INSTITUCIONES
DE CÁLCULO DIFERENCIAL É INTEGRAL.
INSTITUCIONES
DE CÁLCULO DIFERENCIAL É INTEGRAL.
INSTITUCIONES
DE CÁLCULO DIFERENCIAL É INTEGRAL
CON SUS APLICACIONES PRINCIPALES
Á LAS MATEMÁTICAS PURAS Y MIXTAS.

POR DON JOSEF CHAIX,
Vice-Director del Real Cuerpo de Ingenieros Cosmógrafos
de Estado.

TOMO I
CONTIENE EL CÁLCULO DIFERENCIAL
Y SUS APLICACIONES.

DE ÓRDEN SUPERIOR.
MADRID EN LA IMPRENTA REAL.
AÑO DE 1801.
PRÓLOGO.

Entre los grandes descubrimientos modernos que han contribuido poderosamente á la perfección de las ciencias naturales, y que hacen honor al entendimiento humano; merece un lugar distinguido el de los cálculos Diferencial e Integral. En efecto, si se comparan las obras de los Geómetras anteriores á este descubrimiento admirable, con las publicadas posteriormente; se advierte una diferencia tan notable, que admira á los inteligentes, y hasta á los menos apasionados á la novedad. Los problemas que aquellos Geómetras consideraban como sublimes y difíciles, y cuya resolución exigía el uso de varios métodos particulares, por lo común largos y penosos; se reputan hoy fáciles y comunes; y se resuelven con suma generalidad, elegancia y sencillez por medio de los nuevos cálculos. Otros verdaderamente sublimes y delicados, que los referidos Geómetras ó no se atrevieron á resolver, ó que abandonaron después de largos y inútiles esfuerzos; quedan ya resueltos completamente con el poderoso auxilio de los nuevos cálculos. Con estos se han vencido obstáculos reputados superiores á las fuerzas del espíritu humano, como hemos visto en el problema de los tres cuerpos; de la precesión de los equinoccios; y de otros varios de la Mecánica y de la Astronomía-física: con estos han hecho progresos rápidos y admirables las ciencias físico-matemáticas; y con estos solamente se puede caminar con acierto en el estudio de estas ciencias. Por estas consideraciones, y por saber que apenas teníamos en nuestro idioma los principios de estos importantes cálculos por un método que seguramente no es el mejor; me determiné á reunir en un tratado lo mejor y más importante que sobre dichos cálculos se ha escrito en varios idiomas, y á manifestar al mismo tiempo sus principales aplicaciones.
iciones á la análisis y á las ciencias físico-matemáticas. Entibiáme al principio lo difícil de la empresa, que miraba como superior á mis conocimientos y fuerzas; y por lo mismo diferí su ejecución, hasta que familiarizándome con este género de trabajo, y viendo la utilidad y ahorro de tiempo que debía resultar á los que se dedicasen al estudio de estas ciencias, me resolvi á escribir las presentes Instituciones.

Los inventores del cálculo diferencial explicaron sus principios metafísicos por dos métodos muy diversos, de lo que nacieron largas disputas poco favorables al progreso de dicho cálculo, y ajenas al parecer de las ciencias exactas. Newton, el primero que le inventó (1); le dio el nombre de cálculo de las fluxiones, y le explicó por los principios del movimiento, y por el método de las primeras y últimas razones de las cantidades que nacen y se desvanece (2), demostrado después largamente, es ilustrado con variedad de aplicaciones por el docto escocés Macaulurin (3); pero casi al mismo tiempo inventó también el cálculo diferencial en Alemania el célebre Leibnitz (4), y le fundó en la consideración de las cantidades infinitamente pequeñas de varios órdenes ó método de los infinitamente pequeños, explicado es ilustrado con multitud de aplicaciones por el Marques del Hospital (5), y posteriormente por el ilustre Leonardo Euler (6), y otros Geómetras. En ambos métodos brilla el talento original de sus autores; en ambos hay cosas preciosas; pero también hay luminares muy notables. El principal que se descubre en el de las fluxiones, es el apoyarse en la extraña teoría del movimiento, siendo un ramo puramente de análisis; sus demostraciones son además largas y fastiosas; y su aplicación difícil y

Embarazosa; á pesar de esto, tiene ventajas conocidas, pues se funda sobre principios evidentes, como se puede ver en la citada obra de Macaulurin; y encierra la verdadera metafísica del cálculo diferencial, como pronto veremos. Al contrario, las demostraciones del método de los infinitamente pequeños son muy sencillas y breves; y su aplicación sumamente fácil; pero tiene el defecto capital de fundarse en las nociones vagas ó imperfectas de las cantidades infinitamente pequeñas; nociones que carecen de la exactitud y evidencia que caracterizan las ciencias matemáticas.

El método de las últimas razones de las cantidades que se desvanecen empleado sintéticamente por Newton para demostrar el de las fluxiones; es el que D’Alembert llamó Método de los límites, con el que demostró los principios del cálculo diferencial y algunas de sus aplicaciones de un modo geométrico y muy sencillo, tratando analíticamente dicho método, y substituyendo el cálculo algebraico de las diferencias á los principios del movimiento (1). Fue inventado este excelente método por los Geómetras de la antigüedad; y lo empleó Archimedes para demostrar varias proposiciones de la Geometría sublime, las cuales le dieron en parte la reputación que ha conservado en todos tiempos aquel gran Geómetra (2). Sus principios son evidentes y sencillos; y si en todas sus demostraciones y aplicaciones, no es tan breve como el de los infinitamente pequeños; le excede siempre en claridad, elegancia y evidencia; además tiene este método sobre los otros la ventaja de que todas sus aplicaciones se pueden hacer por medio de un solo principio muy general y elegante; esto es, por medio del admirable teorema de Taylor (3). Por esto pues he preferido el método de los límites para explicar el cálculo diferencial, y hacer sus aplicaciones; pareciéndome superior á quantos se conocen para este efecto,

(1) Commercium epistolicum.

(2) Philosophia naturalis, principia mathematica. Lib. 1.° sección 1.°

(4) Commercium epistolicum.

(5) Analyse des infiniment petits, &c. Par Mr. Le Marquis de l’Hospital, &c. Paris 1699.

(6) Institutiones calculi differentialis, &c. Auctore Leonardo Euler, Peteburgu 1713.

(2) Archimedes opera, &c. Per Is. Barrow, expressorem, &c. Londres 1675.

(3) Methodus incrementorum directa & inversa. Auctore Brook Taylor, &c. Londres 1715.
como lo juzgó Mr. Cousin, empleándolo continuamente en sus lecciones (1).

El sabio Landen, Geómetra inglés, publicó posteriormente una obra sobre el cálculo diferencial (2), en la que explicó sus principios por un método puramente analítico, empleando únicamente las cantidades finitas. Hizolo con el fin de que su método se substituyese al de las fluxiones seguido constantemente en su país a pesar de tener varios inconvenientes. Pero aunque el método de Landen deba preferirse al de las fluxiones, por la mayor propiedad de sus principios; es por lo menos tan difícil y embarazoso en las aplicaciones como el que pretende desterrar, y muy inferior al de los límites.

Cuando empecé a escribir estas Instituciones por el método de los límites, solamente conocía los expuestos principios del cálculo diferencial; pero concluida ya la parte primera de este y sus aplicaciones, llego á mis manos una obra muy profunda y original del célebre Mr. de Lagrange (3), donde explica los principios del referido cálculo por un método analítico, prescindiendo de toda consideración sobre las cantidades infinitamente pequeñas, fluxiones y límites, según lo había hecho antes en una memoria que presentó á la Academia Real de Berlín, y se imprimió en el tomo del año 1772. Exponer brevemente este autor los diferentes aspectos con que los Geómetras han considerado al cálculo diferencial (4); y hace de paso algunas objeciones á los principales métodos empleados hasta entonces para explicar los principios de dicho cálculo. Pero aunque los asertos de este sabio Geómetra son muy respetables; debo sin embargo decir, que las razones alegadas contra el método de los límites, me parecen muy débiles, y se pueden destruir con facilidad. Creo también que la teoría de las funciones analíticas es muy semejante al método de los límites, y que la principal diferencia consiste en que en aquella se demuestra el teorema de Taylor por medio de consideraciones puramente algebraicas, aunque por un camino mucho más largo que el que se sigue en el referido método. Pero al mismo tiempo es preciso confesar que en toda esta excelente obra, brilla el genio fecundo de su autor, y se manifiestan sus profundos conocimientos en las ciencias matemáticas. He seguido en algunas aplicaciones del cálculo diferencial el método general y elegante con que aplica el teorema de Taylor; y recomiendo mucho la lectura de dicha obra a los que desean adquirir grandes conocimientos en la análisis y en las ciencias físico-matemáticas.

Pocos meses antes que Mr. de Lagrange dijese á luz su obra publicó Lacroix el primer tomo de su Cálculo Diferencial et Integral (1), el cual contiene el cálculo diferencial, y sus aplicaciones principales á la análisis y á la geometría. Funda este autor dicho cálculo sobre los principios establecidos por Mr. de Lagrange en la citada memoria, y lo trata con mucha extensión y claridad: pero al mismo tiempo manifiesta que hace algún aprecio del método de los límites, y del de los infinitamente pequeños, exponiendo brevemente estos métodos y algunas de sus aplicaciones, y dando á conocer la analogía que existe entre el de los límites y la teoría de las funciones analíticas (2). Dicho tomo primero, juntamente con el segundo publicado en 1798, forman un tratado muy completo de los cálculos diferencial et integral; y me ha sido muy útil la lectura del tomo primero para algunas aplicaciones del cálculo diferencial que he hecho en estas Instituciones.

He dividido la teoría del cálculo diferencial en dos partes; y después de explicar la primera, que llamo principios de dicho cálculo, paso inmediatamente á manifestar sus apli-

(1) Leçons de Calcul Differentiel et de Calcul Integral. Par Mr. Cousin, &c. Paris 1777.
(2) The residual analysis, a new branch of the algebraic art. By John Landen. Londres 1762.
(4) Páginas 2.... 6.

(1) Traité du Calcul Differentiel et du Calcul Integral, par S. F. Lacroix. Paris 1797.
(2) Pág. 189.... 195; y 419.... 427.
caciones principales á la análisis y á la geometría: por este medio evito el fastidio que causa á toda clase de lectores, y particularmente á los principiantes, el estudio de largas teorías sin aplicaciones; y les animo á continuar el de la parte mas sublime del referido cálculo, manifestándoles la facilidad con que se resuelven muchos problemas importantes, considerados en otro tiempo como muy sublimes y difíciles. He hecho todas las aplicaciones del cálculo diferencial por medio de un principio muy general y elegante, esto es, por medio del excelente teorema de Taylor: pero al mismo tiempo manifiesto otras sendas que conducen al mismo resultado, ya sea por medio de consideraciones particulares sobre los límites de las razones entre las diferencias de las cantidades; ó ya deduciendo dichos resultados por medio del referido teorema aplicado de diferentes modos.

Mi parcialidad al método de los límites para demostrar el cálculo diferencial, y manifestar sus aplicaciones, no me dispensaba de dar á conocer dicho cálculo fundado en la consideración de las cantidades infinitamente pequeñas; porque la mayor parte de las obras que se han escrito sobre estos cálculos los tratan por el método de los infinitamente pequeños; los resultados que se obtienen por este método son idénticamente los mismos que se encuentran por el de los límites, ó por cualquiera otro; y finalmente, es preciso convenir en que el referido método lleva ventaja á todos los demás, en quanto á la brevedad con que demuestra la teoría de los cálculos diferencial é integral, y la facilidad que proporciona en todas las aplicaciones de estos cálculos. Por estas razones no solamente expongo los principios del cálculo diferencial según el método de los infinitamente pequeños, y el modo con que se aplica á la teoría de las líneas curvas, sino que también manifiesto del modo mas evidente con algunos ejemplos, que los supuestos que se hacen en las aplicaciones de dicho cálculo son conformes á los que se hacen en la teoría para diferenciar las cantidades, de cuya conformidad depende la exactitud de los resultados; que las operaciones analíticas de este método, tanto en la parte teórica como en las aplicaciones, son en el fondo las mismas que se practican en el de los límites; que la diferencia de estos dos métodos consiste únicamente en las expresiones y en la metafísica particular de cada uno de ellos; y por consiguiente que ambos métodos deben necesariamente conducir á un mismo resultado. Esta comparación práctica del método de los infinitamente pequeños con el de los límites me parece muy propia para dar una idea clara de ambos métodos, y para manifestar que, según dice antes, su diferencia consiste únicamente en los principios metafísicos sobre los cuales se funda cada uno de ellos.

En todas las aplicaciones del cálculo diferencial supongo tácitamente que se conocen los principios teóricos del ramo que se trata; y como no hay obra alguna en nuestro idioma que enseñe la teoría de las superficies curvas y de las curvas de doble curvatura, he jugado á propósito dar los principios teóricos de dichas superficies y curvas, siguiendo las ideas de Euler, Clairaut y Monge.

Antes de aplicar el cálculo diferencial á la mecánica me ha parecido conveniente exponer brevemente los primeros principios de esta ciencia, y demostrar las proposiciones relativas al movimiento uniformemente acelerado por un método más claro y geométrico que el que se sigue comúnmente.

He tenido presentes para escribir estas Instituciones las principales obras de los cálculos diferencial é integral que se han publicado en las naciones cultas; y he tomado de cada una de ellas lo que me ha parecido mejor, según el plan que me había formado; pero he puesto particular cuidado en coordinarlo todo de modo que formase un tratado regular, siguiendo siempre el mismo método, órden y estilo. He procurado, y tal vez habré conseguido, simplificar ó mejorar las demostraciones de algunas proposiciones importantes, y conciliar la claridad con la concisión, indicando solamente los principios, y dando por sentadas todas las proposiciones de la análisis algebraica, geometría y trigonometría que debe saber el que se dedica al estudio de
TABLA

De las materias que contiene este tomo primero.

CAPITULO I

DEL METODO DE LOS LIMITES.

De las funciones de las cantidades, y de sus diferentes especies... Pág. 1 — 2
De los limites de las cantidades variables, de las razones de las cantidades, y de sus funciones. Se explica lo que significa la expresión \(\frac{d}{dx} \) .. 2 — 8
Proposiciones importantes del método de los límites, y consecuencias que de ellas derivan: estas proposiciones son la base del método de las fluxiones y del cálculo diferencial.............. 8 — 11

CAPITULO II

DEL CALCULO DE LAS DIFERENCIAS.

Cómo se expresan las diferencias de las cantidades, y sus potencias.
Del modo de hallar la diferencia de una función cualquiera de una cantidad variable ... 11 — 14
De las diferencias de las funciones de dos cantidades variables independientes. Qué se entiende por diferencias parciales... 14 — 16
Del caso en que entre las dos cantidades variables existe una relación cualquiera; y de las razones de las diferencias de dichas cantidades, en el supuesto de que tengan ciertos valores determinados.. 16 — 17
De las diferencias segundas, terceras, &c. de las cantidades y de sus funciones, y del origen de estas diferencias. 17 — 18
Del modo de hallar la diferencia segunda, tercera, &c. de una función de una cantidad variable, o de dos variables independientes.. 18 — 19
Proposiciones importantes del cálculo de las diferencias, y uso de estas proposiciones para hallar el término general, y la suma general de una serie algebraica cualquiera... 19 — 23

CAPITULO III

DE LOS PRINCIPIOS DEL CALCULO DIFERENCIAL.

De los límites de las razones de la diferencia de una función de una cantidad variable, y la diferencia de dicha variable..... 23 — 25
De los límites de las razones de las diferencias de dos cantidades variables, en el supuesto de que entre estas variables existe una relación cualquiera... 25 - 26
Cómo se determina dicho límite en el caso particular en que por la sustitución de ciertos valores determinados de las variables, se reduce a la expresión indeterminada \(\frac{0}{0} \) .. 26 - 27
Proposiciones importantes del cálculo diferencial; y reglas de ellas se deducen para determinar los límites de las razones de las diferencias de las cantidades, sin necesidad de conocer dichas diferencias.. 27 - 32
De los límites de las razones de las diferencias de las cantidades transcendentes.. 32 - 34
De los límites de las razones entre las diferencias segundas, terceras, &c. de las cantidades y sus funciones. Exposición de un teorema por medio del cual se determinan sucesivamente dichos límites sin necesidad de hallar las diferencias.. 34 - 37
Del modo de determinar el límite \(\frac{dy}{dx} \) cuando se reduce a la expresión indeterminada \(\frac{0}{0} \), sin necesidad de conocer la razón de las diferencias.. 37 - 39

CAPÍTULO IV.

APLICACIONES DE LOS PRINCIPIOS DEL CÁLCULO DIFERENCIAL
A LA ANÁLISIS, Y A LA GEOMETRÍA.

Del modo de transformar las funciones en series.

Del teorema de Taylor, y de su uso para transformar en serie una función cualquiera de una variable, cuando esta variable adquiere un incremento arbitrario cualquiera. Manifiétese la dependencia recíproca que existe en los coeficientes de los términos sucesivos de dicha serie.. 40 - 42
Uso del teorema de Taylor para hallar las diferencias de un orden cualquiera de una función de una variable.. 42 - 44
De la serie que representa una función cualquiera de una cantidad variable.. 45
De la transformación en serie, de una función \(f(x \pm k) \) en supuesto de que la variable \(x \) tenga ciertos valores determinados. Casos particulares en que la serie no se puede suponer que procece según las potencias sucesivas de \(k \).. 45 - 46
Del modo de transformar una función cualquiera de una cantidad variable en una serie ordenada según las potencias sucesivas de dicha variable. Casos particulares en que la función propues-
terminar dicho grado. 87 — 91
Puntos conjugados: estos puntos resultan de los ramos invisibles
de las curvas. Cómo se conoce si una curva los tiene... 91 — 93

De los puntos de inflexión y de retroceso.

Los puntos de inflexión se determinan por el método de máximos
y mínimos. Reglas para conocer si una curva los tiene, y en qué
lugares de su curso se hallan; aplicación a varios ejemplos. 93 — 96
Los puntos de retroceso se dividen en dos especies. Método para
determinar estos puntos, y para distinguir á qué especie perte-
 necen; aplicación á algunos ejemplos. 96 — 98

De la curvatura de las líneas en sus diferentes puntos; del radio
de curvatura; y de las evolutas.

Teoría del contacto de los círculos con las curvas, y de las evo-
lutas: consecuencias de esta teoría para determinar el radio de
curvatura. ... 98 — 102
Método sencillo para determinar el radio de curvatura por medio
del teorema de Taylor. Ilustra esta doctrina con algunos ejem-
plos. ... 102 — 106
Expónese la teoría de los contactos de las líneas curvas por un
método analítico muy general y elegante. 106 — 109
Aplicación de esta teoría para determinar las tangentes de las curvas;
los círculos osculadores; y los radios de estos círculos. 109 — 113
Del contacto de las parábolas, con una curva cualquiera. 113 — 115
De los coeficientes diferenciales de las superficies curvilineas; de las
superficies de los sólidos de revolución; y de las solideces de es-
tos. .. 115 — 117

CAPÍTULO VI.

DEL CALCULO DIFERENCIAL EN GENERAL.

Uso de las sustituciones y transformaciones para diferenciar las
cantidades .. 118 — 121
Diferenciacion de las funciones de dos cantidades variables inde-
dependientes 121 — 123
Teorema de Taylor relativamente á las funciones de dos candida-
tades variables; propiedad importante de los coeficientes diferen-
ciales de varios órdenes; aplicación de dicho teorema para ha-
lzar con mucha brevedad la diferencia de una función de dos va-
riables ... 123 — 127
Otras propiedades de las diferenciales de varios órdenes. 127 — 129
Diferenciacion de las funciones que contienen tres, ó un mayor

CAPÍTULO VII.

CONTINUACION DE LAS APLICACIONES DEL CALCULO DIFERENCIAL
A LA ANALISIS Y A LA GEOMETRIA.

Método general para transformar en series cualesquiera funciones
explicitas ó implícitas 167 — 175
Uso de este método en los casos en que el teorema de Taylor no
puede transformar en serie la función \(f(x + k) \) 175 — 176
Fórmula general para transformar en una serie ordenada según las
potencias de x, el valor de y dado por la ecuación $y = z + xf$

Otra fórmula general para hallar la serie que expresa el valor de una función cualquiera de y, dada esta cantidad por la misma ecuación. Por medio de esta serie se halla la anomalía verdadera, dada la media... 176 — 178

Exposición del método inverso de las series según Newton: uso del método de los coeficientes indeterminados... 178 — 181

Usos de las fórmulas generales antecedentes para resolver los problemas relativos al método inverso de las series: superioridad de estas fórmulas sobre los otros métodos... 181 — 183

Transformación en series de las funciones de dos cantidades variables... 185 — 186

De los máximos y mínimos de las funciones de dos cantidades variables... 186 — 189

De las funciones de dos cantidades variables que en ciertos casos particulares se reducen a las expresiones indeterminadas $\frac{a}{o} = \frac{b}{o} = \frac{c}{o} = \infty$, $y = \infty$... 189 — 191

Uso del cálculo diferencial para hallar por aproximación las raíces de las ecuaciones... 191 — 194

Continuación de las aplicaciones del cálculo diferencial a la teoría de las líneas curvas.

Consideraciones de las coordenadas polares de las líneas curvas: la ecuación de una curva relativamente a sus coordenadas rectangulares, se puede transformar en la que corresponde a las polares... 194 — 197

De las tangentes, subtangentes, normales, etc. de las líneas curvas referidas a las coordenadas polares... 197 — 200

CAPÍTULO VIII.

PRINCIPIOS DE LA TEORÍA DE LAS SUPERFICIES CURVAS, Y DE LAS CURVAS DE DOBLE CURVATURA; Y APLICACIÓN DEL CÁLCULO DIFERENCIAL A ESTA TEORÍA.

Equaciones de la línea recta y del plano: expresiones de los ángulos que hace un plano dado con los de las coordenadas. 200 — 205

Equaciones de las proyecciones de una recta dada; de un plano perpendicular á dicha recta; y de la esfera. Expresión del coseno del ángulo que forman dos rectas dadas que se cortan en un punto, y del coseno del ángulo que hacen dos planos dados. 205 — 210

Equación general de las superficies de segundo orden. Diferentes ecuaciones de una superficie curva, relativas á las diferentes si-

APLICACION DEL CÁLCULO DIFERENCIAL A LA MECANICA.

Del movimiento uniforme, y uniformemente acelerado: fórmulas que expresan las diferentes relaciones entre el tiempo, la velocidad, el espacio, la fuerza aceleratriz, y la masa. 242 — 247

De la composición y resolución, ó descomposición de los movimientos uniformes, ó de las velocidades. 247 — 249

De la composición y descomposición de los movimientos uniformemente acelerados, ó de las fuerzas aceleratrices. 249 — 250

Del movimiento rectilíneo en general: relación entre el tiempo, la velocidad, el espacio, y la fuerza aceleratriz, en un movimiento variable cualquiera. 250 — 252

Demuéstranse estas relaciones con mucha generalidad, elegancia y sencillez, por medio del teorema de Taylor. 252 — 254

Del movimiento curvilíneo: refiérelse este movimiento á los rectilíneos. De la curva que describen los proyectiles en el vacío. 254 — 255

Composición y descomposición de las fuerzas y velocidades en el movimiento curvilíneo. Ecuaciones generales del movimiento de un cuerpo. 255 — 260
Del movimiento causado por una fuerza central: determinése la expresión de esta fuerza en el movimiento circular. 260 — 261
De la fuerza central en virtud de la cual describen los planetas sus órbitas respectivas: determinése la naturaleza ó expresión de esta fuerza por medio de las dos primeras leyes de Kepler; y por medio de la tercera. 261 — 263
De las masas de los planetas que tienen algún satélite: determinése la de Júpiter por medio de su quarto satélite. 263

INSTITUCIONES
DELCÁLCULO DIFERENCIAL É INTEGRAL.

CAPITULO I.
Del método de los límites.

1. En algunos ramos de las ciencias matemáticas, como son la Aritmética, el Algebra &c., se supone que las cantidades tienen un valor fijo y determinado; unas como a, b, c &c. son dadas ó conocidas; y otras como x, y, z &c. se llaman incógnitas, y el objeto principal de dichas ciencias es determinar las relaciones que dichas cantidades tienen entre sí, suponiéndolas sujetas a ciertas condiciones; pero en los cálculos de que vamos á tratar se supone que ciertas cantidades como x, y, z &c. varían ó pueden variar continuamente, y que por esta razón se llaman variables; y otras como a, b, c &c. conservan siempre el mismo valor en el curso de las operaciones, y se llaman constantes. La naturaleza de la cuestión que se trata hará conocer las cantidades que se deben considerar como variables, y las que se deben mirar como constantes.

2. Toda expresión analítica, compuesta de un modo cualquiera de una ó muchas cantidades variables y de cantidades constantes, se llama función de dichas variables y de constantes, ó simplemente función de las variables que contiene.

Así las expresiones ax — bx², ax² — bx√(c — x²), ax + b, cx + d, &c. son funciones de la variable x; y ax — xy, axy — bx√(y² — ax), cx² + dy², &c. son de x ó y.

Si las expresiones ax — bx², ax — xy las representásemos respectivamente por z y u, de manera que z = ax — bx², u = ax — xy, diríamos que z es función de x, y u de x y y.

Muchas veces sucede que no se conocen inmediatamente las funciones z ó u, y que para determinarlas es necesario practicar algunas operaciones; como, por ejemplo, si z y u fuesen dados por las ecuaciones z = ax²z³ + bxz + cx = 0, u³ + ay³ + bxu + cxy + dx³ = 0. En este caso z es función de x, y u de x y y; pero estas funciones se llaman implícitas para distinguirlas de las antecedentes, que se llaman explícitas.

Las funciones se dividen también en enteras y fraccionarias; en aquellas los exponentes de las variables son positivos en todos sus términos, y no debe haber en ellas denominador alguno, á menos de componerse únicamente de cantidades constantes; y en las otras
CAP. I. DEL MÉTODO

algunas de las variables está ó puede estar en alguno de los denominadores.

3. Cuando todos los términos de una función entera de dos ó más variables son de una misma dimensión n; la función se llama homogénea y de dimensión n; y si en una función fraccionaria, cuyos términos se han reducido a un denominador común, es esta una función homogénea de dimensión m y el numerador de dimensión n; dicha función fraccionaria se llama homogénea y de dimensión $n-m$.

Hemos de advertir que en las dimensiones de los diferentes términos no se cuentan las de las cantidades constantes. Por ejemplo, si a, b, c &c. son cantidades constantes, \(ax^2 + by^3 + cxy^2 + f^x vy^2 (x^2 + y^2) \) es una función homogénea de dimensión 3, y la función \(\frac{ax^2 + by^3 + cxy^2 + f^x vy^2 (x^2 + y^2)}{x^2 + y^2} \) es también homogénea, y su dimensión $= 3 - 1 = 2$. Si m fuese $= n$, como en \(\frac{ax^2 - by^3}{(x^2 + y^2)} \), la función se llama de dimensión nula; y si $m > n$, la dimensión de la función será negativa; por ejemplo, la dimensión de la función \(\frac{ax^2 + y}{x^2 + y^3} \) es -3.

4. Para representar de un modo general una función cualquiera de una cantidad variable; la escribiremos dentro de un paréntesis, anteponiéndole la letra o característica f. Así la expresión $f(x, y)$ representará una función cualquiera de x, sea la que fuere.

Del mismo modo representaremos por $f(x, y, z)$ una función cualquiera de las variables independientes x, y, z; por $f(x, y, z)$ una función cualquiera de las variables independientes x, y, z; y así de las demás funciones.

5. Una cantidad variable, que decrece indefinidamente, lo puede hacer de dos modos diferentes, que consideraremos sucesivamente.

1° Una cantidad variable, que disminuye continuamente de un modo arbitrario, ó según una ley dada, puede llegar en muchos casos no solamente á ser cero, sino también negativa; pues aunque una cantidad luego que llega á ser cero cesá de existir, conviene muchas veces considerarla como nula ó cero para determinar el valor de otras cantidades que dependen de aquélla, y que en este supuesto suelen tener un valor determinado; y para otros muchos fines que sería largo explicar. La doctrina de las líneas curvas es una prueba continua de esta verdad, que manifestaremos con un ejemplo.

Sea la curva representada en la fig. 35 la conchóide de Nicomedes; A el origen de las abcisas AP, que llamarémos x; PM una ordenada cualquiera y; será su ecuación $x^2 y^2 = (b + y)^2 \left(a^2 - y^2 \right)$; la cual manifiesta evidentemente que la abcisa x no solamente puede decrecer y llegar á ser cero, sino también pasar al otro lado del punto A respecto del punto D, ó ser negativa, pues en ambos casos los valores de y serán reales. Si suponemos $x = 0$ en dicha ecuación, se reducirá á $\left(b + y \right)^2 \left(a^2 - y^2 \right) = 0$, que tiene cuatro raíces, á saber, $a, -a, -b, -b$; la primera pertenece al punto F del ramo superior $C'FC$ de la curva; la segunda al punto f del ramo inferior; y las dos raíces iguales $-b, -b$ indican el punto E, que aunque pertenece á la curva propuesta está separado de su curso. (Véase el n.º 149.) El cero se puede considerar en este caso como el origen común de las cantidades positivas y negativas. Pasemos ahora á considerar otro modo con que las cantidades pueden decrecer indefinidamente, del cual resultará otro respeto con que se puede considerar el cero.

2° Supongamos que a sea una cantidad constante, y x una variable que aumente continuamente según el orden de los números naturales $1, 2, 3, 4, 5$ &c. al infinito; la fracción $\frac{a}{x}$ decrecerá continuamente, y podrá llegar á ser menor que cualquiera cantidad assignable ó dada; pero jamás llegará á ser nula ó cero. Lo mismo sucedería si en vez de suponer que x aumenta según el orden natural de los números $1, 2, 3, 4, 5$ &c., supusiésemos que creciere indefinidamente de otro modo cualquiera hasta que pudiese llegar á ser mayor que una cantidad dada. He aquí pues otro modo con que una cantidad decrece, acercándose mas y mas á cero, sin que jamás pueda llegar á ser nula, el cual pertenece particularmente al método de los límites; y por lo mismo consideraremos en adelante de este modo las demás variables que decrecen sin fin. Esto entendido:

6. Si una cantidad varía acercándose continuamente á otra cantidad ó expresión, de manera que la diferencia entre esta y aquella pueda llegar á ser menor que cualquiera cantidad dada, por pequeña que sea, sin que jamás pueda llegar á serle igual; dicha cantidad ó expresión se llama el límite de la otra. Si suponemos, por ejemplo, que la cantidad ó razón $\frac{a}{x}$ decrece indefinidamente acercándose á cero del modo que acabamos de decir; será o el límite de la cantidad ó razón $\frac{a}{x}$. Así, cero es el límite de las cantidades ó razones que decrecen indefinidamente, ó sin fin; y este es el otro respeto con que se puede mirar el cero.

Al contrario: si suponemos que x disminuye continuamente hasta que llegue á ser menor que cualquiera cantidad dada; la cantidad ó razón $\frac{a}{x}$ crecerá continuamente, y podrá llegar á ser mayor que cualquiera cantidad por grande que sea; pero como x jamás puede llegar á ser igual á su límite cero, tampoco $\frac{a}{x}$ podrá llegar á ser igual á $\frac{a}{0}$. Por lo que la expresión $\frac{a}{0}$ ó $\frac{a}{1}$ (haciendo $a = 1$) $\frac{a}{x}$ se puede considerar como una especie de límite de las cantidades que crecen indefinidamente, ó sin fin; y sirve para denotar que la cantidad...
que representa, crece sin fin, y puede llegar a ser mayor que cualquiera cantidad dada por grande que sea.

7. Hemos dicho que la expresión \(\frac{1}{0} \) se puede considerar como una especie de límite de las cantidades que crecen sin fin; porque si la verdad no se puede considerar este límite que le hemos dado (núm. 6.); esto es, que no se puede suponer que una cantidad que crece sin fin llegará a un valor tal, que la diferencia entre dicho valor y \(\frac{1}{0} \) será menor que una cantidad dada por pequeña que sea; antes al contrario, por denotar \(\frac{1}{0} \) una cantidad que crece sin fin, de modo que puede llegar a ser mayor que cualquiera cantidad dada, se sigue que una cantidad, por grande que sea, jamás se puede suponer que se acerca a \(\frac{1}{0} \), de modo que su diferencia sea igual a una cantidad dada \(K \), por grande que esta sea; porque si esto fuese posible, llamando a dicha cantidad, tendremos \(a + K = \frac{1}{0} \), cuya ecuación manifiesta que la cantidad que \(\frac{1}{0} \) representa, solo puede crecer hasta llegar a ser igual a \(a + K \), lo cual es contra lo supuesto.

8. Algunos autores llaman a la expresión \(\frac{1}{0} \) cantidad infinita, y al cero \(\frac{1}{0} \) cantidad infinitamente pequeña. Pero esta definición es su- mamente imperfecta, y enteramente opuesta a la idea que tenemos de la cantidad. Esta por su naturaleza es siempre finita y capaz de aumento y de diminución, y por consiguiente en el instante que se supone infinita o cero cesa de existir. Cero ni es cantidad, ni puede tener valor alguno; y según acabamos de ver, solo se puede considerar como el origen de las cantidades positivas y negativas, o como el límite de las cantidades o razones que decrecen indefinidamente, o sin fin. Del mismo modo la expresión \(\frac{1}{0} \) no es una cantidad, sino un signo para denotar las cantidades o razones que crecen sin fin; de manera que si en virtud de algún supuesto particular una cantidad variable o una función cualquiera se transforma en \(\frac{1}{0} \), no dirémos que dicha variable o función es en este supuesto infinita, sino que crece indefinidamente, y puede llegar a ser mayor que cualquiera cantidad dada por grande que sea. Sin embargo se suele decir que dicha expresión es igual al infinito, y se representa también por \(\infty \); de manera que \(\frac{1}{0} = \infty = \infty \): pero por el infinito no hemos de entender una cantidad realmente infinita, sino una cantidad que crece indefinidamente, y que por lo mismo puede lle-
CAP. I. DEL MÉTODO

La función \(\frac{a}{a + x} \), en la cual se supone que \(x \) aumenta indefinidamente, tiene también por límite \(a \); el cual se descubre fácilmente dándole la forma \(a - \frac{a^2}{a + x} \); pues es evidente que cuanto mayor fuere \(x \), tanto menor será \(\frac{a^2}{a + x} \), sin que jasma pueda llegar á ser cero; por consiguiente \(\frac{a^2}{a + x} \) será el límite de la función \(\frac{a^2}{a + x} \); y así el de \(a - \frac{a^2}{a + x} \), que de igual \(\frac{a^2}{a + x} \).

Si tuviésemos la progresión geométrica decréciente \(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \cdots \), y tomamos la suma de un número cualquiera \(x \) de sus términos; cuanto mayor sea este número, tanto mas se acercará dicha suma á valer 2, á cuya cantidad se podrá acercar cuanto se quisiere sin que jamais pueda igualarla; y por consiguiente será 2 el límite de la suma de dicha progresión.

Esto se puede también manifestar considerando la suma general \(2 - \frac{1}{2^{n-1}} \) de la referida progresión; pues es evidente, que cuanto mayor sea \(x \), tanto menor será la fracción \(\frac{1}{2^{n-1}} \), la cual puede llegar á ser menor que cualquiera cantidad por pequeña que sea, pero jasma será \(\frac{1}{2} \); será pues \(\frac{1}{2} \) el límite de \(\frac{1}{2^{n-1}} \), y 2 el de la función \(2 - \frac{1}{2^{n-1}} \), ó el de la suma de la progresión \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots \), que dicha función representa.

11. Si en el círculo \(ABDEFG \) (fig. 2.) inscribimos un polígono cualquiera \(ABDEFG \), cuanto mayor fuere el número de sus lados, tanto mas su circunferencia y su superficie se acercarán á confundirse respectivamente con la circunferencia y superficie del círculo; de manera que las diferencias respectivas podrán ser menores que cualesquiera cantidades dadas, pero jasmas serán nulas. Lo mismo dirémos de la circunferencia y superficie del polígono circunscrito \(HIKLMN \); de donde concluiremos que la circunferencia del círculo es el límite de las circunferencias de los polígonos que se le pueden inscribir y circunscribir; y su superficie es también el límite de las superficies de los mismos polígonos.

La función \(\frac{x^a + bx^c}{x^a + cx^y} \) incluye dos límites distintos; uno para cuando la variable \(x \) decrece continuamente acercándose á su límite \(0 \), y otro relativo al supuesto de que la misma variable aumenta acercándose continuamente al límite \(\infty \). En el primer caso la función propuesta se acercará cuanto se quisiere \(\frac{a}{c} \) sin que jasmas llegue á ser igual, y por consiguiente \(\frac{a}{c} \) será su límite. En el segundo caso transformarémos dicha función en \(\frac{b + \frac{a}{x}}{f + \frac{a}{x}} \), la cual se acercará tanto mas \(\frac{a}{f} \) cuanto mas se acercare \(x \) á su límite \(\infty \); de manera que la diferencia entre \(\frac{b + a}{f} \) y \(\frac{a}{f} \) podrá ser menor que cualquiera cantidad dada; y por lo mismo \(\frac{a}{f} \) será el límite de la función propuesta.

12. Si suponemos que \(a, c, y \cdots \) son cantidades constantes positivas, \(a, b, c \cdots \) constantes positivas ó negativas, y que la variable \(x \) decrece indefinidamente, acercándose á su límite cero, en la serie \(ax^a + bx^c + cx^y + \cdots \), será \(0 \) el límite de la suma de dicha serie; por consiguiente, si en el mismo supuesto tuviésemos la función \(A + ax^a + bx^c + cx^y + \cdots \), representando \(A \) una cantidad cualquiera que no incluye \(x \), sería \(A \) su límite.

También es evidente que si \(x \) aumenta sin fin en la serie \(\frac{a}{x^a} + \frac{b}{x^b} + \frac{c}{x^c} + \cdots \), será igualmente \(A \) el límite de \(A + \frac{a}{x^a} + \frac{b}{x^b} + \frac{c}{x^c} + \cdots \).

13. De estos principios se infiere, que si tuviésemos una serie ordenada relativamente á las potencias de \(x \), comenzando por la menor como \(ax^a + bx^c + cx^y + \cdots \), en la cual es \(a < c < y < \cdots \), y supusiésemos que \(x \) decrece indefinidamente; el primer término \(ax^a \) llegará á ser mayor que la suma de todos los demás. En efecto, dando á la serie propuesta la forma \(x^a (a + bx^c + cx^y + \cdots) \), veremos claramente que si \(x \) disminuye indefinidamente, la expresión \(bx^c + cx^y + \cdots \) se hará menor que la cantidad dada \(a \); por consiguiente, llamando \(k \) el valor de \(x \), en este caso tendríamos \(a > bk^{a-k} + ck^{c-k} + \cdots \), y \(bk^{a-k} + ck^{c-k} + \cdots \) será mayor que la suma \(cx^y + dx^z + \cdots \).
CAP. I. DEL MÉTODO

siguen; y en general que x decreciendo indefinidamente; un término cualquiera de la serie \(ax^{\alpha} + bx^{\beta} + cx^{\gamma} + \&c. \) llegará á ser mayor que la suma de todos los que le siguen.

11. Si en vez de suponer que las varias potencias de x van aumentando en la serie \(ax^{\alpha} + bx^{\beta} + cx^{\gamma} + \&c. \), y que x decrece indefinidamente; se supone que estas potencias disminuyen continuamente; de modo que \(a > \frac{b}{a} > \frac{c}{b} \&c. \), y que x aumenta sin fin, demostraríamos con igual facilidad que el primer término \(ax^{\alpha} \) llegará á ser mayor que la suma de todos los demás. Para ello le darémos esta forma \(x^{\alpha} (a + \frac{b}{x^{\alpha - \beta}} + \frac{c}{x^{\alpha - \gamma}} + \&c.) \), la cual manifiesta evidentemente que creciendo x indefinidamente, \(\frac{b}{a} \)

+ \(\frac{c}{x^{\alpha - \gamma}} \) + \&c. llegará á ser menor que la cantidad dada a; y si llamamos k el valor de x que la hace tal, tendrémos \(a > \frac{b}{k^{\alpha - \beta}} \)

+ \(\frac{c}{k^{\alpha - \gamma}} \) + \&c., y \(ak^{\alpha} > bk^{\beta} + ck^{\gamma} + \&c. \).

Del mismo modo probaríamos que en este mismo supuesto un término cualquiera de la serie \(ax^{\alpha} + bx^{\beta} + cx^{\gamma} + \&c. \) llegará á ser mayor que la suma de todos los que le siguen.

15. De la definición que hemos dado del límite de una cantidad (núm. 6.) se sigue que:

1°. Dos cantidades que son el límite de una misma cantidad ó función, son necesariamente iguales. Pues si entre dichas cantidades hubiese alguna diferencia \(k \), la cantidad ó función, de la cual son límite, no podría acercarse á una de ellas más que de la misma diferencia \(k \), lo cual es contra dicha definición.

2°. Si dos cantidades ó funciones que varían, acercándose continuamente á sus límites respectivos, conservan siempre una razón constante como de a á b; esta razón será también la de los límites de dichas cantidades ó funciones: cuya proposición es evidente por sí misma.

16. Si a es límite de dos cantidades variables x, y, y b el de otras dos variables z, y u; y se supone que mientras estas variables se acercan a sus límites respectivos \(a, b \), sea siempre \(u = \frac{y}{x} > y, \frac{y}{x} = \frac{u}{z} \), los límites a, b serán iguales.

Pues siendo siempre en el primer caso \(y = z \), y \(z = x \), esta proposición no es otra cosa en dicho caso que la del núm. 15 puesta en otros términos.

En el segundo caso supondremos \(\frac{u}{y} = 1 + \alpha, \frac{x}{z} = 1 + \beta \), siendo \(\alpha, \beta \) cantidades variables positivas, cuyos valores respectivos en el límite son \(\alpha, \beta \); y para conocer la razón de los límites haremos \(x \beta \) y iguales á \(a \alpha \) y \(u \), \(u \) iguales á \(b \), y tendremos \(\frac{b}{a} = \frac{1}{1 + \beta} \), \(a = \frac{1}{1 + \beta} \), \(a = \frac{1}{1 + \beta} \), resultado imposible, aparte de ser \(a \)

\(0 = \beta \); harémos pues este supuesto, y tendremos del mismo modo que en el caso antecedente \(a = b \).

Estas tres proposiciones forman la base del método de los límites empleado por los antiguos Matemáticos, entre los cuales se distinguió Archimedes: por su medio descubrió este célebre Geómetra varias verdades importantes de la Geometría elemental y práctica, y resolvió los problemas más famosos de dicha ciencia, los cuales le dieron una fama inmortal, y le han merecido en todos tiempos los mayores elogios. El camino que generalmente sigue para demostrar sus proposiciones consiste en comparar la cantidad cuyo valor quiere determinar, á otra cantidad cuyo valor es conocido, cuyas cantidades son á un mismo tiempo los límites de otras; y luego, por medio de las proposiciones antecedentes y del método de exacción, concluye que dichos límites son iguales, ó tienen entre sí una razón dada.

Los lectores que deseen conocer los descubrimientos que hizo Archimedes por medio de estos principios pueden leer sus obras publicadas é ilustradas por el Doctor Barrow (1); y sobre todo el excelente tratado de la Esfera y del Cilindro: nosotros nos ceñiremos por ahora á manifestar su uso para demostrar dos teoremas de la Geometría elemental.

17. Supongamos que HIKLNM (fig. 2) sea un polígono regular circunscrito á un círculo ABDEFG, y NOP un triángulo rectángulo cuya base NP sea igual á la circunferencia de dicho círculo, y la altura PO igual al radio CE: esto supuesto, la superficie del polígono HIKLNM es igual á la de un triángulo cuya base sea igual á la circunferencia de dicho polígono, y la altura igual al radio CE; y como la circunferencia del círculo es el límite de la del polígono, la superficie de este será mayor que la del triángulo NOP; pero aumentando el número de los lados, la diferencia entre ambas superficies llevará á ser menor que cualquiera cantidad dada, por pequeña que sea, y por consiguiente el triángulo NOP será el límite del referido polígono; pero la superficie del círculo es tambien el límite de la del polígono: luego será tambien igual á la de dicho triángulo, y por consiguiente igual al producto del radio CE multiplicado por la mitad de su circunferencia.

Esto se puede demostrar mas brevemente y fácilmente representando las cantidades por medio de los signos algebraicos del modo siguiente. Llamemos a la circunferencia del círculo ABDEFG, cuyo ra-

(1) Archimedes Opera &c. por I. Barrow, expressorum &c. Londres 1675, un vol. en 4.°
DE LOS LÍMITES.

CAPÍTULO II.

Del cálculo de las diferencias.

22 Si una cantidad variable x aumenta o disminuye, y llega a ser $x \pm k$, la cantidad indefinida k, de lo cual ha aumentado o disminuido, se llama el incremento, la diferencia finita, o simplemente la diferencia de dicha variable. Del mismo modo si variando y llegando a ser $x \pm h$, la cantidad indefinida h se llama la diferencia de y, cuyas diferencias serán positivas o negativas, según x y y hubiesen aumentado o disminuido. Pero como muchas veces se ofrece considerar en un mismo problema las diferencias de muchas variables y de sus funciones, á fin de expresarlas con más sencillez y guardar uniformidad, se hace uso de un signo general Δ, anteponiéndole a la variable cuya diferencia se quiere expresar; así en lugar de $\pm k$ se suele escribir $\pm \Delta x$, y en lugar de $\pm h$, $\pm \Delta y$; su signo tiene ademas la ventaja de manifestar inmediatamente el origen x y y de dichas diferencias.

(1) Prince nat. de la Fil. Nat. lib. 1, sec. 1.
(2) Il. lib. 2, sec. 2.
(3) Encyclopædia metód.
(4) Commercial Epistolon.
(5) Principiis de innumeris minutis.
(6) Tractado de las fluxiones.
23. Puesto que las cantidades constantes no aumentan ni disminuyen, y que cero no es cantidad; la diferencia de una cantidad constante ó de o es cero.

Por consiguiente la diferencia de una cantidad variable, y la diferencia de la suma de dicha variable y una constante cualquiera son iguales: por ejemplo \(\Delta (x \pm a) = \Delta x \).

24. Las varias potencias \((\Delta x)^2, (\Delta x)^3, (\Delta x)^4 \) &c. de la diferencia de una cantidad variable \(x\), se expresan mas sencillamente por \(\Delta x^2, \Delta x^3\) &c.; y para que estas expresiones no se tomen por las diferencias respectivas de \(x, x^2, x^3\) &c., se denotan estas por \(\Delta x^2, \Delta x^3, \Delta x^4\) &c.

25. Problema 1° Suponiendo que en una función cualquiera \(f(x)\) de la variable \(x\), que representaremos también por \(y\); \(x\) variará y se transformará en \(x \pm \Delta x\); hallar la diferencia de la función.

Resolución. Es evidente que si \(x\) se transforma en \(x \pm \Delta x\), la función \(y\) variará y se transformará en \(y' = f(x \pm \Delta x)\), representando esta expresión la misma función de \(x \pm \Delta x\), que \(y = f(x)\) lo es de \(x\); por consiguiente, haciendo para abreviar \(f(x \pm \Delta x) = y'\), y restando \(y\) de esta nueva función, resultará \(\Delta y\) la diferencia de la función propuesta.

Ejemplo 1° Sea la función propuesta \(x^2 + ax + b = y = f(x)\); será \(f(x \pm \Delta x) = y' = (x \pm \Delta x)^2 + a(x \pm \Delta x) + b\), y

\[\Delta y = y' - y = x^2 \pm 2ax \Delta x + \Delta x^2 + ax \pm a \Delta x + b - x^2 - ax - b = \pm (a + 2x) \Delta x + \Delta x^2.\]

Ejemplo 2° Sea \(y = ax^n\); será \(y = f(x \pm \Delta x) = a(x \pm \Delta x)^n\); y desenvolviendo esta expresión por medio de la fórmula del binomio de Newton, tendríamos \(y = a\left(x^{n-1} \Delta x + n x^{n-2} \Delta x^2 + \cdots \right)\), de donde inferiremos \(\Delta y = a\left(x^{n-2} \Delta x^2 + n x^{n-3} \Delta x^3 + \cdots \right)\).

Ejemplo 3° Sea \(y = \frac{ax}{b + x}\); tendríamos \(y' = \frac{ax \pm \Delta x}{b + x \pm \Delta x} = a\left(\frac{x \pm \Delta x}{b + x \pm \Delta x}\right) = a\left(\frac{b \Delta x}{(b + x)^2} = \Delta x^2 + \cdots \right)\), y \(\Delta y = a\left(\pm \frac{b \Delta x}{b + x \pm \Delta x} = \pm \Delta x + \cdots \right) = \Delta x \pm \cdots\).

Ejemplo 4° Si fuese \(y = \sqrt{ax - x^2} = x^{\frac{1}{2}} (a - x)^{\frac{1}{2}}\), sería \(y' = \frac{\Delta x}{2 \sqrt{ax - x^2}} = \frac{\Delta x}{2 \sqrt{a - x}}\).

DE LAS DIFERENCIAS.

\[(x \pm \Delta x)^{\frac{1}{2}} = (a - x \pm \Delta x)^{\frac{1}{2}},\]

pero si consideramos \(a - x\) como un solo término, tendremos por la fórmula del binomio de Newton \((a - x \pm \Delta x)^{\frac{1}{2}} = (a - x)^{\frac{1}{2}} + \frac{1}{2}(a - x)^{-\frac{1}{2}} \Delta x \pm \cdots\).

\[(a \pm \Delta x)^{\frac{1}{2}} = a^{\frac{1}{2}} + \frac{1}{2}a^{-\frac{1}{2}} \Delta x \pm \cdots,\]

y como \((x \pm \Delta x)^{\frac{1}{2}} = x^{\frac{1}{2}} \pm \frac{1}{2}x^{-\frac{1}{2}} \Delta x \pm \cdots\), será \(y' = \frac{1}{2}(a - x)^{-\frac{1}{2}} \Delta x \pm \cdots,\).

\[(x^2 \pm \Delta x^2) = x^2 \pm 2x \Delta x \pm \Delta x^2 \pm \cdots,\]

\[= x^2 \pm \frac{1}{2}(a - x)^{-\frac{1}{2}} \Delta x \mp \Delta x^{\frac{3}{2}} \pm \cdots,\]

\[= x^2 \pm \frac{1}{2}(a - x)^{-\frac{1}{2}} \Delta x \pm \Delta x^2 \pm \cdots,\]

(reduciendo a un común denominador los coeficientes de \(\Delta x\) y sus potencias \(x^{\frac{1}{2}} (a - x)^{\frac{1}{2}} = \frac{(a - 2x) \Delta x}{2 x^\frac{1}{2} (a - x)^{\frac{1}{2}}} = \frac{a^2 \Delta x^2}{(a - x)^{\frac{3}{2}}} \pm \cdots,\)

de donde inferiremos \(\Delta y = \frac{(a - 2x) \Delta x}{2 x^\frac{1}{2} (a - x)^{\frac{1}{2}}} = \frac{a^2 \Delta x^2}{(a - x)^{\frac{3}{2}}} \pm \cdots,\)

Exemplo 5° Sea y el log. natural ó Neperiano de x; será \(y' = \log.(x \pm \Delta x) = \log.x + \log.\left(1 \pm \frac{\Delta x}{x}\right) = \log.x \pm \log.\left(1 \pm \frac{\Delta x}{x}\right)\), y por consiguiente \(\Delta y = \text{log.}(1 \pm \frac{\Delta x}{x}) = \frac{\Delta x}{x} - \frac{\Delta x^2}{2 x^2} \pm \frac{\Delta x^3}{3 x^3} \pm \cdots \pm \Delta x \pm \cdots.\)

En el sistema de los logaritmos de Neper el módulo es = 1; pero si se pide la diferencia \(\Delta y\) relativa á otro sistema cualquiera, cuyo módulo = \(M\), será \(\Delta y = \Delta x \pm \Delta x^2 \pm \Delta x^3 \pm \cdots \pm \Delta x \pm \cdots.\)

Exemplo 6° Si fuese \(y = \frac{x}{a \pm \Delta x}\), sería \(y' = \frac{a \pm \Delta x}{(a \pm \Delta x)^2} = \frac{a \pm \Delta x}{(a \pm \Delta x)^2} \pm \cdots,\) pero \(a \pm \Delta x = 1 \pm \Delta x \). Log. a + \(\Delta a = \log.a + \frac{\Delta a}{2} \pm \log.(\log.a)^{\frac{3}{2}} \pm \cdots \pm \Delta a \pm \cdots,\)

luego \(y' = \frac{1}{a} (1 \pm \Delta x \log.a \pm \Delta x^2 \log.a \pm \Delta x^3 \log.a \pm \cdots \pm \Delta x \pm \cdots,\)

(1) véase Euler Introduct. Anal. infinît., t. 1, pág. 89, 92; y Lagrange Théorîe des fonctions analytiques, pág. 18, 19, 20.)
DE LAS DIFERENCIAS.

De las dos primeras cantidades unía varía en la función \(z \) una de las cantidades \(x \) o \(y \), su diferencia se hallará en virtud del problema antecedente; y por lo que toca al tercero, si llamamos \(z' \) a la función \(f(x + \Delta x, y + \Delta y) \) que resulta substituyendo en \(z \), \(x + \Delta x \) por \(x \), \(y + \Delta y \) por \(y \), la diferencia de \(z \) y \(\Delta z \) será igual a \(z' - z \).

Suponemos para mayor claridad y sencillez que las dos variables \(x \) y \(y \) aumentan á un mismo tiempo; pues en caso que alguna de ellas disminuya, bastará hacer preceder su diferencia del signo -.

Ejemplo 1. Sea \(z = ax + by + cxy \); será \(z' = ax + (y + \Delta y) + b(y + \Delta y) + c(ax + \Delta x + y + \Delta y) \).

Ejemplo 2. Sea \(z = a(x - by)^2 - x(x - a)^3 \); será \(z' = a(x + \Delta x - by)^2 - x(x + \Delta x - a)^3 \).

29. De estos ejemplos se infiere que

1°. La diferencia de una función de dos variables es igual á la diferencia de cada uno de sus términos.

2°. Si y es una función cualquiera \(f(x, y) \) de una variable \(x \), y substituyéndola en ella \(x = \Delta x \) en lugar de \(x \), podremos suponer \(f(\Delta x, y) \) y por consiguiente \(\Delta y = f' \Delta x \).

28. Supongamos que \(z \) sea una función cualquiera \(f(x, y) \) de dos cantidades variables independientes \(x \) y \(y \); en este supuesto \(z \) puede variar por tres causas: 1° por la variación sola de \(x \), que se transforma en \(x = \Delta x \); 2° porque \(y \) solamente varía, y se transforma en \(y = \Delta y \); 3° en consecuencia de variar á un mismo tiempo ambas cantidades \(x \) y \(y \). En el primero y segundo caso las diferencias de \(z \) que resultan se llaman partciales, y se expresan respectiva-

(1) Euler, pág. 99; Lagrange, pág. 23, 24.
de una función de una variable (núm. 27) una dependencia recíproca de manera, que conociendo la función y, A y B se derivan de y; C, D, E de A y B &c. por medio de operaciones semejantes, lo que manifestaremos en el cálculo Diferencial cuando consideremos las funciones de dos cantidades variables.

31. Si entre las cantidades variables x e y hubiese una relación expresada por la ecuación \(z = f(x, y) \) se diría que y, y recíprocamente y funcion de x; de donde se sigue, que si x, por ejemplo, varía y se transforma en \(x + \Delta x \), y variará necesariamente de manera que llamando \(\Delta y \) el incremento ó diferencia que resulta en y en virtud de la diferencia \(\Delta x \) que x adquiere, los nuevos valores x + \(\Delta x \), y + \(\Delta y \), de x y y deberán necesariamente satisfacer a la ecuación y = 0, teniéndose pues \(z' = f(x + \Delta x, y + \Delta y) \) y = 0, \(z + Ax + By + \), \(Cx + Ay + Dy^2 + \), el cual, y como por el supuesto es y = 0, será también \(A \Delta x + B \Delta y + Cx + Ay + Dy^2 + \), el cual expresará la relación entre \(\Delta x \) y \(\Delta y \); de donde inferiremos, que esa relación se hallara tomando la diferencia de y como si las variables x e y fuesen independientes, y haciendo \(\Delta z = 0 \).

Si, por ejemplo, la relación entre y se fuese dada por la ecuación \(a(y - b)^2 - x(x - a)^2 = 0 \); la ecuación \((A'), \) es decir: \(3x^2 = 4ax + a^2 \), es la que se llama diferencial de aquella, y \(\Delta x = - \frac{4a}{3} \) \(\Delta y \) es igual a \(\Delta x \); la ecuación \((A') \) es el de \(\Delta x \) y el de \(\Delta y \) en la ecuación \((A) \) son cero; esta ecuación se reduce a \(ad^2 - a \Delta x^2 - a \Delta x = 0 \), y la razón \(\frac{\Delta y}{\Delta x} \) será dada por la ecuación del segundo grado \(\Delta y = 1 + \frac{\Delta y}{\Delta x} \). No es pues de extrañar que en el supuesto de \(x = a \), la ecuación \((A') \) nos dé un valor falso de \(\frac{\Delta y}{\Delta x} \); puesto que en dicha ecuación el consecuente de la razón \(\Delta y : \Delta x \) es la cantidad \(2a(y - b) \), por el supuesto de ser \(x = a \) no debe existir. Si la ecuación \(x^2 + bx^2 + by^2 = 0 \) entre x e y, y la ecuación \((B) \) entre sus diferencias, se pide a la razón \(\frac{\Delta y}{\Delta x} \) suponiendo \(x = a \) (como en este caso sería también y = 0), la ecuación \((B) \) se reduciría a \(b \Delta y^2 - a \Delta y \Delta x + a \Delta x^2 = 0 \) y \(\frac{\Delta y}{\Delta x} = - \frac{a}{b} \Delta x = \frac{\Delta y}{\Delta x} \), ecuación de tercer grado, cuya resolución daría los valores de \(\frac{\Delta y}{\Delta x} \). La ecuación \((B) \) nos hubiera dado \(\frac{\Delta y}{\Delta x} = \infty \) por la misma razón que en el ejemplo antecedente.

33. El camino que hemos seguido para hallar la diferencia de una función de dos cantidades variables manifiesta el que debe seguir para hallar de la de una función de tres ó mas variables, por lo que sin detenernos más en este asunto pasaremos a considerar las diferencias de un orden superior.

34. Para manifestar como se originan estas diferencias supondremos que haciendo variar sucesivamente una función de una ó muchas variables, que llamaremos z, sean z, \(z', z'', \), \(z''', z'''' \) &c. los valores consecutivos de z cuando aumenta, y \(y', y'', y''', y'''' \) &c. quan-
41. Problema 30. Dada una función cualquiera de x; hallar sus diferencias segundas, tercera y cuarta.

Resolución. Una vez que suponemos Δx constante; si llamamos y a la función propuesta, y substituimos en su diferencia Δy, $x + \Delta x$ en lugar de x; resultará (núm. 38.) $\Delta^2 y$, de la cual restando Δy, se tendrá (núm. 34.) $\Delta^3 y$. Substituyendo en $\Delta^2 y$ por $x, x + \Delta x$, tendremos $\Delta^3 y'$, y restando $\Delta^2 y$, resultará (núm. 36.) $\Delta^3 y'$; y así en adelante.

Sea por ejemplo $y = x^n$; será (núm. 25.) $\Delta y = a \cdot (nx^{n-1})$, $\Delta^2 y = a \cdot (n(n-1)x^{n-2})$, $\Delta^3 y = a \cdot (n(n-1)(n-2)x^{n-3}) + \& c.$, y restando esta cantidad de la que resulta substituyendo en ella $x + \Delta x$ en lugar de x, y restando $\Delta^2 y$, tendremos $\Delta^3 y = a \cdot (n(n-1)x^{n-2})$, $\Delta^3 y = a \cdot (n(n-1)(n-2)x^{n-3}) + \& c.$, teniendo en cuenta que con esta cantidad que con la antecedente, hallaremos $\Delta^3 y = a \cdot (n(n-1)(n-2)x^{n-3})\Delta^3 y + \& c.$, haciendo la misma operación otra vez con esta cantidad que con la antecedente, hallaremos $\Delta^3 y = a \cdot (n(n-1)(n-2)x^{n-3})\Delta^3 y + \& c.$, y del mismo modo se hallarán las demás diferencias.

42. Problema 31. Dada una función de dos variables independientes x y y, que llamaremos z; hallar las diferencias segundas, tercera y cuarta.

Resolución. Si substituimos en Δz, $x + \Delta x$ en lugar de x; $y + \Delta y$, en lugar de y; y $\Delta y + \Delta^2 y$ en lugar de Δy; resultará (núm. 39.) $\Delta^2 z$; de la cual, restando Δz, tendremos $\Delta^2 z$ (núm. 35.). Substituyendo en $\Delta^2 z$ por $x, x + \Delta x$; por $y, y + \Delta y$; por $\Delta y, \Delta y + \Delta^2 y$; y por $\Delta^2 y, \Delta^2 y + \Delta^3 y$, resultará $\Delta^3 z$; de la cual, si quitamos $\Delta^2 y$, la resta será $\Delta^3 z$, y así de las demás diferencias.

Exemplo. Sea $z = (a + x + dx)$; será $\Delta z = (a + x + dx)$, $\Delta^2 z = 2a + 2x + 2dx$, $\Delta y + \Delta^2 y$, y $\Delta^3 z = 2a + 2x + 2dx + \Delta^2 y + \Delta^3 y$. Los problemas que hemos resuelto, aunque sencillos, manifiestan como se deben resolver otros más complicados, y que toda la dificultad de estos se reducirá a que los cálculos serán más largos.

43. La serie de ecuaciones (núm. 34.) dan $z = \Delta^m z + \& c.$, $z = \Delta z + z$, $z = \Delta z + z$, $z = \Delta^2 z + z$, $z = \Delta^m z + \& c.$, $z = \Delta^m z + \& c.$, de donde inferiríamos haciendo las substituciones convenientes $z = \Delta^m z + \Delta IV z + \& c.$, $z = \Delta^m z + \Delta IV z + \& c.$, $z = \Delta^m z + \Delta IV z + \& c.$, $z = \Delta^m z + \Delta IV z + \& c.$, $z = \Delta^m z + \Delta IV z + \& c.$, $z = \Delta^m z + \Delta IV z + \& c.$, $z = \Delta^m z + \Delta IV z + \& c.$.
z = \Delta z + \Delta^p z + \Delta^r z + \Delta^m z + \Delta^w z + \Delta^V z + \ldots + \Delta^c z, \quad \Delta^c z, \quad esto es,

Un término cualquiera de la serie \(\Delta^c z \), \(\Delta^p z \), \(\Delta^r z \), \(\Delta^m z \), \(\Delta^w z \), \(\Delta^V z \), \(\Delta^c z \), es igual a la diferencia de la suma de todos los que le preceden.

44. La misma serie de ecuaciones, y las del n.\(\theta \), y siguientes, dan:
\[z = \Delta z + \Delta^p z \]
\[\Delta z = \Delta^p z + \Delta^r z \]
\[\Delta^p z = \Delta^r z + \Delta^m z \]
\[\Delta^r z = \Delta^m z + \Delta^w z \]
\[\Delta^m z = \Delta^w z + \Delta^V z \]
\[\Delta^w z = \Delta^V z + \Delta^c z \]
\[z = \Delta z + \Delta^p z \] \&c.; \(z = \Delta^p z + \Delta^r z \) \&c.; \(z = \Delta^r z + \Delta^m z \) \&c.; \(z = \Delta^m z + \Delta^w z \) \&c.; \(z = \Delta^w z + \Delta^V z \) \&c.; \(z = \Delta^V z + \Delta^c z \) \&c.; \(z = \Delta^c z + \Delta z \); \(z = \Delta^p z + \Delta^r z \) \&c.; \(z = \Delta^r z + \Delta^m z \) \&c.; \(z = \Delta^m z + \Delta^w z \) \&c.; \(z = \Delta^w z + \Delta^V z \) \&c.; \(z = \Delta^V z + \Delta^c z \) \&c.;

47. Hemos supuesto iguales los intervalos \(PP' \), \(PP'' \) \&c., \(\Delta z \) que es lo mismo \(\Delta x \) constante; porque este supuesto simplifica los cálculos, y da a la fórmula antecedente la forma conveniente para el uso que de ella haremos en el cálculo diferencial; pero en otras ocasiones conviene suponer iguales los intervalos \(mM' \), \(mM'' \) \&c., \(\Delta z \) que es lo mismo \(\Delta y \) constante; ambos supuestos conducirán al mismo resultado, y solo se debe dar la preferencia al que facilita más las operaciones, o es más conveniente a las miras que se llevan. Pero no se pueden suponer constantes a mí mismo \(\Delta x \), \(\Delta y \); porque siendo en este caso iguales entre sí \(PP' \), \(PP'' \) \&c. igualmente que \(mM' \), \(mM'' \) \&c. serán iguales y semejantes; los ángulos \(M' \), \(M'' \) \&c. serán también iguales; por consiguiente la línea \(AMC \) será recta, y \(f (x) = y \) no sería una función cualquiera de \(x \) según hemos supuesto, sino una función determinada de la forma \(a + bx \).

48. De la serie de ecuaciones (n.\(\theta \)); \(z = z + \Delta z \), \(z = z + 2 \Delta z \), \(z = x + 3 \Delta z \) \&c. en lugar de \(x \); resultaría \(z^p \), \(z^r \), \(z^m \) \&c. (n.\(\theta \) y \(\theta \)); de manera que llamando \(Z \) un término cualquiera de la serie \(z^p \), \(z^r \), \(z^m \), \&c.; \(Z = z + \Delta z \) \&c.; \(Z = z + \Delta^p z \) \&c.; \(Z = z + \Delta^r z \) \&c.; \(Z = z + \Delta^m z \) \&c.; \(Z = z + \Delta^w z \) \&c.; \(Z = z + \Delta^V z \) \&c.; \(Z = z + \Delta^c z \) \&c.; se infiere \(Z = z + \Delta z \), \(Z = z + \Delta^p z \) \&c.; \(Z = z + \Delta^r z \) \&c.; \(Z = z + \Delta^m z \) \&c.; \(Z = z + \Delta^w z \) \&c.; \(Z = z + \Delta^V z \) \&c.; \(Z = z + \Delta^c z \) \&c.; y en general.

Llamando \(S \) la suma de un número \(n \) de términos de la serie \(z^p \), \(z^r \), \(z^m \) \&c.; se tiene \(S = nz + \Delta z + \Delta^p z + \Delta^r z + \Delta^m z + \Delta^w z + \Delta^V z + \ldots + \Delta^c z \) \&c.;
CAPÍTULO II.

DEL CÁLCULO

\[\Delta^2 z + n \frac{n - 1}{2} \cdot \frac{n - 3}{2} \cdot \frac{n - 5}{2} + \Delta^3 z + n \frac{n - 1}{2} \cdot \frac{n - 3}{2} \cdot \frac{n - 5}{2} + \Delta^4 z + n \frac{n - 1}{2} \cdot \frac{n - 3}{2} \cdot \frac{n - 5}{2} + \Delta^5 z + n \frac{n - 1}{2} \cdot \frac{n - 3}{2} \cdot \frac{n - 5}{2} + \Delta^6 z + \&c. \]

s

49. La misma serie de ecuaciones da \(\Delta z = z' - z \), \(\Delta^2 z = z'' - z' \), \(\Delta^3 z = z''' - z'' \), \(\Delta^4 z = z'''' - z''' \), \(\Delta^5 z = z''''' - z'''' \); del mismo modo hallaríamos \(\Delta^6 z = z'''''' - z''''' \), \(\Delta^7 z = z'''''''' - z''''''' \), y en general \(\Delta n z = z' - z \frac{n - 1}{2} + \frac{(n - 1)(n - 3)}{2} + \cdots + \frac{(n - 1)(n - 3)(n - 5)}{6} \).

50. Si alguna de las diferencias de la serie \(z, z', z'', z''' \), \(z''', z''''' \), \(z'''''' \), \&c. fuese constante, las diferencias siguientes serían nulas (núm. 23), y las expresiones de \(Z \) (núm. 44) y de \(S \) se compararían de un número limitado de términos; por consiguiente las ecuaciones \(Z = z + n \Delta z + n \frac{n - 1}{2} \Delta z + \&c. \), \(S = nz + n \frac{n - 1}{2} \Delta z + n \frac{n - 1}{2} \Delta^2 z + \&c. \), pueden servir de fórmulas generales para hallar el término general, y la suma general de una serie algebraica cualquiera.

Ejemplo 1. Supongamos que se nos pida el término general, y la suma general de la serie algebraica \(5, 9, 13, 17, \&c. \); comparándola a la serie \(z, z', z'', z''' \), \&c., tendremos \(z = 5, z' = 9, z'' = 13, z''' = 17, \Delta z = 4, \Delta^2 z = 4, \Delta^3 z = 4, \&c. \); y sustituyendo estos valores en las formulificaciones, resaltará el término general \(Z = 3 + 2n + 3n \frac{n - 1}{2} \)

\[= 3 + \frac{n + 3n^2}{2}, \text{y la suma general } S = 3n + 2n \frac{n - 1}{2} + 3n \frac{n - 1}{2} \]

\[= 3n + 3n^2 - \frac{n^3}{2}. \]

Ejemplo 2. Sea \(1, 4, 9, 16, 25, 36 \&c. \) la serie propuesta; serán \(z = 1, z' = 4, z'' = 9, \&c. \); \(\Delta z = 3, \Delta^2 z = 2, \Delta^3 z = 1, \Delta^4 z = 0, \&c. \); y en general \(\Delta z = 3 + 2n + 2n \frac{n - 1}{2} + 2n + n^2 = (1 + n)^2 \), y la suma general \(S = n + 3n - \frac{n^3}{2} + 2n \frac{n - 1}{2} + 3n \frac{n - 1}{2} = \frac{n + 3n^2}{6} + 2n \frac{n - 1}{2} + 3n \frac{n - 1}{2} \).

Ejemplo 3. Si fuese \(1, 2, 6, 17, 39, 76, 132 \&c. \) la serie propuesta; sería \(z = 1, z' = 2, z'' = 6, z''' = 17, \Delta z = 1, \Delta^2 z = 5, \Delta^3 z = 4, \Delta^4 z = 0, \&c. \); por consiguiente, el término general \(Z = 1 + n + 3n \frac{n - 1}{2} + 4n \frac{n - 1}{2} + 5n \frac{n - 1}{2} + 6n \frac{n - 1}{2} + 7n \frac{n - 1}{2} + 8n \frac{n - 1}{2} + 9n \frac{n - 1}{2} \).

De las diferencias.

3

51. El método inverso de las diferencias tiene por objeto el determinar las funciones de las cantidades variables por medio de las diferencias de las variables, y es uno de los ramos más difíciles de las Matemáticas puras; pero por motivo de exámenes estrictos no vamos a manifestar, dividiéndole para mayor orden y facilidad en otros problemas particulares.

52. Llamase cálculo diferencial el que enseña a hallar los límites de las razones entre las diferencias de las cantidades variables. Así que tuviésemos presentes los principios que hemos dado del cálculo de las diferencias, y lo que hemos dicho sobre los límites de las cantidades; comprenderán fácilmente la naturaleza del cálculo diferencial, cu-yo objeto es resolver este problema general: dada la razón de las cantidades variables, hallar el límite de la razón entre sus diferencias. Problema que puede resolverse en todos los casos, sea la que fuere la naturaleza de las cantidades que se consideren; conforme vamos a manifestar, dividiéndole para mayor orden y facilidad en otros problemas particulares.

53. **Problema I.** Dada una función cualquiera \(f(x) \) de la variable \(x \), que llamaremos \(y \); y hallar el límite de la razón entre sus diferencias \(\Delta y \), \(\Delta x \).

Resolución. Sea la que fuere la función propuesta \(y \); su diferencia \(\Delta y \) se puede representar (núm. 26.) por \(A \Delta x + B \Delta x^2 + C \Delta x^3 + D \Delta x^4 + \&c. \); y por consiguiente la razón \(\frac{\Delta y}{\Delta x} \) por \(A + B \Delta x + C \Delta x^2 + D \Delta x^3 + \&c. \)
DEL CÁLCULO DIFERENCIAL.

Exemplo 4. Sea \(y = \sqrt{ax - x^2} \); tendremos \(\frac{dy}{dx} = \frac{a - 2x}{2(2ax - x^2)^{\frac{3}{2}}} \).

Exemplo 5. Si fuese \(y = \log x \), seria \(\frac{dy}{dx} = \frac{1}{x} - \frac{\Delta x}{x^2} + \Delta x^2 \).

Exemplo 6. Si fuese igual a \(a \), tendriamos \(\frac{dy}{dx} = a (\log a - \frac{\Delta x}{x} - \log a + \frac{\Delta x}{x} + \&c.) \), y \(\frac{dy}{dx} = a \log a \).

Exemplo 7. Sea \(y = \cos x \); seria la razón \(\frac{dy}{dx} \) de la diferencia del seno a la del arco igual a \(\cos x - \frac{\Delta x}{2} \) sen. \(x - \frac{\Delta x^2}{2} \) cos. \(x \) + \&c.; y por consiguiente su limite \(\frac{dy}{dx} = \cos x \).

Exemplo 8. Si fuese \(y = \cos x \); seria \(\frac{dy}{dx} = - \cos x - \frac{\Delta x}{2} \) sen. \(x + \&c. \), y por consiguiente \(\frac{dy}{dx} = - \cos x \).

Problema II. Dada la relacion entre las cantidades variables \(x \) y \(y \), por una ecuacion cualquiera; determinar el limite de la razón \(\frac{dy}{dx} \) entre sus diferencias.

Resolucion. Sea la que fuere la ecuacion que expresa la relacion entre \(x \) y \(y \), la razón \(\frac{dy}{dx} \) de sus diferencias (núm. 31.) se puede expresar por \(\frac{A}{B} + C \Delta x + D \Delta y + E \frac{\Delta y}{\Delta x} \Delta y + F \Delta x^2 + \&c. \), ó haciendo

\[
\begin{align*}
\frac{C \Delta x + D \Delta y + E \frac{\Delta y}{\Delta x} \Delta y + F \Delta x^2 + \&c.}{B} &= \pm X, \quad \text{por} \quad \frac{A}{B} = \pm X. \quad \text{esto supuesto, discurriendo del mismo modo que en el problema antecedente, echaremos de ver, que como todos los términos de \(X \) tienen por factores \(\Delta x \) ó \(\Delta y \); si suponemos que estas diferencias decrecen continuamente acercándose a \(0 \); \(X \) decrecerá igualmente, y llegarán á ser menor que cualquiera cantidad dada por pequeña que sea; por consiguiente \(\frac{A}{B} \) será el limite de \(\frac{A}{B} = \pm X \), ó de la razón \(\frac{dy}{dx} \); de manera que será \(\frac{dy}{dx} = \frac{A}{B} \), de donde se deduce esta regla general. Hállese la razón \(\frac{dy}{dx} \) de las diferencias, y despreciando los términos que tuvieren por factores \(\Delta x \) ó \(\Delta y \), se tendrá el limite.
CAP. III. DE LOS PRINCIPIOS

Exemplo 1° Sea dada la relación entre \(x \) y \(y \) por la ecuación

\[
a (y - b)^2 - x (x - a)^2 = o : \text{ la razón } \frac{dy}{dx} \text{ de las diferencias}
\]

\[
g^3 - 4ax + a^2 + (g^3 - 2a) \Delta x = a \frac{dy}{dx} + \Delta x^3
\]

(n. 31.) será igual a

\[
\frac{1}{a} (y - b)
\]

y despreciando los términos multiplicados por \(\Delta x 0 \) por \(\Delta y \), tendremos el límite de dicha razón, \(\frac{dy}{dx} = \frac{1}{a} (y - b)^2
\]

Exemplo 2° Si la ecuación \(x^4 - ayx^2 + by^3 = o \) expresa la relación entre \(x \) y \(y \), tendremos (n. 31.)

\[
\frac{dy}{dx} = \frac{1}{a (ay - 2x^2)} - \frac{(6x^2 - ay) \Delta x + 2ax \Delta y - 6r}{3y^2 - ax^2}, \quad \frac{dy}{dx} \text{, }
\]

\[
\frac{dy}{dx} = \frac{1}{3y^2 - ax^2}
\]

56. De aquí podemos inferir:

1° Que la razón \(\frac{dy}{dx} \) se transforma en su límite \(\frac{dy}{dx} \), cuando \(\Delta x \) y \(\Delta y \) son cero. Por consiguiente, si la razón \(\frac{dy}{dx} \) incluyese \(y' \) o \(x' \); en su límite \(\frac{dy}{dx} \) sería (n. 37.) \(y' = y \), \(x' = x \).

2° Que el cálculo diferencial enseña á determinar los valores de las razones de las diferencias de las cantidades variables, cuando estas diferencias se suponen iguales á cero; y esta definición que del cálculo diferencial da el célebre Leonardo Euler (1) es muy exacta.

57. Aquí hemos de hacer una observación análoga á la que hicimos (n. 32.) relativamente á las razones de las diferencias cuando \(x' \) y \(y' \) tienen ciertos valores particulares; y es que puede suceder que la substitution de dichos valores reduzca el límite \(\frac{dy}{dx} \) á la forma indeterminada \(o \). Por ejemplo, si siendo \(a (y - b)^2 - x \)

\[
(x - a)^2 = o, \quad \frac{dy}{dx} = \frac{3x^3 - 4ax + a^2}{1a (y - b)}\]

se pidiése el valor de \(\frac{dy}{dx} \), en el supuesto de ser \(x = a \); como en este caso es \(y = b \), hallaríamos \(\frac{dy}{dx} = o \), cuya ecuación nada nos enseña, sino que la expresión general de la razón \(\frac{dy}{dx} \) dada por la ecuación \((A') \), de la cual hemos hecho uso para deducir el límite \(\frac{dy}{dx} \), no conviene de ningún modo al supuesto de \(x = a \), según hemos visto (n. 32.).

Haciendo pues uso de la ecuación \((\frac{dy}{dx})^2 = 1 + \frac{\Delta x}{a} \), correspondiente á este supuesto, tendremos \((\frac{dy}{dx})^2 = 1 + \frac{\Delta x}{a} \), ecuación de segundo grado que da \(\frac{dy}{dx} = \pm 1 \). Si fuese \(\frac{dy}{dx} = \frac{2x (ay - 2x^2)}{3y^2 - ax^2} \)

como en el segundo ejemplo; y quisiéramos hallar su valor cuando \(x = o \); como en este supuesto \(y \) es también \(o \), tendríamos por la misma razón que en el ejemplo antecedente \(\frac{dy}{dx} = \frac{o}{o} \); pero viéndonos de la ecuación de tercer grado

\[
(\frac{dy}{dx})^3 = a \frac{dy}{dx}
\]

\[
\frac{dy}{dx} = \frac{\Delta x}{b} \quad \text{relativa al caso actual, inferiremos}
\]

\[
\frac{dy}{dx} = \frac{a (ay - 2x^2)}{3y^2 - ax^2}, \quad \frac{dy}{dx} = \frac{o}{o},
\]

cuya ecuación da valores del límite \(\frac{dy}{dx} \); á saber, \(\frac{dy}{dx} = o \),

\[
\frac{dy}{dx} = \frac{a}{b}, \quad \frac{dy}{dx} = \frac{a}{b}
\]

En general, suponiendo que la ecuación \((C) \) (n. 31.) expresa la relación entre las diferencias \(\Delta x \), \(\Delta y \); si ciertos valores particulares de \(x \) y de \(y \) reducen á cero \(A \) y \(B \); dicha ecuación se reducirá á \(C \Delta x^2 + D \Delta x \Delta y + E \Delta y^3 + F \Delta x^2 + G \Delta x^2 \Delta y + \&c. = o \), de la cual inferiremos \(E \left(\frac{\Delta y}{\Delta x} \right)^3 + D \frac{\Delta y}{\Delta x} + C = 0 \),

\[
+ C + F \Delta x + G \Delta y + \&c. = o, \quad y (a) \quad \text{.....} \quad E \left(\frac{dy}{dx} \right)^3 + D \frac{dy}{dx} + C = 0.
\]

6 I \((\frac{dy}{dx})^3 + H \left(\frac{dy}{dx} \right)^3 + G \frac{dy}{dx} + F + K \Delta x + \&c. = o \);

y el límite de la razón \(\frac{dy}{dx} \) sería dado por la ecuación \((b) \)

\[
I \left(\frac{dy}{dx} \right)^3 + H \left(\frac{dy}{dx} \right)^3 + G \frac{dy}{dx} + F = \frac{dy}{dx} + \&c.
\]

58. Ya que (n. 23, 25.) \(\Delta x ay \) es igual á \(\Delta y \); si \(y \) fuese función de la variable \(x \), sería \(\frac{\Delta y}{\Delta x} = a \); \(\Delta x \),

\[
y \quad \Delta (y \pm \alpha) = \frac{\Delta y}{\Delta x} : \text{ por consiguiente} \quad \frac{d}{dx} \left(ay \right) = \frac{dy}{dx}, \quad \frac{d}{dx} (y \pm \alpha) = \frac{dy}{dx}.
\]

59. De la ecuación (n. 26.) \(\Delta y = A \Delta x + B \Delta x^2 + C \Delta x^3 + \&c. \), se infiere \(\frac{\Delta x}{\Delta y} = \frac{A}{A + B \Delta x + C \Delta x^2 + \&c.} \), cuyo límite \(\frac{\Delta x}{\Delta y} \) es igual á \(\frac{1}{A} \); pero (n. 53.) \(A \) es igual á \(\frac{dy}{dx} \); luego \(\frac{\Delta x}{\Delta y} = \frac{1}{dy/dx} \).

(1) Institutiones Calculi Differentialis.
y \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}; \text{ de donde concluirémos, que el límite } \lim_{dx} \frac{dy}{dx} \text{ está en}

razón inversa del límite \frac{dy}{dx}.

60. Sea \(y \) una función cualquiera de \(x \), y \(z \) una función cualquiera de \(y \); si suponemos \(\triangle y = A \triangle x + B \triangle x^2 + C \triangle x^3 + \&c. \), \(\triangle z = A' \triangle x + B' \triangle x^2 + C' \triangle x^3 + \&c. \), siendo \(A, B, C \&c. \) funciones indeterminadas de \(x \), y \(A', B', C' \&c. \) funciones indeterminadas de \(y \); tendremos (núm. 53.) \(\frac{dz}{dy} \cdot \frac{dy}{dx} = A \cdot \frac{dx}{dy} = A' \), y por consiguiente \(\frac{dz}{dx} = A \cdot A' \cdot \frac{dx}{dx} \). Pero sustituyendo por \(\triangle y \) su valor en la expresión de \(\triangle z \), se transformará esta en:

\[\triangle z = A' A \triangle x + A B A \triangle x^2 + A C A \triangle x^3 + \&c. \]

+ \(B' A \triangle x^2 + 2 B' A B \triangle x^3 + \&c. \)

+ \(\&c. + \&c. + \&c. \) + \&c. de donde se infiere \(\frac{dz}{dx} = A' A \), y por consiguiente \(\frac{dz}{dx} \cdot \frac{dy}{dx} = \frac{dx}{dy} \);

y como en virtud de la proposición antecedente es \(\frac{1}{\frac{dx}{dy}} = \frac{dy}{dx} \), será también \(\frac{dz}{dy} : \frac{dy}{dx} = \frac{dx}{dy} \).

61. Los resultados antecedentes manifestan que en los productos y divisiones de los límites \(\frac{dy}{dx}, \frac{dx}{dy}, \frac{dz}{dx} \&c. \) se pueden hacer con las expresiones \(dx, dy, dz \&c. \) las mismas operaciones que si representasen cualesquiera cantidades.

Así si \(y = f(x) \), y \(\frac{dy}{dx} = A \); no habrá inconveniente alguno en suponer \(dy = A dx \), y \(\frac{dy}{dx} = A \).

62. La expresión \(A dx \) ó su igual \(dy \) se llama comúnmente la dífferential primera, ó simplemente la dífferential de la función \(y \); y \(dx \) la diferencial de la variable \(x \). (1) Nosotros admitirémos este denominación por ser generalmente recibida, y porque aunque las diferenciales consideradas en ellas mismas son de poca ó ninguna utilidad en el método que nos proponemos seguir en estas Instituciones, son útiles en cuanto conducen inmediatamente al conocimiento de los límites de las razones de las diferencias de las cantidades variables, cuyo conocimiento es el objeto del cálculo diferencial y el fundamento de sus aplicaciones. Además, la consideración de las diferenciales facilita las operaciones, y ahorra muchas palabras.

(1) Las ingleses las llaman fluxiones.
dicho en los números antecedentes; por medio de las cuales se determinan fácilmente dichos límites, sin hallar de armonio las razones de las diferencias; cuya circunstancia las hace sumamente útiles.

72. Por decontado, à causa de que siendo \(\text{núm. } 54 \) \(y = ax^n \), es \(\frac{dy}{dx} = nax^{n-1} \); podemos establecer, que para hallar el coeficiente diferencial de una potencia cualquiera de una cantidad variable, se debe multiplicar la variable por su exponente, y disminuir este de una unidad. Así si quiséramos determinar el límite \(\frac{dy}{dx} \) en el supuesto de ser \(y = \sqrt{x} = x^{\frac{1}{2}} \), multiplicaríamos \(x \) por su exponente \(\frac{1}{2} \) y disminuyéndole de una unidad, tendríamos \(\frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \).

Si fuese \(y = ax^3 - bx^\frac{3}{2} + cx^{-\frac{3}{2}} + \&c. \), hallaríamos \(\frac{dy}{dx} \) considerando sucesivamente cada término; sería pues \(\frac{dy}{dx} = 3ax^2 - \frac{3}{2} bx^\frac{1}{2} - 2cx^{-\frac{3}{2}} + \&c. \).

Si se nos ofreciese diferenciar la función \((ax^2 - bx^\frac{3}{2} + cx^{-\frac{3}{2}} + \&c.)^n = y \), haríamos \(ax^2 - bx^\frac{3}{2} + cx^{-\frac{3}{2}} + \&c. = z \), y tendríamos \(y = z^n \), \(\frac{dy}{dz} = nz^{n-1} \frac{dz}{dx} \) y como \(dz = (2ax - \frac{1}{2} bx^{\frac{1}{2}} - 3cx^{-\frac{3}{2}} + \&c.) dx \), será substituyendo \(dy = n (ax^2 - bx^\frac{3}{2} + cx^{-\frac{3}{2}} + \&c.)^{n-1} (2ax - \frac{1}{2} bx^{\frac{1}{2}} - 3cx^{-\frac{3}{2}} + \&c.) \frac{dz}{dx} \) por donde se ve que para hallar la diferencial de un polinomio elevado à una potencia cualquiera; se debe multiplicar el polinomio por su exponente, disminuir este de una unidad, y multiplicar el resultado por la diferencial del polinomio; así si fuese \(y = (ax - x^a)^\frac{1}{2} \), sería \(dy = \frac{1}{2} (ax - x^a)^{-\frac{1}{2}} d. (ax - x^a) \); y como \(d. (ax - x^a) \) es igual à \(d. (a - 2x) \) \(dx \), tendremos \(dy = \frac{1}{2} (ax - x^a)^{-\frac{1}{2}} (a - 2x) \frac{dx}{dx} \), y \(dy = \frac{1}{2} (ax - x^a)^{-\frac{1}{2}} \) \(a - 2x \), lo mismo que por la regla general \(\text{núm. } 52 \).

Si \(y \) fuese igual à \(\frac{ax}{b+x} \); sería \(\text{núm. } 69 \) \(dy = \frac{a}{b+x} \frac{dx}{dx} \), \((b+x) d. ax - ax \frac{dx}{dx} \cdot (b+x) \frac{dx}{dx} = (ax - ax) \frac{dx}{dx} = abdx \); \((b+x) d. ax - ax \frac{dx}{dx} \cdot (b+x) \frac{dx}{dx} = (ax - ax) \frac{dx}{dx} = abdx \). También se puede en este ejemplo hallar la diferencial \(dy \), multiplicando cada uno de los factores \(ax \), \((b+x)^{-1} \) por la diferencial del otro, y juntando los dos resultados \(\text{núm. } 67 \); de este modo tendríamos.
y = ax^2 + bx + c

La ecuación que se me ha presentado es:

\[\frac{dy}{dx} = 2ax + b \]

Si se desea hallar el valor de \(y \) para un valor específico de \(x \), se puede calcular directamente.

Para \(x = 2 \):
\[y = 2(2)^2 + 3(2) + 5 = 8 + 6 + 5 = 19 \]

La solución es \(y = 19 \).
79. Del mismo modo que el límite de la razón \(\frac{\Delta y}{\Delta x} \) entre las diferencias de \(y \) y de \(x \), se representa por \(\frac{dy}{dx} \); los límites de las razones \(\frac{\Delta y}{\Delta x}, \frac{\Delta y}{\Delta x^2}, \frac{\Delta y}{\Delta x^3} \) &c. de la diferencia segunda, tercera &c. de la función \(y \), al cuadrado, cubo &c. de la diferencia de la variable \(x \), se expresan respectivamente por \(\frac{dy}{dx^2}, \frac{dy}{dx^3}, \frac{dy}{dx^4} \) &c.; y para abreviar llamarémos respectivamente dichos límites el coeficiente de la diferencial segunda, tercera, cuarta &c. de la función que \(y \) representa.

8o. Problema. Suponiendo \(y = f(x) \), y \(\Delta x \) constante; determinar los límites de las razones \(\frac{\Delta y}{\Delta x}, \frac{\Delta y}{\Delta x^2}, \frac{\Delta y}{\Delta x^3} \) &c. por los métodos dados; y haciendo en ellas \(\Delta x = 0 \), se tendrán sus límites \(\frac{dy}{dx}, \frac{dy}{dx^2}, \frac{dy}{dx^3} \) &c.

Resolución. Hállese las razones \(\frac{\Delta y}{\Delta x}, \frac{\Delta y}{\Delta x^2}, \frac{\Delta y}{\Delta x^3} \) &c. por los métodos dados; y haciendo en ellas \(\Delta x = 0 \), se tendrán sus límites \(\frac{dy}{dx}, \frac{dy}{dx^2}, \frac{dy}{dx^3} \) &c.

77. Reuniendo los resultados que acabamos de hallar relativos á las líneas trigonométricas, tendremos:

\[
\begin{align*}
\frac{dy}{dx} &= \cos x, \\
\frac{d^2y}{dx^2} &= -\sin x, \\
\frac{d^3y}{dx^3} &= -\cos x, \\
\frac{d^4y}{dx^4} &= \sin x, \\
\frac{d^5y}{dx^5} &= \cos x, \\
\frac{d^6y}{dx^6} &= \sin x \\
\frac{d^7y}{dx^7} &= -\cos x, \\
\frac{d^8y}{dx^8} &= -\sin x, \\
\frac{d^9y}{dx^9} &= \cos x, \\
\frac{d^{10}y}{dx^{10}} &= \sin x.
\end{align*}
\]

78. Por medio de estas reglas bastante fáciles para saberlas de memoria; y de lo demostrado (núm. 60, y sig.) se pueden siempre hallar los límites de las razones de las diferencias de las cantidades de cualquiera naturaleza que sean; pero no las aplicamos por ahora á algunas funciones complicadas, por ser nuestro intento exponer solamente en este capítulo los principios del cálculo diferencial.

Las mismas reglas sirven para determinar las diferenciales ó los límites de las razones entre las diferencias segundas, terceras &c. de las cantidades variables, conforme veremos muy en breve.

81. Sea \(y = f(x) \), y \(\Delta y = A\Delta x + B\Delta x^2 + C\Delta x^3 + \&c. \); será \(\Delta^2y = \Delta A\Delta x + \Delta B\Delta x^2 + \&c. \), \(\Delta^3y = \Delta A\Delta x^2 + \Delta B\Delta x^3 + \&c. \), \(\Delta^4y = \Delta A\Delta x^3 + \Delta B\Delta x^4 + \&c. \), \(\Delta^5y = \Delta A\Delta x^4 + \Delta B\Delta x^5 + \&c. \), \(\Delta^6y = \Delta A\Delta x^5 + \Delta B\Delta x^6 + \&c. \); y teniendo presente que \(\Delta x \) es constante; tendremos \(\Delta^2y = A\Delta x^2 + A\Delta x^3 + \&c. \), \(\Delta^3y = A\Delta x^3 + \Delta B\Delta x^4 + \&c. \), \(\Delta^4y = A\Delta x^4 + \Delta B\Delta x^5 + \&c. \), \(\Delta^5y = A\Delta x^5 + \Delta B\Delta x^6 + \&c. \), y por lo que antes hemos expresado, se determina \(\frac{dy}{dx} \).
los coeficientes diferenciales \(\frac{dy}{dx} \), \(\frac{d^2y}{dx^2} \) (\(= \frac{d(dy)}{dx} \)), \(\frac{d^3y}{dx^3} \) \((= \frac{d(dy)}{dx}) \) &c., ó las diferenciales \(dy \), \(d^2y \) (\(= d(dy) \)), \(d^3y \) \((= d^2(dy) \) &c. por los métodos declarados (núm. 72 y sig.).

Exemplo 1\(^{\circ}\). Supongamos que siendo \(y = ax^n \), queremos hallar \(\frac{d^2y}{dx^2} \) límite de la razón \(\frac{\Delta^2y}{\Delta x^2} \); tendrémos desde luego \(\frac{dy}{dx} = nax^{n-1} \); por consiguiente \(\frac{d^2y}{dx^2} = \frac{d}{dx} \left(nax^{n-1} \right) = n(n-1)ax^{n-2}, \) y \(\frac{d^3y}{dx^3} \) ...

\[= \frac{d}{dx} \left(n(n-1)ax^{n-2} \right) = n(n-1)(n-2)ax^{n-3}, \] lo mismo que hallamos por la regla general (núm. 80.).

Exemplo 2\(^{\circ}\). Sea \(y = e^{x} \), siendo \(e \) el número cuyo logaritmo Neperiano \(= 1 \); será (núm. 14) \(\frac{dy}{dx} = e^x \); \(\frac{d^2y}{dx^2} = e^x \); \(\frac{d^3y}{dx^3} = e^x \) &c.; por donde se ve que la función \(e^x \) tiene la propiedad singular de reproducirse en todas sus diferenciales. En adelante llamaremos siempre \(e \) el número cuyo logaritmo natural ó Neperiano es la unidad; y cu- yo valor no pasando de siete decimales es 2,7182818.

Exemplo 3\(^{\circ}\). Sea dada la relación entre \(x \) y \(y \) por la ecuación \(xy + ax + b = 0 \); será \(y + x \frac{dy}{dx} + a = 0 \), y por consiguiente \(\frac{dy}{dx} = \frac{a}{x} \); \(\frac{d^2y}{dx^2} = \frac{a}{x^2} \); \(\frac{d^3y}{dx^3} = \frac{a}{x^3} \); \(\frac{d^4y}{dx^4} = \frac{a}{x^4} \); &c.; de donde inferiremos, \(1^{\circ} \)

\[\frac{dy}{dx} = \frac{a}{x}, \] \[\frac{d^2y}{dx^2} = \frac{a}{x^2}, \] \[\frac{d^3y}{dx^3} = - \frac{a}{x^3}, \] \[\frac{d^4y}{dx^4} = - \frac{a}{x^4}, \] &c.

82. Siendo \(dy = Adx \), \(dA = Adx \); si suponemos \(dx \) constante; tendremos \(ddy = dA\frac{dy}{dx} = Ad^2x = d^2y \). Por donde se ve que la diferencial segund a de \(y \), es igual á la diferencial de la diferencial de \(y \). Del mismo modo probaremos que \(d^2y \) es igual á \(d^2y \); esto es, que la diferencial tercera de \(y \), es igual á la diferencial de su diferencial segun da; y en general, que \(d^n y = d^n \).

Las expresiones \(dx, dx^2, dx^3 \) &c. representan respectivamente la potencia segun da, tercera &c. de \(dx \).

83. Con esto se hallarán fácilmente los límites de las razones de las diferencias de un orden cualquiera, determinando sucesivamente.
CAP. III. DE LOS PRINCIPIOS

\[\frac{dy}{dx} + A = 0. \]

Sentado esto, si ciertos valores particulares de \(x \) reducieren á cero \(A \) y \(B \); el límite \(\frac{dy}{dx} \) no sería dado por la ecuación \(\frac{B}{dx} + A = 0 \), sino por la ecuación (núm. 57.) (a)...............\[E \frac{dy^2}{dx^2} + D \frac{dy}{dx} + C = 0 \] : pero es evidente que la ecuación \(B \frac{dy^2}{dx^2} + (A + B) \frac{dy}{dx} + A = 0 \) á la cual se reduce en este caso la ecuación (a') debe ser idénticamente la misma que la ecuación (a), pues ambas ecuaciones son de segundo grado, y expresan la relación entre el límite \(\frac{dy}{dx} \); \(x \) é \(y \); y observando que el límite \(\frac{dy}{dx} \) se puede considerar como constante en la diferenciación á causa de que el término \(B \frac{dy}{dx} \) desaparece por el supuesto de \(B = 0 \), concluiremos, que si algunos valores particulares de \(x \), reducieran á cero \(A \) y \(B \), y por consiguiente \(\frac{dy}{dx} = 0 \); diferenciando la ecuación \(B \frac{dy}{dx} + A = 0 \), considerando \(\frac{dy}{dx} \) como constante, resultará una ecuación de segundo grado, la qual dará los valores de \(\frac{dy}{dx} \) correspondientes á los de \(x \).

Exemplo. Sea \(a (y - b)^2 - x (x - a)^2 = 0 \) la ecuación propuesta: será \(2a (y - b) \frac{dy}{dx} - 3x^2 + 4ax - a^2 = 0 \); y como en el supuesto de \(x = a \), es \(A = -3x^2 + 4ax - a^2 = 0 \), \(B = 2a (y - b) = 0 \), \(y \frac{dy}{dx} = 0 \); diferenciaremos la ecuación antecedente, tratando constante \(\frac{dy}{dx} \), y resultará la ecuación de segundo grado 2a \(\frac{dy}{dx} \frac{dy}{dx} - 6x + 4a = 0 \), que en el supuesto de \(x = a \) da \(\frac{dy}{dx} \frac{dy}{dx} = 1 \), y \(\frac{dy}{dx} = \pm 1 \), lo mismo que hallamos (núm. 57.) por el otro método.

86. Si los valores particulares de \(x \) reducieren á cero, no solamente \(A \), \(B \), sino también \(C \), \(D \), \(E \); el límite \(\frac{dy}{dx} \) no sería dado por la ecuación \(\frac{B}{dx} + A = 0 \), ni por la ecuación (a), sino por la ecuación (b)........... I \(\frac{dy^2}{dx^2} + H \frac{dy}{dx} + G \frac{dy}{dx} + F = 0 \), (núm. 57); pero discurrendo del mismo modo que en el caso antecedente hallaremos, que diferenciando la ecuación (a) considerando como constante \(\frac{dy}{dx} \), resultará una ecuación de tercero grado, la cual expresando como la ecuación (b) la relación entre \(\frac{dy}{dx} \), \(x \) é \(y \); será preci-

DE] DEL CÁLCULO DIFERENCIAL

samente la misma que (b), y por consiguiente dará los valores de \(\frac{dy}{dx} \) que corresponden á este caso particular.

Supongamos que la relación entre \(x \) y \(y \) sea dada por la ecuación \(x^4 - ay^2 + by^3 = 0 \); tendremos \(\frac{dy^2}{dx^2} + 4x^3 - 2ay = 0 \), de cuya ecuación no se puede inferir el valor de \(\frac{dy}{dx} \) en el supuesto de \(x = 0 \); pues como en este caso es también \(y = 0 \), será \(A = 4x^4 - 2ayx = 0 \); \(B = 3by^2 - ax^2 = 0 \); por esta razón la diferenciaaremos tratando \(\frac{dy}{dx} \) como constante; y resultará la ecuación de segundo grado \(\frac{dy}{dx} (6by \frac{dy}{dx} - 2ax) + 12x^2 - 2ay - 2ax \frac{dy}{dx} = 0 \), 6 (a)........ 6by \frac{dy}{dx} - 4ax \frac{dy}{dx} + 12x^2 - 2ay = 0 ; la cual tampoco puede dar el coeficiente diferencial \(\frac{dy}{dx} \), á causa de \(C = 12x^2 - 2ay = 0 \), \(D = 4ax = 0 \), y \(E = 6by = 0 \). Será pues necesario diferenciaiara tratando siempre como constante \(\frac{dy}{dx} \); y hallaremos 6b \(\frac{dy}{dx} - 4a \frac{dy}{dx} + 2ax \frac{dy}{dx} = 0 \), 6 (b)........ 6b \frac{dy}{dx} - 6a \frac{dy}{dx} + 24x = 0 \)

No se reduce haciendo \(x = 0 \), y dividiendo por \(6b \) á \(\frac{dy}{dx} \frac{a}{b} = \frac{a}{b} \); ecuación idénticamente la misma que hallamos en el número 57., y que por consiguiente da los mismos valores \(\frac{dy}{dx} = 0 \), \(\frac{dy}{dx} = \sqrt[3]{a} - \sqrt[3]{b} \).

87. En general: la ecuación \(\frac{dy}{dx} + A = 0 \), se debe diferenciar sucesivamente considerando \(\frac{dy}{dx} \) como constante, hasta encontrar una ecuación tal, que alguna de las cantidades \(C \), \(D \), \(E \) & c. no se desvanee; y resolviendo dicha ecuación, se hallarán los valores de \(\frac{dy}{dx} \) que corresponden á los de \(x \).

CÁPITULO IV.

APLICACIONES DE LOS PRINCIPIOS DEL CÁLCULO DIFERENCIAL A LA ANÁLISIS, Y A LA GEOMETRÍA.

Del modo de transformar las funciones en series.

88. En el cálculo de las diferencias hemos observado (núm. 26.) que si en una función cualquiera \(f(x) = y \) se substituye \(x = \pm \Delta x \) por \(x \), la nueva función \(f(x = \pm \Delta x) = y' \) que resulta de esta subs-
titución, se podrá representar por \(y = A \Delta x + B \Delta x^2 + C \Delta x^3 + D \Delta x^4 + \cdots \); cuya proposición inferimos únicamente por analogía en virtud de los ejemplos anteriores, suponiendo que la función \(y' \) de \(x \pm \Delta x \) se desenvolviere en una serie ordenada respecto a las potencias de \(\Delta x \), conforme lo hicimos en dichos ejemplos. También insinuamos que las funciones \(y, A, B, C \) &c. tenían entre sí una mutua dependencia; de manera que \(A \) se deducía de \(y; B \) de \(A; C \) de \(B; \) &c.; por medio de operaciones semejantes; y pro-

metimos manifestarlo cuando tratásemos del cálculo diferencial. Ahora vamos á cumplir nuestra promesa por medio del teorema siguien-
te; el cual manifestará la verdad de ambas proposiciones.

89. Hemos demostrado en el núm. 46., que si en una función cualquiera \(f (x) = y \) de la variable \(x \) que crece uniformemente, se substituye en su lugar \(x + \Delta x \); será \(f (x + \Delta x) = y + k \frac{dy}{dx} + k \frac{\Delta y}{\Delta x} + k \left(k - \Delta x \right) \frac{\Delta y}{\Delta x^2} \cdot \frac{\Delta x}{x^2} + \cdots \); y así \(y + k \frac{dy}{dx} \) es la función que se pide.

\[\frac{dy}{dx} = n x^{n-1}, \quad \frac{dy}{dx^3} = n \left(n - 1 \right) \]

Exemplo 2º Sea \(y = x^n \); será \(\frac{dy}{dx} = n x^{n-1} \), \(\frac{dy}{dx^3} = n \left(n - 1 \right) \cdot \frac{x^{n-2}}{2} \); cuyos valores transforman la fórmula general en \(f (x + \pm k) = n x^{n-1} \left(k + 1 \right) + n \left(n - 1 \right) \cdot \frac{x^{n-2}}{2} \cdot \frac{k^2}{x^2} + \cdots \); por donde se ve que la fórmula que expresa el teorema de Taylor se deduce inmediatamente de la del binomio de Newton.

Si \(n \) fuese un número entero positivo, la serie antecedente se terminará á causa de los coeficientes \(n - 1, n - 2, n - 3 \) &c.; y la última diferencial \(\frac{dy}{dx^n} \) será igual á la cantidad constante \(n \left(n - 1 \right) \left(n - 2 \right) \) &c.; por tanto el binomio de Newton dará la serie

\[\frac{dy}{dx^n} = n x^{n-1}, \quad \frac{dy}{dx^3} = n \left(n - 1 \right) \cdot \frac{x^{n-2}}{2} \]

El cálculo diferencial. 41

Ya que \(y = x^n - x \), será \(\frac{dy}{dx} = 2x - 1 \), \(\frac{dy}{dx^3} = 2 \), \(\frac{dy}{dx^5} = 0 \) &c.;

Exemplo 3º Sea \(y = x^n \); será \(\frac{dy}{dx} = n x^{n-1}, \frac{dy}{dx^3} = n \left(n - 1 \right) \)

Exemplo 4º Supongamos que siendo \(f (x) = y = x^n - x \), se nos pida la función que resulta substituyendo \(x + 1 \) en lugar de \(x \).

(1) Methodus Increment. theor. III. corol. II.
DEL CÁLCULO DIFERENCIAL.

\[\frac{dy}{dx} \triangle x^3 \rightleftharpoons \triangle y = \frac{dy}{dx} \triangle x \rightleftharpoons \Delta y \triangle x^2 \rightleftharpoons \&c.; \text{se hallará con mucha brevedad la diferenciación de una función cualquiera de una variable.} \]

\[\text{Ejemplo } 1^o \text{ Sea } y = \log x; \text{será } \frac{dy}{dx} = \frac{1}{x}, \frac{d^2y}{dx^2} = -\frac{1}{x^2}, \frac{d^3y}{dx^3} = \frac{2}{x^3} \text{, etc.; y substituyendo estos valores en la fórmula, tendríamos } \Delta y = \frac{1}{2} \left(\frac{dx}{x} \right)^2 \rightleftharpoons \frac{1}{2} \left(\frac{dx}{x} \right)^3 \rightleftharpoons \&c. \]

\[\text{Ejemplo } 2^o \text{ Sea } y = \log x; \text{tendríamos } \frac{dy}{dx} = \frac{1}{x}, \frac{d^2y}{dx^2} = -\frac{1}{x^2}, \frac{d^3y}{dx^3} = \frac{2}{x^3} \text{, etc.; y substituyendo estos valores en la fórmula antecedente, tendríamos } \Delta y = \frac{1}{2} \left(\frac{dx}{x} \right)^2 \rightleftharpoons \frac{1}{2} \left(\frac{dx}{x} \right)^3 \rightleftharpoons \&c. \]

\[\text{Ejemplo } 3^o \text{ Si quisiéramos hallar la diferencia de } y = x^2 \text{, tendríamos } \frac{dy}{dx} = 2x, \frac{d^2y}{dx^2} = 2, \frac{d^3y}{dx^3} = \frac{3}{2} \text{, etc.; y por consiguiente, tendríamos } \Delta y = \frac{1}{2} \left(\frac{dx}{x} \right)^2 \rightleftharpoons \frac{1}{2} \left(\frac{dx}{x} \right)^3 \rightleftharpoons \&c. \]

\[\text{Ejemplo } 4^o \text{ Sea } y = \log x; \text{será } \frac{dy}{dx} = \frac{1}{x}, \frac{d^2y}{dx^2} = -\frac{1}{x^2}, \frac{d^3y}{dx^3} = \frac{2}{x^3} \text{, etc.; y por consiguiente, tendríamos } \Delta y = \frac{1}{2} \left(\frac{dx}{x} \right)^2 \rightleftharpoons \frac{1}{2} \left(\frac{dx}{x} \right)^3 \rightleftharpoons \&c. \]

\[\text{Ejemplo } 5^o \text{ Si fuese } y = \cos x, \text{sería } \frac{dy}{dx} = \sin x, \frac{d^2y}{dx^2} = \sin x, \frac{d^3y}{dx^3} = \cos x \text{, etc.; y de donde inferiríamos } \Delta y = \frac{1}{2} \left(\frac{dx}{x} \right)^2 \rightleftharpoons \frac{1}{2} \left(\frac{dx}{x} \right)^3 \rightleftharpoons \&c. \]

\[\text{Si en una función cualquiera } f(x) = y, \text{ de } x, \text{ se sustituye } x \]
Cap. IV. Aplicaciones de los principios

94. De la fórmula \(f(x \pm k) \), se tendrá \(f(x \pm dx) = y + dy + \frac{\frac{dy}{2}}{2} + \frac{\frac{dy}{3}}{3} + \&c, \)

\[dx \text{ en lugar de } x; \text{ seré } f(x + dx) = y + dy + \frac{\frac{dy}{2}}{2} + \frac{\frac{dy}{3}}{3} + \&c. \]

Por ejemplo, \(y = ax^2 + bx \); seré \(dy = (2ax + b) \cdot dx \), \(d^2y = (2a + 3bx + 3dx^2) \cdot dx \), y por consiguiente \(f(x + dx) = ax^2 + bx + 2ax \cdot dx + (2a + 3bx + 3dx^2) \cdot dx = ax^2 + bx + 2ax \cdot dx + (2a + 3bx + 3dx^2) \cdot dx \); seré fácil verificarlo elevando \(x + dx \) a las potencias indicadas, y ordenando el resultado relativamente a las potencias sucesivas de \(dx \).

95. Si en la serie \(y = k \cdot \frac{dy}{dx} + \frac{k^2}{2} \cdot \frac{d^2y}{dx^2} + \frac{k^3}{3} \cdot \frac{d^3y}{dx^3} + \&c. \)

Hacemos \(k = x \), se transformará en \(y = x \cdot \frac{dy}{dx} + \frac{x^2}{2} \cdot \frac{d^2y}{dx^2} + \frac{x^3}{3} \cdot \frac{d^3y}{dx^3} + \&c. \)

Si en una función \(y \) de \(x \), se supone \(x = 0 \); llamando \(A \) la cantidad que resulta, será \(A = y = x \cdot \frac{dy}{dx} + \frac{x^2}{2} \cdot \frac{d^2y}{dx^2} + \frac{x^3}{3} \cdot \frac{d^3y}{dx^3} + \&c. \)

Se supone, \(y = ax^2 + bx + c \); seré \(\frac{dy}{dx} = 2ax + b, \)

\(\frac{d^2y}{dx^2} = 2a, \)

\(\frac{d^3y}{dx^3} = 0, \&c. \)

Por ejemplo, \(y = ax^2 + bx + c \); seré \(\frac{dy}{dx} = 2ax + b, \)

\(\frac{d^2y}{dx^2} = 2a, \)

\(\frac{d^3y}{dx^3} = 0, \&c. \)

Sea \(y = ax^2 + bx + c \); seré \(\frac{dy}{dx} = 2ax + b, \)

\(\frac{d^2y}{dx^2} = 2a, \)

\(\frac{d^3y}{dx^3} = 0, \&c. \)

Sea \(y = ax^2 + bx + c \); seré \(\frac{dy}{dx} = 2ax + b, \)

\(\frac{d^2y}{dx^2} = 2a, \)

\(\frac{d^3y}{dx^3} = 0, \&c. \)

Por ejemplo, \(y = ax^2 + bx + c \); seré \(\frac{dy}{dx} = 2ax + b, \)

\(\frac{d^2y}{dx^2} = 2a, \)

\(\frac{d^3y}{dx^3} = 0, \&c. \)

96. De la ecuación \(A = y = x \cdot \frac{dy}{dx} + \frac{x^2}{2} \cdot \frac{d^2y}{dx^2} + \frac{x^3}{3} \cdot \frac{d^3y}{dx^3} + \&c. \)

Se infiere, que si representamos por \(y \) una función cualquiera de \(x \); será \(y = A + x \cdot \frac{dy}{dx} + \frac{x^2}{2} \cdot \frac{d^2y}{dx^2} + \frac{x^3}{3} \cdot \frac{d^3y}{dx^3} + \&c. \)

Escribiendo \(A \) el valor de la función propuesta, cuando \(x = 0 \).

97. Si haciendo \(x \) igual a una cantidad constante, \(g \) en las expresiones \(y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \&c. \)

Se transforman respectivamente en las cantidades constantes \(g, H, I, \&c. \); será \(f(g \pm k) = G \pm kH + \frac{k^2}{2} I \pm \frac{k^3}{3} K + \&c. \)

Por consiguiente, el segundo miembro de esta ecuación, será la cantidad que resulta substituyendo en \(f(x) = y \), \(g \pm k \) por \(x \).

Por ejemplo, \(y = ax^3 + bx^2 \); seré \(\frac{dy}{dx} = 3ax^2 + 2bx, \)

\(\frac{d^2y}{dx^2} = 6ax + 2b, \)

\(\frac{d^3y}{dx^3} = 6a, \)

\(\frac{d^4y}{dx^4} = 0, \&c. \)

Y haciendo \(x = g, y = ag^3 + bg^2 \)

\(= G, \frac{dy}{dx} = 3ag^2 + 2bg = H, \frac{d^2y}{dx^2} = 6ag - 2b = I, \frac{d^3y}{dx^3} = 6a = K, \frac{d^4y}{dx^4} = 0 = L, \&c. \)

Cuyos valores sustituídos en la serie \(G \pm kH + \frac{k^2}{2} I \pm \frac{k^3}{3} K + \&c. \)

La transformada en \(ag^3 + bg^2 \) que es \((ag^2 - 2bk) k + (ag - b) k^2 \pm ak^3 \), cantidad que no se puede desarrollar en una serie de la forma \(G \pm kH + \frac{k^2}{2} I \pm \&c. \); esto es, según las potencias sucesivas de \(k \), en el supuesto de \(x \) igual \(g + k \); en cuyo caso...
dicha función incluirá necesariamente cantidades irracionales, transcendentales o fraccionarias. Sea, por ejemplo, \(y = a \pm \sqrt{x - b} \); se obtiene:
\[
\frac{dy}{dx} = \pm \frac{1}{2} \frac{1}{(x - b)^{\frac{1}{2}}}, \quad \frac{d^2y}{dx^2} = \mp \frac{1}{2} \frac{1}{(x - b)^{\frac{3}{2}}}, \quad \text{y como en el supuesto de } x = b, \quad \frac{dy}{dx} = \infty, \quad \frac{d^2y}{dx^2} = \infty, \quad \text{y c.c.}; \quad \text{inferiremos que si en la función propuesta se substituye } b + k \text{ en lugar de } x, \text{ no podrá desarrollarse en una serie ordenada según las potencias sucesivas de } k; \text{ lo que es evidente por sí mismo; pues en este supuesto dicha función es } y = a \pm e^{k}.

Ejemplo 2: Si siendo \(y = \frac{b}{(a - x)^2} \), quisiéramos hallar la función que resulta substituyendo \(a + k \) en lugar de \(x \); tendremos:
\[
\frac{dy}{dx} = \frac{d}{dx} \left(\frac{b}{(a - x)^2} \right) = \frac{-2b}{(a - x)^3}, \quad \frac{d^2y}{dx^2} = \frac{6b}{(a - x)^4}, \quad \text{y c.c.}, \quad \text{y haciendo } x = a, \quad y = g = \infty, \quad \frac{dy}{dx} = H = \infty, \quad \text{y c.c.}; \quad \text{de donde inferiremos que la función } \frac{b}{k^2} \text{ que resulta haciendo } x = a \pm k \text{ en la función } \frac{b}{(a - x)^2} \text{ no puede tener la forma } G = kH + \& c.

99. En estos casos particulares en que el teorema de Taylor no puede dar la expresión de una función de \(x \), cuando \(x \) se transforma en \(x + k \) en el supuesto de \(x = a \), una cantidad constante \(a \); se podrá hallar dicha expresión haciendo la sustitución de \(g + k \) en la función propuesta, y las reducciones que ocasiona; y si la función de \(k \), que resulta, incluyese algún polinomio irracional, se desarrollará este respecto de \(k \) por los métodos conocidos.

Los dos ejemplos antecedentes no tienen dificultad alguna; pero si fuese \(y = (a - x)^{\frac{1}{2}} \sqrt{x^2 - a^2} \), las diferenciales \(\frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \& c. \), serían infinitas en el supuesto de \(x = a \); mas sustituyendo \(a + k \) en lugar de \(x \), tendremos \(y = -k \sqrt{(2ak + k^2)} = -k \left(2a + k \right)^{\frac{3}{2}} \), y elevando \(2a + k \) á la potencia \(\frac{1}{2} \) y multiplicando por \(-k \), resultará:
\[
y = -(2a)^{\frac{3}{2}} \frac{1}{2} + \frac{1}{2} (2a)^{\frac{1}{2}} \frac{1}{2} k + \& c.
\]

Este método se puede emplear solamente cuando la función de \(x \) es explícita; en otra ocasión daríamos un método general para resolver esta dificultad; el cual se aplica igualmente á las funciones implícitas.

100. Supongamos que haciendo \(x = a \) en la fórmula \(f(x + k) = y + k \frac{dy}{dx} + \frac{k}{2} \left(\frac{d^2y}{dx^2} \right) + \frac{k^2}{3} \left(\frac{d^3y}{dx^3} \right) + \& c. \); las expresiones \(y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \& c. \) se transforman respectivamente en las cantidades

\[
\frac{dy}{dx} = \frac{d^2y}{dx^2} = \frac{d^3y}{dx^3} + \& c.
\]

Ejemplo 3: Si queremos convertir en serie el logaritmo de \(a \pm x \), haríamos \(\log (a \pm x) = y \), y tendríamos:
\[
\frac{dy}{dx} = \frac{1}{a \pm x}, \quad \frac{d^2y}{dx^2} = \frac{1}{(a \pm x)^2}, \quad \frac{d^3y}{dx^3} = \frac{1}{(a \pm x)^3}, \quad \& c.
\]

Ejemplo 4: Sea \(f(x) = y = \sqrt{a \pm x} \); será:
\[
\frac{dy}{dx} = \frac{\pm 1}{2} \left(a \pm x \right)^{\frac{1}{2}}, \quad \frac{d^2y}{dx^2} = \frac{3}{4} \left(a \pm x \right)^{\frac{3}{2}}, \quad \& c. \]

Ejemplo 5: Sea \(f(x) = y = \sqrt{a + bx + cx^2} \); será:
\[
\frac{dy}{dx} = \frac{b + cx}{\sqrt{a + bx + cx^2}}, \quad \frac{d^2y}{dx^2} = \frac{(2b + cx)}{(a + bx + cx^2)^{\frac{1}{2}}}, \quad \& c. \]

Ejemplo 6: Sea \(f(x) = y = \sqrt{a + bx + cx^2} \); será:
\[
\frac{dy}{dx} = \frac{(2c - 4ac)}{4a^2} x^3, \quad \frac{d^2y}{dx^2} = \frac{(2b + cx)}{(a + bx + cx^2)^{\frac{1}{2}}}, \quad \& c. \]

Ejemplo 7: Sea \(f(x) = y = \sqrt{a + bx + cx^2} \); será:
\[
\frac{dy}{dx} = \frac{(2b + cx)}{(a + bx + cx^2)^{\frac{1}{2}}}, \quad \frac{d^2y}{dx^2} = \frac{(2c - 4ac)}{4a^2} x^3, \quad \& c. \]
CAP. IV. APlicaciones de los Principios

\[\frac{d}{dx} = \frac{\pm 1}{a} \quad \text{y} \quad A' = \frac{\pm 1}{a}, \quad A'' = \frac{\pm 2}{a^2}, \quad \text{y} \quad \text{asustituyendo} \log(a \pm x) = \log a \pm \frac{x}{a} \pm \frac{x^2}{2a^2} \pm \frac{x^3}{3a^3} \pm \cdots \]

Ejemplo 4. Supongamos que se nos ofrezca convertir en serie la función \(a^x \). Haciendo \(y = a^x \), tendremos \(\frac{dy}{dx} = a^x \log a \), \(\frac{dy}{dx^2} = a^x (\log a)^2 + a^x \log a \), \(\frac{dy}{dx^3} = a^x (\log a)^3 + a^x \log a \), y con este proceso, tendremos \(A = a^x \), \(A' = a^x \log a \), \(A'' = (\log a)^2 + a^x \log a \), \(A''' = (\log a)^3 + a^x \log a \), y \(y = a^x = 1 + x \log a + \frac{x^2}{2} (\log a)^2 + \frac{x^3}{3} (\log a)^3 + \cdots \)

Ejemplo 5. Sea \(y = \cos x \); será \(\frac{dy}{dx} = -\sin x \), \(\frac{dy}{dx^2} = -\cos x \), \(\frac{dy}{dx^3} = \sin x \), \(\frac{dy}{dx^4} = \cos x \), y con este proceso, tendremos \(A = \cos x \), \(A' = -\sin x \), \(A'' = -\cos x \), \(A''' = \sin x \), \(A'''' = \cos x \), y con este proceso, tendremos \(y = \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \cdots \)

Esta ecuación expresa el valor del seno en una serie ordenada según las potencias del arco. Si quisieramos al contrario el valor del arco expresado por una serie ordenada según las potencias del seno, llamaremos y el arco, y su seno x, y tendríamos (núm. 77.):

\[\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}, \quad \frac{dy}{dx^2} = \frac{x}{\sqrt{1 - x^2}}, \quad \frac{dy}{dx^3} = \frac{1 + x^2}{\sqrt{1 - x^2}} \]

El célebre Leibnitz fue el primero que halló esta serie. 101. Si alguna de las cantidades A, A', A' de fuese infinita; sería menor que la función propuesta no puede convertirse en una serie de la forma \(K + Bx \cos x + Dx^3 \cos x + \cdots \); y dicha función incluiría necesariamente cantidades fraccionarias, irracionales o transcendentales.

En muchos de estos casos se podrá sin embargo transformar la función propuesta en una serie de monomios, dividiéndola en dos factores; el uno monomio, y que se separa; el otro polinomio que se supone \(= y \), y se desenvuelve en una serie de la forma \(K + Bx \cos x + Dx^3 \cos x + \cdots \) por el método antecedente; la cual se multiplica por el factor monomio que se separó, y resulta una serie de monomios igual a la función propuesta. Esto se verá más claramente en los dos ejemplos siguientes.

Ejemplo 0. Sea \(\sqrt{(ax \pm x^2)} \) la función propuesta; llamándola y tendremos:

\[\frac{dy}{dx} = \frac{a \pm 2x}{2 \sqrt{(ax \pm x^2)}} \quad \text{y} \quad \frac{dy^2}{dx^2} = \frac{4(a \pm x^2)}{(ax \pm x^2)^{3/2}} \]

Haciendo \(x = 0 \), será \(A = a \), \(A' = \infty \), \(A'' = \infty \), y con este proceso, tendremos que la función \(\sqrt{(ax \pm x^2)} \) no se puede convertir en una serie de la forma \(K + Bx \cos x + Dx^3 \cos x + \cdots \); pero dándole la forma \(a \sqrt{(a \pm x)} \), y haciendo \((a \pm x) \frac{1}{2} \), tendremos (número 100.) \((a \pm x) \frac{1}{2} = a \frac{1}{2} \left(\frac{a}{2x} \right) - \frac{x}{2a} \frac{1}{2} + \frac{a}{2x} \frac{1}{2} \frac{1}{2} \left(\frac{a}{2x} \right) + \cdots \)

y por consiguiente \(x \frac{1}{2} \left(a \pm x \right) \frac{1}{2} = \sqrt{(ax \pm x^2)} = a \frac{1}{2} \frac{1}{2} \left(a \pm x \right) + \frac{1}{2} \frac{1}{2} \left(\frac{a}{2x} \right) \frac{1}{2} - \frac{x}{2a} \frac{1}{2} + \frac{a}{2x} \frac{1}{2} \frac{1}{2} \left(\frac{a}{2x} \right) + \cdots \)

G
Del Cálculo Diferencial.

El capítulo IV habla de aplicaciones de los principios. El ejemplo 2° menciona la función \(f(x) = \frac{a + bx}{x^3 + ax^2} \) y no puede convertirse en una serie del tipo \(R + Cx + Dx^2 + &c. \) pero si la transformamos en \(\frac{a + bx}{x^3 + ax^2} \), tenemos \(\frac{dy}{dx} = \frac{b - ac}{(1 + cx)^2} \), \(\frac{d^2y}{dx^2} = \frac{2c(1 + cx)^3}{(1 + cx)^3} \) y por consiguiente, \(\frac{a + bx}{x^3 + ax^2} \) es un máximo cuando \(x = 4 \), ya que los valores que le preceden y que le siguen inmediatamente; esto es, mayor que las cantidades que resultan substituyendo en lugar de \(x \) otras cantidades menores y mayores que 4; y por esta razón, el valor 17 se llama un máximo de la función \(1 + 8x - x^2 \); o se dice que dicha función es un máximo cuando \(x = 4 \), en cuyo caso es \(y = 17 \).

Del mismo modo, si la ordenada \(PM \) de la curva \(CMC \) (fig. 5 y 6.), es mayor o menor que las ordenadas adyacentes \('PM', 'M' \); dicha ordenada se llama un máximo en el primer caso (fig. 5.) y un mínimo en el segundo (fig. 6.).

3. A fin de aclarar esta definición, nos parece conveniente advertir, que para que una cantidad sea un máximo o un mínimo; no es necesario que todos los valores que le preceden y le sigan sean menores o mayores que ella; pues basta que los sean los que la preceden y siguen inmediatamente. Por ejemplo: aunque la ordenada \(pm \) de la curva \(CMC \) (fig. 7.) es mayor que \(PM \), esta ordenada será sin embargo un máximo, si las ordenadas adyacentes \('pm', 'p' \) son menores que \(PM \); así la única condición que se necesita para que el valor \(G \) de \(y \) corresponda a \(x = g \), sea un máximo o un mínimo, es que substituyendo en lugar de \(x \) las cantidades \(g + k, g - k \), siendo \(k \) una cantidad tan pequeña como se quiera; los dos valores de \(y \) que resulten, sean ambos menores o mayores que \(G \). De aquí inferiremos varias consecuencias.

4. Una función de \(x \) puede tener muchos máximos y mínimos. Esto se ve evidentemente en la fig. 8., en la cual las ordenadas \(PM \) mayores que las que preceden y siguen inmediatamente son máximos, y las ordenadas \(pm \), menores que las adyacentes a uno y otro lado, son mínimos.

5. Si mientras que \(x \) crece \(f(x) \) aumenta o disminuye sin fin; esta función no tendrá máximo ni mínimo alguno: tal es por ejemplo la función \(ax^2 + bx \).

6. Si \(y \) es un máximo ó un mínimo cuando \(x = g \); ay lo será también en el mismo supuesto.

7. En el mismo supuesto de ser \(y \) un máximo ó un mínimo cuando \(x = g \); y será al contrario un mínimo ó un máximo. Por ejemplo: siendo un máximo la función \(1 + 8x - x^2 \) y cuando \(x = 4 \), \(y \) es un máximo la función \(x^2 - 8x - 1 = -y \).

8. Supongamos que el valor \(G \) de la función \(y \) corresponde a \(x = g \), sea un máximo ó un mínimo: este valor será mayor que los dos que resultan substituyendo \(g \pm k \) en lugar de \(x \), siendo \(k \) una cantidad tan pequeña como se quiera; o menor que dichos valores según sea \(G \) un máximo ó un mínimo; y como las cantidades que re-
sultan (número 97.) de esta substitución, son $G = kH + \frac{k^2}{2} I$ y $K = \ldots$ K + &c., tendrémonos necesariamente cuando G fuese un máximo, la condición $G > G = kH + \frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$; y cuando G sea un mínimo, $G < G = kH + \frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$, bien en el caso del máximo $kH + \frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$ > 0 (1), y en el del mínimo $kH + \frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$ < 0. Pero (número 123) la cantidad arbitraria k se puede tomar tan pequeña, que el primer término kH de la serie antecedente sea mayor que la suma de todos los demás; luego á causa del doble signo ± que tiene dicho término; las condiciones antecedentes del máximo y del mínimo no podrán verificarse, á menos de ser $H = \frac{dy}{dx}$ = 0; luego

Quando la función y es un máximo o un mínimo; su coeficiente diferencial $\frac{dy}{dx}$ es necesariamente igual á cero.

110. Por consiguiente, si una función y de la variable x es susceptible de un valor máximo o mínimo $= G$; el valor g de x que corresponde, será una raíz de la ecuación $\frac{dy}{dx} = 0$.

111. Puesto que en el máximo y en el mínimo es $H = 0$; será necesariamente $\frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$ < 0 en el máximo, y > 0 en el mínimo. Por lo que, como el término $\frac{k^2}{2} I$ se puede suponer mayor que la suma de todos los demás (núm. 123), inferirémos que si el valor de I de su igual $\frac{dy}{dx}$, no es cero; será negativo en el máximo, y positivo en el mínimo.

Si fuese $I = 0$, la condición del máximo sería $\frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$ < 0, y la del mínimo $\frac{k^2}{2} I + \frac{k^3}{2.3} K + &c.$ > 0; las cuales no pueden verificarse á menos de ser $K = \frac{dy}{dx} = 0$, de donde inferirémos, que si en el máximo o en el mínimo, e, $\frac{dy}{dx} = 0$, $\frac{dy}{dx}$ lo será igualmente.

112. Del mismo modo probaremos, que si $L = \frac{dy}{dx}$, no des-

1 A Tres treatise of fluxions &c. núm. 245 y siguientes; 858 y 859.
la función propuesta no se podría desarrollar en una serie de la forma
\[G \pm \beta H \pm \frac{1}{2} I \pm \frac{1}{3} K \pm \text{&c. en el supuesto de } x = g \pm k \]
(núm. 68.), y por consiguiente no podría aplicarse á una función
semejante que no hemos demostrado en los números 109. y siguientes.

Para averiguar en este caso si al valor de \(x \) corresponde efectivamente un máximo o mínimo; se substituirán sucesivamente en lugar de \(x, g - k, g + k \); y suponiendo que las cantidades que resultan son \(G', G, G' \); si siendo \(k \) tan pequeña como se quisiere, las cantidades \(G', G \) son ambas reales y menores que \(G \), será (núm. 104.) esta cantidad un máximo; y un mínimo si \(G' \) y \(G \) fueren ambas reales y mayores que \(G \); pero si estas condiciones no se verifican, \(G \) no será ni un máximo ni un mínimo.

Pero hemos de advertir que rará vez se ofrecerá valerse de este recurso; pues por lo común sucede que quando alguno de los coeficientes diferenciales \(\frac{dy}{dx}, \frac{d^2y}{dx^2}, \text{&c. es infinito; la función á la cual pertenecen se puede transformar en otra racional y entera por medio de lo dicho (núm. 113.) y luego se aplicará á la función transformada lo demostrado respecto de estas funciones, conforme veremos muy en breve.}

115. Lo dicho en los números antecedentes manifiesta lo que se debe practicar para averiguar si una función cualquiera \(f(x) = y \) de una variable \(x \), tiene algún máximo ó mínimo; y los valores de \(x \) que les corresponden. Desde luego se formará la ecuación \(\frac{dy}{dx} = 0 \)
(núm. 110.), y suponiendo que \(x = g \) es una de sus raíces reales, si el número de los coeficientes diferenciales \(\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \text{&c.} \), que se reducen á cero substituyendo \(g \) por \(x \), es impar, siendo al mismo tiempo real y finito el primero que no desaparece; el valor de \(x \) correspondiente á \(x = g \) será un máximo ó un mínimo (núm. 112.) según fuere negativo o positivo el valor de dicho coeficiente diferencial. Pero si el número de los coeficientes que se desvanezcan por el supuesto de \(x = g \) es par; ó si siendo impar dicho número, el primero de los coeficientes que no se desvanezca es una cantidad imaginaria; el valor correspondiente de \(y \) no será ni un máximo ni un mínimo.

Practicando pues lo mismo con las demás raíces de la ecuación \(\frac{dy}{dx} = 0 \); se conocerán todos los máximos y mínimos de la función propuesta, y los valores de \(x \) que les corresponden.

117. Si la función propuesta incluyese cantidades irracionales ó fraccionarias, puede suceder que la primera de las diferenciales que no desaparece por el supuesto de \(x = g \) sea infinita; en este caso se le dará á la función propuesta la forma racional entera; pero si esto

\[\text{DEL CÁLCULO DIFERENCIAL} \]

no se pudiere conseguir (lo que sucederá rara vez), se practicará lo dicho (núm. 115.).

\textbf{Ejemplo 1.} Sea \(1 + 8x - x^2 \) la función propuesta. Haciéndola \(\equiv y \), tendremos \(\frac{dy}{dx} = 8 - 2x \), \(\frac{d^2y}{dx^2} = -2 \), y haciendo \(\frac{dy}{dx} = 8 - 2x = 0 \), \(x = 4 \); de donde inferiremos (á causa de ser negativo el valor de \(\frac{d^2y}{dx^2} \)), que la función propuesta es un máximo cuando \(x = 4 \); y como este valor hace \(y = 17 \), será 17 un máximo valor de la función \(1 + 8x - x^2 \).

\textbf{Ejemplo 2.} Sea la función propuesta \(x^3 - 3ax^2 + 3a^2x + b = y \); será \(\frac{dy}{dx} = 3x^2 - 6ax + 3a^2 \), \(\frac{d^2y}{dx^2} = 6x - 6a \), \(\frac{d^3y}{dx^3} = 6 \); la ecuación \(3x^2 - 6ax + 3a^2 = 0 \), \((x - a)^2 = 0 \), tiene dos raíces iguales \(x = a \), \(x = a \), y como este valor de \(x \) reduce á cero un número par de límites \(\frac{dy}{dx}, \frac{d^2y}{dx^2} \), concluiremos que la función propuesta no tiene máximo ni mínimo alguno.

\textbf{Ejemplo 3.} Si la función propuesta fuese \(\frac{x}{1 + x^2} \); haciéndola \(\equiv y \) tendríamos \(\frac{dy}{dx} = \frac{1 - x^2}{(1 + x^2)^2} \), \(\frac{d^2y}{dx^2} = -\frac{6x - 2x^3}{(1 + x^2)^3} \), &c.; y haciendo \(\frac{1 - x^2}{(1 + x^2)^2} = 0 \), los dos valores \(x = 1 \), \(x = -1 \); el primero transforma \(\frac{d^2y}{dx^2} \) en \(-\frac{4}{8} = -\frac{1}{2} \), y el segundo en \(\frac{4}{8} = \frac{1}{2} \); de donde inferiremos (núm. 111.) que la función \(\frac{x}{1 + x^2} \) es un máximo cuando \(x = 1 \), y un mínimo cuando \(x = -1 \).

\textbf{Ejemplo 4.} Sea \(y = \sqrt{x} = x^{\frac{1}{2}} \); será \(\frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}} \), \(\frac{d^2y}{dx^2} = -\frac{1}{2} x^{-\frac{3}{2}} \), &c.; si hiciéramos \(\frac{dy}{dx} = 0 \), hallaríamos \(x = \infty \), cuyo valor nada significa por reducir á cero todas las diferenciales \(\frac{d^2y}{dx^2}, \frac{d^3y}{dx^3} \) &c.; pero haciendo uso de la observación núm. 113, veremos, que si \(x^2 \) es un máximo ó un mínimo \((x^2)^\frac{1}{2} = x \) lo será igualmente; haremos pues \(y = x^2 \) y tendremos \(\frac{dy}{dx} = 2x \), \(\frac{d^2y}{dx^2} = 2 \), &c.; la ecuación \(\frac{dy}{dx} = 2x = 0 \) da \(x = 0 \), y como \(\frac{d^2y}{dx^2} \) es una cantidad positiva, inferiremos que la función \(\sqrt{x} \) es un mínimo cuando \(x = 0 \).

\textbf{Ejemplo 5.} Si fuese \(\sqrt{(x - a)^2} = (x - a)^\frac{1}{2} \) la función propuesta; haciéndola \(\equiv y \) tendremos \(\frac{dy}{dx} = \frac{1}{2} (x - a)^{-\frac{1}{2}} \), \(\frac{d^2y}{dx^2} = \frac{1}{2} x^{-\frac{3}{2}} \), \(\frac{d^3y}{dx^3} = \frac{1}{2} x^{-\frac{5}{2}} \), &c.
Del cálculo diferencial.

\[\frac{dy}{dx} = \pm \frac{b}{a} \sqrt{(ax - x^2)}\]

Haciendo \(\frac{dy}{dx} = 0\), tendremos \(x = \frac{a}{2}\); cuyo valor transformado \(\frac{dy}{dx}\) en \(\frac{2b}{a}\), de donde concluiremos (núm. 116.), que cuando \(x = \frac{a}{2} = AC\), la ordenada es un máximo y un mínimo.

Para hallar el valor de la ordenada en el máximo y en el mínimo, substituiremos por \(x\) su valor en \(y = \pm \frac{b}{a} \sqrt{(ax - x^2)}\), y resultará \(y = \pm \frac{b}{a}\); esto es, \(y = \pm \frac{b}{a} = CD = \text{máximo}\), \(y = \frac{-b}{a} = CE = \text{mínimo}\); ó bien como el signo inferior pertenece a las ordenadas de la semielipse inferior \(AEB\), \(\frac{-b}{a} = CE\) se puede considerar como un máximo de dicha semielipse. Para determinar la mayor y la menor abscisa, habremos \(\frac{dy}{dx} = \pm \frac{b}{a} \sqrt{(ax - x^2)}\).

\[\frac{dy}{dx} = \frac{2b}{a} \sqrt{(ax - x^2)} = \frac{a^2}{a^2 - 4} = \frac{a^2}{a^2 - 4}\]

Haciendo \(\frac{dy}{dx} = 0\), tendremos \(y = 0\), cuyo valor substituido en la ecuación de la curva, da \(x = 0\), \(x = a\); la abscisa \(x = 0\) es un mínimo ó la menor; y la abscisa \(x = a = AB\) es un máximo ó la mayor.

La mayor y la menor ordenadas se pueden hallar más fácilmente en virtud de lo dicho (núm. 113.); pues si \(\frac{b}{a} = \sqrt{(ax - x^2)}\) es un máximo ó un mínimo; lo sería igualmente su cuadrado \(\frac{b}{a} = (ax - x^2)\), y también (núm. 107.) \(ax - x^2\); haciendo pues esta función igual a una nueva variable \(z\) (para distinguirla de la ordenada \(y\)), tendremos \(\frac{dz}{dx} = a - 2x\), y \(\frac{dz}{dx} = -2\); la ecuación \(\frac{dz}{dx} = a - 2x = 0\) da \(x = \frac{a}{2}\), cuyo valor corresponde un máximo, por ser negativo el de \(\frac{dz}{dx}\); será pues \(\frac{b}{a} = \sqrt{(ax - x^2)}\) un máximo cuando \(x = \frac{a}{2}\), y por consiguiente (núm. 108.) \(\frac{b}{a} = \sqrt{(ax - x^2)}\) un mínimo en el mismo supuesto. Substituyendo el valor \(\frac{a}{2}\) de \(x\); hallaremos los mismos valores que antes \(y = \frac{b}{2}\), \(y = \frac{-b}{2}\).

Problema 4°. Hallar un número que dividido por su logaritmo, el quociente sea menor que el de otro número cualquiera dividido por el logaritmo que le corresponde.

Resolución. Llamando \(x\) el número que se busca, será \(\frac{x}{\log x}\).
CAP. IV. APLICACIONES DE LOS PRINCIPIOS

CUATRO. DETERMINAR EL RECTÁNGULO MAYOR QUE SE PUEDE INSCRIBIR EN UN CÍRCULO DADO. 59

El valor $x = 0$ da un mínimo a causa de $\frac{dy}{dx^3} = 2a^2$.

Problema 6. ¿Qué es el arco cuyo seno es un máximo ó un mínimo?

Resolución. Sea x este arco, y su seno: tendrémos $y = \text{sen} \cdot x, \frac{dy}{dx} = \cos \cdot x$, y $\frac{dy}{dx^3} = -\text{sen} \cdot x$. Si llamamos τ la semicircunferencia; la ecuación $\cos \cdot x \left(1 - \frac{dy}{dx^3} \right) = 0$ da los valores siguientes de $x, \pm \frac{\pi}{2}, \pm \frac{\pi}{2}, \pm \frac{\pi}{2}, \&c.;$ los arcos $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \&c.$ tienen el seno máximo $\tau = 1$ a causa de $\frac{dy}{dx^3} = -1$ y a los arcos $\frac{\pi}{2}, -\frac{3\pi}{2}, -\frac{5\pi}{2}, \&c.$ corresponde el seno mínimo, $\tau = -1$.

Problema 7. Dado un punto B en el eje de la parábola AC (fig. 12), determinar el punto M tal, que la línea BM sea la más corta de todas las que se pueden tirar del punto B a la parábola.

Resolución. Búxese desde el punto M la perpendicular MP al eje AB; y llamando AB, a; PB, x; y p el parámetro del eje principal AD; será $AP = a - x$, $PM = \sqrt{(pa - px)}$, y $BM = \sqrt{(PB)^2 - (PM)^2} = \left(x^2 - pa - px \right)$, cuya cuantía, 6 su cuadrado, debe ser un mínimo. Haciendo pues $y = ax^2 - px + pa$, tendrémos la ecuación $\frac{dy}{dx} = 2ax - p = 0$, que da $x = \frac{1}{2} p$; y como $\frac{dy}{dx^3} = 2$, inferiremos que $x = \frac{1}{2} p$ corresponde en efecto un mínimo; tomando pues BP igual a la mitad del parámetro, y tirando la ordenada PM, el punto M será el que se pide. Pero si la línea BP es igual a $\frac{1}{2} p$, la BM es normal en el punto M (véase el núm. 135.): luego entre todas las líneas que se pueden tirar a la parábola desde un punto dado B en el eje, la normal es la menor.

Problema 8. Dividir la cantidad a en dos partes tales, que el producto de la potencia m de la primera, multiplicada por la potencia n de la segunda, sea el mayor de todos los productos sumejantes que se puedan formar.

Resolución. Sea x una parte de a, la otra será $a - x$; y el producto, cuyo máximo se busca, $x^m \cdot (a - x)^n$. Haciendo y, tendrémos $\frac{dy}{dx} = mx^{m-1} (a - x)^n - nx^m (a - x)^{n-1}$, de donde in-
CAP. IV. APLICACIONES DE LOS PRINCIPIOS

- mx - nx \) \(\frac{m-1}{n-1} (a-x)^{n-1} = 0 \), cuya ecuación da \(ma - mx - nx = 0 \), \((a-x)^{n-1} = 0 \); \(x = \frac{ma}{m+n} \), \(x = o \) y \(x = a \); el valor \(\frac{m-n}{m+n} \) de \(x \), corresponde un máximo a causa de que substituido en \(\frac{d^2y}{dx^2} \), resulta una cantidad negativa; y si cada uno de los otros dos valores, corresponde un mínimo \(= o \) en el supuesto de ser pares los exponentes \(m, n \), de las potencias.

De las funciones que en ciertos casos particulares se presentan bajo las formas indeterminadas \(\frac{0}{0}, \infty, 0 \times \infty \), y \(\infty - \infty \).

119. Cuando una función de una variable \(x \) es fraccionaria, suele suceder que sustituyendo en lugar de \(x \) valores particulares, el numerador y el denominador se reducen a cero, y por consiguiente dicha función a la expresión indeterminada \(\frac{0}{0} \); tal es, por ejemplo, la función \(\frac{a^x - x^a}{a - x} \) en el supuesto de \(x = a \). Estas funciones tienen sin embargo un valor determinado, el cual puede ser cero, finito o infinito; pues es evidente que no habiendo en ellas más cantidad variable que \(x \), si esta se supone igual a una cantidad determinada, su función lo será igualmente: por ejemplo, dividiendo el numerador y el denominador de la función \(\frac{a^x - x^a}{a - x} \) por el denominador \(a - x \), se reduce á \(a + x \), cuya cantidad es igual á \(2a \), en el supuesto de \(x = a \); por consiguiente, aunque la función \(\frac{a^x - x^a}{a - x} \) se reduce \(\frac{0}{0} \) cuando \(x = a \) tiene en este caso un valor determinado igual á \(2a \).

120. Si se observa con cuidado una función cualquiera que se reduzca \(\frac{0}{0} \) en el supuesto de \(x = a \); se verá que su numerador y denominador desaparecen á un mismo tiempo, á causa de que en su forma actual ó en otra que se les puede dar, tienen un factor común \((x - a) \), que reduciéndose á cero cuando \(x = a \), reduce igualmente á cero dicho numerador y denominador. Por lo que, cuando una función se reduce \(\frac{0}{0} \) en el supuesto de \(x = a \); se podrá hallar su valor, buscando el factor \((x - a) \) común al numerador y denominador, y suprimiéndole en ambos.

Si se nos pidiese, por ejemplo, el valor de la función

DEL CÁLCULO DIFERENCIAL.

\[x^a - x^s - x^a + x^a \]

\[= \frac{b}{b} \left(x^a - x^s + x^a \right) \]

\[\text{que se reduce á} \frac{0}{0} \] cuando \(x = a \); la transformaremos en \(\frac{a}{x - \log x} \) y suprimiendo el factor común \(x - a \), se reduciría á \(\frac{a + x}{b} \).

Pero además de ser muy embarazoso este método aun en los casos comunes, sería impracticable en algunos complicados, particularmente cuando la función propuesta incluyese cantidades iracionales ó transcendentes; como, por ejemplo, la función \(\frac{x^a - x}{1 + x + \log x} \) que se reduce \(\frac{0}{0} \) en el supuesto de \(x = 1 \); por cuya razón, abandonando enteramente dicho método, vamos á dar otro general y sencillo fundado en el cálculo diferencial, el cual se aplica con la misma facilidad á toda suerte de funciones.

121. Hemos visto (núm. 85.) que cuando ciertos valores particulares de \(x \) y de \(y \) reducen el coeficiente diferencial \(\frac{dy}{dx} = \frac{A}{B} \) á \(\frac{0}{0} \) se puede determinar su valor diferenciando sucesivamente las ecuaciones \(B \frac{dy}{dx} + A = 0 \), \((a) \), \((b) \), &c. hasta llegar á una ecuación en la cual alguno de los coeficientes \(C, D, E \) &c. no se reduzca á cero.

Podemos pues suponer que una función cualquiera \(\frac{A}{B} \) de una variable \(x \) que en el supuesto de \(x = a \) se reduce \(\frac{0}{0} \), representa el límite \(\frac{dy}{dx} \) de la razón entre las diferencias de dos cantidades variables \(x \) y \(y \); por consiguiente, haciendo \(\frac{dy}{dx} = \frac{A}{B} \), \(B \frac{dy}{dx} = A \), y considerando que \(A \) y \(B \) son solamente funciones de \(x \), se determinará el valor de \(\frac{dy}{dx} \), ó de la función propuesta, diferenciando sucesivamente \(A \) y \(B \); ó lo que es lo mismo, el numerador y el denominador de dicha función, hasta encontrar con alguno de los coeficientes diferenciales \(\frac{d^2A}{dx^2} \), \(\frac{d^2B}{dx^2} \), que no desaparezca por el supuesto de \(x = a \), en cuyo caso \(\frac{d^2A}{dx^2} : \frac{d^2B}{dx^2} \) será el valor que se busca.

Esta es la regla que por lo común se da para determinar el valor de una función cualquiera de una variable \(x \), que en ciertos casos particulares se reduce \(\frac{0}{0} \). Pero como dicha regla se suele de-
uncir indirectamente de algunas consideraciones particulares, y principalmente suponiendo la función propuesta \(\frac{A}{B} \) igual al coeficiente diferencial \(\frac{dy}{dx} \) conforme acabamos de hacer; nos parece mejor tomar un rumbo que nos conduzca directamente a la referida regla, y luego añadir algunas observaciones indispensables para hacer más fácil su aplicación, y darle toda la generalidad que se le supone.

122. Sean \(y = f(x) \), \(z = F(x) \) dos funciones de \(x \), que se reducen a cero cuando \(x = a \); y llámemos \(\xi \) el valor de \(\frac{y}{z} \) en este supuesto; si substituimos en \(y \) en \(z \), \(x + k \) en lugar de \(x \), tendremos (núm. 98) \(f(x + k) = y = \frac{dy}{dx} + \frac{d^2y}{dx^2} . \frac{k}{2} + \frac{d^3y}{dx^3} \cdot \frac{k^2}{3} + \ldots \) y \(F(x + k) = z = \frac{dz}{dx} + \frac{d^2z}{dx^2} \cdot \frac{k}{2} + \frac{d^3z}{dx^3} \cdot \frac{k^2}{3} + \ldots \) y considerando que \(y \) y \(z \) desaparecen cuando \(x = a \); será en este caso \(\frac{f(x + k)}{F(x + k)} \) \(= \frac{dy}{dz} \cdot \frac{d^2z}{dx^2} \cdot \frac{k}{2} + \ldots \); y haciendo \(k = 0 \), tendremos \(\frac{f(x)}{F(x)} \) \(= \xi = \frac{dy}{dz} \cdot \frac{d^2z}{dx^2} \cdot \frac{k}{2} + \ldots \). De manera que si ambos coeficientes diferenciales \(\frac{dy}{dx} \), \(\frac{dz}{dx} \) no se redujesen á cero por el supuesto de \(x = a \), se conocería el valor \(\xi \) de \(\frac{y}{z} \); pero si los dos coeficientes diferenciales desapareciesen, sería \(\frac{f(x + k)}{F(x + k)} = \ldots \ldots \) \(\frac{d^2y}{dx^2} + \frac{d^3y}{dx^3} \cdot \frac{k}{2} + \ldots \); y haciendo \(k = 0 \), \(\xi = \frac{d^2y}{dz^2} \cdot \frac{d^2z}{dx^2} \cdot \frac{k}{2} + \ldots \). Del mismo modo inferiríamos, que si los coeficientes diferenciales \(\frac{d^2y}{dx^2} \), \(\frac{d^2z}{dx^2} \) desapareciesen por el supuesto de \(x = a \); \(\xi \) sería igual á \(\frac{d^2y}{dz^2} \cdot \frac{d^2z}{dx^2} \); y en general, que para hallar el valor \(\xi \) de una función \(\frac{y}{z} \), que se reduce á \(\frac{0}{0} \) cuando \(x = a \), se diferenciarán sucesivamente el numerador y el denominador, hasta encontrar con alguno de los coeficientes diferenciales \(\frac{d^n y}{dx^n} \), \(\frac{d^n z}{dx^n} \) que no desaparezca por el supuesto

123. Tal vez se podría temer que todos los coeficientes diferenciales \(\frac{dy}{dx} \), \(\frac{d^2y}{dx^2} \), \(\frac{d^3y}{dx^3} \), \&c., \(\frac{dz}{dx} \), \(\frac{d^2z}{dx^2} \), \(\frac{d^3z}{dx^3} \), \&c. al infinito, desapareciesen por el supuesto de \(x = a \), en cuyo caso sería siempre \(\xi = \frac{0}{0} \).

Pero esto no puede suceder: pues siendo \(f(x + k) = y = \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} \cdot \frac{k}{2} + \ldots \), \(\frac{dz}{dx} \), \(\frac{d^2z}{dx^2} \), \&c., \(\frac{d^3z}{dx^3} \), \&c.; si todos los coeficientes diferenciales \(\frac{d^2y}{dx^2} \), \(\frac{d^3y}{dx^3} \), \&c., fuesen cero cuando \(x = a \); sería \(f(a + k) = 0 \), sea el que fuere el valor de \(k \), lo cual es evidentemente imposible.

124. Antes de aplicar la regla antecedente a algunos ejemplos, observaremos.

1° Que la función propuesta \(\frac{y}{z} \) y sus expresiones sucesivas \(\frac{dy}{dz} \), \(\frac{d^2y}{dz^2} \), \(\frac{d^3y}{dz^3} \), \&c. deben simplificar cuanto sea posible, practicando para ello las operaciones necesarias; con lo que se facilitarán las diferenciaciones siguientes en algunos casos complicados, y particularmente cuando \(\frac{y}{z} \) incluyese cantidades transcendentes.

2° Que si el exponente \(n \) de la potencia \((x - a)^n \) del factor común de \(y \) y de \(z \), que se reduce á cero cuando \(x = a \), fuese un número fraccionario; las diferenciaciones \(\frac{dy}{dx} \), \(\frac{dz}{dx} \); \(\frac{d^2y}{dx^2} \), \(\frac{d^2z}{dx^2} \); \&c. tomadas de dos en dos, serían \(0 \) cero, \(0 \) infinitas; en cuyo caso, si \(y \) o \(z \) no tuviesen otro factor de la forma \(x - a \) al que el común \((x - a)^n \); las expresiones \(\frac{dy}{dx} \), \(\frac{d^2y}{dx^2} \), \(\frac{d^3y}{dx^3} \), \&c., cero se reducirían todas á la forma indeterminada \(\frac{0}{0} \); ó empezando por reducirse á \(\frac{0}{0} \), llegarían á ser \(\frac{0}{0} \) al cabo de \(m \) diferenciaciones, representando \(m \) el número entero inmediatamente mayor que \(n \), y por consiguiente no se podría determinar \(\xi \) por medio de dicha regla. Pero (núm. 98.) como en este caso particular las funciones \(f(x + k) \), \(F(x + k) \), no pueden desarrollarse en series ordenadas según las potencias enteras de \(k \); tampoco se puede suponer
CAP. IV. APLICACIONES DE LOS PRINCIPIOS

\[\frac{f(a + k)}{F(a + k)} = \frac{dy}{dx} + \frac{d^2y}{dx^2} \cdot \frac{k^2}{2} + c, \]

y por consiguiente no conviene al caso actual la referida regla deducida de esta hipótesis.

Por lo que, para determinar el valor \(C \) de \(\frac{y}{z} \) en este caso particular, será necesario hacer desaparecer los radicales de los factores que se reducen a cero cuando \(x = a \); ya sea elevando la ecuación \(\frac{y}{z} = \frac{A}{z} \) á la potencia que el radical indica, ó por medio de alguna otra operación; y luego se aplicará la referida regla á la función libre de los radicales.

Pero si no se quisiere practicar con la función propuesta la operación necesaria para hacer desaparecer los radicales, ya sea por su dificultad, ó porque la función en su nueva forma parece demasiado complicada; se podrá determinar \(C \) por el método siguiente, el cual se funda en los mismos principios que el antecedente; pero presentados con mayor generalidad, y que por lo mismo no admite excepción alguna.

125. Sea como antes \(C \) el valor de la función \(\frac{y}{z} = \frac{f(x)}{F(x)} \) cuando \(x = a \); en cuyo supuesto se transforma dicha función en \(\frac{dy}{dx} \); substituyendo \(a + k \) en lugar de \(x \); las funciones \(f(a + k) \), \(F(a + k) \) se podrán desdoblar en series ascendentes de la forma \(A k^r + B k^s + \&c., A k^{r'} + B k^{s'} + \&c., \) representando \(r \), \(s \), \&c., \(r' \), \(s' \), \&c. cualesquiera números cuyo valor aumenta progresivamente; y será

\[\frac{f(a + k)}{F(a + k)} = \frac{A k^r + B k^{s'} + \&c.}{A k^{r'} + B k^{s'} + \&c.}. \]

Sentado esto, si en esta ecuación hacemos \(k = 0 \); su primer miembro se transformará en \(\frac{f(a)}{F(a)} \); igual á \(C \); y aunque el segundo, en su forma actual, se reduce igualmente que \(\frac{y}{z} \); se le puede dar otra que no tenga este inconveniente, suprimiendo el factor común \(k^r \) cuando fuere \(r' = 0 \); y \(k^{r'} \) si fuese \(r' > r \). En el primer caso, tendremos

\[\frac{f(a + k)}{F(a + k)} = \frac{A k^r + B k^{s'} + \&c.}{A k^{r'} + B k^{s'} + \&c.}, \]

y haciendo \(k = 0 \), resultará cuando \(r' < r \),

\[C = \frac{A}{A'} \]

y \(C = \frac{A}{A'} \) cuando \(r' = r \); y en el segundo, esto es, quando \(r' > r \), será \(\frac{y}{z} = \frac{A + B k^{r-r} + \&c.}{A k^{r-r} + B k^{r'-r} + \&c.} \), y haciendo \(k = 0 \), tendremos \(C = \infty \); de donde inferiríamos esta regla general. Substituyase en \(\frac{y}{z} \), \(a + k \) en lugar de \(x \), y fírmense los primeros términos

\[A k^r + k^{r'} \]

de las series antecedentes que resultan; suprimase luego en \(A k^r \) el factor común \(k^r \) \&c., y haciendo \(k = 0 \), resultará \(C \), ó el valor de la función propuesta \(\frac{y}{z} \) cuando \(x = a \).

Es de advertir que cuando \(r' = r \), bastará para hallar \(C \), suprimir el factor común \(k^r \).

126. La práctica de la regla núm. 125., es por lo común más fácil que la de la que acabamos de manifestar; pero esta tiene la ventaja de ser general; y que en algunos casos complicados, se juzgará tal vez más fácil su uso que el de aquella. Vamos á ilustrar esta doctrina con algunos exemplos.

Exemplo 1.° ¿Quál es el valor de la fracción \(\frac{a^1}{x^1} \) cuando \(x = a \); Haciendo \(a^2 - x^2 = y \), y \(a - x = z \), tendremos \(\frac{dy}{dx} = -2x \),

\[\frac{dz}{dx} = -1 \]

y suponiendo \(x = a \), será \(C = \frac{dy}{dx} \); \(\frac{dz}{dx} = 2a \);

por consiguiente en el supuesto de \(x = a \), \(a^1 - x^1 = 2a \).

Exemplo 2.° Si se nos pidiere el valor de la fracción \(a^1 - ax \) en el supuesto de \(x = a \), haríamos \(a^2 - ax = y \), \(a - \sqrt{ax} = z \); y tendríamos \(\frac{dy}{dx} = -a, \frac{dz}{dx} = \frac{1}{\sqrt{ax}} \), y haciendo \(x = a \),

\[\frac{dy}{dx} : \frac{dz}{dx} = 2a ; \]

así \(2a \) es el valor que se pide.

Exemplo 3.° La función propuesta es \(\frac{a^1 - \sqrt{a^1 - x^1}}{a^1} \), y se pide su valor \(C \) cuando \(x = 0 \). Tendremos \(y = a - \sqrt{a^2 - x^2} \), \(z = x^2 \), \(\frac{dy}{dx} = \frac{x}{\sqrt{a^2 - x^2}} \), \(\frac{dz}{dx} = 2x \), y \(\frac{dy}{dx} : \frac{dz}{dx} = \frac{1}{2} \sqrt{a^1 - x^1} \); (cuando \(x = 0 \)) \(= \frac{1}{\sqrt{a^1}} \); cuya cantidad es el valor que se pide.

Exemplo 4.° Sea \(\frac{log x}{\sqrt{1-x}} \) la función cuyo valor se quiere determinar, en el supuesto de \(x = 1 \). Haciendo \(y = log x \); \(z = (1 - x)^1 \), tendremos \(\frac{dy}{dx} = \frac{1}{x}, \frac{dz}{dx} = \frac{1}{2} (1-x)^1 \), \(\frac{dy}{dx} : \frac{dz}{dx} = \frac{1}{x} \).
puesta, se manifestará dándole la forma conveniente; pues siendo \(\cos x = \sqrt{1 - \text{sen}^2 x} \), \(\text{sen} x = \sqrt{1 - \cos^2 x} \) y \(\text{cot} x = 1 \), dicha función se puede transformar en

\[
\frac{\text{sen} x}{1 - \text{sen} x} + \frac{\cos x}{1 + \text{sen} x} = \frac{\sqrt{1 - \text{sen} x}}{1 - \text{sen} x} + \frac{\sqrt{1 + \text{sen} x}}{1 + \text{sen} x}
\]

\[
= \text{sen} x + \text{caren} x
\]

\[
= \frac{\text{sen} x}{1 - \text{sen} x} + \frac{\text{caren} x}{1 + \text{sen} x}
\]

\[
= \frac{\sqrt{1 + \text{sen} x}}{1 + \text{sen} x} + \frac{\sqrt{1 - \text{sen} x}}{1 - \text{sen} x}
\]

\[
= \frac{\sqrt{1 + \text{sen} x}}{1 + \text{sen} x} - \frac{\sqrt{1 - \text{sen} x}}{1 - \text{sen} x}
\]

El factor común, se reduce a

\[
\frac{\text{sen} x}{1 - \text{sen} x} + \frac{\text{caren} x}{1 + \text{sen} x}
\]

y su valor es igual a la unidad suponiendo \(x = \frac{\pi}{2} \), o sen. \(x = 1 \).

\[\text{Exemplo 8o} \quad \text{Sea} \quad \frac{x}{t - x + \log x}\] y la función cuyo valor se quiera determinar en el supuesto de \(x = 1 \). Tendremos \(y = x^2 - x, z = 1 - x + \log x, \) \(\frac{dy}{dx} = x^2 (\log x + 1) - 1, \frac{dz}{dx} = -1 \), y como las dos últimas expresiones desaparecen en el supuesto de \(x = 1 \), las diferenciamos de nuevo, y tendremos

\[
\frac{dy}{dx} = x^2 (\log x + 1)^2, \quad \frac{dz}{dx} = -1
\]

y haciendo \(x = 1 \), tendremos

\[
\text{Exemplo 6o} \quad \text{La suma general de la serie} \quad \sum_{n=1}^{\infty} \frac{1}{n^2 + n + 2} \quad \text{es} \quad \frac{x}{x + 1} \quad \text{y la función que se pide dándole la forma convenciente; pues \(\cos x = \sqrt{1 - \text{sen}^2 x} \), \(\text{sen} x = \sqrt{1 - \cos^2 x} \) y \(\text{cot} x = 1 \), dicha función se puede transformar en}
\]

\[
\frac{\text{sen} x}{1 - \text{sen} x} + \frac{\cos x}{1 + \text{sen} x} = \frac{\sqrt{1 - \text{sen} x}}{1 - \text{sen} x} + \frac{\sqrt{1 + \text{sen} x}}{1 + \text{sen} x}
\]

\[
= \text{sen} x + \text{caren} x
\]

\[
= \frac{\text{sen} x}{1 - \text{sen} x} + \frac{\text{caren} x}{1 + \text{sen} x}
\]

\[
= \frac{\sqrt{1 + \text{sen} x}}{1 + \text{sen} x} + \frac{\sqrt{1 - \text{sen} x}}{1 - \text{sen} x}
\]

\[
= \frac{\sqrt{1 + \text{sen} x}}{1 + \text{sen} x} - \frac{\sqrt{1 - \text{sen} x}}{1 - \text{sen} x}
\]

El factor común, se reduce a

\[
\frac{\text{sen} x}{1 - \text{sen} x} + \frac{\text{caren} x}{1 + \text{sen} x}
\]

y su valor es igual a la unidad suponiendo \(x = \frac{\pi}{2} \), o sen. \(x = 1 \).

Para aplicar la regla general núm. 125, á la función propuesta, substituiéremos en su numerador y en su denominador \(a + k \) en lugar de \(a \), y se transformará en

\[
\frac{a_k + k}{k}
\]

y suprimiendo el factor co-
del cálculo diferencial.

128. La función propuesta puede componerse del producto de dos factores, tales que, cuando \(x = a \), sea \(A = 0, B = \infty \), y por consiguiente \(A \times B = 0 \times \infty \): pero si transformamos \(A \times B \) en \(\frac{1}{B} \), a causa de \(\frac{1}{B} = \frac{1}{\infty} = 0 \), será \(\frac{A}{B} = \frac{0}{\infty} \), y por consiguiente se podrá determinar el valor de esta función por los métodos precedentes.

Supongamos, por ejemplo, que representando \(\pi \) la semicircunferencia del círculo cuyo radio \(= 1 \), se pida el valor de la función \((1 - x) \times \tan \frac{\pi x}{2} \), cuando \(x = 1 \). Como en este supuesto, \(\tan \frac{\pi x}{2} = \tan \frac{\pi}{2} = \infty \), la función propuesta se reducirá a \(0 \times \infty \); pero a causa de \(\frac{1}{\frac{\pi}{2}} = \cot \frac{\pi}{2} \), la podemos transformar en \(\frac{1 - x}{\cot \frac{\pi}{2}} \), cuyo numerador y denominador desaparecen cuando \(x = 1 \): harémos pues \(1 - x = y \), cotang. \(\frac{\pi x}{2} = z \), y tendremos

\[
\frac{dy}{dx} = -1, \quad \frac{dz}{dx} = \left(\text{número 77} \right) \frac{\pi}{2} - \frac{\pi}{2} y \frac{dy}{dx} : \frac{dz}{dx} = \frac{\pi}{2}
\]

\[
\frac{2 \sen^2 \frac{\pi}{2}}{\frac{\pi}{2}} = \left(\text{haciendo} \ x = 1 \right) \frac{2 \sen^2 \frac{\pi}{2}}{\frac{\pi}{2}} = \frac{\pi}{2} \; ; \quad \text{cuya cantidad es el valor que se pide.}
\]

129. Finalmente, si siendo \(A, B, C, D \), funciones de \(x \); \(B \) y \(D \) desaparecieron en el supuesto de \(x = a \); la función \(\frac{A}{B} \) tendría la forma \(\infty - \infty \); pero reduciéndola a un común denominador, se transformará en \(\frac{AD - BC}{BD} \), la cual se reducirá a \(\frac{0}{0} \) en el mismo supuesto. En este caso, se puede determinar \(\frac{A}{B} \) aplicando el método núm. 122. á la función transformada \(\frac{AD - CB}{BD} \), ó la regla general núm. 125. á la función propuesta \(\frac{\pi}{2} \); pero como esta forma es más sencilla que aquella, el segundo método es por lo común más fácil y breve que el primero, conforme se verá en los dos ejemplos siguientes.
CAP. IV. APLICACIONES DE LOS PRINCIPIOS

Exemplo 1° ¿Qué es el valor de \(\frac{x}{x-1} - \frac{1}{\log x} \) cuando \(x = 1 \)?

1° Es evidente, que en este supuesto la función propuesta se reduce a \(\infty - \infty \); pero si la transformamos en \(\frac{x \log x - x + 1}{(x - 1) \log x} \), se tendrá \(= \frac{0}{0} \) en el mismo supuesto: harémos pues \(x \log x = x + 1 = y \), \((x - 1) \log x = z \), y pendremos \(\frac{dy}{dx} = \frac{1}{x} = \log x - 1 = \log x, \frac{dx}{dx} = \frac{x - 1}{x} + \log x, y \frac{dy}{dx} = \frac{1}{x} \frac{x - 1}{x} + \log x \),

cuya cantidad se reduce a \(\frac{0}{0} \) cuando \(x = 1 \); será pues necesario continuar la diferenciación, y hallarémos

\[\frac{dy}{dx} = \frac{x}{x^2}, \quad \frac{dx}{dx} = \frac{x - 1}{x} = \frac{x - 1}{x} = \left(\text{en el supuesto de } x = 1 \right) \]

\(\frac{x}{x - 1} = \frac{1}{x} \); de donde inferirémos, que cuando \(x = 1 \), es \(\frac{x}{x - 1} = \log x \).

2° Si substituimos \(1 + k \) por \(x \) en la función propuesta, y consideramos que \((1 + k) = k^{\frac{1}{2}} + k^{\frac{1}{3}} = \cdots + \infty \); se transformará en \(\frac{1}{k} - \frac{1}{k^{\frac{1}{2}}} + \frac{k^{\frac{1}{3}}}{2} - \cdots + \infty \), y suprimiendo el factor común \(k^{\frac{1}{2}} \), resultará \(\frac{1}{k} \) (núm. 125.), \(\frac{1}{2} = \frac{1}{2} \), lo mismo que por el otro método.

Exemplo 2° Sea \(\frac{x}{2x^3 + 2x \cdot \tan \pi x} \) la función cuyo valor se quiere determinar cuando \(x = 0 \). Como en este supuesto los dos términos de dicha función son infinitos; los reduciremos a un común denominador, y tendremos \(\frac{\tan \pi x - \pi x}{2x^3 \cdot \tan \pi x} \), cuyo numerador y denominador desaparecen cuando \(x = 0 \). Si quisiéramos determinar el valor de esta función por medio de la regla núm. 122., sería necesario diferenciar tres veces su numerador y su denominador, lo cual no se emplearía en cálculos prolixos: pero empleando el método general núm. 125., substituirémos \(k \) en lugar de \(x \) en la función \(\frac{1}{2x^3 + \pi k} \)

\[\frac{1}{\tan \pi x} \]; y teniendo presente que \(\tan \pi k = \pi k + \frac{\pi \pi k}{3} \).
hacemos $z = 0$; tendremos la distancia AI comprendida entre el origen A y el punto I donde la tangente encuentra el eje de las ordenadas $u = y = x \frac{dy}{dx}$.

8° El triángulo rectangular TPM (fig. 15 y 14.), da $PT: PM = : 1$; tang. PTM; y $PM: PT = : 1$; tang. PMT; de donde inferimos, tang. $PTM = \frac{PM}{PT} = \frac{dy}{dx}$, y tang. $PMT = \frac{PT}{PM} = \frac{dx}{dy}$; por consiguiente, la tangente al ángulo PTM que la curva o su tangente forma con el eje de las abscisas, es igual al coeficiente diferencial $\frac{dy}{dx}$; y la tangente del ángulo PMT que la curva o su tangente hace con la ordenada, es igual a $\frac{dx}{dy}$.

9° Luego si una curva tuviere algunos puntos, cuyas tangentes fueron paralelas al eje de las abscisas; sería en ellos $\frac{dy}{dx} = 0$; y si la tangente fuese paralela á las ordenadas en ciertos puntos de una línea curva; $\frac{dx}{dy}$ será cero en dichos puntos, y recíprocamente.

10° Luego si la ordenada y es un máximo ó un mínimo en ciertos puntos de una línea curva (núm. 109.); será en ellos la tangente paralela al eje de las abscisas; y si la abscisa x es un máximo ó un mínimo; la tangente en los puntos correspondientes de la curva será paralela al eje de las ordenadas.

11° Si al paso que la abscisa x crece (fig. 15 y 16.), la ordenada y disminuye; la diferencia Δy será negativa; las razones $\frac{\Delta y}{\Delta x}$; sus límites $\frac{dy}{dx}$, $\frac{dx}{dy}$, y las expresiones $\frac{\Delta y}{\Delta x}$ y $\frac{\Delta x}{\Delta y}$ de la subnormal y de la subnormal, serán también negativas; y por consiguiente, estas líneas, y la tangente y normal correspondientes, caerán a un lado opuesto al que supusimos en la construcción antecedente respecto del punto P.

Los valores respectivos de la subtangente, subnormal, tangente, &c. correspondientes a un punto cualquiera M de una línea curva (fig. 15 y 14.) se pueden también determinar con mucha sencillez, por medio del admirable teorema de Taylor.

En efecto; siendo por los triángulos semejantes $\triangle MBM$, $\triangle MPS$, $PS = \frac{\Delta x}{\Delta y}$, y (núm. 91.) $\Delta y = \Delta x \frac{dy}{dx} + \frac{1}{2} \Delta x \frac{d^2y}{dx^2} + \&c.$; será $PS = \frac{\Delta y}{\Delta x} \frac{dy}{dx} + \frac{1}{2} \Delta x \frac{d^2y}{dx^2} + \&c.$ Pero es evidente, que á medida que la recta $PP = \Delta x$ decrece; el punto M se acerca continuamente al punto M, y el punto S al punto T; de manera que el pri-
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

diente á un punto \(M \) de una curva (fig. 18. y 19.), fuese negativo ó positivo; será esta cónica ó convexa hacia el exice \(AD \) inmediatamente antes y después del punto \(M \). Esta proposición se puede demostrar fácilmente por medio del teorema de Taylor (núm. 89.):

\[
BM' = \Delta y = \frac{dy}{dx} \Delta x + \frac{1}{2} \frac{d^2y}{dx^2} \Delta x^2 + \frac{1}{6} \frac{d^3y}{dx^3} \Delta x^3 + \cdots
\]

y, á causa de los triángulos semejantes \(TPM, MBm, BM = \frac{dy}{dx} \Delta x \); será \(BM' - BM = \frac{1}{2} \frac{d^2y}{dx^2} \Delta x^2 + \frac{1}{6} \frac{d^3y}{dx^3} \Delta x^3 + \cdots \);

por donde se vuelve que si se supone \(\Delta x \) tan pequeño como sea menor (núm. 13.) para que el término \(\frac{1}{2} \frac{d^2y}{dx^2} \Delta x^2 \) sea mayor que la suma de todos los que le siguen; \(BM' - BM \) será una cantidad positiva, si lo fuere \(\frac{d^2y}{dx^2} \), ya sea \(\Delta x \) positiva ó negativa; por consiguiente, inmediatamente antes y después del punto \(M \) (fig. 19.), la curva estará al otro lado de la tangente \(TMm \) respecto del exice \(AD \); y presentará á este su convexidad; pero si el valor del coeficiente diferencial \(\frac{d^2y}{dx^2} \) correspondiente al punto \(M \) fuese negativo, lo sería igualmente el de \(BM' - BM \) al uno y otro lado del punto \(M \) (fig. 18.); por consiguiente, la curva estará en este caso entre la tangente \(TMm \) y el exice \(AD \) inmediatamente antes y después del punto \(M \), y por lo mismo será cóncava respecto de dicho exice. 134. Siendo el arco \(MEM' \) (fig. 15. y 14.), mayor que su cuerda \(MM' \), la razón - de la diferencia del arco \(AM \) á la diferencia de la abscisa correspondiente \(AP \); será mayor que la razón \(\frac{MM'}{MB} \) de la cuerda \(MM' \) á \(MB \), ó que su igual \(\frac{MS}{PS} \); pero quan- to más el punto \(M \) se acercare al punto \(M \), tanto más la cuerda \(MM' \) se acercará á confundirse con el arco \(MEM' \), y por consiguiente tanto más la primera - de estas razones, se acercará á la segunda \(\frac{MS}{PS} \); de manera que su diferencia llegará á ser menor que una cantidad dada por pequeña que sea; de donde concluirémos (núm. 20.) que el límite \(\frac{MT}{PT} \) de la segunda de estas razones, será igual al límite de la primera; luego

La razón \(\frac{MT}{PT} \) de la tangente á la subtangente de un punto cualquiera \(M \) de una curva, es el límite de la razón \(\frac{MEM'}{MB} \) de la diferencia del arco \(AM \), á la diferencia de la abscisa correspondiente \(AP \).

De donde se infiere
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

subtangente PT, y el de la subnormal PN que le corresponden; por cuya razón nos propondremos desde luego este

Problema. Dada la relación entre las coordenadas x y y de una curva; determinar el valor de la subtangente, y el de la subnormal, correspondientes a una cualquiera M de sus puntos.

Resolución. Hállese por los métodos declarados (núm. 71. y sig.)

los límites $\frac{dy}{dx}$, $\frac{dy}{dx}$; y substituyéndoles en las expresiones $\frac{dy}{dx}$, $\frac{dn}{dx}$ (núm. 130.), resultarán respectivamente los valores de la subtangente, y de la subnormal.

Ejemplo 1. Sea $y^2 = ax$ la ecuación que expresa la relación de las coordenadas, como en la parábola vulgar (fig. 15.); será $2y \frac{dy}{dx} = 0$, de donde inferiremos $\frac{dy}{dx} = \frac{a}{2x} = \frac{a}{2y}$, $\frac{dy}{dx} = \frac{a}{2y}$, y $PT = \frac{2y}{a} = 2x$; así en la parábola ordinaria, la subtangente es igual al doble de la abscisa, y la subnormal constante es igual a la mitad del parámetro.

La ecuación de la tangente TM será (núm. 130.) $\frac{a}{2} (z - y) = 0 - y$, y substituyendo por $\frac{a}{2}$ su valor ax y reduciendo, $a (z + x) = 2ay$; y la de la normal MN, $\frac{a}{2} (u - y) = z - y$, $0 = a (u - y) = 2ay (x - z)$.

Si quisiéramos averiguar hácia qué lado está la concavidad de la curva, diferenciariamos la ecuación $\frac{dy}{dx} = \frac{a}{2y} = \frac{\frac{1}{2} x - \frac{1}{2}}{y}$, y hallaríamos $\frac{dy}{dx} = \frac{1}{2x} \sqrt{\frac{a}{x}}$; de donde inferiremos (núm. 133.) que la parábola AC es cóncava en todos sus puntos hácia el eje principal AD.

Si contásemos las abscisas x en la línea AD perpendicular al eje principal AH (fig. 14.), la ecuación de la parábola AMC sería $y = \frac{a}{2} x$, de donde inferiremos $\frac{dy}{dx} = \frac{a}{2x}$; $PN = y \frac{dy}{dx} = 2ax$, $\frac{dy}{dx} = \frac{a}{2x^2}$, $\frac{dy}{dx} = \frac{a}{2x}$, y; PT = $\frac{2ax}{a} = \frac{2x}{a}$.

Ejemplo 2. Sea ABF (fig. 20.) un círculo cuyo radio $AC = a$, y A el origen de las coordenadas. Será su ecuación $y^2 = 2ax - x^2$, y tendremos $2y \frac{dy}{dx} = 2a - 2x$, $\frac{dy}{dx} = \frac{a - x}{y}$, $\frac{dy}{dx} = \frac{a - x}{y}$, $PT = \frac{y^2}{2ax - x^2}$, y $PN = a - x = PC$; de donde inferiríe-
mos, que en el círculo todas las normales parten del centro, y son por consiguiente iguales al radio. Esto resulta igualmente de la expresión \(\text{num. } 130. \) \(MN = y \sqrt{1 + \frac{dy^2}{dx^2}} \); pues su valor \(\frac{dy^2}{dx^2} = \frac{(a-x)^2}{g} \), se transforma en \(MN = \sqrt{y^2 + a^2 - 2ax + x^2} = (\text{substituyendo por } y^2 \text{ su valor}) \sqrt{a^2 - y^2} \). El valor positivo pertenece a las normales que están encima del diámetro \(AE \) según hemos supuesto (num. 130.); y el valor negativo, a las normales que están debajo de \(AE \).

Si \(x \) fuese mayor que \(a \), los valores antecedentes de \(PN \) y \(PT \) serían negativos, y por consiguiente tendrían estas líneas una situación opuesta a la que supusimos (num. 130.).

Cuando \(x \) es igual a \(AC = a \); la subnormal \(PN \) se cero, lo cual es evidente de suyo; y la subtangente \(PT = \frac{2a^2 - a^2}{a - a} = \frac{a^2}{a} = \infty \), y así debe ser; pues siendo en este caso la tangente paralela a la línea de las abscisas \(AE \), no la encontrará nunca, o lo que es lo mismo (num. 9.) solo la encontrará a una distancia infinita del punto \(N \).

Finalmente, substituyendo por \(\frac{dy}{dx} \) su valor; la ecuación de la tangente \(TM \) será \((z-x)(a-x) = uy - y^2 \); y substituyendo el valor de \(y^2 \), y reduciendo, \(z(a-x) = uy - ax \); y la ecuación de la normal \(NM \), \((u-y)(a-x) = yz - y^2 \); o haciendo las reducciones correspondientes \(u(a-x) = y(a-z) \).

Exemplo 5. La ecuación general de las curvas de segundo orden es \(y = ax^2 + bx; \) diferenciándola tendremos \(\frac{dy}{dx} = ax + \frac{b}{2} = \frac{a}{2y} \).

La subnormal es \(\frac{dx}{dy} = \frac{y}{ax + \frac{b}{2}} \), y la subtangente \(\frac{dx}{dy} = \frac{2y}{ax + \frac{b}{2}} \).

Exemplo 4. Sea \(AMC \) (fig. 21.) La curva llamada logarítmica, cuya ecuación, suponiendo el módulo \(= a \), es \(x = a \log_{y} \gamma \); será (num. 74.) \(\frac{dx}{dy} = \frac{a}{y} \), \(\frac{dy}{dy} = \frac{y}{a} \), \(PT = \frac{dy}{dy} = a \), y \(PN = \frac{y}{a} \); así, la subtangente de la logarítmica es constante \(\gamma \) igual al módulo; y como este es igual a la unidad en el sistema Napieriano, será \(1 \) la subtangente de la logarítmica construida en virtud de este sistema.

La ecuación \(\frac{dy}{dx} = \frac{a}{y} \), da \(\frac{dy}{dx} = \frac{1}{a} \frac{dy}{dx} = \frac{y}{a} \): de donde inferiremos (num. 133.) que la logarítmica \(BC \) es en toda su extensión convexa hacia el eje \(AD \).
en este supuesto (núm. 57.) \(\frac{dy}{dx} = \pm 1, \) luego \(\frac{dx}{dy} = \pm 1, \) y \(PT = \pm b; \) cuyo resultado manifiesta, que al punto \(M \) corresponden dos subtangentes iguales á la ordenada \(PM = b, \) las cuales caen á lados opuestos respecto del punto \(P. \)

137. Hemos dicho (núm. 135.) que para determinar la posición de la tangente y de la normal en un punto cualquiera \(M \) de una curva, basta determinar la subtangente y la subnormal que le corresponden. Hay sin embargo un caso particular, en el cual la posición de aquellas líneas no se puede determinar por medio de estas; y es cuando el exo de las abscisas corta la curva en el punto \(M, \) y el límite \(\frac{dy}{dx} \) tiene un valor finito; pues siendo en este caso \(PM = 0, \) igualmente que \(PT \) y \(PN \) (fig. 24.); los puntos \(P, T, N \) se confunden con el punto \(M, \) y por consiguiente no pueden estos puntos fixar la situación de la tangente, ni la de la normal. Pero si substituimos en las ecuaciones (núm. 130., 60.) \(\frac{dy}{dx} = \frac{u - y}{(u - x)} \) \(\frac{dx}{dy} = x - z \) los valores de \(x, y \) y \(\frac{dy}{dx} \) correspondientes al punto \(M, \) resultará la ecuación de la tangente \(ME, \) y la de la normal \(MG, \) y por su medio será fácil construir estas líneas.

Sea por ejemplo, \(y = ax - x^2 \) la ecuación de la curva \(CMH, \) tendremos en el punto \(M, \) donde \(y = 0; x = 0, \) \(\frac{dy}{dx} = a - 2x = a; \) y sustituyendo estos valores en las ecuaciones antecedentes, la primera correspondiente a \(ME \) se transformará en \(ax = u, \) y la segunda (que pertenece á \(MG, \)) \(u = - \frac{z}{a}; \) tomarémos pues las líneas \(MB = 1, MF = a; \) y las perpendiculares \(BE = a, FG = -1, \) y tirando \(ME, MG, \) será la primera de estas líneas tangente, y la segunda normal, en el punto \(M. \)

138. Si en las expresiones \(\sqrt{1 + \left(\frac{dx}{dy} \right)^2}, \) \(\sqrt{1 + \left(\frac{dy}{dx} \right)^2} \) (número 130., 50.) de \(MT, MN, \) substituimos por \(y, \) \(\frac{dx}{dy}, \) \(\frac{dy}{dx}, \) \(\frac{dx}{dy} \) sus valores sacados de la ecuación de una curva \(AC \) (fig. 15. y 14.); resultarán los de \(MT, \) y \(MN \) pertenecientes á un punto cualquiera \(M \) de \(AC. \)

Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

Siendo, por ejemplo, en la parábola \(y^2 = 4ax; \) será \(\frac{dy}{dx} = \frac{a}{2y}, \)

\[
\frac{dx}{dy} = \frac{a}{2y}, \quad MT = y \sqrt{1 + \left(\frac{a}{2y} \right)^2} = \sqrt{ax + a^2}, \quad y \quad MN = y \sqrt{1 + \left(\frac{a}{2y} \right)^2} = \sqrt{ax + a^2}.
\]

139. Si quisiéramos determinar los puntos de una línea curva, donde la tangente es paralela al exo de las abscisas; y los puntos en que su tangente es paralela al exo de las ordenadas; diferenciaríamos su ecuación, y suponiendo igual á cero el valor de \(\frac{dy}{dx}, \) y el de \(\frac{dx}{dy}, \) resultarán dos ecuaciones, que combinadas con la de la curva, dará la primera los valores de \(x \) y de \(y \) correspondientes á los puntos en los cuales la tangente es paralela á la línea de las abscisas (núm. 130., 90.); y la segunda los que corresponden á los puntos donde la tangente es paralela á las ordenadas.

Éxemplo. Sea dada la ecuación \(y^2 = \frac{k^2}{x^2} \) (\(ax = x^2 \)) perteneciente á la elipse, y á la elíptica. Tendremos \(\frac{dy}{dx} = \frac{b}{a} \cdot \frac{x}{\sqrt{ax + a^2}} \)

\[
\frac{dx}{dy} = \frac{b}{a} \left(\frac{x}{\sqrt{ax + a^2}} \right), \quad \text{es igualando á cero estos valores; las dos ecuaciones \(\frac{a}{b} = x = 0, ax = x^2 = 0 \); la primera da para la elipse \(x = \frac{a}{2}, \) y substituyendo este valor en la ecuación de la curva, resultará \(y = \frac{a}{2}; \) por consiguiente, en la elipse la tangente es paralela al exo de las abscisas en los puntos \(M, M' \) (fig. 25.) extremos del exo menor.

Respecto de la eliptica (fig. 26.) la misma ecuación da \(x = -\frac{a}{2}; \) y como á este valor de \(x \) corresponden los valores imaginarios \(y = \pm b \sqrt{-\frac{1}{a}}; \) inferimos que la eliptica no tiene en ninguno de sus puntos la tangente paralela al exo de las abscisas.

La segunda ecuación da, respecto de la elipse \(x = 0, \) \(x = a, \) y para la eliptica \(x = 0, \) \(x = -a, \) á cuyos valores corresponde en ambas curvas \(y = 0; \) de donde inferimos que en la elipse y en la eliptica, la tangente es paralela á las ordenadas en los puntos \(A, C \) extremos del exo mayor.

140. **Problema 2.** Dado un punto \(E \) en el plano de una curva \(AMC \) (fig. 27.); determinar los puntos \(M \) de la curva, en los cuales la recta \(EM \) es tangente.

Cap. V. Aplicación del Cálculo Diferencial

Resolution. Llamemos \(g \) la abscisa \(AB \), y \(h \) la ordenada \(BE \) correspondientes al punto \(E \) de la tangente \(EM \), y sustituyéndolas por \(z \) y \(u \) en la ecuación general (núm. 130., 8.) de la tangente, se transformará en \((g-x) \frac{dy}{dx} = -h-y \); cuya ecuación combinada con la de la curva \(AMC \), dará los valores de las coordenadas \(x \) y \(y \) correspondientes a los puntos \(M \).

Si el punto \(B \) cae a la izquierda del punto \(A \) (fig. 28.), \(g \) sería negativa; y si el punto \(E \) estuviese debajo de \(AD \), sustituiríamos \(-h \) por \(u \).

Ejemplo 1°. Sea la curva \(CAC \) una parábola. Su ecuación es \(y^2 = ax \); de donde inferiremos \(\frac{dy}{dx} = \frac{a}{2y} \), y observando que \(g \) es negativa, tendremos \(y - h = \frac{2y}{2y} \), o sustituyendo \(y^2 \) por \(ax \); \(y^2 - 2hy = ag \), cuya ecuación da \(y = h \pm \sqrt{(h^2 + ag)} \); tomando pues en el exé de las ordenadas las distancias \(AF = h + \sqrt{h^2 + ag} \), las paralelas \(FM \), \(F'M \) al exé de las abscisas determinarán los puntos de contacto \(M \).

También podemos substituir en la ecuación \(2y(y - h) = a(g + x) \), \(ax \) en lugar de \(y^2 \), y se transformará en \(2hy + x = ag \), y construyendo la línea \(MGH \) representada por esta ecuación, los puntos \(M \), \(M \) donde encuentra la parábola \(CAC \) satisfacerán a un mismo tiempo a dicha ecuación y a \(y^2 = ax \), y serán por consiguiente los que se buscan.

La línea \(MGH' \) se construye fácilmente determinando las distancias \(AG = g \) y \(AH' = -\frac{ag}{2h} \), donde corta el exé de las abscisas, y el de las ordenadas.

Ejemplo 2°. Sea \(AMD \) un círculo cuyo radio \(CA = a \) (fig. 29.). La ecuación (núm. 135.) de su tangente será \(z(a-x) = hy - ax \); o sustituyendo \(h \) por \(u \), \(y - g \) por \(z \); \(hy - ga = x(g - a) \); la recta \(MGM \) representada por esta ecuación cortará el círculo en los puntos de contacto \(M, M \).

141. Problema 2°. Dado un punto \(E \) en el plano de una curva \(CAC \) (fig. 30.), determinar los puntos \(M \) donde las normales \(EM \) la cortan.

Resolution. Sean como antes \(g \) y \(h \) las coordenadas \(AF \), \(FE \) del punto dado \(E \); y \(EH \) sustituyéndose por \(z \) y \(u \) en la ecuación de la normal, la que se transformará en \((h - y) \frac{dy}{dx} = x - g \); y combinándola con la de la curva \(CAC \), será fácil determinar los puntos \(M \); ya sea por medio de los valores de \(x \) o de \(y \) que resultaren; o por la construcción de alguna línea recta o curva.

Á la Teoría de las Líneas Curvas.

Supongamos, por ejemplo, que la curva \(CAC \) sea una parábola: tendremos substituyendo por \(\frac{dy}{dx} \) su valor \(\frac{a}{2y} \); \(a(h-y) = 2y(x-g) \), o; sustituyendo \(\frac{y}{a} \) por \(x \), y haciendo las reducciones correspondientes, resultará la ecuación de tercer grado \(y^3 - a(g + \frac{a}{2})y = \frac{ah}{2} \), cuyas raíces reales serán las ordenadas correspondientes a los puntos \(M \).

También se puede construir la curva representada por la ecuación \(a(h-y) = 2y(x-g) \), o \(xy - (g - \frac{a}{2})y = \frac{ah}{2} \), y sus intersecciones con la parábola \(CAC \) serán los puntos \(M \) que se buscan.

Si el punto \(E \) estuviese en el exé \(AD \) (fig. 31.), sería \(h = 0 \), y la ecuación de tercer grado se reduciría a \(y^3 - a(g + \frac{a}{2})y^3 = 0 \); cuya raíz \(= 0 \) manifiesta que el exé de las abscisas es perpendicular a la curva en el origen \(A \) de las coordenadas. Y finalmente, si además fuese \(g = -a \), todas tres raíces serían \(= 0 \), y por consiguiente los puntos \(M \), \(M \) se confundirían con el punto \(A \).

142. Problema 3°. Dada la ecuación de una curva; determinar los puntos en los cuales las tangentes son paralelas a una línea dada de posición, o que formen un ángulo con el exé de las abscisas cuya tangente es \(= t \).

Resolution. Ya que las tangentes de la curva deben ser paralelas a la línea dada de posición, tendrémonos (núm. 130., 8.) \(\frac{dy}{dx} = t \); cuya ecuación, juntamente con la de la curva, dará los valores de las coordenadas que corresponden a los puntos que se buscan.

Sea, por ejemplo, la curva propuesta una parábola (fig. 52.): será \(\frac{dy}{dx} = \frac{a}{2y} = t \), de donde inferiremos \(y = \frac{a}{2t} \), y \(x = AP = \frac{a}{4t^2} \).

El punto \(M \) que está debajo de \(AD \) corresponde al caso en que \(t \) fuese negativa.

Si la curva propuesta fuese un círculo (fig. 53.) tendremos \(\frac{dy}{dx} = \frac{a-x}{-y} = t \), o \(ty = a - x \); y trazando la línea \(MCM \), que esta ecuación representa, encontrará el círculo en los puntos de contacto \(M \), \(M \) que se buscan.

143. Las asimptotas rectilíneas de las líneas curvas, paralelas á
las abscisas y las ordenadas, se determinan fácilmente sin el auxilio del cálculo diferencial.

Supongamos que la línea BE (fig. 34.), paralela al eje AD de las abscisas, sea una asimptota de la curva AMC: cuanto más creciere la abscisa AP, tanto más la ordenada PM se acercará a su límite $PE = AB$; de manera que cuando x fuese infinita, $y = AB$. Por consiguiente, si haciendo x infinita, en la ecuación de la curva AC, resulta la ordenada y igual a una cantidad finita AB; la recta BE, tirada por el punto B paralelamente a AD, será una asimptota de dicha curva. Es evidente, que si AB fuese $= 0$, el mismo eje AD (fig. 35.) sería una asimptota de la curva propuesta.

Del mismo modo demostraremos, que si suponiendo y infinita en la ecuación de una curva AMC (fig. 36.), resulta la abscisa x igual a una cantidad finita AB; la recta BE paralela al eje de las ordenadas AH, será una asimptota de la curva AC, la cual se confundirá con el eje AH (fig. 37.) cuando AB fuese $= 0$.

** Ejemplo 1.** Sea $C'FC$ (fig. 35.) la curva llamada conocheo superior, y $c'f$, $c'e'$ la conocheo inferior. Haciendo x infinita en su ecuación $x^2 = \frac{b^2}{y^2} - (a^2 - y^2)$, será $y^2 = 0$, $x = 0$; de donde inferiremos que el eje de las abscisas $D'AD$ es asimptota de los dos ramos $F'C$, $F'C'$ de la conocheo superior; y de los dos ramos f', e' de la conocheo inferior.

** Ejemplo 2.** Sea $y^2 = \frac{b^2}{x + a} = \frac{b^2}{x + b}$ la ecuación de la curva $C'AC$ (fig. 34.): haciendo x infinita, resulta $y^2 = b^2$, $y = \pm b$; de donde inferiremos que la curva propuesta tiene por asimptotas las rectas BE, BE' paralelas á la línea de las abscisas, situada la una encima, y la otra debajo de dicha línea á una distancia $AB = AB = b$. Las mismas rectas BE, BE' continuadas al otro lado del eje BB' son igualmente asimptotas de los ramos FG, $G'E'$ de la curva que caen del lado de las abscisas negativas.

** Ejemplo 3.** Si en la ecuación $y^2 = \frac{b^2}{a + x}$ del ciscoide AMC (fig. 36.), hacemos $y = \infty$, tendremos $x = a$; y por consiguiente, la paralela BE al eje AH de las ordenadas, es asimptota de los dos ramos AC, AC' de la ciscoide.

144. Por lo que toca á las asimptotas oblicuas á los ejes de las coordenadas, el cálculo diferencial las determina con la mayor facilidad. En efecto, es evidente que si la curva AC (fig. 38. y 39.) tiene una asimptota BF oblicua al eje AD; á medida que las coordinadas x, y aumentan, los puntos T, I donde la tangente MT encuentra sus ejes, se acercan continuamente á sus límites respectivos, B, E sin que puedan jamás alcanzarles: por consiguiente, para conocer si una curva AC, cuya ecuación es dada, tiene alguna asimptota BF, y en caso que la tenga, determinar su posición, se determinarán los valores $AT = y - x \frac{dy}{dx}$ (núm. 130., 32.) y $AI = y - x \frac{dy}{dx}$ en x ó y por medio de la ecuación dada de la curva, y si haciendo x ó $y = \infty$ resultan los límites finitos AB, BE, la recta BE será una asimptota de la curva AC.

Si es en el supuesto de $x = 0$, $y = \infty$, solamente una de las líneas AI, AI' tuviese un límite finito AB ó AE', siendo la otra infinita; la asimptota BE sería paralela al eje de las ordenadas, ó al de las abscisas; pero si ambas líneas fuesen infinitas, la curva AC no tendría asimptota alguna.

Finalmente: si sucediese que los dos límites AB, AE fuesen cero (fig. 40.); la asimptota pasaría por el origen A de las coordenadas; pero como en este caso solo se conoce el punto A de su dirección; para fixarla, harémos x ó $y = \infty$ en la expresión de $\frac{dy}{dx}$ igual á la tangente del ángulo MTD, y resultará la tangente del ángulo FAD que la asimptota forma con el eje de las abscisas.

** Ejemplo 4.** Sea la curva CAC una hiperbólica ordinaria (fig. 38.). Suponiendo A el origen de las coordenadas y llamando a el primer semijuego, b el segundo, tendremos $y^2 = \frac{b^2}{x^2} - (2ax + x^2)$, $\frac{dy}{dx}$

- $\frac{b^2}{(a + x)}$, $\frac{dy}{dx} = \frac{x^2 + x^2}{a + x}$, $- \frac{x}{a^2} = \ldots$

- $\frac{b^2}{(a + x)}$, $AT = y \frac{dx}{dy} = \pm \sqrt{\frac{a}{x + 1}}$; y haciendo x infinita, resultan los límites $AB = a$, y $AE = \pm b$; de donde inferiremos, que la hiperbólica CAC tiene dos asimptotas BF, BF' que parten del centro B, y encuentran el eje de las ordenadas en los puntos E, E' el uno encima, y el otro debajo del eje de las abscisas, á una distancia del punto $A = b$ al segundo semijuego.

Si el origen A de las coordenadas estuviese en el centro (fig. 40.); sería $y^2 = \frac{b^2}{x^2} - b^2$, $\frac{dy}{dx} = \frac{x}{a^2}$, $\frac{dy}{dx} = \frac{a^2}{b^2}$, $y = \frac{x}{a^2}$, $\frac{dy}{dx} = \frac{a^2}{b^2}$, $\frac{dy}{dx} \ldots \frac{x}{a^2} = \pm \sqrt{\frac{a}{x + 1}}$; y haciendo x infinita, resultará $AB = 0$, $AI = 0$; por consiguiente, para
dós asintotas que pasan por el origen A; la una encima, y la otra debajo del eje AD.

Para determinar sus posiciones respectivas, harémos x infinita en

$$\frac{dy}{dx} = b \cdot x = \pm \frac{b}{a \sqrt{1 - \frac{a^2}{x^2}}}$$

y resultará la tangente del ángulo $FAD = \pm \frac{b}{a}$; tomando pues las líneas GE', iguales al segundo semieje b, las rectas AE', AE serán las asintotas de la hipérbola CAC.

Ejemplo 2°. Sea $y = x$, la ecuación propuesta, la cual suponiendo n positiva, representa las paráboles de todos los grados: será

$$\frac{dx}{dy} = ny^{n-1}, \quad \frac{dy}{dx} = \frac{1}{ny^{n-1}}, \quad y \frac{dx}{dy} = nx, \quad x \frac{dy}{dx} = \frac{y - x}{n} = \frac{y}{n},$$

y

$$\frac{dy}{dx} - x = (n - 1) \cdot x, \quad y - x \frac{dy}{dx} = x \left(1 - \frac{1}{n} \cdot \frac{y - x}{n} \right)$$

y como estas cantidades son infinitas en el supuesto de serlo x, inferimos que las paráboles de cualesquiera grado que sean no tienen asintota alguna.

Ejemplo 3°. Si la ecuación de la curva propuesta fuese $y^3 = x^2 (a + x)$ (fig. 41.): sería

$$\frac{dy}{dx} = \frac{2ax + 2x^2}{3y^2}, \quad x \frac{dy}{dx} = \frac{2ax + 2x^2}{3y^2}, \quad y \frac{dy}{dx} - x = \ldots \ldots$$

$$\frac{2ax + 2x^2}{3y^2} = \frac{a}{x + 3} \quad \text{(cuyo límite es} \quad \frac{a}{3} = AB); \quad y - x \frac{dy}{dx}$$

$$= \frac{3y^2 - 2x^2 + 2x^2}{3y^2} = \frac{ax^2}{3y^2}; \quad \text{substituyendo en esta expresión por} \quad y^2$$

su valor en x, y haciendo x infinita, resultará el límite AE. Pero esto se puede hallar más fácilmente observando, que si se supone x infinita en la ecuación propuesta; será $y^3 = x^2$, y $y = x$; y por consiguiente $\frac{dy}{dx} = \frac{a}{x} = AE$. Tirando, pues, por los puntos B, E la recta FF', será asintota del ramo AC de la curva que está del lado de las coordenadas positivas, y del ramo AC' correspondiente a las coordenadas negativas.

145. Las máximas y mínimas ordenadas o abscisas de una curva cuya ecuación se conoce; se determinan por el método de máximos y mínimos, conforme hicimos en el núm. 118. respecto a la ellipse $ADBE$ (fig. 10.).

: A la Teoría de las Líneas Curvas.

A la teoría de las líneas curvas.

Si quisiéramos aplicarle ahora a la curva cuya ecuación es $x^2y - 2xy^2 - a^2x = 0$ (fig. 42.), tendríamos $x^2 \frac{dy}{dx} + 2xy - 4xy \frac{dy}{dx} = a^2 = 0$; y $\frac{dy}{dx} = a^2 - 2xy$. Para hallar los máximos y mínimos de la ordenada, harémos esta expresión $= 0$ (núm. 116.), y tendremos $x = \frac{a}{2y}$, cuyo valor sustituido en la ecuación de la curva, la transforma en $8y^3 = a^3$, que da $y = \frac{a}{2} = FG$, y por consiguiente $x = a = AF$. La ordenada $FG = \frac{a}{2}$ es un máximo del ramo AC' de la curva que está del lado de las coordenadas negativas; pues si diferenciamos la ecuación que contiene $\frac{dy}{dx}$, hallaremos después de hechas las substituciones correspondientes,

$$\frac{dx}{dy} = \frac{1}{3y^2}; \quad y \text{cuya expresión manifiesta que} \quad y = \frac{a}{2} \quad \text{es un mínimo, y por consiguiente (núm. 168.) un máximo de la parte}$

AC' de la curva cuyas ordenadas son negativas.

Para determinar los máximos y mínimos de la abscisa, harémos $\frac{dx}{dy} = \frac{x^2 - 4xy}{a^2 - 2xy} = 0$, y tendremos $y = \frac{x}{4}$ cuyo valor transforma la ecuación de la curva en $x^4 - 8ax^3 + 44a^2x^2 = 0$, la cual tiene dos raíces reales, $x = 0, x = 2a = AB$, y las corresponden las ordenadas respectivas $y = 0, y = a = BE$: la abscisa $x = 0$ es un máximo relativamente al ramo CAC' de la curva que cae del lado de las abscisas negativas; y la abscisa $AB = 2a$ un mínimo respecto del ramo CEC' que pertenece a las abscisas positivas; como lo manifiestan los valores correspondientes $\frac{dx}{dy}$ de $\frac{a}{x}$, y $\frac{dy}{dy}$ de $\frac{x}{3y}$.

146. Los puntos D, E de una curva donde la ordenada es un máximo ó un mínimo (fig. 10.), se llaman los límites de las ordenadas, ó de la curva en la dirección de la ordenada; y los puntos A, B pertenecientes al máximo ó mínimo de la abscisa, son los límites de las abscisas, ó de la curva en la dirección de la abscisa.

En la fig. 42. los puntos A, B son límites de la curva en la dirección de la abscisa; y el punto G, un límite en la dirección de la ordenada.

De los puntos múltiples de las líneas curvas.

147. Todo punto de una línea curva es sencillo ó múltiple: el punto M de una curva (fig. 40.) es sencillo, cuando pertenece a uno solo de sus ramos; y el punto M (fig. 42. y 45.), común a muchos ramos de una curva, se llama punto múltiple. El punto múltiple M
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

to valor de la abscisa x, y el correspondiente de la ordenada y, hacen desaparecer A, y B, en cuyo caso será $\frac{dy}{dx} = \frac{c}{c}$; el punto indicado por estos valores de las coordenadas será múltiplo: á saber, duplo si solamente desaparecen A, y B; triplo si se reducen á cero A, B, C, D, E; y en general, el grado de multiplicidad de dicho punto será el mismo que el grado de la ecuación que expresa el valor del límite $\frac{dy}{dx}$.

3. Una línea curva tiene tantos puntos múltiples, como valores diferentes de x que con los correspondientes de y reducen el límite $\frac{dy}{dx}$ á $\frac{c}{c}$. Por valores diferentes de x entendemos, 1. los valores desiguales; 2. los valores iguales y de signos diferentes; 3. los valores iguales y de mismo signo, pertenecientes á diferentes ordenadas.

148. En virtud de estos principios, será fácil conocer, si una curva dada tiene puntos múltiples; y en caso que los tenga, cual es el grado de multiplicidad de cada uno de ellos, y los valores de x y de y que les corresponden. Para conseguirlo, representando por $f(x, y)$ $= 0$ la ecuación de la curva, y por $B = A = 0$ su diferencial; harémos $A = 0$, $B = 0$, y substituirémos en la ecuación $f(x, y) = 0$ los valores de x y los correspondientes de y que dan estas ecuaciones; la curva propuesta tendrá un número de puntos múltiples igual al de los valores de x que con los correspondientes de y satisfacen á la ecuación $f(x, y) = 0$.

Para conocer el grado de multiplicidad de uno cualquiera de dichos puntos; diferenciarémos la ecuación $B = A = 0$, considerando $\frac{dy}{dx}$ como constante, y substituirémos en la ecuación (a) que resultare el valor de x y el de y: si alguno de los coeficientes C, D, E, no desaparece; el punto será duplo; pero si todos tres se reducen á cero; el límite $\frac{dy}{dx}$ será dado por una ecuación de un grado superior al segundo; y por consiguiente, el punto de que se trata será mas que duplo. En este caso diferenciarémos la ecuación (a), y resultará la ecuación (b); y si los valores de x y de y no satisfacen á esta ecuación, el punto será tríplo; pero mas que triple si todas las cantidades F, G, H, I desaparecen.

En general; las ecuaciones (a), (b), &c., se deben diferenciar sucesivamente, considerando como constante el límite $\frac{dy}{dx}$, hasta encontrar con una que no se desvanezca enteramente, substituyendo en ella el valor de x, y el correspondiente de y; y el grado de multiplicidad del punto, será igual al grado de dicha ecuación.
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

puesta; inferirémos que esta no tiene mas punto múltiple que el del origen. Para conocer el grado de multiplicidad, diferenciarémos la

\[\frac{dy}{dx} = 4x^3 - 2axy \]

como constante, y resultará la ecuación

\[6b \frac{dy}{dx} = 4ax \frac{dy}{dx} + 12x^2 - 2ay = o \]

la cual se desvanece por el supuesto de \(x = o \), \(y = o \); será pues necesario volverla a diferenciar, y tendremos

\[6b \frac{dy}{dx} = 6a \frac{dy}{dx} + 24x = o \]

y por consiguiente el punto \(x = o \), será trío.

\[\frac{dy}{dx} = \frac{dy}{dx} = o \]

de donde concluimos que el punto \(M \) es duplo.

Exemplo 4° Si la ecuación de la curva fuese

\[y^4 - 2a^2y^2 - 4ax^3 + a^4 = o \]

y por consiguiente las tres ecuaciones

\[2y \frac{dy}{dx} + 3x \frac{dy}{dx} = 0 \]

lo cual se satisface con el de \(x \) a la curva segunda; inferirémos que la curva propuesta tiene dos puntos múltiples \(M \), \(M' \) por los cuales pasa el exo de las ordenadas; el uno encima de la línea de las abscisas \(AD \), a una distancia \(AM = a \) y el otro debajo de dicha línea y a la misma distancia.

Estos dos puntos son duplos; pues si diferenciamos la ecuación que encierra la

\[\frac{dy}{dx} = \frac{dy}{dx} = o \]

y manifiesta que cada una de las líneas \(MT, M'T' \) paralelas al exo de las abscisas, es tangente común de los dos ramos correspondientes \(MC, MB, M'C', M'B \) en los puntos \(M, M' \).

149. Los puntos múltiples de las líneas curvas, ofrecen una multitud prodigiosa de variedades, que los estrechos límites de este tratado no nos permiten describir. Nos contentarémos únicamente con observar, que si la ecuación que da el límite correspondiente al punto múltiple, tuviere raíces imaginarias; cada una de estas raíces indicará un ramo invisible de la curva, o que el ramo de la curva que le corresponde se reduzca a un solo punto; por lo que, si todas las raíces de la ecuación que da el límite de las causas que fuera imaginarias; todos los ramos de la curva que indica el punto múltiple serían invisibles; cada uno de ellos se reduciría a un solo punto; y la reunión o coincidencia de todos estos puntos formaría el punto múl-
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

152. Los puntos de inflexión de las líneas curvas se determinan por los mismos principios que las mayores y menores absisas y ordenadas; esto es, por el método de máximos y mínimos; y diferentes autores que han escrito sobre este método, empleando únicamente la teórica de las líneas curvas; han hablado al mismo tiempo de los puntos de inflexión. Pero como nosotros hemos tratado analíticamente el método de máximos y mínimos; nos parece más conforme al buen orden y a la claridad, hablar separadamente de los referidos puntos.

S. a I un punto de inflexión de la curva CIC (fig. 48. y 49.), y IM, IM' dos arcos tomados a uno y otro lado del punto I; si el uno IM de estos arcos es cóncavo hacia el exceso AD (fig. 48.), el otro arco IM' será convexo; y si IM fuere convexo hacia AD (fig. 49.); IM' será cóncavo: por consiguiente, suponiendo que la absisa AP = x crece; el límite \(\frac{dy}{dx} \) disminuirá (núm. 132.) en el primer caso, y aumentará en el segundo hasta que el punto M se confunda con el punto de inflexión I, pasado el cual \(\frac{dy}{dx} \) aumentará en el primer caso, y disminuirá en el segundo.

Y recíprocamente; si creciendo la absisa AP de una curva CIC, el límite \(\frac{dy}{dx} \) disminuye hasta cierto punto I, pasado el cual aumenta; ó crece hasta el punto I, y decrece pasado este punto; el arco IM será cóncavo hacia el exceso AD en el primer caso (fig. 48.) y el arco IM' convexo; y en el segundo caso (fig. 49.) el arco IM será convexo hacia el exceso AD, y el arco IM' cóncavo; y por consiguiente I, un punto de inflexión; luego

El límite \(\frac{dy}{dx} \) es un máximo ó un mínimo, en el punto de inflexión I de una curva. Y recíprocamente, si \(\frac{dy}{dx} \) es un máximo, ó un mínimo.
ximos y mínimos, serán igualmente los que corresponden a los puntos de inflexión; y por consiguiente se conocerá la posición de dichos puntos.

Exemplo 1. Sea la curva propuesta una parábola cónica, cuya ecuación es \(y^2 = a^2x \) (fig. 50.); será \(y = ax^{\frac{3}{2}} \), y \(\frac{dy}{dx} = \frac{a}{3}x^{\frac{1}{2}} \); si esta cantidad es un máximo ó un mínimo, lo será también \(x^2 \) en el mismo caso (núm. 113. y 114.); y como \(x^2 \) es un mínimo cuando \(x = 0 \), \(\frac{dy}{dx} \) será un máximo ó un mínimo en el mismo supuesto, y por consiguiente el origen de las coordenadas será un punto de inflexión de la curva CAC.

Exemplo 2. Si fuese \(y = a - (x - a)^2 \) la ecuación de la curva (fig. 51.); sería \(\frac{dy}{dx} = \frac{3}{5}(x - a)^{\frac{3}{2}} \), cuya cantidad será un máximo ó un mínimo, si lo fuese \((x - a)^2 \). Substituyendo pues esta función á la primera, y suponiéndola \(z \), tendrremos \(\frac{dz}{dx} = 2(x - a) \), y \(\frac{d^2z}{dx^2} = 2 \); la ecuación \(\frac{dz}{dx} = 2(x - a) = 0 \), da \(x = a \); y como \(\frac{d^2z}{dx^2} \) es una cantidad finita, la función \((x - a)^2 \), ó la función \(\frac{8}{5}(x - a)^{\frac{3}{2}} \), será un máximo ó un mínimo, en el supuesto de \(x = a = y \); de donde inferiremos que el punto I, correspondiente á las coordenadas iguales \(AP = PI = a \) es un punto de inflexión. Observaremos de paso que la ordenada \(PI \), correspondiente al punto de inflexión \(I \) se confunde con la tangente de la curva en el mismo punto; pues cuando \(x = a \), la tangente (núm. 136., 80.) \(\frac{dx}{dy} = \left(\frac{5}{3}(x - a)^{\frac{1}{2}}\right) \) del ángulo que la tangente de la curva forma con la ordenada, es cero.

Exemplo 3. Si la ecuación de la curva CAC (fig. 52.), cuyos puntos de inflexión se quieren determinar, fuese \(y = 1 - x^4; \) siendo \(\frac{dy}{dx} = -4x^3 \), \(\frac{d^2y}{dx^2} = -12x^2 \), \(\frac{d^3y}{dx^3} = -24x \), \(\frac{d^4y}{dx^4} = -24 \); y haciendo \(-12x^2 \) (\(\frac{d^2y}{dx^2} = 0 \)), tendremos \(x = 0 \), cuyo valor reduce á cero \(\frac{dy}{dx} \), siendo \(\frac{d^3y}{dx^3} \) una cantidad finita; por consiguiente \(-4x^3 = \frac{dy}{dx} \) no es un máximo ni un mínimo, y la curva propuesta no tiene ningún punto de inflexión.
A LA TEÓRICA DE LAS LÍNEAS CURVAS.

equación, suponiendo el parámetro \(t \), es \(y^2 = x^3 \) (fig. 56): tendremos \(2y \frac{dy}{dx} - 3x^2 = 0 \), y \(2 \frac{dy}{dx} - 6x = 0 \). Esta ecuación en el supuesto de \(x = 0 \), tiene dos raíces iguales \(\frac{dy}{dx} = 0 \), \(\frac{dy}{dx} = 0 \); y como los dos ramos \(AC, AC' \) de la curva, están del lado de las abscisas positivas, y cuando \(x = 0 \) es también \(y = 0 \); inferiremos que el origen \(A \) de las coordenadas es un punto de retroceso, cuya tangente común es el eje \(AD \) de las abscisas.

La ecuación \(y = \pm \sqrt{3x} \) de la curva, manifiesta que el retroceso es de la primera especie; y lo mismo indica la expresión de \(\frac{dy}{dx} \); pues siendo \(\frac{dy}{dx} = \frac{3x}{2y} = \pm \frac{3}{2} \sqrt{\frac{x}{2}} \), \(\frac{dy}{dx} = \pm \frac{3}{2} \), y por consiguiente, a causa de ser de signo diferente los dos valores de \(\frac{dy}{dx} \), el punto de retroceso \(A \) será de la primera especie.

Exemplo 2º. Hemos visto (núm. 148, ex. 4º) que la curva, cuya ecuación es \(y^2 = a^2 - a^2t \) (fig. 55), tiene dos puntos múltiples \(M, M' \) correspondientes a \(x = 0 \), y \(y = 0 \); y que en cada uno de ellos, en \(M \) por ejemplo, la línea \(MT \) paralela al eje \(AD \), es tangente común de los dos ramos \(MC, MB \) de la curva. Por lo que; si observamos además, que estos ramos, y los análogos \(M'C', MB' \) del punto \(M \) se terminan respectivamente en los puntos \(M, M' \) (conforme lo manifiesta la ecuación de la curva); inferiremos que en ambos puntos hay retroceso.

Para averiguar á que especie pertenece el punto \(M \); observaremos que la ecuación propuesta \(y^2 = a^2 \pm 2a^2t \), \(\frac{dy}{dx} = \pm \frac{3}{2} a^2 t^{\frac{1}{2}} \), \(\frac{dy}{dx} = \pm \frac{3a}{2} \), \(\frac{dy}{dx} = \pm \frac{3}{2} \sqrt{\frac{x}{2}} \), y despreciando \(\left(\frac{dy}{dx} \right)^2 \) ser su valor sumamente pequeño en las inmediaciones del punto \(M \), será \(\frac{dy}{dx} = \pm \frac{3a}{2} \sqrt{\frac{x}{2}} \), \(\frac{dy}{dx} = \pm 3a \sqrt{\frac{x}{2}} \), \(\frac{dy}{dx} = \pm 3a \sqrt{x} \). El valor \(\frac{dy}{dx} = 3a \sqrt{x} \) correspondiente al ramo \(MC \) es siempre positivo, \(4 \sqrt{x} \left(a^2 - a^2t \right) \) y por consiguiente convexo este ramo hácia el eje \(AD \) el otro valor \(- \frac{3a}{2} \sqrt{x} \) pertenece al ramo \(MB \), y manifiesta que es cóncavo hacia el mismo eje; de donde concluiremos que el retroceso en el punto \(M \) es de la primera especie.

Lo mismo hallaríamos relativamente al punto inferior \(M' \).

Exemplo 3º. Si la ecuación de la curva propuesta fuese \(y = x^2 \)
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

co \mathbf{Ac}', trazado con el radio \mathbf{AC}', se apartará más de la tangente común \mathbf{AB} que el arco \mathbf{Ac} cuyo radio es \mathbf{AC}, y menos que el arco \mathbf{Ac}' que tiene por radio \mathbf{AC}'; por consiguiente, la curvatura de un círculo es tanto mayor, cuanto menor fuere su radio; ó está en razón inversa del radio.

157. Como la curvatura es uniforme en un mismo círculo, y se puede variar á arbitrio haciendo el radio mayor ó menor; la curvatura de las líneas se refiere a la de los círculos.

158. Si dos arcos de círculo \mathbf{Bb}, \mathbf{Bc} (fig. 61 y 62) tocan la curva \mathbf{ABD} en un punto \mathbf{B}; la curvatura del círculo \mathbf{Bc} que está entre la curva y el círculo \mathbf{Bb}, se acercará mas á la curvatura de la curva en el punto \mathbf{B}, que la curvatura del otro círculo \mathbf{Bb}; y como la curvatura de los círculos se puede variar al infinito; si suponemos que el círculo \mathbf{Bc} esté tan íntimamente unido á la curva en el punto \mathbf{B}, que ningún otro círculo pueda pasar entre él y la curva \mathbf{BD}; la curvatura del círculo \mathbf{Bc} será la misma que la de la curva \mathbf{ABD} en el punto \mathbf{B}.

159. El círculo \mathbf{Bc} que tiene en el punto \mathbf{B} la misma curvatura que la curva \mathbf{ABD} se llama círculo de curvatura, ó círculo osculator; su radio \mathbf{BC}, radio de curvatura; y el centro \mathbf{C}, centro de curvatura de la línea \mathbf{ABD} en el punto \mathbf{B}.

Es evidente 1º que el radio de curvatura en un punto \mathbf{B}, es perpendicular á la curva, ó á su tangente, en \mathbf{B}; y por consiguiente se confunde con su normal.

2º. La curvatura en un punto de una curva es mayor ó menor que la curvatura en un otro punto \mathbf{D}, según el radio de curvatura del punto \mathbf{B} fuere menor ó mayor que el radio de curvatura del punto \mathbf{D}.

160. Si suponemos que una curva cualquiera \mathbf{GCE} (fig. 65) concava hacia un mismo lado, esté envuelta con un hilo \mathbf{AGCE}, estando uno de los extremos fixo en \mathbf{E}, y el otro extremo \mathbf{A} en la línea $\mathbf{G}F$ tangente en el extremo \mathbf{G} de la curva, sobre la cual tiene tirante la parte \mathbf{GAM} del hilo; y que el punto \mathbf{A} se mueva de \mathbf{A} hacia \mathbf{M} desenvolviendo continuamente la curva \mathbf{GCE}, y teniendo siempre tirante el hilo; el punto \mathbf{A} trazará con su movimiento una curva \mathbf{AMF}. La curva \mathbf{GCE} se llama la evoluta de la curva \mathbf{AMF}; y las porciones desenvueltas \mathbf{AG}, \mathbf{MC}, \mathbf{MC}', &c. del hilo, los radios de la evoluta. De donde resulta

1º Que el arco \mathbf{CC}' de la evoluta comprendido entre dos radios \mathbf{CM}, \mathbf{CM}', es igual á la diferencia de estos radios.

2º. La curvatura de la línea \mathbf{AMF} disminuye continuamente desde \mathbf{A} hacia \mathbf{F} (núm. 156.)

3º. Si desde el punto \mathbf{C}, como centro, y con el radio \mathbf{CM} de la evoluta, trazamos un arco de círculo \mathbf{MK}; y desde un punto cualquiera \mathbf{M} de la curva tiramos el radio correspondiente \mathbf{MC}' que lo encuentre en un punto \mathbf{e}; el radio $\mathbf{MC}' = \mathbf{MC} + \mathbf{CC}' = \mathbf{Ce} + \mathbf{CC}'$.
será mayor que la línea $C'e'$; por consiguiente, la curva MF estará entre el círculo MK y la tangente MT.

4° Un arco de círculo ML, trazado con el radio $MS > MC$, y que toca la curva MF en el punto M, está entre la curva y su tangente. Pues si fijamos por el punto S el radio MC' de la evoluta que encuentre el círculo ML en b; a causa de $C'S + SC > C'C$, será $C'S + SM (== C'b) > C'C + CM (== C'M')$, y por consiguiente el círculo ML está entre MT y MF.

Esto se debe entender en las inmediaciones del punto M; pues el arco ML después de pasar entre la curva y su tangente hasta cierta distancia del punto M puede cortar aquella en un punto L.

Es también cierto (núm. 156.), que un círculo trazado con un radio menor que MC', y que toca la tangente MT en el punto M, no puede pasar entre esta y el círculo MK.

5° Luego ningún círculo de los que tocan la curva AMF, en el punto M, puede pasar entre la curva MF y el círculo MK trazado del punto C con el radio CM de la evoluta; y por consiguiente (núm. 158.) el círculo MK es el círculo de curvatura; el radio MC de la evoluta, el radio de curvatura; y el punto C, el centro de curvatura de la curva AMF en el punto M.

6° Si continuamos el círculo de curvatura MK al otro lado del punto M; será fácil probar, por los principios antecedentes, que el arco MN está entre la curva y la tangente; y por consiguiente, el círculo de curvatura NMK, toca y corta la curva en el punto M.

7° La curvatura de una curva AF en sus diferentes puntos, está en razón inversa del radio de curvatura.

161. Sea AMF (fig. 65.) una curva cualquiera; AD el exé de las abscisas; MC, MC' dos radios de curvatura que se encuentran en S; MK, el círculo de curvatura del punto M; Mb, Qb, dos arcos de círculos trazados del punto S con los radios SM, y $SO = 1$; y llamemos z el ángulo ANM; y A, el arco AM: el ángulo OSQ será igual á $DBS = DNS = ABM' = ANM = \Delta$. $ANM = \Delta z$, y como el radio SO es $= 1$, será también el arco $CQ = \Delta z$. Esto supuesto; es constante que cuanto más cerca esté el punto M' del punto M, tanto mas cerca estará el punto S del centro de curvatura C, y tanto mas se acercará el arco $MM' (= \Delta A)$ de la curva, a confundirse con el arco Mb: por consiguiente, á medida que el punto M' se aproxime al punto M, la razón $\frac{Qb}{Mb}$ se acercará continuamente á la razón $\frac{\Delta}{\Delta z}$ ó á su igual $\frac{i}{3M}$ de manera que la diferencia de estas dos razones llegará á ser menor que cualquier cantidad dada; luego (núm. 20.) el límite $\frac{i}{CM}$ de la segunda de estas dos razones será igual al límite $\frac{dx}{dA}$ de la primera. Luego
de las abscisas; y el inferior cuando fuere convexa (fig. 65.)

163. El radio de curvatura MC (fig. 66.), y las líneas MI, CI, se pueden determinar con mucha elegancia y sencillez por medio del teorema de Taylor.

Para ello supondremos que desde el punto C', y con el radio $MC' > MC$ se describa el arco $MM'K$ que corta la curva AMF en un punto M' (núm. 160., 40.); y que se tiren la MP' paralela á MP, que prolongada encuentra en m la tangente TMm; y la $C'I'$ paralela á AD. Esto supuesto, es evidente que cuansto mas se acercare el punto M' al punto M, tanto mas se acercará el punto C' al centro de curvatura C, y la línea MI' á MI: de manera que las líneas MC', MI', llegarán á ser respectivamente iguales á MC, MI, cuando el punto M' se confunda con el punto M, ó el punto P' con el punto P; esto es, cuando sea $\Delta x = PP' = 0$. Pero (núm. 133.) siendo $BM = \frac{dy}{dx} \Delta x$, $mM' = - \left(1 + \frac{dy}{dx} \right) \Delta x^2 + \frac{1}{3} \frac{d^3 y}{dx^3} \Delta x^3 + \&c.$), $(MM')^2 = \Delta x^2 + \frac{1}{3} \frac{d^3 y}{dx^3} \Delta x^3$, y por la propiedad del círculo $(MM')^2 = mM \times 2MI'$; será $MI' = -$............

$$\frac{1 + \frac{dy}{dx}}{1 + \frac{dy}{dx}}$$; por consiguiente, haciendo $\Delta x = 0$, $\frac{dy}{dx} = \frac{1}{3} \frac{d^3 y}{dx^3} \Delta x + \&c.$

resultará $MI = -$............

y á causa de los triángulos semejantes MPN, MIC que dan $MP : PN : MN : \gamma y : \gamma \frac{dy}{dx} : \gamma (1 + \frac{dy}{dx})^{\frac{1}{2}} : MI : CI : MC$, tendremos finalmente $CI = -$............

$$\frac{-\frac{dy}{dx}}{1 + \frac{dy}{dx}}$$, y $MC = -$............

163. Si la curva AMF fuese convexa hácia el exx AD; la distancia mM sería positiva, y por lo mismo lo serian tambien las expresiones de MC, MI, y CI.

164. Conociendo pues la curva AMF, ó su ecuacion; sera facil hallar el radio de curvatura correspondiente á uno cualquiera M de sus puntos, determinando los límites $\frac{dy}{dx}$, $\frac{d^2 y}{dx^2}$, y substituyéndolos en la fórmula $=$ $(1 + \frac{dy}{dx})^{\frac{3}{2}}$: $\frac{dy^3}{dx^3}$, que aplicaremos á algunos ejemplos á fin de hacer su uso familiar.

Ejemplo 1°. Sea la curva propuesta un círculo cuyo radio $AC =$...
Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

FL, y R = 2FL; de donde inferiremos, que el origen A de la cicloide lo es igualmente de su evoluta, y que esta encuentra el exo FL en un punto E, cuya distancia EL a la base AD, es igual al diámetro del círculo generador.

165. Para hallar la ecuación de la evoluta GCE (fig. 64.) de una curva cualquiera AF; llamaremos z la abscisa AK; y, la ordenada KC; y tendremos:

\[z = AP + PK = x - \frac{dy}{dx} \left(1 + \frac{dy}{dx}\right) \]

\[u = MI - MP = -\frac{dy}{dx} - \gamma \]

y eliminando las variables x y por medio de estas dos ecuaciones y la de la curva AF, resultará una ecuación entre z y u la cual será por consiguiente la de la evoluta GCE.

Si se toma el origen de las coordenadas en el punto G; y se supone = e la distancia conocida AG; la abscisa GK = z, será:

\[x = \frac{dy}{dx} \left(1 + \frac{dy}{dx}\right) \]

\[y = a \]
que en esta curva se toma ordinariamente por exè de las absctas el diámetro \(FL \) del círculo generador.

Para hallar en este caso la ecuación de la evoluta \(ACE \), trazarémos sobre la línea \(AQ \), igual y paralela á \(LE = LP \), el semicírculo \(ANQ \), y tirarémos \(CO \) paralela á \(AL \); y observando (n. 164, exemp. 4°) que \(c \) es cero; \(AP = AL - MP = LNH - HP \);

\[
pK = MI = \frac{dy}{dx^2} \quad ; \quad u = KC = CI - IK = CI - \\
LP = \frac{dy}{dx} \left(1 + \frac{dy}{dx} \right) - LP = 2 \left(2ax - x^2 \right) - LP = \\
zLP - LP = LP = AO; z = AK = Ap + pK = LNH - HP \]

\[
= \frac{dy}{dx} \left(\frac{dy}{dx} \right) = LNH - HP = y \frac{d^2y}{dx^2} + 2 \left(2ax - x^2 \right) \frac{dy}{dx} = LNH + HP,
\]

ó á causa de \(LP = AO \), \(z = An'N + NO = CO \); cuyo resultado manifiesta, que la evoluta \(ACE \) es una semiciculoide de todo punto igual á \(AMF \), cuyo vértice está en el punto \(A \), y la base \(QE \) es paralela á \(AL \).

Como el radio de curvatura en el punto \(A \), es cero; un arco cualquiera \(AC \) de la cicloide \(ACH \) se realiza al radio correspondiente \(MC \), ó al duplo de la cuerda \(AN = LH \); y por consiguiente la semiciculoide \(ACE \), será igual á \(EF \), ó igual al duplo del diámetro \(FL \) del círculo generador.

166. La teoría de los círculos osculadores ó de curvatura, y de las evolutas; se puede exponer de un modo distinto del anteceden te, y que seguramente agradará á los Lectores apasionados al método analítico.

Sea \(AMF \) (fig. 71.) una curva cualquiera referida á los exes \(AD, AH \) perpendiculares entre sí; \(BMG \), una curva conocida referida á los mismos exes; la abcisa \(AP \) relativa á la curva \(AMF, x \); la ordenada correspondiente \(PM, y \); la abcisa \(Ap \) de la curva conocida \(z \); y la ordenada correspondiente \(pm, u \). Sentado esto, si se supone que estas dos curvas tienen un punto común \(M \); haciendo \(z = AP = x \), resultará \(u = PM = y \); por lo que, si substituimos en la ecuación de la curva \(AMF, \) \(x + k \) en lugar de \(x \); y en la ecuación de la curva \(BMG, \) \(z + k \) en lugar de \(z \), tendrámos relativamente al punto común \(M, P'M' = y + \frac{dy}{dx} k + \frac{dy}{dx^2} \frac{k^2}{2} \)

\[+ \frac{dy}{dx} k^3 + &c. \text{ (núm. 89.)}, \] \[P'M' = u + \frac{du}{dz} k + \frac{du}{dz^2} \frac{k^2}{2} \]

\[+ \frac{du}{dz^3} \frac{k^3}{6} + &c.; \quad y \quad M'm' = P'M' - P'm' = \left(\frac{dy}{dx} - \frac{du}{dz} \right) k \]

\[+ \left(\frac{dy}{dx^3} - \frac{du}{dz^2} \right) \frac{k^2}{6} + &c.; \quad y \quad \text{en cuya serie, la cantidad arbitraria } \frac{k}{PP'} \text{ puede ser tan pequeña como se quisiere. De donde se infiere} \]

1° Que la curva \(BMG \), se acercará tanto más á la curva propuesta en las inmediaciones del punto \(M \), cuanto más términos sucesivos de la serie antecedente desaparecieren. Así, si fuese \(\frac{du}{dz} = \frac{dy}{dx} \); la distancia \(M'm' \) entre las dos curvas sería menor que si no se verificase esta igualdad; y por consiguiente la curva \(BMG \) estará más cerca de la curva propuesta en las inmediaciones del punto \(M \).

2° Que en el supuesto de ser \(\frac{du}{dz} = \frac{dy}{dx} \); ninguna otra curva trazada por el punto \(M \), podrá pasar entre las curvas \(MF, MG \), á menos que llamando \(a, b \) sus coordenadas, se verifique relativamente al punto \(M \) la condición \(\frac{db}{dx} = \frac{dy}{dx} \);

En efecto; si llamamos \(D \) la distancia del punto \(M' \) al punto en que la nueva curva corta la línea \(P'M \); será \(D = \left(\frac{dy}{dx} - \frac{db}{dx} \right) k + \left(\frac{dy}{dx^3} - \frac{db}{dx^2} \right) \frac{k^2}{2} + &c.; \) y la distancia \(M'm' \) se reducirá en el supuesto actual á \(\left(\frac{dy}{dx} - \frac{db}{dx} \right) k^2 + &c.; \) por lo que, siempre que la expresión \(\frac{dy}{dx} - \frac{db}{dx} \) no sea nula; haciendo decrecer la cantidad arbitraria \(k = PP' \), la distancia \(D \) llegaráá ser mayor (número 123) que la distancia \(M'm' \); y cuando esto se verifique relativamente á cierto valor determinado de \(k \); se verificará con mayor razón para todos los valores de \(k \) menores que aquel. Luego la nueva curva no podrá pasar entre \(MF \), y \(MG \), á menos que de que la expresión \(\frac{dy}{dx} - \frac{db}{dx} \) sea = 0, ó que \(\frac{dy}{dx} \) sea = 0.

3° Si fuese al mismo tiempo \(\frac{du}{dz} = \frac{dy}{dx} \); y \(\frac{du}{dz} \) = \(\frac{dy}{dx} \): sería \(M'm' = \left(\frac{dy}{dx} - \frac{du}{dz} \right) k^3 + &c.; \) y comparando este valor al de \(D = \left(\frac{dy}{dx} - \frac{db}{dx} \right) k + \left(\frac{dy}{dx^3} - \frac{db}{dx^2} \right) \frac{k^2}{2} + \left(\frac{dy}{dx^5} - \frac{db}{dx^4} \right) \frac{k^3}{6} + &c.; \), echarémos de ver; que si los coeficientes de \(k \), y de \(k^2 \) no desaparecen al mismo tiempo, se podrá tomar \(k \) bastante pequeña.
para que la distancia D sea mayor que Mm'. Luego en el supuesto actual, la nueva curva no podrá pasar entre MF, y MG, á no ser que relativamente al punto común M, se verifiquen las ecuaciones

$$\frac{dy}{dx} = \frac{d^2y}{d^2x}, \quad \frac{d^2u}{d^2x} = \frac{d^2y}{d^2x}.$$

Del mismo modo probaríamos, que si fuese $\frac{du}{dx} = \frac{dy}{dx}$, y $\frac{d^2u}{d^2x} = \frac{d^2y}{d^2x}$; la nueva curva no podrá pasar entre MF y MG; á menos de que sea también $\frac{d^2y}{d^2x} = \frac{d^2u}{d^2x}$, y $\frac{d^2y}{d^2x} = \frac{d^2y}{d^2x}$ y así en adelante.

167. Como la curva conocida BMG, se acerca tanto mas á la propuesta AMF en las inmediaciones del punto común M, cuanto más términos sucesivos de la serie $\left(\frac{dy}{dx} - \frac{du}{dx}\right) k + \left(\frac{d^2y}{d^2x} - \frac{d^2u}{d^2x}\right) k^2 + \&c = Mm'$ desaparecen; el contacto de dichas curvas en el punto M se divide en varios órdenes.

El contacto es de primer orden, cuando relativamente al punto M se verifica la ecuación $\frac{dy}{dx} = \frac{du}{dx}$.

Si siendo iguales los coeficientes diferenciales de primer orden $\frac{dy}{dx} = \frac{du}{dx}$; lo son también los de segundo orden $\frac{d^2y}{d^2x}$, $\frac{d^2u}{d^2x}$, el contacto se llama de segundo orden, ú osculación; y en general el orden del contacto es igual al orden de los coeficientes diferenciales del último término que desaparezca en la expresada serie.

168. Si en la expresión $Mm' = \left(\frac{dy}{dx} - \frac{du}{dx}\right) k + \left(\frac{d^2y}{d^2x} - \frac{d^2u}{d^2x}\right) k^2 + \&c.$ relativa al contacto de primer orden; suponemos k tan pequeña como sea necesario para que el primer término $\left(\frac{d^2y}{d^2x} - \frac{d^2u}{d^2x}\right) k^2$ sea mayor que la suma de todos los demás (núm. 163); la distancia Mm' conservará el mismo signo, ya sea k positiva ó negativa, y por consiguiente la curva BMG caerá hacia un mismo lado respecto de la curva AMF inmediatamente antes y después del punto de contacto M.

Por si el contacto en el punto M fuese de segundo orden; la distancia Mm' sería $\left(\frac{dy}{dx} - \frac{du}{dx}\right) k^2 + \left(\frac{d^2y}{d^2x} - \frac{d^2u}{d^2x}\right) k^4 + \&c$., la cual muda de signo al mismo tiempo que k: de donde inferiremos que la curva BMG pasará en el punto M, del uno al otro lado respecto de la curva AMF; y por consiguiente que tocará y cortará esta curva en el punto M, del mismo modo que la tangente toca y corta una curva en el punto de inflexión.

Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

En general, en los contactos de un orden impar, la curva BMG caerá hacia un mismo lado respecto de la curva AMF inmediatamente antes y después del punto M; pero en los contactos de un orden par, tocará y cortará la curva AMF en dicho punto.

Hablando rigurosamente, las curvas AMF, BMG, sólo coinciden en el punto común M, en el cual las ordenadas γ, u, correspondientes á la misma abscisa AP son iguales; y la igualdad respectiva de los coeficientes diferenciales de primero, segundo, &c. orden de estas ordenadas, no las hace coincidir en otros puntos aunque se supongan tan inmediatos á M como se quiera; pero si hace que se acerquen continuamente inmediatamente antes y después del punto M; de modo que otra curva cualquiera trazada por dicho punto, en la cual no se verifique la misma igualdad, no podrá pasar entre las referidas curvas.

Esta es la idea exacta que se debe formar de los diferentes grados de contacto ú osculación de las curvas, que en el método de los infinitamente pequeños se consideran como coincidencias mas ó menos rigurosas, ó de mayor ó menor extensión.

169. Supongamos desde luego que la línea conocida BMG sea una recta que corta en B el eje de las abscisas (χ_2), y en E el de las ordenadas. Llamamos a la distancia AE; y b la tangente del ángulo GBD que forma con el eje de las abscisas; será su ecuación $u = a + bx$; de donde se infiere $\frac{du}{dx} = b$. Sentado esto; como en el punto común M, es $z = x$, y $u = y$; será en dicho punto $a + bx = y$; por lo que, si suponemos que sea también $\frac{du}{dx} = \frac{dy}{dx}$, tendremos $b = \frac{dy}{dx}$, $a = y - x \frac{dy}{dx}$, y la ecuación de la recta BMG se transformará en $u = y + (z - x) \frac{dy}{dx}$, representando x y y las coordenadas determinadas AP, PM del punto común M.

La recta BMG representada por la ecuación antecedente tiene la propiedad, que ninguna otra recta tirada por el punto M podrá pasar entre ella y la curva AMF, y por consiguiente será tangente en el punto M de dicha curva. Pues si suponemos que sea $\beta = g + ha$ la ecuación de otra recta trazada por el punto M; será en dicho punto $a = x$, $\beta = y$, y por lo mismo $g + hx = y$; y para que esta recta pueda pasar entre MF', y MG, es preciso (núm. 166, 2ª) que sea $\frac{dy}{dx} = \frac{dy}{dx}$; tendremos pues, $h = \frac{dy}{dx}$, y $g = y - x \frac{dy}{dx}$; y como estos valores son idénticamente los mismos que los de b, y a, dicha recta coincidirá necesariamente con BMG.

Luego la recta BMG representada por la ecuación $u = y + (z - x) \frac{dy}{dx}$ será tangente en el punto M de la curva AMF, determinado por las coordenadas $AP = x$, y $PM = y$: cuya conclu-
sion concuerda perfectamente con lo demostrado en el n.º 130., por un camino muy distinto del antecedente.

Por consiguiente, la cantidad b, esto es la tangente del ángulo MBD que la tangente en el punto M de la curva AMF hace con el eje de las abscisas es igual á $\frac{dy}{dx}$; lo mismo que en el n.º 130., 8º.

Si hacemos $u = c$, en la ecuación de la tangente BMG, tendremos $z = AB = -\left(\frac{y}{x} - x\right)$, en cuya expresión el signo negativo antepuesto al paréntesis indica solamente que el punto B cae del lado opuesto al de las abscisas positivas; por consiguiente la distancia BA tomada de B hácia D será $x = \frac{y}{x} - x$; y la subtangente $BP = \frac{y}{x} - x \frac{dy}{dx}$, lo mismo que antes (n.º 130., 1º); de donde será fácil inferir las conclusiones del n.º 130.

170. Supongamos ahora que la curva conocida BMG (fig. 73.) sea un círculo cuyo centro está en C. Llamando a la distancia AK del origen A de las coordenadas, al punto K donde la perpendicular CK al eje AD encuentra dicho eje: la distancia b perpendicular CK, b; y r el radio CM; será su ecuación $(a - z)^2 + (u + b)^2 = r^2$, de donde se infiere $u = pm = b + \sqrt{r^2 - (a - z)^2}$. Sentado esto, como en el punto M común á la curva AMF y al círculo BMG, es $z = x$, y $u = y$; si suponemos que el valor de $\frac{du}{dx}$ correspondiente á dicho punto, sea igual al de $\frac{dy}{dx}$; tendremos para determinar las cantidades a y b que fixan la posición del centro C, las dos ecuaciones $-b + \sqrt{r^2 - (a - z)^2} = y$, $\frac{a - x}{\sqrt{r^2 - (a - z)^2}} = \frac{dy}{dx}$.

La segunda de estas ecuaciones da $\sqrt{r^2 - (a - x)^2} = \frac{a - x}{\frac{dy}{dx}}$; de donde inferiremos elevando al cuadrado, y haciendo las operaciones correspondientes $a - x = \frac{r - \frac{dy}{dx}}{\sqrt{1 + \frac{dy}{dx}}}$. Y como de la primera se infiere $\sqrt{r^2 - (a - x)^2} = y + b$; será $y + b = \ldots$

Á LA TEÓRICA DE LAS LÍNEAS CURVAS.

Índice de las líneas curvas. $\frac{a - x}{\frac{dy}{dx} = \sqrt{1 + \frac{dy}{dx}}}$; y por consiguiente $a = x + \ldots$

$y = \frac{r - \frac{dy}{dx}}{\sqrt{1 + \frac{dy}{dx}}}$, $b = -y + \sqrt{1 + \frac{dy}{dx}}$.

Si suponemos que la recta EMT sea tangente de la curva AMF en el punto M, común á dicha curva y al círculo BMG; á causa de ser en este punto $\frac{du}{dx} = \frac{dy}{dx}$, dicha recta será también tangente del círculo BMG en el mismo punto; por consiguiente su radio MC será perpendicular á la curva AMF ó á su tangente ET en el punto M; y como esto se verifica independientemente del valor del radio $MC = r$, concluiremos, que la normal ML en el punto M de una curva cualquiera AMF, es el lugar de los centros de todos los círculos que pasando por el punto M, tienen por tangente común la tangente EMT de la curva AMF en el expresado punto.

Si por el punto M trazamos otro círculo igual en magnitud al círculo BMG; dicho círculo no podrá pasar entre BMG y la curva AMF.

Pues para que esto pudiese verificarse; sería preciso que llamando a, y b las coordenadas del nuevo círculo (n.º 166; 2º); se verificase también respecto del punto común M la condición $\frac{dy}{dx} = \frac{du}{dx}$. De donde resulta que la tangente EMT de la curva AMF, lo sería igualmente de dicho círculo; su centro estaría en la normal ML; y como por el supuesto, su radio es igual al del círculo BMG; dicho centro se confundiría con el punto C, y por consiguiente el referido círculo, con el círculo BMG.

171. Como en todos los círculos que pasan por el punto M y tienen su centro en la normal ML se verifica la ecuación $\frac{du}{dx} = \frac{dy}{dx}$; habrá entre dichos círculos uno BMG de un radio determinado MC tal, que relativamente al punto M cumplirá con la condición $\frac{du}{dx} = \frac{dy}{dx}$.

En efecto, diferenciando la ecuación $\frac{du}{dx} = \frac{a - x}{\sqrt{r^2 - (a - z)^2}}$, hallada arriba, tendremos $\frac{du}{dx} = \frac{a - x}{\sqrt{r^2 - (a - z)^2}} - \ldots$.

$\frac{(a - z)^2}{r^2 - (a - z)^2} = \frac{(r^2 - (a - z)^2)}{r^2 - (a - z)^2}$; y como en el punto común $[r^2 - (a - z)^2] = \ldots$.
A LA TEÓRICA DE LAS LÍNEAS CURVAS.

El radio de curvatura MC correspondiente á dicho punto será

$$
\frac{d^2y}{dx^2}\left(1 + \frac{dy}{dx}\right)^{\frac{3}{2}}
$$

precisamente el mismo que hallamos antes (n. 161.).

Siendo $IC = PK = AK - AP = a - x$; y $MI = MP + PI = y + b$; substituyendo por a, b, y y x, sus valores respectivos tendremos $IC = -\frac{dy}{dx^2}$, y $MI = -\frac{dy}{dx^2}$, lo mismo que en el número citado.

172. Como las tres constantes arbitrarias a, b, r que contiene la ecuación general del círculo, están determinadas por las tres condiciones expresadas; á saber que pasa por el punto M de la curva AMF;

y que sea $\frac{du}{dx} = \frac{dy}{dx}$, y $\frac{du}{dx^2} = \frac{dy}{dx^2}$; inferirános que en general el círculo no puede tener con una curva cualquiera AMF un contacto de un orden superior al segundo: y que el círculo osculador BMO toca y corta (núm. 168.) en el punto M la curva AMF.

Hemos dicho en general; pues puede suceder que los valores particulares de x y y correspondientes á un punto determinado M reduzcan á cero la expresión $\frac{dy}{dx^2} - \frac{du}{dx^2}$, en cuyo caso el contacto será (núm. 167.) de tercer orden; de quarto orden, si en virtud de dichos valores particulares fuese $\frac{du}{dx^2} = \frac{dy}{dx^2}$; y así en adelante.

173. Es evidente que las líneas AK, KC que determinan la posición del centro de curvatura C correspondiente al punto M de la curva AMF; varían con la abscisa AP de dicho punto; y por consiguiente serán las coordenadas de la curva que es el lugar de todos los centros de curvatura de la curva AMF; esto es (núm. 160.) las coordenadas de la evolvente ECL (fig. 74.); y tendremos AK

$$
a = x - \frac{dy}{dx^2}, \quad y = y - \frac{dy}{dx^2}, \quad lo
$$

mismo que en el núm. 165.

174. Si la curva conocida á la qual se quiere comparar la propuesta, fuese una parábola BMO (fig. 75.) cuyo eje principal es la línea BK paralela á AH; sería su ecuación $u = a + bx + cy^2$; en la qual las constantes arbitrarias a, b y c que determinan la posición del vértice B pueden ser positivas ó negativas, y c representa la razón de la unidad al parámetro.
Diferenciándola tendríamos \(\frac{du}{dz} = b + 2cz \), \(\frac{d^2u}{dz^2} = 2c \), \(\frac{d^3u}{dz^3} = 0 \), &c.; y como en el punto común \(M \), es \(z = x \), \(y = y \); si suponemos que sea también el valor de \(\frac{du}{dz} \), igual al de \(\frac{dy}{dx} \); tendremos para determinar las constantes \(a \), \(b \), las dos ecuaciones
\[
a + bx + cx^2 = y \quad \text{y}
\]
\[
\frac{dy}{dx} - 2cx, \quad a = \gamma - x \frac{dy}{dx} + cx^2.
\]

En este caso la tangente de la curva \(EMF \) en el punto \(M \), lo serán igualmente de la parábola \(BMG \); y como las expresiones de \(a \), y \(dy \) incluyen la constante indeterminada \(c \) igual á la unidad dividida por el parámetro; inferiríamos que se podrán trazar por el punto \(M \) una infinitud de parábolas como \(BMG \) que toquen en dicho punto la curva \(EMF \) ó su tangente.

Pero si además se verificase relativamente al punto \(M \) la condición
\[
\frac{dy}{dx}^2 = x^2 \quad \text{sería} \quad c = \frac{1}{2} \frac{dy}{dx}^2, \quad b = \frac{dy}{dx} - x \frac{dy}{dx}^2, \quad a = \gamma - x \frac{dy}{dx} + \frac{x^2}{2} \frac{dy}{dx}^2.
\]

Por consiguiente como en este supuesto, las tres constantes arbitrarias \(a, b, c \), que contiene la ecuación general de la parábola \(BMG \), y fijan su posición y la magnitud de su parámetro, están determinadas por los valores particulares de \(x, y, \frac{dy}{dx}, \frac{dy}{dx}^2 \), correspondientes al punto \(M \); inferiríamos; 1° que solamente en la parábola \(BMG \) determinada en magnitud y posición por los valores de \(a, b, c \), que acabamos de hallar se verificarán relativamente al punto \(M \) las ecuaciones
\[
\frac{du}{dz} = \frac{dy}{dx}, \quad \frac{d^2u}{dz^2} = \frac{d^2y}{dx^2}; \quad \text{y por lo mismo (número 166.) que sería imposible trazar por el referido punto otra parábola que pase entre \(BMG \), y la curva propuesta \(EMF \).
\]

2° Que la parábola vulgar del mismo modo que el círculo; no puede tener en general con una curva cualquiera \(EMF \) un contacto superior al de segundo orden.

Si se prolonga el eje principal \(BK \) hasta que encuentre en el punto \(C \) el eje \(AD \) de las abscisas; será \(AC = a - \frac{b^2}{4c} \); \(BC = a - \frac{b}{2c} \); y substituyendo por \(a, b, c \) sus valores respectivos, tendremos
\[
AC = \gamma - \frac{dy}{dx}^2, \quad y \quad BC = \gamma - \frac{dy}{dx}^2
\]

175. Si supusiéramos que la curva conocida fuese una parábola la cúbica; como su ecuación general incluye una constante más, que e

Á LA TEÓRICA DE LAS LÍNEAS CURVAS, DE LAS SUPERFICIES DE LOS SOLDOS DE REVOLUCIÓN Y DE LAS SOLÍDEOS DE ESTOS.

176. Hemos probado en el núm. 134., que si el arco \(AM \) de una curva (fig. 76.), se representa por \(A \), y se considera como función de la abscisa \(AP = x \), será \(\frac{dA}{dx} = \sqrt{(1 + \frac{dy}{dx})} \). Veamos ahora cual es la expresión del coeficiente diferencial de la superficie \(APM \) que llamaremos \(s \), considerada igualmente como función de \(x \).

Para efectuarlo, tiraremos la ordenada \(PM' \), la cuerda \(MM' \), y la \(Ma \) paralela \(PP' = \Delta x \); el espacio \(PM' \) \(MM' \) \(PP' \), terminado por la curva \(M \), será la diferencia \(\Delta s \) de la superficie \(APM \); y el trapezo \(PP'MM' \), terminado por la cuerda \(MM' \) será igual á \((y + \frac{dy}{dx}) \Delta x \). Sentado esto, á medida que la diferencia \(\Delta x \) decrece; la superficie del trapezo \(PM'M'P' \) se acerca continuamente á la superficie \(\Delta s \); ó la razón \(y + \frac{dy}{dx} \), á la razón \(\frac{dy}{dx} \); de manera que la diferencia de estas dos razones llegará por último á ser menor que cualquiera cantidad por pequeña que sea; por consiguiente (núm. 20.) sus límites respectivos \(y \), \(\frac{dy}{dx} \) serán iguales, y tendremos \(\frac{dy}{dx} = y \); cuyo resultado nos enseña, que el coeficiente diferencial de la superficie \(APM \), considerado como función de la abscisa \(AP \); es igual á la ordenada correspondiente \(PM \).

Así; aunque en ciertas curvas, como por ejemplo en el círculo, no se puede determinar la expresión algebraica y finita de la longitud de un arco \(AM \), ó de la superficie \(AI M \), correspondientes á la abscisa \(AP \); se pueden conocer, sin embargo los coeficientes diferenciales de dichas expresiones.

El coeficiente diferencial \(\frac{dA}{dx} \) de un arco \(A \) de círculo cuyo radio es \(r \), le hallamos ya igual á \(\frac{r}{2\pi} \) (núm. 134.); ó substituyen-
do en lugar de sen. A su valor $\sqrt{(2rx - a^2)}$, tendremos $\frac{dA}{dx}$ igual a $\frac{r}{\sqrt{(2rx - a^2)}}$; y si llamamos s la función de x que expresa la superficie APM, y r el radio; será en virtud de lo que acabamos de demostrar, $\frac{ds}{dx} = y = \sqrt{(2rx - a^2)}$.

177. Imaginemos que la curva AMF (fig. 76) de una vuelta al rededor del eje AD de las abscisas; y llamemos S la superficie que describe el arco $AM = A$: la superficie descrita por el arco MM' será la diferencia de S; y la cuerda MM' describirá un cono truncado, cuya superficie, llamando σ la razón del radio l a la circunferencia, es $\sigma \left(y + \frac{\Delta y}{2} \right) \times MM' = \sigma \left(y + \frac{\Delta y}{2} \right) \sqrt{\Delta x^2 + \Delta y^2}$.

Este supuesto; si consideramos la superficie S como función de la abscisa x; echaremos ver, que cuanto más se acerquen Δx, y Δy á su límite común cero, tanto más se acercará la superficie descrita por la cuerda MM', á la superficie ΔS descrita por el arco MaM'; ó la expresión $\sigma \left(y + \frac{\Delta x}{3} \right) \sqrt{\left(1 + \frac{\Delta y}{\Delta x} \right)}$, á la expresión $\frac{\Delta y}{\Delta x}$; y que la diferencia de estas dos expresiones, puede llegar á ser menor que una cantidad dada por pequeña que sea; de donde concluirémos (núm. 20.) que el límite $\pi y \sqrt{\left(1 + \frac{dy^2}{dx^2} \right)}$ de la primera, será igual al límite $\frac{ds}{dx}$ de la segunda.

Como $\sqrt{\left(1 + \frac{dy^2}{dx^2} \right)}$ es igual a $\frac{dA}{dx}$; será también $\frac{ds}{dx} = \pi y \frac{dA}{dx}$.

178. Llamemos s la función de x que expresa la solidez del cuerpo engendrado por el espacio APM en su revolución al rededor del eje AD: la solidez del cuerpo engendrado por el espacio $PMMP'$, terminado por el arco MaM', será $= \Delta s$; y la del cono truncado, engendrado por el trapecio $PMMP'$, igual a $\frac{\pi}{2} \left(PM + PM \times TM' + TM' \times TM' \right) \times \frac{dy'}{dx} = \frac{\pi}{2} \left(y^2 + y\Delta y + \frac{\Delta y^2}{3} \right) \Delta x$. Pero esta sor- lidez se acercará tanto mas á Δs, ó la expresión $\frac{\pi}{2} \left(y^2 + y\Delta y + \frac{\Delta y^2}{3} \right)$, á Δs; cuanto mas se acercaen Δx, y Δy á su límite cero; de modo que su diferencia puede llegar á ser menor que cualquiera cantidad dada por pequeña que sea; luego sus límites serán iguales, y por consiguiente $\frac{ds}{dx} = \frac{\pi}{2} y^2$, igual á la superficie del círculo que describe la ordenada PM en su movimiento de revolución.

179. Todos estos límites de razones, ó coeficientes diferenciales, se pueden también determinar de un modo muy directo y elegante por medio de la proposición núm. 19.; según allí insinuamos; y ahora vamos á manifestar, empleándola para hallar el del arco A, y del de la superficie s; considerando siempre A, y s, como funciones de la abscisa x.

Sea el arco $AM = A$, y la recta TMn tangente en el punto M: tendremos (núm. 133.) $nm = \frac{dy}{dx} \Delta x$; $mM' = = \left(\frac{1}{2} \frac{dy}{dx} \Delta x^2 + \text{etc.} \right)$ (según fuere el arco MaM' cóncavo ó convexo hacia AD); $Mm = \Delta x \sqrt{\left(1 + \frac{dy^2}{dx^2} \right)}$; y la cuerda $MM' = \sqrt{\Delta x^2 + \Delta y^2}$.

Esto supuesto, es constante, que mientras Δx, y Δy decrecen acercándose á su límite común cero; el arco $MaM' = A$, es siempre mayor que su cuerda MM', y menor que la suma de las rectas Mm, y mM'; por consiguiente, dividiendo por Δx, tendremos siempre $\sqrt{\left(1 + \frac{dy^2}{dx^2} \right)} = \left(\frac{1}{2} \frac{dy}{dx} \Delta x + \text{etc.} \right) > \frac{\Delta A}{\Delta x} > \sqrt{\left(1 + \frac{dy^2}{dx^2} \right)}$; y como la primera y tercera de estas expresiones tienen por límite común la cantidad $\sqrt{\left(1 + \frac{dy^2}{dx^2} \right)}$ concluirémos (núm. 19.), que este límite será igual al de la expresión intermedia $\frac{\Delta A}{\Delta x}$; esto es, á $\frac{dA}{dx}$; tendremos pues lo mismo que en el núm. 134., $\frac{dA}{dx} = \sqrt{\left(1 + \frac{dy^2}{dx^2} \right)}$.

180. Si llamamos s la superficie APM (fig. 77.); el espacio $PMM'P'$ será $= s$; el rectángulo $PmM'P' = \left(y + \Delta y \right) \Delta x$; y el rectángulo $PmPn = y \Delta x$. Sentado esto, es evidente que mientras Δx, y Δy decrecen, acercándose á su límite común cero; el rectángulo $PmPn$ es siempre mayor que el espacio $PMM'P'$; y este, que el rectángulo $PmPn$: por consiguiente, dividiendo por Δx tendremos siempre $y + \Delta y > \frac{\Delta s}{\Delta x} > y$; de donde concluirémos (núm. 19.), que los límites y, y $\frac{ds}{dx}$ son iguales; y tendremos lo mismo que antes (núm. 176.), $\frac{ds}{dx} = y$.

181. He aquí las principales aplicaciones de los principios del cálculo diferencial á la Análisis y á la Geometría: hemos evitado de intenso en ellas, el empeñarnos en algunos casos complicados; porque nos ha parecido mejor reservarlos para cuando hayamos tratado mas á fondo el cálculo diferencial; y también reservamos para entonces algunas aplicaciones que nos proponemos hacer de este cálculo á la teórica de las superficies curvas, y á la Mecánica.
CAPÍTULO VI.

Del cálculo diferencial en general.

182. La doctrina que expondrémos en este capítulo, se debe considerar como la continuación de la que contiene el capítulo III., y para no tener que recurrir continuamente á dicho capítulo, supondremos que el Lector tiene presente quanto en él hemos expuesto.

Esto entendido, comenzamos por manifestar, con varios ejemplos, el uso de las substituciones y transformaciones que facilitan la diferenciación de las cantidades, y que empleamos ya de paso en otro lugar (núm. 72. y 76.).

Exemplo 1º. Sea \(y = \sqrt[3]{a x - b} + \sqrt{(2 a x - x^2)} \). Si suponemos \(\sqrt[3]{a x} = z, \sqrt{(2 a x - x^2)} = u \); la función propuesta se transformará en \(y = (ax - z + u)^{3/2} \), y tendremos \(dy = \ldots\).

Exemplo 2º. Sea \(y = \frac{x}{x + \sqrt{(1 + x^2)}} \). Haciendo \(\sqrt{(1 + x^2)} = x + z \), tendremos \(y = \frac{x}{x + z} \), \(y = x \), \((dx + dz) - dy + y \) \(dx + dz = dx, y dy = \frac{dx - y}{dx + dz} \); pero como \(dz = \ldots \), \(xdx = \frac{x}{x + z} \), será \(dx + dz = \frac{(x + z)dx}{x + z} \), \(y (dx + dz) = \frac{(z - x)dx}{x + z} \); y substituyendo, \(dy = \frac{x + z}{x + z + x} \), multiplicando el numerador y el denominador por \(z - x \), y observando que \(z^2 - x^2 = 1 \), tendremos finalmente \(dy = \frac{x}{z + x} \), \(\frac{dx}{z + x} - 2x dx \).

Exemplo 3º. Si fuese \(y = \log (x + \sqrt{x^2 + x^2}) \); haríamos \(x + \sqrt{x^2 + x^2} = z \), y tendríamos \(y = \frac{dz}{x}, dz = dx + \frac{dx}{\sqrt{(x + \sqrt{x^2 + x^2})}} \).

Exemplo 4º. Sea \(y = \frac{\log x}{\sqrt{x - 1}} \). Haciendo \(\sqrt{x - 1} = y \), tendremos \(y = \frac{dy}{dy}, dz = \frac{dx}{\sqrt{x - 1}}, dx = \frac{dx}{\sqrt{1 - x^2}} \); y por consiguiente \(dy = \frac{dx}{\sqrt{(1 - x^2)}} \).

Exemplo 5º. Sea \(y = \log \log x \). Haríamos \(\log x = z \), \(dz = \frac{dx}{x} \), tendremos \(y = \frac{dy}{dz} \), \(dz = \frac{dx}{x} \), \(y \) por consiguiente \(dy = \frac{dx}{x} \).

Exemplo 6º. Si fuese \(y = \frac{\log x}{x} \); haríamos \(x = z \), \(dy = \frac{dz}{x} \), \(dz = \frac{dx}{x} \), \(y \) por consiguiente \(dy = \frac{dx}{x} \).

Exemplo 7º. Sea \(y = \log (\sqrt{(1 + x^2) + x}) \). Haciendo \(\sqrt{(1 + x^2) + x} = y \), tendremos \(y = \frac{dy}{dy}, dz = \frac{dx}{\sqrt{(1 + x^2) + x}}, dx = \frac{dx}{\sqrt{(1 + x^2) + x}}, dx = \frac{dx}{\sqrt{(1 + x^2) + x}}, dz = \frac{dx}{\sqrt{(1 + x^2) + x}}, dz = \frac{dx}{\sqrt{(1 + x^2) + x}} \); por consiguiente, substituyendo, resultará \(dy = \frac{dx}{\sqrt{(1 + x^2) + x}} \).

Exemplo 8º. Sea \(y = \log (\sqrt{(1 + x^2) + x} - \sqrt{(1 + x^2) - x}) \). Haríamos \(\sqrt{(1 + x^2) + x} + \sqrt{(1 + x^2) - x} = y \), \(\sqrt{(1 + x^2) + x} - \sqrt{(1 + x^2) - x} = u \), \(u \) tendremos \(y = \log \frac{z}{x} \), \(dy = \frac{dz}{x} \), \(dz = \frac{dx}{\sqrt{(1 + x^2) + x}} \), \(dz = \frac{dx}{\sqrt{(1 + x^2) - x}} \); y ha-
ciendo las substituciones correspondientes $dy = -\left(\frac{x^2 + z^2}{x\sqrt{(1 - x^2)}}\right)dx$; y observando que $a^2 + z^2 = 4$, y $zu = 2x$, tendremos finalmente $\frac{dy}{dx} = -\frac{\sqrt{(1 - x^2)}}{x\sqrt{(1 - x^2)}}$.

Ejemplo 9. Sea $y = \log \left[\left(\frac{x}{a + x}\right)^n \left(\frac{b - x}{c + x}\right)^m \left(\frac{c + x}{a + b + x}\right)^p\right]$. Transformando esta ecuación en $y = n \log \left(\frac{x}{a + x}\right) + m \log \left(\frac{b - x}{c + x}\right) + p \log \left(\frac{c + x}{a + b + x}\right)$, tendremos $\frac{dy}{dx} = -\frac{n}{a + x} + \frac{m}{b - x} + \frac{p}{c + x}$; y reduciendo estas fracciones a un común denominador.....

Es evidente que esta expresión de $\frac{dy}{dx}$ es de la forma $A\frac{x^2 + Bx + C}{x^3 + Ax^2 + Bx + C}$; y que los términos constantes a, b, c de los factores que componen la función propuesta, son las raíces de la ecuación $x^3 + Ax^2 + Bx + C = 0$; y se echa de ver que si el número de factores fuese mayor, la expresión de $\frac{dy}{dx}$ que resultaria, seria análoga a la antecedente, pero de un orden más elevado: de manera que toda función de la forma de la propuesta, tendrá por coeficiente diferencial una fracción racional; e igualando a cero su denominador, resultará una ecuación cuyas raíces serán los términos constantes de los factores que componen dicha función.

Ejemplo 10. Sea $y = \frac{x}{z}$, representando z una función cualquiera de x. Si tomamos el logaritmo de ambos miembros de esta ecuación, tendremos $\log y = \log \left(\frac{x}{z}\right) = x \log z, \frac{dy}{dx} = \frac{x\,dz}{z} + dx \log z$.

También será en virtud de lo demostrado (núm. 75), $dy = x \, d \log z = \frac{x \, dz}{z} + dx \log z$.

Ejemplo 11. Si fuese $y = \frac{x}{z} :$ haríamos $\frac{x}{z} = u$, y tendríamos $y = \frac{x}{z}, dy = \frac{x \, du}{z} \log z, du = \frac{x \, dz}{z} + dx \log z$, y por consiguiente $\frac{dy}{dx} = \frac{x \, dz}{z} + dx \log z \log z$.

Ejemplo 12. Sea y el arco cuyo seno es $2x\sqrt{(1 - x^2)}$, y que expresaremos de este modo $y = A \cdot \text{sen} \cdot 2x\sqrt{(1 - x^2)}$. Harémos $2x\sqrt{(1 - x^2)} = z$, y tendremos $y = A \cdot \text{sen} \cdot z, \frac{dy}{dz} = \frac{dz}{\sqrt{(1 - x^2)}}$.
cando respectivamente por dx, y dy, $\frac{dz}{dx} \cdot dx = Adx$, y $\frac{dz}{dy} \cdot dy = Bdy$. Estas expresiones se llaman las diferenciales parciales de z; la primera $\frac{dz}{dx}$, ó su igual Adx, es relativa al supuesto de x sola variable; y la segunda $\frac{dz}{dy}$, ó Bdy, relativa al supuesto de que solamente varía y.

184. La expresión $\frac{dz}{dx}$, ó su igual A, representa el límite de la razón $\frac{\Delta z}{\Delta x}$ de la diferencia parcial de z á la diferencia Δx que la produce; y es el coeficiente diferencial de z relativo á x; y el límite $\frac{dz}{dy}$, ó B, es el coeficiente diferencial de z relativo á y. De donde se sigue

1. Que la diferencia de una función z de dos variables x y y, se compone de dos términos ó diferenciales parciales $\frac{dz}{dx} \cdot dx$, $\frac{dz}{dy} \cdot dy$; la primera relativa al supuesto de x sola variable; y la segunda, considerando solamente y como variable: de manera, que si representamos por dz la diferencia de z, será $dz = \frac{dx}{dx} \cdot dx + \frac{dy}{dy} \cdot dy$, ó $dz = Adx + Bdy$.

2. Que si en la expresión $Adx + Bdy$ de la diferencia de z, se supone $dy = 0$; resultará la diferencia Adx relativa á x; y si en dicha expresión se hace $dx = 0$; resultará la diferencia Bdy relativa á y.

3. Que para hallar la diferencia de z; se diferenciará esta función por las reglas dadas (núm. 72, y sig.), primero relativa á una de las variables x por ejemplo; y luego relativa á la otra variable y: la suma de los dos resultados será la diferencia que se busca.

Exemplo 1°. Sea $z = \frac{x}{y}$: será $\frac{dz}{dx} \cdot dx = \frac{dx}{y} \cdot ydz = -xy \cdot \frac{dy}{y}$; y por consiguiente $dz = \frac{dx}{y} - \frac{xy \cdot dy}{y} = \frac{dx}{dx} \cdot \frac{dy}{y} = \frac{dx}{y} - \frac{xy \cdot dy}{y}$.

Exemplo 2°. Sea $z = x^m \cdot y^n$: será $\frac{dz}{dx} \cdot dx = \frac{m \cdot x^{m-1}}{y} \cdot dx + \frac{dy}{dy} \cdot dy = mx^m \cdot y^n \cdot \frac{dy}{y} \cdot dy$, y $dz = \frac{dy}{dy} \cdot dx + mx^m \cdot y^n \cdot \frac{dy}{y} \cdot dy$.

Exemplo 3°. Si fuese $z = \sqrt[n]{xy + y^3}$; sería $\frac{dz}{dx} \cdot dx = \frac{y^2}{\sqrt[n]{(xy + y^3)^{n-1}}} \cdot dy$, y $dz = \frac{y^2}{\sqrt[n]{(xy + y^3)^{n-1}}} \cdot dy$.

En general.

Exemplo 4°. Sea z un arco cuya tangente es $\frac{x}{y}$, y que se expresa por $z = \frac{u}{y}$; tang. $\frac{v}{y}$. Harémos $\frac{x}{y} = u$, y tendríamos $z = \frac{u}{y}$.

$\frac{dz}{dy} = \frac{du}{dy}$; pero como por el ejemplo 1°, es $du = \frac{dx}{y} \cdot ydz = \frac{dz}{dy}$, será substituyendo este valor y el de u, $dz = \frac{ydx - ydy}{y} = \frac{y^2 - x^2}{y^2}$.

No creemos necesario continuar estos ejemplos; pues se echa de ver que la diferenciacion de las funciones de dos cantidades variables, se reduce enteramente á la de las que solo contienen una.

185. Del mismo modo que $\frac{dz}{dx}$ expresa la diferencial de z relativa á x, y $\frac{dz}{dy}$ la relativa á y; $\frac{dz}{dx} \cdot dx$ representa la diferencial de $\frac{dz}{dx}$ relativa á x; $\frac{dz}{dy} \cdot dy$ la diferencial de $\frac{dz}{dy}$ relativa á y; $\frac{dz}{dx} \cdot dx$, la de $\frac{dz}{dy}$ relativa á x; &c.

Las expresiones $\frac{dx}{dy}$, $\frac{dx}{dy}$, $\frac{dy}{dx}$, $\frac{dy}{dx}$, &c. son los coeficientes diferenciales de segundo orden; y representan respectivamente lo mismo $\frac{d^2z}{dx^2}$, $\frac{d^2z}{dy^2}$, $\frac{d^2z}{dx^2} \cdot dy$, $\frac{d^2z}{dx^2} \cdot dx$, &c.

186. Es evidente que la diferencial de una función cualquiera $f(x)$ de una cantidad variable x, es otra función de x multiplicada por dz. Esta nueva función se expresa por $f'(x)$; de manera que $d_z f'(x) = dz f'(x)$. Del mismo modo; la diferencial de $f'(x)$, se expresa por $dz f''(x)$; la de $f''(x)$, por $dz f'''(x)$; &c.

187. Supongamos que en una función cualquiera $f(x, y)$ de x y y, que llamaremos z, se considere solamente x como variable, y se substituya $x + k$ en lugar de x; $f(x, y)$ se transformará en $f(x + k, y)$; y en virtud de lo demostrado (núm. 99) será $f(x + k, y) = z + k \frac{dz}{dx} \cdot dx + \frac{k^2}{2} \frac{dz}{dx} \cdot dx + \frac{k^2}{2} \frac{dz}{dx} \cdot dx + &c$. Al contrario, si en dicha función considerásemos y sola como variable, y substituyésemos en su lugar $y + h$; sería $f(x, y + h) = z + h \frac{dz}{dy} \cdot dy + \frac{h^2}{2} \frac{dz}{dy} \cdot dy + \frac{h^2}{2} \frac{dz}{dy} \cdot dy + &c$. Sentado esto; si en la ecuación $f(x + k, y) = z + k \frac{dz}{dx} \cdot dx + &c,$ se substituye $y + h$ en lugar de y; el primer miembro se transformará en $f(x + k, y + h)$; esto es en la nueva función que resulta substituyendo $x + k$ en lugar de x, $y + h$ en lugar de y, en la función $f(x, y)$. Para substituir $y + h$ en lugar de y en el segundo miembro de dicha ecuación, ob-
servarémos que el primer término se transforma en:

$$z + \frac{h}{2} \frac{dz}{dy} + \frac{k}{2} \frac{d^2z}{dy^2} + \frac{h}{2} \frac{d^3z}{dy^3} + \&c.;$$

y reemplazando estos valores en la ecuación (a) resultará:

$$f(x + k, y + h) = z + \frac{k}{2} \frac{dz}{dy} + \frac{h}{2} \frac{d^2z}{dy^2} + \frac{k}{2} \frac{d^3z}{dy^3} + \&c.;$$

y en general:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

y reemplazando en la serie de ecuaciones:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

La primera:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

de estas ecuaciones manifiesta que si una función z de dos variables independientes x y y, se diferencia dos veces, primero relativamente x, y luego relativamente y, la función que resulte será idénticamente la misma que resultaría empeñando de diferenciar relativamente y, y luego respecto a x.

Por ejemplo, si fuese $z = \sqrt{xy} + y^3$; sería:

$$\frac{d^2z}{dy^2} = \frac{1}{2 \sqrt{xy} + y^3} - \frac{y}{x} \frac{d^2z}{dy^2} = \frac{1}{2 \sqrt{xy} + y^3} - \frac{y}{x} \frac{d^2z}{dy^2} = \&c.;$$

y como:

$$\frac{d^2z}{dy^2} = \&c.;$$

es igual a:

$$\frac{d^2z}{dy^2} = \&c.;$$

y de donde:

$$\frac{d^2z}{dy^2} = \&c.;$$

resultando idéntico con el antecedente.

190. Si suponemos como antes $dz = \frac{dz}{dy} = dx + \frac{dy}{2} dy = A dx + \frac{dy}{dy} dy = A dy$; serán:

$$\frac{d^2z}{dy^2} = \frac{d^2z}{dy^2} = \&c.;$$

y como:

$$\frac{d^2z}{dy^2} = \&c.;$$

es igual a:

$$\frac{d^2z}{dy^2} = \&c.;$$

y de donde:

$$\frac{d^2z}{dy^2} = \&c.;$$

189. Es evidente que el segundo miembro de esta ecuación, y de la ecuación (a) deben ser idénticos; pues ambos expresan la misma función $f(x + k, y + h)$ desarrollada en una serie ascendente, ordenada relativamente a las potencias y productos de las cantidades k, h. Comparando pues en ellos los términos afectos de un mismo producto de las potencias de k, y y de h, resultará esta serie de ecuaciones:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

y en general:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

La primera:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

sea por ejemplo $z = \sqrt{xy} + y^3$. Será:

$$\frac{d^2z}{dy^2} = \frac{1}{2 \sqrt{xy} + y^3} - \frac{y}{x} \frac{d^2z}{dy^2} = \frac{1}{2 \sqrt{xy} + y^3} - \frac{y}{x} \frac{d^2z}{dy^2} = \&c.;$$

$$\frac{d^2z}{dy^2} = \&c.;$$

La diferencial de arco tang. x es:

$$\frac{dx}{dy} = \frac{x}{y + x^3};$$

y seguir acudamos de ver:

$$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$$

$\frac{d^2z}{dy^2} = \frac{d^3z}{dy^3} = \&c.;$
CAP. VI. DEL CÁLCULO DIFERENCIAL

192. Si en la ecuación (a) (núm. 187.) suponemos \(k = \Delta x \), \(y = \Delta y \); se transformará en \(\Delta x , y = \Delta y \) es z; si suponemos \(\Delta x = \Delta y = \Delta z = \Delta x \frac{dz}{dx} + \Delta y \frac{dz}{dy} + \Delta x \frac{dy}{dx} + \Delta y \frac{dx}{dy} \); y como \(f(x + \Delta x, y + \Delta y) = z \); inferimos \(\Delta z = \Delta x \frac{dz}{dx} + \Delta y \frac{dz}{dy} + \Delta x \frac{dy}{dx} + \Delta y \frac{dx}{dy} \); y por consiguiente \(\frac{dz}{dx} = \frac{dz}{dy} \).

Comparando esta expresión de \(\Delta z \), con la supuesta \(A \Delta x + B \Delta y = C \Delta x^2 + D \Delta x \Delta y + E \Delta y^2 + \&c. \) (núm. 29.); tendremos \(A \frac{dz}{dx} = B \frac{dz}{dy} \), \(C = \frac{1}{2} \frac{d^2z}{dx^2} \), \(D = \frac{d^2z}{dy^2} \), \(E = \frac{1}{2} \frac{d^2z}{dy^2} \), \&c.; por donde se ve la dependencia recíproca que existe entre los coeficientes \(A \), \(B \), \(C \), \&c.; y que indicamos en el núm. 30.: de manera que, si \(A \) y \(B \) se deducen de \(z \); \(C \), \(D \), \&c. por medio de operaciones semejantes; esto es, por medio de las diferenciaciones sucesivas.

Sea, por ejemplo, \(z = ax + by + cxy \). Será \(\frac{dz}{dx} = a + cy \), \(\frac{dz}{dy} = b + cx \), \(\frac{dz}{dy} = c \), \(\frac{d^2z}{dx^2} = 0 \), \(\frac{d^2z}{dy^2} = 0 \), \&c.; y por consiguiente \(\Delta z = (a + cy) \Delta x + (b + cx) \Delta y + e \Delta x \Delta y \).

Exemplo 2º. Si fuese \(z = a(y - b)^2 - x(x - a)^2 \); sería \(\frac{dz}{dx} = (x - a)^2 + 2x(x - a) = 3x^2 - 4ax - a^2 \), \(\frac{dz}{dy} = 2a(y - b) \), \(\frac{d^2z}{dx^2} = -6x + 4a \), \(\frac{d^2z}{dy^2} = -6 \), \(\frac{d^2z}{dx dy} = 2a \), \(\frac{d^2z}{dy dx} = 0 \), \(\frac{d^2z}{dy dx} = 0 \), \&c.; de donde inferiríamos \(\Delta z = (3x^2 - 4ax + a^2) \Delta x + 2a(y - b) \Delta y + (2a - 3x) \Delta x^2 + a \Delta y^2 - \Delta x^3 \).

Exemplo 3º. Finalmente; si \(z = x^4 - ax^2 + by^3 \). Será \(\frac{dz}{dx} = 4x^3 - 2ax, \frac{d^2z}{dx^2} = 12x^2 - 2ay \), \(\frac{d^2z}{dy^2} = 24x \), \(\frac{d^2z}{dx dy} = 24 \), \(\frac{d^2z}{dx dy} = -2ax, \frac{d^2z}{dx dy} = -2a, \frac{dz}{dy} = 3by^2 - ax^2, \frac{dz}{dy} = 6by, \frac{d^2z}{dx^2} = 6b, \frac{d^2z}{dx^2} = 6b, \frac{d^2z}{dx^2} = 0, \frac{dz}{dy} = 0, \&c.; y por consiguiente \(\Delta z = 2x(x^2 - ay) \Delta x + (3by^2 - ax^2) \Delta y + (6x^3 - ay) \Delta x^2 + 2ax \Delta x \Delta y + 3by^2 \Delta y + 4x \Delta x^2 - a \Delta x^2 \Delta y + b \Delta y^2 + \Delta x^3 \); cuyos resultados son los mismos que hallamos en el núm. 28., por un método mucho más largo y penoso.

193. Sea \(z \) una función de \(x \) e \(y \); y \(\frac{dz}{dx} = \frac{dz}{dx} \frac{dx}{dy} + \frac{dz}{dy} \frac{dy}{dx} \).
Como los coeficientes diferenciales $\frac{dz}{dx}$, $\frac{dz}{dy}$ son funciones de las mismas variables, será $d \frac{dz}{dy} = \frac{d^2z}{dx^2} dx^2 + \frac{d^2z}{dy^2} dy^2$; y por consiguiente, considerando dx, y dy como constantes, y que $\frac{d^2z}{dy dx} = \frac{d^2z}{dx dy}$, tendremos $d^2z = \frac{d^2z}{dx^2} dx^2 + 2 \frac{d^2z}{dy dx} dx dy + \frac{d^2z}{dy^2} dy^2$.

Diferenciando los coeficientes diferenciales de la ecuación antecedente, hallaremos $d \frac{d^2z}{dx dy} = \frac{d^3z}{dx^3} dx^3 + \frac{d^3z}{dy^3} dy^3$, $d \frac{d^2z}{dy dx} = \frac{d^3z}{dx^3} dx^3 + \frac{d^3z}{dy^3} dy^3$ y juntando estos resultados inferiremos $d^2z = \frac{d^3z}{dx^3} dx^3 + 3 \frac{d^3z}{dx^2 dy} dx^2 dy + 3 \frac{d^3z}{dy^3} dy^3$.

Continuando las diferenciaciones hallaremos que en general $d^3z = \frac{d^4z}{dx^4} dx^4 + \frac{d^4z}{dx^3 dy} dx^3 dy + \frac{d^4z}{dx^2 dy^2} dx^2 dy^2 + \frac{d^4z}{dy^4} dy^4 + \&c$.

La analogía que existe entre esta expresión de $d^n z$, y la potencia n del binomio $dx + dy$, salta a la vista; pues es evidente que siendo esta $dx^n + n dx^{n-1} dy + \frac{n(n-1)}{2} dx^{n-2} dy^2 + \&c.;$ si multiplicamos su primer término dx^n, por el coeficiente diferencial análogo $\frac{n}{dx}$; el segundo término $n dx^{n-1} dy$, por el coeficiente análogo $\frac{n}{dx} dy$; y $\&c.$, resultarán respectivamente los términos sucesivos de dicha diferencial.

De la expresión antecedente de $d^n z$, se infiere; que todos los términos de la diferencial de un orden cualquiera de z, son homogéneos relativamente a dx, y dy; y de una dimensión igual al número que expresa el orden de dicha diferencial.

194. Si en la expresión de $f(x + \Delta x, y + \Delta y)$, se reducen £ un común denominador los términos homogéneos relativamente a Δx, $y \Delta y$; se transformará en

$$
\begin{align*}
&+ (\frac{d^2z}{dx} \Delta x + \frac{d^2z}{dy} \Delta y) \\
&+ \frac{1}{2} (\frac{d^3z}{dx^2} \Delta x^2 + 2 \frac{d^3z}{dy dx} \Delta x \Delta y + \frac{d^3z}{dy^2} \Delta y^2) \\
&+ \frac{1}{2} (\frac{d^3z}{dy^2} \Delta x^2 + 3 \frac{d^3z}{dy dx} \Delta x \Delta y + 3 \frac{d^3z}{dy^3} \Delta y^2 + \frac{d^3z}{dy^3} \Delta y^3) \\
&+ \&c.
\end{align*}
$$

y, sustituyendo en esta expresión dx por Δx, y dy por Δy; las cantidades contenidas en los paréntesis, se transformarán en las diferenciales sucesivas de z.

De donde concluiremos, que si en una función cualquiera $f(x, y) = z$, se sustituye en lugar de x, $x + dx$; y en lugar de y, $y + dy$; tendremos $f(x + dx, y + dy) = z + dz + \frac{d^2z}{dx} dx + \frac{d^2z}{dy} dy + \&c.$.

Por donde se vé, que el teorema nún. 93, relativo a las funciones de una cantidad variable; se verifica igualmente en las funciones de dos variables.

195. Las funciones que contienen tres, ó un número mayor de cantidades variables, se diferencian por los mismos principios que las funciones de dos variables: pero a medida que el número de las variables es mayor; los cálculos son mas complicados; por cuyo motivo nos detendremos muy poco en esta materia.

Sea z una función cualquiera $f(x, y, z, \&c.)$ de las variables independientes x, y, z, y $\&c.$; y sean A, B, C, D, $\&c.$ funciones indeterminadas de las mismas variables. Podríamos suponer $\Delta z = A \Delta x + B \Delta y + C \Delta z + \&c.;$ $D \Delta x^2 + E \Delta x \Delta y + F \Delta y^2 + G \Delta z^2 + H \Delta z^3 + I \Delta y \Delta z + \&c.;$ y las diferencias parciales $\frac{\Delta z}{\Delta x} \Delta x = A \Delta x + D \Delta x^2 + \&c.;$ $\frac{\Delta z}{\Delta y} \Delta y = B \Delta y + F \Delta y^2 + \&c.;$ $\frac{\Delta z}{\Delta z} \Delta z = C \Delta z + H \Delta z^2 + \&c.;$ Esto supuesto; si comparamos la diferencia de la función z de z, á la diferencia Δx que la produce; tendremos $\frac{\Delta z}{\Delta x} = A + D \Delta x + \&c.;$ $\frac{d\Delta z}{dx} = A$, y $\frac{\Delta z}{dx} dx = A dx$.

Del mismo modo hallaremos $\frac{\Delta z}{dy} dy = B dy$, $\frac{d\Delta z}{dy} dy = C dz$, $\&c.$

Estas expresiones son las diferenciales parciales de z; y su suma compone la diferencial total; de manera que $d \Delta z = \frac{d\Delta z}{dx} dx + \frac{\Delta z}{dy} dy + \&c.$ $dz + \&c. = A dx + B dy + C dz + \&c.$

Con esto será fácil hallar la diferencial de z, diferenciando sue-
sivamente esta función relativa a cada una de las variables que
contiene, y tomando la suma de los resultados.

Sea, por ejemplo, \(\zeta = xyz \); será \(\frac{dc}{dx} \) \(= \frac{d}{dx} \left(ny \right) \), y \(\frac{dc}{dy} \) \(= \frac{d}{dy} \left(bxz \right) \); y por consi-
guiente \(\frac{dc}{dz} \) \(= \frac{d}{dz} \left(x \right) \)

Si fuese \(\zeta = \frac{ye}{(x^2 + y^2)^{\frac{1}{2}}} \); haríamos \(x^2 + y^2 = u \), y tendríamos

\[
\begin{align*}
\zeta &= ye \frac{u}{\sqrt{x^2 + y^2}} \times \frac{d}{du} \left(u \right) = \frac{ye}{
\sqrt{x^2 + y^2}} \times \frac{d}{du} \left(u \right) = \frac{ye}{\sqrt{x^2 + y^2}} \times \frac{du}{du} = \\
&= \frac{ye}{\sqrt{x^2 + y^2}} \times \frac{\sqrt{x^2 + y^2}}{2} \times \frac{dx}{du} = \frac{ye}{\sqrt{x^2 + y^2}} \times \frac{\sqrt{x^2 + y^2}}{2} \times \frac{dy}{du} = \\
&= xe \frac{dy}{dx} + ye \frac{dx}{dy} \times \frac{dx}{dy} = \frac{xe}{\sqrt{x^2 + y^2}} \times \frac{dx}{dy}
\end{align*}
\]

196. Supongamos que \(\zeta \) sea función de las tres variables \(x, y, z \); y que \(\frac{dc}{dx} \) sea \(= Adx + Bdy + Cdz \). \(Adx + Bdy \) será la diferencial de \(\zeta \), considerando solamente como variables \(x \) y \(y \); y en virtud del teorema núm. 190., \(\frac{A}{dy} = \frac{B}{dx} \): también será \(Adx + Cdz \) la dife-
rencia de \(\zeta \) considerando solamente como variables \(x \) y \(z \); y por consiguien-
te \(\frac{A}{dx} = \frac{C}{dz} \): y finalmente, a causa de ser \(Bdy + Cdz \)
la diferencial de \(\zeta \) relativa a \(y \) y \(z \); tendremos \(\frac{A}{dx} = \frac{B}{dy} \)
de donde concluirémos que

Si \(Adx + Bdy + Cdz \) es la diferencial de una función cualquiera

de tres cantidades variables \(x, y, z \); será necesariamente \(\frac{A}{dy} = \frac{B}{dx}, \frac{C}{dz} = \frac{dy}{dx} \).

197. Por lo que toca a las diferenciales segunda, tercera, \&c.,
de \(\zeta \); se deducirán sucesivamente unas de otras, del mismo modo
que en las funciones de dos variables; y se hallará entre la expre-
sión de \(\frac{dc}{dx} \), y la potencia \(n \) del polinomio \(dx + dy + dz \), \&c.; la
misma analogia que observamos entre la diferencial del orden \(n \) de
una función de \(x \) \& \(y \) (núm. 193.), y la potencia \(n \) del binomio
\(dx + dy \). La expresión de \(\frac{dc}{dx} \) manifestará que todos sus térmi-
nos son homogéneos relativa a \(dx, dy, dz, \&c. \), y de dimension
\(n \): y finalmente, si en la expresión de \(\zeta \), se supone \(\Delta x = dx, \Delta y = dy, \Delta z = dz, \&c. \), se transformará en \(\zeta + \frac{dc}{dx} + \frac{dc}{dy} + \frac{dc}{dz} + \&c. \);
de donde inferiremos en general, que si en una función cualquiera
\(f \left(x, y, z, \&c. \right) \) de las variables independientes \(x, y, z, \&c. \) que
llamarémos \(\zeta \); se sustituye \(x + dx \) en lugar de \(x \); \(y + dy \) en lugar
de \(y \); \(z + dz \) en lugar de \(z \); \&c. será \(f \left(x + dx, y + dy, z + dz, \&c. \right) = \zeta + \frac{dc}{dx} + \frac{dc}{dy} + \frac{dc}{dz} + \&c. \).

De la diferenciación de las ecuaciones.

198. Supongamos que representando \(z \) una función de dos can-
tidades variables \(x \) \& \(y \), la relación entre estas cantidades sea dada por
la ecuación \(\zeta = \phi \); \(y \) será función de \(x \); y recíprocamente \(x \) fun-
ción de \(y \); y si además suponemos que \(A \Delta x + B \Delta y + C \Delta z\)
\(= D \Delta x \Delta y + E \Delta y + \&c. \) sea la diferencia de \(\zeta \) considera
do \(x \) \& \(y \) como independientes, la ecuación \(A \Delta x + B \Delta y + C \Delta z + D \Delta x \Delta y + E \Delta y + \&c. = 0 \), expresará la relación entre las diferen-
zas \(\Delta x \) y \(\Delta y \). Sentado esto; si consideramos \(y \) como función de \(x \), tendré-
mos \(\frac{dy}{dx} = - \frac{AD}{B} \), \(\frac{dy}{dx} = - \frac{AD}{B} \).
CAP. VI. DEL CÁLCULO DIFERENCIAL

\[
\frac{A}{B}, \quad A + B \frac{dy}{dx} = 0, \quad y \quad Ax + Bdy = 0; \quad \text{pero (núm. 183.) como}\quad A = \frac{dx}{dy}, \quad y = \frac{dz}{dy}, \quad \text{inferiríamos, que si y fuese una función implícita de x dada por una ecuación cualquiera } z = 0; \quad \text{el límite}\quad \frac{dy}{dx}\quad \text{se hallará diferenciando z como si las variables x y fuesen independientes, é igualando a cero el resultado.}
\]

Sea por ejemplo, la función y dada por la ecuación \((y - b)^2 - x (x - a) = 0 \); será, en virtud de esta regla, \(2a (y - b) \frac{dy}{dx} - x (x - a) \frac{dy}{dx} = x (x - a) \frac{dy}{dx} = 0; \) de donde inferiríamos, habiendo las reducciones necesarias, \(2a (y - b) \frac{dy}{dx} - 2x (x - a) \frac{dy}{dx} = 0; \) \(\frac{dy}{dx} = \frac{2a (y - b)}{2x (x - a)}. \)

Como la función y es dada por una ecuación de segundo grado, tendrá necesariamente dos valores; y substituyéndolas en la ecuación diferencial, resultarán los correspondientes de \(\frac{dy}{dx} \). Los dos valores de y son \(b \pm (x - a) \sqrt{\frac{x}{a}} \); y sustituyéndolos, tendremos \(\frac{dy}{dx} = \pm \frac{3x^2 - 4ax + a^2}{2 \sqrt{ax}}, \)

Es evidente que estos valores de \(\frac{dy}{dx} \) son los mismos que resultarían diferenciando la ecuación y = \(b \pm (x - a) \sqrt{\frac{x}{a}} \).

Finalmente, eliminando y por medio de la ecuación propuesta y de \(\frac{dy}{dx} = \frac{3x^2 - 4ax + a^2}{2a (y - b)}, \) resultará una ecuación de segundo grado relativamente al límite \(\frac{dy}{dx}, \) la cual dará los dos valores de dicho límite que hallamos antes.

Si la función y fuese dada por la ecuación \(y^2 - 2axy + x^2 = 0; \) sería \(3y^2 \frac{dy}{dx} - 2ax \frac{dy}{dx} + 2x^2 \frac{dy}{dx} = 0; \) de donde inferiríamos \((y^2 - ax) \frac{dy}{dx} - ay + x^2 = 0; \)

La función y tendrá en este caso tres valores; y sustituyéndolas en la expresión de \(\frac{dy}{dx} \), resultarán otros tantos de este coeficiente diferencial. También se pueden determinar estos valores eliminando y por medio de la ecuación propuesta, y de la ecuación \((y^2 -

EN GENERAL.

En general; el coeficiente diferencial \(\frac{dy}{dx} \), tendrá tantos valores, quanto tuerca la función y en la ecuación que la expresa.

199. La ecuación z = 0, de la cual se deduce la ecuación diferencial \(Adx + Bdy = 0; \) \(\frac{dy}{dx} = 0; \) se llama la ecuación primitiva.

200. Si se diferencia la ecuación \(A + B \frac{dy}{dx} = 0, \) considerando \(\frac{dy}{dx} \) como una nueva variable; ó la ecuación \(Adx + Bdy = 0; \) tratando como una nueva variable \(dy; \) resultará una ecuación de la cual se inferirá la expresión de \(d^2 y; \) ó la del límite \(\frac{d^2 y}{dx^2}. \)

Siendo, por ejemplo, \(y^3 - aaxy + x^3 = 0; \) \(y^3 \frac{dy}{dx} - ax \frac{dy}{dx} = aaxy + x^2 \frac{dy}{dx} = 0; \) tendremos (diferenciando esta ecuación relativa e las tres variables x, y, \(\frac{dy}{dx} \), \) \(y^3 \frac{d^2 y}{dx^2} + 2y \frac{dy}{dx} - ax \frac{dy}{dx} = aaxy + 2x \frac{dy}{dx} = 0; \) \(\frac{dy}{dx} = \frac{2y}{ax}, \frac{d^2 y}{dx^2} = \frac{-2a}{2ax} \frac{dy}{dx} + \frac{2x}{ax}. \)

Substituyendo en esta ecuación por \(\frac{dy}{dx}, \) su valor \(\frac{a y - a^2}{ax}, \) se transformará en \((y^2 + ax) \frac{d^2 y}{dx^2} + 2y \frac{dy}{dx} \frac{dy}{dx} - 2a \frac{a y - a^2}{ax} + \frac{dy}{dx} = 0; \) y reduciendo a un común denominador \((y^2 - ax)^2 \frac{dy}{dx} + 2xy - 6ax^2 y + 2x^2 y + 2a^2 xy = 0; \) pero siendo la función \(2xy - 6ax^2 y + 2x^2 y = (y^3 - 3axy + x^3) 2xy, \) será esta cantidad nula en virtud de la ecuación propuesta; por consiguiente, tendremos \((y^2 - ax)^2 \frac{d^2 y}{dx^2} + 2a^2 xy = 0; \) \(\frac{dy}{dx} = \frac{-2a}{2ax} \frac{dy}{dx}, \frac{d^2 y}{dx^2} = \frac{dy}{dx}. \)

Del mismo modo se hallarán los coeficientes diferenciales \(\frac{dy}{ax^3}, \frac{d^2 y}{dx^3}, \) etc.

201. Sea siempre z = 0 la ecuación que expresa la relación de las variables x y y (d).... \(Adx + Bdy = 0, \) su diferencial. Como A, y B se deben considerar como funciones de x y y; si diferenciásemos esta ecuación considerando y como función de x, tendríamos \(\frac{dA}{dx} \frac{dx^2} + \frac{dA}{dy} \frac{dxdy}{dx} + \frac{dB}{dy} \frac{dy}{dx} + \frac{dB}{dy} \frac{dy^2 + Bdy = 0}, \) \(\frac{dA}{dx} = C, \frac{dA}{dy} \frac{dy}{dx} + \frac{dB}{dy} \frac{dy}{dx} = D, \) \(y \frac{dB}{dy} = E; (d^2 z) \).
equación que resultare, será la que pertenece al supuesto de ser x función de y, dy constante.

202. Para determinar con mas generalidad las relaciones que existen entre los coeficientes diferenciales de y, y de x relativos a ambos supuestos; volvamos á considerar las diferencias $\Delta y = A \Delta x + B \Delta x^2 + C \Delta x^3 + \&c.$, $\Delta \Delta y = A \Delta \Delta x + A' \Delta x^2 + \&c.,$ $\Delta B = B \Delta x + B' \Delta x^2 + \&c.;$ y tomando la diferencia segunda de y considerando también Δx como variable, hallaremos $\Delta \Delta y = A \Delta \Delta x + A \Delta x^2 + A' \Delta x^3 + \&c.,$ $\Delta A \Delta x + \Delta A \Delta x^2 + 2B \Delta x \Delta x^2 + \Delta B \Delta x^2 + \&c.,$ $A \Delta \Delta x + A \Delta x^2 + A' \Delta x^3 + \&c.,$ $A \Delta \Delta x + \Delta A \Delta x^2 + 2B \Delta x \Delta x^2 + B \Delta x^3 + \&c.,$ $\Delta \Delta y = \Delta \Delta x + A' + (A'' + B') \Delta x + (A' + 2B \Delta x + \Delta \Delta x \Delta x + \&c. + \&c.;$iendo los límites, \[\frac{dy}{dx} = \frac{d^3y}{dx^3} = A \frac{d^3x}{dx^3} + A', \]

luego $-\frac{dy}{dx} = \frac{d^3y}{dx^3} - \frac{d^3x}{dx^3}$; luego suponiendo variables ambas diferencias $\Delta y, \Delta x$; la expresión $\frac{dy}{dx} - \frac{d^3y}{dx^3}$ denota el límite de $\frac{dy}{dx}$ de la razón de la diferencia de $\frac{dy}{dx}$ a la diferencia de x. De donde se sigue

1º Si se supone Δx constante; la razón $\frac{\Delta y}{\Delta x}$, y su límite $\frac{dy}{dx}$ será cero; y por consiguiente $\frac{dy}{dx} = \frac{d^3y}{dx^3}$; lo mismo que en el núm. 81.

2º Si en vez de suponer Δx constante, se supone esta diferencia variable, y Δy constante; la razón $\frac{\Delta y}{\Delta x}$, y su límite $\frac{dy}{dx}$ serán cero; de donde resulta $\frac{dy}{dx} = \frac{d^3y}{dx^3}$: esto es, que la expresión $\frac{dy}{dx} = \frac{d^3y}{dx^3}$ denota el límite de la razón de la diferencia de x, á la de x en el supuesto de ser Δy constante. Luego si en una ecuación diferencial de segundo orden, hallada en el supuesto de ser Δx, ó lo que es lo mismo d^2x constante; se substituye la expresión $\frac{dy}{dx}$ en lugar de $\frac{d^3y}{dx^3}$; \[\frac{dy}{dx} d^2x \] en lugar de $\frac{d^3y}{dx^3}$; \[\frac{dy}{dx} d^2x \text{ en lugar de } \frac{d^3y}{dx^3} \]
CAP. VI. DEL CÁLCULO DIFERENCIAL

24. Si en una ecuación diferencial de segundo orden, relativa al supuesto de dx constante, se sustituye la expresión $$\frac{d^2y}{dx^2} = \frac{dy}{dx} \frac{d^2x}{dx^2}$$ en lugar de $\frac{d^2y}{dx^2}$, norte $\frac{dy}{dx} \frac{d^2x}{dx^2}$, resultará la ecuación correspondiente al supuesto de considerarse como ambas diferenciales dy, dx.

Por ejemplo: haciéndola en la ecuación $Cdx^2 + Ddx^3 + Edy^2 + Fdy^2 + Gdy = 0$ (núm. 201.), se transformará en $Cdx^2 + Ddx^3 + Edy^2 + Fdy^2 + Gdy = 0$; $Bdy^2 = 0$, subdivisando por $Bdy^2 = 0$, se obtiene $Adx + Bdy = 0$; $Adx + Bdy = 0$, siendo como variables ambas diferenciales dx, dy.

Esta ecuación tiene la ventaja de dar igualmente la que corresponde al supuesto de dx constante; y la que pertenece al supuesto de dy constante: en el primer caso, basta hacer $d^2x = 0$, y en el segundo $d^2y = 0$.

204. Si suponemos $\Delta x = Ax + Bdx^2 + \&c.;$ la ecuación: $\Delta x = A\Delta x + Bdx^2 + \&c.$, dará considerando como variables ambas diferenciales $\Delta x, \Delta y = A\Delta x + B\Delta x^2 + \&c.$, donde $A = \frac{dy}{dx} + 2\frac{dy}{dx} - 3\frac{dy^2}{dx^2} + 3\frac{dy^3}{dx^3} + \&c.;$ $A = \frac{dy}{dx} + 2\frac{dy}{dx} - 3\frac{dy^2}{dx^2} + 3\frac{dy^3}{dx^3} + \&c.$

Finalmente $A = \frac{dy}{dx} + 2\frac{dy}{dx} - 3\frac{dy^2}{dx^2} + 3\frac{dy^3}{dx^3} + \&c.;$ $A = \frac{dy}{dx} + 2\frac{dy}{dx} - 3\frac{dy^2}{dx^2} + 3\frac{dy^3}{dx^3} + \&c.;$

1. Si suponemos $\Delta x, o \Delta x$ constante; será $A = \frac{dy}{dx} + \frac{dy}{dx}$, lo mismo que en otro lugar (núm. 82.): pero si se supone dy constante, tendríamos $A = \frac{dy}{dx} \frac{d^2x}{dx^2} = \frac{dy}{dx} \frac{d^2x}{dx^2} + \frac{dy}{dx} \frac{d^2x}{dx^2} + \&c.;$

por donde se manifiesta, que el segundo miembro de esta ecuación denota el límite de la razón entre las diferencias de $\frac{dy}{dx} \frac{d^2x}{dx^2}$, y de x.

2. Si en una ecuación diferencial de tercer orden, hallada en el supuesto de ser dx constante; se substituye $\frac{d^3x}{dx^3}$, en lugar de $\frac{d^3y}{dx^3}$; y $\frac{d^3y}{dx^3} = \frac{dy}{dx} \frac{d^2x}{dx^2} + 3\frac{dy^2}{dx^2} \frac{d^2x}{dx^2} + 3\frac{dy^3}{dx^3} \frac{d^2x}{dx^2}$, en lugar de $\frac{d^3y}{dx^3}$; resultará la ecuación perteneciente al supuesto de considerar ambas diferenciales dx, dy como variables.

Sea, por ejemplo, $xy = yx + bx + c = 0$ la ecuación que expresa la relación de las cantidades variables x y y. Diferenciándola, considerando dx como constante, tendremos $(x + a) \frac{dy}{dx} + y + b = 0$. $x = a \frac{dy}{dx} + \frac{dy^2}{dx^2} + 2\frac{dy}{dx} = 0$, $x = a \frac{dy}{dx} + \frac{dy^2}{dx^2} + 3\frac{dy^3}{dx^3} = 0$; de donde inferimos (haciendo en esta ecuación las substituciones correspondientes), que la ecuación $(x + a) \left(\frac{dy}{dx} - \frac{dy}{dx} \frac{d^2x}{dx^2} - \frac{dy^2}{dx^2} \frac{d^2x}{dx^2} + 3\frac{dy^3}{dx^3} \frac{d^2x}{dx^2} \right) + 3\frac{dy}{dx} \frac{d^2x}{dx^2} = 0$, es la que pertenece al supuesto de ser dx y dy variables. En efecto; diferenciando la ecuación $(x + a) \frac{dy}{dx} + y + b = 0$ en este supuesto, hallaremos $(x + a) \left(\frac{dy}{dx} - \frac{dy}{dx} \frac{d^2x}{dx^2} - \frac{dy^2}{dx^2} \frac{d^2x}{dx^2} + 3\frac{dy^3}{dx^3} \frac{d^2x}{dx^2} \right) + 3\frac{dy}{dx} \frac{d^2x}{dx^2} = 0$, y volviendo á diferenciar, y haciendo las reducciones correspondientes, $(x + a) \left(\frac{dy}{dx} - \frac{dy}{dx} \frac{d^2x}{dx^2} - \frac{dy^2}{dx^2} \frac{d^2x}{dx^2} + 3\frac{dy^3}{dx^3} \frac{d^2x}{dx^2} \right) + 3\frac{dy}{dx} \frac{d^2x}{dx^2} = 0$.

También se puede eliminar a por medio de las dos ecuaciones $(x + a) \frac{dy}{dx} + 2\frac{dy}{dx} = 0$, $(x + a) \frac{dy}{dx} + \frac{dy}{dx} \frac{d^2x}{dx^2} + 3\frac{dy^3}{dx^3} = 0$; y se hallará $2\frac{dy}{dx} \frac{d^2x}{dx^2} + 3\frac{dy^3}{dx^3} = 0$. y haciendo las sustituciones correspondientes al supuesto de dy, dx variables, y reduciendo, resultará la ecuación $2\frac{dy}{dx} \left(\frac{dy^2}{dx^2} - \frac{dy}{dx} \frac{d^2x}{dx^2} - \frac{dy^3}{dx^3} \frac{d^2x}{dx^2} \right) + 3\frac{dy}{dx} \frac{d^2x}{dx^2} = 0$; o sea, la que se convertirá si eliminamos a por medio de las dos ecuaciones que acabamos de hallar, diferenciando la ecuación $(x + a) \frac{dy}{dx} + y + b = 0$, tratando como variables dy y dx.

3° Si en una ecuación diferencial de tercer orden relativa al supuesto de \(dx \) constante; se substituye \(-\frac{dy}{dx} \frac{d^2x}{dx^2} \) en lugar de \(\frac{d^2y}{dx^2} \),
\[-y \frac{dy}{dx} \frac{d^3x}{dx^3} + 3 \frac{dy}{dx} \left(\frac{d^2x}{dx^2} \right)^2 \text{ en lugar de } \frac{d^2y}{dx^2}; \]
la ecuación que resultará será la que corresponde al supuesto de ser \(dy \) constante.

Haciendo, por ejemplo, estas sustituciones en la ecuación
\[2 \frac{dy}{dx} \frac{d^2x}{dx^2} - 3 \left(\frac{d^2x}{dx^2} \right)^2 = 0, \]
dividiendo por \(\frac{dy}{dx} \), y reduciendo; tendríamos
\[2 \frac{d^2x}{dx^2} = \frac{d^2x}{dx^2}, \]
cuya ecuación es la que corresponde al supuesto de que \(y \) varía uniformemente, \(y \) de que \(dy \) es constante. En efecto; diferenciando la ecuación \((y + b) \frac{d^2x}{dx^2} + a = 0 \) en este supuesto; hallaremos
\[\left(y + b \right) \frac{d^2x}{dx^2} + 2 \frac{dy}{dx} \frac{d^3x}{dx^3} = 0, \]
\[\left(y + b \right) \frac{d^3x}{dx^3} + 3 \frac{dy}{dx} \frac{d^3x}{dx^3} = 0; \]
y eliminando \(b \), y multiplicando por \(\frac{dy}{dx^2} \),
\[2 \frac{d^3x}{dx^2} - 3 \left(\frac{d^2x}{dx^2} \right)^2 = 0. \]

205. Para facilitar las diferenciaciones sucesivas supondremos los coeficientes diferenciales \(\frac{dy}{dx} = P \), \(\frac{dp}{dx} = \frac{d \left(\frac{dy}{dx} \right)}{dx} = q \), \(\frac{dq}{dx} = \frac{d \left(\frac{d^2x}{dx^2} \right)}{dx} = r \), \&c.; y en virtud de lo demostrado en los números antecedentes, será

1° Cuando ambas diferenciales \(dx \) y \(dy \) se consideran como variables, \(q = \frac{dy}{dx} - \frac{dy}{dx} \frac{d^2x}{dx^2} \), \(r = \frac{dy}{dx} \frac{d^2x}{dx^2} - \frac{dy}{dx} \frac{d^3x}{dx^3} - 3 \frac{dy}{dx} \frac{d^3x}{dx^3} \)
\[+ 3 \frac{d^2y}{dx^2} \left(\frac{d^2x}{dx^2} \right)^2, \&c. \]

2° Si solamente se considera \(dx \) como variable; \(q = -\frac{dy}{dx^2} \)
\[r = -\frac{dy}{dx} \frac{d^3x}{dx^3} + 3 \frac{dy}{dx} \frac{d^2x}{dx^2} \left(\frac{d^2x}{dx^2} \right)^2, \&c. \]

3° Y finalmente, cuando se trate \(dx \) como constante; \(q = \frac{dy}{dx^2} \),
\[r = \frac{dy}{dx^3}, \&c. \]

206. En vez de suponer que una de las cantidades variables \(x \), \(y \) varía uniformemente, \(y \) lo que es lo mismo, que una de las diferenciales \(dx \) \(dy \) es constante; podemos imaginar que una fun-

Ción \(z \) de estas variables crece uniformemente, \(y \) que \(dx \) es constante; en cuyo caso las dos diferenciales \(dx \) \(dy \) dependerán de \(dx \).

Si suponemos, por ejemplo, que la curva \(AM = s \) (fig. 77) expresa la relación entre \(x = AP \) \(y = PM \), y que el espacio \(APM = s \) crece uniformemente; su diferencia \(\Delta x \), \(\Delta y \) de la diferencia \(ds = \gamma dx \) (num. 176.), se deberá considerar como constante, y las diferencias, \(\Delta y \) diferenciales de \(x \) é \(y \), dependerán de la diferencia arbitaria \(\Delta x \), \(\Delta y \) de la diferencia \(ds \).

Para hallar en este caso los coeficientes diferenciales \(q, r \), \&c., diferenciaríamos sucesivamente la ecuación \(ydx = ds \), y será \(\gamma dx + \frac{dy}{dx} dy = 0, \gamma dx + \frac{dy}{dx} dy + \frac{dy}{dx} dy = 0, \&c. \); donde inferiremos
\[\frac{dx}{dx} = \frac{dy}{dx} \frac{dy}{dx}, \frac{dy}{dx}, \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx}, \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx}, \&c.; \]
\[+ \frac{dy}{dx} \frac{dy}{dx} + \frac{dy}{dx} \frac{dy}{dx}, \&c.; y substituyendo estos valores en las expresiones antecedentes de \(q \), y de \(r \) correspondientes al supuesto de \(dx \), \(dy \) variables, se transformarán en \(q = \frac{d^2y}{dx^2} + \frac{1}{2} \frac{d^3y}{dx^3} + \frac{1}{3} \frac{d^4y}{dx^4} + \frac{1}{4} \frac{d^5y}{dx^5}, \&c. \); cuyos valores son relativos al supuesto de \(ydx \) constante.

207. Supongamos ahora que el arco \(AM = z \) de la misma curva crece uniformemente; su diferencia \(\Delta z \), \(\Delta x \) de la diferencia \(dz = \sqrt{\frac{dx^2}{dx} + \frac{dy^2}{dx} + \frac{d^3y}{dx^3}} \) será constante; y por consiguiente \(\sqrt{\frac{dy}{dx} \frac{dy}{dx} + \frac{dy}{dx} \frac{dy}{dx}} \)
\[= 0, \frac{dy}{dx} \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx}, \&c.; y substituyendo este valor en la expresión de \(q \) relativa al supuesto de \(dx \) \(dy \) variables; tendremos en el supuesto actual de \(\frac{dy}{dx} \frac{dy}{dx} + \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} \)
\[= 0; \frac{dy}{dx} \frac{dy}{dx} + \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx}, \&c.; y del mismo modo se hallarán \(r \), \&c.

208. Como una ecuación diferencial de segundo orden \(C + D \frac{dy}{dx} + E \frac{d^2y}{dx^2} + B \frac{d^2y}{dx^2} + A \frac{d^2y}{dx^2} \)
\[= 0 \) hallada en el supuesto de ser variables \(dx \), \(dy \), solo puede expresar la relación que existe entre las variables \(x \) \(y \), \(r \), y sus coeficientes diferenciales de primero y segundo orden \(p, q \); se sigue, que dicha ecuación se podrá reducir a que solo incluya las cantidades variables \(x \), \(y \), \(p \), \(q \).

Si substituimos, por ejemplo, en la ecuación antecedente, \(p \) en lugar de \(\frac{dy}{dx} \), y en lugar de \(\frac{dy}{dx} \) \(dy \) su valor \(q = p \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \frac{d^2x}{dx^2}, \) se transformará en \(C \frac{dy}{dx} + Dp + Ep^2 + B \frac{d^2y}{dx^2} + A \frac{d^2y}{dx^2} = 0. \) Pero siendo \(Adx + Bdy = 0, \) \(A + Bp = 0; \) será también \((A + Bp) \frac{d^3y}{dx^3} \)
CAP. VI. DEL CÁLCULO DIFERENCIAL

Por lo que; cuando una ecuación diferencial de segundo orden, en la cual se supone que ambas diferenciales dx, dy son variables; no se puede reducir á que solo incluya las variables x, y, p, q; inferimos que no puede resultar de la diferenciación de una ecuación entre las dos cantidades variables x y y.

209. Supongamos ahora que se nos proponga la ecuación $A \frac{dx}{ds} + B \frac{dy}{ds} + M = 0$, en la que A, B, y M contienen solamente x, y, p. Substituyendo en lugar de $\frac{dy}{ds}$ su valor $q + p \frac{dx}{ds}$ relativo al supuesto de ser dx, dy variables, se transformará en

\[(A + Bp) \frac{dx}{ds} + Bq + M = 0; \]

de donde resulta, que para que la ecuación propuesta incluya solamente las variables x, y, p, q; ó para que dicha ecuación provenga de una ecuación primitiva entre x y y; es necesario que $(A + Bp) \frac{dx}{ds} = 0$, ó que sea $Adx + Bdy = 0$; cuya condición se verifica por tres causas.

1° Porque la ecuación propuesta es la diferencial de la ecuación $Adx + Bdy = 0$, como lo era en el ejemplo antecedente.

2° Cuando A es igual á $-B \frac{dy}{dx}$, en cuyo caso la ecuación $Adx + Bdy = 0$, es efectivamente idéntica. Esto se verifica en la ecuación

\[y \frac{dy}{dx} \frac{dx}{ds} - x \frac{dy}{dx} - y \frac{dy}{ds} + \frac{dy}{dx} = 0; \]

pues siendo $A = xy \frac{dy}{dx}$, y $B = -xy$; es también $Adx + Bdy = xydy - xydy = 0$.

3° Cuando la diferencial de la ecuación $Adx + Bdy = 0$, es al parecer distintas de la ecuación propuesta; pero sin embargo concuerda con ella.

Sea, por ejemplo, la ecuación propuesta

\[x^a \frac{dx}{ds} + x^y \frac{dy}{ds} + x^2 \frac{dy}{ds} - y^2 + a^2 = 0. \]

Será $A = x^2$, $B = xy$, y $Adx + Bdy = x^2 dx + xy dy = 0$; cuya diferencial $x \frac{dy}{ds} + y \frac{dx}{ds} + \frac{dy}{ds} + I = 0$ es el parecer diferente de la ecuación propuesta. Puesto que suponemos que $x dx + y dy = 0$, es la diferencial de la ecuación $x^2 - x^2 - y^2 = 0$; añadiendo esta ecuación á su diferencial seguida (que acabamos de hallar) multiplicada por x^2, resulta

ra la ecuación $x^3 \frac{dx}{ds} + x^y \frac{dy}{ds} + a^2 - y^2 = 0$, que como se ve es la propuesta.

210. Los tres casos que acabamos de considerar en los cuales se verifica la condición $Adx + Bdy = 0$, y que en cada uno de ellos existe una ecuación primitiva entre x y y, que satisface á la propuesta; se distinguen en que la ecuación primitiva es mas general en unos que en otros, como lo manifestaremos en el cálculo integral.

211. La condición $Adx + Bdy$ no se verifica en la ecuación

\[x^3 \frac{dx}{ds} + y^2 \frac{dy}{ds} + 6xy \frac{dy}{ds} = 0; \]

pues siendo $A = x^3$, y $B = y^2$, sería $x^3 dx + y^3 dy = 0$; cuya diferencial $x^3 \frac{dx}{ds} + y^2 \frac{dy}{ds} + 3y^2 \frac{dy}{ds} = 0$.

\[+ 3y^2 = 0 \]

restada de la propuesta, dará $6xy \frac{dy}{ds} - 3x^2 \frac{dy}{ds} = 0$, y sacando la razón quadra-

d\[y \frac{dy}{dx} - x = 0. \]

Pero esta ecuación no puede verificarse junto-
emente con $y^2 \frac{dy}{ds} + x^3 = 0$; pues si eliminamos $\frac{dy}{ds}$, tendremos

\[y^2 + x^3 = 0, \]

y $x^3 = 0$; diferenciando esta nueva ecuación, resulta $y \frac{dy}{ds} + x = 0$, y substituyendo por $\frac{dy}{ds}$ su valor $\frac{x}{y}$, resultará $x = 0$, $y = 0$, y por consiguiente $y = 0$; cuyo resultado manifiesta que la ecuación propuesta no puede provenir de la diferenciación de una ecuación primitiva entre las variables x y y.

212. Una ecuación diferencial de tercer orden expresa únicamente la relación que existe entre las variables x y y, y los coeficientes diferenciales p, q, r; por consiguiente, haciendo en una cualquiera de estas ecuaciones las sustituciones convenientes, relativas al supuesto que se hase respecto á la variabilidad de dx y dy (número 204.), se debe transformar en otra que solo incluya dichas variables y, p, q, r. Cuando esta transformación no se pueda hacer, inferimos que la ecuación propuesta no puede resultar de la diferenciación de una ecuación primitiva entre x y y.

Tomando una ecuación de tercer orden de una forma general, y haciendo en ella las sustituciones convenientes; se hallarán las condiciones análogas á las del número antecedente, que deben verificar para que dicha ecuación pueda resultar de la diferenciación de una ecuación primitiva entre x y y.

213. En general: para que una ecuación que incluye las diferenciales, ó coeficientes diferenciales de un orden cualquiera de dos variables x, y, pueda ser derivada de una ecuación primitiva entre estas va-
variables; es necesario, que haciendo las substituciones convenientes relativas al supuesto hecho respecto a la variabilidad de dx y dy; se transforme en otra que incluya únicamente $x, y, p, q, r, &c.$

214. Como en los números antecedentes hemos supuesto siempre que existía una relación entre las variables x y y, y por consiguiente que y era función de x, x función de y; podemos aplicar las conclusiones de dichos números a las funciones diferenciales, en las cuales se supone tácitamente que y es función de x, x función de y. Así, para que una función diferencial de un orden cualquiera, y de dimensión nula (la dimensión debe entenderse relativa a $dx, dy, d^2x, d^2y, &c.$) pueda referirse a una relación entre x y y; es necesario que haciendo las sustituciones relativas al supuesto hecho sobre la variabilidad de dx, dy; se transforme en otra que incluya únicamente $x, y, p, q, r, &c.$

Tal es la función diferencial $\frac{x^2+y^2}{x^2dx^2+y^2dy^2}$, en la que se supone dx constante. Pues substituyendo pdx por dy; y en lugar de d^2y, su valor qdx^3 relativo a este supuesto; se transforma en $\frac{x^2+y^2}{x^2+y^2} + \frac{x^2+y^2}{x^2+y^2}$

Lo mismo sucede en la función $\frac{x^2dx^2+y^2dy^2}{x^2dx^2+y^2dy^2}$ en el supuesto de ser variables ambas diferenciales dx, dy. Pues substituyendo pdx en lugar de dy; y en lugar de d^2y su valor $qdx^3 + pdx^3$ correspondiente a este supuesto se transforma en $\frac{x^2+y^2}{x^2+y^2}$

215. Haciendo las mismas sustituciones en la función $\frac{x^2dx^2+y^2dy^2}{x^2dx^2+y^2dy^2}$; se transforma en $\frac{x^2+y^2}{x^2+y^2}$, la cual, además de $x, p, q,$ contiene la expresión $\frac{x^2+y^2}{x^2+y^2}$, que solo puede desaparecer en el caso particular de $x = y$, o $x = y$, $x = y$. De donde se sigue que no se puede considerar en general y como función de x; o x como función de y, en la función diferencial propuesta.

216. Una función diferencial, en la que se consideran como variables ambas diferenciales dx, dy; y que por medio de las substituciones relativas a este supuesto se transforma en otra que solo incluye $x, y, p, q, r, &c.$; tiene la propiedad de conservar siempre el mismo valor; ya sea suponiendo dx constante, dy constante, x constante, y constante, $x = y$ constante.

Por ejemplo: suponiendo dx constante en la función $\frac{x^2dx^2+y^2dy^2}{x^2dx^2+y^2dy^2}$; se reduce a $\frac{x^2dx^2+y^2dy^2}{x^2dx^2+y^2dy^2} = \frac{x^2+y^2}{x^2+y^2}$; y suponiendo dy constante, se reduce a $\frac{x^2dx^2+y^2dy^2}{x^2dx^2+y^2dy^2} = \frac{x^2+y^2}{x^2+y^2}$; y suponiendo pdx por dy; y por d^2x su valor $\frac{x^2+y^2}{x^2+y^2}$ relativo a este supuesto, tendremos el mismo valor que antes $\frac{x^2+y^2}{x^2+y^2}$. Finalmente, si suponemos ydx constante; substituiremos en la función propuesta por d^2x, d^2y sus valores respectivos (núm. 206.) $\frac{dx^2}{y}, qdx^2 - \frac{dy}{y}$ correspondientes a este supuesto, y se transformará en $\frac{x^2+y^2}{x^2+y^2}$; $\frac{x^2+y^2}{x^2+y^2}$ substituyendo pdx por dy.

No sucede así con las fórmulas diferenciales que no admiten dicha transformación; pues estas dan distintos valores relativos a los diferentes supuestos que se pueden hacer respecto a la variabilidad de dx y dy.

Si suponemos, por ejemplo, dx constante en la fórmula diferencial $\frac{ydx+y^2}{ydx+y^2}$, se reduce a $\frac{xdx+y^2}{ydx+y^2} = \frac{y}{x}$; y a $\frac{d^2x}{d^2y} = \frac{y}{x}$ cuando se supone dy constante; cuyos valores solamente pueden ser iguales en el caso particular de $x = y$, $y = y$, $x = xy + ydx = 0$.

217. Para manifestar con mayor evidencia esta diferencia de valores, supondrémos que entre x y y existe la relación $y = x^n$, cuya diferencial es $dy = nx^{n-1}dx$. Sentado esto; si suponemos dx constante, tendremos $d^2x = n(n-1)x^{n-2}dx^2$; y substituyendo estos valores en la expresión $\frac{xdx+y^2}{ydx+y^2}$ relativa a este supuesto, se transforma en $n-1$. Supongamos ahora dy constante en la diferencial de $dy = nx^{n-1}dx$, y tendremos $nx^{n-1}d^2x + n(n-1)x^{n-2}dx^2 = 0$, $d^2x = \frac{1}{n}x^{n-1}$; y substituyendo por y, dx, d^2x sus valores respectivos en la expresión $\frac{xdx+y^2}{ydx+y^2}$ correspondiente a este supuesto, se transforma en $\frac{n}{n}$. Finalmente: si suponemos ydx constante; multiplicando por x la ecuación $dy = nx^{n-1}dx$, tendremos $x(d^2x) = nx^{n-1}dx = ydx$; por consiguiente, $xdx + ydx = 0$, $d^2y = - \frac{d^2x}{x}$, y substituyendo en la fórmula propuesta este valor de d^2y; y por d^2x, su valor correspondiente $- \frac{d^2x}{x}$, se transformará en -2. Por donde se ve, que la fórmula propuesta, los
ha dado los tres valores distintos \(n - 1 \), \(\frac{1}{n} \), \(-2\), correspondientes a los supuestos \(dx \) constante, \(dy \) constante, \(ydx \) constante.

218. Los medios indicados (núm. 204, y siguientes) para transformar una ecuación en la que una de las funcionales \(ax \), \(dy \) se considere como constante, en la que resultaría considerando otra diferencial como constante, \(\delta \) ambas funcionales como variables; se aplica naturalmente a las funciones diferenciales; pues en ambos casos se supone que \(y \) es función de \(x \); \(x \) función de \(y \).

Supongamos, por ejemplo, que \(ydx \) constante en la función \(\frac{ydx + dy}{xdy} \); se quiera transformar en la que corresponde al supuesto de \(\sqrt{\left(dx^2 + dy^2\right)} \) constante. Como en el primer supuesto \(\frac{dy}{dx} = \frac{qdx}{y} - \frac{dy}{dx} \); transformarémos la función propuesta en \(\frac{ydx + dy}{xdy} \); sustituyendo por \(q \) su valor \(\left(1 + \frac{dy}{dx}\right)^{\frac{1}{2}} \) relativo al supuesto de \(\sqrt{\left(dx^2 + dy^2\right)} \) constante, tendremos la función que se pide \(\frac{ydx + dy}{xdy} \).

Si quiséramos transformar la función propuesta, en la que pertenece al supuesto de \(dx \) constante; substituiríamos \(\frac{dy}{x} \) en lugar de \(q \), y tendríamos \(\frac{ydx + dy}{xdy} \).

En general, para transformar una función \(f \) ecuación diferencial cualquiera en la cual se considera como constante cierta diferencial, en la que corresponde al supuesto de ser constante otra diferencial cualquiera, se debe transformar la ecuación propuesta por medio de las substituciones convenientes en una función de \(x \), \(y \), \(dx \), \(dy \), \(q \), \(r \), \&c.; y sustituyendo por \(q \), \(r \), \&c. los valores relativos al supuesto actual, resultará la función transformada que se busca.

219. Las constantes constantes que contienen las ecuaciones; desaparecen sucesivamente por medio de las diferenciaciones, del mismo modo que las de las funciones.

Cuando una de dichas constantes se halla sola en un término, \(\delta \) multiplicada por otra constante; la diferenciación la hace desaparecer inmediatamente: pero cuando se halla afecta de algún factor variable, desaparece por medio de la eliminación: de manera, que en uno y otro caso se puede hacer desaparecer una constante en cada diferenciación.

Diferenciando, por ejemplo, la ecuación \(xy + ay + bx + c = 0 \) (núm. 204.); desaparece la constante \(c \) que se halla sola, y resulta \(\left(x + a\right) \frac{dy}{dx} + y + b = 0 \); volviendo á diferenciar tratando \(dx \) como constante, desaparecerá \(b \), y tendremos \(\left(x + a\right) \frac{dy}{dx} = 2 \frac{dy}{dx} \), cuya diferencial es \(\left(x + a\right) \frac{dy}{dx} + 2 \frac{dy}{dx} = 0 \). La constante \(a \), no desaparece en la última diferenciación por hallarse multiplicada por la cantidad variable \(\frac{dy}{dx} \); pero es evidente que se puede eliminar por medio de las dos últimas ecuaciones; y efectuándolo resultará la ecuación \(2 \frac{dy}{dx} + 2 \frac{dy}{dx} = 0 \) libre de toda constante.

En general, si la ecuación primitiva incluye un número \(n \) de constantes; se podrán hacer desaparecer todas ellas diferenciando \(n \) veces, y eliminando cuando fuese necesario.

220. Del mismo modo se pueden hacer desaparecer las funciones iracionales, y transcedentes que una ecuación incluye: ya sean funciones de \(x \) \& \(y \), \(\delta \) de los coeficientes diferenciales \(p \), \(q \), \(r \), \&c.

Sea por ejemplo la ecuación \(xy + A \cdot \tan z = a = 0 \), representado \(z \) una función cualquiera de \(x \) \& \(y \). Diferenciándola, tendremos \(ydx + ydx + \frac{dz}{1 + z^2} = 0 \); cuya ecuación no incluye la cantidad transcendente \(A \cdot \tan z \).

Ejemplo 2º. Si la ecuación propuesta fuese \(y^2 + y(\alpha x - x^2)^2 - b = 0 \); sería \(2ydy + dy(\alpha x - x^2)^2 + \frac{3}{2} y(\alpha x - x^2)^2 \left(\frac{adx}{ax - x^2} - 2adx\right) = 0 \); si \(2ydy + dy + \frac{3}{2}(\alpha x - x^2) \left(\frac{adx}{ax - x^2}\right) = 0 \); y sustituyendo por \((\alpha x - x^2)^2 \) su valor \(\frac{b - y^2}{y^2} \), tendremos la ecuación \(2ydy + \left(dy + \frac{3}{2}(\alpha x - x^2) \left(\frac{adx}{ax - x^2}\right)\right) \left(b - y^2\right) \); que no incluye la cantidad irracional \((\alpha x - x^2)^2 \).

Ejemplo 3º. Sea \(u^n - \log z = 0 \) la ecuación propuesta, representando \(z \), \(y \) funciones racionales de \(x \) \& \(y \). Diferenciándola tendremos \(\frac{1}{n} u^{n-1} - \frac{1}{z} du - \frac{1}{z} dx = 0 \); ello \(\frac{u^n}{n} - \frac{dz}{z} = 0 \), y eliminando \(u^n \), log. \(\frac{na}{z} = 0 \). Diferenciando esta ecuación, considerando como variables \(dz \), \(du \), desaparecerá la cantidad transcendente \(\log z \), y resultará una ecuación diferencial de segundo orden, libre de esta cantidad, y de la irracional \(u^n \).

También se puede diferenciar la ecuación \(\frac{1}{n} u^{n-1} - \frac{1}{z} du - \frac{1}{z} dx = 0 \),
y se hallará
\[
\frac{1}{n} \left(\frac{1}{n - 1} \right) u^{n - 1} \frac{du}{dz} + \frac{1}{n} \left(\frac{1}{n - 1} \right) u^{n - 1} \frac{du}{dz}^2 - d \left(\frac{dz}{z^2} \right)
\]
\[= 0;\]
yo, sustituyendo por \(u^n\) a su igual \(n \frac{dz}{dz}\), resultará la misma

\text{equación que por el otro camino.}

\text{Ejemplo 4°. Sea } z = \log_y \left(\frac{dy}{dx} + u \frac{dy}{dx} \right) = 0 (z, y \ u \ representan

\text{lo mismo que antes). Haciendo } \frac{dy}{dx} = p \ y \ \text{dividiendo por } z, \ \text{ten-

\text{drémos } p + \frac{u}{z} p = 0, \ \frac{dp}{p} + \frac{u}{z} dp + pd \left(\frac{u}{z} \right) = 0; \ \text{cu-

\text{ya equación no incluye la cantidad transcendente } \log p.

\text{Ejemplo 5°. Finalmente, sea } A \ . \ \text{tang} \ . \ \frac{dy}{dx} + z \ \log \left(\frac{dy}{dx} + u \frac{dy}{dx} \right) = 0, \ \Theta \ \Theta \ \Theta \ \Theta \ . \ \text{tang} \ . \ \log p + up = 0. \ \text{La primera diferencia-

\text{ción hará desaparecer } A \ . \ \text{tang} \ . \ p, \ \text{y tendremos }

\frac{dp}{p} + \frac{u}{z} \frac{dp}{dz} = 0, \ \text{dividiendo por } dz, \ \frac{dp}{p(z + z^2)} = 0; \ \text{y finalmente, diferenciando esta equa-

\text{ción, desaparecerá } \log p, \ \text{y resultará una ecuación de tercer orden

\text{libre de las cantidades transcendentes.}

\text{En general, cada diferenciação hará desaparecer una cantidad ir-

\text{racional, o transcendente; ya sea inmediatamente, o por medio de la

\text{eliminación.}

221. Cuando dos ecuaciones } U = 0, \ V = 0, \ \text{expresan la rela-

\text{ción de las tres cantidades variables } x, \ y, z; \ \text{se puede considerar una

\text{qualquiera de ellas como independiente, y las otras dos como funcio-

\text{nones implícitas de esta.

Supongamos que la variable independiente sea } x; \ \text{y que se trans-

\text{forme en } x + \Delta x: \ \text{las otras dos variables } y, z, \ \text{adquirirán los in-

\text{crementos respectivos } \Delta y, \ \Delta z, \ \text{dependientes del incremento arbitra-

\text{rio } \Delta x; \ \text{y substituyendo en las ecuaciones propuestas } x + \Delta x \ por

\text{x, y + } \Delta y \ \text{por y, y + } \Delta z \ \text{por z, } \ \text{resultarán dos nuevas ecua-

\text{ciones, por medio de las cuales se facilita determinar las diferen-

\text{cias } \Delta y, \ \text{y } \Delta z. \ \text{Tendremos pues (número 195.176.179.)}

\frac{dU}{dx} \Delta x + \frac{dV}{dy} \Delta y + \frac{dU}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0, \ \text{y}

\frac{dV}{dx} \Delta x + \frac{dV}{dy} \Delta y + \frac{dV}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0; \ \text{pero como } y, \ \text{y } z \ \text{son funciones implícitas de } x,

\text{para comparar las diferencias de } y, \ \text{y de } z \ \text{á la diferencia } \Delta x \ \text{que las

\text{produce, dividiremos por } \Delta x, \ \text{y tendremos }

\frac{dU}{dx} \Delta x + \frac{dU}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0, \ \text{y}

\frac{dV}{dx} \Delta x + \frac{dV}{dy} \Delta y + \frac{dV}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0; \ \text{y}

\text{tomando los límites,}

\frac{dU}{dx} \Delta x + \frac{dU}{dy} \Delta y + \frac{dU}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0; \ \text{y}

\frac{dV}{dx} \Delta x + \frac{dV}{dy} \Delta y + \frac{dV}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0; \ \text{cuyas ecuaciones darán los valores de los coeficientes diferen-

\text{ciales } \frac{dU}{dx}, \ \frac{dV}{dx}, \ \text{en funciones de } x, y, z; \ \text{y combinando estos valores

\text{con las ecuaciones propuestas, se podrán eliminar } y, \ \text{y } z, \ \text{y que-

\text{darán } \frac{dU}{dx}, \ \frac{dV}{dx}, \ \text{funciones de } x \ \text{sola.}

\text{Son por ejemplo las ecuaciones propuestas } z^3 + 3ayx - bx^2 = 0, \ \Theta \ \Theta \ \Theta = 0, \ \Theta \ \Theta \ \Theta = 3zxy = a^2b = 0. \ \text{Diferencióndolas, tendremos }

z^2 \frac{dz}{dx} + ay = 0, \ \Theta \ \Theta \ \Theta = 0; \ \text{de la primera se

\text{infiere }

\frac{dz}{dx} = \frac{ay}{z^2}, \ \text{y de la segunda } \frac{dz}{dx} =

\frac{dV}{dx} \Delta x + \frac{dV}{dy} \Delta y + \frac{dV}{dz} \Delta z + \Theta \ \Theta \ \Theta = 0; \ \text{y comparando estos valores, resultará la ecuación

\text{cax}^2 \frac{dx}{dx} + cayx = z^2 \frac{dy}{dx} + cz^3, \ \text{la cual dará el valor de } \frac{dy}{dx}

\text{en } x, y, z; \ \text{y substituyéndole en cualquiera de las dos ecuaciones

\text{anteriores, resultará el de } \frac{dz}{dx}. \ \text{Finalmente, combinando estos valores

\text{con las ecuaciones propuestas, se podrán eliminar } z \ \text{y } y, \ \text{y que-

\text{darán estos valores funciones de } x.

222. Como las variables } z \ \text{y } y \ \text{són funciones implícitas de } x; \ U,

\text{lo serán igualmente; y su coeficiente diferencial relativo a } x, \ \text{no se

\text{podrá representar en este caso por } \frac{dU}{dx}; \ \text{pues esta expresión denota

\text{el coeficiente diferencial de } U \ \text{relativo a } \dot{x}, \ \text{a la que contiene explícitamente (número 184.)}; \ \text{y el coeficiente diferencial de } U \ \text{relativo a } \dot{x}, \ \text{en el supuesto de que las variables } x, y, z \ \text{son independientes. Par-

\text{ra distinguir pues el coeficiente diferencial de } U, \ \text{en el supuesto ac-

\text{tual, del otro; le escribiríamos así } \frac{dU}{dx}, \ \text{indicando los paréntesis,

\text{que se suponen variar en } U, \ \text{no solamente las } x \ \text{que contiene explícitamente, sino también las demás variables que se consideran como

\text{funciones de } x; \ \text{esto es, } z \ \text{y } y; \ \text{y lo mismo debe entenderse cuando

\text{U contenga un número mayor de funciones implícitas de } x.

\text{Por ejemplo: siendo } U = z^3 + 3ayx - bx^2; \ \text{será } \frac{dU}{dx} = 3ay,

\frac{dy}{dx} = 3z^2 \frac{dz}{dx} + 3ax \frac{dy}{dx} + 3ay.
223. Los coeficientes diferenciales de segundo orden \(\frac{d^2y}{dx^2}, \frac{d^3z}{dx^3} \), se determinarán diferenciando las ecuaciones que contienen los de primer orden, considerando estos como nuevas funciones implicitas de \(x \); y \(dx \) como constante.

Así; siendo en el ejemplo antecedido \(z^2 \frac{dz}{dx} + ax \frac{dy}{dx} + ay = 0 \), y \(y^2 \frac{dy}{dx} + cx \frac{dz}{dx} + cz = 0 \); tendremos \(z^2 \frac{d^2z}{dx^2} + 2z \frac{dz}{dx} + 2a \frac{dy}{dx} + 2y \frac{d^2y}{dx^2} + cx \frac{dz}{dx} + 2c \frac{dz}{dx} = 0; y \) sustituyendo por \(\frac{dz}{dx} \) y \(\frac{dy}{dx} \) sus valores, será fácil determinar los de \(\frac{d^2y}{dx^2} \) y \(\frac{d^3z}{dx^3} \) en funciones de \(x, y, z \); y del mismo modo se hallarán los coeficientes diferenciales de tercero, cuarto, &c., orden.

Si en vez de suponer que \(x \) es la variable independiente, se supone que lo es \(y \) o \(z \); se podrá hacer \(dy, \frac{dy}{dx} \) constante; y para transformar las ecuaciones halladas en el primer supuesto, en las que corresponden a los otros, se substituirán por \(\frac{dy}{dx} \) y \(\frac{dz}{dx} \) los valores que corresponden a dichos supuestos (núm. 203).

Para transformar, por ejemplo, las ecuaciones antecedentes, en las que pertenecen al supuesto de ser \(y \) la variable independiente, \(dy, \frac{dy}{dx} \) constante; se substituirá \(\frac{dy}{dx} \) por \(\frac{dy}{dx} \), y \(\frac{dz}{dx} \) por \(\frac{dy}{dx} \); y haciendo las reducciones correspondientes, resultarán las ecuaciones que se buscan.

Finalmente: si se consideran como variables las tres diferenciales \(dx, dy, dz; y, z, \) \(\prime \) y \(\prime \prime \) como funciones de \(x \); tendremos \(\frac{d}{dx} = \frac{d}{dx} \), y \(\frac{d}{dx} = \frac{d}{dx} \); y del mismo modo se hallarán los coeficientes diferenciales relativos al supuesto de ser \(x \), y \(z \) funciones de \(y \); \(x \) \(\prime \) y \(\prime \prime \) funciones de \(y \).

224. Aquí debemos observar, del mismo modo que en el número 208., que si en una ecuación diferencial de segundo orden que contiene tres cantidades variables; de las cuales dos se consideran como funciones de la tercera; se supone \(\frac{dy}{dx} = p, \frac{dz}{dx} = q \), &c.,

\[\frac{dz}{dx} = p', \frac{d}{dx} = q' \], ... debe transformarse en una ecuación que solo contenga las cantidades variables \(x, y, z \); \(p, q, q', p', q' \); tomando los coeficientes diferenciales \(q, q' \) conforme al supuesto hecho relativamente a la variabilidad de \(dx, dy, dz \) (núm. 209.).

Substituyendo, por ejemplo, en la ecuación \(z^2 \frac{d^2z}{dx^2} + 2z \frac{dz}{dx} + ax \frac{dy}{dx} + 2a \frac{dy}{dx} + 2y \frac{d^2y}{dx^2} + cx \frac{dz}{dx} + 2c \frac{dz}{dx} = 0 \), hallada en el supuesto de \(dx \) constante, \(p \) en lugar de \(\frac{dy}{dx} \), \(q \) en el de \(\frac{dz}{dx} \), \(p' \) por \(\frac{dz}{dx} \), y \(q' \) por \(\frac{dz}{dx} \); se transformará en \(z^2q' + 2zp' = axq + 2ap = 0 \); la cual solo contiene las referidas cantidades.

Esta observación se puede generalizar y extender a las ecuaciones de un orden más elevado, y que contienen un número cualquiera de variables dependientes; y también a las fórmulas diferenciales.

225. Supongamos que \(u, v \) representen dos funciones de \(z \); \(y \); y que la relación entre las variables \(x, y, z \) sea dada por las ecuaciones \(a + bx + u = 0 \), \(d + bx + v = 0 \). Diferenciándolas dos veces, considerando \(dx \) como constante, tendremos \(du = 0, dv = 0 \); cuyas ecuaciones solo contendrán \(z \), \(y \), y sus diferenciales de primero y segundo orden. De donde se sigue: que las ecuaciones diferenciales que solo contienen dos cantidades variables, y cuyas diferenciales son algunas variables, pueden resultar de ecuaciones primivitas que contienen tres variables.

Si por medio de las dos ecuaciones \(du = 0, dv = 0 \), se elimina una constante, \(ú \) otra cantidad cualquiera; resultará una sola ecuación entre \(z, y, dx, dy, dz, d^2y \), la cual sería evidentemente derivada de las dos ecuaciones propuestas.

226. La ecuación \(A \frac{dy}{dx} + B \frac{d^2y}{dx^2} + C \frac{dy}{dx} + D \frac{dz}{dx} + E = 0 \) (\(A, B, \) &c. son funciones de \(z \)); en la cual no se verifica la condición \(Ady + Bdz = 0 \), y que por lo mismo (núm. 209.) no puede provenir de una ecuación primitiva entre \(z \); \(y \); puede siempre referirse al caso en que \(z \); \(y \); sean funciones implicitas de la variable independiente \(x \); y \(dz, dy, d^2z, d^2y \) se consideren como las diferenciales de las mismas variables relativamente a \(x \); pues si suponemos \(dx \) constante, y hacemos como antes \(\frac{dy}{dx} = p, \frac{dz}{dx} = q \); tendremos \(q = \frac{dz}{dx}, q' = \frac{dy}{dx} \); por consiguiente, multiplicando la ecuación propuesta por \(dy^2 \), y haciendo estas substituciones, se transforma en \(Aq + Bq + Cz^2 + Dp'y + Ep'y = 0 \), cuya ecuación solo contiene las cantidades variables \(y, z \); y los coeficientes diferenciales de primero y segundo orden \(p, p', q, q' \).
Sea, por ejemplo, la ecuación \(y^3 \frac{dy}{dy} + z^3 \frac{dz}{dy} + 6y^2 \frac{dz}{dy} = 0 \), que segun vimos (núm. 211.) no cumple con la condición \(A dx + B dz = 0 \). Si suponemos que \(z \) es \(y \) funciones implícitas de la variable independiente \(x \), dicha ecuación puede derivar de las dos ecuaciones \(z^3 \frac{dy}{dx} + y^3 \frac{dy}{dx} + 3z^2 \frac{dz}{dx} + 3y^2 \frac{dz}{dx} = 0 \); y diferenciando la segunda, \(z \frac{dz}{dx} = 0 \); o elevándola á la segunda potencia \(z^4 \frac{dz}{dx} + z^4 \frac{dz}{dy} + y^2 \frac{dy}{dx} = 0 \); finalmente, eliminando \(z^4 \frac{dz}{dx} + y^2 \frac{dy}{dx} \), y dividiendo por \(\frac{dy}{dx} \), resultará la ecuación propuesta.

De donde inferiremos, que aunque una ecuación diferencial de segundo orden entre dos variables \(z \), \(y \), no cumpla con la condición \(A dx + B dz = 0 \); no se puede por esto concluir que dicha ecuación es absurda, ó que nada significa; solamente se puede asegurar, que la referida ecuación no puede derivar de una relación primitiva entre \(z \) y \(y \); y que para satisfacerla es necesario suponer que estas variables son funciones implícitas de otra variable independiente.

227. Cuando una sola ecuación \(U = 0 \), expresa la relación de las tres cantidades variables \(x \), \(y \), \(z \); dos cualesquiera de ellas se pueden considerar como independentes, y la tercera será una función implícita de aquellas. Sean \(x \) y \(y \) las variables independientes; \(z \) será función de ambas variables; y cuando una cualquiera de ellas, \(x \) por ejemplo, varie y adquiera un incremento \(\Delta x \); \(z \) varirá y adquirirá la diferencia correspondiente \(\Delta z = \frac{dz}{dx} \Delta x \).

En este supuesto la ecuación \(U = 0 \) expresará la relación de las dos cantidades variables \(x \), \(y \), \(z \); de las cuales la segunda es una función implícita de la primera, y por consiguiente tendremos \(\frac{dU}{dx} + \frac{dU}{dy} \frac{dy}{dx} = 0 \) (núm. 198.), cuya ecuación dará el coeficiente diferencial de \(z \) relativo á \(x \).

Del mismo modo; diferenciando la ecuación \(U = 0 \), en el supuesto de \(y \) sólo variable y \(z \) función de \(y \), resultará la ecuación \(\frac{dU}{dy} + \frac{dU}{dz} \frac{dz}{dy} = 0 \); de donde se inferirá el valor del coeficiente diferencial \(\frac{dz}{dy} \).

Si se multiplica por \(dx \) la primera de las ecuaciones antecedentes, y la segunda por \(dy \), y se toma la suma; tendremos \(\frac{dU}{dx} dx + \frac{dU}{dy} dy + \frac{dU}{dz} \left(\frac{dx}{dy} dx + \frac{dz}{dy} dy \right) = 0 \); pero \(\frac{dx}{dy} dx + \frac{dz}{dy} dy = dz; \) luego \(\frac{dU}{dx} dx + \frac{dU}{dy} dy + \frac{dU}{dz} dz = 0 \); de donde se infiere, que la ecuación \(U = 0 \) se puede diferenciar considerando \(U \) como función de tres variables independientes \(x \), \(y \), \(z \). Pero es necesario tener presente, que la última ecuación diferencial equivale á las dos ecuaciones \(\frac{dU}{dx} \frac{dx}{dz} + \frac{dU}{dy} \frac{dy}{dz} = 0 \), \(\frac{dU}{dz} \frac{dz}{dx} + \frac{dU}{dy} \frac{dy}{dz} = 0 \); pues si se substituye por \(dz \) su valor \(\frac{dz}{dx} dx + \frac{dz}{dy} dy \); á causa de la independencia de las variables \(x \), \(y \), \(z \) de sus diferenciales \(dx \), \(dy \), será necesario igualar á cero las cantidades que estas ecuaciones multiplican; de donde resultarán dichas dos ecuaciones.

228. Los coeficientes diferenciales de segundo orden \(\frac{d^2 z}{dx^2}, \frac{d^2 z}{dy^2} \), y los de los órdenes superiores, se determinarán diferenciando las ecuaciones \(\frac{dU}{dx} \frac{dx}{dz} + \frac{dU}{dy} \frac{dy}{dz} = 0 \), \(\frac{dU}{dz} \frac{dz}{dx} + \frac{dU}{dy} \frac{dy}{dz} = 0 \); y si en virtud de la notación núm. 222., representamos la primera de estas ecuaciones por \(\frac{d(\ U)}{dx} = 0 \), y la segunda por \(\frac{d(\ U)}{dy} = 0 \); estas ecuaciones contendrán, del mismo modo que la propuesta, las tres variables \(x \), \(y \), \(z \), y se podrán diferenciar del mismo modo que aquella.

Diferenciando primero \(\frac{d(\ U)}{dx} = 0 \), relativamente á \(x \); \(U \) se podrá considerar como función de \(x \) y \(z \), siendo \(z \) función de \(x \) sola, y tendremos \(\frac{d^2(\ U)}{dx^2}, \frac{d^2(\ U)}{dxdy} + 2 \frac{d^2(\ U)}{dxdz} + \frac{d^2(\ U)}{dydz} + \frac{d^2(\ U)}{dz^2} = 0 \). Diferenciando luego la misma ecuación relativamente á \(y \), \(y \) la ecuación \(\frac{d(\ U)}{dy} = 0 \) relativamente á \(x \), y teniendo presente (núm. 189.) que \(\frac{d^2 z}{dx^2} = \frac{d^2 z}{dy^2} \), tendremos el mismo resultado \(\frac{d^2(\ U)}{dxdy} + \frac{d^2(\ U)}{dxdz} + \frac{d^2(\ U)}{dydz} + \frac{d^2(\ U)}{dz^2} = 0 \). Finalmente; la ecuación \(\frac{d^2(\ U)}{dxdy} \), diferenciada relativamente á \(y \), da \(\frac{d^2(\ U)}{dy^2}, \frac{d^2(\ U)}{dxdy} + \frac{d^2(\ U)}{dydz} + \frac{d^2(\ U)}{dydz} + \frac{d^2(\ U)}{dz^2} = 0 \). Pero como \(z \) es una función implícita de \(x \) y \(y \), en la ecuación \(U = 0 \); \(U \) lo será igualmente, y por consiguiente tendremos (núm. 193.) \(\frac{d^2(\ U)}{dxdz} = \frac{d^2(\ U)}{dxdy} + \frac{d^2(\ U)}{dxdz} + \frac{d^2(\ U)}{dydz} + \frac{d^2(\ U)}{dz^2} = 0 \); y en efecto, si se substituyen por \(\frac{dz}{dx} \), \(\frac{dz}{dy} \), los resultados que acabamos de hallar; \(dz \) en lugar de \(\frac{dz}{dx} dx + \frac{dz}{dy} dy \); y \(d^2 z \).
De las ecuaciones de condición que deben verificarse para que una función sea la diferencial de otra función.

231. En el núm. 195, hemos demostrado, que si \(A dx + B dy \) es la diferencial de una función \(z \) de dos variables independientes \(x, y \); el coeficiente diferencial \(\frac{dA}{dx} \) es idénticamente el mismo que \(\frac{dB}{dy} \). De donde inferirnos, que si en una función diferencial \(A dx + B dy \), no se verifica la ecuación \(\frac{dA}{dy} = \frac{dB}{dx} \); dicha función no será la diferencial de una función de dos variables independientes \(x, y \).

Sea por ejemplo la función diferencial \(xy dx + x^2 dy \). Será \(A = xy \), \(B = x^2 \), \(\frac{dA}{dy} = x \), \(\frac{dB}{dx} = 2x \); por consiguiente la función propuesta no puede ser la diferencial de una función de \(x, y \).

También inferiremos de lo demostrado; (núm. 196.) que si en una función diferencial \(A dx + B dy + C dz \), no se verifican las tres ecuaciones idénticas \(\frac{dA}{dy} = \frac{dB}{dx} = \frac{dC}{dz} \), \(\frac{dA}{dx} = \frac{dC}{dy} \), \(\frac{dB}{dz} = \frac{dC}{dx} \); la función propuesta no podrá ser la diferencial de una función primitiva de las tres variables independientes \(x, y, z \).

En general: si la función diferencial \(A dx + B dy + C dz + \&c. \) tiene \(n \) variables; se resultarán \(\frac{n(n-1)}{2} \) de estas ecuaciones de condición que deberían verificarse para que dicha función fuese la diferencial de una función primitiva de \(n \) variables independientes \(x, y, z, \&c. \).

232. Sea \(G dx + H dy \) una función diferencial de primer orden que contiene dos variables independientes \(x, y \), y que llamaremos \(x \). Diferenciándola suponiendo constantes \(dx \), \(dy \), hallaremos \(dx \frac{dG}{dx} dx + \frac{dH}{dy} dy + \frac{dH}{dy} dy + \frac{dH}{dy} dy = \frac{dG}{dx} dx + \frac{dH}{dy} dy + \frac{dH}{dy} dy = \frac{dH}{dy} dy \). Sentado esto; supongamos que se queira averiguar si una función propuesta de segundo orden \(I dx^2 + K dx dy + L dy^2 \) es la diferencial de una función de primer orden considerando como constantes \(dx \) y \(dy \). Comparándola con \(dx \), tendremos las tres ecuaciones \(I = \frac{dG}{dx}, K = \frac{dG}{dy} + \frac{dH}{dx}, y L = \frac{dH}{dy} \). Diferenciando la primera relativamente a \(y \), y la segunda relativamente a \(x \); a causa de \(\frac{dG}{dx} = \frac{dG}{dy} + \frac{dH}{dy} \), podrémos eliminar \(G \), y tendremos \(\frac{dK}{dx} = \frac{dL}{dy} + \frac{dH}{dy} \). Para eliminar \(H \), diferenciáremos esta ecuación relativa-
mente á y; y substituyendo por \(\frac{d^2H}{dx^2} \) su valor \(\frac{d^2L}{dx^2} \) que se encuentra, diferenciando dos veces la ecuación \(L = \frac{dH}{dx} \) relativamente á x; resultará la ecuación de condición \(\frac{d^4K}{dx^4} = \frac{d^4I}{dx^4} + \frac{d^4L}{dx^4} \), que debe verificarse para que la función \(Ldx^2 + Kdx^2dy + Ly^2 \) sea la diferencial de una función de primer orden.

Sea por ejemplo \(3x^3dx^2 + 2x^2xdxdy + 2x^3dy^2 \) la función propuesta. Comparándola con la antecedente, será \(I = 3x^3, K = 2x^2, L = 2x^2y, \frac{d^4I}{dx^4} = 4y, \frac{d^4L}{dx^4} = 4y \); de donde resulta la ecuación idéntica \(4y = 4y \), y por consiguiente que la función propuesta es la diferencial de una función de primer orden. En efecto, dicha función es la diferencial de \(x^3dx + x^3dy \), no puede ser la diferencial de una función de primer orden, por no ser idéntica la ecuación \(ax = by + cax \) que de ella resulta.

Del mismo modo podríamos hallar las ecuaciones de condición relativas á las funciones de los órdenes superiores en el supuesto de considerar como constantes \(dx \), \(dy \); y también las que pertenecen al supuesto de tratar como variables estas diferenciales; pero no seguiremos estos métodos particulares, porque nos parece mejor emplear el método general siguiente, el cual se aplica á las funciones de todos los órdenes, y que contienen un número cualquiera de variables.

233. Supongamos que estas variables sean \(x, y, z, \&c. \) de las cuales \(x \) varía uniformemente; y \(\frac{dy}{dx} = p, \frac{dp}{dx} = q, \frac{dq}{dx} = r, \&c. ; \frac{dx}{ds} = p', \frac{dp}{ds} = q', \frac{dq}{ds} = r', \&c. \) Esto supuesto, sea \('c \) una función diferencial que contiene las variables \(x, y, z, \&c. \), y los coeficientes diferenciales \(p, q, r, \&c. p', q', r', \&c. \); si la diferenciamos y dividimos por la diferencial constante \(dx \); á causa de \(\frac{ds}{dx} = s, \frac{dr}{dx} = s', \) la expresión \(\frac{1}{dx} d'c \) contendrá las nuevas variables \(s, \)

\[s', \] y será \(\frac{1}{dx} d'c = \left\{ \begin{array}{l} \frac{d^4c}{dx^4} + \frac{d^4c}{dx^4} p + \frac{d^4c}{dx^4} q + \frac{d^4c}{dx^4} r + \frac{d^4c}{dx^4} s + \&c. \\ + \frac{d^4c}{dx^4} p' + \frac{d^4c}{dx^4} q' + \frac{d^4c}{dx^4} r' + \frac{d^4c}{dx^4} s' + \&c. \\ + \&c. \end{array} \right. \]

Hagamos para simplificar

\[\frac{1}{dx} d'c = \xi, \] y \(d'c = \left\{ \begin{array}{l} Ax + Bdy + Cdp + Ddq + Edr + Fds + \&c. \\ + B'dz + C'dp' + D'dq' + E'dr' + F'dds + \&c. \\ + \&c. \end{array} \right. \]

La función 'c se puede eliminar en cada una de estas series de equa-
orden inmediatamente inferior; después de haber hecho \[\frac{dy}{dx} = p, \quad \frac{dp}{dx} = q, \]
\&c., \&c., se formarán los coeficientes diferenciales parciales B (\(= \frac{dC}{dy}\)), C (\(= \frac{dC}{dp}\)), \&c. B' (\(= \frac{dC}{dx}\)), C' (\(= \frac{dC}{dp'}\)), \&c., \&c.; y si substituidos en las ecuaciones de las condiciones antecedentes, las reducir a cero, la función propuesta será efectivamente la diferencial de una función del orden inmediatamente inferior; pero si todos los términos de estas ecuaciones no se distroyen en virtud de dicha substitución; la función propuesta no será la diferencial de una función del orden inmediatamente inferior.

Sea por ejemplo \(6y^2dx + 6x y dy + 3y^2d^2y\) la función propuesta. Transformándola en \(3dx^3 (2y^p + 2xyp + x^2y)\), y omitiendo el factor constante \(3dx^3\), habremos \(2y^p + 2xyp + x^2y = \xi\), y tendremos

\[B = 4y + 2xp + 2xyp, \quad C = 2xp + 4xyp, \quad D = xy, \]
\[\frac{dC}{dx} = 8xp + 4xyp + 4xyq, \quad \frac{dC}{dx} + d^2D = 4yp + 2xyp + 2xyp + xxyq; \]

y estos valores cumplen con la condición

\[\frac{dC}{dx} + d^2D = 0, \]

y por consiguiente la función propuesta será la diferencial de una función de primer orden. Dicha función es en efecto la diferencial de \((y^3 + 2xyp)\) dx.

Sirva de segundo ejemplo la función \(Idx^3 + Kdx + Ly + Md^2y = (I + Kp + L yp + Mq) dx^2\). Haciendo \(I + Kp + Lp + Mq = \xi\), tendremos

\[\frac{dC}{dy} = \frac{dy}{dy} + \frac{dy}{dp} + \frac{dy}{d^2p} + \frac{dy}{d^3p} = K + 2Lp, \quad \frac{dC}{dy} = M; \]

y substituyendo estas cantidades en la equación

\[\frac{dC}{dy} = \frac{dC}{dy} + \frac{dC}{dp} + \frac{dC}{d^2p}, \quad \frac{dC}{dy} = 0, \]

se transformará en

\[\frac{dC}{dy} + \frac{dC}{dp} + \frac{dC}{d^2p} = 0, \qquad \frac{dC}{dy} + \frac{dC}{dp} + \frac{dC}{d^2p} = 0, \]

y sustituyendo \(y\) y \(p\), y las que multiplica \(p^2, q, y\), y resultarán las cuatro ecuaciones

\[\frac{dM}{dy} + \frac{dM}{dx} \quad \frac{dM}{dy} + \frac{dM}{dx} \quad \frac{dM}{dy} + \frac{dM}{dx} \]

y \(L = 0\), que a causa que de la segunda y la tercera, son una consecuencia inmediata de la cuarta, se reducen solamente á dos esencialmente distintas \(\frac{dM}{dy} + \frac{dM}{dx}\) = 0, \(L = 0\).

235. Sea \(\xi dx\) la diferencial de \(\xi\); a causa de \(\xi dx = d\xi\), será \(\xi dx^3\) la diferencial segunda de la función \(\xi\), y tendremos relativamente á la variable y las dos ecuaciones (a) \[B = \frac{dC}{dx} + \frac{dC}{dx}\]
CAP. VI. DEL CÁLCULO DIFERENCIAL

\[d^2 D - \frac{1}{dx^3} d^3 E + \frac{1}{dx^4} d^4 F = \& \text{c.c.} = 0, \quad \frac{d EC}{dy} = -\frac{d C}{dx}
\]

\[d^2 D = \frac{1}{dx^3} d^3 E - \frac{1}{dx^4} d^4 F = \& \text{c.c.} = 0; \text{ pero de la serie de ecuaciones del núm. 232 se infiere } \frac{d C}{dy} = C - \frac{1}{dx} d D + \frac{1}{dx^3} d^3 E - \frac{1}{dx^4} d^4 F \]

\[\text{y substituyendo estos valores en la ecuación antecedente se transforma en} \]

\[(b) \quad C - \frac{1}{dx} d D + \frac{1}{dx^2} d^2 E - \frac{4}{dx^3} d^3 F = \& \text{c.c.} = 0. \]

Las ecuaciones \((a), (b)\) serán idénticas siempre que la función \(C dx^3\) sea la diferencial seguida de una función cualquiera.

Siendo por ejemplo \(C = 2 x^4 + 4 x y^4\) y \(D = x y^4\) en la función diferencial \(6 y^4 + 2 x y^4\); sería \(d D = y^4 + 2 x y^4\) y por consiguiente la ecuación \(C - \frac{1}{dx} d D = \& \text{c.c. = 0}\) es idéntica igualmente que la ecuación \(B - \frac{1}{dx} d C + \frac{1}{dx^2} d^2 D = \& \text{c.c. = 0}\), y la función propuesta la diferencial seguida de una función primitiva. Esta función es \(x y^3\).

236. Si \(C dx^4\) es la diferencial tercera de una función cualquiera, \(C dx^4\) será su diferencial seguida; por consiguiente tendremos la ecuación \(\frac{d C}{dy} = \frac{1}{dx} d D - \frac{1}{dx^2} d^2 E - \frac{4}{dx^3} d^3 F = \& \text{c.c.} = 0\), y substituyendo por \(\frac{d C}{dy}, \frac{d D}{dx}, \& \text{c.c.}\) sus valores respectivos resultará la ecuación \((c)\) \(D = \frac{1}{dx^2} d^2 E + \frac{6}{dx^3} d^3 F + \& \text{c.c. = 0}\), que será idéntica del mismo modo que las ecuaciones \((a), (b)\) en el supuesto de ser \(C dx^3\) la diferencial tercera de una función cualquiera.

Del mismo modo se hallarán las demás ecuaciones que deben ser idénticas cuando la función propuesta sea la diferencial cuarta, quinta, \& \text{c.c. de otra función.}

Las ecuaciones \((a), (b), (c)\), se refieren únicamente a la variable \(y\); pero se echa de ver, que a cada una de las otras variables (excepto la que crece uniformemente) corresponde un número igual de ecuaciones semejantes a las antecedentes.

237. Si \(V\) representa una función homogénea de dimensión \(n\) de las variables \(x, y, \& \text{c.c.; y se sustituye} ax\) en lugar de \(x; ay\) en lugar de \(y; \& \text{c.c.; } V\) se transformará en \(a^n V\), o haciendo \(a = 1 + k\), en \((1 + k)^n V = V(1 + nk + \frac{n(n - 1)}{2} k^2 + \& \text{c.c.})\). Pero como en este supuesto, \(x\) se transforma en \(x + kx; y, en y + ky; \& \text{c.c.; } V\) se transformará también (núm. 187.) en \(V + \frac{d V}{dx} k x + \frac{d V}{dy} k y + \& \text{c.c.}
\]

\[+ \frac{1}{d x} \left(\frac{d V}{dy} - k x^2 + 2 \frac{d V}{d x} k x y + \frac{d V}{d y} k y^2 + \& \text{c.c.} \right) + \& \text{c.c.} \text{ por consiguiente, igualando estos dos resultados, y comparando las cantidades afectadas de una misma potencia de la indeterminada } k, \text{ resultará}
\]

\[\frac{d V}{dx} x + \frac{d V}{dy} y = \& \text{c.c. = nV}
\]

\[\frac{d V}{dx} x^2 + 2 \frac{d V}{d x d y} xy + \frac{d V}{d y} y^2 + \& \text{c.c. = n(n - 1)V} \]

\& \text{c.c., la primera de estas ecuaciones manifiesta una propiedad notable de las funciones homogéneas, la cual nos será muy útil en el cálculo integral; y las demás son consecuencias de aquella.}

Sea por ejemplo \(V = (x^3 + y^2)^\frac{3}{2}\); sería \(n = \frac{9}{2}, \frac{d V}{dx} = \frac{3}{2} (x^3 + y^2)^\frac{1}{2} (3x^2 + y^2), \frac{d V}{dy} = \frac{3}{2} (x^3 + y^2)^\frac{1}{2} \times 2xy\); y en virtud de dicha propiedad deberá ser \(\frac{3}{2} (x^3 + y^2)^\frac{1}{2} (3x^2 + y^2)x + \frac{3}{2} (x^3 + y^2)^\frac{1}{2} \times 2xy = \frac{9}{2} (x^3 + y^2)^\frac{1}{2}\). En efecto el primer miembro de la ecuación antecedente se puede transformar en \(\frac{3}{2} (x^3 + y^2)^\frac{1}{2}\)

\[(3x^3 + y^2 + 2xy)^\frac{3}{2} = \frac{9}{2} (x^3 + y^2)^\frac{1}{2}. \]

Si \(V\) fuese \(\frac{(x + y)^3}{x y^4}\); tendríamos \(n = -\frac{11}{2}, \frac{d V}{dx} = -3x^3 - \frac{4}{2} (x + y)^\frac{1}{2}, \frac{d V}{dy} = -\frac{11}{2} x^3 - \frac{3}{2} (x + y)^\frac{1}{2}, \frac{d V}{dy} = -\frac{11}{2} x^3 - \frac{3}{2} (x + y)^\frac{1}{2} \times 2xy\); y por consiguiente \(\frac{11}{2} x^3 - \frac{3}{2} (x + y)^\frac{1}{2}\) deberá ser \(-\frac{11}{2} x^3 - \frac{3}{2} (x + y)^\frac{1}{2} \times 2xy\). La identidad de estas dos cantidades se reconocerá inmediatamente haciendo en la primera las reducciones correspondientes.

Si \(n\) fuese \(0\), tendriamos \(\frac{d V}{dx} x + \frac{d V}{dy} y + \& \text{c.c. = 0}\); y suponiendo \(V\) función solamente de \(x\) \& \(y\), \(\frac{d V}{dx} = -\frac{y}{x}\).

Sea \(V = a x^2 + \frac{a x y}{x^2 + y^2} + a y^2 + \& \text{c.c.; tendremos} \quad \frac{d V}{dx} = \frac{2 a x y}{x^2 + y^2} + a x^2 + \frac{y^2}{x^2 + y^2}, \quad \frac{d V}{dy} = \frac{2 a x y + a x^2 + \frac{y^2}{x^2 + y^2}}{x^2 + y^2} \quad \text{por consiguiente} \ldots \ldots \ldots \ldots \ldots
CAP. VI. DEL CÁLCULO DIFERENCIAL

\[\frac{3axy^2 + abx^2y + y^2}{(y' + bxy)^2} \] es igual á cero; y el valor de \(\frac{dV}{dx} \) dividido por el de \(\frac{dV}{dy} \), igual á \(\frac{y}{x} \).

238. Supongamos \(V \) función de \(x \) \& \(y \) de dimension \(n \), y \(dV = Adx + Bdy \). A causa de \(Ax + By = nV \), será \(\frac{d(Ax + B)}{dV} = n(Ax + B); \) de donde se infiere efectuando la diferenciación indicada \(x = (n - 1) A \), \(y = (n - 1) B \). Pero \(\frac{dV}{dx} = \frac{dA}{dx} \)

\[\frac{dA}{dy} = \frac{dB}{dx} \] luego \(\frac{d}{dx} x + \frac{d}{dy} y = (n - 1) A \), \(y = \frac{dA}{dy} x + \frac{dB}{dy} y = (n - 1) B; \) luego \(A, B, y \) en general todas las diferenciales parciales de una función homogénea de la dimension cualquiera \(n \); son funciones homogéneas de la dimension \(n - 1 \).

239. Sean \(A, B \) funciones homogéneas de dimension \(n - 1 \), y \(Adx + Bdy \) la diferencial de una función \(V \). Será \(\frac{dA}{dx} x + \frac{dA}{dy} y = (n - 1) A \), \(\frac{dA}{dy} x + \frac{dB}{dy} y = (n - 1) B \), o (á causa de \(\frac{dA}{dy} = \frac{dB}{dx} \)) \(\frac{dA}{dx} x + \frac{dB}{dy} y = (n - 1) A \), \(\frac{dA}{dy} x + \frac{dB}{dy} y = (n - 1) B; \) de donde se infiere multiplicando la primera ecuación por \(dx \), la segunda por \(dy \), y juntándolas \(n(Adx + Bdy) = x(\frac{dA}{dx} dx + \frac{dB}{dy} dy) + Adx + \frac{dA}{dy} dx + Bdy = n(dx) \) \(+ \frac{dB}{dy} dy \). Luego si \(A, B \) son funciones homogéneas de dimension \(n - 1 \), y \(Adx + Bdy \) una diferencial exacta; será \(n(Adx + Bdy) = n(dx + dY) \).

240. He aquí todo cuanto nos hemos propuesto exponer del cálculo diferencial en estas Instituciones: le hemos fundado constantemente en las consideraciones de los límites de las cantidades \(\& \) de sus razones, pareciéndonos este método el mas elegante, riguroso y sen- cillo que se puede emplear en la parte metafísica del cálculo diferencial, y de sus aplicaciones. Los Matemáticos antiguos, y particularmente Archimedes, cuya exáctitud y rigor geométrico han sido tan justamente admirados, le emplearon continuamente; y al método de los límites debe seguramente aquel Geómetra la mayor parte de los descubrimientos que hizo en la Geometría, y que hicieron su nombre inmortal (1).

Sin embargo; casi todos los tratados del cálculo diferencial que se han escrito desde que Newton y Leibnitz le inventaron; se fundan sobre principios diferentes. Los Matemáticos Ingleses, siguiendo á Newton, le llaman Método de las fluxiones; y establecen sus principios sobre las consideraciones del movimiento; en igual que los Geómetras del continente, siguiendo las ideas de Leibnitz, le llaman método de los infinitamente pequeños, y le fundan en la consideración de las cantidades infinitas \& infinitamente pequeñas. Del método de las fluxiones, solo dirémos que los lectores que desean conocerle, le hallarán explicado muy por menor en el excelente tratado de Maclaurin; y por lo que toca al de los infinitamente pequeños, vamos á dar una idea sucinta de él; y luego manifestaremos con algunas aplicaciones á la teoría de las líneas curvas, la causa de ser sus resultados los mismos que se hallan por el método que hemos seguido constantemente en estas Instituciones.

241. La primera hipótesis que se hace en el cálculo diferencial considerado como el método de los infinitamente pequeños, es que las cantidades variables \(x, y, \&c \), crecen por incrementos \& diferencias infinitamente pequeñas \(dx, dy, \&c \), á las cuales llaman diferencias, y se deben considerar como nulas respecto de las cantidades finitas; de manera que estas diferenciales solo se pueden comparar entre sí. De aquí resulta que las cantidades \((dx)^2, dx dy, (dy)^2 \), son infinitamente menores que \(dx, dy \); pues siendo \(i : dx : dx^2 \); la cantidad \((dx)^2 \) será infinitamente pequeña respecto de \(dx \).
Por esta razón se llaman estas cantidades infinitamente pequeñas de segundo orden; y deben considerarse como nulas respecto de las de primer orden \(dx, dy \). Por la misma razón, las cantidades \((dx)^3, (dx)^3, \&c \), \(dx^2 \) \& \(dx dy \), se llaman infinitamente pequeñas de tercer orden, y se deben despreciar relativamente á las de segundo orden.

En general; una cantidad infinitamente pequeña de un orden cualquiera, es infinitamente pequeña respecto de otra cantidad infinitamente pequeña de un orden menos elevado; y por lo mismo la primera de estas cantidades se debe considerar como nula, relativamente á la segunda.

Estos supuestos dan una facilidad suma para hallar las diferenciales de cualesquiera funciones: pues es evidente, que después de haber sustituido \(x + dx, x + dy \) á \(x, y + dy \) á \(y ; \&c \), en una función cualquiera; al tiempo de transformar en serie la función que resulta, solo se deben conservar los términos afectos de \(dx, dy, \&c \), despreciando los demás como infinitamente pequeños respecto de aquellos. Por ejemplo si la función propuesta fuese \(xy \); haciéndola igual á \(z \) tendremos \(z = x + dx, (y + dy) = xy + ydy + dx dy, 0 dx = ydx + xdy + dx dy; y despreciando la cantidad \(dx dy \) por ser infinitamente pequeña relativamente á las demás, resulta \(az \) \& \(oy \).

Por medio de esta fórmula se puede hallar la diferencial de una función algebraica cualquiera. Si por ejemplo hacemos \(y = x \); será \(dy = dx \), y por consiguiente \(d x^2 = 2 x dx \); del mismo modo se ha-
y, en general siendo n un número entero positivo, \(d.x^n = nx^{n-1} \cdot dx \).

La diferencial de x^n en el supuesto de ser n un número cualquier, se puede hallar directamente por medio de la fórmula del binomio de Newton: pues si hacemos $y = x^n$, tendremos $y + dy = (x + dx)^n = x^n + nx^{n-1} \cdot dx + \frac{n(n-1)}{2} x^{n-2} \cdot dx^2 + \&c.$, de donde se infiere $dy = nx^{n-1} \cdot dx + \frac{n(n-1)}{2} x^{n-2} \cdot dx^2 + \&c.$; y desprecia-
dondo los términos multiplicados por dx^3, dx^4, \&c. como infinitamente pequeños respecto del primero, resulta $dy = d.x^n = nx^{n-1} \cdot dx$.

En general, si y es una función cualquiera de x; y suponemos que x adquiere el incremento infinitesimal pequeño dx, el incremento correspondiente dy será en virtud de lo dicho (núm. 311.) igual a $Adx + Bdx^2 + Cdx^3 + \&c.$, (representando A, B, C, \&c. las mismas funciones que en aquel número), y suprimiendo los términos afectos de las cantidades infinitamente pequeñas de segundo, tercero, \&c. orden; quedará $dy = Adx$, $\frac{dy}{dx} = A$.

242. Supongamos que siendo dada una relación cualquiera entre x e y; adquieren dichas cantidades los incrementos infinitamente pequeños respectivos dx, dy; es constante que la relación de estos incrementos se podrá expresar por la ecuación $Adx + Bdy + Cdx^2 + Ddx\cdot dy + Edy^2 + \&c. = 0$, siendo A, B, C, \&c. funciones indeterminadas de x e y, del mismo modo que en el núm. 311.; por consiguiente, despreciando las cantidades infinitamente pequeñas de segundo orden, y las de los órdenes superiores, será $Adx + Bdy = 0$, y $\frac{dy}{dx} = -\frac{A}{B}$. Estos resultados son idénticamente los mismos que hallamos por el método de los límites, y debe necesariamente ser así; pues como las operaciones que se hacen en ámbos métodos para hallar $\frac{dy}{dx}$, son en el fondo las mismas; deben forzosamente conducir a un mismo resultado.

243. El método de los infinitamente pequeños facilita igualmente la diferenciación de las funciones transcendentes. En las funciones circulares por ejemplo, se considera el arco infinitamente pequeño, como igual a su seno o a su tangente; y el coseno, como igual al radio; de donde resulta, que si fuese $y = \text{sen.} \; x$, sería $y + dy = \text{sen.} \; (x + dx) = \text{sen.} \; x \cos. \; dx + \cos. \; x \text{sen.} \; dx = \text{sen.} \; x + dx \cos. \; x$; por consiguiente, $dy = dx \cos. \; x$, y $\frac{dy}{dx} = \cos. \; x$; lo mismo que por el método de los límites. Del mismo modo hallaríamos la dife-

En general.

Otro supuesto del método de los infinitamente pequeños es, que las cantidades infinitamente pequeñas o diferenciales dx, dy, \&c. tienen sus diferencias respectivas d^2x, d^2y, \&c. Las cuales se consideran como infinitamente pequeñas respecto de las primeras, y se llaman las diferenciales segundas de x, y, \&c.: por consiguiente, estas diferencias son infinitamente pequeñas de segundo orden; y por lo mismo homogéneas con dx^2, dy^2, $dx\cdot dy$, \&c.

Las diferenciales segundas d^2x, d^2y, \&c. tienen por diferenciales d^3x, d^3y, \&c. las cuales son las diferenciales tercera de x, y, \&c. es infinitamente pequeñas de tercer orden; y así continuando al infinito.

De aquí se infiere, que las diferenciales segundas se hallarán considerando las diferenciales primeras como nuevas variables, y diferenciándolas del mismo modo que se diferencian las variables x, y, \&c. para determinar las diferenciales primeras. Por ejemplo, si fuese $y = x^n$; sería $dy = nx^{n-1} \cdot dx$; y diferenciando esta ecuación considerando dx, dy, como nuevas variables, hallaremos $d^2y = n(n-1)x^{n-2} \cdot dx^2 + nx^{n-1} \cdot d^2x$. Si se supone constante la diferencial primera dx; la diferencial segunda d^2x será 0, y por consiguiente $d^2y = n(n-1)x^{n-2} \cdot dx^2$; y si en vez de suponer dx constante, se supone que $dx = dy$; será $n(n-1)x^{n-2} \cdot dx^2 + nx^{n-1} \cdot d^2x = 0$, lo mismo que en el núm. 217.

245. Basta lo dicho para manifestar los principios en que se funda el cálculo diferencial considerado como el método de los infinitamente pequeños; y las operaciones que en él se practican para diferenciar las funciones de las cantidades variables. Por poco que se reflexione sobre estas operaciones, se verá que (según observamos antes) en el fondo son las mismas que las que prescribe el método de los límites, y por consiguiente deben ser los mismos los resultados en ambos métodos. Pero en la metafísica de dichos métodos, hay una diferencia muy notable: el que seguimos en estas Instituciones, se funda sobre principios simples e incontestables, tales son la consideración de las diferencias de las cantidades variables, y los límites de sus razones; en igual que el otro se funda en las nociones vagas e imperfectas de las cantidades infinitamente pequeñas de las cuales es imposible formar idea exacta; y por lo mismo las demostraciones de dicho método carecen de la exactitud y rigor que caracterizan las Ciencias matemáticas.

Los lectores que deseen conocer por menor el cálculo diferencial y sus aplicaciones según el método de los infinitamente pequeños, lo lograrán en el estudio del análisis de los infinitamente pequeños del Marqués del Hospital.
246. En las aplicaciones del cálculo diferencial por el método de los infinitesimales pequeños; se hacen algunos supuestos análogos á los de dicho cálculo: así para aplicarle á las líneas curvas, se supone que una cualquiera $AM\ell$ (fig. 78.) de estas líneas, es un polígono de una infinidad de lados infinitamente pequeños $A_{\alpha} , ab, bM, \&c.;$ los cuales son los elementos o diferenciales de la curva; y que la prolongación de uno cualquiera de ellos Mc forma la tangente MT en el punto M; ó que un arco infinitamente pequeño MM' de una curva cualquiera AMF (fig. 76.) se confunde con la cuerda correspondiente MM': que la superficie APM' comprendida entre la absisa $A\ell'$, la ordenada correspondiente $P'M'$, y la porción AMM' de la curva; se compone de una infinidad de trapezios infinitamente pequeños como $MP'M', m$ los cuales son las diferenciales de dicha superficie; &c. Estos supuestos facilitan mucho las aplicaciones del cálculo diferencial, y simplifican los cálculos: pues si suponemos por ejemplo, que desde los extremos M, e del lado infinitamente pequeño Mc de la curva $AM\ell$ (fig. 78.) se bajaran las perpendiculares MP, EP, al eje AB de las absisas, y se tira la MM' paralela á dicho eje; llamando $AP, x; PM, y$; será PP' el incremento infinitamente pequeño ó diferencial dx de la abscisa; mc la diferencial dy de la ordenada, y los trángulos semejantes cmM, MPT dan $dy : dx :: y : (y \frac{dx}{dy})$. Pero como por más pequeño que se suponga el arco MaM' (fig. 76.) de una curva, jamás se confundirá exactamente con la cuerda correspondiente MM'; la parte PS del eje de las absisas comprendida entre el punto P y el punto S de la cuerda MM' prolongada, jamás llegará á ser exactamente igual á la subtangente PT: así, á primera vista este modo de determinar la subtangente, merece una aproximación, que es un método rigoroso. Mas el supuesto que se hace en el cálculo para determinar la diferencial dy; esto es, que se deben despreciar los términos que multiplican las cantidades infinitamente pequeñas de segundo orden, y de los órdenes superiores $dx^2, dx^3, \&c.;$ reduciendo á cero la diferencia TS entre la línea PS, y la subtangente PT; corrije el error que resulta de suponer la curva $AM\ell$ un polígono de una infinidad de lados infinitamente pequeños como MM'; y por consiguiente justifica dicho supuesto. En efecto: si suponemos $AP = x$, $PM = y$, $PP' = \Delta x$, $nM' = \Delta y$; y $\frac{dy}{dx} = A$, $\frac{1}{2} \frac{d^2y}{dx^2} = B$, &c., tendremos $\Delta y = A \Delta x + B \Delta x^2 + C \Delta x^3 + \&c.;$ y en virtud de los trángulos semejantes $M'nM, MPS, PS =$: $\frac{\Delta y}{\Delta x} = A + B \Delta x + C \Delta x^2 + \&c.;$ Pero si al mismo tiempo se supone que PP' (== Δx), es una cantidad infinitamente pequeña; ó lo que es lo mismo (núm. 241.), que Δx, Δx^2, &c. se consideren como nulas relativamente á la cantidad finita A; la expresión de PS se reducirá $\frac{dy}{dx} = \frac{\Delta y}{\Delta x}$; MS se confundirá con MT, y por consiguiente PT será igual $\frac{dy}{dx}$.

Lo mismo se puede demostrar de este otro modo. En el método de los infinitamente pequeños, se supone que $M'n : nM : MP : PT$; pero en la realidad el primer término de esta proporción debe ser la línea mn; por consiguiente se desprecia la parte $M'm = (\text{núm. 123.}) B \Delta x^2 + C \Delta x^3 + \&c.;$ pero si al mismo tiempo se supone que la diferencia PP' de la abscisa es una cantidad infinitamente pequeña dx; la cantidad $M'm = B \Delta x^2 + C \Delta x^3 + \&c.$ será infinitamente pequeña de segundo orden, y por lo mismo se debe considerar como nula relativamente á la de primer orden $\Delta y = nM;$ por consiguiente el supuesto de ser PP' una cantidad infinitamente pequeña, permite el de poder despreciar $M'm$, ó tomar $M'n$ por mn en la proporción expresada arriba.

247. La observación que hicimos antes (núm. 245.) relativamente á las operaciones analíticas del método de los infinitamente pequeños, y de los límites, se verifica igualmente en sus aplicaciones: es decir, que las operaciones que se practican en las aplicaciones de ambos métodos, son en el fondo las mismas, y solo se diferencian en las expresiones, y en la metafísica particular de cada uno de ellos. Por ejemplo; en la aplicación del método de los límites, diríamos, que cuanto menor fuese Δx en la expresión $\frac{dy}{dx} = \frac{A + B \Delta x + C \Delta x^2 + \&c.}{\Delta x}$ de PS (fig. 76.), tanto mas se acercará el punto M' al punto M, y el punto S al punto T; de manera, que la línea PS será igual á su límite PT cuando fuese $\Delta x = 0$: pero en este supuesto, la expresión antecedente se reduce á $\frac{y}{\Delta x} \Delta x = \frac{dy}{dx}$; luego $PT = \frac{dy}{dx}$.

Comparando este método para determinar la subtangente PT, con el de los infinitamente pequeños; se verá evidentemente que la operación se reduce en ambos métodos á hallar la expresión de PS, y suponer en ella $B \Delta x + C \Delta x^2 + \&c. = 0$; en el método de los límites porque la cantidad $B \Delta x + C \Delta x^2 + \&c.$ debe efectivamente ser igual á cero para determinar el límite PT de PS; y en el de los infinitamente pequeños, porque dicha cantidad se debe considerar como nula relativamente á la cantidad finita A.

Por consiguiente: siendo misma la operación que se practica para determinar la subtangente PT en el método de los límites, y en el de los infinitamente pequeños; el resultado debe necesariamente ser el mismo, y así vemos que ambos métodos conducen á la ecuación $PT = \frac{dy}{dx}$.

248. Para determinar la diferencial de la superficie APM por el
método de los infinitamente pequeños (fig. 76.); se supone que dicha superficie se compone de una infinidad de trapecios infinitamente pequeños como $PMM'P'$; cada uno de los cuales es la diferencial de la superficie que le precede; de modo que dicho trapecio es la diferencial de la superficie APM; y despreciando luego el triángulo MnM', queda el rectángulo $PMM'P'$ por la diferencial de APM; por consiguiente, llamando s esta superficie, será $ds = PMnP' = ydx$ o $\frac{dy}{dx} = y$. Es evidente que en este caso, se desprecia la superficie MnM'; pero como al mismo tiempo se supone que la línea $Mn = dx$ es infinitamente pequeña; a causa de ser $nM' = dy = Adx + Bdx^2 + Cdx^3 + \ldots$, el rectángulo $MnM'n$ (fig. 77.) será igual a la cantidad infinitamente pequeña de segundo orden $A dx^2 + B dx^3 + \ldots$ y por consiguiente la superficie $MM'n$ será también infinitamente de segundo orden; pero en el cálculo diferencial se desprecian estas cantidades respecto de las de primer orden como ydx; luego el supuesto de ser $Mn = dx$ una cantidad infinitamente pequeña, justificará el de considerar como nula la superficie $MM'n$; y por lo mismo será exacto el resultado hallado en virtud de estos dos supuestos.

En este ejemplo, será fácil manifestar del mismo modo que en el antecedente; que la operación que en él se practica para determinar la diferencial de la superficie APM, o la expresión $\frac{dy}{dx}$, es en el fondo la misma que la del método de los límites (núm. 176.), y se reduce a suponer $= 0$ la superficie $MM'n$: cuyo supuesto se hace en dicho método para hallar el límite $\frac{dy}{dx}$ de la razón $\frac{\Delta y}{\Delta x}$; y en el de los infinitamente pequeños, porque dicha superficie es una cantidad infinitamente pequeña de segundo orden; y por lo mismo nula, relativamente a la de primer orden ydx: así vemos que ambos métodos conducen a un mismo resultado $\frac{dy}{dx} = y$.

249. Estos ejemplos manifiestan suficientemente, que los supuestos que se hacen en las aplicaciones del método de los infinitamente pequeños a las líneas curvas, son conformes a los de las operaciones analíticas que se practican para hallar las diferenciales; de cuya conformidad nace la de las operaciones en la aplicación de dicho método, con las del método de los límites, y por consiguiente la exactitud de sus resultados.

La misma identidad de operaciones se verifica en las demás aplicaciones del método de los infinitamente pequeños; y como estas aplicaciones, particularmente las de las ciencias físico-matemáticas, suelen ser mas sencillas empleando dicho método, que cualquiera otro conocido; no vemos inconveniente alguno en que se emplee con las precauciones necesarias; haciendo en las aplicaciones los supuestos correspondientes á los de las operaciones analíticas, en cuyo caso sus operaciones serán las mismas que se practicarían en el método de los límites; y por consiguiente, sus resultados serán también los mismos que se hallarían empleando dicho método o cualquiera otro.

CAPÍTULO VII.

Continuación de las aplicaciones del cálculo diferencial a la Análisis y a la Geometría.

En los capítulos IV. y V. de estas Instituciones omitimos de inteto varias aplicaciones del cálculo diferencial, porque exigían mayores conocimientos de dicho cálculo, que los que se podían adquirir en los principios que contiene el capítulo III.: ahora que hemos tratado el referido cálculo con la extensión suficiente, cumpliremos nuestra promesa (núm. 181.) de continuar sus aplicaciones; y seguirán en ellas el orden establecido en aquellos capítulos.

Continuación de las aplicaciones del cálculo diferencial a la doctrina de las series.

250. En el núm. 100. enseñamos á transformar una función cualquiera y de x en una serie de la forma $K + Bx + Cx^2 + Dx^3 + \ldots$; en el supuesto de que la función propuesta pueda adquirir esta forma: pero luego advertimos (núms. 101. y 102.) que cuando alguna de las cantidades A, A', A'', \ldots, fuese infinita en el supuesto de $x = 0$, como sucede en la función $\sqrt{(dx \pm x)}$, sería esto una señal segura de que dicha forma no conviene á la función propuesta; y ofrecemos dar un método analítico para convertir en serie una función cualquiera implícita o explicita de una variable.

251. Cuando el supuesto de $x = 0$ hace infinito alguno de los coeficientes diferenciales $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \ldots$ en la función propuesta; suele ser muy difícil hallar la forma de la serie que expresa dicha función. Esto sucede principalmente en las funciones implícitas; como, por ejemplo, si se quisiesen transformar en series las funciones de x que expresan las raíces de la ecuación $a^3 - x^2y - ax^3 = 0$; vemos pues cómo se puede resolver esta dificultad.

252. Sea la que fuere la forma que se busca de una serie en que se desenvuelve una función de x; si dicha serie se compone únicamente de términos monomios relativamente á x, se podrá expresar por $Ax^a + Bx^b + Cx^c + \ldots$, representando los exponentes $a,$
β, γ, &c. cualesquiera números: pero como cuando se desenvuelve una función en serie, la mira principal suele ser el hallar un valor aproximado de dicha función; es necesario que la serie que la expresa sea convergente, y por consiguiente que el valor de x sea ó muy pequeño, ó muy grande. En el primer caso es evidente que los exponentes a, b, γ &c. deben ir aumentando progresivamente desde el primero y menor a, de modo que todos ellos sean positivos, y que empezando por ser negativos lleguen a ser positivos en virtud del aumento progresivo; y al contrario en segundo caso, dichos exponentes deben ir disminuyendo desde el primero y mayor a, de manera que ó todos ellos sean negativos, ó que lleguen á serlo en virtud de su diminución. La serie será ascendente en el primer caso; y descendiente en el segundo.

253. Los Geómetras han imaginado varios métodos para determinar la forma de la serie convergente $Ax^a + Bx^b + Cx^γ + &c$. Newton, el primero que resolvió este problema, inventó para ello el paralelogramo analítico que el Abate de Guay simplificó reduciéndolo á un triángulo (1); Taylor dio una construcción geométrica semejante al paralelogramo analítico (2) y finalmente, Mr. de Lagrange ha inventado un método analítico muy elegante y sencillo, que se puede exponer del modo siguiente.

Sea $ax^3 - x^3γ - axγ = 0$; la ecuación cuyas raíces se quieren determinar por medio de series convergentes; y $Ax^a + Bx^b + Cx^γ + &c. = y$ una de sus raíces. Substutiéndola en la ecuación propuesta, se transformará en

$A^{a^3}x^{a^3} + 3aA^2Bx^{a^2+b} + 3aA^2C + 3aAB^2 + &c. - Ax^{a^2+b} + x^3 + Bx^{a^2+b} + \cdots = 0$.

$Bx^{a^2+b} + Cx^{a^2+b} + &c. = 0$; y como esta ecuación debe ser idéntica, es necesario disponer sus términos de modo que los que estén afectos de una misma potencia de x, se hallen en una misma columna. Supongamos primero que x sea una cantidad muy pequeña; la serie $Ax^a + Bx^b + &c.$ será ascendiente, y por consiguiente la ecuación (6) se deberá ordenar de modo que el exponente b sea una cantidad positiva. Si la ordenamos como sigue

$Ax^{a^3} + 3aA^2Bx^{a^2+b} + 3aA^2C + 3aA^2D + 3aAB^2 + 6aABC + &c. = 0$,

se obtiene

$Ax^{a^3} - Bx^{a^2+b} + Cx^{a^2+b} + &c. = 0$.

y comparando los exponentes de x en las dos primeras columnas, tendremos para determinar α y β las dos ecuaciones $3a = 3$, $3a = 3b$, que dan $α = 1$, $β = 1$; y como estos valores hacen necesariamente iguales los exponentes de x en las columnas que siguen, inferiríamos que se puede suponer efectivamente $α = 1$, $β = 1$ en dicha serie. Para determinar los coeficientes A, B, C, &c., formaríamos las ecuaciones $aA^3 = a = 0$, $3aA^2B - A - C = 0$, $3aA^2C + 3aAB^2 - B = 0$, $&c.$; de la primera inferiremos $A = 1$, y substituyendo este valor en la segunda, dará $B = \frac{1}{3a^2}$; cuyos valores sustituidos en la tercera dará $C = 0$; y del mismo modo se hallará $D = \frac{1}{2a^4}$, $E = \frac{1}{2a^4}$, &c.; y finalmente substituyendo todos estos valores en la serie $Ax^a + Bx^b + &c. = y$, inferiremos que $y = x^{a^3} + \frac{1}{8a^3} + \frac{1}{2a^3} + \frac{1}{2a^3} + &c.$ es una de las raíces de la ecuación propuesta.

1. Memorias de la Academia de las Ciencias de París.
2. Méthodes Incomparables Prop. IX.
que da $3a = a + 3$, $6a = \frac{3}{2}$; $\beta = \frac{9}{2} = 3$, $6\beta = \frac{3}{2}$; $aa^4 - 1 = 0$, $6A = \alpha^4 = \frac{1}{2}$; $3B - a = a$, $6B = \frac{a}{2}$, $C = 3a^4$; $a^4 = \frac{a}{8}$, $D = a^4$, &c.; y substituyendo estos valores, á causa del doble signo resultarán estas dos series descendentes.

$$y = \frac{a^4}{a^2} + a - \frac{3a^4}{2} + \frac{a^4}{2x^3} + \&c.$$

$$y = -\frac{a^4}{a^2} + a + \frac{3a^4}{2x^3} + \frac{a^4}{2x^3} + \&c.;$$

las cuales solo se diferencian en los signos de algunos de sus términos.

Reuniendo todos estos resultados concluiremos que la ecuación propuesta $ay^3 = -ax^3 + 2ax^3 = 0$, tiene las cuatro raíces:

$$y = x + \frac{a^4}{a^2} - \frac{3a^4}{2x^3} + \frac{a^4}{2x^3} + \&c.$$

$$y = -a - \frac{a^4}{a^2} - \frac{3a^4}{2x^3} - \frac{a^4}{2x^3} + \&c.$$

$$y = \frac{a^4}{a^2} + a + \frac{3a^4}{2x^3} + \frac{a^4}{2x^3} + \&c.;$$ de las cuales la primera es relativa al supuesto de ser x una cantidad muy pequeña; y las otras tres, al de que x sea una cantidad muy grande.

Suponiendo como antes $y = Ax^a + Bx^a + Cx^a + D + x^a + \beta + &c.$, y substituyendo este valor de y, tendríamos la ecuación:

$$A^2x^{3a} + 3A^2Bx^{3a} + \beta + 3A^2C + x^{3a} + \beta^2 + &c.$$

$$-aA^2 + a^2Bx^{a} + \beta + a^2C + x^a + x^{a} + &c.$$

parando los exponentes de x en las dos primeras columnas, tendremos $a = 0$, $\beta = 1$; y como estos valores satisfacen á la condición de ser iguales los exponentes respectivos de x en cada una de las columnas siguientes, el orden de la ecuación antecedente es exacto. Haciendo pues igual á cero la suma de los coeficientes de cada una de las potencias de x, tendríamos $A^3 - aA^3 = 0, 6A^3 = \pm a, B = \pm 1, C = \pm \frac{1}{8}, D = \pm \frac{1}{16};$ $E = \pm \frac{1}{16}$, &c.; y por consiguiente á causa del doble signo las dos series ascendientes.

$$a - \frac{1}{x} = x^3 + \frac{7x^3}{a} + \frac{5x^3}{a} + &c.$$

$$a - \frac{1}{x} = 2 + \frac{16a^4}{x^3} + \frac{13a^4}{x^3} + &c.$$

No hemos hecho uso de la raíz $A = 0$ en la ecuación $A^3 - aA^3 = 0$; porque esta raíz daría la serie $\frac{a^4}{a^2} - \frac{a^4}{a^2} - &c.$ que hallamos antes.

Estas tres series son las raíces de la ecuación propuesta en el supuesto de que x es una cantidad muy pequeña; para hallar las que corresponden al supuesto de ser x una cantidad muy grande, disponiéremos la ecuación G de este modo:

$$A^2x^{3a} + 3A^2Bx^{3a} + \beta + 3A^2C + x^{3a} + \beta + 5 + A^2 + D|$$

$$+ 3AB^2 + E + 6ABCx^{3a} + 3 + &c.$$

$$-x^3 + aA^2 + x^{a} + \beta + 1 + aBx^{a} + \beta + 1 + aCx^{a} + \beta + 1 + &c.$$

porque esta raíz daría la serie $\frac{a^4}{a^2} - \frac{a^4}{a^2} - &c.$ que hallamos antes.
Los exponentes de x en las dos primeras columnas dan $a = 1$, $b = -1$; y como en virtud de estos valores es $3a + 2b = a + b = 1 = a + b$, &c.; la disposición
ú orden antecedente puede verificarse, y tendremos $A^3 = 1 = 0$, $3A^2B + aA = 0$, &c., $6A = 1$, $B = -\frac{a}{2}$, $C = \frac{a^2}{3}$, $D = \frac{a^3}{8}$, &c., y por consiguiente
$$y = x - \frac{a}{3} + \frac{a^2}{8} + \frac{a^3}{81} + \cdots$$

La serie antecedente es la única raíz de la ecuación propuesta en el supuesto de ser x una cantidad muy grande, a causa de que la ecuación (G) no se le puede dar una disposición distinta de las antecedentes, de modo que dicha ecuación sea al mismo tiempo idéntica. Si por ejemplo quisieramos probar de disponerla de este modo
$$aAx^{a+1} + bBx^{a+b+1} + cCx^{a+2b+1} = 0;$$
que esta disposición no puede verificarse a causa de que el exponente $3a$ de x en el término A^3x^{3a} no puede igualarse con alguno en las columnas antecedentes, y por consiguiente no hay lugar alguno donde se pueda colocar dicho término; y lo mismo diremos de las demás combinaciones que se podrían probar.

Así la función y tiene solamente estos cuatro valores en la ecuación propuesta.
$$y = -\frac{x}{a} - \frac{x^2}{a^2} - \frac{x^3}{a^3} - \cdots - \frac{x^9}{a^9} - \frac{5x^{10}}{a^{10}} + \cdots$$
$$y = a - \frac{x}{2} - \frac{8x}{3} + \frac{7x^3}{12} + \frac{9x^4}{16} + \cdots$$
$$y = a - \frac{x}{2} + \frac{5x}{16a^2} - \frac{9x^3}{12a^3} + \cdots$$
$$y = -\frac{x}{3} + \frac{a^2}{8x} + \frac{a^3}{81x^2} + \cdots$$

los tres primeros, relativos al supuesto de ser x una cantidad muy pequeña; y el cuarto, al de que x es una cantidad muy grande.

Para determinar los coeficientes A, B, C, &c. suele ser necesario resolver una ecuación de un grado superior al primero, y en los ejemplos antecedentes hemos encontrado, para determinar el coeficiente A, las ecuaciones $A^3 - 1 = 0$, $aA^2 - 1 = 0$, &c.; cuya resolución no ofrece dificultad alguna por ser de dos términos. Cuando se encuentran ecuaciones más complicadas que las antecedentes de un orden superior, se procurarán resolver exactamente o por aproximación, y se debe tener particular cuidado en tomar solamente las raíces reales (como lo hicimos en la ecuación $A^3 - 1 = 0$), desechando las imaginarias, a causa de que las series que resultarían de estas raíces serían también imaginarias.

Para la función y fuese explícita, y no se pudiera convertir en serie por medio del teorema de Taylor, a causa de ser infinita alguna de las cantidades (número 101) A, A', A'', &c.; se podrá conseguir el objeto por el método antecedente (en el supuesto de que la serie se componga únicamente de términos monomios), formando una ecuación entre x y y, y haciendo desaparecer las cantidades irracionales ó fraccionarias.

Por ejemplo: si la función propuesta fuese $\sqrt{x + x^2}$; haciéndola y será $y^2 = ax + x^3$, $y^2 - ax = x^2 = 0$; y suponiendo $y = Ax^a + Bx^{a+b} + Cx^{a+2b} + \cdots$, tendremos la ecuación (G) $A^2x^{2a} + 2ABx^{2a+b} + 2ACx^{2a+2b} + 2ADx^{2a+3b} + 2BCx^{2a+4b} + \cdots$; &c. $- ax = x^2 = 0$, la cual se debe ordenar de modo que cada uno de sus términos se destruya por sí mismo. Disponiéndola de este modo
$$A^2x^{2a} + 2ABx^{2a+b} + 2ACx^{2a+2b} + 2ADx^{2a+3b} + 2BCx^{2a+4b} + \cdots$$
$$- ax = x^2 = B^3x^{2a+1b} + 2BCx^{2a+3b} + \cdots$$

y por consiguiente $\sqrt{x + x^2} = y = a\frac{x}{2} + \frac{1}{16a^2} + \cdots$

$$y = a\frac{x}{2} + \frac{1}{16a^2} + \frac{x^2}{16a^3} + \cdots$$

los mismos que en el número citado.

La serie antecedente pertenece al supuesto de ser x una cantidad muy pequeña, o a lo menos menor que a. Para hallar la que corresponde al supuesto de $x > a$, ordenaremos la ecuación (G) del modo siguiente
$$A^2x^{2a} + 2ABx^{2a+b} + 2ACx^{2a+2b} + 2ADx^{2a+3b} + \cdots$$
$$- ax = x^2 = a^2x^2 + \cdots$$

y tendremos $a = 1$, $b = 1$, $A' = a = 0$, $2AB - a = o$, $2AC + B^2 = 0$, &c. En la ecuación $A'' = 1$ desecharemos el signo negativo a causa de que los valores de A que de él resultarían serían imaginarios; y tomando como antes solamente el valor positivo de A,
tendremos \(A = 1, B = a \), \(C = -a - \frac{a^3}{6} \), \(D = \frac{a^4}{16} \), \&c.; y por consiguiente \(\sqrt{(ax + x^2)} = y = x + a - \frac{a^3}{3x} + \frac{a^4}{16x^3} + \&c. \).

Tomamos solamente el signo + en la funcion propuesta, por la misma razón que en la ecuación \(A^2 = \pm 1 \); esto es, para evitar las cantidades imaginarias: pues es evidente que lo sería la función \(\sqrt{(ax - x^2)} \), en el supuesto actual de \(x > a \).

Ejemplo 2. Sea \(\frac{a + bx}{x + cx^2} \) la función propuesta. Haciéndola igual a \(y \), será \(y = ax + bx = c \); y sustituyendo \(Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \&c. \) en lugar de \(y \) tendremos la ecuación (1) \(Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \&c. \) en lugar de \(y \) tendremos la ecuación (1) \(Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \&c. = 0 \).

Ordenándola de este modo

\[
Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \&c. = 0 \quad (1)
\]

\[
\begin{align*}
- a & = bx + cBx^{\beta} + \&c. \\
+ cA\alpha & = \gamma
\end{align*}
\]

\[
\begin{align*}
\alpha & = -\frac{3}{2}, \beta = 1, \gamma = 1, \delta = \frac{1}{2}, \rho = 0, \rho = 1, e = 1, f = 1, g = 1, h = 1, i = 1, j = 1, k = 1, \&c.,
\end{align*}
\]

Para hallar la serie descendente correspondiente al supuesto de que \(x \) sea una cantidad muy grande en la función propuesta; disponemos la ecuación (1) como sigue

\[
\begin{align*}
Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \&c. & = 0, \quad (1) \\
- a & = bx + cBx^{\beta} + \&c. \\
+ cA\alpha & = \gamma
\end{align*}
\]

\[
\begin{align*}
\alpha & = -\frac{3}{2}, \beta = 1, \gamma = 1, \delta = \frac{1}{2}, \rho = 0, \rho = 1, e = 1, f = 1, g = 1, h = 1, i = 1, j = 1, k = 1, \&c.,
\end{align*}
\]

y finalmente multiplicando esta serie por \(k^2 \), tendremos \(y = \frac{(2a)^3}{3(2a)^2} - \frac{k^3}{3} + \&c. \).

Si quisieramos aplicar á la función propuesta el método general expuesto en los números antecedentes; transformaríamos la ecuación

\[
- k^2 (a + k)^2 = y, \quad \text{y suponiendo} \quad y = Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \&c.,
\]

hallaríamos siguiendo dicho método en el caso de ser la serie ascendente \(\alpha = \frac{3}{2}, \beta = 1, \Gamma = 2a, 2AB = 1, \&c. \); y tomando solamente el signo negativo á cause de tenerle la función de \(k \), tendremos \(A = \frac{1}{3(2a)^2} \), \(B = \frac{1}{2a} \), \(C = \frac{1}{(2a)^2} \), \&c.; y por consiguiente \(y = - (2a)^3 \frac{k^3}{3(2a)^2} + \&c. \).

257. Hemos supuesto que la serie en que se transforma la función propuesta se compone únicamente de términos monomios re-
CAP. VII. CONTINUACIÓN DE LAS APLICACIONES

259. Si la función propuesta fuese implícita, y no se le pudiere aplicar el teorema de Taylor; se substituirá $g + k$ por x, y considerando y como función de k, se podrá resolver en una serie ascendiente respecto de k por el referido método general.

Sea por ejemplo la función propuesta de x dada por la ecuación $y^4 - 2x^2y^2 + a^2x = 0$; diferenciaándola tendremos $\frac{dy}{dx} = \frac{4y^3 - x}{4y^2 - 2x}$; y como en el supuesto de $x = a$, es $y = \pm a$, el coeficiente diferencial $\frac{dy}{dx}$ será infinito en dicho supuesto, y por consiguiente el teorema de Taylor no puede desarrollar la función propuesta en una serie ascendiente respecto de k cuando $x = a$. Substituyéremos pues $a + k$ por x en la ecuación propuesta, y se transformará en $y^4 - 2(a^2 + 2ak + k^2)y^2 + a^4 + a^2k = 0$ y como cuando $k = 0$, y es $= \pm a$; supondremos $y = a + Ak^2 + Bk^3 + Ck^4 + \&c.$, (prescindiendo por ahora del doble signo \pm que podremos reponer después); y sustituyendo tendremos

\[\begin{align*}
da^4 + 4a^3Ak + 4a^3Bk^2 + 4a^3Ck^3 + 8\&c. + 6a^2A^2k^2 + 6a^2B^2k^3 + 8\&c. & - 2a^4 - 4a^4Bk^2 - 4a^4Ck^3 + 8\&c. - 2a^2A^2k^2 - 4a^2ABk^3 + 8\&c., \\
&+ \alpha^2 \\
&\quad + 4a^2Ak^2 + 8\&c. + 8\&c. \\
&\quad + 4a^2Ck^3 + 8\&c. \\
&\quad + 3a^4 - 8a^4Ak^2 + 8\&c. - 2a^2k^3 - 8\&c. - 8\&c.
\end{align*}\]

y haciendo las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yando las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yendo las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yando las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yando las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yando las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yando las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]

yando las reducciones correspondientes

\[\begin{align*}
4a^2A^2k^2 + 6a^2B^2k^2 + 8\&c. + 4a^2C^2 + 8\&c. - 4a^2ABk^2 - 2a^2k^3 - 8\&c. - 8\&c. &= 0, \\
2a^2Ak^2 + 8\&c. + 8\&c.
\end{align*}\]
lolará \(\frac{dy}{dx} = 1 + x \frac{dy}{dx} \cdot \frac{dy}{dz} \); de donde resultará eliminando \(\frac{dy}{dx} \), y reduciendo, \(\frac{dy}{dx} = Y \frac{dy}{dz} \); pero cuando \(x = 0 \), es \(y = z \), y \(\frac{dy}{dz} = 1 \); luego \(A = Z \).

Si diferenciamos la ecuación \(\frac{dy}{dx} = Y \frac{dy}{dz} \) relativamente a \(x \), tendremos \(\frac{d^2y}{dx^2} = Y \frac{dy}{dz} \cdot \frac{d^2y}{dz^2} + Y^2 \frac{dy}{dz} \frac{d^2y}{dz^2} \); y sustituyendo por \(\frac{dy}{dx} \) su igual \(Y \frac{dy}{dz} \), y por \(\frac{dy}{dz} \), su valor \(Y^2 \frac{dy}{dz} \), se halla diferenciando la misma ecuación relativamente a \(z \), \(\frac{d^2y}{dz^2} = 2Y \frac{dy}{dz} \left(\frac{d^2y}{dz^2} \right)^2 \); cuyo segundo miembro en el supuesto de \(x = 0 \) se transforma en \(2Z \frac{dz}{dx} \), y por consiguiente será \(A'' = \frac{d}{dx} \).

Del mismo modo hallaremos \(A''' \), \(A'''' \), &c.;

Sea por ejemplo \(Y = \text{sen} \ y \). La ecuación propuesta; será \(y = z \cdot \text{sen} \ y \), y tendremos \(Z = \text{sen} \ z \), \(Z^2 = \text{sen} \ z^2 \), \(\frac{d}{dx} \).

\[Z^3 = \text{sen} \ z^3 = \frac{1 - \text{cos} \ z}{2}, \quad \text{sen} \ z^2 = \text{sen} \ z \frac{d}{dx}: \]

\[\frac{d}{dx} \text{sen} \ z = \frac{d}{dz} \text{sen} \ z \frac{d}{dx}. \]

Si se supone que \(z \) representa la anomalía media de un Planetas; \(y \), la anomalía excéntrica; y \(x \), la excentricidad de su órbita; la ecuación propuesta \(z = y + x \text{sen} \ y \) expresará la relación entre ambas anomalías; por consiguiente, conociendo la anomalía media, y la excentricidad, se hallará fácilmente la anomalía excéntrica por medio de la serie antecedente.

262. Supongamos ahora que siendo siempre \(y = z + xY \) la ecuación propuesta, se nos pida el valor de una función cualquiera de \(y \), que llamaremos \(u \), por medio de una serie que proceda según las potencias sucesivas de \(x \).

Haciendo \(x = 0 \), tendremos desde luego \(y = z \); por consiguiente; si representamos por \(c \) la misma función de \(z \) que \(u \) lo es de \(y \), será en este supuesto \(u = c = A \).

Como \(u \) es función de \(y \), será (núm. 60) \(\frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} \). Pero cuando \(x = 0 \), es \(y = z \), y (núm. 260) \(\frac{dy}{dz} = Z \); tendremos pues en este supuesto \(\frac{du}{dx} = Z \frac{dc}{dz} = A' \).

También será \(\frac{d^2u}{dx^2} = \frac{d^2u}{dy^2} \left(\frac{dy}{dx} \right)^2 + \frac{du}{dy} \frac{d^2y}{dx^2} \); y como en el supuesto de \(x = 0 \) es \(\frac{d^2y}{dz^2} = \frac{d^2z}{dz^2} = A' \), tendremos substituyendo este valor y los demás correspondientes al mismo supuesto \(\frac{du}{dx} = Z \frac{dc}{dx} \), tendremos

\[\frac{d^2u}{dx^2} = \frac{d^2u}{dy^2} \left(\frac{dy}{dx} \right)^2 + \frac{du}{dy} \frac{d^2y}{dx^2} \]

Continuando en diferenciar, tendremos \(\frac{d^3u}{dx^3} = \frac{d^3u}{dy^3} \left(\frac{dy}{dx} \right)^3 + \frac{d^2u}{dy^2} \frac{d^2y}{dx^2} \left(\frac{dy}{dx} \right)^2 \); pero en el supuesto de \(x = 0 \), es \(\frac{dy}{dx} = \frac{d^2y}{dz^2} \), \(\frac{d^2y}{dx^2} = \frac{d^2z}{dz^2} \); haciendo estas sustituciones y las demás relativas al mismo supuesto resultará

\[\frac{d^3u}{dx^3} = Z \frac{d^3c}{dx^3} + 3Z \frac{d^2c}{dx^2} \]

\[\frac{d^3u}{dx^3} = \frac{d^3c}{dz^3} + \frac{d^2c}{dz^2} + \frac{dc}{dz} + \frac{dc}{dz} \]

Del mismo modo hallamos \(A'''' \), \(A''''' \), &c.; y substituyendo estes valores de \(A, A', \) &c. en la fórmula general (número 260.) se transformará en \(u = c + xZ \frac{dc}{dz} + x^2 \frac{d^2c}{dz^2} + \frac{x^3}{3} \frac{d^3c}{dz^3} \)

\[+ \frac{x^3}{3} \frac{d^3c}{dz^3} \]

263. También podríamos hallar la serie antecedente por el método de los coeficientes indeterminados, del modo siguiente.

La diferencial de la función \(u \) relativamente a \(x \), \(\frac{dy}{dx} \), es \(\frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} \), y relativamente a \(z \), \(\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} \); de donde se infiere eliminando \(\frac{du}{dy} \) en la ecuación \(\frac{dy}{dz} = Y \frac{dy}{dz} \) que hallamos antes; y por \(y \) su igual \(\frac{y - z}{x} \), resultará la ecuación \(\frac{d}{dx} \), \(\frac{dy}{dx} \) = \(\frac{dy}{dz} \) \(\frac{ dz}{dx} \).

Sentado esto supondremos la función \(u = A + Bx + Cx^2 + Dx^3 \) &c.; representando \(A, B, C, \) &c. funciones indeterminadas de \(z \); como ya que cuando \(x = 0 \), es \(y = z \), y por consiguiente \(u = c \), supondremos \(u = c + Bx + Cx^2 + Dx^3 + \) &c. (teniendo presente que \(c \) es la misma función de \(z \), que \(u \) lo es de \(y \)) y tendremos
Esta serie sirve para determinar la anomalía verdadera por medio de la anomalía media.

Ejemplo 2. Sea \(y = z + xy^m \) la ecuación propuesta; y supongamos que se quiere determinar el valor de \(y' \).

En este caso tendremos \(Y = y' \), \(u = y' \) y por consiguiente \(Z = z \), \(\frac{dZ}{dz} = \frac{dz}{dz} = n z^{m-1} \), \(Z' \frac{dZ}{dz} = n z^{m-1} \) y sucesivamente.

Descomponiendo a continuación, y efectuando las diferenciaciones indicadas tendremos

\[
\begin{align*}
\frac{d}{dz} \left(z^n + x^n z^{m-n-1} \right) &= \frac{x}{2} n \left(z^m + n - 1 \right) z^{m-n-2} + \frac{1}{2} n \left(z^m + n - 1 \right) z^{m-n-3} + &\c.c. \\
&+ \frac{1}{2} n \left(z^m + n - 1 \right) z^{m-n-4} + &\c.c. \\
&\frac{d}{dz} \left(z^n + x^n z^{m-n-1} \right) &= \frac{x}{2} n \left(z^m + n - 1 \right) z^{m-n-2} + \frac{1}{2} n \left(z^m + n - 1 \right) z^{m-n-3} + &\c.c. \\
&+ \frac{1}{2} n \left(z^m + n - 1 \right) z^{m-n-4} + &\c.c.
\end{align*}
\]

264. Las fórmulas generales \(y = z + xZ + \frac{x^3 z}{2} \frac{dZ}{dz} + \frac{x^3 z}{2.3} \frac{d^2Z}{dz^2} + &\c.c. \)

De donde se infiere \(B = z \frac{dZ}{dz} \), \(C = \frac{1}{2} \left(\frac{dB}{dz} + \frac{1}{2} \frac{dZ}{dz} \right) \), \(D = \frac{1}{3} \left(\frac{dC}{dz} + \frac{1}{2} \frac{dZ}{dz} \right) \), &c.; y substituyendo sucesivamente por \(\frac{dB}{dz} \), \(\frac{dC}{dz} \), &c. sus valores tendremos finalmente

\[
\frac{d}{dz} \left(z^n + x^n z^{m-n-1} \right) = \frac{x}{2} n \left(z^m + n - 1 \right) z^{m-n-2} + \frac{1}{2} n \left(z^m + n - 1 \right) z^{m-n-3} + &\c.c.
\]

265. Supongamos que \(y \) represente el seno de un arco \(x \); será

\[
\text{(núm. 100.) } y = x - \frac{x^3}{3} + \frac{x^5}{5} + &\c.c.
\]

y por consiguiente si se considera como conocido el valor del arco \(x \), se conocerá inmediatamente el de su seno \(y \) por medio de la serie que forma el segundo miembro de la ecuación antecedente. Esto entendido, el método inverso de las series consiste en invertir la naturaleza de las cantidades; esto es en considerar el seno \(y \) como conocido, y determinar el valor del arco \(x \) por medio del de \(y \) en dicha ecuación. Lo que se logrará eliminando sucesivamente las potencias \(x^3 \), \(x^5 \), &c. de \(x \) del miembro siguiente.

Si elevamos la ecuación propuesta a la tercera potencia tendremos

\[
y^3 = x^3 - \frac{x^9}{2} + \frac{1}{2} x^9 + &\c.c., \text{ ó dividiendo por } 6, \frac{x^3}{6} = x^3 - \frac{x^9}{12}
\]

(1) *Commentarii Epistolicum.*
coeficientes indeterminados suponiendo \(x = Az + Bx^2 + Cx^3 + Dx^4 + \&c. \) Para ello se elevará esta ecuación a la segunda, tercera, cuarta, \&c. potencia; y sustituyendo los valores respectivos de \(x^2, x^3, x^4, \&c. \) en la ecuación \(z = ax + bx^2 + cx^3 + dx^4 + \&c. \), se transformará en una ecuación idéntica, la cual dará los valores de los coeficientes \(A, B, C, D, \&c. \).

Pero este método tiene el gran inconveniente de exigir de antemano el conocimiento de la forma de la serie que se busca. En el ejemplo antecedente se puede suponer \(x = Az + Bx^2 + Cx^3 + \&c. \); pero hay una infinidad de casos en que no se puede hacer este supuesto: si por ejemplo la ecuación propuesta fuese \(y = ax^2 + bx^3 + cx^4 + \&c. \) no se podría suponer \(x = Ay + By^2 + Cy^3 + \&c. \), a causa de que seguramente, asimismo, la serie que expresa el valor de \(x \) no tiene la forma antecedente, sino esta \(Ay + By^2 + Cy^3 + \&c. \). Por esta razón, y por la de ser muy conocido este método, no nos detendremos en explicarlo.

269. Para manifestar el uso de las fórmulas generales (núm. 264.) en los problemas relativos al método inverso de las series, supondremos como antes, que siendo \(z = ax + bx^2 + cx^3 + dx^4 + \&c. \), se quiera determinar el valor de \(z \) en \(x \).

Para comparar esta ecuación con \(y = z + nxY \), la darémos ahora esta forma \(y = \frac{1}{a} \left(bx^2 + cx^3 + dx^4 + \&c. \right) \), y será \(y = x, z = \frac{z}{a}, Y = bx^2 + cx^3 + dx^4 + \&c., Z = bx^2 + cz^3 + dx^4 + \&c., \frac{Z}{a} = b\frac{z^2}{a} + c\frac{z^3}{a} + d\frac{z^4}{a} + \&c., \frac{Z}{a^2} = b^2\frac{z^2}{a} + c^2\frac{z^3}{a} + d^2\frac{z^4}{a} + \&c., \frac{Z}{a^3} = b^3\frac{z^2}{a} + c^3\frac{z^3}{a} + d^3\frac{z^4}{a} + \&c., \&c. \); y sustituyendo estos valores en la fórmula general \(y = z + nxZ + \&c. \), escribiendo \(\frac{z}{a} \) en lugar de \(z \), se transformará en \(x = \frac{a}{b} \left(bx^2 + \frac{c}{a} \left(bx^2 + \frac{d}{a} \right) \right) + \frac{z}{a} \left(\frac{b^2}{a^2} z^2 + \frac{c^2}{a^2} z^4 + \&c. \right) - \frac{1}{a} \left(\frac{b^3}{a^3} z^3 + \frac{c^3}{a^3} z^4 + \&c. \right) - \frac{z}{a} \left(\frac{b^4}{a^4} z^4 + \&c. \right); \) y \(\frac{z}{a} \) será evidentemente que hallamos antes.

Exemplo 2? Sea \(y = ax^2 + bx^3 + cx^4 + \&c. \) la ecuación propuesta, y supongamos que se pida el valor de \(x \).

Para comparar a la ecuación \(y = z + nxY \), haremos \(x^2 = \sigma \), y se transformará en \(y = a\sigma + b\frac{z^2}{a} + c\frac{z^3}{a} + d\frac{z^4}{a} + \&c. \),

n = \text{sen. } 2n \zeta, 2 \cos \cdot m \zeta \text{ sen. } n \zeta = \text{sen. } (m+n) \zeta - \text{sen. } (m-n) \zeta, 2 \text{ sen. } m \zeta \cos \cdot n \zeta = \text{sen. } (m+n) \zeta + \text{sen. } (m-n) \zeta, \text{ luego } \frac{d}{dz} Z = \frac{n}{2} = \frac{m^2}{2} \text{ sen. } 2m \zeta + (m+n) \zeta - (m-n) \zeta \text{ ab sen. } (m+n) \zeta + (m+n) \zeta - (m-n) \zeta + nb \zeta \text{ sen. } 2n \zeta + \& \& ; y por consiguiente

\gamma = z + \lambda \left(a \text{ sen. } n \zeta + b \text{ sen. } n \zeta + \& \& \right) + \frac{k}{2} \left(ma^2 \text{ sen. } 2m \zeta + (m+n) \zeta - (m-n) \zeta + nb \zeta \right) \text{ sen. } 2n \zeta + \& \& ; y substituyendo estos valores en la fórmula general \eta = \xi + xZ \text{ y } y \text{ en lugar de } z, \text{ tendremos } y = \frac{1}{2a} \left(b \frac{dy}{dz} + c \frac{y}{a} + \frac{y}{a} \right) + \& \& .

272 \text{ Para desenvolver en series las funciones de dos cantidades variables, hacemos con la fórmula general } f(x+y) = y + k \frac{dy}{dx} = x + x^2 \frac{dy}{dx} + \& \& + \& \& (n \text{ num. 100.}) \text{ para desarrollar las funciones de una sola variable.}

En efecto; si suponemos que haciendo } x = o \text{ y } y = o \text{ en dicha fórmula general, las funciones } z, \frac{dz}{dx}, \frac{dz}{dy}, \frac{dz}{dx^2}, \frac{dz}{dx}, \frac{dz}{dy}, \& \& \text{ se transforman respectivamente en las cantidades finitas cero } A, B, C, D, E, F, \& \& ; \text{ sería } f(k, h) = A + kB + hC + k^2 D + khE + \frac{k^2}{2} F + \& \& ; y como las cantidades } k, h \text{ son indeterminadas, haciendo } k = x, y h = y, \text{ tendremos } z = f(x, y) = A + xB + yC + x^2 D + xyE + \frac{y^2}{2} F + \& \& .

Sea por ejemplo } z = (a + x + y)^n \text{: sería } \frac{dz}{dx} = n(a + x + y)^{n-1} = \frac{d^2 z}{dy^2} = n(n-1)(a + x + y)^{n-2} = \frac{d^2 z}{dy^2} = \frac{d^2 z}{dx^2} = \& \& ; y haciendo } x = o \text{ y } y = o \text{, tendremos } A = a, B = na^{n-1} = C, D = n(n-1)a^{n-2} = E = F, \& \& ; y por consiguiente } z = \frac{(a + x + y)^n}{2} + na^{n-1} x + na^{n-1} y + n(n-1)a^{n-2} x^2 + n(n-1)a^{n-1} y^2 + \& \& .

273 \text{ Si alguna de las cantidades } A, B, C, \& \& \text{ fuese infinita; se deduciría que la función propuesta no se podría desarrollar en una serie de la forma } A + Bx + Cy + \& \& ; y lo mismo diríamos del caso en que todas las cantidades } A, B, C, \& \& \text{ fuesen nulas.}

273. \text{ También puede suceder que } z \text{ sea una función implícita de las variables } x \text{ y } y \text{ da para una } \& \& \text{ otras.}

Estos diferentes casos exigen consideraciones particulares que los límites en que los hemos propuesto circunscribir esta obra no nos
permiten hacer. Además, sucede por lo común, que las funciones de dos ó más cantidades variables, se desenvuelven solamente respecto a una de las variables que contienen, suponiendo constantes todas las demás; por consiguiente, en este supuesto se deben considerar como funciones de una sola variable, y se podrán desenvolver en series por los métodos declarados (núm. 100. y sig.) relativamente a estas funciones.

De los máximos y mínimos de las funciones de dos cantidades variables.

274. Los máximos y mínimos valores de una función de dos cantidades variables, se pueden determinar por dos métodos distintos: 1° Considerando sucesivamente una de las cantidades como variable y la otra como constante. 2° Haciendo variar a uno mismo tiempo ambas cantidades y empleando la fórmula general (a) núm. 187. Nosotros expondremos únicamente el segundo método, por ser más natural, elegante y fácil que el primero.

Sea z una función de dos cantidades variables x y y, la cual es un máximo o un mínimo cuando $x = a$, $y = b$. Si sustituimos $x + k$ en lugar de x, $y + h$ en lugar de y; se transformará en $z + k \frac{dz}{dx} + h \frac{dz}{dy} + \frac{k^2}{2} \frac{dz}{dx^2} + \frac{kh}{2} \frac{dz}{dx dy} + \frac{h^2}{2} \frac{dz}{dy^2} + \&c.$. Sendo esto: supongamos que los valores a, b de x y y relativos al máximo o al mínimo transformen las funciones $z, \frac{dz}{dx}, \frac{dz}{dy}, \frac{dz}{dx dy}, \&c.$ respectivamente en $A, B, C, D, E, F, \&c.$; es evidente que por la naturaleza del máximo y del mínimo (núm. 103.), la cantidad A, será mayor que $A + kB + hC + \frac{1}{2} (k^2 D + 2khE + h^2 F) + \&c.$ en el máximo, y menor en el mínimo; y por consiguiente $kB + hC + \frac{1}{2} (k^2 D + 2khE + h^2 F) + \&c.$ será una cantidad negativa en el máximo, y positiva en el mínimo; ya sean positivas ó negativas las cantidades de las variables k, h, y tan pequeñas como se quisiere. De donde inferiremos por un razonamiento análogo al del núm. 109., que esta condición no puede verificarse a menos de ser $B = 0$, $C = 0$; así cuando la función z es un máximo o un mínimo, será necesariamente $\frac{dz}{dx} = 0$, $\frac{dz}{dy} = 0$; y por consiguiente estas ecuaciones darán los valores respectivos a, b, de x y y correspondientes al máximo o al mínimo.

En este caso la expresión $Bk + Ch + \frac{1}{2} (Dk^2 + Ekh + Fh^2) + \&c.$; y para que el valor A de z correspondiente a $x = a$ y $y = b$, sea un máximo ó un mínimo, será necesario que la cantidad $Dk^2 + 2Ekh + Fh^2$ sea siempre negativa en el máximo, y positiva en el mínimo, independientemente de los signos y valores que se pueden dar a k, y h.

Pero si transformamos dicha cantidad en $D \left(k + \frac{Eh}{D} \right)^2 + h^2 \left(F - \frac{E^2}{D} \right)$; (que para abreviar lo llamaremos γ), echarémos de ver; que como las cantidades $(k + \frac{Eh}{D})^2$, h^2, son siempre positivas, γ no podrá ser igualmente a menos de ser $D > 0$, $F - \frac{E^2}{D} > 0$; lo que es lo mismo $D > 0$, $DF - E^2 > 0$.

Por la misma razón, la cantidad γ no podrá ser siempre negativa, sin que lo sean también D, y $F - \frac{E^2}{D}$, de donde resultan las condiciones $D < 0$, $DF - E^2 > 0$. Por consiguiente

1° Para que la cantidad A sea un máximo ó un mínimo; es necesario que se verifique la condición $DF - E^2 > 0$, en cuyo caso A será un máximo ó un mínimo según fuere $D < 0$ ó > 0.

2° En el máximo y en el mínimo, las cantidades D, F tienen siempre un mismo signo; esto es negativo en el máximo, y positivo en el mínimo.

3° Si una de las cantidades $D, F, \&c.$ todas dos fuesen $= 0$, sin que lo fuese al mismo tiempo E; A no sería ni un máximo ni un mínimo.

El célebre Leonardo Euler en su cálculo diferencial (1) dice que si las cantidades D, F son ambas positivas ó negativas, habrá seguramente un máximo ó un mínimo: un máximo en el primer caso; y un máximo en el segundo. Pero Mr. de Lagrange hizo ver en las Memorias de Turín (2) que esta condición no bastaba para asegurar la existencia del máximo ó del mínimo; y que en ambos casos era necesario además que (según acabamos de demostrar) se verificase la condición $DF - E^2 > 0$.

275. Si los valores a, b de x y y, dados por las ecuaciones $\frac{dz}{dx} = 0$, $\frac{dz}{dy} = 0$, reduzcanse á cero los coeficientes diferenciales de segundo orden $\frac{d^2 z}{dx^2}$, $\frac{d^2 z}{dy^2}$, $\frac{d^2 z}{dx dy}$, sin que desapareciesen al mismo tiempo los de tercer orden; la cantidad A no sería un máximo ni un mínimo. Pero si los coeficientes diferenciales de tercer orden desapareciesen al mismo tiempo que los del segundo; la cantidad A, sería un

(1) Parte segunda cap. IX.
(2) Tomo I. pág. 16.

DEL CÁLCULO DIFERENCIAL.
máximo ó un mínimo con tal que la suma de los términos de quarto órden en la cantidad \(y \), sea siempre positiva ó negativa, independientemente de los signos de \(k y h \); y sean estas cantidades tan pequeñas como se quisiere. Si representamos por \(L, M, N, O, P \), los valores respectivos de \(\frac{dz}{dx}, \frac{dz}{dy}, \frac{dz}{dy}, \frac{dz}{dy} \); la suma de los términos de quarto órden suprimiendo el denominador comun, será
\[L k^2 + 4 M b k^2 + 6 N k^2 b^2 + 4 M h b + P h^4 \]
transformándose en
\[\left(k^2 + \frac{2 M b}{L} \right) + \left(b^2 + \frac{2 N k b}{L} \right) + 2 k^2 b^2 \left(\frac{3 N}{L} - \frac{2 M}{L} \right). \]
inferiríamos que dicha suma será siempre una cantidad positiva, si lo son las cantidades \(L, P, 3N - \frac{2 L M}{L} - \frac{2 M}{L} \); y una cantidad negativa, siempre que lo sean estas cantidades. Por consiguiente multiplicando por \(L \) la tercera, concluiremos

Que para que en el supuesto actual, \(A \) sea un máximo ó un mínimo, debe necesariamente verificarse en ambos casos la condición
\[3LN - 2M^2 - \frac{2O}{L} \geq 0 \]
y además debe ser en el máximo \(L < 0 \), \(P < 0 \); y en el mínimo \(L > 0 \), \(P > 0 \).

Por donde se ve que á las condiciones \(L < 0 \), \(P < 0 \), dadas por Mr. Euler para el máximo; y \(L > 0 \), \(P > 0 \), para el mínimo; se debe añadir en ambos casos la condición
\[3LN - 2M^2 - \frac{2O}{L} > 0. \]

276. Por los mismos principios se hallarán las condiciones relativas á los máximos y mínimos de las funciones que contienen tres ó mas variables. Pero á fin de no extendernos demasiado omitiremos la consideración de estas funciones; y terminaremos este asunto aplicando dichos principios á la resolución de los dos problemas siguientes.

Problema 1°. Dividir la cantidad dada a en tres partes tales que su producto sea el mayor posible ó un máximo.

Si llamamos \(x \) una de dichas partes, \(y \) otra; la tercera será \(a - x - y \); y su producto \(xy \) \((a - x - y) \); por consiguiente serán
\[z = xy (a - x - y), \frac{dz}{dx} = y (a - 2x - y), \frac{dz}{dy} = x (a - 2y - x), \frac{dz}{dy} = 2x, \]

 haciendo \(\frac{dz}{dx} = y (a - 2x - y) = 0 \), \(\frac{dz}{dy} = x (a - 2y - x) = 0 \), los factores \(a - 2x - y \), \(a - 2y - x \), dan \(x = \frac{a}{3}, y = \frac{a}{3} \); de donde inferiremos \(D = - \frac{2a}{3}, E = - \frac{a}{3}, F = - \frac{2a}{3} \).

Esferviente de que estos valores cumplen con la condición \(DF - E^2 > 0 \); y como por otra parte es \(D < 0 \), concluiremos que el pro-

ducto \(xy \) \((a - x - y) \) es un máximo cuando \(x = y = \frac{a}{3} \); esto es cuando las tres partes en que se divide la cantidad dada a son iguales; y que el producto máximo \(A \) es \(= \frac{a^3}{27} \).

Problema 2°. Hallar las máximas y mínimas ordenadas de una esfera, suponiendo en el centro el origen de las coordenadas.

Si llamamos \(r \) el radio de la esfera, su ecuación será en este supuesto \(z^2 = r^2 - x^2 - y^2 \); de donde se infiere \(z \frac{dx}{dz} = -x, z \frac{dy}{dz} = -y, z \frac{dz}{dx} + \left(\frac{dx}{dz} \right)^2 \frac{dz}{dy} = 0 \), \(z \frac{dz}{dx} + \frac{dz}{dy} + \frac{dz}{dy} = 0 \), \(z \frac{dz}{dy} = -1 \).

Las ecuaciones \(\frac{dz}{dx} = -x, \frac{dz}{dy} = -y \), dan \(x = \alpha, y = \alpha \), y sustituyendo estos valores en las demás ecuaciones tendríamos \(z = \pm r = A, D = \frac{1}{r}, E = \alpha, F = \frac{1}{r} \); cuyos valores cumplen con la condición \(DF - E^2 > 0 \). Por consiguiente á causa del doble signo de \(D \), concluiremos que la ordenada \(z \) es un máximo y un mínimo en el origen o centro: un máximo \(= r \), y un mínimo \(= -r \).

De las funciones de dos cantidades variables, que en ciertos casos particulares se reducen á las expresiones indeterminadas \(-\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty \times 0, \infty - \infty\).

277. Cuando una función fraccionaria contiene dos cantidades variables; puede reducirse á la forma indeterminada \(\frac{0}{0} \) de dos modos:

1° Suponiendo un valor determinado á una sola de las variables; 2° Dando á ambas variables ciertos valores conocidos. En el primer caso se podrá determinar el valor de la función propuesta relativamente á la variable que se supone igual á una cantidad dada, por los métodos declarados (núm. 119. y sig.) relativamente á las funciones de una sola variable; y entonces el valor de dicha función dependerá únicamente del que se dé á la otra variable. Tal es por ejemplo la función \(\frac{a^2 - x^2}{y (a - x)} \), la cual se reduce á \(0 \) en el supuesto de \(x = a \). Pero como en este caso (núm. 126.) es \(\frac{a^2 - x^2}{a - x} \), será tam-
dependiente de k, h, expresará el valor de la función propuesta en el supuesto de $x = a$, $y = b$. Pero como la cantidad β es indeterminada; será también indeterminado el valor de la función propues-
ta en dicho supuesto. Finalmente; si observamos que el mayor valor de que es susceptible la expresión $\frac{c}{1 - \beta} = \frac{c}{\beta}$, corresponde a $\beta = 1$; y el menor es $\frac{c}{2}$ el cual corresponde a $\beta = -1$; conclu-
remos que en el referido supuesto la función $\frac{c(a - x)(b - y)}{(a - x)^2 + (b - y)^2}$ tie-
ne una infinidad de valores comprendidos entre los límites $\frac{c}{2}$, y $-\frac{c}{2}$.

Exemplo 2: La función propuesta es $\frac{c(b - y)}{a - x}$; y se pide su va-
lor cuando $x = a$, $y = b$, en cuyo caso se reduce $\frac{c}{a}$.

Substituyendo $a + k$ por x, y $b + h$ por y, se transformará en $\frac{ckh}{2ak + k^2}$; y haciendo $h = \beta k$, en $\frac{ci\beta}{2a + k}$. Haciendo $k = 0$ en esta expresión se reduce $\frac{ci\beta}{2a}$, que α causa de la cantidad arbitraria β, es susceptible de todos los valores imaginables; y por consiguiente lo será también la función propuesta en el supuesto de $x = a$, $y = b$.

Exemplo 3: Sirva de último ejemplo la función $\frac{(a - x)^n - (a - x) y + (x - y)^n}{(a - x)(a - y)(x - y)} = z$ cuyo valor se quiere deter-
minar en el supuesto de $x = a$, $y = a$.

Substituyendo $a + k$ en lugar de x, y $a + h$ en lugar de y; z se transforma en $\frac{c(a + h) + y + h a + k h)}{k a (k - a)}$; y desarrollando los binomios del numerador; haciendo las reducciones correspon-
dientes, y dividiendo por $kh (k - h)$, se reducirá a $z = \frac{n - 1}{2}a^{n - 2} + \frac{n - 3}{2}a^{n - 3} (k + h) + \&c.$; y finalmente, haciendo k y h nulas tendremos $z = \frac{3}{2} a^{n - 2}$: por donde se manifiesta, que el valor de la función propuesta cuando $x = a = y$, es $a^{n - 2}$.

Uso del cálculo diferencial para hallar por aproximación las raíces de las ecuaciones.

279. El teorema de Taylor que nos ha sido tan útil en todas las
aplicaciones del cálculo diferencial; nos servirá igualmente para deter-
minar por aproximación las raíces de las ecuaciones.

Sea \(f(x) = 0 \) una ecuación cualquiera de la incógnita \(x \) y

cantidades conocidas; y \(a \) una cantidad que se acerca al verdadero va-
lor de \(x \); de manera que la diferencia entre \(a \) y \(x \) sea una cantidad

muy pequeña \(k \); será \(f(a + k) = 0 \).

Sintetizado esto si suponemos que los valores respectivos de \(f(x) \),

\[\frac{df}{dx} \]

\[\frac{d^2f}{dx^2} \]

\[\ldots \]

\[\&c. \]

siendo \(x = a \), seán \(A, B, C, \&c. \), y se

substituye \(a + k \) en lugar de \(x \); \(f(x) \) se transformará (núm. 97.)

en \(f(a + k) = A + kB + \frac{k^2}{2} C + \&c. \); y como por el supuesto,

es \(f(a + k) = 0 \) será también \(A + kB + \frac{k^2}{2} C + \&c. = 0 \); o des-

preciando los términos \(\frac{k^2}{2} C + \&c. \) á causa de ser \(k \) una cantidad

muy pequeña, tendremos con corta diferencia \(A + kB = 0 \), \(k = -\frac{A}{B} \)

y \(x = a - \frac{A}{B} \).

Para continuar la aproximación, supondremos \(a - \frac{A}{B} = a' - x =

d + k' \); y representando por \(A', B', \) las cantidades análogas á

\(A, B \); esto es los valores respectivos de \(f(x) \),

\[\frac{df}{dx} \]

\[\frac{d^2f}{dx^2} \]

\[\ldots \]

\[\&c. \]

en el supuesto de \(x = a' \); tendremos del mismo modo que antes \(A' + k'B' =

= 0 \), \(k' = -\frac{A'}{B'} \), y \(x = a' - \frac{A'}{B'} \), en la forma \(a - \frac{A}{B} \)

y continuando del mismo modo, se hallará un valor de \(x \) tan aproximado

al verdadero como se quisiere.

28o. Las cantidades \(A', B' \), se suelen hallar mas fácilmente de

este otro modo. Llamarémos \(K \) la función \(A + kB + \frac{k^2}{2} C + \&c. \)

y hagamos \(a - \frac{A}{B} = b \), \(k = b + k' \). Es evidente que si se substituye

en \(K \), \(b + k' \) en lugar de \(k \), resultará la misma cantidad \(f(a + b + k') \)

que resultaría substituyendo en \(f(x) \), \(d' + k' = a + b + k' \) en lu-

gar de \(x \); pero en este supuesto \(f(x) \) se transforma en \(A' + B'k' +

\(\&c. \), y \(K \) en \(K + \frac{dK}{dk} k' + \frac{d^2K}{dk^2} \frac{k'^2}{2} + \&c. \) suponiendo que en

estas cantidades se haya substituido \(b \) en lugar de \(k \); por consiguien-
té á causa de que los dos primeros términos de \(K \) se desvanezcan por

el supuesto de \(k = b \); tendremos \(A' = \frac{b'^2}{2} C + \frac{b'^2}{2} D + \&c. \) y \(B'

\(= B + bC + \&c. \).

Ejemplo 19. Sea \(x^3 - 2x - 5 = 0 \) la ecuación propuesta; haciendo

do el primer miembro \(= f(x) \), será \(\frac{df}{dx} = 3x^2 - 2 \); y co-

mo el valor 2 satisface con corta diferencia á dicha ecuación; haré-

mos \(a = 2 \), y tendremos \(A = -1 \), \(B = 10 \); por consiguiente \(k

\(= \frac{-1}{10} = -0,1 \); y \(x = 2, 1 \) con corta diferencia.

Para hallar un valor de \(x \) más próximo al verdadero, haremos

\(a' = 2, 1 \); y sustituyendo hallaremos \(A' = 9, 261 - 4,2 - 5\)

\(= 0, 061 \); \(B' = 13, 23 - 2 = 11, 23 \); \(k' = -\frac{0,05}{0,1} \)

y \(x = 2, 0,946 \).

Si se quisiese continuar aún más la aproximación, se haría \(a'' =

2, 0,946 \), y se operaría como antes.

Para hallar las cantidades \(A', B' \) por el otro método, continua-

remos en diferenciar la ecuación propuesta, y hallarémos \(C = 12 \), \(D = 6 \), \(E = 4 = F = 0 \), \&c. y, haciendo \(b = 0, 01 \), tendremos

\(A' = \frac{b'^2}{2} C + \frac{b'^2}{2} D = 0, 06 + 0, 001 = 0, 061 \); \(B' = 10 +

1, 2 + 0, 02 = 11, 23 \), cuyos valores son precisamente los mismos

que hallamos antes.

Ejemplo 20. Si la ecuación propuesta fuese \(x^3 - 100 = 0 \), la

transformaríamos en \(x \log x - \log 100 = 0 \), y ya que en las tablas or-

dinarias \(\log 100 = 2 \), en \(x \log x - 2 = 0 \). La simple inspección de

la ecuación propuesta manifiesta que el valor de \(x \) es mayor que 2,

y menor que 4; por lo que le supondremos \(x = 3, 5 \); y, tenien-

do presente (núm. 74.) que en dichas tablas es \(\frac{d}{dx} \log x = \frac{1}{x} \)

y \(\frac{d^2}{dx^2} \log x = \frac{-1}{x^2} \) \&c.;

y haciendo \(x = 3, 5 \); será \(A = 1, 90424 - 2 = -0, 09776 \), \(B = 0, 54407 + 0, 43429 = 0, 97836 \), \(k = \frac{97836}{97836} = 0, 97888 \); y

\(x = 3, 5, 97888 \).

Si quisieramos continuar la aproximación, haríamos \(d = 3, 5, 9789 \), \(6 = 0, 09779 \), y procederíamos como en el ejemplo antecedente.

Ejemplo 30. La ecuación propuesta es \(x \sin x = 1, 25 \); y se pide

el valor de la arco \(x \) en el supuesto del radi \(x = 1 \).

Como el arco de \(10^\circ \) en partes del radio es \(= 0,17453 \), dos \(3 \)
tres tentativas bastará para asegurarse que el arco \(x \) está entre \(70^\circ \) y \(80^\circ \).

Si suponemos \(= 75^\circ \), será \(a = 7, 5 \times 0, 17453 = 1, 309 \); y

á causa de \(f(x) = x \sin x \); tendremos \(\frac{d}{dx} f(x) = \sin x +

x \cos x \); \(A = 1, 309 \times \sin 75^\circ = 1, 309 \); \(25 = 0, 144 \); \(B = \sin 75^\circ +

1, 309 \times \cos 75^\circ = 1, 3047 \); \(k = \frac{144}{19047} = 0, 07703 \).

Este valor de \(k \) es en partes del radio; reduciéndolo en grados á

razón de \(0,17453 \) cada grado, será \(k = 37, 5^\circ \), y por consiguien-

tes \(x = 74^\circ, 22^\circ, 9^\circ \), con cortísima diferencia.
281. Si en vez de una sola ecuación, tuviésemos las dos ecuaciones
\[z = o, \quad a = b, \]
entre las incógnitas \(x, y \) y supusiésemos que las
cantidades \(a, b \), se acercan a los valores respectivos de \(x \) y \(y \); ha-
ríamos \(x = a + k, \quad y = b + h; \) y suponiendo que cuando \(x = a, \)
\(y = b, \) las expresiones \(z = \frac{dx}{du}, \quad z = \frac{dy}{du}, \) etc. \(\frac{dx}{dy}, \quad \frac{dy}{du}, \) etc., se
transforman respectivamente en \(A, B, C; \) \&c.; \(A', B', C', \) \&c.; des-
preciando los términos afectos de dos ó mas dimensiones en \(k, \) y \(h \)
por ser estas cantidades muy pequeñas tendríamos para determinar \(k \)
y \(h \) las dos ecuaciones de primer grado \(A + Bk + Ch = o, \quad A' +
B'k + C'h = o; \) y en el caso de que esta aproximación no se jugase
suficiente, se supondría \(a + k = a', \quad b + h = b', \) \(x = a' + k, \)
\(y = b' + h; \) y sustituyendo estos valores de \(x \) y \(y \) en las
ecuaciones \(z = o, \quad u = o, \) resultarán dos ecuaciones de primer grado án-
alogas á las antecedentes, las cuales darán los valores respectivos de
las nuevas correcciones \(k', h'. \)

Sean por ejemplo \(x^2 - 120 = o, \quad y^2 - 248 = o \) las ecuaciones
propuestas, y supongamos que habiendo hecho algunas tentativas, re-
sulte que el valor de \(x \) se acerca mucho á 5; y el de \(y \) á 3.

Transformando para mayor facilidad dichas ecuaciones en \(\log
\)
\[x = \log 120 = 2,0792, \quad x \log 2 = 1,03945 \]
\[y = \log 248 = 1,3945 \]

damos \(z = y \log 2 = 2,0792; \quad u = x \log 2 = 1,03945; \quad a = 5; \quad b = 3; \)
y observando que en estos cálculos nos servimos de las tablas ordina-
rias; tendremos \(\frac{dx}{du} = 0, \quad \frac{dy}{du} = 0; \quad \frac{dy}{dx} = \log x; \quad \frac{dx}{dy} = \log y; \)
\[\frac{dx}{dy} = 0, \quad \frac{dy}{dy} = 0; \quad \frac{dx}{dx} = 0, \quad \frac{dy}{dy} = 0; \quad \frac{dy}{dx} = \log x; \quad \frac{dx}{dy} = \log y; \]
\[A = o, \quad B = 0, \quad C = 0, \quad D = 0; \quad A' = o, \quad B' = 0, \quad C' = 0, \quad D' = 0; \]
y las dos ecuaciones \(o, \quad 26660; \quad 0, \quad 699; \quad a = 0, \quad b = 0; \quad A' =
0, \quad B' = 0, \quad C' = 7238; \) y por consiguiente \(x = 5, \quad y = 3, \)
\(k = 0, \quad h = 0, \quad 2926. \)

Continuación de las aplicaciones del cálculo diferencial a la
teoría de las líneas curvas.

282. En las aplicaciones que en el capítulo V. hemos hecho del
cálculo diferencial a la teoría de las líneas curvas, hemos conside-
rado estas líneas relativamente a sus coordenadas perpendiculares, á
causa de que hablando generalmente la ecuación de una curva refe-
rídida á dos ejes perpendiculares entre sí, es mas sencilla la que
resulta expresando la naturaleza de dicha curva de un otro modo
quialquiera. Sin embargo; hay algunas curvas transcendentales las qua-
les se refieren naturalmente á sus coordenadas polares; y por otra
parte conviene muchas veces considerar las curvas algebraicas relati-

vamente á estas coordenadas: así en la Mecánica y en la Astronomía
se refieren comunmente las secciones cónicas á las coordenadas pola-
res, tomando el origen de las coordenadas en el foco; cuyo origen
se llama el polo. Por estas razones nos ha parecido conveniente con-
dear algunas curvas que se refieren á las coordenadas polares; y apli-
car al mismo tiempo el cálculo diferencial á estas curvas.

Si suponemos que mientras que la línea \(AB' \) prolongada indefi-

damente (fig. 79.), se mueve uniformemente al rededor del centro
\(A \) del círculo \(BNCB; \) el punto móvil \(M \) se mueve en dicha línea
con una velocidad uniforme y tal que donde el radio \(AB \) en el me-
tiempo que este radio describe el círculo \(BNCD; \) el punto \(M \)
describiría con su movimiento la curva espiral \(AMDB \) que inventó
Conon de Siracusa (1), la cual se llama comúnmente la espiral de
Arquimedes, á causa de que este célebre Geómetra descubrió sus prin-
cipales propiedades.

283. Si por un punto cualquiera \(M \) de la espiral, se tira el ra-
dio \(AN; \) á causa de la uniformidad de los dos movimientos que de-
scriben esta curva, la razón del arco \(BN \) á la circunferencia \(BNBC; \)
será igual á la de \(AM \) al radio \(AN \) ó \(AB; \) Por consiguiente, lla-
mando el arco \(BN, \) \(z; \) \(AM, \) \(u; \) \(\pi, \) la razón del radio á la circun-
ferencia; y suponiendo \(AB = 1; \) tendremos \(z : \pi : : u : 1; \) de don-
de se infiere \(u = \frac{z}{\pi}. \)

284. El punto móvil \(M, \) que en la primera revolución de la lí-
nea \(AB, \) describe la porción \(AMEB \) de la espiral; describirá en la
segunda revolución, la continuación \(BM'B' \) de dicha curva; y co-
mo los movimientos se pueden continuar indefinidamente; la espi-
ral \(AMDB \) &c. dará un número indefinido de vueltas al rededor del
punto \(A, \) alejándose continuamente de este punto; de manera, que
la distancia de dicho punto á un punto cualquiera de la curva será
al radio \(AB = 1; \) como el arco \(z \) andado por el punto \(B \) desde el
principio del movimiento, á la circunferencia \(BNBC = \pi; \) por con-
siguiente la ecuación de la espiral \(AMDB \) &c. continuada indefini-
damente es \(u = \frac{z}{\pi}. \)

285. Las variables \(z, \) \(u \) de esta ecuación se llaman las coordena-
dadas polares: el centro \(A \) del círculo \(BNCB, \) es el polo; \(AM, \) el ra-
dio vector, y se considera como la ordenada de la curva; y el arco
\(BN, \) como la abscisa.

286. La espiral de Arquimedes, es un caso particular de las curvas
representadas por la ecuación \(u = az \) dando \(a \) todos los valores po-
sibles. Si se supone \(u = \frac{1}{2}; \) y se toma por ordenada la distancia

(1) Archimedes per Barrow; pag. 42 y sig.
sente que sen.\(z + \cos. z = 1 \); se transformará en \(b^2 u + c^2 v \) sen.\(z = b^4 + 2b^2 c \) cos.\(z \), y sustituyendo \(1 - \cos. z \) en lugar de sen.\(z \), en
\[(b^4 + c^2) u^2 + c^2 v = b^4 + 2b^2 c \) cos.\(z + c^2 v \) cos.\(z \); y finalmente sa-
cando la raíz cuadrada tendremos \(au = b^2 + cu \times \cos. z \), o \(u = \ldots \).

292. De las ecuaciones \(x = \cos. z \), \(y = \sin. z \), se infiere cos.
\[z = \frac{1}{u} \], sen.\(z = \frac{y}{u} \); y sustituyendo estos valores en una ecuación cualquiera que contenga solamente \(u \), y los senos y cosenos del arco \(z \), se transformará en otra entre las variables \(u \), \(x \), \(y \); y eliminando \(u \) por medio de la ecuación \(u = \sqrt{(x^2 + y^2)} \), resultará la re-
lacon de las coordenadas rectangulares \(x \), \(y \).

293. Pero si la ecuación de la curva relativamente a las coordena-
das polares incluye el arco \(z \); no se podrá hallar una ecuación algebráica entre \(x \), \(y \); pues no existe relación alguna algebraica
entre un arco \(z \), y su seno o su coseno; pero se puede hallar una ecuación dife-
rential que incluya solamente las coordenadas \(x \) \(y \), y sus diferen
ciales \(dx \) \(y \) \(dy \).

En efecto; si diferenciamos las ecuaciones \(u = \sqrt{(x^2 + y^2)} \), \(x = \cos. (z - m) \), \(y = \sin. (z - m) \); tendremos \(du = \frac{x dx + y dy}{\sqrt{x^2 + y^2}} \), \(dx = du \cos. (z - m) + udz \sin. (z - m) \), \(dy = du \sin. (z - m) + udz \cos. (z - m) \); y eliminando \(du \) por medio de las dos últi-
mas ecuaciones, resulta \(dz = \frac{dy \cos. (z - m) - dx \sin. (z - m)}{u} \), y sus-
tituyendo por \(u \), \(\cos. (z - m) \) y \(\sin. (z - m) \) sus valores respec
tivos, \(dz = \frac{y dx - x dy}{x^2 + y^2} \).

294. Por medio de esta ecuación, y de las que expresan los va-
lores respectivos de \(du \), \(dx \), \(y \); será fácil eliminar de la ecuación de
la curva y de su diferencial, las cantidades \(u \), \(\cos. (z - m) \), \(\sin. (z - m) \), \(dy \) \(dy \) \(dz \); y luego después de la variable \(z \) por medio de las dos ecuaciones que resultan.

Se por ejemplo la curva propuesta la espiral de Archimedes (figura 79). Tendremos \(\pi u = z \), \(\pi du = dz \); y sustituyendo en esta ecuación por \(dz \), \(du \), sus valores respectivos, se transformará en \(\pi (x dx + y dy) = \frac{x dx - y dy}{\sqrt{x^2 + y^2}} \), la cual solo contiene las coordena-
das rectangulares \(x \) \(y \), y sus diferenciales \(dx \) \(dy \).

Si la última ecuación hubiese incluido el arco \(z \); le hubiéramos eliminado por medio de dicha ecuación, y de la propuesta \(\pi u = z \).

295. Para determinar los valores respectivos de la tangente, sub-
tangente, normal, y subnormal en las curvas referidas a las coordena-
das polares; transformaremos las fórmulas del númer. 150, relativas
á las coordenadas rectangulares, en las que corresponden á las coordenadas polares, substituyendo en dichas fórmulas los valores de \(x, y, dx, y dy \) que hallamos antes. Haciendo estas sustituciones en la fórmula \(dy \frac{dx}{dy} \) de la subtangente, tendremos \(PT = u \text{sen} \cdot (z - m) \).

\[
\frac{du \cdot \text{cos} \cdot (z - m)}{du \cdot \text{sen} \cdot (z - m)} = u \text{sen} \cdot (z - m) + u \text{sen} \cdot (z - m).
\]

296. Como la posición del eje \(AD \) de las abscisas es arbitraria, podemos simplificar muchísimo esta expresión de \(PT \) suponiendo dicho eje perpendicular al radio vector \(AM \) (fig. 84.), el qual en este caso se confunde con la ordenada \(PM \); y será \(u \text{sen} \cdot (z - m) = 1 \), \(\cos \cdot (z - m) = 0 \), y por consiguiente \(PT \) ó \(AT = - u \frac{dx}{du} \).

En este mismo supuesto será el radio de curvatura \(\left(\frac{AM}{AM} \right)^{\alpha} \cdot \left(\frac{AT}{AT} \right)^{\alpha} = u \sqrt{1 + u^{2} \frac{(dx}{du})^{2}} \); y la tangente del ángulo \(AMT \) que la tangente en el punto \(M \) forma con el radio vector \(= - u \frac{dx}{du} \).

Con la misma facilidad hallaríamos las expresiones de la subnormal, y de la normal.

Sea por ejemplo \(AMB \) la espiral de Archimedes cuya ecuación es \(u = \frac{z}{\pi} \). Será \(\frac{dx}{du} = \frac{z}{\pi} \), y \(AT = - u^{2} \frac{dx}{du} = - u^{2} \text{sen} \cdot (z - m) \) igual á la longitud del arco \(MEF \) trazado con el radio vector \(AM \).

La tangente \(MT \) será \(u \left(1 + u^{2} \pi^{2} \right) = \frac{z}{\pi} \sqrt{1 + z^{2}} \); y la tangente del ángulo \(AMT \), igual á \(- z \) al arco \(NDB \).

En la espiral parabólica, cuya ecuación es \(u^{2} = p \cdot z \) (fig. 80.), tendremos \(\frac{dx}{du} = \frac{2u}{p} \); \(AT = - u^{2} \frac{dx}{du} = - 2uz = \) al duplo del arco \(FG \) trazado con el radio \(AF = \frac{p}{u} \); y la tangente del ángulo \(AMT \), igual á \(- 2z \) al duplo del arco \(BN \).

Si la curva \(AME \) (fig. 81.) fuese la espiral hiperbólica sería \(u \text{sen} \cdot (z - m) = a, \frac{dx}{du} = - \frac{a}{u} \); y \(AT = a = \text{BC} \); por donde se ve, que la subtangente de la espiral hiperbólica es constante é igual al arco \(BC \).

La tangente del ángulo \(AMT \), se hallará del mismo modo que en la espiral de Archimedes, igual al arco \(BN \).

Finalmente, siendo \(z = \log \cdot u \) la ecuación de la espiral logarítmica \(ABME \) (fig. 82.); tendremos suponiendo el módulo \(= a, \frac{dx}{du} = \frac{a}{u} \); \(AT = - au \); y la tangente del ángulo \(AMT \), igual á \(at \).

cuyo resultado manifiesta que en todos los puntos de esta curva, la
tangente forma un mismo ángulo con el radio vector; y que la
tangente de dicho ángulo es igual al módulo.

297. Para hallar la expresión del radio de curvatura relativamente á las coordenadas polares, diferenciáremos las ecuaciones \(dy = du \text{sen} \cdot (z - m) + u dz \cos \cdot (z - m), dx = du \cos \cdot (z - m) - u dz \text{sen} \cdot (z - m) \) considerando \(dz \) como constante, y tendremos \(dy = du \text{sen} \cdot (z - m) + 2udz \cos \cdot (z - m) - u dz^{2} \text{sen} \cdot (z - m) \).

\[
\frac{dy}{dx} = \frac{du}{dz} \frac{dz}{du} \text{sen} \cdot (z - m) + 2du \text{sen} \cdot (z - m) - u \text{sen} \cdot (z - m) = \frac{dz}{dx} = - u \frac{dx}{du} \text{sen} \cdot (z - m) - u \text{sen} \cdot (z - m) - u \text{sen} \cdot (z - m).
\]

Observando que \((z - m) + \cos \cdot (z - m) = 1 \), será \(dz^{2} + du = du^{2} + u^{2}dz^{2}, \) y \(dxdy - dydx = 2udzdz - u dz^{2}u + u^{2}dz^{3} \).

Sentado esto; en él de esta transformación consideramos ambas diferenciales \(dx, dy \) como variables; substituimos en la expresión

\[(1 + \frac{dy}{dx}) \] del radio de curvatura, \(\frac{dy}{dx} \frac{dx}{dy} \frac{dy}{dx} \]

(núm. 161.) \(\frac{1}{u^{2} + \frac{u^{2}dy}{dx} \frac{dy}{dx}} \) el radio de curvatura, \(\frac{dy}{dx} \frac{dx}{dy} \frac{dy}{dx} \)

(núm. 203.) en lugar de \(\frac{du}{dx} \frac{du}{dx} \); y multiplicando el numador y el denominador por \(dx \), tendremos la fórmula \(- \frac{dy}{dx} \frac{dx}{dy} \frac{dy}{dx} \) correspondiente al supuesto de \(dx, dy \) variables; y substituyendo los valores que acabamos de hallar, se transformará en

\[(1 + u^{2}dz^{2}) \]

\(\frac{u}{u^{2} + \frac{u^{2}du}{dx} \frac{du}{dx}} \) expresión del radio de curvatura relativamente á las coordenadas polares, en el supuesto de que la variable \(z \) varie uniformemente.

Esta expresión no incluye el arco \(BD = m \), lo cual se podía des

de luego prever, pues es evidente que el valor del radio de curvatura es independiente de la posición arbitraria del eje \(AD \).

298. Si llamamos \(s \) la superficie del sector \(ADMA \) (fig. 85.), y desde el polo \(A \) como centro, y con los radios \(AM = u, AM = u - du, describimos los arcos \(MM, MM \); será \(AMM' = \delta, Nn = \delta, MM = uN, y MM = (u - \delta) \delta \). Sentinelo esto, es evidente que mientras \(\delta \), y \(u \) decrecen continuamente acercándose á su límite común cero; el sector \(AMm = \frac{u^{2} \delta \delta}{2} \), es siempre mayor que la superficie \(\delta \delta \), y esta, mayor que el de la sector \(AMm' = \frac{u^{2} \delta \delta}{2} \); de manera que dividiendo por \(\delta \), tendremos siem-
CAPÍTULO VIII.

Principios de la teoría de las superficies curvas, y de las curvas de doble curvatura; y aplicación del cálculo diferencial á esta teoría.

Antes de empezar la teoría de las superficies curvas que nos proponemos exponer en este capítulo, debemos prevenir á nuestros lectores, que para su inteligencia, es necesario el conocimiento de los principios de la teoría de las líneas curvas y de las varias propiedades de los planos, y que les será muy útil la lectura del ensayo de Geometría sobre los planos y sobre las superficies curvas de LaCroix (1).

299. Del mismo modo que un punto cualquiera M de una línea curva plana (fig. 15.) se determina comúnmente por medio de dos coordenadas perpendiculares AP, PM cuyo origen se supone en un punto fixo A: la posición de un punto cualquiera de una curva de doble curvatura, o de una superficie curva, ó en general de un punto cualquiera Z del espacio (fig. 86.) se determina por medio de tres coordenadas perpendiculares AP, PM, y MZ.

Para ello, en el plano CAB que supondremos ser el de la lámina, se toma un punto fixo A para el origen de las coordenadas; y tirando las líneas AB, AC perpendiculares entre sí; se proyecta desde luego el punto Z sobre el plano CAB, y después se refiere la proyección M al origen A, por medio de las coordenadas perpendiculares AP, y PM. Esto viene á ser lo mismo que referir el punto Z á los tres planos CAB, DAB, CAD perpendiculares entre sí; y que pasan por el origen A; pues es claro que las coordenadas PM, AP, aunque están situadas en el plano CAB, representan las distancias respectivas ZZ', ZZ" del punto Z á los planos DAB, CAD; de manera que si suponemos que Z y Z" sean las proyecciones respectivas del punto Z sobre los planos DAB, CAD, será evidentemente PM = ZZ", y AP = ZZ'.

Los planos CAB, DAB, CAD; se llaman los planos de las coordenadas.

Las intersecciones comunes AB, AC, AD de los tres planos CAB, DAB, CAD, se llaman los exes de las coordenadas respectivas que les son paralelas: así, llamando AP, x; PM, y; y MZ, z; AB, será el exo de las x; AC, el de las y; y AD, el de las z.

Del mismo modo, los planos CAB, DAB, CAD de las coordenadas toman sus denominaciones respectivas de las mismas coordenadas: el plano CAB que contiene x y y, se llama el plano de las x y y; el plano DAB donde están las coordenadas AP = x, y PZ = ZM = z, se denomina el plano de las x, y z; finalmente, refiriendo la proyección Z" del punto Z sobre el plano CAD, á los exes AC, AD por medio de las coordenadas AF = MZ = z, y FZ" = PM = y, le llamaremos el plano de los y, y z.

300. Es evidente, 1° Que en todos los puntos del exo AB de las x, es y = 0, y z = 0; que las coordenadas x, y z son nulas en todos los puntos del exo AC de las y, como lo son igualmente x y y relativamente al exo AD de las z.

2° Que la coordenada z es nula en todos los puntos del plano CAB de las x y y, y tiene un valor determinado relativamente á los de un plano cualquiera paralelo al primero; de manera, que la ecuación z = c; suponiéndola sola, y sin que haya determinación alguna relativamente á las otras dos coordenadas x y y; representa un plano trazado paralelamente á CAB á una distancia de este = c.

3° Que en todos los puntos del plano DAB de las x, y z, es y = 0, y que la ecuación y = b pertenece á un plano paralelo al primero, del cual está á una distancia = b.

4° Y finalmente, que relativamente al plano CAD, es x = 0; y que x = a es la ecuación de un plano paralelo á CAD, trazado á una distancia = a.

301. Si se supone que las ecuaciones z = 0, y = b se verifiquen á un mismo tiempo; representarán una recta trazada paralelamente al exo AB de las x, por el punto del plano CAD cuyas coordenadas son c, y b; y como dichas ecuaciones representan igualmente todos los puntos comunes á los dos planos respectivamente paralelos á CAB, y DAB, representados por las ecuaciones z = c, y = b; dicha recta será la intersección común de todos estos planos.

Las tres ecuaciones z = c, y = b, x = a, reunidas; esto es en el supuesto de que se verifiquen á un mismo tiempo; pertenecen al punto único donde se cortan los tres planos respectivamente paralelos á CAB, DAB, CAD, representados por dichas ecuaciones.

302. Propongámonos ahora una ecuación entre dos de las tres cantidades variables x, y, y z, por ejemplo y = ax. Desde luego veremos que esta ecuación pertenece á una recta AN trazada por el punto A en el plano CAB, la cual forma con el exo AB de las x un ángulo NAB cuya tangente es = a. Pero dicha ecuación pertenece igualmente al plano DAN descrito por la recta AN movién-
dose paralelamente a sí misma en la dirección AD del eje de las z; pues es claro, que sí desde un punto cualquiera Z de dicho plano se tiran las perpendiculares ZM, ZZ' a los planos CAB, DAB, y desde el punto M, la MP perpendicular al eje AB; será ZZ' = MP = y = ax. Es evidente que el ángulo NAB mide la inclinación del plano DAB respecto del plano DAB.

Las ecuaciones \(z = bx, z = cy \) nos darían resultados análogos a los antecedentes relativamente a los planos DAB, CAD.

303. Supongamos que se quiera indagar que superficie representa la ecuación \(z = ax + by \). Haciendo \(z = o \), tendremos \(z = by \); de donde inferiremos que la recta \(AN' \) (fig. 87) trazada por el origen A en el plano CAD (en el cual es siempre \(x = o \)) y representada por esta ecuación, contiene todos los puntos comunes a la superficie expresada por la ecuación \(z = ax + by \), y al plano CAD; o lo que es lo mismo, que la recta \(AN' \) es la intersección de la superficie representada por la ecuación propuesta, y del plano CAD.

Haciendo \(z = o \), resulta \(ax + by = o \), \(y = - \frac{a}{b} x \), cuya ecuación pertenece a una recta AN trazada por el origen A en el plano CAB debajo del eje AB, la cual será la intersección de dicho plano y de la superficie representada por la ecuación \(z = ax + by \).

Ahora pues, si suponemos que el ángulo \(CAN' \) se mueva paralelamente al plano CAD, de manera que el vértice A esté siempre en la recta AN, y el lado AC en el plano CAB; la recta AN descripta un plano \(N'AN' \); y cuando el vértice A llegue a un punto cualquiera \(M' \), y el punto \(M' \) al punto \(Z \), será \(ZM \parallel z = M'S - bxAQ = b(PM + PM') = b(y + \frac{a}{b} x) = ax + by \); y por consiguiente \(z = ax + by \) será la ecuación de dicho plano.

304. Finalmente, si la ecuación propuesta fuese \(z = ax + by + az' \); pertenecería a un plano O'EO paralelo al plano \(N'AN' \) representado por la ecuación \(z = ax + by \), el cual corta el eje de las z en un punto \(E \) cuya distancia al origen A es \(d \). Pues si prolongamos la ordenada \(MZ \) del plano \(N'AN' \), hasta que encuentre su paralelo en \(Z' \), será \(ZZ' = d \), \(z = Z'M = ZM = ax + by + d \).

He aquí la ecuación de un plano situado de un modo cualquiera relativamente a tres ejes perpendiculares entre sí, y representa la ecuación general de primer grado entre tres cantidades variables \(x, y, z \); pues siendo esta ecuación de la forma \(ax + by + cz + d = o \); dividiéndola por \(y \), y haciendo \(- \frac{a}{y} = a, - \frac{b}{y} = b, y - \frac{c}{y} = d \), se transformará en \(z = ax + by + d \). Por donde se ve que el coeficiente de la variable \(z \) no hace más general dicha ecuación (y lo mismo se debe entender de uno cualquiera de los coeficientes de \(x \) y \(y \) en el supuesto de que se conserven los otros dos); sin embargo le conservaremos a fin de que las fórmulas que de ella se deduzcan sean más simétricas, y representarémos por \(ax + by + cz + d = o \) la ecuación de un plano cualquiera; pero tendremos presente, que en todos los resultados se podrá suponer una de las cuatro constantes \(a, b, c, d \), igual a la unidad, o determinarla por medio de condiciones particulares.

305. Conociendo pues la ecuación \(ax + by + cz + d = o \) de un plano cualquiera, será fácil determinar su posición relativamente a tres ejes perpendiculares entre sí. En efecto, haciendo desde luego \(z = o \), la ecuación \(ax + by + d = o \) que resulta pertenece a la intersección del plano propuesto con el plano \(CAB \) (fig. 88.), la cual es una recta \(EP \) que corta el eje de las \(x \) en un punto \(E \), y el de las \(y \) en un punto \(F \), de manera que \(AE = - \frac{d}{a} \), y \(AF = - \frac{d}{b} \).

Haciendo después \(z = o \) la ecuación propuesta, se reduce a \(by + cz + d = o \); representa la intersección \(FG \) del plano determinado por la ecuación propuesta, y del plano CAD de las \(z \) y \(y \), la cual encuentra el eje \(AD \) de las z prolongado debajo del plano \(CAB \), en un punto \(G \) cuya distancia al punto \(A \) es \(\frac{d}{c} \). Por consiguiente, el plano \(EFG \) cuya posición fixan los puntos \(E, F, G \) de modo que \(AE = - \frac{d}{a} \), \(AF = - \frac{d}{b} \), y \(AG = - \frac{d}{c} \), es el que la ecuación propuesta representa.

306. Para determinar la inclinación del plano propuesto respecto del plano \(CAB \), supondremos que desde uno cualquiera \(Z \) de sus puntos se tiren los coordenados \(ZM, MP \) prolongando esta hasta que encuentre la intersección \(EF \) en \(I \), y desde el punto \(M \) la \(MH \) perpendicular a \(EI \); la recta \(ZH \) será también perpendicular a \(EI \), y por consiguiente el ángulo \(ZHM \) mide la inclinación que se quiere determinar. Sentado esto, siendo \(AE = - \frac{d}{a} \), y \(AF = - \frac{d}{b} \); se rá tang. \(AEF = \frac{a}{b} \), sen. \(AEF = \frac{a}{\sqrt{a^2 + b^2}} \), cos. \(AEF = \frac{b}{\sqrt{a^2 + b^2}} \), \(EP = x + \frac{d}{a} \), \(PI = EP \times \text{tang.} \, PEI = \frac{x + d}{b} \), y \(MI = \ldots \ldots \ldots \ldots \). En donde se infiere a causa de ser \(IMH = AEF, MH = IM \text{cos.} \, IMH = \frac{d}{b} \), y tang. \(ZHM = \frac{ZM}{MH} = - \frac{\sqrt{a^2 + b^2}}{c} \). De aquí será fácil inferir cos. \(ZHM = \ldots \ldots \ldots \ldots \).
CAP. VIII. DE LAS SUPERFICIES CURVAS,

Del mismo modo hallaríamos que el ángulo de inclinación del plano propuesto relativa al plano DAB, tiene por tangente $\frac{\sqrt{a^2 + b^2 + c^2}}{b}$, y por coseno $\frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2 + c^2}}$; y relativamente al plano CAD, $-\frac{\sqrt{a^2 + b^2}}{a}$ por tangente, y $\frac{a}{\sqrt{a^2 + b^2 + c^2}}$ por coseno.

307. Si suponemos $c = 0$ en la ecuación tang. $\frac{ZHM}{c} = -\frac{\sqrt{a^2 + b^2}}{a}$, se transformará en tang. $ZHM = \infty$, y la ecuación propuesta se reducirá á $ax + by + d = 0$; de donde inferirémos que esta ecuación representa un plano cualquiera perpendicular al plano CAB.

Con igual facilidad demostraríamos que la ecuación $ax + cz + d = 0$, representa un plano cualquiera perpendicular á DAB; y la ecuación $by + cz + d = 0$, un plano perpendicular á CAD.

308. Si se pidiese la ecuación de un plano cualquiera que pasa por un punto dado; llamando a, b, c, γ las coordenadas que determinan la posición de dicho punto, deberán satisfacer estas cantidades á la ecuación general del plano $ax + by + cz + d = 0$; tendremos pues la ecuación de condición $ax + b\beta + c\gamma + d = 0$; y resultando de la antecedente, resultará la ecuación que se pide $a(x-a) + b(y-b) + c(z-c) = 0$; en la cual se puede suponer igual á la unidad, una de las constantes a, b, c, (núm. 304.).

309. Los planos perpendiculares CAB, DAB, CAD prolongados indefinidamente (Fig. 89.) dividen el espacio total en ocho espacios parciales los cuales forman tantos ángulos sólidos al rededor del punto A; y se distinguen entre sí por medio de los signos de las coordenadas x, y, z que contienen. Así, suponiendo siempre que estas coordenadas son positivas en el espacio parcial en cuyo ángulo sólido formado por los planos CAB, DAB, CAD; será

x, $-y$, $-z$	BAC, BAc, CAD
x, y, z	BAc, BAD, cAD
$-x$, y, z	bAc, BAD, cAD
$-x$, $-y$, z	BAC, BAc, CAD
x, $-y$, $-z$	en el ángulo sólido BAC, BAc, cAD
$-x$, $-y$, z	bAc, BAD, cAD
$-x$, y, $-z$	bAc, BAD, cAD

310. Cuando se conocen las ecuaciones de dos planos que pasan por una recta EF, de los cuales es por consiguiente la intersec-

ECION; se conoce también la posición de dicha recta; pues es claro que sus coordenadas son comunes á las dos ecuaciones de los referidos planos.

Entre la infinitud de planos que pueden pasar por la recta EF; se eligen comumente los que son perpendiculares á los tres planos CAB, DAB, CAD, á causa de que sus ecuaciones (n. 307.) contienen solamente dos de las tres variables x, y, z. Suponiendo pues que $ax + by + d = 0$ sea la ecuación del plano perpendicular á CAB que pasa por la recta EF; $a\gamma + cz + d = 0$ la del plano perpendicular á DAB; y $by + cz + d^1 = 0$, la del plano perpendicular á CAD; estas ecuaciones pertenecerán igualmente á las intersecciones respectivas de los referidos planos, con los planos CAB, DAB, CAD, las cuales son las proyecciones de la recta EF sobre estos planos. Por consiguiente la posición de la recta EF será conocida, siempre que sean dadas las ecuaciones pertenecientes á dos cualesquiera de sus tres proyecciones mencionadas, esto es sobre los planos de las coordenadas.

Suponiendo una de las constantes (núm. 304.) igual á la unidad; las ecuaciones antecedentes de los planos perpendiculares y proyecciones de una recta cualquiera EF, se pueden transformar en $y + ax + d = 0$, $z + dx + d^1 = 0$, $z + by + d^0 = 0$.

311. Propongámonos determinar las ecuaciones de las proyecciones de una recta EF sobre los planos CAB, DAB, la cual pasa por dos puntos dados E, F. Si llamamos a, β, γ las coordenadas del punto E; esto es las distancias conocidas de este punto á los planos CAD, DAB, CAB; y α', β', γ' las coordenadas del punto F; deberán satisfacer estos valores á las ecuaciones generales $y + ax + d = 0$, $z + dx + d^1 = 0$, $z + by + d^0 = 0$ de las proyecciones de una recta cualquiera sobre los planos CAB, DAB; tendremos pues para determinar las constantes indeterminadas a', α', d', d^1, d^0, las cuatro ecuaciones $\beta + a\alpha + d = 0$, $\gamma + d\alpha + d^1 = 0$, $\beta' + a\alpha' + d = 0$, $\gamma' + d\alpha' + d^0 = 0$, que dan $a = \frac{b - \beta'}{a - a'}$, $d' = \frac{\gamma - \gamma'}{a - a'}$, $d = \frac{a\beta' - \beta}{a - a'}$, $d^0 = \frac{a\gamma' - \gamma}{a - a'}$; y substituyendo estos valores en las ecuaciones generales de las proyecciones, se transformarán en las que pertenecen á la recta EF que pasa por los puntos dados E, F. Pero estas ecuaciones resultarán más sencillas restando la ecuación $\beta + a\alpha + d = 0$, de $y + ax + d = 0$; y la ecuación $\gamma + a\alpha + d = 0$, de $z + dx + d^1 = 0$; y substituyendo por α' sus valores respectivos, $\gamma' + \beta' + (x-a') = 0$, y restando, se tienen $\gamma - \gamma' + (x-a) = 0$. Las tres constantes necesarias (núm. 304.) que contiene la ecuación general del plano se pueden determinar por medio de diferentes condiciones. Una de las mas comunes es la de sujetar el
plano á que pase por tres puntos dados. Sean pues \(a, \beta, \gamma; a', \beta', \gamma' \); \(a'', \beta'', \gamma'' \), las coordenadas de los tres puntos dados; substituyéndolas sucesivamente por \(x, y, z \), en la ecuación general \(a x + b y + c z + d = 0 \), resultarán las tres ecuaciones \(a a' + b b' + c c' + d = 0 \), \(a a'' + b b'' + c c'' + d = 0 \), \(a a' + b b' + c c' + d = 0 \); por medio de las cuales se podrán determinar tres de las cuatro constantes \(a, b, c, d \). Suponiendo por ejemplo que \(d \) quede indeterminada, hallaremos

\[
\begin{align*}
a &= d \frac{\gamma (\beta' - \beta'') - \gamma' (\beta - \beta'') + \gamma'' (\beta - \beta)}{a (\beta'' - \beta'') - a' (\beta'' - \beta) + a'' (\beta - \beta')}
\end{align*}
\]

\[
\begin{align*}
b &= d \frac{\alpha (\gamma'' - \gamma) - \alpha' (\gamma' - \gamma) + \alpha'' (\gamma - \gamma')}{a (\beta'' - \beta'') - a' (\beta'' - \beta) + a'' (\beta - \beta')}
\end{align*}
\]

\[
\begin{align*}
c &= d \frac{\beta (a'' - a'') - \beta (a - a'') + \beta (a'' - a)}{a (\beta'' - \beta'') - a' (\beta'' - \beta) + a'' (\beta - \beta')}
\end{align*}
\]

313. Supongamos que \(y + ax + d = 0 \), \(z + bx + d' = 0 \), sean las ecuaciones de las proyecciones de una recta cualquiera sobre los planos de las \(x, y, z \), y de las \(x, y, z \); \(y + ax + d = 0 \), \(z + bx + d' = 0 \) las de otra recta cualquiera sobre los mismos planos: es evidente que si estas rectas se cortan, estarán en un mismo plano; y que en el punto de intersección las coordenadas \(x, y, z \) serán comunes á ambas rectas: por consiguiente tendremos eliminando \(y, y, y, z \) las dos ecuaciones \((a - a') x + d + d' = 0, (b - b') x + d + d' = 0 \); y eliminando \(x \) resultará la ecuación de condición, \((a - a') (d - d') - (b - b') (d - d') = 0 \), que debe verificarse para que las dos rectas propuestas tengan un punto común, y por consiguiente estén en un mismo plano.

Si representamos por \(a, \beta, \gamma \) las coordenadas del punto de intersección de dichas rectas; tendremos las cuatro ecuaciones \(\beta + ax + d = 0, \gamma + bx + d' = 0, \beta + ax + d = 0, \gamma + bx + d' = 0 \); y restándolas respectivamente de las ecuaciones \(y + ax + d = 0, z + bx + d' = 0 \); y eliminando \(x \) resultarán las igualdades \((x - x) = 0, (z - z) = 0 \); de las proyecciones, se transformarán en \(y - \beta + a (x + \alpha) = 0, z - \gamma + b (x + \alpha) = 0 \); y eliminando \(x \) resultará la ecuación de condición,

\[
\begin{align*}
\gamma (\beta' - \beta'') - \gamma' (\beta - \beta'') + \gamma'' (\beta - \beta)
\end{align*}
\]

314. Supongamos que siendo dadas las ecuaciones \(y + ax + d = 0, z + bx + d' = 0 \), \(z + bx + d' = 0 \) de las proyecciones de una recta; se pida la ecuación de un plano perpendicular á dicha recta.

Si suponemos que \(Ax + By + Cz + D = 0 \) sea la ecuación que se pide; será \(Ax + By + D = 0, \gamma + AB x + D = 0 \) la ecuación de su intersección con el plano de las \(x \) \(y \) \(z \); y \(Ax + Cy + D = 0, \beta + Ab x + D = 0 \), la de su intersección con el plano de las \(x \) \(y \) \(z \). Pero estas intersecciones son respectivamente perpen-

diculares á las proyecciones de la recta dada; tendremos pues \(a = - B \), \(b = - C \); \(b = - aA, C = - bA \); y substituyendo estos valores en la ecuación del plano, se transformará en \(A (x - a y - b z) + D = 0 \); y esta será la ecuación que se pide.

Si se quisiese además que este plano pasase por un punto de la recta dada, determinado por las coordenadas \(a, \beta, \gamma \); substituiríamos estas cantidades en la ecuación antecedente, y restando el resultado de la misma ecuación, se transformará en \(x - a - a (y - \beta) - b (z - \gamma) = 0 \).

Finalmente, si el punto determinado de la recta dada fuese el origen de las coordenadas \(a, \beta, \gamma \) serán nulas; y por consiguiente la ecuación del plano sería en este caso \(x - a y - b z = 0 \).

514. Si en vez de ser dada la recta, lo fue el plano, y se pidió las ecuaciones de las proyecciones de una recta perpendicular á dicho plano; substituiríamos los valores respectivos \(- B, - C \) \(- A \), de \(a, b, c \) en las ecuaciones \(y + ax + d = 0, z + bx + d' = 0 \); y se transformarán en las ecuaciones \(y - A x + d = 0, z - C x + d' = 0 \); y si la recta pedida debe pasar por un punto del plano, determinado por las coordenadas \(a, b, c \); sus ecuaciones serán en este caso \(A (y - \beta) - B (x - \alpha) = 0, A (z - \gamma) - C (x - a) = 0 \); y la proyección sobre el plano \(B x A D, B (x - a) - C (y - \beta) = 0 \).

Finalmente, si el punto determinado en el plano fuese el origen de las coordenadas \(a, b, c \) serán nulas, y las ecuaciones antecedentes se reducirían á \(A y - B x = 0, A z - C x = 0, B z - C y = 0 \).

516. Sea \(Z \) un punto cualquiera de una superficie (fig. 9o.) cuyas coordenadas son \(x, y, z \); la distancia \(AM \) de su proyección \(M \), al origen \(A \), será \(\sqrt{(x^2 + y^2)} \); y la distancia \(AZ = \sqrt{(x^2 + y^2 + z^2)} \).

Si llamamos \(x', y', z' \) las coordenadas de otro punto qual-

(1) Para comprender esto es necesario tener presente que en la ecuación \(y + ax + d = 0 \) de una recta cualquiera \(DE \) (fig. 96.) el coeficiente \(a \) de \(x \) representa la tangente del ángulo \(DE \) que dicha recta forma con el eje de las abscisas; y \(y \), la tangente del ángulo \(CED \) que forma con el eje de las ordenadas. Esto entendido, si \(y + bx + d' = 0 \) representa la ecuación de otra recta \(E'D' \) perpendicular á la primera; el ángulo \(D'E'B \) que forma con el eje \(AB \) cuya tangente es \(b \), será igual al ángulo \(CED \), con sólo la diferencia de que si este ángulo es positivo, el otro, será negativo y reciprocamente; por consiguiente tendremos \(b = - \frac{1}{a} \), y \(a = - \frac{1}{b} \).
quiera Z', y suponemos que por el punto Z pasan tres planos respectivamente paralelos a $CA'B$, DAB, CAD; las coordenadas del punto Z, relativamente á dichos planos serán $x' - x$, $y' - y$, $z' - z$; y por consiguiente la distancia ZZ' entre estos dos puntos, será $\sqrt{[(x' - x)^2 + (y' - y)^2 + (z' - z)^2]}$.

317. De aquí se deduce naturalmente la ecuación de la superficie de la esfera: pues estando todos sus puntos igualmente distantes del centro; si suponemos dicho centro en el origen A de las coordenadas, la expresión $\sqrt{(x^2 + y^2 + z^2)}$ será constante é igual al radio de la esfera. Llamando pues r dicho radio, será $x^2 + y^2 + z^2 = r^2$.

Si el centro de la esfera no estuviese en el origen A de las coordenadas, sino en otro punto determinado por las coordenadas a, b, c; la distancia de este punto á un punto cualquiera de la esfera cuyas coordenadas son x, y, z, sería según acabamos de ver $\sqrt{[(x - a)^2 + (y - b)^2 + (z - c)^2]}$; y como esta distancia es igual al radio, sería en este caso $(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2$ la ecuación de la esfera.

318. Llamemos d la distancia de un punto de una recta perpendicular á un plano dado, determinado por las coordenadas a, b, y c, al punto donde dicha perpendicular encuentra el plano cuyas coordenadas son x, y, z; será $d = \sqrt{(x - a)^2 + (y - b)^2 + (z - c)^2}$, ó substituyendo por $y - b$, $y z - c$ (núm. 315.) sus valores respectivos $B = (x - a)$, $C = (x - a)$, $d = \frac{x - a}{A} \sqrt{(A^2 + B^2 + C^2)}$. Pero dando á la ecuación $Ax + By + Cz + D = 0$ del plano esta forma $A(x - a) + B(y - b) + C(z - c) = Ax + B\beta + C\gamma + D = 0$; y substituyendo por $y - b$, $y z - c$ sus valores respectivos, tendremos $\frac{x - a}{A} = \frac{Ax + B\beta + C\gamma + D}{A^2 + B^2 + C^2}$; por consiguiente será $d = -\frac{Ax + B\beta + C\gamma + D}{\sqrt{(A^2 + B^2 + C^2)}}$.

Si el plano dado pasase por el origen de las coordenadas; sería $D = 0$, y por lo mismo $\theta = -\frac{B}{A}$.

319. Supongamos que representando $y - b + a (x - a) = 0$, $z - c + b (x - a) = 0$; $y - b + a (x - a) = 0$, $z - c + b (x - a) = 0$ (núm. 313.) las ecuaciones de las proyecciones de dos rectas dadas que se cortan en un punto cuyas coordenadas son a, b, y c, en el cual forman un ángulo ν; se nos proponga hallar la expresión del coseno de este ángulo.

Si imaginamos que el plano que determinan estas rectas se mueve paralelamente á sí mismo hasta que el plano de intersección se confunda con el origen A de las coordenadas; a, b, y serán nulas, y las ecuaciones de las proyecciones se reducirán á $y + ax = 0$, $z + bx = 0$; $y + ax = 0$, $z + bx = 0$. Sentado esto; imaginemos una esfera cuyo centro esté en el origen de las coordenadas, y el radio sea r; la primera de dichas rectas encontrará la esfera en un punto, que siendo común á la recta y á la esfera, determinarán sus coordenadas las tres ecuaciones $y + ax = 0$, $z + bx = 0$, $x^2 + y^2 + z^2 = 1$, las cuales dan $x = \frac{1}{\sqrt{(1 + a^2 + b^2)}}$, $y = \frac{-a}{b}$, $z = \frac{-a}{b} \sqrt{(1 + a^2 + b^2)}$. Del mismo modo, llamando x', y', z' las coordenadas del punto donde la segunda recta encuentra la esfera; tendremos $x' = \frac{1}{\sqrt{(1 + a^2 + b^2)}}$, $y' = \frac{-a}{b}$, $z' = \frac{-a}{b} \sqrt{(1 + a^2 + b^2)}$; y substituyendo estos valores en la expresión $(x - x')^2 + (y - y')^2 + (z - z')^2$ del cuadrado de la distancia entre estos dos puntos (núm. 316.), y haciendo las reducciones convenientes, resultará el cuadrado de dicha distancia, ó lo que es lo mismo, el cuadrado de la cuerdas del ángulo ν, igual á $2 - \frac{2}{\sqrt{(1 + a^2 + b^2)} (1 + a^2 + b^2)}$.

Pero por las fórmulas trigonométricas sabemos, que el cuadrado de la cuerda de un ángulo cualquiera ν es $= 2$ sen. ν $= 2 (1 - \cos \nu) = 2 - 2 \cos \nu$; por consiguiente tendremos $2 - 2 \cos \nu = \frac{2}{\sqrt{(1 + a^2 + b^2)} (1 + a^2 + b^2)}$; de donde se infiere $\cos \nu = \frac{1}{a^2 + b^2}$.

$\sqrt{(1 + a^2 + b^2)} (1 + a^2 + b^2)$

Si el ángulo ν fuese recto, sería cos $\nu = 0$; y por consiguiente $1 + ad + bb = 0$; y reciprocamente.

320. Por medio de la fórmula antecedente se determina fácilmente el coseno del ángulo que forman dos planos dados.

Sean $Ax + By + Cz + D = 0$, $Ax + By + Cz + D = 0$ las ecuaciones de estos planos; si imaginamos que se muevan paralelamente á sí mismos hasta que su intersección pase por el origen de las coordenadas; el ángulo que forman no variará, y sus ecuaciones se reducirán (núm. 305.) á $(1) \ldots Ax + By + Cz = 0$, $(2) \ldots Ax + By + Cz = 0$. Sentado esto, si el origen de las coordenadas tiramos dos rectas respectivamente perpendiculares á dichos planos; las ecuaciones de las proyecciones de la primera serán (núm. 313.) $y - \frac{B}{A} x = 0$, $z - \frac{C}{A} x = 0$; y
las de la segunda \(y - \frac{B'}{A'} x = 0 \), \(z - \frac{C'}{A'} x = 0 \). Pero es evidente que el ángulo que forman estas rectas, es igual al de los planos dados; por consiguiente llamándole \(\nu \), y sustituyendo en la fórmula antecedente por \(a \), \(a' \), \(b \), \(b' \) sus valores respectivos \(\frac{B}{A}, \frac{B'}{A'} \)

\[- \frac{C}{A}, \frac{C'}{A'} \text{, tendríamos cos. } \nu = \frac{AA' + BB' + CC'}{\sqrt{(A' + B' + C')(A'' + B'' + C')}}.\]

Si los planos dados fuesen perpendiculares entre sí; sería cos. \(\nu = \frac{B}{A}, \frac{B'}{A'} \text{, y por consiguiente } AA' + BB' + CC' = 0.\)

Si uno de los planos dados, el segundo por ejemplo, fuese el de las \(x \) \(y \); como en este plano es siempre \(z = 0 \), \(A' \), \(B' \) serían nulas, y la expresión antecedente se reduciría a cos. \(\nu = \frac{C}{A}, \frac{C'}{A'} \).

\[- \sqrt{(A' + B' + C')} \text{, lo mismo que hallamos en otro lugar (n. 506.).}\]

La misma naturaleza de las ecuaciones que contienen tres cantidades variables, indica este procedimiento; pues considerando por ejemplo \(z \), como función de \(x \) \(y \); para hallar con orden sus diferentes valores, es necesario imaginar, que á cada valor arbitrario dado á la variable independiente \(x \), se le hagan corresponder todos los que se pueden dar á la otra variable independiente \(y \); de donde resultará para cada valor de \(x \), una serie infinita de valores de \(z \); \(y \) como se pueden dar á \(x \) una infinidad de valores; habrá una infinidad de estas series, cada una de las cuales representará evidentemente la sección correspondiente hecha por un plano paralelo al de las \(y \), \(z \).

Supongamos, por ejemplo, que la ecuación dada sea \(z^2 + y^2 - px = 0 \).

Haciendo después \(x = 0 \), se reducirá á \(y^2 + z^2 = 0 \), de donde se infiere, \(y = 0, z = 0 \). Dando después \(x \) un valor cualquiera \(a \), tendremos \(z^2 + y^2 = pa \); cuya ecuación manifiesta que todas las secciones hechas por planos paralelos al plano \(CAB \) son círculos (fig. 91.).

Finalmente, suponiendo \(z = 0 \) en la ecuación propuesta, se reduce \(y^2 - px = 0 \); de donde resulta que la intersección del plano \(CAB \) con la superficie propuesta, es una parábola \(FAF' \) cuyo parámetro es \(p \); y por consiguiente, que la superficie representada por la ecuación \(y^2 - px = 0 \), es la de un paraboloide formado por la rotación de una parábola \(FAF' \) cuyo parámetro es \(p \), y el origen está en el punto \(A \); al rededor del eje \(AB \) de las \(x \).

Haciendo \(x = 0 \) en la ecuación \((a) \), se reduce á \(z^2 + y^2 = 0 \); \(y + z = 0 \); la cual representa la curva de segundo orden que resulta de la sección de la superficie propuesta por el plano de las \(z \) \(y \).

Dando luego á \(x \) diferentes valores determinados en la ecuación \((a) \); las ecuaciones que resulten representarán respectivamente las intersecciones de la superficie propuesta y diferentes planos paralelos al de las \(z \) \(y \), del cual están á las distancias respectivas que representan los valores de \(x \).

Del supuesto de \(y = 0 \) en la ecuación \((a) \) resulta la de la curva de segundo orden que forma la sección de la superficie propuesta por el plano de las \(x \) \(y \); dando \(a \) y diferentes valores determinados, resultarán sucesivamente las de las curvas que forman las secciones de los planos paralelos al primero.

Finalmente, haciendo \(z = 0 \) en la ecuación \((a) \), resultará la de la curva que la superficie propuesta traza en el plano de las \(x \) \(y \), en virtud de la sección de este plano; y dando \(a \) diferentes valores determinados; resultarán sucesivamente las de las respectivas secciones de los planos paralelos al primero. Los límites de estas diferentes secciones darán á conocer los de la superficie propuesta.
CAP. VIII. DE LAS SUPERFICIES CURVAS.

324. Una superficie curva, del mismo modo que una línea curva, puede tener una infinidad de ecuaciones diferentes, relativas a las diferentes situaciones que se pueden dar á los exes de las coordenadas, y al origen de estas. Véamémos pues como se pueden transformar las coordenadas; limitándonos solamente á las perpendiculares.

Supongamos primero que solo se quiera mudar la posición del origen A de las coordenadas (fig. 92.), sin alterar la dirección de dichas coordenadas. Llamemos a, b, c las coordenadas del nuevo origen A'; y x', y', z', las nuevas coordenadas; esto es, las de la superficie propuesta relativamente al nuevo origen A': tendremos evidentemente $x = x' + a$, $y = y' + b$, y $z = z' + c$; por consiguiente, sustituyendo estos valores en la ecuación propuesta, resultará que corresponde a las nuevas coordenadas x', y', y z', cuyo origen es A'.

325. Supongamos ahora que permaneciendo en la misma situación el origen de las coordenadas, se quiera mudar la dirección de los exes conservándoles sin embargo siempre perpendiculares entre sí.

Sean AB, AC, AD, los exes de las coordenadas primitivas x, y, z de una superficie cualquiera (fig. 93.); AE, AF, AG los de las nuevas coordenadas t, u, v de la misma superficie también perpendiculares entre sí; y para expresar la situación respectiva de los planos primitivos de las coordenadas, y de las de las nuevas; supondremos que se conocan las ecuaciones de unos relativamente á los otros.

Sea pues $a^2 + b^2 + c^2 = 1$ la ecuación del plano CAD relativamente á los nuevos exes AE, AF, AG; $a't + b'u + c'v = 1$ la del plano BAD; y $a^2 + b'2 + c' = 1$, la del plano CAD; si consideramos un punto cualquiera de dicha superficie cuyas coordenadas relativamente á los exes AE, AF, AG, son t, u, y v; las perpendiculares baxadas desde este punto á los planos primitivos CAD, BAD, CAD, serán respectivamente $á$ z, y, y x; y por consiguiente, por lo demostrado (núm. 318.) tendremos

\[
\begin{align*}
x &= - \frac{at + bu + cv}{\sqrt{(a^2 + b^2 + c^2)}} \\
y &= - \frac{a't + b'u + c'v}{\sqrt{(a'^2 + b'^2 + c'^2)}} \\
z &= - \frac{a't + b'u + c'v}{\sqrt{(a'^2 + b'^2 + c'^2)}}
\end{align*}
\]

Estos valores en virtud de lo observado en el núm. 304, contienen tres constantes inútiles; de manera que de las nueve constantes indeterminadas a, b, c, a', b', c', a'', b'', c'', podríamos suponer tres iguales á la unidad; pero es mejor suponer estas tres ecuaciones

\[
\begin{align*}
a^2 + b^2 + c^2 &= 1 \\
a'^2 + b'^2 + c'^2 &= 1 \\
a''^2 + b''^2 + c''^2 &= 1
\end{align*}
\]

Y á causa de que los planos CAB, BAD, CAD, son perpendiculares entre sí, tendránmos tambien (núm. 320.).

\[
\begin{align*}
adt + b'u + c'v &= 0 \\
ad't + b''u + c''v &= 0 \\
ad''t + b'u + c''v &= 0
\end{align*}
\]

por donde se ve, que de dichas nueve constantes, seis estarán determinadas por las ecuaciones antecedentes, y solo quedaran tres para determinar la situacion de las nuevas coordenadas relativamente á las primitivas.

Los valores de x, y, z hallados antes, se reducen en virtud de las ecuaciones (a) á

\[
\begin{align*}
x &= - at - bu - cv \\
y &= - a't - b'u - c'v \\
z &= - a''t - b''u - c''v
\end{align*}
\]

y substituyendo estos valores en la ecuación de la superficie propuesta relativamente á los exes primitivos AB, AC, AD; resultará que corresponde á los nuevos AE, AF, AG.

326. Los valores de las coordenadas x, y, z relativamente á los nuevos exes AE, AF, AG; se pueden determinar tambien de este otro modo.

Sean los que fueren dichos valores; el modo mas general de expresarlos, es suponiendo

\[
\begin{align*}
x &= at + b'u + c'v \\
y &= a't + b''u + c''v \\
z &= a''t + b'u + c''v
\end{align*}
\]

Pues es claro que á un valor determinado de las variables t, u, v, solo debe corresponder un valor de las coordenadas x, y, z; y recíprocamente. Sentado esto; el quadrado de la distancia de un punto cualquiera al origen común A de los dos sistemas de coordenadas, es en el primer sistema igual á $x^2 + y^2 + z^2$; y en el segundo, $t^2 + u^2 + v^2$; por lo que, substituyendo por x, y, z sus valores respectivos, resultará esta ecuación idéntica

\[
(\alpha^2 + b^2 + c^2)(t^2 + b^2 + c^2) - (a^2 + b^2 + c^2) - (a'^2 + b'^2 + c'^2) - (a''^2 + b''^2 + c''^2) = 0.
\]

Efectuando los quadrados indicados, y suponiendo $= 0$ los coe-
CAP. VIII. DE LAS SUPERFICIES CURVAS.

ficientes de las potencias y productos de \(t, u, y v \); tendremos estas seis ecuaciones:

\[
\begin{align*}
\alpha^2 + \alpha^2 + \alpha^2 &= 1 \\
\beta^2 + \beta^2 + \beta^2 &= 1 \\
\gamma^2 + \gamma^2 + \gamma^2 &= 1
\end{align*}
\]

\[
\begin{align*}
\alpha\beta + \alpha\beta + \alpha\beta &= 0 \\
\alpha\gamma + \alpha\gamma + \alpha\gamma &= 0 \\
\beta\gamma + \beta\gamma + \beta\gamma &= 0
\end{align*}
\]

de donde se infiere que las nueve constantes que contienen las expresiones generales de \(x, y, y z \); seis están determinadas por las ecuaciones antecedentes, y las tres restantes son independientes.

327. Comparando los valores de \(x, y, y z \) supuestos en este artículo, con los que hallamos al principio del antecedente, tendremos

\[
\begin{align*}
\alpha &= -\frac{a}{\sqrt{a^2 + b^2 + c^2}} \quad \beta &= -\frac{b}{\sqrt{a^2 + b^2 + c^2}} \quad \gamma &= -\frac{c}{\sqrt{a^2 + b^2 + c^2}} \\
\alpha' &= -\frac{a}{\sqrt{a^2 + b^2 + c^2}} \quad \beta' &= -\frac{b}{\sqrt{a^2 + b^2 + c^2}} \quad \gamma' &= -\frac{c}{\sqrt{a^2 + b^2 + c^2}}
\end{align*}
\]

por donde se ve, que \(a, \beta \), y \(\gamma \) tomadas negativamente, son los cosenos de los ángulos que el plano \(CAD \) (fig. 92) forma respectivamente con los nuevos planos de las coordenadas \(FAD, FAE, EAG \) (núm. 386); que \(-\alpha', -\beta', -\gamma' \), son los cosenos de los ángulos que el plano \(BAD \) hace con los mismos planos; y lo mismo dirémos de \(-\alpha'', -\beta'', -\gamma'' \), relativamente al plano \(CAB \).

328. Substituyendo los valores antecedentes de \(\alpha, \alpha', \&c \), en las seis ecuaciones de condición \((c), (d) \); hallaríamos otras relaciones entre las cantidades \(a, b, \&c \), las cuales se podrían también deducir aunque de un modo menos sencillo, combinando las ecuaciones \((b) \).

En el supuesto de que las ecuaciones \((a) \) se verifiquen; dichos valores de \(\alpha, \alpha', \&c \), se reducen a

\[
\begin{align*}
\alpha &= -a \\
\alpha' &= -a' \\
\alpha'' &= -a'' \\
\beta &= -b \\
\beta' &= -b' \\
\beta'' &= -b'' \\
\gamma &= -c \\
\gamma' &= -c' \\
\gamma'' &= -c''
\end{align*}
\]

y substituyéndoles en las ecuaciones \((c) \) y \((d) \) se transformarán en

\[
\begin{align*}
a^2 + a^2 + a^2 &= 1 \\
b^2 + b^2 + b^2 &= 1 \\
c^2 + c^2 + c^2 &= 1
\end{align*}
\]

\[
\begin{align*}
ab + ab + ab &= 0 \\
ac + ac + ac &= 0 \\
bc + bc + bc &= 0
\end{align*}
\]

329. De las expresiones generales de \(x, y, y z \), se pueden inferir las de \(t, u, y v \), por dos métodos distintos; y comparando am-

bos resultados se inferirán nuevas relaciones entre las cantidades \(a, b, \gamma, \&c \).

En efecto, multiplicando respectivamente dichas expresiones por \(a, a', a'' \); y sumando los tres productos, tendremos

\[
(a + a' + a'') t + (a\beta + a'\beta + a''\beta) u + (a\gamma + a'\gamma + a''\gamma) v
\]

de donde inferiremos teniendo presentes las ecuaciones \((c), (d), \)

\[
t = ax + a'y + a''z
\]

Multiplicando respectivamente las mismas expresiones de \(x, y, y z \), por \(\beta, \beta', \beta'' \); y por \(\gamma, \gamma', \gamma'' \); y juntando los productos respectivos; hallaremos del mismo modo \(u = bx + b'\gamma + b''\gamma \), \(y = cx + c'\gamma + c''\gamma \).

Si se sustituyen estos valores en la expresión \(t^2 + u^2 + v^2 \), y se compara el resultado \(x^2 + y^2 + z^2 \); resultará la ecuación idéntica:

\[
(a + a' + a'') x^2 + (a\beta + a'\beta + a''\beta) y^2 + (a\gamma + a'\gamma + a''\gamma) z^2 = t^2 + u^2 + v^2,
\]

de la cual se inferirán desarrollando los trinomios, las seis ecuaciones.

\[
\begin{align*}
a^2 + a^2 + a^2 &= 1 \\
a'^2 + b'^2 + b'^2 &= 1 \\
a''^2 + c'^2 + c'^2 &= 1
\end{align*}
\]

\[
\begin{align*}
aa' + ab' + ac' &= 0 \\
aa'' + ab'' + ac'' &= 0 \\
aa'' + ab'' + ac'' &= 0
\end{align*}
\]

con las cuales coinciden las ecuaciones \((a), (b) \).

330. Los valores de \(t, u, y v \), se pueden calcular directamente resolviendo las ecuaciones de primer grado.

\[
x = a + b + c + y + z, \quad y = a' t + b' u + c' v, \quad z = a'' t + b'' u + c'' v:
\]
efectuándolo, y haciendo para abreviar \(a\beta' y' - a'\beta y + a\beta'' y' - a''\beta y + a\beta' y' - a''\beta y \), se hallará

\[
t = \frac{(\beta y - \gamma v) t + (\beta y - \gamma v) u + (\beta y - \gamma v) z}{\delta}
\]

\[
u = \frac{(\alpha y - \gamma z) t + (\alpha y - \gamma z) u + (\alpha y - \gamma z) z}{\delta}
\]

\[
v = \frac{(\alpha y - \gamma z) t + (\alpha y - \gamma z) u + (\alpha y - \gamma z) z}{\delta}
\]

comparando los coeficientes de \(x, y, y z \), en estas expresiones, con sus correspondientes que hallamos por el otro método, resultarán estas nuevas ecuaciones.

\[
\begin{align*}
\beta' y' - \gamma' v' &= 0 \\
\beta' y' - \gamma' v' &= 0 \\
\beta' y' - \gamma' v' &= 0
\end{align*}
\]

Si se suman los cuadrados de las tres ecuaciones que forman la primera línea, resultará la ecuación
CAP. VIII. DE LAS SUPERFICIES CURVAS.

\[(\gamma' - \gamma'')^2 + (\gamma'' - \gamma'')^2 + (\gamma'' - \gamma'')^2 = \delta^2 (a^2 + a^2 + a^2),\]

la cual dándole la forma

\[(\beta^2 - \beta^2 + \beta^2) (\gamma^2 + \gamma^2 + \gamma^2) + (\beta^2 - \beta^2 + \beta^2) \gamma = \delta^2 (a^2 + a' + a''),\]

se reduce en virtud de las ecuaciones (c), y (d) á \(\delta = 1\).

De los dos valores \(\delta = \pm 1\) que da esta ecuación solo se puede adoptar el positivo; pues si suponemos que las nuevas coordenadas coinciden con las primitivas esto es \(t = z\), \(u = y\), \(v = x\); tendríamos \(a = 1\), \(b = 1\), \(y = 1\), y todos los demás coeficientes nulos; de donde se sigue que la expresión que hemos representado por \(\delta\), se reduce á \(1\).

333. De los nuevos coeficientes \(a\), \(b\), \(c\), &c., hay tres arbitrarios que sirven para determinar las seis restantes. Esta determinación se efectúa combinando las varias relaciones que hemos hallado entre dichos coeficientes; y la elegancia del resultado dependerá de la buena elección de las cantidades arbitrarias, y de la destreza en las reducciones.

Mr. Monge elige \(a\), \(b\), \(y\) por las cantidades arbitrarias; y suponiendo

\[1 + a + b' + y' = M, 1 + a - b' + y' = N, 1 - a - b' + y' = P,\]

encuentra

\[2\delta = \sqrt{NP} + \sqrt{MQ}, 2\delta = \sqrt{NP} + \sqrt{MN},\]

Es claro que siendo dadas tres de las cuatro cantidades \(M, N, P, y Q\); la cuarta lo es igualmente; pues sumando las cuatro ecuaciones supuestas, resulta \(M + N + P + Q = 4\).

331. Cuando solamente se quiere mudar la dirección de dos de los tres exes; es preciso para que sean siempre perpendiculares entre sí, que dichos dos exes permanezcan en el plano de las coordenadas que les es común; de donde resulta que la coordenada perpendicular á este plano, es la misma en ambos sistemas.

Supongamos por ejemplo que permaneciendo inmóvil el eje de las \(z\), se mude la dirección de los otros dos: será en este caso \(u = z\), y por lo mismo \(a = 0\), \(b = 0\), y \(y = 1\); y como los valores de \(x, y, z\) son independientes de \(u\), tendremos \(y = 0\), \(z = 0\), y \(z = 0\).

Los valores de \(x, y, z\) se reducirán á \(x = at + bu, y = at + bu;\) las ecuaciones (c) y (d), á estas tres.

\[a^2 + a^2 = 1, b^2 + b^2 = 1, a^2 + a^2 + a^2 = 0,\]

y la primera de las ecuaciones (g); \(a^2 + b^2 = 1\). Comparando esta ecuación con \(a^2 + a^2 = 1\), tendremos \(a = b\); de donde inferiremos \(b = -a\); y por consiguiente \(x = at + bu, y = at - bu\).

Y CURVAS DE DOBLE CURVATURA.

333. Volvamos á considerar la ecuación general de las superficies de segundo orden.

\[(a) \ldots A\dot{x}^2 + B\dot{y}^2 + C\dot{z}^2 + D\dot{xy} + E\dot{xz} + F\dot{yz} + G\dot{x} + H\dot{y} + I\dot{z} + K = 0;\]

y para mudar el origen de las coordenadas sin alterar la dirección de los exes, substituyamos respectivamente \(x' + a, y' + b, y z' + c,\) en lugar de \(x, y, z;\) con esto se transformará en

\[A\dot{x}'^2 + B\dot{y}'^2 + C\dot{z}'^2 + D\dot{x}' + E\dot{x}' + F\dot{y}' + G\dot{z}' + H + I + J + K = 0,\]

Si determinamos las tres constantes arbitrarias \(a, b, c,\) por medio de las tres ecuaciones

\[2Aa + Db + Ec + G = 0, 2Bb + Da + Fc + H = 0, 2Cc + Ea + Fb + I = 0;\]

los términos que forman la segunda línea de la ecuación (a'), desaparecerán; y si además, multiplicamos la primera de estas ecuaciones por \(\frac{a}{2}\), la segunda por \(\frac{b}{2}\), y la tercera por \(\frac{c}{2}\), y restamos la suma de la misma ecuación (a'); se reducirá á

\[(b) \ldots A\dot{x}^2 + B\dot{y}^2 + C\dot{z}^2 + D\dot{xy} + E\dot{xz} + F\dot{yz} + \frac{I}{2}Ga + \frac{I}{2}Gb + \frac{I}{2}Gc = 0;\]

Esta es la ecuación en que se transforma la ecuación (a) mudando solamente el origen de las coordenadas; demos ahora á los tres exes otra dirección cualquiera, sustituyendo respectivamente en la ecuación (b) \(u'\), \(v'\), \(w'\), \(a' = \beta' u + \gamma' v, a' = \beta' u + \gamma' v, a' = \beta' u + \gamma' v,\) en lugar de \(x', y', z'\), (núm. 332), y tendremos una ecuación de la forma \(A\dot{u}'^2 + B\dot{v}'^2 + C\dot{w}'^2 + D\dot{uv}' + E\dot{uw}' + F\dot{wv}' + K = 0;\)

y como en esta transformación, hemos introducido tres constantes arbitrarias; determinándolas del modo conveniente podrémos hacer desaparecer otros tantos términos de esta ecuación: si las determinamos haciendo \(D = 0, E = 0, y F = 0;\) dicha ecuación se reducirá á

\[(c) \ldots A\dot{u}'^2 + B\dot{u}'^2 + C\dot{v}'^2 + K = 0;\]

334. Puede suceder que los valores de las constantes arbitrarias, que dan las ecuaciones \(D = 0, E = 0, F = 0;\) sean imaginarios: en este caso se harán desaparecer solamente dos términos por ejemplo \(E\dot{v}, F\dot{w};\) haciendo \(E = 0, F = 0, y, se
ejecuta una de las ecuaciones...
constantes arbitrarias para hacer reales los valores de las otras dos. La
ecuación transformada será en este caso

\[A't^2 + B'u^2 + C'v^2 + D'tu + K' = 0. \]

335. Resolviendo la ecuación (c) relativamente a una cualquiera de las coordenadas \(t, u, v \), resultarán dos valores iguales y de signo contrario; de donde inferirémos que cada uno de los planos de las coordenadas, divide la superficie propuesta en dos partes iguales y semejantes, del mismo modo que los diámetros de una línea curva, dividen dicha curva; y por esta razón dichos planos; esto es los planos cuyas ordenadas \(t \) y \(u \) son iguales, se llaman diámetros, ó planos diametrales.

Los exes de las coordenadas \(t, u, v \) que forman las intersecciones de los planos diametrales, se llaman exes principales.

336. Para conocer las diferentes superficies que la ecuación (c) puede expresar; seguiremos el camino que indicamos en el núm. 322; dando antes á dicha ecuación esta forma

\[(d) \ldots \quad A't^2 + B'u^2 + C'v^2 = \frac{L}{L'}. \]

Supongamos desde luego que los coeficientes \(A', B', C' \), son positivos; y \(AB, AC, AD \) (fig. 94.) los exes de las coordenadas \(t, u, v \).

Haciendo primero \(z = 0 \), la ecuación \(A't^2 + B'u^2 = L' \) que resulta expresa la naturaleza de la sección principal \(CBcb \) del plano de las \(t, u \), la cual es por consiguiente una ellipse cuyos semiejes son \(AB = A'b = \frac{L}{\sqrt{A'}} \), y \(AC = A'c = \frac{L}{\sqrt{A'}} \).

Supongamos ahora \(u = 0 \), y tendremos la ecuación \(A't^2 + C'v^2 = L' \), de la sección principal \(BDcb \) del plano de las \(t, v \), la cual es igualmente una ellipse cuyos semiejes son \(AB = \frac{L}{\sqrt{A'}} \), y \(AD = \frac{L}{\sqrt{C'}} \).

Finalmente haciendo \(t = 0 \), resulta la ecuación \(B'u^2 + C'v^2 = L' \) de la sección principal \(CDCc \), la cual es también una ellipse que tiene por semiejes \(AC = \frac{L}{\sqrt{B'}} \), y \(AD = \frac{L}{\sqrt{C'}} \). Conocemos pues la naturaleza de las tres secciones principales; y los tres semiejes \(AB = \frac{L}{\sqrt{A'}} \), \(AC = \frac{L}{\sqrt{B'}} \), \(AD = \frac{L}{\sqrt{C'}} \).

337. Las superficies cuyas tres secciones principales son ellipses, se llaman ellipsoides, y se distinguen en tres especies:

1. Cuando los tres exes principales \(Bb, Cc, Dd \) son iguales; en cuyo caso las tres secciones principales son otros tantos círculos, y la superficie propuesta, la de una esfera cuyo radio es \(= \frac{L'}{L} \).

2. Cuando solamente dos exes principales, por ejemplo \(AC, y \)

\[\text{Y CURVAS DE Doble CURVATURA.} \]

\[AD \], son iguales. En este caso será \(C = B' \), y la ecuación de la superficie propuesta \(A't^2 + B'(u^2 + v^2) = L' \), la cual manifiesta que la sección principal \(CDc \), y todas sus paralelas (en cada una de las cuales (núm. 320.) es \(t \) constante) son círculos; y por consiguiente, la superficie propuesta será la del \textit{esferoide} engendrado por la rotación de la ellipse \(BCb \) al rededor del exes \(Bb \).

338. Cuando los tres exes, ó los tres coeficientes \(A', B', C' \) son desiguales; en cuyo caso no solamente las tres secciones principales, sino también sus respectivas paralelas, son \(\text{ellipses} \). En efecto, si en la ecuación (d) se supone \(t \) igual á una constante cualquiera \(m \), y \(L' = A'm^2 = M' \), se transformará en \(B'u^2 + C'v^2 = M' \); y manifiesta, que la sección hecha por un plano paralelo á \(CAB \) á una distancia \(= m \); es una ellipse cuyos semiejes son \(\frac{M'}{\sqrt{B'}} \), y \(\frac{M'}{\sqrt{C'}} \).

Lo mismo demostraremos relativamente á las secciones paralelas á los otros dos planos \(CAB, BAD \).

339. Veamos ahora, las superficies que la ecuación (d) representa, cuando uno ó dos de los coeficientes \(A', B', C' \), son negativos; y sea desde luego \(A't^2 + B'u^2 - C'v^2 = L' \) la ecuación propuesta.

Haciendo sucesivamente \(u, v, t \) nulas; tendremos las ecuaciones de las tres secciones principales \(A't^2 + B'u^2 = L' \), \(A't^2 - C'v^2 = L' \), \(B'u^2 - C'v^2 = L' \); de donde inferirémos, que la primera \(CBcb \) (fig. 95.) es una ellipse cuyos semiejes son \(AB = \frac{L}{\sqrt{B'}} \), y \(AC = \frac{L}{\sqrt{C'}} \); y las otras dos \(Ebc, Fc' \), son \textit{hipérbolas} cuyo centro común es el punto \(A \), y los vértices respectivos están en \(B \), y \(C \); y el semieje conjugado común \(AB \), y \(AC \) es igual á \(\frac{L}{\sqrt{C'}} \).

Todas las secciones del cuerpo propuesto, paralelas á la principal \(CBcb \) serán \textit{ellipses}; y las paralelas á cualquiera de las otras dos secciones principales, \textit{hipérbolas}.

Si fuese \(A' = B' \), la sección principal \(CBcb \) y todas sus paralelas serán círculos; y la superficie propuesta se podría considerar como engendrada por la rotación de la \textit{hipérbola} \(EBc \) al rededor del exes \(Dd \).

339. Cuando dos de los tres coeficientes de \(t^2, u^2, v^2 \), son negativos, la ecuación (d) será \(A't^2 - B'u^2 + C'v^2 = L' \); y las ecuaciones de las secciones principales \(A't^2 - B'u^2 = L', A't^2 - C'v^2 = L' \), \(B'u^2 + C'v^2 = L' \). Las dos primeras representan respectivamente las \textit{hipérbolas} \(EBcGh' \), \(FBjHbh \) (fig. 97.); cuyo semiexce común \(AB \) es \(\frac{L}{\sqrt{B'}} \), y su conjugado respecto á la primera \textit{hipérbola} es \(\frac{L}{\sqrt{C'}} \), y relativamente á la segunda. Por lo que toca á la tercera ecuación, y la sección correspondiente son evidentemente imaginarias.
CAP. VIII. DE LAS SUPERFICIES CURVAS.

Todas las secciones paralelas a los planos CAB, DAB, son hipérbololas; y las paralelas al plano CAD, son imaginarias desde el punto A, al punto B; esto es, siempre que \(t > \frac{L_i}{\sqrt{A'}} \), o \(A't' > L' \); haciendo \(A't'-L'^2=M'^2 \), tendremos la ecuación \(B' u'a'+C' v' = M'^2 \); y manifiesta que en este caso las secciones son elipses.

Finalmente; si suponemos además que sea \(C'=B' \), dichas secciones serán circulos, y la superficie propuesta la de un hyperboloide engendrado por la revolución de la hipérbolola \(E'B'G'G \) al rededor del exo \(AB \).

340. Examinemos el caso en que \(t \) la equacion \((d)\) le faltan algunos términos; y sea desde luego \(L'=0 \). Dicha equacion se reducirá en este supuesto a \(A't'^2 + B'u'^2 + C'v'^2 = 0 \); y si los tres coeficientes \(A', B', C' \) son positivos, será necesariamente \(t = 0, u = 0 \), y \(v = 0 \); pues como el cuadrado de una cantidad, es siempre positivo, la suma de un número cualquiera de cuadrados no puede ser nula, a menos que cada uno de dichos cuadrados sea cero. Por consiguiente la superficie propuesta se reducirá a un punto \(A \) origen de las coordenadas (fig. 95).

Quando uno de los coeficientes \(A', B', C' \) es negativo, la equacion propuesta (suponiendo que sea \(C' \) dicho coeficiente) será \(A't'^2 + B'u'^2 - C'v'^2 = 0 \); y las de las tres secciones principales

\[A't'^2 + B'u'^2 = 0, \quad A't'^2 - C'v'^2 = 0, \quad B'u'^2 - C'v'^2 = 0. \]

La primera da \(t = 0 \), y \(u = 0 \); y por lo mismo representa solamente el punto \(A \) origen de las coordenadas. De la segunda se infiere \(v = \pm \sqrt{\frac{B'}{C'}} \), y representa las rectas \(AG, Ag \), las cuales pasan por el origen \(A \), donde forman con el exo \(AB \) los ángulos \(BAG \), \(BAg \) cuya tangente es \(= \sqrt{\frac{A'}{C'}} \); y por consiguiente (núm. 147. y 338.) son las asimptotas de la hipérbolola \(EB \).

Finalmente la tercera representa las asimptotas de la hipérbolola \(TCj \), las cuales hacen con el exo \(AC \) dos ángulos iguales, cuya tangente es \(= \sqrt{\frac{B'}{C'}} \).

Si suponemos \(v \) igual a una cantidad constante \(m \) positiva ó negativa; la equacion propuesta se transformará en \(A't'^2 + B'u'^2 = C'm'^2 \), la cual pertenece á una elipse cuyos semiexes son \(m \sqrt{\frac{C'}{A'}} \), y \(m \sqrt{\frac{C'}{B'}} \). De donde se sigue que todas las secciones paralelas al plano

Y CURVAS DE DOBLE CURVATURA.

\(AB \) son elipsecuyos semiexes son proporcionales a sus distancias respectivas \(m \) a dicho plano, y por consiguiente pertenecen a una superficie compuesta de dos conos iguales cuyo vértice común es el punto \(A \), y el exo común, \(Da \).

Estos conos son rectos en el supuesto de \(A' = B' \); y se pueden considerar como engendrados por la rotación de las asimptotas \(AG, Ag \) al rededor del exo \(Da \).

Si hicieramos \(t \) o \(u \) constantes; hallaremos que las secciones paralelas á los planos \(BAD, CAD \) son hipérbololas cuyos semiexes son proporcionales á las distancias respectivas de dichas secciones á las principales.

341. Si fuesen negativos los dos coeficientes \(B', C' \); la equacion propuesta sería \(A't'^2 - B'u'^2 - C'v'^2 = 0 \), y representa la superficie de dos conos iguales cuyo vértice común es el punto \(A \) (fig. 97); y el exo común, \(Bb \).

La seccion principal de este cono, hecha por el plano \(CAB \) son las rectas \(Il, Kk \) asimptotas de la hipérbolola \(E'B'G'G' \); representadas por la equacion \(A't'^2 = B'u'^2 \), y la seccion del plano \(BAD \), las asimptotas de la hipérbolola \(FBfHhb \); representadas por la equacion \(A't'^2 = C'v'^2 \). La otra seccion principal es solamente el punto \(A \).

Estos conos serán escalenos si \(B' \), y \(C' \) fuesen desiguales; y retos si fuese \(B' = C' \). En este ultimo caso, se pueden considerar como engendrados por la revolucion de las asimptotas \(Il, Kk \) al rededor del exo \(Bb \).

342. Quando uno de los coeficientes \(A', B', C' \) por ejemplo, es cero en la equacion \((d)\); se reduce esta a \(A't'^2 + B'u'^2 = L'^2 \), la qual en el supuesto de que ambos coeficientes \(A', B' \), son positivos, representa una elipse \(CB, b \) (fig. 94.) trazada en el plano \(CAB \), cuyos semiexes son \(AB = \frac{L'}{\sqrt{A'}} \), y \(AC = \frac{L'}{\sqrt{B'}} \).

Porero como la variable \(v \) es indeterminada; le podremos dar un valor cualquiera, y por consiguiente, si imaginamos que la recta indefinida \(bE \) perpendicular al plano \(CAB \) corra la periferia de dicha elipse; la equacion \(A't'^2 + B'u'^2 = L'^2 \) se verificará relativamente á todos los puntos de la superficie del cuerpo que dicha recta engendra, al qual es evidentemente un cilindro escalonado cuya base es la elipse \(CB, b \), y el exo \(AD \). Por consiguiente la equacion \(A't'^2 + B'u'^2 = L'^2 \) considerada en toda su generalidad, y en el supuesto de \(A' \), \(B' \) positivas, representa la superficie del expresado cilindro.

Si hacemos sucesivamente \(u = 0, v = 0 \), tendremos las ecuaciones \(A't'^2 = L'^2, B'u'^2 = L'^2 \); de las otras dos secciones principales. La primera da \(t = \pm \frac{L'}{\sqrt{A'}} \), y representa dos rectas indefinidas paralelas al exo \(AD \), que pasan por los extremos \(B, b \) del exo \(Bb \) de la ellipse; y la segunda \(u = \pm \frac{L'}{\sqrt{B'}} \), la qual representa dos rectas traza-
CAP. VIII. DE LAS SUPERFICIES CURVAS,

das paralelamente al eje \(AD \) por los extremos \(C', c \) del otro eje de
la elipse.

Es evidente que el expresado cilindro será recto en el supuesto de
\(A'=B' \).

343. Cuando uno de los coeficientes \(A', B' \) es negativo; la equa-
ción propuesta representa una superficie cilíndrica, en la que la se-
cción principal hecha por el plano \(CAB \) y todas sus paralelas son otras
tantas hiperbolas iguales, cuyos semiejes son también \(AB \) y \(AC \).

En general, toda ecuación que sólo incluye dos de las tres cantida-
des variables \(t, u, v \), de cualquiera grado que sean; representa una
superficie cilíndrica, la cual se puede considerar como engendrada por el
movimiento de una recta perpendicular al plano que contiene dichas dos
variables. De donde se sigue; que si mudando del modo convenien-
te la dirección de los ejes de las coordenadas en una ecuación pro-
puesta; se consigue hacer desaparecer una de las tres variables que
contiene; inferiríamos que dicha ecuación representa una superficie
cilíndrica, cuya base ó sección principal tiene por ecuación la trans-
formada.

344. Finalmente; si dos de los tres coeficientes \(A', B', C' \) fue-
sen nulos en la ecuación (d), y que tuviésemos por ejemplo \(C'v^2
= L' \); inferiríamos \(u = \pm \frac{L'}{\sqrt{C'}} \), cuya ecuación representa (núm-
ro 300.) dos planos trazados paralelamente á \(CAB \) el uno encima
y el otro debajo, á una distancia de este plano \(= \frac{L'}{\sqrt{C'}} \).

345. Consideremos ahora el caso particular en que una ecuación
propuesta no puede reducirse á la forma de la ecuación (d); y para
ello supondremos que en la ecuación general (a) (núm. 343) se mu-
de desde luego la dirección de los ejes, conservando el origen. Lla-
mado \(t, u, v \), las nuevas coordenadas, y suponiendo nulos los co-
eficientes de \(tt, uu, vv \), tendríamos la ecuación

\[
(e) \quad A' + B'u^2 + C'v^2 + G't + H'u + I'v + K' = 0,
\]

la cual mudando el origen de las coordenadas no se podrá reducir á
la forma de la ecuación (d) cuando uno de los coeficientes \(A', B',
C' \), sea cero.

En efecto; suponiendo \(C' = 0 \), la ecuación antecedente se re-
duce á

\[
A't + B'u^2 + G't + H'u + I'v = 0;
\]

y es evidente, que si se substituye respectivamente \(t + a, u + b, v'
+ c \), en lugar de \(t, u, v \); no se podrá hacer nulo el término \(I'v
\) que resulta en la ecuación transformada.

346. Para transformar la ecuación (e) en otra sumamente senci-
lla, que comprenda este caso particular, y en general todas las su-
perficies de segundo orden; substituiríamos \(t + a, u + b, v + c
\)
en lugar de \(t, u, v \); y haciendo \(I' + 2ac' = I' \), y suponiendo
igual á cero el coeficiente de \(t \), el de \(u \), y la suma de los términos
constantes, se reducirá á

\[
(f) \quad A't^2 + B'u^2 + C'v^2 + L'u = 0,
\]
cuya ecuación es la más sencilla de las que representan á un mismo
tiempo todas las superficies de segundo orden.

347. En el supuesto de \(C' = 0 \), se reduce esta ecuación á

\[
A't^2 + B'u^2 + L'u = 0,
\]
y las ecuaciones de las tres secciones principales serán suponiendo \(L
\) negativa

\[
A't^2 + B'u^2 = 0, \quad A't^2 + L'u = 0, \quad B'u^2 + L'u = 0.
\]

Y cuando \(A' \), \(B' \) son ambas positivas, la primera sección prin-
cipal se reduce únicamente al punto \(A \), origen de las coordenadas
(fig. 98.); y las otras dos son las parábolas \(EA'F, GA'H \) cuyos vérti-
ces están en el punto \(A \); la primera situada en el plano \(BAD \), tie-
ne su parámetro \(= \frac{U}{A'} \); y la segunda en el plano \(CAD \), su pa-
rámetro es \(= \frac{U}{A} \).

La ecuación \(A't^2 + B'u^2 = L'm \) que resulta del supuesto de \(u
\) igual á una constante \(m \), manifiesta que las secciones paralelas al plá-
nano \(CAB \) son elipses las cuales se reducirán á círculos cuando \(A' = B'
\). En este último caso la superficie propuesta será la de un \(\text{parabolóide}
\) engendrado por la rotación de la parábola \(EAF \), ó \(GA'H \), al rede-
dor del eje \(AD \).

Hemos supuesto \(L' \) negativa en la ecuación propuesta; pero si fue-
se positiva, tomaríamos \(v \) negativa, y hallaríamos los mismos resulta-
tos, con solo la diferencia que las superficies estarían del lado de las \(v \) negativas, y por consiguiente tendrían por eje \(Ad \).

348. Si suponemos que uno de los coeficientes \(A', B', C' \) por

por ejemplo, es negativo; la ecuación propuesta será \(A't^2 + B'u^2
= 0 \), y las ecuaciones de las tres secciones principales

\[
A't^2 + B'u^2 = 0, \quad A't^2 + L'u = 0, \quad B'u^2 + L'u = 0.
\]

La primera representa dos rectas \(Ee \) \(Ff \) (fig. 99.) que se cortan
en el origen \(A \); y la segunda y tercera, dos parábolas cuyos ejes
respectivos son \(Ad, AD \); y al contrario si \(L \) fuese negativa.

Todas las secciones paralelas al plano \(BAC \) son parábolas, y las
paralelas á los otros dos planos, parábolas.

Finalmente; si uno de los coeficientes \(A', B', \) es nulo en la ecua-
\(tion \(A't^2 + B'u^2 + L'u = 0 \); esta ecuación incluirá solamente dos
variables; y por consiguiente representará una superficie cilíndrica,
cuyas secciones hechas por el plano de dichas variables y todos sus
paralelos, son otras tantas parábolas iguales.
CAPÍTULO VIII. DE LAS SUPERFICIES CURVAS.

340. El caso particular de \(L = 0 \) en la ecuación \(2A' = B''C' + A' - B'L = C' = 0 \), y \(L = 0 \) en la ecuación general (f) es digno de notarse a causa de que al mismo tiempo que destruye en esta ecuación los términos \(C'i'' \), y \(L'v \), introduce uno nuevo.

En efecto; como en este supuesto es también \(L = 0 \), la ecuación (g) se reduce a \(A'i'' + B'' = C'i'' = K'' = 0 \); y por consiguiente la mudanza del origen de las coordenadas introducirá solamente las dos constantes arbitrarias \(a \), y \(b \), por medio de las cuales solamente se podrán hacer nulas en la transformada dos de estas tres cantidades, al hablar, el coeficiente de \(t \), el de \(u \), y la suma de los términos constantes: suponiendo pues que se hagan desaparecer dichos coeficientes; y llamando \(-L = L' \) la referida suma, tendremos la ecuación \(A'i'' + B'' = C'i'' = L' \), la cual en el supuesto de \(A' \), y \(B' \) positivas representa (núm. 343) un cilindro recto ó escalonado según fuesen estas cantidades iguales ó desiguales; y un cilindro hiperbólico, cuando \(A' \), y \(B' \) tuviesen signos diferentes.

350. Las superficies curvas tienen por asímptotas otras superficies; así, los conos representados por la ecuación \(A'i'' + B'' = C'i'' = 0 \) (núm. 340) son las asímptotas de la superficie representada por la ecuación \(A'i'' + B'' - C'i'' = L' \) (núm. 338), a causa de que la superficie del cono se acerca continuamente a la otra, y sólo se confunde con ella cuando se consideran sus puntos a una distancia infinita del origen de las coordenadas ó vértice. En efecto; si cortamos ambas superficies por un plano paralelo a \(ABC \) (fig. 92) y a una distancia de este \(= m \); las ecuaciones de las secciones del cono y de la otra superficie serán respectivamente \(A'i'' + B'' = C'm'' \), \(A'i'' + B'' = C'm'' = L' \); las cuales manifiestan que ambas secciones son ellipses cuyos semiejes son en la del cono \(\sqrt{C'i''/A'} \), y en la otra \(\sqrt{C'm''/A'} \); y en las otras \(\sqrt{B''/C'} \), y \(\sqrt{B''/C'} \).

Por consiguiente la primera ellipse, esto es la del cono será siempre menor que la segunda, pero su diferencia será tanto menor, cuanto mayor fuese \(m \), y por último llegará a ser nula cuando fuese \(m \) infinita, en cuyo caso coincidirán ambas superficies.

Los dos conos iguales representados por la ecuación \(A'i'' - B'' = C'i'' = 0 \) (núm. 341), son igualmente las asímptotas de la superficie representada por la ecuación \(A'i'' - B'' = C'i'' = L' \) (número 330). Entre este caso y el antecedente hay sin embargo la diferencia, de que en aquel los conos están inscritos en la superficie cuyas asímptotas son; y en este están circunscritos, conforme lo manifiestan los valores \(t \sqrt{A'/B'} \), \(t \sqrt{A'/C'} \) de los semiejes de la ellipse que resulta cortando uno de estos conos por un plano \(MPZ \) (fig.

Y CURVAS DE DOBLE CURVATURA. 225

Gura 97.) paralelo á \(CAD \), los cuales son respectivamente mayores que los semiexes \(PM = \sqrt{(A'i'' - L''/B')}, PD = \sqrt{(A'i'' - L''/C')} \), de la ellipse, intersección del mismo plano con dicha superficie; y solo llegan á ser iguales cuando \(t \) es infinita.

351. Si se corta una superficie cualquiera de segundo orden con un plano, la intersección será una línea, cuyo orden no puede ser superior al segundo; pues, si se transforma la ecuación de la superficie propuesta en otra, de manera que el plano seante sea uno de los planos de las coordenadas, y se supone luego nula la coordenada que le es perpendicular resultará la ecuación de dicha intersección, la cual no puede ser de un grado superior al segundo, á causa de que la transformación de las coordenadas en una ecuación propuesta, no altera el grado de dicha ecuación.

Esta observación se extiende á las superficies curvas de cualesquiera órdenes.

352. Las coordenadas rectangulares de un punto cualquiera \(Z \) (figura 86) de una superficie curva, se pueden transformar en coordenadas polares del modo siguiente:

Llamemos \(r \) el radio vector \(AZ \), y distancia del punto \(Z \) al origen \(A \); \(\beta \) el ángulo \(ZAM \) que forma con su proyección \(AM \) sobre el plano \(CAB \); y \(\phi \) el ángulo \(MAB \), que esta proyección hace con el eje \(AB \); \(r = \sqrt{x^2 + y^2 + z^2} \), \(AM = r \cos \beta \), \(z = MZ = r \sin \beta \), \(\phi = r \cos \beta \), \(y = r \cos \phi \), y \(x = r \cos \phi \).

También podemos llamar \(\alpha \), \(\beta \), \(\gamma \) los ángulos que el radio vector \(AZ = r \) hace respectivamente con los ejes \(AB \), \(AC \), \(AD \); y bajando del punto \(Z \) las perpendiculares \(ZM \), \(ZZ' \), \(ZZ'' \) á los planos \(CAB \), \(BAD \), \(CAD \); á causa de ser \(AZZ'' = ZAB = a \), \(AZZ' = ZAC = \beta \), y \(AZM = ZAD = \gamma \), tendremos \(a = AP = ZZ'' = r \cos \alpha \), \(\phi = PM = ZZ' = r \cos \beta \), \(y = ZM = r \cos \gamma \); y sustituyendo estos valores en la ecuación \(r^2 = x^2 + y^2 + z^2 \), resultará para eliminar una de las variables \(a \), \(\beta \), \(\gamma \), la ecuación \(\cos^2 a + \cos^2 \beta + \cos^2 \gamma = 1 \).

353. Cuando una superficie curva se corta con un plano, todos los puntos de su intersección están en dicho plano; pero si la sección se hace con otra superficie curva; sucede por lo común que todos los puntos de su intersección no pueden estar en un solo plano; y en este caso la línea que forma dicha intersección se llama de doble curvatura.

Como las coordenadas de todos los puntos de la intersección de dos superficies curvas, son comunes á ambas superficies, se sigue que la naturaleza de una curva de doble curvatura está representada por las dos ecuaciones de las superficies curvas cuya intersección es.

Sean \(x \), \(y \), \(z \) las coordenadas rectangulares de dos superficies curvas cuya intersección es la curva de doble curvatura \(XZ \) (fig. Ff).
226 \textsc{Cap. VIII. de las Superficies Curvas.}

(gura 100.) \(y U = o, V = o\), las ecuaciones de dichas superficies: si eliminamos sucesivamente cada una de las variables \(z, y, x\); resultarán tres ecuaciones: \(z = p, y = q, x = r\); las que pertenecen respectivamente a las proyecciones \(X'Z', XZ', Xc'Z'\) de la curva propuesta sobre los planos \(BAC, BCD, CAD\).

Estas ecuaciones representarán igualmente (núm. 343.) las superficies cilíndricas elevadas sobre dichas proyecciones perpendicularmente a los planos respectivos que las contienen; y se echa de ver que la curva propuesta \(XM\), será la intersección de dos cualesquiera de estas tres superficies: de donde se sigue que conociendo dos de estas tres ecuaciones, se conocerá igualmente la curva propuesta. Suponiendo pues que sean \(z = F(x), z = f(x)\), las ecuaciones de las proyecciones \(X'Z', XZ', Xc'Z'\); estas ecuaciones expresarán la naturaleza de la curva propuesta \(XZ\).

Aplicación del cálculo diferencial a la teoría de las superficies curvas, y de las curvas de doble curvatura.

334. Sea \(Z\) un punto cualquiera de una superficie curva (fig. 101.), cuyas coordenadas rectangulares son \(AP = x, PM = y, MZ = z\); si consideramos \(z\) como función de las dos variables independientes \(x, y\), y suponemos que variando solamente \(x\) adquiría el incremento arbitrario \(PP = k\), la ordenada correspondiente \(mQ\), pertenecerá a la sección \(EZX\) de la superficie propuesta hecha por un plano paralelo a \(BAD\) en la cual es \(y\) constante, y será (núm. 89.)

\[
\begin{align*}
MQ &= z + \frac{k}{2} \frac{dz}{dx} + \frac{1}{2} \left(k \frac{d^2z}{dx^2} + z \frac{d^2z}{dy^2} \right) + \text{&c.}
\end{align*}
\]

Si se supone al contrario, que permanece un \(x\) constante, \(PM = y\) adquiría el incremento arbitrario \(Mm = h\); la ordenada \(mR\) que resulte, pertenecerá a la sección \(FZY\), hecha con un plano paralelo a \(CAD\), y será

\[
\begin{align*}
mR &= z + h \frac{dz}{dy} + \frac{k}{2} \frac{d^2z}{dy^2} + \frac{1}{2} \left(k \frac{d^2z}{dx^2} + z \frac{d^2z}{dx^2} \right) + \text{&c.}
\end{align*}
\]

Pero si ambas coordenadas \(x, y\), varían al mismo tiempo, y adquieren respectivamente los incrementos independientes \(k, h\); resultará la ordenada \(M'Z'\) de otro punto cualquiera \(Z'\) de dicha superficie, y será (núm. 187.)

\[
\begin{align*}
M'Z' &= z + k \frac{dz}{dx} + h \frac{dz}{dy} + \frac{1}{2} \left(k \frac{d^2z}{dx^2} + z \frac{d^2z}{dy^2} + 2kh \frac{d^2z}{dxdy} + h^2 \frac{d^2z}{dy^2} \right) + \text{&c.; \(z\) haciendo para abreviar \(\frac{dz}{dx}\) y \(\frac{dz}{dy}\) con \(\frac{d^2z}{dxdy}\) \(= p, \frac{d^2z}{dx^2} = q, \frac{d^2z}{dy^2} = r, \frac{d^2z}{dxdy} = s, \frac{d^2z}{dx^2} = t\), \&c.}
\end{align*}
\]

335. Si representamos por \(z = f(x, y)\) la ecuación de una superficie curva, (núm. 184.) y por \(dz = \frac{dz}{dx} \, dx + \frac{dz}{dy} \, dy = pdx + qdy\) su diferencial; la expresión \(\frac{dz}{dx} = p\), será el límite de la razón \(\frac{Mq - MZ}{Mn - MN}\) entre la diferencia de la ordenada de la sección \(EZX\) paralela al plano \(BAD\) en la cual es \(y\) constante, y la diferencia \(PP'\) de la abscisa \(x\); y \(\frac{dz}{dy} = q\), representará el límite de la razón

\[
\begin{align*}
mR - MZ &= \frac{Mn}{Mm}, \quad \text{de la diferencia de la ordenada de la sección \(FZY\) paralela al plano \(CAD\) en la cual es \(x\) constante, y la diferencia de \(y\).}
\end{align*}
\]

336. Si en vez de considerar como independientes los incrementos respectivos \(k, h\) de \(x, y\), se supone que existe entre ellos una razón dada, de manera que sea \(\frac{h}{k} = \frac{mM'}{mPp'}\) igual a una cantidad constante \(m\); serán también (núm. 15.) \(\frac{dz}{dx} = m\); y la ordenada \(MZ',\) no pertenecerá en este caso á un punto cualquiera de la superficie propuesta, sino á un punto \(Z'\) de la sección \(Z'Z\) hecha por un plano perpendicular á \(BAC\), que pasa por los puntos \(M, y, M'\).

Es de advertir que entre los dos coeficientes diferenciales parciales \(\frac{dz}{dx} = p, \frac{dz}{dy} = q\); subsiste la ecuación de condición (núm. 189.)

\[
\begin{align*}
\frac{dz}{dx} \frac{dy}{dx} &= \frac{dz}{dy} \frac{dx}{dy}, \quad \text{o} \quad \frac{dp}{dy} = \frac{dq}{dx}.
\end{align*}
\]

337. Supongamos que las rectas \(ZT, Zt\) sean las tangentes respectivas de las secciones \(EZX, FZY\) en el punto común \(Z\); si consideramos \(x, y, z\) como la abscisa y ordenada de la sección \(EZX\), la subtangente \(MT\) será \(\frac{dx}{dz}\), y considerando \(y, z\) como la abscisa y ordenada de la sección \(FZY\), será \(Mt = z - \frac{dy}{dz}\). Sentado esto, es claro que el plano \(T\) determinado por las dos tangentes \(ZT, Zt\), es tangente en el punto \(Z\) de la superficie propuesta; y como se conocen los tres puntos \(Z, T, t\), por donde debe pasar, se conocerá igualmente la posición de dicho plano.

En efecto si suponemos que sean \(a, \beta, \gamma\) sus coordenadas respectivamente al punto \(A\); y \(\gamma = \alpha a + \beta \beta + \gamma C\) su ecuación; tendríamos en el punto común \(Z, \gamma = z, \beta = y, a = x\); en el punto \(T, \gamma = o, \beta = y, a = z \frac{dx}{dz} = x, \beta = x - z \frac{dx}{dz}\); y en el punto \(t, \gamma = o, \beta = y = z \frac{dy}{dz}, a = x\); y substituyendo sucesi-
vamente estos valores en la ecuación del plano, tendremos para determinar las cantidades A, B, C, las tres ecuaciones

$$z = Ax + By + C, \quad Az \frac{dx}{dz} = Ax + By + C, \quad Bz \frac{dy}{dz} = Ax + By + C$$

que dan $A = \frac{dz}{dx}$, $B = \frac{dz}{dy}$, $C = z - x \frac{dz}{dx} - y \frac{dz}{dy}$; y por consiguiente la ecuación del plano tangente TZt será $\gamma = z = \frac{dz}{dx} (a - x) + \frac{dz}{dy} (b - y)$.

Del mismo modo hallaremos las subnormales de las secciones EZX, FZY, y la posición de la normal en el punto Z de una superficie curva cualquiera; pero como este método exige varias consideraciones particulares á cada caso diferente; no nos detendremos en su aplicación, y pasaremos á exponer otro general y sumamente elegante, el cual se aplica con igual facilidad á la determinación de los radios de curvatura de las diferentes secciones de una superficie curva, y en general á la solución de los problemas principales que se pueden proponer sobre las superficies curvas. Este método es análogo al del núm. 166. y siguientes; o por mejor decir, es aquel mismo método extendido á las funciones de dos cantidades variables independientes.

358. Sea pues $z = f(x, y)$ la ecuación de una superficie cualquiera referida á los ejes AB, AC, AD perpendiculares entre sí (fig. 101.); y $\gamma = Ax + Bz + C$ la ecuación de un plano referido á los mismos ejes; si el plano y la superficie propuesta tienen un punto común Z, será en él $a = x$, $b = y$, y $\gamma = z$, y por consiguiente tendremos relativamente á dicho punto la ecuación $z = Ax + By + C$.

Consideremos ahora otro punto Z' de la superficie propuesta correspondiente á las coordenadas $x' + k, y' + h$; la ordenada $Z'M'$ será $z' = z + kp + hq + \frac{1}{2} (k^2r + 2khs + h^2t) + \&c.$; y llamando γ' la ordenada del plano correspondiente á las mismas coordenadas $x' + k, y' + h$, será $\gamma' = A(x' + k) + B(y' + h) + C$; por consiguiente á causa de $Ax + By + C = z$, la diferencia de estas dos ordenadas, que llamaremos D, ó la distancia del punto Z' al punto donde la ordenada $M'Z'$ encuentra el plano, será expresada por $D = k(p - A) + h(q - B) + \frac{1}{2} (k^2r + 2khs + h^2t) + \&c.$

Sentado esto; un plano es tangente en un punto Z de una superficie curva, cuando su situación es tal, que ningún otro plano que tiene el mismo punto Z común con dicha superficie puede pasar entre esta y dicho plano.

Es claro que permaneciendo indeterminadas las cantidades k, h; la distancia D será tanto menor, cuanto menores sean los co-
La superficie curva $A'x' + B'y' + C'z' = L'$; será $p = \frac{A'x'}{C'z'}$, $q = \frac{B'y'}{C'z'}$; y por consiguiente $ZG = \frac{C'}{C'z'}$.

En el supuesto de $A' = B' = C' = 1$; será $ZG = \sqrt{x^2 + y^2 + z^2} = L'$; y la superficie propuesta será en este caso una esfera cu- yo centro está en el origen A, y el radio es L'.

Sea siempre $z = f(x, y)$ la ecuación de una superficie cualquiera, y $z = F(x', y')$, la de otra superficie conocida, refe-

rída a los mismos ejes AB, AC, AD que la primera (fig. 102). Si estas dos superficies tienen un punto común Z, será el $z = x'$, $y = y'$, $z = z'$, y por consiguiente $z = F(x, y)$. Considerando luego las coordenadas $x + k, y + h, z + k', y + h', z = z'$, se tendrá:

$M'Z' = z + kp + hq + \frac{1}{2} (k^2 r + 2kh + h^2 t) + \ldots = \ldots$ y $M'H = z' + k \frac{dz'}{dz} + h \frac{dz}{dz} + \frac{1}{2} \left(k^2 \frac{dz}{dz} + 2kh \frac{dz}{dz} + h^2 \frac{dz}{dz} \right) + \ldots = \ldots$

Sustituyendo z' y k', h', z, k, h, l, l', m, n, o, p, q, r, s, t, u, v, w, x, y, z por sus valores respectivos, se obtiene la ecuación de la superficie $M'H$.

La normal en un punto Z de una superficie curva (fig. 102) es la recta ZG perpendicular al plano tangente en el punto Z, y en virtud de lo expuesto en el número análoga, y de lo demo- mostrado en el n. 318, las ecuaciones de sus proyecciones sú-

bre los planos BAD, CAD serán llamando a, b, c sus coordenadas, $a - x + p (\gamma - z) = o$, $b - y + q (\gamma - z) = o$.

La distancia del punto Z a otro punto cualquiera de dicha nor-

mal (n. 318) será $\sqrt{(a - x)^2 + (b - y)^2 + (c - z)^2}$; y haciendo $\gamma = o$, el resultado $- z \sqrt{1 + p^2 + q^2}$ expresará la distancia del punto Z al punto G donde encuentra el plano BAC.

Si, por ejemplo, la ecuación de la superficie propuesta es $A'x'^2$
la expresión \(\frac{k^2}{2} (r - r') + kh (s - s') + \frac{h^2}{2} (t - t') \) &c. de D, llegará á ser menor que la de \(\Delta \); y por consiguiente la nueva superficie no podrá pasar entre las otras dos.

363. Supongamos que la superficie conocida representada por la ecuación \(z' = F(x', y') \) sea tal, que relativamente al punto comú

Z, se verifiquen (además de las dos ecuaciones \(p' = p, q' = q \)) también las tres ecuaciones \(r' = r, s' = s, t' = t \); la distancia \(D \) se reducirá á

\(\frac{k^2}{2} (u - u') + \frac{h^2}{2} (v - v') + \frac{h^2}{2} (\sigma - \sigma') \)

\(+ \frac{z^2}{2} \frac{dx}{dz} + \frac{z^2}{2} \frac{dy}{dz} \) &c., representando \(u, u', v, v', \sigma, \sigma' \) &c. las expresiones \(\frac{dx}{dz}, \frac{dy}{dz}, \frac{dz}{ds}, \frac{dz}{dt}, \frac{dz}{ds}, \frac{dz}{dty} \) &c. y en este caso, será fácil probar, de que tomando las cantidades arbitrarias \(k \) y \(\beta \) tan pequeñas como sea menester; la distancia \(D \) será menor que la distancia \(\Delta \) relativiva á otra superficie dada en la cual no se verifiquen semejantes ecuaciones; de donde se sigue que esta superficie no podrá pasar entre las otras dos; y así en adelante.

364. El contacto de la superficie dada con la propuesta en el punto común Z se llama de primer orden, cuando en dicho punto se verifican las dos ecuaciones \(p' = p, q' = q \); de segundo orden \(\Delta \) oscilación, cuando se verifican además las tres ecuaciones \(r' = r, s' = s, t' = t \), &c. El plano representado por la ecuación \(\gamma - z = p (\alpha - x) + q (\beta - y) \) (núm. 359) tiene con la superficie propuesta un contacto de primer orden.

365. Supongamos ahora que la superficie dada sea una esfera (fig. 102). Será su ecuación \((x' - a') + (y' - b') + (z' - c') = a' \), representando \(a, b, c \) las coordenadas que fixan la posición de su centro respecto al origen común \(A \), y \(a \) el radio; y como en el punto común \(Z \) es \(x' = x, y' = y, z' = z \); tendremos desde luego la ecuación

(1) \((x - a) + (y - b) + (z - c) = a \).

Diferenciando la ecuación propuesta; halleremos \(p' = - \frac{x' - a}{z - c} \), \(q' = - \frac{y' - b}{z - c} \), por lo que, si suponemos que en el mismo punto es \(p' = p \), y \(q' = q \), será también \(p = - \frac{x - a}{z - c}, q = - \frac{y - b}{z - c} \); ó bien

(2) \(a - x + p (y - z) = o, \) \(b - y + q (y - z) = o \).

Estas ecuaciones, considerando \(a, b, c, \gamma \) como variables; pertenecen á la normal ZG de la superficie propuesta en el punto \(Z \) (núm. 361.): de donde inferiremos que los centros de todas las es-

Y CURVAS DE DOBLE CURVATURE.

fera que tienen un contacto de primer orden con la superficie propuesta; están en la normal ZG del punto de contacto Z.

De las dos ecuaciones antecedentes, y de la ecuación (1) se infiere \(\alpha = x + \frac{ap}{\sqrt{(1 + p'^2 + q'^2)}}, \beta = y + \frac{aq}{\sqrt{(1 + p'^2 + q'^2)}}, \gamma = z - \frac{a}{\sqrt{(1 + p'^2 + q'^2)}}, \) y el radio \(a \) queda indeterminado.

366. Para que la esfera tuviese un contacto de segundo orden con la superficie propuesta; sería necesario que relativamente al punto de contacto se verifiques las tres ecuaciones \(r' = r, s' = s, t' = t \); pero como solo queda una cantidad arbitraria \(a \), no se podrá satisfacer á dichas ecuaciones; de donde inferiremos que la esfera no puede tener en general un contacto de segundo orden á oscilación con una superficie.

Pero si en lugar de la esfera, fuese dada una superficie cuya ecuación \(z' = F(x', y') \) incluye seis constantes arbitrarias; determinándolas por medio de las seis ecuaciones de condición relativas al contacto de segundo orden \(z = F(x, y), p' = p, q' = q, r' = r, s' = s, t' = t \); se verifican todas estas ecuaciones, y por consiguiente dicha superficie podrá tener en general un contacto de segundo orden con la superficie propuesta. Tal es, por ejemplo, la superficie engendrada por la rotación de un arco de círculo al rededor de su cuerda.

367. Aunque entre todas las esferas que tocan la superficie propuesta en el punto \(Z \), no hay ninguna que sea propiamente oscilatrix de dicha superficie; se puede determinar sin embargo la que se de una sección cualquiera hecha por un plano perpendicular en el punto \(Z \), y que por consiguiente pasa por la normal ZG.

Para ello supondremos nula la suma de los términos de segundo orden en la expresión de D, y dividiendo por \(k^2 \) tendremos la ecuación

(4) \(r - r' + 2 (s - s') \frac{k}{k} + (t - t') \frac{k^2}{k^2} = o \), la cual servirá para determinar el radio a de la esfera.

En efecto, de la ecuación de esta se infiere \(\frac{d^2}{dx^2} = \frac{d^2}{dy^2} = \frac{d^2}{dz^2} = \frac{1}{z - c}, s' = - \frac{z' - c}{z - c}, t' = - \frac{z' - c}{z - c} \); y sustituyendo estos valores en la ecuación antecedente, y teniendo presente que \(z' = z, p' = p, q' = q \), se transformará en

(5) \(\frac{1}{z - c} + r + 2 \left(\frac{1}{z - c} \right)^2 h = o \), la cual haciendo \(\frac{h}{k} = m \) da \(z - c = - \frac{1 + p'^2 + 2pm + (1 + q'^2)m^2}{r + 2m + m^2} \). Si para abreviar representamos por \(M \) el segundo miembro de esta ecuación, tendremos \(\gamma = z - M, \)
CAP. VIII. DE LAS SUPERFICIES CURVAS,
y comparando este valor de γ con el que hallamos en el núm. 365.,
resultará

\[a = M \sqrt{(1 + p^2 + q^2)}; \]

por consiguiente \(a = x + pM, \) y \(\beta = y + qM, \) y la esfera estará determinada en magnitud y posición.

Es claro, que en la esfera determinada de este modo; la distancia \(HZ = D, \) contendrá solamente terminos de un orden superior al segundo relativamente a \(k, \) y \(h; \) de donde inferiremos que ninguna otra esfera que toca la superficie propuesta en el punto \(Z \) podrá pasar entre los puntos \(H, Z' \) de la esfera antecedente y de la superficie propuesta, correspondientes á las coordenadas \(x + k, \)

\[y + h; \]

y por consiguiente la referida esfera será osculatrix de la superficie propuesta en la dirección \(ZZ' \) ó \(MM', \) en la cual es

\[mM' = \frac{k}{h} = m. \]

368. Si se corta la superficie propuesta con un plano que pasa por la normal \(ZG; \) el círculo máximo que resulta en la esfera osculatrix, será el círculo osculador de la sección correspondiente \(ZZ' \) de la superficie propuesta; por consiguiente el valor de \(a \) que hemos determinado, representa el radio de curvatura de una sección cualquiera \(ZZ' \) hecha por un plano que pasa por la normal \(ZG, \) y cuya posición depende de la relación arbitraria \(\frac{k}{h} = m. \)

Es de advertir, que como las cantidades \(k, h, \) se pueden suponer menores que cualesquiera cantidades dadas; \(m \) representará el límite de la razón \(\frac{h}{k} = \frac{dy}{dx}, \) por consiguiente será \(m = \frac{dy}{dx}, \) ó igual á la tangente del ángulo que la tangente en el punto \(M \) de la proyección de la sección \(ZZ' \) sobre el plano \(BAC, \) hace con el exé \(AB \) de las \(x. \)

369. Supongamos que entre la infinitud de valores que puede tener el radio de curvatura \(a \) correspondientes á los de \(m, \) se quieran determinar el máximo y el mínimo. Tendríamos desde luego la ecuación

\[\frac{da}{dm} = 0; \]

\(\alpha \) á causa de que \(\sqrt{(1 + p^2 + q^2)} \) no incluye \(m, \)

\[\frac{da}{dm} = 0; \]

por lo que \(M = \frac{1 + p^2 + 2pqm + (1 + q^2) m^2}{r + 2sm + tm^2}, \)

\(M = \frac{(r + 2sm + tm^2) + 1 + p^2 + 2pqm + (1 + q^2) m^2}{r + 2sm + tm^2}, \)

diferenciando esta ecuación, y suponiendo \(\frac{da}{dm} = 0, \) tendremos

\[(s + tm) M + pq + (1 + q^2) m = 0, \]

cuya ecuación combinada con la antecedente servirá para determinar \(m, \) y \(M. \)

Y CURVAS DE DOBLE CURVATURA.

Multiplicando por \(m \) esta ecuación y restándola de la antecedente, resultará

\[(r + sm) M + 1 + p^2 + pqm = 0. \]

Si eliminamos \(M \) por medio de estas dos ecuaciones, y hacemos para abreviar \(A = (1 + q^2) s + pqm, B = (1 + p^2) t + (1 + q^2) r, \)

\(C = (1 + p^2) s - pqr, \) tendremos la ecuación de segundo grado

\[Am^2 - Bm - C = 0, \]

y que da

\[m = \frac{B \pm \sqrt{(B^2 + 4AC)}}{2A}. \]

Restando la ecuación (6) multiplicada por \(t \) de la ecuación (5) multiplicada por \(s, \) hallaremos \(M = \frac{(1 + p^2) t - pqm}{t - rt}, \) y sustituyendo por \(m \) su valor y haciendo \(E = (1 + p^2) t + (1 + q^2) r - 2pqm, \) será

\[M = \frac{E \pm \sqrt{(B^2 + 4AC)}}{2(t - rt)}; \]

y por consiguiente

\[a = \frac{E \pm \sqrt{(B^2 + 4AC)}}{2(t - rt)} \cdot \frac{1 + p^2 + q^2}{(1 + p^2) t + (1 + q^2) r - 2pqm}. \]

370. De los dos valores del radio \(a, \) el uno es el máximo y el otro el mínimo. Hay pues en el punto \(Z (fíg. 102.) \) dos secciones perpendiculares á la superficie propuesta, de las cuales la una tiene la máxima curvatura, y la otra la mínima; y el ángulo que forman, depende de la cantidad \(m, \) igual á la tangente del ángulo que la tangente en el punto \(M \) de la proyección sobre el plano de las \(x \) y \(y, \) hace con el exé \(AB \) de las \(x. \) Pero como la posición de los planos de las coordenadas es arbitraria; si imaginamos que el plano de las \(x \) y \(y, \) se confunda con el plano tangente en el punto \(Z, \) y tomando en este punto el origen de las coordenadas (fig. 103.); el exé de las \(z \) se confundirá con la normal \(ZG, \) y la proyección de la sección \(ZZ', \) con la tangente \(ZT \) de dicha sección en el punto \(Z; \) los dos valores de \(m, \) representarán las tangentes respectivas de los ángulos \(BZT, BZT', \) que las tangentes de las secciones \(ZZ', ZZ' \) de la máxima y mínima curvatura hacen con el exé \(AB; \) y la diferencia \(TZ, \) de estos ángulos será el que forman dichas secciones: llamando pues \(a, \) y \(\beta \) los referidos ángulos, tendremos por las fórmulas trigonométricas tang. \(TZ = \tan (\beta - \alpha), \)

\[\frac{\tan \beta - \tan \alpha}{A - C} = \frac{\tan (\beta - \alpha)}{1 + \tan \beta \tan \alpha} = \frac{\sqrt{(B^2 + 4AC)}}{(1 + p^2) t + (1 + q^2) r - 2pqm}. \]

Pero en el supuesto actual (núm. 360.) es \(p = 0, \)

\(q = 0, \) y por lo mismo \(A = 0, B = t - r, C = s; \) serán pues \(A - C = 0, \) tang. \(TZ = \infty, \) y \(TZ = 90°. \) De donde concluiremos que las dos secciones de la mayor y menor curvatura en un punto cualquiera \(Z, \) de una superficie curva, son perpendiculares entre sí.

Si en las expresiones generales de \(a \) y de \(M (núm. 367.), \) hacemos \(p = 0, \) \(q = 0; \) tendremos \(a = M = \frac{1 + p^2 + q^2}{r + 2sm + tm^2}, \) re-
presentando \(m \) la tangente del ángulo que el plano secante hace con el plano \(BAD \) (fig. 102.) de las \(x \), \(y \) y \(z \); de donde se sigue que el radio de curvatura de la sección de este plano es \(\frac{dz}{dy} = \frac{dz}{dx} \).

371. En la transformación de las coordenadas, fixamos solamente la posición del plano \(BAC \) de las \(x \) y \(y \), haciendo coincidir con el plano tangente en el punto \(Z \) de la superficie propuesta; podemos además suponer que el plano de las \(x \) y \(z \), coincide con el plano \(TZG \) de una de las secciones de la máxima y mínima curvatura, en cuyo caso el plano de las \(y \), \(z \) se confundirá con el plano \(GZ \) de la otra sección, y el coeficiente diferencial \(s \) será nulo. Pues si en la ecuación \(Am^2 - Bm - C = 0 \) relativa al máximo y mínimo radio de curvatura, reemplazamos por \(A, B, C \) sus valores respectivos \(s, t - r, s \), se transformará en \(mn^2 - (t - r) m - s = 0 \); y como los dos valores de \(m \) son en este supuesto \(o \) es \(\infty \); tendremos en ambos casos \(s = 0 \).

Por consiguiente cuando el plano de las \(x \) y \(z \) coincide con uno de los planos de las secciones de la máxima y mínima curvatura; el radio \(a \) de una sección que pasa por el eje \(AD \) de la \(z \), y hace con dicho plano un ángulo cualquiera cuya tangente es \(m \), estará expresado por \(a = \frac{1 - x}{r + rm} \).

Es evidente que en el mismo supuesto los radios de la máxima y mínima curvatura en el punto \(Z \) son \(\frac{1}{r} \) y \(\frac{1}{t} \); de donde inferirán que estas curvaturas son como \(r \) es á \(t \).

372. Las máximas y mínimas ordenadas de una superficie curva; se determinan naturalmente por el método de máximos y mínimos de las funciones de dos cantidades variables expuesto en el núm. 274, y siguientes.

Desde luego, para que la ordenada \(z \) sea un máximo ó un mínimo es necesario que se verifiquen las dos ecuaciones \(\frac{dz}{dx} = 0 \), \(\frac{dz}{dy} = 0 \).

Es de advertir, que cuando estas ecuaciones se verifican (número 260.), el plano tangente es paralelo al de las \(x \), \(y \) y \(z \); de donde inferimos que la ordenada \(z \) sólo puede ser un máximo ó un mínimo en los puntos donde el plano-tangente es paralelo al de las \(x \), \(y \).

Además tendremos las condiciones expuestas en el núm. 274, que sería ocioso repetir aquí.

Supongamos por ejemplo que se nos piden las máximas y mínimas ordenadas \(z \) de la superficie representada por la ecuación \(ax^2 + by^2 + cz^2 = t^3 \). Diferenciándola, hallaremos \(z \) \(\frac{dz}{dx} = - \).
CAPÍTULO VII. DE LAS SUPERFICIES CURVAS.

Si consideramos ahora las ordenadas de ambas curvas correspondientes a la abscisa \(x = k \); las de la curva propuesta serán

\[
y + k \frac{d^2 y}{dx^2} + \frac{k^2}{2} \frac{d^2 y}{dx^2} + \&c., \quad z + k \frac{d^2 z}{dx^2} + \frac{k^2}{2} \frac{d^2 z}{dx^2} + \&c.,
\]

y la de la curva conocida

\[
y' + k \frac{d^2 y'}{dx^2} + \frac{k^2}{2} \frac{d^2 y'}{dx^2} + \&c., \quad z' + k \frac{d^2 z'}{dx^2} + \frac{k^2}{2} \frac{d^2 z'}{dx^2} + \&c.
\]

Sentado esto, como en el punto común \(Z \), es \(y' = y \), y \(z' = z \), la diferencia de las nuevas ordenadas de las proyecciones sobre el plano \(BAC \), que llamaremos \(\delta \), será

\[
k \left(\frac{d y}{dx} - \frac{d y}{dx} \right) + \frac{k^2}{2} \left(\frac{d^2 y}{dx^2} - \frac{d^2 y}{dx^2} \right) + \&c.,
\]

y la diferencia \(\Delta \) de las nuevas ordenadas de las proyecciones sobre el plano \(BAD \),

\[
k \left(\frac{d z}{dx} - \frac{d z}{dx} \right) + \frac{k^2}{2} \left(\frac{d^2 z}{dx^2} - \frac{d^2 z}{dx^2} \right) + \&c.,
\]

y como la distancia entre el punto de la curva propuesta, y el de la curva dada, correspondientes a la abscisa \(x = k \), es igual a \(\sqrt{\delta^2 + \Delta^2} \); será fácil demostrar discurrendose del mismo modo que en el n úm. 362.; si fuese \(\frac{d y}{dx} = \frac{dy'}{dx'} \) y \(\frac{d z}{dx} = \frac{dz'}{dx'} \) sería imposible que otra curva cualquiera trazada por el punto \(Z \), en la cual no se verifiquen semejantes ecuaciones, pueda pasar entre dichas dos curvas.

Si además de las dos ecuaciones antecedentes se verificasen también estas dos

\[
\frac{d^2 y}{dx^2} = \frac{d^2 y}{dx^2}, \quad \frac{d^2 z}{dx^2} = \frac{d^2 z}{dx^2};
\]

se echaría de ver que toda otra curva trazada por el punto \(Z \) en la cual no se verifiquen todas estas ecuaciones, no podría pasar entre la curva propuesta y la conocida; y así en adelante.

375. Así, aplicando á las curvas de doble curvatura, las nociones de los contactos de diferentes órdenes que explicamos relativamente á las curvas planas en el núm. 166. y sig.; diremos, que las dos ecuaciones de condición

\[
\frac{dy}{dx} = \frac{dy}{dx}, \quad \frac{dz}{dx} = \frac{dz}{dx},
\]

entre una curva cualquiera y una curva dada ó conocida, determinan un contacto de primer orden; que las otras dos ecuaciones de condición

\[
\frac{dy}{dx} = \frac{dy}{dx}, \quad \frac{dz}{dx} = \frac{dz}{dx},
\]

representan un contacto de segundo orden; y así en adelante.

En general; representando siempre por \(y = \phi (x), \) \(z = \phi (x) \) las ecuaciones de la curva dada, y suponiendo que se pidan las condiciones necesarias para que esta curva tenga con la propuesta un contacto de un órden dado; tendremos relativamente al contacto de primer orden las cuatro ecuaciones

\[
y = \phi (x), \quad z = \phi (x), \quad \frac{dy}{dx} = \frac{dy}{dx}, \quad \frac{dz}{dx} = \frac{dz}{dx};
\]

para un contacto de segundo orden, tendremos además las dos ecuaciones

\[
\frac{dy}{dx} = \frac{dy}{dx}, \quad \frac{dz}{dx} = \frac{dz}{dx};
\]

y así en adelante.

A estas ecuaciones se satisface por medio de las constantes arbitrarias que contienen las funciones \(\phi (x), \phi (x) \), cuyo número debe ser por lo menos igual al de las ecuaciones de condición que el contacto exige.

376. Supongamos por ejemplo que la línea dada sea una recta \(TZ \), representada por las dos ecuaciones \(y = a + bx', \ z = c + ex' \). Para que esta recta tenga un contacto de primer orden con la curva propuesta; ó lo que es lo mismo, para que sea tangente de la curva propuesta en un punto cualquiera \(Z \), es necesario que se verifiquen las cuatro ecuaciones

\[
y = a + bx, \quad z = c + ex, \quad b = \frac{dy}{dx}, \quad e = \frac{dz}{dx};
\]

y sustituyendo los valores de \(b, \ e \) que expresan las dos últimas, en las dos primeras; tendremos \(y = x - \frac{dy}{dx}, \ c = z - \frac{dz}{dx}; \) y por consiguiente, las ecuaciones de la tangente \(TZ \) serán

\[
y' = y + (x' - x) \frac{dy}{dx}, \quad z' = z + (x' - x) \frac{dz}{dx}.
\]

Es de advertir que la primera de estas dos ecuaciones representa (n úm. 190, 6º) la tangente \(Z T' \) en el punto \(Z' \) de la proyección \(X' Z' \) determinado por las coordenadas \(x', \) \(y' \); y la segunda, la tangente \(Z'T'' \) de la proyección \(X'' Z'' \) en el punto \(Z' \) cuyas coordenadas son \(x', \ z' \) por consiguiente, las proyecciones \(Z'T, \ Z''T \) de la tangente \(ZT \) en un punto cualquiera \(Z \) de una curva de doble curvatura; son tangentes en los puntos correspondientes \(Z', \ Z'' \) de las proyecciones de dicha curva sobre los planos \(BAC, \ BAD \).

377. Supongamos ahora que se quiera determinar el círculo osculador en un punto cualquiera \(Z \) de la curva propuesta \(XZ \).

Las ecuaciones generales de un círculo trazado sobre un plano cualquiera, se hallan de un modo muy sencillo, suponiéndole formado por la intersección de dicho plano que pasa por el centro de una esfera; y en este supuesto, el centro y radio de la esfera lo son igualmente del expresado círculo.

La ecuación general de la esfera cuyo radio es \(r \), es

\[
(x' - a)^2 + (y' - b)^2 + (z' - c)^2 = r^2,
\]

representando \(a, \ b, \ c \) las constantes indeterminadas que fijan la posición del centro; y la ecuación de un plano cualquiera que pasa por dicho centro (n úm. 368.) es

\[
x' - a + m (y' - b) + n (z' - c) = 0;
\]

por consiguiente el sistema de estas dos ecuaciones, representa un círculo trazado sobre un
y CURVAS DE DOBLE CURVATURA.

y substituyendo estos valores en la ecuación \(I = \alpha^{2} + \beta^{2} + (y - b)\gamma + (z - c)\sigma = 0 \), hallaremos

\[
\begin{align*}
\frac{s}{\beta y - \alpha} & , \quad \frac{n}{\beta y - \alpha} = \frac{r}{\beta y - \alpha} ;
\end{align*}
\]

de donde se infiere

\[
\begin{align*}
(n - \beta)\gamma - (m - \alpha)\sigma &= \frac{\gamma^{2} + \sigma^{2} + (\beta y - \alpha s)^{2}}{\beta y - \alpha} ,
\end{align*}
\]

\[
A = \sqrt{[(\alpha^{2} + \beta^{2})\gamma + (\alpha^{2} + \beta^{2})\sigma + (\beta y - \alpha s)^{2}]} + \frac{r^{2} + s^{2} + (\beta y - \alpha s)^{2}}{\beta y - \alpha} ,
\]

\[
\begin{align*}
&= \sqrt{[(\alpha^{2} + \beta^{2})\gamma + (\alpha^{2} + \beta^{2})\sigma + (\beta y - \alpha s)^{2}]}, \quad \text{y por consiguiente}
\end{align*}
\]

\[
\begin{align*}
\frac{r}{\beta y - \alpha} = \frac{(1 + \alpha^{2} + \beta^{2})^{2}}{\beta y - \alpha} ,
\end{align*}
\]

Las cantidades \(a, b, c \), representan las coordenadas de la línea que es el lugar de todos los centros de curvatura de la curva propuesta; pero dicha línea no es por esto la evoluta de la propuesta como sucede en las curvas planas (núm. 160). Los límites que hemos escrito á esta obra, no nos permiten extendernos en esta materia, ni manifestar otras varias propiedades de las superficies curvas, y de las curvas de doble curvatura; y así nos contentaremos con aconsejar á los Lectores que deseen conocerlas, que vean las Memorias de Monge insertas en los tomos 9º y 10º de los Sabios extranjeros; los artículos 129. ..., 159. de la obra de Lagrange (1); y el capítulo V. del Cálculo diferencial de Lacroix.

(1) Théorie des fonctions analytiques, &c. Par J. L. Lagrange, de l' Institut-national.
CAPÍTULO IX.

Aplicación del cálculo diferencial a la Mecánica.

Antes de empezar las aplicaciones del cálculo diferencial a la Mecánica; expondremos con la posible brevedad, algunos principios fundamentales de esta ciencia; los cuales nos servirán igualmente en las aplicaciones del cálculo integral.

378. Un cuerpo está en reposo, cuando permanece constantemente en un mismo lugar. Pero si un cuerpo muda continuamente de lugar; entonces se dice que dicho cuerpo se mueve o está en movimiento.

Un cuerpo permanecería constantemente en su estado de reposo; si no hubiese alguna causa que le sacase de él, solicitándole al movimiento.

Del mismo modo; un cuerpo puesto en movimiento, continuaría moviéndose siempre en la misma dirección sin alteración alguna; si no fuese perturbado su movimiento por una causa cualquiera.

Quando un cuerpo en movimiento sigue constantemente la misma dirección; el movimiento se llama rectilíneo; pero si el cuerpo describe en su movimiento una línea curva; el movimiento es curvilíneo. Considerémonos primeramente el movimiento rectilíneo, prescindiendo de las masas de los cuerpos.

379. Si un cuerpo anda espacios iguales en tiempos iguales; o lo que es lo mismo, cuando los espacios que anda un cuerpo, son como los tiempos correspondientes; el movimiento se llama igual ouniforme. Pero si en tiempos iguales el cuerpo anda espacios desiguales, el movimiento es desigual o variable.

Así, el movimiento de un cuerpo que habiendo recibido un impulso, queda abandonado a sí mismo; es esencialmente uniforme y rectilíneo; y en esto consiste la primera ley del movimiento.

Puesto que en el movimiento uniforme, los espacios andados son proporcionales a los tiempos correspondientes; si representamos por e un espacio cualquiera andado desde el principio del movimiento; y por t el tiempo correspondiente; será $e = vt$, representando v una cantidad constante.

Es evidente que la cantidad del movimiento depende únicamente de la cantidad constante v: quiero decir que el movimiento de un cuerpo será tanto mayor, o que dicho cuerpo se moverá tanto más aprisa, cuanto mayor fuere dicha cantidad.

380. La cantidad constante v que mide el movimiento uniforme de un cuerpo, se llama la velocidad del movimiento. Por consiguiente; en el movimiento uniforme la velocidad es igual a la razón del espacio al tiempo.
un intervalo determinado de tiempo, si continuase uniformemente su accion cual era en dicho instante.

384. Supongamos que una fuerza aceleratrice constante, exerza su accion al principio de cada intervalo determinado θ de tiempo: quier-
ro decir, que al principio de cada intervalo constante de tiempo θ,
de un impulso al cuerpo, comunicandole una velocidad constante $c = a$. Las velocidades respectivas del cuerpo durante cada uno de los
intervalos sucesivos, serán a, $2a$, $3a$, $4a$, ..., na: de manera que si llama-
mamos v la velocidad al cabo del tiempo $t = n\theta$; seria $v = na = \frac{t^2}{\theta}$.

Por consiguiente las velocidades adquiridas, al fin de cada intervalo θ del tiempo, son como los tiempos corridos desde el principio del
movimiento.

385. Como el movimiento del cuerpo es uniforme durante cada uno de los intervalos θ de tiempo; los espacios que describe sucesi-
vamente (núm. 380.) serán $a\theta$, $2a\theta$, $3a\theta$, $4a\theta$, ..., $n a\theta$; y la suma de estas
cantidades sera el espacio total andando en el tiempo $t = n\theta$: por lo que,
llamando e este espacio, sera $e = \frac{n(n + 1)}{2} a\theta = \frac{v^2}{2} + \theta$.

386. Supongamos ahora que la fuerza aceleratrice, obre continuamente
en el móvil sin intermission alguna. El intervalo θ sera cero
en este supuesto; y por consiguiente tendremos $e = \frac{v^2}{2}$.

El movimiento se llama en este caso uniformemente acelerado, á causa de la acceleration continua y uniforme de la velocidad.

Si suponemos que al cabo del tiempo t, cese la accion de la fuer-
za aceleratrice; el móvil continuará uniformemente su movimiento con
la velocidad adquirida v; y (núm. 379.) andará en el tiempo t un
espacio $= ut$, duplo del espacio e que describió en el mismo tiempo en
virtud de la accion continua y uniforme de la fuerza aceleratrice.

Por consiguiente en el movimiento uniformemente acelerado, el espa-

cio que el cuerpo describe en un tiempo cualquiera; es la mitad de lo
que andaria uniformemente en el mismo tiempo con la velocidad adquirida.

387. Puesto que las velocidades adquiridas son proporcionales á
los tiempos correspondientes; si suponemos que la velocidad adqui-
rida en cada unidad de tiempo (como un segundo) sea p; la veloci-

cidad correspondiente al tiempo t sera pt: tendremos pues $v = pt$,
y $t = \frac{v}{p}$; y substituyendo sucesivamente estos valores en la equa-
cion $e = \frac{v^2}{2}$ la transformaren respectivamente en $e = \frac{p^2}{2} t^2$, $e = \frac{2v}{3p}$.

De donde concluirémos, que en el movimiento uniformemente acelerae-
don t: Los espacios andados desde el principio del movimiento; son pro-
porcionales á los quadrados de los tiempos o de las velocidades correspon-
dientes. 2º Los tiempos y las velocidades son como las raíces quadradas
de los espacios.

Á LA MECÁNICÁ.

La cantidad constante p, es la medida de la fuerza aceleratrice; y
por consiguiente, el movimiento del cuerpo sera tanto mayor, quan-
to mayor fuere dicha cantidad, la cual se suele llamar simplemente
la fuerza aceleratrice.

388. De las ecuaciones $v = pt$, $e = \frac{p^2}{2} t^2$; se infiere $p = \frac{v}{t}$, $p =
\frac{2v}{t^2}$: Por consiguiente; la fuerza aceleratrice, es igual á la razón
de la velocidad al tiempo; ó al duplo de la razón del espacio, al qua-
drado del tiempo.

Si representamos el tiempo t por la recta AP (fig. 105.); y la
velocidad correspondiente v por la perpendicular PM; la línea AMF
que termina las velocidades, sera recta; y formará con el AP un ân-
gulo PAM, cuya tangente sera igual á la fuerza aceleratrice p.

389. Tambien se suele tomar por medida de la fuerza acelerace-
triz, el espacio $\frac{p^2}{2}$ que el cuerpo anda en la primera unidad del
tiempo; y en esto no puede haber inconveniente alguno, con tal
que todas las fuerzas que se consideran, se aprecien del mismo
modo.

Si la abscisa AP representa el tiempo t (fig. 106.); y la or-
denada perpendicular PM, el espacio correspondiente e; a causa de
e $= \frac{p^2}{2} t^2$, la línea AMC que termina los espacios, sera una par-
bola cuyo eje principal es AH perpendicular á AD; y el paráme-

390. Si al principio del tiempo t cuando empieza á obrar la fuerza aceleratrice, tuviése el cuerpo una velocidad cualquiera a en
la direccion de dicha fuerza; esta velocidad se uniria necesariamen-
te á la que produce la fuerza aceleratrice p. Por consiguiente, la
velocidad v al cabo del tiempo t, seria $= a + pt$; y el espacio an-
dado $e = at + \frac{p^2}{2} t^2$.

En este caso el movimiento del cuerpo se compondrá de los dos
movimientos parciales representados por los espacios correspondien-
tes $at + \frac{p^2}{2} t^2$; el primero uniforme, perteneciente á la velocidad con-
tante a que el móvil tenía al principio del tiempo t; y el segundo
uniformemente acelerado, causado por la fuerza constante p que obra
continuamente en dicho cuerpo.

Representando como antes, respectivamente el tiempo y el espa-
cio correspondiente, por las coordenadas perpendiculares AP, PM
(fig. 107.); la curva AMC que termina los espacios, sera una
parábola cuyo vértice estará en el punto B determinado por las coordenadas negativas $AE = -\frac{a}{p}$, $EB = -\frac{a}{2p}$; el eje principal será BG; y el parámetro $= \frac{a}{p}$.

391. La observación y la experiencia manifiestan que la fuerza de la gravedad; esto es, la fuerza que solicita los cuerpos a descender verticalmente, es una fuerza aceleradora constante en un lugar cualquiera de la tierra, prescindiendo de la resistencia del aire y de las masas obstáculos, y se determina observando la altura de la cual desciende un cuerpo en la primera unidad de tiempo de su caída.

Así, tomando siempre un segundo por la unidad del tiempo, si se supone que en un lugar determinado de la tierra, anda un cuerpo 15 pies en el primer segundo de su descenso, será (núm. 388.) $p = 15$ pies, $y p = 30$ pies. Por consiguiente, la fuerza de la gravedad será $= 30$ pies en dicho lugar; es decir, que comunicará un cuerpo una velocidad de 30 pies en cada segundo.

392. Cuando se quieren comparar entre sí varias fuerzas aceleratóricas, se suele tomar por unidad la fuerza de la gravedad en un lugar determinado de la tierra: en cuyo supuesto será $p = x$, $e = \frac{x}{2}$, y $v = t = \sqrt{2e}$.

La fuerza de la gravedad, y en general todas las fuerzas de atracción que se observan en la naturaleza; obran igualmente en cada una de las partículas materiales que componen un cuerpo, y por consiguiente les comunican la misma velocidad. De donde se sigue que el efecto que estas fuerzas producen, o la velocidad que comunican a un cuerpo en un tiempo determinado, es independiente del número de partículas materiales que le componen; esto es, independiente de la masa del cuerpo.

393. Por lo que toca a las fuerzas que obran exteriormente en los cuerpos; como son la acción de los resortes; la de la resistencia de los fluidos; las fuerzas de presión, &c., es claro que no pueden producir el mismo efecto cuando obran sobre masas desiguales; y que como todas las partículas de materia que componen un cuerpo resisten igualmente al movimiento; la fuerza que le mueve se debe apreciar por el número de partículas materiales, esto es por la masa del cuerpo multiplicada por la velocidad. Así; si llamamos ϕ una de estas fuerzas; M la masa del cuerpo; y V, la velocidad que le comunica en un tiempo determinado como de un segundo; tendremos $\phi = MV$.

De esta ecuación se infiere $V = \frac{\phi}{M}$, $M = \frac{\phi}{V}$; esto es, 1° Que la velocidad que comunica una fuerza ϕ a una masa M en un tiempo determinado, está en razón directa de la fuerza y inversa de la ma-

Á LA MECÁNICA.

394. Si la misma fuerza ϕ obrase sobre otra masa m, y le comunicase una velocidad v; sería también $\phi = mv$; por consiguiente $MV = mv$: de donde se infiere $V : v : m : M$; esto es que las velocidades que una misma fuerza comunica a dos masas diferentes M, m en un tiempo determinado, están en razón inversa de estas masas.

Del mismo modo demostraremos que cuando las masas son iguales, las fuerzas son como las velocidades; y que cuando las velocidades son iguales; las fuerzas están en razón de las masas.

395. El producto de la masa de un cuerpo por la velocidad, se llama la cantidad de movimiento de dicho cuerpo. Por consiguiente, las fuerzas que obran exteriormente se miden por la cantidad de movimiento que son capaces de producir en un tiempo determinado.

396. Como en las atracciones recíprocas de los cuerpos; cada partícula de masa del cuerpo que atrea, tiene la misma cantidad de atracción; la fuerza de atracción de dicho cuerpo será proporcional al número de sus partículas de materia; esto es, a su masa. Y como el efecto que estas fuerzas producen, es independiente de la masa del cuerpo sobre el cual obran; la velocidad que le comunican será simplemente proporcional a la masa del cuerpo atraído. Es innecesario que aquí prescindamos de la desigualdad de las fuerzas de atracción que provienen de las diferentes distancias a que obran.

La observación y la experiencia confirman diariamente estos principios.

397. Supongamos que en el punto A (fig. 108.) se le dé a un cuerpo un impulso en la dirección AD, el cual le comunica una velocidad uniforme a igual a a y otro impulso en la dirección AH perpendicular a AD, capaz de imprimir al móvil una velocidad constante b. Es claro, que como las direcciones de estos impulsos son perpendiculares entre sí; el impulso en la dirección AH no puede aumentar ni disminuir la velocidad a comunicada en la dirección AD; y recíprocamente, el impulso en la dirección AD no puede alterar la velocidad b comunicada en la dirección AH; de manera que cada una de estas velocidades se conservará del mismo modo que si existiese sola; por consiguiente, llamando x el espacio AP que el cuerpo anda en el tiempo t en la dirección AD; y el espacio $PM = AB$ andado en el mismo tiempo en la dirección AH; será (núm. 379.) $x = at$, $y = bt$; y eliminando el tiempo t, resultará $y = \frac{b}{a} x$, cuya ecuación pertenece á una recta AMC que pasa por el origen A de las coordenadas, donde forma con el eje AD un ángulo MAP cuya tangente es $\frac{b}{a}$.
El espacio $\mathcal{A}M$ que el móvil andará efectivamente en el tiempo t en virtud de las dos velocidades a, b, será $\sqrt{\left(a^2 + b^2\right)} = t\sqrt{\left(a^2 + b^2\right)}$; de donde concluimos que el movimiento compuesto que resulta de los dos movimientos uniformes comunicados en las direcciones AD, AH; es también uniforme y rectilíneo; y su velocidad es $\sqrt{\left(a^2 + b^2\right)}$.

398. El triángulo rectángulo $\mathcal{A}PM$ da $\cos MAP = \cos AMP = \sqrt{\left(a^2 + b^2\right)}$; de donde se infiere $\cos MAP = \frac{a}{\sqrt{\left(a^2 + b^2\right)}}$, $\cos MAP = \cos AMP = \frac{b}{\sqrt{\left(a^2 + b^2\right)}}$; y por consiguiente, que la dirección de la velocidad compuesta es $\sqrt{\left(a^2 + b^2\right)}$, forma con los ejes AD, AH los ángulos $\mathcal{A}MP, \mathcal{A}MB$, cuyos cosenos son respectivamente $\frac{a}{\sqrt{\left(a^2 + b^2\right)}}$, $\frac{b}{\sqrt{\left(a^2 + b^2\right)}}$.

Es evidente que si representamos respectivamente las velocidades a, b por las rectas Ap, Ab, y formamos el paralelógrafo $\mathcal{A}bmp$, la velocidad compuesta $\sqrt{\left(a^2 + b^2\right)}$ será representada en cantidad y dirección por la diagonal $\mathcal{A}m$ de dicho paralelógrafo; y en esto consiste el principio fundamental de la composición del movimiento.

399. Si llamamos A la velocidad compuesta $\sqrt{\left(a^2 + b^2\right)}$; el ángulo MAP que su dirección forma con el eje AD; y β, el ángulo MAB que dicha dirección forma con el eje AH; tendremos $\cos \alpha = \frac{a}{\sqrt{\left(a^2 + b^2\right)}}$, $\cos \beta = \frac{b}{\sqrt{\left(a^2 + b^2\right)}}$; de donde inferiremos $a = A \cos \alpha = Ap$, $b = A \cos \beta = Ab$; y por consiguiente, que la velocidad $\mathcal{A}m$ es A de un movimiento uniforme, en una dirección cualquiera AC; se puede resolver en dos velocidades $A \cos \alpha$, $A \cos \beta$ en las direcciones AD, AH; perpendiculares entre sí, las cuales forman con la recta AC los ángulos $\mathcal{A}MP = \alpha$, $\mathcal{A}MB = \beta$, cuyas velocidades son por consiguiente los lados Ap, Ab del paralelógrafo rectángulo $\mathcal{A}bmp$. Este es el principio fundamental de la resolución o descomposición del movimiento.

400. Supongamos que un cuerpo se le comuniquen á un mismo tiempo dos velocidades representadas en cantidad y dirección por las líneas $AB = A$, y $AC = B$ (fig. 108.); las cuales forman con los ejes AD, AH los ángulos $BAD = \alpha$, $CAD = \alpha'$, $BAD = \beta, CAH = \beta'$; si resolvemos cada una de estas velocidades en otras dos en las direcciones AD, AH; la suma de las velocidades en la dirección AD será $A \cos \alpha + B \cos \alpha'$, y $A \cos \beta + B \cos \beta'$ en la dirección AH; y en virtud de lo que acabamos de demostrar, estas velocidades darán una velocidad única que llamaremos C; de manera, que llamando λ, μ, los ángulos que la dirección de esta velocidad forma con los ejes AD, AH; tendremos las dos equa-

401. La composición y resolución de las fuerzas se executa del mismo modo y por los mismos principios que la de las velocidades.

En efecto; si suponemos que las líneas $Ap = p$, $Ab = q$ (fig. 108.) representan dos fuerzas aceleratorias constantes que solicitan á un mismo tiempo un móvil en las direcciones respectivas AD, AH perpendiculares entre sí; la fuerza q, no aumentará ni disminuirá el efecto de la fuerza p; y recíprocamente, esta no podrá alterar la acción de la fuerza q; por consiguiente, el espacio $AP = x$ andado en el tiempo t en virtud de la fuerza aceleratriz p, será (n. 388.) $\frac{p}{2}t^2$; y el espacio $AB = PM = y$ producido en el mismo tiempo por la acción continua de la fuerza q será $\frac{q}{2}t^2$; y eliminando el tiempo t, resultará la ecuación $y = \frac{q}{p}x$, la cual pertenece á una recta $\mathcal{A}MC$ que pasa por el origen A de las coordenadas, formando con el eje AD un ángulo cuya tangente es $\frac{q}{p}$.

Por consiguiente, el espacio $\mathcal{A}M$ que el móvil anda efectivamente en el tiempo t en virtud de la acción continua de las dos fuerzas p, q será $\sqrt{\left(x^2 + y^2\right)} = \sqrt{\left(\frac{p}{2}t^2 + \frac{q}{2}t^2\right)} = \sqrt{\left(p^2 + q^2\right)}t^2$; el cual pertenece á un movimiento uniformemente acelerado cuya fuerza aceleratriz es $\sqrt{\left(p^2 + q^2\right)} = \mathcal{A}m$.

Por donde se manifiesta, que la resultante de las dos fuerzas aceleratorias $Ap = p$, $Ab = q$ perpendiculares entre sí, es la diagonal $\mathcal{A}m$.

II
CAP. IX. APLICACION DEL CÁLCULO DIFERENCIAL

del paralelógrafo Abmp, la cual forma con las direcciones Ap, Ab los ángulos CAD, CAH cuyos cosenos son respectivamente \(\frac{p}{\sqrt{p^2 + q^2}} \) y \(\frac{q}{\sqrt{p^2 + q^2}} \).

402. De aquí se sigue, que todo quanto hemos demostrado en los números antecedentes relativamente a la composición y resolución de las velocidades; se verifica igualmente respecto de las fuerzas aceleratrices.

Así, si un móvil se halla solicitado a un mismo tiempo por las dos fuerzas \(AB = P \), \(AC = Q \) cuyas direcciones forman con los exes \(AD \), \(AH \) (fig. 109) los ángulos \(BAD = \alpha \), \(BAH = \beta \), \(CAD = \omega \), \(CAH = \beta \); la resultante de estas fuerzas será la diagonal \(AE \) del paralelógrafo \(ABEC \); y llamando \(R \) esta resultante, y \(\lambda \), \(\mu \) los ángulos \(EAD \), \(EAH \) que forma con los referidos exes; se verificarán las dos ecuaciones \(R \cos \lambda = P \cos \alpha + Q \cos \omega \), \(R \cos \mu = P \cos \beta + Q \cos \beta \).

En general, un número cualquiera de fuerzas aceleratrices conocidas en cantidad y dirección, se podrán reducir a dos en las direcciones \(AD \), \(AH \) perpendiculares entre sí; y estas darán una fuerza única, cuya cantidad y dirección será fácil conocer.

403. Sentados estos principios, pasemos á hacer las aplicaciones del cálculo diferencial; y consideremos desde luego un movimiento rectilíneo cualquiera acelerado o retardado, prestando atención a las masas de los cuerpos.

Supongamos que el tiempo crece uniformemente, y le representen las abscisas \(AP \), \(AP', AP'' \) (fig. 110); y que las ordenadas paralelas \(PM, PM, PM' \), expresen los espacios correspondientes, andados en virtud de la acción continua de una fuerza cualquiera: la línea curva \(BMC \) que termina estos espacios, será convexa o convexa hacia el eje \(AD \) de las abscisas, según fuese el movimiento retardado o acelerado.

Supongamos que el movimiento sea acelerado; y que al cabo del tiempo \(AP = t \), cese de repente la acción de la fuerza aceleratriz. Es evidente que el móvil continuará moviéndose uniformemente con la velocidad que tiene en el punto \(M \); esto es al cabo del tiempo \(t \).

Por lo que, si tomamos la recta \(MF \) paralela á \(AD \) para representar los tiempos del movimiento uniforme; la línea que termina los espacios correspondientes, será (núm. 280) una recta \(MT \); y como uno cualquiera \(E \) de estos espacios correspondientes a los tiempos \(PP' \), es menor que el espacio correspondiente \(PM' \) que el móvil hubiese andado en el mismo tiempo en virtud del movimiento acelerado; la recta \(Mn \) estará toda entera entre la curva \(MM' \) y el eje \(AD \).

Si tomamos el intervalo \(PP = PP' \), y tiramos la ordenada \(PM' \) prolongándola hasta que encuentre en \(E \) la \(MF \), y en \(p \) la prolongación de \(TM \); como la velocidad del móvil aumenta continuamente, el espacio cualquiera \(Fu = Ep \) andado uniformemente en el tiempo correspondiente \(PP' \), será mayor que el espacio \('ME \) andado efectivamente en el tiempo \(PP = PP' \); por consiguiente, la recta \(pMn \) que pasa por el punto \(M \) de la curva, estará toda entera entre y el eje \(AD \), y por lo mismo será tangente en el punto \(M \).

De donde se sigue, que si llamamos \(e \) el espacio \(PM \) correspondiente al tiempo \(AP = t \); y \(v \) la velocidad al cabo del mismo tiempo; á causa (núm. 130) de tang. \(FMT = \frac{de}{dt} \), será (núm. 380) en general \(v = \frac{de}{dt} \).

404. Si el movimiento fuese uniformemente acelerado; la velocidad adquirida (núm. 384) \(v \), sería proporcional al tiempo \(t \); y por consiguiente \(\frac{dv}{dt} = pt \), siendo \(p \) una cantidad constante. Comparando esta ecuación con \(\frac{dy}{dx} = \frac{x}{a} \) (núm. 135), inferirémos que la curva \(AMC \) (fig. 106) que termina estos espacios, es una parábola cuyo eje principal es la recta \(AH \) perpendicular al \(AD \), y el parámetro \(= \frac{p}{2} \); lo mismo que hallamos antes (núm. 388).

Por consiguiente, \((AP') = \frac{1}{p} \) \(PM \), \(\omega = \frac{p}{2} t \); y concluiremos como antes (núm. 387.), que en el movimiento uniformemente acelerado, los espacios andados desde el principio del movimiento, son proporcionales á los cuadrados de los tiempos \(\omega \) (á causa de \(t = \frac{v}{p} \)) de las velocidades correspondientes.

405. Supongamos que la abscisa \(AP \), represen te el tiempo \(t \); y la ordenada perpendicular \(PM \) (fig. 110), la velocidad correspondiente \(v \) de un movimiento variable cualquiera; y que tomando al uno y otro lado del punto \(P \); los intervalos iguales \(PP, PP' \) tan pequeños como se quisiere; la fuerza aceleratriz aumente durante el intervalo de tiempo \(PP' \); la parte correspondiente \('MM' \) de la curva \(BMC \) que termina las velocidades, será convexa hacia el eje \(AD \). Esto supuesto; si imaginamos que en el punto \(M \) al cabo del tiempo \(t \), cesen las causas que hacen variar la fuerza aceleratriz que llamámos \(q \); esta fuerza continuará obrando uniformemente en el cuerpo: por que, tomando en la línea \(MF \) paralela á \(AD \) los tiempos del movimiento uniformemente acelerado que empieza al cabo del tiempo \(t \); las velocidades correspondientes se terminarán en una recta \(MT \), la cual por un razonamiento semejante al del núme-
CAP. IX. APLICACIÓN DEL CÁLCULO DIFERENCIAL.

252, demostraremos que es tangente en el punto M de la curva BMC.

Por consiguiente tendrémonos (n. 388.) \(\varphi = \tan(\text{TMF}) = \frac{dv}{dt} ; \) y como \(v, \) es igual \(\frac{de}{dt} ; \) será (núm. 81.) también \(\varphi = \frac{de}{dt^2}. \)

Luego, si en un movimiento rectilíneo cualquiera se consideran el espacio \(e, \) y la velocidad \(v \) como funciones del tiempo correspondiente \(t: \) el coeficiente diferencial \(\frac{de}{dt} \) expresará la velocidad; y \(\frac{dv}{dt} \), es el coeficiente diferencial de segundo orden \(\frac{dv}{dt^2} , \) la fuerza aceleratriz.

De donde se sigue, que conociendo el espacio en función del tiempo; se conocerán inmediatamente la velocidad y la fuerza aceleratriz correspondientes á un tiempo cualquiera.

Por ejemplo: como en el movimiento uniformemente acelerado; los espacios son proporcionales á los cuadrados de los tiempos; será \(e = at^2, \) representando \(a \) una cantidad constante. Será pues \(v = \frac{de}{dt} = 2at, \) y \(\varphi = \frac{dv}{dt} = \left(\frac{e}{t}\right)^2 = \frac{2e}{t^2} ; \) por donde se ve, que en el movimiento uniformemente acelerado, la velocidad es proporcional al tiempo y igual al producto de la fuerza aceleratriz, por el tiempo; y la fuerza aceleratriz, igual á la razón de la velocidad al tiempo, ó al doble de la razón del espacio al cuadrado del tiempo; lo mismo que hallamos en el núm. 388.

426. En lo dicho en los números antecedentes hemos supuesto que el movimiento era acelerado: pero se echa de ver, que si el movimiento fuese retardado; las expresiones de la velocidad y de la fuerza retardatriz, serían las mismas que hemos hallado, con sólo la diferencia; de que como en este caso la fuerza \(\varphi \) obra en una dirección opuesta á la del movimiento actual del cuerpo, sera negativa, y por lo mismo \(\varphi = \frac{dv}{dt} = -\frac{de}{dt^2} \).

427. Las expresiones generales de la velocidad y de la fuerza aceleratriz en un movimiento rectilíneo cualquiera; se pueden también hallar con suma generalidad, elegancia y sencillez por medio del teorema de Taylor.

En efecto; si llamamos \(e, \) el espacio \(PM \) (fig. 111.); \(v, \) la velocidad; y \(\varphi, \) la fuerza aceleratriz correspondientes al tiempo \(AP = t, \) y representamos por \(\theta \) el tiempo \(MF = PP \) que comienza cuando \(t \) fenece: el espacio \(FM' \) correspondiente al tiempo \(\theta, \) será (núm. 133.) \(\frac{de}{dt} \theta + \frac{1}{2} \frac{de}{dt^2} \theta^2 + \frac{1}{6} \frac{de}{dt^3} \theta^3 + &c.; \) y considerando los términos sucesivos de esta expresión, como otros tan-

tos espacios parciales de que se compone el espacio total \(FM', \) echar-remos de ver; que como solamente el primero \(\frac{de}{dt^2} \theta, \) corresponde á un movimiento uniforme, cuya velocidad es \(\frac{dv}{dt}; \) todos los demas pertenecerán necesariamente á la acción de la fuerza aceleratriz durante el tiempo \(\theta. \) Por consiguiente; si suponemos que en el punto \(M \) al cabo del tiempo \(t, \) cese la acción de dicha fuerza; los términos \(\frac{1}{2} \frac{de}{dt^2} \theta^2, \frac{1}{6} \frac{de}{dt^3} \theta^3, \) &c. que dependen de ella, serán cero, y el espacio andado por el móvil en el tiempo \(\theta, \) se reducirá á \(\frac{de}{dt} \theta. \) Pero según acabamos de observar, este espacio se refiere á un movimiento uniforme cuya velocidad es \(\frac{de}{dt}; \) luego la velocidad al cabo de un tiempo cualquiera \(t \) será \(\frac{de}{dt} ; \) y tendremos en general \(v = \frac{de}{dt}. \)

Como de todos los espacios parciales \(\frac{1}{2} \frac{de}{dt^2} \theta^2, \frac{1}{6} \frac{de}{dt^3} \theta^3, \) &c. que produce la fuerza aceleratriz en el tiempo \(\theta, \) solamente el primero es proporcional al cuadrado de dicho tiempo, y por lo mismo pertenece á un movimiento uniformemente acelerado (núm. 387.); los demás \(\frac{1}{6} \frac{de}{dt^3} \theta^3, \) &c., dependerán precisamente de las causas que hacen variar la acción de la fuerza aceleratriz \(\varphi \) durante el tiempo \(\theta. \) Por consiguiente; si suponemos que en el instante en que fenece el tiempo \(t, \) y comienza el tiempo \(\theta, \) cesen estas causas; los términos \(\frac{1}{6} \frac{de}{dt^3} \theta^3, \) &c. que producen serán nulos, y por lo mismo el espacio andado se reducirá en este supuesto á \(\frac{1}{2} \frac{de}{dt^2} \theta^2, \) de donde inferiremos (núm. 388.) \(\varphi = \frac{de}{dt^2}. \)

De la ecuación \(v = \frac{de}{dt} ; \) se infiere \(\frac{dv}{dt} = \frac{de}{dt}, \) y por consiguiente será también \(\varphi = \frac{de}{dt}. \)

428. En el supuesto de que la acción de la fuerza aceleratriz cese al cabo del tiempo \(AP = t; \) los espacios andados con la velocidad uniforme \(\frac{de}{dt}, \) se terminarán (núm. 380.) en una recta \(MT, \) la cual forma con la recta \(MF' \) que representa el tiempo \(\theta, \) un ángulo \(\text{TMF} \) cuya tangente es igual á la velocidad. Será pues tang. \(\text{TMF} \)
254. CAP. IX. APLICACION DEL CÁLCULO DIFERENCIAL

\[\frac{dt}{dt} \] y por consiguiente (núm. 130.) inferiremos que la recta MT es tangente en el punto M de la curva BMC.

409. He aquí las ecuaciones fundamentales del movimiento rectilíneo de los cuerpos. Por lo que toca al movimiento curvilíneo; se reduce por los principios de la composición y resolución del movimiento a dos ó tres movimientos rectilíneos, según se mueve el cuerpo en un solo plano o en planos diferentes.

En efecto; si suponemos que el móvil describe su movimiento la curva AMC (fig. 112.), y que al cabo del tiempo t, se halle en el punto M; llamando x el espacio AP andado en la dirección del eje AD de las abscisas; ey, el espacio PM en la dirección del eje AH de las ordenadas; estos espacios serán igualmente que el espacio curvilíneo AM, funciones del tiempo t.

Por consiguiente; siempre que se conozcan los valores de dichos espacios en t, eliminando esta variable, resultará una ecuación entre x y y, la cual expresará la naturaleza de la curva AMC que el móvil describe.

410. Si el movimiento no se hiciese en un solo plano, la curva descrita por el cuerpo sería de doble curvatura (fig. 115.); y la refeririamos a los tres exes AB, AC, AD perpendiculares entre sí, por medio de las coordenadas rectangulares AP = x, PM = y, MZ = z.

Supongamos que el cuerpo se halle en el punto Z al cabo del tiempo t; las coordenadas x, y, y z, representarán respectivamente los espacios andados en las direcciones AB, AC, AD, y por lo mismo serán funciones del tiempo t. Por lo que, si suponemos que se conozcan estas funciones; eliminando el tiempo t, resultará una relación entre x, y, y z, la cual expresará la curva de doble curvatura que el cuerpo describe en su movimiento.

De todo esto se infiere, que las ecuaciones \(\frac{dx}{dt} = \frac{d\varphi}{dt} = \frac{dy}{dt} \) relativas al movimiento rectilíneo, se aplican igualmente a un movimiento curvilíneo cualquiera; y en general se puede decir que son el fundamento de toda la teoría del movimiento, según veremos mas adelante.

411. Para dar un ejemplo de lo que acabamos de exponer acerca del movimiento curvilíneo; nos proponemos determinar la naturaleza de la curva que describen los proyectos; esto es de la curva AMBC (fig. 114.) que describe un cuerpo arrojado en la dirección AT obliquo al horizonte, prescindiendo de la resistencia del aire.

Llamemos a el ángulo TAD que la recta AT forma con la horizontal AD; y h, la altura de la cual debería caer un cuerpo pa-
CAP. IX. APLICACIÓN DEL CÁLCULO DIFERENCIAL

sea \(MT \), y llamamos \(\alpha \) el ángulo \(TMB \) que forma con la \(MB \) paralela a \(AD \), y \(\beta \) su complemento tendremos las ecuaciones

\[
\begin{align*}
v \cos \alpha &= \frac{dx}{dt}, & v \cos \beta &= v \sen \alpha &= \frac{dy}{dt}.
\end{align*}
\]

Dividiendo la ecuación \(v \sen \alpha = \frac{dy}{dt} \) por \(v \cos \alpha = \frac{dx}{dt} \), tendremos tang. \(\alpha = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \). Ademas, si llamamos \(e \) el arco del espacio \(AM \), será (núm. 134, 60°)

\[
\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \frac{de}{dt} = v. \text{ De donde inferiremos}
\]

1° Que si se representa por \(e \) el espacio curvilíneo cualquiera \(AM \) que el móvil describe en el tiempo \(t \), y por \(v \) la velocidad correspondiente; será \(v = \frac{de}{dt} \), del mismo modo que si el movimiento fuese rectilíneo.

2° Que la dirección \(MT \) de dicha velocidad es tangente a la curva en el punto \(M \) (núm. 120.)

3° Por consiguiente, si las fuerzas que obran en el cuerpo cesan sus acciones en el punto \(M \) al cabo del tiempo \(t \); dicho cuerpo continuaría su movimiento en la tangente \(MT \) con la velocidad constante \(v \) que tenía en el punto \(M \).

414. La fuerza aceleratriz del cuerpo en la dirección \(AD \) será en el punto \(M \), \(\frac{d^2x}{dt^2} \) (núm. 405.), y en la dirección \(AH \), \(\frac{d^2y}{dt^2} \); por lo que si llamamos \(R \) la fuerza resultante de estas dos; y \(\lambda, \mu \) los ángulos que su dirección forma con los exes \(AD, AH \), tendremos

\[
\begin{align*}
R &= \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2}, & \frac{d^2x}{dt^2} &= R \cos \lambda, & \frac{d^2y}{dt^2} &= R \cos \mu = R \sen \lambda.
\end{align*}
\]

Así; si se conociesen las leyes del movimiento del cuerpo; esto es, los valores de \(x, \) \(y \) en \(t \); diferenciando dos veces estos valores se conocerían fácilmente por medio de las dos ecuaciones anteceden- tes la fuerza aceleratriz \(R \), y el ángulo \(\lambda \) que determina su di- rección; pero si, al contrario, se conociere la fuerza aceleratriz \(R \), y el ángulo \(\lambda \) que fixa su dirección como sucede en casi todos los problemas de la mecánica; sería necesario para hallar los valores de \(x, y \) en \(t \), integrar las dos ecuaciones diferenciales de segundo orden

\[
\begin{align*}
\frac{d^2x}{dt^2} &= R \cos \lambda, & \frac{d^2y}{dt^2} &= R \sen \lambda. \text{ De aquí es, que las aplicaciones del cálculo diferencial á la Mecánica son en muy corto número; y al contrario, se hace un uso continuo del cálculo integral en dicha ciencia.}
\end{align*}
\]

414. Llamemos \(\sigma \) el ángulo que la dirección de la fuerza \(R \) hace con la tangente \(MT \); será \(\sigma = \pm \lambda = \alpha \), y la acción de la fuerza \(R \) en la dirección \(MT \), \(= R \cos \sigma = R \left(\cos \lambda \cos \alpha + \sen \lambda \sen \alpha \right) \); por lo que multiplicando la ecuación \(\frac{d^2x}{dt^2} = R \cos \lambda \) por \(\cos \alpha \), y la ecuación \(\frac{d^2y}{dt^2} = R \sen \lambda \) por \(\sen \alpha \), y sumándolas, tendremos \(\frac{d^2x}{dt^2} \cos \alpha + \frac{d^2y}{dt^2} \sen \alpha = R \cos \sigma \). Pero si se diferencia la

ecuación \(\frac{d^2x}{dt^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \) relativamente á \(t \), y se subs- tituye luego por \(\frac{d^2x}{dt^2} \cos \alpha \), y \(\sen \alpha \) en

\[
\begin{align*}
\frac{dy}{dt} \frac{d^2x}{dt^2} &= \frac{d^2x}{dt^2} \cos \alpha \left\{ \frac{d^2x}{dt^2} + \frac{d^2y}{dt^2} \right\} = R \cos \alpha \left\{ \frac{d^2x}{dt^2} + \frac{d^2y}{dt^2} \right\} \text{ resultará } \frac{d^2x}{dt^2} \frac{d^2x}{dt^2} + \frac{d^2y}{dt^2} \frac{d^2y}{dt^2} = R \cos \alpha \frac{d^2x}{dt^2} + R \cos \alpha \frac{d^2y}{dt^2} = \frac{d^2x}{dt^2} + \frac{d^2y}{dt^2}.
\end{align*}
\]

Lugar de \(\frac{d^2x}{dt^2} + \frac{d^2y}{dt^2} = R \cos \sigma \) luego será \(\frac{d^2x}{dt^2} = R \cos \sigma \); luego la fuerza aceleratriz \(R \cos \sigma \) en la dirección \(MT \) del movimiento actual del cuerpo es igual á \(\frac{d^2x}{dt^2} \), del mismo modo que si el movimiento fuese rectilíneo.

Si representamos por \(p, q \), las fuerzas aceleratrices en las direc- ciones \(AD, AH \); será \(\frac{d^2x}{dt^2} = p, \frac{d^2y}{dt^2} = q \). Sentado esto: diferenciando la ecuación \(v^2 = \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 \) hallarémos \(\frac{dv}{dt} = \frac{dx}{dt} + \frac{dy}{dt} \), de donde se infiere \(\frac{dv}{dt} = \frac{dx}{dt} + \frac{dy}{dt} \), de donde se infiere \(\frac{dv}{dt} = \frac{dx}{dt} + \frac{dy}{dt} \).

\[
\begin{align*}
p \frac{dx}{dt} + q \frac{dy}{dt} &= \frac{dx}{dt} + \frac{dy}{dt} \quad \text{de donde se infiere } \frac{dv}{dt} = \frac{dx}{dt} + \frac{dy}{dt}.
\end{align*}
\]

Si se supone que el cuerpo está solicitado por una sola fuerza \(p \) en la dirección del exo \(AD \); será \(q = 0 \), y por consiguiente \(\frac{dv}{dt} = p \frac{dx}{dt} \).
415. Si el móvil se hallase solicitado en el punto M correspondiente al tiempo \(t \) por dos fuerzas \(P, Q \), de las cuales la primera forma con los exes \(AD \), \(AH \) los ángulos \(\lambda, \mu \); y la segunda los ángulos \(\lambda', \mu' \); la fuerza total en la dirección \(AD \) seria \(P \cos \lambda + Q \cos \alpha \); y en la dirección \(AH \), \(P \cos \mu + Q \cos \mu' = P \sin \lambda + Q \sin \lambda' \); pero los espacios andados en las mismas direcciones son respectivamente \(x \times y \); luego (núm. 405.) será \(\frac{dx}{dt} = P \cos \lambda + Q \cos \lambda' \), \(\frac{dy}{dt} = P \cos \mu + Q \cos \mu' \); y lo mismo diríamos respecto de un número cualquiera de fuerzas.

416. Cuando el cuerpo desciende en el movimiento de ayuda de doble curvatura, se refiere á los tres exes \(AB, AC, AD \) (fig. 113.) por medio de las tres coordenadas perpendiculares \(AP = x, PM = y, MZ = z \), las cuales son los espacios andados en las mismas direcciones correspondientes al tiempo \(t \). Por consiguiente, las velocidades en las direcciones \(AB, AC, AD \) serán respectivamente \(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \); de las cuales resulta una velocidad compuesta = \[
\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}
\]
la que llamaremos \(v \), cuya dirección forma con dichos exes tres ángulos cuyos cosenos son respectivamente \(\cos \alpha, \cos \beta, \cos \gamma \); de manera, que llamando \(\alpha, \beta, \gamma \); estos ángulos, tendremos las tres ecuaciones \(\frac{dx}{dt} = v \cos \alpha, \frac{dy}{dt} = v \cos \beta, \frac{dz}{dt} = v \cos \gamma \).

Si representamos por \(e \) la curva ó espacio curvilíneo que el cuerpo describe en el tiempo \(t \), y le consideramos como función de \(t \); serán \(\frac{de}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} = v \); por consiguiente la velocidad del móvil correspondiente al tiempo \(t \), será como en el movimiento rectilíneo \(\frac{de}{dt} \).

Tomemos las rectas \(ZM, ZP, PM, MN \) paralelas á los exes \(AB, AC, AD \) para representar las velocidades \(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \) en las direcciones de estos exes: la velocidad \(v \), será representada en cantidad y dirección (núm. 397.) por la recta \(ZN \), cuya proyección sobre el plano \(BAC \) será \(ZM \), y tendremos tang. \(MN = \frac{dy}{dt} : \frac{dx}{dt} = \frac{dy}{dz} \). Del mismo modo; la proyección de la línea \(ZN \) sobre el plano \(BAD \), formaría con el exo \(AB \) un ángulo cuya tangente es \(\frac{dz}{dt} : \frac{dx}{dt} = \frac{dz}{dy} \).

Luego estos ángulos (núm. 375.) serán los mismos que forman con el exo \(AB \) las proyecciones de la tangente en el punto \(Z \) sobre los planos \(BAC, BAD \), y por consiguiente la dirección \(ZN \) de la velocidad será la tangente de la curva en el punto \(Z \). De donde concluimos (del mismo modo que en el movimiento en un solo plano) que si las fuerzas que obran continuamente en el móvil, cesasen de repetir sus acciones en el punto \(Z \), el móvil continuaria moviéndose uniformemente en la dirección \(ZN \) de la tangente en el punto \(Z \), con la velocidad \(\frac{de}{dt} \) que tenía en dicho punto.

Las fuerzas acelerativas del cuerpo en las direcciones \(AB, AC, AD \), serán respectivamente \(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}, \frac{d^2z}{dt^2} \), de las cuales resulta una única \(R = \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2 + \left(\frac{d^2z}{dt^2}\right)^2} \), cuya dirección hace respectivamente con dichos exes los ángulos \(\lambda, \mu, \omega \); de manera que será \(\frac{d^2x}{dt^2} = R \cos \lambda, \frac{d^2y}{dt^2} = R \cos \mu, \frac{d^2z}{dt^2} = R \cos \omega \).

417. Cuando el cuerpo se halla solicitado por un número cualquiera de fuerzas \(P, Q, &c. \); la primera de las cuales forma con los exes \(AB, AC, AD \) los ángulos \(\lambda, \mu, \omega \); la segunda, los ángulos \(\lambda', \mu', \omega' \); &c.; la suma de las fuerzas en la dirección \(AB \), será \(P \cos \lambda + Q \cos \lambda' + &c. \); en la dirección \(AC \), \(P \cos \mu + Q \cos \mu' + &c. \); y en la dirección \(AD \), \(P \cos \omega + Q \cos \omega' + &c. \); de donde resultarán las tres ecuaciones \(\frac{d^2x}{dt^2} = P \cos \lambda + Q \cos \lambda' + &c.; \frac{d^2y}{dt^2} = P \cos \mu + Q \cos \mu' + &c.; \frac{d^2z}{dt^2} = P \cos \omega + Q \cos \omega' + &c. \).

Si llamamos respectivamente \(p, q, r \) estas fuerzas; diferenciando la ecuación \(v^2 = \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2 \), tendremos \(\frac{d}{dt} = \frac{dx}{dt} \), \(\frac{dy}{dt} + \frac{dx}{dt} \); \(\frac{dz}{dt} + \frac{dx}{dt} \).

418. En lo demostrado en los números antecedentes, hemos hecho abstracción de las masas de los cuerpos que las fuerzas solicitan; y como las fuerzas se miden por el efecto que producen en un tiempo determinado, cuyo efecto está en razón directa de la fuerza (núm. 394.) es inversa de la masa; cuando se quiere llevar en cuenta la masa del cuerpo solicitado por una fuerza, es necesario dividir el valor absoluto de dicha fuerza por la masa.

Así; suponiendo que sea \(M \) la masa del cuerpo en movimiento, las ecuaciones del núm. 416. serán \(\frac{d^2x}{dt^2} = \frac{R}{M} \cos \lambda, \frac{d^2y}{dt^2} = \frac{R}{M} \cos \mu, \frac{d^2z}{dt^2} = \frac{R}{M} \cos \omega \).
\textbf{Á LA MECANICA.}

Supongamos que el movimiento se haga en un solo plano, y que la fuerza aceleratriz sea perpendicular a la del movimiento, y por consiguiente la velocidad del cuerpo será siempre la misma. De donde se sigue, que si la llamamos \(a \) y \(t \) el tiempo empleado en andar un espacio \(o \) arco cualquiera \(DM \), será este \(= at \). Pero llamando \(r \) el radio \(AD \), será también \(DM = r \); tendrémos pues \(\lambda = \frac{a}{r} \) y \(\frac{dr}{dt} = \frac{a}{r} \). Substituyendo este valor en la ecuación (a); y observando que en este caso \(\frac{dr}{dt} \) es cero; se transformará en \(R = \frac{a}{r} \).

Por donde se ve, que en el movimiento circular, la fuerza central es igual al cuadrado de la velocidad comunicada dividido por el radio.

Propongámonos por segundo ejemplo, el determinar por medio de las dos primeras leyes de Kepler, la naturaleza de la fuerza que solicita continuamente los planetas hacia el sol, y en virtud de la cual describen sus órbitas respectivas.

Aquel célebre Astrónomo era de opinión que los planetas describían sus órbitas respectivas en virtud de una fuerza que se dirigía constantemente hacia el sol; y observó: Que suponiendo que sea \(A \) el centro del sol (fig. 115.); \(M \) un planeta; y \(DMB \) la curva que describe en su movimiento; la superficie del sector \(MAD \) es proporcional al tiempo empleado en describirla (1); y en este consiste la primera ley de Kepler.

Esta propiedad de la fuerza central que descubrió Kepler por la observación; fue luego demostrada por Newton con suma facilidad (2),

(1) De \textit{Stella Matar}, pág. 165 y fig.
(2) \textit{Philosophiae naturalis principia mathematica}. Lib. I. Secc. II. Prop. I.
por medio de la primera ley del movimiento (núm. 379.), y de la proposicion núm. 400.

La segunda ley de Kepler, consiste en que la curva DMB que un planeta cualquiera describe, es una elipse, en cuyo foco A está el centro del sol.

De donde se sigue, que si llamamos a el exes mayor BD; ab, el exes menor; e, la excentricidad; s, el sector MAD; t, el tiempo correspondiente; r, el radio vector AM; y λ, el ángulo MAD, se rá
\[r^2 = \frac{1}{2} (\text{núm. 298.}); \]
pero como s y λ se deben considerar como funciones del tiempo t, multplicaremos la ecuación antecedente por \(\frac{dt}{dt} \), y tendremos
\[\frac{dr}{dt} \frac{ds}{dt} = \frac{dr}{dt} \frac{ds}{dt} = \frac{dt}{dt} = \frac{dr}{dr} \frac{ds}{dt} \]

Diferenciando la ecuación de la elipse relativamente a t, tendremos
\[\frac{dr}{r^2} \frac{dr}{dt} = -e \frac{dr}{dt} \frac{ds}{dt} \]

y substituyendo por \(\frac{dt}{dt} \) su valor, \(\frac{dr}{dt} \)
\[= -2 \frac{r^3}{v^2} \frac{ds}{dt} \]

Volviendo á diferenciar, hallaremos \(\frac{dr}{dt} \frac{dr}{dt} = -2 \frac{r^3}{v^2} \frac{dr}{dt} \)

Por lo que se infiere que \(\frac{ds}{dt} \) es el cambio de la excentricidad de la elipse, \(\frac{dr}{dt} \) es el cambio de la distancia del planeta al sol.

La fuerza D la que el planeta siente es la que actúa sobre él de la misma manera que actúa la fuerza de gravedad en el centro del sol, y es proporcional al producto de la masa del planeta por la fuerza de gravedad en el centro del sol.

La fuerza de gravedad en el centro del sol es proporcional á la masa del sol, y proporcional al cuadrado de la distancia del planeta al sol.

La fuerza de gravedad es proporcional á la masa del planeta, y proporcional al cuadrado de la distancia del planeta al sol.

La fuerza que impulsa al planeta es proporcional á la masa del sol, y proporcional al cuadrado de la distancia del planeta al sol.

La fuerza que impulsa al planeta es proporcional á la masa del sol, y proporcional al cuadrado de la distancia del planeta al sol.

En efecto; substituyendo en la ecuación \(R = \frac{a^2}{r} \), \(\frac{a^2}{r} \) en lugar de \(a^2 \), se transformará en \(R = \frac{a^2}{r} \); pero llamando \(m \) la masa del cuerpo atraente, la fuerza \(R \) es igual á \(\frac{cm}{r^2} \); será pues \(\frac{cm}{r^2} = \frac{a^2}{r^2} \)

y \(m = \frac{g r^3}{h} \) haciendo \(\frac{cm}{r^2} = g \); por donde se ve, que la masa del cuerpo atraente es proporcional al cubo de la distancia \(r \) dividido por el cuadrado de la revolución periódica \(\lambda \).

De donde se infiere que si llamamos \(m \), la masa de un planeta; \(r \), la distancia media de dicho planeta á uno de sus satélites; \(\lambda \) la revolución periódica de este; \(m' \), la masa del sol; \(r' \), su distancia media á la tierra; y \(\lambda' \) la revolución periódica de esta ó el año sidereal; tendremos \(m : m' :: \frac{r^3}{r'} ^2 : \frac{r^3}{r'} ^2 \).

Por consiguiente, tomando la masa \(m' \) del sol, la distancia correspondiente \(r' \), y el año sidereal \(\lambda' \), por las unidades respectivas de las masas, de las distancias, y de las revoluciones periódicas; serán \(m = \frac{r^3}{r'} \).

Si para determinar la masa de Júpiter por ejemplo, suponemos que su distancia media \(r \) al quarto satélite es \(=0,012512 \); la revolución periódica de dicho satélite 16,689 días; y el año sidereal 365,256 días; será \(h = 0,043901 \), y \(m = \frac{r^3}{r'} = \frac{1}{166} \); cuyo resultado manifiesta que la masa de Júpiter es \(= \frac{1}{166} \) de la del sol.

Con igual facilidad se determinará la masa de Saturno, y la de Herschel ó Urano.

FIN DEL TOMO PRIMERO.