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en Londres; y por estar siempre disponibles cuando los necesito. También nombrar

a Rosa, Fran, Elvira, Elena, Marta y Cristina porque con ellos he podido salir de

la rutina y relajarme en los momentos de más tensión.
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Abstract

The aim of this PhD thesis is to address least-squares estimation problems

in discrete-time linear systems from noisy measurements derived from multiple

sensors, affected by random parameters which model different situations of failure

in the mechanism or the transmission of the measurements. According to the kind

of systems considered, the main contributions of this PhD thesis are summarized

below:

Sensor network systems with uncertain observations. These systems describe

situations in which the mechanism of measurements may be randomly interrupted,

in the sense that, at each instant of time, there is a positive probability that the

corresponding observation is only noise, i.e., the observations may not contain in-

formation about the state. This kind of uncertainty is modeled by including in

the observation equation not only an additive noise, but also a multiplicative noise

component described by a sequence of Bernoulli random variables whose values,

one or zero, indicate the presence or absence of the state in the corresponding

measurement. In cases in which the Bernoulli variables are assumed to be corre-

lated at instants that differ by m units of time, on the one hand, centralized and

distributed fusion linear estimators are designed (Chapter 1) and, on the other,

in order to improve the linear estimators, quadratic estimators are obtained using

the centralized fusion method (Chapter 2).

Sensor network systems with failures in the measurements, in which the obser-

vations from the different sensors may contain only partial information about the

1



2 Abstract

state. This kind of failure is more general than the previous one and it is described

by a sequence of independent random variables with discrete probability distribu-

tion over the interval [0, 1]. For this class of systems, under the assumption that

the system additive noises are autocorrelated and also cross-correlated, recursive

linear filtering algorithms are derived using the centralized and distributed fusion

methods (Chapter 3).

Sensor network systems with random parameter matrices. This kind of systems

constitute a more general framework than the previous ones since the state and/or

the observation equations may be affected by random parameter matrices, thus cov-

ering numerous real situations with random failures in the measurements. First,

we consider independent random state transition matrices, and one-step correlated

and cross-correlated random parameter matrices in the observation equation; it is

also assumed that the system noises are autocorrelated and cross-correlated. Us-

ing the centralized fusion method, a recursive linear filtering algorithm is obtained

and the results are applied to multi-sensor systems with failures in the measure-

ments described by random variables with discrete distribution over the interval

[0, 1], and to multi-sensor systems with randomly delayed observations (Chapter

4). Second, the linear estimation problem in systems with independent random

parameter matrices and correlated noises is addressed, using the distributed fusion

method (Chapter 5). Finally, centralized quadratic estimators are obtained in

systems with independent random parameter matrices and noises, and they are

applied to systems with random failures in the measurements, described by differ-

ent sequences of random variables with discrete probability distribution over the

interval [0, 1] (Chapter 6).
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Resumen

Esta tesis doctoral tiene como objetivo el estudio de problemas de estimación

mı́nimo cuadrática en sistemas lineales en tiempo discreto a partir de observaciones

ruidosas procedentes de múltiples sensores, afectadas por parámetros aleatorios que

modelizan diferentes tipos de fallo en el mecanismo de medidas o en la transmisión

de las mismas. A continuación se resumen las principales aportaciones de la tesis

en función del tipo de sistemas considerado:

Sistemas de redes de sensores con observaciones inciertas. Dichos sistemas

modelizan situaciones en las que el mecanismo de medidas puede interrumpirse

aleatoriamente de forma que, en cada instante de tiempo, existe una probabilidad

positiva de que la observación correspondiente sea únicamente ruido, es decir, no

contenga información sobre el estado del sistema. Para modelizar este tipo de

incertidumbre, se supone que las observaciones disponibles para la estimación están

afectadas, no solo por ruidos aditivos, sino también por una componente ruido

multiplicativa descrita por una sucesión de variables aleatorias de Bernoulli, cuyos

valores, uno o cero, indican la presencia o ausencia del estado en la observación

correspondiente. Suponiendo que dichas variables están correladas en instantes que

se diferencian m unidades de tiempo, por una parte, mediante los métodos de fusión

centralizado y distribuido, se estudia el problema de estimación lineal (Caṕıtulo 1)

y, por otra, con objeto de mejorar a los estimadores lineales, se obtienen estimadores

cuadráticos utilizando el método de fusión centralizado (Caṕıtulo 2).

Sistemas de redes de sensores con fallos en las medidas, en los que las observa-

3



4 Resumen

ciones de los distintos sensores pueden contener sólo información parcial del estado.

Este tipo de fallo es más general que el anterior y está descrito por una sucesión

de variables aleatorias escalares independientes con distribución de probabilidad

discreta en el intervalo [0, 1]. Para esta clase de sistemas, bajo la hipótesis de que

los ruidos aditivos del sistema son autocorrelados y también correlados entre śı, se

establecen algoritmos recursivos de filtrado lineal mediante los métodos de fusión

centralizado y distribuido (Caṕıtulo 3).

Sistemas de redes de sensores con matrices aleatorias. Estos sistemas consti-

tuyen un marco más general que los anteriores, ya que las ecuaciones del estado y/o

de las observaciones pueden estar afectadas por matrices aleatorias, lo cual per-

mite modelizar una amplia variedad de fallos aleatorios en las medidas. En primer

lugar, se considera que las matrices de transición del estado son independientes y

las matrices de la ecuación de observación son autocorreladas y correladas entre

śı en instantes consecutivos. Asimismo, los ruidos que intervienen en el sistema

se suponen autocorrelados y correlados entre śı. Utilizando el método de fusión

centralizado se obtiene un algoritmo recursivo de filtrado lineal y los resultados se

aplican a sistemas con múltiples sensores y fallos en las medidas modelizados por

variables con distribución discreta en el intervalo [0, 1], y también a sistemas con ob-

servaciones retrasadas aleatoriamente procedentes de múltiples sensores (Caṕıtulo

4). En segundo lugar, se aborda el problema de estimación lineal en sistemas con

matrices aleatorias independientes y ruidos correlados, utilizando el método de

fusión distribuido (Caṕıtulo 5). Finalmente, se obtienen estimadores cuadráticos

centralizados en sistemas con matrices aleatorias y ruidos independientes, y se apli-

can a sistemas con fallos aleatorios en las medidas, descritos mediante diferentes

sucesiones de variables con distribución discreta en el intervalo [0, 1] (Caṕıtulo

6).
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Introduction

In classical estimation theory for discrete-time linear stochastic systems, the

problem of estimating the state from related observations is addressed assuming

that the state is always present in the observations and that the disturbances

within them are described only by additive noises. The solution of this problem is

obtained from the conditional expectation of the state given the observations; that

is, from the optimal least-squares (LS) estimator. The Kalman filter provides a re-

cursive algorithm for the optimal LS estimator when the additive white noises and

the initial state are Gaussian and mutually independent (or, equivalently, uncorre-

lated due to the assumption of Gaussianity). This type of algorithm has received

considerable attention in the scientific community due to its wide applicability in

many practical situations, such as video and laser tracking systems, satellite navi-

gation and radar and meteorological applications [1]. Since the first publication of

the Kalman filter [2] in 1960, numerous results and several solution methods have

been reported about the state estimation problem from noisy observations. The

estimation algorithms proposed depend on the system model that represents the

possible relationships between the unknown state and the observable variables and

are also influenced by the assumptions about the noise processes.

In non-Gaussian systems, the Kalman filter only provides the LS linear estima-

tor and, in general, from a computational point of view, the optimal LS estimator

is difficult to obtain. In consequence, it is necessary to search for suboptimal

estimators that are better than the linear ones, while maintaining their recursivi-

5



6 Introduction

ty and simplicity of calculation. Along these lines, quadratic and arbitrary-order

polynomial estimation problems in linear systems with non-Gaussian noises have

been analyzed by [3] and [4], respectively. Furthermore, polynomial estimators

have been used to resolve various problems in the field of signal processing, such as

prediction, detection and control, as well as problems of image restoration (see, for

example, [5–7], among others) and it has been sufficiently proven that, in general,

polynomial estimators significantly outperform linear ones.

Systems with multiplicative noises in the state and/or observation equations

constitute another kind of non-Gaussian systems in which the Kalman filter does

not provide the optimal LS estimator and for which it is necessary to look for sub-

optimal estimators. Such systems have received considerable attention in recent

years, as this kind of formulation arises in many applications, for example image

processing problems and communication systems. Therefore, under different hy-

potheses and performance criteria, the LS linear estimation problem in systems

with multiplicative noises is now an active research area (see [8], [9], and references

therein).

Some classes of systems, where the influence of multiplicative noises affects

only the measurements of the model, have important applications, for example, in

cases in which there are intermittent failures in the observation mechanism, fading

phenomena in propagation channels, accidental losses of measurements or data in-

accessibility at certain times. This type of situation, termed systems with missing

measurements, is modeled by including in the observation equation, in addition to

the additive noise, a multiplicative noise component described by a sequence of bi-

nary random variables taking the values one and zero (Bernoulli random variables);

the value one indicates that the state is present in the corresponding measurement

at that time, whereas the value zero reflects the fact that the state is missing and,

hence, the corresponding observation is only noise. Nahi [10] first analyzed the

LS linear filtering problem in this kind of systems, assuming that the Bernoulli

PhD Thesis Irene Garćıa Garrido



Introduction 7

variables modeling the uncertainty in the observations are independent and that

the additive noises are uncorrelated, by obtaining an estimation algorithm with a

recursive structure similar to that of the Kalman filter. Subsequently, Monzingo

[11] completed these results by analyzing the LS smoothing problem. Jaffer and

Gupta [12] studied the optimal estimation problem in this kind of systems, and

concluded that computation of the optimal estimator requires exponential memory

growth. This drawback motivates the development of a broad-based investigation

of the estimation problem in the face of missing measurements, focused on obtain-

ing suboptimal solutions under diverse assumptions about the state and the noise

processes involved in the model.

The treatment of practical situations in which the uncertainty of the obser-

vations cannot be represented by independent random variables (this occurs, for

example, in problems of signal transmission through multiple channels) was ini-

tially addressed by Hadidi and Schwartz [13] and by Monzingo [14], who estab-

lished recursive algorithms for obtaining linear filtering and smoothing estimators,

respectively. Jackson and Murthy [15] subsequently analyzed a different situation,

assuming that the variables modeling the uncertainty are correlated at consecutive

instants and that the proposed LS linear filtering algorithm can be applied, for

example, in signal transmission models with stand-by sensors in which any failure

in the transmission is detected immediately and the old sensor is then replaced,

thus avoiding the possibility of the signal being missing in two successive observa-

tions. Afterwards, in [16], the polynomial filtering and smoothing problems were

addressed under the same correlation assumption for the variables which model

the phenomenon of missing measurements.

In all of the above-mentioned papers, the observations available for the esti-

mation are assumed to come either from a single sensor or from multiple sensors

with identical uncertainty characteristics. In recent years, this approach has been

generalized to consider multi-sensor systems featuring different statistical proper-

PhD Thesis Irene Garćıa Garrido



8 Introduction

ties at each sensor, motivated by the increasing development of sensor networks for

data acquisition and signal processing, and by networked communication systems

involving heterogeneous measurement devices (see e.g. [17] and [18], among others).

Data measurements collected by sensors are usually imprecise. The uncertainty in

sensor data can arise from various sources, including the inherent limitations to

the accuracy with which the sensed data is acquired and external ones such as effi-

ciency or battery life. This reality means that missing measurements, time delays

and/or data packet dropouts often arise in multi-sensor systems. In addition, an

issue of great importance in multi-sensor systems is the data fusion technique em-

ployed, that is, how the measured data from the different sensors are combined to

address the estimation problem in order to achieve better estimations than could

be achieved by the use of a single sensor. The most common methods to manage

sensor data fusion in estimation problems are the centralized and distributed fusion

methods.

In the first of these methods, all the sensor data are transmitted to a central

processor (fusion center) where the data fusion is performed; specifically, the mea-

sured data from the different sensors are stacked as a single-sensor measurement,

from which the optimal LS linear estimators are derived. The optimal centralized

estimation problem, in the linear minimum variance sense, has been investigated

for sensor network systems including some of the aforementioned sources of uncer-

tainty in the observation mechanism. Specifically, centralized linear estimators are

derived in [19], in which the phenomenon of missing measurements is described by

sequences of independent Bernoulli variables; and in [20], where centralized linear

and quadratic estimation problems are addressed under the assumption that the

Bernoulli random variables modeling the uncertainty at each sensor are correlated

at consecutive sampling times. The centralized estimation problem in multi-sensor

systems with random delays is also addressed in [21], [22] under different delay

rates for the different sensors; and in [23], [24] for systems with multiple sensors of

PhD Thesis Irene Garćıa Garrido



Introduction 9

different packet dropout rates.

Nevertheless, the centralized fusion method has various drawbacks, including

poor survivability and reliability, exacting communication requirements and high

computational cost. Various distributed fusion algorithms have been proposed to

overcome these disadvantages. In the distributed fusion method, each sensor esti-

mates the state based on its own measurement data, and this estimate is then sent

to the central processor (fusion center), where the fusion is performed in accordance

with a specific information fusion criterion. For example, under the assumption of

normal distribution, a distributed fusion estimator is proposed in [25], based on

the maximum likelihood criterion, and [26] propose the distributed fusion criterion

weighted by matrices in the linear minimum variance sense, which is equivalent

to the maximum likelihood fusion criterion under the normality assumption. The

distributed fusion estimation method in networked systems with unreliable net-

work transmission, such as missing measurements, packet delays and dropouts,

has subsequently been used by [27–31], among others.

In most of the above-mentioned papers, the presence of independent white

noises is assumed; however, this assumption must be undermined in many real-

world problems, in which noise correlation may be present. This problem arises,

for example, when a target is taking an electronic countermeasure, e.g. noise jam-

ming [32], or if the system noises are state-dependent, and then there may be

cross-correlation, both between different sensor noises and between process noise

and sensor noises. Moreover, if all the sensors are observed in the same noisy en-

vironment, the measurement noises of different sensors are usually correlated. In

view of these considerations, the estimation problem in systems with correlated

noises has become an important research topic. Whithin this context, the optimal

Kalman filtering fusion problem in systems with cross-correlation between the pro-

cess noise and the measurement noises at the same sampling time is addressed in

[33]. In general, when the noise process and the measurement noises are correlated
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and cross-correlated at different sampling times, it is difficult to obtain optimal

estimators; this limitation has spurred broader research into suboptimal Kalman-

type estimation problems. A Kalman-type recursive filter is presented in [34] for

systems with finite-step correlated process noises, and the filtering problem with

multi-step correlated process and measurement noises is investigated in [35]. The

optimal robust non-fragile Kalman-type recursive filtering problem is studied in

[36] for a class of uncertain systems with finite-step autocorrelated measurement

noises and multiple packet dropouts. Finally, the problem of distributed weighted

robust Kalman filter fusion is studied in [37] for linear systems with state-dependent

multiplicative noise and autocorrelated and cross-correlated noises.

Clearly, systems with multiplicative noises in the state and/or observation

equations are special cases of systems with random parameter matrices, which

have important practical applications in many areas, such as the digital control

of chemical processes, radar control, navigation systems or economic systems, and

the estimation problem in this type of systems has acquired significant research

interest (see, for instance [38] and references therein). The linear filtering problem

in systems with independent random state transition and measurement matrices

has been addressed in [39] and [40], who transformed the original system into one

with deterministic parameter matrices and state-dependent process and measure-

ment noises, to which the Kalman filter was applied. In [39], the Kalman filter is

applied without providing any theoretical justification, while in [40], it is shown

that in undemanding conditions, the transformed system satisfies the Kalman fil-

ter requirements and, hence, optimal linear estimators are derived for systems with

independent random parameter matrices. Considering scalar measurements with

random observation matrices, the quadratic LS filtering problem was recently ad-

dressed in [41], who applied the Kalman filter to a suitably augmented system with

deterministic observation matrices.

However, there are many practical situations in which the random parameter

PhD Thesis Irene Garćıa Garrido
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matrices are not independent; for example, when random sensor delays and/or

multiple packet dropouts are converted into observation models with random mea-

surement matrices [42], or when a nonlinear system is linearized around the random

state estimate to apply the extended Kalman filter (for other realistic systems and

backgrounds where the model parameter matrices are random and correlated, see

[43] and [44]). In [45], systems with deterministic transition matrices and one-step

correlated random measurement matrices are considered, and the optimal recursive

state estimation is derived by converting the observation equation into one with

deterministic measurement matrices and by applying the optimal Kalman filter to

the case of one-step correlated measurement noises. For sensor network systems

with random parameter matrices and autocorrelated and cross-correlated noises,

the linear estimation problem has been addressed by [46] and by [47], among others.

The above comments constitute a brief overview of the background and the

current state of the different problems addressed in the six chapters of this PhD

thesis. A more specific analysis is presented in the introduction to each of these

chapters. The general aim of the thesis is to study LS estimation problems in

discrete-time linear systems from noisy measurements derived from multiple sen-

sors, affected by random parameters and which model different situations of failure

in the mechanism or the transmission of the measurements. Each of the chapters

constitutes an original paper in which a specific topic related to this study is ad-

dressed. Therefore, each chapter is presented as an independent paper, with its

own abstract, sections, appendices and references, in the same form as when it

was originally published or submitted. To date, the papers in chapters 1-4 have

been published and those in chapters 5 and 6 have been submitted and are under

review.

This PhD thesis is organized as follows. Chapters 1 and 2 consider linear

discrete-time stochastic systems with missing measurements derived from multiple

sensors when, at each sensor, the random variables modeling the missing mea-
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surements are correlated at instants that differ by m units of time. Centralized

and distributed fusion linear estimation problems are addressed in Chapter 1,

after which the centralized fusion quadratic estimation problem is addressed in

Chapter 2. Multi-sensor systems with missing measurements, with correlated and

cross-correlated noises, when the missing measurements phenomenon is described

by different sequences of scalar random variables with arbitrary discrete proba-

bility distribution over the interval [0, 1], are considered in Chapter 3, in which

the centralized and distributed fusion linear estimation problems are addressed.

Next, in Chapter 4, systems with independent random transition matrices and

correlated random parameter matrices in the observation equation, together with

correlated system noises, are considered. The centralized fusion linear filter for this

kind of systems is obtained and the results are applied to multi-sensor systems with

missing measurements and random delays. In Chapter 5, the distributed fusion

linear estimation problem in sensor network systems with independent random

parameter matrices and correlated noises is investigated. Finally, the centralized

quadratic filtering problem is addressed in Chapter 6, considering linear systems

with independent random parameter matrices and with noises.
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En la teoŕıa clásica de estimación en sistemas estocásticos lineales en tiempo

discreto, se aborda el problema de estimación del estado a partir de observa-

ciones relacionadas con él, suponiendo que el estado que se desea estimar está

siempre presente en las observaciones y que las perturbaciones de éstas se deben,

únicamente, a ruidos aditivos. La solución de este problema es la esperanza condi-

cionada del estado dadas las observaciones; es decir, el estimador óptimo de menor

error cuadrático medio. El célebre filtro de Kalman proporciona un algoritmo re-

cursivo para la obtención del estimador óptimo de mı́nimos cuadrados en sistemas

lineales bajo condiciones de gaussianidad e independencia mutua de los ruidos adi-

tivos y el estado en el instante inicial. Dicho algoritmo ha recibido considerable

atención en la comunidad cient́ıfica debido a sus diversas aplicaciones tecnológicas,

como por ejemplo, en sistemas de control modernos, sistemas de seguimiento láser

y navegación por satélite, meteoroloǵıa, etc. [1]. A partir de la publicación del

filtro de Kalman [2] en 1960, numerosos resultados han contribuido a la existencia

de una amplia literatura para tratar el problema de estimación del estado a partir

de observaciones ruidosas. Los algoritmos de estimación propuestos, dependen de

las relaciones establecidas entre el estado desconocido y las variables observables,

y también de las hipótesis sobre los procesos ruido.

Es importante resaltar que en sistemas no gaussianos el filtro de Kalman sólo

proporciona el estimador de menor error cuadrático medio en la subclase de es-

timadores lineales y, en general, el estimador óptimo es dif́ıcil de obtener desde

13



14 Introducción

el punto de vista computacional. Esta situación motiva la necesidad de buscar

estimadores subóptimos que mejoren al lineal, manteniendo sus propiedades de re-

cursividad y simplicidad de cálculo. En esta ĺınea, destacan los trabajos sobre esti-

mación cuadrática y polinomial de grado arbitrario en sistemas lineales con ruidos

no gaussianos establecidos en [3] y [4], respectivamente. Además, los estimadores

polinomiales tienen diversas aplicaciones en problemas de procesamiento de señales,

tanto en predicción, detección y control, como en problemas de restauración de

imágenes (véanse, por ejemplo, [5–7], entre otros) y, en términos generales, ha

quedado suficientemente probada la efectividad de los estimadores polinomiales

frente a los lineales.

Sistemas con ruidos multiplicativos en las ecuaciones del estado y/o de la obser-

vación constituyen otro tipo de sistemas no gaussianos en los que el filtro de Kalman

no proporciona el estimador óptimo y, por tanto, es necesario buscar estimadores

subóptimos. Esta clase de sistemas ha recibido gran atención recientemente, de-

bido a sus diversas aplicaciones prácticas como en problemas de procesamiento

de imágenes y sistemas de comunicación. Por lo tanto, bajo diferentes hipótesis

y tratamientos, el estudio del problema de estimación lineal en sistemas con rui-

dos multiplicativos se ha convertido en un área de investigación importante en los

últimos años (véanse, por ejemplo [8], [9], y sus referencias).

Algunos tipos de sistemas en que la influencia del ruido multiplicativo afecta

únicamente a las observaciones del modelo, son adecuados, por ejemplo, en el caso

de fallos intermitentes en el mecanismo de observación, pérdida accidental de algu-

nas medidas, o inaccesibilidad de datos durante ciertos instantes de tiempo. Este

tipo de sistemas, denominado sistemas con observaciones inciertas, incluyen en la

ecuación de observación, además de un ruido aditivo, una componente ruido mul-

tiplicativa, descrita por una sucesión de variables aleatorias de Bernoulli, cuyos

valores uno o cero, indican la presencia o ausencia del estado en la observación

correspondiente. Nahi [10] planteó por primera vez el problema de filtrado li-
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neal de menor error cuadrático medio en este tipo de sistemas, suponiendo que las

variables de Bernoulli que describen la incertidumbre en las observaciones son inde-

pendientes y los ruidos aditivos del sistema están incorrelados. Para ello desarrolló

un algoritmo recursivo, con estructura análoga a la del filtro de Kalman. Poste-

riormente, Monzingo [11] generalizó estos resultados para resolver el problema de

suavizamiento de menor error cuadrático medio. Jaffer y Gupta [12] abordaron

el problema de estimación óptima en sistemas con observaciones inciertas, con-

cluyendo que el cálculo del estimador óptimo requiere un crecimiento exponencial

de memoria. Este inconveniente motiva el desarrollo de una amplia investigación

en el problema de estimación en dichos sistemas, centrada en la búsqueda de es-

timadores subóptimos bajo diversas hipótesis sobre el estado y los procesos ruido

que intervienen en el modelo.

El tratamiento de situaciones prácticas en que la incertidumbre de las obser-

vaciones no puede representarse por variables aleatorias independientes (lo que

ocurre, por ejemplo, en problemas de transmisión de señales a través de múltiples

canales) fue abordado inicialmente por Hadidi y Schwartz [13] y Monzingo [14],

quienes establecieron algoritmos recursivos para la obtención del filtro y suavizador

lineal, respectivamente. Posteriormente, Jackson y Murthy [15] analizaron una

situación diferente, suponiendo que las variables que modelizan la incertidumbre

están correladas en instantes consecutivos y, el algoritmo de filtrado lineal de menor

error cuadrático medio propuesto pudo aplicarse, por ejemplo, en modelos de trans-

misión de señales con sensores stand-by programados para ser automáticamente

reemplazados al detectar la anomaĺıa, evitando de esta forma la posibilidad de

que el estado esté ausente en dos observaciones consecutivas. Más tarde, en [16]

se abordaron los problemas de filtrado y suavizamiento polinomiales bajo los mis-

mos supuestos de correlación sobre las variables que modelizan el fenómeno de

incertidumbre en las observaciones.

En todos los trabajos a los que se ha hecho referencia anteriormente, se supone
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que las observaciones disponibles para la estimación proceden de un único o de

varios sensores con las mismas caracteŕısticas de incertidumbre. En los últimos

años, este estudio se ha generalizado a sistemas con múltiples sensores con diferen-

tes propiedades estad́ısticas en cada sensor, motivado por el creciente desarrollo de

redes de sensores para la adquisición de datos y procesamiento de señales, y por la

utilización de sistemas de comunicación en red que incluyen dispositivos de medida

heterogéneos (véanse, por ejemplo [17] y [18], entre otros). La incertidumbre en

las medidas de los distintos sensores puede deberse a diversas fuentes, causadas

por limitaciones intŕınsecas en la precisión con la que se adquiere la información,

y limitaciones externas tales como la eficiencia o la duración de las bateŕıas. Por

lo tanto, la posibilidad de observaciones inciertas, retrasos en la recepción de las

medidas y/o pérdida de las medidas en ciertos instantes de tiempo se contem-

pla frecuentemente en sistemas con múltiples sensores. Una cuestión fundamental

para abordar el problema de estimación en dichos sistemas, es la técnica utilizada

para fusionar las medidas procedentes de los distintos sensores, con el fin de lo-

grar mejores estimaciones que las que se podŕıan alcanzar con la utilización de un

único sensor. Para combinar la información procedente de los diferentes sensores,

frecuentemente se utilizan los métodos de fusión centralizado y distribuido.

En el método de fusión centralizado, las observaciones procedentes de los sen-

sores se transmiten a un procesador central (centro de fusión) en el que se realiza

la fusión de la información. En concreto, en cada instante de tiempo, los datos

obtenidos de los diferentes sensores se combinan formando un único único vector de

medidas y, a partir de éstos, se obtienen estimadores lineales de mı́nimos cuadra-

dos. El problema de estimación óptima mediante el método centralizado se ha

investigado en sistemas de redes de sensores que incluyen en las observaciones al-

gunas de las incertidumbres mencionadas anteriormente. Espećıficamente, en [19]

se obtienen estimadores lineales centralizados suponiendo observaciones inciertas

descritas mediante sucesiones de variables de Bernoulli independientes; y en [20],
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se abordan los problemas de estimación lineal y cuadrática bajo el supuesto de

que las variables de Bernoulli que modelizan la incertidumbre en cada sensor son

correladas en instantes consecutivos. También se han obtenido estimadores centra-

lizados en sistemas con múltiples sensores con retrasos aleatorios en [21], [22] bajo

diferentes tasas de retraso en los diferentes sensores; y en [23], [24] para sistemas

con múltiples sensores y pérdidas aleatorias de medidas, considerando también

distintas tasas de pérdida.

El enfoque centralizado tiene algunos inconvenientes como, por ejemplo, el ele-

vado coste computacional, que usualmente pueden reducirse con el método de

fusión distribuido consistente en obtener, a partir de las observaciones procedentes

de cada sensor, estimadores lineales locales de mı́nimos cuadrados, y posterior-

mente dichos estimadores se env́ıan al procesador central (centro de fusión) donde

se realiza la fusión de la información aplicando un determinado criterio. Por ejem-

plo, bajo el supuesto de distribución normal, en [25] se propone un estimador fusión

distribuido basado en el criterio de máxima verosimilitud, mientras que en [26] se

utiliza el método de fusión distribuido lineal ponderado por matrices en el sentido

de mı́nima varianza, que es equivalente al anterior bajo hipótesis de normalidad.

Más tarde, el método distribuido se ha utilizado en redes de sensores en las que

los mecanismos de transmisión de las observaciones al procesador están sujetos a

fallos, tales como observaciones inciertas, retrasos en la recepción y/o pérdidas de

medidas en ciertos instantes de tiempo (véanse [27–31], entre otros).

En la mayoŕıa de los trabajos mencionados anteriormente, se consideran rui-

dos blancos independientes; sin embargo, dicha hipótesis puede ser restrictiva en

muchos problemas reales en que los ruidos pueden estar correlados. Esta situación

surge, por ejemplo, cuando se utilizan contramedidas electrónicas para impedir

que el enemigo identifique sus blancos, por ejemplo, interferencias [32], o cuando

los ruidos del sistema dependen del estado, y por tanto, puede haber correlación

cruzada entre los ruidos de las ecuaciones de observación y entre éstos con los de

la ecuación del estado. También, si todas las observaciones procedentes de los
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sensores se realizan en el mismo entorno ruidoso, los ruidos suelen ser correlados.

Teniendo en cuenta estos comentarios, el problema de estimación en sistemas con

ruidos correlados es un área de investigación importante, por ejemplo, en [33] se

aborda el problema de filtrado fusión óptimo de Kalman en sistemas con ruidos con

correlación cruzada en el mismo instante de tiempo. En general, cuando los ruidos

del sistema están correlados y tienen correlación cruzada en diferentes instantes de

tiempo, es dif́ıcil obtener estimadores óptimos; esta restricción ha fomentado una

investigación más amplia relacionada con los problemas de estimación subóptima

de tipo Kalman. En [34] se presenta un filtro recursivo de este tipo para sistemas

en que los ruidos del estado están correlados en un número finito de instantes de

tiempo, y en [35] se estudia el problema de filtrado en sistemas con ruidos del

estado y la observación correlados en múltiples instantes de tiempo. En [36] se

estudia el problema de filtrado recursivo de tipo Kalman robusto en sistemas con

pérdidas aleatorias de medidas y ruidos autocorrelados en un número finito de

instantes de tiempo. El problema de obtener el filtro fusión distribuido de tipo

Kalman robusto y ponderado se estudia en [37] para sistemas lineales con ruido

multiplicativo dependiente del estado e hipótesis de correlación.

Claramente, sistemas con ruidos multiplicativos en las ecuaciones del estado

y/o de la observación, son casos particulares de sistemas con matrices aleatorias

los cuales tienen aplicaciones prácticas importantes en áreas tales como control

digital de procesos qúımicos, control de radares, sistemas de navegación o sistemas

económicos. El problema de estimación en dichos sistemas ha sido ampliamente

investigado como puede verse, por ejemplo, en [38] y sus referencias. El problema

de filtrado lineal en sistemas con matrices aleatorias independientes, tanto en la

ecuación del estado como en la de las observaciones, se ha abordado en [39] y [40],

mediante la transformación del sistema original en uno con matrices determińısticas

y ruidos dependientes del estado, al que se le ha aplicado el filtro de Kalman. En

concreto, en [39] se aplicó el filtro de Kalman sin ninguna justificación teórica,
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mientras que en [40] se probó que, bajo ciertas condiciones, el sistema transformado

satisface las hipótesis necesarias para la aplicación del filtro de Kalman y, por

lo tanto, se obtienen estimadores lineales óptimos. Recientemente, suponiendo

medidas escalares y matrices aleatorias en la ecuación de observación, en [41] se

aborda el problema de filtrado cuadrático, aplicándole el filtro de Kalman a un

sistema aumentado apropiado con matrices determińısticas.

Sin embargo, en diversas situaciones prácticas las matrices aleatorias no son in-

dependientes. Esto ocurre, por ejemplo, cuando los sistemas con retrasos aleatorios

y/o pérdidas se transforman en modelos de observación con matrices aleatorias [42],

o cuando un sistema no lineal se linealiza para aplicar el filtro de Kalman extendido

(otras situaciones en las que las matrices del sistema son aleatorias y correladas

pueden verse en [43] y [44]). En [45] se consideran sistemas con matrices de tran-

sición determińısticas y matrices de observación aleatorias correladas en instantes

consecutivos; mediante la transformación de la ecuación de observación en una

ecuación con matrices determińısticas y aplicando el filtro de Kalman, se obtiene

el estimador óptimo. El problema de estimación lineal en sistemas de redes de

sensores con matrices aleatorias y ruidos autocorrelados y con correlación cruzada

ha sido abordado en [46] y [47], entre otros.

Los comentarios anteriores constituyen un breve resumen sobre los antecedentes

y el estado actual de los diferentes problemas abordados a lo largo de los seis

caṕıtulos en los que se ha estructurado esta tesis doctoral. Un análisis más deta-

llado se establece en la introducción de cada uno de ellos. El objetivo general de

la tesis es el estudio de problemas de estimación mı́nimo cuadrática en sistemas

lineales en tiempo discreto con observaciones ruidosas procedentes de múltiples

sensores, afectadas por parámetros aleatorios que modelizan diferentes tipos de

fallo en el mecanismo o la transmisión de las medidas. Cada uno de los caṕıtulos

que la integran es un art́ıculo original en el que se aborda un tema espećıfico rela-

cionado con este estudio. Por lo tanto, cada caṕıtulo se presenta como un art́ıculo
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independiente, con sus propios abstract, secciones, apéndices y referencias, en la

misma forma en la que fueron publicados o sometidos. En el momento de la pre-

sentación de esta tesis, los art́ıculos de los caṕıtulos 1-4 han sido publicados y los

de los caṕıtulos 5 y 6 han sido sometidos y están bajo revisión.

Esta tesis está organizada de la siguiente forma. En los Caṕıtulos 1 y 2

se consideran sistemas estocásticos lineales en tiempo discreto con observaciones

inciertas procedentes de múltiples sensores cuando, en cada sensor, las variables

aleatorias que modelizan el fenómeno de observaciones inciertas están correladas

en instantes que se diferencian m unidades de tiempo. Para este tipo de sistemas,

en el Caṕıtulo 1 se abordan los problemas de estimación mediante los métodos de

fusión lineal centralizado y distribuido y, en el Caṕıtulo 2 se lleva a cabo el pro-

blema de estimación cuadrática mediante el método centralizado. En el Caṕıtulo

3 se consideran sistemas con múltiples sensores, ruidos correlados y con correlación

cruzada, y fallos en las medidas descritos por sucesiones de variables aleatorias es-

calares con distribución discreta en el intervalo [0,1]. Bajo dichas condiciones, se

establecen algoritmos recursivos de filtrado lineal mediante los métodos de fusión

centralizado y distribuido. A continuación, en el Caṕıtulo 4, se consideran sis-

temas con matrices aleatorias independientes en la ecuación del estado y correla-

das en la ecuación de observación, además de ruidos correlados. En este tipo de

sistemas se obtiene el filtro lineal utilizando el método de estimación fusión centra-

lizado y los resultados se aplican a sistemas con múltiples sensores y fallos en las

medidas modelizados por variables con distribución discreta en el intervalo [0,1],

y también a sistemas con observaciones retrasadas aleatoriamente procedentes de

múltiples sensores. En el Caṕıtulo 5 se estudia el problema de estimación li-

neal fusión distribuido en sistemas de redes de sensores con matrices aleatorias

independientes y ruidos correlados. Por último, el problema de filtrado cuadrático

centralizado se aborda en el Caṕıtulo 6, en el que se consideran sistemas lineales

con matrices aleatorias y ruidos independientes.
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A basic assumption in classical estimation theory for linear stochastic systems

is that the model parameter matrices are known; furthermore, the additive noises

and the initial state are assumed to be Gaussian and mutually independent. As is

well known, under these conditions, the systems are Gaussian and the Kalman filter

provides the conditional expectation of the state given the observations, that is,

the optimal LS estimator. However, there exist a considerable number of situations

in which the joint distribution of the state and the observations is not Gaussian

and the Kalman filter only provides the LS linear estimator. In these cases, the

optimal LS estimator is not a linear function of the observations and, generally,

cannot be readily obtained; this fact has motivated the search for suboptimal

estimators which are computationally easier, such as linear estimators or, more

generally, polynomial estimators.

In some real situations where sensor networks are used, the state estimation

problem is addressed under the assumption that, at each sampling time, the avai-

lable measurements always contain information about the current state. However,

the unreliability of network characteristics often provokes problems such as the ac-

cidental loss of measurements, intermittent failures or random interruptions in the

transmission mechanism. These situations, which are characterized by including

random parameters in the observation equation, generally give rise to non-Gaussian

systems (even if the additive noises are Gaussian). Hence, the Kalman filter does

not provide the optimal LS estimator and suboptimal estimators must be sought.
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In general terms, the aim of this PhD thesis is to address LS estimation prob-

lems in discrete-time linear systems from noisy measurements derived from mul-

tiple sensors, affected by random parameters which model different situations of

failure in the mechanism or the transmission of the measurements. Specifically,

the following systems are considered:

Sensor network systems with missing measurements. These systems are cha-

racterized by the fact that the observations contain only partial information about

the state or, even, only noise. This kind of failure is modeled by including in the

observation equation not only an additive noise, but also a multiplicative noise com-

ponent. This multiplicative noise is usually described by a sequence of Bernoulli

random variables whose values - one or zero - indicate the presence or absence

of the state in the corresponding measurement. In cases in which the Bernoulli

variables are assumed to be independent, the distribution of the multiplicative

noise is determined by the probability of each particular observation containing

the state. However, there exist many practical situations where this independence

assumption is not realistic; for example, in signal transmission models with stand-

by sensors in which any failure in the transmission is detected immediately and the

old sensor is then replaced. The phenomenon of missing measurements in these

cases has been modeled by Bernoulli variables correlated at consecutive instants,

thus covering practical situations in which the state cannot be missing in two suc-

cessive observations, such as the above-mentioned situation of transmission models

with stand-by sensors. For such systems, the linear estimation problem has been

studied extensively, and some results for the quadratic estimation problem have

been obtained (see, for example [20] and references therein).

As a generalization of the previous situation, it is also possible that the failed

sensor may not be replaced immediately but after m instants of time; in such si-

tuations, correlation among the Bernoulli random variables modeling the missing

measurements at times k and k + m must be considered. Since the estimation
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problem had not been examined in this case, our attention is focused on investi-

gating the LS linear and quadratic estimation problems in this kind of systems,

considering, for each sensor, different sequences of Bernoulli variables correlated at

instants that differ by m units of time.

A general framework for modeling situations in which measurements are missing

consists of replacing the Bernoulli variables by random variables, with any discrete

distribution on the interval [0, 1], thus covering some practical applications where

only partial information is missing. With this in mind, we examine the LS linear

estimation problem in multi-sensor systems with missing measurements described

in each sensor by this kind of variables. We also assume that the additive noises

involved in the system are autocorrelated and cross-correlated, since the indepen-

dent white noise assumption may be a limitation in many real-world problems in

which noise correlation may be present, for example, when the process noise and

the sensor measurement noises are dependent on the system state, or when all the

sensors are observed in the same noisy environment.

Sensor network systems with random parameter matrices. Such systems con-

stitute an interesting research topic due to the numerous realistic situations in

which the state transition and/or the measurement matrices contain random pa-

rameters. Evidently, the systems with missing measurements described above are

special cases of random measurement matrices. In addition, systems with inde-

pendent random state transition matrices can be used, for example, to describe

randomly variant dynamic systems with multiple models [40], or linear systems

with state-dependent multiplicative noise [37]. Discrete-time systems with random

state transition and measurement parameter matrices also arise in areas such as

the digital control of chemical processes, systems with human operators, economic

systems and stochastically-sampled digital control systems [39].

Moreover, as indicated, the fairly conservative assumption that the process and

measurement noises are uncorrelated must be weakened in order to cover practical
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situations where such noises are usually correlated. Also, in some situations when

the estimation problem is studied, systems with random delays and packet dropouts

are transformed into systems with correlated noises. Hence, the estimation problem

with autocorrelated and cross-correlated noises is considered a challenging research

topic (see, e.g. [46] and references therein). Accordingly, our aim is to address

the LS linear estimation problem in systems that simultaneously include random

parameter matrices and correlated noises. Furthermore, due to the importance of

this kind of systems and the significant improvement that quadratic LS estimators

may provide over linear estimators, we also study the quadratic LS estimation

problem in systems with random parameter matrices in the state equation, as well

as in the measurements equation. To date, this problem had only been addressed

considering scalar measurements with random observation matrices (see [41]).

In the following, and taking into account the above considerations, the specific

objectives of the successive chapters of this PhD thesis are described.

Linear discrete-time stochastic systems with missing measurements obtained

from multiple sensors are considered in Chapters 1 and 2, assuming different

sequences of m-step autocorrelated Bernoulli random variables to model the phe-

nomenon of missing measurements in each of the different sensors. In this kind of

systems, our aim is, on the one hand, to address the centralized and distributed

fusion linear estimation problems (Chapter 1) and, on the other (in order to im-

prove the linear estimators) to consider the centralized fusion quadratic estimation

problem (Chapter 2).

In Chapter 3, we consider multi-sensor systems with missing measurements,

using different sequences of scalar random variables with arbitrary discrete proba-

bility distribution over the interval [0, 1] in order to model the missing phenomenon

in each sensor. In addition, it is assumed that the process noise and all the sen-

sor noises are one-step autocorrelated; that different sensor noises are one-step
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cross-correlated; and that the process noise and each sensor noise are two-step

cross-correlated. Under these assumptions, our goal is to study the centralized and

distributed fusion linear estimation problems.

Next, in Chapter 4, we study the centralized fusion linear estimation problem

in systems with independent random transition matrices, and one-step correlated

and cross-correlated random parameter matrices in the observation equation; it

is also assumed that the process and measurement noises are one-step autocorre-

lated and two-step cross-correlated. These assumptions are imposed in order to

apply the results to two significant classes of systems with random failures in the

measurements, namely:

− Multi-sensor systems with missing measurements and with correlated and

cross-correlated noises, when the missing measurement phenomenon at each

sensor is described by different sequences of correlated (at consecutive sam-

pling times) scalar random variables with an arbitrary discrete probability

distribution over the interval [0, 1].

− Multi-sensor systems with randomly delayed measurements, with correlated

and cross-correlated noises, when the delayed measurement phenomenon at

each sensor is described by Bernoulli random variables correlated at consecu-

tive sampling times.

In Chapter 5, we discuss the distributed fusion state estimation problem in

sensor network systems with random parameter matrices and correlated noises.

Unlike the situation described in the previous chapter, in order to obtain the dis-

tributed fusion estimators, we now assume independent random parameter matri-

ces. This simplifies the process of obtaining the cross-covariance matrices between

any two local estimators.

Finally, in Chapter 6 we consider discrete-time stochastic systems with both

independent random parameter matrices and noises. Our goal in this area is to
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address the centralized quadratic filtering problem, which may represent a sig-

nificant improvement on the linear one. The estimators obtained are applied to

multi-sensor systems with state-dependent multiplicative noise and missing mea-

surements described by independent sequences of scalar random variables with

probability distribution over the interval [0, 1].
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As mentioned in the previous section, the overall objective in this PhD thesis is

to study the estimation problem in linear systems using noisy measurements from

multiple sensors subject to random failures. Specifically, recursive algorithms for

both linear and quadratic filtering and fixed-point smoothing problems are obtained

under the LS optimality criterion. For this purpose, the orthogonal projection

lemma and an innovation approach are used. Furthermore, to amalgamate the

information from multiple sensors, both centralized and distributed fusion methods

are used.

Accordingly, the methodology used throughout this PhD thesis is related to

these issues: the derivation of linear and quadratic recursive estimation algorithms,

and multi-sensor information fusion. Finally, the methodology used to illustrate

the feasibility of the proposed algorithms is based on computer simulation results.

Each of these issues is now described in more detail.

LS linear estimation methodology. To address the linear estimation problem,

knowledge is required of the first and second order moments of the different pro-

cesses involved in the system. The problem at hand is to derive recursive algorithms

for the estimator of the system state, xk, based on the measurements y1, . . . , yL,

with L ≥ k, for which the orthogonal projection lemma and an innovation analysis

approach are used (see, e.g. [48]).

− Orthogonal Projection Lemma (OPL). The LS linear estimator of the state,
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xk, based on the measurements, {y1, . . . , yL}, L ≥ k, denoted by x̂k/L, is the

only linear combination of y1, . . . , yL that satisfies the orthogonality property

E[(xk − x̂k/L)yT
s ] = 0, s ≤ L.

− Innovation approach. Let L2
Rn(Ω,A,P) be the space of equivalence classes

of n-dimensional random vectors defined on the probability space (Ω,A,P),

with finite second-order moments. L2
Rn(Ω,A,P) is a Hilbert space with the

scalar product < Y,W >= E[Y T W ].

Because the observations are generally nonorthogonal vectors, we use an

innovation approach, which consists of transforming the observation process

{yk; k ≥ 1} into an equivalent process of orthogonal vectors {νk; k ≥ 1}; this

is equivalent in the sense that each set {ν1, . . . , νL} spans the same linear

subspace of the space L2
Rn(Ω,A,P) as {y1, . . . , yL}; that is,

L(y1, . . . , yL) = L(ν1, . . . , νL) = LL.

The innovation process is constructed by the Gram-Schmidt orthogonalization

procedure, using the following inductive reasoning. Let {ν1, . . . , νk−1} be the

set of orthogonal vectors satisfying L(ν1, . . . , νk−1) = L(y1, . . . , yk−1). The

next orthogonal vector, νk, corresponding to the new observation yk, is then

obtained by projecting yk onto Lk−1; specifically

νk = yk − Proj{yk onto Lk−1},

and, because of the orthogonality of {ν1, . . . , νk−1} the above projection can

be found by projecting yk along each of the previously found orthogonal

vectors νi, for i ≤ k − 1,

Proj{yk onto Lk−1} =
k−1∑
i=1

Proj{yk along νi} =
k−1∑
i=1

E[ykν
T
i ]

(
E[νiν

T
i ]

)−1
νi.
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Since the projection of yk onto Lk−1 is ŷk/k−1, the one-stage LS linear pre-

dictor of yk, we have

ŷk/k−1 =
k−1∑
i=1

E[ykν
T
i ]

(
E[νiν

T
i ]

)−1
νi, k ≥ 2.

Consequently, by starting with ν1 = y1 − E[y1], for k ≥ 2, the orthogonal

vectors νk are given by νk = yk − ŷk/k−1. Hence, νk can be considered as the

“new information” or the “innovation” in yk given {y1, . . . , yk−1}.
In summary, the observation process {yk; k ≥ 1} has been transformed into

an equivalent white noise {νk; k ≥ 1} known as the innovation process.

Taking into account that both processes satisfy

νi ∈ L(y1, . . . , yi) and yi ∈ L(ν1, . . . , νi), ∀i ≥ 1,

it is concluded that such processes are related to each other by a causal and

causally invertible linear transformation, and therefore the innovation process

is uniquely determined by the observations and reciprocally.

From this consideration it can be stated that the LS linear estimator, x̂k/L,

of the state, xk, based on the observations until the instant L, is equal to the

LS linear estimator based on the innovations ν1, . . . , νL:

x̂k/L =
L∑

i=1

hk,iνi, k ≥ 1,

where the impulse-response function hk,i, i = 1, . . . , L, is calculated from the

OPL,

E[(xk − x̂k/L)νT
s ] = 0, s ≤ L,

which leads to the Wiener-Hopf equation:

E[xkν
T
s ] =

L∑
i=1

hk,iE[νiν
T
s ], s ≤ L.
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Due to the whiteness of the innovation process, E[νiν
T
s ] = 0 for i 6= s and

the Wiener-Hopf equation is expressed as

E[xkν
T
s ] = hk,sE[νsν

T
s ], s ≤ L,

consequently,

hk,s = E[xkν
T
s ]

(
E[νsν

T
s ]

)−1
, s ≤ L

and thus the following general expression for the LS linear estimator of the

state is obtained

x̂k/L =
L∑

i=1

E[xkν
T
i ]

(
E[νiν

T
i ]

)−1
νi, k ≥ 1.

From this general expression, the following recursive relation is immediately

clear:

x̂k/L = x̂k/L−1 + E[xkν
T
L ]

(
E[νLνT

L ]
)−1

νL, L ≥ k,

and this recursive relation of the estimators provides the starting point to

derive the recursive linear filtering (L = k) and fixed-point smoothing (L > k)

algorithms.

LS quadratic estimation methodology. To address the quadratic estimation

problem, the assumptions about the processes involved in the system must in-

clude the knowledge of the fourth-order moments of these processes. The problem

is then to obtain the quadratic estimator of xk based on {y1, . . . , yL}, L ≥ k; that

is, the LS linear estimator of xk based on the measurements y1, . . . , yL and their

second-order Kronecker powers y
[2]
1 , . . . , y

[2]
L . This quadratic estimation problem is

reformulated as a linear estimation problem defining augmented state and obser-

vation vectors by stacking the original vectors with their second-order Kronecker

powers:

Xk =

(
xk

x
[2]
k

)
, Yk =

(
yk

y
[2]
k

)
.
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Since the space of linear transformations of Y1, . . . ,YL, L ≥ k, is equal to

the space of linear transformations of y1, . . . , yL and y
[2]
1 , . . . , y

[2]
L , the LS quadratic

estimator, x̂q
k/L, is the LS linear estimator of xk based on Y1, . . . ,YL, which is

obtained by extracting the first n entries of the LS linear estimator of Xk based

on Y1, . . . ,YL. Therefore, the quadratic estimation problem for the original state

is reduced to the linear estimation problem for the augmented state.

In order to address the LS linear estimation problem of the augmented state

based on the augmented measurements, the evolution of the vectors Xk and Yk is

analyzed taking into account the Kronecker product properties in the evolution of

x
[2]
k and y

[2]
k . For simplicity, since the additive noises of the new model are non-zero

mean vectors, the augmented state and measurement equations are rewritten in

terms of the centered augmented vectors, Xk = Xk − E[Xk] and Yk = Yk − E[Yk].

A new system, called the augmented system, is then obtained, and the second-

order statistical properties of its initial state and the noise processes involved are

established to obtain the LS linear estimator of Xk based on Y1, . . . , YL.

Finally, we find that this linear estimator provides the LS linear estimator of Xk

based on Y1, . . . ,YL, adding the mean vector E[Xk]. Hence, the required quadratic

filter x̂q
k/L is obtained by adding the mean E[xk] to the vector constituted of the

first n entries of the LS linear estimator of Xk.

Multi-sensor information fusion methodology. As indicated previously, to ad-

dress the state estimation problem, the observations are assumed to be transmitted

by multiple sensors whose statistical properties are not necessarily the same for all

the sensors. To merge the information coming from multiple sensors, centralized

and distributed fusion methods are used.

− Centralized fusion method. This method is based on the fact that all the

measured data are transmitted from the sensors to a fusion center to be

processed. The observations obtained from the multiple sensors are then
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merged as a single-sensor measurement and, from this, the optimal LS linear

estimators, together with their estimation error covariances, are computed.

− Distributed fusion method. This method computes, at each sensor, a local op-

timal LS linear estimator using its own measurement data, and, subsequently,

these estimators are sent to a fusion center where the LS matrix-weighted lin-

ear combination of the local estimators is provided. Hence, the distributed

fusion estimation problem is addressed in two steps. First, local LS linear

estimators of the state, together with their estimation error covariance ma-

trices, are obtained by recursive algorithms. Second, the cross-covariance

matrix of the estimation errors between any two local estimators is deter-

mined. These covariances, with the estimates and error covariance matrices

of all the local subsystems, are then merged to determine the distributed

matrix-weighted fusion estimators in the linear minimum variance sense.

Computer simulation methodology. To demonstrate the feasibility of the pro-

posed recursive algorithms and to evaluate the performance of the estimators,

different numerical simulation examples are presented. All of the algorithms de-

signed are implemented by MATLAB programs which, at each iteration, simulate

the state and the observed values and provide the estimates, together with the

corresponding error covariance matrices, as a measure of the accuracy of the esti-

mators.

Numerical and graphical comparisons between the estimation error variances

confirm the theoretical results. On the one hand, the quadratic estimators are

shown to be more accurate than the linear ones and, on the other, the fixed-point

smoothing estimators are more effective than the filtering ones. We also analyze the

performance of the centralized and distributed fusion estimators, finding that they

both outperform the local ones. Moreover, the centralized and distributed fusion

estimators have approximately the same error variances, with a slight inferiority
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of the distributed estimator over the centralized one, which is compensated by

its greater robustness and increased fault-tolerance abilities. Finally, comparisons

with other estimators that have been reported reveal the superior performance of

the proposed estimators for the system model considered in each specific situation.
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Chapter 1

Information fusion algorithms for
state estimation in multi-sensor
systems with correlated missing
measurements
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Abstract

In this paper, centralized and distributed fusion estimation problems in linear

discrete-time stochastic systems with missing observations coming from multiple

sensors are addressed. At each sensor, the Bernoulli random variables describing

the phenomenon of missing observations are assumed to be correlated at instants

that differ m units of time. By using an innovation approach, recursive linear
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44 1.1 Introduction

filtering and fixed-point smoothing algorithms for the centralized fusion problem

are derived in the least-squares sense. The distributed fusion estimation problem

is addressed based on the distributed fusion criterion weighted by matrices in the

linear minimum variance sense. For each sensor subsystem, local least-squares lin-

ear filtering and fixed-point smoothing estimators are given and the estimation

error cross-covariance matrices between any two sensors are derived to obtain the

distributed fusion estimators. The performance of the proposed estimators is illus-

trated by numerical simulation examples where scalar and two-dimensional signals

are estimated from missing observations coming from two sensors, and the estima-

tion accuracy is analyzed for different missing probabilities and different values of

m.
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1.1 Introduction

During the past decades, the estimation problem in multi-sensor systems has mo-

tivated a significant amount of research due to its increasing application in many
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engineering fields (for example, in the fields of computer and communication) where

sensor networks are used to obtain the whole available information on the system

state and its estimation must be carried out from the observations provided by all

the sensors (see for example [1] and references therein).

Although the use of sensor networks offers several advantages such as easier

installation, simpler maintenance and reduced cost, since the measured data are

sent to a processing center via a communication network, the unreliable network

characteristics usually leads to other problems such as missing measurements (i.e.

measured outputs containing noise only, also called uncertain observations), ran-

dom communication packet losses and/or delays. These problems may occur in

practical applications for many different reasons, such as random failures in the

transmission mechanism, accidental loss of some measurements or data inaccessi-

bility at certain times, etc.

The estimation problems in systems with only one or several of the aforemen-

tioned uncertainties has attracted considerable research attention, see e.g. [2]-[10]

and references therein. To be more specific, the estimation problem in discrete-

time nonlinear systems with uncertain observations has been studied in [2], [3]; the

estimation problem from measurements subject to random delay which does not

exceed one sampling period is addressed in [4], [5]; modifications of conventional

linear estimation algorithms for systems with packet dropouts have been proposed

in [6], [7]; the optimal linear estimation problem for systems with random delays

and packet dropouts has been considered in [8], and for systems including the three

sources of uncertainty in [9], [10].

All the above papers consider a single sensor or multiple sensors with the same

uncertainty characteristics. However, this is not a realistic assumption in sev-

eral application fields, for instance, in networked communication systems involv-

ing heterogeneous measurement devices, and hence multiple-sensor systems whose

statistical properties are not necessarily the same for all the sensors require the
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derivation of new estimation algorithms, as the conventional ones cannot be ap-

plied directly. A basic matter in systems with multiple sensors is how to fuse the

measurement data from the different sensors to address the estimation problem.

Mainly two methods are used to process the measured sensor data in estimation

problems with sensor networks: centralized and distributed fusion methods.

In the centralized fusion method, all the measured data from sensors are com-

municated to the fusion center for being processed; specifically, the observations

from multiple sensors are stacked as one sensor measurement (with greater dimen-

sion) and, hence, it does not require a particular fusion rule. In [11], [12] centralized

linear minimum variance estimators are derived considering multiple sensors with

different failure rates, and different delay rates are considered in [13], [14]. The

optimal centralized problem, also in linear minimum variance sense, is investigated

in [15], [16] for systems with multiple sensors of different packet dropout rates.

Nevertheless, as it is known, the centralized approach has several drawbacks due

to augmentation, such as poor survivability, reliability, heavy communication and

expensive computational cost, and various distributed fusion algorithms have been

proposed to reduce these drawbacks. In the distributed fusion method, each sensor

estimates the state based on its own measurement data, and then it sends such

estimate to the fusion center for fusion according to a certain information fusion

criterion. For example, under the assumption of normal distribution, a distributed

fusion estimator is proposed in [17] based in maximum likelihood criterion, and the

distributed fusion criterion weighted by matrices in the linear minimum variance

sense is established in [18], which is equivalent to the maximum likelihood fusion

criterion under normality assumption.

Recently, more attention has been paid to the distributed fusion estimation

in networked systems with unreliable network transmission (see e.g. [19]-[23] and

references therein). Distributed fusion estimators for multi-sensor systems with

random delays were presented in [19], [20], and for systems with packet dropouts
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in [15], [21]. Simultaneous packet delays and dropouts are considered in [22], [23].

Compared with the number of papers about multi-sensor systems with ran-

dom communication packet delays and/or dropouts, to the best of the authors

knowledge, the literature regarding distributed fusion estimation in multi-sensor

systems with missing measurements is relatively scarcer, and most existing papers

use independent Bernoulli variables to model the missing measurements [24]-[26].

In [12] centralized linear minimum variance estimators are obtained remov-

ing the assumption of independence of the Bernoulli variables describing the phe-

nomenon of missing measurements. Specifically, different sequences of Bernoulli

random variables correlated at consecutive sampling times are considered to model

the uncertainty at each sensor. This form of correlation covers practical situations

where the state cannot be missing in two successive observations and hence, trans-

mission models with stand-by sensors, which are immediately substituted when

a failure occurs, are appropriately managed with this model. However, the failed

sensor may not be replaced immediately but after m instants of time; in such situa-

tions, correlation among the random variables modeling the missing measurements

at times k and k + m must be considered and new algorithms must be deduced.

In response to the above considerations, this paper deals with the centralized

and distributed fusion estimation problems in multi-sensor systems with missing

measurements when, at each sensor, the random variables modeling the missing

measurements are correlated at instants that differ m units of time. The main

contributions can be summarized as follows: i) centralized fusion filtering and

fixed-point smoothing algorithms are proposed in multi-sensor systems with cor-

related missing measurements and the correlation form considered covers certain

models in which the state cannot be missing in m+1 consecutive observations, thus

generalizing the results in [12]; ii) the distributed fusion filtering and fixed-point

smoothing problems are addressed in multi-sensor systems with missing measure-

ments.

PhD Thesis Irene Garćıa Garrido
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The paper is organized as follows: in Section 1.2 the problem formulation is de-

scribed; more specifically, we introduce the linear state transition model perturbed

by white noise, and the measurement model affected by additive white noise and

multiplicative noise describing the phenomenon of missing measurements. Also,

the pertinent assumptions to address the least-squares linear estimation problem

are established. In Section 1.3, by using an innovation analysis approach and the

orthogonal projection Lemma, recursive algorithms for the centralized fusion fil-

ter and fixed-point smoothers are presented (the derivation has been deferred to

Appendixes A.1 and A.2). Next, in Section 1.4, the local least-squares linear es-

timators and the error cross-covariance matrices between any two local estimates

are derived, then distributed fusion estimators are obtained based on the optimal

fusion criterion weighted by matrices in the linear minimum variance sense. The

performance of the proposed estimators is illustrated in Section 1.5 by two numer-

ical simulation examples where local, distributed and centralized fusion estimators

are compared. The paper ends with some concluding remarks in Section 1.6.

Notation: The notation used is standard. AT represents the transpose of A,

Rn denotes the n-dimensional Euclidean space, Rm×n is the set of all real matrices

of dimension m× n, and I and 0 represent the identity matrix and zero matrix of

appropriate dimension, respectively. The shorthand Diag(M1, . . . , Mr) denotes a

block diagonal matrix whose diagonal blocks are the matrices M1, . . . , Mr. If the

dimension of a matrix is not explicitly stated, it is assumed to be compatible for

algebraic operations. For time-varying matrices Fk, k ≥ 0, the product Fk−1 · · ·Fi

is denoted by Fk,i. The Hadamard product of matrices C and D is denoted by ◦
([C ◦D]ij = CijDij).

Also, for arbitrary random vectors α and β, the following notation is used

throughout the paper: Cov[α, β] = E
[
(α− E[α]) (β − E[β])T

]
and Cov[α] =

Cov[α, α], where E[·] stands for the mathematical expectation operator. α̂ de-

notes the estimator of α and α̃ = α− α̂ the estimation error.
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Chapter 1 49

1.2 Problem formulation

The problem at hand is to determine the least-squares (LS) linear filtering and

fixed-point smoothing estimators of the state in linear discrete-time stochastic sys-

tems with missing measurements coming from multiple sensors. In this section, we

present the system model and the hypotheses about the state and noise processes

involved.

Consider a class of discrete-time linear stochastic systems with missing mea-

surements coming from r sensors; the phenomenon of missing measurements (that

is, observations containing only noise) occurs randomly and, for each sensor, a dif-

ferent sequence of Bernoulli random variables is used to model this phenomenon.

Specifically, the following system is considered

xk = Fk−1xk−1 + wk−1, k ≥ 1, (1.1)

yi
k = θi

kH
i
kxk + vi

k, k ≥ 1, i = 1, 2, . . . , r (1.2)

where xk ∈ Rn is the state, yi
k ∈ R, i = 1, 2, . . . , r, is the measurement collected

by sensor i at sampling time k, {wk; k ≥ 0} and {vi
k; k ≥ 1}, i = 1, 2, . . . , r, are

noise sequences, and {θi
k; k ≥ 1}, i = 1, 2, . . . , r, are Bernoulli random variables

whose values –one or zero– indicate whether the state is present or missing in

the corresponding measure. Fk and H i
k, i = 1, 2, . . . , r, are known time-varying

matrices with compatible dimensions, superscript i denotes the i-th sensor, and r

is the number of sensors.

As is known, to address the LS linear estimation problem the state and the

observations are required to have finite second-order moments; the following as-

sumptions specify the first- and second-order moments required in the study of

this problem, as well as the statistical properties assumed about the initial state

and noise processes.

Assumption 1. The initial state x0 is a random vector with E[x0] = x0 and

Cov[x0] = P0.
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Assumption 2. The additive noises {wk; k ≥ 0} and {vi
k; k ≥ 1}, i = 1, 2, . . . , r,

are zero-mean white sequences with covariances Cov[wk] = Qk and Cov[vi
k] = Ri

k,

respectively.

Assumption 3. The multiplicative noises {θi
k; k ≥ 1}, i = 1, 2, . . . , r, are se-

quences of Bernoulli random variables with P [θi
k = 1] = θ

i

k. For i = 1, 2, . . . , r, the

variables θi
k and θi

s are independent for |k − s| 6= 0,m, and Cov[θi
k, θ

i
s] = Kθi

k,s are

known for |k − s| = 0,m.

Assumption 4. The initial state x0 and the noise processes {wk; k ≥ 0}, {vi
k; k ≥

1} and {θi
k; k ≥ 1}, for i = 1, 2, . . . , r, are mutually independent.

Remark 1. Note that, when θi
k = 1, which occurs with known probability θ

i

k, the

state xk is present in the measure yi
k coming from the i-th sensor at time k, whereas

if θi
k = 0 the state is missing in the measured data at time k, which means that

such observation only contains additive noise vi
k with probability 1− θ

i

k. To model

the phenomenon of missing measurements at each sensor, different sequences of

Bernoulli random variables correlated at instants that differ m units of time are

considered. This special form of correlation allows us to consider certain class of

systems in which the state cannot be missing in m + 1 consecutive observations;

specifically, sensor networks where sensor failures may happen and a failed sensor

is substituted not immediately, but m sampling times after having failed. For

instance, consider that, as in Section 1.5, θi
k = 1− γi

k+m(1− γi
k), with {γi

k; k ≥ 1}
sequences of independent Bernoulli random variables. Hence, if θi

k = 0, then

γi
k+m = 1 and γi

k = 0, and consequently θi
k+m = 1; this fact guarantees that, if

the state is missing at time k, the output measurement at time k + m necessarily

contains the state. Therefore, there cannot be more than m consecutive measured

data consisting of noise only.

Remark 2. From Assumption 3, θi
k and θi

s are independent for |k−s| 6= 0,m, and

hence Kθi

k,s = 0 for |k− s| 6= 0,m. Also, it is immediate that Kθi

k,k = θ
i

k(1− θ
i

k) and
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Kθi

k,k−m = E[θi
kθ

i
k−m]− θ

i

kθ
i

k−m.

Remark 3. From Assumption 4, the Bernoulli sequences as well as the observation

noises are independent from sensor to sensor. This condition is not necessary to

deduce the centralized estimators and clearly it is not involved in the derivation

of the local estimators. Such condition is just used to obtain the cross-covariance

matrices of the local estimation errors, which are necessary to determine the matrix

weights of the distributed fusion estimators.

Our aim is to solve the LS estimation problem of the state xk based on the

received measurements
{
yi

1, y
i
2, . . . , y

i
k, . . . , y

i
k+N

}
, N ≥ 0, i = 1, 2, . . . , r, by using

centralized and distributed fusion methods to process the measured sensor data.

More specifically, our aim can be stated as follows:

(i) Centralized fusion estimation problem. Consider that all measurement data

coming from r sensors are transmitted to a fusion center for being processed,

and our aim is to obtain the LS linear filter, x̂k/k, and fixed-point smoother,

x̂k/k+N , N ≥ 1, by recursive algorithms.

(ii) Distributed fusion estimation problem. Firstly, recursive algorithms to obtain

local LS linear filters, x̂i
k/k, and fixed-point smoothers, x̂i

k/k+N , N ≥ 1, for

i = 1, 2, . . . , r, are derived. Secondly, distributed matrix-weighted fusion es-

timators x̂0
k/k+N , N ≥ 0, are established by applying the optimal information

fusion criterion weighted by matrices in the linear minimum variance sense

[18].

Remark 4. In both cases, recursive algorithms for the LS linear estimators will

be established using an innovation approach and the orthogonal projection Lemma

(OPL). Since the observations are generally nonorthogonal vectors, through the

Gram-Schmidt orthogonalization procedure, the set of observations is transformed

into an equivalent set of orthogonal vectors, innovations, defined as the differences
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between each observation and the one-stage observation predictor. The fact that

the innovation process is uniquely determined by the observations allows us to state

that the LS linear estimator of the state based on the observations is equal to the

LS linear estimator of the state based on the innovations. The advantage of this

approach comes from the fact that the innovations constitute a white process, and

the expression of the estimators as linear combination of the innovations provide the

starting point to derive the recursive filtering and fixed-point smoothing algorithms.

1.3 Centralized fusion estimation

In this section, our aim is to obtain the optimal (under the LS criterion) linear

estimator by the centralized fusion method, in which all the measurement data

coming from r sensors are transmitted to a central site for being processed.

For this purpose, denoting yk = (y1
k, . . . , y

r
k)

T , vk = (v1
k, . . . , v

r
k)

T , Hk = (H1T
k ,

. . . , HrT
k )T and Θk = Diag(θ1

k, . . . , θr
k), equation (1.2) is equivalent to the following

stacked measurement equation

yk = ΘkHkxk + vk, k ≥ 1. (1.3)

Remark 5. The following properties of the noises in (1.3) are easily inferred from

the model assumptions stated in the previous Section 1.2:

– The additive noise {vk; k ≥ 1} is a zero-mean white process with covariance

matrix Rk = Diag(R1
k, . . . , R

r
k), ∀k ≥ 1.

– The random matrices {Θk; k ≥ 1} satisfy

E[Θk] = Θk = Diag(θ
1

k, . . . , θ
r

k),
E[(Θk −Θk)

2] = Θk(I −Θk),

E[(Θk −Θk)(Θk−m −Θk−m)] = Diag(Kθ1

k,k−m, . . . , Kθr

k,k−m).

– The initial state x0 and the noise processes {wk; k ≥ 0}, {vk; k ≥ 1} and

{Θk; k ≥ 1} are mutually independent.
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Remark 6. By denoting θk = (θ1
k, . . . , θ

r
k)

T , it is clear that Cov[θk] = Kθ
k,k =

Θk(I − Θk) and Cov[θk, θk−m] = Kθ
k,k−m = Diag(Kθ1

k,k−m, . . . , Kθr

k,k−m). Moreover,

for any random matrix G independent of {Θk; k ≥ 1}, using the Hadamard prod-

uct, it is easily deduced [11] that E[ΘkGΘs] = E[θkθ
T
s ] ◦ E[G]. Particularly, the

next property (which will be needed later) is immediately clear

E[(Θk −Θk)G(Θk−m −Θk−m)] = Kθ
k,k−m ◦ E[G]. (1.4)

In the following theorems, using an innovation approach and the OPL, recursive

algorithms for the linear filter, x̂k/k, (Theorem 1.3.1) and the fixed-point smoother,

x̂k/k+N , for fixed k and N ≥ 1, (Theorem 1.3.2) are derived.

Theorem 1.3.1 For the system model (1.1) and measurement model (1.3), under

Assumptions 1-4, the LS linear filter x̂k/k is obtained as

x̂k/k = x̂k/k−1 + Sk,kΠ
−1
k νk, k ≥ 1; x̂0/0 = x0, (1.5)

where the state predictor, x̂k/k−1, is given by

x̂k/k−1 = Fk−1x̂k−1/k−1, k ≥ 1. (1.6)

The innovation, νk, satisfies

νk = yk −ΘkHkx̂k/k−1, k ≤ m,

νk = yk −ΘkHkx̂k/k−1 + Ψk,k−m

(
νk−m −

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iνk−i

)
, k > m,

(1.7)

where Ψk,k−m = Kθ
k,k−m ◦

(
HkFk,k−mDk−mHT

k−m

)
Π−1

k−m, with Dk = E[xkx
T
k ] recur-

sively calculated from

Dk = Fk−1Dk−1F
T
k−1 + Qk−1, k ≥ 1; D0 = P0 + x0x

T
0 . (1.8)

The matrices Tk,k−i are determined by

Tk,k−i = ΘkHkFk,k−iSk−i,k−i, 2 ≤ k ≤ m, 1 ≤ i ≤ k − 1,

Tk,k−i = ΘkHkFk,k−iSk−i,k−i −Ψk,k−mT T
k−i,k−m, k > m, 1 ≤ i ≤ m− 1.

(1.9)
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The matrix Sk,k is calculated by

Sk,k = Pk/k−1H
T
k Θk, k ≤ m,

Sk,k = Pk/k−1H
T
k Θk

−
(
Fk,k−mSk−m,k−m −

m−1∑
i=1

Fk,k−iSk−i,k−iΠ
−1
k−iTk−i,k−m

)
ΨT

k,k−m, k > m,

(1.10)

where Pk/k−1, the prediction error covariance matrix, is obtained by

Pk/k−1 = Fk−1Pk−1/k−1F
T
k−1 + Qk−1, k ≥ 1,

with Pk/k, the filtering error covariance matrix, given by

Pk/k = Pk/k−1 − Sk,kΠ
−1
k ST

k,k, k ≥ 1; P0/0 = P0.

The innovation covariance matrix, Πk, satisfies

Πk = Kθ
k,k ◦

(
HkDkH

T
k

)
+ Rk + ΘkHkSk,k, k ≤ m,

Πk = Kθ
k,k ◦

(
HkDkH

T
k

)
+ Rk + ΘkHkSk,k + ST

k,kH
T
k Θk −ΘkHkPk/k−1H

T
k Θk

−Ψk,k−m

(
Πk−m +

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iTk−i,k−m

)
ΨT

k,k−m, k > m.

(1.11)

Proof. See Appendix A.1 ¤

Theorem 1.3.2 For the system model (1.1) and measurement model (1.3), under

Assumptions 1-4, the fixed-point smoothers, x̂k/k+N , N ≥ 1 are recursively obtained

by

x̂k/k+N = x̂k/k+N−1 + Sk,k+NΠ−1
k+Nνk+N , N ≥ 1, (1.12)

whose initial condition is the filter, x̂k/k, given in Theorem 1.3.1.
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The matrices Sk,k+N are determined by

Sk,k+N =
(
DkFT

k+N,k −Mk,k+N−1F
T
k+N−1

)
HT

k+NΘk+N , k ≤ m−N,

Sk,k+N =
(
DkFT

k+N,k −Mk,k+N−1F
T
k+N−1

)
HT

k+NΘk+N

−
(

Sk,k+N−m −
m−1∑
i=1

Sk,k+N−iΠ
−1
k+N−iTk+N−i,k+N−m

)

×ΨT
k+N,k+N−m, k > m−N.

(1.13)

where the matrices Mk,k+N are recursively obtained from

Mk,k+N = Mk,k+N−1F
T
k+N−1 + Sk,k+NΠ−1

k+NST
k+N,k+N ,

Mk,k = Dk − Pk/k.
(1.14)

The fixed-point smoothing error covariance matrix, Pk/k+N , satisfies

Pk/k+N = Pk/k+N−1 − Sk,k+NΠ−1
k+NST

k,k+N , N ≥ 1, (1.15)

with initial condition Pk/k, the filtering error covariance matrix.

The innovations νk+N , their covariance matrices Πk+N , the matrices Tk+N,k+N−i,

Ψk+N,k+N−m, Dk and Pk/k are given in Theorem 1.3.1.

Proof. See Appendix A.2. ¤

Remark 7. As indicated in Remark 3, the assumption that the Bernoulli sequences

and the observation noises are independent from sensor to sensor is not required

to obtain the centralized estimators. If this assumption is suppressed, one should

take into account that, in Theorem 1.3.1, the covariance matrices Kθ
k,k, Kθ

k,k−m and

Rk would not be necessarily diagonal, and clearly Kθ
k,k 6= Θk(I −Θk).

1.4 Distributed fusion estimation

Our aim in this section is to find optimal distributed fusion estimators, in the

linear minimum variance sense, based on the information provided by local LS

linear estimators.
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This estimation problem is tackled in two-stage fusion structure. In the first

fusion stage, each sensor provides its local estimator based on its own measurement

data along with their estimation error covariance matrices. In the second fusion

stage, the cross-covariance matrix of the estimation errors between any two sensors

from the first fusion stage are determined, and then, these covariances along with

the estimates and error covariance matrices of all local subsystems are fused to

determine the optimal matrix weights and the optimal fusion estimators in the

linear minimum variance sense.

1.4.1 Local LS linear estimators

This section is concerned with the problem of obtaining, for each sensor subsys-

tem of system (1.1) and (1.2), the local LS linear filter, x̂i
k/k, and fixed-point

smoothers, x̂i
k/k+N , N ≥ 1, along with their corresponding error covariance matri-

ces from recursive algorithms. By using an innovation approach, these algorithms

are established in the following theorems.

Theorem 1.4.1 For the i-th sensor subsystem of system (1.1) and (1.2) under

Assumptions 1-4, the local LS linear filter, x̂i
k/k, is calculated by

x̂i
k/k = x̂i

k/k−1 + Si
k,k

(
Πii

k,k

)−1
νi

k, k ≥ 1, x̂i
0/0 = x0, (1.16)

where the local state predictor, x̂i
k/k−1, satisfies

x̂i
k/k−1 = Fk−1x̂

i
k−1/k−1, k ≥ 1. (1.17)

The innovation, νi
k, is given by

νi
k = yi

k − θ
i

kH
i
kx̂

i
k/k−1, k ≤ m,

νi
k = yi

k − θ
i

kH
i
kx̂

i
k/k−1

−Ψi
k,k−m

(
νi

k−m −
m−1∑

l=1

T iT
k−l,k−m

(
Πii

k−l,k−l

)−1
νi

k−l

)
, k > m,

(1.18)
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where Ψi
k,k−m = Kθi

k,k−mH i
kFk,k−mDk−mH iT

k−m

(
Πii

k−m,k−m

)−1
, with Dk−m given in

Theorem 1.3.1.

The matrices T i
k,k−l are determined by

T i
k,k−l = θ

i

kH
i
kFk,k−lS

i
k−l,k−l, 2 ≤ k ≤ m, 1 ≤ l ≤ k − 1,

T i
k,k−l = θ

i

kH
i
kFk,k−lS

i
k−l,k−l −Ψi

k,k−mT iT
k−l,k−m, k > m, 1 ≤ l ≤ m− 1.

The innovation covariance matrix, Πii
k,k, satisfies

Πii
k,k = θ

i

k

(
1− θ

i

k

)
H i

kDkH
iT
k + Ri

k + θ
i

kH
i
kS

i
k,k, k ≤ m,

Πii
k,k = θ

i

k

(
1− θ

i

k

)
H i

kDkH
iT
k + Ri

k + θ
i

kH
i
kS

i
k,k + θ

i

kS
iT
k,kH

iT
k

− (θ
i

k)
2H i

kP
ii
k/k−1H

iT
k −Ψi

k,k−m

(
Πii

k−m,k−m

+
m−1∑

l=1

T iT
k−l,k−m

(
Πii

k−l,k−l

)−1
T i

k−l,k−m

)
ΨiT

k,k−m, k > m.

The matrix Si
k,k is derived by the following expression

Si
k,k = θ

i

kP
ii
k/k−1H

iT
k , k ≤ m,

Si
k,k = θ

i

kP
ii
k/k−1H

iT
k −

(
Fk,k−mSi

k−m,k−m

−
m−1∑

l=1

Fk,k−lS
i
k−l,k−l

(
Πii

k−l,k−l

)−1
T i

k−l,k−m

)
ΨiT

k,k−m, k > m,

where P ii
k/k−1, the prediction error covariance matrix, is obtained by

P ii
k/k−1 = Fk−1P

ii
k−1/k−1F

T
k−1 + Qk−1, k ≥ 1,

with P ii
k/k, the filtering error covariance matrix, satisfying

P ii
k/k = P ii

k/k−1 − Si
k,k

(
Πii

k,k

)−1
SiT

k,k, k ≥ 1, P ii
0/0 = P0.

Proof. This proof is analogous to that of Theorem 1.3.1 and hence it is omitted.

¤
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Theorem 1.4.2 For the i-th sensor subsystem of system (1.1) and (1.2) under

Assumptions 1-4, the local LS linear fixed-point smoothers x̂i
k/k+N , N ≥ 1, are

recursively calculated by

x̂i
k/k+N = x̂i

k/k+N−1 + Si
k,k+N

(
Πii

k+N,k+N

)−1
νi

k+N , N ≥ 1, (1.19)

whose initial condition is the local filter, x̂i
k/k, given in Theorem 1.4.1.

The matrices Si
k,k+N satisfy the following expressions

Si
k,k+N = θ

i

k+N

(
DkFT

k+N,k −M i
k,k+N−1F

T
k+N−1

)
H iT

k+N , k ≤ m−N,

Si
k,k+N = θ

i

k+N

(
DkFT

k+N,k −M i
k,k+N−1F

T
k+N−1

)
H iT

k+N

−
(

Si
k,k+N−m −

m−1∑

l=1

Si
k,k+N−l

(
Πii

k+N−l,k+N−l

)−1
T i

k+N−l,k+N−m

)

×ΨiT
k+N,k+N−m, k > m−N,

where the matrices M i
k,k+N are recursively obtained by

M i
k,k+N = M i

k,k+N−1F
T
k+N−1 + Si

k,k+N

(
Πii

k+N,k+N

)−1
SiT

k+N,k+N ,

M i
k,k = Dk − P ii

k/k.

The fixed-point smoothing error covariance matrices, P ii
k/k+N , are given by

P ii
k/k+N = P ii

k/k+N−1 − Si
k,k+N

(
Πii

k+N,k+N

)−1
SiT

k,k+N , N ≥ 1,

with initial condition the filtering error covariance matrix, P ii
k/k.

The innovations νi
k+N , their covariance matrices Πii

k+N,k+N , the matrices T i
k+N,k+N−l,

Ψi
k+N,k+N−m, Dk and P ii

k/k are given in Theorem 1.4.1.

Proof. This proof is analogous to that of Theorem 1.3.2 and hence it is omitted.

¤
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1.4.2 Distributed fusion estimators

Once the local LS linear filtering and fixed-point smoothing estimators given in

Theorems 1.4.1 and 1.4.2 are available, we can easily obtain the distributed optimal

weighted fusion estimators and their error covariance matrices, by applying the

optimal information fusion criterion weighted by matrices in the linear minimum

variance sense [18].

Theorem 1.4.3 For the system model (1.1) and measurement model (1.2), un-

der Assumptions 1-4, the distributed optimal fusion filter, x̂0
k/k, and fixed-point

smoother, x̂0
k/k+N , N ≥ 1, are given by

x̂0
k/k+N = A1

k,k+N x̂1
k/k+N + · · ·+ Ar

k,k+N x̂r
k/k+N , N ≥ 0,

where x̂i
k/k+N , N ≥ 0 (i = 1, 2 . . . , r) are calculated by the recursive algorithms

established in Theorems 1.4.1 and 1.4.2.

The optimal matrix weights Ai
k,k+N (i = 1, 2, . . . , r) are computed by

Ak,k+N = Σ−1
k/k+Ne

(
eT Σ−1

k/k+Ne
)−1

,

where the matrices Ak,k+N =
[
A1

k,k+N , . . . , Ar
k,k+N

]T
and e = [I, . . . , I]T are both

nr × n matrices, and

Σk/k+N = E
[(

x̃1
k/k+N , . . . , x̃r

k/k+N

) (
x̃1

k/k+N , . . . , x̃r
k/k+N

)T
]

= (P ij
k/k+N)

is a symmetric positive definite matrix of dimension nr × nr.

The error covariance matrices of the distributed weighted fusion estimators are

computed by

P 0
k/k+N =

(
eT Σ−1

k/k+Ne
)−1

, N ≥ 0,

and the following inequality holds: P 0
k/k+N ≤ P ii

k/k+N , i = 1, 2, . . . , r.
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Proof. The proof follows directly from the optimal information criterion weighted

by matrices in the linear minimum variance sense [18] and therefore it is omitted.

¤

To apply the above Theorem 1.4.3, besides the local estimators, x̂i
k/k+N , N ≥ 0

(i = 1, 2 . . . , r), and their error covariance matrices, P ii
k/k+N , given in Theorems

1.4.1 and 1.4.2, we need to calculate the cross-covariance matrices, P ij
k/k+N , be-

tween any two subsystems. Next, computation procedures for the cross-covariance

matrices, P ij
k/k+N , N ≥ 0, i 6= j, i, j = 1, 2 . . . , r, will be presented, before which

some useful lemmas will be given. The assumptions and notation in these lemmas

are those of Theorems 1.4.1 and 1.4.2.

Lemma 1.4.1 For i 6= j, i, j = 1, 2 . . . , r, Lij
k,k = E

[
x̂i

k/k−1ν
jT
k

]
, is calculated by

Lij
k,k = θ

j

k

(
P jj

k/k−1 − P ij
k/k−1

)
HjT

k , k ≤ m,

Lij
k,k = θ

j

k

(
P jj

k/k−1 − P ij
k/k−1

)
HjT

k −
(
Lij

k,k−m−
m−1∑

l=1

Lij
k,k−l(Π

jj
k−l,k−l)

−1T j
k−l,k−m

)

×ΨjT
k,k−m, k > m,

(1.20)

where Lij
k,s = E

[
x̂i

k/k−1ν
jT
s

]
, s < k, is recursively obtained by

Lij
k,s = Fk−1L

ij
k−1,s + Fk−1S

i
k−1,k−1(Π

ii
k−1,k−1)

−1Πij
k−1,s, s < k. (1.21)

Proof. Taking into account expression (1.18) for the innovation νj
k, to obtain

(1.20) for Lij
k,k it is enough to prove that

E
[
x̂i

k/k−1y
jT
k

]
− θ

j

kE
[
x̂i

k/k−1x̂
jT
k/k−1

]
HjT

k = θ
j

k

(
P jj

k/k−1 − P ij
k/k−1

)
HjT

k . (1.22)

Using (1.2) for yj
k and the OPL, we have

E
[
x̂i

k/k−1y
jT
k

]
= θ

j

kE
[
x̂i

k/k−1x̂
iT
k/k−1

]
HjT

k .
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Now, since

E
[
x̂i

k/k−1x̂
jT
k/k−1

]
= P ij

k/k−1 −Dk + E
[
x̂i

k/k−1x̂
iT
k/k−1

]
+ E

[
x̂j

k/k−1x̂
jT
k/k−1

]
,

E
[
x̂j

k/k−1x̂
jT
k/k−1

]
= Dk − P jj

k/k−1,

we have that E
[
x̂i

k/k−1x̂
iT
k/k−1

]
− E

[
x̂i

k/k−1x̂
jT
k/k−1

]
= P jj

k/k−1 − P ij
k/k−1 and (1.22) is

easily derived.

Finally, from (1.17) for x̂i
k/k−1 and (1.16) for x̂i

k−1/k−1, expression (1.21) is

immediately obtained. ¤

Lemma 1.4.2 For i 6= j, i, j = 1, 2 . . . , r, the innovation cross-covariance matrix

Πij
k,s = E

[
νi

kν
jT
s

]
satisfies

Πij
k,s = θ

i

kH
i
k

(
Fk,sS

j
s,s − Lij

k,s

)
, k ≤ m, 1 ≤ s ≤ k,

Πij
k,s = θ

i

kH
i
k

(
Fk,sS

j
s,s − Lij

k,s

)−Ψi
k,k−m

(
Πij

k−m,s

−
m−1∑

l=1

T iT
k−l,k−m(Πii

k−l,k−l)
−1Πij

k−l,s

)
, k > m, k −m ≤ s ≤ k.

(1.23)

Proof. By using (1.18) for the innovation νi
k, and taking into account that, from

(1.2),

E
[
yi

kν
jT
s

]
= θ

i

kH
i
kE

[
xkν

jT
s

]
= θ

i

kH
i
kFk,sS

j
s,s,

expression (1.23) is obtained. ¤

Lemma 1.4.3 For i 6= j, i, j = 1, 2 . . . , r, J ij
k/k+N−1,k+N = E

[
x̂i

k/k+N−1ν
jT
k+N

]

satisfies

J ij
k/k+N−1,k+N = θ

j

k+N

(
Eii

k,k+N−1 − Eij
k,k+N−1

)
F T

k+N−1H
jT
k+N , k ≤ m−N,

J ij
k/k+N−1,k+N = θ

j

k+N

(
Eii

k,k+N−1 − Eij
k,k+N−1

)
F T

k+N−1H
jT
k+N

−
(

J ij
k/k+N−1,k+N−m −

m−1∑

l=1

J ij
k/k+N−1,k+N−l(Π

jj
k+N−l,k+N−l)

−1

× T j
k+N−l,k+N−m

)
ΨjT

k+N,k+N−m, k > m−N,

(1.24)
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where, for i, j = 1, 2 . . . , r, Eij
k,k+N = E

[
x̂i

k/k+N x̂jT
k+N/k+N

]
is recursively computed

by

Eij
k,k+N = Eij

k,k+N−1F
T
k+N−1 + J ij

k/k+N−1,k+N(Πjj
k+N,k+N)−1SjT

k+N,k+N

+ Si
k,k+N(Πii

k+N,k+N)−1(Lji
k+N,k+N)T

+ Si
k,k+N(Πii

k+N,k+N)−1Πij
k+N,k+N(Πjj

k+N,k+N)−1SjT
k+N,k+N , N ≥ 1,

(1.25)

with initial condition Eij
k,k = Dk + P ij

k/k − P ii
k/k − P jj

k/k.

For l = 1, 2 . . . , m, J ij
k/k+N−1,k+N−l = E

[
x̂i

k/k+N−1ν
jT
k+N−l

]
satisfies

J ij
k/k+N−1,k+N−l = J ij

k/k+N−2,k+N−l + Si
k,k+N−1(Π

ii
k+N−1,k+N−1)

−1Πij
k+N−1,k+N−l.

(1.26)

Proof. From (1.18) for the innovation νj
k+N , in order to obtain (1.24) we just

need to prove that

E
[
x̂i

k+N/k+N−1y
jT
k+N

]
− θ

j

k+NE
[
x̂i

k/k+N−1x̂
jT
k+N/k+N−1

]
HjT

k+N

= θ
j

k+N

(
Eii

k,k+N−1 − Eij
k,k+N−1

)
F T

k+N−1H
jT
k+N .

(1.27)

Using (1.2) for yj
k+N and the OPL, we have

E
[
x̂i

k/k+N−1y
jT
k+N

]
= θ

j

k+NE
[
x̂i

k/k+N−1x̂
iT
k+N/k+N−1

]
HjT

k+N ,

and since, from (1.17), x̂j
k+N/k+N−1 = Fk+N−1x̂

j
k+N−1/k+N−1, expression (1.27) is

easily obtained.

On the other hand, by using (1.19) for x̂i
k/k+N and (1.16) for x̂j

k+N/k+N , recursive

expression (1.25) for Eij
k,k+N is immediately derived; its initial condition Eij

k,k is also

easily obtained.

Finally, by using again (1.19) for x̂i
k/k+N−1, recursive expression (1.26) is also

immediately clear and the proof is completed. ¤

Remark 8: For i = j, since the innovation is a white process, it is clear that

Lii
k,k = E

[
x̂i

k/k−1ν
iT
k

]
= 0 and J ii

k/k+N−1,k+N = E
[
x̂i

k/k+N−1ν
iT
k+N

]
= 0.
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A set of recursive formulas to calculate the filtering and fixed-point smoothing

error cross-covariance matrices P ij
k/k+N , i 6= j, i, j = 1, 2 . . . , r, N ≥ 0, is now

derived in the following theorem based on Lemmas 1.4.1-1.4.3.

Theorem 1.4.4 The cross-covariance matrices, P ij
k/k+N , N ≥ 1, of the fixed-point

smoothing errors between the i-th and the j-th sensor subsystems are recursively

computed by

P ij
k/k+N = P ij

k/k+N−1 + Si
k,k+N(Πii

k+N,k+N)−1Πij
k+N,k+N(Πjj

k+N,k+N)−1SjT
k,k+N

−
(
Sj

k,k+N − J ij
k/k+N−1,k+N

)
(Πjj

k+N,k+N)−1SjT
k,k+N

− Si
k,k+N(Πii

k+N,k+N)−1
(
Si

k,k+N − J ji
k/k+N−1,k+N

)T

, N ≥ 1.

(1.28)

The initial condition, P ij
k/k, the cross-covariance matrix of the filtering error be-

tween the i-th and the j-th sensor subsystems, satisfies

P ij
k/k = P ij

k/k−1 + Si
k,k(Π

ii
k,k)

−1Πij
k,k(Π

jj
k,k)

−1SjT
k,k

− (
Sj

k,k − Lij
k,k

)
(Πjj

k,k)
−1SjT

k,k − Si
k,k(Π

ii
k,k)

−1
(
Si

k,k − Lji
k,k

)T
, k ≥ 1,

P ij
k/k−1 = Fk−1P

ij
k−1/k−1F

T
k−1 + Qk−1, k ≥ 1; P ij

0/0 = P0.

(1.29)

Proof. By using (1.19) for x̂i
k/k+N and x̂j

k/k+N , we have

P ij
k/k+N = P ij

k/k+N−1 − E
[(

xk − x̂i
k/k+N−1

)
νjT

k+N

]
(Πjj

k+N,k+N)−1SjT
k,k+N

− Si
k,k+N(Πii

k+N,k+N)−1E

[
νi

k+N

(
xk − x̂j

k+N/k+N−1

)T
]

+ Si
k,k+N(Πii

k+N,k+N)−1Πij
k+N,k+N(Πjj

k+N,k+N)−1SjT
k,k+N .

Taking into account that E
[
xkν

jT
k+N

]
= Sj

k,k+N , E
[
x̂i

k/k+N−1ν
jT
k+N

]
= J ij

k/k+N−1,k+N ,

E
[
νi

k+NxT
k

]
= SiT

k,k+N and E
[
νi

k+N x̂jT
k/k+N−1

]
= J jiT

k/k+N−1,k+N , recursive expression

(1.28), for the cross-covariance matrices of the local fixed-point smoothing errors,

is obtained.

Finally, by using (1.16), and following an analogous reasoning, it is easy to get

(1.29) for the cross-covariance matrices of the local filtering errors. ¤
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1.5 Numerical simulation examples

In this section, two numerical examples are presented to show the effectiveness of

the proposed estimation algorithms. To test and compare the performance of the

proposed estimators, we ran a program in MATLAB, simulating at each iteration

the state and the measured values and providing the centralized and distributed

fusion filter and fixed-point smoothers, as well as the corresponding error covariance

matrices.

1.5.1 Example 1

In this example, for the simulation, we consider that the system state is given by

a scalar process, {xk; k ≥ 0}, generated by the following first-order autoregressive

model,

xk = 0.95xk−1 + wk−1, k ≥ 1,

where the initial state is a zero-mean Gaussian variable with V ar[x0] = 1 and

{wk; k ≥ 0} is a zero-mean white Gaussian noise with V ar[wk] = 0.1, for all k.

Consider missing measurements coming from two sensors and perturbed by

independent sequences of Bernoulli random variables {θi
k; k ≥ 1}, i = 1, 2, and

by independent additive white noises, {vi
k; k ≥ 1}, i = 1, 2, with zero-mean and

variances V ar[v1
k] = 1 and V ar[v2

k] = 1.5, for all k.

yi
k = θi

kxk + vi
k, k ≥ 1, i = 1, 2.

According to our theoretical model, it is assumed that, for each sensor, the

uncertainty at any sampling time k ≥ 1 depends only on the uncertainty at the

previous time k−m. The variables θi
k modeling this type of uncertainty correlation

in the output measurements are defined based on two independent sequences of

independent Bernoulli random variables, {γi
k; k ≥ 1}, i = 1, 2, with constant

probabilities P [γi
k = 1] = γi. Specifically, the variables θi

k are defined as follows

θi
k = 1− γi

k+m(1− γi
k), i = 1, 2.
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Thus, if θi
k = 0, then γi

k+m = 1 and γi
k = 0, and hence, θi

k+m = 1; this fact

guarantees that, if the state is missing at time k, the output measurement at time

k + m necessarily contains the state. Therefore, there cannot be more than m

consecutive measured data consisting of noise only.

Since the variables γi
k and γi

s are independent, θi
k and θi

s are also independent

for |k − s| 6= 0,m. The mean of these variables is θ
i

= 1 − γi(1 − γi) and its

covariance function is given by

Kθ
k,s = E[(θi

k − θ
i
)(θi

s − θ
i
)] =





0, |k − s| 6= 0,m,

−(1− θ
i
)2, |k − s| = m,

θ
i
(1− θ

i
), |k − s| = 0.

To compare the effectiveness of the proposed estimators, fifty iterations of the

proposed algorithms have been performed and the results obtained for different

values of the uncertainty probability and several values of m have been analyzed.

Let us observe that the means, θ
i
, for i = 1, 2, of the variables θi

k, are the

same if 1 − γi is used instead of γi; for this reason, only the case γi ≤ 0.5 will be

considered here.

Assuming that the Bernoulli variables θi
k, for i = 1, 2, of the measurement

outputs are correlated at sampling times that differ three units of time (m = 3), the

error variances of local, centralized and distributed fusion filters will be compared

considering fixed values of the probabilities γ1 and γ2; specifically, γ1 = 0.1, γ2 =

0.2. In Figure 1.1, as mentioned in Theorem 1.4.3, we can see that the error

variances of each local filter are higher than that of the distributed fusion filter.

Although the distributed fusion filter has lower accuracy than the centralized one,

this difference is slight. Besides, this is compensated by the fact that the distributed

fusion structure is in general more robust, reduces the computational cost and

improves the reliability due to its parallel structure.

Figure 1.2 displays the filtering and fixed-point smoothing error variances (N =

2, 5) for the centralized and distributed fusion methods. It can be seen that the
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Figure 1.1: Filtering error variances for the centralized and distributed fusion
methods for γ1 = 0.1, γ2 = 0.2, when m = 3.

error variances corresponding to the fixed-point smoothers are less than those of the

filters and, consequently, the fixed-point smoothing estimates are more accurate.

It is also verified that centralized and distributed fusion filter and smoothers have

a similar accuracy. If we compare the smoothing error variances at each fixed-point

k for N = 2 and N = 5, we observe that these estimators become more accurate

as the number of available observations increases.

Finally, in order to show more precisely the dependence of the error variances

on the values γ1 and γ2, Figure 1.3 displays the filtering error variances, at a

fixed iteration (namely, k = 50) for m = 3, when both γ1 and γ2 are varied from

0.1 to 0.5, which provide different values of the probabilities θ
1

and θ
2
. More

specifically, we have considered the values γi = 0.1, 0.2, 0.3, 0.4, 0.5, which lead to

the probabilities θ
i
= 0.91, 0.84, 0.78, 0.76, 0.75, respectively.

In this figure, both graphs (corresponding to the centralized and distributed
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Figure 1.2: Filtering and smoothing error variances for the centralized and dis-
tributed fusion methods for γ1 = 0.1, γ2 = 0.2, when m = 3.

fusion filters, respectively) show that the performance of the filter diminishes as

θ
i

becomes lower, due to the fact that the probability of observations containing

the state decreases. Also, this figure confirms that both methods, centralized and

distributed, have approximately the same accuracy, corroborating the previous

results.

1.5.2 Example 2

In this example, the following discrete-time system with missing measurements has

been considered

xk =

(
1 + 0.2 sin

(
(k − 1)π

50

))(
0.8 0
0.9 0.2

)
xk−1 + wk−1, k ≥ 1

yi
k = θi

k

(
1 1

)
xk + vi

k, k ≥ 1, i = 1, 2
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Figure 1.3: Filtering error variances for the centralized and distributed fusion
methods at k = 50 versus γ1, with γ2 varying from 0.1 to 0.5 when m = 3.

where the initial state, x0, is a zero-mean Gaussian vector with covariance matrix

given by Cov[x0] =

(
0.1 0
0 0.1

)
, the processes {wk; k ≥ 0} and {vi

k; k ≥ 1}, i = 1, 2

are zero-mean white Gaussian noises with Cov[wk] =

(
0.36 0.3
0.3 0.25

)
, V ar[v1

k] = 0.5

and V ar[v2
k] = 0.9, ∀k, and the multiplicative noises {θi

k; k ≥ 1}, i = 1, 2 are

defined as in Example 1.

Firstly, our aim is to check that the accuracy of the optimal distributed fusion

filter is higher than that of any local filter, but lower than that of the centralized

fusion filter. For this, two hundred iterations of the proposed algorithms have been

carried out and the results corresponding to the first state component for m = 3

and probabilities γ1 = 0.1 and γ2 = 0.2 are shown graphically in Figure 1.4. As

in Figure 1, the error variances of each local filter are higher than that of the

distributed fusion filter and the centralized and distributed filters have a similar
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Chapter 1 69

accuracy. Analogous results for the second state component are obtained.
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Figure 1.4: Filtering error variances for the centralized and distributed fusion
methods for the first state component for γ1 = 0.1, γ2 = 0.2, when m = 3.

Also, analogous comments and conclusions to those made from Figures 1.2 and

1.3 in Example 1 are deduced for the first and second components of the state in

this example. For this reason, the corresponding figures have not been included.

Finally, for γ1 = 0.2, γ2 = 0.4 the performance of the estimators is compared for

different values of m at a fixed iteration; specifically, for m = 2, 3, 4, 5 at k = 30,

the filtering error variances of both state components are shown in Table 1.1. From

this table it is gathered that the estimators are more accurate as the values of m are

lower. In other words, a greater distance between the instants at which the variables

are correlated (which means that the state can be missing in more consecutive

observations) yields worse estimators. As expected, this table also shows that

the estimators obtained by the centralized and distributed fusion methods have a
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very rough precision. It must be noticed that an analogous comparison has been

performed in Example 1 and the results obtained are completely similar, so they

have been omitted.

Component Filtering error variances m = 2 m = 3 m = 4 m = 5

First
Centralized 0.3310 0.3483 0.3628 0.3744
Distributed 0.3561 0.3717 0.3827 0.3906

Second
Centralized 0.4014 0.4451 0.4835 0.5151
Distributed 0.4340 0.4722 0.5007 0.5218

Table 1.1: Filtering error variances for the centralized and distributed fusion meth-
ods for γ1 = 0.2, γ2 = 0.4 at k = 30 when m = 2, 3, 4, 5.

1.6 Conclusions

For multi-sensor linear discrete-time systems with missing measurements, the LS

linear estimation problem has been addressed. The main contributions of the

current paper can be summarized as follows:

1. Using both centralized and distributed fusion methods to process the mea-

surement data from the different sensors, recursive filtering and fixed-point

smoothing algorithms are derived by an innovation approach.

2. At each sensor, the possibility of missing measurements or uncertain ob-

servations (that is, observations containing no information about the state

but only noise) is modeled by binary variables taking the values one or zero

(Bernoulli variables), depending on whether the state is present or missing in

the corresponding observation. Such variables are assumed to be correlated

at instants that differ m units of time.

3. The basic model in which the Bernoulli variables describing the uncertainty

in the observations at each sensor are independent is a particular case of

the proposed model, just making Kθi

k,s = 0 for |k − s| = m. Also, the
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model with correlation in consecutive sampling times is covered by the current

study when m = 1. However, theses two assumptions can be unrealistic in

many practical situations, and the estimation algorithms must be modified

to incorporate the effect of different types of correlation. Specifically, the

form of correlation considered in this paper is appropriate, in particular, to

model situations where the state cannot be missing in m + 1 consecutive

observations, as occurs, for instance, in sensor networks where sensor failures

may happen and a failed sensor is substituted not immediately, but after m

sampling times.

4. The multi-sensor system model considered in the current paper covers those

situations where the additive observation noises and the Bernoulli variables

involved are independent from sensor to sensor. This independence assump-

tion simplifies the mathematical expression considerably and it is valid in a

wide spectrum of applications, for example in wireless sensor networks which

are characterized by sensor independence, limited storage capacity, lack of

physical infrastructure and limited energy. Nevertheless, if such assumption

is omitted, a similar technique to that used in this paper would allow us to

extend the current study to this more general case with no difficulty, except

for a greater complexity in the mathematical expressions.

5. Two numerical simulation examples illustrate the applicability of the current

results to estimate a scalar state process generated by an AR model and a

two-dimensional state, respectively, from uncertain observations coming from

two sensors featuring correlation in the uncertainty. The results confirm that

centralized and distributed fusion estimators have approximately the same

accuracy. For different uncertainty probabilities and different values of m,

both examples confirm the greater effectiveness of the fixed-point smoothing

estimators in contrast to the filtering ones and conclude that more accurate

estimations are obtained as the values of m are lower.
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A.1 Proof of Theorem 1.3.1

From the OPL, the LS linear estimators, x̂k/L, expressed as combination linear of

the innovations, are given by

x̂k/L =
L∑

i=1

Sk,iΠ
−1
i νi. (1.30)

where νi = yi − ŷi/i−1 are the innovation vectors, with ŷi/i−1 the one-stage obser-

vation predictor, Πi = E[νiν
T
i ], and Sk,i = E[xkν

T
i ].

Using (1.30) with L = k, k − 1, expression (1.5) for the filter is immediately

derived. From (1.1) and OPL, expression (1.6) for the the state predictor is easily

obtained.

Now we show expression (1.7) for the innovation, νk = yk − ŷk/k−1, for which it

is enough to obtain an expression for ŷk/k−1. From the OPL, it follows that ŷk/k−1

is given by

ŷk/k−1 =
k−1∑
i=1

Tk,iΠ
−1
i νi, k ≥ 2, Tk,i = E

[
ykν

T
i

]
.

Hence, we start by calculating Tk,i, for i ≤ k − 1. From the observation equation

(1.3) and the model assumptions, it is clear that Tk,i = E
[
ΘkHkxkν

T
i

]
, for i ≤ k−1,

and Tk,i = ΘkHkSk,i, for k ≤ m or k > m and i < k − m. So, after some

manipulations, we obtain:

(a) For k ≤ m, using (1.30) for L = k − 1, we have ŷk/k−1 = ΘkHkx̂k/k−1.

(b) For k > m, the following equality is easily deduced

ŷk/k−1 = ΘkHk

k−1∑
i=1

Sk,iΠ
−1
i νi +

m∑
i=1

(Tk,k−i −ΘkHkSk,k−i)Π
−1
k−iνk−i, (1.31)
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where

Tk,k−i −ΘkHkSk,k−i = E
[
(Θk −Θk)Hkxkν

T
k−i

]
, 1 ≤ i ≤ m, (1.32)

or equivalently,

Tk,k−i −ΘkHkSk,k−i = E
[
(Θk −Θk)Hkxky

T
k−i

]− E
[
(Θk −Θk)Hkxkŷ

T
k−i/k−(i+1)

]
.

Using again (1.3) for yk−i, property (1.4), and since from (1.1), E[xkx
T
k−i] =

Fk,k−iDk−i, it is concluded that

E
[
(Θk −Θk)Hkxky

T
k−i

]
= Kθ

k,k−i ◦
(
HkFk,k−iDk−iH

T
k−i

)
,

where Dk = E[xkx
T
k ] can be clearly obtained by the recursive formula (1.8).

Summarizing, we have that

Tk,k−i −ΘkHkSk,k−i = Kθ
k,k−i ◦

(
HkFk,k−iDk−iH

T
k−i

)

− E
[
(Θk −Θk)Hkxkŷ

T
k−i/k−(i+1)

]
, 1 ≤ i ≤ m.

(1.33)

On the one hand, for i = m, since Θk is independent of the innovations νi, for

i < k −m, we have that E
[
(Θk −Θk)Hkxkŷ

T
k−m/k−(m+1)

]
= 0, and from (1.33)

Tk,k−m −ΘkHkSk,k−m = Kθ
k,k−m ◦

(
HkFk,k−mDk−mHT

k−m

)
. (1.34)

On the other hand, for i < m, Kθ
k,k−i = 0 and, hence, from (1.33)

Tk,k−i −ΘkHkSk,k−i = −E
[
(Θk −Θk)Hkxkŷ

T
k−i/k−(i+1)

]
.

Now, using again that Θk is independent of νi, for i 6= k −m, it is deduced that

Tk,k−i −ΘkHkSk,k−i = −E[
(
Θk −Θk

)
Hkxkν

T
k−m]Π−1

k−mT T
k−i,k−m

or, equivalently, from (1.32) for i = m, (1.34) and denoting

Ψk,k−m = Kθ
k,k−m ◦

(
HkFk,k−mDk−mHT

k−m

)
Π−1

k−m,
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we have that

Tk,k−i −ΘkHkSk,k−i = −Ψk,k−mT T
k−i,k−m, i < m. (1.35)

Next, substituting this expression into (1.31) and using (1.30) for x̂k/k−1, expression

(1.7) is deduced. Moreover, using (1.3) and (1.35) and taking into account that,

from (1.1), Sk,k−i = Fk,k−iSk−i,k−i, the matrices (1.9) are obtained.

Now, expression (1.10) for the matrix Sk,k = E[xky
T
k ]− E[xkŷ

T
k/k−1] is derived.

From (1.3) and the independence assumption, it is clear that E[xky
T
k ] = DkH

T
k Θk,

∀k ≥ 1. To calculate E[xkŷ
T
k/k−1], the correlation assumption of the random vari-

ables θk must be taken into account and hence two cases must be considered:

- For k ≤ m, from (1.7) we obtain E[xkŷ
T
k/k−1] = E[xkx̂

T
k/k−1]H

T
k Θk. From

the OPL, E[xkx̂
T
k/k−1] = Dk − Pk/k−1 where Pk/k−1 is the prediction error

covariance matrix, and hence

E[xkŷ
T
k/k−1] =

(
Dk − Pk/k−1

)
HT

k Θk, k ≤ m.

- For k > m, from (1.7) it follows that

E[xkŷ
T
k/k−1] = E[xkx̂

T
k/k−1]H

T
k Θk + E[xkν

T
k−m]ΨT

k,k−m

− E


xk

(
m−1∑
i=1

T T
k−i,k−mΠ−1

k−iνk−i

)T

 ΨT

k,k−m,

hence, using again the OPL and taking into account that E[xkν
T
k−i] = Sk,k−i,

for 1 ≤ i ≤ m, it is deduced that

E[xkŷ
T
k/k−1] =

(
Dk − Pk/k−1

)
HT

k Θk + Sk,k−mΨT
k,k−m

−
m−1∑
i=1

Sk,k−iΠ
−1
k−iTk−i,k−mΨT

k,k−m, k > m.

From the above expectations, expression (1.10) for Sk,k is clear.
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From (1.1), the expression for the prediction error covariance matrix, Pk/k−1 is

immediately clear and, from (1.5), the expression for the filtering error covariance

matrix, Pk/k, is also obvious.

Finally, we prove expression (1.11) for the innovation covariance matrix Πk =

E[yky
T
k ]− E[ŷk/k−1ŷ

T
k/k−1]. From (1.3) and using (1.4), we have that

E[yky
T
k ] = E[θkθ

T
k ] ◦ (

HkDkH
T
k

)
+ Rk, k ≥ 1.

Due to the correlation hypothesis of the Bernoulli variables θk, we need to

distinguish two cases to calculate E[ŷk/k−1ŷ
T
k/k−1]. For k ≤ m, from (1.7), (1.4)

and the OPL, we have

E[ŷk/k−1ŷ
T
k/k−1] =

(
θkθ

T

k

)
◦ (

Hk(Dk − Pk/k−1)H
T
k

)
.

For k > m, using an analogous reasoning, applying the OPL and after some ma-

nipulations, we deduce that

E[ŷk/k−1ŷ
T
k/k−1] =

(
θkθ

T

k

)
◦ (

Hk(Dk − Pk/k−1)H
T
k

)
+ Ψk,k−mΠk−mΨT

k,k−m

+ Ψk,k−m

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iTk−i,k−mΨT
k,k−m

−ΘkHk

(
Sk,k − Pk/k−1H

T
k Θk

)−(
ST

k,k −ΘkHkPk/k−1

)
HT

k Θk.

So, from the above expectations, expression (1.11) for the innovation covariance

matrix Πk is obtained. ¤

A.2 Proof of Theorem 1.3.2

From the general expression (1.30), for each fixed k ≥ 1, the recursive relation

(1.12) is immediately clear.

Next, to prove (1.13) for Sk,k+N = E[xky
T
k+N ]−E[xkŷ

T
k+N/k+N−1], it is necessary

to calculate both expectations.
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On the one hand, from Equation (1.3), taking into account that E[xkx
T
k+N ] =

DkFT
k+N,k and using that Θk+N and vk+N are independent of xk, we obtain

E[xky
T
k+N ] = DkFT

k+N,kH
T
k+NΘk+N , N ≥ 1.

On the other hand, based on expression (1.7) for νk+N , which is different de-

pending on wether k + N ≤ m or k + N > m, two options must be considered:

– From (1.7) for k ≤ m−N , using (1.6) for x̂k+N/k+N−1, we have that

E
[
xkŷ

T
k+N/k+N−1

]
= Mk,k+N−1F

T
k+N−1H

T
k+NΘk+N ,

where Mk,k+N−1 = E
[
xkx̂

T
k+N−1/k+N−1

]
.

– A similar reasoning to the above one, but starting from (1.7) for k > m−N ,

yields

E[xkŷ
T
k+N/k+N−1] = Mk,k+N−1F

T
k+N−1H

T
k+NΘk+N +

(
Sk,k+N−m

−
m−1∑
i=1

Sk,k+N−iΠ
−1
k+N−iTk+N−i,k+N−m

)
ΨT

k+N,k+N−m.

Then, the replacement of the above expectations in Sk,k+N leads to expression

(1.13).

The recursive relation (1.14) for Mk,k+N = E
[
xkx̂

T
k+N/k+N

]
is immediately clear

from (1.5) for x̂k+N/k+N and its initial condition Mk,k = E[xkx̂k/k] is calculated

taking into account that, from the orthogonality, E[xkx̂
T
k/k] = E[x̂k/kx̂

T
k/k] = Dk −

Pk/k.

Finally, since Pk/k+N = E
[
xkx

T
k

]−E
[
x̂k/k+N x̂T

k/k+N

]
, using (1.12) and taking

into account that x̂k/k+N−1 is uncorrelated with νk+N , expression (1.15) is deduced.

¤
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80 References

[26] M. Liu, D. Qi, S. Zhang, M. Qiu and S. Zheng, Optimal H∞ fusion filters

for a class of discrete-time intelligent systems with time delays and missing

measurement, Neurocomputing, 74 (2011), 3741–3752.

PhD Thesis Irene Garćıa Garrido



Chapter 2

Centralized fusion quadratic
estimators in multi-sensor
systems with correlated missing
measurements
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Centralized fusion quadratic estimators in multi-sensor systems with correlated
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Applied Mathematical Sciences, 57(7): 2795-2813.

Abstract

In this paper, the centralized fusion quadratic estimation problem in linear discrete-

time stochastic systems with missing measurements coming from multiple sensors

is addressed when the Bernoulli variables describing the phenomenon of missing

measurements are correlated at instants that differ m sampling times. For this

purpose, an appropriate augmented system is defined and the required quadratic

estimators of the original state are obtained from the linear estimators of the
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augmented state. By using an innovation approach, recursive algorithms for the

least-squares linear filtering and fixed-point smoothing problems of the augmented

system are derived. The performance of the proposed estimators is illustrated by

a simulation example where centralized fusion linear and quadratic estimators are

compared in terms of their error variances for different missing probabilities and

values of m.
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2.1 Introduction

In some real situations where sensor networks are used, the state estimation prob-

lem is addressed under the assumption that, at each sampling time, the available

measurements always contain information about the current state. However, the

unreliable network characteristics usually lead to problems such as accidental loss

of some measurements, intermittent failures or random interruptions in the trans-

mission mechanism, among others. These situations, called missing measurements

or uncertain observations, are characterized by including in the measured output

besides an additive noise, a multiplicative noise defined by a sequence of Bernoulli

random variables, modelling the possibility that the system state vector may or

may not be present in the corresponding measurement.

Due to this multiplicative noise component, systems with missing measurements
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are not Gaussian in general (even if the additive noises are Gaussian) and the

practical computation of the optimal least-squares (LS) estimator is not a simple

task. This difficulty gives rise to the need of searching for suboptimal estimators,

easier to derive, such as linear or even polynomial estimators which improve the

extensively used linear ones. In the last years, the estimation problem in this kind

of systems has been widely studied under different hypotheses and approaches on

the processed involved (see e.g. [1] and [10] and references therein).

In the above papers, authors consider that the measurement data available for

the estimation come either from a single sensor or from multiple sensors with iden-

tical uncertainty characteristics. Nevertheless, this is not a realistic assumption in

several application fields, for instance, in networked communication systems involv-

ing heterogeneous measurement devices (see e.g. [6]); hence, multi-sensor systems

featuring different sensor statistical properties are an increasing research challenge.

To process the measured sensor data, centralized fusion method, which consists of

considering that all measurement data coming from multiple sensors are transmit-

ted to a fusion center for being processed, has been commonly used. In [5] and [9]

centralized linear estimators are designed in the linear minimum variance sense by

considering independent variables modelling the uncertainty in the observations.

The optimal LS centralized linear and quadratic problems are also investigated

in [2] for systems in which the phenomenon of missing measurements is modelled

by Bernoulli variables correlated at consecutive sampling times, while Bernoulli

variables correlated at instants that differ two units of time are considered in [4].

These types of correlation cover several practical situations, for example, in

sensor networks where sensor failures may happen and a failed sensor is not replaced

or replaced one or two sampling times after having failed. However, even if it is

assumed that any failure in the transmission results from sensor failures, usually

the failed sensor may not be replaced immediately but after m instants of time;

to cover such situations, correlation among the random variables modelling the
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uncertainty in the observations at times k and k + m has been considered in [8],

where recursive algorithms for the linear filter and fixed-point smoother have been

derived.

In this paper, the centralized fusion quadratic estimation problem in linear

discrete-time stochastic systems with missing measurements coming from multiple

sensors is addressed, when, at each sensor, the random variables modelling the

phenomenon of missing measurements are m-step autocorrelated. For this pur-

pose, recursive algorithms for the LS quadratic filtering and fixed-point smoothing

problems are presented, both yielding a significant improvement over the linear

estimation problem.

To address the quadratic estimation problem, the technique proposed in [3]

is used, which consists of augmenting the state and measurement vectors, by as-

sembling the original vectors and their second-order Kronecker powers, thus the

quadratic estimation problem for the original state is reduced to the linear estima-

tion problem for the augmented state. The rest of the paper is organized as follows.

In Section 2.2 the state-space model is described and the assumptions about the

state and noise processes are presented. In Section 2.3 the quadratic estimation

problem is formulated based on the augmented system and some properties about

the initial state and noise processes involved in this augmented system. By using

an innovation approach, the linear estimators of the augmented state are derived

in Section 2.4, providing the required quadratic estimators. Finally, in Section

2.5, the effectiveness of the estimation algorithms is illustrated by a numerical

simulation example where centralized fusion linear and quadratic estimators are

compared in terms of their error variances.

2.2 Model assumptions

Our aim is to address the LS quadratic estimation problem in linear discrete-time

stochastic systems with missing measurements coming from multiple sensors when
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the Bernoulli variables describing the phenomenon of missing measurements are

correlated at instants that differ m sampling times. In this section, the system

model is described and the assumptions about the state and noise processes are

stated.

Consider a class of discrete-time linear stochastic systems with missing mea-

surements (that is, observations containing only noise) coming from r sensors,

whose mathematical modelling is described by the following state and measure-

ment equations:

xk = Fk−1xk−1 + wk−1, k ≥ 1, (2.1)

yi
k = θi

kH
i
kxk + vi

k, k ≥ 1, i = 1, 2, . . . , r, (2.2)

where xk ∈ Rn is the state and yi
k ∈ R, i = 1, 2, . . . , r, is the measurement coming

from sensor i at sampling time k. The additive noises {wk; k ≥ 0} and {vi
k; k ≥

1}, i = 1, 2, . . . , r, are white sequences. Fk and H i
k, i = 1, 2, . . . , r, are known time-

varying matrices with compatible dimensions. The multiplicative noises {θi
k; k ≥

1}, i = 1, 2, . . . , r, are sequences of Bernoulli random variables, which are used

to model the phenomenon of missing measurements; their values –one or zero–

indicate whether the state is present or missing in the corresponding measurement.

The number of sensors is denoted by r and the i-th sensor by superscript i.

Our aim is to obtain the LS quadratic estimator of the state xk based on the

received measurements {yi
1, . . . , y

i
L}, L ≥ k, i = 1, 2, . . . , r, by using the centralized

fusion method, which consists of stacking the observations coming from multiple

sensors in a fusion center for being processed. For this purpose and to simplify the

notation, the measurement equation (2.2) is rewritten in a compact form as:

yk = ΘkHkxk + vk, k ≥ 1,

where yk = (y1
k, . . . , y

r
k)

T , vk = (v1
k, . . . , v

r
k)

T , Hk = (H1T
k , . . . , HrT

k )T and Θk =

Diag(θ1
k, . . . , θr

k).
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86 2.2 Model assumptions

In order to address the LS quadratic estimation problem of the state xk from

the observations y1, . . . , yL, L ≥ k, several considerations must be taken into ac-

count. As it is known, the LS quadratic estimator of xk based on the observa-

tions y1, . . . , yL, is the orthogonal projection of xk onto the space of n-dimensional

random variables obtained as linear transformations of y1, . . . , yL and their second-

order powers, y
[2]
1 , . . . , y

[2]
L (defined by the Kronecker product, y

[2]
i = yi⊗yi). Hence,

to address the LS quadratic estimation problem, the existence of the second-order

moments of such vectors, y
[2]
i , is required. On the other hand, as indicated pre-

viously, this problem will be addressed under the assumption that the variables

describing the uncertainty in the observations are m-step autocorrelated. Specifi-

cally, the following assumptions are assumed:

(A1) The initial state x0 is a random vector with E[x0] = x0, Cov[x0] = P0,

Cov[x0, x
[2]
0 ] = P

(3)
0 and Cov[x

[2]
0 ] = P

(4)
0 .

(A2) The state noise {wk; k ≥ 0} is a zero-mean white sequence with Cov[wk] =

Qk, Cov[wk, w
[2]
k ] = Q

(3)
k and Cov[w

[2]
k ] = Q

(4)
k .

(A3) The measurement noise {vk; k ≥ 1} is a zero-mean white sequence with

Cov[vk] = Rk, Cov[vk, v
[2]
k ] = R

(3)
k and Cov[v

[2]
k ] = R

(4)
k .

(A4) For i = 1, 2, . . . , r, the multiplicative noises {θi
k; k ≥ 1} are sequences of

Bernoulli random variables with known probabilities P [θi
k = 1] = θ

i

k. For

i, j = 1, 2, . . . , r, the variables θi
k and θj

s are independent for |k − s| 6= 0,m,

and Cov[θi
k, θ

j
s] are known for |k − s| = 0,m.

(A5) The initial state x0 and the processes {wk; k ≥ 0}, {vk; k ≥ 1} and {θk =

(θ1
k, . . . , θ

r
k)

T ; k ≥ 1} are mutually independent.

Remark 1. Obviously, from the state equation (2.1) and under assumptions

(A1), (A2) and (A5), the state expectation satisfies xk = E[xk] = Fk−1xk−1 and
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Ek = E[xkx
T
k ] is recursively calculated as

Ek = Fk−1Ek−1F
T
k−1 + Qk−1, k ≥ 1, E0 = P0 + x0x

T
0 .

2.3 Quadratic estimation problem

Under the above assumptions (A1)-(A5), our purpose is to obtain the LS quadratic

estimator, x̂q
k/L, of the state xk, based on the measurements y1,. . ., yL, L ≥ k. More

specifically, our aim is to derive recursive algorithms for the filter, x̂q
k/k and the

fixed-point smoother, x̂q
k/k+N , N ≥ 1.

In order to obtain these estimators the following augmented state and measure-

ment vectors are defined by assembling the original vectors and their second-order

Kronecker powers:

Xk =

(
xk

x
[2]
k

)
, Yk =

(
yk

y
[2]
k

)
.

Note that the n-dimensional space of linear transformations of Y1, . . . ,YL is equal

to the n-dimensional space of linear transformations of y1, . . . , yL and y
[2]
1 , . . . , y

[2]
L .

Therefore, it is clear that the LS quadratic estimator, x̂q
k/L, is the LS linear esti-

mator of xk based on Y1, . . . ,YL, which is obtained by extracting the first n entries

of the LS linear estimator of Xk based on Y1, . . . ,YL. So, the quadratic estimation

problem for the original state is reduced to the linear estimation problem for the

augmented state.

For simplicity, as in [2] and [4], to address the LS linear estimation problem

of the augmented state, the centered augmented state and measurement vectors

Xk = Xk − E[Xk] and Yk = Yk − E[Yk], respectively, are considered; these vectors

satisfy the following augmented system:

Xk = Fk−1Xk−1 + Wk−1, k ≥ 1, (2.3)

Yk = DΘ
k HkXk + Vk, k ≥ 1 (2.4)
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88 2.3 Quadratic estimation problem

where

Fk = Diag(Fk, F
[2]
k ), Hk = Diag(Hk, H

[2]
k ), DΘ

k = Diag(Θk, Θ
[2]
k ),

Wk =

(
wk

(I + K)((Fkxk)⊗ wk) + w
[2]
k − vec(Qk)

)
,

(I and K denote the identity and commutation matrices of compatible dimensions,

respectively),

Vk =

(
vk

(I + K)((ΘkHkxk)⊗ vk) + v
[2]
k − vec(Rk)

)
+ (DΘ

k −DΘ
k )HkE[Xk],

where DΘ
k = E[DΘ

k ] and E[Xk] = (xk, vec(Ek))
T , with xk and Ek given in Remark

1 (vec(·) denotes the ‘vec’ or ‘stack’ operator, which vectorizes a matrix).

It should be noted that the LS linear estimator of Xk based on Y1, . . . ,Yk is

obtained from the LS linear estimator of Xk based on Y1, . . . , Yk, just adding the

mean vector E[Xk]. Hence, the required quadratic estimators x̂k/k+N , N ≥ 0, are

obtained by adding the mean xk to the vector constituted by the first n entries of

the LS linear filter of Xk.

The following statistical properties about the initial state and noise processes

involved in (2.3) and (2.4) are used to derive the LS linear estimation algorithms

for this augmented system. The proof of these properties is analogous to those in

[2] and [4] and, hence, it is omitted.

(i) The initial state X0 is a zero-mean random vector with covariance matrix

P ∗
0 =

(
P0 P

(3)
0

P
(3)
0 P

(4)
0

)
.

(ii) The noise {Wk; k ≥ 0} is a zero-mean white process with

E[WkW
T
k ] = QW

k =

(
Qk Q12

k

Q12T
k Q22

k

)
,
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where

Q12
k = ((Fkxk)

T ⊗Qk)(I + K) + Q
(3)
k ,

Q22
k = (I + K)((FkEkF

T
k )⊗Qk)(I + K) + Q

(4)
k

+ (I + K)((Fkxk)⊗Q
(3)
k ) + ((Fkxk)⊗Q

(3)
k )T (I + K).

(iii) The noise {Vk; k ≥ 1} is a zero-mean process with

E[VkV
T
s ] = 0, |k − s| 6= 0,m,

E[VkV
T
k ] = RV

k,k = Rk + Cov[CΘ
k ] ◦ (HkE[Xk]E[X T

k ]HT
k

)
,

E[VkV
T
k−m] = RV

k,k−m = Cov[CΘ
k , CΘ

k−m] ◦ (HkE[Xk]E[X T
k−m]HT

k−m

)
,

where

Rk =

(
Rk R12

k

R12T
k R22

k

)
and CΘ

k =
(
θT

k , θ
[2]T
k

)T

with

R12
k = ((ΘkHkxk)

T ⊗Rk)(I + K) + R
(3)
k ,

R22
k = (I + K)((E[θkθ

T
k ] ◦ (

HkEkH
T
k ))⊗Rk

)
(I + K) + R

(4)
k

+ (I + K)((ΘkHkxk)⊗R
(3)
k ) + ((ΘkHkxk)⊗R

(3)
k )T (I + K).

where Θk = E[Θk] and ◦ denotes de Hadamard product ([A ◦B]ij = AijBij).

(iv) The initial state X0 and the noises {Wk; k ≥ 0} and {Vk; k ≥ 1} are uncor-

related.

(v) The matrix DΘ
k is independent of

(
X0, {Wk; k ≥ 0}, V1, . . . , Vk−(m+1), Vk−(m−1), . . . , Vk−1,

DΘ
1 , . . . , DΘ

k−(m+1), D
Θ
k−(m−1), . . . , D

Θ
k−1

)
.

Remark 2. For any random matrix G independent of {DΘ
k ; k ≥ 1}, using the

Hadamard product properties it is easily derived that (see [5]):

E[(DΘ
k −DΘ

k )G(DΘ
s −DΘ

s )] = Cov[CΘ
k , CΘ

s ] ◦ E[G]. (2.5)
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90 2.4 LS quadratic estimation algorithms

Remark 3. From the augmented state equation (2.3) and properties (i), (ii) and

(iv), it is easy to deduce that Ek = E[XkX
T
k ] is recursively calculated as:

Ek = Fk−1Ek−1FT
k−1 + QW

k−1, k ≥ 1; E0 = P ∗
0 . (2.6)

Also, it is easy to see that E[XkX
T
k−i] = Fk,k−iEk−i, 1 ≤ i ≤ m, and E[XkX

T
k+N ] =

EkFT
k+N,k, N ≥ 1, where Fk,i = Fk−1 · · · Fi.

2.4 LS quadratic estimation algorithms

Our aim in this section is to obtain the LS quadratic estimators of the state xk based

on the observations y1, . . . , yL. For this purpose, the LS linear estimation problem

of the augmented state Xk based on the augmented observations Y1, . . . , YL, L ≥ k

is addressed by recursive algorithms.

For this purpose, and to simplify the derivation of the algorithms, an inno-

vation approach will be used [7]. This approach is based on the Gram-Schmidt

orthogonalization procedure which consists of transforming the observation pro-

cess {Yk; k ≥ 1} into an equivalent one of orthogonal vectors {νk; k ≥ 1} named

innovation process. Let νi be defined as νi = Yi− Ŷi/i−1, with Ŷi/i−1 the observation

predictor, i.e., the LS linear estimator of Yi based on the previous observations.

The fact that the innovation process is uniquely determined by the observations

allows us to state that the LS linear estimator of the augmented state based on

the augmented observations is equal to the LS linear estimator based on the in-

novations. By applying the Orthogonal Projection Lemma (OPL) and taking into

account that the innovations constitute a white process, it is easy to see that the

estimators can be expressed as

X̂k/L =
L∑

i=1

Gk,iΠ
−1
i νi, (2.7)

where Πi = E[νiν
T
i ] and Gk,i = E[Xkν

T
i ].
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In a similar way, the augmented observation predictor, Ŷk/k−1, satisfies

Ŷk/k−1 =
k−1∑
i=1

Tk,iΠ
−1
i νi, Tk,i = E[Ykν

T
i ]. (2.8)

In view of the above comments and the properties of the augmented system

established in Section 2.3, recursive algorithms for the linear filter, X̂k/k, and fixed-

point smoothers, X̂k/k+N , N ≥ 1, of the augmented state Xk are derived in the

following theorems. So, as indicated previously, the required quadratic estimators,

x̂q
k/k and x̂q

k/k+N , N ≥ 1, of the original state xk are obtained by adding the mean

xk to the vector constituted by the first n entries of X̂k/k+N , N ≥ 0.

Theorem 2.4.1 The LS quadratic filter, x̂q
k/k, of the state xk is given by

x̂q
k/k = ΥX̂k/k + xk, k ≥ 1,

where Υ is the operator which extracts the first n entries of X̂k/k, the linear filter

of the augmented state Xk, which is recursively obtained by

X̂k/k = X̂k/k−1 + Gk,k Π−1
k νk, k ≥ 1, X̂0/0 = 0 (2.9)

where the state predictor, X̂k/k−1, is obtained by

X̂k/k−1 = Fk−1X̂k−1/k−1, k ≥ 1. (2.10)

The innovation, νk, satisfies

νk = Yk −DΘ
k HkX̂k/k−1, k ≤ m,

νk = Yk −DΘ
k HkX̂k/k−1 −Ψk,k−m

[
νk−m −

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iνk−i

]
, k > m,

(2.11)

where Ψk,k−m =
(
Cov[CΘ

k , CΘ
k−m] ◦ (HkFk,k−mEk−mHT

k−m

)
+ RV

k,k−m

)
Π−1

k−m, with Ek

given by (2.6).
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The matrices Tk,k−i are determined by

Tk,k−i = DΘ
k HkFk,k−iGk−i,k−i, k ≤ m, 1 ≤ i ≤ k − 1,

Tk,k−i = DΘ
k HkFk,k−iGk−i,k−i −Ψk,k−mT T

k−i,k−m, k > m, 1 ≤ i ≤ m− 1.

(2.12)

The matrix Gk,k is calculated by the following expression

Gk,k = Σk/k−1HT
k DΘ

k , k ≤ m,

Gk,k = Σk/k−1HT
k DΘ

k −
(
Fk,k−mGk−m,k−m

−
m−1∑
i=1

Fk,k−iGk−i,k−iΠ
−1
k−iTk−i,k−m

)
ΨT

k,k−m, k > m,

(2.13)

where Σk/k−1, the prediction error covariance matrix, is obtained by

Σk/k−1 = Fk−1Σk−1/k−1FT
k−1 + QW

k−1, k ≥ 1,

with Σk/k, the filtering error covariance matrix, calculated as

Σk/k = Σk/k−1 − Gk,kΠ
−1
k GT

k,k, k ≥ 1; Σ0/0 = P ∗
0 .

The innovation covariance matrix, Πk = E[νkν
T
k ], satisfies

Πk = Cov[CΘ
k ] ◦ (HkEkHT

k

)
+ RV

k,k + DΘ
k HkGk,k, k ≤ m,

Πk = Cov[CΘ
k ] ◦ (HkEkHT

k

)
+ RV

k,k + DΘ
k HkGk,k

+ GT
k,kHT

k DΘ
k −DΘ

k HkΣk/k−1HT
k DΘ

k

−Ψk,k−m

(
Πk−m +

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iTk−i,k−m

)
ΨT

k,k−m, k > m.

(2.14)

Proof. From expression (2.7) for L = k, k− 1, relation (2.9) for the filter is clear.

Expression (2.10) for the state predictor is immediately obtained from (2.3) and

the OPL.

Next, an explicit formula for the innovations, νk = Yk− Ŷk/k−1, or, equivalently,

for the one-stage predictor of Yk, is deduced. From expression (2.8), we start by
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calculating Tk,i, for i ≤ k− 1. From (2.4) and considering the properties about the

noise processes, it is clear that

Tk,i =

{
E

[
DΘ

k HkXkν
T
i

]
, i ≤ k − 1

DΘ
k HkGk,i, k ≤ m or k > m, i < k −m.

After some manipulations, we obtain:

(a) For k ≤ m, using (2.7) for L = k − 1, we have

Ŷk/k−1 = DΘ
k HkX̂k/k−1. (2.15)

(b) For k > m, is easily deduced that

Ŷk/k−1 = DΘ
k Hk

k−1∑
i=1

Gk,iΠ
−1
i νi +

m∑
i=1

(Tk,k−i −DΘ
k HkGk,k−i)Π

−1
k−iνk−i, (2.16)

where

Tk,k−i −DΘ
k HkGk,k−i = E

[
(DΘ

k −DΘ
k )HkXkν

T
k−i

]
+ E[Vkν

T
k−i]

= E
[
(DΘ

k −DΘ
k )HkXkY

T
k−i

]
− E

[
(DΘ

k −DΘ
k )HkXkŶ

T
k−i/k−(i+1)

]

+ E[VkY
T
k−i].

(2.17)

From expression (2.4) for Yk−i and property (2.5), it is concluded that

Tk,k−i −DΘ
k HkGk,k−i = Cov[CΘ

k , CΘ
k−i] ◦

(HkFk,k−iEk−iHT
k−i

)
+ E[VkV

T
k−i]

− E
[
(DΘ

k −DΘ
k )HkXkŶ

T
k−i/k−(i+1)

]
, 1 ≤ i ≤ m.

− For i = m, since DΘ
k is independent of the innovations νi, for i < k −m,

E
[
(DΘ

k −DΘ
k )HkXkŶ

T
k−m/k−(m+1)

]
= 0 and from property (iii), we have that

E[VkV
T
k−m] = RV

k,k−m. Therefore,

Tk,k−m −DΘ
k HkGk,k−m = Cov[CΘ

k , CΘ
k−m] ◦ (HkFk,k−mEk−mHT

k−m

)
+ RV

k,k−m.

(2.18)
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− For i < m, from the correlation assumption and property (iii), we have

that Cov[CΘ
k , CΘ

k−i] and E[VkV
T
k−i] are equal to zero. By using again that DΘ

k

is independent of νi, for i 6= k −m, it is deduced that

Tk,k−i −DΘ
k HkGk,k−i = −

(
E[(DΘ

k −DΘ
k )HkXkν

T
k−m] + E[Vkν

T
k−m]

)

× Π−1
k−mT T

k−i,k−m,

or, equivalently, from (2.17) for i = m and (2.18), we have that

Tk,k−i −DΘ
k HkGk,k−i = −Ψk,k−mT T

k−i,k−m, i < m, (2.19)

where Ψk,k−m = (Cov[CΘ
k , CΘ

k−m] ◦ (HkFk,k−mEk−mHT
k−m

)
+ RV

k,k−m)Π−1
k−m.

Hence, substituting (2.19) into (2.16) and using (2.7) for X̂k/k−1, the following

expression for the one-stage predictor is obtained

Ŷk/k−1 = DΘ
k HkX̂k/k−1 + Ψk,k−m

[
νk−m −

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iνk−i

]
, k > m,

(2.20)

from which expression (2.11) is immediately deduced.

Formula (2.12) for the matrices Tk,k−i is obtained using (2.4), (2.19), and taking

into account that Gk,k−i = Fk,k−iGk−i,k−i, which is immediately clear from (2.3).

Now, expression (2.13) for the matrix Gk,k = E[XkY
T
k ]−E[XkŶ

T
k/k−1] is derived.

From (2.4) and property (v), it is clear that E[XkY
T
k ] = EkHT

k DΘ
k , ∀k ≥ 1. To

calculate E[XkŶ
T
k/k−1] we replace Ŷk/k−1 by its expressions (2.15) and (2.20), thus

considering two cases:

(a) For k ≤ m, E[XkŶ
T
k/k−1] = E[XkX̂

T
k/k−1]HT

k DΘ
k and by applying the OPL,

E[XkX̂
T
k/k−1] = Ek − Σk/k−1 where Σk/k−1 is the prediction error covariance

matrix. Hence

E[XkŶ
T
k/k−1] =

(Ek − Σk/k−1

)HT
k DΘ

k , k ≤ m.
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(b) For k > m, it follows that

E[XkŶ
T
k/k−1] = E[XkX̂

T
k/k−1]HT

k DΘ
k + E[Xkν

T
k−m]ΨT

k,k−m

− E


Xk

(
m−1∑
i=1

T T
k−i,k−mΠ−1

k−iνk−i

)T

 ΨT

k,k−m,

hence, using again the OPL and since E[Xkν
T
k−i] = Gk,k−i, for 1 ≤ i ≤ m, it

is deduced that

E[XkŶ
T
k/k−1] =

(Ek − Σk/k−1

)HT
k DΘ

k + Gk,k−mΨT
k,k−m

−
m−1∑
i=1

Gk,k−iΠ
−1
k−iTk−i,k−mΨT

k,k−m, k > m.

By substraction of the above expectations, and taking into account that Gk,k−i =

Fk,k−iGk−i,k−i for i ≤ m, expression (2.13) for Gk,k is obtained.

From (2.3), the expression for the prediction error covariance matrix, Σk/k−1 is

immediately clear and, from (2.9), the expression for the filtering error covariance

matrix, Σk/k, is also obvious.

Finally, we prove expression (2.14) for the innovation covariance matrix Πk =

E[YkY
T
k ]− E[Ŷk/k−1Ŷ

T
k/k−1]. From (2.4) and using (2.5), we have that

E[YkY
T
k ] = E[CΘ

k CΘT
k ] ◦ (HkEkHT

k

)
+ RV

k,k, k ≥ 1.

Due to the correlation assumption of the Bernoulli variables θk, we need to distin-

guish two cases to calculate E[Ŷk/k−1Ŷ
T
k/k−1]. For this purpose, expressions (2.15)

and (2.20) for Ŷk/k−1, along with formula (2.5) and the OPL, are used:

(a) For k ≤ m, the following identity holds

E[Ŷk/k−1Ŷ
T
k/k−1] =

(
E[CΘ

k ]E[CΘT
k ]

) ◦ (Hk(Ek − Σk/k−1)HT
k

)
.
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(b) For k > m, after some manipulations, we deduce that

E[Ŷk/k−1Ŷ
T
k/k−1] =

(
E[CΘ

k ]E[CΘT
k ]

) ◦ (Hk(Ek − Σk/k−1)HT
k

)

+ Ψk,k−mΠk−mΨT
k,k−m

+ Ψk,k−m

m−1∑
i=1

T T
k−i,k−mΠ−1

k−iTk−i,k−mΨT
k,k−m

−DΘ
k Hk

(
Gk,k − Σk/k−1HT

k DΘ
k

)

−
(
GT

k,k −DΘ
k HkΣk/k−1

)
HT

k DΘ
k .

So, from the above expectations, expression (2.14) for the innovation covariance

matrix Πk is obtained. ¤

Theorem 2.4.2 For each fixed k ≥ 1, the quadratic fixed-point smoothers, x̂q
k/k+N ,

of the state xk are given by

x̂q
k/k+N = ΥX̂k/k+N + xk, N ≥ 1,

where Υ is the operator which extracts the first n entries of X̂k/k+N , the linear

fixed-point smoothers of the augmented state Xk, which are calculated as

X̂k/k+N = X̂k/k+N−1 + Gk,k+N Π−1
k+N νk+N , N ≥ 1, (2.21)

whose initial condition is the filter X̂k/k, given in Theorem 2.4.1.

The matrices Gk,k+N are obtained by

Gk,k+N =
(EkFT

k+N,k −Mk,k+N−1FT
k+N−1

)HT
k+NDΘ

k+N , k ≤ m−N, N ≥ 1,

Gk,k+N =
(EkFT

k+N,k −Mk,k+N−1FT
k+N−1

)HT
k+NDΘ

k+N

−
(
Gk,k+N−m −

m−1∑
i=1

Gk,k+N−iΠ
−1
k+N−iTk+N−i,k+N−m

)

×ΨT
k+N,k+N−m, k > m−N, N ≥ 1,

(2.22)
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where the matrices Mk,k+N satisfy the following recursive formula:

Mk,k+N = Mk,k+N−1FT
k+N−1 + Gk,k+NΠ−1

k+NGT
k+N,k+N , N ≥ 1,

Mk,k = Ek − Σk/k.
(2.23)

The fixed-point smoothing error covariance matrix, Σk/k+N , satisfies

Σk/k+N = Σk/k+N−1 − Gk,k+NΠ−1
k+NGT

k,k+N , N ≥ 1, (2.24)

with the filtering error covariance matrix, Σk/k, as initial condition.

The innovations νk+N , their covariance matrices Πk+N , the matrices Tk+N,k+N−i,

Ψk+N,k+N−m, Ek and Σk/k are given in Theorem 2.4.1.

Proof. From the general expression (2.7), for each fixed k ≥ 1, the recursive

relation (2.21) is immediately clear.

Next, to prove (2.22) for Gk,k+N = E[XkY
T
k+N ]− E[XkŶ

T
k+N/k+N−1], it is neces-

sary to calculate both expectations.

On the one hand, from Equation (2.4) and using that DΘ
k+N and Vk+N are

independent of Xk, we obtain

E[XkY
T
k+N ] = EkFT

k+N,kHT
k+NDΘ

k+N , N ≥ 1.

On the other hand, based on expression (2.11) for νk+N , two options must be

considered:

(a) For k ≤ m−N , using (2.10) for X̂k+N/k+N−1, we have that

E
[
XkŶ

T
k+N/k+N−1

]
= Mk,k+N−1FT

k+N−1HT
k+NDΘ

k+N ,

where Mk,k+N−1 = E
[
XkX̂

T
k+N−1/k+N−1

]
.

(b) For k > m−N , a similar reasoning to the above one leads to

E[XkŶ
T
k+N/k+N−1] = Mk,k+N−1FT

k+N−1HT
k+NDΘ

k+N +

(
Gk,k+N−m

−
m−1∑
i=1

Gk,k+N−iΠ
−1
k+N−iTk+N−i,k+N−m

)
ΨT

k+N,k+N−m.
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Then, the replacement of the above expectations in Gk,k+N leads to (2.22).

The recursive relation (2.23) for Mk,k+N = E
[
XkX̂

T
k+N/k+N

]
is immediately

clear from (2.9) for X̂k+N/k+N and its initial condition Mk,k = E[XkX̂k/k] is calcu-

lated taking into account that, from the orthogonality, E[XkX̂
T
k/k] = E[X̂k/kX̂

T
k/k] =

Ek − Σk/k.

Finally, since Σk/k+N = E
[
XkX

T
k

]−E
[
X̂k/k+NX̂T

k/k+N

]
, using (2.21) and tak-

ing into account that X̂k/k+N−1 is uncorrelated with νk+N , expression (2.24) is

deduced. ¤

Remark 4. The first n×n blocks of the error covariance matrices Σk/k+N , N ≥ 0,

provide the covariance matrices of the quadratic smoothing and filtering errors,

thus providing a measure of the accuracy of the respective quadratic estimators.

2.5 Numerical simulation example

In this section, a numerical simulation example is shown to illustrate the feasibility

of the quadratic estimation algorithms proposed in this paper. We ran a program

in Matlab simulating at each iteration the state and the measured values and

computing the linear [8] and quadratic filter and fixed-point smoothers, as well as

the corresponding estimation error covariance matrices.

Consider a scalar state process, {xk; k ≥ 1} generated by a first-order autore-

gressive model with missing measurements coming from two sensors and perturbed

by additive and multiplicative noises. Specifically, the following model is consid-

ered:

xk =

(
1 + 0.2 sin

(
(k − 1)π

50

))
0.8xk−1 + wk−1, k ≥ 1

yi
k = θi

kx
i
k + vi

k, k ≥ 1, i = 1, 2,

where the initial state x0 is a zero-mean Gaussian variable with variance P0 = 0.1,

the process {wk; k ≥ 0} is a zero-mean white Gaussian noise with variance Qk =
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0.36, ∀k ≥ 0 and the noise processes {vi
k; k ≥ 1}, i = 1, 2 are zero-mean white

sequences with the following probability distributions:

P [v1
k = −8] =

1

8
, P [v1

k =
8

7
] =

7

8
, ∀k ≥ 1,

P [v2
k = 1] =

15

18
, P [v2

k = −3] =
2

18
, P [v2

k = −9] =
1

18
, ∀k ≥ 1,

and variances given by R1
k = 64/7 and R2

k = 19/3, ∀k ≥ 1, respectively.

To describe the phenomenon of missing measurements according to our theo-

retical model (the uncertainty at time k depends only on the uncertainty at the

previous time k − m), the variables {θi
k; k ≥ 1}, i = 1, 2, . . . , r are defined from

two independent sequences of independent Bernoulli random variables, {γi
k; k ≥ 1},

i = 1, 2 with P [γi
k = 1] = γi. Specifically, the variables θi

k are defined as follows:

θi
k = 1− γi

k+m(1− γi
k), i = 1, 2.

Note that θi
k = 0 when γi

k+m = 1 and γi
k = 0, and consequently, θi

k+m = 1;

this fact implies that, if the state is missing at time k, after k + m sampling times

the output measurement necessarily contains the state. Therefore, there cannot be

more than m consecutive measured data consisting of noise only.

Since the variables γi
k and γi

s are independent, θi
k and θi

s are also independent

for |k − s| 6= 0,m. The mean of these variables is θ
i

= 1 − γi(1 − γi) and the

covariance function is given by

E[(θi
k − θ

i
)(θi

s − θ
i
)] =





0, |k − s| 6= 0,m,

−(1− θ
i
)2, |k − s| = m,

θ
i
(1− θ

i
), |k − s| = 0.

To analyze and compare the effectiveness of the proposed estimators, two hun-

dred iterations of the proposed algorithms have been performed, and the linear

and quadratic estimation error variances have been calculated for different values

of the uncertainty probability and several values of m. Note that, for i = 1, 2,

the roles played by γi and 1− γi can be interchanged without affecting the means
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and covariance functions of the random variables θi
k; so, henceforth, only the case

γi ≤ 0.5 will be considered. In such case, note that θ
i

(the probability that the

observations coming from sensor i contain the state) is a decreasing function of γi,

for i = 1, 2, whose maximum value, θ
i

= 1 (for γi = 0), corresponds to the case

when all the observations coming from sensor i contain the state, i.e. there are no

missing measurements.

Firstly, assuming that the Bernoulli variables θi
k, i = 1, 2, are correlated at

instants that differ m = 3 units of time and considering fixed values of the prob-

abilities γ1 = 0.2 and γ2 = 0.1, the linear and quadratic filtering and fixed-point

smoothing error variances (N = 2, 5) are displayed in Fig. 2.1. This figure shows,

on the one hand, that the quadratic estimation error variances are significantly

smaller than the linear ones and, on the other hand, that the estimation accu-

racy of the smoothing error variances are higher than those of the filter and, in

turn, that the performance of the fixed-point smoothers improves as the number

of available observations increases.

Now, in order to show more precisely the dependence of the error variances

on the values γ1 and γ2, Fig. 2.2 presents the linear and quadratic filtering error

variances, at a fixed iteration (namely, k = 200) for m = 3, versus γ1 (for constant

values of γ2). From this figure it is gathered that, as γ1 increases (equivalently,

as the probability that the observations contain the state decreases), the filtering

error variances are greater and, hence, the performance of the filters is worse.

Also, agreeing with the comments on the previous figure, we conclude again that

the quadratic filtering estimators are better than the linear ones. A similar study

about the filtering error variances versus γ2 (for constant values of γ1) leads to

analogous comments, so it is omitted for brevity.

Finally, for γ1 = 0.2 and γ2 = 0.4, the performance of the quadratic estimators

is compared for different values of m. Specifically, for m = 2, 3, 4, 5, 6, the linear

and quadratic estimation error variances are shown in Table 2.1. From this table
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Figure 2.1: Linear and quadratic filtering and fixed-point smoothing error variances
for γ1 = 0.2, γ2 = 0.1, when m = 3.

it is deduced that the estimators are more accurate as the values of m are lower,

i.e., a greater distance between the instants at which the variables are correlated

(which means that the state can be missing in more consecutive observations) yields

worse estimators. Moreover, this table corroborates that the quadratic estimators

perform quite better than the linear estimators.

Algorithm Error variances m = 2 m = 3 m = 4 m = 5 m = 6

Linear
Filter 1.1568 1.1604 1.1633 1.1657 1.1675

Smoother 0.9025 0.9085 0.9102 0.9116 0.9127

Quadratic
Filter 0.4925 0.5027 0.5110 0.5177 0.5229

Smoother 0.3455 0.3577 0.3591 0.3619 0.3642

Table 2.1: Linear and quadratic filtering and fixed-point smoothing error variances
(N = 2) for γ1 = 0.2, γ2 = 0.4 at k = 30 when m = 2, 3, 4, 5, 6.
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Figure 2.2: Linear and quadratic filtering error variances at k = 200 versus γ1,
with γ2 varying from 0.1 to 0.5 when m = 3.

2.6 Conclusions

The least-squares quadratic filtering and fixed-point smoothing problems, for linear

discrete-time stochastic systems with missing measurements coming from multiple

sensors have been addressed by using centralized fusion method. At each sensor,

the phenomenon of missing measurements is modelled by Bernoulli variables whose

values –one or zero– indicate whether the state is present or missing in the cor-

responding measurement; such variables are assumed to be correlated at instants

that differ m sampling times. Real applications with these features are, for exam-

ple, signal transmission models in which any failure in the transmission is detected

and the old sensor is replaced after m instants of time, thus avoiding the possibility

of missing signal in m + 1 consecutive observations.
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The quadratic estimation problem considered in the current paper provides a

generalization of the result established in [4] and it is useful in several problems

of signal processing, such as signal prediction, detection and control, as well as

image restoration problems. The theoretical results are illustrated by a numerical

simulation example, in which a scalar state process is generated by a first-order

autoregressive model with missing measurements coming from two sensors. Linear

and quadratic error variances are shown for different uncertainty probabilities and

values of m. On the one hand, these results confirm that the quadratic estimators

are more accurate than the linear ones and, on the other hand, that the fixed-point

smoothing estimators are more effective than the filtering ones. The example also

shows that, as the uncertainty probability decreases, the performance of the filters

is better and finally that, as the values of m are lower, the estimators are more

accurate since the state can be missing in less consecutive observations.

Acknowledgements

This research is supported by Ministerio de Ciencia e Innovación (Programa FPU

and grant No. MTM2011-24718) and Junta de Andalućıa (grant No. P07-FQM-
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quadratic estimation using uncertain observations from multiple sensors with

correlated uncertainty, Signal Processing, 91 (2011), 330–337.

PhD Thesis Irene Garćıa Garrido
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tion algorithms from an innovation approach in linear discrete-time stochastic

systems with uncertain observations, In: Stochastic Modeling and Control (pp.

1–22), InTech, Croatia, 2012. http://dx.doi.org/10.5772/2567

[9] J. Ma and S.L. Sun, Centralized fusion estimators for multi-sensor systems

with multiplicative noises and missing measurements, Journal of Networks, 7

(10) (2012), 1538–1545.
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Abstract

The optimal least-squares linear estimation problem is addressed for a class of

discrete-time multi-sensor linear stochastic systems with missing measurements

and autocorrelated and cross-correlated noises. The stochastic uncertainties in the

measurements coming from each sensor (missing measurements) are described by

scalar random variables with arbitrary discrete probability distribution over the in-
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terval [0,1]; hence, at each single sensor the information might be partially missed

and the different sensors may have different missing probabilities. The noise corre-

lation assumptions considered are: (i) the process noise and all the sensor noises are

one-step autocorrelated; (ii) different sensor noises are one-step cross-correlated;

and (iii) the process noise and each sensor noise are two-step cross-correlated. Un-

der these assumptions and by an innovation approach, recursive algorithms for the

optimal linear filter are derived by using the two basic estimation fusion structures;

more specifically, both centralized and distributed fusion estimation algorithms are

proposed. The accuracy of these estimators is measured by their error covariance

matrices, which allow us to compare their performance in a numerical simulation

example that illustrates the feasibility of the proposed filtering algorithms and

shows a comparison with other existing filters.

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . 111

3.2.1 Stochastic system model . . . . . . . . . . . . . . . . . . 112

3.2.2 Stacked measurement equation . . . . . . . . . . . . . . 114

3.2.3 Innovation approach to the optimal LS linear estimation
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.3 Optimal LS linear centralized fusion estimation . . . . 117

3.4 Distributed fusion estimation . . . . . . . . . . . . . . . 119

3.4.1 Local LS linear filtering algorithms . . . . . . . . . . . . 120

3.4.2 Cross-covariance matrices of local estimation errors . . . 122

3.4.3 Distributed fusion filtering estimators . . . . . . . . . . 126

3.5 Numerical simulation example . . . . . . . . . . . . . . 128

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . 136

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

PhD Thesis Irene Garćıa Garrido
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3.1 Introduction

For a long time, the least-squares (LS) estimation problem in linear stochastic

systems from measurements perturbed by additive noises has received considerable

attention in the scientific community due to its wide applicability in many practical

situations (for example, video and laser tracking systems, satellite navigation, radar

and meteorological applications, etc. [1]). As it is well known, one of the major

contributions made to solve this problem is the Kalman filter, which provides a

recursive algorithm for the optimal LS estimator when the additive white noises

and the initial state are Gaussian and mutually independent (or, equivalently,

uncorrelated due to the gaussianity assumption) and, therefore, the optimal LS

estimator is the optimal LS linear estimator. From the publication of the Kalman

filter [2] in 1960, numerous results and several solution methods have been reported

in the literature to address the state estimation problem from noisy observations,

which depend on models representing possible relationships between the unknown

state and the observable variables and also on the noise processes assumptions.

Specifically, during the past decades, there has been an increasing interest in

the filtering problem in multi-sensor systems, where sensor networks are used to

obtain the whole available information on the system state and its estimation must

be carried out from the observations provided by all the sensors. A basic matter for

this class of systems is how to fuse the measurement data from the different sensors

to address the estimation problem. Commonly, two methods are used to process

the measured data coming from multiple sensors: centralized and distributed fusion

methods. In the centralized fusion method all the measured data from sensors are

communicated to the fusion center for being processed; nevertheless, as is widely

known, centralized estimators have many computational disadvantages, which mo-

tivate the research into other fusion methods. In the distributed fusion method,

each sensor estimates the state based on its own single measurement data, and

then it sends such estimate to the fusion center for fusion according to a certain

PhD Thesis Irene Garćıa Garrido
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information fusion criterion. Although the use of sensor networks offers several

advantages, the unreliable network characteristics usually cause problems during

data transmission from sensors to the fusion center, such as missing measurements,

random communication packet losses and/or delays. Taking into account these net-

work uncertainties, the models representing the relationships between the state and

measurements do not allow to apply the Kalman filter, and modifications of con-

ventional estimation algorithms have been proposed (see for example, [3]-[9] and

references therein).

As in the Kalman filter, independent white noises are considered in all the

mentioned papers; however, this assumption may not be realistic and can be a

limitation in many real-world problems in which noise correlation may be present.

This problem arises, for example, when a target is taking an electronic countermea-

sure, e.g. noise jamming [10], or if the process noise and the sensor measurement

noises are dependent on the system state, then there may be cross-correlation

between different sensor noises and cross-correlation between process noise and

sensor noises. Also, if all the sensors are observed in the same noisy environment,

the measurement noises of different sensors are usually correlated.

For these reasons, the estimation problem in systems with correlated noises

has received significant research interest in recent years. For example, the opti-

mal Kalman filtering fusion problem in systems with cross-correlated sensor noises

is addressed in [10], while [11] and [12] study the same problem in systems with

cross-correlated process noises and measurement noises; in these papers correlated

noises at the same sampling time are considered. In general, the assumption of

correlation and cross-correlation of the noise process and measurement noises in

different sampling times makes difficult the identification of optimal estimators;

this limitation has encouraged a wider research into suboptimal Kalman-type es-

timation problems. In [13], a Kalman-type recursive filter is presented for systems

with finite-step correlated process noises, and the filtering problem with multi-step
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correlated process and measurement noises is investigated in [14]. The optimal

robust non-fragile Kalman-type recursive filtering problem is studied in [15] for a

class of uncertain systems with finite-step autocorrelated measurement noises and

multiple packet dropouts. The problem of distributed weighted robust Kalman

filter fusion is studied in [16] for a class of uncertain systems with autocorrelated

and cross-correlated noises. In [17], a stochastic singular system with correlated

noises at the same sampling time is transformed into an equivalent nonsingular

system with correlated noises at the same and neighboring sampling times. Also,

in [18], an augmented parameterized system with correlated noises at the same and

neighboring sampling times is used to describe the sensor delay, packet dropout

and uncertain observation phenomenons.

On the other hand, as noted above, the use of communication networks for

transmitting measured data motivates the need of considering stochastic uncer-

tainties. Missing measurements have been widely treated due to its applicabil-

ity to model a large class of real-world problems, such as fading phenomena in

propagation channels, target tracking or, in general, situations where there exist

intermittent failures in the observation mechanism, accidental loss of some mea-

surements, or inaccessibility of the data during certain times. The state estimation

problem from missing measurement transmitted by multiple sensors has been stud-

ied based on the assumption that all the sensors are identical (see, e.g., [19]-[22]);

however, this assumption can be unreasonable since some real systems usually in-

volve multiple sensors with different characteristics. Recently, the filtering problem

using missing measurements whose statistical properties are assumed not to be the

same in all the sensors has been addressed by several authors under different ap-

proaches and hypotheses on the processes involved (see, e.g., [23]-[27] ). In all the

above papers, Bernoulli random variables are used to model the missing measure-

ments phenomenon, and hence, it is assumed that the measurement signal is either

completely lost (if the corresponding Bernoulli variable takes the value zero) or
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successfully transferred (when the Bernoulli variable is equal to one). Recently,

this missing measurement model has been generalized considering any discrete dis-

tribution on the interval [0, 1], which allows to cover some practical applications

where only partial information is missing (see [28], [29] and references therein).

Motivated by the above considerations, our attention is focused on investigat-

ing the optimal LS linear centralized and distributed fusion estimation problems

in multi-sensor systems with missing measurements and autocorrelated and cross-

correlated noises. In each sensor, the missing measurement phenomenon is gov-

erned by a scalar random variable with arbitrary discrete probability distribution

over the interval [0,1], and the different sensors may have different missing prob-

abilities. Assume that the process noise and all the sensor noises are one-step

autocorrelated; different sensor noises are one-step cross-correlated; and the pro-

cess noise and each sensor noise are two-step cross-correlated. This paper makes a

two-fold substantial novel contribution: (1) Unlike most previous results with cor-

related noises, in which suboptimal Kalman-type estimators are proposed, in this

paper optimal LS linear estimators are obtained by using an innovation approach,

which provides a simple derivation of the estimation algorithms due to the fact that

the innovations constitute a white process; and (2) our missing measurement model

considers at each sensor the possibility of observations containing only partial in-

formation about the state, or even only noise.

The paper is organized as follows. In Section 3.2 the system model with au-

tocorrelated and cross-correlated noises and missing measurements coming from

multiple sensors is described. Also, the suitable properties on the state and noise

processes are specified and a brief description of the innovation approach to the

optimal LS linear estimation problem is included. In Section 3.3 a recursive algo-

rithm for the centralized optimal linear filter is presented for the considered model

(the derivation has been deferred to Appendix A.1). Next, in Section 3.4, the local

LS linear filters and their corresponding error covariance matrices between any
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two local estimates are provided, then the distributed optimal weighted fusion es-

timators and their error covariance matrices are obtained by applying the optimal

information fusion criterion weighted by matrices in the linear minimum variance

sense. Finally, in Section 3.5, a numerical simulation example is presented to show

the effectiveness of the estimation algorithms proposed in the current paper, and

some conclusions are drawn in Section 3.6.

Notation: The notation used throughout the paper is standard. For any

matrix A, the notation symbols AT and A−1 represent its transpose and inverse,

respectively; Rn denotes the n-dimensional Euclidean space and Rm×n is the set of

all real matrices of dimension m × n. The shorthand Diag(a1, . . . , ar) denotes a

diagonal matrix whose diagonal entries are a1, . . . , ar. If the dimensions of matrices

are not explicitly stated, they are assumed to be compatible for algebraic opera-

tions. δk−s is the Kronecker delta function, which is equal to one, if k = s, and

zero otherwise. Moreover, for arbitrary random vectors α and β, we will denote

Cov[α, β] = E
[
(α− E[α]) (β − E[β])T

]
and Cov[α] = Cov[α, α], where E[·] stands

for the mathematical expectation operator. Finally, α̂ denotes the estimator of α

and α̃ = α− α̂ the estimation error.

3.2 Problem formulation

Our aim is to obtain recursive algorithms for the optimal LS linear filtering problem

in a class of discrete-time stochastic systems with missing measurements coming

from multiple sensors, by using centralized and distributed fusion methods. In this

section, firstly the system model and the assumptions about the state and noise

processes are presented and, secondly, the optimal LS linear estimation problem is

formulated using an innovation approach.
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3.2.1 Stochastic system model

Consider a discrete-time linear stochastic system with autocorrelated and cross-

correlated noises and missing measurements coming from r sensors. The phe-

nomenon of missing measurements occurs randomly and, for each sensor, a differ-

ent sequence of scalar random variables with discrete distribution over the interval

[0, 1] is used to model this phenomenon. Specifically, the following system is con-

sidered:

xk = Fk−1xk−1 + wk−1, k ≥ 1. (3.1)

where xk ∈ Rn is the state, {wk; k ≥ 0} is the process noise, and Fk, for k ≥ 0, are

known matrices with compatible dimensions.

Consider r sensors which, at any time k, provide scalar measurements of the

system state, perturbed by additive and multiplicative noises according to the

following model:

yi
k = θi

kH
i
kxk + vi

k, k ≥ 1, i = 1, 2, . . . , r (3.2)

where {yi
k; k ≥ 1} are the measured data; {vi

k; k ≥ 1} are measurement noises;

{θi
k; k ≥ 1} are scalar random variables sequences; H i

k, for k ≥ 1, are known

time-varying matrices with compatible dimensions; superscript i denotes the i-th

sensor, and r is the number of sensors.

Next, the statistical properties assumed about the initial state and noise pro-

cesses involved in (3.1) and (3.2) are specified:

(i) The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] = P0.

(ii) The process noise, {wk; k ≥ 0}, and the measurement noises, {vi
k; k ≥

1}, i = 1, 2, . . . , r, are zero-mean sequences with covariances and cross-

covariances:

Cov[wk, ws] = Qk,kδk−s + Qk,sδk−s+1 + Qk,sδk−s−1,

PhD Thesis Irene Garćıa Garrido
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Cov[vi
k, v

j
s] = Rij

k,kδk−s + Rij
k,sδk−s+1 + Rij

k,sδk−s−1,

Cov[wk, v
i
s] = Si

k,kδk−s + Si
k,sδk−s+1 + Si

k,sδk−s+2.

(iii) The multiplicative noises {θi
k; k ≥ 1}, i = 1, 2, . . . , r, are white sequences

of scalar variables with discrete distribution over the interval [0, 1], with

E[θi
k] = θ

i

k and V ar[θi
k] = V θi

k .

(iv) The initial state x0 and the multiplicative noises {θi
k; k ≥ 1}, for i =

1, 2, . . . , r, are mutually independent, and they are independent of the addi-

tive noises {wk; k ≥ 0} and {vi
k; k ≥ 1}, for i = 1, 2, . . . , r.

Remark 1. From assumption (ii) the following correlation properties of the ad-

ditive noises are easily deduced:

- The noise vectors wk and ws are correlated at consecutive sampling times,

|k − s| = 1, and independent otherwise; the covariance matrices of wk with

wk−1 and wk+1 are Qk,k−1 and Qk,k+1, respectively.

- For i, j = 1, 2, . . . , r, the measurement noises vi
k and vj

s are cross-correlated

at the same sampling time and at consecutive sampling times, |k− s| = 0, 1,

and independent otherwise; the cross-covariances of vi
k with vj

k, vj
k−1 and vj

k+1

are Rij
k,k, Rij

k,k−1 and Rij
k,k+1, respectively.

- For i = 1, 2, . . . , r, the measurement noises vi
k are correlated with the noise

vectors ws, for s = k, k − 1, k − 2, and independent otherwise; the cross-

covariance matrices of vi
k with wk, wk−1 and wk−2 are Si

k,k, Si
k−1,k and Si

k−2,k,

respectively.

The correlation conditions of the process noise and the measurement noises con-

sidered in this paper are the same as those in [16]. Systems with only finite-step

correlated process noises or multi-step correlated process and measurement noises

are considered in [13], [14] and [15], among others. The current study can be
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extended to more general systems involving finite-step autocorrelated and cross-

correlated noises with no difficulty, except for a greater complexity in the mathe-

matical derivations.

Remark 2. From the state equation (3.1) and assumptions (ii) and (iv), it is easy

to deduce that Dk = E[xkx
T
k ] is recursively calculated by:

Dk = Fk−1Dk−1F
T
k−1 + Qk−1,k−1 + Fk−1Qk−2,k−1 + Qk−1,k−2F

T
k−1, k ≥ 2;

D1 = F0D0F
T
0 + Q0,0, D0 = P0 + x0x

T
0 .

(3.3)

Also, it is easy to see that the state xk is correlated with the measurement

noises vi
k, for i = 1, 2, · · · , r, and the expectations Ei

k = E[xkv
i
k] satisfy:

Ei
k = Fk−1S

i
k−2,k + Si

k−1,k, k ≥ 2; Ei
1 = Si

0,1. (3.4)

Remark 3. According to assumption (iii), the scalar random variables θi
k take

values over the interval [0, 1] and they can satisfy any arbitrary discrete probability

distribution over such interval, for instance, a Bernoulli distribution. Usually,

Bernoulli random variables have been used to model the phenomenon of missing

measurements (see, e.g., [25] and references therein), with θi
k = 1 meaning that

the state xk is present in the measurement yi
k coming from the i-th sensor at time

k, while θi
k = 0 means that the state is missing in the measured data at time k

or, equivalently, that such observation only contains additive noise vi
k. However,

in practice, the information transmitted at a sampling time can usually be neither

completely missing nor completely successful, but only part of the information

can go through; in such situations, only partial information is missing and the

proportion of missed data at one moment is a fraction other than 0 or 1 (see, e.g

[28], [29] and references therein).

3.2.2 Stacked measurement equation

As noted above, our aim is to solve the optimal LS linear estimation problem of the

state xk based on the measurements {yi
1, y

i
2, . . . , y

i
k}, for i = 1, 2, . . . , r, by using
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centralized and distributed fusion methods to process the measured sensor data.

The centralized fusion method considers that all the measurement data coming

from r sensors are transmitted to a fusion center for being processed; for this

purpose and to simplify the notation, the measurement equation (3.2) is rewritten

in a stacked form as follows:

yk = ΘkHkxk + vk, k ≥ 1, (3.5)

where yk = (y1
k, . . . , y

r
k)

T , vk = (v1
k, . . . , v

r
k)

T , Hk = (H1T
k , . . . , HrT

k )T and Θk =

Diag(θ1
k, . . . , θr

k).

The following properties of the noises in (3.5) are easily inferred from the model

assumptions (ii)-(iv) previously stated:

(I) The additive noise {vk; k ≥ 1} is a zero-mean process satisfying:

Cov[vk, vs] = Rk,kδk−s + Rk,sδk−s+1 + Rk,sδk−s−1,

Cov[wk, vs] = Sk,kδk−s + Sk,sδk−s+1 + Sk,sδk−s+2,

where Rk,s =
(
Rij

k,s

)
i,j=1,2,··· ,r and Sk,s = (S1

k,s, . . . , S
r
k,s).

(II) The state vector xk and the measurement noise vector vk are correlated with

Ek = E[xkv
T
k ] satisfying:

Ek = Fk−1Sk−2,k + Sk−1,k, k ≥ 2; E1 = S0,1. (3.6)

(III) The random matrices {Θk; k ≥ 1} satisfy E[Θk] = Θk = Diag(θ
1

k, . . . , θ
r

k)

and E[(Θk − Θk)
2] = Diag(V θ1

k , . . . , V θr

k ); also, denoting θk = (θ1
k, . . . , θ

r
k)

T ,

it is clear that Cov[θk] = Diag(V θ1

k , . . . , V θr

k ).

Moreover, for any random matrix G independent of {Θk; k ≥ 1}, it is easily

deduced that:

E[(Θk −Θk)G(Θk −Θk)] = Cov[θk] ◦ E[G], (3.7)

where ◦ denotes the Hadamard product [23].
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(IV) The initial state x0 and {Θk; k ≥ 1} are independent, and they are indepen-

dent of {wk; k ≥ 0} and {vk; k ≥ 1}.

3.2.3 Innovation approach to the optimal LS linear estima-
tion problem

To address the optimal LS linear estimation problem of the state xk based on

the measurements {yi
1, y

i
2, . . . , y

i
k}, i = 1, 2, . . . , r, the centralized and distributed

fusion methods will be used. In both cases, recursive algorithms for the LS linear

estimators will be established using an innovation approach and the orthogonal

projection Lemma (OPL); more specifically we have the following.

Centralized fusion estimation problem. Our aim is to obtain the optimal LS linear

filter, x̂k/k, of the state xk based on the measurements {y1, y2, . . . , yk}, given in

(3.5), by recursive algorithms.

As known, the LS linear filter x̂k/k is the orthogonal projection of the state xk

over the linear space spanned by {y1, y2, . . . , yk}. These observations are generally

non-orthogonal vectors, but the Gram-Schmidt orthogonalization procedure allows

us to substitute them by a set of orthogonal vectors, called innovations, defined

as the difference between each observation and its one-stage predictor. Due to

the orthogonality property of the innovations and since the innovation process is

uniquely determined by the observations, the LS linear filter, x̂k/k, can be calculated

as linear combination of the innovations; namely,

x̂k/k =
k∑

s=1

Xk,sΠ
−1
s,sµs, k ≥ 1, (3.8)

where µs = ys − ŷs/s−1 are the innovation vectors, with ŷs/s−1 the one-stage obser-

vation predictor, Πs,s = E[µsµ
T
s ], and Xk,s = E[xkµ

T
s ].

Distributed fusion estimation problem. To address the distributed fusion estima-

tion problem, firstly, recursive algorithms to obtain local LS linear filters, x̂i
k/k,
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for i = 1, 2, . . . , r, and the error cross-covariance matrices between any two local

estimates, are derived. Secondly, the distributed fusion filter, x̂D
k/k, is established

by applying the optimal information fusion criterion weighted by matrices in the

linear minimum variance sense [30].

Analogously to (3.8), denoting µi
s = yi

s − ŷi
s/s−1, Πii

s,s = E[µi
sµ

i
s], and X i

k,s =

E[xkµ
i
s], the local filter x̂i

k/k, is expressed as

x̂i
k/k =

k∑
s=1

X i
k,s(Π

ii
s,s)

−1µi
s, k ≥ 1.

3.3 Optimal LS linear centralized fusion estima-

tion

In this section a recursive algorithm for the centralized optimal (under the LS

criterion) linear filter, x̂k/k is derived. Such algorithm is deduced using (3.8) and

the OPL, and it is presented in Theorem 3.3.1. Firstly, in order to simplify the

proof of Theorem 3.3.1, the following lemma is established.

Lemma 3.3.1 Under assumptions (i)-(iv), the following results hold:

Wk,k = E
[
wkµ

T
k

]
= Qk,k−1H

T
k Θk + Sk,k, k ≥ 1. (3.9)

Vk,k−1 = E
[
vkµ

T
k−1

]
= ST

k−2,kH
T
k−1Θk−1 + Rk,k−1, k ≥ 2. (3.10)

Proof. Since wk is independent of y1, . . . , yk−1, E
[
wkŷ

T
k/k−1

]
= 0 and hence

Wk,k = E
[
wky

T
k

]
. Now, using (3.1) and (3.5), Wk,k can be calculated as follows:

Wk,k = E
[
wk (ΘkHkxk + vk)

T
]

= E
[
wkx

T
k

]
HT

k Θk + Sk,k

= E
[
wk (Fk−1xk−1 + wk−1)

T
]
HT

k Θk + Sk,k

= Qk,k−1H
T
k Θk + Sk,k.
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Taking into account that vk is independent of y1, . . . , yk−2, the calculation of Vk,k−1

is similar to that of Wk,k, and hence the proof is omitted. ¤

Theorem 3.3.1 For the system model (3.1) and measurement model (3.5), under

assumptions (i)-(iv), the optimal LS linear filter x̂k/k is obtained as

x̂k/k = x̂k/k−1 + Xk,kΠ
−1
k,kµk, k ≥ 1; x̂0/0 = x0, (3.11)

where the state predictor, x̂k/k−1, satisfies

x̂k/k−1 = Fk−1x̂k−1/k−1 +Wk−1,k−1Π
−1
k−1,k−1µk−1, k ≥ 2; x̂1/0 = F0x̂0/0. (3.12)

The innovation, µk, is given by

µk = yk −ΘkHkx̂k/k−1 − Vk,k−1Π
−1
k−1,k−1µk−1, k ≥ 2;

µ1 = y1 −Θ1H1x̂1/0.
(3.13)

The matrix Xk,k = E
[
xkµ

T
k

]
is calculated by

Xk,k = Pk/k−1H
T
k Θk + Ek −Xk,k−1Π

−1
k−1,k−1VT

k,k−1, k ≥ 2;

X1,1 = P1/0H
T
1 Θ1 + E1,

(3.14)

where Xk,k−1 = E
[
xkµ

T
k−1

]
satisfies

Xk,k−1 = Fk−1Xk−1,k−1 +Wk−1,k−1, k ≥ 2. (3.15)

The prediction error covariance matrix, Pk/k−1, is obtained by

Pk/k−1 = Fk−1Pk−1/k−1F
T
k−1 + Qk−1,k−1 + Fk−1Jk−1 + J T

k−1F
T
k−1

−Wk−1,k−1Π
−1
k−1,k−1WT

k−1,k−1, k ≥ 2;

P1/0 = F0P0/0F
T
0 + Q0,0,

(3.16)

where Jk = E
[
x̃k/kw

T
k

]
is calculated by

Jk = Qk−1,k −Xk,kΠ
−1
k,kWT

k,k, k ≥ 1. (3.17)
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The filtering error covariance matrix, Pk/k, is given by

Pk/k = Pk/k−1 −Xk,kΠ
−1
k,kX T

k,k, k ≥ 1; P0/0 = P0. (3.18)

The innovation covariance matrix, Πk,k, satisfies

Πk,k = Cov(θk) ◦
(
HkDkH

T
k

)
+ Rk,k + ΘkHkXk,k + X T

k,kH
T
k Θk

−ΘkHkPk/k−1H
T
k Θk − Vk,k−1Π

−1
k−1,k−1VT

k,k−1, k ≥ 2;

Π1,1 = Cov(θ1) ◦
(
H1D1H

T
1

)
+ R1,1 + Θ1H1X1,1 + X T

1,1H
T
1 Θ1 −Θ1H1P1/0H

T
1 Θ1.

(3.19)

The matrices Dk, Ek, Wk,k and Vk,k−1 are given in (3.3), (3.6), (3.9) and (3.10),

respectively.

Proof. See Appendix A.1.

Remark 4. In conventional estimation problems in systems with missing mea-

surements and uncorrelated additive white noises, the one-stage state and observa-

tion predictors are calculated as x̂k/k−1 = Fk−1x̂k−1/k−1 and ŷk/k−1 = ΘkHkx̂k/k−1,

respectively. However, this is not true for the problem at hand since, due to the

correlation assumption (ii), the noise estimators ŵk−1/k−1 and v̂k/k−1 must be taken

into account for the derivation of the predictors. Besides the fact of considering

missing measurements, this is the main difference between the optimal estimators

proposed in the current paper and the suboptimal Kalman-type ones proposed in

[16], where the noise estimators are considered to be equal to zero.

3.4 Distributed fusion estimation

One of the main disadvantages of the centralized fusion estimators derived in Sec-

tion 3.3 is that they may have a high computational cost due to augmentation.

Moreover, as is widely known, the centralized approach has several other draw-

backs, such as fault detection, isolation, poor reliability, etc. To overcome these
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disadvantages, our aim in this section is to address the optimal distributed fu-

sion estimation problem, in which each single sensor provides its local LS linear

estimator and their estimation error covariance matrices, and then these local esti-

mators along with the covariances and cross-covariance matrices of the estimation

errors between any two sensors are sent to the fusion center for fusion based on

the matrices-weighted fusion estimation criterion in the linear minimum variance

sense [30].

3.4.1 Local LS linear filtering algorithms

For each single sensor subsystem of system (3.1)-(3.2), the following theorem pro-

vides recursive formulas for the local LS linear filters, x̂i
k/k, and their corresponding

error covariance matrices, P ii
k/k.

Theorem 3.4.1 For the i-th sensor subsystem of system (3.1)-(3.2) under as-

sumptions (i)-(iv), the local LS linear filter, x̂i
k/k, is calculated by

x̂i
k/k = x̂i

k/k−1 + X i
k,k

(
Πii

k,k

)−1
µi

k, k ≥ 1; x̂i
0/0 = x0, (3.20)

where the local LS linear predictor, x̂i
k/k−1, satisfies

x̂i
k/k−1 = Fk−1x̂

i
k−1/k−1 +W i

k−1,k−1

(
Πii

k−1,k−1

)−1
µi

k−1, k ≥ 2;

x̂i
1/0 = F0x̂

i
0/0,

(3.21)

with W i
k,k = θ

i

kQk,k−1H
iT
k + Si

k,k, k ≥ 1.

The innovation, µi
k, is given by

µi
k = yi

k − θ
i

kH
i
kx̂

i
k/k−1 − V ii

k,k−1

(
Πii

k−1,k−1

)−1
µi

k−1, k ≥ 2;

µi
1 = yi

1 − θ
i

1H
i
1x̂

i
1/0,

(3.22)

with V ii
k,k−1 = θ

i

k−1S
iT
k−2,kH

iT
k−1 + Rii

k,k−1, k ≥ 2.
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The vector X i
k,k = E [xkµ

i
k] is calculated from the following expression

X i
k,k = θ

i

kP
ii
k/k−1H

iT
k + Ei

k −X i
k,k−1

(
Πii

k−1,k−1

)−1 V ii
k,k−1, k ≥ 2;

X i
1,1 = θ

i

1P
ii
1/0H

iT
1 + Ei

1,

where X i
k,k−1 = Fk−1X i

k−1,k−1 +W i
k−1,k−1, k ≥ 2.

The local prediction error covariance matrix, P ii
k/k−1, is obtained by

P ii
k/k−1 = Fk−1P

ii
k−1/k−1F

T
k−1 + Qk−1,k−1 + Fk−1J i

k−1 + J iT
k−1F

T
k−1

−W i
k−1,k−1

(
Πii

k−1,k−1

)−1W iT
k−1,k−1, k ≥ 2;

P ii
1/0 = F0P

ii
0/0F

T
0 + Q0,0,

where J i
k = Qk−1,k − X i

k,k

(
Πii

k,k

)−1W iT
k,k, k ≥ 1, and P ii

k/k, the filtering error co-

variance matrix, is given by

P ii
k/k = P ii

k/k−1 −X i
k,k

(
Πii

k,k

)−1X iT
k,k, k ≥ 1; P ii

0/0 = P0.

The innovation variance, Πii
k,k, satisfies

Πii
k,k = V θi

k H i
kDkH

iT
k + Rii

k,k + θ
i

kH
i
kX i

k,k + θ
i

kX iT
k,kH

iT
k

− (θ
i

k)
2H i

kP
ii
k/k−1H

iT
k − (V ii

k,k−1)
2
(
Πii

k−1,k−1

)−1
, k ≥ 2;

Πii
1,1 = V θi

1 H i
1D1H

iT
1 + Rii

1,1 + θ
i

1H
i
1X i

1,1 + θ
i

1X iT
1,1H

iT
1 − (θ

i

1)
2H i

1P
ii
1/0H

iT
1 .

The matrix Dk and the vector Ei
k are given in (3.3) and (3.4), respectively.

Proof. The proof, based on the innovation approach and the OPL, is omitted

for being analogous to that of Theorem 3.3.1. Nevertheless, it should be indicated

that, in this proof, the Hadamard product is not used since, instead of the diagonal

stochastic matrix Θk, the scalar variable θi
k is now involved in the derivation of the

estimators. ¤

Remark 5. As indicated in Remark 4 for the centralized estimators, it must be

noted that, due to the correlation assumption (ii) of the additive noises {wk}
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and {vi
k}, the estimators ŵi

k−1/k−1 = W i
k−1,k−1

(
Πii

k−1,k−1

)−1
µi

k−1 and v̂i
k/k−1 =

V ii
k,k−1

(
Πii

k−1,k−1

)−1
µi

k−1 are not equal to zero, and hence the optimal local state

predictor, x̂i
k/k−1 = Fk−1x̂

i
k−1/k−1+ŵi

k−1/k−1, and the observation predictor, ŷi
k/k−1 =

θ
i

kH
i
kx̂

i
k/k−1 + v̂i

k/k−1, are quite different from conventional filtering algorithms with

uncorrelated white noises. This issue, along with the consideration of missing

measurements at each single sensor, constitutes the main difference between the

current optimal local estimators and the suboptimal local estimators proposed in

[16].

3.4.2 Cross-covariance matrices of local estimation errors

To apply the optimal fusion criterion weighted by matrices in the linear minimum

variance sense, the filtering, P ij
k/k, and prediction, P ij

k/k−1, error cross-covariance

matrices between local estimators of any two subsystems must be calculated.

For simplicity, besides the notation of Theorem 3.4.1, for i 6= j, i, j = 1, 2 . . . , r,

we introduce the following notation:

Lij
k = E[x̂i

k/k−1µ
j
k], Πij

k,s = E[νi
kν

j
s ], V ij

k,k−1 = E[vi
kµ

j
k−1].

Also, in order to simplify the calculation of the error cross-covariance matrices, the

following lemmas are given.

Lemma 3.4.1 Under assumptions (i)-(iv), the following results hold:

a) The expectation E[x̂i
k/k−1µ

j
k−1] satisfies

E[x̂i
k/k−1µ

j
k−1] = Fk−1L

ij
k−1 + X i

k,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1, k ≥ 2. (3.23)

b) The expectation E[x̂i
k/k−1v

j
k] satisfies

E[x̂i
k/k−1v

j
k] = X i

k,k−1

(
Πii

k−1,k−1

)−1 Vji
k,k−1, k ≥ 2, (3.24)

where Vji
k,k−1 = θ

i

k−1H
i
k−1S

j
k−2,k + Rij

k−1,k.
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c) The expectation E[vi
kµ

j
k] satisfies

E[vi
kµ

j
k] = θ

j

kE
iT
k HjT

k + Rij
k,k − V ij

k,k−1

(
Πjj

k−1,k−1

)−1

×
(
θ

j

kH
j
kX j

k,k−1 − Vjj
k,k−1

)T

, k ≥ 2.
(3.25)

Proof.

a) From (3.21) for x̂i
k/k−1 and (3.20) for x̂i

k−1/k−1, we have

E[x̂i
k/k−1µ

j
k−1] = Fk−1E[x̂i

k−1/k−1µ
j
k−1] +W i

k−1,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1

= Fk−1E[x̂i
k−1/k−2µ

j
k−1] + Fk−1X i

k−1,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1

+W i
k−1,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1

= Fk−1L
ij
k−1 +

(
Fk−1X i

k−1,k−1 +W i
k−1,k−1

) (
Πii

k−1,k−1

)−1
Πij

k−1,k−1,

and since X i
k,k−1 = Fk−1X i

k−1,k−1 +W i
k−1,k−1, expression (3.23) is proved.

b) Analogously, taking into account that E[x̂i
k−1/k−2v

j
k] = 0, we have

E[x̂i
k/k−1v

j
k] = Fk−1E[x̂i

k−1/k−1v
j
k] +W i

k−1,k−1

(
Πii

k−1,k−1

)−1
E[µi

k−1v
j
k]

=
(
Fk−1X i

k−1,k−1 +W i
k−1,k−1

) (
Πii

k−1,k−1

)−1 Vji
k,k−1,

and expression (3.24) is immediately obtained. Finally, the derivation of expression

Vji
k,k−1 = θ

i

k−1H
i
k−1S

j
k−2,k+Rij

k−1,k is similar to that of (3.10) and hence it is omitted.

c) Taking into account expression (3.22) for µj
k, with (3.2) for yj

k, we have

E[vi
kµ

j
k] = θ

j

kE
iT
k HjT

k + Rij
k,k − θ

j

kE[vi
kx̂

jT
k/k−1]H

jT
k − V ij

k,k−1

(
Πjj

k−1,k−1

)−1 Vjj
k,k−1, k ≥ 2,

and using (3.24) for E[vi
kx̂

jT
k/k−1], expression (3.25) is obtained. ¤

Lemma 3.4.2 Under assumptions (i)-(iv), for i 6= j, i, j = 1, 2 . . . , r, the expec-

tations Lij
k = E[x̂i

k/k−1µ
j
k] are recursively obtained by

Lij
k = θ

j

k

(
P jj

k/k−1 − P ij
k/k−1

)
HjT

k − Fk−1L
ij
k−1

(
Πjj

k−1,k−1

)−1 Vjj
k,k−1

+ X i
k,k−1

(
Πii

k−1,k−1

)−1
(
Vji

k,k−1 − Vjj
k,k−1

(
Πjj

k−1,k−1

)−1
Πij

k−1,k−1

)
, k ≥ 2,

with initial condition Lij
1 = 0.
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Proof. Taking into account expression (3.22) for µj
k, with (3.2) for yj

k, we have

Lij
k = θ

j

kE[x̂i
k/k−1x

T
k ]HjT

k + E[x̂i
k/k−1v

j
k]− θ

j

kE[x̂i
k/k−1x̂

jT
k/k−1]H

jT
k

− E[x̂i
k/k−1µ

j
k−1]

(
Πjj

k−1,k−1

)−1 Vjj
k,k−1, k ≥ 2.

From the OPL, E[x̂i
k/k−1x

T
k ] = E[x̂i

k/k−1x̂
iT
k/k−1]; then, taking into account (3.23)

for E[x̂i
k/k−1µ

j
k−1], and (3.24) for E[x̂i

k/k−1v
j
k], it is enough to prove that

E[x̂i
k/k−1x̂

iT
k/k−1]− E[x̂i

k/k−1x̂
jT
k/k−1] = P jj

k/k−1 − P ij
k/k−1,

which is easily deduced since

E[x̂i
k/k−1x̂

jT
k/k−1] = P ij

k/k−1 −Dk + E[x̂i
k/k−1x̂

iT
k/k−1] + E[x̂j

k/k−1x̂
jT
k/k−1]

and E[x̂j
k/k−1x̂

jT
k/k−1] = Dk − P jj

k/k−1. ¤

Lemma 3.4.3 Under assumptions (i)-(iv), for i 6= j, i, j = 1, 2 . . . , r, the innova-

tion cross-covariance Πij
k,k = E[µi

kµ
j
k] satisfies

Πij
k,k = θ

i

kH
i
k

(X j
k,k − Lij

k

)
+ θ

j

kE
iT
k HjT

k + Rij
k,k − V ii

k,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k

− V ij
k,k−1

(
Πjj

k−1,k−1

)−1
(
θ

j

kH
j
kX j

k,k−1 − Vjj
k,k−1

)T

, k ≥ 2;

Πij
1,1 = θ

i

1H
i
1X j

1,1 + θ
j

1E
i
1H

jT
1 + Rij

1,1,

where Πij
k−1,k = E[µi

k−1µ
j
k] is given by

Πij
k−1,k = θ

j

k

(
X i

k,k−1 − Fk−1L
ji
k−1 −X j

k,k−1

(
Πjj

k−1,k−1

)−1
Πji

k−1,k−1

)T

HjT
k

+ Vji
k,k−1 − Πij

k−1,k−1

(
Πjj

k−1,k−1

)−1 Vjj
k,k−1, k ≥ 2.

Proof. Taking into account expression (3.22) for µi
k, with (3.2) for yi

k, we have

Πij
k,k = θ

i

kH
i
kE[xkµ

j
k] + E[vi

kµ
j
k]− θ

i

kH
i
kE[x̂i

k/k−1µ
j
k]− V ii

k,k−1

(
Πii

k−1,k−1

)−1
E[µi

k−1µ
j
k]

= θ
i

kH
i
k

(X j
k,k − Lij

k

)
+ E[vi

kµ
j
k]− V ii

k,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k, k ≥ 2,

and, from (3.25) for E[vi
kµ

j
k], expression for Πij

k,k is clear.
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Analogously, taking into account expression (3.22) for µj
k, with (3.2) for yj

k, we

have

Πij
k−1,k = θ

j

kE[µi
k−1x

T
k ]HjT

k + E[µi
k−1v

j
k]− θ

j

kE[µi
k−1x̂

jT
k/k−1]H

jT
k

− E[µi
k−1µ

j
k−1]

(
Πjj

k−1,k−1

)−1 Vjj
k,k−1,

= θ
j

k

(
X i

k,k−1 − E[µi
k−1x̂

jT
k/k−1]

)
HjT

k + Vji
k,k−1

− Πij
k−1,k−1

(
Πjj

k−1,k−1

)−1 Vjj
k,k−1, k ≥ 2,

and, from (3.23) for E[µi
k−1x̂

jT
k/k−1], expression for Πij

k−1,k is immediately derived.

¤

In the following theorem, recursive formulas to calculate the filtering and pre-

diction error cross-covariance matrices, P ij
k/k and P ij

k/k−1, respectively, are derived.

Theorem 3.4.2 Under assumptions (i)-(iv), the cross-covariance matrices, P ij
k/k,

of the filtering errors between the i-th and the j-th sensor subsystems are recursively

computed by

P ij
k/k = P ij

k/k−1 + X i
k,k(Π

ii
k,k)

−1Πij
k,k(Π

jj
k,k)

−1X jT
k,k

− (X j
k,k − Lij

k

)
(Πjj

k,k)
−1X jT

k,k −X i
k,k(Π

ii
k,k)

−1
(X i

k,k − Lji
k

)T
, k ≥ 1;

P ij
0/0 = P0,

where P ij
k/k−1, the cross-covariance matrix of the prediction error between the i-th

and the j-th sensor subsystems, satisfies

P ij
k/k−1 = Fk−1P

ij
k−1/k−1F

T
k−1 + Qk−1,k−1 + Fk−1J i

k−1 + J jT
k−1F

T
k−1

+W i
k−1,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1

(
Πjj

k−1,k−1

)−1WjT
k−1,k−1

− Gij
k−1

(
Πjj

k−1,k−1

)−1WjT
k−1,k−1 −W i

k−1,k−1

(
Πii

k−1,k−1

)−1 GjiT
k−1 k ≥ 2;

P ij
1/0 = F0P

ij
0/0F

T
0 + Q0,0,

where Gij
k = Wj

k,k + Fk

(
X j

k,k − Lij
k −X i

k,k

(
Πii

k,k

)−1
Πij

k,k

)
, k ≥ 1. The vectors Lij

k

and the innovation cross-covariances Πij
k,k are given in Lemmas 3.4.2 and 3.4.3,

respectively.
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Proof. By using (3.20) for x̂i
k/k and x̂j

k/k, we have

P ij
k/k = P ij

k/k−1 + X i
k,k(Π

ii
k,k)

−1Πij
k,k(Π

jj
k,k)

−1X jT
k,k

− E[(xk − x̂i
k/k−1)µ

jT
k ](Πjj

k,k)
−1X jT

k,k −X i
k,k(Π

ii
k,k)

−1E[µi
k(xk − x̂j

k/k−1)
T ].

Taking into account that E[xkµ
j
k] = X j

k,k and E[x̂i
k/k−1µ

j
k] = Lij

k , the recursive ex-

pression for the cross-covariance matrices of the local filtering errors, is immediately

deduced.

Following an analogous reasoning, using now (3.21) and taking into account

that E[(xk − x̂i
k/k)w

T
k ] = J i

k and E[µi
kw

T
k ] = W iT

k,k, it is easy to see that

P ij
k/k−1 = Fk−1P

ij
k−1/k−1F

T
k−1 + Qk−1,k−1 + Fk−1J i

k−1 + J jT
k−1F

T
k−1

+W i
k−1,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1

(
Πjj

k−1,k−1

)−1WjT
k−1,k−1

− (Wj
k−1,k−1 + Fk−1E[x̃i

k−1/k−1µ
j
k−1]

) (
Πjj

k−1,k−1

)−1WjT
k−1,k−1

−W i
k−1,k−1

(
Πii

k−1,k−1

)−1
(
W i

k−1,k−1 + Fk−1E[x̃j
k/kµ

i
k−1]

)T

.

Finally, using again (3.20) for x̂i
k−1/k−1, and since E[x̂i

k−1/k−2µ
j
k−1] = Lij

k−1, we have

E[x̃i
k−1/k−1µ

j
k−1] = X j

k−1,k−1 − Lij
k−1 −X i

k−1,k−1

(
Πii

k−1,k−1

)−1
Πij

k−1,k−1

and the expression for the cross-covariance matrices of the local prediction errors

is easily obtained.

¤

3.4.3 Distributed fusion filtering estimators

Once the local LS linear filtering estimators x̂i
k/k and their error covariance matri-

ces P ii
k/k, given in Theorem 3.4.1, along with the error cross-covariance matrices,

P ij
k/k, given in Theorem 3.4.2, are available, the distributed optimal weighted fu-

sion estimators and their error covariance matrices are obtained by applying the

optimal information fusion criterion weighted by matrices in the linear minimum

variance sense [30].
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Theorem 3.4.3 For the system model (3.1) and measurement model (3.2), under

assumptions (i)-(iv), the distributed optimal fusion filter, x̂D
k/k, is given by

x̂D
k/k = A1

kx̂
1
k/k + · · ·+ Ar

kx̂
r
k/k, k ≥ 0,

where the local estimators x̂i
k/k, k ≥ 0 (i = 1, 2 . . . , r) are calculated by the recursive

algorithm established in Theorem 3.4.1.

The optimal matrix weights Ai
k (i = 1, 2, . . . , r) are computed by

Ak = Σ−1
k/ke

(
eT Σ−1

k/ke
)−1

,

where the matrices Ak = [A1
k, . . . , A

r
k]

T
and e = [I, . . . , I]T are both nr×n matrices,

and

Σk/k = E
[(

x̃1
k/k, . . . , x̃

r
k/k

) (
x̃1

k/k, . . . , x̃
r
k/k

)T
]

=
(
P ij

k/k

)
i,j=1,2,...,r

is an nr× nr positive definite symmetric block matrix, whose n× n matrix entries

P ij
k/k are given in Theorems 3.4.1 and 3.4.2.

The error covariance matrices of the distributed weighted fusion filtering estimators

are computed by

PD
k/k =

(
eT Σ−1

k/ke
)−1

, k ≥ 0,

and the following inequality holds: PD
k/k ≤ P ii

k/k, i = 1, 2, . . . , r.

Proof. The proof is omitted because it follows directly from the optimal informa-

tion criterion weighted by matrices in the linear minimum variance sense [30].

¤

Remark 6. The proposed distributed optimal LS linear fusion filter requires the

computation of an nr × nr inverse matrix, with n the dimension of the system

state and r the number of sensors. Consequently, the proposed distributed fusion

method has a computational complexity of O[(nr)3], equal to that of the distributed
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Kalman-type filter in [16] and less than that of the distributed fusion filters based on

the state augmentation approach. Hence, our distributed fusion method is superior

to the filter proposed in [16] (since it has the same computation burden but better

accuracy) and also to the distributed fusion filters based on state augmentation

(since it has less computational complexity).

3.5 Numerical simulation example

In this section, a numerical simulation example is presented to illustrate the ef-

fectiveness of the centralized and distributed filtering algorithms proposed in this

paper. Consider a scalar first-order autoregressive model with missing measure-

ments coming from two sensors with autocorrelated and cross-correlated noises.

According to the proposed observation model, two different independent sequences

of random variables with a certain probability distribution over the interval [0, 1]

are used to model the missing phenomenon. Specifically, the following model is

considered:

xk = 0.95xk−1 + wk−1, k ≥ 1

yi
k = θi

k

[
1 1

]
xk + vi

k, k ≥ 1, i = 1, 2

where the initial state x0 is a zero-mean Gaussian variable with variance P0 = 1.

The noise processes {wk; k ≥ 0} and {vi
k; k ≥ 1}, i = 1, 2, are defined by

wk = 0.6(ηk+1 + ηk+2)

vi
k = ci(ηk + ηk+1), i = 1, 2,

where the sequence of variables {ηk; k ≥ 1} is a zero-mean Gaussian white process

with variance 0.5. Clearly, according to assumption (ii), the additive noises {wk}
and {vi

k} are one-step autocorrelated and two-step cross-correlated with

Qk,k = 0.36, Qk,k+1 = 0.18, Si
k,k = 0.3ci, Si

k−1,k = 0.6ci, Si
k−2,k = 0.3ci,

Rii
k,k = c2

i , Rii
k,k+1 = 0.5c2

i , Rij
k,k = cicj, Rij

k,k+1 = 0.5cicj.
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The phenomenon of missing measurements for each sensor is described as fol-

lows:

• In the first sensor, a sequence of independent and identically distributed

(i.i.d.) random variables, {θ1
k; k ≥ 1}, is considered, with probability distri-

bution given by

P [θ1
k = 0] = 0.1, P [θ1

k = 0.5] = 0.5, P [θ1
k = 1] = 0.4.

If θ1
k = 0, which occurs with probability 0.1, the state xk is missing and the

observation y1
k contains only noise v1

k; if θ1
k = 0.5, only partial information of

the state xk is missing in such observation, which happens with probability

0.5; and, finally, the state is present in the observation y1
k with probability 0.4

when θ1
k = 1. The mean and variance of these variables are easily calculated,

being θ
1

k = 0.65 and V θ1

k = 0.1025, for all k.

• In the second sensor, a sequence of i.i.d. Bernoulli random variables, {θ2
k; k ≥

1}, is considered, with P [θ2
k = 1] = p; in this case, if θ2

k = 1 the state xk

is present in the measurement y2
k with probability p, whereas if θ2

k = 0 such

observation only contains additive noise, v2
k, with probability 1 − p. So, no

partial missing information is considered in this sensor. Clearly, for all k,

θ
2

k = p and V θ2

k = p(1− p).

To illustrate the feasibility and effectiveness of the proposed estimators we ran

a program in MATLAB, in which fifty iterations of the proposed algorithms have

been performed considering different values of ci and p. Using simulated values

of the state and the corresponding observations, both distributed and centralized

filtering estimates of the state are calculated, as well as the corresponding error

variances, which provide a measure of the estimation accuracy.

Firstly, for p = 0.8, the local, centralized and distributed filtering error vari-

ances are displayed in Figure 3.1 considering the values c1 = 1 and c2 = 0.5.
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130 3.5 Numerical simulation example

According to Theorem 3.4.3, this figure corroborates that the optimal fusion dis-

tributed filter performs quite better than each local filter, but lightly worse than

the centralized filter. Nevertheless, although the distributed fusion filter has a bit

lower accuracy than the centralized one, both filters perform similarly and provide

good estimations. Moreover, this slight difference is compensated because the dis-

tributed fusion structure is in general more robust, reduces the computational cost

and improves the reliability due to its parallel structure. For these reasons, the

distributed filter is generally preferred in practice.
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First sensor local filtering error variances
Second sensor local filtering error variances
Distributed fusion filtering error variances
Centralized fusion filtering error variances

Figure 3.1: Local, centralized and distributed fusion filtering error variances.

Next, to analyze the performance of the proposed estimators versus the prob-

ability that the state xk is present in the measurements of the second sensor, the

centralized and distributed filtering error variances have been calculated for c1 = 1,

c2 = 0.5 and different values of the probability p = 0.2, 0.6 and 0.8. The results are

displayed in Figure 3.2; analysis of this figure reveals that as p increases (or, equiv-
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alently, the probability 1− p that the state is missing in the observations from the

second sensor decreases), the filtering error variances become smaller and, hence,

better estimations are obtained. Also, this figure shows that, for all the considered

probability values, the error variances corresponding to the centralized filter are

always less than those of the distributed filter. Analogous results are obtained for

other values of c1, c2 and the probability p.
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Distributed fusion filtering error variances
Centralized fusion filtering error variances

p=0.8p=0.6
p=0.2

Figure 3.2: Centralized and distributed fusion filtering error variances for p =
0.2, 0.6, 0.8, when c1 = 1, c2 = 0.5.

On the other hand, to compare the performance of the estimators for different

degrees of correlation between the state and the observation noises, the centralized

and distributed filtering error variances have been calculated considering c2 =

0.5, p = 0.8 and different values of c1, specifically, c1 = 0.25, 0.5, 0.75 and 1.

These values provide different correlations between the noise process {wk} and the

first sensor observation noise {v1
k} and, consequently, different correlations, E1

k ,

between the state and the first sensor observation noise. The error variances are
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displayed in Figure 3.3, from which it is inferred that the error variances are smaller

(and, consequently, the performance of the estimators is better) as the value c1 is

greater; these results were expected, since the correlation between the state and

observations increases with c1. Analogous results are obtained for different values

of c2 and other values of the probability p.
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Figure 3.3: Centralized and distributed fusion filtering error variances for c1 =
0.25, 0.5, 0.75, 1, when c2 = 0.5 and p = 0.8.

Now, completing the results of the two previous figures, the performance of the

filters is analyzed when c2 = 0.5, the probability p is varied from 0.1 to 0.9, and

the values c1 = 0.25, 0.5, 0.75, 1, 1.25 and 1.5 are considered. It must be noted

that in all the cases examined, the error variances present insignificant variation

from a certain iteration on and, consequently, only the values at a specific iteration

(namely, k = 50) are shown. The results are presented in Figure 3.4 which, for the

sake of clarity, only displays the distributed filtering error variances. Agreeing with

the comments about Figures 3.2 and 3.3, this figure shows that, for a fixed value of
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c1, the performance of the estimators improves as p becomes greater, and for a fixed

value of p, also more accurate estimations are obtained as c1 increases. Hence, from

this figure it is gathered that, as c1 or p decreases (which means that the correlation

between the state and the first sensor observation noise decreases or the probability

that the state is present in the second sensor measurements decreases, respectively),

the filtering error variances become greater and, consequently, worse estimations

are obtained.
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Figure 3.4: Distributed fusion filtering error variances versus p, with c1 =
0.25, 0.5, 0.75, 1, 1.25, 1.5, when c2 = 0.5.

Finally, a comparative analysis is presented between the classical Kalman filter

[2], the Kalman-type filter with correlated and cross-correlated noises given in [16],

the filter proposed in [23] for systems with different failure rates in multi-sensor

networks, and the centralized and distributed filters proposed in this paper. For

the comparison, the same parameter values as in Figure 3.1 are considered (c1 = 1,

c2 = 0.5 and p = 0.8).
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On the basis of one thousand independent simulations of the mentioned algo-

rithms, a comparison between the different filtering estimates is performed using

the mean square error (MSE) criteria. For s = 1, . . . , 1000, let {x(s)
k , k = 1, . . . , 50}

denote the s-th set of artificially simulated data (which is taken as the s-th set of

true values of the state), and x̂
(s)
k/k the filtering estimate at the sampling time k

in the s-th simulation run. For each algorithm, the filtering MSE at time k is

calculated by MSEk =
1

1000

1000∑
s=1

(x
(s)
k − x̂

(s)
k/k)

2.

The values MSEk, for k = 1, . . . , 50, are displayed in Figure 3.5 which shows

that, for all k, the proposed centralized and distributed filters have approximately

the same MSEk values, which in turn are smaller than the MSEk values of the

filter in [23] and considerably less than those of the filters [2] and [16]. Hence, we

can conclude that, according to the MSE criterion, the proposed filtering estimates

perform significantly better than other filters in the literature.
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Figure 3.5: Comparison of MSE for different filters.
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3.6 Conclusions

The LS linear estimation problem from missing measurements has been investi-

gated for multi-sensor linear discrete-time systems with autocorrelated and cross-

correlated noises. The main contributions are summarized as follows:

1. Using both centralized and distributed fusion methods to process the mea-

surement data from the different sensors, recursive optimal LS linear filtering

algorithms are derived by an innovation approach.

2. At each sensor, the possibility of missing measurements (that is, observa-

tions containing only partial information about the state or even only noise)

is modelled by a sequence of independent random variables taking discrete

values over the interval [0, 1].

3. The multi-sensor system model considered in the current paper covers those

situations where the sensor and process noises are one-step autocorrelated

and two-step cross-correlated. Also, one-step cross-correlations between dif-

ferent sensor noises is considered. This correlation assumption is valid in a

wide spectrum of applications, for example in target tracking systems with

process and measurement noises dependent on the system state, or situations

where a target is observed by multiple sensors and all of them operate in the

same noisy environment. Nevertheless, the current study can be extended to

more general systems involving finite-step autocorrelated and cross-correlated

noises with no difficulty, except for a greater complexity in the mathematical

expressions.

4. The applicability of the proposed centralized and distributed filtering al-

gorithms is illustrated by a numerical simulation example, where a scalar

state process generated by a first-order autoregressive model is estimated

from missing measurements coming from two sensors with autocorrelated
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and cross-correlated noises. The results confirm that centralized and dis-

tributed fusion estimators have approximately the same error variances, with

a slight inferiority of the distributed one which is compensated by a reduced

computational burden and reduced communication demands for the sensor

networks. Also, compared with some existing estimation methods, the pro-

posed algorithms provide better estimations in the mean square error sense.
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A.1 Proof of Theorem 3.3.1

From (3.8), expression (3.11) for the state filter x̂k/k in terms of the one-stage

predictor x̂k/k−1, is immediately clear.

Expression (3.12) for the state predictor x̂k/k−1 is obtained as follows:

x̂k/k−1 =
k−1∑
s=1

E[xkµ
T
s ]Π−1

s,sµs

=
k−1∑
s=1

E[(Fk−1xk−1 + wk−1) µT
s ]Π−1

s,sµs

=
k−1∑
s=1

Fk−1E[xk−1µ
T
s ]Π−1

s,sµs + E[wk−1µ
T
k−1]Π

−1
k−1,k−1µk−1

= Fk−1x̂k−1/k−1 +Wk−1,k−1Π
−1
k−1,k−1µk−1, k ≥ 2,

and clearly, x̂1/0 = E[x1] = F0E[x0] = F0x̂0/0.

Now we show expression (3.13) for the innovation, µk = yk − ŷk/k−1, for which

it is enough to obtain an expression for ŷk/k−1. A similar reasoning to that used
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Chapter 3 137

to prove (3.12) leads to

ŷk/k−1 =
k−1∑
s=1

E
[
ykµ

T
s

]
Π−1

s,sµs

=
k−1∑
s=1

E
[
(ΘkHkxk + vk) µT

s

]
Π−1

s,sµs

= ΘkHk

k−1∑
s=1

E
[
xkµ

T
s

]
Π−1

s,sµs + E
[
vkµ

T
k−1

]
Π−1

k−1,k−1µk−1

= ΘkHkx̂k/k−1 + Vk,k−1Π
−1
k−1,k−1µk−1, k ≥ 2,

with ŷ1/0 = E[y1] = Θ1H1E[x1] = Θ1H1x̂1/0. Hence,

ŷk/k−1 = ΘkHkx̂k/k−1 + Vk,k−1Π
−1
k−1,k−1µk−1, k ≥ 2;

ŷ1/0 = Θ1H1x̂1/0

(3.26)

and expression (3.13) for the innovation is clear.

Next, expression (3.14) for the matrix Xk,k = E[xky
T
k ]−E[xkŷ

T
k/k−1] is derived.

From (3.5) and the independence assumption, it is clear that

E[xky
T
k ] = DkH

T
k Θk + Ek, k ≥ 1.

From expression (3.26) for ŷk/k−1 and the OPL, E[xkŷ
T
k/k−1] is calculated as follows:

E[xkŷ
T
k/k−1] = E[xkx̂

T
k/k−1]H

T
k Θk + E[xkµ

T
k−1]Π

−1
k−1,k−1VT

k,k−1

= E[x̂k/k−1x̂
T
k/k−1]H

T
k Θk + Xk,k−1Π

−1
k−1,k−1VT

k,k−1

=
(
Dk − Pk/k−1

)
HT

k Θk + Xk,k−1Π
−1
k−1,k−1VT

k,k−1, k ≥ 2;

E[x1ŷ
T
1/0] =

(
D1 − P1/0

)
HT

1 Θ1.

By substraction of the above expectations, expression (3.14) for Xk,k = E[xky
T
k ]−

E[xkŷ
T
k/k−1] is obtained. From (3.1), expression (3.15) for Xk,k−1 = E

[
xkµ

T
k−1

]
is

immediately clear.

Expression (3.16) for the prediction error covariance matrix, Pk/k−1 is easily

obtained by using (3.1) and (3.12); and, from (3.1) and (3.11), expression (3.17)
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for Jk = E
[
x̃k/kw

T
k

]
= E

[
xkw

T
k

] − E
[
x̂k/kw

T
k

]
is also obvious. Expression (3.18)

for the filtering error covariance matrix, Pk/k, is immediately derived by using

(3.11).

Finally, we prove expression (3.19) for the innovation covariance matrix Πk,k =

E[yky
T
k ]− E[ŷk/k−1ŷ

T
k/k−1]. From (3.5) and using (3.7), we have that

E[yky
T
k ] = E[θkθ

T
k ] ◦ (

HkDkH
T
k

)
+ Rk,k + ΘkHkEk + ET

k HT
k Θk.

Using now (3.26) for ŷk/k−1 and property (3.7), and taking into account that, from

the OPL, E[x̂k/k−1µ
T
k−1] = E[xkµ

T
k−1] = Xk,k−1, the following identity holds:

E[ŷk/k−1ŷ
T
k/k−1] =

(
θkθ

T

k

)
◦ (

Hk(Dk − Pk/k−1)H
T
k

)
+ Vk,k−1Π

−1
k−1,k−1VT

k,k−1

+ ΘkHkXk,k−1Π
−1
k−1,k−1VT

k,k−1 + Vk,k−1Π
−1
k−1,k−1X T

k,k−1H
T
k Θk.

From the above expectations and after some manipulations, expression (3.19) for

the innovation covariance matrix Πk,k is obtained. ¤
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References 139

[5] J. Sun and C. Zhang, Distributed optimal fusion estimators for multi-sensor

systems with bounded random measurement delays and packet dropouts, Jour-

nal of Computational Information Systems, 8(10) (2012), 4087–4094.
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Optimal linear filter design for
systems with correlation in the
measurement matrices and noises:
recursive algorithm and
applications
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Abstract

This paper addresses the optimal least-squares linear estimation problem for a

class of discrete-time stochastic systems with random parameter matrices and cor-

related additive noises. The system presents the following main features: (1) one-

step correlated and cross-correlated random parameter matrices in the observation
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equation are assumed; (2) the process and measurement noises are one-step auto-

correlated and two-step cross-correlated. Using an innovation approach and these

correlation assumptions, a recursive algorithm with a simple computational pro-

cedure is derived for the optimal linear filter. As a significant application of the

proposed results, the optimal recursive filtering problem in multi-sensor systems

with missing measurements and random delays can be addressed. Numerical sim-

ulation examples are used to demonstrate the feasibility of the proposed filtering

algorithm, which is also compared with other filters that have been proposed.
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4.1 Introduction

The least-squares (LS) state estimation problem in discrete-time linear systems

from noise measurements has been widely considered, due to its applicability in

many practical situations. The Kalman filter provides a recursive algorithm for the

optimal LS estimator when the model parameter matrices are deterministic and the

additive white noises and the initial state are Gaussian and mutually independent.

However, many real systems do not meet these requirements and new filtering

algorithms have been reported for models representing the relationship between

the unknown state and the observable variables and under different assumptions

for the noise processes.

In recent decades, the filtering problem in multi-sensor systems, where sen-

sor networks are used to obtain all available information on the system state, has

become an issue of great interest for researchers. In data transmission, unreli-

able network characteristics can produce random sensor delays, multiple packet

dropouts and uncertain observations (missing measurements). Due to these ran-

dom uncertainties, standard observation models are not appropriate and estimation

algorithms cannot be derived directly from Kalman filter theory. Accordingly, new

algorithms are needed, and many research papers have been presented concerning

the state estimation problem in multi-sensor systems with some of the aforemen-

tioned uncertainties (see [1]-[3], among others).

In systems with uncertain observations, besides the usual additive noise, the

observation equation includes a multiplicative noise; hence, these systems are a

special case of random measurement matrices. Moreover, systems with random

sensor delays or multiple packet dropouts are transformed into systems with ran-

dom measurement matrices in [4]. Systems with random state transition matrices

can be used, for example, to describe randomly variant dynamic systems with

multiple models [5] or linear systems with state-dependent multiplicative noise [6].

Discrete-time systems with random state transition and measurement parameter
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matrices also arise in areas such as the digital control of chemical processes, sys-

tems with human operators, economic systems and stochastically sampled digital

control systems [7].

In [7] and [5], the optimal linear filtering problem in systems with indepen-

dent random state transition and measurement matrices is addressed by trans-

forming the original system into one with deterministic parameter matrices and

state-dependent process and measurement noises, to which the Kalman filter is

applied. Although [7] applies the Kalman filter without providing any theoretical

justification, [5] shows that under mild conditions, the transformed system satisfies

the Kalman filter requirements and, hence, optimal linear estimators are derived

for systems with independent random parameter matrices.

However, in many practical situations the random parameter matrices are not

independent but correlated; for example, when random sensor delays and/or mul-

tiple packet dropouts are converted into observation models with random mea-

surement matrices [4], or when a nonlinear system is linearized around the random

state estimate to apply the extended Kalman filter (for other realistic systems

and backgrounds where the model parameter matrices are random and correlated,

see [8], [9]). In [10] systems with deterministic transition matrices and one-step

correlated measurement matrices are considered, and the optimal recursive state

estimation is derived by converting the observation equation into one with deter-

ministic measurement matrices and applying the optimal Kalman filter for the case

of one-step correlated measurement noise. In addition, a specific class of systems,

where both the state transition and the measurement matrices are one-step moving

average matrix sequences driven by a common independent zero-mean parameter

sequence, is considered in the latter paper.

In the above-mentioned papers, although the noises of the transformed sys-

tem with deterministic matrices depend on the system state and therefore can be

correlated, the original system noises are assumed to be independent white pro-
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cesses. This assumption can be restrictive in many real-world problems in which

correlation and cross-correlation of the noises may be present. In systems with de-

terministic (state transition and measurement) matrices and with correlated and

cross-correlated noises, the estimation problem has aroused significant research

interest recently (see [6], [11] and references therein).

In view of the above considerations, this study focuses on the optimal LS linear

filtering problem in systems with random parameter matrices and autocorrelated

and cross-correlated noises, assuming independent random state transition matri-

ces and one-step correlated and cross-correlated random parameter matrices in the

observation equation. The proposed optimal LS linear recursive filtering algorithm

can be applied to two significant classes of systems: (i) multi-sensor systems with

missing measurements when the missing measurement phenomenon in each sen-

sor is described by different sequences of correlated scalar random variables with

arbitrary discrete probability distribution over the interval [0,1] (see Section 4.4);

and (ii) multi-sensor systems with correlated random delays in the observations

(see Section 4.5). In both cases, correlated and cross-correlated noises are consid-

ered. This paper makes a substantial and novel contribution in two respects: (1)

Unlike most existing results with random parameter matrices, in which a system

transformation is carried out, the proposed optimal LS linear recursive filtering al-

gorithm is obtained by using an innovation approach, without requiring any system

transformation and, moreover, in which noise correlation is considered; (2) multi-

sensor systems with missing and randomly delayed measurements can be considered

as particular cases of the current random measurement matrices model and, hence,

the proposed filter can be applied to these kind of multi-sensor systems. Besides

these advantages, the filtering algorithm described is very simple computationally.

The rest of this paper is organized as follows. Section 4.2 describes the system

model with random state transition and measurement matrices, and autocorrelated

and cross-correlated noises. In addition, some properties of the state and noise
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processes derived from the correlation assumptions are specified. In Section 4.3,

by using an innovation approach, a recursive algorithm for the optimal LS linear

filter is obtained. In Sections 4.4 and 4.5, applications to multi-sensor systems with

missing and randomly delayed measurements, respectively, are considered. In both

sections, a numerical simulation example is presented to show the effectiveness of

the proposed recursive filtering algorithm. Finally, some conclusions are drawn in

Section 4.6.

Notation: The notation used throughout the paper is standard. For any

matrix A, the notation symbols AT and A−1 represent its transpose and inverse,

respectively; Rn denotes the n-dimensional Euclidean space and Rm×n is the set of

m × n real matrices. The shorthand Diag(A1, . . . , Am) denotes a block diagonal

matrix with matrices A1, . . . , Am, and [A1 | · · · | Am] denotes a partitioned matrix

into sub-matrices A1, . . . , Am. If a matrix dimension is not explicitly stated, it is

assumed to be compatible for algebraic operations. I and 0 represent the identity

and zero matrices of appropriate dimensions. δk,s is the Kronecker delta function,

which is equal to one, if k = s, and zero otherwise. ◦ denotes the Hadamard

product. Moreover, for arbitrary random vectors X and Y , we denote Cov[X, Y ] =

E[(X − E[X]) (Y − E[Y ])T ] and Cov[X] = Cov[X,X], where E[·] stands for the

mathematical expectation operator.

4.2 Discrete-time system model with random pa-

rameter matrices

Our aim in this paper is to address the optimal LS linear filtering problem in a class

of discrete-time stochastic systems with random parameter matrices (independent

random transition matrices and one-step correlated and cross-correlated matrices

in the observation equation) and autocorrelated and cross-correlated noises. In this

section, the system model is described and the statistical properties of the initial

state, the random parameter matrices and the noise processes are identified.
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Consider a class of discrete-time linear stochastic systems whose n−dimensional

state process, {xk}k≥0, is perturbed by n× n random parameter matrices {Fk}k≥0

and by an additive process noise {wk}k≥0; specifically, the state evolution is given

by:

xk+1 = Fkxk + wk, k ≥ 0. (4.1)

The measurements of the state are described by the following observation equation:

yk = Hkxk + Bkvk, k ≥ 1, (4.2)

where {yk}k≥1 is the r−dimensional observation process; the measurement matri-

ces, {Hk}k≥1, are r×n random parameter matrices; {Bk}k≥1 are r×m random pa-

rameter matrices and the additive measurement noise, {vk}k≥1, is an m−dimensional

process.

It is known that, if the state xk and the observations y1, . . . , yk have finite

second-order moments, then the optimal LS linear filter of xk is the orthogonal

projection of the vector xk onto L(y1, . . . , yk), i.e., the space of n-dimensional

random variables obtained as linear transformations of y1, . . . , yk. The hypotheses

about the processes in (4.1) and (4.2) that guarantee the existence of the second-

order moments of the vectors y1, . . . , yk, as well as the correlation assumptions of

the noise processes and the random parameter matrices in the observation equation

are as follows:

(a) The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] = P0,

and it is independent of the random parameter matrices and noise processes.

(b) The random parameter matrices {Fk}k≥0, {Hk}k≥1 and {Bk}k≥1 satisfy:

E[Fk] = F k, E[Hk] = Hk, E[Bk] = Bk,
Cov[fk

ij, f
s
pq] = Cfk

ijfk
pq

δk,s,

Cov[hk
ij, h

s
pq] = Chk

ijhk
pq

δk,s + Chk
ijhs

pq
δk,s−1 + Chk

ijhs
pq

δk,s+1,

Cov[bk
ij, b

s
pq] = Cbk

ijbk
pq

δk,s + Cbk
ijbs

pq
δk,s−1 + Cbk

ijbs
pq

δk,s+1,

Cov[hk
ij, b

s
pq] = Chk

ijbk
pq

δk,s + Chk
ijbs

pq
δk,s−1 + Chk

ijbs
pq

δk,s+1,
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150 4.2 System model with random parameter matrices

where fk
ij, hk

ij and bk
ij denote the (i, j)−th entries of matrices Fk, Hk and

Bk, respectively. The mean matrices F k, Hk and Bk are known matrices ∀k,

and Cfk
ijfk

pq
, Chk

ijhs
pq

, Cbk
ijbs

pq
and Chk

ijbs
pq

, the covariances of the entries of the

system random parameter matrices, are also assumed to be known ∀k and

∀s = k − 1, k, k + 1.

(c) The process noise, {wk}k≥0, and the measurement noise, {vk}k≥1, are zero-

mean sequences with the following covariances and cross-covariances:

Cov[wk, ws] = Qk,kδk,s + Qk,sδk,s−1 + Qk,sδk,s+1,
Cov[vk, vs] = Rk,kδk,s + Rk,sδk,s−1 + Rk,sδk,s+1,
Cov[wk, vs] = Sk,kδk,s + Sk,sδk,s−1 + Sk,sδk,s−2.

(d) Independence assumptions:

− {Fk}k≥0 is independent of ({Hk}k≥1, {Bk}k≥1, {wk}k≥0, {vk}k≥1).

− ({Hk}k≥1, {Bk}k≥1) is independent of ({Fk}k≥0, {wk}k≥0, {vk}k≥1).

Remark 1: correlation of the noise processes. The correlation hypothesis (c)

of the process noise and the measurement noise is the same as those given in [6] and

[11]. Specifically, both noise processes are correlated at consecutive sampling times

and independent otherwise, and the measurement noise vector vk is correlated with

the noise vectors ws, for s = k, k − 1, k − 2, and independent otherwise. Systems

with only finite-step correlated process noise or multi-step correlated process and

measurement noise are considered in [12]-[14], among others.

As a consequence of the noise correlation assumptions, it is easy to see that:

• The vectors wk and yk are correlated, with

Wk := E
[
wky

T
k

]
= Qk,k−1H

T

k + Sk,kB
T

k , k ≥ 1. (4.3)
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• The state vector xk is correlated with the observation noise vectors vk and

vk−1, with

Ek,k := E[xkv
T
k ] = F k−1Sk−2,k + Sk−1,k, k ≥ 2; E1,1 = S0,1,

Ek,k−1 := E[xkv
T
k−1] = F k−1Ek−1,k−1 + Sk−1,k−1, k ≥ 2.

(4.4)

Remark 2: correlation of the random parameter matrices in the obser-

vation equation. Besides considering autocorrelated and cross-correlated noises

(assumption (c)), the correlation assumption (b) of the random parameter matrices

{Hk}k≥1 and {Bk}k≥1 in the observation equation is the main difference between

the current model and the model in [5], where {Hk}k≥1 is assumed to be a se-

quence of independent random parameter matrices, and the observation noise is

not multiplied by random parameter matrices. The correlation of the measurement

matrices {Hk}k≥1 at consecutive sampling times allows us to apply the results pro-

posed in this paper to multi-sensor systems with correlated missing measurements

(see Section 4.4). In addition, the correlation and cross-correlation of the random

parameter matrices {Hk}k≥1 and {Bk}k≥1 allow us to consider multi-sensor sys-

tems with correlated randomly delayed measurements as a particular case of the

current study (see Section 4.5).

As a consequence of the correlation assumptions of the noises and random

parameter matrices, using the conditional expectation properties, and denoting

H̃k = Hk−Hk and B̃k = Bk−Bk, it can be seen that the vector Bkvk is correlated

with the observation vector yk−1, and

Vk,k−1 := E
[
Bkvky

T
k−1

]
= Bk

(
Hk−1Sk−2,k + Bk−1Rk−1,k

)T

+ E
[
B̃kS

T
k−2,kH̃

T
k−1

]
+ E

[
B̃kRk,k−1B̃

T
k−1

]
, k ≥ 2.

(4.5)

The matrix E
[
B̃kS

T
k−2,kH̃

T
k−1

]
is yielded by both the cross-correlation of the

noise processes and that of the random parameter matrices {Hk}k≥1 and {Bk}k≥1,

while the matrix E
[
B̃kRk,k−1B̃

T
k−1

]
arises because of the one-step correlation of
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the measurement noise and also that of the matrices {Bk}k≥1. From assumption

(b), the (p, q)−th entries of these matrices are obtained by:

(
E[B̃kS

T
k−2,kH̃

T
k−1]

)
pq

=
m∑

j=1

n∑
i=1

Cbk
qjhk−1

pi

(
ST

k−2,k

)
ji

(p, q = 1, 2, . . . , r),

(
E[B̃kRk,k−1B̃

T
k−1]

)
pq

=
m∑

j=1

m∑
i=1

Cbk
qjbk−1

pi
(Rk,k−1)ji (p, q = 1, 2, . . . , r).

Remark 3: state transition equation. Linear discrete-time systems with ran-

dom state transition matrices, {Fk}k≥0, have important applications; for example,

they can be used to describe randomly variant dynamic systems with multiple

models [5] or linear systems with state-dependent multiplicative noise [6]. Fur-

thermore, bilinear stochastic systems [15] can be reduced to models with random

transition matrices.

After denoting F̃k = Fk−F k, from the state equation (4.1) and the conditional

expectation properties, it is easy to deduce that Dk+1 = E[xk+1x
T
k+1] is recursively

calculated by:

Dk+1 = F kDkF
T

k + E[F̃kDkF̃
T
k ] + Qk,k + F kQk−1,k + Qk,k−1F

T

k , k ≥ 1;

D1 = F 0D0F
T

0 + E[F̃0D0F̃
T
0 ] + Q0,0, D0 = P0 + x0x

T
0 ,

(4.6)

where, from assumption (b), the (p, q)−th entry of the matrix E[F̃kDkF̃
T
k ] is ob-

tained by

(
E[F̃kDkF̃

T
k ]

)
pq

=
n∑

j=1

n∑
i=1

Cfk
qjfk

pi
(Dk)ji (p, q = 1, 2, . . . , n).

Also, from the state equation (4.1), it is immediately clear that Gk+1,k =

E[xk+1x
T
k ] satisfies

Gk+1,k = F kDk + Qk,k−1, k ≥ 1; G1,0 = F 0D0. (4.7)
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4.3 Optimal LS linear estimation problem

Given the observations up to time k, {y1, . . . , yk}, our aim is to derive a recur-

sive algorithm for the optimal LS linear filter, x̂k/k, of the state xk. Since x̂k/k

is the orthogonal projection of xk onto the space L(y1, . . . , yk) of linear transfor-

mations of y1, . . . , yk, and these observations are generally non-orthogonal vec-

tors, an innovation approach will be used. This approach considerably simpli-

fies the algorithm derivation, because the innovation process is a white noise.

The innovation approach is based on the Gram-Schmidt orthogonalization pro-

cedure by means of which the observation process {yk}k≥1 is transformed into

an equivalent process (innovation process) {µk}k≥1, equivalent in the sense that

L(µ1, . . . , µk) = L(y1, . . . , yk); that is, each set {µ1, . . . , µk} spans the same linear

subspace as {y1, . . . , yk}.
The innovation at time k is defined as µk = yk − ŷk/k−1, where ŷk/k−1, the one-

stage LS linear predictor of yk, is the projection of yk onto L(µ1, . . . , µk−1). The

orthogonality property allows us to find the projection by projecting onto each of

the previous orthogonal vectors separately; that is,

ŷk/k−1 =
k−1∑
i=1

E[ykµ
T
i ](E[µiµ

T
i ])−1µi, k ≥ 2; ŷ1/0 = H1x̂1/0. (4.8)

Similarly, by denoting Xk,i = E[xkµ
T
i ] and Πi = E[µiµ

T
i ], a general expression

for the optimal LS linear filter, x̂k/k, as a linear combination of the innovations is

obtained; namely,

x̂k/k =
k∑

i=1

Xk,iΠ
−1
i µi, k ≥ 1; x̂0/0 = x0,

and, the following expression for the filter, x̂k/k, in terms of the predictor, x̂k/k−1,

is obvious:

x̂k/k = x̂k/k−1 + Xk,kΠ
−1
k µk, k ≥ 1; x̂0/0 = x0. (4.9)
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Next, we obtain the state predictor x̂k/k−1, the innovation µk and its covariance

matrix Πk, and the matrix Xk,k, which together with (4.9) will constitute the

proposed recursive linear filtering algorithm.

4.3.1 State predictor x̂k/k−1

In systems with random parameter matrices and uncorrelated additive white noises

[5], the one-stage state predictor is calculated as x̂k/k−1 = F k−1x̂k−1/k−1; this is

because the uncorrelation assumption of the noises guarantees that ŵk−1/k−1 = 0.

However, this is not true for the problem at hand, where the noise estimator

ŵk−1/k−1 must be taken into account in order to derive the one-stage state predictor.

From the Orthogonal Projection Lemma (OPL), we have

x̂k/k−1 = F k−1x̂k−1/k−1 + ŵk−1/k−1, k ≥ 1,

and hence, an expression for the noise filter ŵk/k is necessary. Taking into account

that wk is independent of µ1, . . . , µk−1 and ŷk/k−1, we have,

ŵk/k =
k∑

i=1

E[wkµ
T
i ]Π−1

i µi = E[wkµ
T
k ]Π−1

k µk = E[wky
T
k ]Π−1

k µk, k ≥ 1; ŵ0/0 = 0.

Therefore, the state predictor, x̂k/k−1, satisfies

x̂k/k−1 = F k−1x̂k−1/k−1 +Wk−1Π
−1
k−1µk−1, k ≥ 2; x̂1/0 = F 0x̂0/0, (4.10)

where Wk is given by (4.3).

4.3.2 Prediction Pk/k−1 and filtering Pk/k error covariance
matrices

From (4.1) and (4.10), it is easy to see that the prediction error covariance matrix,

Pk/k−1, satisfies

Pk/k−1 = F k−1Pk−1/k−1F
T

k−1 + E[F̃k−1Dk−1F̃
T
k−1] + Qk−1,k−1

+ F k−1Jk−1 + J T
k−1F

T

k−1 −Wk−1Π
−1
k−1WT

k−1, k ≥ 2;

P1/0 = F 0P0/0F
T

0 + E[F̃0D0F̃
T
0 ] + Q0,0,

(4.11)
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where, using (4.9), it is clear that Jk = E
[(

xk − x̂k/k

)
wT

k

]
is calculated by

Jk = Qk−1,k −Xk,kΠ
−1
k WT

k , k ≥ 1. (4.12)

Again, from (4.9), the filtering error covariance matrix, Pk/k, is given by

Pk/k = Pk/k−1 −Xk,kΠ
−1
k X T

k,k, k ≥ 1; P0/0 = P0. (4.13)

4.3.3 Innovation µk = yk − ŷk/k−1

In [5], the one-stage observation predictor is calculated as ŷk/k−1 = Hkx̂k/k−1; this

is because the uncorrelation assumption of the noises guarantees that v̂k/k−1 = 0.

However, due to the correlation assumptions of the measurement matrices, (b),

and the noise processes, (c), this is not true for the problem at hand and both

the correlation of Hk−1 and Hk and the noise estimator v̂k/k−1, must be taken into

account in deriving the predictor ŷk/k−1.

Therefore, to obtain the innovation µk = yk − ŷk/k−1, it is necessary to find

a new expression for ŷk/k−1. For this purpose, taking into account (4.8), we first

calculate

E[ykµ
T
i ] = E[Hkxkµ

T
i ] + E[Bkvkµ

T
i ] =

{
HkXk,i, i ≤ k − 2,

E[Hkxkµ
T
k−1] + Vk,k−1, i = k − 1,

(4.14)

and, substituting the expectations (4.14) in (4.8), we obtain

ŷk/k−1 = Hk

k−1∑
i=1

Xk,iΠ
−1
i µi +

(
E[Hkxkµ

T
k−1] + Vk,k−1 −HkXk,k−1

)
Π−1

k−1µk−1.

Now, from the conditional expectation properties, we obtain that

E[Hkxkµ
T
k−1]−HkXk,k−1 = E[H̃kxkµ

T
k−1] = E[H̃kxky

T
k−1]

= E[H̃kGk,k−1H̃
T
k−1] + E[H̃kEk,k−1B̃

T
k−1],

where Gk,k−1 and Ek,k−1 are given in (4.7) and (4.4), respectively.
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Hence, it is concluded that the one-stage observation predictor satisfies

ŷk/k−1 = Hkx̂k/k−1 + Ψk,k−1Π
−1
k−1µk−1, k ≥ 1, (4.15)

where

Ψk,k−1 = E[H̃kGk,k−1H̃
T
k−1]+E[H̃kEk,k−1B̃

T
k−1]+Vk,k−1, k ≥ 2; Ψ1,0 = 0. (4.16)

It can be observed that the matrices E[H̃kGk,k−1H̃
T
k−1] and E[H̃kET

k,k−1B̃
T
k−1]

are yielded by the correlation of the random parameter matrices of the observation

equation at consecutive sampling times. From (b), the (p, q)−th entries of these

matrices are obtained by

(
E[H̃kGk,k−1H̃

T
k−1]

)
pq

=
n∑

j=1

n∑
i=1

Chk
qjhk−1

pi
(Gk,k−1)ji (p, q = 1, 2, . . . , r),

(
E[H̃kET

k,k−1B̃
T
k−1]

)
pq

=
n∑

j=1

m∑
i=1

Chk
qjbk−1

pi

(ET
k,k−1

)
ji

(p, q = 1, 2, . . . , r).

Hence, the innovation µk is obtained as a linear combination of the new obser-

vation, the state predictor and the previous innovation:

µk = yk −Hkx̂k/k−1 −Ψk,k−1Π
−1
k−1µk−1, k ≥ 1. (4.17)

4.3.4 Matrix Xk,k = E[xkµ
T
k ]

Next, an expression for the matrix Xk,k = E[xkµ
T
k ] = E[xky

T
k ] − E[xkŷ

T
k/k−1] is

derived. From (4.2) and (4.4), it is clear that

E[xky
T
k ] = DkH

T

k + Ek,kB
T

k , k ≥ 1.

From (4.15) and since, from the OPL, E[xkx̂
T
k/k−1] = Dk − Pk/k−1, we obtain:

E[xkŷ
T
k/k−1] =

(Dk − Pk/k−1

)
H

T

k + Xk,k−1Π
−1
k−1Ψ

T
k,k−1, k ≥ 1,

where Xk,k−1 = E
[
xkµ

T
k−1

]
satisfies

Xk,k−1 = F k−1Xk−1,k−1 +Wk−1, k ≥ 2. (4.18)
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By subtracting the above expectations, the following expression for Xk,k is de-

rived

Xk,k = Pk/k−1H
T

k + Ek,kB
T

k −Xk,k−1Π
−1
k−1Ψ

T
k,k−1, k ≥ 1. (4.19)

4.3.5 Innovation covariance matrix Πk = E[µkµ
T
k ]

Finally, we obtain an expression for Πk = E[µkµ
T
k ] = E[yky

T
k ] − E[ŷk/k−1ŷ

T
k/k−1].

From (4.2) and again using the conditional expectation properties, we have

E[yky
T
k ] =HkDkH

T

k + E[H̃kDkH̃
T
k ] + BkRk,kB

T

k + E[B̃kRk,kB̃
T
k ]

+ HkEk,kB
T

k + E[H̃kEk,kB̃
T
k ] + BkET

k,kH
T

k + E[B̃kET
k,kH̃

T
k ],

where Dk and Ek,k are given in (4.6) and (4.4), respectively.

Using (4.15) and since E[x̂k/k−1µ
T
k−1] = E[xkµ

T
k−1] = Xk,k−1, the following iden-

tity holds:

E[ŷk/k−1ŷ
T
k/k−1] = Hk(Dk − Pk/k−1)H

T

k + Ψk,k−1Π
−1
k−1Ψ

T
k,k−1

+ HkXk,k−1Π
−1
k−1Ψ

T
k,k−1 + Ψk,k−1Π

−1
k−1X T

k,k−1H
T

k .

From the above expectations, using (4.19) and after some manipulations, the fol-

lowing expression for the innovation covariance matrix Πk is obtained:

Πk =E[H̃kDkH̃
T
k ] + E[B̃kRk,kB̃

T
k ] + E[B̃kET

k,kH̃
T
k ] + E[H̃kEk,kB̃

T
k ] + BkRk,kB

T

k

+ HkXk,k + X T
k,kH

T

k −HkPk/k−1H
T

k −Ψk,k−1Π
−1
k−1Ψ

T
k,k−1, k ≥ 1.

(4.20)

It can be observed that the matrices E[H̃kDkH̃
T
k ], E[B̃kRk,kB̃

T
k ] and E[B̃kET

k,k

H̃T
k ] are yielded by the correlation of the random matrices of the observation equa-

tion at the same time instant. From (b), the (p, q)−th entries of these matrices are

PhD Thesis Irene Garćıa Garrido
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obtained by

(
E[H̃kDkH̃

T
k ]

)
pq

=
n∑

j=1

n∑
i=1

Chk
qjhk

pi
(Dk)ji (p, q = 1, 2, . . . , r),

(
E[B̃kRk,kB̃

T
k ]

)
pq

=
m∑

j=1

m∑
i=1

Cbk
qjbk

pi
(Rk,k)ji (p, q = 1, 2, . . . , r),

(
E[B̃kET

k,kH̃
T
k ]

)
pq

=
m∑

j=1

n∑
i=1

Cbk
qjhk

pi

(ET
k,k

)
ji

(p, q = 1, 2, . . . , r).

4.3.6 Filtering algorithm: computational procedure and
advantages

The optimal LS linear filtering algorithm is constituted by equations (4.9)-(4.13)

and (4.17)-(4.20), and the computational procedure can be summarized as follows:

i) The matrices Wk, Ek,k, Ek,k−1 and Vk,k−1 are computed by expressions (4.3)-

(4.5). We then recursively compute Dk by (4.6) and thus Gk,k−1 by (4.7);

with the matrices Ek,k−1, Vk,k−1 and Gk,k−1, we can compute Ψk,k−1 by (4.16).

The matrices E[B̃kET
k,kH̃

T
k ], E[H̃kDkH̃

T
k ] and E[B̃kRk,kB̃

T
k ] are also computed

in order to obtain the innovation covariance matrix Πk. Note that all these

matrices depend only on the system model information and can be obtained

before the observations are available.

ii) At the sampling time k, when the (k − 1)th iteration is finished and the

new observation yk is available, the proposed filtering algorithm operates as

follows (Figure 1):

1) By (4.18), we compute Xk,k−1 = F k−1Xk−1,k−1 +Wk−1 and, from this,

Xk,k by (4.19):

Xk,k = Pk/k−1H
T

k + Ek,kB
T

k −Xk,k−1Π
−1
k−1Ψ

T
k,k−1.
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2) The innovation µk and its covariance matrix Πk are computed by (4.17)

and (4.20), respectively:

µk =yk −Hkx̂k/k−1 −Ψk,k−1Π
−1
k−1µk−1,

Πk =E[H̃kDkH̃
T
k ] + E[B̃kRk,kB̃

T
k ] + E[B̃kET

k,kH̃
T
k ] + E[H̃kEk,kB̃

T
k ]

+ BkRk,kB
T

k + HkXk,k + X T
k,kH

T

k −HkPk/k−1H
T

k

−Ψk,k−1Π
−1
k−1Ψ

T
k,k−1.

3) The filter x̂k/k and the filtering error covariance matrix Pk/k are com-

puted by (4.9) and (4.13), respectively:

x̂k/k = x̂k/k−1 + Xk,kΠ
−1
k µk,

Pk/k = Pk/k−1 −Xk,kΠ
−1
k X T

k,k.

4) To implement the above steps at time k + 1, we must:

∗ Compute the state predictor by (4.10): x̂k+1/k = F kx̂k/k+WkΠ
−1
k µk.

∗ Compute Jk = Qk−1,k − Xk,kΠ
−1
k WT

k by (4.12), and from this, the

prediction error covariance matrix Pk+1/k by (4.11):

Pk+1/k = F kPk/kF
T

k + E[F̃kDkF̃
T
k ] + Qk,k

+ F kJk + J T
k F

T

k −WkΠ
−1
k WT

k .

The proposed algorithm has the following advantages: 1) the filter is globally

optimal in the linear LS sense; 2) the filter structure is recursive, very simple

computationally and suitable for online applications; 3) the algorithm takes into

account both the influence of the correlation of the random parameter matrices

and that of the noises; 4) the algorithm, obtained by an innovation approach, does

not require any transformation of the original system into one with deterministic

parameter matrices; 5) the proposed filter can be applied to multi-sensor systems

with correlated missing measurements considering at each sensor the possibility of

observations containing only partial information about the state (Section 4.4); 6)

the proposed filter can be applied to multi-sensor systems with randomly delayed

measurements correlated at consecutive sampling times (Section 4.5).
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Figure 4.1: Optimal LS linear filtering algorithm.

4.4 Application to multi-sensor systems with

missing measurements

Over the past few decades, considerable research has been carried out into multi-

sensor systems with missing measurements, due to the importance of this question

and its applicability to modelling a broad class of real-world problems. Most papers

concerning systems with missing measurements transmitted by multiple sensors as-

sume that the missing probabilities in all the sensors are identical (see [16], [17]).

In recent years, however, this situation has been generalized to address missing

measurements whose statistical properties are not assumed to be the same for all

the sensors (see [18], [19]). Different missing probabilities have also been consid-

ered for some classes of nonlinear systems in [20], [21], where quantized H∞ control

and filtering problems are addressed, respectively. This is a realistic assumption

in several application fields, for instance, in networked communication systems

involving heterogeneous measurement devices. In [18], different sequences of inde-

pendent Bernoulli random variables are used to describe the missing measurement

phenomenon at each sensor. [22] subsequently generalized these results, by weak-
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ening the independence restriction and considering sequences of Bernoulli random

variables correlated at consecutive sampling times. This form of correlation covers

practical situations where the state cannot be missing in two successive observa-

tions (for example, transmission models with stand-by sensors in which any failure

in the transmission is detected immediately and the old sensor is then replaced).

In all of the above papers, it is assumed that the state measurement is either com-

pletely lost or successfully transferred, and Bernoulli random variables are used to

model the missing measurement phenomenon. In a more recent study, this missing

measurement model was generalized to consider an arbitrary discrete distribution

in the interval [0, 1], thus covering some practical applications where only partial

information is missing (see [11], [23] and references therein).

Our aim in this section is to show that the observation model in multi-sensor

systems with missing measurements can be considered a special case of the observa-

tion model with random measurement matrices (4.2). Hence, the proposed optimal

LS linear filtering algorithm can be applied to multiple missing measurement sys-

tems with correlated and cross-correlated noises, when the missing measurement

phenomenon at each sensor is described by different sequences of correlated (at

consecutive sampling times) scalar random variables with arbitrary discrete prob-

ability distribution over the interval [0,1]. In particular, the proposed optimal LS

linear filtering algorithm extends the results in [5], [11] and [22], among others.

Accordingly, consider the state equation given by (4.1), with {Fk}k≥0 and

{wk}k≥0 verifying the hypotheses (b) and (c), and r sensors which, at any time

k, provide scalar measurements of the state, perturbed by additive and multiplica-

tive noises according to the following observation model:

yi
k = θi

kC
i
kxk + vi

k, k ≥ 1, i = 1, 2, . . . , r, (4.21)

where {yi
k}k≥1 are the measured data from the i−th sensor, {Ci

k}k≥1, are known

time-varying matrices with compatible dimensions, {vi
k}k≥1 are zero-mean mea-

surement noises, and {θi
k}k≥1 are different sequences of scalar discrete-time random
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variables over the interval [0, 1], with E[θi
k] = θ

i

k. For i, j = 1, . . . , r, the following

noise correlation assumptions are made:

Cov[θi
k, θ

j
s] = Kθij

k,kδk,s + Kθij

k,sδk,s−1 + Kθij

k,sδk,s+1,

Cov[vi
k, v

j
s] = Rij

k,kδk,s + Rij
k,sδk,s−1 + Rij

k,sδk,s+1,

Cov[wk, v
i
s] = Si

k,kδk,s + Si
k,sδk,s−1 + Si

k,sδk,s−2.

The observation model (4.21) can be rewritten as follows:

yk = Hkxk + vk, k ≥ 1,

where yk = (y1
k, . . . , y

r
k)

T is the r−dimensional observation vector, Hk = ΘkCk,

with Θk = Diag(θ1
k, . . . , θr

k) and Ck =
[
C1T

k | · · · | CrT
k

]T

, are r × n random

parameter matrices, and vk = (v1
k, . . . , v

r
k)

T is the r−dimensional noise vector.

Hence, the observation model (4.21) is a particular case of (4.2) with Bk = I, and

clearly verifies that:

• the additive noise {vk}k≥1 is autocorrelated and cross-correlated with {wk}k≥1,

with

Cov[vk, vs] = Rk,kδk,s + Rk,sδk,s−1 + Rk,sδk,s+1,

Cov[wk, vs] = Sk,kδk,s + Sk,sδk,s−1 + Sk,sδk,s−2,

where Rk,s =
(
Rij

k,s

)
i,j=1,··· ,r and Sk,s =

[
S1

k,s | · · · | Sr
k,s

]
.

• the random parameter matrices {Hk}k≥1 satisfy:

− E[Hk] = Hk = ΘkCk where Θk = E[Θk] = Diag
(
θ

1

k, . . . , θ
r

k

)
.

− Denoting θk = (θ1
k, . . . , θ

r
k)

T , we have Cov[θk, θs] = Kθ
k,kδk,s+Kθ

k,sδk,s−1+

Kθ
k,sδk,s+1, where Kθ

k,s =
(
Kθij

k,s

)
i,j=1,··· ,r

.

− For any matrix A ∈ Rn×n, we have

E[H̃kAH̃T
s ] = E[(Θk −Θk)CkACT

s (Θs −Θs)]

= Kθ
k,s ◦

(
CkACT

s

)
, s = k, k − 1.
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• since Bk = I, we have B̃k = 0, ∀k, and consequently all the expectations in

which B̃k or B̃k−1 appears, are zero.

Thus, the proposed optimal filtering algorithm in this case of multi-sensor sys-

tems with missing measurements is the following:

x̂k/k = x̂k/k−1 + Xk,kΠ
−1
k µk, k ≥ 1; x̂0/0 = x0,

x̂k/k−1 = F k−1x̂k−1/k−1 +Wk−1Π
−1
k−1µk−1, k ≥ 2; x̂1/0 = F 0x̂0/0,

Xk,k = Pk/k−1C
T
k Θk + Ek,k −

(
F k−1Xk−1,k−1 +Wk−1

)
Π−1

k−1Ψ
T
k,k−1, k ≥ 1,

µk = yk −ΘkCkx̂k/k−1 −Ψk,k−1Π
−1
k−1µk−1, k ≥ 1,

Πk = Kθ
k,k ◦

(
CkDkC

T
k

)
+ Rk,k + ΘkCkXk,k + X T

k,kC
T
k Θk

−ΘkCkPk/k−1C
T
k Θk −Ψk,k−1Π

−1
k−1Ψ

T
k,k−1, k ≥ 1,

where Ek,k, Dk and Pk/k−1 are given by (4.4), (4.6) and (4.11), respectively, and

Wk = Qk,k−1C
T
k Θk + Sk,k, k ≥ 1,

Ψk,k−1 = Kθ
k,k−1 ◦

(
Ck

(
F k−1Dk−1 + Qk−1,k−2

)
CT

k−1

)
+ Vk,k−1, k ≥ 2; Ψ1,0 = 0,

Vk,k−1 = ST
k−2,kC

T
k−1Θk−1 + Rk,k−1, k ≥ 2.

4.4.1 Numerical simulation example

Consider the following system with state-dependent multiplicative noise, and miss-

ing measurements from two sensors, with different missing characteristics and noise

correlation:

xk = (0.95 + 0.2εk−1)xk−1 + wk−1, k ≥ 1,

yi
k = θi

kxk + vi
k, k ≥ 1, i = 1, 2.

The initial state x0 is a zero-mean Gaussian variable with P0 = 1. The multiplica-

tive state noise {εk}k≥0 is a zero-mean Gaussian white process with unit variance.

The additive noise processes {wk}k≥0 and {vi
k}k≥1, i = 1, 2, are the same as those

in [11], i.e., wk = 0.6(ηk + ηk+1) and vi
k = ci

k(ηk−1 + ηk), i = 1, 2, where c1
k = 1,

c2
k = 0.5, and {ηk}k≥0 is a zero-mean Gaussian white process with variance 0.5.
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Two different independent sequences of random variables with a probability

distribution over the interval [0, 1] are used to model the missing phenomenon:

• In the first sensor, the missing phenomenon is modelled by a sequence {θ1
k}k≥1

of Bernoulli random variables correlated at consecutive sampling times; specif-

ically, θ1
k = 1 − βk−1(1 − βk), where {βk}k≥0 is a sequence of independent

Bernoulli random variables with P [βk = 1] = β. Since the variables βk

and βs are independent, it is clear that θ1
k and θ1

s are also independent for

|k − s| ≥ 2. Moreover, if θ1
k = 0, then βk−1 = 1 and βk = 0, and conse-

quently θ1
k+1 = 1; hence, in the first sensor the state cannot be missing in

two successive observations.

• In the second sensor, the missing phenomenon is modelled by a sequence

{θ2
k}k≥1 of independent and identically distributed random variables with

the following probability distribution: P [θ2
k = 0] = 0.1, P [θ2

k = 0.5] =

0.5, P [θ2
k = 1] = 0.4.

Under these assumptions, for all k, the mean Θk and the covariances Kθ
k,s, s =

k, k − 1, are given by

Θk =

[
θ

1
0

0 θ
2

]
=

[
1− β(1− β) 0

0 0.65

]
,

Kθ
k,k =

[
θ

1
(1− θ

1
) 0

0 0.1025

]
and Kθ

k,k−1 =

[
−(1− θ

1
)2 0

0 0

]
.

To analyze the effectiveness of the proposed estimator, one hundred iterations

of the proposed filtering algorithm were performed and the filtering error variances

were calculated for different values of the probability β, which provide different

values of the probability θ
1

that the state is not missing from the observations of

the first sensor. Since θ
1

is the same if the value 1 − β is considered instead of

β, it is sufficient to consider β ≤ 0.5 (note that, in this case, θ
1

is a decreasing

PhD Thesis Irene Garćıa Garrido
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function of β). Specifically, the values β = 0.1, 0.2, 0.3, 0.4 and 0.5 (leading to

θ
1

= 0.91, 0.84, 0.78, 0.76 and 0.75, respectively) are examined here.

Figure 4.2 shows that the filtering error variances become greater as β increases

or, equivalently, as θ
1

decreases. This means that, as the probability of only

noise measurements (false alarm probability) increases in the first sensor, worse

estimations are obtained; note that for β = 0.3, 0.4, 0.5 the difference is smaller

since the corresponding values of θ
1

are very close to each other.

Finally, we present a comparative analysis of four filters: the Kalman filter

in systems with independent random parameter matrices and uncorrelated white

noises [5]; the linear filter in systems with uncertain observations with correlated

uncertainty and uncorrelated white noises [22]; the centralized filter in systems

with missing measurements and correlated and cross-correlated noises [11]; and

the filter proposed here. Using one thousand independent simulations of the

mentioned algorithms, the different filtering estimates were compared using the

mean square error (MSE) criterion. The filtering MSE at time k is calculated by

MSEk =
1

1000

1000∑
s=1

(x
(s)
k − x̂

(s)
k/k)

2, where {x(s)
k }1≤k≤100 denote the s-th set of arti-

ficially simulated data and x̂
(s)
k/k is the filter at the sampling time k in the s-th

simulation run. These values are shown in Figure 4.3, where it can be seen that:

1) the performance of the filters with correlated uncertainty or with correlated and

cross-correlated noises is better than that of the Kalman filter with independent

random parameter matrices and uncorrelated white noises, since this filter ignores

any correlation assumption; 2) the proposed filtering algorithm provides better

estimations than other filtering algorithms reported previously.
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Figure 4.2: Filtering error variances for β = 0.1, 0.2, 0.3, 0.4 and 0.5.
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Figure 4.3: Comparison of MSEk for different filters.

PhD Thesis Irene Garćıa Garrido
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4.5 Application to multi-sensor systems with ran-

domly delayed measurements

The estimation problem in multi-sensor systems with randomly delayed measure-

ments is arousing increasing interest due to its broad scope of application. In

networked systems, time delays are usually unavoidable, due to numerous causes

including network congestion, random failures in the transmission mechanism or

data inaccessibility at certain times. Since delays in measurement arrivals often

occur randomly, the standard estimation algorithms are not applicable and several

modifications have been proposed to incorporate the effects of randomly delayed

measurements (see [24]-[26]).

Most papers on estimation in multi-sensor systems with randomly delayed ob-

servations assume that all the sensors have the same delay characteristics. Never-

theless, such an assumption is not realistic in many practical situations, where the

information is gathered by an array of heterogeneous sensors, and the delay prob-

ability at each individual sensor can be different from the others. In recent years,

this approach has been generalized in [27], [28] considering multiple delayed sen-

sors with different delay characteristics and assuming that the delays are mutually

independent. [29], recently weakened this assumption of independence by consid-

ering different sequences of Bernoulli variables correlated at consecutive sampling

times to model the delays at each sensor. Similarly to the case of missing mea-

surements, this correlation model avoids the possibility of two successive delayed

observations, and so it can be applied to networked systems with stand-by sensors

for the immediate replacement of a failed unit.

In this section we show that the current observation model with random mea-

surement matrices (4.2) includes the observation model in multi-sensor systems

with correlated random delays as a particular case; thus the current study gener-

alizes the above results [27]-[29].

Assume that the state equation is given by (4.1), with {Fk}k≥0 and {wk}k≥0
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verifying hypotheses (b) and (c), and consider that zi
k, i = 1, . . . , r, are scalar

sensor outputs perturbed by zero-mean additive noises vi
k; namely,

zi
k = ci

kxk + vi
k, k ≥ 1, i = 1, . . . , r. (4.22)

For i, j = 1, . . . , r, it is assumed that Cov[vi
k, v

j
s] = Rij

k δk,s and Cov[wk, v
i
s] =

Si
k,kδk,s + Si

k,sδk,s−1.

Consider that, at the initial time k = 1, the ith sensor outputs, zi
1, are always

available for the estimation but, at time k ≥ 2, the ith sensor measurement, yi
k,

may be randomly delayed by one sampling time according to different delay charac-

teristics, due to possible failures in data transmission. Therefore, the measurement

model is described by

yi
k = (1− γi

k)z
i
k + γi

kz
i
k−1, k ≥ 2; yi

1 = zi
1, i = 1, . . . , r, (4.23)

where {γi
k}k≥2, i = 1, . . . , r, denote sequences of Bernoulli variables with P [γi

k = 1]

= pi
k and Cov[γi

k, γ
j
s ] = Kγij

k,kδk,s + Kγij

k,s δk,s−1 + Kγij

k,s δk,s+1.

By denoting zk = (z1
k, . . . , z

r
k)

T
, Ck =

[
c1T
k | · · · | crT

k

]T

, vk = (v1
k, . . . , v

r
k)

T
,

and Γk = Diag (γ1
k, . . . , γ

r
k), (4.22) and (4.23) can be rewritten as:

zk = Ckxk + vk, k ≥ 1,

yk = (I − Γk)zk + Γkzk−1, k ≥ 2; y1 = z1,
(4.24)

and, from the correlation assumptions of the noises, it is clear that Cov[vk, vs] =

Rkδk,s and Cov[wk, vs] = Sk,kδk,s + Sk,sδk,s−1, where Rk =
(
Rij

k

)
i,j=1,··· ,r and Sk,s =[

S1
k,s | · · · | Sr

k,s

]
. Moreover, by denoting γk = (γ1

k, . . . , γ
r
k)

T
, we have Cov[γk, γs] =

Kγ
k,kδk,s + Kγ

k,sδk,s−1 + Kγ
k,sδk,s+1, where Kγ

k,s =
(
Kγij

k,s

)
i,j=1,··· ,r

.

Now, as in [27], equations (4.1) and (4.24) are rewritten as follows, with random

parameter matrices:
Xk+1 = FkXk + Wk, k ≥ 1,
yk = HkXk + BkVk, k ≥ 2,

(4.25)
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where

Xk =

[
xk

xk−1

]
, Wk =

[
wk

0

]
, Vk =

[
vk

vk−1

]
, Fk =

[
Fk 0
I 0

]
,

Hk =
[

(I − Γk)Ck | ΓkCk−1

]
, Bk =

[
I − Γk | Γk

]
.

It is clear that the random parameter matrices and noise processes of system

(4.25) verify the hypotheses to apply the algorithm proposed in this paper. Specif-

ically, we have:

• E[Fk] = Fk =

[
F k 0
I 0

]
, Hk =

[
(I − Γk)Ck | ΓkCk−1

]
and Bk =

[
I − Γk | Γk

]
, where Γk = Diag (p1

k, . . . , p
r
k).

• The process noise, {Wk}k≥1, and the measurement noise, {Vk}k≥2, are zero-

mean sequences with covariances and cross-covariances:

Cov[Wk,Ws] = Qk,kδk,s +Qk,sδk,s−1 +Qk,sδk,s+1,
Cov[Vk, Vs] = Rk,kδk,s + Rk,sδk,s−1 + Rk,sδk,s+1,
Cov[Wk, Vs] = Sk,kδk,s + Sk,sδk,s−1 + Sk,sδk,s−2,

where

Qk,k =

[
Qk,k 0
0 0

]
, Qk,k−1 =

[
Qk,k−1 0

0 0

]
,

Rk,k =

[
Rk 0
0 Rk−1

]
, Rk,k−1 =

[
0 0

Rk−1 0

]
,

Sk,k =

[
Sk,k 0
0 0

]
, Sk−1,k =

[
Sk−1,k Sk−1,k−1

0 0

]
, Sk−2,k =

[
0 Sk−2,k−1

0 0

]
.

Then, it is clear that

− Dk = E[XkX
T
k ] =

[ Dk Gk,k−1

GT
k,k−1 Dk−1

]
, E

[
F̃kDkF̃T

k

]
=

[
E[F̃kDkF̃

T
k ] 0

0 0

]

and Gk+1,k = E[Xk+1X
T
k ] =

[ GT
k+1,k F kGk,k−1

Dk Gk,k−1

]
, where Dk and Gk,k−1 are

given by (4.6) and (4.7), respectively.
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− Analogously to (4.3) and (4.4), we have

Wk = E[Wky
T
k ] = Qk,k−1H

T

k + Sk,kB
T

k , k ≥ 1,

Ek,k = E[Xkv
T
k ] = Fk−1Sk−2,k + Sk−1,k, k ≥ 2; E1,1 = S0,1,

Ek,k−1 = E[Xkv
T
k−1] = Fk−1Ek−1,k−1 + Sk−1,k−1, k ≥ 2.

− For arbitrary matrices A1 ∈ R2n×2n, A2 ∈ R2r×2r and A3 ∈ R2r×2n, we have

E[H̃kA1H̃
T
s ] = Kγ

k,s ◦
(
[−Ck | Ck−1]A1 [−Cs | Cs−1]

T
)

, s = k, k − 1,

E[B̃kA2B̃
T
s ] = Kγ

k,s ◦
(
[−I | I ]A2 [−I | I ]T

)
, s = k, k − 1,

E[B̃kA3H̃
T
s ] = Kγ

k,s ◦
(
[−I | I ]A3 [−Cs | Cs−1]

T
)

, s = k, k − 1.

By applying the above expressions, we obtain E[H̃kDkH̃
T
k ], E[B̃kRk,kB̃

T
k ] and

E[B̃kET
k,kH̃

T
k ], which are necessary to calculate the innovation covariance matri-

ces. We also have

Vk,k−1 = Γk (Ck−1Sk−2,k−1 + Rk−1)
T (

I − Γk−1

)−Kγ
k,k−1 ◦ (Ck−1Sk−2,k−1 + Rk−1)

T ,

Ψk,k−1 = Kγ
k,k−1 ◦

(
[−Ck | Ck−1]

(
Gk,k−1 [−Ck−1 | Ck−2]

T + Ek,k−1 [−I | I ]T
) )

+ Vk,k−1.

Hence, the proposed optimal filtering algorithm for multi-sensor systems with

randomly delayed measurements is:

X̂k/k = X̂k/k−1 + Xk,kΠ
−1
k µk, k ≥ 1,

X̂k/k−1 = Fk−1X̂k−1/k−1 +Wk−1Π
−1
k−1µk−1, k ≥ 2; X̂1/0 =

[
F 0x0

x0

]
,

Xk,k = Pk/k−1H
T

k + Ek,kB
T

k −
(Fk−1Xk−1,k−1 +Wk−1

)
Π−1

k−1Ψ
T
k,k−1, k ≥ 1,

µk = yk −HkX̂k/k−1 −Ψk,k−1Π
−1
k−1µk−1, k ≥ 1,

Πk = E[H̃kDkH̃
T
k ] + E[B̃kRk,kB̃

T
k ] + E[B̃kET

k,kH̃
T
k ] + E[H̃kEk,kB̃

T
k ] + BkRk,kB

T

k

+ HkXk,k + X T
k,kH

T

k −HkPk/k−1H
T

k −Ψk,k−1Π
−1
k−1Ψ

T
k,k−1,
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Pk/k = Pk/k−1 −Xk,kΠ
−1
k X T

k,k, k ≥ 1,

Pk/k−1 = Fk−1Pk−1/k−1FT

k−1 + E[F̃k−1Dk−1F̃T
k−1] +Qk−1,k−1 + Fk−1Jk−1 + JT

k−1F
T

k−1

−Wk−1Π
−1
k−1W

T
k−1, k ≥ 2;

P1/0 =

[
F 0P0F

T

0 + E[F̃0D0F̃
T
0 ] + Q0,0 F 0P0

P0F
T

0 P0

]
,

Jk = Qk−1,k −Xk,kΠ
−1
k W

T
k , k ≥ 1.

4.5.1 Numerical simulation example

In this example, it is assumed that the state {xk}k≥0 is generated by the same

model as that in Section 4.4.1, and we consider measured outputs coming from

two sensors, zi
k = xk + vi

k, k ≥ 1, i = 1, 2, where the additive noises are defined by

v1
k = ηk and v2

k = 0.5ηk.

According to the proposed observation model, it is assumed that, at any sam-

pling time k ≥ 2, the measured output from the ith sensor, zi
k, can be randomly

delayed by one sampling period during network transmission; thus, the measure-

ment model is described by

yi
k = (1− γi

k)z
i
k + γi

kz
i
k−1, k ≥ 2; yi

1 = zi
1, i = 1, 2.

As in [29], it is assumed that the delays are correlated at consecutive sam-

pling times, which guarantees that two successive observations cannot be delayed;

specifically, the variables γi
k are defined by γi

k = αi
k+1(1 − αi

k), where {αi
k}k≥1,

i = 1, 2, are two independent sequences of independent Bernoulli variables with

probabilities P [α1
k = 1] = 0.5 and P [α2

k = 1] = 0.1, respectively.

To illustrate the accuracy of the proposed algorithm in comparison with other

estimation methods that have been proposed, one thousand independent simula-

tions were considered and one hundred iterations of each algorithm performed to

compute the filtering MSE at each time instant k. A comparative analysis was

carried out between the suboptimal Kalman-type filter for systems with indepen-

dent random delays [27], the optimal linear filter using covariance information for
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Figure 4.4: (a) Proposed filter vs. Hounkpevi and Yaz (2007b) filter.
(b) Proposed filter vs. Caballero-Águila et al.(2013b) filter.

systems with one-step correlated random delays [29], and the current filter for

multi-sensor systems with randomly delayed measurements. The results of this

comparison are shown in Figure 4.4, where it can be seen that the proposed filter

performs better than the other two. The difference with respect to [27] is greater

since the correlation assumption on the delays and the noises is not taken into

account and moreover the estimator in [27] is suboptimal.

4.6 Conclusions

This paper reports a study of the optimal LS linear filtering problem for discrete-

time linear systems with random parameter matrices and correlated additive noise.

The main contributions of this approach are:

1. The current system model includes independent random state transition ma-

trices and one-step correlated and cross-correlated random parameter matri-

ces in the observation equation. The process and measurement noises are

assumed to be one-step autocorrelated and two-step cross-correlated.
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2. An optimal LS linear recursive filtering algorithm with a simple computa-

tional procedure is derived by an innovation approach.

3. The proposed optimal LS linear filtering algorithm was applied to systems

with multiple missing measurements with correlated and cross-correlated

noises, when the missing measurement phenomenon in each sensor is de-

scribed by different sequences of scalar random variables with arbitrary dis-

crete probability distribution over the interval [0,1] correlated at consecu-

tive sampling times. This kind of multi-sensor system is found in various

real-world problems, such as transmission models with stand-by sensors or

situations involving the partial loss of measurements.

4. Multi-sensor systems with randomly delayed measurements, correlated at

consecutive sampling times, with correlated and cross-correlated noises are

also treated as a particular case of the model described in this paper. These

models cover the situations in which two successive observations cannot be

delayed. This kind of delay frequently occurs, in situations such as network

congestion, random failures in the transmission mechanism or data inacces-

sibility at certain times.

5. For both particular cases, the feasibility of the proposed filtering algorithm

is analyzed by two numerical simulation examples, which show that the pro-

posed filter performs better than others that have been reported.

6. A similar study to that performed in this paper would allow us to generalize

the current results by considering correlation between random state transi-

tion matrices and the random matrices in the observation equation. This

extension would cover systems with multiple packet dropouts as a particular

case, and would constitute an interesting research topic.

7. Another interesting future direction would be to complement the current
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study with a detailed analysis of the convergence and computational com-

plexity of the proposed filtering algorithm.

8. The filtering methodology proposed in this paper can be applied to other,

related problems, such as fault detection or control systems, which constitute

interesting and challenging topics for future research ([20], [30], [31]).
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Abstract

In this paper, the distributed fusion state estimation problem is addressed for sensor

network systems with random state transition matrix and random measurement

matrices, which provide a unified framework to consider some network-induced

random phenomena. The process noise and all the sensor measurement noises

are assumed to be one-step autocorrelated and different sensor noises are one-

step cross-correlated; also, the process noise and each sensor measurement noise
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are two-step cross-correlated. These correlation assumptions cover many practi-

cal situations, were the classical independence hypothesis is not realistic. Using

an innovation methodology, local least-squares linear filtering estimators are re-

cursively obtained at each sensor. The distributed fusion method is then used to

form the optimal matrix-weighted sum of these local filters according to the mean

squared error criterion. A numerical simulation example shows the accuracy of the

proposed distributed fusion filtering algorithm and illustrates some of the network-

induced stochastic uncertainties that can be dealt with the current system model,

such as sensor gain degradation, missing measurements and multiplicative noise.
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5.1 Introduction

In recent years, information and communication technologies have experienced a

fast development, making the use of sensor networks become very popular for mea-
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surement acquisition and data processing, as they usually provide more information

than traditional single-sensor communication systems. For this reason, the study

of the estimation problem in sensor network stochastic systems has achieved great

interest in many important research fields of engineering, computing and mathe-

matics, mainly, by their broad scope of applications (target tracking, environment

observation, habitat monitoring, animal tracking, communications, etc.).

Although fusion algorithms have been proposed according to different meth-

ods (see e.g. [1]-[3]), most existing results do not consider the new problems that

arise inevitably in sensor network systems due to the restrictions of the physical

equipment, mainly the limitations of bandwidth channels and uncertainties in the

external environment, in both the modeling process and the transmission of infor-

mation. These situations can dramatically worsen the quality of fusion estimators

designed. Multiplicative noise uncertainties, random delays, packet dropouts and

missing measurements, are some of the most common problems that motivated the

need to develop new estimation algorithms. Therefore, it is not surprising that, in

the past few years, the study of the state estimation problem in network systems

with only one or several of the aforementioned uncertainties has become an active

research area (see e.g. [4]-[10] and references therein).

Clearly, some of these situations with networked-induced phenomena are special

cases of systems with transition and/or measurement random parameter matrices,

which have important practical significance and arise in many application areas

such as digital control of chemical processes, radar control, navigation systems

or economic systems [11]. On the one hand, random state transition matrices

arise in the context of systems with state-dependent multiplicative noise, of great

interest for applications in aerospace systems, communication, processing images,

etc. [12]. On the other hand, networked systems with random observation losses

[13] or systems with stochastic observation multiplicative noises [14], clearly are

special cases of systems with random parameter measurement matrices. Also,
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182 5.1 Introduction

networked systems with stochastic sensor gain degradation as those considered in

[15] or the systems with state and measurement multiplicative noises and missing

measurements in [4], can be rewritten by transition and measurement random

parameter matrices. It must be mentioned that in many papers, see e.g. [8],

systems with random delays and packet dropouts are transformed into systems

with random parameter matrices. Consequently, these kind of systems can model

a great variety of real situations and, for this reason, the estimation problem in this

type of systems has gained a considerable interest in recent years (see e.g. [16]-[20]

and references therein).

Furthermore, in the latest research on signal estimation, the fairly conservative

assumption that the process and measurement noises are uncorrelated is commonly

weakened, since in many practical situations, such noises are usually correlated.

For example, when all the sensors operate in the same noisy environment, the sen-

sor noises are usually correlated. Likewise when the process noise and the sensor

noises are state dependent, there may be cross-correlation between them, as well

as between different sensor noises. Also, the augmented systems used to describe

random delays and measurement losses are systems with correlated noises, and

discretized continuous-time systems have also inherently correlated noises. Hence,

in both, systems with deterministic matrices and systems with random parameter

matrices, the estimation problem with correlated and cross-correlated noises, has

become a challenging research topic. In the first case, the optimal Kalman filtering

fusion problem in systems with cross-correlated process noises and measurement

noises at the same sampling time is addressed in [21] and [22], and at consecutive

sampling times in [3]. Under different correlation assumptions of the noises, cen-

tralized and distributed fusion algorithms are obtained in [12], for systems with

multiplicative noise in the state equation, and in [6], for systems where the mea-

surements have partial information about the signal. For systems with random

parameter matrices and autocorrelated and cross-correlated noises, the research
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efforts have been devoted to the centralized fusion estimation problem ([17]-[20]).

Centralized algorithms are based on a fusion centre able to receive all the measured

data from sensors for being processed; they provide optimal estimators from the

measurements of all the sensors and hence, when all the sensors work correctly,

they have the best accuracy. Nevertheless, as it is known, the centralized approach

has several drawbacks such as bad robustness, poor survivability, reliability, heavy

communication and expensive computational cost, which can be overcome by using

distributed approaches. In the distributed fusion method, each sensor estimates

the state based on its own measurement data, and these local estimators are com-

bined according to a certain information fusion criterion. To the best of the authors

knowledge, the distributed fusion estimation problem in networked systems with

both random parameter matrices and autocorrelated and cross-correlated noises

has not been investigated.

Motivated by the above considerations, this paper deals with the distributed

fusion estimation problem in sensor network systems including simultaneously ran-

dom parameter matrices and correlated noises in the state-space model. The main

contributions of our study can be highlighted as follows: (1) The network system

model with random parameter matrices considered provides a unified framework

to treat some network-induced phenomena, such as multiplicative noise uncertain-

ties, missing measurements or sensor gain degradation, and, hence, the proposed

distributed fusion filter has a wide applicability. (2) One-step autocorrelation of

the noises and, also, two-step cross-correlation between the process noise and dif-

ferent sensor noises are considered. (3) The innovation technique is used to obtain

algorithms for the local least-squares linear filtering estimators which are recursive

and computationally simple. (4) The proposed distributed fusion filter is generated

by a matrix-weighted linear combination of the local filtering estimators using the

mean squared error as optimality criterion. It requires the cross-covariance matri-

ces between any two local filters (and not the error cross-covariance matrices, as
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in [1])

The rest of the paper is organized as follows. The system model with multiple

sensors and random parameter matrices is presented in Section 5.2, including a

brief description of the traditional centralized and distributed fusion estimation

methods. The local least-squares linear filtering algorithms are derived in Section

5.3, using an innovation approach. In Section 5.4, the proposed distributed fusion

filter is obtained by a matrix-weighted linear combination of the local filtering

estimators using the mean squared error as optimality criterion. A simulation

example is given in Section 5.5 to show the performance of the proposed estimation

algorithms, and some conclusions are drawn in Section 5.6.

Notation: The notation used throughout the paper is standard. Rn denotes

the n-dimensional Euclidean space. AT and A−1 denote the transpose and inverse of

a matrix A, respectively. The shorthand (A1, . . . , Am) denotes a partitioned matrix

into sub-matrices A1, . . . , Am. If a matrix dimension is not explicitly stated, it is

assumed to be compatible for algebraic operations. Moreover, for any function

Gk,s, depending on the time instants k and s, we write Gk = Gk,k for simplicity.

Analogously, we write K(i) = K(ii) for any function K(ij), depending on the sensors

i and j. Finally, all the random vectors will be defined on the probabilistic space

(Ω,A, P ), and for arbitrary random vectors X and Y , we denote Cov[X,Y ] =

E[(X − E[X]) (Y − E[Y ])T ] and Cov[X] = Cov[X,X], where E[·] stands for the

mathematical expectation operator.

5.2 System formulation and problem statement

Consider a class of discrete-time linear stochastic systems whose nx−dimensional

state process, {xk; k ≥ 0}, is perturbed by an additive process noise, {wk; k ≥ 0},
and the state transition matrices, {Fk; k ≥ 0}, are nx × nx random parameter

matrices; specifically, the state evolution is given by

xk+1 = Fkxk + wk, k ≥ 0. (5.1)
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Assume that the state process is observed by m different sensors, and that the

measurements provided by the i-th sensor are described as follows:

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, 2, . . . , m, (5.2)

where y
(i)
k ∈ Rny is the output measured by sensor i at time k. For i = 1, 2, . . . , m,

{H(i)
k ; k ≥ 1} is a sequence of random parameter matrices and {v(i)

k ; k ≥ 1} is the

measurement noise of the i-th sensor.

Model assumptions. The assumptions about the initial state and the noise processes

involved in the system model (5.1)-(5.2), under which the fusion filtering problem

will be addressed, are:

(i) The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] = Σ0.

(ii) {Fk; k ≥ 0} and {H(i)
k ; k ≥ 1} are sequences of independent random param-

eter matrices with known means, E[Fk] = F k, E[H
(i)
k ] = H

(i)

k , i = 1, 2, . . . , m,

and the covariances of their entries, Cov[fpq(k), f
p′q′ (k)], Cov[h(i)

pa
(k), h(i)

qb
(k)],

are also assumed to be known. fpq(k) denotes the (p, q)-th entry of matrix

Fk, for p, q = 1, 2, . . . , nx, and h(i)
pq

(k) denotes the (p, q)-th entry of H
(i)
k , for

p = 1, 2, . . . , nx and q = 1, 2, . . . , ny.

(iii) The noises {wk; k ≥ 0} and {v(i)
k ; k ≥ 1}, i = 1, 2, . . . , m, are zero-mean

sequences with known covariances and cross-covariances:

Cov[wk, ws] = Qk,s (δk−s + δk−s+1 + δk−s−1) ,

Cov[v
(i)
k , v

(j)
s ] = R

(ij)
k,s (δk−s + δk−s+1 + δk−s−1) ,

Cov[wk, v
(i)
s ] = S

(i)
k,s (δk−s + δk−s+1 + δk−s+2) .

(iv) For i = 1, 2, . . . , m, the initial state x0 and the processes {Fk; k ≥ 0} and

{H(i)
k ; k ≥ 1} are mutually independent and they are independent of the

additive noises {wk; k ≥ 0} and {v(i)
k ; k ≥ 1}.
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Remark 1. By denoting F̃k = Fk − F k, H̃
(i)
k = H

(i)
k −H

(i)

k , i = 1, 2, . . . , m, and

G an arbitrary deterministic matrix, the following identities hold for the (p, q)-th

entries of the matrices E[F̃kGF̃ T
k ] and E[H̃

(i)
k GH̃

(i)T
k ]:

(
E[F̃kGF̃ T

k ]
)

pq
=

nx∑
a=1

nx∑

b=1

Cov[fpa(k), f
qb

(k)]Gab,

p, q = 1, 2, . . . , nx.(
E[H̃

(i)
k GH̃

(i)T
k ]

)
pq

=
nx∑

a=1

nx∑

b=1

Cov[h(i)
pa

(k), h(i)
qb

(k)]Gab,

p, q = 1, 2, . . . , ny.

Remark 2. Assumptions (i)-(iii) lead to the following recursive formula for Dk ≡
E[xkx

T
k ], the correlation matrix of the state vector xk (see, e.g. [17]):

Dk+1 = F kDkF
T

k + E[F̃kDkF̃
T
k ] + Qk + F kQk−1,k + Qk,k−1F

T

k , k ≥ 1;

D1 = F 0D0F
T

0 + E[F̃0D0F̃
T
0 ] + Q0,

D0 = Σ0 + x0x
T
0 .

(5.3)

Our aim is to address the optimal least-squares (LS) linear filtering problem of

state xk by fusing effectively the observations y
(i)
1 , . . . , y

(i)
k , i = 1, 2, . . . , m; specif-

ically, we use the traditional centralized and distributed fusion methods. As is

known, the main drawbacks of the first are the expensive computational cost, poor

robustness and flexibility. The latter overcomes these disadvantages and provides

greater accuracy than local estimators. The centralized fusion method use all

measurement data coming from m sensors directly in the fusion center for state

estimation, while in the distributed fusion method the observations in the fusion

center are replaced with estimates that have been locally computed.

Centralized fusion algorithm. Combining m measurement equations of (5.2) by

setting yk =
(
y

(1)T
k , . . . , y

(m)T
k

)T

, the discrete-time multi-sensor system with ran-

dom parameter matrices and correlated additive noises (5.1)-(5.2) considered in

this paper, is a special case of the discrete-time stochastic system with random

parameter matrices and correlated additive noises considered in [19]. Hence, the
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optimal centralized fusion filter could be obtained by the optimal LS lineal filtering

algorithm in [19].

Distributed fusion algorithm. The distributed fusion method computes, at each sen-

sor, a local optimal LS linear state filter using its own measurement data, and, sub-

sequently, the fusion center computes the LS matrix-weighted linear combination

of the local filtering estimators. Hence, the distributed fusion filtering algorithm

is performed in two steps. In the first one (Section 5.3), for each i = 1, 2, . . . , m, a

local LS linear estimator of the signal xk, denoted by x̂
(i)
k/k, is produced using the

measurements y
(i)
1 , . . . , y

(i)
k , by a recursive algorithm. In the second step (Section

5.4), a fusion distributed estimator, x̂
(D)
k/k , is generated by a matrix-weighted linear

combination of the local estimators, x̂
(i)
k/k, i = 1, 2, . . . , m, using the mean squared

error as optimality criterion.

5.3 Local LS linear filtering algorithm

This section is concerned with the problem of obtaining, for each i = 1, 2, . . . , m, a

recursive algorithm for the local LS linear filter, x̂
(i)
k/k, which will be derived by using

an innovation approach. For the i-th sensor, the innovation at time k is defined

as µ
(i)
k = y

(i)
k − ŷ

(i)
k/k−1, where ŷ

(i)
k/k−1 is the LS linear estimator of y

(i)
k based on

measurements y
(i)
s , s ≤ k− 1. Since the innovation process is uniquely determined

by the observations, and the innovations are orthogonal vectors, replacing the

observation process by the innovation one, the LS linear estimator, ẑ
(i)
k/L, of a

random vector zk based on the observations y
(i)
1 , . . . , y

(i)
L , can be calculated as

linear combination of the innovations µ
(i)
1 , . . . , µ

(i)
L ; namely,

ẑ
(i)
k/L =

L∑
s=1

E[zkµ
(i)T
s ](E[µ(i)

s µ(i)T
s ])−1µ(i)

s , k ≥ 1. (5.4)

From (5.4), by denoting X (i)
k = E[xkµ

(i)T
k ] and Π

(i)
k = E[µ

(i)
k µ

(i)T
k ], the following
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expression for the filter, x̂
(i)
k/k, in terms of the predictor, x̂

(i)
k/k−1, is obvious:

x̂
(i)
k/k = x̂

(i)
k/k−1 + X (i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1;

x̂
(i)
0/0 = x0,

(5.5)

and, from this relation and the Orthogonal Projection Lemma (OPL), the filtering

error covariance matrix, Σ
(i)
k/k, is given by

Σ
(i)
k/k = Σ

(i)
k/k−1 −X (i)

k Π
(i)−1
k X (i)T

k , k ≥ 1;

Σ
(i)
0/0 = Σ0.

(5.6)

Next, we obtain the state predictor x̂
(i)
k/k−1, the matrix X (i)

k and the innovation

µ
(i)
k or, equivalently, the observation predictor ŷ

(i)
k/k−1.

From the system equations (5.1)-(5.2) and again the OPL, it is clear that the

state and observation one-stage predictors verify:

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−1 + ŵ

(i)
k−1/k−1, k ≥ 1, (5.7)

ŷ
(i)
k/k−1 = H

(i)

k x̂
(i)
k/k−1 + v̂

(i)
k/k−1, k ≥ 1. (5.8)

Because of the correlation Assumption (iii), the noise filter ŵ
(i)
k/k and the one-

stage predictor v̂
(i)
k/k−1 are not zero and, hence, expressions for such estimators are

necessary.

5.3.1 LS linear noise estimators ŵ
(i)
k/k and v̂

(i)
k/k−1

The following correlation properties of the vector noises wk and v
(i)
k are easily

inferred from the assumptions (iii)-(iv):

• For i = 1, 2, . . . , m, the noise vector wk is uncorrelated with the innovations

µ
(i)
1 , . . . , µ

(i)
k−1, and correlated with µ

(i)
k , with

W(i)
k ≡ E[wkµ

(i)T
k ] = Qk,k−1H

(i)T

k + S
(i)
k , k ≥ 1. (5.9)
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• For i, j = 1, 2, . . . , m, the noise vector v
(i)
k is uncorrelated with the innovations

µ
(j)
1 , . . . , µ

(j)
k−2, and correlated with µ

(j)
k−1, with

V(ij)
k,k−1 ≡ E[v

(i)
k µ

(j)T
k−1 ] = S

(i)T
k−2,kH

(j)T

k−1 + R
(ij)
k,k−1, k ≥ 2. (5.10)

From the general expression for the estimators (5.4) and the above properties,

we have that the noise filter, ŵ
(i)
k/k, and the one-stage predictor, v̂

(i)
k/k−1, satisfy:

ŵ
(i)
k/k = W(i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1; ŵ

(i)
0/0 = 0. (5.11)

v̂
(i)
k/k−1 = V(i)

k,k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2; v̂

(i)
1/0 = 0. (5.12)

5.3.2 State predictor, x̂
(i)
k/k−1, and matrix X (i)

k = E[xkµ
(i)T
k ]

From (5.7) and (5.11), the following expression for the state predictor in terms of

the filter is immediate:

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−1 +W(i)

k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2;

x̂
(i)
1/0 = F 0x0,

(5.13)

with W(i)
k satisfying (5.9). This expression together with the state equation (5.1)

lead to the following formula for Σ
(i)
k/k−1, the prediction error covariance matrix:

Σ
(i)
k/k−1 = F k−1Σ

(i)
k−1/k−1F

T

k−1 + E[F̃k−1Dk−1F̃
T
k−1] + Qk−1 + F k−1J (i)

k−1

+J (i)T
k−1 F

T

k−1 −W(i)
k−1Π

(i)−1
k−1 W(i)T

k−1 , k ≥ 2;

Σ
(i)
1/0 = F 0Σ0/0F

T

0 + E[F̃0D0F̃
T
0 ] + Q0,

(5.14)

where Dk is given by (5.3), and J (i)
k = E[(xk − x̂

(i)
k/k)w

T
k ] satisfies

J (i)
k = Qk−1,k −X (i)

k Π
(i)−1
k W(i)T

k , k ≥ 1. (5.15)

From (5.13) and (5.5), the following recursive expression for the state predictor

is obtained:

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−2 + X (i)

k,k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2, (5.16)
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where

X (i)
k,k−1 = E[xkµ

(i)T
k−1] = F k−1X (i)

k−1 +W(i)
k−1, k ≥ 2. (5.17)

Using relation (5.16) and the state equation (5.1), we obtain that the correlation

between the prediction error and the measurement noise vector, M(ij)
k ≡ E[(xk −

x̂
(i)
k/k−1)v

(j)T
k ], is given by

M(ij)
k = F k−1S

(j)
k−2,k+ S

(j)
k−1,k−X (i)

k,k−1Π
(i)−1
k−1 V(ji)T

k,k−1, k≥ 2;

M(ij)
1 = S

(j)
0,1.

(5.18)

This correlation property allows us to obtain easily an expression for the matrix

X (i)
k = E[xkµ

(i)T
k ]. Indeed, by the OPL,

X (i)
k = E[(xk − x̂

(i)
k/k−1)µ

(i)T
k ] = E[(xk − x̂

(i)
k/k−1)y

(i)T
k ]

Now, from (5.2) and again the OPL, we have

X (i)
k = Σ

(i)
k/k−1H

(i)T

k +M(i)
k , k ≥ 1, (5.19)

where M(i)
k is given by (5.18).

5.3.3 Innovation, µ
(i)
k , and its covariance matrix, Π

(i)
k

From (5.8) and (5.12), the innovation, µ
(i)
k = y

(i)
k − ŷ

(i)
k/k−1, is given by:

µ
(i)
k = y

(i)
k −H

(i)

k x̂
(i)
k/k−1 − V (i)

k,k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2;

µ
(i)
1 = y

(i)
1 −H

(i)

1 x̂
(i)
1/0.

(5.20)

with V(i)
k,k−1 satisfying (5.10).

Next, an expression for Π
(i)
k = E[µ

(i)
k µ

(i)T
k ] is derived. From the OPL and (5.2),

it is clear that

Π
(i)
k = E[y

(i)
k µ

(i)T
k ] = H

(i)

k E[xkµ
(i)T
k ] + E[H̃

(i)
k xkµ

(i)T
k ] + E[v

(i)
k µ

(i)T
k ].
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− From (5.2) and the conditional expectation properties,

E[H̃
(i)
k xkµ

(i)T
k ] = E[H̃

(i)
k xkx

T
k H̃

(i)T
k ] = E[H̃

(i)
k DkH̃

(i)T
k ], k ≥ 1.

− Using (5.20) with (5.2) for y
(i)
k , we obtain that

E[v
(i)
k µ

(i)T
k ] = M(i)T

k H
(i)T

k + R
(i)
k − V(i)

k,k−1Π
(i)−1
k−1 V(i)T

k,k−1, k ≥ 2;

E[v
(i)
1 µ

(i)T
1 ] = M(i)T

1 H
(i)T

1 + R
(i)
1 .

Therefore, Π
(i)
k is determined as follows:

Π
(i)
k = E[H̃

(i)
k DkH̃

(i)T
k ] + H

(i)

k X (i)
k +M(i)T

k H
(i)T

k + R
(i)
k

−V(i)
k,k−1Π

(i)−1
k−1 V(i)T

k,k−1, k ≥ 2;

Π
(i)
1 = E[H̃

(i)
1 D1H̃

(i)T
1 ] + H

(i)

1 X (i)
1 +M(i)T

1 H
(i)T

1 + R
(i)
1 .

(5.21)

5.3.4 Computational procedure

The computational procedure of the proposed local LS linear filtering algorithm

can be summarized as follows:

The matrices W(i)
k and V(i)

k,k−1 are computed by expressions (5.9) and (5.10), re-

spectively. We obtain Dk recursively by (5.3), where the matrix E[F̃k−1Dk−1F̃
T
k−1]

necessary to compute Dk and Σ
(i)
k/k−1 is obtained as indicated in Remark 1. The

matrix E[H̃kDkH̃
T
k ] is also computed in order to obtain the innovation covariance

matrix Π
(i)
k . Note that all these matrices depend only on the system model infor-

mation and can be obtained before the observations are available.

At the sampling time k, starting with the prior knowledge including X (i)
k−1, µ

(i)
k−1,

Π
(i)
k−1, x̂

(i)
k/k−1, Σ

(i)
k/k−1; that is, once the (k − 1)-th iteration is finished, then when

the new observation y
(i)
k is available, the proposed filtering algorithm operates by

the following steps:

Step 1: By (5.17), we compute X (i)
k,k−1 and, from this, M(i)

k by (5.18), and then

we compute X (i)
k by (5.19):

X (i)
k,k−1 = F k−1X (i)

k−1 +W(i)
k−1,

M(i)
k = F k−1S

(i)
k−2,k + S

(i)
k−1,k −X (i)

k,k−1Π
(i)−1
k−1 V(i)T

k,k−1,

X (i)
k = Σ

(i)
k/k−1H

(i)T

k +M(i)
k .
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Step 2: The innovation µ
(i)
k and its covariance matrix Π

(i)
k are computed by (5.20)

and (5.21), respectively:

µ
(i)
k = y

(i)
k −H

(i)

k x̂
(i)
k/k−1 − V (i)

k,k−1Π
(i)−1
k−1 µ

(i)
k−1,

Π
(i)
k = E[H̃

(i)
k DkH̃

(i)T
k ] + H

(i)

k X (i)
k +M(i)T

k H
(i)T

k + R
(i)
k − V(i)

k,k−1Π
(i)−1
k−1 V(i)T

k,k−1.

Step 3: The filter, x̂
(i)
k/k, and the filtering error covariance matrix, Σ

(i)
k/k, are com-

puted by (5.5) and (5.6), respectively:

x̂
(i)
k/k = x̂

(i)
k/k−1 + X (i)

k Π
(i)−1
k µ

(i)
k ,

Σ
(i)
k/k = Σ

(i)
k/k−1 −X (i)

k Π
(i)−1
k X (i)T

k .

Step 4: To implement the above steps at time k + 1, we must:

a) Compute the state predictor, x̂
(i)
k+1/k, by (5.13):

x̂
(i)
k+1/k = F kx̂

(i)
k/k +W(i)

k Π
(i)−1
k µ

(i)
k .

b) Compute J (i)
k by (5.15):

J (i)
k = Qk−1,k −X (i)

k Π
(i)−1
k W(i)T

k ,

and from this, the prediction error covariance matrix, Σ
(i)
k+1/k, by (5.14):

Σ
(i)
k+1/k = F kΣ

(i)
k/kF

T

k + E[F̃kDkF̃
T
k ] + Qk

+F kJ (i)
k + J (i)T

k F
T

k −W(i)
k Π

(i)−1
k W(i)T

k .

5.4 Distributed fusion filtering estimators

Once the local LS linear filters, x̂
(i)
k/k for each sensor i = 1, 2, . . . , m, have been

obtained, our objective in this section is to design a distributed fusion filter, x̂
(D)
k/k ,

by a matrix-weighted linear combination of such estimators, which minimizes the

mean squared estimation error. To simplify the derivation of the proposed fusion
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estimators, we previously present some useful lemmas that provide the expectations

K
(ij)
k/k−1 = E[x̂

(i)
k/k−1x̂

(j)T
k/k−1], L

(ij)
k = E[x̂

(i)
k/k−1µ

(j)T
k ] and Π

(ij)
k = E[µ

(i)
k µ

(j)
k ], necessary

for subsequent calculations. The assumptions and notation in these lemmas are

those of Section 5.3.

5.4.1 Previous results

Lemma 5.4.1 For i, j = 1, 2, . . . , m, the cross-covariance matrix between any two

local state predictors, K
(ij)
k/k−1 = E[x̂

(i)
k/k−1x̂

(j)T
k/k−1], satisfies

K
(ij)
k/k−1 = F k−1K

(ij)
k−1/k−2F

T

k−1 + F k−1L
(ij)
k−1Π

(j)−1
k−1 X (j)T

k,k−1

+X (i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1Π

(j)−1
k−1 X (j)T

k,k−1 + X (i)
k,k−1Π

(i)−1
k−1 L

(ji)T
k−1 F

T

k−1, k ≥ 2; i 6= j,

K
(ij)
1/0 = F 0x0x

T
0 F

T

0 ,

K
(i)
k/k−1 = Dk − Σ

(i)
k/k−1, k ≥ 1.

Proof. Using (5.16) and that L
(ij)
k = E[x̂

(i)
k/k−1µ

(j)T
k ] and Π

(ij)
k = E[µ

(i)
k µ

(j)
k ], the

proof of this lemma is immediately clear. ¤

Lemma 5.4.2 For i, j = 1, 2, . . . , m and i 6= j, the expectation L
(ij)
k = E[x̂

(i)
k/k−1µ

(j)T
k ]

satisfies

L
(ij)
k =

(
K

(i)
k/k−1 −K

(ij)
k/k−1

)
H

(j)T

k + X (i)
k,k−1Π

(i)−1
k−1 V(ji)T

k,k−1 − L
(ij)
k,k−1Π

(j)−1
k−1 V(j)T

k,k−1, k ≥ 2;

L
(ij)
1 = 0,

where L
(ij)
k,k−1 = E[x̂

(i)
k/k−1µ

(j)T
k−1 ] is given by

L
(ij)
k,k−1 = F k−1L

(ij)
k−1 + X (i)

k,k−1Π
(i)−1
k−1 Π

(ij)
k−1, k ≥ 2.

Proof. Taking into account expression (5.20) for the innovation µ
(j)
k , we have that

L
(ij)
k = E[x̂

(i)
k/k−1y

(j)T
k ]−K

(ij)
k/k−1H

(j)T

k − L
(ij)
k,k−1Π

(j)−1
k−1 V(j)T

k,k−1.

Now, using (5.2) for y
(j)
k , (5.16) for x̂

(i)
k/k−1, and the OPL, we obtain

E[x̂
(i)
k/k−1y

(j)T
k ] = K

(i)
k/k−1H

(j)T

k + X (i)
k,k−1Π

(i)−1
k−1 V(ji)T

k,k−1.
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From above relations, the expression for L
(ij)
k is immediately derived.

Using again (5.16) for x̂
(i)
k/k−1, expression for L

(ij)
k,k−1 is also immediately clear,

and the proof is completed. ¤

Lemma 5.4.3 For i, j = 1, 2, . . . , m and i 6= j, the innovation cross-covariance

matrix, Π
(ij)
k = E[µ

(i)
k µ

(j)T
k ], satisfies

Π
(ij)
k = H

(i)

k

(
X (j)

k − L
(ij)
k

)
+M(ji)T

k H
(j)T

k + R
(ij)
k

−V (ij)
k,k−1Π

(j)−1
k−1 V(j)T

k,k−1−V (i)
k,k−1Π

(i)−1
k−1 Π

(ji)T
k,k−1, k≥ 2;

Π
(ij)
1 = H

(i)

1

(
X (j)

1 − L
(ij)
1

)
+M(ji)T

1 H
(j)T

1 + R
(ij)
1 ,

where Π
(ij)
k,k−1 = E[µ

(i)
k µ

(j)T
k−1 ] is given by

Π
(ij)
k,k−1 = H

(i)

k

(
X (j)

k,k−1 − L
(ij)
k,k−1

)
+ V(ij)

k,k−1 − V (i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1, k ≥ 2.

Proof. Using (5.20) for the innovation µ
(i)
k , it is clear that

Π
(ij)
k = E[y

(i)
k µ

(j)T
k ]−H

(i)

k L
(ij)
k − V(i)

k,k−1Π
(i)−1
k−1 E[µ

(i)
k−1µ

(j)T
k ].

A similar reasoning to that used to obtain (5.21) yields

E[y
(i)
k µ

(j)T
k ] = H

(i)

k X (j)
k +M(ji)T

k H
(j)T

k + R
(ij)
k − V(ij)

k,k−1Π
(j)−1
k−1 V(j)T

k,k−1, k ≥ 2;

E[y
(i)
1 µ

(j)T
1 ] = H

(i)

1 X (i)
1 +M(ji)T

1 H
(j)T

1 + R
(ij)
1 .

So, the expression for Π
(ij)
k is immediately derived. The expression for Π

(ij)
k,k−1 is

obtained by an analogous reasoning. ¤

5.4.2 Design of distributed fusion filter

As we already indicated, our goal is to obtain a distributed fusion filter, x̂
(D)
k/k ,

generated by a weighted sum of the local estimators,
m∑

i=1

F
(i)
k x̂

(i)
k/k, in which the

weight matrices, F
(i)
k , i = 1, 2, . . . ,m, are computed to minimize the mean squared

estimation error.
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So, by denoting X̂k/k =
(
x̂

(1)T
k/k , . . . , x̂

(m)T
k/k

)T

and Fk =
(
F

(1)
k , . . . , F

(m)
k

)
, the

aim is finding Fk such that the estimator FkX̂k/k minimizes

E
[
(xk −FkX̂k/k)(xk −FkX̂k/k)

T
]
. (5.22)

It is straightforward to check that (5.22) can be expressed as

E
[
xkx

T
k

]
+ [Fk − Gk] E

[
X̂k/kX̂

T
k/k

]
[Fk − Gk]

T − GkE
[
X̂k/kX̂

T
k/k

]
GT

k ,

where Gk = E
[
xkX̂

T
k/k

] (
E

[
X̂k/kX̂

T
k/k

])−1

and, therefore, (5.22) is minimum when

the estimator is performed by the matrix

Fopt
k = E

[
xkX̂

T
k/k

] (
E

[
X̂k/kX̂

T
k/k

])−1

, k ≥ 1. (5.23)

In the following theorem, the proposed distributed fusion filtering estimators,

x̂
(D)
k/k , and their error covariance matrices, Σ

(D)
k/k , are established.

Theorem 5.4.1 Let X̂k/k =
(
x̂

(1)T
k/k , . . . , x̂

(m)T
k/k

)T

be the vector formed by the local

LS filtering estimators calculated in Section 5.3. Then, the distributed fusion filter

is given by

x̂
(D)
k/k = Ξk/kK

−1
k/kX̂k/k, k ≥ 1, (5.24)

with

Kk/k =
(
K

(ij)
k/k

)
i,j=1,...,m

and Ξk/k =
(
K

(1)
k/k, . . . , K

(m)
k/k

)
,

where K
(ij)
k/k = E

[
x̂

(i)
k/kx̂

(j)T
k/k

]
, i, j = 1, 2, . . . , m, are computed by

K
(ij)
k/k = K

(ij)
k/k−1 + L

(ij)
k Π

(j)−1
k X (j)T

k + X (i)
k Π

(i)−1
k L

(ji)T
k

+X (i)
k Π

(i)−1
k Π

(ij)
k Π

(j)−1
k X (j)T

k , k ≥ 1; i 6= j

K
(i)
k/k = Dk − Σ

(i)
k/k, k ≥ 1,

(5.25)

with K
(ij)
k/k−1, L

(ij)
k and Π

(ij)
k given in lemmas 5.4.1, 5.4.2 and 5.4.3, respectively.

The error covariance matrices of the distributed fusion filtering estimators are

computed by

Σ
(D)
k/k = Dk − Ξk/kK

−1
k/kΞ

T
k/k, k ≥ 1. (5.26)
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Proof. Expressions (5.24) and (5.26) for the distributed estimators and their error

covariance matrices, respectively, are immediately derived from (5.23). Expression

(5.25) for the cross-covariance matrices between local filtering estimators follows

easily using expression (5.5) of such estimators. ¤

5.5 Numerical simulation example

Consider the following discrete-time linear networked system with state-dependent

multiplicative noise, and scalar measurements from four sensors:

xk = (0.95 + 0.2εk−1)xk−1 + wk−1, k ≥ 1,

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, 2, 3, 4

where {εk; k ≥ 0} is a zero-mean Gaussian white process with unit variance. The

additive noises are defined as wk = 0.6(ηk + ηk+1) and v
(i)
k = c

(i)
k (ηk−1 + ηk), i =

1, 2, 3, 4, where c
(1)
k = 1, c

(2)
k = 0.5, c

(3)
k = 0.75, c

(4)
k = 0.85, and {ηk; k ≥ 0} is a

zero-mean Gaussian white process with variance 0.5.

For i = 1, 2, 3, 4, the random parameter matrices H
(i)
k are defined as follows:

• H
(1)
k = 0.82λ

(1)
k , where {λ(1)

k ; k ≥ 1}, is a sequence of independent and identi-

cally distributed (iid) random variables uniformly distributed over [0.3, 0.7].

• H
(2)
k = 0.75λ

(2)
k , where {λ(2)

k ; k ≥ 1}, is a sequence of iid discrete random

variables with P [λ
(2)
k = 0] = 0.1, P [λ

(2)
k = 0.5] = 0.5, P [λ

(2)
k = 1] = 0.4.

• H
(3)
k = 0.74λ

(3)
k , where {λ(3)

k ; k ≥ 1}, is a Bernoulli process with P [λ
(3)
k =

1] = p(3), ∀k.

• H
(4)
k = λ

(4)
k (0.75 + 0.95ξk), where {λ(4)

k ; k ≥ 1} is a Bernoulli process with

P [λ
(4)
k = 1] = p(4), ∀k, and {ξk; k ≥ 0} is a zero-mean Gaussian white process

with unit variance.
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Note that the random parameter matrices at each sensor, H
(i)
k , allow to model

different types of uncertainty. Namely, in sensors 1 and 2, as in [15] and [6], the

scalar random variables λ
(i)
k take values over the interval [0, 1] and represent con-

tinuous and discrete stochastic sensor gain degradations, respectively. In sensor 3,

λ
(3)
k are Bernoulli random variables, thus covering the phenomenon of missing mea-

surements, with λ
(3)
k = 1 meaning that the signal xk is present in the measurement

y
(3)
k coming from the third sensor at time k, while λ

(i)
k = 0 means that the signal

is missing in the measured data at time k or, equivalently, that such observation

is only noise v
(3)
k . Finally, as in [4], both missing measurements and multiplicative

noise are considered in sensor 4.

To illustrate the feasibility and effectiveness of the proposed algorithms, they

were implemented in MATLAB, and one hundred iterations of the algorithms were

run. Using simulated values of the signal and the corresponding observations,

both centralized and distributed filtering estimates were calculated, as well as the

corresponding error variances, in order to measure the estimation accuracy.

The error variances of the local, centralized and distributed fusion filters are

compared considering fixed values of the probabilities p(3) and p(4); specifically,

p(3) = 0.5, p(4) = 0.75. In Fig.5.1, we can see that the error variances of the dis-

tributed fusion filter are significantly smaller than those of every local filter, but

lightly greater than those of the centralized filter. Nevertheless, although the cen-

tralized fusion filter outperforms the distributed one, this difference is slight and

both filters perform similarly and provide good estimations. Besides, this slight

difference is compensated by the fact that the distributed fusion structure reduces

the computational cost and has the advantage of better robustness and fault toler-

ance. For example, assuming that the fourth sensor is faulty and the measurement

equation is given by y
(4)
k = H

(4)
k xk +v

(4)
k +ak, where ak = 0.5k for 50 ≤ k ≤ 70 and

ak = 0 otherwise, Fig.5.2 displays the corresponding filtering mean square errors

(MSE) of one thousand independent simulations at each sampling time k, show-
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Figure 5.1: Error variance comparison of the centralized, distributed and local
filtering estimators.

ing that the distributed fusion method has better fault-tolerance abilities than the

centralized one.

Finally, we analyze the centralized and distributed filtering accuracy in function

of the probabilities p(3) and p(4) of the Bernoulli variables that model uncertainties

of the observations coming from sensors 3 and 4, respectively. Specifically, the

filter performances are analyzed when p(3) is varied from 0.1 to 0.9, and different

values of p(4) are considered. Since the behaviour of the error variances is analogous

in all the iterations, only the results of a specific iteration (k = 100) are shown

here. In Figure 5.3 the centralized and distributed filtering error variances are

displayed versus p(3), for p(4) = 0.3, 0.5, 0.7 and 0.9. As expected, from this figure

it is concluded that, as p(3) or p(4) increase, the centralized and distributed filtering

error variances both become smaller and, hence, the performance of the centralized

and distributed filters improve as these probabilities increase.
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Figure 5.2: Centralized and distributed filtering mean square errors.
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Figure 5.3: Centralized and distributed filtering error variances at k = 100 versus
p(3), when p(4) = 0.3, 0.5, 0.7 and 0.9
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5.6 Conclusion

The distributed fusion filtering problem has been investigated for multi-sensor

stochastic systems with random parameter matrices and correlated noises. The

main outcomes and results can be summarized as follows:

• Recursive algorithms for the local LS linear filters of the system state based

on the measured output data coming from each sensor have been designed by

an innovation approach. The computational procedure of these local filtering

algorithms is very simple and suitable for online applications. To measure

the accuracy of the local estimators, recursive formulas for the local filtering

error covariance matrices have been also established.

• Once the local filters have been obtained, a distributed fusion filter has been

designed as the matrix-weighted sum of such local estimators that minimizes

the mean-squared estimation error. The error covariance matrices of such

distributed fusion filter have been also derived.

• A numerical simulation example has illustrated the usefulness of the proposed

results. Error variance comparison has shown that both the centralized and

the distributed filters outperform the local ones; this example has also shown

that the slight superiority of the centralized filter over the distributed filter is

compensated by better robustness and fault-tolerance abilities of the latter.

This example has also highlighted the applicability of the proposed algorithm

for a great variety of multi-sensor systems featuring network-induced stochas-

tic uncertainties, such as sensor gain degradation, missing measurements or

multiplicative observation noises, which can be dealt with the observation

model considered in this paper.

A challenging further research topic is to address the estimation problem for this

kind of systems with random parameter matrices, considering a sensor network
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whose nodes are distributed according to a given topology, characterized by a

directed graph. Also, an interesting future research topic is to consider other

kinds of stochastic uncertainties which often appear in networked systems, such as

random delays and packet dropouts.
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Quadratic estimation problem in
discrete-time stochastic systems
with random parameter matrices
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parameter matrices.

Applied Mathematics and Computation, (submitted).

Abstract

This paper addresses the least-squares quadratic filtering problem in discrete-time

stochastic systems with random parameter matrices in both the state and measure-

ment equations. Defining a suitable augmented system, this problem is reduced to

the least-squares linear filtering problem of the augmented state based on the aug-

mented observations. Under the assumption that the moments, up to the fourth-

order one, of the original state and measurement vectors are known, a recursive

algorithm for the optimal linear filter of the augmented state is designed, from

which the optimal quadratic filter of the original state is obtained. As a particular
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case, the proposed results are applied to multi-sensor systems with state-dependent

multiplicative noise and fading measurements and, finally, a numerical simulation

example illustrates the performance of the proposed quadratic filter in comparison

with the linear one and also with other quadratic filters in the existing literature.
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6.1 Introduction

A basic assumption in classical estimation theory for linear stochastic systems is

the knowledge of the model parameter matrices; also, the additive noises and the

initial state are assumed to be Gaussian and mutually independent. As it is well

known, under these conditions, the systems are Gaussian and the Kalman filter

provides the conditional expectation of the state given the observations, that is, the

optimal least-squares (LS) estimator. However, there exists a considerable number

of situations in which the joint distribution of the state and the observations is not

Gaussian and the Kalman filter provides only the linear LS estimator. In these

cases, the optimal LS estimator is not a linear function of the observations and,

generally, it is not easy to be obtained; this fact has motivated the necessity of
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looking for suboptimal estimators which are computationally easier, such as linear

estimators or, more generally, polynomial estimators.

In systems where the usual assumption of Gaussian noises must be removed

in order to obtain a more realistic statistical description of the random processes

involved, De Santis et al. [1] were the first to obtain a recursive algorithm for

the quadratic LS filter, by improving the widely used linear filter. A more general

study is carried out in [2], where the arbitrary-order polynomial LS estimation

problem is addressed.

Systems with multiplicative noises in the state and/or observation equations

constitute another kind of non-Gaussian systems in which the Kalman filter does

not provide the optimal LS estimator and, hence, it is necessary to look for sub-

optimal estimators. This class of systems has been receiving great attention in the

last years, mainly due to the fact that this kind of formulation arises in many ap-

plications, as image processing problems and communication systems. Therefore,

under different hypotheses and performance criterions, the study of the linear LS

estimation problem in systems with random multiplicative noises has become an

active research area in the last years (see e.g. [3]-[5], and reference therein).

Because of its important applications, it is worth noting especially some classes

of systems where the influence of multiplicative noises affects only the measure-

ments of the model; for example, in cases where there are intermittent failures in

the observation mechanism, fading phenomena in propagation channels, accidental

loss of some measurements, or data inaccessibility during certain times. This kind

of systems, named systems with uncertain observations or missing measurements,

are modeled including in the observation equation, besides the additive noise, a

multiplicative noise component described by a sequence of Bernoulli random vari-

ables. Under different hypotheses on the Bernoulli variables and the additive noises

involved in the system equations, the linear and polynomial estimation problems

have been widely studied in such systems (see e.g. [6]-[12], and references therein).
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Recently, this missing measurement model, described by Bernoulli variables, has

been generalized considering any random variables with arbitrary probability distri-

bution over the interval [0, 1], which allows us to cover some practical applications

where only partial information is missing. In this situation, considering also differ-

ent assumptions on the system noises, the linear LS estimation problem has been

treated in [13] and [14].

The above-mentioned systems are a special case of systems with random param-

eter matrices which clearly are non-Gaussian systems, even under the assumption

that the additive noises are Gaussian. Also, systems with random delays and packet

dropouts can be transformed into an equivalent stochastic parameterized system

[15]. Due to the numerous realistic situations and practical applications in which

both state transition and measurement are random parameter matrices, such as

digital control of chemical processes, systems with human operators, economic sys-

tems, and stochastically sampled digital control systems (see e.g. [16]-[19], among

others), the linear estimation problem in this type of systems has gained signifi-

cant research interest in recent years (see e.g. [13], [20]-[22] and references therein).

Considering scalar measurements with random observation matrices, the quadratic

LS filtering problem has been addressed in [23] by applying the Kalman filter to a

suitably augmented system with deterministic observation matrices.

Despite the importance of this kind of systems and the significant improve-

ment that the quadratic LS estimators provide over the linear ones, to the best

of the authors knowledge, the quadratic LS estimation problem in systems with

both random parameter state transition and measurement matrices has not been

investigated. This paper makes the following contributions: (1) random parameter

matrices in both the state and observation equations are considered simultaneously

in the system state-space model, thus providing a unified framework to treat some

classes of uncertainties, such as multiplicative noises or missing and fading mea-

surements, and, hence, the proposed quadratic LS filter outperforms the linear LS
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Chapter 6 209

estimators derived in the existing literature for systems with such uncertainties; (2)

unlike [23], where deterministic state transition matrices and scalar measurements

are assumed, we consider random state transition matrices and multidimensional

observations; hence, the proposed estimators can be applied to multi-sensor systems

and, furthermore, different uncertainty characteristics in the sensors can be con-

sidered; specifically, an application to multi-sensor systems with state-dependent

multiplicative noise and fading measurements is presented; (3) also, unlike [23],

the proposed quadratic filtering algorithm is obtained without requiring the original

system transformation into one with deterministic observation matrices.

The rest of the paper is organized as follows. In Section 6.2, we present the sys-

tem model with random parameter matrices to be considered and the assumptions

and properties under which the quadratic LS estimation problem is addressed. The

augmented system is constructed in Section 6.3 using the technique proposed by [1],

consisting of augmenting the state and observation vectors with their second-order

Kronecker powers. Also, in this section, the statistical properties of the augmented

processes are analyzed. The proposed methodology reduces the quadratic estima-

tion problem to the linear estimation problem in the augmented system, and the

recursive algorithm for the linear LS filter of the augmented state is derived in

Section 6.4. The application to multi-sensor systems with state-dependent mul-

tiplicative noise and fading measurements, together with a numerical simulation

example which shows the effectiveness of the proposed quadratic estimators in con-

trast to the linear ones are both presented in Section 6.5. Finally, some conclusions

are drawn in Section 6.6.

Notation: The notation used throughout this paper is standard. Rn and Rm×n

are the n-dimensional Euclidean space and the set of all m × n real matrices,

respectively. For any matrix A, AT and A−1 denote its transpose and inverse,

respectively. The shorthand Diag(A1, . . . , Am) denotes a block diagonal matrix

whose diagonal blocks are the matrices A1, . . . , Am, and [A1 | · · · | Am] represents
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a partitioned matrix into sub-matrices A1, . . . , Am. I and K denote the identity and

commutation matrices, respectively, of appropriate dimensions. A[2] = A⊗A where

⊗ denotes the Kronecker product. vec(·) stands for the ‘vec’ or ‘stack’ operator.

δk,s is the Kronecker delta function and ◦ denotes the Hadamard product.

Moreover, for any random vector or matrix M , we denote M = E[M ] and

M̃ = M − M , where E[·] stands for the expectation operator. For arbitrary

random vectors β and γ, we denote Cov[β, γ] = E[(β − E[β]) (γ − E[γ])T ] and

Cov[β] = Cov[β, β].

6.2 Problem formulation

Consider a class of discrete-time linear stochastic systems and denote xk ∈ Rn

and yk ∈ Rr the state vector and its measurement at time k, respectively. The

evolution of the state and its measurements are given by the following equations:

xk = Fk−1xk−1 + wk−1, k ≥ 1, (6.1)

yk = Hkxk + vk, k ≥ 1, (6.2)

where {Fk}k≥0 and {Hk}k≥1 are sequences of random parameter matrices, {wk}k≥0

is the process noise and {vk}k≥1 is the measurement noise.

Our aim is to obtain the least-squares (LS) quadratic estimator of the state

xk based on the measurements {y1, . . . , yk}. As it is known, this estimator is its

orthogonal projection onto the space of n-dimensional random variables obtained as

linear transformations of y1, . . . , yk and their second-order powers, y
[2]
1 , . . . , y

[2]
k . To

address the LS quadratic estimation problem, it is necessary that E[y
[2]T
i y

[2]
i ] < ∞,

and therefore, the fourth-order moments of vectors yi, i = 1, . . . , k must be finite.

Specifically, the following assumptions are required:

(A1) The initial state x0 is a random vector whose moments up to the fourth-order

one are known. We will denote x0 = E[x0], P0 = Cov[x0], P
(3)
0 = Cov[x0, x

[2]
0 ]

and P
(4)
0 = Cov[x

[2]
0 ].
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(A2) {Fk}k≥0 and {Hk}k≥1 are sequences of independent random parameter ma-

trices with known mean matrices F k and Hk. The covariances and cross-

covariances between the entries of the matrices Fk and F
[2]
k , as well as between

the entries of the matrices Hk and H
[2]
k , are also assumed to be known.

(A3) The noise processes {wk}k≥0 and {vk}k≥1 are zero-mean white sequences with

known moments, up to the fourth-order ones. We will denote

Qk = Cov[wk], Q
(3)
k = Cov[wk, w

[2]
k ], Q

(4)
k = Cov[w

[2]
k ],

Rk = Cov[vk], R
(3)
k = Cov[vk, v

[2]
k ], R

(4)
k = Cov[v

[2]
k ].

(A4) The initial state x0, the random parameter matrices {Fk}k≥0, {Hk}k≥1 and

the processes {wk}k≥0, {vk}k≥1 are mutually independent.

Remark 1. Hereafter, it will be necessary to calculate different expectations

associated with the random parameter matrices Fk, F
[2]
k , Hk and H

[2]
k . For this

purpose, the following property is used:

Let A =
(
aij

)
i=1,...,N1
j=1,...,N2

and B =
(
bij

)
i=1,...,M1
j=1,...,M2

be random parameter matrices,

then for any deterministic matrix C =
(
cij

)
i=1,...,N2
j=1,...,M2

, the (p, q)-th entry of the

matrix E[ÃCB̃T ] is given by

(
E[ÃCB̃T ]

)
pq

=

N2∑
i=1

M2∑
j=1

Cov(api, bqj)cij, p = 1, . . . , N1, q = 1, . . . , M1. (6.3)

6.3 Quadratic estimation problem statement

Given the system model (6.1)-(6.2) under assumptions (A1)-(A4), the problem

at hand is to find the LS quadratic estimator, x̂q
k/k, of the state xk based on

the measurements until time k. For this purpose, the following augmented state
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and measurement vectors are defined by assembling the original vectors and their

second-order Kronecker powers:

Xk =

(
xk

x
[2]
k

)
, Yk =

(
yk

y
[2]
k

)
.

Since the space of linear transformations of Y1, . . . ,Yk is equal to the space of

linear transformations of y1, . . . , yk and y
[2]
1 , . . . , y

[2]
k , the LS quadratic filter, x̂q

k/k,

is the LS linear estimator of xk based on Y1, . . . ,Yk. This estimator is obtained by

extracting the first n entries of the LS linear estimator of Xk based on Y1, . . . ,Yk.

Therefore, the quadratic estimation problem for the original state is reduced to the

linear estimation problem for the augmented state.

In order to address the LS linear estimation problem of the augmented state

based on the augmented measurements, the evolution of the vectors Xk and Yk is

analyzed. Using the Kronecker product properties [24], the evolution of the the

second-order powers, x
[2]
k and y

[2]
k , is given by (see [1]):

x
[2]
k = F

[2]
k−1x

[2]
k−1 + Φk−1, k ≥ 1,

y
[2]
k = H

[2]
k x

[2]
k + Ψk, k ≥ 1,

where Φk = (I + K)((Fkxk)⊗ wk) + w
[2]
k and Ψk = (I + K)((Hkxk)⊗ vk) + v

[2]
k .

Then, the augmented vectors Xk and Yk satisfy the following equations:

Xk = Fk−1Xk−1 +Wk−1, k ≥ 1,

Yk = HkXk + Vk, k ≥ 1,

where

Fk = Diag(Fk, F
[2]
k ), Hk = Diag(Hk, H

[2]
k ), Wk =

(
wk

Φk

)
, Vk =

(
vk

Ψk

)
.

For simplicity, since the additive noises of this new model, Wk and Vk, are

non-zero mean vectors, with

Wk =

(
0

vec(Qk)

)
, Vk =

(
0

vec(Rk)

)
,
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the above equations are rewritten in terms of the centered augmented vectors,

Xk = Xk −X k and Yk = Yk − Yk, obtaining the following augmented system:

Xk = Fk−1Xk−1 + Wk−1, k ≥ 1, (6.4)

Yk = HkXk + Vk, k ≥ 1, (6.5)

where Wk = F̃kX k + W̃k and Vk = H̃kX k + Ṽk, being X k =

(
xk

vec(Dk)

)
with

Dk = E[xkx
T
k ].

Taking into account the state equation (6.1) and under assumptions (A1)-(A4),

the mean vector xk and the correlation matrix Dk are recursively calculated by

xk = F k−1xk−1, k ≥ 1,

Dk = F k−1Dk−1F
T

k−1 + E[F̃k−1Dk−1F̃
T
k−1] + Qk−1, k ≥ 1; D0 = P0 + x0x

T
0 ,

where the (p, q)-th entry of the matrix E[F̃kDkF̃
T
k ] is obtained as in (6.3).

It should be mentioned that the LS linear estimator of Xk based on Y1, . . . , Yk

provides the LS linear estimator of Xk based on Y1, . . . ,Yk, adding the mean vector

X k. Therefore, the required quadratic filter x̂q
k/k is obtained by adding the mean

xk to the vector constituted by the first n entries of the LS linear filter of Xk.

In order to obtain the LS linear filter of Xk, the properties of the processes

involved in the system (6.4)-(6.5) are required.

Clearly, the initial state X0 is a zero-mean random vector with covariance ma-

trix given by

P ∗
0 =

(
P0 P

(3)
0

P
(3)
0 P

(4)
0

)
.

Moreover, it is easy to show that X0 and {Wk}k≥0, {Vk}k≥1, {Fk}k≥0, {Hk}k≥1 are

uncorrelated.

Next, the second-order statistical properties of the noise processes {Wk}k≥0 and

{Vk}k≥1 are established in propositions 6.3.1 and 6.3.2, respectively.
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Proposition 6.3.1 The noise {Wk}k≥0 is a zero-mean white process with covari-

ance matrix, E[WkW
T
k ] = QW

k , given by

QW
k =

(
Qk Q12

k

Q12T
k Q22

k

)
+ E[F̃kX kX T

k F̃T
k ],

where

Q12
k = ((F kxk)

T ⊗Qk)(I + K) + Q
(3)
k ,

Q22
k = (I + K)

((
F kDkF

T

k + E[F̃kDkF̃
T
k ]

)
⊗Qk

)
(I + K) + Q

(4)
k

+ (I + K)
(
(F kxk)⊗Q

(3)
k

)
+

(
(F kxk)⊗Q

(3)
k

)T

(I + K)

and

E[F̃kX kX T

k F̃T
k ] =




E[F̃kxkx
T
k F̃ T

k ] E[F̃kxkvec(Dk)
T F̃

[2]T
k ]

E[F̃
[2]
k vec(Dk)x

T
k F̃ T

k ] E[F̃
[2]
k vec(Dk)vec(Dk)

T F̃
[2]T
k ]


 ,

whose blocks are calculated as in (6.3).

Proof. Clearly, ∀k ≥ 0, E[Wk] = 0. Now, taking into account the mutual inde-

pendence between {wk}k≥0, {Fk}k≥0 and the initial state x0, it is easy to prove that

E[W̃kX T

s F̃T
s ] = 0, E[F̃kX kX T

s F̃T
s ] = E[F̃kX kX T

k F̃T
k ]δk,s, ∀k, s ≥ 0, and, hence

E[WkW
T
s ] = E[W̃kW̃T

s ] + E[F̃kX kX T

k F̃T
k ]δk,s.

Then, we only need to prove that ∀k, s ≥ 0,

E[W̃kW̃T
s ] :=

(
Q11

k,s Q12
k,s

Q12T
k,s Q22

k,s

)
=

(
Qk Q12

k

Q12T
k Q22

k

)
δk,s.

• Since {wk}k≥0 is a zero-mean white sequence with covariances Qk,∀k ≥ 0, it

is immediately clear that Q11
k,s = E[wkw

T
s ] = Qkδk,s.

• Using the Kronecker product properties, Assumption (A3) and since E[Fkxk]

= F kxk, it is easy to obtain that Q12
k,s = E[wkΦ

T
s ] = Q12

k δk,s.
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• From the conditional expectation properties we have E
[
Fkxkx

T
k F T

k

]
= F kDk

F
T

k + E[F̃kDkF̃
T
k ], then, using again Assumption (A3) and the Kronecker

product properties, we get Q22
k,s = E[ΦT

k ΦT
s ] = Q22

k δk,s. ¤

Proposition 6.3.2 The noise {Vk}k≥1 is a zero-mean white process with covari-

ance matrix, E[VkV
T
k ] = RV

k , given by

RV
k =

(
Rk R12

k

R12T
k R22

k

)
+ E[H̃kX kX T

k H̃T
k ],

where

R12
k =

(
(Hkxk)

T ⊗Rk

)
(I + K) + R

(3)
k ,

R22
k = (I + K)

((
HkDkH

T

k + E[H̃kDkH̃
T
k ]

)
⊗Rk

)
(I + K) + R

(4)
k

+ (I + K)
(
(Hkxk)⊗R

(3)
k

)
+

(
(Hkxk)⊗R

(3)
k

)T

(I + K)

and

E[H̃kX kX T

k H̃T
k ] =




E[H̃kxkx
T
k H̃T

k ] E[H̃kxkvec(Dk)
T H̃

[2]T
k ]

E[H̃
[2]
k vec(Dk)x

T
k H̃T

k ] E[H̃
[2]
k vec(Dk)vec(Dk)

T H̃
[2]T
k ]


 ,

whose blocks are calculated as in (6.3).

Proof. This proof is analogous to that of Proposition 6.3.1 and, hence, it is

omitted.

¤

Remark 2. From the augmented state equation (6.4) and Proposition 6.3.1, the

following recursive equation for the matrix Dk = E[XkX
T
k ] holds:

Dk = Fk−1Dk−1FT

k−1 + E[F̃k−1Dk−1F̃T
k−1] + QW

k−1, k ≥ 1; D0 = P ∗
0 , (6.6)

where

E[F̃kDkF̃T
k ] =




E[F̃kDkF̃
T
k ] E[F̃kD

(3)
k F̃

[2]T
k ]

E[F̃
[2]
k D

(3)T
k F̃ T

k ] E[F̃
[2]
k D

(4)
k F̃

[2]T
k ]


 ,

with D
(3)
k = E[xkx

[2]T
k ] and D

(4)
k = E[x

[2]
k x

[2]T
k ] the blocks of the matrix Dk.
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6.4 LS quadratic estimator

To address the LS linear estimation problem of Xk based on Y1, . . . , Yk, an inno-

vation approach is used. Since the measurements are non-orthogonal vectors, this

procedure consists of transforming the measurement process {Yk; k ≥ 1} into an

equivalent one of orthogonal vectors {νk; k ≥ 1} called innovations. The innova-

tion at time k is defined as νk = Yk − Ŷk/k−1, where Ŷk/k−1 is the one-stage linear

predictor of Yk. Therefore, the LS linear filter of the augmented state, X̂k/k, can

be calculated as a linear combination of the innovations, as follows:

X̂k/k =
k∑

i=1

E[Xkν
T
i ]Π−1

i νi, k ≥ 1, (6.7)

where Πi = E[νiν
T
i ].

Next, a recursive algorithm for the optimal LS linear filter of the augmented

state is derived.

Theorem 6.4.1 The linear filter of the augmented state is recursively obtained by

the following relation

X̂k/k = X̂k/k−1 + GkΠ
−1
k νk, k ≥ 1; X̂0/0 = 0, (6.8)

where the state predictor, X̂k/k−1, is calculated by

X̂k/k−1 = Fk−1X̂k−1/k−1, k ≥ 1. (6.9)

The innovation, νk, satisfies

νk = Yk −HkX̂k/k−1, k ≥ 2; ν1 = Y1, (6.10)

The matrix, Gk = E[Xkν
T
k ] is determined by

Gk = Σk/k−1HT

k , k ≥ 1, (6.11)
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where the prediction error covariance matrix, Σk/k−1, is obtained by

Σk/k−1 = Fk−1Σk−1/k−1FT

k−1 + E[F̃k−1Dk−1F̃T
k−1] + QW

k−1, k ≥ 1, (6.12)

with Dk given in (6.6) and Σk/k, the filtering error covariance matrix, calculated

by

Σk/k = Σk/k−1 − GkΠ
−1
k GT

k , k ≥ 1; Σ0/0 = P ∗
0 . (6.13)

The innovation covariance matrix, Πk, satisfies

Πk = E[H̃kDkH̃T
k ] +HkGk + RV

k , k ≥ 1, (6.14)

where

E[H̃kDkH̃T
k ] =




E[H̃kDkH̃
T
k ] E[H̃kD

(3)
k H̃

[2]T
k ]

E[H̃
[2]
k D

(3)T
k H̃T

k ] E[H̃
[2]
k D

(4)
k H̃

[2]T
k ]


 ,

whose blocks are calculated as in (6.3).

Proof. From expression (6.7), relation (6.8) for the state filter, X̂k/k, in terms of

the one-stage predictor, X̂k/k−1, is directly derived.

Expression (6.9) for the state predictor is immediately obtained from (6.4) and

the Orthogonal Projection Lemma (OPL).

Obtaining an explicit formula for the innovation, νk = Yk− Ŷk/k−1, is equivalent

to calculate Ŷk/k−1, which, from (6.5) and using again the OPL, can be expressed

as

Ŷk/k−1 = HkX̂k/k−1, k ≥ 1. (6.15)

Next, identity (6.11) for Gk is deduced. Applying the OPL, it is clear that

E[XkX̂
T
k/k−1] = E[X̂k/k−1X̂

T
k/k−1] = Dk − Σk/k−1, k ≥ 1,

therefore,

Gk = E[Xkν
T
k ] = E[Xk(Xk − X̂k/k−1)

T ]HT
k = Σk/k−1HT

k , k ≥ 1.
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Since Σk/k−1 = E[XkX
T
k ] − E[X̂k/k−1X̂

T
k/k−1], using (6.6) for E[XkX

T
k ] and

(6.9) for X̂k/k−1, expression (6.12) is easily deduced, taking into account that

E[X̂k−1/k−1X̂
T
k−1/k−1] = Dk−1 − Σk−1/k−1, k ≥ 1.

Similarly, Σk/k = E[XkX
T
k ] − E[X̂k/kX̂

T
k/k] and, therefore, by using (6.8) for

X̂k/k, formula (6.13) is obtained.

Finally, we prove expression (6.14) for the innovation covariance matrix Πk =

E[YkY
T
k ]− E[Ŷk/k−1Ŷ

T
k/k−1]. On the one hand, from (6.5),we have

E[YkY
T
k ] = E[HkXkX

T
k HT

k ] + RV
k

where, by considering the conditional expectation properties, it is satisfied that

E[HkXkX
T
k HT

k ] = HkDkHT

k + E[H̃kDkH̃T
k ]. On the other hand, using (6.15) and

the OPL, it is deduced that E[Ŷk/k−1Ŷ
T
k/k−1] = Hk(Dk − Σk/k−1)HT

k , k ≥ 1. Then,

the innovation covariance (6.14) is proved. ¤

Remark 3. As mentioned in Section 6.3, the LS quadratic filter of the original

state xk, is obtained by adding the mean xk to the vector constituted by the first

n entries of X̂k/k. Specifically, the quadratic filter, x̂q
k/k, is given by

x̂q
k/k = ΥX̂k/k + xk, k ≥ 1,

where Υ is the operator which extracts the first n entries of X̂k/k.

6.5 Application in multi-sensor systems with fa-

ding measurements

In this section, the optimal LS quadratic filter obtained in Section 6.4 is applied

to linear discrete-time stochastic systems with fading measurements coming from

multiple sensors. The phenomenon of measurement fading occurs in a random way

and it is described by different sequences of scalar random variables with a certain

probability distribution over the interval [0, 1]. Moreover, a simulation example is

given to illustrate the effectiveness of the proposed recursive filtering algorithm.
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6.5.1 Multi-sensor model and filtering algorithm

Consider the state equation given in (6.1) satisfying assumptions (A1)-(A3), and r

sensors whose measurements of the state are described by the following observation

equations:

yi
k = θi

kC
i
kxk + vi

k, k ≥ 1, i = 1, 2, . . . , r, (6.16)

where yi
k ∈ R, is the measured output provided by sensor i at the sampling time

k, {Ci
k}k≥1, are random parameter matrices with compatible dimensions, {vi

k}k≥1

are the measurement noises, and {θi
k}k≥1 are scalar random variables which model

the fading phenomenon of the i-th sensor. In order to apply Theorem 6.4.1, the

following assumptions of the noise processes and the random parameter matrices

are considered:

(i) For i = 1, 2, . . . , r, the sensor additive noises, {vi
k}k≥1, are zero-mean white

processes. By denoting vk = (v1
k, . . . , v

r
k)

T , it is supposed that its moments,

up to the fourth-order one, are known.

(ii) For i = 1, 2, . . . , r, {Ci
k}k≥1 are white sequences of random parameter matri-

ces. By denoting Ck =
[
C1T

k | · · · | CrT
k

]T

, its mean, Ck, is known and the

covariances and cross-covariances between the entries of the matrices Ck and

C
[2]
k , are also assumed to be known.

(iii) For i = 1, 2, . . . , r, the noises {θi
k}k≥1 are white sequences of scalar random

variables over the interval [0, 1]. By denoting θk = (θ1
k, . . . , θ

r
k)

T , it is sup-

posed that its moments up to the fourth one are known. We will denote

Kθ
k = Cov[θk], K

θ(3)
k = Cov[θk, θ

[2]
k ], K

θ(4)
k = Cov[θ

[2]
k ].

(iv) x0, {Fk}k≥0, {θk}k≥1, {Ck}k≥1, {wk}k≥0 and {vk}k≥1 are mutually indepen-

dent.
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The observation model (6.16) can be rewritten in a compact form as follows:

yk = ΘkCkxk + vk, k ≥ 1,

where yk = (y1
k, . . . , y

r
k)

T is the measurement vector and Θk = Diag(θ1
k, . . . , θr

k).

Accordingly, this observation model is a particular case of (6.2) with Hk = ΘkCk,

and clearly verifies the assumptions given in Section 6.2.

The corresponding augmented measurement equation is given by

Yk = TkCkXk + Vk, k ≥ 1,

where Tk = Diag(Θk, Θ
[2]
k ), Ck = Diag(Ck, C

[2]
k ) and Vk = (TkC̃k + T̃kCk)X k + Ṽk.

This measurement equation is a particular case of (6.5) with Hk = TkCk, and it is

immediately clear that H̃k = TkC̃k + T̃kCk.

By applying the Hadamard product properties, for any deterministic matrix

A ∈ R(n+n2)×(n+n2), it is easy to see that

E[(TkC̃k + T̃kCk)A(TkC̃k + T̃kCk)
T ]

= E[Jθ
kJθT

k ] ◦ E[C̃kAC̃T
k ] + Cov[Jθ

k ] ◦ (CkACT

k ), k ≥ 1,

where Jθ
k =

(
θT

k , θ
[2]T
k

)T

and Cov[Jθ
k ] =

(
Kθ

k K
θ(3)
k

K
θ(3)T
k K

θ(4)
k

)
.

Hence, taking into account this property and Proposition 6.3.2, we obtain that

the covariance matrix of the noise process {Vk}k≥1 is given by

RV
k =

(
Rk R12

k

R12T
k R22

k

)
+ E[Jθ

kJθT
k ] ◦ E[C̃kX kX T

k C̃T
k ] + Cov[Jθ

k ] ◦ (CkX kX T

k C
T

k )

where

R12
k =

(
(ΘkCkxk)

T ⊗Rk

)
(I + K) + R

(3)
k ,

R22
k = (I + K)

((
E[θkθ

T
k ] ◦

(
CkDkC

T

k + E[C̃kDkC̃
T
k ]

))
⊗Rk

)
(I + K) + R

(4)
k

+ (I + K)
(
(ΘkCkxk)⊗R

(3)
k

)
+

(
(ΘkCkxk)⊗R

(3)
k

)T

(I + K).
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Thus, starting from the linear filter X̂k/k given by (6.8) with X̂k/k−1 the state

predictor determined by (6.9), a recursive optimal linear filtering algorithm is ob-

tained by calculating the innovation νk, its covariance matrix Πk, and the matrix

Gk as follows:

νk = Yk − T kCkX̂k/k−1, k ≥ 2; ν1 = Y1,

Gk = Σk/k−1CT

k T k, k ≥ 1,

Πk = E[Jθ
kJθT

k ] ◦ E[C̃kDkC̃T
k ] + Cov[Jθ

k ] ◦ (CkDkCT

k ) + T kCkGk + RV
k , k ≥ 1,

with Dk and Σk/k−1 given in (6.6) and (6.12), respectively, and

E[C̃kDkC̃T
k ] =




E[C̃kDkC̃
T
k ] E[C̃kD

(3)
k C̃

[2]T
k ]

E[C̃
[2]
k D

(3)T
k C̃T

k ] E[C̃
[2]
k D

(4)
k C̃

[2]T
k ]


 ,

whose blocks are calculated as in (6.3).

As mentioned in the previous sections, the quadratic filter of the original state

is formed by the first n entries of X̂k/k plus the mean xk.

6.5.2 Numerical simulation example

Consider the following uncertain discrete-time system with fading measurements

coming from two sensors:

xk = (0.95 + 0.1εk−1)xk−1 + wk−1, k ≥ 1,

yi
k = θi

kC
i
kxk + vi

k, k ≥ 1, i = 1, 2,

where {εk}k≥0 is a zero-mean Gaussian white process with unit variance. {θi
k}k≥1,

i = 1, 2, are independent sequences of discrete-time random variables with the

following probability distributions over the interval [0, 1]:

• In the first sensor, {θ1
k}k≥1 is a sequence of independent and identically dis-

tributed (i.i.d.) Bernoulli variables with P [θ1
k = 1] = p, ∀k ≥ 1.
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• In the second sensor, {θ2
k}k≥1 is a sequence of i.i.d. random variables with

P [θ2
k = 0] = 0.2, P [θ2

k = 0.5] = 0.6, P [θ2
k = 1] = 0.2, ∀k ≥ 1.

The matrices Ci
k, i = 1, 2, are defined as C1

k = 0.5 + 0.4ζ1
k and C2

k = 0.6 + 0.4ζ2
k ,

where {ζ i
k}k≥1, i = 1, 2, are independent zero-mean Gaussian white processes with

unit variance. The initial state x0 is a zero-mean Gaussian variable with P0 = 1.

The noise {wk}k≥0 is a zero-mean Gaussian white process with variance Qk = 0.1,

for all k, and {vi
k}k≥1, i = 1, 2, are independent zero-mean white processes with

the following probability distributions:

P [v1
k = −8] =

1

8
, P [v1

k =
8

7
] =

7

8
, ∀k ≥ 1,

P [v2
k = 1] =

15

18
, P [v2

k = −3] =
2

18
, P [v2

k = −9] =
1

18
, ∀k ≥ 1.

To analyze the performance of the proposed quadratic estimator, we ran a

program in MATLAB, in which one hundred iterations of the linear filtering al-

gorithm ([21]) and the proposed quadratic filtering algorithm have been carried

out, considering different values of p. Linear and quadratic filters of the state are

calculated, as well as the corresponding error variances, which provide a measure

of the estimation accuracy.

Firstly, for p = 0.9, the performance of the linear and quadratic filtering esti-

mators has been compared on the basis of both the estimates obtained from the

corresponding simulated observations of the state, and the filtering error variances.

The results are displayed in Figure 6.1. From Figure 6.1a, it is deduced that the

quadratic filter follows the state evolution better than the linear one, fact which

is confirmed in Figure 6.1b, where it is observed that the error variances of the

quadratic filter are significantly less than those of the linear filter and, consequently,

the quadratic filter outperforms the linear one.

Next, taking into account that the filtering error variances have insignificant

variation from a certain iteration onwards, Figure 6.2 shows the linear and quadratic
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Figure 6.1: (a) Simulated state and linear and quadratic filtering estimates.
(b) Linear and quadratic filtering error variances.

filtering error variances at a fixed iteration (namely, k = 100), when the probability

p that the state xk is present in the measurements of the first sensor is varied from

0.1 to 0.9. From this figure it is gathered that the filtering error variances become

smaller, and hence better estimations are obtained, as p increases. Also, for all the

different values of p, the quadratic filtering error variances decrease more quickly

than those of the linear filter and their values are smaller, thus confirming again

that the quadratic filtering estimators outperform the linear ones.

Finally, a comparative analysis is presented between the proposed filter and

other quadratic filters in the existing literature; specifically, the proposed filter is

compared with the quadratic filter for systems with non-random parameter matri-

ces ([1]) and the quadratic filter for multi-sensor systems with uncertain observa-

tions ([9]). For this purpose, the filtering mean-square error (MSE) at each time

instant k is calculated from one thousand independent simulations of the men-

tioned algorithms considering the probability p = 0.9. The MSE criterion consists
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Figure 6.2: Linear and quadratic filtering error variances versus p.

in computing MSEk =
1

1000

1000∑
s=1

(x
(s)
k − x̂

(s)
k/k)

2, where {x(s)
k }1≤k≤100 denote the s-th

set of artificially simulated data and x̂
(s)
k/k is the filter at the sampling time k in

the s-th simulation run. The results of this comparison are displayed in Figure

6.3, which shows that, for all k, the proposed filter performs better than the other

two. The worst estimations are provided by the filtering algorithm in [1] since

randomness is ignored in both state transition and measurement matrices. The

filter in [9] performs better, since it takes into account the multiplicative noise in

the measurement equation, but it is also improved significantly by the quadratic

filter proposed in this paper.
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Figure 6.3: Comparison of MSEk for three filters.

6.6 Conclusions

The LS quadratic estimation problem has been investigated for discrete-time linear

stochastic systems with random parameter matrices. The main contributions are

summarized as follows:

• Using the technique proposed by [1], consisting of augmenting the state and

observation vectors with their second-order Kronecker powers, an augmented

system with random parameter matrices has been constructed. A recursive

algorithm for the linear LS filter of the augmented state based on the aug-

mented measurements has been obtained by an innovation approach, and the

quadratic LS filter of the original state is derived from the linear LS filter of

the augmented state.

• The proposed quadratic filter has been applied to systems with fading mea-

surements coming from multiple sensors, when the fading measurement phe-
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nomenon in each sensor is described by different sequences of scalar random

variables with arbitrary discrete probability distribution over the interval

[0,1]. This kind of multi-sensor systems is found in various real-world situa-

tions, such as transmission models involving partial loss of measurements.

• The usefulness of the proposed results has been illustrated by a numerical

simulation example. Error variance comparison has shown that the quadratic

filters outperform the lineal ones. Furthermore, a comparative analysis of the

proposed filter and other quadratic filters in the existing literature has been

carried out. This example has also highlighted the applicability of the pro-

posed algorithm in multi-sensor systems with state-dependent multiplicative

noise and fading measurements, which can be addressed by the system model

with random parameter matrices considered in this paper.

Since the noise independence assumption can be restrictive in many real-world

problems, a challenging further research topic is to consider systems featuring auto-

correlation and cross-correlation between the process noise and the measurement

noises. Also, an interesting future research topic is to generalize the current results

by considering correlation between random state transition and measurement ma-

trices, which would cover systems with randomly delayed measurements or multiple

packet dropouts as a particular case.
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based estimation from multisensor delayed measurements with random pa-

rameter matrices and correlated noises, Math. Probl. Eng., vol. 2014, Article

ID 958474, 13 pages.
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Results and conclusions

This PhD thesis considers the problem of LS estimation for discrete-time linear

stochastic systems that contain noisy measurements derived from multiple sensors

and are affected by random parameters modeling different kinds of failure in the

measurement data. As detailed in the methodology section, information fusion

methods are used to process the measurements from the different sensors, and

recursive estimation algorithms are derived under the LS optimality criterion by

means of an innovation approach. Specifically, centralized and distributed fusion

methods are used to obtain linear and quadratic filtering and fixed-point estima-

tors, together with the corresponding error covariance matrices which measure the

accuracy of these estimators. The main results and conclusions are detailed below.

For sensor network systems with missing measurements, we first assume that

at each sensor, the possibility of missing measurements (that is, of observations

containing no information about the state but only noise) is modeled by binary

variables taking the values one or zero (Bernoulli variables), depending on whether

the state is present or missing in the corresponding observation. Such variables are

assumed to be correlated at instants that differ by m units of time. For this kind of

systems, using both centralized and distributed fusion methods to process the mea-

surement data from the different sensors, recursive linear filtering and fixed-point

smoothing algorithms are derived in Chapter 1 by an innovation approach, and

quadratic filtering and fixed-point smoothing estimators are obtained in Chapter

2 using the centralized fusion method.
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In Chapter 1, two numerical simulation examples are given to illustrate the ap-

plicability of the results obtained to estimate a scalar state process generated by an

AR model and a two-dimensional state, respectively, from uncertain observations

derived from two sensors featuring correlation in the uncertainty. These results

confirm that centralized and distributed fusion estimators have approximately the

same accuracy. For different uncertainty probabilities and different values of m,

both examples confirm the greater effectiveness of the fixed-point smoothing esti-

mators in contrast to the filtering ones and thus we conclude that more accurate

estimations are obtained when the values of m are lower. The theoretical results

obtained in Chapter 2 are also illustrated by a numerical simulation example. In

this case, a scalar state process is generated by a first-order autoregressive model

with missing measurements derived from two sensors. Linear and quadratic error

variances are obtained for different uncertainty probabilities and values of m. On

the one hand, these results confirm that the quadratic estimators are more accu-

rate than the linear ones and, on the other hand, that the fixed-point smoothing

estimators are more effective than the filtering ones. This example also shows

that, as the probability of uncertainty decreases, the performance of the filters

improves; finally, it shows that, as the values of m decline, the estimators become

more accurate, since the state is missing in fewer consecutive observations.

It should be noted that the basic model in which the Bernoulli variables des-

cribing the uncertainty in the observations at each sensor are independent is a

particular case of the proposed model, in which the assumption is made that the

correlation of the Bernoulli variables is zero for any two sampling times. The model

with correlation at consecutive sampling times is represented by this study when

m = 1. However, these two assumptions may be unrealistic in many practical si-

tuations, and then the estimation algorithms must be modified to incorporate the

effects of different types of correlation. Specifically, the form of correlation consid-

ered in the first two chapters is appropriate for modeling situations in which the
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state cannot be missing in m + 1 consecutive observations, as occurs, for instance,

in sensor networks where sensor failures may happen and a failed sensor is not

substituted immediately, but after m sampling times. It should also be noted that

the multi-sensor system model considered in these chapters covers those situations

in which the additive observation noises and the Bernoulli variables involved are

independent from one sensor to another. This independence assumption simplifies

the mathematical expressions considerably and is valid in a wide variety of appli-

cations, for example in wireless sensor networks which are characterized by sensor

independence, limited storage capacity, lack of physical infrastructure and limited

energy. Nevertheless, if this assumption were omitted, a similar technique to that

used in these chapters would allow us to extend the current study to a more general

case of this type, with no difficulty except the presence of greater complexity in

the mathematical expressions.

Continuing sensor network systems with missing measurements, in the next

stage of this study, we consider, at each sensor, the possibility of missing measure-

ments containing only partial information about the state or even only noise. This

situation is modeled by a sequence of independent random variables taking discrete

values over the interval [0, 1]. For this kind of multi-sensor systems, we also as-

sume that the system noises are autocorrelated and cross-correlated. Under these

assumptions and by an innovation approach, recursive algorithms for the optimal

linear filter are derived in Chapter 3 using the two basic estimation fusion struc-

tures; specifically, the centralized and the distributed fusion estimation algorithms.

The accuracy of these estimators is measured according to their error covariance

matrices. This approach allows us to compare the performance of these algorithms

in a numerical simulation example that illustrates the feasibility of the proposed

filtering algorithms and enables their comparison with other filters that have been

proposed. Thus, the applicability of the results obtained in Chapter 3 is illustrated

by a numerical simulation example, in which a scalar state process generated by a

PhD Thesis Irene Garćıa Garrido
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first-order autoregressive model is estimated from missing measurements derived

from two sensors with autocorrelated and cross-correlated noises and, in accor-

dance with the proposed observation model, two different independent sequences

of random variables with a certain probability distribution over the interval [0, 1]

are used to model the missing phenomenon. The results obtained confirm, as in

Chapter 1, that centralized and distributed fusion estimators have approximately

the same error variances, which are slightly higher in the case of the distributed

estimator; however, this deficit is compensated by the lighter computational bur-

den and the reduced communication demand for the sensor networks. Moreover,

compared with other estimation methods, the proposed algorithms provide better

estimations in the mean square error sense.

With regard to the results obtained in this chapter, it should be stressed that

the multi-sensor system models considered cover situations in which the sensor

and process noises are one-step autocorrelated and two-step cross-correlated, and

also those in which there are one-step cross-correlations between different sensor

noises. This correlation assumption is valid in a broad spectrum of applications,

for example, in target tracking systems with process and measurement noises that

are dependent on the system state, or situations in which a target is observed by

multiple sensors all operating in the same noisy environment. It should also be

noted that the results obtained can be readily extended to more general systems

involving finite-step autocorrelated and cross-correlated noises, the only difficulty

being the greater complexity in the mathematical expressions. Finally, we observe

that, unlike most previous results with correlated noises, in which suboptimal

Kalman-type estimators are proposed, this chapter describes how optimal LS linear

estimators are obtained.

In view of the results described in the first three chapters of this thesis, and

to model a more general kind of failure in the measurements, our research in the

remaining chapters is focused on sensor network systems with random parameter
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matrices. For this class of systems, we first consider independent random state

transition matrices and one-step correlated and cross-correlated random parame-

ter matrices in the observation equation. The process and measurement noises are

assumed to be one-step autocorrelated and two-step cross-correlated. Under these

assumptions and taking into account certain properties of the state and noise pro-

cesses derived from them, an optimal LS linear recursive filtering algorithm with a

simple computational procedure is derived in Chapter 4, under an innovation ap-

proach. The results obtained are then applied to multi-sensor systems with missing

and randomly delayed measurements. Specifically, as particular cases of the model

analyzed in this chapter, the following systems are considered:

− Multi-sensor systems with missing measurements, with correlated and cross-

correlated noises, when the missing measurement phenomenon in each sensor

is described by different sequences of scalar random variables, with an arbi-

trary discrete probability distribution over the interval [0, 1] correlated at

consecutive sampling times.

− Multi-sensor systems with randomly delayed measurements, correlated at

consecutive sampling times, with correlated and cross-correlated noises.

For both particular cases, the feasibility of the resulting filtering algorithm is ana-

lyzed, using the filtering error variances, in two numerical simulation examples,

in which the state process generated by a first-order autoregressive model with

state-dependent multiplicative noise is estimated from the missing measurements

and the delayed measurements, respectively, derived from two sensors with different

characteristics of random failures and noise correlation. In addition, using the mean

square error criterion, a comparative analysis is performed of other estimation

algorithms that have been reported. These comparisons show that the filtering

algorithm obtained in this chapter performs better than those proposed elsewhere.

It should be noted that the multi-sensor systems with missing measurements

that are studied in this chapter, as a particular case of the proposed model, are
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in fact present in various real-world problems, such as transmission models with

stand-by sensors or situations involving a partial loss of measurements. Additional-

ly, the multi-sensor systems with randomly delayed measurements, which are also

treated as a special case of the systems considered in Chapter 4, cover the situa-

tion in which two successive observations cannot be delayed. This kind of delay is

usual in situations such as network congestion, random failures in the transmission

mechanism or data inaccessibility at certain times. Moreover, unlike most exist-

ing results with random parameter matrices, in which the estimation problem is

addressed via a system transformation, the proposed optimal LS linear recursive

filtering algorithm is obtained without requiring any transformation of the original

system into one with deterministic parameter matrices.

Continuing our study of sensor network systems with random parameter ma-

trices, the estimation problem is addressed in Chapter 5 for systems with both

independent random parameter state transition and measurement matrices, under

the same correlation assumptions about the noises as are considered in Chapter 4.

Specifically, for this kind of systems, we investigate the distributed fusion filter-

ing problem, doing so using an innovation approach to design recursive algorithms

for the local LS linear filters of the system state, based on the measured output

data derived from each sensor. To measure the accuracy of the local estimators,

recursive formulas for the local filtering error covariance matrices are established.

After obtaining the local filters, a distributed fusion filter is designed as the matrix-

weighted sum of the local estimators that minimize the mean-squared estimation

error. The distributed fusion filtering error covariance matrices is also derived.

The usefulness of the results obtained is illustrated by analysis of a numerical

simulation example, consisting of a discrete-time linear networked system with

state-dependent multiplicative noise, together with scalar measurements from four

sensors with different uncertainty characteristics. Error variance comparison shows

that both the centralized and the distributed filters outperform the local ones; this
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example also shows that the slight superiority of the centralized filter over the

distributed filter is counteracted by the greater robustness and enhanced fault-

tolerance abilities of the latter.

We emphasize that the network system with random parameter matrices that is

considered in this chapter provides a unified framework to address certain network-

induced phenomena, such as multiplicative noise uncertainties, missing measure-

ments or sensor gain degradation, and hence the distributed fusion filter obtained

has wide applicability. Moreover, the computational procedure of the recursive al-

gorithms for the local LS linear filtering estimators is very simple and suitable for

online applications. Also, unlike alternative approaches, the proposed distributed

fusion filter does not require the error cross-covariance matrices between any two

local filters, but only their cross-covariance matrices.

Finally, our most recent contribution to the estimation problem in sensor net-

work systems with random parameter matrices is the study of the LS quadratic

estimation problem in systems with independent random parameter matrices and

noises. In this study, presented in Chapter 6, the quadratic filter is also ap-

plied to systems with missing measurements derived from multiple sensors, when

the missing measurement phenomenon in each sensor is described by different se-

quences of scalar random variables with arbitrary discrete probability distribution

over the interval [0, 1]. The usefulness of the obtained results is illustrated by a

numerical simulation example in which a two-sensor system with state-dependent

multiplicative noise and missing measurements is considered. As in Chapter 2,

error variance comparison shows that the quadratic filters outperform the linear

ones. A comparative analysis also highlights the superiority of this quadratic filter

over others that have been reported in the literature.

The system model with random parameter matrices considered in this chapter

covers different uncertainties that commonly arise in sensor network systems, as

multiplicative noises or as missing measurements. Consequently, the LS quadratic
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filter presented here is superior to the LS linear estimators derived previously for

systems with such uncertainties. Moreover, since to date the LS quadratic esti-

mation problem with random parameter matrices has only been investigated for

systems with scalar measurements and random observation matrices, our contri-

bution provides an important generalization, as random state-transition matrices

and multidimensional observations are commonly found in many real-world situa-

tions. In particular, the estimators obtained can be applied to multi-sensor systems

with different uncertainty characteristics in the sensors, such as those with state-

dependent multiplicative noise and missing measurements that are considered in

the simulation example.
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En esta tesis doctoral, se estudian problemas de estimación mı́nimo cuadrática

en sistemas estocásticos lineales en tiempo discreto con observaciones ruidosas

procedentes de múltiples sensores, afectadas por parámetros aleatorios que mode-

lizan diferentes tipos de fallo en las medidas. Según se detalla en la sección de

metodoloǵıa, utilizando un tratamiento por innovaciones y métodos de fusión para

combinar la información procedente de los diferentes sensores, se obtienen algorit-

mos recursivos de estimación mı́nimo cuadrática. Espećıficamente, empleando los

métodos de fusión centralizado y distribuido, se establecen algoritmos recursivos

para los estimadores de filtrado y suavizamiento punto fijo, tanto lineales como

cuadráticos, junto con sus matrices de covarianzas del error que miden la bon-

dad de dichos estimadores. A continuación se detallan los principales resultados y

conclusiones de este estudio.

En una primera etapa, se consideran sistemas de redes de sensores con obser-

vaciones inciertas, (es decir, observaciones que pueden no contener información

sobre el estado y ser sólo ruido), situación que se modeliza mediante variables bi-

narias con valores uno o cero (variables de Bernoulli), dependiendo de si el estado

está presente o ausente en la observación correspondiente. Suponiendo que dichas

variables están correladas en instantes que se diferencian m unidades de tiempo,

en el Caṕıtulo 1, mediante los métodos de fusión centralizado y distribuido, se

establecen algoritmos recursivos de filtrado y suavizamiento punto fijo lineales y,

en el Caṕıtulo 2, se obtienen estimadores cuadráticos utilizando el método de
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fusión centralizado.

Los resultados obtenidos en el Caṕıtulo 1 se ilustran mediante dos ejemplos de

simulación numérica en los que se consideran sistemas lineales cuyo estado escalar

y bidimensional, respectivamente, es estimado a partir de observaciones inciertas

procedentes de dos sensores, bajo la hipótesis de que las variables que modelizan la

incertidumbre son correladas en instantes que se diferencian m unidades de tiempo.

En ambos ejemplos se observa que la precisión de los estimadores centralizado y

distribuido es muy similar. También, al comparar las varianzas de los errores de

estimación para diferentes probabilidades de incertidumbre y distintos valores de

m, se confirma que los suavizadores punto fijo son más precisos que los filtros y,

que conforme disminuyen los valores de m, el comportamiento de los estimadores

mejora. Los resultados teóricos del Caṕıtulo 2, se ilustran mediante la estimación

del estado de un modelo autorregresivo de primer orden, a partir de observaciones

inciertas procedentes de dos sensores. Comparando las varianzas de los errores de

estimación lineales y cuadráticos para diferentes probabilidades de incertidumbre

y valores de m, se concluye, que los estimadores cuadráticos son bastante más

precisos que los lineales. También, como en el caso de los estimadores lineales,

para el problema de estimación cuadrática, se tiene que los suavizadores punto fijo

son más efectivos que los filtros y que a medida que disminuyen la probabilidad de

incertidumbre y/o los valores de m, se produce una mejora en la precisión de los

estimadores.

Es importante señalar que el modelo básico en que la incertidumbre de las ob-

servaciones está descrita por variables de Bernoulli independientes, es un caso par-

ticular del modelo propuesto, suponiendo que la correlación de las variables en dos

instantes cualesquiera de tiempo es cero. También el caso en el que hay correlación

en instantes consecutivos queda cubierto por el estudio realizado, considerando

m = 1. Sin embargo, en diversas situaciones prácticas estas dos hipótesis pueden

no ser realistas, y los algoritmos de estimación deben modificarse para incorporar
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el efecto de los diferentes tipos de correlación exigidos. Concretamente, la hipótesis

de correlación considerada en los dos primeros caṕıtulos es apropiada para describir

situaciones en las que el estado no puede faltar en m+1 observaciones consecutivas,

como por ejemplo, en redes de sensores en las que éstos pueden fallar y no son susti-

tuidos inmediatamente, sino m instantes después de haber fallado. También hay

que señalar que el modelo con múltiples sensores considerado en estos caṕıtulos,

es adecuado en situaciones en las que los ruidos aditivos de las observaciones y

las variables de Bernoulli que modelizan la incertidumbre son independientes de

un sensor a otro. Esta hipótesis de independencia simplifica considerablemente las

expresiones matemáticas y es válida en una amplia gama de aplicaciones, por ejem-

plo, en redes de sensores inalámbricas caracterizadas por sensores independientes,

capacidad de almacenamiento restringida, falta de infraestructuras f́ısicas y enerǵıa

limitada. No obstante, si se debilita dicha hipótesis, un procedimiento similar al

empleado en estos caṕıtulos permitirá ampliar este estudio a modelos más gene-

rales sin más dificultad que la mayor complejidad de las expresiones matemáticas

involucradas en los desarrollos.

En una segunda etapa, continuando con sistemas de redes de sensores con fallos

en las medidas, se considera que las observaciones de los distintos sensores pueden

contener sólo información parcial del estado. Este tipo de fallo está descrito por

una sucesión de variables discretas independientes con distribución en el intervalo

[0,1] y, se supone además que los ruidos aditivos del sistema son autocorrelados

y con correlación cruzada. Bajo estas hipótesis, en el Caṕıtulo 3, utilizando los

métodos de fusión centralizado y distribuido, se establecen algoritmos recursivos de

filtrado lineal. Para medir la bondad de los estimadores proporcionados por cada

algoritmo se calculan las matrices de covarianzas del error de estimación. Con la

finalidad de ilustrar los resultados obtenidos, se presenta un ejemplo de simulación

numérica en el que se considera un proceso estado escalar generado por un modelo

autorregresivo de primer orden, y se estima a partir de medidas procedentes de
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dos sensores con información parcial sobre el estado y correlación de los ruidos

como se ha indicado antes. Al igual que en el Caṕıtulo 1, se observa que las

varianzas de los errores de estimación centralizados y distribuidos son similares,

siendo ligeramente peor el estimador distribuido, lo cual se compensa por el menor

coste computacional. Finalmente, los algoritmos propuestos proporcionan mejores

estimaciones, en el sentido de menor error cuadrático medio, al compararlos con

otros algoritmos de estimación existentes en la literatura.

En relación con los resultados obtenidos en este caṕıtulo, hay que destacar que

los sistemas considerados abarcan tanto situaciones en las que los ruidos del estado

y de las observaciones son autocorrelados en instantes consecutivos, como aquellas

en las que existe correlación cruzada de los ruidos en instantes que se diferencian

dos unidades de tiempo. Además, los ruidos de las observaciones procedentes de

los distintos sensores pueden tener correlación cruzada en instantes consecutivos.

Estas hipótesis de correlación son apropiadas en una gran variedad de aplicaciones,

por ejemplo, en sistemas de localización de objetivos con ruidos dependientes del

estado, o en situaciones en las cuales el objetivo es observado mediante múltiples

sensores y todos actúan en el mismo entorno ruidoso. Es importante mencionar

que este estudio se puede generalizar a sistemas que incluyan ruidos autocorrelados

y con correlación cruzada en un número finito de instantes de tiempo, sin más di-

ficultad que la mayor complejidad de las expresiones matemáticas. Por otra parte,

los estimadores de mı́nimos cuadrados obtenidos en este caṕıtulo son óptimos, a

diferencia de otros resultados previos con ruidos correlados en los cuales sólo se

proponen estimadores subóptimos de tipo Kalman.

A la vista de los resultados obtenidos en los tres primeros caṕıtulos, y con

objeto de modelizar otros tipos más generales de fallos en las medidas, los caṕıtulos

restantes se centran en sistemas de redes de sensores con matrices aleatorias. En

este tipo de sistemas, el estudio se inicia considerando matrices de transición del

estado independientes y matrices de las observaciones correladas y con correlación
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cruzada en instantes consecutivos. En relación con los ruidos que intervienen en

el sistema, éstos se suponen autocorrelados y con correlación cruzada. Bajo estas

hipótesis, en el Caṕıtulo 4, mediante un tratamiento por innovaciones, se obtiene

un algoritmo recursivo para el filtro lineal óptimo de mı́nimos cuadrados. Los

resultados establecidos en este caṕıtulo se aplican a los siguientes sistemas:

− Sistemas con fallos en las medidas procedentes de múltiples sensores con

ruidos correlados, cuando los fallos están descritos por diferentes sucesiones

de variables aleatorias escalares con distribución discreta en el intervalo [0, 1],

correladas en instantes consecutivos.

− Sistemas con observaciones retrasadas procedentes de múltiples sensores,

cuando los retrasos están modelizados por variables de Bernoulli correladas

en instantes consecutivos y los ruidos aditivos son correlados.

Para estos dos casos particulares, la bondad de los estimadores es analizada medi-

ante las varianzas del error de filtrado, en sendos ejemplos de simulación numérica,

en los cuales se estima el proceso estado de un modelo autorregresivo de primer

orden con ruido multiplicativo, a partir de observaciones inciertas y retrasadas,

respectivamente, procedentes de dos sensores con diferentes caracteŕısticas de los

fallos aleatorios y distintas hipótesis de correlación de los ruidos. Utilizando el

criterio de menor error cuadrático medio, se observa un mejor comportamiento

del algoritmo de filtrado propuesto, con respecto a otros algoritmos de estimación

publicados anteriormente.

Los sistemas con fallos en las medidas procedentes de múltiples sensores con-

siderados en este caṕıtulo, como caso particular del modelo propuesto, aparecen

en diversas situaciones reales, como por ejemplo, en sistemas de transmisión con

sensores stand-by o situaciones que conllevan una pérdida parcial de las observa-

ciones. También los sistemas con retraso aleatorio en las observaciones procedentes

de múltiples sensores, tratados como caso especial del modelo propuesto, son ade-

cuados en situaciones en las que dos observaciones consecutivas no pueden estar
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retrasadas. Este tipo de retraso es adecuado en situaciones como, por ejemplo,

congestión en las redes de comunicación o inaccesibilidad de datos durante ciertos

instantes de tiempo por cualquier tipo de fallo en el mecanismo de transmisión. Por

otra parte, hay que destacar que el algoritmo recursivo de filtrado lineal propuesto

se obtiene sin necesidad de transformar el sistema original en uno con matrices

determińısticas, mientras que en la mayoŕıa de resultados existentes con matrices

aleatorias es necesaria dicha transformación del sistema para abordar el problema

de estimación.

Continuando con el estudio de sistemas de redes de sensores con matrices aleato-

rias, en el Caṕıtulo 5 se aborda el problema de filtrado fusión distribuido en sis-

temas con matrices aleatorias independientes, tanto en la ecuación del estado como

en las de las observaciones, considerando las mismas hipótesis de correlación sobre

los ruidos que en el Caṕıtulo 4. Con este propósito, a partir de las observaciones

procedentes de cada sensor, se desarrollan algoritmos recursivos para la obtención

de los filtros lineales locales del estado, junto con sus matrices de covarianzas del

error que miden la precisión de dichos estimadores. Una vez que los estimadores

de filtrado local están disponibles, se obtiene el filtro fusión óptimo como combi-

nación lineal de dichos estimadores, ponderada por matrices, verificando el criterio

de mı́nima varianza, junto con sus matrices de covarianzas del error.

Para ilustrar la aplicación de los resultados obtenidos, se presenta un ejemplo

de simulación numérica, en el que se considera un sistema lineal en tiempo discreto

con ruido multiplicativo en la ecuación del estado, y medidas escalares procedentes

de cuatro sensores con diversas caracteŕısticas de incertidumbre. Realizando com-

paraciones entre las varianzas de los errores de estimación, se concluye que tanto

el filtro centralizado como el distribuido son más precisos que los locales, con una

ligera inferioridad del filtro distribuido con respecto al centralizado, la cual se

compensa por una mayor robustez y mejor tolerancia a los fallos del filtro fusión

distribuido.
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Es importante resaltar que el modelo de redes de sensores con matrices aleato-

rias, considerado en este caṕıtulo, es adecuado para tratar de manera unificada

algunos fenómenos inducidos por las redes, tales como, incertidumbres descritas

por ruidos multiplicativos o medidas faltantes y, por tanto, es válido en diversas

aplicaciones prácticas. Por otra parte, el procedimiento computacional de los al-

goritmos recursivos de los filtros lineales locales es muy sencillo y adecuado para

realizar aplicaciones on line. Para la obtención del filtro fusión distribuido, se

utilizan las matrices de covarianza cruzadas entre dos cualesquiera filtros locales

sin necesidad de calcular las matrices de covarianzas cruzadas de los errores de

estimación, como se describe en otros trabajos.

Por último, nuestra contribución más reciente al problema de estimación en

sistemas de redes de sensores con matrices aleatorias es el estudio del problema de

estimación cuadrática en sistemas con matrices aleatorias y ruidos independientes.

En el Caṕıtulo 6 se aplica el filtro cuadrático obtenido a sistemas con fallos aleato-

rios en las medidas, descritos mediante diferentes sucesiones de variables aleatorias

escalares con cualquier distribución discreta en el intervalo [0, 1]. La aplicabili-

dad de los resultados obtenidos se ilustra mediante un ejemplo numérico en el

que se considera un sistema con ruido multiplicativo en la ecuación del estado y

observaciones inciertas procedentes de dos sensores. Al igual que en el Caṕıtulo

2, realizando comparaciones entre las varianzas del error de estimación, se com-

prueba que los filtros cuadráticos son mejores que los lineales. El filtro cuadrático

presentado en este caṕıtulo muestra una mayor precisión con respecto a otros filtros

cuadráticos existentes en la literatura.

El modelo con matrices aleatorias considerado abarca diversos tipos de incer-

tidumbre que suelen ocurrir en sistemas de redes de sensores, tales como, obser-

vaciones inciertas o ruidos multiplicativos. Por tanto, el filtro cuadrático obtenido

mejora a los lineales obtenidos para otros sistemas con dichas caracteŕısticas de

incertidumbre. Teniendo en cuenta que hasta ahora el problema de estimación

PhD Thesis Irene Garćıa Garrido
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cuadrática con matrices aleatorias sólo ha sido abordado para sistemas con me-

didas escalares y matrices aleatorias en la ecuación de observación, este estudio

proporciona una generalización importante debido a que matrices de transición del

estado aleatorias y observaciones multidimensionales se encuentran frecuentemente

en muchas situaciones reales.
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