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Resumen y Conclusiones

Resumen

El Sensado Comprimido (SC) es una nueva tecnologı́a que permite la captación de imágenes
directamente comprimidas, con la consiguiente reducción del tiempo de adquisición y de la
cantidad de memoria necesaria para almacenarlas, procesarlas y trasmitirlas. La teorı́a de SC
establece que una imagen o señal que admita una representación rala se puede reconstruir a par-
tir de un conjuntomuy incompleto demedidas o proyecciones de la imagen. La Superresolución
(SR) es una técnica de procesamiento de imágenes muy poderosa que permite reconstruir una
o más imágenes de Alta Resolución (AR) a partir de varias imágenes de Baja Resolución (BR).
La obtención de imágenes de AR de buena calidad mediante la aplicación de técnicas de SR
requiere la aplicación de un buen proceso de registro de las imágenes observadas. La SR per-
mite superar las limitaciones hardware, ópticas y espaciales de los dispositivos de captación de
imágenes para obtener imágenes de buena calidad.

En la presente tesis doctoral proponemos un nuevo marco de estudio para la obtención de
imágenes de AR a partir de varias imágenes de BR de la misma escena adquiridas mediante
sistemas de SC. La hiptesis de que cuando una imagen admite una representacin rala en un
dominio transformado, una versin borrosa de la misma tambin admitir una representacin rala
en el dominio transformado, nos permite recuperar imgenes borrosas a partir de observaciones
de SC. Por analogı́a, también se puede asumir que a una imagen de BR desplazada, borrosa
y submuestreada se le puedan aplicar técnicas de SC. El nuevo marco de estudio de Super-
resolución de Sensado Comprimido (SRSC) propuesto en esta tesis combina la aplicación de
algoritmos de reconstrucción de SC previamente existentes con una nueva técnica de SR basada
en la aplicación de una regularización robusta que favorece la raleza de las imágenes, basada
en un modelo a priori Bayesiano superGausiano.

El problema SRSC tiene muchas incógnitas, principalmente la imagen de AR, los coefi-
cientes de la representación en el dominio trasformado de cada imagen de BR, y los vectores de
desplazamientos. Estas incógnitas se pueden estimar de forma secuencial o simultáneamente.
El método propuesto en esta tesis aplica una estrategia de estimación conjunta en la que las
reconstrucciones de las imágenes de BR y la estimación de la imagen de AR se llevan a cabo
simultáneamente de forma alternativa, e incluye una estimación automática de los vectores de
desplazamientos. En este trabajo se estudian las ventajas de la estimación conjunta respecto
a la estrategia secuencial. En la tesis se estudia también lo que aporta la utilización de varias
imágenes de BR en lugar de una sola.

El enfoque del SRSC trasforma el problema de estimación conjunta con restricciones en
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una secuencia de subproblemas no restringidos, mediante la aplicación del Método de los Mul-
tiplicadores en Direcciones Alternativas (MMDA). El subproblema de estimación de la imagen
de AR se resuelve aplicando la técnica de mayorización-minimizazión. Para la estimación de
los parámetros de registro de las imágenes se proponen cuatro estrategias diferentes, que son
comparadas en este trabajo. El subproblema de la reconstrucción de SC se plantea como mini-
mización de la norma ℓ1 sujeto a una restricción cuadrática.

El método propuesto se ha probado para imágenes naturales reales en escala de grises cuyas
observaciones SC han sido simuladas y sintetizadas utilizando una matriz de medición que es
posible elaborar prácticamente. Se han realizado comparaciones del método propuesto con
algoritmos del estado del arte en SR que no aplican SC y también con algoritmos del estado
del arte en deconvolución de imágenes de SC. Estas comparaciones han resultado favorables al
método SRSC propuesto. También se han obtenido excelentes resultados en experimentos en
los que intervenı́an tanto el SC como la SR, aunque éstos no se han podido comparar con otros
métodos, porque no hay trabajos publicados, aparte de los nuestros, que estudien este problema
al completo.

Una de las posibles e importantes aplicaciones del SRSC es el de las Imágenes Milimétricas
Pasivas (IMMP), muy útiles en problemas de detección de amenazas ocultas. Los experimentos
realizados con SRCS sobre IMMP reales con observaciones SC sintéticas han mostrado que es
posible aplicar el marco de estudio propuesto para obtener imágenes de SR de alta calidad a
partir de varias imágenes de BR adquiridas mediante SC, lo que se espera pueda facilitar los
procesos de detección de amenazas ocultas.

Se ha extendido el SRSC para abordar también el problema de Superresolución de Sensado
Comprimido de imágenes en Color (SRSCC), para el que también se ha propuesto un algoritmo
que es otra de las aplicaciones de este trabajo. El SRSCC permite obtener imágenes en color
de SR a partir de varias imágenes reales en color obtenidas mediante SC. El SRSCC se aplica a
observaciones SC independientes de los canales rojo, verde y azul (RVA) de la imagen obtenidas
utilizando una matriz de medición que es posible elaborar prácticamente. En el SRSCC la
estimación de los parámetros de registro se realiza conjuntamente para los tres canales. En este
trabajo se incluyen comparaciones entre los resultados del algoritmo SRSCC propuesto y los
obtenidos aplicando otras técnicas de reconstrucción de SC de imágenes en color.

Conclusiones

En esta tesis doctoral hemos propuesto un nuevo marco de estudio para la SR de imágenes
a partir de varias imágenes sin registrar de BR adquiridas mediante técnicas de SC. Cualquier
técnica clásica de SR y/o de SC podrı́a integrarse en la metodologı́a desarrollada. En este trabajo
se ha propuesto un modelo de degradación para este novedoso problema combinado y también
un enfoque para el SRSC. Este trabajo ha sido el primero en tratar el problema propuesto y
podrı́a resultar muy útil para el campo del procesamiento de imágenes.

El método SRSC permite disminuir la frecuencia de muestreo, la velocidad de trasmisión
y el ancho de banda requeridos para la transmisión de imágenes, ası́ como los requerimientos
de memoria del almacenamiento y proceso de las mismas. También permite un menor tiempo
de adquisición de las imágenes, de mucho interés en aplicaciones médicas y de procesamiento
de IMMP. La mejor calidad de las imágenes de SR facilita el reconocimiento de patrones y la
diagnosis médica y permite realzar zonas especı́ficas de las imágenes de videovigilancia o de
satélite.



xxiii

El método de reconstrucción propuesto utiliza una nueva regularización robusta que fa-
vorece la raleza de las imágenes de AR obtenidas resolviendo una ecuación lineal en x (la ima-
gen de AR)mediante la aplicación del método del gradiente conjugado. El vector de coeficientes
de la representación en el dominio trasformado de las imágeness de BR se estima minimizando
la norma ℓ1 sujeta a una restricción cuadrática. Se pueden aplicar cuatro procedimientos difer-
entes de estimación de los paráetros de registro que permiten determinarlos con precisión; esto
es muy importante porque existe una dependencia crı́tica entre la calidad de las imágenes de
SR y la eficacia del proceso de registro. El registro puede realizarse con respecto a la imagen de
AR o entre las imágenes de BR, lo que resulta en una menor dependencia respecto a los valores
iniciales utilizados.





Summary and Conclusions

Summary

Compressed Sensing (CS) is a new technology that simultaneously acquires and compresses
images reducing acquisition time and memory requirements to process or transmit them. It es-
tablishes that a sparsely representable image/signal can be recovered from a highly incomplete
set of measurements or projections of the image. Image Super Resolution (SR) is an important
post-processing technique where multiple input images are super resolved to obtain one or
more images of higher resolution and better quality. SR necessitates a good image registration
procedure in order to obtain a High Resolution (HR) image of enhanced quality. Such quality
should overcome image degradation due to system hardware, optical and spatial limitations.

In this dissertation we propose a novel framework to obtain HR images from CS imaging
systems capturing multiple Low Resolution (LR) images of the same scene. The assumption
that when an image admits a sparse representation in a transformed domain, a blurred version
of it will also be sparse in the transformed domain allows us to recover blurred images from CS
observations Similarly, a warped, blurred, and down-sampled LR image is expected to be also
sparse in a transformed domain and hence can be reconstructed from the corresponding CS
observation. The proposed Compressed Sensing Super Resolution (CSSR) approach, combines
existing CS reconstruction algorithms with an LR to HR approach based on the use of a new
robust sparsity promoting prior based on super Gaussian regularization.

The CSSR problem has multiple unknowns, mainly the HR image, the transformed coeffi-
cients corresponding to each LR image, and themotion vectors. The unknowns can be estimated
sequentially or simultaneously. The method we propose in this dissertation is a joint estima-
tion framework where LR reconstructions and HR estimation are carried out simultaneously by
alternating between them including the automatic estimation of registration parameters. The
advantages of the joint estimation over the sequential approach are discussed in this work. The
advantage of utilizing multiple input images over a single one is also discussed in this disserta-
tion.

The CSSR approach converts the constrained joint optimization problem into a sequence
of unconstrained sub-problems using Alternate Direction Method of Multipliers (ADMM). The
HR image estimation sub-problem is solved using majorization-minimization. The registration
parameters are estimated using four different approaches, which are compared in this work.
The CS reconstruction sub-problem becomes an ℓ1 minimization subject to a quadratic con-
straint.
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Our proposed framework has been tested on gray scale simulated and synthetically com-
pressed real natural images, which were compressed using a measurement matrix that can be
synthesized practically. This is compared with state-of-the-art SR algorithms which do not use
CS in their work, and with state-of-the-art image deconvolution algorithms from CS images,
which do not use down-sampling in their work. The proposed CSSR performs favorably com-
pared to them. Moreover, the proposed CSSR has been tested when both compression and
down-sampling are present. In this case, no comparison with other methods is provided since
this is the first time both problems are approached jointly.

One important CSSR application is Passive Millimeter Wave (PMMW) images which are
used for threat detection. The performed CSSR experiments on synthetically compressed real
millimeter wave images, demonstrate the capability of the proposed framework to provide
very good quality super resolved images frommultiple low resolution compressed acquisitions,
which is expected to improve threat detection rates.

CSSR can be extended to the proposed Color Compressed Sensing Super Resolution (CC-
SSR) algorithm, which constitutes another application of this work. In the CCSSR the SR image
is estimated from true color CS observations. While the red, green, blue (RGB) channels are
sensed separately using a measurement matrix that can be synthesized practically, the regis-
tration parameters are jointly estimated from the three channels simultaneously. This work
compares the proposed CCSSR algorithm with other color CS reconstruction techniques.

Conclusions

In this dissertation we have proposed a novel framework to reconstruct SR images from mul-
tiple unregistered LR images acquired using CS techniques. Any classical SR and/or CS tech-
niques can be incorporated in the developed methodology. The degradation model of this novel
combined problem has been modeled and a CSSR approach has been proposed in this work.

The CSSR method lowers the sampling frequency, transmission rates, and the bandwidth
of the image signal, and memory requirements to store and/or send the image. Moreover,
the acquisition time can be lowered, which is very important in medical and PMMW imaging
applications. The enhanced SR image quality is advantageous in pattern recognition, medical
diagnostics, and to emphasize a specific area of an image in surveillance cameras and satellite
applications.

The proposed HR reconstruction uses a new robust sparsity promoting prior and solves
a linear equation in x (the HR image), using conjugate gradient method. The transformed
coefficient vector estimation is an ℓ1 norm subject to a quadratic term optimization problem.
The registration parameters can be estimated using four different procedures, to finally obtain
accurate results, since any SR estimation process is highly dependent on the performance of the
registration estimation step. The parameters can be estimated from the estimated HR image,
or the LR images themselves, with the estimation from reconstructed LR images being less
sensitive to the initial conditions. Furthermore we found that the estimation at LR level results
in better quality of the reconstructed image.

The proposed optimization framework uses ADMM to jointly estimate all the unknowns
including HR image, LR images, and registration parameters. We have experimentally shown
that this simultaneous reconstruction outperforms the sequential method, that first performs
LR reconstruction to then obtain an HR image from a set of LR observations. The sequential ap-
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proach estimates every unknown just once, while the alternate approach iteratively updates the
estimated unknowns. The better performance of the alternate approach is due to the additional
information provided during the estimation process.

We also showed experimentally the enhancement obtained due to themultiple input images
when compared with a single one. This is expected due to the additional information every
input image provides. However, the multiplicity necessitates accurate registration estimation
procedure which inherently affects the overall process.

The proposed framework has been tested and compared, at a unity compression ratio, with
state-of-the-art SR algorithms which do not use compression in their work. It has been also
compared, at a unity zooming factor, with state-of-the-art ID algorithms that deblur CS images,
which do not use down-sampling in their work. Both comparisons used synthetic images and
showed better performance of the proposed CSSR over others. The performance of CSSR when
using practical values of P and R has also been tested and analyzed.

Besides, the CSSR effectiveness has been demonstrated experimentally on synthetically CS
noisy real images. This represents the practical application of the CSSR method, which showed
very good results. The proposed framework can be extended to CS video for the estimation of
both intra-frame and inter-frame SR.

The proposed CSSR method has been tested on PMMW images. These images usually have
poor qualities and limited resolution, which makes super resolving them a challenging task and
is a hard test of the CSSR approach. The CSSR could be used to improve the quality of PMMW
images. This is expected to improve threat detection rates, which is an expected field of future
research. Notice here that the nature of PMMW is similar to astronomical images and medical
images, and the good performance of the proposed CSSR algorithm can be extended to these
images.

The proposed approach can also be applied to true color CS images. The separately sensed
channels are utilized in a joint registration estimation to effectively and accurately estimate
registration parameters for the three channels. The obtained results present an excellent image
quality, even better than the obtained using previous CS reconstruction methods which corre-
late the color channels. The efficient optimization process can be extended in future works to
deal with mosaic color images.





Chapter 1

Introduction

This work is devoted to estimate High Resolution (HR) images frommultiple Low Resolution
(LR) observations acquired using Compressed Sensing (CS) techniques. We propose a frame-
work that combines Super Resolution (SR) reconstruction with CS acquisition.

CS imaging lowers the sampling frequency beyond that required by the Nyquist-Shannon
theorem, and hence lowers transmission rate and bandwidth requirements. The smaller data
size obtained during the acquisition process lowers the memory requirements to save or trans-
mit. Another important benefit CS offers is the lower acquisition time, due to the smaller data
size, which is vital in applications like medical imaging and millimeter wave images.

Furthermore, SR offers a higher pixel density and overcomes the limited resolution imag-
ing. The higher resolution enhances the image quality by showing more details of the original
scene. Resolution enhancement is needed in computer vision applications like pattern recogni-
tion and analysis of images, in medical imaging for diagnosis, and in applications that require
specific areas of the image to be zoomed, like surveillance cameras, satellite applications, and
threat detection devices. Moreover, SR promises a better use of high performance screens, like
High Definition Liquid Crystal Displays (HD LCDs).

In the framework proposed in this dissertation, classical SR methods are combined with
existing CS methods. The experimental results to be presented will prove the applicability of
this framework, and the good quality of the output images.

This chapter introduces basic background to this dissertation, then presents its motivations,
hypothesis, and objectives. This is followed by stating the research methodology and main
contributions of this work. Finally, the thesis outline is presented.
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1.1 Background

Independently of how well designed an imaging system is, its performance comes to a certain
limit. Limitations on image spatial resolution lead to the use of SR techniques to improve the
pictorial perception of the human eye and/or automatic machines. After a certain limit, an
imaging system suffers frommany hardware problems, such as limited pixel density, lens point
spread function and aberration effects. Other problemsmay accompany the acquisition process,
such as blurring due to motion of the camera or objects in the scene. The acquired images can
be considered as decimated LR versions of the original scene. These LR images can be used to
estimate an HR image using SR techniques.

SR techniques are post-processing techniques, they use multiple LR images as input images
to estimate one, or more, HR output image(s). The process increases the spatial resolution,
removes degradations in the input images, and increases the high frequency content of the
scene image.

Traditionally, all pixel values of the LR image have to be acquired. However, this informa-
tion can be successfully recovered from only a small number of linear projections utilizing CS
techniques. This dissertation studies how to estimate SR images from CS observations.

1.1.1 Classical Digital Imaging

Adigital image is a discrete representation of both spatial coordinates and intensity information
in a scene. The spatial information is determined by an array of sensors or pixels at fixed
positions of the image plane of the camera. Every pixel receives a different optical intensity.
Hence, each sensor integrates the image locally to form the whole representation with other
sensors. An imaging sensor can be a Charge-Coupled Device (CCD) or a ComplementaryMetal-
Oxide-Semiconductor (CMOS) active-pixel sensor.

An image can be represented mathematically using a two-dimensional (2D) array. The
coordinates represent the spatial information and the intensity is represented by the value at
the corresponding coordinates.

Figure 1.1(a) shows a 14 × 12 gray scale image for the letter ’a’. The image layout was
exaggerated in Figure 1.1(b) to show every pixel in the image, with the horizontal and vertical
coordinates of all pixels representing the image. The value at a pixel represents the intensity,
scaled to the range [0,1], sensed by the corresponding sensor at the same location, shown in
Figure 1.1(c). The highest value represents the White color, and the lowest represents the Black
color. In summary, the image shown in Figure 1.1(a) can be represented by the 2D matrix shown
in Figure 1.1(c).

The pixel density of a camera, measured in pixels per unit area, determines its spatial reso-
lution. Given a CCD or CMOS size, we would like to use the largest possible number of sensors.
However, aside from hardware cost, decreasing the sensor size results in a lower incident light
and hence increases the shot-noise. The increased number of pixels also decreases the camera
speed [2]. This forms the first limitation on the spatial resolution of imaging systems.

The camera lens also adds optical limitations on the image details, and some high-frequency
components may be lost due to the point spread function of the lens, aberration effects and
aperture diffraction (see [3]). Camera or object motion in the scene may affect negatively the



1.1. Background 3

(a) (b) (c)

Figure 1.1: Image representation: (a) gray scale image for the letter ’a’, (b) exaggerated
version of the image (×16), (c) the corresponding pixel values.

imaging process.

Particular applications may add some additional limitations, such as portability in surveil-
lance cameras, cell phone built-in cameras, and satellite imaging, among others. Furthermore,
notice also that the resolution is limited by the camera speed, memory size, and physical con-
straints.

On the other hand, as stated by the Nyquist Shannon sampling theorem, high spatial resolu-
tion of an image necessitates high sampling frequencies for a better acquisition and processing.
This requires a high bandwidth, or bit rate to send or process the image. The solution for such a
challenge could be compression techniques that seek for a compact representation of acquired
images. Many compression techniques have been utilized to better represent an image. Trans-
form coding, for example, makes use of sparsity and compressibility of an image.

For a given image quality, the higher the difference between the rate after compressing the
image, and the nominal bandwidth of the original version the better compression technique is.
Based on this, many standards such as JPEG, JPEG2000, MPEG, and MP3 are used.

1.1.2 Color Images

In gray scale images, there is only one intensity value for each pixel, while color images need
more intensity values, or channels, to be represented as is the case in Red-Green-Blue (RGB)
representation, which uses three channels, one per color. Figure 1.2 shows how the RGB chan-
nels look like.
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RGB representation is inherently difficult for humans to work with and it is not related to
the natural way the human eye perceive colors, see [1]. An alternative representation is the
YCbCr color space. Y is the luminance, Cb chroma is the blue difference, and Cr chroma is
the red difference. The nominal values of chroma range from -0.5 to 0.5 when Y is normalized
to the range [0,1]. Figure 1.3 shows how the three channels look like. YCbCr is a practical
approximation to color processing and perceptual uniformity and is used in standard definition
television.

(a) (b)

(c) (d)

Figure 1.2: RGB color Image. (a) Original RGB image, (b) Red channel, (c) Green chan-
nel, (d) Blue channel. (Adapted from [1]).

A color image is represented by a 3 dimensional matrix. If the gray scale image uses an x×y
matrix, then the corresponding color image utilizes an x×y ×3 matrix. In Chapter 4 we discuss
the ability to extend SR from CS observations to color images, as an application of the proposed
CSSR framework.

1.1.3 Millimeter Wave Images

Electromagnetic wave (EM) spectrum extends from Extra Low Frequency (ELF) signals, with
frequencies of few Hertz (Hz), to Gamma rays, with frequencies in powers of 1018 Hz (exa
Hertz, EHz). The wavelength of a signal is inversely proportional to its frequency and extends
from 108m for ELF to 10−12m for Gamma rays. The EM wave spectrum is shown in Figure 1.4,
with the borders between bands being not strict and may vary slightly from one reference to
another.

Of special interest in the EM wave spectrum is the visible light spectrum which extends
from 400THz, at the border of the red color, to 789THz, at the border of the violet color. This
range defines the various colors the human eye can distinguish. The wavelet range for this
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Figure 1.3: YCbCr colored image.

Figure 1.4: Electromagnetic wave spectrum

spectrum is from 620nm to 450nm. Images acquired using the radiations in this band are
usually called natural images and can be recognized by the human eye.

Another important frequency band is the Millimeter (MM) wave spectrum. MM waves are
those signals of wavelengths in millimeters, from 1mm to 10mm. This lies in the Extremely
High Frequency (EHF) range that extends from 30GHz to 300GHz, although not all this range
has been used practically in millimeter wave imaging.

The main advantage of MM waves is its penetrability through a variety of materials like
clouds, fog, smoke, sandstorms, and even through clothes. This enables a good performance in
low-visibility conditions. Also, it serves in day and night conditions [4].

An MMW imager, or scanner, can be of two types: Active and Passive. Active imagers use
a MMW source to illuminate the scene. Passive imagers do not use any artificial MMW source,
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instead they work with MMW radiation that occurs naturally in the scene. In the experimental
part of the dissertation, we use Passive Millimeter Wave (PMMW) images. An example of the
PMMW imager is the system shown in Figure 1.5, which is widely used at airports for threat
detection.

Figure 1.5: PMMW threat detect system.

Both types of imagers form images through the detection of MMW radiation from a scene.
The detected radiation relies on the idea that objects reflect and emitMMW radiation differently
depending on the emissivity of the object, which is a function of the nature of the object itself. A
perfect absorber object has a unity emissivity, while a perfect non absorber (reflector) has zero
emissivity. Depending on variations in emissivities of various scene materials, which differ
from an object to another, the power will be differently radiated from various objects in the
image. The radiated powers in the scene are detected by the MMW detector, then translated, in
a way, to different brightness levels of the image. Figure 1.6 shows a typical PMMW image of a
man.

MMW imaging has many advantages like high sensitivity to metal objects, and it is sug-
gested in applications requiring near-all-weather operations since the changes in performance
due to weather variations are minimal. Many applications like aircraft landing and guidance,
low-visibility navigation, situational awareness, and concealed threat detection, to name a few
benefit from MMW imaging.

1.1.4 Super Resolution

As we have already indicated, both hardware limitations, such as sensor size, camera speed,
cost, and optical limitations such as blurring action, etc. make it necessary to explore alternative
ways to enhance the resolution of an image.
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(a)

Figure 1.6: Sample PMMW image of a man.

Instead of decreasing the effects of these limitations by working on the camera itself, res-
olution enhancement or SR techniques processes the images acquired under these limitations
and try to reconstruct one or more HR image(s). This post-processing step utilizes multiple
input LR images of the same scene to estimate images of higher spatial resolution, with less
degradation effects, and better quality. The estimated image should not only provide a better
visualization (visual quality issue), but also extracts additional information details from the
input images (recognition issue).

The multiple input images can be acquired successively by the same camera, or by multiple
cameras imaging the scene simultaneously. In both cases, it is expected to result in some shifts
between the various acquired images. The shifts may be due to a small camera movement
with respect to the scene, for example. These subpixel shifts or displacements give the added
information that enables to efficiently estimate the HR image. Figure 1.7 shows an illustration

Figure 1.7: Illustartion of SR process

of the SR process. The acquired images can be considered down-sampled, blurred, and warped
versions of the original HR image. Assume that we have the LR image sequence {yq} where
q ∈ {1, · · · ,Q}. Each yq is represented by a D × 1 vector. The obsevation process of the LR image
sequence can be modelized as follows,

yq =AHqC(sq)x+nq = Bq(sq)x+nq, for q = 1, . . . ,Q, (1.1)

where A is a D ×N down-sampling matrix, Hq is an N ×N blurring matrix, C(sq) is the N ×N
warping matrix corresponding to a 3×1 motion vector sq, x is theN ×1 HR image vector, and nq
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is a D × 1 vector representing the noise assumed to be additive. Elements of the motion vector
sq = [θ,c,d]t correspond respectively to rotation angle, horizontal and vertical displacements.
Bq(sq) is a D ×N matrix modeling the acquisition system. The zooming factor is defined to be
P ≥ 1 and represented by the factor of increase in each dimension of the image, hence the factor
of increase in resolution is P 2 = N/D. Figure 1.8 shows an example of application of the four
degradation steps of this acquisition model to the Cameraman image.

(a) (b)

(c) (d) (e)

Figure 1.8: Degradation process illustrative example. (a) 256 × 256 Original Camera-
man image, (b)Warped image, θ = −0.1047rad, c = 3, d = 2, (c) Blurred image, Gaussian
blur with variance 3, (d) 64 × 64 Down-sampled image, P=4, (e) Noised image, white
Gaussian noise SNR=40dB

Warping, in out context, is the displacement affecting the acquired images with respect to
the reference image or the original image. This displacement can be horizontal or vertical when
all the objects in a scene are shifted in the x−, y− direction by the same distance c,d respectively.
It may also be rotational, when the observation is a rotated version of the reference image, by
a rotational angle θ. The three parameters (θ,c,d) form the motion vector of the observation.
An example of a warped image is shown in Figure 1.8(b), where the motion vector used was
[−0.1047,3,2]t , θ is in radians, and the last two entries are the number of pixel shifts in the
horizontal and vertical directions respectively.

A blurred image may be the result of many factors affecting the imaging system, like mo-
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tion blur and out-of-focus blur, among others. An object moving within a scene or the motion
of the camera itself may result in motion blur. Out-of-focus blur depends on many parameters
like focal length, camera aperture size and shape, distance between the camera and the ob-
served scene, wavelength of the incoming radiation, and the effects due to diffraction (see [5]).
However, in our work, we are not interested in the type of blur or the phenomena affecting it.
Instead, we include an approximation that models its effect on the observed image. In Figure
1.8(c) a Gaussian blur, with variance 3, has been added to the warped image.

Down-sampling, or decimation, is the process of reducing the sampling rate of an image
signal. Let us describe the down-sampling of the image shown in Figure 1.8(c), to obtain the
image in Figure 1.8(d). In the two dimensional representation of the Figure 1.8(c) image, divide
the 256 × 256 matrix into square blocks, each of P × P size. Then from the P 2 pixels in each
block, keep the first pixel (or the mean) and discard all the others. The down-sampled image is
represented only by the pixels kept, and each dimension of the original image will be P times
that of the decimated version. In vector form, the length of the resulting image will be N/P 2.
In Figure 1.8(d), the zooming factor in each dimension is P = 4, hence the block size is 4 × 4.
The pixels kept form the 64× 64 down-sampled image shown in Figure 1.8(d). Notice that the
factor of increase in resolution is P 2 = 16.

SR reconstruction collects information from various LR images to estimate one HR image.
Figure 1.9 illustrates the process, for a zooming factor P=2, and shows how the information
from each image is shared in the estimation process of the HR image pixels. The crossings
made by red dashed lines in Figure 1.9 represent the new added pixels to the estimated HR
image. Notice that the HR image is not in its final stage, and still there are some works to be
applied to it, as it will be clear later in this dissertation.

SR reconstruction starts from the LR image sequence represented in the upper row of Figure
1.9 and can be achieved by the following minimization problem, as it will be explained later,

x̂, ŝ = argmin
x,s

β

2

Q∑
q=1

∥ Bq(sq)x− yq ∥2 + γ Q(x) , (1.2)

where β and γ are positive parameters, Q(x) is a regularization term, and s = (s1, · · · ,sQ). If
the LR images were previously registered the motion vectors sq would be known, and the only
unknown to be estimated by the SR process would be x. Otherwise, which is usually the case,
the input images are not registered and the motion vectors have to be estimated like the other
unknown.

SR has been already applied to many fields like high performance color liquid crystal dis-
play screens, remote sensing, and medical imaging. Also, it has been used to enhance the
resolution of still images from video sequences. For an extended list of applications using SR,
refer to [6].

SR is different from, and expected to perform better than, interpolation techniques. In-
terpolation uses only one image to increase its spatial resolution, but it does not enhance the
quality of the estimated image. On the contrary, it usually adds some smoothness and loss of
some edges is expected. Examples of interpolation methods are:

• Bilinear interpolation: the output pixel value is a weighted average of the nearest four
pixel values. In Figure 1.10, the intensity value at the point (m,n) is calculated, using
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Figure 1.9: SR Estimation. Upper part: three LR images each of resolution= 9. Lower
part: estimated HR image of resolution=36, formed by the original pixels in LR obser-
vation and the crossings made by the red dashed lines (P=2).

bilinear interpolation by,

BIL(m,n) = (1− a)(1− b)x(i, j) + a(1− b)x(i +1, j) + abx(i +1, j +1)

+ (1− a)bx(i, j +1), (1.3)

where a,b are respectively the horizontal and vertical displacements of the point (m,n)
with respect to the top left neighboring pixel (i, j).

• Bicubic interpolation: the output pixel value is a weighted average of pixel values in
the nearest neighborhood. While the process is similar to that in bilinear interpolation,
however, the neighboring 16 pixels are used in the estimation process, and the result is
a smoother image with fewer interpolation artifacts compared to the bilinear interpola-
tion.

It is worth to discuss here the case where, in the model in Equation (1.1), both warping C(s)
and down-sampling matrices are the identity matrix, and so we only have the blur matrix H,
the modeling becomes

yq =Hqx+nq, (1.4)

where again yq is the observed image, Hq is the blur matrix applied to the original image x,
and nq is the noise accompanying the blur operation. In this case, it is required to remove
the blur from the observed image, and the problem becomes an Image Deconvolution (ID), or
deblurring, problem. If H in the equation is assumed known then the problem falls into the
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Figure 1.10: Bilinear interpolation. Given x at four neighboring pixels, find the inten-
sity value at (m,n)

Non-Blind Image Deconvolution (NBID), the more realistic case is where the matrix Hq has to
be estimated, then the problem turns to be of the Blind Image Deconvolution (BID) type. Notice
Equation (1.4) also describes the image deconvolution problem from multiple images (see [7]),
if the deconvolution is made from only one single observation (see [8]), then the subscript q can
be discarded.

ID is a post processing step to estimate a better quality image by restoring the high fre-
quency content lost in the acquisition process. BID techniques can be included in the SR prob-
lem; by this the BID can form an additional step in SR post processing techniques. However,
we will not go further in ID direction, as this work is devoted mainly to the SR problem from
CS observations, assuming the blur is known.

Finally, it is worth noting that the term SR has been used in other research areas as well.
For example, in the field of optics, SR refers to a set of restoration procedures that seek to
recover the information beyond the diffraction limit. In the scanning antenna research, SR
techniques are exploited to resolve two closely spaced targets when a one-dimensional stepped
scanning antenna is used (see [9]). It has also been used to refer to the problem of increasing
the resolution of an image using learning techniques, a problem not addressed in this thesis
(see [10–12]).

1.1.5 Compressed Sensing

All classical compression techniques still obey the Nyquist’s theorem, and must firstly sample
the signal at a high rate and then compress it. Hence, the limitation on the sampling step still
holds. Alternatively, CS is a new framework to sense in a compressed form data during the
acquisition process itself, on sampling rates that can be lower than that of Nyquist’s theorem.
CS calculates projections of an image to represent it, rather than its original pixels.

CS, or compressed sampling, designs efficient sampling protocols to better capture only the
useful information in an image utilizing sparsity property. Assuming sparsity of an image in
a transformed domain, then many transformed image components can be neglected as them
introduce minimal information. As the significant components, those bearing most informa-
tion, are not known a priori, a high incoherence between the sparse representation and the one
utilized for sensing the image is required, see [13–15].
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Figure 1.11, shows the design of a typical CS image/video camera, designed by Rice Univer-
sity. The camera architecture employs a digital micromirror array to optically calculate linear
projections of the scene onto pseudorandom binary patterns. Its key hallmark is its ability to
obtain an image or video with a single detection element, a single pixel, while measuring the
scene fewer times than the number of pixels/voxels. Since the camera relies on a single photon
detector, it can also be adapted to image at wavelengths where conventional CCD and CMOS
imagers are blind.

Figure 1.11: Typical CS camera

To model the process, let us assume that we have an P ×Q image. The rectangular matrix
can be converted to the N ×1 vector, x, with N = PQ, as shown in Figure 1.12. The sampling, or
measurement, process can be modeled by a 2-dimensional M ×Nmatrix Φ , with M ≤ N . The
sensing process is equivalent to multiplyingΦ by x to give theM×1 observation vector y. In the
figure M=8, N=16, and the measurement matrix uses real valued entries, as will be explained
later. CS theory establishes that a limited number of projections of the image, represented as
entries of y, are needed to recover the original image x efficiently. Mathematically,

y =Φx+n, (1.5)

where n represents the measurement noise assumed to be additive. Every entry in y is a projec-
tion of the original image, obtained by multiplying the corresponding row in Φ by x.

To recover the image x from the observation y, CS theory relies on the idea that the recov-
ered image should be sparse in a transformed domain, that is, we can use the transform basis
W to find the transform coefficients a such that

x =Wa , (1.6)

where W is an N ×N matrix, and x is said to be S-sparse if only S of the a components of its
representation in the W basis are non vanishing. Then Equation (1.5) becomes

y =ΦWa+n . (1.7)
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Figure 1.12: Compressed sensing acquisition model. Measurement matrix Φ with real
entries, M=8, N=16

The coherence µ, of a CS system measures the maximum correlation between the measure-
ment basis and transform basis vectors. It can be expressed as:

µ =
√
Nmax

k,j
|ΦkWj | , (1.8)

where Φk represents the k−th vector of the Φ basis, Wj represents the j−th column in W with
1 ≤ j ≤ N , and | . | is the absolute value. In Equation (1.8), if matrices used were in normalized
form, which is usually the case, then the range of possible values for µ is 1 ≤ µ ≤

√
N . For a CS

theory efficient application, CS systems coherence coefficient values µ have to be low.

A measurement matrix Φ obeys the Restricted Isometry Property (RIP) of order S if the
isometry constant δS of Φ is not too close to one for each integer S = 1,2, · · · . The δS is defined
as the smallest number such that the following holds for all S-sparse vectors of x

(1− δS ) ∥ x ∥2≤∥Φx ∥2≤ (1 + δS ) ∥ x ∥2 (1.9)

This is equivalent also to say that all subsets of S columns taken fromΦ are nearly orthog-
onal. Notice that the columns cannot be exactly orthogonal since number of columns usually is
larger than number of rows in Φ , see [13, 16].

A random sensing matrix Φ and a basis W allowing an S-sparse representation of x will
have the RIP if the following expression is accomplished

M ≥ c.S log(N/S), (1.10)

where c is a constant. This ensures that the reconstruction of an x image with an S−sparse rep-
resentation in a vector basis can be obtained from a compressed sensing observation y through
the following minimization problem.

â = argmin
a

α
2
∥ΦWa− y ∥2 +τ ∥ a ∥1, (1.11)

where α and τ are positive parameters. ∥ . ∥ is the Eucledian norm and ∥ . ∥1 is the l1 norm.

CS is a promising technology which decreases the acquisition time and memory size by
using only one sensor. The use of a single sensor makes it suitable for imaging at wavelengths
where CCD and CMOS are blind (see [13] for more information).
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1.2 Objectives and Hypothesis

The main objective for this work is to apply SR techniques to multiple compressed sensing LR
observations. It is logical to tackle such a problem because it has been shown that a blurred
image is compressible in various scenarios and a constrained optimization framework for com-
pressive BID has been proposed [5, 17].

If the blurred observations are sparse in some domain and CS techniques can be applied to
a blurred HR image, then the LR images {yq} at Equation (1.1) are also expected to be sparse in
a transformed domain, and CS can be applied to them. So why not to extend this idea to super
resolve multiple LR images, by combining CS with SR techniques.

Following this preliminar idea, in a combined Compressed Sensing Super Resolution (CSSR)
problem, we have two approaches to solve the problem: The first is the sequential approach,
and the second is the alternate approach. The sequential approach consists of three steps: 1)
the LR images are reconstructed, 2) the motion parameters are estimated and finally 3) the HR
image is estimated. Notice that this sequence is followed only once. The alternate approach
estimates the three unknowns simultaneously in an iterative manner. In the alternate approach
the previous sequence is repeated, updating at each step the values obtained in the previous
iteration. The alternate approach is expected to give better performance, as it will be proved
experimentally in this dissertation.

Another objective of this work is to include the estimation of all unknowns in an iterative
framework to solve the CSSR problem.

In this work, image registration parameters are assumed to be unknown. The parameters
are estimated using four different approaches, as it will be discussed later in this dissertation.

Another important objective of this work is to apply the CSSR approach to PMMW images.
Although they are important and powerful in threat detection problems and many other appli-
cations, PMMW images have very poor image quality and suffer from small resolution and long
acquisition times. The CSSR with its CS acquisition is expected to require shorter acquisition
times. Moreover, the SR step can increase the spatial resolution of these acquired images. This
has been investigated in Chapter 4 as it will be shown later. Besides, the proposed framework
is applied to color images.

1.3 Methodology and Contributions

A strict work plan has been prepared that starts with a wide literature survey to build a deep
knowledge of CS and SR techniques. A model to combine both techniques is suggested and
tested.

The work starts by assuming that some parameters are known, like the warping and reg-
ularization parameters, to simplify matters, then these parameters are estimated as the work
progresses. Two types of images will be utilized in the experiments: simulated and real. Nu-
merical measures can be applied only to simulated experiments, so it constituted most of the
preliminary work. The simulation followed the suggested degradation model, on which the
reconstruction process also depends.

Before presenting the thesis outline, let us mention the main contributions of this work:
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• We propose a degradation model to generate CS LR observations. The optimization pro-
cess of the CSSR framework mainly depends on this degradation model.

• The combined CSSR approach. Until the time of writing this thesis, to the best of our
knowledge, there is no published work that combines compressed sensing and super res-
olution techniques of multiple unregistered observations, except our published works.
All existing published works that combine SR with CS perform SR from one single ob-
servation. The following papers address the CSSR estimation process:

– [18]. W. AlSaafin, S. Villena, M. Vega, R. Molina, and A.K. Katsaggelos. Compres-
sive Sensing Super Resolution From Multiple Observations With Application To
Passive Millimeter Wave Images. Digital Signal Processing, pages 180-190, 2016.
DOI: 10.1016/j.dsp.2015.12.005

– [19]. Wael Saafin, Miguel Vega, Rafael Molina, and Aggelos K. Katsaggelos. Image
Super Resolution From Compressed Sensing Observations. In Image Processing
(ICIP), 2015 IEEE International Conference on, pages 4268-4272, Sept 2015.
DOI: 10.1109/ICIP.2015.7351611

– [20]. Wael Saafin, Salvador Villena, Miguel Vega, Rafael Molina, and Aggelos K.
Katsaggelos. PMMW Image Super Resolution From Compressed Sensing Obser-
vations. In Signal Processing Conference (EUSIPCO), 2015 23rd European, pages
1815-1819, Aug 2015.
DOI: 10.1109/EUSIPCO.2015.7362697

• ADMM is used to include the estimation of the unknown regularization parameters.
Motion vectors are estimated through ADMM, using four different approaches three of
them were published in [18–20], the fourth is presented in this dissertation.

• The proposed CSSR is applied to PMMW images, to be considered as a first processing
step, that can serve, and enhance, later processing like threat detection problems. The
related work has been published in [18, 20]. Also, the CSSR is applied to color images as
will be shown later in this dissertation ([21]).

1.4 Thesis Document Structure

This thesis is presented in the following order:

• The introductory work is presented in Chapter 1 where background is introduced. This
covers a discussion on classical digital imaging techniques to compare with CS tech-
niques. SR and ID techniques are discussed for both natural and millimeter wave im-
ages.

• In Chapter 2, the state of the art is studied. SR section includes a discussion of image
regularizers and some blur models utilized in the literature. CS works are discussed then
the CSSR problem is modeled and formulated. Then some PMMW and CS color image
works are presented.

• In Chapter 3 the proposed CSSR framework is introduced and stated.

• Experimental results are presented in Chapter 4 for gray scale, PMMW, and color images.

• Conclusions are drawn in Chapter 5. This chapter also includes future work that we
consider relevant to CSSR.





Chapter 2

State of the Art

In this chapter we discuss SR works that use images captured using conventional acquisition
systems, we then analyze relevant works which utilize images acquired by CS cameras, and
finally the proposed Compressive Sensing Super Resolution (CSSR) problem is modeled and
formulated.

2.1 Image Super Resolution Works

As explained in Section 1.1.4, the LR observation process can be modeled as follows,

yq =AHqC(sq)x+nq = Bq(sq)x+nq, (2.1)

where A is a down-sampling matrix, Hq is a blurring matrix, C(sq) is the warping matrix cor-
responding to a motion vector sq, nq represents the noise accompanying the process. Bq(sq) is
a matrix modeling the imaging process. SR techniques aim at finding an estimate of x given Q
LR images, yq.

SR research started in 1984 with the pioneer work by Tsai and Huang [22]. Many works
since then have addressed the problem (see [3, 6, 9, 23]). Many SR methods have been pro-
posed, which can be grouped into the following classes: Frequency domain based approach
[22, 24, 25], interpolation based approach [26], Bayesian approach [27–33], regularization based
approach [34–38], and learning based approach [39–41]. There are some variants of the SR
problem: an HR image can be reconstructed from multiple LR observed images, it is also pos-
sible to reconstruct an HR image sequence from an observed LR image sequence, and finally
an HR image can be reconstructed form only one LR observed image using the learning based
approach.

In this work we use the regularization-based approach. The basic idea of this approach to
solve the ill-posed inverse SR problem, is to introduce in the cost function to be optimized a
regularization term constraining the estimation process. This should be sufficient to solve for
the unknown HR image. From a Bayesian point view, the data fidelity term corresponds to the
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observation model probability distribution, and the regularization term to the prior probability
distribution which incorporates our a priori knowledge on the unknown HR image.

In Equation (2.1), beside the HR image x, the warping matrix C(sq) is also unknown and
has to be estimated. Those unknowns can be estimated sequentially or simultaneously. In the
sequential approach, we use the LR images to estimate the first unknown, that is, the motion
vector, just once, then the second unknown is estimated, that is, the HR image, assuming the
blur in known. In the simultaneous approach, all unknowns are estimated alternatively in an
iterative way, this allows to the estimated unknowns to feed some information into the esti-
mation of the other unknowns. The simultaneous approach produces better results as we will
show in the experimental section (see also [18, 30]).

Given the motion vectors {sq} a regularization based SR solves the following optimization
problem,

x̂ = argmin
x

β

2

Q∑
q=1

∥ Bq(sq)x− yq ∥2 + γ Q(x) , (2.2)

where β and γ are positive parameters, andQ(x) is the regularizer. In the following subsection,
we present some regularization terms, Q(·), utilized in the SR literature.

2.1.1 Image Regularizers

In this section we explore some regularization terms, or priors under the Bayesian approach.
For some of these regularizers, we describe SR algorithms which use them. The performance of
the selected SR algorithms is compared with the proposed CSSR algorithm in Section 4.4.

• Huber Markov random field (HMRF)
It is a convex non-quadratic regularizer, which results in nonlinear cost functions, used
to preserve edges, see [29, 42]. The energy function of an HMRF is defined as:

ρ(fx) =

f
2
x , if | fx |≤ α

2α | fx | −α2, otherwise
(2.3)

where fx is the first or second order differences of the HR image x, α is a parameter
separating the quadratic and the linear regions, that controls the size of discontinuities
modeled by the prior by providing a less severe edge penalty. This regularizer has been
used in [29] to extract SR frames from video sequences.

• Total Variation (TV) regularizer
The TV regularizer preserves image edges while smooths flat regions and avoids ringing
artifacts (see [43]. The TV energy function is defined as

ρ(x) =∥ ∇x ∥ , (2.4)

where ∇ is the gradient operator and ∥ . ∥ is the Euclidean norm. It can be approximated
using

T V (x) =
N∑
i=1

√
(∆h

i (x))
2 + (∆v

i (x))
2 , (2.5)
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where N is the number of pixels in x, ∆h
i (x) and ∆h

i (x) correspond respectively to the
horizontal and vertical first order differences at pixel i.

• ℓ1 norm regularizer

It is similar to the TV regularizer in its capability to preserve edges while imposing
smoothness in the rest of image regions. Its energy function is defined as

ρ(x) =∥ ∇x ∥1, (2.6)

where ∇ is the gradient operator and ∥ . ∥1 is the ℓ1 norm, it can be expressed as

L1(x) =
N∑
i=1

αh ∥ ∆h
i (x) ∥1 +

N∑
i=1

αv ∥ ∆v
i (x) ∥1 , (2.7)

where ∆h
i (x) and ∆v

i (x) represent the horizontal and vertical first order differences, re-
spectively, at pixel i, and αh,αv are regularizer parameters. Notice here the use of two
model parameters αh and αv to make this model more adaptable to image characteristics
than the TV regularizer case.

In Section 4.4, we compare the proposed CSSR algorithm with the SR using ℓ1 prior
(L1S) algorithm [28] which solves the minimization problem in Equation (2.2).

• The Simultaneous Autoregressive (SAR) regularizer

It applies a uniform smoothness to all locations in the image. It is a non sparse prior
that reconstructs textures better, see [30]. It uses the Euclidean norm of the second order
difference, as follows

SAR(x) =∥ Cx ∥2 , (2.8)

where C is the Laplacian operator, and ∥ . ∥ is the Euclidean norm.

In Section 4.4, we compare the proposed CSSR algorithm with the SR using SAR prior
(SAS) algorithm [30] which solves the minimization problem in Equation (2.2).

• Bilateral Total Variation (BTV) regularizer

BTV preserves edges in the image, (see [34, 42, 44]). It is expressed as:

BTV (x) =
P∑

l=−P

P∑
m=0︸   ︷︷   ︸

l+m≥0

α|m|+|l| ∥ x−SlhS
m
v x ∥1 , (2.9)

where matrices Slh,S
m
v shift the image x by l,m pixels in the horizontal and vertical di-

rections, respectively; presenting several scales of derivatives. α is a positive parameter
less than one, which gives more weight to closer pixels, ∥ . ∥1 is the ℓ1 norm and P is a
positive integer. The BTV regularizer has been used in [34]. Notice that when P = 1, the
regularizer becomes the TV regularizer, and a comparison between the two regularizers
was performed in [34].

A fast and robust SR (FRSR) algorithm has been proposed in [34] which employs the ℓ1
norm minimization in pursuit of robustness against motion errors and blurring. It uses
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the BTV regularizer. The following minimization problem was solved to estimate x

x̂ = argmin
x


∑
q

∥ Bqx− yq ∥1 +
P∑

l=−P

P∑
m=0︸   ︷︷   ︸

l+m≥0

α|m|+|l| ∥ x−SlhS
m
v x ∥1


. (2.10)

In Section 4.4, we compare the proposed CSSR algorithm with the FRSR algorithm.

• Generalized Gaussian MRF (GGMRF)
It is a convex non-quadratic regularizer, see [42, 45]. It has the following energy function:

ρ(x) =| x |p , (2.11)

where 1 < p < 2. This regularizer tends to overly smooth the whole image including the
edges, see [46], and it has been utilized in [45] for tomographic image reconstruction
problems.

The combination of some image regularizers in SR and image restoration has been ad-
dressed in [30, 47, 48]. In [30, 48] sparse and non sparse priors were combined and applied
to the SR image reconstruction problem.

A robust SR (RSR) Algorithm has been proposed in [49] where instead of minimizing the
sum of the difference images, a robust median estimator is combined in an iterative process
to obtain a SR algorithm. The HR image is estimated iteratively using the following update
equation

xk+1 = xk +Q ·λ ·median{Bt
q(Bqx

k − yq)}
Q
q=1 , (2.12)

where k is the iteration number,Q is the number of LR input images, and λ is a scale factor. The
performance of this algorithm is compared with the proposed CSSR algorithm in Section 4.4.

2.1.2 Image Registration

In the previous section, we discussed the modeling of the HR image. However, for the SR image
estimation to succeed, it is essential to find a highly accurate image registration of the input LR
images. Image registration will give us an estimation of the sq motion vectors and consequently
of the warping matrix C(sq) appearing in Equation (2.1).

Image registration, in general, overlays multiple images of the same scene taken at different
times, from different viewpoints, and/or by different sensors. In the SR problem, image regis-
tration finds a geometric transformation to align pixels in various images to the corresponding
locations in the estimated HR image, which is considered to be the reference image.

Many methods have been proposed in the literature, see [50] for details. In this work we
use the geometric transformation defined next.

The geometric transformations utilized in this dissertation consist of translations and rota-
tions. Assume that it is required to register the image gwith respect to a reference image x, then
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the transformation relating pixel gi to xi , with coordinates (gih, giv) and (xih,xiv) respectively, is
modeled as

gihgiv
1

 =
cosθ −sinθ c
sinθ cosθ d
0 0 1


xihxiv
1

 (2.13)

where θ is the rotation angle, and c,d are the horizontal and vertical displacements, respec-
tively. The motion vector, for observation q, can be expressed as sq = [θq, cq,dq]t . A detailed
description of the registration model is presented later, in Section 2.3.

2.1.3 Blur Model

In this dissertation we assume that the blur affecting the image is known and can be approx-
imated by a relevant blur model. Many models have been proposed in the literature which
simulate blur encountered in real world imaging systems. Next we mention some blur models
(see [5, 51, 52])

• 1DMotion Blur
This type of blur represents the one dimensional (1D) local averaging of neighboring
pixels, a common result of camera panning or fast object motion. For example, the hori-
zontal motion blur can be modeled by

h(u) =


1

L+1 , −L
2 ≤ uh ≤ L

2 ;uv = 0

0 , otherwise
(2.14)

where L is assumed to be an even integer, u = (uh,uv), being the pixel range of horizontal
and vertical distance uh,uv from the current pixel. Motion blur may also occur in two
dimensions (2D), e.g., following a random trajectory.

• Atmospheric Turbulence Blur
This type of blur represents a long term exposure through the atmosphere which is typ-
ically modeled by a Gaussian Point Spread Function (PSF). A Gaussian blur can be mod-
eled as

h(u) = K e
− |u|

2

2σ2 (2.15)

where K is a constant ensuring that the blur values sum up to 1, σ2 is the variance that
determines the severity of the blur.

• Uniform Out-of-Focus Blur
This type of blur is primarily due to the effects of the camera focal length and the dis-
tance between camera and observed scene. Out-of-Focus blur can coexist with diffraction
blur, which depends on the camera aperture size and shape, and the wavelength of the
incoming radiation. Accurate knowledge of all these parameters is not frequently avail-
able when a picture is taken. When the blur due to poor focusing is large, the following
uniform model has been used as an approximation of such PSFs,

h(u) =


1

πr2
, | u |≤ r

0 , otherwise
(2.16)
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where r denotes radius and controls the severity of the blur.

A blurred image can be simulated utilizing a blur model by

BLURRED = h(u) ∗ x , (2.17)

where ∗ is the convolution operator.

2.2 Compressed Sensing Works

Different CS image/video cameras have been proposed (see [53–58]). The concept of single
pixel camera has been extended to a multi-detector device in [59], where the detectors are
placed on an arbitrary grid on the source signal and each detector integrates the source signals
only locally to reduce the required measurements, and hence the measurement time, by using
more detectors.

Super Resolution (SR) from a single image has benefited from the introduction of CS theory
in works like [60–62]. In [63, 64] learning based SR is used to estimate an HR image from a
single CS observation of a down-sampled remote sensing image. In [65] the down-sampling is
incorporated in the measurement matrix, the CS image is reconstructed in the wavelet domain
and the signal is deconvolved in the Fourier domain.

BID from CS measurement has been studied in [5, 66], and NBID in [67–71]. Next we
describe selected CS ID works which will be compared with our proposed CSSR algorithm in
Section 4.3.

The Large Scale ℓ1 regularized (L1-LS) logistic regression algorithm proposed in [67], and
Gradient Projection for Sparse Reconstruction (GPSR) algorithm proposed in [68], both solve
the following problem

â = argmin
a
∥ΦHWa− y ∥2 +τ ∥ a ∥1 , (2.18)

where y is the CS blurred observation, Φ the measurement matrix, H the blur matrix, W is
the transform domain basis, a is the transformed domain representation of the original image
x =Wa and τ is a non-negative parameter.

The Compressive SamplingMatching Pursuit (CoSaMP) algorithm proposed in [69] is based
on Orthogonal Matching Pursuit (OMP) schemes and produces an s−sparse approximation z
that satisfies

∥ x− z ∥2≤ C ·max
{
η ,

1
√
s
∥ x− xs/2 ∥1 + ∥ y−Φz ∥2

}
, (2.19)

where C and η are parameters, and xs/2 is the best (s/2)−sparse approximation to x.

The NESTerov’s Algorithm (NESTA) proposed in [70], and Your ALgorithm for L1 (YALL1)
proposed in [71], solve the following problem

x̂ = argmin
x
∥W−1x ∥1 s.t. ∥ΦHx− y ∥< ϵ , (2.20)



2.3. CSSR Modeling and Formulation 23

2.3 CSSR Modeling and Formulation

In the Compressed Sensing Super Resolution (CSSR) problem, we are given multiple CS LR
observations of a scene to estimate an HR image. The LR images can be considered as a warped,
blurred, and down-sampled versions of the HR image to be estimated. Let us assume that the
number of input images is Q, the acquisition model for each observation is

yq =Φzq + rq q = 1, . . . ,Q, (2.21)

where yq is an M × 1 vector representing the compressed observations, Φ is a CS M ×D mea-
surement matrix, zq is a column vector of size D × 1 representing the q−th LR image and rq
represents the observation noise. We denote by R the compression ratio of the measurement
system, that is, R =M/D, R ≤ 1.

As shown in Section 2.1 the observation process of the LR observations zq in Equation (2.21)
can be modeled as follows,

zq =AHqC(sq)x+wq = Bq(sq)x+wq, (2.22)

where A is a D ×N down-sampling matrix, D ≤ N , which models the limited resolution of the
acquisition system, when capturing the high resolution image, where N = P 2D and P≥1 is the
zooming factor, in each dimension of the image. Hq is an N ×N blurring matrix, modeling
the blur action accompanying the imaging process. In this work, the convolution matrix Hq is
assumed to be known. C(sq) is the N ×N warping matrix for the motion vector sq = [θq, cq,dq]

t ,
where θq is the rotation angle, cq and dq are respectively the horizontal and vertical translations
of the q−th LR image with respect to the reference frame, and x is the HR image of size N ×
1. Finally, wq models the noise associated to the LR acquisition process. We write Bq(sq) =
AHqC(sq) for simplicity.

Using Equations (2.21) and (2.22) we can write

yq =ΦBq(sq)x+nq , for q = 1, . . . ,Q, (2.23)

where nq represents the combined CS and LR acquisition noise and x is the HR image we want
to estimate.

Next we describe the sensing matrices we use in this dissertation. The measurement matrix
we use (Φ) is a random circulant Toeplitz matrix. A circulant Toeplitz matrix is a matrix Tn, in
which each row is a cyclic shift of the row above. It has the following form

Tn =



t0 t1 t2 · · · tn−1
tn−1 t0 t1 tn−2
tn−2 tn−1 t0
...

. . .
t1 t0


(2.24)

The entries in the first row are random, following a Gaussian, or Bernoulli distribution.
Gaussian, or normal, distribution function is given by

f (x|µ,σ ) = 1

σ
√
2π

e
− (x−µ)2

2σ2 (2.25)
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where µ and σ2 are respectively the mean and the standard deviation of the distribution.
Bernoulli probability function is given by

f (k|p) = pk(1− p)1−k , for k ∈ {0,1} , (2.26)

where (p) and (1− p) are respectively the probabilities of k being 1 and 0.

Both Gaussian and Bernoulli random circulant Toeplitz matrices were tested to work well
in CS [72–74]. In both cases the rows of Φ are normalized to 1. However, a Gaussian matrix
consists of real entries while a Bernoulli matrix consists of binary entries, and hence it can
be synthesized 256 × 256 practically, see [18, 56]. In this dissertation we used the Bernoulli
circulant Toeplitz matrix.

Next we describe the down-sampling matrix (A). Let us assume that we have an image x of
size 256×256, and the zooming factor P=2. We divide the matrix x into P ×P blocks, then from
each block only one pixel value is preserved, and the other three are discarded. The preserved
pixels constitute a 128× 128 matrix, which is the down-sampled version of x. Notice here that
there is no interpolation process neither in the down-sampling nor in the up-sampling process.
If the down-sampled 128× 128 matrix in the previous example is up-sampled, then each pixel
value will form a block in the up sampled image, the upper-left pixel of the four pixels forming
this block will have the pixel value from the down-sampled image, the other three pixels will
have a zero value.

The blur matrix (H) we used in all experiments utilizes a spatially invariant Gaussian blur
filter given by

h(u) = K e
− |u|

2

2σ2 (2.27)

where K is a constant and σ2 is the blur variance.

Next we describe how to calculate the warping matrix (C(sq)). Let us denote the coordinates
of the reference HR grid by (u,v) and the coordinates of the q−thwarpedHR grid, after applying
C(sq) to x, by (uq,vq). Then it holds that

uq = u cos(θq)− v sin(θq) + cq (2.28)

vq = u sin(θq) + v cos(θq) + dq . (2.29)

Let us denote the displacements between the grids by ∆(uq,vq)T = (u,v)T − (uq,vq)T . The vector
difference between the pixel at (uq,vq) and the pixel at its top-left position in the reference HR
grid is denoted by (aq(sq),bq(sq))T (see Figure 2.1), that is,

aq(sq) = ∆uq −floor(∆uq) , (2.30)

bq(sq) = ∆vq −floor(∆vq) . (2.31)

Notice here that the relationships are non linear functions of sq due to the trigonometric
functions in Equations (2.28) and (2.29). Using bilinear interpolation, the warped image C(sq)x
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(a) (b)

Figure 2.1: q-th HR grid calculation. (a) HR grid (in black) and the q-th image grid (in
red), (b) Detailed view of (a), with the pixel notation used for the bilinear interpolation
of grid element (uq,vq)

can be approximated to obtain a linear transform matrix in sq as (see [18, 30, 37]),

C(sq)x ≈Dbq(sq)(I−Daq(sq))Lbl(sq)x+ (I−Dbq(sq))Daq(sq)Ltr(sq)x

+ (I−Dbq(sq))(I−Daq(sq))Ltl(sq)x+Dbq(sq)Daq(sq)Lbr(sq)x , (2.32)

where Daq(sq) and Dbq(sq) denote diagonal matrices with the vectors aq(sq) and bq(sq) in their
diagonals, respectively. I is the identity matrix. Matrices Lz with z ∈ {bl(sq),br(sq), tl(sq),tr(sq)}
are constructed in such a way that the product Lzx produces pixels at the bottom-left, bottom-
right, top-left, and top-right, locations of (uq,vq), respectively. This approximated explicit form
presented in Equation (2.32) can be used when we are given the motion vectors of the input LR
CS observations.

The noise matrix (nq) we used in all experiments is assumed to be white Gaussian noise
of zero mean, added to the CS observations. This noise arises during acquisition due to poor
illumination, high temperature and electronic circuit noise, see [75].

Let us now show an example to clarify visually the presented warping model. Figure 2.2(a)
shows the original Shepp-Logan image x. The original image is warped then blurred then
down-sampled, following Equation (2.22) to get Bq(sq)x for the case Q = 4. The warping uses
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the following motion vectors

s1 =

00
0

 , s2 =

0.05242
−3

 , s3 =

−0.0698−1
−2

 , and s4 =

−0.03493
−1

 . (2.33)

To blur the warped image we used a Gaussian blur with variance 5, the down-sampling
used a zooming factor P=2. The four generated LR images (Bq(sq)x) are shown in Figure 2.2(b).
The simulated LR images then were compressed to get (ΦBq(sq)x), as in Equation (2.23). Firstly
the image is compressed using a compression ratio R=0.6 then noised by an additive white noise
of SNR=30dB. The four noised CS observations are shown in Figure 2.2(c). Figures 2.2(d,e,f)
show the results obtained for the Lena image following the same procedure.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Simulation process. Warped with motion vectors (0,0,0)t, (.0524,2,−3)t,
(−.0698,−1,−2)t, (−.0349,3,−1)t, Gaussian blur of variance 5, zooming factor 2, com-
pression ratio R=0.6, SNR of added noise 30dB (a) Original Shepp-Logan image, (b)
Four simulated LR images., (c) Four CS observations, (d) Original Lena image, (e) Four
simulated LR images, (f) Four CS observations.

CSSR aims at finding an estimate for the HR image in Figure 2.2(a) given some noised
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CS observations, like those in Figure 2.2(c). Next we formulate the minimization problem we
propose to do so.

Since zq in Equation (2.22) represents translated and rotated LR versions of the original
image x, which are assumed to be compressible in a transformed domain, we can estimate the
original HR image by first recovering the LR images using CS techniques and then recover
the HR image using standard SR techniques on the recovered LR images. To be precise, if we
assume that the LR images are sparse in a transformed domain with zq=Waq, where W is a
sparse promoting transformation of size D×D and aq is the q−th transformed coefficient vector,
we want to recover all zq using a CS reconstruction technique.

The CS recovery methods available usually utilize the ℓ1 minimization, or Greedy methods.
Examples on Greedy methods are Matching Pursuit (MP), Orthogonal MP (OMP), Subspace
Pursuit (SP), regularized OMP (ROMP), Iterative Hard Shareholding (IHT) algorithm, see [76–
80] for details. In this dissertation we use ℓ1 minimization to solve the CS problem. Next we
introduce and justify its use.

Actually what is required in a CS recovery is to solve this equation

â = argmin
a
∥ a ∥0 subject to a :∥ΦWa− y ∥2≤ ϵ , (2.34)

where the l0 norm ∥ a ∥0 counts the number of nonzero entries in a vector a, ∥ . ∥ is the Euclidean
norm, and ϵ is a small value that determines the accuracy of the estimation process. While the
Euclidean norm is convex, the zero norm is non convex, that makes the problem very difficult
to solve. A way to make the problem more tractable is to replace the zero norm with its convex
approximation ∥ . ∥1, that is the ℓ1 norm. Hence the problem becomes,

â = argmin
a
∥ a ∥1 subject to a :∥ΦWa− y ∥2≤ ϵ , (2.35)

All constituting terms are convex now, hence the minimization problem is computationally
feasible. Moreover, there are a variety of reasons which justify the use of ℓ1-minimization for
sparse signal recovery, see [81]. Converting the constrained optimization to a none constrained
one gives,

â = argmin
a

η

2
∥ΦWa− y ∥2 +τ ∥ a ∥1, (2.36)

where η, τ are positive parameters. This is the minimization problemwe use in our dissertation,
which has been also utilized in [15, 17, 82]. Therefore, we can recover the zq in Equation (2.22)
from the model in Equation (2.21) by solving

âq = argmin
aq

η

2
∥ΦWaq − yq ∥

2 + τ ∥ aq ∥1 . (2.37)

Then defining ẑq =Wâq and s = (s1, . . . ,sQ) and using the degradation model in Equation (2.22),
we can estimate the original image by solving

x̂, ŝ = argmin
x,s

β

2

∑
q

∥ Bq(sq)x− ẑq ∥2 + α Q(x), (2.38)
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where α and β are non-negative parameters, and the term Q(x) is described next. In [18] the
following regularization term was used for the image

Q(x) =
∑
d∈∆

N∑
i=1

log(|ωx
d(i)|) , (2.39)

where ωx
d(i) is the i-th pixel of the filtered image, and

ωx
d = Fdx , (2.40)

where Fd is a high-pass filter operator, and the index d ∈ ∆ identifies one of the members of
the used filter set. In this paper we have used a filter set with elements ∆ = {h,v,hv,vh,hh,vv},
where h,v represent the first order horizontal and vertical difference filters, hv and vh represent
first order differences along diagonals, and hh and vv the horizontal and vertical second order
differences. The regularization term favors sparsity of the high-pass filtered images Fdx, and
corresponds to the Super-Gaussian log prior used in blind deconvolution [83].

Since the log function can not be differentiated at zero, we consider in this work the follow-
ing robust version of the log regularizer

logϵ(|s|) =
{

log(|s|) for |s| ≥ ϵ
s2

2ϵ2 − (
1
2 − log(ϵ)) for 0 ≤ |s| ≤ ϵ

(2.41)

and replace Q(x) in Equation (2.39) by

Q(x) =
∑
d∈∆

N∑
i=1

logϵ(|ω
x
d(i)|) , (2.42)

where we have removed the dependency of Q(·) on ϵ for simplicity.

We have two approaches to solve the CSSR problem: the sequential approach and the al-
ternate approach (see [6]). The latter approach alternates between compressive sensing recon-
struction, registration parameter estimation, and reconstruction of the HR image. The former
approach estimates the unknowns sequentially, one after the other, as follows. Firstly, the LR
images are reconstructed using Equation (2.37), then motion parameters are estimated and fi-
nally the HR image is estimated using Equation (2.38). Notice here that after an unknown
is estimated, the sequential approach does not return back to it again, and every unknown is
estimated only once.

As we will show in the experimental part, combining the two optimization problems in
Equations (2.37) and (2.38) above into a simultaneous one leads to an improved performance,
as this enables better exploitation of the compressibility of the LR observations using the ad-
ditional information obtained from the estimated HR image, and the updated registration pa-
rameters. Hence, in the following, this alternate approach has been adopted. According to it,
let a = (a1, . . . ,aQ) and define

L(x,a) =
η

2

Q∑
q=1

∥ΦWaq − yq ∥
2 + τ

Q∑
q=1

∥ aq ∥1 + α Q(x) (2.43)
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Then we approach the Compressed-Sensing Super Resolution (CSSR) problem by solving
the following constrained optimization problem

minL(x,a)
s.t. Bq(sq)x =Waq , for q = 1, . . . ,Q . (2.44)

This is the approach we will describe and use in Chapter 3. Notice that in Equation (2.43)
we could have also introduced a regularizer on the motion vector s = (s1, . . . ,sQ), similar to
[20, 30]. However, we have experimentally found that it is not necessary to use regularization
on the motion vectors.

Still we did not describe the transform basis (W) that serves well in the CS reconstruction.
Suitable transformed domains for CS are Discrete Cosine Transform (DCT), Discrete Wavelet
Transform (DWT) and Discrete Fourier Transform (DFT). DWT is usually preferred over DCT
because it better enables the removal of blocking artifacts [84]. In this dissertation we adapted
interchangeably the DCT, and the DWT. Both are described next.

DCT attempts to make use of correlated data in the zq image. In the one-dimensional (1D)
DCT, the signal is converted into a sum of cosine functions oscillating at different frequencies.
It can be expressed as follows

aq(k) = ω(k)
D∑
i=1

zq(i)cos
[ π
2D

(2i − 1)(k − 1)
]
, k = 1, · · · ,D, (2.45)

where zq is expressed in the vector form, and

ω(k) =


1√
D
, k = 1√

2
D , 2 ≤ k ≤D

(2.46)

where D is the number of pixels in zq. The inverse 1D-DCT reconstructs a sequence from its
transform coefficients by

zq(i) =
D∑
k=1

ω(k)aq(k)cos
[ π
2D

(2i − 1)(k − 1)
]
, i = 1, · · · ,D, (2.47)

DWT invokes two types of filters; the wavelet filter and the scaling vector. The wavelet filter
is a high pass filter, and the scaling vector is a low pass filter. After applying a 1-level Haar
DWT on an image zq in the matrix form, we decompose it into four frequency bands, namely
the approximation (LL1), horizontal (LH1), vertical (HL1), and diagonal (HH1) sub-bands. This
DWT decomposition at the 1-level is shown in Figure 2.3 for Barbara image to represent the
LR image zq. The original image is shown in Figure 2.3(a), while Figure 2.3(b) shows the four
down-sampled sub-bands: approximation, horizontal, vertical and diagonal bands. Notice that
if we append the four bands together in one vector we obtain the 1-level coefficient vector which
has the same size as zq.

If the 1-level DWT is applied again to the approximation sub-band LL1, then we obtain the
2-level DWT, and hence we will have the new sub-bands LL2, LH2, HL2, and HH2. Applying
DWT again to the resulting approximation sub-band LL2, then we will have the 3-level DWT,
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(a) (b)

Figure 2.3: 1-level discrete wavelet transform. (a) Barbara image (b) DWT decomposi-
tion

with the new added bands LL3, LH3, HL3 and HH3. An illustration of the process is shown in
Figure 2.4.

Figure 2.4: 3-level discrete wavelet transform decomposition.

Inverse Haar DWT firstly computes a reconstructed approximation coefficient matrix LL
∧

2
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from LL3, LH3, HL3, and HH3. Notice that the size of LL
∧

2 will be equal to the sum of the four
smaller sub-bands. Then using LL

∧

2, LH2, HL2 and HH2, the first level approximation LL
∧

1 is
computed. Finally, the reconstructed approximation of ẑq is computed by taking the inverse

Haar transform of the bands LL
∧

1, LH1, HL1 and HH1.

In this dissertation we used 3-level Haar DWT as the wavelet transform domain.





Chapter 3

Compressive Sensing Super

Resolution Algorithm

Once the CSSR problem has been formulated in the previous chapter, this chapter presents
our CSSR approach to solve it. All the processing steps are investigated to describe their specific
merits. Then the algorithm is stated. The CSSR method can also be applied to Color CS images
through our second proposed algorithm, CCSSR, which is presented in this chapter.

The CSSR problem has a large number of unknowns: the HR image x, the sparse coefficients
a corresponding to each LR image, the motion vectors s, and the parameters η,τ,α that affect
the solution inherently. In such a case, one should design a smart strategy to tackle the problem
efficiently, and to try many possible solutions, sometimes trials may fail, others may succeed.

Hence, before continuing in describing the resulting approach, it is worthwhile to give a
historical background to describe the road map followed in the preparation of this work, and to
discuss not only those adopted techniques, but also those which have not been adopted in the
last format of our solution to the CSSR problem.

3.1 Preliminary Work

To simplify matters, in the problem we started with there were two simulated CS observations
corresponding to the LR images. Given the motion vectors and the blur, the observations were
degraded as in Equation (2.1). The image was warped, then degraded by a Gaussian blur and
down-sampled, with a zooming factor P=2. The observation was then compressed using a circu-
lant Gaussian Toeplitz measurement matrix and finally White Gaussian noise, with SNR=40dB,
was added to the compressed observations.

From the CS observations the sparse coefficient vectors can be estimated using the following
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l1 minimization problem

âq = argmin
aq

α
2
∥ΦWaq − yq ∥

2 +τ ∥ aq ∥1, for q = 1, · · · ,Q. (3.1)

Notice that the sparse coefficients can be estimated using the algorithm in [82]. We used
the 3-level Haar wavelet transform as a transform basis. The estimation process is performed
for each observation separately. Then the estimated LR images Wâq can be super resolved to
estimate an HR image using

x̂ = argmin
x

β

2

∑
q

∥AHqC(sq)x−Wâq ∥2 + α Q(x), (3.2)

where we used the explicit form of C(sq) as in Equation (2.32), assuming knownmotion vectors.
We used an lp quasi-norm with 0 < p < 1 to serve as the regularization termQ(x). This prior has
been used in compressive image deconvolution [5]. It can be expressed as

Q(x) =
∑
d

21−o(d)
∑
i

| ∆d
i (x) |

p , (3.3)

where o(d) ∈ {1,2} denotes the order of the difference operator ∆d
i (x) at pixel i, d ∈ {h,v,hh,vv},

h,v denote horizontal, vertical first order differences, hh,vv denote horizontal, vertical second
order differences, and 0 < p < 1. This Q(x) regularizer can be bounded by a tractable functional
R(x,V) such that

Q(x) ≤ R(x,V). (3.4)

In Equation (3.4) R(x,V) is defined as

R(x,V) =
p

2

∑
d

21−o(d)
∑
i

[∆d
i (x)]

2 + 2−p
p vd,i

v
1−p/2
d,i

, (3.5)

where V is a diagonal matrix with elements vd,i > 0, and

vd,i = [∆d
i (x0)]

2 , (3.6)

where x0 is an initial estimate of x calculated by adding the up-sampled LR reconstructed
images, Wâq. The derivation for the bound in Equation (3.5) is presented in [85]. The mini-
mization problem in Equation (3.2) gives the following equation for estimating x,

x =

β Q∑
q=1

Bt
q(sq)Bq(sq) +αp

∑
d

21−o(d)∆dtΛd∆
d


−1

β
Q∑
q=1

Bt
q(sq)Wâq (3.7)

where Λd is a diagonal matrix with elements vp/2−1d,i in the diagonal, and ∆d is the convolution

matrix of the difference operator ∆d
i (·).

As an example, we degraded the Barbara image to simulate two CS LR images. The re-
constructed LR images are shown in Figure 3.1(a). Figure 3.1(b) shows the HR initial image of
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(a) (b) (c)

Figure 3.1: Sequential estimation process. Observations have been simulated using
Gaussian Blur of variance 3, zooming factor P=2, Gaussian circulant Toeplitz measure-
ment matrix with compression ratio R=0.8 and additive noise of SNR=40dB. (a) LR re-
constructed observations, (b) initial estimate of HR image, PSNR=9.8 dB, (c) estimated
HR image, PSNR=23.2 dB

PSNR=9.8 dB, and the reconstructed image is shown in Figure 3.1(c), with PSNR=23.2 dB. We
used p = 0.8 in this and the following experiments.

Notice that the unknowns were estimated sequentially, not iteratively. Actually, this was
the simplest initial approach to the problem, and the successful reconstruction proved the fea-
sibility of our study. This encouraged us to go further in the solution, to jointly estimate the
unknowns using the constrained optimization in Equation (2.44), repeated again here,

min

η2
Q∑
q=1

∥ΦWaq − yq ∥
2 + τ

Q∑
q=1

∥ aq ∥1 + α Q(x)


s.t. Bq(sq)x =Waq , for q = 1, . . . ,Q , (3.8)

where Φ is the CS measurement matrix, W is the transformation matrix, aq is the transformed
coefficient vector corresponding to the q−th CS observation yq, Q(x) is the regularization term
being, at that time, the lp quasi norm defined in Equation (3.3) for which the upper bound de-
fined in Equation (3.5) was used, Bq(sq) =AHqC(sq) is the modeling matrix, the motion vectors
sq are assumed to be known, and η,τ,α are positive parameters.

This constrained optimization problem can be converted into an unconstrained optimiza-
tion one, using the Alternate Direction Method of Multipliers (ADMM) [86, 87]. We define the
following augmented Lagrangian functional
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L(x,a,λ) =
η

2

Q∑
q=1

∥ΦWaq − yq ∥
2 + τ

Q∑
q=1

∥ aq ∥1 + α Q(x)

+
Q∑
q=1

λt
q(Bq(sq)x−Waq) +

β

2

Q∑
q=1

∥ Bq(sq)x−Waq ∥2, (3.9)

where a = (a1, . . . ,aQ), λq are D×1 Lagrangian multiplier vectors with λ = (λ1, . . . ,λQ), and β is a
non-negative parameter. The ADMM leads to the following sequence of iterative unconstrained
problems,

xk+1 = argmin
x

L(x,ak ,λk) , (3.10)

ak+1 = argmin
a

L(xk+1,a,λk) (3.11)

λk+1
q = λk

q − β[Bq(sq)x
k+1 −Wak+1q ] , q = 1, . . . ,Q, (3.12)

where k is the iteration number. Let us now describe the estimation process. The calculation of
each λk+1

q is straightforward. The image x can be estimated by solving the following minimiza-
tion problem

xk+1 = argmin
x

β2 ∑
q

∥ Bq(sq)x−Waq ∥2 +αR(x,V) +
∑
q

λk
q
t
(Bq(sq)x−Wakq)

 . (3.13)

This and the optimization step in Equation (3.10) produce the following linear equation for
xk+1

xk+1 =

β∑
q

Bt
q(sq)Bq(sq) +αp

∑
d

21−o(d)∆dtΛk
d∆

d


−1∑

q

Bq(sq)
t
[
βWakq −λk

q

]
(3.14)

We solved Equation (3.14) using the conjugate gradient algorithm. The estimation of the
sparse coefficients is described in Section 3.2.

This estimation process has been performed for the Barbara image, and the obtained HR im-
ages are shown in Figure 3.2. In Figure 3.2(a) it is shown the first iteration estimate (PSNR=22.8
dB), and in Figure 3.2(b) the last estimate (PSNR=23.9 dB) is shown. The maximum number of
iterations was 20. The result obtained at the last iteration is better than the obtained at the first
one and this denotes a better performance for the CSSR joint estimation approach than for the
sequential one.

The next stage was to adapt a realistic measurement matrix that can be physically synthe-
sized, so we used a Bernoulli measurement matrix. Figure 3.3 shows the results obtained using
this new Φ , with a PSNR of 22.7 dB for the first iteration and of 23.9 dB for the last one.

At these stages the motion vectors sq were assumed to be known. At the next stage the
motion vectors began to be considered unknowns, to be estimated. The quality of the estimated
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(a) (b)

Figure 3.2: Joint estimation process. Observations have been simulated using Gaussian
Blur of variance 3, zooming factor P=2, Gaussian circulant Toeplitz measurement ma-
trix with compression ratio R=0.8, and additive noise of SNR=40dB. (a) First iteration
estimate with PSNR=22.8 dB, (b) last iteration estimate with PSNR=23.9 dB

motion vectors is critical for the HR estimation quality, and many experiments and trials were
made to obtain more accurate results. While the trivial update of registration parameters can
be obtained by solving

sk+1q = argmin
sq
∥ Bq(sq)x

k+1 −Wak+1q ∥2 (3.15)

However, at that stage, we observed experimentally that a fast and reliable estimation of the
registration parameters can be obtained by registering the reconstructed LR images estimated
in the previous step with respect to the reference LR observation, rather than registering the
previously obtained HR image, see [19]. Thus minimizing

sk+1q = argmin
sq
∥ C(sq) [AHr ]

tWak+1r −
[
AHq

]t
Wak+1q ∥2 (3.16)

where r denotes the reference image, usually to be the first one of the LR image sequence.

The next trial was to estimate the warping parameters by registering the up-sampled LR
images obtained in the previous step with respect to the obtained HR image, see [20].

sk+1q = argmin
sq

[β
2
∥ C(sq)xk+1 − [AHq]

tWak+1q ∥2 +(sq − skq)tΞq(sq − skq)
]
, (3.17)

where Ξq is a 3 × 3 known matrix of regularization parameters. Figure 3.4(a) shows the esti-
mated Barbara image obtained using Equation (3.16), while Figure 3.4(b) shows the result ob-
tained using Equation (3.17). This trial showed that the minimization in Equation (3.16) gives
a better performance. In the next section, it will be shown that registration could be performed
interchangeably from the estimated HR image or from the estimated LR reference image, in an
efficient and accurate manner.
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(a) (b)

Figure 3.3: Joint estimation process. Observations have been simulated using Gaussian
Blur of variance 3, zooming factor P=2, Bernoulli circulant Toeplitz measurement ma-
trix with compression ratio R=0.8 and additive noise of SNR=40dB. (a) First iteration
estimate with PSNR=22.7 dB, (b) last iteration estimate with PSNR=23.9 dB

(a) (b)

Figure 3.4: Joint estimation process with motion estimation . Observations have been
simulated using Gaussian Blur of variance 3, zooming factor P=2, Bernoulli circu-
lant Toeplitz measurement matrix with compression ratio R=0.8 and additive noise
of SNR=40dB. (a) Estimated image using the minimization in Equation (3.16), (b) esti-
mated image using minimization in Equation (3.17)
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The regularization term utilized for HR image estimation took a special importance, and
many regularizers have been tested with the proposed framework. The best performance of
CSSR was obtained using the robust log-based regularizer introduced in the next section, which
we finally used in all the experiments.

3.2 The Proposed CSSR Approach

The constrained optimization in Equation (3.8) can be changed into the following unconstrained
optimization using ADMM. The new augmented Lagrangian functional is defined as follows

L(x,a,s,λ) =
η

2

Q∑
q=1

∥ΦWaq − yq ∥
2 + τ

Q∑
q=1

∥ aq ∥1 + α Q(x)

+
Q∑
q=1

λt
q(Bq(sq)x−Waq) +

β

2

Q∑
q=1

∥ Bq(sq)x−Waq ∥2, (3.18)

where s = (s1, . . . ,sQ) denotes the motion vector set. The HR regularization term Q(x) utilized
in this final version of the proposed CSSR algorithm is described next,

Q(x) =
∑
d∈∆

N∑
i=1

log(|ωx
d(i)|) , (3.19)

where ωx
d(i) is the i-th pixel of the filtered ωx

d image and

ωx
d = Fdx , (3.20)

where Fd is a high-pass filter operator, and the index d ∈ ∆ identifies one of the members of
the used filter set. In this work we have used a filter set with elements ∆ = {h,v,hv,vh,hh,vv},
where h,v represent the first order horizontal and vertical difference filters, hv and vh represent
first order differences along diagonals, and hh and vv the horizontal and vertical second order
differences. This regularization term favors sparsity of the high-pass filtered images ωx

d , and
corresponds to the Super-Gaussian log prior used in Bayesian blind deconvolution [83].

Since the log function can not be differentiated at zero, we consider in this work the follow-
ing robust version of the log regularizer

logϵ(|s|) =
{

log(|s|) for |s| ≥ ϵ
s2

2ϵ2 − (
1
2 − log(ϵ)) for 0 ≤ |s| ≤ ϵ

(3.21)

and replace Q(x) in Equation (3.19) by

Q(x) =
∑
d∈∆

N∑
i=1

logϵ(|ω
x
d(i)|) , (3.22)

where we have removed the dependency of Q(·) on ϵ for simplicity.
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The augmented Lagrangian functional in Equation (3.18) leads to the following iterative
unconstrained sub-problems;

xk+1 = argmin
x

L(x,ak ,sk ,λk) , (3.23)

ak+1 = argmin
a

L(xk+1,a,sk ,λk) (3.24)

sk+1 = argmin
s

L(xk+1,ak+1,s,λk) (3.25)

λk+1
q = λk

q − β[Bq(s
k+1
q )xk+1 −Wak+1q ] , q = 1, . . . ,Q, (3.26)

where k is the iteration number. Notice that according to the ADMM approach Bq(sq) in Equa-
tion (3.18) should not depend on the iteration index, as it is not the case here. However, we
have not encountered any convergence problems applying this iterative procedure.

The calculation of the λk+1
q is straightforward again. The estimation process of the other

unknowns is described in the coming subsections.

3.2.1 HR Image Estimation

The function ρϵ(s) = logϵ(|s|) in Equation (3.22) is symmetric around 0, and ρ(
√
s) is concave

and increasing for s ∈ [0,∞) [83]. So, it can be represented as (see [88])

ρϵ(s) = inf
ξ>0

1
2
ξs2 − ρ∗ϵ(

1
2
ξ) , (3.27)

where ρ∗ϵ(
1
2ξ) is the concave conjugate function

ρ∗ϵ(
1
2
ξ) = inf

s>0

1
2
ξs2 − ρϵ(s) . (3.28)

It is shown in [83] that the infimum in Equation (3.27) is achieved when ξ = ρ′ϵ(s)/s. Con-
sequently, for the regularization term Q(x) in Equation (3.18), we can write

Q(x) ≤ R(x,ξ) =
1
2

∑
d∈∆

xtFtdΩdFdx−
∑
d∈∆

N∑
i=1

ρ∗ϵ(
1
2
ξd(i)) (3.29)

where ξ = (ξ1, . . . ,ξQ), ξq = (ξq(1), . . . ,ξq(N )) for q = 1, . . . ,Q, with all its components positive,
and Ωd is a diagonal matrix with entries

Ωd(i, i) = ξd(i) . (3.30)

For a given x, the inequality in Equation (3.29) becomes an equality if (see [83] for details),

ξx
d (i) = min(1/ |ωx

d(i)|
2,1/ϵ2) =

 1
|ωx

d (i)|2
for |ωx

d(i)| ≥ ϵ
1
ϵ2

for 0 ≤ |ωx
d(i)| ≤ ϵ

(3.31)

where ωx
d(i) is defined from x in Equation (3.20). Then we can apply standard Majorization-

Minimization methods [89]. Given xk ,ak ,sk and defining

Lk(x) =
β

2

∑
q

∥ Bq(s
k
q)x−Wakq ∥2 +

∑
q

λk
q
t
(Bq(s

k
q)x−Wakq) (3.32)
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it can be easily shown that

Lk(xk) +αQ(xk) ≥ Lk(xk+1) +αQ(xk+1) (3.33)

where

xk+1 = argmin
x

β2 ∑
q

∥ Bq(s
k
q)x−Waq ∥2 +αR(x,ξxk ) +

∑
q

λk
q
t
(Bq(s

k
q)x−Wakq)

 . (3.34)

From Equation (3.34), the optimization step in Equation (3.23) produces the following lin-
ear equation for xk+1

xk+1 =

β∑
q

Bkt
q(s

k
q)B

k
q(s

k
q) +α

∑
d∈∆

FtdΩ
k
dFd


−1∑

q

Bk
q(s

k
q)

t [
βWakq −λk

q

]
(3.35)

where

Ωk
d(i, i) = min(1/ |ωxk

d (i)|2,1/ϵ2). (3.36)

3.2.2 Transformed Coefficient Estimation

The optimization step in Equation (3.24) for each aq produces

ak+1q = argmin
aq

{η
2
∥ΦWaq − yq ∥

2 +τ ∥ aq ∥1

+
β

2
∥ Bk

q(s
k
q)x

k+1 −Waq ∥2 −λk
q
t
(Bk

q(s
k
q)x

k+1 −Waq)
}

(3.37)

which is equivalent to

ak+1q = argmin
aq

{η
2
∥ΦWaq − yq ∥

2 +
β

2
∥ Bk

q(s
k
q)x

k+1 −λk
q −Waq ∥2 +τ ∥ aq ∥1

}
. (3.38)

The above equation can be rewritten as

ak+1q = argmin
aq
∥Φ ′Waq − J′ ∥2 +τ ∥ aq ∥1, (3.39)

where

J′ =


√

η
2yq√

β
2 (B

k
q(s

k
q)x

k+1 −λk
q)

 and Φ ′ =


√

η
2Φ√
β
2 I

 (3.40)

with I the D ×D identity matrix. The optimization problem in Equation 3.39 can be solved
using the algorithm in [82].
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3.2.3 Registration from Estimated HR Image

To estimate the registration parameters in Equation (3.25), we solve

sk+1q = argmin
sq

β′

2
∥ Bq(sq)x

k+1 −Wak+1q ∥2, (3.41)

where β′ is a positive parameter. Notice that we could use regularization on the parameters to
be estimated as we did in [20]. However, we have observed that regularization was not needed
for the performed experiments. Bq(sq)x, can be approximated by expanding it into its first-order
Taylor series around the previous value skq. Hence obtaining (see [30, 37])

Bq(sq)x
k+1 ≈ Bq(s

k
q)x

k+1

+
[
Oq1(s

k
q)x

k+1,Oq2(s
k
q)x

k+1,Oq3(s
k
q)x

k+1
]
(sq − skq), (3.42)

where Oqi(skq)x
k+1 =AHqNi(skq)x

k+1, and Ni(skq)x
k+1 is defined as

[
N1(s

k
q)x

k+1,N2(s
k
q)x

k+1,N3(s
k
q)x

k+1
]
=[

(P1(s
k
q)M1(s

k
q) +P2(s

k
q)M2(s

k
q),M1(s

k
q),M2(s

k
q)
]
. (3.43)

In Equation (3.43)

M1(s
k
q) = (I−Dbq(sq))(Ltr(sq) −Ltl(sq)) +Dbq(sq)(Lbr(sq) −Lbl(sq)) (3.44)

M2(s
k
q) = (I−Daq(sq))(Lbl(sq) −Ltl(sq)) +Daq(sq)(Lbr(sq) −Ltr(sq)) (3.45)

P1(s
k
q) = −[Du sin(θ

k
q ) +Dv cos(θ

k
q )] (3.46)

P2(s
k
q) = [Du cos(θ

k
q )−Dv sin(θ

k
q )]. (3.47)

and Du and Dv are diagonal matrices whose diagonals respectively are the vectors u and v,
representing pixel coordinates in x. Substituting Equation (3.42) into Equation (3.41), we obtain
the following update equation

sk+1q =
[
Λk

q

]−1
(Υk

q +Λk
qs

k
q) = skq +

[
Λk

q

]−1
Υk

q, (3.48)

where Λk
q and Υk

q correspond to the q−th observation at the k−th iteration with respectively
(i, j) ∈ {1,2,3} element and i ∈ {1,2,3} element given by

Λk
qij =

[
AHqNi(s

k
q)x

k+1
]t
AHqNj (s

k
q)x

k+1, (3.49)

Υk
qi =

[
AHqNi(s

k
q)x

k+1
]t
(Wak+1q −AHqNi(s

k
q)x

k+1). (3.50)

where Ni were defined in Equation (3.43).

Utilizing the estimated sk+1q , the warping matrix can be calculated by the explicit form
presented in Equation (2.32)
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3.2.4 Registration from Estimated LR Reference Image

In Chapter 4 the registration estimation procedure using Equation (3.41) will be compared with
registration using the following equation,

sk+1Lq = argmin
sLq

β′

2
∥ C′(sLq)zk+1r − zk+1q ∥2 . (3.51)

where C′(sLq) is a D ×D warping matrix, zk+1r = Wak+1r is the LR image used for registration
(reference image), and zk+1q = Wak+1q is the q−th LR observation, obtained in the previous step
of the iterative process.

Notice that the warped LR observation C′(sLq)zr is equivalent to the LR version of Cq(sq)x.
C′(sLq) can be approximated by expanding it into its first-order Taylor series around the previ-
ous value skLq, hence obtaining (see [18, 30, 37])

C′(sLq)z
k+1
r ≈ C′(skLq)z

k+1
r

+
[
Nq1(s

k
Lq)z

k+1
r ,Nq2(s

k
Lq)z

k+1
r ,Nq3(s

k
Lq)z

k+1
r

]
(sLq − skLq), (3.52)

where Ni(skLq)z
k+1
r is defined as[

N1(s
k
Lq)z

k+1
r ,N2(s

k
Lq)z

k+1
r ,N3(s

k
Lq)z

k+1
r

]
=
[
(P1(s

k
Lq)M1(s

k
Lq) +P2(s

k
Lq)M2(s

k
Lq),M1(s

k
Lq),M2(s

k
Lq)

]
, (3.53)

with

M1(s
k
Lq) = (I−Dbq(sLq))(Ltr(sLq) −Ltl(sLq)) +Dbq(sLq)(Lbr(sLq) −Lbl(sLq)) (3.54)

M2(s
k
Lq) = (I−Daq(sLq))(Lbl(sLq) −Ltl(sLq)) +Daq(sLq)(Lbr(sLq) −Ltr(sLq)) (3.55)

P1(s
k
Lq) = −[Du sin(θ

k
q ) +Dv cos(θ

k
q )] (3.56)

P2(s
k
Lq) = [Du cos(θ

k
q )−Dv sin(θ

k
q ), (3.57)

where Du and Dv are diagonal matrices whose diagonals respectively are the vectors u and v
representing pixel coordinates in zr . Matrices Lκ with κ ∈ {bl(sLq),br(sLq), tl(sLq), tr(sLq)} are
constructed in such a way that the product Lκzr produces respectively pixels at the bottom-left,
bottom-right, top-left, and top-right, pixel locations in zr . Substituting Equation (3.52) into
Equation (3.51), we obtain the following final update equation

sk+1Lq = skLq +
[
Λk

Lq

]−1
Υ k
Lq, (3.58)

where Λk
Lq and Υ k

Lq correspond to the q−th observation at the k−th iteration with respectively
(i, j) ∈ {1,2,3} element and i ∈ {1,2,3} element given by

Λk
Lqij =

[
Ni(s

k
Lq)z

k+1
r

]t
Nj (s

k
Lq)z

k+1
r , (3.59)

Υ k
Lqi =

[
Ni(s

k
Lq)z

k+1
r

]t
(zk+1q −Ni(s

k
Lq)z

k+1
r ). (3.60)
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Algorithm 1 Compressive Sensing Super Resolution (CSSR) Algorithm

Require: Values α, β, τ , η
Initialize a0, s0, λ0, Ω0 = {Ω0

d ,d ∈ ∆}
k = 0
while convergence criterion is not met do
1. Calculate xk+1 by solving Equation (3.35)
2. For d ∈ ∆, calculate Ωk+1

d using Equation (3.36)
3. For q = 1, . . . ,Q, calculate ak+1q using Equation (3.39)
4. For q = 1, . . . ,Q, calculate sk+1q using one of Equations (3.48) or (3.61)
5. For q = 1, . . . ,Q, update λk+1

q using Equation (3.26)
6. Set k = k +1

end while
return x = xk

If sk+1Lq = [θLq, cLq,dLq]t then the HR motion vector is

sk+1q = [θLq, P · cLq, P · dLq]t . (3.61)

After estimating sk+1q , then the warping matrix can be obtained as in Equation (2.32).

3.2.5 CSSR Algorithm Statement

The complete CSSR algorithm is presented in Algorithm 1. Notice here the two possible regis-
tration procedures from the HR image using Equation (3.48) and from the LR reference image
using Equation (3.61).

3.3 Proposed Color CSSR (CCSSR)

In this section we propose a Color Compressed Sensing Super Resolution (CCSSR) algorithm.
Firstly we present the modeling and problem formulation and finally the proposed algorithm.

3.3.1 Modeling and Problem Formulation

Let us assume that we have access to a set of Q CS LR RGB color images of the form

ycq =ΦcAHqC(sq)xc +ncq =ΦcBq(sq)xc +ncq , for q = 1, . . . ,Q, (3.62)

where c ∈ {R,G,B} denotes one of the three channels, ycq is an M × 1 vector representing the c
channel of the q-th CS-LR observation,Φc is the CSM ×D measurement matrix corresponding
to the c channel. The down-sampling matrix A is a D × N matrix, D ≤ N , where N =P2D
and P≥ 1 is the zooming factor, in each dimension of the image. Hq is an N × N blurring
matrix, which is assumed to be known. C(sq) is the N ×N warping matrix for motion vector
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sq = [θq, cq,dq]
t , where θq is the rotation angle, and cq and dq are, respectively, the horizontal

and vertical translations of the q-th LR image with respect to the reference frame, xc is an N ×1
vector representing the c HR channel we want to estimate, and ncq models the noise associated
with the corresponding observation. We write Bq(sq) = AHqC(sq) for simplicity. We denote by
R the compression factor of the measurement system, that is R=M/D, R≤ 1.

We assume in this work that the LR images are sparse in a transformed domain. That
is, AHqC(sq)xc = Wacq, where W is a D ×D transformation (wavelet) matrix, acq is the D × 1
LR transformed coefficient vector corresponding to the c channel of the q−th observation. We
assume that the acq vectors are sparse and then (see [18]) we can recover them by solving

min
∑

c∈{R,G,B}
L(xc,ac)

s.t. Bq(sq)xc =Wacq, for q = 1, . . . ,Q and c ∈ {R,G,B} , (3.63)

where

L(xc,ac) =
η

2

Q∑
q=1

∥ΦWac − ycq ∥2 + τ
Q∑
q=1

∥ acq ∥1 +α Q(xc) , (3.64)

with ac = (ac1, . . . ,acQ), η, τ and α positive parameters, Q(xc) a regularization term which will
be described soon, ∥ . ∥ the Euclidean norm, and ∥ . ∥1 the ℓ1 norm.

3.3.2 CCSSR Optimization Approach

Next we describe the optimization approach to the CCSSR problem. To convert the constrained
optimization problem in Equation (3.63) into an unconstrained one utilizing ADMM, we define
the following augmented Lagrangian functionals

L(x,a,s,λ) =
∑

c∈{R,G,B}
Lc(xc,ac,s,λc), (3.65)

where

Lc(xc,ac,s,λc) = L(xc,ac) +
Q∑
q=1

λt
cq(Bq(sq)xc −Wacq)

+
β

2

Q∑
q=1

∥ Bq(sq)xc −Wacq ∥2, (3.66)

and L(xc,ac) has been defined in Equation (3.64), s = (s1, . . . ,sQ) is the set of motion vectors,
λc = (λc1, . . . ,λcQ) is the set of D × 1 Lagrangian multiplier vectors λcq, and β is a positive
parameter. The ADMM leads to the following sequence of iterative unconstrained problems,

xk+1c = argmin
xc

Lc(xc,a
k
c ,s

k ,λk
c ) , (3.67)

ak+1c = argmin
ac

Lc(x
k+1
c ,ac,s

k ,λk
c ) (3.68)

sk+1 = argmin
s

∑
c∈{R,G,B}

Lc(x
k+1
c ,ak+1c ,s,λk

c ) (3.69)

λk+1
cq = λk

cq − β[Bq(s
k+1
q )xk+1c −Wak+1cq ] , q = 1, . . . ,Q, (3.70)
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where k is the iteration index. Notice that according to the ADMM formulation, Bq(sq) in Equa-
tion (3.63) should not depend on the iteration index, as is not the case here. However, we have
not encountered any convergence issues with this iterative procedure.

The regularization term Q(xc) is given by

Q(xc) =
∑
d∈∆

N∑
i=1

logϵ(|ω
xc
d (i)|) , (3.71)

which replaces log |ωxc
d (i)| by its robust version

logϵ(|ω
xc
d (i)|) =

log(|ω
xc
d (i)|), for |ωxc

d (i)| ≥ ϵ
|ωxc

d (i)|2

2ϵ2 − (12 − log(ϵ)), for 0 ≤ |ωxc
d (i)| ≤ ϵ

(3.72)

to avoid the singularity at zero. ωxc
d (i) is the i-th pixel of the filtered channel, that is,

ωxc
d = Fdxc , (3.73)

where Fd is a high-pass filter operator, and the index d ∈ ∆ denotes one of the filters in ∆. In this
dissertation we have used ∆ = {h,v,hv,vh,hh,vv}, where h,v represent the first order horizontal
and vertical difference filters, hv and vh the first order differences along diagonals, and hh and
vv the horizontal and vertical second order differences.

For the regularization term Q(xc) in Equation (3.71), we can write

Q(xc) ≤ R(xc,ξc) =
1
2

∑
d∈∆

xtcF
t
dΩdFdxc −

∑
d∈∆

N∑
i=1

ρ∗ϵ(
1
2
ξcd(i)) (3.74)

where ξ = (ξc1, . . . ,ξcQ), ξcq = (ξcq(1), . . . ,ξcq(N )) for q = 1, . . . ,Q, with all its components positive,
Ωd is a diagonal matrix with entries

Ωcd(i, i) = ξcd(i) . (3.75)

For a given xc, the inequality in Equation (3.74) becomes an equality if ρ∗ϵ(
1
2ξcd(i)) is defined

by(see [83] for details),

ξxc
cd(i) = min(

1

|ωxc
d (i)|2

,
1
ϵ2

) =

 1
|ωxc

d (i)|2 , for |ωxc
d (i)| ≥ ϵ

1
ϵ2
, for 0 ≤ |ωxc

d (i)| ≤ ϵ
(3.76)

where ωxc
d (i) is defined from xc in Equation (3.73). Then we can apply a standard Majorization-

Minimization method [89]. Given xkc ,a
k
c ,s

k and defining

Lkc (xc) =
β

2

∑
q

∥ Bq(s
k
q)xc −Wakcq ∥2 +

∑
q

λk
cq

t
(Bq(s

k
q)xc −Wakcq) (3.77)

it can be easily shown that

Lkc (x
k
c ) +αQ(xkc ) ≥ Lkc (x

k+1
c ) +αQ(xk+1c ) (3.78)
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where

xk+1c = argmin
xc

β2 ∑
q

∥ Bq(s
k
q)xc −Wacq ∥2 +αR(xc,ξ

xkc
c )

+
∑
q

λk
cq

t
(Bq(s

k
q)xc −Wakcq)

 . (3.79)

From Equation (3.79), the optimization step in Equation (3.67) produces the following so-
lution for xk+1c

xk+1c =

β∑
q

Bkt
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k
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k
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k
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(3.80)

where

Ωk
cd(i, i) = min(1/ |ωxkc

d (i)|2,1/ϵ2). (3.81)

The optimization step in Equation (3.68) for each acq produces

ak+1cq = argmin
acq

{η
2
∥ΦWacq − ycq ∥2 +τ ∥ acq ∥1 +
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(3.82)

which is equivalent to

ak+1cq = argmin
acq

{η
2
∥ΦWacq − ycq ∥2 +

β

2
∥ Bk

q(s
k
q)x

k+1
c −λk

cq −Wacq ∥2 +τ ∥ acq ∥1
}
. (3.83)

The above equation can be rewritten as

ak+1cq = argmin
acq
∥Φ ′cWacq − J′c ∥2 +τ ∥ acq ∥1, (3.84)

where

J′c =


√

η
2ycq√

β
2 (B

k
q(s

k
q)x
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c −λk

cq)

 and Φ ′c =


√

η
2Φc√
β
2 I

 (3.85)

with I the D × D identity matrix. The above optimization problem can be solved using the
algorithm in [82].

To estimate the registration parameters from the estimated HR image, the following equa-
tion is solved

sk+1q = argmin
sq

β′

2
∥ Bq(sq)Z

k+1 − zk+1q ∥2 . (3.86)
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where β′ is a positive parameter, Z = Y (x) and zq = Y (Waq) represent respectively the HR and
LR q-th images, and Y (x) is calculated using

Y (x) = 0.2989xR +0.5870xG +0.1140xB, (3.87)

where xR,xG, and xB are the R, G, and B channels of x. Once Λk
q and Υ k

q are calculated by
analogy to Equations (3.49) and (3.50) and using Z instead of x, the registration parameters can
be calculated using Equation (3.48).

To estimate the registration parameters from the reference LR image, we solve the following
minimzation

sk+1Lq = argmin
sLq

β′

2
∥ C′(sLq)zk+1r − zk+1q ∥2 . (3.88)

where C′(sLq) is a D×D warping matrix, z = Y (Wa), and the index r represents the LR reference
image. Once Λk

Lq and Υ k
Lq are calculated, see Equations (3.59) and (3.60), the update equation is

obtained using Equation (3.61).

3.3.3 CCSSR Algorithm Statement

The complete CCSSR algorithm is presented in Algorithm 2. Notice that the registration can be
estimated either from the HR image or from the LR reference image.

Algorithm 2 CCSSR Algorithm Statement.

Require: Values α, β, τ , η
Initialize a0, s0, λ0, Ω0 = {Ω0

d ,d ∈ ∆}
k = 0
while convergence criterion is not met do
1. for c ∈ {R,G,B}
i Calculate xk+1c by solving Equation (3.80)
ii For d ∈ ∆, calculate Ωk+1

cd using Equation (3.81)
iii For q = 1, . . . ,Q, calculate ak+1cq using Equation (3.84)
iv For q = 1, . . . ,Q, update λk+1

cq using Equation (3.70)
2. For q = 1, . . . ,Q, calculate sk+1q by analogy to one of Equations (3.48) or
(3.61)
3. Set k = k +1

end while
return x =

[
xkR,x

k
G,x

k
B

]
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Experimental Results

This chapter analyzes the experimental results obtained for the proposed algorithms. Once
the used assessment criteria are presented, an intra-process analysis is performed, i.e. a com-
parative study of internal techniques for the different CSSR algorithm steps proposed in the
thesis is presented, and how they affect the overall performance is analyzed. Then, the pro-
posed framework is compared with existing SR and CS ID algorithms, which can be considered
as special cases of the general CSSR algorithm. This is followed by the analysis of the CSSR al-
gorithm in its general case. Finally, two main applications of the CSSR algorithm are examined:
PMMW and color images.

4.1 Quality Assessment

The CSSR reconstruction problem estimates one HR image of a scene. Usually, we do not have
the original image to compare it with the estimated one. However, there are some measures
that can help indicating the performance level of the estimation process.

The first assessment criterion is the human eye perception which to some limit can be
adopted. However, it does not give a standard measure and it may depend on the person him-
self looking at the estimated image.

Another assessment criteria which may give a better judgment are machine vision tech-
niques, where the estimated image is forwarded to another processing step to make a decision
or to operate a device. The reliability and accuracy measures of the machine are known, then
the merits of the estimated image, which is fed as the input to the machine, will affect the per-
formance of the machine. The change in overall performance of the machine definitely gives
an indication about how much efficient the estimation process was. As an example, let us con-
sider a set of PMMW images, how to measure the performance of the super resolved image?
The answer is that when the HR is fed to a threat detection algorithm, and this leads to higher
reliability then this will be a consequence of the higher quality of the estimated image.



50 Chapter 4. Experimental Results

To simplify matters, usually input images can be simulated to approximate the real ones.
If the original image is x, then we can generate LR versions of it. Then, these simulated input
images are fed to the algorithm, to find an estimate of the HR image x̂. Notice that by this we
already have both the original image and the estimated image. In such a case, mathematical
measures can be used to assess the performance of the proposed algorithm.

Many performance measures have been utilized in image processing, like the mean square
error and peak signal to noise ratio, explained next.

Mean Squared Error (MSE). It is the average squared difference error between the estimated
and original images. It is calculated by

MSE =
1
N
∥ x− x̂ ∥2 , (4.1)

where x and x̂ are N × 1 vectors, representing respectively the original and estimated images,
and ∥ . ∥ is the Euclidean norm.

Peak Signal to Noise Ratio (PSNR). It measures the ratio between the maximum possible
power in the image to the power of the fidelity term, and it is expressed as

P SNR = 10 log
max(x)2

MSE
, (4.2)

where max(x) is the maximum possible value of the image x. Notice here that max(·) is not a
function of the information in the image, instead it is a function of how the image is repre-
sented. If the image intensities are saved using 8-bit integer representation then the maximum
possible value is 255. If the image is saved in a normalized format then the maximum value is
1.0.

We utilize both measures in the simulated experiments to indicate the quality of output
image. To define a robust stopping criterion for the iterated process the following condition is
used

∥ x̂k − x̂k−1 ∥
∥ x̂k−1 ∥

≤ 10−3 , (4.3)

where x̂k and x̂k−1 are the estimated images at iterations k and k − 1, respectively.

4.2 Intra CSSR Analysis

The CSSR algorithm consists of a number of several internal processes. These are mainly the LR
transform coefficient estimation, registration parameter estimation, and HR image estimation.
To obtain good quality output images all intra processes should perform well, a failure in any
step will definitely degrade the overall process. An experimental study of the first two processes
is presented in the following two sub-sections.

4.2.1 CS Reconstruction

This section analyzes mainly the CS transformed coefficient vectors aq and the effect of the itera-
tive process on the reconstructed LR imagesWaq when compared to the first-iteration estimate.
A better quality of Waq will definitely improve the overall CSSR performance.
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Let us now illustrate how blurring affects image sparsity (see [5]). It was shown in [15] that
images whose coefficients in a transformed domain follow a power decay law, when sorted by
decreasing magnitude, are sparse in this domain. In this dissertation the 3-level Haar wavelet
will be used as the transform basis. Let us see how blurring does affect the decay of the trans-
formed coefficients for the standard Cameraman and Shepp-Logan images. Gaussian blur of
variances 3 and 9 has been applied to those images and white Gaussian noise with Signal-to-
Noise ratio SNR= 40 dB has been added. Figures 4.1(a,b) show the magnitude versus sorted
indices of the wavelet coefficients. Similarly, Figures 4.1(c,d) show the results for the standard
Shepp-Logan image for the two blur variances 3 and 9, respectively. More severe blur results in
a faster magnitude decay, as it is clear in the figure.

(a) (b)

(c) (d)

Figure 4.1: LR 3-level Haar wavelet coefficient decay, using simulated observations
(SNR= 40 dB), (a,b) Cameraman image affected by Gaussian blur of variance 3 and 9,
respectively. (c,d) Shepp-Logan image affected by blur of variance 3 and 9, respectively.

The next point to discuss here is the effect of the pruning of the coefficients on the esti-
mated image. Figure 4.2(a) shows the reconstructed LR Cameraman image by including all
the coefficients in the transformed vector aq. The experiment utilized R=0.8, P=1, blur Vari-
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(a) (b) (c)

Figure 4.2: LR Cameraman image restoration using a simulated observation with blur
variance 3, zooming factor P=1, R=0.8, noise SNR= 40 dB. (a) LR reconstructed ob-
servation using all elements of the coefficient vector aq (PSNR=22.65 dB), (b) LR re-
constructed observation using the first 60% of elements in aq (PSNR=22.47 dB), (c)
LR reconstructed observation using the first 20% of elements in aq (PSNR=22.24 dB).
Transform basis used is 3-level Haar wavelet transform.

ance=3, and noise SNR= 40 dB, and the resulting PSNR is 22.65 dB. Next, only the first 60% of
the transformed coefficients in aq were kept, while the others were pruned, then the resulting
transformed vector is used to estimate the LR image shown in Figure 4.2(b), with PSNR=22.47
dB. Then, the LR image is estimated using only the first 20% of aq, the result is shown in Fig-
ure 4.2(c) with PSNR=22.24 dB.

The previous experiment has been repeated for the Shepp-Logan image, whose results are
shown as follows: Figure 4.3(a) shows the estimated image with all aq included (PSNR=21.35
dB), Figure 4.3(b) utilized only 60% of aq (PSNR=21.18 dB), and finally, Figure 4.3(c) utilized
only 20% of aq (PSNR=20.68 dB).

Next we discuss the effect of the iterative process on the performance of the CS reconstruc-
tion. We use two simulated LR images of the standard Shepp-Logan image shown in Figure
4.4(a). To simulate two LR observations, the HR image of size 256×256 pixels, was warped us-
ing the following motion vectors: [0,0,0]t , [−0.1047,2,−3]t , then blurred with a Gaussian blur
of variance=3, then down-sampled by a zooming factor P=2. The two simulated LR images are
shown in Figure 4.4(b,c). These simulated LR images are then compressed with a compression
ratio R=0.8, and noise is added with SNR=30dB.

Let us examine the first iteration LR estimations using Equation (3.38), without the regu-
larization term. The estimated images are shown in Figure 4.4(d,e), and the PSNR values of
the reconstructed LR images are 40.22 dB and 40.16 dB, respectively. As the CSSR process ad-
vances, the inclusion of the registration term allows for a better extraction of the information
in the compressed observations; the final estimated LR images are shown in Figure 4.4(f,g),
with PSNR values being 42.88 dB and 42.77 dB, respectively. Notice in this experiment that the
PSNR values were calculated with respect to the simulated LR observations, not to the original
HR image.

For the Cameraman image shown in Figure 4.5(a), the down-sampled images are shown in
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(a) (b) (c)

Figure 4.3: LR Shepp-Logan image restoration using a simulated observation with blur
variance 3, zooming factor P=1, R=0.8, noise SNR=40dB. (a) LR reconstructed obser-
vation using all elements of the coefficient vector aq (PSNR=21.35 dB), (b) LR recon-
structed observation using the first 60% of elements in aq (PSNR=21.18 dB), (c) LR re-
constructed observation using the first 20% of elements in aq (PSNR=20.68 dB). Trans-
form basis used is 3-level Haar wavelet transform.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.4: Reconstruction of LR images. (a) Original HR Shepp-Logan image, (b,c)
Down-sampled images Q=2, P=2, Blur Var=3, R=0.8, SNR=30 dB, (d,e) First estimates
of the LR images, PSNR= 40.22 dB and , 40.16 dB respectively, (f,g) Final estimates of
the LR images, PSNR=42.88 dB and 42.77 dB respectively. PSNR values were calculated
with respect to the simulated LR images.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.5: Reconstruction of LR images. (a) Cameraman original HR image, (b,c)
Down-sampled images Q=2, P=2, Blur Var=3, R=0.8, SNR=30dB, (d,e) First estimates
of the LR images, PSNR=35.52 dB and 35.29 dB, respectively, (f,g) Final estimates of the
LR images, PSNR=35.55 dB and 35.34 dB, respectively. PSNR values were calculated
with respect to the simulated LR images.

Figure 4.5(b,c), the initially estimated LR images are shown in Figure 4.5(d,e), with PSNR=35.52
dB and 35.29 dB, respectively. The final estimated LR images are shown in Figure 4.5(f,g), with
PSNRs equal to 35.55 dB and 35.34 dB, respectively. In this experiment the PSNR values were
calculated with respect to the simulated LR observations, not to the original HR image.

For the Lena image shown in Figure 4.6(a), the down-sampled images are shown in Figure
4.6(b,c), the initially estimated LR images are shown in Figure 4.6(d,e), with PSNR=32.45 dB
and 32.28 dB, respectively. The final estimated LR images are shown in Figure 4.6(f,g), with
PSNRs equal to 34.24 dB and 34.07 dB, respectively. In this experiment the PSNR values were
calculated with respect to the simulated LR observations, not to the original HR image.

Notice that the inclusion of the regularization term in Equation (3.38) greatly contributes to
the PSNR improvement when using the CSSR algorithm. This improvement will be very useful
when super resolving the LR observations to estimate the HR image. Notice here also that the
shown images are not the HR images but only the uncompressed versions of the LR images.

4.2.2 Registration Estimation

In this section we study the performance of various approaches to estimate the registration
parameters as a step that greatly affects the overall HR image estimation. To do so, two ex-
periments were carried out, for every approach, to establish the CSSR accuracy when estimat-
ing the registration parameters. The 256×256 pixel HR Shepp-Logan image, with Q=4, Blur
variance=3, SNR=40dB, and R=0.8 were used. P=2 and 4, were chosen to conduct these two
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.6: Reconstruction of LR images. (a) Lena original HR image, (b,c) Down-
sampled images Q=2, P=2, Blur Var=3, R=0.8, SNR=30dB, (d,e) First estimates of the
LR images, PSNR=40.22 dB and 40.16 dB, respectively, (f,g) Final estimates of the LR
images, PSNR=42.88 dB and 42.77 dB, respectively. PSNR values were calculated with
respect to the simulated LR images.

experiments, and the maximum number of iterations was 30.

Here are the approaches,

• App1, see also [19]. It estimates the parameters with respect to a reference LR image, at
the HR level, following the optimization in Equation (3.16). The results for this approach
are tabulated in Table 4.1(a) which shows the real and estimated registration parameters.
It contains also the absolute errors. Notice that for the first observation, which is the
reference observation, the motion vector is [0,0,0]t , so the motion vectors were adjusted
accordingly to this.

• App2, see also [20]. It estimates the parameters with respect to the estimated image, at
the HR level, as in Equation (3.17). See Table 4.1(b) for results of this approach.

• App3, see also [18]. It estimates the parameters with respect to the estimated image, at
the LR level, as in Equation (3.41). See Table 4.2(a) for results of this approach.

• App4. It estimates the parameters with respect to a reference LR image, at the LR level,
as in Equation (3.51). See Table 4.2(b) for results of this approach.

Figure 4.7 shows a plot of the average absolute errors for each element in sq, (q ∈ {1, · · · ,4}),
for the four approaches. The four approaches are suggested to be used with high accuracy. Later
in Section 4.5.3 we will investigate more the effects of using App3 and App4 on the overall
performance of the CSSR algorithm.
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Table 4.1: Registration parameter estimation at the HR level for the Shepp-Logan im-
age, Q=4, Blur var=3, SNR=40dB, R=0.8. (a) using App1, (b) using App2

Zooming Observation, q=2
Factor Motion Vector θq cq dq
2,4 True .05236 2.00 -3.00

2
Estimated .05233 1.83 -3.106
Abs. Error 7.0e-5 1.7e-1 1.1e-1

4
Estimated .0504 1.818 -3.114
Abs. Error 2.0e-3 1.8e-1 1.1e-1

Observation, q=3
2,4 True -.06981 -1.0 -2.0

2
Estimated -.06978 -.8482 -2.069
Abs. Error 2.0e-5 1.5e-1 6.9e-2

4
Estimated -.06647 -.859 -2.089
Abs. Error 3.3e-3 1.4e-1 8.9e-2

Observation, q=4
2,4 True -.03491 3.0 -1.0

2
Estimated -.03489 3.036 -.8885
Abs. Error 1.0e-5 3.6e-2 1.1e-1

4
Estimated -.03395 3.022 -.9236
Abs. Error 9.5e-4 2.2e-2 7.6e-2

(a)

Zooming Observation, q=2
Factor Motion Vector θq cq dq
2,4 True .05236 2.00 -3.00

2
Estimated .04825 1.816 -3.385
Abs. Error 4.2e-3 1.8e-1 3.9e-1

4
Estimated .04809 1.958 -3.315
Abs. Error 4.3e-3 4.2e-2 3.2e-1

Observation, q=3
2,4 True -.06981 -1.0 -2.0

2
Estimated -.07879 -.8134 -2.524
Abs. Error 9.0e-3 1.9e-1 5.2e-1

4
Estimated -.0722 -.6908 -2.19
Abs. Error 2.4e-3 3.1e-1 1.9e-1

Observation, q=4
2,4 True -.03491 3.0 -1.0

2
Estimated -.0285 2.998 -.7152
Abs. Error 6.4e-3 2.0e-3 2.8e-1

4
Estimated -.03458 3.171 -.9075
Abs. Error 3.2e-4 1.7e-1 9.3e-2

(b)
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Table 4.2: Registration parameter estimation at the LR level for the Shepp-Logan image,
Q=4, Blur var=3, SNR=40dB, R=0.8. (a) using App3 (b) using App4

Zooming Observation, q=2
Factor Motion Vector θq cq dq
2,4 True .05236 2.00 -3.00

2
Estimated .05229 1.999 -3.002
Abs. Error 7.0e-5 1.0e-3 2.0e-3

4
Estimated .05163 2.033 -3.057
Abs. Error 7.3e-4 3.3e-2 5.7e-2

Observation, q=3
2,4 True -.06981 -1.0 -2.0

2
Estimated -.06916 -1.002 -2.005
Abs. Error 6.5e-4 2.0e-3 5.0e-2

4
Estimated -.06902 -1.012 -2.046
Abs. Error 7.9e-4 1.2e-2 4.6e-2

Observation, q=4
2,4 True -.03491 3.0 -1.0

2
Estimated -.03478 3.00 -1.001
Abs. Error 1.3e-4 1.0e-3 1.0e-3

4
Estimated -.03351 2.999 -1.041
Abs. Error 1.4e-3 1.0e-3 4.1e-2

(a)

Zooming Observation, q=2
Factor Motion Vector θq cq dq
2,4 True .05236 2.00 -3.00

2
Estimated .05255 1.999 -2.998
Abs. Error 1.5e-4 1.0e-3 2.0e-3

4
Estimated .05224 2.02 -3.058
Abs. Error 1.6e-4 2.0e-2 5.8e-2

Observation, q=3
2,4 True -.06981 -1.0 -2.0

2
Estimated -.06984 -1.001 -2.
Abs. Error 4.0e-5 1.0e-3 0.0e0

4
Estimated -.06899 -1.014 -2.052
Abs. Error 8.1e-4 1.4e-2 5.2e-2

Observation, q=4
2,4 True -.03491 3.0 -1.0

2
Estimated -.03497 2.999 -1.001
Abs. Error 7.0e-5 1.0e-3 1.0e-3

4
Estimated -.03388 2.967 -1.043
Abs. Error 1.0e-3 3.3e-2 4.3e-2

(b)
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Figure 4.7: Absolute error comparison of the four registration approaches. R=0.8,Q=4,
blur var=3, SNR=40dB. on (a) P=2, (b) P=4.
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4.3 CSSR vs IDWorks

In this section the performance of the proposed CSSR algorithm is compared with a set of
existing image deconvolution CS algorithms, namely l1-ls [82], GPSR [68], NESTA [70], YALL1
[71], and CoSaMP [69], using their native codes. These algorithms estimate x from one CS
blurred observation. Results were tabulated in Tables 4.3 to 4.5, CSSR used P=1 and Q=1.

Figure 4.8 shows plots of the performance measure, for all tested algorithms, vs compres-
sion ratio R, for the three test images, using Blur var=5 and SNR=30 dB. Figure 4.9 shows the
plots for the case where Blur var=3 and SNR=40 dB. It is clear the quality level the CSSR offers
in comparison to other works using one input CS observation. The performance of CSSR is
expected to be better if multiple input images are used.

Next we test the performance as a function of the variance of the blur. To compare the per-
formance for all algorithms, plots are shown for the case R=0.6 and SNR=30 dB in Figure 4.10,
and for R=0.8, SNR=40 dB in Figure 4.11. As the plots show, the proposed CSSR algorithm
estimates images of good quality, even when compared with CS image deconvolution works.

4.4 CSSR vs SRWorks

This section compares the performance of the proposed CSSR algorithm with a set of existing
SR algorithms, namely Bicubic Interpolation (BIC), SR using an l1 prior [28] (L1S), SR using
SAR priors [30] (SAS), a fast and robust SR [34] (FRSR), and a robust SR method [49] (RSR).
Algorithms L1S [28] and SAS [30] estimate all their parameters. Since algorithms FRSR [34]
and RSR [49] need some parameters to be set, we performed an exhaustive search to find the
parameters resulting in the maximum PSNR values. We used the Cameraman, Shepp-Logan
and Lena images. The number of observations was Q=4. For our CSSR, we used a unity com-
pression ratio R=1.0 to compare with those SR algorithms which do not use CS observations.
Notice that we still use CS but with 100% of the measurements which is equivalent to using
Φ = I. The results are tabulated in Tables 4.6 and 4.7.

The plots in Figures 4.12 and 4.13 compare the performance of SR algorithms as a function
of the variance of the blur affecting the test images for two different noise SNR 40 dB and 30
dB, respectively. Both cases used Q=4 and P=4. Notice the relative improvement of the CSSR
algorithm, when compared with SR algorithms that do not use compressed sensing, for the two
cases.
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Table 4.3: Performance comparison of state-of-the-art CS ID algorithms with proposed
CSSR algorithm for the Cameraman image. For CSSR P=1 and Q=1. In bold blue are
the highest PSNR values.

Image Cameraman
Blur Var 3 5 9
SNR 40 30 40 30 40 30

Alg R PSNR, dB

L
1-
L
S

0.2 23.8 21.5 22.7 20.7 21.4 20.0
0.4 24.2 22.3 23.0 21.1 21.5 20.5
0.6 24.4 22.7 23.2 21.4 21.7 20.7
0.8 24.6 22.9 23.3 21.5 21.7 20.8
1.0 24.7 23.0 23.4 21.7 21.8 20.8

G
P
SR

0.2 22.9 19.4 23.5 20.3 22.7 21.2
0.4 25.2 21.4 24.1 22.3 22.9 22.2
0.6 25.6 22.9 24.3 23.2 22.9 22.6
0.8 25.8 23.7 24.3 23.6 22.9 22.7
1.0 25.8 24.3 24.3 23.8 23.0 22.8

C
oS

aM
P 0.2 21.7 14.8 22.2 14.6 21.8 15.1

0.4 23.5 15.3 23.3 16.2 22.8 17.2
0.6 24.3 16.5 23.9 17.6 23.1 18.7
0.8 24.9 17.4 24.3 18.5 23.3 19.5
1.0 25.3 18.4 24.5 19.5 23.4 20.0

N
E
ST

A

0.2 23.8 22.2 22.9 21.8 21.5 21.0
0.4 24.3 22.5 23.3 22.1 21.9 21.5
0.6 24.5 22.8 23.4 22.4 22.1 21.7
0.8 24.6 22.9 23.5 22.5 22.2 21.8
1.0 24.6 22.9 23.4 22.4 22.1 21.7

YA
L
L
1

0.2 22.8 22.6 21.5 21.4 20.8 20.7
0.4 23.3 23.1 21.9 21.8 20.9 20.9
0.6 23.5 23.3 22.2 22.1 21.0 21.0
0.8 23.7 23.5 22.3 22.2 21.0 21.0
1.0 23.8 23.6 22.4 22.3 21.1 21.0

C
SS

R

0.2 23.2 22.0 22.6 21.6 21.6 20.8
0.4 24.9 23.6 23.8 22.8 22.7 21.9
0.6 25.5 24.3 24.3 23.4 23.1 22.3
0.8 25.9 24.8 24.6 23.8 23.3 22.6
1.0 26.0 25.2 24.7 24.0 23.4 22.8
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Table 4.4: Performance comparison of state-of-the-art CS ID algorithms with proposed
CSSR algorithm for the Lena image. For CSSR P=1 and Q=1. In bold blue are the
highest PSNR values.

Image Lena
Blur Var 3 5 9
SNR 40 30 40 30 40 30

Alg R PSNR, dB

L
1-
L
S

0.2 26.5 23.1 25.1 22.3 23.5 22.4
0.4 27.3 24.1 25.6 23.0 23.7 22.5
0.6 27.6 24.6 25.9 23.4 23.9 22.8
0.8 27.8 25.0 26.0 23.5 24.0 22.9
1.0 27.9 25.2 26.2 23.7 24.1 23.0

G
P
SR

0.2 25.3 22.2 26.8 23.9 26.1 24.7
0.4 29.3 25.3 28.2 26.3 26.5 25.8
0.6 30.0 26.9 28.5 27.2 26.5 26.1
0.8 30.4 28.1 28.6 27.7 26.6 26.3
1.0 30.7 28.7 28.7 28.0 26.6 26.4

C
oS

aM
P 0.2 23.9 16.4 24.9 16.1 25.1 16.9

0.4 26.2 16.8 26.7 18.0 26.4 19.5
0.6 27.4 18.0 27.6 19.5 26.9 21.0
0.8 28.2 19.1 28.1 20.6 27.1 21.9
1.0 28.7 20.1 28.6 21.7 27.2 22.9

N
E
ST

A

0.2 26.5 24.8 25.4 24.3 23.6 23.2
0.4 27.3 25.3 25.9 24.7 24.1 23.7
0.6 27.6 25.7 26.2 25.1 24.2 24.0
0.8 27.8 25.9 26.4 25.3 24.4 24.0
1.0 27.8 25.8 26.2 25.0 24.3 24.0

YA
L
L
1

0.2 24.8 24.6 23.4 23.4 22.4 22.3
0.4 25.7 25.5 23.9 23.9 22.8 22.8
0.6 26.0 25.8 24.2 24.1 22.9 22.9
0.8 26.3 26.1 24.4 24.3 23.0 23.0
1.0 26.4 26.2 24.5 24.4 23.1 23.0

C
SS

R

0.2 24.0 22.4 23.8 22.7 22.6 21.7
0.4 27.5 26.3 26.8 25.4 24.6 24.2
0.6 29.5 27.9 28.2 26.7 26.5 25.2
0.8 30.6 28.8 29.0 27.4 27.1 25.8
1.0 31.2 29.4 29.4 27.9 27.4 26.2
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Table 4.5: Performance comparison of state-of-the-art CS ID algorithms with proposed
CSSR algorithm for the Shepp-Logan image. For CSSR P=1 and Q=1. In bold blue are
the highest PSNR values.

Image Shepp-Logan
Blur Var 3 5 9
SNR 40 30 40 30 40 30

Alg R PSNR, dB

L
1-
L
S

0.2 22.8 21.6 22.0 21.2 20.5 20.2
0.4 23.1 21.8 22.3 21.5 20.7 20.4
0.6 23.3 21.9 22.3 21.6 20.8 20.5
0.8 23.5 22.0 22.4 21.6 20.9 20.6
1.0 23.7 22.1 22.4 21.7 20.9 20.7

G
P
SR

0.2 24.1 20.5 23.6 20.9 22.2 21.1
0.4 25.2 21.4 24.0 22.4 22.3 21.9
0.6 25.4 22.7 24.1 23.1 22.3 22.1
0.8 25.5 23.6 24.1 23.5 22.5 22.2
1.0 25.5 24.1 24.1 23.68 22.4 22.3

C
oS

aM
P 0.2 22.9 17.5 22.6 17.6 21.9 18.3

0.4 23.8 19.3 23.3 19.3 22.2 19.8
0.6 24.2 20.6 23.5 20.4 22.4 20.7
0.8 24.6 21.4 23.6 21.2 22.4 21.2
1.0 24.6 21.9 23.6 21.7 22.4 21.4

N
E
ST

A

0.2 22.8 22.4 22.1 21.7 20.5 20.4
0.4 23.2 22.8 22.3 22.0 20.8 20.8
0.6 23.4 23.1 22.4 22.2 21.0 21.1
0.8 23.5 23.2 22.5 22.3 21.2 21.2
1.0 23.6 23.3 22.4 22.2 21.0 21.2

YA
L
L
1

0.2 22.1 22.0 20.7 20.7 19.4 19.4
0.4 22.3 22.3 21.0 21.0 19.6 19.6
0.6 22.4 22.4 21.2 21.2 19.9 19.8
0.8 22.5 22.5 21.5 21.4 20.0 20.0
1.0 22.6 22.6 21.7 21.6 20.1 20.0

C
SS

R

0.2 24.2 23.2 23.1 22.2 20.9 21.0
0.4 25.4 25.3 24.1 24.1 22.4 22.2
0.6 25.7 26.1 24.4 24.7 22.7 22.9
0.8 25.8 26.4 24.5 24.9 22.9 23.2
1.0 25.8 26.5 24.5 25.0 22.9 23.3
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Figure 4.8: Proposed CSSR vs CS ID algorithms comparison (Blur Var=5, SNR=30dB,
for CSSR P=1, Q=1). (a) Cameraman (b) Lena (c) Shepp-Logan.
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Figure 4.9: Proposed CSSR vs CS ID algorithms comparison (Blur Var=3, SNR=40dB,
for CSSR P=1, Q=1). (a) Cameraman, (b) Lena, (c) Shepp-Logan.
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Figure 4.10: Proposed CSSR vs CS ID algorithms comparison (R=0.6, SNR=30dB, for
CSSR P=1, Q=1). (a) Cameraman, (b) Lena, (c) Shepp-Logan.
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Figure 4.11: Proposed CSSR vs CS ID algorithms comparison (R=0.8, SNR=40dB, for
CSSR P=1, Q=1). (a) Cameraman, (b) Lena, (c) Shepp-Logan.
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Table 4.6: Comparison of state-of-the-art SR algorithms with the CSSR algorithm for
Cameraman and Lena images, with Q=4 and for CSSR R=1.0. In bold blue are the
highest PSNR values.

Image Cameraman
Blur Var 3 5 9
SNR 40 30 40 30 40 30

Alg P PSNR, dB

BIC
2 22.5 22.7 22.4 22.3 22.4 22.4
4 20.5 20.4 20.5 20.5 20.5 20.4

L1S
2 24.1 24.5 23.9 24.2 24.1 23.9
4 21.9 22.1 21.7 21.3 21.7 21.6

SAS
2 24.1 23.7 24.1 23.4 24.2 23.3
4 22.2 22.4 22.1 22.0 22.2 22.1

FRSR
2 20.9 21.5 19.3 19.8 21.5 20.6
4 21.1 22.3 20.9 21.2 21.1 21.8

RSR
2 22.5 22.2 21.1 21.6 21.3 22.0
4 20.5 20.6 20.4 20.5 20.5 20.6

CSSR
2 25.9 24.8 24.6 23.8 23.4 22.6
4 25.0 24.1 24.0 23.3 23.1 22.3

Image Lena

BIC
2 24.7 24.7 24.6 24.6 24.5 24.4
4 21.1 21.0 21.1 21.0 21.1 21.1

L1S
2 27.0 27.4 27.2 27.5 26.7 27.4
4 25.8 25.7 25.9 25.4 25.9 26.0

SAS
2 27.7 27.5 28.4 27.6 28.3 27.5
4 26.4 26.3 26.9 25.9 26.5 26.4

FRSR
2 20.5 20.8 21.2 20.9 22.0 20.1
4 21.9 22.4 21.8 23.2 21.8 24.9

RSR
2 23.1 25.2 25.0 25.1 24.2 23.0
4 21.7 21.9 21.7 21.8 21.9 22.0

CSSR
2 31.1 29.0 29.4 27.6 27.3 26.0
4 29.4 27.4 28.2 26.4 26.7 25.2
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Table 4.7: Comparison of state-of-the-art SR algorithms with the CSSR algorithm for
Shepp-Logan image, with Q=4 and for CSSR R=1.0. In bold blue are the highest PSNR
values.

Image Shepp-Logan
Blur Var 3 5 9
SNR 40 30 40 30 40 30

Alg P PSNR, dB

BIC
2 20.5 20.5 20.5 20.8 20.3 20.3
4 17.9 17.8 17.9 17.9 17.9 17.9

L1S
2 25.7 27.9 27.9 30.3 26.2 27.7
4 20.7 20.4 21.2 21.1 21.7 21.6

SAS
2 24.1 23.3 24.1 23.2 24.1 23.2
4 21.4 21.8 22.0 22.1 22.2 21.5

FRSR
2 20.0 20.8 20.2 21.9 20.2 21.0
4 20.8 20.5 20.5 20.9 21.0 20.8

RSR
2 21.1 21.0 21.4 21.0 21.3 21.1
4 18.7 18.8 18.7 18.7 18.6 18.4

CSSR
2 25.8 26.4 24.4 24.9 22.9 23.2
4 24.7 25.3 23.7 24.1 22.4 22.6
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Figure 4.12: Comparison between SR algorithms and the CSSR algorithm. P=4,
SNR=40dB, Q=4, and for CSSR, R=1.0. (a) Cameraman image, (b) Lena, (c) Shepp-
Logan image.
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Figure 4.13: Comparison between SR algorithms and the CSSR algorithm. P=4,
SNR=30dB, Q=4, and for CSSR, R=1.0. (a) Cameraman image, (b) Lena, (c) Shepp-
Logan image.
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4.5 CSSR: The General Case

In this section the overall behavior of the CSSR algorithm is investigated; both the compression
ratio and zooming factor will be varied and the results analyzed. Notice here that we test the
CSSR in its general case for different R and P values, while in the previous two sections R, P or
Q were fixed at 1 to be able to compare our work with existing works which do not adapt to this
general case. In this section we use the images shown in Figure 4.14, namely Satellite, Barbara,
Peppers, and Alhambra images.

(a) (b)

(c) (d)

Figure 4.14: Original Images. (a) Satellite, (b) Barbara, (c) Peppers, (d) Alhambra.

The performance of CSSR is shown in Tables 4.8 and 4.9 for the four test images, using
Q=4.

Next we will choose four examples to precisely explore the CSSR performance. For every
zooming factor, two cases were chosen: in one the image is affected by simple degradations
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Table 4.8: Performance of the CSSR algorithm for the Satellite and Barbara images,
using Q = 4.

Blur Var 3 5 9
SNR 40 30 40 30 40 30
Image P R PSNR (dB)
Satellite 2 0.2 26.5 24.9 26.0 24.4 24.9 23.8

0.4 28.1 26.9 27.1 26.1 25.8 25.1
0.6 28.4 27.7 27.3 26.8 26.0 25.7
0.8 28.5 28.1 27.4 27.1 26.1 25.9
1.0 28.5 28.3 27.4 27.3 26.1 26.0

4 0.2 21.0 20.7 20.9 20.1 20.1 19.7
0.4 27.0 25.8 26.3 25.1 25.3 24.2
0.6 27.5 27.0 26.7 26.2 25.6 25.1
0.8 27.6 27.3 26.8 26.6 25.7 25.5
1.0 27.6 27.4 26.8 26.7 25.8 25.6

Barbara 2 0.2 19.0 19.5 19.7 19.6 19.1 18.7
0.4 22.5 21.9 22.2 21.6 21.7 21.2
0.6 23.5 22.8 23.2 22.5 22.7 22.1
0.8 24.1 23.4 23.6 23.0 23.1 22.5
1.0 24.5 23.8 23.9 23.3 23.3 22.8

4 0.2 15.1 15.3 15.7 16.2 15.3 15.9
0.4 18.4 19.0 18.0 19.0 18.0 18.8
0.6 21.5 20.7 21.6 20.7 21.3 20.2
0.8 23.0 22.2 22.9 22.0 22.6 21.6
1.0 24.0 23.2 23.5 22.9 23.1 22.4
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Table 4.9: Performance of the CSSR algorithm for the Peppers and Alhambra images,
using Q = 4.

Blur Var 3 5 9
SNR 40 30 40 30 40 30
Image P R PSNR (dB)
Peppers 2 0.2 16.2 17.6 15.5 17.3 13.7 16.8

0.4 24.3 21.9 23.8 22.2 22.7 21.2
0.6 27.3 25.3 26.1 24.3 24.6 23.0
0.8 29.1 26.8 27.6 25.6 25.7 24.0
1.0 30.2 27.9 28.4 26.5 26.4 24.7

4 0.2 13.0 13.0 13.0 12.9 12.3 12.9
0.4 15.1 15.0 15.3 15.2 15.0 15.4
0.6 18.4 16.3 23.3 16.4 22.5 20.4
0.8 26.2 25.2 25.5 23.5 24.4 22.5
1.0 28.1 26.0 27.0 25.1 25.6 23.8

Alhambra 2 0.2 15.0 18.8 15.0 18.6 18.3 18.2
0.4 24.2 22.4 21.1 21.9 22.5 21.0
0.6 26.5 24.5 25.4 23.6 23.9 22.4
0.8 28.0 25.9 26.5 24.8 24.7 23.3
1.0 28.9 26.9 27.1 25.6 25.1 23.9

4 0.2 12.3 13.7 12.7 14.0 13.0 13.7
0.4 13.3 15.7 18.4 17.1 18.4 16.9
0.6 21.7 20.7 22.1 20.4 21.1 19.7
0.8 25.2 23.2 24.6 22.8 23.4 21.7
1.0 27.2 25.5 25.9 24.5 24.3 23.2
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while in the other is affected with hard degradations. These are:

• Case 1. P=2, Blur Variance=3, SNR=40 dB.

• Case 2. P=2, Blur Variance=5, SNR=30 dB.

• Case 3. P=4, Blur Variance=3, SNR=40 dB.

• Case 4. P=4, Blur Variance=5, SNR=30 dB.

Figures 4.15 and 4.16 show plots of the PSNR vs R. These plots, show how the PSNR, as a
function of compression ratio, is affected when changing P, blur variance, and the noise added to
the input images. As expected, PSNR increases when decreasing the zooming factor, decreasing
the blur, increasing R, and increasing the SNR of the observed image.

Let us now visually assess the quality of the CSSRmethod bywatching the estimated images
for some examples. To do so we choose R=0.8 to show the estimated images in Figure 4.17 In
all these experiments the number of observations was fixed at Q=5, while the values of P and
the blur variance have been varied. Figures 4.17 to 4.20(a-d) used respectively P=2, Blur Var 3,
P=2, Blur Var=5, P=4, Blur Var 3, and P=4, Blur Var=5.

All the estimated images shown in Figures 4.17 to 4.20(a-d) present a good visual quality.
In the next sub-section we investigate the performance of the CSSR algorithm further to the
case where only one input image is available.

4.5.1 CSSR from a single image

In this section, the performance of the CSSR algorithm is investigated when the input is a single
image. Although it is not a normal case for such a problem, however, the CSSR can be adapted
for this problem. Notice here that the problem is simpler since there are no registration param-
eters to be estimated, however, the performance is expected to be worse than when multiple
input images are available. Tables 4.10 and 4.11 show the results obtained for the four test
images.

To compare this with the multiple input case, with Q=4, we choose P=4, Blur Var=3,
SNR=40 dB for all test images. The plots are shown in Figures 4.21 and 4.22. The plots show
how increasing the input images can affect positively the estimated image quality. However, at
very low ratios R, which are not practical to be adapted, a single image processing may, in some
cases, give a better performance.
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Figure 4.15: Performance of the CSSR algorithm (Q=4). Case 1: P=2, Blur Var=3,
SNR=40 dB, Case 2: P=2, Blur Var=5, SNR=30 dB, Case 3: P=4, Blur Var=3, SNR=40
dB, Case 4: P=4, Blur Var=5, SNR=30 dB. (a) Satellite image, (b) Barbara image.
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Figure 4.16: Performance of the CSSR algorithm (Q=4). Case 1: P=2, Blur Var=3,
SNR=40 dB, Case 2: P=2, Blur Var=5, SNR=30 dB, Case 3: P=4, Blur Var=3, SNR=40
dB, Case 4: P=4, Blur Var=5, SNR=30 dB. (a) Peppers image, (b) Alhambra image
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Table 4.10: Performance of the CSSR algorithm for the Satellite and Brabara images,
using a single observation (Q = 1).

Blur Var 3 5 9
SNR 40 30 40 30 40 30
Image P R PSNR (dB)
Satellite 2 0.2 25.3 23.7 24.9 23.5 24.4 23.1

0.4 27.4 26.2 26.6 25.5 25.4 24.6
0.6 27.9 27.1 26.9 26.2 25.7 25.2
0.8 28.0 27.6 26.9 26.6 25.7 25.5
1.0 28.0 27.7 27.0 26.7 25.7 25.6

4 0.2 22.0 20.2 21.3 20.1 20.6 20.2
0.4 25.7 24.5 25.3 24.1 24.5 23.5
0.6 26.1 25.8 25.9 25.4 25.2 24.6
0.8 26.1 26.1 26.0 25.8 25.3 25.0
1.0 26.1 26.2 26.0 25.9 25.4 25.1

Barbara 2 0.2 18.5 18.6 18.5 18.3 18.5 18.0
0.4 20.6 20.4 20.7 20.2 20.6 19.9
0.6 22.4 21.8 22.3 21.5 22.0 21.1
0.8 23.5 22.7 23.1 22.4 22.7 21.9
1.0 24.1 23.3 23.5 22.7 23.0 22.4

4 0.2 16.5 14.5 16.3 16.4 15.9 16.4
0.4 18.4 15.5 17.9 17.9 17.6 18.0
0.6 20.2 20.1 19.9 19.6 19.7 19.5
0.8 22.1 21.5 21.6 21.3 21.4 21.0
1.0 23.0 22.6 23.0 22.4 22.8 22.0
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Table 4.11: Performance of the CSSR algorithm for the Peppers and Alhambra images,
using a single observation (Q = 1).

Blur Var 3 5 9
SNR 40 30 40 30 40 30
Image P R PSNR (dB)
Peppers 2 0.2 15.5 14.6 15.1 14.7 14.3 14.8

0.4 18.5 16.1 18.1 16.2 21.0 19.7
0.6 24.8 23.4 12.3 22.7 23.2 21.8
0.8 27.3 25.2 26.1 24.3 24.6 23.0
1.0 29.0 26.6 27.3 25.3 25.5 23.8

4 0.2 14.2 12.7 13.3 12.8 12.5 13.1
0.4 16.6 13.6 16.6 13.8 16.6 14.1
0.6 19.5 14.5 19.4 14.7 17.8 15.0
0.8 23.6 22.4 23.0 21.8 22.5 21.3
1.0 25.6 24.4 25.5 23.9 24.7 22.9

Alhambra 2 0.2 15.1 15.6 17.6 15.7 17.6 16.8
0.4 20.6 19.9 20.9 19.8 19.5 19.2
0.6 23.7 22.3 23.4 21.8 22.4 21.0
0.8 26.1 24.4 25.0 23.4 23.5 22.1
1.0 27.5 25.7 25.9 24.4 24.0 22.9

4 0.2 14.2 13.2 14.3 13.4 14.0 13.7
0.4 16.4 16.6 16.3 16.4 16.3 16.5
0.6 19.5 19.3 19.1 19.0 18.9 18.7
0.8 22.1 21.5 21.7 21.1 21.4 20.6
1.0 23.6 23.1 23.6 22.9 23.2 22.0
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(a) (b)

(c) (d)

Figure 4.17: Estimated Satellite Images using the proposed CSSR method (R=0.8 and
Q=5). (a) P=2, Blur Var=3, (b) P=2, Blur Var=5, (c) P=4, Blur Var=3, (d) P=4, Blur
Var=5.



80 Chapter 4. Experimental Results

(a) (b)

(c) (d)

Figure 4.18: Estimated Barbara Images using the proposed CSSR method (R=0.8 and
Q=5). (a) P=2, Blur Var=3, (b) P=2, Blur Var=5, (c) P=4, Blur Var=3, (d) P=4, Blur
Var=5.
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(a) (b)

(c) (d)

Figure 4.19: Estimated Peppers Images using the proposed CSSR method (R=0.8 and
Q=5). (a) P=2, Blur Var=3, (b) P=2, Blur Var=5, (c) P=4, Blur Var=3, (d) P=4, Blur
Var=5.
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(a) (b)

(c) (d)

Figure 4.20: Estimated Alhambra Images using the proposed CSSR method (R=0.8 and
Q=5). (a) P=2, Blur Var=3, (b) P=2, Blur Var=5, (c) P=4, Blur Var=3, (d) P=4, Blur
Var=5.
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Figure 4.21: CSSR performance for multiple and single input images. (P=4, Blur Var=3,
SNR=40 dB. on (a) Satellite, (b) Barbara.
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Figure 4.22: CSSR performance for multiple and single input images. (P=4, Blur Var=3,
SNR=40 dB. on (a) Peppers, (b) Alhambra.
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Table 4.12: Performance of the sequential approach using Q = 4.

Blur Var 3 5 9
SNR 40 30 40 30 40 30
Image P R PSNR (dB)
Satellite 2 0.2 22.4 24.0 22.6 23.6 21.6 23.0

0.4 26.0 26.2 25.6 25.5 24.4 24.6
0.6 25.7 26.7 26.4 25.9 25.2 24.9
0.8 27.6 26.9 26.7 26.0 25.5 25.0
1.0 27.9 27.0 26.9 26.1 25.6 25.1

4 0.2 17.4 19.1 17.2 18.8 16.6 18.5
0.4 23.3 24.3 22.9 23.8 22.3 23.2
0.6 26.2 25.4 25.5 24.8 24.4 24.1
0.8 26.9 25.6 26.1 25.1 25.0 24.4
1.0 27.1 25.6 26.4 25.1 25.3 24.4

Barbara 2 0.2 17.5 19.3 17.1 19.2 16.0 18.3
0.4 20.0 21.4 19.7 21.2 18.9 20.7
0.6 21.5 22.4 21.4 22.1 20.5 21.6
0.8 22.6 22.9 22.4 22.6 21.6 22.1
1.0 23.2 23.2 22.8 22.8 22.1 22.3

4 0.2 15.0 15.3 15.1 15.2 14.1 15.2
0.4 16.4 16.9 16.3 17.0 16.0 17.0
0.6 18.7 17.7 18.8 17.8 18.5 17.8
0.8 20.8 18.3 20.7 18.4 20.3 18.5
1.0 22.3 18.5 22.0 18.6 21.4 18.6

4.5.2 CSSR vs Sequential Approach

As mentioned earlier, the alternate approach is expected to produce a better estimated image
quality. The next experiment has been executed on both the Satellite and Barbara images. We
used four simulated CS LR images to test the sequential and the CSSR alternate estimations.
The obtained results are tabulated in Table 4.12, using Q=4 in all cases.

Figure 4.23 shows plots of the PSNR vs R, for the Satellite image, for the two approaches.
P=4, for the two cases in Figure 4.23(a) Blur Var=5, SNR=30dB and Figure 4.23(b) Blur Var=3,
SNR=40 dB. Similarly, Figure 4.24 shows the results obtained for the Barbara image, for the
two approaches, under the same conditions. Again the plots show, as expected, how the al-
ternate approach outperforms the sequential approach. In all cases the obtained PSNR using
CSSR is better than when using the sequential approach. In the plots of the Satellite image in
Figure 4.23(a) the alternate CSSR improves the PSNR by more than 1.2 dB when compared to
the sequential approach for all Rs, while in Figure 4.24(a), the estimated Barbara image using
CSSR has a 4 dB increment in PSNR compared to the sequential estimate, for the case when
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Figure 4.23: Comparison of the proposed CSSR vs the sequential approach for the
Satellite image, (Q=4, P=4), using (a) Blur Var=5, SNR=30 dB, (b) Blur Var=3, SNR=40
dB.

R=1, Blur Var=5, and SNR=30 dB.

4.5.3 CSSR1 vs CSSR2

Now in this sub-section the performance is tested for two different registration approaches. To
distinguish the two used approaches, we denote by CSSR1 the one using App3 applying Equa-
tion (3.41), and CSSR2 the App4 approach using Equation (3.51). Tables 4.13 and 4.14 show
the obtained results for both the Satellite and Barbara images, we used Q=4 in all experiments.

Figure 4.25 shows the plots for the Satellite image (using P=4 and Q=4). Figure 4.25(a)
analyzes the case when Blur Var=5 and SNR=30 dB, while Figure 4.25(b) analyzes the case
when Blur Var=3, SNR=40 dB. Similarly, Figure 4.26 shows the plots for the Barbara image
(P=4 andQ=4): Figure 4.26(a) for the case when Blur Var=5 and SNR=30 dB, and Figure 4.26(b)
for the case when Blur Var=3, SNR=40 dB. This proves that the two registration approaches are
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Figure 4.24: Comparison of the proposed CSSR vs the sequential approach for the Bar-
bara image, (Q=4, P=4), using (a) Blur Var=5, SNR=30 dB, (b) Blur Var=3, SNR=40
dB.
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Table 4.13: Comparison of CSSR1 vs CSSR2 algorithms for the Satellite image, using
Q = 4.

Blur Var 3 5 9
SNR 40 30 40 30 40 30
P Alg R PSNR (dB)
2 CSSR1 0.2 26.5 24.9 26.0 24.4 24.9 23.8

0.4 28.1 26.9 27.1 26.1 25.8 25.1
0.6 28.4 27.7 27.3 26.8 26.0 25.7
0.8 28.5 28.1 27.4 27.1 26.1 25.9
1.0 28.5 28.3 27.4 27.3 26.1 26.0

CSSR2 0.2 26.5 24.9 26.0 24.4 24.9 23.8
0.4 28.1 26.9 27.1 26.1 25.8 25.1
0.6 28.4 27.7 27.3 26.8 26.0 25.7
0.8 28.5 28.1 27.4 27.1 26.1 25.9
1.0 28.5 28.3 27.4 27.3 26.1 26.6

4 CSSR1 0.2 21.0 20.7 20.9 20.1 20.1 19.7
0.4 27.0 25.8 26.3 25.1 25.3 24.2
0.6 27.5 27.0 26.7 26.2 25.6 25.1
0.8 27.6 27.3 26.8 26.6 25.7 25.5
1.0 27.6 27.4 26.8 26.7 25.8 25.6

CSSR2 0.2 21.0 20.7 20.8 20.1 20.1 19.6
0.4 27.0 25.8 26.3 25.1 25.3 24.2
0.6 27.5 27.0 26.7 26.2 25.6 25.1
0.8 27.6 27.3 26.8 26.6 25.7 25.5
1.0 27.6 27.5 26.8 26.7 25.8 25.6
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Table 4.14: Comparison of CSSR1 and CSSR2 algorithms for the Barbara image, using
Q = 4.

Blur Var 3 5 9
SNR 40 30 40 30 40 30
P Alg R PSNR (dB)
2 CSSR1 0.2 19.0 19.5 19.7 19.6 19.1 18.7

0.4 22.5 21.9 22.2 21.6 21.7 21.2
0.6 23.5 22.8 23.2 22.5 22.7 22.1
0.8 24.1 23.4 23.6 23.0 23.1 22.5
1.0 24.5 23.8 23.9 23.3 23.3 22.8

CSSR2 0.2 19.9 19.8 19.7 19.6 19.0 18.7
0.4 22.5 21.8 22.2 21.6 21.7 21.2
0.6 23.6 22.8 23.2 22.5 22.7 22.1
0.8 24.1 23.4 23.6 23.0 23.1 22.5
1.0 24.5 23.8 23.9 23.3 23.3 22.8

4 CSSR1 0.2 15.1 15.3 15.7 16.2 15.3 15.9
0.4 18.4 19.0 18.0 19.0 18.0 18.8
0.6 21.5 20.7 21.6 20.7 21.3 20.2
0.8 23.0 22.2 22.9 22.0 22.6 21.6
1.0 24.0 23.2 23.5 22.9 23.1 22.4

CSSR2 0.2 15.0 15.3 15.7 16.2 15.3 15.9
0.4 18.4 19.0 18.0 19.0 18.0 18.7
0.6 21.5 20.7 21.6 20.7 21.3 20.2
0.8 23.1 22.2 22.9 22.0 22.6 21.6
1.0 24.0 23.2 23.5 22.9 23.1 22.4
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Figure 4.25: Comparison of the proposed CSSR1 vs CSSR2 for the Satellite image,
(Q=4, P=4), using (a) Blur Var=5, SNR=30 dB, (b) Blur Var=3, SNR=40 dB.
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Figure 4.26: Comparison of the proposed CSSR1 vs CSSR2 algorithms for the Barbara
image, (Q=4, P=4), using (a) Blur Var=5, SNR=30 dB, (b) Blur Var=3, SNR=40 dB.
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effective and accurate and can be adopted interchangeably. This is clear in the plots where the
curves coincide.

Experimental results were performed on additional simulated and real images in our pub-
lished works [18–20].

4.6 CSSR of PMMW Images

Due to their characteristics, Millimeter Wave (MMW) images are used in applications like
weather operations, low visibility navigation, and the imaging of people for concealed object
and threat detection [4, 90, 91], just to name a few.

Based on their interest, image processing techniques have recently started to be applied to
these images. For instance, Passive Millimeter Wave (PMMW) image enhancement has been
addressed in [90, 92–95] to perform detection tasks. In [93] the high frequency components
of those images were restored using a MAP estimator, and they were then added to the input
image to produce an HR image. Registration and fusion of visible and MM images as well as
segmentation of MMW images have been addressed in [90, 94, 95].

Unfortunately PMMW systems have two serious shortcomings: the long acquisition time
needed to produce a PMMW image and the poor resolution of captured images. CS systems,
with its reduced image acquisition time, have been applied to PMMW imaging, see[55, 56, 96,
97]. In [96, 97] the authors utilize Hadamard masks to reduce the acquisition time in PMMW
imagers. In [98] a PMMW imaging system with extended depth-of-field that can produce im-
ages with reduced number of samples is presented. CS and Blind Image Deconvolution have
been combined in [5]. By and large the resolution of MMW images is small, therefore making
their analysis a challenging task.

In our works [18, 20] HR images were super resolved for the first time from multiple CS
observations of unregistered LR PMMW images. We believe that PMMW images represent an
important application area where CS and LR to HR techniques can be combined to enhance the
performance of related application capabilities of current PMMW imaging systems.

Let us next present the obtained experimental results performed on real input images, ac-
quired by a PMMW imager. These images were synthetically compressed using a circulant
Toeplitz matrix, to serve as a measurement matrix, following the Bernoulli probability distri-
bution.

In the first experiment, four real PMMW images of a person were acquired, shown in Fig-
ure 4.27(a). The estimated image using bilinear interpolation from one reconstructed LR image
is shown in Figure 4.27(b), and the estimated using CSSR is shown in Figure 4.27(c), both using
P=2, R=1.

In the second experiment we used four images, shown in Figure 4.28(a), of a man free of
threats. These images were synthetically compressed with R=0.8. The interpolated version
of one reconstructed image is shown in Figure 4.28(b), while the estimated image using the
CSSR algorithm is shown in Figure 4.28(c), both using P=2. Notice here that the interpolated
image shows, by error, a cut near the hand, which means that the man has a threat attached to
him, which is not the case. This is clear in the estimated image using CSSR which shows the
continuity near the left hand.
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(a) (b) (c)

Figure 4.27: PMMW image of a man free of threats (Q=4, R=1, P=2).(a) Four noisy real
observations, (b) Bilinear interpolation from one reconstructed LR image, (c) Estimated
image using CSSR algorithm.
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(a) (b) (c)

Figure 4.28: PMMW image of a man free of threats (Q=4, R=0.8, P=2) (a) Four noisy
real observations, (b) Bilinear interpolation from one reconstructed LR image, (c) Esti-
mated image using CSSR algorithm.

The next experiment used four real PMMW LR observations, of a man hiding a threat at-
tached to his left arm, as shown in Figure 4.29(a). The estimated HR image using bilinear
interpolation of one reconstructed LR image, is shown in Figure 4.29(b), and the estimated us-
ing the CSSR algorithm, with Q=4, is shown in Figure 4.29(c), using P=2, R=0.8. Also, the
corresponding estimated images using P=4, R=0.8 are shown in Figure 4.29(d) for bilinear in-
terpolation, and Figure 4.29(e) for the CSSR algorithm. The obtained images clearly show the
better reconstruction capabilities of the proposed method, this can be observed by the clear
discontinuity of the arm indicating the attached threat.

The next experiment uses seven real PMMW images of a man with a threat attached to
his chest. The seven images, four of which are shown in Figure 4.30(a), were synthetically
compressed using R=0.8, then used to estimate the image shown in Figure 4.30(c) using P=2.
This result can be compared with the interpolated image from one reconstructed image in Fig-
ure 4.30(d).

4.7 CCSSR of Color Images

There is nomuchwork dealing with color images fromCS observations. [99] proposed amethod
for color imaging via compressed sensing. It works on the color channels and random projec-
tions from each channel, RGB, are acquired separately. The reconstruction process makes use of
the correlation between the three color channels and it is based on group sparse optimization.

In [100], the single-pixel CS camera has been combined with a Bayer color filter to acquire
CS color images, then joint sparsity models were applied to recover the three RGB channels.
[65] estimated SR images from a single LR CS observation and applied this to color images.
In [58] spatial multiplexing cameras were used to sample the scene through a series of coded
projections, this was applied to CS video super resolution and color videos.
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(a) (b) (c) (d) (e)

Figure 4.29: PMMW image of a man with a threat attached to his arm (Q=4, R=0.8).
(a) LR images, (b) Bilinear interpolation from one reconstructed image, P=2, (c) Esti-
mated HR image using the CSSR algorithm, P=2, (d) Bilinear interpolation from one
reconstructed image, P=4, (e) Estimated HR image using the CSSR algorithm, P=4.
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(a)
(b) (c)

Figure 4.30: PMMW image of a man with a threat attached to his chest (Q=7, R=0.8,
P=2). (a) LR images, (b) Bilinear interpolation from one reconstructed LR image, (c)
Estimated HR image using the CSSR algorithm.
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Next we present experimental results obtained using the proposed CCSSR algorithm, as an
important application of the CSSR paradigm to color images. The experiments were performed
using both simulated and synthetically CS real color input images. We carried out a set of
experiments on the images shown in Figures 4.31(a-c): Barbara, Lena, and Peppers images.
The images have been warped, then degraded by Gaussian blurs of different known variances
and down-sampled. The LR RGB channels have been compressed separately using a circulant
Toeplitz matrix following the Bernoulli probability distribution. White Gaussian noise, with
SNR=40 dB, has been finally added to the compressed channels.

Figures 4.31(d,e) show, respectively, examples of a simulated LR and a CS-LR observation
for the Barbara image using motion vector s = [.1222,−2,3]t , blur variance 7, P= 2 and R=0.5.
We used a 3-level Haar wavelet transform as the transform basis W, and Peak Signal to Noise
Ratio (PSNR) as the performance measure. The stopping criterion used was

norm(xk − xk−1)
norm(xk−1)

≤ 10−3 (4.4)

In the first experimentQ=3 observations and a zooming factor P=1 have been used in order
to compare our method with the following CS reconstruction methods: Nagesh et. al [99] (Na) ,
Wakin et al [101] (Wa), Angshul L2,1 (L1), L2,0.4 (L4), and SL2,0 (SL)[99]. Results are tabulated
in Table 4.15. Figure 4.32 shows a comparison between the results obtained using these CS
algorithms and the obtained using our proposed CCSSR algorithm, where PSNR vs R curves
are shown for the Lena image using P=1.0 and Q=3.

Table 4.15: Comparison of CS algorithms with the proposed CCSSR algorithm for CC-
SSR P=1.0, Q=3. In bold blue are the highest PSNR values.

Alg Na Wa L1 L4 SL CCSSR
Image R PSNR Values (dB)

.1 25.1 24.8 26.1 26.7 26.5 21.3
Barbara .2 27.1 26.6 28.0 28.5 28.3 29.9

.3 28.8 27.9 29.3 30.0 29.7 34.0

.1 26.1 25.9 27.0 27.6 27.5 25.8
Lena .2 28.3 27.7 29.0 29.7 29.5 31.6

.3 30.0 29.2 30.7 31.7 31.1 37.0

.1 25.0 24.5 25.6 26.3 26.0 24.8
Peppers .2 27.1 26.1 27.9 28.5 28.1 32.5

.3 29.8 28.1 30.5 21.4 30.9 35.2

In the second experiment we investigate the performance of the proposed CCSSR algorithm
for practical P and R values. For all images we used Gaussian blur of variance 5, SNR=40dB,
and Q=3. The results are tabulated in Table 4.16 for P=2 and 4. Shown in Figure 4.33(a,b) are
curves of the PSNR vs R for the three images used in our study, for the cases P=2 and P=4,
respectively.
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(a) (b)

(c) (d) (e)

Figure 4.31: Original Images (a) Barbara, (b) Lena, and (c) Peppers. (d) Simulated LR
Barbara image (s = [.1222,−2,3]t, blur variance 7, P=2), (e) simulated CS observation
(R=0.5, SNR=40 dB). The black line represents the added zero-valued entries to illus-
trate a square image.

The reconstructed Peppers images are shown in Figures 4.34(a,b), using R=0.6, Blur Var=5,
SNR=40dB, and Q=3, for the two cases P=2 and P=4, respectively.

In the third experiment we use real LR images of a toy, which have been synthetically com-
pressed using R=0.8. We used a 16 input image sequence to reconstruct the HR image, with
P=2, shown in Figure 4.35(d), while Figure 4.35(c) shows the reconstructed image obtained
using only the first 4 input images of the previous sequence, shown in Figure 4.35(a). Fig-
ure 4.35(b) shows an interpolated image from the first reconstructed LR image.

The next experiment is similar to the third and uses real images of a car. Figures 4.36(c,d)
show the results obtained using CCSSR for respectively 4 and 16 CS observations from a se-
quence of 16 input images whose first 4 images are shown in Figure 4.36(a). Figure 4.36(b)
shows an interpolated image. We used P=2 in this experiment.
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Figure 4.32: Comparison between CS algorithms and the CCSSR algorithm for the Lena
image. For CCSSR, P=1, Q=3.

Table 4.16: CCSSR algorithm vs R (blur var 5, SNR=40dB, and Q=3).

R 0.2 0.4 0.6 0.8 1.0
Image P PSNR Values (dB)

Barbara
2 22.4 26.5 28.1 28.9 29.5
4 16.6 20.7 25.6 27.2 28.1

Lena
2 23.3 28.4 29.9 30.4 30.6
4 17.5 21.4 26.9 28.5 29.0

Peppers
2 23.0 27.0 28.7 29.4 29.9
4 15.6 22.9 26.2 27.6 28.5
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Figure 4.33: Performance of the proposed CCSSR vs R. Blur Var=5, SNR=40dB, Q=3.
(a) P=2, (b) P=4.
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(a) (b)

Figure 4.34: Reconstructed Peppers Images using the CCSSR algorithm. R=0.6, Blur
Var=5, SNR=40dB, and Q=3. (a) P=2, (b) P=4,

(a)

(b) (c) (d)

Figure 4.35: Image super resolution from real observations, R=0.8, P=2. (a) First 4
LR images (b) Bilinear interpolation of one reconstructed LR image, (c) Estimated HR
image using the CCSSR algorithm, withQ=4, (d) Estimated HR image using the CCSSR
algorithm, with Q=16.
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(a)

(b) (c) (d)

Figure 4.36: Image super resolution from real observations, R=0.8, P=2. (a) First 4
LR images (b) Bilinear interpolation of one reconstructed LR image, (c) Estimated HR
image using the CCSSR algorithm, withQ=4, (d) Estimated HR image using the CCSSR
algorithm, with Q=16.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation we have proposed a novel framework to reconstruct SR images from mul-
tiple unregistered LR images acquired using CS techniques. Any classical SR and/or CS tech-
niques can be incorporated in the developed methodology. The degradation model of this novel
combined problem has been modeled and a CSSR approach has been proposed in this work.

The CSSR method lowers the sampling frequency, transmission rates, the bandwidth of
the image signal, and the memory requirements to store and/or send the image. Moreover,
the acquisition time can be lowered, which is very important in medical and PMMW imaging
applications. The enhanced SR image quality is advantageous in pattern recognition, medical
diagnostics, and to emphasize a specific area of an image in surveillance cameras and satellite
applications.

The proposed HR reconstruction uses a new robust sparsity promoting prior and solves
a linear equation in x (the HR image), using conjugate gradient method. The transformed
coefficient vector estimation is an ℓ1 norm subject to a quadratic term optimization problem.
The registration parameters can be estimated using four different procedures, to finally obtain
accurate results, since any SR estimation process is highly dependent on the performance of the
registration estimation step. The parameters can be estimated from the estimated HR image,
or the LR images themselves, with the estimation from reconstructed LR images being less
sensitive to the initial conditions. Furthermore we found that the estimation at LR level results
in better quality of the reconstructed image.

The proposed optimization framework uses ADMM to jointly estimate all the unknowns
including HR image, LR images, and registration parameters. We have experimentally shown
that this simultaneous reconstruction outperforms the sequential method, that first performs
LR reconstruction to then obtain an HR image from a set of LR observations. The sequential ap-
proach estimates every unknown just once, while the alternate approach iteratively updates the
estimated unknowns. The better performance of the alternate approach is due to the additional
information provided during the estimation process.



104 Chapter 5. Conclusions and Future Work

We also showed experimentally the enhancement obtained due to themultiple input images
when compared with a single one. This is expected due to the additional information every
input image provides. However, the multiplicity necessitates accurate registration estimation
procedure which inherently affects the overall process.

The proposed framework has been tested and compared, at a unity compression ratio, with
state-of-the-art SR algorithms which do not use compression in their work. It has also been
compared, at a unity zooming factor, with state-of-the-art ID algorithms that deblur CS images,
which do not use down-sampling in their work. Both comparisons used synthetic images and
showed better performance of the proposed CSSR over others. The performance of CSSR when
using practical values of P and R has also been tested and analyzed.

Besides, the CSSR effectiveness has been demonstrated experimentally on synthetically CS
noisy real images. This represents the practical application of the CSSR method, which showed
very good results.

The proposed CSSR method has been tested on PMMW images. These images usually have
poor quality and limited resolution, which makes super resolving them a challenging task and
is a hard test of the CSSR approach. The CSSR could be used to improve the quality of PMMW
images. This is expected to improve threat detection rates, which is an expected field of future
research. Notice here that the nature of PMMWI is similar to astronomical and medical images,
and the good performance of the proposed CSSR algorithm can be extended to these images.

The proposed approach can also be applied to true color CS images. The separately sensed
channels are utilized in a joint registration estimation to effectively and accurately estimate
registration parameters for the three channels. The obtained results present an excellent im-
age quality, even better than the obtained using previous CS reconstruction methods which
correlate the color channels.

5.2 Future work

Wefinally comment on few areas of interest where we plan to continue our work on Compressed
Sensing applied to LR images.

• To formulate the CSSR using Bayesian modeling and inference. This will allow us to
estimate all the model parameters in an automatic manner.

• To include the estimation of the blur in the CSSR problem.

• To use image priors which cannot be formulated as super Gaussian distributions.

• To apply the developed framework to video sequences.

• To apply the proposed framework to images which are observed using the Bayer pattern.
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