ∧
swrlb:greaterThanOrEqual(?max2, ?max1)
∧ swrlb:lessThanOrEqual(?min2, ?min1)
∧ di�erentFrom(?s1,?s2) → hasReplace-
mentSameTypeRange(?s1,?s2)

5 Same MIMU
type with
equal or
greater Sensi-
tivity

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1, ?m2)
∧ ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1)
∧ ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuSensitivity(?p1) ∧ MimuSensitiv-
ity(?p2) ∧ hasQuantityValue(?p1,?v1)
∧ hasQuantityValue(?p2,?v2) ∧
swrlb:greaterThanOrEqual(?v2, ?v1) ∧
di�erentFrom(?s1,?s2) → hasReplace-
mentSameTypeSens(?s1,?s2)

Continued on next page
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Table 3.2 continued from previous page

ID Description Rule

6 Same MIMU
type with
equal or
greater Reso-
lution

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1, ?m2)
∧ ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1)
∧ ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuResolution(?p1) ∧ MimuResolu-
tion(?p2) ∧ hasQuantityValue(?p1,?v1)
∧ hasQuantityValue(?p2,?v2) ∧
swrlb:greaterThanOrEqual(?v2, ?v1) ∧
di�erentFrom(?s1,?s2) → hasReplace-
mentSameTypeRes(?s1,?s2)

7 Same MIMU
type with
equal or less
Drift

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1, ?m2)
∧ ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1)
∧ ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuDrift(?p1) ∧ MimuDrift(?p2)
∧ hasQuantityValue(?p1,?v1) ∧
hasQuantityValue(?p2,?v2) ∧
swrlb:lessThanOrEqual(?v2, ?v1) ∧
di�erentFrom(?s1,?s2) → hasReplace-
mentSameTypeDrift(?s1,?s2)

Continued on next page
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Table 3.2 continued from previous page

ID Description Rule

8 Same MIMU
type with
equal or less
Noise

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1, ?m2)
∧ ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1)
∧ ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuNoise(?p1) ∧ MimuNoise(?p2)
∧ hasQuantityValue(?p1,?v1) ∧
hasQuantityValue(?p2,?v2) ∧
swrlb:lessThanOrEqual(?v2, ?v1) ∧
di�erentFrom(?s1,?s2) → hasReplace-
mentSameTypeNoise(?s1,?s2)

9 Di�erent
MIMU type
with same
Frequency

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ dif-
ferentFrom(?m1, ?m2) ∧
ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1)
∧ ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuFrequency(?p1) ∧ MimuFre-
quency(?p2) ∧ hasQuantityValue(?p1,?v1)
∧ hasQuantityValue(?p2,?v2) ∧
swrlb:equal(?v2, ?v1) ∧ → hasReplace-
mentDi�TypeFreq(?s1,?s2)

Candidate sensor replacements can also be identi�ed on the ba-
sis of the characteristics of the wearable sensor platform such as its
location on the body of the user [4]. In fact, the location where the
wearable sensor platform is placed on the human body is of utmost
importance for the performance of the wearable behavior recognition
system. Therefore, some rules incorporating the location of the wear-
able sensor platform hosting the MIMU need to be de�ned. Table 3.3
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presents some rules for the identi�cation of candidate sensor replace-
ments based on the locations of the wearable sensor platform hosting
the MIMU.

The �rst option would be �nding a candidate replacement for an
anomalous MIMU in the same wearable sensor platform. This means
that the two MIMUs coexist in the same physical device and it could
be expected that they provide similar signals. Rule#10 speci�es that
two MIMUs (?s1 and ?s2) are part of the same wearable sensor plat-
form, represented as ?w1 and ?w2, and therefore ?s2 is a candidate
replacement for ?s1.

Another option would be identifying as a candidate replacement a
MIMU sensor hosted on a wearable sensor platform located on the same
body part where the anomalous sensor is. If the two sensors are worn
on the same body part, one could expect that the measurements they
provide would be very similar. Rule#11 states that if two MIMUs (?s1
and ?s2) are part of two wearable sensor platforms which are located
on the same body part (?l1 and ?l2), ?s2 is a candidate replacement
for ?s1.

In case no MIMU sensor hosted on a wearable sensor platform is
located on the body part where the anomalous sensor is, it would be
logical trying to identify a candidate replacement located on any of
the adjacent body parts. If two body parts are connected, for example
the forearm with the elbow, one could expect that their movements
are similar and the MIMUs worn on them are candidate sensors for
replacement. Rule#12 presents this idea: if two MIMUs (?s1 and ?s2)
are part of two wearable sensor platforms (?w1 and ?w2) located on
two connected body parts (represented in the rule as connectedTo(?l1,
?l2) where ?l1 and ?l2 are the body parts), then ?s2 is a candidate
replacement for ?s1.

In case no sensor is available on the adjacent body parts, one could
think of the identi�cation of a replacement MIMU sensor hosted on a
wearable sensor platform located on a body part directly connected to
the adjacent body part. According to Rule#13, a MIMU sensor hosted
on a wearable sensor platform located on the arm would be a candidate
to replace an anomalous sensor on the forearm.

A more general option would be identifying as a candidate replace-
ment a MIMU sensor hosted on a wearable sensor platform located on
the same body division. For example, if the anomalous sensor is located
on the forearm, any other MIMU sensor hosted on a wearable sensor
platform located on the same upper limb would be a candidate sensor
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for replacement. Rule#14 presents this idea: if two MIMUs (?s1 and
?s2) are part of two wearable sensor platforms which are located on
two body parts (?l1 and ?l2) which are part of the same body divi-
sion, represented in the rule as partOf(?l1,?d1), partOf(?l2,?d2) and
sameAs(?d1, ?d2), then ?s2 is a candidate replacement for ?s1.

Alternatively, another approach would be �nding a candidate re-
placement for an anomalous MIMU in a wearable sensor platform lo-
cated on the symmetric body part. Frequently, daily living activities
equally involve both sides of the body; therefore, it might be reason-
able to imagine that the signal produced by the sensor on the symmetric
body part could be mirroring the actual one. In these conditions, the
MIMU sensor hosted on a wearable sensor platform located on left fore-
arm would be a candidate to replace the anomalous sensor on the right
forearm. Rule#15 de�nes this situation: if two MIMUs (?s1 and ?s2)
are part of two wearable sensor platforms which are located on sym-
metric body parts, represented in the rule as symmetricTo(?l1, ?l2),
then ?s2 is a candidate replacement for ?s1.

A similar but more general option would identifying as a candidate
replacement a MIMU sensor hosted on a wearable sensor platform lo-
cated on the symmetric body division. According to Rule#16, any sen-
sor on the left upper limb would be a candidate to replace an anomalous
sensor on the right forearm.

Table 3.3: Rules for identi�cation of candidate sensor replace-
ments based on the location of the wearable sensor platform hosting
the MIMU.

ID Description Rule

10 On same plat-
form

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ sameAs(?w1,
?w2) ∧ di�erentFrom(?s1,?s2) → hasRe-
placementSamePlatf(?s1,?s2)

Continued on next page
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Table 3.3 continued from previous page

ID Description Rule

11 On same body
part

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2) ∧
sameAs(?l1, ?l2) ∧ di�erentFrom(?s1,?s2)
→ hasReplacementSamePart(?s1,?s2)

12 On an ad-
jacent body
part

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2) ∧
connectedTo(?l1, ?l2) → hasReplacemen-
tAdjPart(?s1,?s2)

13 On a body
part directly
connected to
an adjacent
one

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2) ∧
di�erentFrom(?l1,?l2) ∧ connectedTo(?l1,
?l3) ∧ connectedTo(?l2, ?l4) ∧ sameAs(?l3,
?l4) ∧ di�erentFrom(?s1,?s2) → hasRe-
placementConnAdjPart(?s1,?s2)

Continued on next page
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Table 3.3 continued from previous page

ID Description Rule

14 On the same
body division

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2)
∧ partOf(?l1,?d1) ∧ partOf(?l2,?d2),
sameAs(?d1, ?d2) ∧ di�erentFrom(?s1,?s2)
→ hasReplacementSameDiv(?s1,?s2)

15 On the sym-
metric body
part

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2) ∧
symmetricTo(?l1, ?l2) → hasReplace-
mentSymPart(?s1,?s2)

16 On the sym-
metric body
division

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws1,?s1) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2) ∧
partOf(?l1,?d1) ∧ partOf(?l2,?d2), symmet-
ricTo(?d1, ?d2) → hasReplacementSym-
Div(?s1,?s2)

The characteristics of the wearable sensor platform do not restrict
to its location, but also include its survival range. Thus, a rule has
been de�ned in Table 3.4 to identify candidate sensor replacements
based on the survival range of the wearable platform. Rule#17 deter-
mines that a candidate replacement (?s2) is a MIMU sensor hosted on
a wearable sensor platform (?ws2) which has a survival range repre-
sented by its battery lifetime (?b2), which takes a value (?v2) greater
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than a certain limit, for example 3600 seconds (swrlb:greaterThan(?v2,
�3600����oat)).

Table 3.4: Rules for identi�cation of candidate sensor replacements
based on the survival range of the wearable sensor platform hosting the
MIMU.

ID Description Rule

17 Battery life-
time greater
than a certain
limit (e.g.,
3600 s)

MIMU(?s1) ∧ MIMU(?s2) ∧
ssn:hasSubsystem(?ws2,?s2) ∧
ssn:hasSurvivalRange(?ws2,?r2) ∧
ssn:hasSurvivalProperty(?r2,?b2) ∧ Wear-
ableBatteryLifetime(?b2) ∧ hasQuantity-
Value(?b2,?v2) ∧ swrlb:greaterThan(?v2,
�3600����oat) ∧ di�erentFrom(?s1,?s2) →
hasReplacementBat(?s1,?s2)

All the presented rules can be combined in order to obtain more
meaningful descriptions for the identi�cation of candidate sensor re-
placements. Table 3.5 shows some examples of more complex rules.

Rule#18 combines Rule#9 with Rule#10 and states that a can-
didate replacement is the sensor which belongs to a di�erent MIMU
type, executes the measurements at the same frequency and is hosted
on the same wearable sensor platform. This rule would be typically
used in a transfer learning scenario, where the two di�erent types of
MIMUs execute the measurements at the same rate, coexist on the
same wearable platform, and the recognition model of the anomalous
sensor can be transferred to the candidate replacement, for example
from an accelerometer to a gyroscope.

Rule#19 combines Rule#1 with Rule#11 and Rule#17 in order to
identify as a candidate replacement a MIMU sensor of the same type
hosted on a wearable sensor platform located on the same body part
and which has a expected battery lifetime greater than a certain limit,
for example 3600 seconds.

Rule#20 combines Rule#4 with Rule#15 and identi�es that a can-
didate replacement is a MIMU able of measuring the same type of
magnitude with an equal or greater measurement range, and part of a
wearable sensor platform located on the symmetric body part.
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Table 3.5: Rules for identi�cation of candidate sensor replace-
ments based on the combinations of other rules.

ID Description Rule

18 Di�erent
MIMU type
with same
Frequency
and on same
platform

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ dif-
ferentFrom(?m1, ?m2) ∧
ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1)
∧ ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuFrequency(?p1) ∧ MimuFre-
quency(?p2) ∧ hasQuantity-
Value(?p1,?v1) ∧ hasQuantity-
Value(?p2,?v2) ∧ swrlb:equal(?v2,
?v1) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ sameAs(?w1,
?w2) → hasReplacementDi�TypeFre-
qSamePlat(?s1,?s2)

19 Same MIMU
type and on
same body
part and with
a battery life-
time greater
than a certain
limit

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1,
?m2) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1)
∧ ssn:OnPlatform(?ws2,?w2)
∧ placedOn(?w1,?l1) ∧ place-
dOn(?w2,?l2) ∧ sameAs(?l1, ?l2)
∧ ssn:hasSurvivalRange(?ws2,?r2) ∧
ssn:hasSurvivalProperty(?r2,?b2) ∧ Wear-
ableBatteryLifetime(?b2) ∧ hasQuantity-
Value(?b2,?v2) ∧ swrlb:greaterThan(?v2,
�3600����oat) ∧ di�erentFrom(?s1,?s2)
→ hasReplacementSameTypeSamePart-
Bat(?s1,?s2)

Continued on next page
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Table 3.5 continued from previous page

ID Description Rule

20 Same MIMU
type with
equal or
greater Mea-
surement
Range and on
a symmetric
body part

MIMU(?s1) ∧ MIMU(?s2)
∧ ssn:observes(?s1,?m1) ∧
ssn:observes(?s2,?m2) ∧ sameAs(?m1, ?m2)
∧ ssn:hasMeasurementCapability(?s1,?c1)
∧ ssn:hasMeasurementCapability(?s2,?c2)
∧ ssn:hasMeasurementProperty(?c1,?p1) ∧
ssn:hasMeasurementProperty(?c2,?p2)
∧ MimuMeasurementRange(?p1) ∧
MimuMeasurementRange(?p2) ∧
hasRangeMaxValue(?p1,?max1) ∧
hasRangeMaxValue(?p2,?max2) ∧
hasRangeMinValue(?p1,?min1) ∧
hasRangeMinValue(?p2,?min2) ∧
swrlb:greaterThanOrEqual(?max2,
?max1) ∧ swrlb:lessThanOrEqual(?min2,
?min1) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ place-
dOn(?w1,?l1) ∧ placedOn(?w2,?l2) ∧
symmetricTo(?l1, ?l2) → hasReplace-
mentSameTypeRangeSymPart(?s1,?s2)

The rules depend on the application scenario and the speci�c re-
quirements for the replacement sensor. Therefore, the presented rules
have to be particularized depending on the application requirements.

3.3.2. Queries for Sensor Selection

The novel selection method for the replacement of anomalous sensors
proposed in this work is based on an iterative query process triggered
once a sensor is detected to have failed. Posing the adequate queries on
the descriptions of the available MIMU-based wearable sensor platforms
will allow selecting the best MIMU sensors which could replace the
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ones su�ering from anomalies in a wearable human behavior recognition
system.

The query method builds on the MIMU-Wear ontology and depends
on the set of rules which are de�ned for each application scenario. The
priorities assigned to the outcomes of each of the rules are pretty impor-
tant for the e�ectiveness of the query method. Therefore, a particular
sequence order should be established for the execution of the queries
depending on the speci�c problem.

SPARQL [9], a query language for RDF, is utilized in the sensor
selection method because of its fully potential to query OWL 2 data.
Listing 3.1 shows a query which retrieves all the candidate sensors to re-
place an anomalous MIMU. In fact, the string <sensor-id> in the query
must be replaced with the actual identi�er of the anomalous MIMU,
which is the name of the individual of the class MIMU representing this
very MIMU in the ontology. The query is very abstract and applies to
any MIMU independently of its characteristics and the wearable sensor
platform in which it is hosted. This generality avoids having to know
the actual characteristics of the anomalous sensor in order to pose the
query. These characteristics are inferred from the ontology and the rules
and implicitly used in the query execution. Thus, the main bene�t is
that in the query method only the identi�er of the anomalous sensor is
needed.

SELECT ?replacementsensor
WHERE {
<sensor-id> hasReplacement ?replacementsensor.
}

Listing 3.1: SPARQL query to retrieve all the candidate sensors to
replace a MIMU with identi�er <sensor-id>.

The query presented in Listing 3.1 should be particularized in or-
der to obtain a more reduced set of MIMU sensors which are possible
candidates for the replacement of an anomalous sensor in a wearable
behavior recognition system. The restriction of the results is based on
querying for a speci�c subproperty of the property hasReplacement,
instead of using the generic one. For example, if the expected result is
a set of candidate MIMUs which are able of measuring the same type
of magnitude with an equal or greater measurement range, and which
are part of a wearable sensor platform located on the symmetric body
part (Rule#20), the SPARQL query in Listing 3.2 should be executed.
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SELECT ?replacementsensor
WHERE {
<sensor-id> hasReplacementSameTypeRangeSymPart ?replacementsensor.
}

Listing 3.2: SPARQL query for the identi�cation of candidate replace-
ment sensors able of measuring the same type of magnitude with an
equal or greater measurement range and which are part of a wearable
sensor platform located on the symmetric body part.

The SPARQL solution modi�er ORDER BY could be utilized to or-
der the query results depending one criteria, so that the selection be-
tween the candidates replacement sensors is facilitated. For example,
the SPARQL result could order the candidate MIMU sensors depend-
ing on the battery lifetime of the wearable sensor platform. Moreover,
the potential of the SPARQL algebra could enable obtaining as result
only one candidate replacement sensor which is the one that maximizes
or minimizes one search criteria. As an example, the result could be the
candidate MIMU sensor hosted in the wearable sensor platform which
has the longest expected battery lifetime.

The sensor selection method is based on an iterative query process
triggered once a sensor is detected to behave anomalously. The iterative
method ensures that if no result is provided for a query, another less
restrictive query or with another criteria is executed in order to obtain
as result a candidate replacement sensor. For example, in a particular
scenario, the logic could be that the �rst option in order to replace an
anomalous MIMU is trying to �nd a replacement sensor hosted on a
wearable sensor platform located on the same body part. Therefore, it
executes a SPARQL query for the results of Rule#11, i.e., on the prop-
erty hasReplacementSamePart. In case no sensor is found on the same
body part, it tries to �nd a candidate replacement hosted on a wearable
sensor platform located on any of the adjacent body parts by querying
for the results of Rule#12 on the property hasReplacementAdjPart. In
case no sensor is found on the adjacent parts, the closest sensor could
be searched, or in the case of a MIMU sensor is hosted on a wearable
sensor platform located on a limb, it could try to �nd a sensor in the
symmetric part. This is executing the query for the results of Rule#15
on the property hasReplacementSymPart.
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3.4. Evaluation of MIMU-Wear and the Sensor Se-
lection Method

The sensor selection method, based on MIMU-Wear and designed to
ensure the continuity of behavior recognition, is evaluated for an exem-
plary application scenario in the domain of wearable activity recogni-
tion. In a real world scenario, the wearable sensors might su�er from
anomalies, such us failures or faults. Whenever this happens, the per-
formance of the activity recognition system decreases due to the pro-
cessing of a corrupted signal, or in the worst case, not receiving any
signal at all. Once detecting such a situation, it would be desirable
to replace the anomalous sensor with another one which provides the
same sensing functionality. The �nal goal is that after the sensor re-
placement, the performance of the wearable activity recognizer gets
restored to its original value, or at least it increases with respect to
the failure situation. The proposed sensor selection method should be
triggered when a sensor is detected to fail [89, 90] in order to identify
an appropriate candidate replacement sensor. After the candidate has
been identi�ed using the proposed sensor selection method, the actual
replacement should take place. The replacement process is not part of
this work neither the detection of the sensor failure.

3.4.1. Deployment Scenario

Nine MIMU-based wearable platforms are considered in this exemplary
scenario (see Figure 3.13). The wearable sensor platforms are symmet-
rically distributed all over the body and worn on the four limbs and the
trunk. Speci�cally, the MIMU-based wearable platforms are deployed in
this scenario are the MTx, a 3DOF inertial Orientation Tracker devel-
oped by Xsens [91]. The MTx wearable sensor platforms are composed
of three MIMU sensors: a 3D accelerometer, a 3D gyroscope and 3D
magnetometer. More details on the speci�cations of these sensors are
provided in the following section.

3.4.2. Scenario description using MIMU-Wear

The MIMU-Wear Ontology is here used to describe the nine MTx wear-
able sensor platforms in this exemplary scenario. The logic for the usage
of MIMU-Wear is presented in Section 3.2.3, but here the process is de-
scribed through an example. First, the generic descriptions of the three
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Figure 3.13: Sensor deployment for the experimental scenario. Nine
MIMU-based wearable platforms (W_1,...,W_9) are placed on di�erent
parts of the user body.

MIMUs embedded into MTx wearable sensor platform are created. Sec-
ond, the description of the MTx wearable sensor platform is generated
and the links to the embedded MIMUs are established. Finally, the spe-
ci�c descriptions for the nine particular instances of the MTx wearable
sensor platforms are de�ned.

Generic Description of the MTx Wearable Sensor Platform

In a practical application, where the MIMU-Wear ontology would be
widely adopted, the creation of the generic description of the sensors
and wearable sensor platforms would performed only once by the manu-
facturer. In this case Xsens would make available the ontological classes
describing their MIMU sensors and wearable sensor platforms. The pro-
cess of creating these descriptions is explained in the following.

In order to represent the accelerometer embedded into MTx, the
class MTxAcc is de�ned as a subclass of the class Accelerometer
and of the anonymous class ssn:hasMeasurementCapability only
MTxAccMeasurementCapability (see Figure 3.14). The class MTxAcc-
MeasurementCapability is de�ned here to represent the actual mea-
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Figure 3.14: MTxAcc: class modeling the accelerometer embedded into
the MTx.

surement capabilities of the MTx accelerometer and is a subclass
of the class AccelerometerMeasurementCapability. The MTx ac-
celerometer has three di�erent con�gurations which determine the
di�erent values of its measurement properties, such as its measure-
ment range, sensitivity, or noise, and which can be obtained from
the MTx speci�cation sheet [91]. Each one of these con�gurations is
modeled as an individual of the class MTxAccMeasurementCapability,
namely standard_MTxAcc_capability, costum17_MTxAcc_capability
and costum100_MTxAcc_capability (see Figure 3.15).

The measurement range for the standard con�guration of the
MTx accelerometer is ±50 m/s2. In order to represent this range,
the individual standard_MTxAcc_mrange of the class Accelerometer-
MeasurementRange has asserted for the property hasMaxValue the
value “50”ˆˆfloat and for the property hasMinValue the value
“-50”ˆˆfloat (see Figure 3.16).

The sensitivity of the MTx accelerometer is 0.5 % of the full
scale or measurement range, which means 0.5 m/s2 for the stan-
dard con�guration. The individual standard_MTxAcc_sensitivity of
the class AccelerometerSensitivity has asserted for the property
hasQuantityValue the value “0.5”ˆˆfloat.

Since the frequency of the MTx accelerometer is 30 Hz, the indi-
vidual standard_MTxAcc_ frequency of the class MimuFrequency has
asserted for the property hasQuantityValue the value “30”ˆˆfloat.

The drift of the MTx accelerometer is 0.1 deg and is represented
as the individual standard_MTxAcc_drift of the class MimuDrift
which has asserted for the property hasQuantityValue the value
“0.1”ˆˆfloat.
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Figure 3.15: MTxAccMeasurementCapability: class modeling the mea-
surement capabilities of the MTx accelerometer.

Figure 3.16: standard_MTxAcc_mrange: individual of the class Acce-
lerometerMeasurementRange which models the ±50 m/s2 measurement
range for the standard con�guration of the MTx accelerometer. The
axioms marked in yellow represent the inferred knowledge, whereas the
others are asserted axioms.

Finally, the noise of the MTx accelerometer is 0.002 m/s2/
√
Hz

for the standard con�guration. Thus, the individual standard_

MTxAcc_noise of the class AccelerometerNoise has asserted for the
property hasQuantityValue the value “0.002”ˆˆfloat.

In one of the costume con�gurations, the measurement range of
the MTx accelerometer is ±17 m/s2. Thus, the individual custom17_
MTxAcc_mrange of the class AccelerometerMeasurementRange has as-
serted for the property hasMaxValue the value “17”ˆˆfloat and for
the property hasMinValue and the value “-17”ˆˆfloat. In this con-
�guration, the sensitivity of 0.5 % of the measurement range is
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equivalent to 0.17 m/s2. This sensitivity is represented as the indi-
vidual custom17_MTxAcc_sensitivity of the class Accelerometer-
Sensitivity which has asserted for the property hasQuantityValue
the value “0.17”ˆˆfloat. The rest of measurement properties - fre-
quency, drift and noise - take the same values for this con�guration
than for the standard case. Therefore, no new individuals are created
to represent them but the ones already de�ned for the standard con�g-
uration are reused.

In the other costume con�guration, the measurement range of the
MTx accelerometer is ±100 m/s2. Thus, the individual custom100_
MTxAcc_mrange of the class AccelerometerMeasurementRange has as-
serted for the property hasMaxValue the value “100”ˆˆfloat and
for the property hasMinValue the value “-100”ˆˆfloat. In this con-
�guration, the sensitivity of 0.5 % of the measurement range is
equivalent to 1 m/s2. This sensitivity is represented as the indi-
vidual custom100_MTxAcc_ sensitivity of the class Accelerometer-
Sensitivity which has asserted for the property hasQuantityValue
the value “1”ˆˆfloat. Moreover, the noise of the MTx accelerometer
for this con�guration is 0.003 m/s2/

√
Hz and to represent it the indi-

vidual custom100_MTxAcc_noise of the class AccelerometerNoise has
asserted for the property hasQuantityValue the value “0.003”ˆˆfloat.
The rest of measurement properties for this con�guration take the same
values than in the case of the standard con�guration.

Having de�ned the di�erent values for the measurement prop-
erties, these can be linked to the actual measurement capabili-
ties which represent each one of the MTx accelerometer con�g-
urations. In order to represent the capabilities of the standard
con�guration, the individual standard_MTxAcc_capability has as-
serted for the property ssn:hasMeasurementProperty the following in-
dividuals standard_MTxAcc_mrange, standard_MTxAcc_sensitivity,
standard_MTxAcc_frequency, standard_MTxAcc_drift, and standard_

MTxAcc_noise (see Figure 3.17).
For one of the custom con�gurations, the individual costum17_

MTxAcc_capability has asserted for the property
ssn:hasMeasurementProperty the individuals custom17_MTxAcc_

mrange, custom17_MTxAcc_sensitivity, standard_MTxAcc_frequency,
standard_MTxAcc_drift, and standard_MTxAcc_noise. For the other
custom con�guration, the individual costum100_MTxAcc_capability
has asserted for the property ssn:hasMeasurementProperty the
individuals custom100_MTxAcc_mrange, custom100_MTxAcc_noise,
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Figure 3.17: standard_MTxAcc_capability: individual of the class
AccelerometerMeasurementCapability representing the capabilities of
the standard con�guration of the MTx accelerometer.

custom100_MTxAcc_sensitivity, standard_MTxAcc_frequency, and
standard_MTxAcc_drift.

Following a similar approach, the class MTxGyro could be de�ned to
represent the gyroscope embedded into MTx and the class MTxMag to
represent the magnetometer. The generic description of the wearable
sensor platform can be created when the description of the three types
of MIMUs is already available.

The MTx wearable sensor platform is represented via the class
MTxPlat which is a subclass of the class WearableSensorPlatform.
The class MTxSystem is de�ned to be a subclass of the class
WearableSystem and of the anonymous class ssn:onPlatform only
MTxPlat. Moreover, the class MTxSystem is asserted to be a sub-
class of the anonymous classes ssn:hasSubsystem exactly 1 MTxAcc,
ssn:hasSubsystem exactly 1 MTxGyro and ssn:hasSubsystem
exactly 1 MTxMag. These cardinality restrictions state that the MTx
wireless sensor platform is composed of one MTx accelerometer, one
MTx gyroscope and one MTx magnetometer.

Description of the Particular MTx Elements in the Scenario

Let now imagine that the manufacturer has created the generic ontolog-
ical description of the MTx and has made it is available online. Then,
the particular description of the wearable sensor platforms and their
embedded MIMUs can be easily created. These de�nitions could be
created by the �nal user when utilizing the application, but it would be
more common that they would be automatically generated at applica-
tion setup. Anyway, this would require that the designer of the activity
recognition application provides an interface to create the descriptions.
In the following, the creation of the MTx descriptions is explained.
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Figure 3.18: MTxAcc_1: instance of the the class MTxAcc which de-
scribes the accelerometer embedded into the MTx. The axioms marked
in yellow represent the inferred knowledge, whereas the others are as-
serted axioms.

The description of the accelerometer embedded into the MTx is
already de�ned via the class MTxAcc. Nine individuals of this class -
MTxAcc_1, MTxAcc_2,...,MTxAcc_9 - can be created in order to repre-
sent the accelerometers in each one of the wearable sensor platforms
- W_1, W_2,... , W_9. For example, the individual MTxAcc_1 (see
Figure 3.18) represents the accelerometer hosted on W_1, i.e., on the
wearable sensor platform worn on the right forearm. Only one axiom
has to be asserted in order to de�ne each individual, since the rest
of the de�nition is directly derived from the class description. Par-
ticularly, the value of the property ssn:hasMeasurementCapability
has to be asserted in order to model the speci�c capabilities of the
MTx accelerometer for the current working mode. This property can
only take as value three individuals standard_MTxAcc_capability,
costum17_MTxAcc_capability or costum100_MTxAcc_capability de-
pending on the accelerometer con�guration. Since all the accelerome-
ters work in the standard con�guration, the nine individuals of the class
MTxAcc will have asserted the individual standard_MTxAcc_capability
for the property hasMeasurementCapability.

The individuals of the class MTxPlat represent the particular wear-
able sensor platforms. For example, the individual MTxPlat_1 (see Fig-
ure 3.19) represents the wearable sensor platform worn on the right
forearm (W_1 in the scenario). The corresponding individual MTxSys_1
(see Figure 3.20) of the class MTxSystem is created and linked to
MTxPlat_1 via the property ssn:onPlatform. Moreover, the speci�c
MIMUs which are part of the wireless sensor platform are asserted as
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Figure 3.19: MTxPlat_1: instance of the the class MTxPlat which de-
scribes the MTx. The axioms marked in yellow represent the inferred
knowledge, whereas the others are asserted axioms.

Figure 3.20: MTxSys_1: instance of the the class MTxSystem which
describes the MTx. The axioms marked in yellow represent the inferred
knowledge, whereas the others are asserted axioms.

the values of the property ssn:hasSubsystem. For example, in the case
of the individual MTxSys_1, the property ssn:hasSubsystem takes as
values MTxAcc_1, MTxGyro_1 and MTxMag_1, which are individuals of
the classes MTxAcc, MTxGyro and MTxMag, respectively. In order to com-
plete the description of the wearable sensor platform, its deployment on
the body of the user should be modeled. This is done by asserting the
value of the property placedOn for the individual of the class MTxPlat.
For example, in the case of the MTx wearable sensor platform worn on
the right forearm, the property placedOn of the individual MTxPlat_1
takes as value the individual user_right_forearm, which is a member
of the class Forearm in the Human Body Ontology and represents the
right forearm of the user.

Similarly, the nine individuals of the class MTxGyro and nine of the
class MTxMag should be created in order to represent the nine gyroscopes
and the nine magnetometers hosted in the MTx wearable sensor plat-
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forms. Moreover, the descriptions of the other eight wearable sensor
platforms (MTxPlat_2, ... MTxPlat_9) should also be created. Table 3.6
summarizes the names of the individuals modeling the scenario.

Table 3.6: Summary of the ontological description of the MIMU-based
wearable sensor platforms for the scenario presented in Figure 3.13.

ID
(Fig 3.13)

Wearable
Sensor
Platform

Location Hosted MIMUs

(individual
of MTxPlat)

(MTxPlat placedOn) (MTxSystem
ssn:hasSubsystem)

W_1 MTxPlat_1 user_right_forearm MTxAcc_1,
MTxGyro_1,
MTxMag_1

W_2 MTxPlat_2 user_right_arm MTxAcc_2,
MTxGyro_2,
MTxMag_2

W_3 MTxPlat_3 user_back MTxAcc_3,
MTxGyro_3,
MTxMag_3

W_4 MTxPlat_4 user_left_arm MTxAcc_4,
MTxGyro_4,
MTxMag_4

W_5 MTxPlat_5 user_left_forearm MTxAcc_5,
MTxGyro_5,
MTxMag_5

W_6 MTxPlat_6 user_right_leg MTxAcc_6,
MTxGyro_6,
MTxMag_6

W_7 MTxPlat_7 user_right_thigh MTxAcc_7,
MTxGyro_7,
MTxMag_7

W_8 MTxPlat_8 user_left_thigh MTxAcc_8,
MTxGyro_8,
MTxMag_8

W_9 MTxPlat_9 user_left_leg MTxAcc_9,
MTxGyro_9,
MTxMag_9
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3.4.3. Application of the Sensor Selection Method

The wearable activity recognition scenario considered in this example
seeks to conform as much as possible to a real-world setup. Previous
works have proven that using several sensors usually results in a higher
level of accuracy and robustness of the wearable activity recognizer
[4, 3]. On the other hand, the more sensors are utilized, the more com-
putationally and energy expensive the activity recognizer turns to be
[37], being the latter particularly critical for wearable systems. For these
reasons, a balanced sensor setup is de�ned for this exemplary scenario.
In a balanced setup multiple sensors are available but only a subset
of them actively participate in the recognition process. The remaining
sensors are kept in an idle or sleep state and can be used as replacement
ones.

The nine MIMU-based wearable platforms deployed in this scenario
(see Figure 3.13) are con�gured to capture only acceleration since this
magnitude proves to work well-enough for the recognition of a vari-
ety of activities [92]. Therefore, gyroscopes and magnetometers are not
operating and only accelerometers are measuring. Moreover, three out
of the nine accelerometers are actually used for the activity recogni-
tion process while the rest remain in idle state. The used MIMUs are
the accelerometer hosted on W_1 - the wearable sensor platform on
the right forearm -, the accelerometer hosted in W_3 - the wearable
sensor platform on the back -, and the accelerometer on W_9 - the
wearable sensor platform on the left leg -. This setup has been chosen
because it has shown to provide a good trade-o� between number of
sensors and performance and it has been successfully used in some prior
applications [93, 94, 95, 96].

The generic rules presented in Section 3.3.1 have to be particu-
larized for the actual application scenario and the queries resented in
Section 3.3.2 prioritized accordingly. This is required to showcase the
functioning of the sensor selection method whenever one of the three
accelerometers hosted on the wearable sensor platforms W_1, W_3 or
W_9 behaves anomalously, particularly, when it runs out of battery.
Four rules are envisioned for this application scenario (see Table 3.7).
These rules build on common sense assumptions about which are the
best candidate replacement sensors.

The �rst and best option for a candidate replacement would be a
MIMU sensor that measures the same type of magnitude and which is
hosted on a wearable sensor platform located on the same body part
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where the anomalous sensor is. This rule which has priority P1 is a
combination of Rule#1 in Table 3.1 and Rule#11 in Table 3.3.

A second option consists in trying to �nd a candidate replacement of
the same MIMU type and hosted in a wearable sensor platform located
on the symmetric body part. The rule which re�ects this situation has
priority P2 and is a combination of Rule#1 in Table 3.1 and Rule#15
in Table 3.3.

The third rule is a combination of Rule#1 in Table 3.1 and Rule#12
in Table 3.3, has priority P3 and seeks to identify a candidate replace-
ment able of measuring the same magnitude and hosted in a wearable
sensor platform located on any of the adjacent body parts.

Finally, the forth rule which has priority P4, aims at identifying a
replacement MIMU sensor which measures the same magnitude and
which is hosted on a wearable sensor platform located on a body part
directly connected to an adjacent body part. This rule is a combination
of Rule#1 in Table 3.1 and Rule#13 in Table 3.3.

Table 3.7: Prioritized set of rules for identi�cation of candidate
sensor replacements in the exemplary application scenario.

Priority Rule

P1 MIMU(?s1) ∧ MIMU(?s2) ∧ ssn:observes(?s1,?m1)
∧ ssn:observes(?s2,?m2) ∧ sameAs(?m1,
?m2) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ placedOn(?w1,?l1)
∧ placedOn(?w2,?l2) ∧ sameAs(?l1, ?l2) ∧
di�erentFrom(?s1,?s2) → hasReplacementSame-
TypeSamePart(?s1,?s2)

P2 MIMU(?s1) ∧ MIMU(?s2) ∧ ssn:observes(?s1,?m1)
∧ ssn:observes(?s2,?m2) ∧ sameAs(?m1,
?m2) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ placedOn(?w1,?l1)
∧ placedOn(?w2,?l2) ∧ symmetricTo(?l1, ?l2) →
hasReplacementSameTypeSymPart(?s1,?s2)

Continued on next page
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Table 3.7 continued from previous page

Priority Rule

P3 MIMU(?s1) ∧ MIMU(?s2) ∧ ssn:observes(?s1,?m1)
∧ ssn:observes(?s2,?m2) ∧ sameAs(?m1,
?m2) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ placedOn(?w1,?l1)
∧ placedOn(?w2,?l2) ∧ connectedTo(?l1, ?l2) →
hasReplacementSameTypeAdjPart(?s1,?s2)

P4 MIMU(?s1) ∧ MIMU(?s2) ∧ ssn:observes(?s1,?m1)
∧ ssn:observes(?s2,?m2) ∧ sameAs(?m1,
?m2) ∧ ssn:hasSubsystem(?ws1,?s1)
∧ ssn:hasSubsystem(?ws2,?s2)
∧ ssn:OnPlatform(?ws1,?w1) ∧
ssn:OnPlatform(?ws2,?w2) ∧ placedOn(?w1,?l1)
∧ placedOn(?w2,?l2) ∧ di�erentFrom(?l1,?l2) ∧
connectedTo(?l1, ?l3) ∧ connectedTo(?l2, ?l4)
∧ sameAs(?l3, ?l4) ∧ di�erentFrom(?s1,?s2) →
hasReplacementSameTypeConnAdjPart(?s1,?s2)

In order to request the results provided by the rule with priority P1,
the associated SPARQL query which is executed is shown in Listing 3.3.
In the same way, to retrieve the results of rule with priority P2 the
associated query is shown in Listing 3.4, for the rule with priority P3
the query is shown in Listing 3.5, and for the rule with priority P4 the
query is shown in Listing 3.6. In all the queries the string <sensor-id>

must be replaced with the actual identi�er of the anomalous MIMU,
for example MTxAcc_1, MTxAcc_3 or MTxAcc_9.

SELECT ?replacementsensor
WHERE {
<sensor-id> hasReplacementSameTypeSamePart ?replacementsensor.
}

Listing 3.3: SPARQL query for retrieving the results of rule with
priority P1



3.4. Evaluation of MIMU-Wear and the Sensor Selection Method 75

SELECT ?replacementsensor
WHERE {
<sensor-id> hasReplacementSameTypeSymPart ?replacementsensor.
}

Listing 3.4: SPARQL query for retrieving the results of rule with
priority P2

SELECT ?replacementsensor
WHERE {
<sensor-id> hasReplacementSameTypeAdjPart ?replacementsensor.
}

Listing 3.5: SPARQL query for retrieving the results of rule with
priority P3

SELECT ?replacementsensor
WHERE {
<sensor-id> hasReplacementSameTypeConnAdjPart ?replacementsensor.
}

Listing 3.6: SPARQL query for retrieving the results of rule with
priority P4

Summarizing, the iterative query method for sensor selection works
as follows. First the query in Listing 3.3 is executed. If it provides a
result, the search is stopped since a candidate replacement has been
identi�ed. Otherwise, the query in Listing 3.4 is executed and so on. If
no results are obtained while executing the last query, i.e., Listing 3.6,
the method �nalizes without success.

Let us suppose that the accelerometer in W_1, i.e., the accelerom-
eter hosted on the MTx wearable sensor platform located on the user
right forearm, su�ers from a failure condition, namely it runs out of
battery and stops working. Once this event is identi�ed, e.g., by the
network monitor, the sensor selection method is triggered. First, it
is executed the SPARQL query presented in Listing 3.3 while sub-
stituting the string <sensor-id> with the string MTxAcc_1. The latter
string corresponds to the name of the ontological individual MTxAcc_1
of the class MTxAcc and represents the accelerometer sensor in W_1.
This query does not produce any result because there are no other ac-
celerometer hosted on a wearable sensor platform located on the user
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right forearm. Then, the iterative query process continues by execut-
ing the query presented in Listing 3.4, where the string <sensor-id> is
replaced with MTxAcc_1. This query returns the individual MTxAcc_5,
which is the accelerometer in W5, i.e., the accelerometer hosted on
the MTx wearable sensor platform located on the user left forearm.
The rationale for this result is the following. Both the individual
MTxAcc_1 and the individual MTxAcc_5 have inferred for the property
ssn:observes the individual acceleration. Moreover, the individual
MTxSys_1 has asserted for the property ssn:hasSubsystem the indi-
vidual MTxAcc_1 and for the property ssn:OnPlatform the individual
MTxPlat_1. Also the individual MTxPlat_1 has asserted for the prop-
erty placedOn the individual user_right_forearm. Furthermore, the
individual MTxSys_5 has asserted for the property ssn:hasSubsystem
the individual MTxAcc_5 and for the property ssn:OnPlatform the
individual MTxPlat_5. Also the individual MTxPlat_5 has asserted
for the property placedOn the individual user_left_forearm. From
the Human Body Ontology it can be inferred that the individu-
als user_right_forearm and user_left_forearm are related along
the property symmetricTo. Therefore, the rule with priority P2 in
Table 3.7 is satis�ed and the following axiom is inferred MTxAcc_1
hasReplacementSameTypeConnAdjPart MTxAcc_5 (see Figure 3.21).
The SPARQL query which retrieves the value of the property
hasReplacementSameTypeConnAdjPart for the individual MTxSys_1
gets then as a result the individual MTxPlat_5. In conclusion, the sensor
selection method determines that the anomalous accelerometer in W_1
- the accelerometer hosted on the MTx wearable sensor platform located
on the user right forearm - could be replaced with the accelerometer in
W_5 - the accelerometer hosted on the MTx wearable sensor platform
located on the user left forearm -.

Let us now suppose that the MIMU which runs out of battery is
the accelerometer in W_9, i.e., the accelerometer hosted on the MTx
wearable sensor platform located on the user left leg. The query method
would be applied in the same way as in the previous case but replacing
in the SPARQL queries the string <sensor-id> with MTxAcc_9 . In this
case, the �rst query (Listing 3.3) does not produce any result. Then,
the second query (Listing 3.4) is executed and returns as result the
individual MTxAcc_6, which is the accelerometer in W_6. Therefore,
the anomalous accelerometer in W_9 - the accelerometer hosted on
the MTx wearable sensor platform located on the user left leg - could
be replaced with the accelerometer in W_6 - the accelerometer hosted
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Figure 3.21: Instance MTxAcc_1 of the class MTxAcc which
shows the candidate replacement sensors via the inferred property
hasReplacement and its subproperties.

on the MTx wearable sensor platform located on the user right leg -
according to the results of the sensor selection method.

Finally, let us now suppose that the failure is su�ered by the ac-
celerometer in W_3, i.e., the accelerometer hosted on the MTx wearable
sensor platform located on the user back. In this case the queries to be
applied have replaced the string <sensor-id> with the string MTxAcc_3.
The �rst step is executing the query in Listing 3.3. This query does
not produce any result since there is no other accelerometer hosted in
a platform located on the user back, in fact there is no other wearable
sensor platform located on the back. Then, the iterative query process
continues and the second step consists on executing the query presented
in Listing 3.4. This query does not return any result because the indi-
vidual user_back in the Human Body Ontology does not have asserted
neither inferred the property symmetricTo, i.e., there is no symmetric
body part for the back. In the third step of the query process, the query
presented in Listing 3.5 is executed. This query does not produce any
result because there is no wearable sensor platform located on the body
parts adjacent to the back. According to the model of the Human Body
Ontology, the body parts which are directly connected to the back are
the thorax and the abdomen which are also in the trunk, and the shoul-
ders which are part of the limbs but connect to the trunk. After the
failure of the �rst three queries, the fourth one which is presented in
Listing 3.6 is executed. This query returns two individuals: MTxAcc_2,
which is the accelerometer in W_2, i.e., the accelerometer hosted on
the MTx wearable sensor platform located on the user right arm, and
MTxAcc_4, which is the accelerometer in W4, i.e., the accelerometer
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hosted on the MTx wearable sensor platform located on the user left
arm. The logical explanation of this query result is that the back is con-
nected to both shoulders and each shoulder is connected to the arm.
Thus, the sensors on both arms are located at a distance of two hops
from the back. Two results are obtained since the characteristics of the
accelerometers hosted on W_2 and W_4 are the same, and the rules
do not state any preference in choosing one instead of the other. Thus,
both of them could be used as replacements for W_3, the accelerometer
hosted on the MTx platform located on the user back.

3.4.4. Reliability of the Sensor Selection Method

The di�erent replacement scenarios described before are here evaluated
by using the REALDISP dataset [97]. This dataset comprises acceler-
ation, rate of turn and magnetic �eld orientation data collected for 17
people while performing 33 �tness activities in an out-of-lab setting.
Apart from the huge variety of activities and diversity of body parts
involved in their execution, this dataset is well-suited for this evaluation
since the sensor deployment matches the one presented in Figure 3.13.

An analysis of the classi�cation reliability of a pre-trained activity
recognizer for the various sensor con�guration scenarios is conducted.
In the normal scenario (denoted as "ideal") the activity recognizer op-
erates on the acceleration data registered by the accelerometers em-
bedded into the platforms W_1 (hereafter, ACC1), W_3 (hereafter,
ACC3) and W_9 (hereafter, ACC9). In the failure scenarios (denoted
as "F"), one of the three sensors turns to not work properly, thus leading
to three cases respectively: F-ACC1, F-ACC3 or F-ACC9. The anoma-
lous or defective behavior of the failure sensor is here modeled through
a residual signal (zero signal), whilst the signals of the remaining un-
a�ected two are kept unaltered. Finally, in the replacement scenarios
(denoted as "R"), the failure sensor from the previous scenarios is re-
placed with one of the sensors in idle state, thus leading to the following
cases: R-ACC2, R-ACC4, R-ACC5, R-ACC6, R-ACC7 or R-ACC8.

The activity recognizer is modeled as follows. Each acceleration sen-
sor data stream is partitioned into non-overlaping windows of 2-seconds
duration [98]. Each of these data windows are further characterized
through a feature extraction process in which the mean, standard devi-
ation, maximum, minimum, mean crossing rate and kurtosis are com-
puted [99]. These features are used as input to the classi�er, which is
here de�ned through a decision tree model [100] for simplicity. Other
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sets of features and types of classi�ers could also be used and similar re-
sults would in principle apply. However, this particular activity recogni-
tion model con�guration has been proven to perform well [36, 88, 4, 96].

In practical terms, the assessment consists in a leave-one-subject-out
cross validation (LOOXV) in which the model training is performed on
the ACC1, ACC3 and ACC9 data of K-1 subjects (with K=17) while the
model test is carried out on the sensor data from the remaining subject
for the particular scenario under evaluation. The process is repeated
for all the users to ensure a trustful average estimate of the reliability
of the recognizer in each case. Moreover, the Fscore or F1-score [101],
a combination of precision and recall measures, is used as reliability
metric given its robustness to class imbalancement. The Fscore ranges
between [0,1], where 1 represents optimal recognition capabilities whilst
0 corresponds to a model which is not capable of recognition at all.

The results obtained for each of the scenarios are depicted in Fig-
ure 3.22, Figure 3.23 and Figure 3.24. The baseline is driven by the ideal
case, for which a Fscore average value of 0.85 is attained. Now, in the
�rst case (Figure 3.22), once ACC1 behaves abnormally a Fscore drop
of around 0.25 is observed, thus leading to an overall Fscore of 0.58.
Replacing the a�ected sensors with another one shows no improvement
in general but for the case in which the ACC5 is used, which indeed
shows an improvement of nearly 0.10. This sensor is actually the one
that would be found for replacement through MIMU-Wear as shown in
Section 3.4.3. In the second case (Figure 3.23) the bene�t of using an
accurate sensor replacement strategy is even clearer. Once ACC9 gets
a�ected the Fscore of the recognition system drops to approximately
0.5. A random replacement could lead to even worse values, even below
0.3 as for using ACC5 as candidate. However, an improvement of more
than 0.2 is achieved while using the sensor found from the ontologi-
cal search, i.e., ACC6, thus leading to a Fscore close to the original
one. Worse options yet providing better results than for the failure case
could be ACC7 and ACC8, which would be the sensors suggested by
the selection method if ACC6 was not available. Finally, the third case
(Figure 3.24) presents a situation in which little improvement is at-
tained even if the anomalous sensor is replaced. An abnormal behavior
ACC3 seems to be not as harmful as for the other sensors, thus likely
meaning this sensor is not as informative or relevant as the other two
are. Anyhow, some bene�t can be obtained while replacing this sen-
sor with ACC2 or ACC4, which again coincide with the replacement
criteria suggested by the ontological search method.
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Figure 3.22: Fscore for the di�erent sensor replacement scenarios
when there is a failure of the accelerometer in W_1 (ACC1). Legend:
"Ideal" = con�guration ACC1, ACC3, ACC9; "F-ACC1" = same as the
ideal con�guration but with the ACC1 not working properly; "R-ACCk"
= same as ideal con�guration but with ACC1 replaced with ACCk.
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Figure 3.23: Fscore for the di�erent sensor replacement scenarios
when there is a failure of the accelerometer in W_9 (ACC9). Legend:
"Ideal" = con�guration ACC1, ACC3, ACC9; "F-ACC9" = same as the
ideal con�guration but with the ACC9 not working properly; "R-ACCk"
= same as ideal con�guration but with ACC9 replaced with ACCk.
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Figure 3.24: Fscore for the di�erent sensor replacement scenarios
when there is a failure of the accelerometer in W_3 (ACC3). Legend:
"Ideal" = con�guration ACC1, ACC3, ACC9; "F-ACC3" = same as the
ideal con�guration but with the ACC3 not working properly; "R-ACCk"
= same as ideal con�guration but with ACC3 replaced with ACCk.
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4.1. Overview

Recent years have witnessed a huge progress in the automatic identi�ca-
tion of individual primitives of human behavior such as activities or lo-
cations. However, the complex nature of human behavior demands more
abstract contextual information for its analysis. This work presents an
ontology-based method that combines low-level primitives of behavior,
namely activity, locations and emotions, unprecedented to date, to in-
telligently derive more meaningful high-level context information. Sec-
tion 4.2 introduces a new open ontology describing both low-level and
high-level context information as well as their relationships. Further-
more, the context inference method building on the developed ontology
and on ontological reasoning is presented in Section 4.3 and evaluated
in Section 4.4. The proposed inference method proves to be robust while
identifying high-level contexts even in the event of erroneously-detected
low-level contexts.

4.2. An Ontology for the Description of Human Con-
text

The Mining Minds Context Ontology models context for human behav-
ior identi�cation in order to enable the provision of personalized health
and wellness services [102, 10]. Since Dey proposed the �rst widely-
accepted de�nition of context [103], many di�erent interpretations of
context have arisen. Human context is here de�ned as any information
characterizing the physical, mental and social situation of a person that
enables the identi�cation of their behavior. Furthermore, human con-
text is here categorized into two di�erent levels of abstraction: low-level
context and high-level context. Low-level context is de�ned as primi-
tive context, i.e., contexts that can be directly identi�ed from user data
and do not require any other type of context information to be derived.
Speci�cally, activities, locations and emotions are here considered as
the three categories of low-level context. Activities can be normally
identi�ed from the body movement; locations can be directly derived
from the user position; and emotions can be obtained from the user
sentiments or physiological responses. High-level context is the context
which requires several contexts of diverse nature in order to be iden-
ti�ed. This means that a high-level context builds on a combination
of low-level contexts. Therefore, high-level contexts are more complex
and abstract contexts.
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The Mining Minds Context Ontology aims at comprehensively mod-
eling the most commonplace and widely-used contexts for health and
wellness services. These contexts are typically observed for both seden-
tary and active lifestyles. Speci�cally, the high-level contexts include
daily contexts like o�ce work, sleeping, house work, commuting, amuse-
ment, gardening, exercising, having meal, and inactivity. The low-level
contexts required to compose the description of the high-level context
have to be automatically recognizable. Thus, very simple low-level con-
texts in the domains of activities, locations and emotions are de�ned.
Low-level contexts describing activities include sedentary activities as-
sociated to unhealthy habits, mild activities of the daily living and
some vigorous ones related to sport and �tness practices. Namely, the
modeled activities are lying down, standing, sitting, riding escalator,
riding elevator, walking, running, jumping, hiking, climbing stairs, de-
scending stairs, cycling, stretching, dancing, sweeping, and eating. Simi-
larly, the low-level contexts describing the locations comprise the places
where the user spends their daily life, i.e., home, o�ce, yard, gym, mall,
restaurant, outdoors, and transport. The low-level contexts describing
the emotions embrace the most prominent moods or states of mind,
which are anger, happiness, neutral, sadness, fear, disgust, surprise,
and boredom. The speci�c combinations of low-level contexts that com-
pose each high-level context are derived from the experience of behav-
ioral scientists. Figure 4.1 graphically represents these de�nitions of
high-level context, which are modeled in the Mining Minds Context
Ontology. The considered contexts are intended to represent a wide
spectrum of situations and actions in a person's life; however, it must
be noted that this list can certainly be extended in view of potential
future applications while considering other less recurrent contexts.

In broad strokes, the main novelties of the Mining Minds Context
Ontology are a more comprehensive description of context using a two-
level model and the incorporation of emotion information to detect
some high-level contexts. First, a layered approach is followed in which
high-level contexts build on a combination of low-level contexts. Cur-
rent approaches model context in di�erent dimensions, for example
the user is performing an activity, has a location, and has a mood.
However, in these models there is no clear link between the di�erent
dimensions of context, neither are they used to derive other contexts.
Thus, some valuable information for the identi�cation of human behav-
ior is lost when using a one-level model. Second, the emotions enable
the de�nition of new high-level contexts which can only be identi�ed
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Figure 4.1: Graphical representation of the combination of low-level
contexts which compose the high-level contexts modeled in the Mining
Minds Context Ontology.
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whenever a speci�c emotion takes place. This is the case of the high-
level context amusement which must imply that the person is happy
and having fun. For this context, it is not enough to know that the
person is sitting in the mall, but also that their emotion is happi-
ness in order to infer that the context refers to amusement. There-
fore, in some cases the activity and the location might not be enough
to detect the high-level context, and the emotion enables the identi-
�cation of more diverse high-level contexts. The Mining Minds Con-
text Ontology is an OWL 2 ontology [6] and is publicly available at
http://www.miningminds.re.kr/icl/context/context-v2.owl.

4.2.1. Terminology for the De�nition of Context

The Mining Minds Context Ontology de�nes the concept of user con-
text. The context is associated to a given user and has a start and
an end. While a context has necessarily a start referring to the time in
which the context initiates, the �nalization of the context is not strictly
necessary. This is motivated by the fact that the context may prolong
over time and be still valid at the present time. A given context can
refer to either low or high-level context. Low-level contexts represent
either activities, locations or emotions, which can further compose a
high-level context. In some cases only one category of the low-level
context is enough to determine the high-level context. This is the case
of inactivity, where a sole sedentary activity like sitting de�nes this
context. In some other cases, a speci�c category of low-level context
is essential in order to identify the high-level context. For example,
amusement can only be detected if the emotion is of type happiness.
Accordingly, the ontology has been designed to support any combina-
tion of low-level contexts to de�ne a speci�c high-level context. Given
the seldom availability of emotion data, the ontology has been designed
to procure the identi�cation of some high-level contexts, even in the ab-
sence of emotion information. The modeling of this concept of context
using the formal ontological description is presented in the following.

The main concept of the Mining Minds Context Ontology is the class
Context, which represents the context of a user in an interval of time.
Several necessary conditions are described for this class to model the
concept of context (Figure 4.2). The existential and universal restric-
tions on the object property isContextOf ensure that any individual of
the class Context is linked to an individual of the class User represent-
ing the user to which the context belongs. The existential and universal

http://www.miningminds.re.kr/icl/context/context-v2.owl
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Low 
Level 

Context 

High 
Level 

Context 

Emotion Location Activity 

User 

dateTime 

dateTime 

Subclass Subclass Subclass 

hasEmotion only hasLocation only hasActivity only 

Subclass Subclass 

isContextOf only, some 

hasStartTime only, some 

hasEndTime only 

Context 

Figure 4.2: Mining Minds Context Ontology: the class Context, its
subclasses and the relations among them.

restrictions on the functional data property hasStartTime state that all
the individuals of the class Context must be related along this property
to a unique dateTime datatype of the W3C XML Schema De�nition
Language (XSD) [84] representing the instant of time in which the con-
text starts. The universal restriction on the functional data property
hasEndTime indicates that if there is a relationship of an individual of
the class Context along the property hasEndTime, it has to be to a
member of the XSD dateTime datatype representing the end time of
the interval in which the context is valid.

The class LowLevelContext represents the basic categories of low-
level contexts via the classes Activity, Location and Emotion (Fig-
ure 4.3). The di�erent recognized activities are modeled as 17 dis-
joint subclasses of the class Activity: LyingDown, Sitting, Standing,
Walking, Running, Cycling, Hiking, Stretching, Jumping, Dancing,
Eating, Sweeping, ClimbingStairs, DescendingStairs, Riding-
Elevator, RidingEscalator, and UnidentifiedActivity. The names
of the classes make reference to the activity they represent and
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Figure 4.3: Mining Minds Context Ontology: the class LowLevel-
Context and its subclasses.

the class UnidentifiedActivity represents any activity that does
not belong to the other subclasses of Activity. The class Location
has nine disjoint subclasses used to model the detected locations:
Home, Office, Restaurant, Gym, Mall, Transport, Yard, Outdoors, and
UnidentifiedLocation which represents any other location. The recog-
nized emotions are modeled through the nine disjoint subclasses of the
class Emotion: Happiness, Sadness, Anger, Disgust, Fear, Boredom,
Surprise, Neutral, and UnidentifiedEmotion which represents any
other emotion.

The class HighLevelContext models the concept of high-level con-
text (Figure 4.2). The universal restrictions on the object properties
hasActivity, hasLocation and hasEmotion model the relationship be-
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Figure 4.4: Mining Minds Context Ontology: the class HighLevel-
Context and its subclasses.

tween the individuals of the class HighLevelContext and the indi-
viduals of the di�erent subclasses of LowLevelContext, which com-
pose the high level context. The di�erent types of high-level con-
texts are modeled via ten subclasses of the class HighLevelContext
(Figure 4.4). Their equivalent anonymous classes are de�ned in Pro-
tégé, the open-source ontology editor [83]: OfficeWork (Figure 4.5),
Sleeping (Figure 4.6), HouseWork (Figure 4.7), Commuting (Figure 4.8),
Amusement (Figure 4.9), Gardening (Figure 4.10), Exercising (Fig-
ure 4.11), HavingMeal (Figure 4.12), Inactivity (Figure 4.13), and
NoHLC (Figure 4.14).

In order to be a member of the de�ned class OfficeWork (Fig-
ure 4.5), an individual of the class HighLevelContext must have a
property of type hasActivity which relates to an individual of the class
Sitting, and this property can only take as value an individual of the
class Sitting. Moreover the individual of the class HighLevelContext
must also have a property of type hasLocation, which relates to an
individual of the class Office and only to an individual of the class
Office. Finally, in case the individual of the class HighLevelContext
has a property of type hasEmotion, this property must relate to an
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Figure 4.5: Mining Minds Context Ontology: De�nition of the class
OfficeWork.

Figure 4.6: Mining Minds Context Ontology: De�nition of the class
Sleeping.

Figure 4.7: Mining Minds Context Ontology: De�nition of the class
HouseWork.

individual of the class Anger, the class Boredom, the class Disgust, the
class Happiness or the class Neutral. This universal restriction does
not specify that the relationship along the property hasEmotion must
exist, but if it exists, it must link to the speci�ed class members.

To be a member of the de�ned class Amusement (Figure 4.9), an
individual of the class HighLevelContext must have a property of type
hasActivity which relates to an individual of the class Dancing, the
class Sitting, the class Standing, or the class Walking, and this prop-
erty can only take as value an individual of one of these four classes:
Dancing, Sitting, Standing or Walking. Moreover the individual of the
class HighLevelContextmust also have a property of type hasLocation
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Figure 4.8: Mining Minds Context Ontology: De�nition of the class
Commuting.

Figure 4.9: Mining Minds Context Ontology: De�nition of the class
Amusement.

Figure 4.10: Mining Minds Context Ontology: De�nition of the class
Gardening.

which relates to an individual of the class Mall and only to an individual
of the class Mall. Finally, the individual of the class HighLevelContext
must also have a property of type hasEmotion which relates to an in-
dividual of the class Happiness and only to an individual of the class
Happiness. Summarizing, an individual of the class HighLevelContext
has to ful�ll the described existential and universal restrictions on the
properties hasActivity, hasLocation and hasEmotion in order to be
inferred as a member of the class Amusement. Hence, the assertion of
an individual of the class Happiness for the property hasEmotion is
mandatory to infer the class Amusement. The type of the restrictions
on the property hasEmotion is the main modeling di�erence between
the class Amusement and the previously presented class OfficeWork.
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Figure 4.11: Mining Minds Context Ontology: De�nition of the class
Exercising.

In the de�nition of the class Amusement the property hasEmotion is
mandatory due to existential and universal restrictions on this prop-
erty, whereas in the de�nition of the class OfficeWork the property
hasEmotion is optional since the restriction on this property is univer-
sal but not existential.

To be a member of the de�ned class Inactivity (Figure 4.13),
an individual of the class HighLevelContext must not be member
of the class Amusement, the class Commuting, the class Exercising,
the class Gardening, the class HavingMeal, the class HouseWork, the
class OfficeWork, or the class Sleeping, i.e., it must not be a mem-
ber of other subclasses of HighLevelContext. Moreover the individ-
ual of the class HighLevelContext must also have a property of type
hasActivity which relates to an individual of the class LyingDown, the
class RidingElevator, the class RidingEscalator, the class Sitting,
or the class Standing, and this property can only take as value an
individual of one of these �ve classes: LyingDown, RidingElevator,
RidingEscalator, Sitting, or Standing. In the modeling of the class
Inactivity, not only existential and universal restrictions are used,
but also the concept of complement class.
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Figure 4.12: Mining Minds Context Ontology: De�nition of the class
HavingMeal.

Figure 4.13: Mining Minds Context Ontology: De�nition of the class
Inactivity.

Figure 4.14: Mining Minds Context Ontology: De�nition of the class
NoHLC.

The class NoHLC represents the absence of high-level context in an
interval of time. This means that none of the low-level contexts are
available in the time interval and therefore, it is not possible to identify
a high-level context in that period of time. In order to model this con-
cept, the complement class and existential restrictions are used in the
de�nition of the class NoHLC (Figure 4.14). Thus, to be a member of the
de�nded class NoHLC, an individual of the class HighLevelContext must
not be a member of the anonymous class hasActivity some Activity,
neither of the anonymous class hasLocation some Location, nor of the
anonymous class hasEmotion some Emotion.
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4.2.2. Instances of Context

An illustrative scenario is presented here to showcase the representation
of instances of low-level contexts and high-level contexts in the Mining
Minds Context Ontology (Figure 4.15). Let us imagine that it is 10
November 2015, and the user with identi�er 9876 enters at 11:03:55
the o�ce building of her or his working place. This event is detected
by a location detector, a positioning system that interprets the coor-
dinates of the user as the location of her or his o�ce. Therefore, the
low-level context of category location is identi�ed as being of type o�ce
at 11:03:55. She or he starts talking on the phone, and a system capable
of recognizing emotions detects from the tone of her or his voice that
the user is bored. Thus, the low-level context of category emotion is
identi�ed as being of type boredom at 11:05:05. The phone call �nalizes
at 11:06:40, and then, no emotion is detected anymore. Meanwhile, at
11:05:25, the user sits down at her or his workplace. This event is de-
tected by an activity recognizer that continuously measures her or his
body motion. The low-level context of category activity is identi�ed as
being of type sitting at 11:05:25. It should be noted that every change
in any of the low-level contexts may potentially lead to a new high-level
context. For example, at 11:05:05, the combination of the activity sit-
ting, the location o�ce and the emotion boredom creates a high-level
context that is classi�ed as o�ce work. At 11:06:40, when the emo-
tion is no longer available, but the activity remains as sitting and the
location as o�ce, the high-level context for this user continues being
identi�ed as o�ce work. Some combinations of low-level contexts do
not constitute a known class of high-level context, based on the de�ned
ontology. This is the case of the two high-level contexts at the begin-
ning of this scenario. Namely, only location or the combination of the
location o�ce and the emotion boredom turn out to be not enough to
identify a more abstract high-level context. Each context has associated
a name, which serves as unique identi�er. These names are automati-
cally created by the system whenever a new context is detected and are
composed of the pre�x �llc_� or �hlc_� and a sequential unique num-
ber. For the sake of simplicity, in this example up to three digits are
considered; however, large numbers are normally used by the system to
procure unique identi�ers. Furthermore, in order to make the example
more understandable, for the low-level contexts it has been appended
the membership of the instance to its name. For example, the context
representing the activity sitting is named llc_360_sitting.
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Figure 4.15: Exemplary scenario representing low-level contexts and
high-level contexts.

The terminology described in Section 4.2.1 is utilized at this point
to generate the instances of context resulting from this scenario. The
instances of low-level context are directly created from the informa-
tion provided by the activity recognizer, location detector or emotion
recognizer. In Section 4.2.2, the generation of the low-level contexts is
presented. High-level contexts can be created from the information of
the low-level contexts which are part of it and which triggered its oc-
currence. In Section 4.2.2, the generation of the high-level contexts is
introduced. High-level contexts can also be classi�ed, i.e., the member-
ship of the high-level context or the class to which a high-level context
belongs can be determined. In Section 4.2.2, the inference of the mem-
bership of the high-level contexts is described. Since the process of
inferring the membership of a high-level context is also called classi-
�cation, the high-level contexts for which their membership has been
inferred are hereafter called classi�ed high-level contexts. Conversely,
the high-level contexts for which their membership has not been in-
ferred are hereafter called unclassi�ed high-level contexts. Finally, it is
possible that the classi�cation of an unclassi�ed high-level context does
not result in any inferred statement. In other words, the high-level con-
text does not belong to any of the classes of high-level context de�ned
in the terminology. In this case, the high-level context, which has been
intended to be classi�ed, but does not belong to any known class, is
called unidenti�ed high-level context.

Instances of Low-Level Context

The low-level contexts are modeled as members of the subclasses
of LowLevelContext: Activity, Location, and Emotion. Figure 4.16
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(a) llc_358_o�ce

(b) llc_359_boredom

(c) llc_360_sitting

Figure 4.16: Representation of the instances of low-level context
for the exemplary scenario by using the Mining Minds Context
Ontology on Protégé. llc_358_office is a member of the class
Office; llc_359_boredom is a member of the class Boredom; and
llc_360_sitting is a member of the class Sitting.

shows how the low-level contexts for the presented scenario are de-
scribed in Protégé. llc_358_office, llc_359_boredom, and
llc_360_sitting are members of the classes Office, Boredom, and
Sitting, respectively. These instances model the low-level context of
the user with identi�er 9876. Thus, llc_358_office, llc_359_boredom
and llc_360_sitting are related along the property isContextOf
to the individual user_9876 which is a member of the class User.
All the individuals representing the low-level contexts have a rela-
tionship along the property hasStartTime to a value in the form
of XSD dateTime which represents the start time of the interval
in which the low-level context is valid. For example, for the in-
dividual llc_359_boredom, the property hasStartTime links to the
value “2015-11-10T11:05:05”ˆˆdateTime, which indicates that this
context started at 11:05:05 on 10 November 2015. Moreover, for
this very individual, the property hasEndTime relates to the value
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“2015-11-10T11:06:40”ˆˆdateTime, which means that this low-level
context only occurred until 11:06:40 on 10 November 2015. Therefore,
the individual llc_359_boredom models a low-level context of the type
boredom for the user with identi�er 9876 and which was valid in the
period of time comprising from 11:05:05 to 11:06:40 on 10 November
2015.

Instances of Unclassi�ed High-Level Context

The unclassi�ed high-level contexts are modeled as members of the
class HighLevelContext for which their properties and types are stated.
Property assertions are used to de�ne the low-level contexts which com-
pose the unclassi�ed high-level context. The properties hasActivity,
hasLocation and hasEmotion relate to the individuals of the subclasses
of the classes Activity, Location and Emotion, respectively. Reasoning
in OWL is based on the Open World Assumption (OWA), which means
that it cannot be assumed that something does not exist unless it is ex-
plicitly stated that it does not exist. Therefore, type assertions are used
as closure axioms to indicate that an unclassi�ed high-level context is
composed of a unique and �nite set of low-level contexts. Speci�cally,
for each of the low-level contexts components of the high-level context,
it is stated the type equivalent to the anonymous class represented by
the universal restriction on the property hasActivity, hasLocation or
hasEmotion where the value of the �ller is the collection comprising
only the low-level context. Furthermore, type assertions are also used
as closure axioms to indicate that there is no low-level context of a
speci�c category being part of the unclassi�ed high-level context. In
this case, for each of the categories of low-level context absent on the
unclassi�ed high-level context, it is stated the type equivalent to the
anonymous class which is the negation class of the existential restric-
tion on the property hasActivity, hasLocation or hasEmotion where
the �ller is the class representing the category of low-level context,
Activity, Location or Emotion, respectively.

Figure 4.17 shows how the unclassi�ed high-level contexts for
the presented scenario are described in Protégé. hlc_70, hlc_71,
hlc_72, and hlc_73 are members of the class HighLevelContext.
Similarly as for the low-level contexts, the individuals represent-
ing the unclassi�ed high-level contexts have relationships along
the properties isContextOf, hasStartTime, and hasEndTime. For
the individual hlc_72, the property hasActivity relates to the
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(a) hlc_70

(b) hlc_71

(c) hlc_72

(d) hlc_73

Figure 4.17: Representation of the instances of unclassi�ed high-level
context for the exemplary scenario by using the Mining Minds Con-
text Ontology on Protégé. The unclassi�ed high-level contexts hlc_70,
hlc_71, hlc_72, and hlc_73 are composed of some of the low-level con-
texts llc_358_office (member of the class Office), llc_359_boredom
(member of the class Boredom) and llc_360_sitting (member of the
class Sitting).
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individual llc_360_sitting, the property hasLocation to the in-
dividual llc_358_office, and the property hasEmotion to the in-
dividual llc_359_boredom. Due to the OWA, hlc_72 has been as-
serted the type hasActivity only ({llc_360_sitting}), the type
hasLocation only ({llc_358_office}), and the type hasEmotion
only ({llc_359_boredom}). These statements indicate that the indi-
vidual hlc_72 only has a hasActivity relationship to llc_360_sitting,
a hasLocation relationship to llc_358_office and a hasEmotion re-
lationship to llc_359_boredom. The individual hlc_73 is composed of
the same activity and location as hlc_72; however, no emotion is part
of this unclassi�ed high-level context. Therefore, hlc_73 has been as-
serted the type not (hasEmotion some Emotion). This statement in-
dicates that the individual hlc_73 does not have any property of type
hasEmotion linking to an individual of the class Emotion, i.e., this un-
classi�ed high-level context does not contain any emotion.

Instances of Classi�ed High-Level Context

The classi�ed high-level contexts are obtained using a reasoner
which infers the membership of the unclassi�ed high-level con-
texts. Thus, a classi�ed high-level context is an individual of the
class HighLevelContext, which is determined to be also a mem-
ber of one of the ten subclasses of HighLevelContext: OfficeWork,
Sleeping, HouseWork, Commuting, Amusement, Gardening, Exercising,
HavingMeal, Inactivity or NoHLC. Figure 4.18 shows the classi�ed
high-level contexts for the working scenario and which have been in-
ferred in Protégé using the Pellet reasoner [104]. The individuals hlc_70
and hlc_71 are not presented in the �gure since they do not belong to
any known class of high-level context, i.e, they are unidenti�ed high-
level contexts.

The individual hlc_72 is inferred by the reasoner to belong to
the class OfficeWork (Figure 4.18(a)). Since this individual of the
class HighLevelContext complies with the de�nition of the class
OfficeWork, it is classi�ed as being a member of this class. hlc_72
ful�lls the existential and universal restrictions on the property
hasActivity, which state that a member of the class OfficeWork
must have some hasActivity relationship to an individual of the class
Sitting and only to a member of this class. These restrictions are met
since the property hasActivity only links the individual hlc_72 to the
individual llc_360_sitting, which is a member of the class Sitting.
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(a) hlc_72

(b) hlc_73

Figure 4.18: Representation of the instances of classi�ed high-level
context for the exemplary scenario by using the Mining Minds Con-
text Ontology on Protégé. The classi�ed high-level contexts hlc_72 and
hlc_73, which are both inferred to be members of the class OfficeWork,
are composed of some of the low-level contexts llc_358_office (mem-
ber of the class Office), llc_359_boredom (member of the class
Boredom) and llc_360_sitting (member of the class Sitting).

Similarly, hlc_72 also ful�lls the existential and universal restrictions
on the property hasLocation. Furthermore, hlc_72 ful�lls the univer-
sal restriction on the property hasEmotion, which states that in the
case a member of the class OfficeWork has a hasEmotion relation-
ship, it has to link to only an individual of the class Boredom. In fact,
hlc_72 is only related along the property hasActivity to the individual
llc_359_boredom, which is a member of the class Boredom.

The individual hlc_73 is also classi�ed by the reasoner as being a
member of the class OfficeWork (Figure 4.18(b)). Similar to the classi-
�ed high-level context hlc_72, the individual hlc_73 also complies with
the existential and universal restrictions on the properties hasActivity
and hasLocation. However, the property hasEmotion about the indi-
vidual hlc_73 is not asserted. The universal restriction on the property
hasEmotion does not state that the relationship must exist. In fact, it
may not exist at all and the restriction still be ful�lled, as it is the
case for hlc_73. Thus, the individual hlc_73 can be inferred as being a
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member of the class OfficeWork. The classi�cation as members of the
class OfficeWork of the two individuals of the class HighLevelContext,
hlc_72 and hlc_73, one with a hasEmotion relationship and another
without it, proves the �exibility of the Mining Minds Context Ontol-
ogy, which enables the identi�cation of high-level contexts, even if one
of the pieces of low-level information is missing. This is considered to
be helpful in real-life scenarios where emotion recognition systems are
not always available or may generate detection events in a less regular
basis than activity recognizers or location detectors.

4.3. A Method for the Inference of High-Level Con-
text

This section presents a method based on ontology reasoning to auto-
matically infer rich and meaningful human context to enhance the oper-
ation of behavior-aware systems. This method infers abstract context
representations based on categories, such as physical activities, emo-
tional states and locations. These categories, which are derived from
the wide-spectrum of multimodal data obtained from the user inter-
action with the real- and cyber-world, are intelligently combined and
processed in order to determine and track the user context. The in-
ferred user context can be utilized to provide personalized health and
wellness services. The inference method relies on the Mining Minds
Context Ontology (Section 4.2) and applies OWL 2 DL reasoning to
identify abstract user context.

The novel context inference method involves several steps which
are graphically represented in Figure 4.19. Conversely to most similar
approaches, this method supports the instance-based identi�cation of
context. Every time unstructured low-level information, namely activi-
ties, emotions and locations, are identi�ed by a low-level context recog-
nizer, the method to infer more abstract high-level context begins. In
the �rst phase of the method, the ontological concepts representing the
user context are generated. Thus, the received low-level information is
interpreted and transformed into the ontological concept representing
this type of low-level context. This new instance of low-level context is
stored for persistence. Then, other low-level contexts valid at the same
moment in time are identi�ed. After that, a new instance of an unclas-
si�ed high-level context linking to the low-level contexts that compose
it is generated. In the second phase of the method, the unclassi�ed
high-level context is veri�ed and classi�ed. Therefore, the semantic and
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Figure 4.19: Diagram depicting the steps involved in the context in-
ference method.

syntactic consistency of the unclassi�ed high-level context are checked.
If the unclassi�ed high-level context is valid, it is classi�ed, i.e., the
membership of the unclassi�ed high-level is identi�ed by applying on-
tological reasoning. In the third and last phase of the method, the newly
classi�ed high-level context is made available to any third party appli-
cation that registered for this type of information. The identi�cation
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Figure 4.20: High-Level Context Architecture (HLCA) which imple-
ments the method to infer high-level context.

of a new high-level context implies that the previous one is not valid
anymore. Thus, the previous high-level context is retrieved and its end
time is set. Then, the two instances are stored for their persistence. Fi-
nally, if the new instance belongs to a di�erent high-level context type
than the previous one, the change in the high-level context is noti�ed.

In order to implement the proposed ontology-based method for the
inference of meaningful context, a system architecture, named the High-
Level Context Architecture (HLCA), is designed and speci�ed (Fig-
ure 4.20). The HLCA consists of four main components: High-Level
Context Builder (Section 4.3.1), High-Level Context Reasoner (Sec-
tion 4.3.2), High-Level Context Noti�er (Section 4.3.3), and Context
Manager (Section 4.3.4). In the following the di�erent components of
the HLCA are described in detail. For the sake of understanding, an
example from the scenario presented in Section 4.2.2 is here considered
to illustrate the operation of each component of the HLCA. Namely,
the inference of a new high-level context at 11:05:25 on 10 Novem-
ber 2015 is considered. At that moment, a new low-level context of
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Figure 4.21: Sequence diagram representing the interaction among
component of the High-Level Context Architecture (HLCA).

the category sitting for the user with identi�er 9876 is detected by an
external low-level context recognizer. This event triggers the novel con-
text inference method implemented by the HLCA. After the method
has been applied, a new high-level context of type o�ce work is iden-
ti�ed and served to the registered third party applications. Figure 4.21
presents the sequence diagram of the interactions among components
of the HLCA in the application of the context inference method for this
particular example.
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4.3.1. High-Level Context Builder

The High-Level Context Builder receives the low-level information, i.e.,
activities, emotions, and locations, and generates the ontological con-
cepts representing an unclassi�ed high-level context associated with
that information. The High-Level Context Builder has three subcompo-
nents: the Context Mapper, the Context Synchronizer, and the Context
Instantiator.

Context Mapper

The Context Mapper interprets the received low-level information and
transforms it into the corresponding ontological concepts. Speci�cally,
it maps the labels plus metadata into ontological instances of low-level
context. Whenever the Context Mapper gets a new label, it creates an
instance of the subclass of the class LowLevelContext which represents
the corresponding activity, location or emotion (as described in Sec-
tion 4.2.2). The property hasStartTime is stated to relate this instance
to the time in which the low-level context started and which is part
of the received metadata. Furthermore, the user to which the context
belongs is related along the property isContextOf. Once the low-level
context instance has been created, it is stored in the Context Manager
for its persistence (see Section 4.3.4) and it is noti�ed to the Context
Synchronizer.

For the working example, the Context Mapper receives at run-time
the activity label �sitting� and several metadata, i.e., the identi�er
of the user �9876� and the time in which the context starts �2015-
11-10T11:05:25�. The Context Mapper generates an instance of low-
level context and then asserts the properties about it. The instance
llc_360_sitting of the class Sitting presented in Figure 4.16(c)
is created. This instance has a isContextOf relationship to the in-
dividual user_9876 and a hasStartTime relationship to the value
“2015-11-10T11:05:25”ˆˆdateTime.

Context Synchronizer

The Context Synchronizer searches for concurrent low-level contexts,
whenever the Context Mapper has noti�ed a newly detected low-level
context instance. A change in the low-level context implies a new high-
level context, comprising the new low-level context and the other low-
level contexts still valid at the start of the new low-level context. The
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Context Synchronizer needs to determine the other low-level contexts
of a given user which are valid a the start time of the new low-level
context instance created by the Context Mapper. Therefore, one of the
most important roles of the Context Synchronizer is to align concurrent
low-level contexts of the same user which might have been received in an
unordered manner due to the diverse delays introduced by di�erent low-
level context recognizers. In order to search for the concurrent low-level
contexts, the Context Synchronizer requests information stored in the
Context Manager and accesses it through the Context Instance Handler
(see Section 4.3.4). Once the Context Synchronizer has determined the
low-level contexts concurrent to the one that triggered the process, the
Context Instantiator is invoked.

In the considered example, when the Context Synchronizer is no-
ti�ed by the Context Mapper about the identi�cation of the new
low-level context represented by the instance llc_360_sitting, it
searches for concurrent low-level contexts by querying the information
stored in the Context Manager. The instances llc_358_office and
llc_359_boredom, presented in Figure 4.16(a) and in Figure 4.16(b),
are found to be concurrent to the low-level context llc_360_sitting.
These two low-level contexts belong to the same user, i.e., user with
identi�er 9876, and they are still valid at 11:05:25 on 10 November
2015, when the new low-level context sitting starts.

Context Instantiator

The Context Instantiator creates a new instance of an unclassi�ed high-
level context linking to the constituent low-level contexts. Whenever the
Context Synchronizer detects a set of low-level contexts which are con-
current to a newly detected one, the Context Instantiator creates a new
instance of an unclassi�ed high-level context containing these low-level
contexts (as described in Section 4.2.2). Therefore, an instance of the
class HighLevelContext is created and the di�erent low-level contexts
which compose the high-level context are related to it along the proper-
ties hasActivity, hasLocation, and hasEmotion. Moreover, the closure
axioms are established via type assertions on these properties. In case
there is a low-level context of a particular type, the Context Instan-
tiator generates the axiom stating that the property can only link to
that given low-level context. Otherwise, if no low-level context has been
determined for one of the categories -activities, locations or emotions-
, the Context Instantiator creates the axiom stating that there is no
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low-level context of that category. Furthermore, the Context Instantia-
tor establishes a hasStartTime relationship to the time in which the
high-level context change happened, i.e., the time in which the newly
detected low-level context started and which triggered the creation of
the new unclassi�ed high-level context. Moreover, the user to which the
high-level context belongs is related along the property isContextOf.
The identi�er of the user to which the high-level context belongs is
the same than the one associated to the low-level contexts which com-
pose the high-level context. Once the Context Instantiator has created
the instance of an unclassi�ed high-level context, this is served to the
High-Level Context Reasoner (see Section 4.3.2) for its veri�cation and
classi�cation.

For the working example, the Context Instantiator receives from
the Context Synchronizer the newly detected low-level context repre-
sented by the instance llc_360_sitting and the concurrent low-level
contexts llc_358_office and llc_359_boredom. The Context Instan-
tiator creates the instance hlc_72 of the class HighLevelContext (see
Figure 4.17(c)) and links it to the low-level contexts which compose it.
Therefore, the properties hasActivity, hasLocation and hasEmotion
relate, respectively, to the instances llc_360_sitting, llc_358_office
and llc_359_boredom. The closure axiom hasActivity only
({llc_360_sitting}) indicates that the individual hlc_72 only
has a hasActivity relationship to the individual llc_360_sitting.
Similarly, the other two closure axioms, hasLocation only
({llc_358_office}) and hasEmotion only ({llc_359_boredom}),
state the uniqueness of the relationships. The Context Instantiator
also speci�es that the instance hlc_72 has a isContextOf relationship
to the individual user_9876 which is the owner of the di�erent low-
level contexts composing the high-level context. Finally, the Context
Instantiator creates a relationship along the property hasStartTime
to the moment in which the change in the low-level context triggered
the identi�cation of the new high-level context. The start time of
the high-level context hlc_72 is the start time of the low-level con-
text llc_360_sitting. Thus, for the instance hlc_72 the property
hasStartTime links to the value “2015-11-10T11:05:25”ˆˆdateTime.

4.3.2. High-Level Context Reasoner

The High-Level Context Reasoner performs a consistency check on the
unclassi�ed high-level context instance created by the High-Level Con-
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text Builder (see Section 4.3.1). In case the instance is valid, the High-
Level Context Reasoner identi�es the context type to which the high-
level context belongs, i.e., it classi�es the high-level context instance. In
order to perform these tasks, the High-Level Context Reasoner applies
ontological inference supported by the formal description of context in
the Mining Minds Context Ontology (see Section 4.2.1). The High-Level
Context Reasoner comprises two subcomponents: the Context Veri�er
and the Context Classi�er.

Context Veri�er

The Context Veri�er checks the semantic and syntactic consistency of
the unclassi�ed high-level context provided by the High-Level Context
Builder. Therefore, the instance of unclassi�ed high-level context is val-
idated and veri�ed versus the Mining Minds Context Ontology, which
is stored in the Context Manager and can be accessed through the
Context Ontology Handler (see Section 4.3.4). During the consistency
check, non-logical or malformed high-level contexts can be detected.
For example, the high-level contexts which do not contain the necessary
property hasStartTime or the ones composed from multiple di�erent
instances of low-level contexts of the same type. Once the Context Ver-
i�er has ensured that the unclassi�ed high-level context is valid, this
instance is provided to the Context Classi�er for further processing.

In the described example, the Context Veri�er receives from the
Context Instantiator the newly created high-level context hlc_72. This
instance is checked for its semantic and syntactic consistency, it is con-
sidered to be valid, and it is then served to the Context Classi�er.

Context Classi�er

The Context Classi�er identi�es the type of high-level context to which
the unclassi�ed high-level context belongs; thus, converting the unclas-
si�ed instance into a classi�ed high-level context. The classi�cation of
the unclassi�ed high-level context instance into one of the de�ned high-
level context classes is based on the inference functionalities provided
by the Mining Minds Context Ontology.

Speci�cally, one of the key features of this ontology is that it can
be processed by a reasoner which can automatically perform the clas-
si�cation process. This means that the unclassi�ed high-level context
instance is compared versus the de�nitions of the di�erent high-level
context classes to determine whether it complies with the conditions
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that de�ne the class. In case it complies, the instance is inferred to
belong to that class. The classi�cation process is triggered every time
the Context Classi�er receives a new valid instance of high-level con-
text from the Context Veri�er. After the membership of the unclas-
si�ed high-level context instance has been determined, the Context
Classi�er adds to the unclassi�ed high-level context instance the ax-
iom stating that this instance belongs to a speci�c type of high-level
context. Therefore, the instance of the class HighLevelContext which
models the classi�ed high-level context is related along the property
rdf:type to the subclass of the class HighLevelContext representing
the high-level context of which the instance is a member. It is possible
that the unclassi�ed high-level context does not belong to any of the
known classes described in the Mining Minds Context Ontology. This
means that no membership is inferred and the unclassi�ed high-level
context is considered to belong to an unidenti�ed type of high-level con-
text. In this case, the classi�ed high-level context has the same exact
representation than the corresponding unclassi�ed high-level context.
Finally, the Context Classi�er serves the classi�ed high-level context to
the High-Level Context Noti�er (see Section 4.3.3).

For the working example, the Context Classi�er receives from the
Context Veri�er the high-level context hlc_72. The Context Classi�er
applies the classi�cation method to this unclassi�ed high-level context
in order to determine its membership. The individual hlc_72 is inferred
to belong to the class OfficeWork since it complies with the de�ni-
tion of the class OfficeWork (as described in Section 4.2.2). Therefore,
the Context Classi�er creates the axiom hlc_72 rdf:type OfficeWork
which indicates that the individual hlc_72 is a member of the class
OfficeWork. The classi�ed high-level context instance hlc_72 is pro-
vided to the High-Level Context Noti�er for its noti�cation.

4.3.3. High-Level Context Noti�er

The High-Level Context Noti�er makes available to third party appli-
cations the newly identi�ed high-level contexts. The High-Level Con-
text Noti�er receives from the High-Level Context Reasoner a classi-
�ed high-level context instance and noti�es the subscribed third parties
about the detection of a new high-level context. This noti�cation is only
conducted if the new instance belongs to a high-level context type dif-
ferent than the previous one. Only changes in the high-level context
type are noti�ed, this means that di�erences in the low-level context
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composition which do not imply a change on the type of high-level
context are not communicated to the third parties. Furthermore, the
High-Level Context Noti�er stores the new high-level context into the
Context Manager for its persistence via the Context Instance Handler
(see Section 4.3.4) and gets as an answer from this component the pre-
vious valid high-level context.

For the described example, the High-Level Context Noti�er receives
from the High-Level Context Reasoner the high-level context hlc_72
which has been classi�ed as OfficeWork. The High-Level Context No-
ti�er contacts the Context Instance Handler for the persistence of the
instance hlc_72 into the Context Storage. Moreover, the High-Level
Context Noti�er receives from the Context Instance Handler the previ-
ous valid instance of high-level context hlc_71. The High-Level Context
Noti�er compares the membership of hlc_72 to the membership of the
previous valid high-level context hlc_71. The High-Level Context No-
ti�er determines that there has been a change in the type of high-level
context, the previous instance hlc_71 was unidenti�ed and the new
instance hlc_72 is office work. Therefore, the third parties are noti-
�ed about the change in the high-level context modeled as the instance
hlc_72.

4.3.4. Context Manager

The Context Manager persists the Mining Minds Context Ontology, in-
cluding the terminology for the de�nition of context and the instances
of context. Furthermore, this component eases the interactions with
the persisted context information by facilitating the exchanges with
the storage infrastructure. The Context Manager has four subcompo-
nents: the Context Storage, the Context Ontology Handler, the Context
Instance Handler and the Context Query Generator.

Context Storage

The Context Storage is a database which provides persistence for the
storage of the Mining Minds Context Ontology, including both the con-
text de�nition terminology and the context instances. Since the context
is modeled via an ontology and the context instances are represented
as ontological instances, this storage is devised to be a database of the
type triple store. Moreover, the Context Storage also provides read and
write functionalities for the Mining Minds Context Ontology. However,
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this storage cannot be directly accessed and all the interactions are han-
dled through the Context Ontology Handler and the Context Instance
Handler.

Context Ontology Handler

The Context Ontology Handler provides the management functional-
ities to interact with the Mining Minds Context Ontology terminol-
ogy stored in the Context Storage. This component enables loading
the context ontology to the Context Storage at the system start time.
The Context Ontology Handler also supports the retrieval of the con-
text ontology which is stored in the Context Storage, so that the rest
of components of the HLCA have access to the latest version of the
ontological terminology. Furthermore, the Context Ontology Handler
enables the extension at runtime of the context ontology. The exten-
sibility is required to evolve the context ontology, therefore, including
new types of low-level contexts and new de�nitions for the high-level
contexts. Every time the ontology is updated, the rest of components
of the HLCA making direct use of the context ontology are noti�ed to
obtain an updated version of the terminology.

Context Instance Handler

The Context Instance Handler deals with the retrieval and storage of
context information in the Context Storage. The Context Instance Han-
dler o�ers three di�erent functionalities: storage of a newly mapped low-
level context, retrieval of concurrent low-level contexts, and storage of
a newly inferred high-level context while retrieving the previous valid
high-level context. The Context Instance Handler poses to the Context
Storage the SPARQL queries [9] created by the Context Query Gener-
ator in order to retrieve the persisted context information. Speci�cally,
the logic of the Context Instance Handler for the storage of a newly
inferred high-level context is as follows. The identi�cation of a new
high-level context implies that the previous context for the given user
is not valid anymore. Therefore, the storage process includes the �nal-
ization of the previous valid high-level context instance. This operation
entails to set the value of the end time of the previous valid high-level
context stored in the Context Storage. In order to �nd the previous
valid high-level context, the Context Instance Handler needs to pose
the appropriate SPARQL queries to the Context Storage. The Con-
text Query Generator is invoked to create the queries for the previous
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valid high-level context based on the newly inferred high-level context
instance (see Section 4.3.4). Furthermore, it must be noted that a an
earlier new high-level context could be inferred after the classi�cation
of a posterior one. This scenario is not very common but could happen
due to the di�erent delays in the data-driven recognition process for
the low-level contexts. If this situation occurs, the newly inferred high-
level context is only valid until the start time of the posterior high-level
context already stored in the Context Storage. Therefore, the storage
process also includes the �nalization of the newly inferred high-level
context instance.

In the considered example, the High-Level Context Noti�er inter-
acts with the Context Instance Handler to persist the newly classi�ed
high-level context instance hlc_72 and to retrieve the previously valid
instance of high-level context. Therefore, the Context Instance Han-
dler stores the instance hlc_72 into the Context Storage. Moreover,
the Context Instance Handler retrieves from the Context Storage the
previously valid instance of high-level context. The previous high-level
context is here an individual of the class HighLevelContext modeling
the context of the user represented by the individual user_9876 and
which is valid at at 11:05:25 on 10 November 2015. In order to retrieve
the previous high-level context for the instance hlc_72, the Context In-
stance Handler invokes the Context Query Generator which creates the
SPARQL queries presented in Listing 4.1 and Listing 4.2. These queries
are posed to the Context Storage which returns as the matching result
the high-level context hlc_71. Then, the Context Instance Handler �-
nalizes the previous high-level context instance hlc_71. This means
that the individual hlc_71 is related along the property hasEndTime to
the value “2015-11-10T11:05:25”ˆˆdateTime, which is the value for
the property hasStartTime of the newly identi�ed high-level context
hlc_72. In this exemplary scenario, it is assumed that there are no
delays in the recognition of the low-level contexts and therefore, there
are no high-level contexts posterior to hlc_72 which had already been
detected.

Context Query Generator

The Context Query Generator is the component which generates the
SPARQL queries [9] required by the Context Instance Handler in order
to �nd the matching context instances stored in the Context Storage.
The SPARQL queries are automatically created based on some infor-
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mation derived from the context instance that the Context Instance
Handler provides to the Context Query Generator. The Context Query
Generator is capable of generating several di�erent SPARQL queries
depending on the expected outcome required for each speci�c use case
scenario.The Context Query Generator creates SPARQL queries for the
identi�cation of a low-level context still valid at the start time of a newly
recognized low-level context, which belongs to the very user and which
is of the same context category. The Context Query Generator also cre-
ates SPARQL queries for the identi�cation of the start time of the next
posterior low-level context which belongs to the actual user and which
is of the same context category. The Context Query Generator can also
create SPARQL queries for the identi�cation of low-level contexts of a
given user which are concurrent at the start time of a newly recognized
low-level context instance. In addition, the Context Query Generator
creates SPARQL queries for the identi�cation of a high-level context
which is still valid at the start time of a new high-level context and
which belongs to the same user. Finally, the Context Query Generator
creates SPARQL queries for the identi�cation of the start time of the
next posterior high-level context belonging to the same user.

The logic for the creation of SPARQL queries for the identi�cation
of a high-level context which is still valid at the start time of a new
high-level context and which belongs to the same user is the following.
There are two cases in which the previous high-level context is still
valid , either it does not have an end time or its end time is posterior
to the start time of the new high-level context. In the �rst case, the
SPARQL needs to match a high-level context for the same user which
has a start time previous to the start time of the new high-level context
but does not have an end time. In the second case, the SPARQL needs
to match a high-level context for the same user which has a start time
previous to the start time of the new high-level context and an end
time posterior to the start of the new high-level context.

The speci�c SPARQL queries to request the previous high-level con-
text for the instance hlc_72 are presented in Listing 4.1 and List-
ing 4.2. In the considered example, the previous high-level context
for hlc_72 is an individual of the class HighLevelContext which be-
longs to the user represented by the individual user_9876 and which
is valid at 11:05:25 on 10 November 2015. Therefore, the matching
individual has to be a member of the class HighLevelContext, must
have a isContextOf relationship to the individual user_9876, must
have a hasStartTime relationship to a value less than or equal to
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“2015-11-10T11:05:25”ˆˆdateTime. Furthermore, it must not have
any hasEndTime relationship (as in the query presented in Listing 4.1),
or if it has such a relationship it must be to a value greater than
“2015-11-10T11:05:25”ˆˆdateTime (as in the query presented in List-
ing 4.2).

SELECT ?hlc
WHERE {

?hlc rdf:type HighLevelContext ;
isContextOf user_9876 ;
hasStartTime ?starttime .

FILTER NOT EXISTS ?hlc hasEndTime ?endtime .
FILTER ( ?starttime <= "2015-11-10T11:05:25"^^xsd:dateTime )

}

Listing 4.1: SPARQL query to request the previous high-level context
for the instance hlc_72 in a scenario without recognition delays.

SELECT ?hlc
WHERE {

?hlc rdf:type HighLevelContext ;
isContextOf user_9876 ;
hasStartTime ?starttime ;
hasEndTime ?endtime .

FILTER ( ?starttime <= "2015-11-10T11:05:25"^^xsd:dateTime )
FILTER ( ?endtime > "2015-11-10T11:05:25"^^xsd:dateTime )

}

Listing 4.2: SPARQL query to request the previous high-level context
for the instance hlc_72 in a scenario with recognition delays.

4.3.5. HLCA Implementation

The HLCA has been implemented in Java using available open source
libraries. All the components of the HLCA build on Apache Jena
(v2.11.2) [105], a semantic web framework which includes some APIs
for handling RDF [106], OWL [6], and SPARQL [9]. In the implemen-
tation of the High-Level Context Reasoner, an o�-the-shelf open source
reasoner, namely Pellet (v2.3.2) [104], has been utilized in combination
with Jena to enable the ontological inference functionalities. Further-
more, in the Context Manager, the Jena Triple Store (TDB) has been
used as the Context Storage for the persistence of the Mining Minds
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Context Ontology. The communication between the HLCA and the low-
level context recognizers, which identify activities, locations and emo-
tions, has been implemented by means of RESTful web services [107]
and establishing service contracts among them. The same mechanism
applies to the communication of the HLCA with the third party ap-
plications registered to get access to the newly identi�ed high-level
contexts.

4.4. Evaluation of the Context Ontology and Infer-
ence Method

This section analyzes the robustness of the proposed context ontol-
ogy and the performance and reliability of the novel context inference
method. Section 4.4.1 explores the tolerance o�ered by the Mining
Minds Context Ontology for the inference of high-level contexts un-
der the presence of low-level context errors. Section 4.4.2 studies the
performance of the High-Level Context Architecture with respect to
processing time and management of context instances. Section 4.4.3
evaluates the reliability of the context inference method implemented
by the High-Level Context Architecture during realistic executions.

4.4.1. Robustness of the Context Ontology

The proposed Mining Minds Context Ontology (see Section 4.2) has
been evaluated to determine how robust the identi�cation of high-level
contexts can be in the event of having erroneously detected low-level
contexts. In other words, this evaluation aims at measuring the level of
resilience of the high-level context level against errors originated at the
low-level context level. Pellet (v2.3.2) [104], an open source OWL 2 DL
reasoner for Java has been used in the evaluation test program. First,
a set of 1,800 instances representing all the possible combinations of
low-level contexts, i.e., activities, locations and emotions, have been
generated. Then, the instances have been posed to the reasoner and
the corresponding high-level contexts have been inferred. The resulting
array of high-level contexts represents the ground-truth for this evalu-
ation. Subsequently, various scenarios with increasing levels of error in
the low-level contexts have been de�ned. Namely, 5, 10, 20 and 50 per
cent of errors have been respectively introduced in the 1,800 instances
as to emulate potentially erroneous low-level contexts. For example,
in the case of having a 10% of a�ected instances a total of 180 ran-
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domly selected instances are deliberately modi�ed. The error has been
introduced by replacing the supposedly a�ected low-level context with
a new value randomly selected from the remaining contexts in the af-
fected category (activity, location or emotion). Thus for example, if the
original instance of high-level context is composed of the contexts sit-
ting, o�ce and boredom, and the a�ected context is the activity, the
newly generated instance could contain the contexts running, o�ce and
boredom. Moreover, in order to evaluate the prominence of each speci�c
context category or combination thereof, the analysis has been formu-
lated for all the combinations of low-level categories, i.e., introducing
errors in solely the activity, location, emotion, or combination of activ-
ity and location, activity and emotion, location and emotion, and all
activity, location and emotion. The instances resulting from all these
scenarios have been posed to the reasoner and the resulting high-level
contexts have been compared against the ground truth to determine
the accuracy of the model. Each of the experiments has been repeated
one hundred times in order to ensure the statistical robustness. The
average and standard deviation accuracy is presented in Table 4.1 for
each corresponding study.

Table 4.1: Mean and standard deviation of the accuracy of the high-
level context recognition under di�erent levels of errors in the detected
low-level contexts.

Low-level 5% 10% 20% 50%
Context Error Error Error Error

Activity (A) 97.60±0.05 95.13±0.05 90.39±0.04 75.32±0.20
Location (L) 99.45±0.02 98.82±0.05 97.61±0.15 93.93±0.02
Emotion (E) 99.63±0.02 99.18±0.05 98.32±0.05 96.04±0.07

A & L 97.08±0.10 94.27±0.16 88.48±0.11 72.63±0.10
A& E 97.16±0.12 94.22±0.06 89.60±0.10 73.53±0.30
L & E 99.00±0.05 98.02±0.09 96.24±0.05 91.25±0.09

A & L & E 96.56±0.06 93.10±0.30 87.52±0.11 71.60±0.13

From an overall analysis of the obtained results it can be concluded
that the impact of the error introduced in the low-level context is gener-
ally lower at the high-level context. For example, in the case of introduc-
ing a 5% error, the accuracy drops approximately no more than 0.4%
at best and 3.5% in the worst case scenario. Similarly, for the 10%, 20%
and 50% error cases the minimum and maximum accuracy drops are
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below the corresponding level of error. Experiencing a lesser impact is
generally due to the fact that not all the misrecognitions at the low-level
context lead to an inference error at the high-level context. For exam-
ple, if the activity running is recognized instead as climbing stairs, and
provided the rest of low-level contexts to be gym for the location and
neutral for the emotion, the inferred high-level context remains to be
exercising. Similar examples in which the error in the low-level context
is not propagated to the high-level context can be found for the case
of erroneous locations and emotions. It can also be observed that the
activity is the most prevalent category in terms of error impact, which
is certainly as a consequence of the importance given to the activity
context in the de�nition of high-level contexts. Conversely, the location
and especially the emotion tend to show a lower e�ect on the high-level
context. In fact the de�nition of some high-level contexts allows for a
good level of resilience against errors in the locations and the emotions.
This is the case of the high-level context inactivity, which is determined
from a sole sedentary activity, like lying down, and nearly any location
and emotional state. Therefore, even if an the location is erroneously
detected, the inferred high-level context would result in inactivity. The
only exception to this case would happen if the location is misreconized
as home, since lying down at home and with a neutral emotional state
is identi�ed as the high-level context sleeping. Moreover, errors simul-
taneously present in various low-level contexts generally increase the
chance of misidenti�cation of the actual high-level context. Therefore,
the combinations of errors in several low-level categories report a lower
accuracy in the high-level context recognition than in the case of hav-
ing only errors in a single category. As it was expected, the highest
impact is observed when all three low-level contexts are subject to er-
ror. Either way, the error in the recognition of the high-level context
remains below the level of error introduced in the considered low-level
contexts. Finally, it must be noted that owing to the descriptive logic
characteristic of ontologies, and conversely to probabilistic classi�ca-
tion models, combinations of correct low-level contexts will always lead
to a correctly inferred high-level context.

4.4.2. Performance of the Context Inference Method

In order to assess the performance of the proposed context inference
method, the current implementation the HLCA (see Section 4.3.5) has
been executed on a laptop operating Windows 10 with a 1.80 GHz
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Intel Core i7 CPU, 8GB RAM, and a HDD with 5400-RPM spindle
speed, I/O data-transfer rate up to 6 Gb/s and 16 MB bu�er. Us-
ing a test Java application the low-level context recognizers have been
emulated. The evaluation has consisted in the generation of 250,000
random low-level contexts belonging to 100 di�erent users and which
represented their context information for a time span of 16 days. First
the category of the low-level context (activity, location or emotion) has
been randomly selected and then one of the types for that category
has also been randomly chosen. After that, the metadata associated to
the low-level context label has been generated. The low-level context
has been randomly assigned to one of the 100 users. The start time of
each low-level context has also been randomly selected between 1 and
10 seconds after the start time of the previous low-level context. The
generated low-level contexts, including the labels and the metadata,
have been input one at a time to the HLCA for their mapping, syn-
chronization, instantiation, veri�cation, classi�cation and noti�cation.
It is important to notice that the low-level contexts are served to the
HLCA sequentially and at their simulated occurrence time. Thus, the
HLCA works at real-time and processes each single instance on-the-�y
right after receiving it. Concurrency is procured through user-based
multithreading, thus supporting simultaneous processing of low-level
contexts from di�erent users taking place at the same time. Some re-
sources such as the Context Storage are shared among threads (users).
During the evaluation the time required for the context identi�cation
has been calculated and the volume of information generated and stored
on the Context Storage has further been determined.

Figure 4.22 shows the time invested by each of the HLCA compo-
nents and the system as a whole in the context identi�cation process.
The number of instances indicates the number of high-level contexts
which have already been processed by the HLCA when the recognition
process is triggered due to a change in the low-level context. Even if
the context recognition process is performed instance-wise, the number
of previously processed instances is important because of the volume
of information generated by the system during the recognition process
and persisted in the Context Storage. The processing times are fur-
ther averaged to have an overall �gure summarizing the time taken by
the each component of the HLCA. Table 4.2 presents the mean and
standard deviation of these times as well as the percentage of these
timesdevoted to the interaction of the component with the Context
Manager. This interaction is particularly relevant because the Context
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Figure 4.22: Processing time invested by each of the HLCA compo-
nents in the context identi�cation. The number of instances indicates
the amount of previously processed high-level contexts when the recog-
nition process is triggered.

Manager hosts the Context Storage, the shared resource which persists
and loads the context information.

One can observe the di�erences of scale in the processing times for
each of the components of the HLCA and the disparate tendencies of
these times when the number of recognized context instances increases.
The processes in which the HLCA component does not have any in-
teraction with the Context Storage take much less time than the ones
involving it. Furthermore, in the cases where the Context Storage is
not involved, the processing time does not increase with the number
of identi�ed context instances.The Context Classi�er and the Context
Veri�er take only some milliseconds to verify and classify the high-level
context instance. This time is quite small due to the architectural de-
sign principle for which each single instance of high-level context is
reasoned separately on-the �y at run-time. The Context Instantiator
does not access either the Context Storage, since the required inter-
actions to �nd the concurrent low-level contexts are performed by the
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Table 4.2:Mean and standard deviation of the processing time invested
by each of the HLCA components in the context identi�cation, as well
as the percentage of these times devoted to the interaction with the
Context Manager.

Component Processing Context
Time (s) Manager (%)

Context Mapper 0.986 ± 0.348 99.53
Context Synchronizer 2.188 ± 1.670 99.97
Context Instantiator 0.001 ± 0.000 0.00
Context Veri�er 0.032 ± 0.014 0.00
Context Classi�er 0.046 ± 0.019 0.00
Context Noti�er 1.012 ± 0.268 99.99

Context Synchronizer. Therefore, the Context Instantiator takes only
one millisecond to create a new instance of high-level context and this
time does not increase with the number of instances because of the
independence of the process from any other high-level context.

In case the components of the HLCA invoke the Context Storage,
the processing times rise and the interactions with the Context Stor-
age tend to represent most of the computational time, speci�cally more
than 99%. This means that the actual component is relatively quick to
perform its job but the context read and write processes which involve
the Context Manager delay the complete process. The processing time
for the Context Mapper and the High-Level Context Noti�er follow a
similar pattern. These processing times increase with the number of in-
stances, at the beginning and with very few instances the times rocket,
but then they stabilize and reach values around one second. The simi-
larity in the evolution of the processing times for these two components
is normal because their interactions with the Context Manager are of
the same type. In the �rst case, the Context Mapper stores the new
low-level context instance, retrieves the previous low-level context and
after updating it, stores it again into the Context Manager. In the
second case, the High-Level Context Noti�er stores the new high-level
context instance, retrieves the previous high-level context, compares
them and after updating the previous instance, stores it again into the
Context Manager. Therefore, the evolution of the processing time for
operations that involve read and write to the Context Manager can be
observed in the times for the Context Mapper and the High-Level Con-
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text Noti�er. The processing performed by the Context Synchronizer
in order to request concurrent low-level context instances is the most
time demanding process of the HLCA. In this case, most of the time is
devoted to the execution of the SPARQL queries and the retrieval of
the matching solutions from the Context Manager. The processing time
for the Context Synchronizer increases almost lineally with the number
of instances. In fact, for few instances this time is below the process-
ing time for the Context Mapper and High-Level Context Noti�er, but
then it becomes much higher. Therefore, the Context Synchronizer is
the bottle neck of the HLCA, with a clear impact on the evolution of
the time required for the context identi�cation.

The relevance of the time invested by the HCLA to recognize a
high-level context fairly depends on the application domain. Thus for
example, if an alert has to be sent right away or a prompt action be
taken based on the detected high-level context, then this time might be
arguably long. However, if the identi�ed information is rather used for
analyzing the trajectories of behavior over time, then this time turns
to be hardly relevant. Under these considerations, the processing time
for the recognition of high-level contexts could be the main limitation
of the actual implementation of the HLCA and should be improved in
future work. A potential solution could consist in introducing a cache
system into the High-Level Context Builder to save temporarily only
the latest instances of low-level context and periodically persist them
into the Context Manager. With such a solution the Context Synchro-
nizer would not need to interact with the Context Manager and could
pose the SPARQL queries directly to the cache; thus, retrieving the
low-level context instances from a much smaller store. The Context
Mapper, also part of the High-Level Context Builder, could share this
very cache with the Context Synchronizer and increase its performance
as well. If the cache would prove to be a good solution, such a system
could also be introduced in the Context Noti�er. This component has
a similar behavior than the Context Mapper and its processing time
could be reduced as well. Alternate solutions for accelerating the pro-
cessing time for the identi�cation of high-level contexts could include
parallelizing tasks, de�ning di�erent levels of cache-memory or simply
scaling the infrastructure through cloud-based services.

Finally, Figure 4.23 depicts the size of the Context Storage in the
Context Manager increasing lineally with the number of stored high-
level context instances. The initialization of the Context Storage, i.e.,
storing the terminology de�ning the Mining Minds Context Ontology,
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Figure 4.23: Size of the Context Storage depending on the number
of persisted instances of high-level context. It must be noted that the
storage of each high-level context instance has associated the storage
of the low-level context instance which triggered its creation. Thus, for
example, 250,000 instances in the X-axis represent 250,000 high-level
contexts plus 250,000 low-level contexts stored on disc.

requires only 408.5 KB on disc. The storage of each new high-level con-
text instance, which has associated the storage of the low-level context
instance which triggered its creation, increases the size of the Con-
text Storage in 17 KB, in average. Thus, for the previous simulation of
250,000 changes in the context, which leads to a total of 500,000 context
instances on disc (i.e., 250,000 high-level context instances and 250,000
low-level contexts instances), the Context Storage reached a size of 4.06
GB. Despite the Context Manager proves to fairly handle this volume
of data, the increasing time observed for I/O operations in long-term
scenarios with several users demands for some of the aforementioned
solutions.

4.4.3. Reliability of the Context Inference Method

An online evaluation of the HLCA is conducted to estimate the context
recognition capabilities during realistic executions. Hence, this evalua-
tion provides insights on the operation of the proposed context inference
method during the regular use of the system. The HLCA is here tested
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Figure 4.24: Experimental setup. The smartwatch was generally placed
by users on the right wrist, while the smartphone was kept in di�erent
locations based on the user's choice. The Kinect video device was only
used for monitoring in the home scenario.

altogether with four low-level context recognizers, which provide un-
structured low-level context information, namely activities, locations
and emotions, at runtime.

The current implementation of the HLCA (described in Sec-
tion 4.3.5) has been deployed on the Microsoft Azure public cloud en-
vironment [108]. Conversely, to the study presented in Section 4.4.2,
here, the cloud environment has been considered in order to support
scalability and limitless computational power.

An inertial activity recognizer, a video activity recognizer, an audio
emotion recognizer and a geopositioning location recognizer identify
the low-level contexts. These low-level context recognizers process the
data obtained by three sensing devices: a Samsung Galaxy S5 smart-
phone, an LG G Watch R smartwatch and a Kinect v2 video device
(Figure 4.24). The inertial activity recognizer builds on the acceleration
and rate of turn data collected by the smartphone and the smartwatch
to identify the user's physical activity. The video activity recognizer op-
erates on Kinect depth video data to recognize the user's body motion
in a home scenario. Fusion is implemented for the uni�cation of the
activity recognition results in case the inertial activity recognizer and
the video activity recognizer work simultaneously. The audio emotion
recognizer utilizes the audio data recorded through the smartphone's
microphone during phone call conversations in order to capture emo-
tional states. Finally, the geopositioning location recognizer builds on
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the smartphone's GPS sensor information, longitude and latitude co-
ordinates, to determine the person location. The low-level context rec-
ognizers are capable of identifying only a subset of the low-level con-
text represented in the Mining Minds Context Ontology. Speci�cally,
a set of quotidian actions involving some physical activities (Eating,
Running, Sitting, Standing, Walking, Stretching, Sweeping and Lying
Down), locations (Home, O�ce, Restaurant, Gym and Mall) and vari-
ous emotions (Anger, Happiness, Neutral and Sadness). Details on the
characteristics of the low-level context recognizers are found in [109].

During the evaluation, a total of �ve independent volunteers (i.e.
S1-S5, see Table 4.3) were asked to perform a run-through of actions in-
volving most of the low and high-level contexts of interest (Figure 4.25).
Each action was carried out during approximately one minute, and
some of the contexts were executed various times during the run-
through. The labelling of the data was carried out by using a remote
application, which was handled by the expert or observer. All of the
data collection sessions were also video taped to check anomalous or un-
expected patterns in the data and to correct labelling mistakes during
the posterior curation of the data.

Table 4.3: Characteristics of the participants involved in evaluation.
The height is given in cm, while the weight is measured in kg.

Subject Age Gender Height Weight

S1 31 Male 174 85

S2 25 Male 183 59

S3 29 Male 161 57

S4 27 Male 170 75

S5 30 Male 178 91

The contexts recognized during each run by the HLCA and the
di�erent low-level context recognizers are contrasted against the regis-
tered ground truth, here depicted in Figure 4.26. Actual and predicted
contexts are aligned in time taking into account the delay associated
with the processing of the data (on average, 78 ms for the activity
recognition, 77 ms for the emotion recognition, 0.46 ms for the location
recognition and approximately 2 s for the high-level context inference).
Transitions among the contexts of interest are left out of the study since
a null-class rejection schema has not been explicitly implemented [110].
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Figure 4.25: Examples of some of the actions which determine the
contexts during the evaluation.

The impact that misrecognitions at the low-level have on the high-
level inference process can be observed in the evaluation results. It
is clearly seen that a perfect identi�cation of the high-level context is
reached for those cases in which the recognized low-level contexts match
the real ones. Examples of these cases are observed during the �rst hun-
dred of seconds. Even in the event of low-level context misrecognitions,
the recognition capabilities of the HLCA remain nearly unaltered. This
is for example observed during the executions taking place from the
second 900 onwards. Around that time, various mistakes are encoun-
tered at the emotion level, which nevertheless do not drive to incorrect
conclusions at the high level. This robustness is attained thanks to the
way the high-level contexts are de�ned, for example by giving more
importance to the performed activity or location than the emotional
state. More prominent errors are observed around the second 450 and
in the range 700-820 approximately. These erroneous inferences are as
a result of the incorrect activities recognized at a lower level. Then,
it can be concluded that there is in general a relevant dependency in
terms of the recognition capabilities for the high-level context on the
low-level context.

Anyway, as already observed in the evaluation of the context ontol-
ogy (Section 4.4.1), the impact of the errors in the low-level contexts
is generally lower at the high-level context. This e�ect can be observed
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Figure 4.26: Low- and high-level contexts recognized during online
evaluation for the subjects S1-S5. Actual contexts are given by the
ground-truth labels. Overall reliability for each context and across all
subjects is given by the corresponding F-score.
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in the reliability of the recognition, which is measured via the F-score,
a metric that ranges between [0,1], where 1 represents optimal recogni-
tion capabilities whilst 0 corresponds to a model which is not capable
of recognition at all. The reliability in the inferred high-level contexts
takes a value of F-score equal to 0.92, which is higher than the indi-
vidual reliability in the recognition of the activities (F-score = 0.91)
and the emotions (F-score = 0.61). The increase of reliability is due to
the fact that not all the misrecognitions at low-level context lead to an
inference error at high-level context.



5
Conclusion
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5.1. Achievements

The goal of this thesis was to investigate on the application of ontology
engineering and reasoning in order to solve some of the most prominent
limitations of human behavior recognition systems working in realistic
conditions. Therefore, ontologies, ontological reasoning and querying
mechanisms were applied to comprehensively describe heterogeneous
sensing resources and to dynamically select them in order to support
the continuous operation of behavior recognition systems. Moreover,
ontologies and ontological reasoning were also used to comprehensively
describe human context information and to automatically infer mean-
ingful and rich expressions of human context which could enhance the
real-world operation of behavior-aware systems. In the following, the
achievement of the four objectives de�ned to support the thesis goal
are described.

Objective 1: Design and development of an ontology for the
comprehensive and interoperable description of sensing tech-
nologies used in behavior recognition systems.

This work has presented MIMU-Wear, an OWL 2 ontology which pro-
vides syntactic interoperability and semantic compatibility in behavior
recognition systems. The MIMU-Wear Ontology comprehensively de-
scribes wearable sensor platforms consisting of magnetic and inertial
measurement units, including the MIMUs capabilities, such as their
measurement properties, and the characteristics of wearable sensor
platforms, including their on-body location and their survival prop-
erties. The MIMU-Wear Ontology provides implicit semantics enabling
the automatic interpretation of the resource descriptions, their abstrac-
tion from the underlying technology, and the abstraction of the sensor
selection method from the actual sensing infrastructure.

The MIMU-Wear Ontology builds on the standard W3C SSN On-
tology and is designed in a modular manner with several plugable do-
main ontologies: the MIMU Ontology describing the characteristics of
MIMUs, the MIMU Capabilities Ontology modeling the MIMUs sensing
capabilities, the MIMU Magnitudes Ontology representing the di�erent
magnitudes observed by MIMUs, the MIMU Units Ontology represent-
ing the measurement units required to describe the MIMUs capabilities,
the Wearable Sensor Platform Ontology modeling the characteristics of
wearable sensor platforms, the Human Body Ontology modeling the hu-
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man body parts representing the locations where wearable sensor plat-
forms are worn, and the Wearable Survival Range Ontology modeling
the survival conditions of wearable systems.

The modularity of MIMU-Wear makes it reusable in other domains.
The Wearable Sensor Platform Ontology could be used to describe the
location on the human body of any wearable sensor not only of MIMUs.
For example, the location of an ECG sensor in a belt could be easily
described using this ontology. Similarly, the MIMU Ontology could be
used to describe any MIMU, this means not only the wearable ones
but also those embedded into ambient intelligence platforms. As an ex-
ample, the characteristics of a MIMU integrated into a cup or door in
an ambient assisted living scenario could be thoroughly modeled using
the MIMU Ontology. Furthermore, building on the standard W3C SSN
Ontology facilitates the widespread adoption of MIMU-Wear since it
could be directly integrated with any other ontology using SSN. In fact,
the SSN Ontology has been extensively used in the research community,
thus opening up a broad spectrum of ontologies in which MIMU-Wear
could be integrated.

Objective 2: De�nition and validation of a method based on
ontology reasoning and querying to dynamically select sensing
technologies to support continuity of behavior recognition.

This work has presented a novel method based on ontology reasoning
and querying to dynamically select some of the available MIMUs, em-
bedded into wearable platforms, whenever a MIMU part of the human
behavior recognition system su�ers some abnormality and needs a re-
placement. The proposed sensor selection method builds on the MIMU-
Wear Ontology and applies ontological reasoning to infer the knowledge
about the candidate sensor replacements from a set of heuristic rules.
Therefore, several SWRL rules have been created to de�ne the charac-
teristics of candidate replacement MIMUs which could be used in the
human behavior recognition system. The presented SWRL rules are ex-
emplary and need to be particularized and prioritized for each speci�c
application scenario. The method establishes that queries are iteratively
posed on the ontological descriptions of the MIMUs in order to select
the most appropriate MIMU for the replacement of the defective one.
The iterative query method ensures that if no result is provided for
a query, another less restrictive query or with another criteria is exe-
cuted in order to obtain as the result a candidate replacement sensor.
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SPARQL queries have been presented to match the ontological descrip-
tions of the available MIMUs with the required sensor characteristics.

The proposed ontology-based sensor selection method has been eval-
uated to prove that the replacement of an anomalous MIMU ensures
the continuity of recognition, i.e., the reliability of the human behavior
recognition system recovers with respect to the failure situation after
the replacement takes place. Therefore, a realistic scenario in the area of
wearable activity recognition has been modeled using the MIMU-Wear
Ontology. The ontological descriptions of nine commercial wearable sen-
sor platforms have been created and used to describe the real-world
deployment scenario. For the validation of the sensor selection method,
four SWRL rules have been de�ned and prioritized and four SPARQL
queries have been created. The iterative query method has been applied
for three di�erent scenarios in which one of the three MIMUs active in
the activity recognition process is simulated to fail. Using the sensor
selection method, the best replacement sensor has been identi�ed for
each one of the scenarios. Then, the reliability of the activity recognition
system has been calculated for the original con�guration, for the con�g-
uration with the anomalous sensor, and for the di�erent con�gurations
in which the anomalous sensor is replaced. The reliability of the original
system drops more than a third when one of the sensors behaves abnor-
mally. Replacing the a�ected sensor with the sensor selected through
the proposed ontology-based method has shown an improvement in all
three cases. In the worst case, when the sensor to be replaced is noisy
and little informative by nature, the improvement is subtle yet better
in general than what is obtained when choosing a replacement in an
arbitrary way. More signi�cant improvements with respect to the fail-
ure situation are observed for di�erent sensor combinations. In the best
case, the recognition capabilities of the system are practically restored
after replacing the anomalous sensor with the best option. Therefore,
it has been proven that replacing potential anomalous sensors with the
ones suggested by the ontology-based sensor selection method improves
the reliability of the human behavior recognition system. Consequently,
the proposed sensor selection method helps to support the continuity
of operation required in real-world human behavior recognition.

This work has presented a method for selecting some of the available
MIMUs, embedded into wearable platforms, whenever a MIMU part of
the human behavior recognition system su�ers some abnormality and
needs a replacement. However, this is only one of the potential applica-
tion scenarios for the MIMU-Wear Ontology. MIMU-Wear could also be
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used at system startup in order to identify which sensors should be ac-
tivated depending on the necessities of the behavior recognition system
and the aimed performance. Similarly, the ontology could be used for
the self-calibration of some parameters of the sensing network accord-
ing to energy constraints or e�ciency goals, and based on processing
power or memory resources. In all these scenarios, methods based on
ontology reasoning and querying and similar to the one proposed in
this work could be easily applied.

Objective 3: Design and development of an ontology for the
exhaustive modeling of rich and meaningful expressions of
context for human behavior analysis.

This work has presented the Mining Minds Context Ontology, an
OWL 2 ontology for exhaustively modeling rich and meaningful ex-
pressions of context. This ontology is particularly devised to model the
most commonplace contexts for health and wellness scenarios which
involve sedentary and active lifestyles. Thus, the proposed ontology
models multiple primitive components of context, such as the physical
activity, the location and the emotion, as well as more abstract daily
contexts which can be derived from the combination of these primitives,
such as inactivity, exercising, o�ce work or having meal.

The Mining Minds Context Ontology has been designed to support
any combination of cross-domain behavior primitives (low-level con-
texts), in order to infer more abstract human context representations
(high-level contexts). The unprecedented incorporation of emotions in
the context de�nition enables the representation of new high-level con-
texts which can only be identi�ed whenever a speci�c emotion takes
place. The Mining Minds Context Ontology has also been designed to
procure the identi�cation of some high-level contexts even in the ab-
sence of emotion information. Therefore, the Mining Minds Context
Ontology extends beyond the state-of-the-art while uniting emotion in-
formation as a novel behavioral component together with activity and
location data to model more meaningful contextual information.

The Mining Minds Context Ontology provides the implicit seman-
tics required for the derivation of new richer context information from
basic existing context. Thus, this ontology enables the inference of
meaningful human context information better describing human be-
havior for its analysis.
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Objective 4: De�nition and validation of a method based on
ontology reasoning to automatically infer rich and meaningful
human context to enhance the operation of behavior-aware
systems.

This work has presented an ontology-based method for deriving high-
level context information out of the combination of cross-domain low-
level context primitives, namely activities, locations and emotions. This
novel method builds on the Mining Minds Context Ontology and ap-
plies OWL 2 DL reasoning to infer high-level context from basic low-
level context primitives. The proposed context inference method has
been implemented by the High-Level Context Architecture, a system
architecture devised to automatically infer rich and meaningful context
in real-time. The High-Level Context Architecture consists of four main
components: the High-Level Context Builder which generates ontolog-
ical concepts representing the user context, the High-Level Context
Reasoner which veri�es and classi�es the high-level context, the High-
Level Context Noti�er which makes the new high-level context available
to third party applications, and the Context Manager which persists
the context information.

The ontological reasoning-based method for the inference of rich
context has been validated to prove that it can enhance the operation
of behavior-aware systems in realistic conditions. Therefore, the robust-
ness of the proposed context ontology and the performance and relia-
bility of the novel context inference method have been analyzed. The
evaluation of the Mining Minds Context Ontology proves its reason-
ably good robustness properties against potentially erroneous low-level
contexts. In fact, the results have shown that the impact of the error
introduced in the low-level context is always lower at the high-level.
Moreover, it has been observed that the activity is the most prevalent
category in terms of error impact, while the location and especially
the emotion tend to show a lesser e�ect on the high-level context. The
current prototype implementation of the High-Level Context Architec-
ture has been proven to perform well with respect to processing time
and management of context instances. However, in order to ensure scal-
ability, the database transactions management needs to be improved.
Finally, the evaluation of the reliability of the context inference method
implemented by the High-Level Context Architecture during realistic
executions has corroborated the results obtained in the o�ine eval-
uation. Even in the event of low-level contexts misrecognitions, the
reliability of the high-level context inference remains nearly unaltered.
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The presented High-Level Context Architecture constitutes the core
engine for the inference of high-level behavioral information in the Min-
ing Minds platform [102, 10]. Mining Minds is a novel digital health and
wellness platform designed to seamlessly investigate and support peo-
ple's lifestyles by intelligently mining human's daily living data gener-
ated through heterogeneous resources. Despite the proposed context in-
ference method was originally devised to serve this platform, the High-
Level Context Architecture has been de�ned in a way so it can be used
independently for determining any high-level context information from
diverse sources of low-level context data. In fact, in case the context
inference method has to be applied to a new domain and some new con-
texts have to be identi�ed, the High-Level Context Architecture would
remain the same and only the context ontology would have to be up-
dated. This is thanks to one of the main properties of the ontologies,
they enable the decoupling of the knowledge from the code; thus, only
requiring the adaptation of the ontology itself.

5.2. Contributions

In Section 5.1 it has been proved that the objectives of this thesis have
been thoroughly ful�lled. Now, the main contributions of this thesis are
listed:

1. MIMU-Wear: A modular OWL 2 ontology for the comprehensive
and interoperable description of MIMUs in wearable platforms.

2. MIMU Ontology: An OWL 2 ontology describing the character-
istics of MIMUs, such as their sensing capabilities.

3. Wearable Sensor Platform Ontology: An OWL 2 ontology mod-
eling the characteristics of wearable sensor platforms, including
their on-body location and their survival conditions.

4. Human Body Ontology: An OWL 2 ontology modeling the human
body parts.

5. A method based on the MIMU-Wear ontology, SWRL rules and
SPARQL queries to dynamically select sensing technologies to
support continuity of behavior recognition.

6. Mining Minds Context Ontology: An OWL 2 ontology describ-
ing rich and meaningful expressions of human context. This on-
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tology is publicly available at http://www.miningminds.re.kr/
icl/context/context-v2.owl.

7. A method based on the Mining Minds Context Ontology and
OWL 2 DL reasoning to automatically infer rich and meaning-
ful human context to enhance the operation of behavior-aware
systems.

8. HLCA: A system architecture providing a realization of the
ontology-based context inference method, as well as its Java im-
plementation.

5.3. Outlook

This thesis has proposed solutions to overcome some of the most promi-
nent limitations of human behavior recognition systems working in re-
alistic conditions; however, there is still much room for investigation on
this topic. Some possible future directions to continue and extend this
work are described next.

5.3.1. Smart-Clothing: Enabling Selection in Massive On-
Body Sensor Networks

Smart-clothing is a new paradigm in sensing technologies where a vast
amount of sensors are integrated into textiles to make them intelligent.
Nowadays sensors are sewed to the cloth; however, in the near future
they will be directly woven into the textile. The astonishing break-
throughs made so far in smart-clothes and the new advances to be seen
in the upcoming years, point towards a scenario in which futuristic
smart garments technology may become reality.

The potential of the presented MIMU-Wear Sensor Selection
method could be especially leveraged in smart clothing scenarios with
tons of sensors. Here, where smart garments are available for health and
sports and where the priority is to obtain the required data and the
choice of the particular sensors is not that important, the MIMU-Wear
Sensor Selection method can provide and e�ective and rapid solution
for the replacement of dying sensors as a result of the degradation of
cloths. Thus, this work can have even a higher impact in the way ven-
dors and manufacturers design and de�ne these technologies.

In order to tackle the smart-clothing problem, MIMU-Wear should
be extended, adding a new Clothes Ontology describing a variety of

http://www.miningminds.re.kr/icl/context/context-v2.owl
http://www.miningminds.re.kr/icl/context/context-v2.owl
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commonplace garments, which would be imported into the Wearable
Sensor Platform Ontology. In this new scenario, the wearable sensor
platform would be embedded into a piece of clothing, which would be
the one worn by the user. This would involve an additional link in the
ontology, yet the proposed sensor selection method would be perfectly
applicable.

5.3.2. Uncertainty in Human Behavior Information

A mainstream topic in the arti�cial intelligence domain refers to the
uncertainty or vagueness associated to most sources of information.
This also applies to human behavior information, where primitives and
contexts can be subject to di�erent interpretations. In this work the
activities, locations and emotions received from the lower levels of con-
text inference were assumed to be 100% certain and accurate. However,
in reality, uncertainty in context data tends to be the norm rather than
the exception. For instance, there might exist vagueness in de�nitions
of di�erent emotions. A person could be characterized as happy to a
80% extent and neutral to a 20%. Similarly, sensory data could be un-
certain and inaccurate with some probability. Accordingly, future work
may explore the incorporation of uncertainty in the ontological def-
initions used for the inference of rich contextual information. Fuzzy
representations seem to be the natural way to move into this direction.
The intersection of uncertainty and ontologies has been little explored
to date, which makes of this a particularly interesting and challenging
problem for the future.

5.3.3. Interoperating Human Behavior Recognition Systems

The technological evolution experienced during the last years calls for
more openness and shareability. In this thesis di�erent mechanisms have
been explored to open and share sensing resources through the use
of universal descriptions and methods based on ontologies. The same
principle could likewise apply to the outputs or information generated
by human behavior recognition systems. In fact, behavior recognition
models are normally devised to work for a particular application, thus
limiting the use of the recognized behavioral information for other ap-
plications or purposes. However, realistic scenarios rather demand be-
havior recognition models that could be shared among applications.

Mechanisms for the selection of the most adequate recognizer for a
given application could optimize the use of resources. Thus for example,
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depending on the target set of activities or emotions to be identi�ed by
the system, a speci�c model could be selected for operation. The use
of models could also change depending on the sensing infrastructure
available to the user at a given time, e.g. ambient sensors at home or
wearables while being outside, or the kind of behaviors that can be
expected at some place, e.g. sedentary activities at home or dynamic
activities in the gym. These reasons make necessary the de�nition of
resource descriptions which model heterogeneous resources and provide
the interoperability required to dynamically select the best ones.

Another interesting scenario refers to the use of ontologies to pro-
cure fusion of behavior information provided by di�erent systems.
While this thesis has explored the combination of behavior informa-
tion of diverse nature in order to generate more abstract contextual
information, similar models and methods could be used to merge or
fuse tags or labels of the same modality. For instance, ensemble models
typically building on numbers, tags or prede�ned labels yielded by dif-
ferent emotion recognizers could work in an universal manner if these
labels are univocally de�ned through ontological descriptions.
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