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Abstract 

Generally speaking, conventional magnetorheological fluids are colloidal 

suspensions of ferromagnetic particles in a non-magnetic continuous 

medium. Under the application of an external magnetic field, magnetic 

particles align in its direction forming aggregates. The mechanical 

properties of magnetorheological fluids under the presence of an external 

magnetic field significantly change. In particular, if the particle 

concentration and field strength is sufficiently large, it becomes necessary 

to overcome a stress threshold, the so-called yield stress for the onset of 

flow. Furthermore, under the presence of external fields 

magnetorheological fluids become highly viscoelastic. The mechanical 

properties of these materials can be easily and rapidly controlled by the 

external magnetic field. 

Due to their controllable mechanical properties, magnetorheological fluids 

are currently used in several commercial applications concerning vibration 

control, shock absorbers, precision polishing and even biomedical 

applications. Currently, for their proper performance, commercial devices 

require higher yield stresses in their operating modes and the use of highly 

concentrated magnetorheological fluids. 

A careful study of the rheological behavior of these systems under 

compression can be of great utility since it has been shown that the yield 

stresses under compression are higher than the yield stresses under shear 

flow mode at the same concentration. An extensive investigation of the 

magnetorheological properties under compression has been carried out in 

this dissertation from an experimental point of view, using theoretical 



 

 

developments and performing particle-level simulations. Experimental 

results showed that both the normal force and the compressive stress 

increase during the compression test. The dependence with the magnetic 

field strength was quadratic. The normal force and the yield compressive 

stress depend linearly on the particle volume fraction in the dilute case 

and quadratic in the concentrated regime. 

Due to fact that the magnetic particles employed in the formulation of 

commercial magnetorheological fluids are typically polydisperse in size, 

the investigation of the effect of polydispersity in the MR performance is 

also of interest. Experiments and particle-level simulations were done on 

particle size distributions having the same average diameters but different 

polydispersity indexes. The results showed that although the microscopic 

structure of magnetorheological fluids profoundly changes with the 

polydispersity, overall, the yield stress does not significantly changes in 

polydisperse systems. 



 

 

Resumen 
Los fluidos magneto-reológicos se pueden considerar generalmente como 

suspensiones de partículas ferromagnéticas en un medio continuo no 

magnético. Cuando se aplica un campo magnético externo, las partículas 

se alinean en la dirección del campo formando agregados. Las 

propiedades mecánicas de los fluidos magneto-reológicos en presencia de 

un campo magnético externo cambian significativamente. 

Particularmente, si la concentración de partículas y el campo magnético 

son suficientemente grandes, es necesario superar una barrera de esfuerzo, 

llamada esfuerzo umbral, para que el sistema fluya. Además, los fluidos 

magneto-reológicos se vuelven altamente viscoelásticos. Las propiedades 

mecánicas de estos materiales son fácil y rápidamente controlables 

mediante el campo magnético externo. 

Debido al control de sus propiedades mecánicas, los fluidos magneto-

reológicos están siendo usados en varias aplicaciones comerciales que 

implican el control de vibraciones, la absorción de impactos, el pulido de 

precisión e incluso aplicaciones biomédicas. Actualmente, para un 

funcionamiento adecuado de estos dispositivos, se requiere un esfuerzo 

umbral alto en el modo operativo y el uso de fluidos magneto-reológicos 

altamente concentrados. 

El estudio exhaustivo del comportamiento de estos sistemas en 

compresión puede ser de gran utilidad ya que se ha demostrado que los 

esfuerzos umbrales en compresión son mayores que los esfuerzos 

umbrales en cizalla para la misma concentración. Una extensa 

investigación de las propiedades magneto-reológicas en compresión ha 

sido realizada en esta tesis desde el punto de vista experimental, usando 



 

 

desarrollos teóricos y realizando simulaciones a nivel de partícula. Los 

resultados experimentales mostraron que la fuerza normal y el esfuerzo de 

compresión se incrementan mientras el sistema se comprime. Se encontró 

una dependencia cuadrática con el campo magnético aplicado y una 

dependencia lineal con la concentración para el régimen diluido y 

cuadrática para el régimen concentrado. 

Debido al hecho de que las partículas magnéticas empleadas en las 

formulaciones comerciales de fluidos magneto-reológicos son altamente 

polidispersas en tamaño, la investigación del efecto de la polidispersidad 

en la respuesta magneto-reológica es de gran interés. Se realizaron 

experimentos y simulaciones a nivel de partícula para distintas 

distribuciones de tamaños con el mismo diámetro medio pero diferentes 

índices de polidispersidad. Los resultados indican que, aunque la 

estructura microscópica de los fluidos magneto-reológicos cambia 

profundamente con la polidispersidad, el esfuerzo umbral no cambia 

significativamente en el caso de sistemas polidispersos. 



 

 

Introduction 
Magnetorheology deals with the flow and deformation of magnetic field-

responsive materials. It is a branch in the Colloidal Science covering 

many disciplines such as Physics, Chemistry, Material Science and also 

Biology. The whole knowledge of this matter needs deep background in 

all these disciplines and the use of different approaches in order to obtain 

a thorough understanding of that matter. 

The pioneering contribution in magnetorheology can be considered the 

publication entitled “The magnetic fluid clutch” by Rabinow (1948) at the 

U.S. National Bureau of Standards. In his paper, the fundamentals of the 

Magnetorheology were presented under the perspective of its industrial 

applications.  

The main characteristic of magnetorheology is the so-called 

magnetorheological (MR) effect: the property of the MR fluids to change 

their mechanical properties from a liquid-like to a solid-like material by 

simply applying an external magnetic field. Thus, under the application of 

an external magnetic field, it is necessary to overcome a minimum stress 

threshold to flow. This minimum stress is called the yield stress. 

The tunable mechanical properties of MR fluids make them suitable in 

many industrial applications. Undoubtedly, the most developed 

application of MR fluids concerns the active vibration control and the 

transmission of torque [Dyke et al. (1996), Li and Du (2003), Kavlicoglu 

et al. (2008), Zhu et al. (2012)] but also, other industries use MR fluids 

for different purposes: thermal energy transfer [Heine et al. (2006), 

Reinecke et al. (2008)], precision polishing [Kordonski et al. (2002), Jha 
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and Jain (2004), Kordonski et al. (2006), Das et al. (2007)], chemical 

sensing applications [Read and Martin (2010)] and biomedical 

applications [Liu et al. (2001)]. 

Generally speaking, conventional MR fluids can be described, from the 

microscopic point of view, as a dispersion of solid soft-ferromagnetic 

particles in a Newtonian non-magnetic liquid medium. The MR effect can 

be explained by the formation of chain-like aggregates aligned in the 

magnetic field direction when the external magnetic field is applied. 

Magnetic particles magnetize and behave as dipolar moments leading to 

the formation of gap-spanning elongated structures. The application of a 

mechanical stress to this structure initially deforms the chains within a 

solid regime, and eventually breaks the structure if the stress is 

sufficiently large behaving now as a liquid. A small coercivity/remnant 

magnetization and a large saturation magnetization is typically required 

for the dispersed particles in a MR fluid. 

MR fluids are a kind of magnetic-active fluids [de Vicente et al. (2011)]. 

The latter are generally classified in terms of the particle size as: MR 

fluids (from 0.2 to 10 ݉ߤ of diameter) and ferrofluids (from ૜ to 15 ݊݉ 

of diameter) [Rosensweig (1985)]. Typically, in MR fluids, the magnetic 

interaction predominates, the Brownian motion can be considered 

negligible and particles are typically magnetic multi-domains. However, 

in ferrofluids, the Brownian motion is not negligible and the particles are 

typically magnetic single-domains. The mechanical properties of a 

ferrofluid can be described as Newtonian whatever the field. Another 

difference in the properties of MR fluids and ferrofluids underlies in the 

saturation magnetization. While in a MR fluid, particles typically have a 

large saturation magnetization, in a ferrofluid, the saturation 

magnetization is small. 



 

 

 

21 Introduction 

In MR fluids, other classification can be usually done in terms of the 

nature of the solid phase. Conventional MR fluids (CMRFs) are typically 

composed of solid ferromagnetic particles in a non-magnetic fluid. 

However, another formulation for MR fluids can be used. It is possible to 

obtain a MR fluid with a solid non-magnetic phase dispersed into a 

magnetic fluid (i.e. a ferrofluid). These MR fluids are called inverse 

ferrofluids or magnetic holes. Thus, the magnetic properties of an inverse 

ferrofluid come the magnetic properties of the liquid phase, the ferrofluid, 

and due to the small saturation magnetization of ferrofluids, inverse 

ferrofluids are not suitable for commercial applications. However, inverse 

ferrofluids (IFFs) are more suitable as model MR fluids because it is 

easier to control the size and shape of the particles. 

Commonly, particles used in CMRFs are carbonyl iron powders because 

of their large saturation magnetization (about 1500 ݇ܣ/݉). Carbonyl iron 

is obtained from the thermal decomposition of iron pentacarbonyl. The 

synthesis of carbonyl iron provides highly polydisperse particles 

 For this reason, the study of the polydispersity effects in .(1.6~ܫܦܲ)

magnetorheology is one of the main aims in this thesis. 

Commercial applications of MR fluids require high yield stress in their 

operating modes. Although the yield stress under compression is higher 

than in other kinds of flows, relatively scarce attention has been done in 

literature for the rheological properties of MR fluids under compressive 

flows. A study of the behavior of MR fluids under compression (squeeze) 

flow is another aim of this thesis. 

MR fluids have an electric counterpart, electrorheological (ER) fluids. ER 

fluids are typically composed of solid particles dispersed in a liquid phase 

with two different dielectric permittivities or conductivities. Most of the 

results of this thesis can be easily extrapolated to ER fluids. 
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Interactions in magnetorheology 

The mechanical properties of MR fluids are governed by a wide range of 

particle mediated interactions: particle-particle, particle-fluid and particle-

wall. The main interactions to which the particles are subjected are the 

interparticle magnetic interactions and the particle-fluid hydrodynamic 

interactions. However, Brownian motion and other forces such as body 

forces (i.e. gravity) must be considered for a whole understanding of the 

system. 

Interparticle magnetic interactions 

Magnetic interactions are obviously dependent on the electromagnetic 

field acting in the system and the electromagnetic characteristics of the 

materials (i.e. constitutive equations). The system is governed by the 

Maxwell equations in matter [Jackson (1999)]: 

ە
ۖ
۔

ۖ
ۓ ׏ ൉ ሬሬԦܦ ൌ ௖ߩ

׏ ൉ ሬԦܤ ൌ 0
׏ ൈ ሬԦܧ ൌ െ డ஻ሬԦ

డ௧

׏ ൈ ሬሬԦܪ ൌ Ԧܬ െ డ஽ሬሬԦ
డ௧

   (In1) 

where ܦሬሬԦ is the so-called electric displacement vector, ߩ௖ is the charge 

density, ܤሬԦ is the magnetic-flux density or magnetic induction, ܧሬԦ is the 

electric field, ܪሬሬԦ is the magnetic field, ܬԦ is the current density and ݐ is the 

time. 

Typically, in MR fluids subjected to the presence of an external magnetic 

field, the electric contribution in the electromagnetic field can be 

neglected as variations of the magnetic flux-density are slow and the 

charge density can be considered small. It is important to note that when 
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the external magnetic field is not applied, electric contributions could 

become important. Thus, the problem can be solved in the magnetostatics 

case: 

ቊ ׏ ൉ ሬԦܤ ൌ 0
׏ ൈ ሬሬԦܪ ൌ Ԧܬ

    (In2) 

The magnetic field, ܪሬሬԦ, is dependent on the magnetic flux density, ܤሬԦ , by a 

constitutive relationship: each material provides a different relationship 

between ܤሬԦ and ܪሬሬԦ, related to the average of the microscopic magnetic 

properties of the material. In matter, the atoms have electrons that, in the 

presence of magnetic fields, provide effective atomic currents and 

magnetic moments. If the density of magnetic moments in the material is 

 ሬሬԦ, also called the magnetization, the general relationship among theseܯ

three vectors is: 

ሬሬԦܪ ൌ ଵ
ఓబ

ሬԦܤ െ  ሬሬԦ            (In3)ܯ

Here,  ߤ଴ is the magnetic permeability of the vacuum that in SI units is 

଴ߤ ൌ ߨ4 ൈ 10ି଻ܰ/ܣଶ. 

For some materials, named linear materials, the relationship between ܪሬሬԦ 

and ܯሬሬԦ is given by a constitutive linear equation: ܯሬሬԦ ൌ  ሬሬԦ where ߯ is theܪ߯

magnetic susceptibility. Thus, the relationship of the magnetic induction 

and the magnetic field is: ܤሬԦ ൌ ଴ሺ1ߤ ൅ ߯ሻܪሬሬԦ ൌ  is the magnetic ߤ ,ሬሬԦ. Hereܪߤ

permeability of the material. In order to compare different materials, it is 

convenient to define a relative magnetic permeability, ߤ௥ as the ratio 

between the magnetic permeability of the material and the magnetic 

permeability of the vacuum: ߤ௥ ൌ ߤ ⁄଴ߤ ൌ 1 ൅ ߯. 

However, the linear relationship between the magnetic field and the 

magnetic induction does not hold for all materials. First, some materials 
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are not isotropic [e.g. ferrite crystals, Artman and Tannenwald (1955)] 

and second, the constitutive equation can be non linear [e.g. ferromagnetic 

materials Rosensweig (1985)]. Thus, in general, the constitutive 

relationship can be written as ܤሬԦ ൌ ࣆ ൉  is the magnetic ࣆ ሬሬԦ whereܪ

permeability tensor, generally dependent on the magnetic field, ࣆ ൌ

ሬሬԦ൯ܪ൫ࣆ ൌ ቀࡵ ൅  is ࣑ is the second-order identity tensor and ࡵ ሬሬԦ൯ቁ, whereܪ൫࣑

the magnetic susceptibility tensor. Moreover, under alternating magnetic 

fields, magnetic induction may be lagged, and a complex magnetic 

permeability can be defined [see section 9.2 in Getzlaff (2008)] to deal 

with magnetic constitutive equations for high-frequency fields. Magnetic 

permeability also depends on the temperature of the system and the 

history of the system (so-called hysteresis effects). 

Materials can be classified as a function of their magnetic properties. 

Linear materials are named diamagnetic materials if their magnetic 

susceptibility is negative, ߯ௗ௜௔௠ ൏ 0, and paramagnetic materials if their 

magnetic susceptibility is positive, ߯௣௔௥௔௠ ൐ 0. Typically, diamagnetic 

and paramagnetic materials have weak magnetic properties, |߯|~10ିହ 

[Jackson (1999)]. Magnetic properties of particles used in MR fluids are 

typically ferromagnetic. The atomistic explanation of magnetism was one 

of the goals of quantum mechanics [for a further explanation of the 

magnetic properties in matter see Getzlaff (2008)]. 

As an example, Figure In.1 shows a typical magnetization curve of a 

carbonyl iron powder (HS grade) provided by BASF-SE. Three different 

regions are typically identified in this curve, [see chapter 11 in Bozorth 

(1951)]: First, at low magnetic field strengths, magnetization linearly 

increases as a function of the magnetic field, ܯ~߯௜ܪ, where ߯௜ is the 

initial magnetic susceptibility (note that this is only possible in the case of 

soft ferromagnetic materials); second, at moderate magnetic fields, the 
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slope of the magnetization decreases in a transition region; and third, at 

high magnetic fields, the magnetization saturates and is independent on 

the magnetic field, ܯ~ܯௌ, where ܯௌ is the saturation magnetization. 

Semi-empirical equations are preferably used in order to fully describe the 

magnetic properties in ferromagnetic materials.  

0 2000 4000
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Figure In.1 Magnetization curve for carbonyl iron powder (HS grade). 
Solid line corresponds to the least-squared fit to the Fröhlich-Kennelly 
equation (Equation In4). 

Among them, Fröhlich-Kennelly equation [Jiles (1991)] is a empirical 

equation that is wide-used in magnetorheology [i.e. Ginder et al. (1996), 

Klingenberg et al. (2007a)]:  

ܯ ൌ ఞ೔ு

ଵାഖ೔ಹ
ಾೄ

           (In4) 

As shown in Figure In.1, Fröhlich-Kennelly model reasonably fits the 

experimental data at high and low magnetic fields, but at moderate 

magnetic fields, in the transition region, the model overestimates the 

experimental curve. For the case considered, initial magnetic 

susceptibility and saturation magnetization were found to be ߯௜ ൌ 39 േ 4 
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and ߤ଴ܯௌ ൌ 2.079 േ 0.03 ܶ. Other models can be employed in order to 

obtain the magnetization of a ferromagnetic material such as piecewise 

linear models [Lee et al. (1991)] or other relationships [see Equation 4 in 

Klingenberg et al. (2007a)]. 

At this stage it is worth to point out that the magnetization of a 

ferromagnetic material also depends on the size of the sample. An 

interesting work carried out by Billas et al. (1993) showed that if the 

sample is enough small (i.e. clusters of few atoms) the magnetic moment 

per atom, and, hence, the magnetization, was higher about a 20% than the 

magnetic moment in the bulk.  

Once known the particular relationship between the magnetic field and the 

magnetic induction, Equation In2 can be solved. In order to find the 

expression for the magnetic field, let us first consider the case of a single 

perfectly-spherical particle of diameter of ߪ, and a magnetic permeability, 

  immersed in a continuous medium of ,(௣௥ߤ relative permeability) ௣ߤ

magnetic permeability, ߤ௖ (relative permeability ߤ௖௥) and under the 

presence of an external magnetic field applied ܪሬሬԦ଴. Let us consider a 

coordinate system in the z-direction aligned with the magnetic field and 

centered in the particle. If there are no free currents, magnetostatic 

equations are: ׏ ൉ ሬԦܤ ൌ 0 and ׏ ൈ ሬሬԦܪ ൌ 0. As the magnetic field is 

irrotational, there exists a scalar potential, ΦM, so that the gradient of this 

potential is the magnetic field: ܪሬሬԦ ൌ െ׏ΦM. The magnetic field is now 

given by the expression: 

׏ ൉ ሺെ׏ߤΦMሻ ൌ 0     (In5) 

If the magnetic field is small (i.e. the magnetic properties can be assumed 

as linear), Equation In5 leads to the Laplace’s equation: ׏ଶΦM ൌ 0. 

Taking into account the boundary conditions for the magnetic field at the 
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interface, the magnetic field in spherical coordinates is given by Equation 

In6 [Jackson (1999)]: 

,ݎሬሬԦሺܪ ሻߠ ൌ ൞

ଷఓ೎ೝ
ఓ೛ೝାଶఓ೎ೝ

ሬሬԦ଴          rܪ ൑ σ/2

ሬሬԦ଴ܪ ൅ ఓ೛ೝିఓ೎ೝ

ఓ೛ೝାଶఓ೎ೝ
ቀ ஢

ଶ୰
ቁ

ଷ
଴൫2cosθrොܪ ൅ sinθθ෠൯   r ൐ 2/ߪ

    (In6) 

Here, ݎ and ߠ are the radial and polar coordinates respectively and rො  is the 

radial unit vector and  θ෠ is the polar unit vector. 

The main fact in Equation In6 is that the magnetic field inside is constant 

and it provides a uniform magnetization. Moreover, outside the particle 

the magnetic field is the superposition of the external magnetic field and 

the field created by a punctual dipole moment with: ሬ݉ሬԦ ൌ గ
ଶ

ఓ೛ೝିఓ೎ೝ

ఓ೛ೝାଶఓ೎ೝ
σଷܪሬሬԦ଴. 

This moment depends on the difference of the magnetic permeabilities of 

the particle and the continuous medium. The factor 
࢘ࢉࣆି࢘࢖ࣆ

࢘ࢉࣆା૛࢘࢖ࣆ
 is called the 

contrast factor and is frequently represented by the Greek letter ߚ. In the 

case of CMRFs, ߚ must be in the interval 0 ൏ ߚ ൏ 1; however, for 

IFFs, ߚ is negative and െ0.5 ൏ ߚ ൏ 0.  

The magnetization of the particle is ܯሬሬԦ ൌ  ሬሬԦ଴, and the field inside theܪߚ3

particle can be expressed as ܪሬሬԦ ൌ ሬሬԦ଴ܪ െ  ሬሬԦ/3. Here, the factor 1/3 is due toܯ

the spherical shape of the particle. Generally, if a particle has an arbitrary 

shape and it is uniformly magnetized, the field inside can be expressed as 

follows: ܪሬሬԦ ൌ ሬሬԦ଴ܪ െ ࡰࡺ ൉  is the so-called demagnetizing ࡰࡺ ሬሬԦ whereܯ

tensor. In the case of spherical particles, the tensor is diagonal and all its 

components are 1/3. In the case of other geometries, the demagnetizing 

tensor components can be dissimilar. For example, in the case of an 

infinite plate, the demagnetizing tensor is 1 in the direction normal to the 

plate and 0 in the other directions. In the case of an infinite cylinder the 
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demagnetizing tensor is 1/2 in the finite axes and 0 for the infinite axis. 

The calculation of the demagnetizing tensor for the general ellipsoid was 

given by Osborn (1945). 

It is worth to note that in the derivation of the magnetic field, linearity is 

assumed. However, it is possible to generalize Equation In6 for 

ferromagnetic materials. The process consists in: first, to obtain the 

magnetic permeability for the external magnetic field, ߤ௣௥ሺܪ଴ሻ. Then the 

internal magnetic field, ܪଵ, in the particle can be calculated by Equation 

In6. Once calculated the internal magnetic field, the magnetic 

permeability can be calculated from the magnetization curve for the new 

magnetic field, ߤ௣௥ሺܪଵሻ. This is a self-consistent process that is repeated 

up to the convergence of the internal magnetic field and the magnetic 

permeability. 

Unfortunately, in systems with two or more particles, the solution of the 

Maxwell equations complicates if compared to the case of an isolated 

particle, and the contribution of the magnetic field of the system is not the 

contribution of punctual dipoles placed at the center of any particle. 

However, let us first assume that other contributions can be neglected and 

the main contribution of the magnetic field due to the particles is dipolar 

in a first approximation (note that this is only possible in the dilute case). 

We will consider two identical particles, ݅ and ݆, of the same diameter, σ, 

and the same magnetic permeability, ߤ௣௥. The particle ݅ is situated at the 

center of the coordinate system and the other particle, ݆, is placed at a 

position, ݎԦ௜௝. An external magnetic field is applied in the z-direction, 

ሬሬԦ଴ܪ ൌ  is the unit vector in the z-direction in a Cartesian ݖ̂ where ,ݖ଴̂ܪ

coordinate system.  
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The dipolar energy of the particle ݅ due to the field exerted by the particle 

݆ at the position of the particle ݅, can be calculated as follows: 

 ௜ܷ௝
ௗ௜௣ ൌ െሬ݉ሬԦ௜ ൉ ሬԦ௝ܤ ൌ గ

ଵ଺
଴ܪଶߚ௖௥ߤ଴ߤߨ

ଶߪଷ ൬ ఙ
௥೔ೕ

൰
ଷ

ሺ1 െ 3 cosଶ   ௜௝ሻ  (In7)ߠ

Here, ߠ௜௝ stands for the angle between the line joining the two particles 

and the direction of the external magnetic field. The typical dipolar energy 

between two particles can be considered ܷௗ ൌ గ
ଵ଺

଴ܪଶߚ௖௥ߤ଴ߤ
ଶߪଷ. For the 

typical values in magnetorheology, ݉ߤ 1~ߪ, and ܪ଴~177 ݇ܣ/݉, the 

magnetic dipolar energy would be ܷௗ~24 ܸ݇݁. 

The force acting on the particle ݅ due to the magnetic dipolar field created 

by the particle ݆ is: ܨԦ ൌ ሺ׏ ሬ݉ሬԦ௜ ൉  ሬԦ௝ሻ. Taking into account that the dipolarܤ

moment of the particle ݅ is constant (does not depend on the position of 

the particle), in the point-dipole limit, after some algebra, the interacting 

force can be expressed as follows: 

Ԧ௜௝ܨ
ௗ௜௣

ൌ ଷ
ଵ଺

଴ܪଶߚ௖௥ߤ଴ߤߨ
ଶߪଶ ൬ ఙ

௥೔ೕ
൰

ସ
ൣ൫3 cosଶ ௜௝ߠ െ 1൯̂ݎ ൅ sin ௜௝ߠ2 θ෠൧  (In8) 

It is worth to note that the interaction between two particles can be 

attractive or repulsive depending on the angle ߠ௜௝. If  3 cosଶ ௜௝ߠ െ 1 ൐ 0 

the interaction will be attractive but if 3 cosଶ ௜௝ߠ െ 1 ൏ 0 the interaction 

becomes negative. The critical angle is: ߠ௖ ൌ arccos ඥ1 3⁄ ൎ 54.73°. 

Equation In8 provides a first a approximation of the magnetostatic force 

between particles. This force scale is of the order: 

଴ܨ ൌ ଷ
ଵ଺

଴ܪଶߚ௖௥ߤ଴ߤߨ
ଶߪଶ. For the typical values of particle diameters in 

magnetorheology, ݉ߤ 1~ߪ, and ܪ଴~177 ݇ܣ/݉, the magnetic force 

would be in the order of ܨ଴~12 ݊ܰ.  
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Equations In7 and In8 strongly depend on the particle size. These 

equations depend on the multiplication of the volumes of the particle ݅ and 

݆. If all the particles have not the same diameter, Equations In7 and In8 

will transform to Equations In9 and In10:  

௜ܷ௝
ௗ௜௣ ൌ గ

ଵ଺
଴ܪଶߚ௖௥ߤ଴ߤߨ

ଶ ఙ೔
యఙೕ

య

௥೔ೕయ ሺ1 െ 3 cosଶ   ௜௝ሻ        (In9)ߠ

Ԧ௜௝ܨ
ௗ௜௣

ൌ ଷ
ଵ଺

଴ܪଶߚ௖௥ߤ଴ߤߨ
ଶ ఙ೔

యఙೕ
య

௥೔ೕర ൣ൫3 cosଶ ௜௝ߠ െ 1൯̂ݎ ൅ sin ௜௝ߠ2 θ෠൧ (In10) 

As shown by Equations In9 and In10, the interaction between two 

particles in a polydisperse system will be different depending on the size 

of each particle. 

As mentioned above, the dipolar interaction between two particles truly 

exists in the case of low fields and dilute suspensions. For higher fields, 

the magnetization of the particle cannot be longer expressed as ܯሬሬԦ ൌ  ሬሬԦ଴ܪߚ3

because the magnetization vector varies with position inside a particle. 

One possibility to solve this problem is by using the so-called Mean 

Magnetization Approximation. In this approximation, the mean of the 

magnetization of the particles is used and calculated from the 

magnetization of the suspension: ܯۃ௣ۄ ൌ  ௦௨௦ is theܯ ௦௨௦/߶, whereܯ

magnetization of the total suspension and ߶ is the volume fraction of the 

magnetic particles in the suspension [Klingenberg et al. (2007a)]. The 

Mean Magnetization approximation is tested in this dissertation in 

Chapter 7. 

Local Field Theory is frequently used in order to calculate the magnetic 

field in a suspension of many particles. According to this, the moment of a 

particle ݅, is ሬ݉ሬԦ௜ ൌ Ԧ௜ሻݎሬሬԦ୪୭ୡሺܪσଷߚߨ 2⁄  where ܪሬሬԦ୪୭ୡሺݎԦ௜ሻ is the local field at the 

position of the particle ݅, ݎԦ௜. The local field is calculated by the summation 
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of the external magnetic field and the magnetic fields due to the magnetic 

dipoles of the other particles as shown in Equation In11: 

Ԧ௜ሻݎሬሬԦ୪୭ୡሺܪ ൌ ሬሬԦ଴ܪ ൅ ∑ ଷሺ௠ሬሬሬԦ೔൉௥̂ሻ௥̂ି௠ሬሬሬԦೕ

ସగ௥೔ೕయ௝ஷ௜   (In11) 

The local magnetic field depends on the magnetic moments of the 

particles, but also the magnetic moments of the particles depend on the 

local magnetic field. The solution of these equations must be done in a 

self-consistent process. First, the moments of the particles are calculated 

for the external magnetic field. Then, the local field is calculated using 

Equation In11. Later, the magnetic moments are calculated using the local 

field. The process must be repeated up to obtain a desired convergence. 

However, Equation In11 also uses the dipolar approximation and 

multipolar effects are neglected. Many-body interactions were calculated, 

for ER fluids, for example, in Clercx and Bossis (1993). 

 Hydrodynamic interactions 

Magnetostatic interactions are not the only interactions present in MR 

fluids. If the system is subjected to a flow, hydrodynamic interactions are 

important to describe the MR behavior of the system. Generally speaking, 

the mechanical behavior of MR fluids can be explained by the field-driven 

structuration of the suspension and the eventual breakage of the structures 

under the application of a strong enough flow field. 

Hydrodynamic interactions considered in this work only concern the drag 

force exerted by the flow onto the particles. First, we assume an isolated 

spherical particle of diameter ߪ in an incompressible Newtonian fluid with 

viscosity ߟ and density ߩ. The coordinate system is centered at the particle 

and the velocity of the fluid at large distances, ݎ ՜ ∞ is ݒԦ ൌ െݖ̂ݒ. In the 

“creeping” flow limit (i.e. for very small Reynolds numbers, ܴ݁ ൌ
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ߟ/ߩߪݒ ՜ 0) the velocity field is given by Equation In12 [Bird et al. 

(1987)]: 

Ԧݒ ൌ െݒ ൤1 െ ଷ
ସ

ఙ
௥

൅ ଵ
ଵ଺

ቀఙ
௥

ቁ
ଷ

൨ cos ߠ ݎ̂ ൅ ݒ ൤1 െ ଷ
଼

ఙ
௥

െ ଵ
ଷଶ

ቀఙ
௥

ቁ
ଷ

൨ sin ߠ  ෠  (In12)ߠ

In this case, the streamlines are shown in Figure In.2. The drag force 

exerted by the fluid is given by the integral of the total stress tensor at the 

surface of the particle, ܨԦ௛௬ௗ ൌ െ3ݒߟߪߨԦ [Bird et al. (1987)]. If the particle 

is also moving, the hydrodynamic force will be proportional to the relative 

velocity as follows: 

Ԧ௛௬ௗܨ ൌ െ3ߟߪߨ ቀௗ௥Ԧ೔
ௗ௧

െ ሬԦ௜ݑ
ஶቁ           (In13) 

where ݑሬԦ௜
ஶ is the velocity of the Newtonian fluid at the position of the 

particle ݅ not considering the particle distortion of the flow field. 

  

 

 

Figure In.2 Streamlines for a steady flow with a velocity ݒԦ ൌ െݖ̂ݒ at 
large distances from the sphere. 

Equation In13 gives the so-called Stokesian drag force. As shown in this 

equation, the hydrodynamic force depends on the fluid velocity and, thus, 

on the kind of flow field the particle is subjected.  
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Let us consider now one of the simplest problems in fluid mechanics. The 

system consists in two parallel plates separated by a gap, ݄, and a 

Newtonian fluid of viscosity ߟ confined within them. The upper plate is 

moving in the direction x as shown in Figure In.3 with a velocity ݒԦ ൌ  .ොݔݒ

The solution of the equation of motions leads to a velocity field given by: 

Ԧݒ ൌ ሶߛ ො , whereݔݖሶߛ  is defined as the shear rate, that, in this case is 

ሶߛ ൌ  .݄/ݒ

Figure In.3. Schematics of the steady shear flow between parallel-plates 
and fluid velocity profile. 

Therefore, the drag force on a particle situated in a position ݖ௜ is: ܨԦ௛௬ௗ ൌ

െ3ߟߪߨ ቀௗ௥Ԧ೔
ௗ௧

െ  ොቁ. The typical hydrodynamic force scale can beݔ௜ݖሶߛ

considered as:  ܨ௛௬ௗ ൌ ሶߛߟଶߪߨ3  [Klingenberg et al. (2007a)]. 

The hydrodynamic force depends on the shear rate applied to the system. 

It is possible to define a dimensionless number as the ratio between the 

typical hydrodynamic force and the typical magnetostatic force. This 

dimensionless number is called the Mason number, ݊ܯ, and is expressed 

as follows: 

 ሬሬԦ࢜

ࢎ
ොࢠ

ෝ࢞
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݊ܯ  ൌ ி೓೤೏

ிబ
ൌ ଼ఎఊሶ

ఓబఓ೎ೝఉమுబ
మ        (In14) 

The Mason number is a widely-used dimensionless number in 

magnetorheology [e.g. de Vicente et al. (2011), Ramos et al. (2011), Felt 

et al. (1996), Klingenberg et al. (2007a)]. It is important to note that the 

particular definitions for the “typical” hydrodynamic and magnetostatic 

forces scales may differ and thus, the definitions of the Mason number 

differ in the literature [Klingenberg et al. (2007a)]. Generally speaking, if 

the Mason number is small, the magnetostatic interaction predominates 

and the chain-like structures formed by the application of an external 

magnetic field remain. However, if the Mason number is large, 

hydrodynamic interaction predominates and the chain-like structures 

break. The transition between these two regimes occurs at a critical value 

of the Mason number, כ݊ܯ [de Vicente et al. (2011), Berli and de Vicente 

(2011)].  

Shear viscosity measurements are often expressed as a function of the 

Mason number instead of the shear rate since experimental tests at 

different magnetic field strengths reasonably collapse into a master curve 

if they are represented as a function of the Mason number [Klingenberg et 

al. (2007a)]. This fact is important for modeling the rheological behavior 

of MR fluids. It is also important to note that a more precise definition for 

the Mason number has been proposed in the literature for high magnetic 

fields [Klingenberg et al. (2007a)]. A more detailed discussion on this 

aspect will be the object of Chapter 7. 

Micromechanical models have been proposed in the literature in order to 

obtain the critical Mason number, כ݊ܯ [Martin and Anderson (1996), de 

Vicente et al. (2004), de Gans et al. (1999), Volkova et al. (2000)]. All 

these deterministic models (i.e. models neglecting Brownian motion) 
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predict a linear dependence on the particle volume fraction, ߶, in the 

dilute case. 

As mentioned above, Equation In13 is only valid in the case of an isolated 

particle. Fluid velocity and the drag force calculations in a suspension of 

many particles is not simple. The solution to the problem is given in the 

papers by Schmitz and Felderhof (1982) and Brady and Bossis (1988), for 

example. However, the calculation of the full hydrodynamic interaction in 

a general system of particles is only viable in simulations containing very 

few particles (approx. 100). A recent simulation study carried out by 

Lagger et al. (2015) demonstrated that the Stokesian drag force suffices to 

explain the rheological behavior of MR fluids if the hydrodynamic 

component of the stress is not predominant over the total stress. 

Brownian motion 

Brownian motion is usually associated to the random movement of 

microscopic particles within a continuous medium fluid. The discovery of 

the Brownian motion is attributed to Robert Brown in 1827 while he was 

observing the movement of pollen grains in water. 

Generally speaking, the explanation of the Brownian motion is given by 

the thermal fluctuation of atoms and molecules in the continuous medium 

and the collisions between these atoms and molecules and the colloidal 

particles. A continuous medium is assumed to be composed of an 

ensemble of atoms and molecules in thermal equilibrium (i.e. the 

temperature of the system is constant). This thermal equilibrium is 

translated, in the microscopic scale, to an average kinetic energy of the 

particles in the continuous medium. If a colloidal particle is immersed in 

the system, there will be collisions between the particles in the continuous 
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medium and the colloidal particle and the colloidal particle will move as a 

result of these collisions.  

In the case of non-interacting particles, Brownian motion can be described 

in terms of the Stokes-Einstein relation. However, in the case of 

interacting particles, the probability of a system of ܰ particles in 

equilibrium, at a temperature, ܶ, initially situated in one position 

configuration ߙ ൌ ሺݎԦଵ, ,Ԧଶݎ … Ԣߙ Ԧேሻ to move to another configurationݎ ൌ

ሺݎԦଵԢ, ,ԦଶԢݎ …  :ԦேԢሻ is given byݎ

ܲሺߙ ՜ ᇱሻߙ ൌ ଵ
௓

݁
ೆሺഀሻషೆሺഀᇲሻ

ೖಳ೅         (In15) 

where  ܷሺߙ) is the potential energy of the particles at the configuration ߙ, 

݇஻ is the Boltzmann constant and ܼ is the so-called partition function that 

is defined as the integral over all the possible configurations of the system 

of the Boltzmann factor: ܼ ൌ ௏
ஃయN ׬ ߙ݀ exp ቀെ ௎ሺఈሻ

௞ಳ்
ቁ where ܸ is the 

volume of the system and Λ is the thermal wavelength of a particle [de 

Gans et al. (2000)]. For this particular system, the partition function was 

calculated in de Gans et al. (2000). In the case of a pair-wise potential 

energy the Boltzmann factor can be factorized as the interaction of each 

pair of particles: 

exp ൬െ
ܷሺߙሻ
݇஻ܶ

൰ ൌ exp ቎෍ ቆെ
ܷଶሺݎ௜௝ሻ

݇஻ܶ
ቇ

௝ஷ௜

቏ ൌ ෑ exp ቆെ
ܷଶሺݎ௜௝ሻ

݇஻ܶ
ቇ

௝ஷ௜

 

where ܷଶሺݎ௜௝ሻ is the potential energy of a pair of particles. 

As the magnetostatic interaction is assumed to be the main potential 

interaction between particles, the Brownian motion depends on the 

strength of the magnetic dipolar potential energy related to the thermal 

energy. It is possible to define a dimensionless parameter, the so-called 
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Lambda ratio, ߣ, as the “typical” magnetic dipolar energy divided by the 

thermal energy: 

ߣ ൌ ௎೏
௞ಳ்

ൌ గఓబఓ೎ೝఉమுబ
మఙయ

ଵ଺௞ಳ்
      (In16) 

Equation In16 is widely-used in the description of field-active fluids [e.g. 

de Gans et al. (2000), de Vicente et al. (2011), Sherman et al. (2015)]. As 

shown in Equation In16, Brownian motion depends on the particle 

diameter to the cube. For typical values of particle diameters and magnetic 

fields, Lambda ratio is usually large enough to neglect the Brownian 

motion of the particles in the on-state. In the case of CMRFs and IFFs, 

ߣ ൐ 100. For these systems, the magnetostatic interaction is much higher 

than the thermal interaction and the Brownian motion is safely neglected, 

resulting in the formation of chain-like structures [de Vicente et al. 

(2011)].  

However, in the case of ferrofluids, the typical particle diameters are in 

the range of the nanometers and therefore the Lambda ratio is 0.03~ߣ. As 

a result, in ferrofluids, the Brownian motion predominates and there 

should not occur the formation of chain-like structures under field. In fact, 

the rheological behavior of ferrofluids is generally described as 

Newtonian fluids. 

It is important to note that in the case of polydisperse systems Brownian 

motion may be important for the smallest particles. For this reason in 

Chapter 8, Brownian motion will be also included in the particle-level 

simulations of MR fluids. 

The three dimensionless parameters defined so far; the Mason number, the 

Lambda ratio and the particle volume fraction are of major importance 
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because they govern the rheological behavior of MR fluids under fields 

[de Vicente et al. 2011)]. 

Particularly, Furst and Gast (2000) demonstrated that the equilibrium 

structure of latex-based MR fluids, under the application of an external 

magnetic field and in the quiescent state, only depends on ߣ and ߶. The 

aggregation process occurs in two steps. Firstly, the aggregation starts 

with the formation of chains in a very rapid process. Here, the average 

length of the aggregates increases as a power law following the 

Smoluchowski equation. Once formed the single-particle-width chains, 

they aggregate forming more complex clusters. These processes were 

experimentally observed using optical tweezers and microscopic 

observations [Furst and Gast (2000) and Cutillas et al. (1998)]. 

Gravity, sedimentation and other interactions 

Other forces could be important to describe the performance of MR fluids. 

For instance, body forces, such as gravity, must be considered in some 

cases for a whole description of these fluids. 

Usually, dispersed particles have a large density and the density mismatch 

between the particles and the carrier liquid can be important. Considering 

an spherical particle of density, ߩ௣, immersed in a carried liquid of density 

 the total body force due to the gravity exerted in the particle is the ,ߩ

balance of the weight of the particle and the weight of the fluid displaced 

by the particle, ܨԦ஻ . This force can be expressed as: 

Ԧ஻ܨ ൌ గ
଺

௣ߩଷ൫ߪ െ ൯ߩ Ԧ݃   (In17) 

where ݃ ൌ   .ଶ is the acceleration of the gravityݏ/݉ 9.81
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Frequently, the body force due to gravity is neglected because in the on-

state (i.e. when the magnetic field is applied) the magnetostatic force is 

higher than the gravity force [Parthasarathy et al. (1996)]. Klingenberg et 

al. (2007b) proposed a dimensionless number taking into account the 

relationship between the typical gravity force in a particle and the 

interparticle magnetostatic dipolar force, ܩ: 

ܩ ൌ ଼ఙหఘ೛ିఘห௚
ଽఓబఓ೎ೝఉమுబ

మ   (In18) 

where | | refers the absolute value in order to take into account the 

magnitude of the forces but not the direction. 

Typical values in CMRFs give ܩ ൏ 10ିଷ. In the case of IFFs, this factor 

is in the order of: ܩ ؆ 1.2 ൉ 10ିଷ. Finally, the small particle size of 

ferrofluids results in a very small ܩ :ܩ ൏ 10ି଺. This means that in the on-

state, gravity forces are generally smaller than magnetostatic forces.   

The simulation work developed by Klingenberg and coworkers (2007b) 

demonstrated that although the value of the dimensionless number, ܩ, is 

generally less than unity, gravity forces could still be important and they 

proposed a critical ܩ-number, ܩ஼, depending on the structure of the chain: 

஼ܩ ൌ ଵ.ଶଽఙ
௛

 in the case of single chains and ܩ஼ ൌ ଶ.଺ଵఙ
௛

 in the case of 

double chains, where ݄ is the gap separation between the parallel plates. 

For values of ܩ higher than ܩ஼, gravity forces must be considered but for 

values of ܩ less than ܩ஼, the effects of the gravity forces can be safely 

neglected. It is important to note that the critical ܩ-number is inversely 

proportional to the gap between plates, so that for large gaps, the critical 

 number can approach to typical values in magnetorheology. For the-ܩ

gaps used in this dissertation, ܩ஼~10ିଶ, so the gravity forces for all the 

systems (CMRFs, IFFs and ferrofluids) can be safely neglected. 
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In the durability of MR devices, it is not only important to minimize the 

sedimentation when the system is being used but also when the system is 

in its off-state. In the literature, different MR formulations have been 

proposed in order to avoid particle settling and agglomeration. As 

mentioned above, diminishing the particle size can avoid sedimentation 

and agglomeration. However, Brownian forces could also increase and 

therefore there is a compromise in the particle size.  

Some of these formulations are related to modifications in the particle 

formulation as the addition of low-density shells covering the 

ferromagnetic core such as polymer coatings [Choi et al. (2006) and Wu 

et al. (2006)]. The use of magnetic fibers instead of spherical particles also 

avoids particle settling. Furthermore, the magnetic fibers exhibit a higher 

yield stress than spherical particles at the same concentration [Bell et al. 

(2008)]. This result was also reported in simulations [Kor and See (2010)] 

and is in agreement with results reported for ER fluids [Kanu and Shaw 

(1998), Otsubo (1999)]. Other approximations concern the modification of 

the carried medium using viscoplastic media such as greases [Rankin et al. 

(1999)], thixotropic networks [de Vicente et al. (2003), Chin et al. (2001)] 

or temperature sensitive materials [Shahrivar and de Vicente (2013)]. 

Recently, MR plastomers have been used in order to avoid particle 

sedimentation [An et al. (2010), Xu et al. (2014)]. In this dissertation, the 

formulation of the MR fluids was as simple as possible and contains the 

minimum number of ingredients. Including additives in the formulations 

could mask the relevant physical mechanisms under study.  

Other interactions can be involved in the rheological behavior of MR 

fluids. Klingenberg et al. (2010) developed an experimental and 

simulation study of the non-magnetic interparticle forces on MR fluids. In 

this study, the effect of van der Waals forces was investigated in 
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simulations obtaining that the shear stress slightly increases as the ratio 

between the van der Waals and magnetostatic forces increases. The off-

state stress also increases as the van der Waals forces increases. A recent 

simulation study developed by Fernández-Toledano et al. (2014) dealt 

with short-range repulsive and attractive forces by using R-shifted 

Lenard-Jones potentials or only short-range repulsive interactions. The 

addition of a short-range attractive interaction using R-shifted Lenard-

Jones potentials leads to a two step yielding behavior also found in 

experiments at high concentrations [Segovia-Gutiérrez et al. (2012)]. 

Rheology 

The term rheology proceeds from the Greek “rheo-” that means flow or 

stream. Rheology is, thus, the branch of the Science that studies the flow 

of the matter. It refers to the movement of the materials under a 

continuous medium approach.  

Conservation laws 

In differential form, mass and momentum conservation equations are 

given by [Bird et al. (1987)]: 

Continuity equation 

డఘ
డ௧

൅ ׏ ൉ ሺݒߩԦሻ ൌ 0   (In19) 

Equation of motion 

డሺఘ௩ሬԦሻ
డ௧

൅ ׏ ൉ ሺݒߩԦݒԦሻ ൌ ׏ ൉ મ ൅ ߩ Ԧ݃           (In20) 

Energy conservation law 

డሺఘ௎෡ሻ
డ௧

൅ ׏ ൉ ൫ߩ ෡ܷݒԦ൯ ൌ െ׏ ൉ qሬԦ ൅ મ:  Ԧ  (In21)ݒ׏



 

 

Introduction 42 

Equation In19 comes from the mass conservation and it can be simplified 

for incompressible materials to ׏ ൉ Ԧݒ ൌ 0. MR fluids can be safely 

considered as incompressible materials. 

Equation In20 comes from the momentum conservation. The term મ is the 

so-called total stress tensor. The total stress components, Π୧୨ refers to the 

force per unit area in the positive j-direction applied on a surface normal 

to the i-direction [Bird et al. (1987)] as shown in Figure In.4. 

It is important to note that in most cases the angular momentum 

conservation law leads to a symmetric total stress tensor. The total stress 

tensor can be divided in two parts as follows: 

 મ ൌ െ׏p ൅ ૌ     (In21) 

where ݌ is the thermodynamic/mean pressure and ૌ is called the extra or 

deviatoric stress tensor. 

 

 

 

 

 

 

 

Figure In.4. Scheme of the total tensor stress components 
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Equation In20 comes from the energy conservation where ෡ܷ is the 

internal energy per unit mass and qሬԦ is the heat flux. 

The solution of the system requires additional information since there are 

more unknown quantities than equations. This fact is expected since 

Equations In18-20 are valid for any continuum media. These additional 

equations are called constitutive equations and offer relationships between 

the stress tensor and the kinematics in the materials. The finding of the 

constitutive equations for the materials is a major issue in Rheology.  

Shear flow rheology 

The constitutive equation of Newtonian fluids is give by [Bird et al. 

(1987)]: 

࣎  ൌ ሶࢽߟ െ ቀଶ
ଷ

ߟ െ ቁߢ ׏ ൉  (In22)         ࡵԦݒ

where ࢽሶ  is the so-called shear rate tensor related to the field velocity: 

ሶࢽ ൌ Ԧݒ׏ ൅ ሺݒ׏Ԧሻ். Here, the symbol ܶ refers to the transpose of the tensor 

and ߢ is called the dilatational viscosity. For incompressible fluids 

Equation In22 reduced to: ࣎ ൌ ሶࢽߟ  since ׏ ൉ Ԧݒ ൌ 0. 

Obviously, the constitutive equation of MR fluids cannot be described as 

Newtonian under the presence of an external magnetic field. Fluids whose 

behavior is not described by Equation In22 are commonly called Non-

Newtonian fluids. Apart from memory effects, generally speaking, the 

properties of a Non-Newtonian fluid cannot be described with a constant 

viscosity but the viscosity depends on the shear rate:  ߟ ൌ  ሶሻ. Here theߛሺߟ

shear rate is defined in terms of the shear rate tensor: ߛሶ ൌ ටଵ
ଶ

ሶࢽ : ሶࢽ . If the 

viscosity decreases as the shear rate increases the fluid is called a shear-

thinning fluid. If the viscosity increases as the shear rate increases, the 
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fluid is called a shear-thickening fluid. If the viscosity diverges in the zero 

shear-rate limit, the fluid is considered as a plastic material with a yield 

stress. 

In order to obtain the constitutive equations of MR fluids some material 

functions related to specific kinematics must be defined. Here we only 

focus on shearing and squeeze flow fields. 

Particularly, we are going to consider the flow under steady shear, the 

shear-stress growth, the shear stress relaxation and under oscillatory shear 

(small-amplitude oscillatory shear, SAOS or large-amplitude oscillatory 

shear, LAOS). In all these cases the velocity of the system has the general 

expression: ݒԦ ൌ ሺߞሶሺݐሻݖ, 0, 0ሻ where ߞሶ is a shear rate function of time. 

Steady shear flow 

In the case of a steady shear flow, the shear rate function is:  ߞሶሺݐሻ ൌ  ሶ଴ߛ

where ߛሶ଴ is a constant shear rate. The three material functions defined for 

this kind of kinematics are: ߟሺߛሶሻ ൌ ߬௭௫ ⁄ሶ଴ߛ , ߰ଵሺߛሶሻ ൌ ሺ߬௫௫ െ ߬௭௭ሻ ⁄ሶ଴ଶߛ  

and ߰ଶሺߛሶሻ ൌ ൫߬௭௭ െ ߬௬௬൯ ⁄ሶ଴ଶߛ , where  ߟሺߛሶ ሻ is the viscosity, ߰ଵሺߛሶሻ is the 

primary normal stress coefficient and ߰ଶሺߛሶሻ is the second normal stress 

coefficient. For a Newtonian fluid the normal coefficients are 0, but for 

Non-Newtonian fluids, normal stress coefficients are not zero [e.g. 

Weissenberg effect, Weissenberg (1947)]. 

Stress growth 

For stress growth tests, a constant shear rate is suddenly applied at an 

instant, ݐ଴. In this case, the shear stress function is: ߞሶሺݐሻ ൌ ൜ ݐ 0 ൑ ଴ݐ
ݐ ሶ଴ߛ ൐ ଴ݐ

. The 

material functions are now, ߟାሺݐ, ሶሻߛ ൌ ߬௭௫ ⁄ሶ଴ߛ , 

߰ଵ
ାሺݐ, ሶሻߛ ൌ ሺ߬௫௫ െ ߬௭௭ሻ ⁄ሶ଴ଶߛ  and ߰ଶ

ାሺݐ, ሶሻߛ ൌ ൫߬௭௭ െ ߬௬௬൯ ⁄ሶ଴ଶߛ . It is 
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important to note, that the viscosity and the stress tensor is now not only a 

function of the shear rate but also of the time. 

Generally speaking, in MR fluids subjected to a stress growth test, the 

shear stress, ߬௭௫ starts to increase linearly in a elastic region. Later, the 

stress achieves a maximum and for large enough times, the stress becomes 

constant in a stationary plateau [see Figure 2 in de Vicente et al. (2011)]. 

So, it is possible to relate a constant shear stress associated to the shear 

rate as the shear stress plateau at large times. 

Stress relaxation 

In the case of stress relaxation tests, a constant shear rate is applied until a 

certain time when the shear rate becomes zero. The shear rate function is: 

ሻݐሶሺߞ ൌ ൜ߛሶ଴ ݐ ൑ ଴ݐ
ݐ  0 ൐ ଴ݐ

. The material functions are also dependent on the time: 

,ݐሺିߟ ሶሻߛ ൌ ߬௭௫ ⁄ሶ଴ߛ , ߰ଵ
ିሺݐ, ሶߛ ሻ ൌ ሺ߬௫௫ െ ߬௭௭ሻ ⁄ሶ଴ଶߛ  and ߰ଶ

ିሺݐ, ሶሻߛ ൌ

൫߬௭௭ െ ߬௬௬൯ ⁄ሶ଴ଶߛ . 

Creep 

In creep tests, a sudden constant shear stress is applied: ߬௭௫ሺݐሻ ൌ

൜0  ݐ ൑ ଴ݐ
߬଴ ݐ ൐ ଴ݐ

 . The main material function is called the compliance, ܬሺݐሻ, and 

it is defined as: ܬሺݐሻ ൌ  ሻ is the total strain as a functionݐሺߛ ሻ/߬଴ whereݐሺߛ

of the time. In MR fluids, creep tests start with a rapid increase in the 

compliance and then the compliance linearly increases as a function of the 

time, leading to a constant shear rate, as in the case of shear growth tests. 

Usually, creep tests are performed together with a recovery test. In a 

recent study, Wang et al. (2014) investigated the creep and recovery of 

MR fluids using an experimental and simulation approach. 
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Oscillatory shear 

In an oscillatory shear test, an oscillating strain is applied with a constant 

angular frequency, ߱, and a constant amplitude, ߛ଴: ߛሺݐሻ ൌ ଴ߛ sinሺ߱ݐሻ.  

If the strain amplitude is sufficiently small, the stress will generally follow 

a sinusoidal dependence but delayed by an angle, ߜ: ߬ሺ߱, ሻݐ ൌ

߬଴ sinሺ߱ݐ ൅  :ሻ. This sinusoidal form can be also expressed asߜ

߬ሺ߱, ሻݐ ൌ ߬଴ cos ߜ sinሺ߱ݐሻ ൅ ߬଴ sin ߜ cosሺ߱ݐሻ       (In23) 

It is important to note that the first term in Equation In23 is related to the 

shear strain and the last term is related to the shear rate. It is possible to 

define two magnitudes relating the stress to the shear strain and the shear 

rate, ܩᇱ ൌ ఛబ ୡ୭ୱ ఋ
ఊబ

 and ܩᇱᇱ ൌ ఛబ ୱ୧୬ ఋ
ఊబ

 . These constant are called the 

viscoelastic moduli: ܩԢ is the so-called storage modulus and ܩԢԢ is the so-

called loss modulus. 

From the definitions above, it is important to note that for a perfect elastic 

solid, ܩᇱ ൌ  ௘ is the elastic modulus, related to the Youngܩ ௘, whereܩ

modulus and ܩᇱԢ ൌ 0. For Newtonian fluids, the storage modulus is 

ᇱܩ ൌ 0 and ܩᇱԢ ൌ  In general both storage and loss moduli are .߱ߟ

different from zero and the material is named viscoelastic. For 

convenience, it is also possible to describe the viscoelastic behavior using 

a complex notation, where the strain and the stress are described as:  

ሻݐሺכߛ ൌ ଴ߛ expሺ݅߱ݐሻ and ߬כሺ߱, ሻݐ ൌ ߬଴ exp൫݅ሺ߱ݐ ൅  ሻ൯. The complexߜ

viscoelastic modulus is thus defined as  כܩ ൌ ఊכ

ఛכ ൌ ᇱܩ ൅  ԢԢ. It is alsoܩ݅ 

possible to define a complex viscosity as  כߟ ൌ ఛכ

ఊሶ כ
ൌ ᇱߟ െ  ԢԢ where theߟ݅

components of the complex viscosity are related to the components of the 

viscoelastic modulus: ߟᇱ ൌ ԢԢܩ ߱⁄  and ߟᇱᇱ ൌ Ԣܩ ߱⁄ . 
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Typically the rheological behavior of MR fluids under the presence of an 

external magnetic field is viscoelastic and the viscoelastic moduli are 

typically found by experiments, simulations or theoretical models [e.g. 

Parthasarathy and Klingenberg (1999), Ginder et al. (1996), Ramos et al. 

(2010)]. For small enough strain amplitudes (small amplitude oscillatory 

shear, SAOS), the viscoelastic moduli remain constant and do not depend 

on the strain amplitude. This region is called the linear viscoelastic region. 

The linear strain interval is generally small; from 0.01% to 0.1% [de 

Vicente et al. (2011)]. In the non-linear viscoelastic behavior (large 

amplitude oscillatory shear, LAOS) both viscoelastic moduli start to 

decrease. The storage modulus decreases with strain amplitude following 

a power law with slope -2 and loss modulus also decreases with strain 

amplitude following a power law but the slope in this case is -1. Since the 

storage modulus decreases more rapidly than the loss modulus, in some 

critical point, both becomes equal. Generally speaking, for strains higher 

than this critical strain, the system can be considered a fluid and for strains 

smaller than the critical strain, the system can be considered as a solid. 

Squeeze flow rheology 

In order to solve the equations of motion for squeeze flow, it is important 

to establish a coordinate system. The coordinate system we use here is 

schematized in the Figure In.5. In this section we will use cylindrical 

coordinates. The fluid will be placed within two parallel plates. The initial 

gap is considered ݄଴. As a consequence of the squeeze flow the gap 

between plates will decrease and at a certain time. Thus, the gap will be 

݄ሺݐሻ. 
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Figure In.5. Scheme of the squeeze flow coordinates system. 

Squeeze flow is a kind of biaxial elongation flow. The velocity profile for 

a biaxial elongational flow is given by: ݒԦ ൌ ሺെ ఌሶ ಹሺ௧ሻ
ଶ

,ݔ െ ఌሶ ಹሺ௧ሻ
ଶ

,ݕ  ,ሻݖሻݐሶுሺߝ

with ߝሶுሺݐሻ ൏ 0. Here, ߝሶுሺݐሻ ൌ ሶ݄ ሺݐሻ/݄ሺݐሻ is called the compressive strain 

rate and ሶ݄ ሺݐሻ is the approaching velocity whereby the gap decreases. By 

integration of the compressive strain rate over the time we can calculate 

the strain: ߝுሺݐሻ ൌ ln ௛ሺ௧ሻ
௛బ

. This strain is called the Hencky strain 

[Engmann et al. (2005)]. However, for convenience, we will use another 

definition of the strain in this dissertation, ߝሺݐሻ ൌ ௛బି௛ሺ௧ሻ
௛బ

. The use of this 

definition leads to a different definition for the compressive strain rate, 

ሻݐሶሺߝ ൌ െ ௛ሶ ሺ௧ሻ
௛బ

ൌ െߝሶுሺݐሻ ௛ሺ௧ሻ
௛బ

. 

The main material functions to be obtained in squeeze flow tests is the gap 

as a function of the time, ݄ሺݐሻ, and the normal force, ܨேሺ݄,  ሻ. Typicalݐ

experiments in squeeze flow are: constant force experiments, constant 

velocity experiments and constant compressive strain rate experiments. In 

constant force experiments the applied force remains constant while the 

gap is measured as a function of the time. In constant velocity 

experiments, the gap moves uniformly at a constant velocity, ݒ ൌ െ ሶ݄  

while the force is monitored. In constant compressive strain rate 

experiments the Hencky compressive strain rate is constant while the 

ࢎ
 ොࢠ

ො࢘
૛ࡾ



 

 

 

49 Introduction 

force is monitored. In this dissertation, most of the experiments are run at 

constant velocity. 

It is also important to explicitly state the boundary conditions in the 

problem. In constant velocity tests, the boundary conditions depend on the 

particular properties of the surface. Solutions of the normal force for 

slipping surfaces and no-slipping surface in the case of Newtonian fluids 

are given by Equations In24 and In25 respectively [Engmann et al. 

(2005)]: 

ேܨ ൌ ଷఎ௩
௛మ ܸ        (In24) 

ேܨ ൌ ଷఎ௩
ଶ௛ఱ ܸଶ        (In25) 
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Objectives 
This work aims to study the rheological properties of magnetorheological 

(MR) fluids under squeeze flow and the investigation of the effect of 

polydispersity in size. The main objectives in this work stand as follows: 

Magnetorheology in squeeze flow mode 

1. To obtain the yield compressive stress in squeeze flow 

magnetorheology as a function of the magnetic field strength, 

particle volume fraction, initial gap, sample volume and 

continuous medium viscosity. 

2. To measure the normal force acting on the confining surfaces in a 

parallel-disk geometry as a function of the instantaneous gap in 

constant-velocity squeeze flow experiments in the filtration 

regime. 

3. To study the influence of magnetic field strength, particle volume 

fraction, continuous medium viscosity, initial gap and sample 

volume in the normal force. 

4. To develop a theoretical micromechanical model for squeeze 

flow. 

5. To perform particle-level simulations in an attempt to obtain the 

generated normal force under squeeze motion. 

6. To compare the experimental, simulated and theoretical normal 

force with existing continuous media theories considering MR 

fluids as Bingham-like plastic systems. 
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Model magnetorheology: inverse ferrofluids  

1. To compare the rheological performance of model MR fluids 

under steady shear and large amplitude oscillatory shear to 

available continuous media theories, macroscopic models and 

micromechanical models as well as particle-level simulations. 

2. To test the Mean Magnetization Approximation by using different 

dimensionless numbers and scaling numbers in magnetorheology. 

3. To synthesize model MR fluids from inverse ferrofluids (IFFs) 

composed of monodisperse silica particles dispersed in 

ferrofluids. 

4. To experimentally determine the rheological properties of IFFs 

under steady shearing flows and their dependence on magnetic 

field strength and particle volume fraction. 

Effect of the polydispersity in particle size in magnetorheology 

1. To investigate the effect of polydispersity in magnetorheology by 

the formulation of MR fluids with different polydispersity indexes 

and the same average size under steady shear tests. 

2. To study the effect of polydispersity by carrying out particle-level 

simulations in start-up tests. 

3. To quantify the effect of polydispersity in the apparent yield stress 

in conventional MR fluids. 

4. To explore the influence of polydispersity in the microstructure of 

the MR fluids by particle level dynamic simulations.  

 



 

 

Theory 
MR fluids can be modeled as conventional Newtonian fluids in the 

absence of magnetic fields. However, non-Newtonian characteristics 

prevail in the presence of magnetic fields such as the presence of an 

apparent yield stress and viscoelasticity. 

In this section, different models applied in magnetorheology will be 

presented. The models can be classified as follows: continuous media 

theories, wherein the whole dispersion is treated as a continuous medium 

with a constitutive equation; bi-continuous or macroscopic models, 

wherein the particle aggregates are assumed to be continuous and 

dispersed within a continuous liquid phase; and, finally, micromechanical 

models, wherein an ensemble of particles are distributed within the carrier 

fluid. 

Continuous media theories 

Undoubtedly, the most wide-used continuous media theory for MR fluids 

under the presence of an external magnetic field is the Bingham plastic 

model [Bossis et al. (2002), de Vicente et al. (2011)]. According to this 

model the shear rate will remain zero if the stress does not overcome a 

stress threshold, the so-called yield stress, ߬௬. However, for shear stresses 

higher than the yield stress, the shear rate will increase linearly with the 

stress. In the flow regime (i.e. when the shear stress is higher than the 

yield stress), the shear stress can be expressed as a function of the shear 

rate as follows: 

߬ ൌ ߬௬ ൅ ሶߛ௣ߟ       (Th1) 
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Here, ߟ௣ is called the Bingham plastic viscosity. This equation can be 

expressed in dimensionless quantities by the following expression 

[Marshall et al. (1989), Ramos et al. (2011), Berli and de Vicente (2012)]: 

ఎ
ఎಮ

ൌ 1 ൅ ெ௡כ

ெ௡
      (Th2) 

where  ߟஶ is the high shear viscosity. The critical Mason number כ݊ܯ can 

be assumed to be only dependent on the particle concentration if other 

colloidal interactions are neglected (compared to magnetostatic and 

hydrodynamic interactions): כ݊ܯ ൌ  .ሺ߶ሻ [Marshall et al. (1989)]כ݊ܯ

As an example, in Figure Th.1, the dimensionless viscosity for IFFs at 10 

vol% at different magnetic field strengths is represented as a function of 

the Mason number. As shown in Figure Th.1, the different experimental 

data collapse into a master curve suggesting that the magnetostatic and 

hydrodynamic interactions are the main interactions in IFFs. The Bingham 

model reasonably captures the general trend of the curve but there are 

some deviations in the low shear and transition regimes; the Bingham 

model does not predict the low shear viscosity plateau and anticipates a 

sharper transition from the magnetostatic to the hydrodynamic dominated 

regime. 

In order to explain these deviations, an empirical equation obtained by 

modification of the Bingham model was proposed [de Vicente et al. 

(2011), Berli and de Vicente (2012)]: 

ఎ
ఎಮ

ൌ 1 ൅ ெ௡כ

ெ௡౴      (Th3) 

Equation Th3 successfully explains the experimental results for different 

Δ values, generally in the range 2/3 ൏ Δ ൏ 1. For example, Felt et al. 

(1996) give Δ ൌ 0.74 െ 0.83 and de Gans et al. (1999a) give slightly 

higher values, Δ ൌ 0.8 െ 0.9. The model predictions improve when the 
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Krieger-Dougherty equation is used for the calculation of the high-shear 

rate viscosity [Goodwin et al. (1997)]. 
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Figure Th.1 Dimensionless viscosity as a function of the Mason number 
for an inverse ferrofluid at a particle concentration of 10 vol% for different 
external magnetic field strengths. Solid line represents the best fit to the 
Bingham model. 

 

Although Equation Th3 is very successful in the description of the 

viscosity curves, it is an empirical equation without a physical meaning 

for the exponent Δ.  

Recently, Berli and de Vicente (2012) developed a structural viscosity 

model in order to explain the experimental viscosity versus Mason 

number curves. This model establishes a critical shear rate, related to the 

typical time scales used in magnetorheology, that leads to a dimensional 

form of the dimensionless viscosity: 

ఎ
ఎಮ

ൌ ቂ ଵାሺெ௡ ெ௡כ⁄ ሻభ/మ

ሺఎಮ ఎబ⁄ ሻభ/మାሺெ௡ ெ௡כ⁄ ሻభ/మቃ
ଶ
     (Th4) 
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Here, ߟ଴ is the low shear viscosity. For the case of IFFs, the low shear rate 

viscosity plateau is clearly observed (e.g. see Figure Th.1). However, this 

low shear plateau is very hard to find in the case of CMRFs. Indeed, the 

existence of a constant low shear rate viscosity obviously contradicts the 

existence of a real yield stress in MR fluids [e.g. Rankin et al. (1999), 

Berli and de Vicente (2012), de Vicente et al. (2011)]. Typically, the low 

shear viscosity is several orders of magnitude higher than the high shear 

viscosity, and the yield stress is defined in terms of the transition from the 

low shear viscosity to the high shear viscosity. This yield stress is 

therefore related to the critical Mason number כ݊ܯ. In these sense, the 

yield stress can be still used as an apparent yield stress. In the limit of  

ஶߟ ⁄଴ߟ ՜ 0, Equation Th4 leads to a Casson-like equation: 

ఎ
ఎಮ

ൌ 1 ൅ ெ௡כ

ெ௡
൅ 2 ቀெ௡כ

ெ௡
ቁ

ଵ/ଶ
         (Th5) 

Equation Th5 also provides a divergent viscosity for low Mason number 

and a yield stress, but the transition from the magnetostatic regime to the 

hydrodynamic regime is now smoother than the Bingham model and 

therefore in much better agreement with experiments. In Chapters 6 and 7 

these theories will be tested for IFFs and CMRFs. 

Continuous media theories have also been used in non-shearing flows; e.g. 

squeeze flow under fields. Covey and Stanmore (1981) developed a 

theoretical study of the squeezing behavior of a Bingham-like fluid at a 

constant approaching velocity, ݒ, and considering non-slip conditions at 

the walls. The results obtained where a function of a new dimensionless 

parameter, the so-called plasticity number, ܵ ൌ ఎ೛௩ோ
௛మఛ೤

, where  ܴ is the total 

radius of the sample. 



 

 

Theory  63 

Later, William et al. (1993) solved the problem of the squeeze flow 

motion of a bi-viscous fluid (i.e. a fluid with two different viscosities 

depending on whether the shear stress is below or above to a critical shear 

stress, ߬௬). It is important to note that in the bi-viscous model the critical 

shear stress does not have the same physical meaning than the yield stress 

in the case of the Bingham model, but in both cases they are transitional 

stresses. For slow enough velocities, in the so-called filtration regime, 

these two models lead to a single equation that relates the normal force ܨ 

acting on the confining plates and the separation distance between them ݄: 

ܨ ൌ ଶఛ೤௏య/మ

ଷ√గ௛ఱ/మ            (Th6) 

In Chapters 2 and 3 of this dissertation, experiments on MR fluids in 

squeeze flow mode will be compared to Equation Th6. 

Macroscopic models 

In a macroscopic model, the MR fluid is assumed to be composed by 

aggregates of different shapes within a continuous medium. These models 

constitute a coarse-grained description of a MR fluid and take into 

account the shape anisotropy of the aggregates but, they do not provide 

information on the particle structure inside the aggregate. Aggregates are 

composed by particles at a (internal) volume fraction, ߶௔. The volume 

fraction of particle within the aggregate can be estimated as that of a 

randomly closed packing fraction for monodisperse spheres, ߶௔ ൌ 0.64. 

In the case of MR fluids formulated with particles having polydispersity 

in size, other values for ߶௔ can be considered. The volume fraction of the 

aggregates in the continuous medium is calculated as, ߶௦ ൌ ߶ ߶௔⁄  [Ramos 

et al. (2011)]. 
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Bossis et al. (1997) developed macroscopic models for different 

geometries: spheroids, cylinders and layered aggregates. In their work the 

stress is obtained from the derivative of the magnetic energy density of an 

aggregate and then, multiplying this result by the number of aggregates in 

the system. Thus, inter-aggregate interactions are neglected and the 

models do only strictly apply in the dilute limit. 

The shear stress, ߬, is obtained as a function of the strain, ߛ, as follows: 

߬ ൌ ଵ
ଶ

଴ܪ௖௥ߤ଴ߤ
ଶ߶௦

ఓሺథሻ
ఓ೎

෤௔ߤ
డ

డఊ
൤ ଵ

ሺଵାఊమሻ൫ଵାఓ෥ೌ௡צ൯
൅ ఊమ

ሺଵାఊమሻሺଵାఓ෥ೌ௡఼ሻ൨    (Th7) 

Here, ߤሺ߶ሻ is the magnetic permeability of the suspension at a particle 

volume fraction, ߶. Considering a Mean Field Theory, for instance, the 

Maxwell-Garnett theory (1904), the permeability can be written as a 

function of the contrast factor and the particle volume fraction: 

ఓሺథሻ
ఓ೎

ൌ ଵାଶఉథ
ଵିఉథ

           (Th8) 

The term ߤ෤௔ is given by ߤ෤௔ ൌ ௔ߤ ⁄௖ߤ െ 1 where ߤ௔ is the magnetic 

permeability of the aggregate, which in its turn can be expressed using the 

Maxwell-Garnett theory for the aggregate as follows: ఓೌ
ఓ೎ೝ

ൌ  ଵାଶఉథೌ
ଵିఉథೌ

. The 

use of Maxwell-Garnett theory is justified in Volkova et al. (2000). ݊צ and 

݊ୄ refer to the demagnetizing factors of the aggregate in the parallel and 

perpendicular direction of the external magnetic field, respectively 

[Osborn (1949)]. These factors depend on the shape of the aggregate 

leading to different models depending on the aggregate shape [Bossis et 

al. (1997)].  

For all the shapes considered (spheroids, cylinders and layers), the stress 

initially increases linearly with the strain, then reaches a maximum and 

eventually levels off for higher strains [see Figure 2 in Bossis et al. 
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(1997)]. These results are in agreement with experiments in start-up tests 

[see Figure 2b in de Vicente et al. (2011)]. The maximum of the stress is 

considered as the yield stress. For spheroids (S), the yield stress is given 

by [Ramos et al. (2011)]: 

߬௬,ௌ ൌ െ0.325ߤ଴ߤ௖௥ܪ଴
ଶ߶௦

ଵାଶఉథ
ଵିఉథ

෤௔ߤ ቀ ଵ
ଵାఓ෥ೌ௡఼

െ ଵ
ଵାఓ෥ೌ௡צ

ቁ      (Th9) 

In the case of cylinders (C) and layers (L), Bossis et al. (1997) generalized 

a model previously presented by Rosensweig (1995) for the shear stress. 

The resulting yield stress is given by: 

߬௬,஼/௅ ൌ ଴ܪ௖௥ߤ଴ߤ0.325
ଶ߶௦ߤ෤௔

ଵିథೞ
஼ାఓ෥ೌሺଵିథೞሻ

     (Th10) 

where ܥ is a factor depending on the shape: ܥ ൌ 2 in the case of cylinders 

and ܥ ൌ 1 in a layered structure. 

According to these models, the storage modulus can be calculated by 

taking the ratio between the stress and the strain, ߬/ߛ in the low-strain 

limit [Ramos et al. (2010)]: 

Ԣௌܩ ൌ െߤ଴ߤ௖௥ܪ଴
ଶ߶௦

ଵାଶఉథ
ଵିఉథ

෤௔ߤ ቀ ଵ
ଵାఓ෥ೌ௡఼

െ ଵ
ଵାఓ෥ೌ௡צ

ቁ         (Th11) 

Ԣ஼/௅ܩ ൌ ଴ܪ௖௥ߤ଴ߤ
ଶ߶௦ߤ෤௔

ଵିథೞ
஼ାఓ෥ೌሺଵିథೞሻ

          (Th12) 

It is important to note that the yield stress and the storage modulus do not 

depend linearly on the particle volume fraction. Also, they do not depend 

linearly on the magnetic dipolar interaction between two particles. 

However, in the dilute case and for enough small magnetic field strengths, 

the dependence becomes linear with the particle volume fraction and 

quadratic with the external magnetic field.  

It is also important to note, that macroscopic models do not provide 

information concerning the loss modulus, mainly due to the difficulties of 
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developing a suitable hydrodynamic model in MR fluids for systems of 

more than one particle. Macroscopic models will be compared to 

experiments and particle-level simulations in Chapter 6. 

Micromechanical models 

In a micromechanical model, discrete particles are considered to interact 

through prescribed forces in a deterministic way. Generally, particles are 

assumed to be perfect spheres of the same size (i.e. monodisperse). Under 

field, single-particle-width chains are frequently assumed to form. Then, 

these structures deform upon the application of a shear flow and different 

approaches are followed to obtain the yield stress, the critical Mason 

number or the storage modulus. 

Klingenberg and Zukoski (1990) developed a micromechanical model 

taking into account the multipolar magnetic interaction between only two 

isolated particles. They considered a balance between the magnetostatic 

and the hydrodynamic forces acting on the particles. Particles attracted if 

the shear strain remained below a critical value that they calculated as 

௖ߛ ൌ 0.389. The yield stress was calculated as the stress corresponding to 

this critical strain (i.e. the maximum in the stress versus strain curve): 

߬௬,௄௓ ൌ ଴ܪଶߚ௖௥ߤ଴ߤ 1.026
ଶ߶            (Th13) 

Later, de Gans et al. (1999a) included additional repulsive forces to the 

analysis. In this case, the critical strain obtained was the same as in 

Klingenberg and Zukoski (1990) but the yield stress differed as follows: 

߬௬,ௗீଵ ൌ ଴ܪଶߚ௖௥ߤ଴ߤ 1.11
ଶ߶              (Th14) 

Similarly to Klingenberg and Zukoski (1990), the yield stress depends on 

the dipolar magnetostatic interaction and linearly with the particle loading.  
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If the particles do not move affinely with the flow and there exists a gap 

between the first particle (that remains attached to the plate) and the 

second particle in the chain ("bead-rod" model), the yield stress now 

depends on this gap, ߜ ൌ ሺ݄ െ ሻߪ cos ⁄ߠ െ ሺ݄ െ  ሻ, as shown in [de Gansߪ

et al. (1999a), Ramos et al. (2011)]: 

߬ௗீଶ ൌ ଽ
଼

଴ܪଶߚ௖௥ߤ଴ߤ
ଶ߶ ൜sin ߠ ሺ5 cos ߠ െ 1ሻ ൤ቀఋ

ఙ
൅ 1ቁ

ିସ
൅ ଵ

ଷ
ቀఋ

ఙ
൅ ଷ

ଶ
ቁ

ିଷ
൨ൠ   (Th15) 

For the typical values used in magnetorheology (i.e. ݉ߤ1~ߪ and ݄ ൌ

 .the yield stress can be calculated as follows [Ramos et al ,(݉ߤ300

(2011)]: 

߬௬,ௗீଶ ൌ ଴ܪଶߚ௖௥ߤ଴ߤ0.079
ଶ߶        (Th16) 

Again, Equation Th16 also gives a linear dependence on the particle 

volume fraction and the dipolar magnetostatic force. 

Micromechanical models predict the existence of a critical Mason number 

in agreement with continuous media theories. The micromechanical 

models lead to a Bingham-like constitutive equation and offer a physical 

meaning of the Bingham parameters (e.g. the critical Mason number). The 

relationship of the critical Mason number with the particle volume 

fraction, the high shear viscosity and the continuous medium viscosity can 

be expressed as follows [Ramos et al. (2011)]: 

כ݊ܯ ൌ ߶ܥ ఎ೎
ఎಮ

          (Th17) 

The values for the constant ܥ are different considering the approximations 

used in each model. Thus, ܥ ൌ 8.82 in Martin and Anderson (1996), 

ܥ ൌ 8.485 in de Vicente et al. (2004), ܥ ൌ 5.25 in the de Gans et al. 

(1999a) and ܥ ൌ 1.91 in Volkova et al. (2000). It is worth to note that the 

critical Mason number dependence on the particle volume fraction is 

theoretically linear in the case of a dilute system. 
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Micromechanical models have been also used to calculate the storage 

modulus. The model developed by Klingenberg and Zukoski (1990) gives: 

Ԣ௄௓ܩ ൌ ଽ
ଶ

଴ܪଶߚ௖௥ߤ଴ߤ
ଶ߶                   (Th18) 

Martin and Anderson (1996) considered the multibody interparticle 

magnetic force in a free single chain and obtained: 

Ԣெ஺ܩ ൌ ଽ
ସ

଴ܪଶߚ௖௥ߤ଴ߤሺ3ሻ݇ଷߦ
ଶ߶                   (Th19) 

where ߦ represents the Zeta Riemann function, ߦሺ3ሻ ؆ 1.20206, and 

݇ଷ ൌ ቀ1 െ ௞
ସ

െ ௞
଼

ቁ
ିଵ

 with ݇ ൌ   .ߚሺ3ሻߦ

Including repulsive interactions between particles, de Gans et al. (1999b) 

found: 

Ԣௗீܩ ൌ ଷ
ସ

଴ܪଶߚ௖௥ߤ଴ߤሺ4ሻߦ
ଶ߶ ൤2 ቀ1 െ ఉకሺଷሻ

ଶ
ቁ

ିଶ
൅ ቀ1 ൅ ఉకሺଷሻ

ଶ
ቁ

ିଶ
൨    (Th20) 

Using a balance between non-Stokesian hydrodynamic forces and 

magnetostatic forces, de Vicente et al. (2005) provide another expression 

for the storage modulus: 

Ԣௗ௏ଵܩ ൌ ଽ
଼

଴ܪଶߚ௖௥ߤ଴ߤ
ଶ థ

థೌ
      (Th21) 

However, by assuming the expression for the torque in a thin spheroid the 

storage modulus modifies as follows: 

Ԣௗ௏ଶܩ ൌ ଵ
ଶ

଴ܪ௖௥ߤ଴ߤ
ଶ థ

థೌ

ሺఓೌିଵሻమ

ఓೌାଵ
        (Th21) 

Macroscopic and micromechanical models will be used in this dissertation 

in Chapter 6. Neither macroscopic nor micromechanical models exist in 

literature in the case of the squeeze flow. A micromechanical model will 

be proposed for the squeeze behavior of MR fluids in Chapter 1. 
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Methodology 
In this section, the general methodology used in this dissertation will be 

presented. This section is later completed with the information provided in 

each of the following chapters wherein the specific methodology is 

exposed. 

Experimental procedure 

Materials 

Materials used in this dissertation differ accordingly to the formulation of 

the MR fluids: conventional MR fluids (CMRFs) or inverse ferrofluids 

(IFFs). 

Magnetic particles used in this dissertation are composed of carbonyl iron 

powders provided by BASF-SE in different grades: HQ, HS and OM 

grades. Carbonyl iron powders are obtained by the thermal decomposition 

of iron pentacarbonyl. Basically, the synthesis involves a nucleation 

reaction that results in onion-ring-structured particles. Particles are highly 

pure, with more than the 97.5% of iron, and the rest are impurities of other 

compounds such as carbon (max. 1%), nitrogen (max. 0.9%) and oxygen 

(max. 0.5%). The different grades are obtained by proprietary procedures 

using different finishing processes such as milling. Carbonyl iron powders 

used in the formulation of commercial MR fluids are highly polydisperse 

in size and for this reason the investigation of the effect of polydispersity 

in magnetorheology is one of the aims of this dissertation.  

In Figure Mt.1, a scanning electron microscopy (SEM) micrograph of a 

typical carbonyl iron powder (HS grade) is shown. The size histograms of 
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the carbonyl iron powders used in this dissertation are shown in Figure 

Mt.2. It is important to remark that the magnetic characteristics of the 

different carbonyl iron powders used in this work are very similar, 

obtaining saturation magnetization of ܯௌ ൌ  for HQ-grade ݉/ܣ݇ 1691

particles, ܯௌ ൌ ௌܯ for HS-grade particles and ݉/ܣ݇ 1703 ൌ

 .for OM-grade particles ݉/ܣ݇ 1550

 

Figure Mt.1. SEM-micrograph of carbonyl iron powder (HS grade, 
provided by BASF-SE). 
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Figure Mt.2. Particle size distribution of different grades of carbonyl iron 
powders (black solid line, HS grade; red solid line, HQ grade and green 
solid line, OM grade). 
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As shown in Figure Mt.2, particle diameters of carbonyl iron powders are 

around several microns. The mean particle size, ߪ௠, and the 

polydispersity index, ܲܫܦ, of the different grades are: ߪ௠ ൌ   ,݉ߤ 1.26

ܫܦܲ ൌ 1.64 for the HQ grade; ߪ௠ ൌ ܫܦܲ  ,݉ߤ 2.20 ൌ 1.63 for the HS 

grade and ߪ௠ ൌ ܫܦܲ  ,݉ߤ 4.30 ൌ 1.85 for the OM grade. The main 

characteristics of the different grades of carbonyl iron powders are 

summarized in Bombard et al. (2002). 

It is definitely possible to obtain more polydisperse systems by mixing 

these different grades. However, obtaining more monodisperse systems is 

clearly a more difficult challenge; Chiriac and Stonian (2009) obtained 

narrow particle size distributions by sieving commercial micrometric iron 

particles. 

IFFs were formulated in this work to improve the monodispersity of MR 

fluids. Silica particles were synthesized using the Stöber’s method [Stöber 

et al. (1968)]. The reagents used in the synthesis process are typically low 

molar-mass alcohols such as methanol, ethanol, n-propanol or n-butanol 

used as solvents, in a reagent quality in order to avoid impurities in the 

particles; tetraesters of silicic acid as the tetraethyl orthosilicate (TEOS), 

water and typically ammonia to provide a basic ambient used as catalyst. 

The main reaction is the hydrolysis of the TEOS to a silanol followed by 

condensation reactions.  

Particles obtained by the Stöber’s method are very monodisperse and their 

diameter range between 50 ݊݉ and 2 ݉ߤ depending on the concentration 

of the reagents and the nature of the alcohol used. The process has been 

modeled in the work by Matsoukas and Gulari (1988). In their work they 

stated that the silica particles growth is characterized by an incubation 

period after which the nucleation is not significant. However, other 
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alternative models for the aggregation and growth of the silica particles 

have been proposed in the literature [Lee et al. (1997)]. 

The synthesis of the silica particles used in this dissertation is explained in 

detail in Chapter 6. Briefly, two kinds of silica particles (S200 and S600) 

were obtained in the synthesis process. A SEM-micrograph of S600-

particles is presented in Figure Mt.3. The mean particle sizes of these 

silica particles and their polydispersity indexes are summarized in Table 

6.2. The size histogram of these samples is shown in Figure Mt.4. 

 

Figure Mt.3. SEM-micrograph of silica particles (S600) synthesized by 
the Stöber’s method [Stöber et al. (1968)]. 
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Figure Mt.4. Particle size distribution of silica particles (S200 and S600). 
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In the case of CMRFs, carbonyl iron powders are dispersed in silicone oils 

(PDMS, Sigma-Aldrich) with different viscosities. Viscosities were 

ranged between 20 ݉ܲܽ ൉ ܽܲ݉ and 500 ݏ ൉  Densities of the silicone .ݏ

oils are about 1 ݃/݈݉.  

In the case of IFFs, silica particles are dispersed in a magnetite-based non-

aqueous ferrofluid provided by Ferrotec Inc. The particle size distribution 

within the ferrofluid was calculated using the Langevin function and the 

obtained average particle diameter was 9 ݊݉ [Ramos et al. (2011), 

Andablo-Reyes et al. (2010a)]. The ferrofluid has a density of 1.12 ݃/݈݉, 

a viscosity of 44 ݉ܲܽ ൉  .݉/ܣ݇ and a saturation magnetization of 25.5 ݏ

For a more detailed description of the characteristics of the ferrofluid used 

in this dissertation we refer to Ramos et al. (2011). 

Apparatus 

Two magnetorheometers (Anton Paar) were used in the experiments: 

MCR 501 and MCR 302. The normal force sensor has a compliance of 

 the normal force range is േ50 ܰ and its sensitivity is around ,ܰ/݉ߤ0.59

0.01 ܰ. The maximum torque the rheometer can achieve is 0.23 ܰ݉ and 

the sensitivity in torque is 0.1 ݉ܰߤ. The minimum angular velocity the 

rheometer can measure is 1.7 ൉  .ଵିݏ ଵ and the maximum 50ିݏ10ି଼

Two titanium parallel disks were used as the preferred configuration. 

Their radius is ܴ ൌ 10 ݉݉ and were separated by a distance, ݄. The 

plates are assumed to be perfectly parallel but a misalignment exists 

[Andablo-Reyes et al. (2010b)]. For this reason the gap between the plates 

was always higher than 30 ݉ߤ.  

In a typical squeeze flow experiment the upper plate moves towards the 

bottom plate. Simultaneously, the normal force and gap separation are 
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measured. It is important to note that unavoidably, an error exists in the 

gap distance. Using the method reported in Connelly and Greener (1985), 

this gap error was estimated in 17 ݉ߤ.  

In a typical shear experiment the upper plate rotates while the bottom 

plate remains stationary. In this configuration, the shear rate and the shear 

stress are not uniform within the sample and depend on the radial distance 

in the plate, ݎ. In rotating parallel disks the shear rate is related to the 

angular velocity as ߛሶሺݎሻ ൌ  and the apparent shear stress ߬ is ݄/ݎ߱

calculated in terms of the torque ܶ exerted on the upper plate under the 

assumption of a Newtonian constitutive equation for the sheared fluid, 

߬ ൌ 2ܶ ⁄ଷܴߨ  [Macosko (1994)]. The shear rate measured in the 

rheometer, ߛሶோ is calculated as the shear rate at the rim of the plates: 

ሶோߛ ൌ ܴ߱/݄. For the typical values used in this dissertation, ݄~300݉ߤ, 

the sensitivity of the rheometer in shear rate is in the order of 10ି଺ିݏଵ 

and the maximum shear rate is 10000 ିݏଵ. The sensitivity in the shear 

stress is 0.06 ܲܽ and the maximum shear stress is 147 ݇ܲܽ. 

For Newtonian fluids, the torque required to turn the upper disk is exactly 

given by ߬ ൌ 2ܶ ⁄ଷܴߨ . However, in the case of Bingham-like plastic 

fluids, the apparent stress measured at the zero-shear limit overestimates 

the yield stress, ߬௬, in ߬ ൌ 4߬௬/3. The shear stress for a general fluid 

(independently of its constitutive equation) can be expressed as a function 

of the torque by the expression: ߬ ൌ ்
ଶగோయ ቂ3 ൅ ௗ ୪୬ ்

ௗ ୪୬ ఊሶ ೃ
ቃ. Hence, for a 

complete description of the stress, the torque in the plate must be 

calculated for all the shear rates investigated and the rheology can be 

complicated. In this dissertation we will assume ߬ ൌ 2ܶ ⁄ଷܴߨ  unless 

otherwise stated [Macosko (1994); Bossis et al. (2002)].  
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It is important to note that other geometries can avoid this complication 

since the shear rate can be made constant in the sample. A typical example 

is the cone-plate geometry (for a sufficiently small angle). However, in 

magnetorheology, the cone-plate geometry induces other problems, such 

as the different length of connecting chains, the clogging in the apex of 

the cone and the difficulty to explore confinement effects and wall slip. 

Uniaxial DC magnetic fields of approximately 100 ݇ܣ/݉ are generated in 

this dissertation using an external electromagnetic circuit. However, the 

magnetic field is not totally uniform within the sample since there is a 

hole in the magnetic circuit to permit the plate shaft to pass. Laeuger et al. 

(2005) and later Laun et al. (2008) thoroughly investigated the vertical 

and radial magnetic field distribution within the sample. The gradient in 

the magnetic field was higher as the magnetic field increased. This 

gradient may provoke in some cases particle migration toward the rim, 

where the magnetic field is stronger [Andablo-Reyes et al. (2011), de 

Vicente et al. (2009)]. In most of the experiments, the magnetic field 

strength was set below 354 ݇ܣ/݉ to ensure a reasonably uniform 

magnetic field and higher magnetic fields are only used to investigate the 

saturation regime. 

Simulation method 

Simulations used in this dissertation concern particle-level molecular 

dynamic simulations. In these simulations, the MR fluid is composed of ܰ 

buoyant spherical particles dispersed in a continuous Newtonian medium 

of viscosity, ߟ௖. Molecular dynamic simulations aim to solve the 

equations of motion of each particle. In the different chapters presented in 

this dissertation, the simulation method can vary accordingly to the 

particular approximations taken into account in each chapter. Generally, 
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simulations can be defined as Brownian dynamic simulations and the 

position of a particle ݅ at a time ݎ ,ݐԦ௜ሺݐሻ, is governed by the Langevin 

equation: 

௜ܯ
ௗమ௥Ԧ೔ሺ௧ሻ

ௗ௧మ ൌ Ԧ௜ܨ െ ௜ߦ ቀௗ௥Ԧ೔ሺ௧ሻ
ௗ௧

െ ሬԦ௜ݑ
ஶቁ ൅ Ԧ݂஻ሺݐሻ          (Mt1) 

where ܯ௜ is the mass of particle ݅, ߦ௜ ൌ  ௜ is the friction coefficientߪ௖ߟߨ3

of the particle ݅ with a diameter ߪ௜, ݑሬԦ௜
ஶ is the  ambient fluid velocity at 

the center of particle ݅, and Ԧ݂஻ሺݐሻ is a random force introduced to model 

the Brownian motion of the particles ஻݂ ן ඥ݇஻ܶߦ௜ ⁄ݐ∆ . Here, ݇஻ is the 

Boltzmann constant, ܶ is the absolute temperature and ∆ݐ  is the time step. 

Solving Algorithm 

Equation Mt1 is a second-order differential equation. In order to solve the 

equation of motion, different algorithms have been proposed in the 

literature. One of the most commonly used is the Verlet algorithm [Verlet 

(1967)]. The Verlet algorithm states that the position of a particle ݅, in a 

time ݐ ൅ ݐԦ௜ሺݎ ,ݐ∆ ൅  :ሻ can be calculated using a Taylor expansionݐ∆

ݐԦ௜ሺݎ ൅ ሻݐ∆ ൌ ሻݐԦ௜ሺݎ ൅ ݐ∆ ௗ௥Ԧ೔ሺ௧ሻ
ௗ௧

൅ ሺ∆௧ሻమ

ଶ!
ௗమ௥Ԧ೔ሺ௧ሻ

ௗ௧మ ൅ ሺ∆௧ሻయ

ଷ!
ௗయ௥Ԧ೔ሺ௧ሻ

ௗ௧య …    (Mt2) 

Moreover, the position of the particle ݅ in a previous time can be also 

calculated by a Taylor expansion: 

ݐԦ௜ሺݎ െ ሻݐ∆ ൌ ሻݐԦ௜ሺݎ െ ݐ∆ ௗ௥Ԧ೔ሺ௧ሻ
ௗ௧

൅ ሺ∆௧ሻమ

ଶ!
ௗమ௥Ԧ೔ሺ௧ሻ

ௗ௧మ െ ሺ∆௧ሻయ

ଷ!
ௗయ௥Ԧ೔ሺ௧ሻ

ௗ௧య …    (Mt3) 

By summing Equations Mt2 and Mt3 and neglecting the terms of orders 

higher than the third, the position of the particle ݅ in a time ݐ ൅  can be ݐ∆

expressed as follows: 

ݐԦ௜ሺݎ ൅ ሻݐ∆ ൌ ሻݐԦ௜ሺݎ2 ൅ ݐԦ௜ሺݎ െ ሻݐ∆ ൅ ሺ∆௧ሻమ

ଶ
ௗమ௥Ԧ೔ሺ௧ሻ

ௗ௧మ          (Mt4) 
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The term ௗమ௥Ԧ೔ሺ௧ሻ
ௗ௧మ  is calculated by using Equation Mt1. Obtaining the 

particle positions in two times, ݐ െ  it is possible to obtain the ,ݐ and ݐ∆

position in the next time and the motion of the particle can be calculated 

successively. However, the position of the particles at two times is often 

unknown and the Verlet algorithm needs to be modified to use the initial 

velocities of the particles. This variant is called the Velocity-Verlet 

algorithm. Thus, the position of a particle ݅ in a time ݐ ൅  can be ݐ∆

calculated using: 

ݐԦ௜ሺݎ ൅ ሻݐ∆ ൌ ሻݐԦ௜ሺݎ ൅ ݐ∆ሻݐԦ௜ሺݒ ൅ ሺ∆௧ሻమ

ଶ!
ௗమ௥Ԧ೔ሺ௧ሻ

ௗ௧మ            (Mt5) 

The velocity of the particles in a time ݐ ൅  :is calculated as follows ݐ∆

ݐԦ௜ሺݒ ൅ ሻݐ∆ ൌ ሻݐԦ௜ሺݒ ൅ ሺ∆௧ሻమ

ଶ
ቂௗమ௥Ԧ೔ሺ௧ା∆௧ሻ

ௗ௧మ ൅ ௗమ௥Ԧ೔ሺ௧ሻ
ௗ௧మ ቃ   (Mt6) 

This method is widely used due to its simplicity and accuracy. However, 

other methods have improved the accuracy of the Verlet method in the 

solution of the second-order equations of motion of particles in molecular 

dynamic simulations such as the Gear methods [Gear (1971)]. 

Sometimes, Equation Mt1 can be simplified for MR fluids by neglecting 

inertial terms and Brownian motion. Thus, the equation of motion of the 

particles becomes a first-order differential equation and the solution can 

be done by using the Euler method [Klingenberg et al. (1989), 

Klingenberg et al. (1991)]. 

The time increment must be small to achieve the sufficient accuracy. 

However, if the time increment is too small, the total computational time 

will be very large. A proper choice of the time increment is necessary. 

The time increment must be small enough to capture the time scales in the 

system. Equation Mt1 provides three different time scales [Dhont (1996)]: 

the inertial time scale, ߬ெ~ ௜ܯ ⁄௜ߦ ; the diffusive time, ߬஽~ ௜ߪ௖ߟߨ3
ଷ ݇஻ܶ⁄  
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and the characteristic relaxation time, ߬ோ~ ௖ߟ8 ଴ܪଶߚ௖௥ߤ଴ߤ
ଶ⁄  . Here, the 

characteristic relaxation time was obtained assuming the typical force 

scales as the dipolar magnetostatic interaction. The time increment must 

be lower than all these three time scales to ensure the general description 

of all the processes in the simulations. 

Simulation box and periodic boundary conditions 

For computational reasons, the number of particles included in the 

simulations is clearly lower than the number of particles in the real system 

to be simulated (in the order of the Avogadro’s number). A widely used 

method to solve this problem is the periodic boundary conditions. 

In order to apply periodic boundary conditions, the system is first 

enclosed into a simulation box. The total volume of the simulation box 

must be calculated in terms of the number of particles, their diameters and 

the particle volume fraction: ܸ ൌ ߨ ∑ ௜ߪ
ଷே

௜ୀଵ 6߶⁄ . Periodic boundary 

conditions consist in the replication of the simulation box in at least one 

direction of the space. By repeating the replication process, the whole 

space can be filled with the initial simulation box and all the replicas 

achieving a system with much more particles. Thus, a particle leaving the 

box in one direction can be another entering into the box in the other side.  

It is also important to note that the interactions are not restricted to the 

particles within the original box but extends onto other particles in the 

replicated boxes. Thus, the calculation of the interactions with all the 

particles in the original box and in the replicated boxes can be unlimitedly 

extended in the space domain and the calculation time would become 

infinite. In order to solve this problem, it is frequent to establish a cutoff 

distance even though it can induce some important simulation errors. 

Ewald (1921) developed a method to calculate the electrostatic interaction 
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in periodic systems. This method has been later modified and improved in 

order to obtain faster calculations. An extensive overview of the Ewald 

summations is given in Toukmaji and Board (1996). For simplicity, in this 

dissertation, a cutoff in the magnetostatic interactions was applied. 

The shape of simulation box can be arbitrarily chosen with the only 

restriction to ensure that the replicas of the simulation box fill the whole 

space. Two obvious shapes are the cube or the prism but other shapes can 

be used, such as the octahedron, etc. In this dissertation, a parallelepiped 

is used with ܮ௫ ൌ ௬ܮ ൌ ܮ ൌ ටߨ ∑ ௜ߪ
ଷே

௜ୀଵ ⁄௭ܮ߶6  , being ܮ௭ the height of 

the simulation box. Periodic boundary conditions were set in the lateral 

directions but not in the z-direction, where the external magnetic field was 

applied. 

Structural parameters and physical observables 

The aim of simulations performed in this dissertation is to obtain 

microstructural information and physical observables to compare to 

experimental measurements and theories.  

For this, some magnitudes can be defined such as the average number of 

nearest neighbors, the average number of particles in clusters, the angular 

connectivity or the pair distribution function. 

Nearest neighbors 

The average number of nearest neighbors, ௡ܰ, is defined as the mean 

number of particles placed at a distance that is considered near to a central 

one. The distance is usually a little longer than the sum of the particle 

radii. In this dissertation, it is considered that a particle ݅ is neighbor of 

another particle ݆ if they are separated by a distance, ݀, smaller than 

݀ ൑ 1.05 ൫ߪ௜ ൅ ௝൯ߪ 2⁄ . 



 

 

Methodology 84 

Average number of particles in clusters 

Clusters are considered as sets of connected particles and the connectivity 

criterion is similar to nearest neighbors. Once calculated the clusters and 

the particles within them, it is possible to define the average number of 

particles in clusters, ௣ܰ௖, as follows: 

௣ܰ௖ ൌ ∑ ௡೔೔
ே೎

ൌ ே
ே೎

      (Mt7) 

where  ݊௜ is the number of particles in the cluster ݅ and ௖ܰ is the total 

number of clusters. As clusters with a few number of particles do not 

contribute much to the magnetorheological response, it could be useful to 

define not only the average number of particle but a weighted-average 

number of particles in clusters, ܵଶ: 

 ܵଶ ൌ ∑ ௡೔
మ

೔
∑ ௡೔೔

ൌ ∑ ௡೔
మ

೔
ே

        (Mt8) 

In MR fluid simulations, the weighted-average number of particles in 

clusters is a good parameter of the size of a percolating cluster. Consider a 

system with three percolating clusters with 10 particles, and three free 

clusters containing 2 particles each. Hence, the total number of particles is 

36. The average number of particles in clusters is ௣ܰ௖ ൌ 36 6⁄ ൌ 6 

despite of the fact that the three 2-particles clusters do not contribute 

significantly to the stress. However, with the weighted-average number of 

particles in clusters provides weighted information of the percolating 

clusters, ܵଶ ൌ ሺ3 ൉ 10ଶ ൅ 3 ൉ 2ଶሻ 36⁄ ൌ 312 36⁄ ൌ 8.7. 

Angular connectivity 

The angular connectivity, ܥሺߠሻ, is important in non-isotropic systems. For 

MR fluids, it can be defined as the average number of neighboring 
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particles wherein the angle of the line joining their centers and the 

external magnetic field is ߠ: 

ሻߠሺܥ ൌ ேሺఏሻ
ேିଵ

            (Mt9) 

Pair distribution function 

The pair distribution function, ݃ଶሺݎԦଵ,  Ԧଶሻ, is a widely used structuralݎ

parameter. In the canonical ensemble, the pair distribution function can be 

defined as follows [Allen and Tildesley (1987)]: 

݃ଶሺݎԦଵ, Ԧଶሻݎ ൌ ேሺேିଵሻ
ఘమ௓ಿೇ೅

׬ ԦସݎԦଷ݀ݎ݀ … Ԧேݎ݀ expሾെܷሺݎԦଵ, ,Ԧଶݎ … , Ԧேሻݎ ݇஻ܶ⁄ ሿ (Mt10) 

where ܼே௏் is the partition function in the NVT-ensemble and 

ܷሺݎԦଵ, ,Ԧଶݎ … ,  Ԧேሻ  is the total interaction potential. In MR fluids, the pairݎ

distribution function only depends on the spherical coordinates, ݎ and ߠ 

due to the symmetries of the system. The pair distribution function can be 

computed as follows [Allen and Tildesley (1987)]: 

݃ሺݎ, ሻߠ ൌ ௏
ேమ ∑ۃ ∑ ݎሺߜ െ ߠሺߜ௜௝ሻݎ െ ௜௝ሻ௝ஷ௜௜ߠ  (Mt11)     ۄ

Physical quantities can also be defined in terms of the positions and 

velocities of the particles in the simulation, such as the stress tensor or the 

viscosity. In general, the stress tensor can be defined as follows [Irving 

and Kirkwood (1950)]: 

߬ఈఉ ൌ െ ଵ
௏

ቀ∑ ௣೔
ഀ௣೔

ഁ

ெ೔
௜ ൅ ∑ ௜௝ݎ

ఈܨ௜௝
ఉ

௜ஷ௝ ቁ  (Mt12) 

where ߙ and ߚ stands for the components of the tensors, ݌Ԧ௜ is the 

momentum of the particle ݅, ܯ௜ is the mass of the particle ݅, ݎԦ௜௝ is the 

vector position between the particles ݅ and ݆, and ܨԦ௜௝ is the interparticle 

force between the particles ݅ and ݆. In the case of inertialess simulations, 

the stress tensor calculation can be simplified as follows: 
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߬ఈఉ ൌ െ ଵ
௏

∑ ௜௝ݎ
ఈܨ௜௝

ఉ
௜ஷ௝    (Mt13) 

On the other hand, the viscosity can be defined by the Green-Kubo 

relation in terms of the stress autocorrelation function [Wesp et al. (2011); 

Segovia-Gutierrez et al. (2013)]. 
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A micromechanical model for 
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This article is under review 

Abstract 

We propose a micromechanical model for the behavior of dilute 

magnetorheological fluids under unidirectional slow-compression, 

constant-volume squeeze flow mode. In the linear magnetization regime, 

the model predicts a power-law scaling of the normal stress with the 

particle volume fraction and magnetic field strength squared at low fields. 

The predictions are satisfactorily compared with experimental 

measurements for different particle loadings, sample volume, surface 

roughness and initial gap distance. 

1.1. Introduction 

Magnetorheological (MR) fluids are field-responsive colloids that 

typically exhibit a liquid-to-solid transition upon the application of a 

magnetic field. In current commercial applications, MR fluids are 
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subjected to strongly demanding deformations. Among standard 

kinematics, simple shear is undoubtedly the most widely studied and 

better known. However, the understanding of the squeeze flow behavior 

of MR fluids is still incomplete in spite of recent advances during the last 

decade (de Vicente et al. 2011a, 2011b; Ruiz-López et al. 2012; Guo et al. 

2013; Xu et al. 2014). 

Currently, continuum media theories are claimed to successfully explain 

their normal force versus gap dependence in slow compression, no-slip 

conditions, under constant volume operation (see Figure 1.2 in Ruiz-

López et al. 2012; Guo et al. 2013; Xu et al. 2014). These theories predict 

the appearance of a yield compressive stress and a power law relationship 

between ܨ and 1 െ  with exponent -2.5 (e.g. see Equation 9 in de ߝ

Vicente et al. 2011b). Here ܨ stands for the normal force and ߝ ൌ 1 െ ௛
௛బ

 

is the compressive strain, where ݄ is the gap distance and ݄଴ ൌ ݄ሺݐ ൌ 0ሻ 

is the initial gap. Up to now, deviations between experiments and 

continuum media theory are qualitatively explained in terms of a shear 

strengthening effect (Tang et al. 2000) and demonstrated via superposition 

rheology (de Vicente et al. 2011b) and optical microscopy (Ruiz-López et 

al. 2012).  

In this manuscript we follow a microscopic approach to develop a slender-

body like micromechanical model for the squeeze flow behavior of MR 

fluids in slow compression. The model accounts for magnetostatic forces 

between the particles, and predicts the appearance of a yield compressive 

stress (and normal force) that scales with particle volume fraction and 

magnetic field squared, at low fields, in the linear magnetization regime. 

Strictly speaking, the validity of this model is limited to infinitesimally 

small deformations (ߝ ՜ 0) and for dilute suspensions (߶ ՜ 0), where 

single-particle-width chains should exist and interchain interactions are 
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safely neglected. However, in spite of the many simplifications in this 

model, we will demonstrate here that it works well for a wide range of 

deformations (ߝ א ሾ0 െ 0.7ሿ) and concentrations (߶ א ሾ0.001 െ 0.10ሿ), 

and that it is also capable to enlighten some experimental findings 

reported in the literature that remain currently unexplained. In particular, 

the model predicts a ݈ܨ݃݋ versus ݈݃݋ሺ1 െ  ሻ slope of -2 in much betterߝ

agreement with experimental data at very low loadings where the shear 

strengthening effect is expected to be negligible (߶ د 0.05), (Ruiz-López 

et al. 2012). In the second part of the manuscript, we describe carefully 

designed experiments at low particle concentrations to validate the model. 

Apart from these, we also address the influence of sample volume, surface 

roughness and initial gap distance in the squeeze flow behavior. 

1.2. Theoretical model 

We assume a collection of single-particle-width chains confined between 

two parallel plates separated by a distance ݄ and approaching with a 

velocity ݒ. We assume that the gap ݄ between the plates is much larger 

than the diameter of the (monodisperse) particles ߪ:  ݄ ب  Also, we .ߪ

assume that ݒ is small enough so that particles, initially forming straight 

chains in the field direction, readjust their positions into a thicker column 

but they do not spread out from the aggregate.  

The magnetic dipolar energy for two particles with identical magnetic 

moments ሬ݉ሬԦ௜ and ሬ݉ሬԦ௝ separated at a distance ݎ௜௝ follows the expression: 

௜ܷ௝ ൌ ଵ
ସగఓబఓ೎ೝ

௠ሬሬሬԦ೔൉௠ሬሬሬԦೕିଷሺ௠ሬሬሬԦ೔൉௥̂ሻሺ௠ሬሬሬԦೕ൉௥̂ሻ
௥೔ೕయ   (1.1) 

where ሬ݉ሬԦ௜ ൌ ሬ݉ሬԦ௝ ൌ ሬ݉ሬԦ ൌ ௣ߚ௖௥ߤ଴ߤ3 ௣ܸܪሬሬԦ. Here, ߤ଴ is the magnetic 

permeability of the vacuum, ߤ௖௥ is the relative permeability of the 
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continuous medium, ߚ௣ is the so-called contrast factor of the particles, 

௣ߚ ൌ ൫ߤ௣௥ െ ௣௥ߤ௖௥൯/ሺߤ ൅  ௣௥ is the magnetic permeability of theߤ , ௖௥ሻߤ2

particles, ௣ܸ is the particle volume and ܪሬሬԦ is the magnetic field strength. In 

this work the magnetic field strength is calculated using the Local Field 

Theory,  ܪሬሬԦ ൌ  ሬሬԦ௟௢௖ (Martin and Anderson 1996). According to this, theܪ

local field in the center of a particle, ݅, can be calculated as  ܪሬሬԦ௟௢௖,௜ ൌ ሬሬԦ଴ܪ ൅

∑ ሬሬԦ௠ೕܪ

ே೛೎
௝ஷ௜ , where ܪሬሬԦ଴ is the external magnetic field and ܪሬሬԦ௠ೕ ൌ ଷ൫௠ሬሬሬԦೕ൉௥̂൯௥̂ି௠ሬሬሬԦೕ

ସగఓబఓ೎ೝ௥೔ೕ
య  

is the magnetic field produced by the magnetic dipole, ሬ݉ሬԦ௝ located in the 

center of the particle ݅. Assuming an infinite and straight (no defects) 

single-particle-width chain aligned in the field direction, the local field 

becomes ܪሬሬԦ௟௢௖ ൌ ൫1 െ ሺ3ሻߞ௣ߚ 2⁄ ൯ିଵܪሬሬԦ଴, where ߞ is the Riemann Zeta 

function. Obviously, as a result of the approximations performed, the local 

field calculation is strictly valid in the limit of infinite gaps. However, for 

the gap intervals explored in this work, deviations are below 5%. It is 

important to remark here that the use of local fields instead of external 

fields is crucial because the local field is about 50% to 100% higher than 

the external magnetic field. 

The total energy of a chain ௖ܷ is obtained by the addition of the 

contributions from all the pairs of particles within a chain: 

௖ܷ ൌ ∑ ∑ ௜ܷ௝
ே೛೎
௝ୀ௜ାଵ

ே೛೎ିଵ
௜ୀଵ         (1.2) 

Here ௣ܰ௖ is the number of particles per chain.  

Under the hypothesis that ߪ/݄ ا 1, it is possible to extend the 

summations in Equation 1.2 to the continuum and hence the magnetic 

energy in a chain can be written as: 

௖ܷ ൌ ׬ ଵ
ସగఓబఓ೎ೝ

ௗ௠ሬሬሬԦ൉ௗ௠ሬሬሬԦᇱିଷሺௗ௠ሬሬሬԦ൉௥̂ሻሺௗ௠ሬሬሬԦᇱ൉௥̂ሻ
|௥Ԧି௥Ԧᇱ|య         (1.3) 
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with ݀ ሬ݉ሬԦ ൌ ݀ ሬሬԦܸ݀ andܪ௔ߚ௖௥ߤ଴ߤ3 ሬ݉ሬԦԢ ൌ  ௔ is now theߚ  .ሬሬԦܸ݀Ԣܪ௔ߚ௖௥ߤ଴ߤ3

contrast factor of the aggregate: ߚ௔ ൌ ሺߤ௔ െ ௔ߤ௖௥ሻ/ሺߤ ൅  ௖௥ሻ. Theߤ2

magnetic permeability of the aggregates ߤ௔ is estimated in this work using 

a Mean Field Theory (e.g. Bötcher equation): 
ఓೌିఓ೎ೝ

ଷఓೌ
ൌ ߶௔

ఓ೛ିఓ೎ೝ

ଶఓೌାఓ೛
    (1.4) 

For simplicity, we suppose now that the aggregates have a cylindrical 

shape and that they are thin enough to suppose that ܸ݀ ൌ ௖ݎߨ
ଶ݀ݖ and 

ܸ݀Ԣ ൌ ௖ݎߨ
ଶ݀ݖԢ where ݎ௖ is the radius of the cylinder. We also assume that 

the magnetic field points in the z-direction so ܪሬሬԦ ൌ  Then, the . ݖ̂ܪ

magnetic energy of a chain is obtained as follows: 

௖ܷ ൌ െ ଽ
ଶ

௖ݎߨ
ସߤ଴ߤ௖௥ߚ௔

ଶܪଶ ׬ ௗ௭ ௗ௭ᇱ
|௭ି௭ᇱ|య    (1.5) 

The limits of integration in Equation 1.5 come from the limits of the 

summations in Equation 1.2. Thus, the summation from 1 to ௣ܰ௖ െ 1 is 

now the integral of ݖ from 2/ߪ to ݄ െ  and the summation from 2/ߪ3

݆ ൌ ݅ ൅ 1 to ௣ܰ௖ is the integral from ݖ ൅ ݄ to ߪ െ  Bearing in mind .2/ߪ

that ߪ ا ݄, after some algebra, Equation 1.5 can be written as: 

௖ܷ ൌ െ ଽ
ସ

௖ݎߨ
ସߤ଴ߤ௖௥ߚ௔

ଶܪଶ ቀ ௛
ఙమ െ ଷ

ఙ
൅ ଵ

௛
ቁ      (1.6) 

Next, the total energy of the system ܷ is estimated by multiplying the 

energy of a chain ௖ܷ times the number of chains ௖ܰ; ܷ ൌ ௖ܰ ௖ܷ. Here, the 

total number of chains ௖ܰ is obtained from the particle volume fraction in 

the system ௖ܰ ൌ 6߶ ଴ܸ/ߪߨଶ݄଴ and the radius of the chain ݎ௖ can be 

obtained as a function of the initial radius of the chain ݎ௖଴. Here, we 

assume that the initial radius of the chain is the radius of the particle 

௖଴ݎ ൌ  and that the volume of the aggregate remains constant during 2/ߪ

the compression ݎߨ௖
ଶ݄ ൌ ௖଴ݎߨ

ଶ݄଴. As a result, the following relation is 
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obtained: ݎ௖
ସ ൌ ସ݄଴ߪ

ଶ/16݄ଶ. Therefore, substituting ݎ௖, the total energy 

ܷ can be written: 

ܷ ൌ െ ଶ଻
ଷଶ

߶ ଴ܸߤ଴ߤ௖௥ߚ௔
ଶܪଶ ቀ௛బ

௛
െ ଷఙ

௛బ

௛బ
మ

௛మ ൅ ఙమ

௛బ
మ

௛బ
య

௛య ቁ  (1.7) 

Considering ߪ ا ݄଴ and the definition of the compressive strain, ߝ ൌ

ሺ݄଴ െ ݄ሻ/݄଴, we arrive to the final expression of the magnetostatic 

energy: 

ܷ ൌ െ ଶ଻
ଷଶ

߶ ଴ܸߤ଴ߤ௖௥ߚ௔
ଶܪଶ ଵ

ଵିఌ
                     (1.8) 

With this, the normal stress in the sample is obtained as the derivative of 

the energy density with the instantaneous gap (de Vicente et al. 2011b): 

߬௭௭ ൌ െ ଵ
ௌ

డ௎
డ௛

ൌ െ ଵ
ௌ௛బ

డ௎
డఌ

ൌ െ ଵ
௏

௛
௛బ

డ௎
డఌ

ൌ െ ଵ
௏

ሺ1 െ ሻߝ డ௎
డఌ

          (1.9) 

Finally, substituting Equation 1.8 into Equation 1.9 we get: 

߬௭௭ ൌ ଶ଻
ଷଶ

௔ߚ௖௥ߤ଴ߤ߶
ଶܪଶ ଵ

ଵିఌ
       (1.10) 

From Equation 1.10, a yield compressive stress ߬௒஼  can be calculated as 

the normal stress ߬௭௭ in the limit of no deformation (i.e. ߝ ՜ 0): ߬௒஼ ؠ

limఌ՜଴  ߬௭௭ ൌ ଶ଻
ଷଶ

௔ߚ௖௥ߤ଴ߤ߶
ଶܪଶ. As a result, the yield compressive stress 

shows a linear dependence on the particle concentration ߶ and a quadratic 

dependence on the magnetic field strength ܪ at low fields. These 

predictions are similar to those obtained from other micromechanical 

models reported in literature for yield shear stresses (Martin and Anderson 

1996; de Gans et al. 1999; de Vicente et al. 2004; Volkova et al. 2000). 

The magnetic normal force ܨ can be obtained as the normal stress ߬௭௭ 

multiplied by the surface area of the sample. There are two possibilities 

for the calculation of the surface area. On the one hand we can assume 

that the field-induced structures slip along the surfaces and move radially 
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when compressing. On the other hand, we can assume that the structures 

remain connecting the plates and do not displace radially. In the former 

case the surface area can be simply calculated as ܵ ൌ ଴ܸ/݄. In the latter 

case the aggregates do not slip over the plates, the particle volume fraction 

increases within the gap according to ߶ ൌ ߶଴ 1 െ ⁄ߝ , and the surface area 

is given by ܵ ൌ ଴ܸ/݄଴. Nevertheless, no matter the particular assumption 

employed we arrive to the same final equation for the magnetic normal 

force acting on the plates:  

ܨ ൌ ଶ଻
ଷଶ

௔ߚ௖௥ߤ଴ߤ߶
ଶܪଶ ௏బ

௛బ

ଵ
ሺଵିఌሻమ          (1.11) 

Strictly speaking, apart from magnetostatic forces, capillary forces ܨ௖௔௣ 

do, a priori, contribute as well to the normal force under compression 

(e.g. Ewoldt et al. 2011). ܨ௖௔௣ depends on the surface tension ߛ, the 

contact angle, ߠ and the gap separation ݄ according to: ܨ௖௔௣ ൌ

െ ሻߠcos ሺߛ2 ଴ܸ ݄ଶ⁄ . It is an adhesive force (ܨ௖௔௣ ൏ 0) and therefore it 

tends to diminish the gap between the plates. As observed, it depends on 

ሺ1 െ  .ሻିଶ, similar to the magnetostatic contribution (c.f. Equation 1.11ߝ

As a result, capillary forces contribute shifting (vertically) the normal 

force curves. For large particle concentrations and magnetic fields, ܨ௖௔௣ is 

clearly much smaller than ܨ because ܨ ן  ଶ. However, capillary forcesܪ߶

can be important in the case of small loadings and small fields. In order to 

avoid complications coming from capillary forces, the normal force 

transducer will be reset after loading the sample in the geometry. With 

this, the effect of the capillary force can be safely neglected at least in the 

limit of validity of the model (i.e. at low compressive strains). 

Similar to ߬௒஼ , a yield normal force ܨ௒ can also be defined starting from 

Equation 1.11: 

௒ܨ  ؠ limఌ՜଴ ܨ  ൌ ଶ଻
ଷଶ

௔ߚ௖௥ߤ଴ߤ߶
ଶܪଶ ௏బ

௛బ
ൌ ߬௒஼

௏బ
௛బ

         (1.12) 
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As observed from Equations 1.10-1.12 predictions of this model are linear 

with the volume fraction and quadratic with the external magnetic field 

strength at low fields. On the one hand, the linearity with the volume 

fraction comes from the assumed arrangement of particles in single-

particle-width chains at the beginning of the compression. Infinite dilution 

is a necessary condition for this to occur. On the other hand, the quadratic 

dependence with the magnetic field strength is a consequence of the linear 

magnetization approximation employed in the calculation of the magnetic 

moments of the particles and it is strictly valid in the limit of low fields. 

Of course, a constant dependence with the field strength is expected in the 

saturation regime by simply replacing ߚ௔
ଶܪଶ by ܯ௔௦

ଶ/9 (with ܯ௔௦ the 

saturation magnetization of the aggregates). 

1.3. Experimental 

Conventional MR fluids were prepared by carefully mixing carbonyl iron 

microparticles (HQ grade, BASF) in silicone oil of 20 mPa·s (Sigma-

Aldrich). A parallel plate magnetorheometer MCR-501 (Anton Paar) was 

used to perform constant volume squeeze flow experiments in the 

presence of magnetic fields similarly to Ruiz-López et al. 2012. Non-

magnetic titanium plates (diameter 20 mm) were employed except for the 

most concentrated MR fluids. Unless otherwise stated, the initial 

separation was ݄଴ ൌ and the sample volume was ଴ܸ ݉ߤ 300 ൌ  .ܮߤ20

Plates were supposed to be perfectly parallel even though a small 

misalignment exists (Andablo-Reyes et al. 2010, 2011). Also, the 

distortion of the force sensor under pressures generated in this work and 

wall slip were neglected (de Vicente et al. 2011b). Wall slip was only 

noticeable for the highest concentrations and prevented using 

sandblastered plates. Magnetic fields were not too large (smaller than ≈ 
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300 kA/m) to minimize magnetic field gradients within the magneto cell 

(Laun et al. 2008). 

All compression experiments reported here were run at constant volume 

଴ܸ, and constant velocity ݒ ൌ ሶߝ :elongational rate range) ݏ/݉ߤ10 ׽

0.03 െ ܵ ଵ). This corresponds to low plasticity numbersିݏ 0.2 ൏ 0.5 and 

low Reynolds numbers ܴ݁ ׽ 10ିଷ ا 1 so lubrication and creeping flow 

approximations can be used in the so-called “filtration” regime (McIntyre 

and Filisko 2010). The normal force sensor was zeroed after loading the 

sample in the geometry. Then, an external magnetic field was (suddenly) 

applied for 60 s for the field-induced structuration prior to the 

compression test. Results presented below are always averages over at 

least three separate runs. All experiments were run at 25 ºC.  

1.4. Results and discussion 

In Figure 1.1, the model is compared to experimental data, for different 

external magnetic field strengths (from ܪ଴ ൌ 88 to 354 kA/m), on MR 

fluids formulated at a particle concentration of  ߶ ൌ 0.05. We employ this 

particular loading as a reference (it is the same as in de Vicente et al. 

2011b). Experimental data are represented as symbols, and solid lines 

correspond to theoretical predictions (Equation 1.11). In this 

representation, experiments exhibit a slope of -2 in good agreement with 

the model. However, some deviations occur for the larger gap separations 

that could be due to inertia at the start-up of the compression test. Overall, 

a reasonably good quantitative agreement is found, bearing in mind that 

the model does not contain any free fitting parameter. 
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A more convenient way to visualize the experimental data is to plot a 

reduced force normalizing by the yield normal force, ܨ௒ . From a 

theoretical point of view, this must result in a master scaling curve as a 

function of 1 െ  Figure 1.2 represents theoretical and experimental data .ߝ

for a particle loading of ߶ ൌ 0.05. Generally speaking, a reasonably good 

scaling is found in agreement with the theory.  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-2

10-1

100

101

 

 

 88 kA/m
 133 kA/m
 177 kA/m
 221 kA/m
 265 kA/m
 354 kA/m

F 
(N

)

1-ε (-)  

Figure 1.1 Compression tests for ߶ ൌ 0.05 suspensions at different 
external magnetic field strengths. Symbols: experimental data. Lines: 
theoretical predictions -Equation 1.11-. Sample volume ଴ܸ ൌ  Initial . ܮߤ20
gap distance ݄଴ ൌ  .݉ߤ 300
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Figure 1.2 Scaling compression curves for ߶ ൌ 0.05 suspensions at 
different external magnetic field strengths. Normal forces, ܨ, are scaled 
here by the yield compressive stress ܨ௒ ൌ ଶ଻

ଷଶ
௔ߚ௖௥ߤ଴ߤ߶

ଶܪଶ ௏బ
௛బ

. Symbols: 
experimental data. Line: theoretical prediction -Equation 1.11-. Sample 
volume ଴ܸ ൌ Initial gap distance ݄଴ . ܮߤ20 ൌ  .݉ߤ 300

1.4.1. Effect of particle concentration 

Next we aim to explore the influence of particle concentration. From a 

theoretical perspective, it is expected a better agreement the lower the 

particle loading. Figure 1.3a demonstrates that the model satisfactorily 

explains the experimental data for low particle loadings. A very good 

agreement with the experiments is found for concentrations below 

߶ ൌ 0.10. This was expected to be so because interactions between 

aggregates (interaggregate interactions) are not important for dilute 

systems and they are neglected in the theoretical model. Figure 1.3b 

demonstrates that the linear scaling with particle concentration predicted 

by the micromechanical model actually experimentally occurs for low 

loadings (below ߶ ൌ 0.10). 
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For concentrations larger than ߶ ൌ 0.10 the model underestimates the 

experimental data (c.f. Figure 1.3). This is expected because of the 

presence of interaggregate interactions (Fernández-Toledano et al. 2014). 

Figure 1.3b demonstrates that the normal force is no longer proportional 

to the particle concentration and increases more rapidly (Ruiz-López et al. 

2012). The slope is now closer to 3, in good qualitative agreement with 

observations by Guo et al. 2013. In their paper, see Figure 1.6, they report 

a larger than 2 slope for the most concentrated suspensions. However, 

contrary to Guo et al. 2013, where magnetic field increased under 

compression, in our experimental assembly, the magnetic field 

distribution remains essentially constant during compression and this 

facilitates the interpretation of the results. The deviation from a slope of 2 

for the most concentrated MR fluids will be later explained in terms of 

slip at the walls that favors interaggregate interactions when the 

aggregates come into contact (see below). 

In the case of the lowest concentrations investigated (below ߶ ൌ 0.05), 

the normal force sharply decreases for large 1 െ  values, at the early ߝ

stages of the deformation. Unfortunately, the normal force resolution of 

our magnetorheometer is approximately 0.01 N which is very close to the 

typical force corresponding to this drop, and therefore we cannot get 

sound conclusions on this issue that, as stated above, may be related to 

inertia. 
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Figure 1.3 Effect of particle loading ߶. Symbols: experimental data. 
Lines: theoretical predictions -Equation 1.11-. Sample volume ଴ܸ ൌ
Initial gap distance, ݄଴ . ܮߤ20 ൌ  ,Magnetic field strength .݉ߤ 300
଴ܪ ൌ 177 kA/m  a) Normal force, ܨ, as a function of 1 െ  b) Normal .ߝ
force, ܨ, divided by the yield normal force, ܨ௒, as a function of 1 െ  .ߝ
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1.4.2. Effect of sample volume 

As commented in the discussion of Figure 1.3, the normal force resolution 

of the transducer impedes its accurate determination for large gap 

separations (large 1 െ  values), especially for the lowest particle loadings ߝ

where the sensed normal force is very small (below 1 N). In order to 

better explore this region we decided to carry out further experiments 

involving larger sample volumes ଴ܸ. These experiments would also be 

employed to test whether the theoretical prediction applies [ܨ ן ଴ܸ 

according to Equation 1.11)].  

Figure 1.4 contains experimental and theoretical predictions for initial 

volumes ranging from ଴ܸ ൌ to ଴ܸ ܮߤ20 ൌ  in dilute MR fluids ܮߤ80

(߶ ൌ 0.01). As expected, larger 1 െ  values (above the normal force ߝ

resolution) can be reached because the resulting normal force increases. In 

qualitative agreement with the model, larger initial volumes give a larger 

normal force (c.f. Figure 1.4a). However, only for the lowest initial 

volume explored ( ଴ܸ ൌ  a good quantitative agreement is found ,(ܮߤ20

between experiments and the theoretical prediction (i.e. a linear 

dependence is found). For the largest initial volumes, the model again 

underestimates the experimental data. These results are better appreciated 

in Figure 1.4b. Figure 1.4b contains normalized normal force data for 

different sample volumes ଴ܸ. For sufficiently small 1 െ  ,values ߝ

experimental data collapse in very good quantitative agreement with the 

proposed theoretical model; a linear dependence is expected. However, 

for large ଴ܸ, experimental data systematically deviate from the predictions 

hence suggesting that inhomogeneities in the magnetic field distribution, 

that become more important for large ଴ܸ and large 1 െ  influence the ,ߝ

results. 
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Figure 1.4 Effect of sample volume, ଴ܸ, on the compression behavior 
of dilute MR fluids (߶ ൌ 0.01). Symbols: experimental data. Lines: 
theoretical predictions -Equation 1.11-. Magnetic field strength 
଴ܪ ൌ 265 kA/m. Initial gap distance ݄଴ ൌ  ,a) Normal force .݉ߤ 300
as a function of 1 ,ܨ െ  divided by the yield ,ܨ ,b) Normal force .ߝ
normal force, ܨ௒, as a function of 1 െ  .ߝ
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1.4.3. Effect of surface roughness 

According to the model -Equation 1.11-, a slope of 2 should be 

experimentally found when plotting the normalized force as a function of 

1 െ  independently of the existence of slip or not. However, experiments ߝ

reported for the larger concentrations explored (߶ ൌ 0.10, 0.20 and 0.30) 

give a slope of nearly 3 (c.f. Figure 1.3). To better understand these 

findings we decided to carry out further experiments using roughened 

plates. In particular, the plates employed in these new experiments were 

subjected to sand-blastering and had a peak-to-valley roughness of 9.2 

µm. 

Results obtained for ߶ ൌ 0.10, 0.20 and 0.30 suspensions are contained 

in Figure 1.5 and demonstrate that the slope is very close to 2 when 

rougher surfaces are used, in very good qualitative agreement with the 

model. This suggests that the change in slope is actually mainly 

determined by slip of the MR fluid as a whole. Of course, the model still 

underestimates the experimental data because of the presence of 

interaggregate interactions at these particularly large particle loadings. In 

summary, the geometry assembly that is used by default in this work 

seems to prevent slip in the lowest concentrated MR fluids. However, for 

the largest concentrations investigated, the default roughness is not large 

enough to prevent slipping under this flow field. An important 

consequence of this is that the aggregates slipping along the surface can 

easily meet and form more complex interconnected structures therefore 

increasing the slope. By simply roughening the surfaces, slip is prevented 

and the slope becomes very close to 2 in agreement with the model. It is 

worth to note here that inhomogeneities in the field distribution do not 

explain the trends discussed in Figure 1.5 because the wetted area is the 

same for all tests. 
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Figure 1.5 Effect of plates surface roughness on the compression behavior 
of concentrated MR fluids (߶ ൌ 0.10, 0.20 and 0.30 vol%). Smooth 
plates (close symbols): ଴ܸ ൌ ଴݄ ;ܮߤ 20 ൌ ଴ܪ  ;݉ߤ 300 ൌ  .݉/ܣ݇ 177
Roughened plates (open symbols): ଴ܸ ൌ ଴݄ ;ܮߤ 40 ൌ ଴ܪ ;݉ߤ 600 ൌ
 -Line: theoretical expression -Equation 1.11 .݉/ܣ݇ 133

 

1.4.4. Effect of initial gap distance  

According to the model described in the theoretical section, an initial gap 

distance, ݄଴, dependence is expected. In particular, the magnetic 

contribution to the normal force scales with ܨ ן ݄଴
ିଵ. Figure 1.6a 

demonstrates that the larger the gap distance the smaller the normal force, 

in good qualitative agreement with the model. This implies that the yield 

compressive stress decreases upon increasing the gap. The model is in a 

reasonably good agreement with the experiments for ݄଴ ൐  .݉ߤ 300

However, for ݄଴ ൑  the model underestimates the experimental ݉ߤ 300

normal force presumably because of the increasing importance of 

inhomogeneities in the magnetic field distribution in the magneto cell 

(note that ଴ܸ  is constant in this set of tests). Also, the hypothesis that 
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magnetic particles self-assemble in straight single chains prior to the test 

is more difficult to achieve in view of the major importance of particle-

wall and interaggregate interactions at low ݄଴ values. In Figure 1.6b, the 

normal force is scaled by the yield normal force ܨ௒. As shown, the initial 

gap scaling predicted by the model (ܨ ן ݄଴
ିଵ) is in very good agreement 

with the experiments for ݄଴ ൐  .݉ߤ 300
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Figure 1.6 Effect of initial gap, ݄଴, on the compression behavior of MR 
fluids. MR fluid concentration ߶ ൌ 0.10. Magnetic field strength ܪ଴ ൌ
Initial sample volume ଴ܸ .݉/ܣ݇ 177 ൌ  as a ,ܨ ,a) Normal force .ܮߤ 20
function of 1 െ  ,divided by the yield normal force ,ܨ ,b) Normal force .ߝ
௒, as a function of 1ܨ െ   .ߝ
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1.5. Conclusions 

A novel micromechanical model is proposed for the flow behavior of 

magnetorheological fluids in unidirectional slow compression. Even 

though this model is strictly valid in the dilute regime and for 

infinitesimally small deformations, it still explains experimental findings 

for a wide range of concentrations and deformations where the classical 

continuum media theory tends to fail (de Vicente et al. 2011b). In 

particular, the model provides an explanation for reported deviations from 

the slope of -2.5 that is theoretically predicted by continuous media 

theories. The predictions of the model are validated for different particle 

loadings, sample volume, surface roughness and gap distance.  
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Abstract 
This paper is concerned with an investigation of the rheological 

performance of magnetorheological fluids under squeeze flow. 

Preliminary results on Newtonian fluids are first compared to Stefan’s 

equation. Then, unidirectional monotonous compression tests are carried 

out in the presence of uniaxial external magnetic fields at slow 

compression rates under constant volume operation. Results are compared 

to Bingham plastic, bi-viscous and single chain micromechanical squeeze-

flow models. Measurements using combined deformation modes 

(compression + small-strain oscillatory shear) suggest a compression-

induced shear strengthen effect up to strains of ~0.5. Particle-level 

dynamic simulations are in qualitatively good agreement with 

experimental observations. 
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2.1. INTRODUCTION 

Magnetorheological (MR) and electrorheological (ER) fluids are field-

responsive colloids that show a rapid increase in viscosity upon the 

application of an external magnetic or electric field respectively [Ginder 

(1998); Rankin et al. (1998); Bossis et al. (2002)]. The reason for this is 

the formation of particle clusters aligned in the field direction. As a 

starting point, their flow behavior is typically modeled by the Bingham 

fluid like equation where, in the case of steady shear flow, the stress is 

given by  

߬ ൌ ߬௬ ൅ ሶߛ௣ߟ                   (2.1) 

Here ߬௬ is the yield shear stress, ߟ௣ is the plastic viscosity, and ߛሶ  is the 

shear rate. In this work we will focus on MR fluids. However, many of the 

results presented below can be easily extended to ER fluids. 

Currently, an important gap exists between commercial requirements for 

the strength of field-responsive fluids and their performance levels. While 

significant work has been done to enhance the fluid formulation [Bossis et 

al. (2002); de Vicente et al. (2003); Vereda et al. (2007); Vereda et al. 

(2009); de Vicente et al. (2010)], much less efforts have been made to 

improve the design of devices most of them being restricted to shearing 

operation regimes [Olabi and Grunwald (2007)]. Most devices that use 

MR fluids can be classified as having either fixed poles (pressure-driven 

flow mode), relatively moveable poles (direct-shear flow mode and 

squeeze-film flow mode) or a combination of these modes [Jolly and 

Carlson (1996)]. Diagrams of these three basic operational standard flow 

modes are shown in Figure 2.1. Interestingly, it has been documented that 
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field-responsive fluids show yield stresses in the order of direct-

shear<pressure-driven<squeeze flow mode [Havelka and Pialet (1996)].  

 

Figure 2.1. Basic operational modes for controllable MR fluid devices. 

Classical direct-shear mode has been studied thoroughly in the literature 

under dynamic [de Gans et al. (1999); de Vicente et al. (2005); Saldivar-

Guerrero et al. (2006); Ekwebelam and See (2007); de Vicente et al. 

(2007); de Vicente et al. (2009); de Vicente et al. (2010); Ramos et al. 

(2010a)] and steady shear regimes [Volkova et al. (2000); de Vicente et 

al. (2004); Park et al. (2006); Bell et al. (2008); de Vicente et al. (2010); 

Ramos et al. (2010b)] and several products are already present in the 

market [Olabi and Grunwald (2007)]. Pressure-driven flow mode 

investigations have also been reported because much larger and realistic 

shear rates can be imposed (up to 20,000 s−1, in contrast to conventional 

rotational rheometry that encompasses shear rates only up to a few 

thousand 1/s) [Wang and Gordaninejad (2006)]. Surprisingly, relatively 

limited attention has been given to the behavior of MR fluids in squeeze 

flow mode, even though it has been suggested that the yield stress that 

could be achieved would be ten times larger than that attainable with 

either the direct-shear or pressure-driven flow modes [Zhang et al. 

(2004)]. Furthermore a compression-assisted-aggregation process has 

been demonstrated to enhance the yield shear stress in field-responsive 

fluids by the formation of thick columns with strong and robust ends (MR 
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fluids [Tang et al. (2000)]; ER fluids [Tao et al. (2002)]). Despite of their 

importance, a complete understanding of the mechanical properties of MR 

fluids under valve or squeeze flow behavior is still missing in the 

literature [McIntyre and Filisko (2010)].  

In this manuscript the squeeze flow (i.e. biaxial elongational flow) 

behavior of MR fluids is studied. First, the experimental procedure for 

investigating the normal force was checked by measuring forces with 

model Newtonian fluids. Then, we focused on the squeeze flow behavior 

of MR fluids in low Peclet numbers (slow plate motion) where “filtration” 

is expected to be significant. Although the interparticle interaction is the 

key issue in the field-responsive effect –especially at small compressive 

strains–, the structure of particle aggregates is known to be also important 

in the MR mechanism. In this sense we also investigated the structure 

evolution under compression through combined small-amplitude 

oscillatory shear (SAOS) and squeeze flows as well as using particle 

dynamic simulations. The manuscript is structured as follows: in Section 

2.2 we review the state-of-the-art of squeeze flow behavior of field-

responsive fluids. In Section 2.3 we illustrate some of the most relevant 

squeeze flow theories for Newtonian and plastic fluids. In Section 2.4 we 

describe the experiments and in Section 2.5 we show the details of the 

particle-level magnetorheological simulations. Results are presented 

Section 2.6. We end with some conclusions in Section 2.7. 

2.2. BACKGROUND 

A seminal paper published by Stanway et al. (1987) is probably the first to 

demonstrate the feasibility of employing field-responsive (ER) fluids 

under squeeze flow. Here, tensile and compressive forces were found to 

be considerably larger than those developed in shearing flows. This was 
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later confirmed through experiments by Monkman (1995) and Gong and 

Lim (1996). Short time later, vibration control applications followed with 

the construction and testing of ER squeeze-based damping devices 

[Stanway et al. (1992)] and engine mounts [Sproston et al. (1994a)]. On 

the theoretical side both macroscopic and microscopic approaches have 

been used. A bi-viscous model, inspired in earlier work on plastic fluids 

by Gartling and Phan-Thien (1984), was successfully used to explain the 

dynamic performance of ER fluids in squeeze [Williams et al. (1993); 

Sproston et al. (1994a); Sproston et al. (1994b)] and unidirectional 

monotonous compression for large gap separations [Tian et al. (2003a); 

Meng and Filisko (2005)]. Some years later, inertia was included in the 

theoretical derivation [Lee and Wen (2002)] and an iterative approach for 

the yield stress was incorporated to the model rather than using the 

classical power law expression [El Wahed et al. (2003)]. Lukkarinen and 

Kaski (1996, 1997) employed computer simulation methods in a 

comparative study of the mechanical properties of model ER structures 

under various dynamical loading conditions (shear, compression and 

tension). It was demonstrated that compressive loading transferred the 

largest force. Unlike simulations under shear flow, in squeeze flow 

simulations it is not easy to apply periodic boundary conditions so in 

general the number of particles needs to be increased. To avoid this 

problem a Message Passing Interface parallel processing technique was 

employed by Kim et al. (1999). 

An investigation on the application of ER fluids to control vibration under 

conditions of constant voltage and constant electric field was reported by 

El Wahed et al. (1998). The effect of electric field strength, particle 

concentration and continuous phase viscosity were investigated by Chu et 

al. (2000). Special emphasis was paid to the appearance of normal stress 

fluctuations due to the deformation of field-induced chainlike structures 
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under the field. The effect of an AC electric field, with tunable waveform, 

on the performance of an ER fluid in oscillatory squeeze flow was 

investigated by El Wahed et al. (2000). The bi-viscous model was found 

to be equally valid for the AC case as for the DC case reported by El 

Wahed et al. (1998). See et al. (1999) measured field-induced force 

waveforms in ER fluids under oscillatory squeeze flow using a Micro-

Fourier Rheometer. Their results provided experimental support for the 

theoretical model of ER fluids under squeeze proposed by Sproston et al. 

(1994a). El Wahed et al. (1999) reported an experimental investigation 

into the influence of particle size on the effectiveness of an ER fluid in 

dynamic squeeze flow. They demonstrated that small particles are 

generally the more effective in terms of the level of transmitted force if 

compared to large particles. Viera et al. (2001) used a Mechanical Testing 

Machine to investigate the mechanical properties of ER fluids under 

tensile, compressive and oscillatory squeeze tests. Their results showed 

that ER fluids are more resistant to compressive than to tensile stress. In 

compression tests, the compressive stress increased with the increase of 

the electric field strength. However, the increase of the initial gap size and 

the approaching velocity produced a decrease on the compressive stress. 

Tian et al. (2002a) found that both the compressive stress and the 

compressive modulus in ER fluids show an exponential relationship with 

the compressive strain while the strain is larger than 0.1. Stepwise 

compression experiments demonstrated that with the increase of applied 

voltage, ER fluids show a change of electric field-determined behavior to 

the plastic fluid compressive mode [Tian et al. (2002b)]. A comprehensive 

study of the volume fraction dependence in squeezed ER fluids has been 

traditionally impeded by the “sealing effect” appearing under constant 

area operation. These restrictions were avoided by using a constant 

volume apparatus [McIntyre and Filisko (2007)]. At high field strengths, 

low compression rates and low viscosity of the continuous phase most of 
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the particles are kept between the plates and only the dispersing phase is 

squeezed out [Lynch et al. (2006); McIntyre and Filisko (2010); Tian et 

al. (2010)]. This fact has been parametrized in the form of a Peclet 

number as the ratio of viscous or convective forces to diffusive terms 

[Collomb et al. (2004); McIntyre and Filisko (2010)]. Most of the squeeze 

flow literature reviewed above concerns ER fluids and involves constant 

voltage and constant area compression. In this case, the electric field 

strength and volume concentration increase during the process. Thus, any 

change in the compressive stress is associated to the change of the electric 

field, volume fraction and the structural strength (i.e. the so-called 

structure parameter [Conrad (1998); Wu and Conrad (1998)]). Even 

though this problem can be partially skipped in the case of tensile flow by 

using normalized methods [Tian and Zou (2003b)] it is an important 

drawback. In principle, when a MR fluid is compressed under a constant 

volume in the presence of a DC uniform magnetic field, the change of 

compressive stress may indicate mostly the change of the structure 

parameter in the MR fluids. 

Surprisingly, the squeeze flow behavior of MR fluids has not been studied 

so thoroughly comparing with their ER analogues. First reports on this 

topic concern compression-assisted-aggregation processes to achieve 

high-efficiency MR fluids by the so-called squeeze-strengthening effect. 

This consists in enhancing the yield shear stress in field-responsive fluids 

by the formation of thick strong columns under compression [Tang et al. 

(2000)]. This approach was further corroborated by Zhang et al. (2004) 

and Zhang et al. (2009). Contrarily, See et al. (2006) presented 

experiments in a MCR (Anton Paar) rheometer where compression did not 

have a large effect in the shear response. A detailed comparative study of 

the behavior of MR fluids under steady shear flow and constant velocity 

squeezing flow was reported by See (2003). The measurements showed 
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that the mechanical response under squeezing flow scaled as ܪ଴.ଽଵ, 

whereas the response under shearing scaled as ܪଵ.ସ. A special device was 

designed and fabricated to perform squeeze, torsional and squeeze 

combined with torsional flows on an Instron Multiaxial Testing Machine 

[Kulkarni et al. (2003)]. Contrary to what is believed [Tang et al. (2000)], 

it was experimentally observed that the introduction of a squeeze 

component in shearing flows (oscillatory torsional mode) does not always 

increase the strength of the MR fluid [Kulkarni et al. (2003)]. Mazlan et 

al. (2008) described the effect of compressive speed and magnetic field 

strength in the stress-strain curves of commercial MR fluids. On the one 

hand they observed a negligible effect of the compressive speed. On the 

other hand, the higher the magnetic field the faster stress-strain curve 

developed. 

2.3. SQUEEZE FLOW THEORY 

Under squeeze flow a material is compressed between two parallel plates. 

A schematic representation is shown in Figure 2.2. Here, the sample of 

volume ܸ is positioned between two circular plates initially separated a 

gap distance ݄଴. In this section we will look for the relationship between 

the normal force ܨ, height of the sample layer ݄, and squeezing rate of the 

moving plate ݒ as this dependency can be used to obtain important 

rheological properties of the sample, and in particular its yield stress.  

To investigate the squeeze flow properties the Reynolds number ܴ݁ has to 

be first estimated. In this operation mode, the Reynolds number can be 

defined as ܴ݁ ൌ ݄଴ߩݒ ⁄ߟ , where ߩ is the suspension density and ߟ is the 

suspension viscosity [Engmann et al. (2005)]. The squeeze flow analysis 

is greatly simplified here because lubrication theory and creeping flow 

approximation can be invoked as ܴ݁ ׾ 10ିଷ ا 1.  
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Figure 2.2. Schematic diagram of the constant volume squeeze flow 
experiment (not to scale). For simplicity the free surface profile is 
represented as a vertical line. In a typical experiment ݄଴ ൌ  and ݉ߤ300
݄௠௜௡ ൌ  .0.83 ~ ߝ The largest compressive strain was .݉ߤ50

2.3.1.  Newtonian fluids 

Since the pioneering work by Stefan (1874), the squeeze behavior of 

Newtonian fluids has received a lot of attention [e.g. Diennes and Klemm 

(1946); Campanella and Peleg (1987); Raphaelides and Gioldasi (2004)]. 

Under constant volume, ܸ, and no-slip condition Reynolds equation 

predicts the following radial pressure distribution (see Figure 2.2): 

ሻݎሺ݌ ൌ ଷఎ௩
௛య ሾܴଶ െ  ଶሿ       (2.2)ݎ

The normal force ܨ acting on the plate is simply obtained by integration 

on the surface: 

ܨ ൌ ଺గఎ௩
௛య ׬ ሾܴଶ െ ଶሿோݎ

଴ ݎ݀ݎ ൌ ଷగఎ௩
ଶ௛య ܴସ         (2.3) 

and therefore the so-called Stefan’s equation results: 

ܨ ൌ ଷఎ௩௏మ

ଶగ௛ఱ              (2.4) 
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Stefan’s equation assumes a no-slip boundary condition at the plates 

surfaces. However, this fact does not always holds and generally the 

presence of slip at the surfaces results in a significant force reduction 

when squeezing the sample [Engmann et al. (2005)]. Actually, analytical 

expressions exist in the literature for no-slip (i.e. “frictional” surfaces) 

[Diennes and Klemm (1946)] and perfect slip (i.e. “lubricated” surfaces) 

[Campanella and Peleg (1987); Raphaelides and Gioldasi (2004)], the 

later providing a lower limit for the forces with ܨ~݄ିଶ in the case of 

constant volume operation. In most cases neither no-slip nor perfect slip 

occurs, and partial slip arises at the moving surface where the radial 

velocity at the surface ݒ௥ takes on a linear form ݒ௥ ൌ ௦ݒ ݎ ܴ⁄ . Here, the 

slip parameter ݒ௦ can be adjusted between no-slip at a minimum value and 

perfect slip at its maximum value; 0 ൏ ௦ݒ ൏ ௩ோ
ଶ௛

. Several authors have 

investigated the partial slip situation in the past [Laun et al. (1999); 

McIntyre (2008)]. 

2.3.2. Inelastic yield stress fluids: a continuum approach 

The squeeze flow behavior of inelastic yield stress fluids under no-slip 

conditions was initially studied by Scott (1929). The problem was later 

addressed by Covey and Stanmore (1981) who revisited it and reported 

theoretical and experimental investigations using a parallel-plate 

plastometer. Fluids obeying a Bingham constitutive equation were 

analyzed in their paper under both constant volume and constant radius 

operation regimes. 

When dealing with yield stress fluids a plasticity number can be 

introduced [Covey and Stanmore (1981)]: 

ܵ ൌ ఎ೛௩ோ
௛మఛ೤

     (2.5) 
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The plasticity number separates two regimes. At low ܵ number the 

resistance to deformation arises from the yield shear stress component. 

However, at large ܵ number the major resistance to flow arises from 

viscous effects. Analytic expressions exist for the limits ܵ ൏ 0.05 and 

ܵ ൐ 10 whereas intermediate values of ܵ require numerical methods. In 

MR experiments presented in this work, ܵ was found to be always smaller 

than 0.05 whatever the gap distance and magnetic field strength applied 

hence suggesting that particle aggregates will dominate the flow behavior.  

Starting from the Cauchy-momentum equation for an incompressible 

fluid, Covey and Stanmore (1981) calculated the pressure on the fluid. 

Then, integrating the pressure over the total plate area gives a relation 

between the normal force ܨ and the approaching velocity ݒ: 

ܨ ൌ ଶగఛ೤ோయ

ଷ௛
൅ ସగ

଻௛మ ට2߬௬ߟ௣ܴݒ଻   (2.6) 

It must be noted here that Equation 2.6 was originally obtained for 

constant radius experiments, however, change to the constant volume 

condition can be simply made substituting ܸ ൌ  ଶ݄ [Covey andܴߨ

Stanmore (1981)].  

Subsequent publications in this field demonstrated that theoretical work 

was in some conflict with regard to the flow pattern produced in the 

geometry [Lipscomb and Denn (1984)]. Moreover the Bingham model 

was found to be unnecessarily complicated for numerical simulations. 

Gartling and Phan-Thien (1984) carried out a theoretical analysis that 

paralleled the method proposed by Covey and Stanmore (1981) this time 

using a bi-viscosity model instead of the Bingham description. This bi-

viscosity model was later used by Williams et al. (1993) in the 

development of a time-dependent sinusoidal squeeze flow theory for ER 
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fluids that was successfully applied to a prototype automotive engine 

mount. 

According to the theory by Williams et al. (1993), initially developed for 

ER fluids and adapted here for MR fluids, the normal force acting on the 

plates can be expressed by the following equation: 

ܨ ൌ ଶగఛ೤ோయ

௛ఞయ ቂ ఊయ

ଵ଴଼
൅ ׬ ܵଶܵ݀ܩఞ

ఊ ଷ⁄ ቃ                       (2.7) 

where ߛ, ߯, ܵ and ܩ are parameters defined by: 

ߛ ൌ ఎ
ఎೝ

; ܵ ൌ ఎ௩௥
௛మఛ೤

; ߯ ൌ ܵሺݎ ൌ ܴሻ; ܩ ൌ െ ௛
ଶఛ೤

ௗ௣
ௗ௥

    (2.8) 

Here, ߟ௥ is the preyield viscosity and ߟ  is the viscosity above the yield 

point in the bi-viscous model. 

Interestingly, when the plasticity number ܵ is small, pressure gradient ܩ 

and thus the compressive force are driven by the yield shear stress and the 

viscous contribution is negligible. Under this condition, Equation 2.7 is 

simplified to [Meng and Filisko (2005)]: 

ܨ ൌ ଶగఛ೤ோయ

ଷ௛
                         (2.9) 

which also corresponds to the low ܵ limit of Equation 2.6 that was 

obtained from a Bingham approach. This finding allows us to conclude 

that both macroscopic descriptions, involving Bingham or bi-viscous 

models, result in a normal force that varies with the gap distance as ݄ିହ ଶ⁄  

under constant volume operation.  

Whereas the theory presented above treats field-responsive fluids as 

homogeneous materials and model them as simplified Bingham (c.f. 

Equation 2.6) or bi-viscous fluids (c.f. Equation 2.7), in reality, field-
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responsive fluids are two-phase fluids consisting of particle aggregates 

immersed in a continuous liquid phase. In the next section we provide a 

squeeze flow theory under a simplified microscopic description. 

 

Figure 2.3. Schematic representation illustrating the standard 
micromechanical model consisting in a cubic network of single chains. 

2.3.3. Dilute magnetorheological fluids: a microscopic description 

Yang first studied the compressive and tensile behavior of dilute ER fluids 

by the electrostatic polarization model and Hertzian contact theory [Yang 

(1997)]. In this section we will adapt Yang’s theory to the case of MR 

fluids. 

A first microscopic insight in the normal force versus gap dependence of 

dilute MR fluids can be obtained under the assumption that particles 

aggregate to form single chains of particles aligned with the field (see 

Figure 2.3). With this, the gap thickness ݄
 
can be expressed as: 

݄ ൌ 2 ௣ܰ௖ሺܽ െ ሻߜ
             

(2.10) 

and the normal force ܨ acting on the plate is: 

ܨ ൌ ௖݂ܰ
       

(2.11) 
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Here, ௣ܰ௖ is the number of particles in a chain, ܽ is the radius of the 

particle, ߜ is the indentation depth, ௖ܰ is the number of chains and ݂ is the 

force between the particles.   

Assuming that the particles behave as purely elastic materials, Hertz 

contact theory states that the radius of the contact area between the 

particles ܽ଴ is given by  

ܽ଴
ଷ ൌ ଷ௔

ସ
ଵିఔమ

ா
ሺ݂ ൅ ௠݂ሻ

     
(2.12) 

where ߥ is the Poisson ratio, ܧ is the Young’s modulus, ௠݂ is the 

magnetostatic interaction force between the spheres and the indentation 

depth is ߜ ൌ ܽ଴
ଶ ܽ⁄ . 

As a first approximation, we can assume dipolar magnetic interactions for 

aligned dipoles. Hence,  

 ௠݂ ൌ ଴݂
௔ల

ሺ௔ିఋሻర ଶܪ

    
(2.13) 

where ଴݂ ൌ ሺ3 2⁄ ሻߤߨ଴ߤ௖௥ߚଶ and ߚ ൌ ൫ߤ௣௥ െ ௖௥൯ߤ ൫ߤ௣௥ ൅ ௖௥൯ൗߤ2 . Here, 

 ௣௥ is the relative permeability of theߤ ,଴ is the permeability of vacuumߤ

particles, ߤ௖௥ is the relative permeability of the continuous phase, ߚ is the 

magnetic contrast factor, and ܪ is the magnetic field strength.  

After some algebra, combining Eqs. (10-13) we arrive to: 

ܨ  ൌ ଷ
ଶ

థ௏௙బுమ

గ௛
ቈ ସா

ଷ௙బுమሺଵିఔమሻ ቀఋ
௔

ቁ
ଷ

ଶൗ
ቀ1 െ ఋ

௔
ቁ െ ቀ1 െ ఋ

௔
ቁ

ିଷ
቉         (2.14) 

Interestingly, the force – gap dependence scales with a power of െ1. This 

is a significantly weaker gap distance dependence if compared to 

predictions obtained from macroscopic models (c.f. Equation 2.9). As 



 

 

Chapter 2.  129 

observed, the sustainable load increases nonlinearly with decreasing 

separation of the surfaces and is a linear function of the elastic modulus of 

the particles.  

2.4.  EXPERIMENTAL:  SQUEEZE  FLOW 

MAGNETORHEOMETRY 

2.4.1. Apparatus 

A MCR 501 (Anton Paar) magnetorheometer was employed to investigate 

the squeeze flow MR behavior. Non-magnetic (titanium-based) parallel 

plates of diameter 20݉݉ were used. A scheme of the experimental 

squeeze flow test is sketched in Figure 2.2. In the compression tests the 

original commanded gap was set as ݄଴ ൌ  then the upper plate ,݉ߤ300

moved slowly down towards the stationary bottom plate at a constant 

velocity ݒ while the normal force acting on the upper plate was 

monitored. The measuring range of the force sensor is േ50ܰ and its 

elastic factor is 0.59݉ߤ/ܰ. The distortion of the force sensor under the 

pressures handled in this work was neglected. As a measure of the 

deformation, the compressive strain was defined here as 

ߝ ൌ ሺ݄଴ െ ݄ሻ ݄଴⁄ ൌ ݀ ݄଴⁄ . Typically, in our experiments the maximum 

compressive strain achieved was 0.8 ~ ߝ while the strain rate was around  

ሶ ~ 0.03ߝ െ  .ଵିݏ0.2

An external magnetic circuit was used to generate uniaxial DC magnetic 

fields of the order of ~100݇ܣ/݉ in the gap between the plates [Wollny et 

al. (2002)]. Due to geometrical constrictions, a central hole exists to pass 

the rheometer shaft through. As a consequence, the generated magnetic 

field is not absolutely uniform in the radial direction. This may result in 

some particle migration, especially at the largest field strengths 
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investigated [Andablo-Reyes et al. (2010a)]. A wide range of magnetic 

field strengths were examined up to 354 kA/m −well within the linear 

magnetization regime of the particles and suspensions−. Even though 

larger magnetic fields can be applied in the magnetorheological cell, 

particle migration enhances as a consequence of magnetic field gradients 

making it difficult to interpret the experimental results [de Vicente et al. 

(2009)]. It should also be remarked that preliminary tests were carried out 

on non-magnetic samples to confirm that the application of the magnetic 

field did not result in a measurable normal force. It should also be stressed 

that the magnetic field density in the MR fluid changes upon changing the 

gap since the magnetic resistance associated to the gap is modified. 

However, this fact has not been addressed in the present analysis. The 

plates were assumed to be perfectly parallel even though a small 

misalignment is feasible [Andablo-Reyes et al. (2010b)]. Nonetheless, our 

experiments did not reach strains larger than ߝ ൌ 0.8 which helped to 

prevent a serious error caused by the nonparalelism of the plates. The gap 

error was accounted for by calibration using a semiempirical approach 

that involves running measurements on Newtonian fluids at different gap 

distances. In particular, following the method by Connelly and Greener 

(1985) a gap error of 17݉ߤ was estimated in our plate-plate geometry. 

2.4.2 Materials preparation and experimental protocol  

Newtonian fluids used in this study were silicone oils having different 

viscosities (100 mPa s and 350 mPa s). These were obtained from Sigma-

Aldrich and used without further purification. MR fluids were prepared by 

carefully mixing carbonyl iron powder (HQ, BASF; diameter ~ 800݊݉) 

in silicone oil (20 mPa s, Sigma-Aldrich) to get suspensions having a 

volume fraction of 5 vol% (metallic iron density 7.8 g/cm3). This 

concentration is small enough for the models to be applied [c.f. Section 

2.3.3] and large enough to get a measurable normal force signal. The 
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preparation of suspensions consisted of the following steps: (i) magnetic 

powder and silicone oil were mixed in a polyethylene container; (ii) the 

mixture was stirred first by hand, and then in an ultrasonic bath; (iii) step 

(ii) was repeated several times to ensure the required final homogeneity. 

Basically, two possibilities exist when studying the squeeze behavior of a 

material: constant area or constant volume approaches. Here, the tests 

were carried out under constant volume conditions. This means that, a 

priori, the area of the plate in contact with the sample changes accordingly 

to the change in gap thickness. With this, the concentration of the particles 

that stay in between the plates is known throughout the experiment in 

contrast to what happens for ER fluids under conventional constant area 

experiments because of the so-called “sealing effect”. Another advantage 

of using constant volume tests is the fact that inertial effects are 

minimized contrarily to constant area experiments were corrections are 

usually needed [McIntyre (2008); McIntyre and Filisko (2010)]. 

Generally speaking, squeeze flow tests are typically run under constant 

normal force applied ܨ or constant approaching velocity ݒ (i.e. constant 

rate loading/compression). The experiments presented in this manuscript 

concern constant approaching speed investigations (1 െ  in a (ݏ/݉ߤ10

displacement control mode resulting in non-steady tests with variable 

strain rate. In this case, the inertial terms contained in the force equation 

vanish [Bird (1987)]. Furthermore, the small approaching speeds used 

guarantee that results presented here corresponded to low ܵ numbers 

[Covey and Stanmore (1981)] and to the so-called “filtration” regime of 

operation [McIntyre and Filisko (2010)].  

In a typical experiment a small amount of the MR fluid (initial radius 

଴ݎ ൌ 3.8 േ 0.3 ݉݉, volume ܸ ~ 14 ܮߤ) was deposited on top of the 

lower plate using a microliter syringe (MV17990 Boeco Germany). Once 
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the sample had relaxed the normal force transducer was reset to zero. 

Next, a uniaxial DC magnetic field was suddenly applied across the plates 

with the sample subjected to no deformation. This period was long enough 

to allow the aggregates to form. After 60 seconds, the compression test 

was started at a constant approaching speed ݒ still in the presence of the 

magnetic field. Results presented below are always averages over at least 

three separate runs with fresh new samples. All experiments were run at 

25 ºC. It is worth to remark that the normal force did not experience any 

measurable variation when the magnetic field was applied in the quiescent 

state due to the small particle concentration in the MR fluid. Finally, the 

way how to increase the magnetic field, either suddenly or gradually, was 

also checked and was found not to be important in the compression test 

results. 

2.5. PARTICLE‐LEVEL SIMULATIONS 

3-D MR simulations were carried out following a simplified method 

developed by Klingenberg and coworkers [Klingenberg et al. (1989); 

Klingenberg et al. (1991); Heine et al. (2006)]. The MR fluid was 

modeled as a suspension of ܰ buoyant, inertialess particles in a 

Newtonian fluid of viscosity ߟ௖ and relative magnetic permeability ߤ௖௥. 

The particles were considered to be monodisperse with diameter 2ܽ and 

relative magnetic permeability ߤ௣௥. When a magnetic field is applied the 

particles are magnetized due to their difference of permeability with 

respect to the continuum medium. Assuming pairwise additivity and 

taking the point dipole approximation, the magnetic force exerted on the 

particle i by the rest of the particles is: 

Ԧ௜ܨ
௠ ൌ ∑ ଴ܨ ൬ଶ௔

௥೔ೕ
൰

ସ
ൣ൫3ܿݏ݋ଶߠ௜௝ െ 1൯̂ݎ ൅ ෠൧ேߠ௜௝൯ߠ൫2݊݅ݏ

௝ୀଵ,௝ஷ௜  (2.15a) 
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଴ܨ ൌ ଷ
ସ

 ଶ   (2.15b)ܪଶܽଶߚ௖௥ߤ଴ߤߨ

where ܨ଴ is the so-called magnetic field dependent constant, ̂ݎ and ߠ෠ are 

the unit vectors parallel and perpendicular to the line joining the pair of 

particles respectively, ݎ௜௝ is the distance between the centers of particle ݅ 

and ݆, and ߠ௜௝ is the angle between the vector joining the centers of 

particle ݅ and ݆ and the external magnetic field ܪ (Figure 2.4). In contrast 

to previous simulations on ER fluids, where the voltage is kept constant 

and the electric field strength increases upon decreasing the gap, here ܪ is 

assumed to be uniform and constant while compressing the fluid. 

Multibody and multipolar interactions are neglected. 

 

Figure 2.4. Schematic representation of the coordinate reference system 
used in particle-level simulations. 

To prevent the particles from overlapping we introduced a short-range 

repulsive exponential interaction force: 
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Ԧ௜ܨ
௥ ൌ െ ∑ ݌ݔ଴݁ܨ ቂെ100 ቀ௥೔ೕ

ଶ௔
െ 1ቁቃ ேݎ̂

௝ୀଵ,௝ஷ௜

       
(2.16) 

The particles were also subjected to a drag viscous force. In the free 

draining approximation the hydrodynamic force on particle ݅ is given by: 

Ԧ௜ܨ
௛ ൌ െ6ߟߨ௖ܽ ቀௗ௥Ԧ೔

ௗ௧
െ ሬԦ௜ݑ

ஶቁ                             (2.17) 

where ݑሬԦ௜
ஶ stands for the laminar viscous fluid velocity at the center of 

particle ݅. For squeeze flow under no-slip boundary conditions in the limit 

of creeping flow (ܴ݁ ՜ 0) the velocity field is given by [Kim et al. 

(1999)]:   

ሬԦ௜ݑ
ஶ ൌ ቀଷఘ೔௭೔௩

௛మ ቁ ቀ1 െ ௭೔
௛

ቁ ොߩ െ ݒ3 ቀ௭೔
௛

ቁ
ଶ

ቀ1 െ ଶ
ଷ

௭೔
௛

ቁ ݖ̂
            

(2.18) 

where ߩ௜ and ݖ௜ are the coordinates of particle ݅ and ߩො and ̂ݖ are the radial 

unit vectors in cylindrical coordinates.  

The particles were confined between two walls, represented by two rigid 

and parallel planes positioned at ݖ ൌ 0 and ݖ ൌ ݄. Again, to prevent 

particles from penetrating into the plates we employed a short-ranged 

repulsive potential:  

Ԧ௜ܨ
௪ ൌ ݌ݔ଴݁ܨ ൤െ100 ൬క೔

೗,ೠ

ଶ௔
െ ଵ

ଶ
൰൨ ො݊,                      (2.19) 

where ො݊ is the normal vector to the walls and ߦ௜
௟ ൌ ௜ߦ ௜ andݖ

௨ ൌ ݄ െ  ௜ areݖ

the distances between the particle and the lower and upper wall, 

respectively. Particles at a distance of 1.1ܽ from the plates are fixed to 

them. 

The position of the lower plate ݖ ൌ 0 was fixed and the system was 

compressed by moving the upper plate at a constant approaching speed ݒ. 
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Thus, the position of the upper wall ݄ሺݐሻ at the instant ݐ௜ାଵ ൌ ௜ݐ ൅ Δݐ was 

calculated as follows: 

݄ሺݐ௜ାଵሻ ൌ ݄ሺݐ௜ሻ െ  (2.20)      ݐΔݒ

From the force expressions reported above arise natural length, force and 

time scales: ݈௦ ൌ ௦ܨ ,2ܽ ൌ ௦ݐ ଴, andܨ ൌ ଵଶగఎ೎௔మ

ிబ
, respectively. Hence, for 

inertialess particles, neglecting Brownian forces, the equation of motion 

for particle ݅ can be written as:  

ௗ௥Ԧ೔
כ

ௗ௧כ ൌ Ԧ௜ܨ
௠כ ൅ Ԧ௜ܨ

௥כ ൅ Ԧ௜ܨ
௪כ ൅ ሬԦ௜ݑ

ஶ(2.21)                  כ 

where dimensionless variables are denoted with an asterisk.  

The equations of motion were integrated numerically using an explicit 

Euler method with a dimensionless time step Δכݐ ൌ 5 ൈ 10ିସ. Using a 

smaller time step had a negligible effect. On the one hand, interparticle 

exponential repulsive interactions were evaluated for sphere separations 

less than a cut-off radius 4ܽ. On the other hand, wall-particle repulsive 

interactions were evaluated only for a perpendicular distance from wall to 

particle center smaller than 3ܽ. A further increase of the previously 

mentioned distances had no significant influence on the results. Periodic 

boundary conditions were not applied. 

In the filtration regime of operation (slow compression), the normal force 

 acting on the upper plate was calculated from the normalized total כܨ

magnetic energy ܷכ,  

כܷ ൌ ∑ ∑ ଵ
ଷ

൬ ଵ
௥೔ೕ

כ ൰
ଷ

൫1 െ ௜௝൯ேߠଶݏ݋3ܿ
௝ୀଵ,௝ஷ௜

ே
௜ୀଵ

         
(2.22) 

according to:  

כܨ ൌ െ ௗ௎כ

ௗ௛כ ,        (2.23) 
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It is worth to remark here that other approaches exist in the literature for 

the stress transfer determination between the system and bounding plates 

[Lukkarinen and Kaski (1996)]. 

When compressing any field-responsive colloid it is important to 

distinguish between the normal force contributions coming from the 

number of percolating field-induced clusters, ௖ܰ, and their internal 

structure. Basically, it is not only the number of percolating structures that 

contributes to the normal force but also their thickness and strength. For 

this purpose we define a new parameter Π௜, for every percolating 

aggregate ݅ in the system, as follows: 

Π௜ ൌ ே೛೔௛బ

௛
           (2.24) 

where ௣ܰ௜ is the number of particles contained in the percolating cluster ݅, 

݄଴ is the initial separation between the plates and ݄ is the plates separation 

at time ݐ. For every gap an averaged value can be calculated using the 

following expression: 

Π ൌ
∑ ஈ೔

ಿ೎
೔సభ
ே೎

ൌ
∑

ಿ೛೔೓బ
೓

ಿ೎
೔సభ

ே೎
                  (2.25) 

2.6. RESULTS AND DISCUSSION 

2.6.1. Squeeze flow of Newtonian fluids 

Figure 2.5 shows the normal compressive force ܨ versus gap distance ݄ 

for Newtonian silicone oils (100݉ܲܽݏ and 350݉ܲܽݏ) by moving the 

upper plate at a constant speed in the range ݒ ൌ 10 െ  while the ݏ/݉ߤ50

lower plate remained stationary. Experiments correspond to constant 

volume tests to make it possible a straightforward comparative study with 

MR fluids. As expected from the lubrication theory, in all cases 
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investigated, the relationship between the force and the gap follows a 

power law behavior. At very large gap separations (early stages of the 

compression experiment) data are not reliable because of the transient 

regime where some inertia may artifact the data.  

The approaching speed does not seem to have any clear effect in changing 

the slope; an average slope is obtained that is around െ3.2 well in the 

range [െ5, െ2] corresponding to the behavior of Newtonian fluids under 

constant volume approach and in agreement with literature predictions 

(see Section 2.3.1). It seems that the only effect of changing the 

approaching speed is shifting the curves in the vertical direction. As 

anticipated, the larger the viscosity, the larger the normal forces obtained. 

Constant volume squeeze flow (no-slip and perfect slip) theories for 

Newtonian fluids suggest that experiments for different viscosity fluids 

and approaching speeds can be collapsed in a master curve if plotting the 

ratio ܨ ⁄ݒߟ  versus ݄ [Stefan (1874), Diennes and Klemm (1946); 

Campanella and Peleg (1987); Raphaelides and Gioldasi (2004)]. As 

observed in Figure 2.6, a good collapse is obtained especially at narrow 

gaps where the lubrication approximation holds. No-slip Stefan equation 

does qualitatively explain the trend observed. However, the smaller than 

െ5 slope observed may be ascribed to the presence of some partial slip. 

As is generally found, Stefan’s equation with no-slip gives an exponent 

that is too high and perfect slip gives an exponent that is too low.  

The relationship between force and gap distance is essential in all squeeze 

flow deformations. Nevertheless, it is generally more convenient to use 

related magnitudes such as the compressive strain, defined here as the 

ratio of the moving distance of the upper plate to the initial distance 

between the plates  ߝ ൌ ݀ ݄଴⁄ , to make a straightforward comparative 

study with the rheological behavior under different standard flow 
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conditions such as direct-shear and pressure-driven flows. We will use 

this description in the next section which is devoted to MR fluids. 
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FIGURE 2.5. Normal force ܨ versus gap distance ݄ at various 
approaching speeds for two Newtonian silicone oils.  
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FIGURE 2.6. Compressive force ܨ from Figure 2.5 divided by the 
viscosity ߟ and approaching speed ݒ as a function of gap distance ݄. Lines 
correspond to Stefan’s model predictions under no-slip and perfect slip 
conditions. The experimental error is contained within the symbol size. 
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2.6.2. Squeeze flow of magnetorheological fluids 

A. Unidirectional monotonous compression tests 

Experiments were carried out for a wide range of magnetic field strengths 

up to 354 ݇ܣ/݉. Magnetic fields investigated were high enough to 

discard the normal force contribution coming from the pure oil which is 

expected to be of only ~ 10ିଷܰ (c.f. Figure 2.6). Negligible differences 

were observed for the two approaching speeds investigated (1ݏ/݉ߤ  and 

 .in agreement with experimental data reported by Mazlan et al (ݏ/݉ߤ10

(2008). This is possibly due to the small plasticity number (Equation 2.5) 

thus allowing the particles to find a minimum energy configuration in a 

well organized field-induced structure [Lukkarinen and Kaski (1996)]. It 

is worth to point out that no-slip at the surfaces was checked by using 

plates previously coated with a thin layer of carbonyl iron powder. 

Experiments that were carried out using these plates were coincident with 

those obtained using conventional non-coated titanium plates. 

For the sake of brevity, in Figure 2.7 we only illustrate results for an 

approaching speed of 10ݏ/݉ߤ. Here we show the influence of the DC 

magnetic field strength on the normal force – compressive strain curves 

for a 5 vol% MR fluid. As observed, the force increases as we increase 

the magnetic field applied. This is anticipated to be a consequence of the 

MR effect. It is well known that under slow compressive strains (ߝ د

0.05) MR fluids withstand the load without “breaking” (data not shown in 

Figure 2.7 because of the limited strain resolution). Upon increasing the 

strain the squeeze flow behavior is expected to largely depend on the 

repeated formation / breakdown process of microscopic and macroscopic 

structures [Lukkarinen and Kaski (1998)]. Hence, structure breakdown 

occurs for 0.05 ~ ߝ and the subsequent steadily increasing force suggests 

that the metastable field-induced structure partially recovers from 
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compression. It has been documented in the literature that for very rapidly 

compressed systems, the force decreases just after breakdown of the 

structure suggesting that in this case the particles do not have time to 

recover. A rough estimation of the so-called plastic modulus increase 

under compression can be obtained by the ratio of the compressive stress 

and the associated true strain ߝ௧ ൌ ݈݊ሺ݄ ݄଴⁄ ሻ [Monkman (1995)]. Taking 

ܪ ൌ  354 kA/m and ݒ ൌ 10 μm/s we estimated a change of 

approximately one order of magnitude from 2 kPa to 62 kPa. Curves 

presented in Figure 2.7 are very similar to stress – strain curves for ER 

fluids under constant area tests by Vieira et al. (2001). Moreover, our 

experimental results are in qualitative agreement with slow rate dynamic 

simulations by Lukkarinen and Kaski (1996) in the range ߝ ൌ 0 െ 0.25 

(see Figure 2.2 in their letter). 
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Figure 2.7. Typical normal force, ܨ, versus compressive strain, ߝ, curves 
of MR fluids at different magnetic field strengths, 5) ܪ vol% MR fluid, 
ݒ ൌ   .(ݏ/݉ߤ10
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B. Low-strain normal force plateau 

According to Bingham and bi-viscous macroscopic models (c.f. Equation 

2.9), the normal force is expected to vary as ܨ ൌ ܣ ሺ1 െ ሻହߝ ଶ⁄⁄ . Here, ܣ 

represents the low-strain normal force and is associated to the yield 

compressive stress. Experimental data shown in Figure 2.7 were fitted to 

this equation and fitting parameters ܣா௫௣ are reported in Table 2.1. To 

make it possible a straightforward comparative study with macroscopic 

theoretical predictions, steady shear flow experiments were also carried 

out for a gap distance of ݄଴ ൌ 300 µm with 5 vol% MR fluids (results not 

shown here for brevity). Static yield shear stresses ߬௬௦ were determined 

from extrapolation in shear stress versus shear-rate ramp-up curves 

following the standard procedure [de Vicente et al. (2010)]. With this, a 

theoretical prediction for the constant ܣ is obtained under a macroscopic 

description along with ܣெ௔௖௥௢ ൌ ൫2߬ߨ௬௦ݎ଴
ଷ൯ ሺ3݄଴ሻ⁄  (c.f. Equation 2.9). 

Results are also included in the third column of Table 2.1. Macroscopic 

theories slightly overestimate experimental results. However, the 

agreement is quite good bearing in mind that there are not free parameters. 

The discrepancy with experimental data may be explained because of the 

strong cubic dependence with the sample radius and the pipette error 

when depositing the drop on the rheometer plate. 
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H (kA/m) ெ௔௖௥௢ (N)ܣ ா௫௣ (N)ܣ ߜ ܽ⁄ ሺൈ 10ିସሻ (-) 

88 0.0156 ± 0.0018 0.025 1.208 

133 0.0406 ± 0.0012 0.059 1.611 

177 0.084 ± 0.003 0.103 1.945 

221 0.099 ± 0.005 0.153 2.175 

265 0.163 ± 0.010 0.227 2.424 

354 0.192 ± 0.012 0.311 2.700 

 

Table 2.1. Fitting parameter ܣா௫௣ for normal force – compressive strain 
curves reported in Figure 2.7 according to ܨ ൌ ܣ ሺ1 െ ሻହߝ ଶ⁄⁄  ெ௔௖௥௢ܣ .
corresponds to macroscopic model predictions, Equation 2.9, using the 
static yield shear stress as an input. In these calculations we assumed ݎ଴ ൌ
3.8 ݉݉ as visually determined. ߜ ܽ⁄  corresponds to the indentation depth 
calculated by fitting Equation 2.14 to the experimental ܣா௫௣ values. In 
these calculations we have taken ߥ ൌ 0.29 and ܧ ൌ 211 ൈ 10ଽܲܽ which 
correspond to typical values for pure iron. 

 

H (kA/m) ߤ௦௥ (-) ߚ (-) 

88 1.125 0.802 

133 1.117 0.751 

177 1.110 0.706 

221 1.103 0.665 

265 1.098 0.630 

354 1.088 0.568 

Table 2.2. Suspension relative magnetic permeability ߤ௦௥ and magnetic 
contrast factor ߚ calculated using Maxwell-Garnett and Fröhlich-Kennelly 
equations [Jiles (1991)]. 

The microscopic model described in Section 2.3.3 qualitatively captures 

the low-strain normal force plateau as well. A quantitative theoretical 

estimation can also be obtained as follows. Since the particle volume 

fraction investigated here was significantly low, as a first approximation 
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the internal magnetic field could be assumed to be simply the applied 

external magnetic field. As a consequence, the relative suspension 

permeability ߤ௦௥ and the contrast factor ߚ can be calculated 

straightforward from Maxwell-Garnett and Fröhlich-Kennelly equations 

[Jiles (1991)] for the magnetization – magnetic field strength dependence 

for the particles where the relative initial permeability of the solid phase is 

40 and their saturation magnetization 1550݇ܣ/݉ [de Vicente et al. 

(2010)]. Results for ߤ௦௥ and ߚ for a range of magnetic fields investigated 

are shown in Table 2.2. With these, the microscopic model prediction can 

be fitted to the experimental ܣா௫௣ parameter resulting in a field dependent 

indentation depth ߜ ܽ⁄ . The indentation depth is tabulated in the fourth 

column in Table 2.1 and increases when increasing the magnetic field. 

Some work is currently done in this direction to check whether these 

indentation values can be experimentally ascertained. 

One of the most relevant rheological properties of a MR fluid is the yield 

stress that must be overcome to initiate gross material deformation or 

flow. The yield stress is associated to the minimum stress value required 

for the onset of flow and is known to be strongly dependent on the mode 

of operation. Under compression, the so-called yield compressive stress 

can be determined from the low-strain normal force plateau. The low-

strain normal force plateau ܣ is expected to mimic the strength of the 

initial field-induced structure. In fact, it increases with the magnetic field 

strength following a power law function with exponent 1.89 േ 0.25, in 

good agreement with an exponent of 2 predicted by dipolar magnetostatic 

models [Bossis et al. (2002)]. The yield compressive stress can be 

estimated by the ratio between the low-strain normal force plateau and the 

wetted plate surface area. A comparative study on the yielding properties 

under shear and compression is shown in Figure 2.8. Here we show both 

the dynamic and static yield shear stresses as well as the yield 
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compressive stress for MR fluids having 5 vol % concentration. It is 

observed that the yield compressive stress is significantly larger than the 

yield shear stresses in good agreement with other experiments reported in 

the literature (see Section 2.2). 

To sum up, Bingham, bi-viscous and micromechanical models do 

satisfactorily explain the existence of a yielding low-strain normal force 

plateau under constant volume compression. In the case of macroscopic 

models, a reasonably good agreement exists when comparing theoretical 

and experimental results. The next question to answer is whether these 

models suffice to explain the flow behavior at larger compressive strains.   
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Figure 2.8. Comparison between yield compressive stresses and yield 
shear stresses for 5 vol% MR fluids. For the calculation of the 
compressive stress we have assumed an initial radius of ݎ଴ ൌ 3.8 ݉݉. For 
completeness we also show results for dynamic yield shear stresses 
obtained by extrapolation in lin-lin representations of shear stress versus 
shear rate at large deformations [Bossis et al. (2002)].  
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C. Compressive flow behavior 

Interestingly, experimental results presented in Figure 2.7 can be 

reasonably collapsed when dividing by the low-strain normal force as 

shown in Figure 2.9. Included in Figure 2.9 we show theoretical 

predictions from macroscopic (Equation 2.9) and microscopic (Equation 

2.14) models. As observed, the microscopic theoretical curve (dashed 

line) stays below the experimental data. As expected, this model does not 

conveniently capture the force-strain dependence at intermediate and large 

strain values as it simply assumes that only single chains of particles exist 

under flow behavior. On the contrary, a much better agreement is 

observed for the macroscopic prediction (solid line). In this case, the 

slightly faster than theoretically expected increase of the normal force can 

be qualitatively explained under the framework of Equation 2.9 in terms 

of a yield shear stress that exponentially increases with the compressive 

strain (dotted line). We will come back to this point in Section 2.4.2 D. 

Similarly to Tian et al. (2002a), the intermediate strain region (0.2 ൏ ߝ ൏

0.5) is also satisfactorily captured by an exponential function ܨ ൌ   ଵ݁ఈమఌߙ

(fitting parameters contained in Table 2.3). On the one hand, ߙଵ values 

were found to increase with the magnetic field strength. On the other 

hand, ߙଶ values were approximately constant and very close to 

experiments reported by Tian et al. (2002a) for ER fluids under constant 

area and variable electric field strength (constant voltage). The physical 

meaning of this exponential relationship is not clear yet by simply 

observing normal force changes during compression.   

As reported above, when using low viscosity continuous medium with 

low squeezing speed the viscous contribution to the normal force is 

expected to be minimal. As the plates compress the structures, the 

columns become shorter and thicker as some particles break away and 
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reform the structure [McIntyre (2008)]. These re-formed structures are 

actually stronger than the original and hence it is expected a squeeze-

driven strengthening effect [Tang et al. (2000)] eventually resulting in a 

yield shear stress that increases with the compressive strain. In order to 

get a better understanding of the structural evolution under compression 

we now perform combined flow tests. 
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Figure 2.9. Dimensionless normal force,  ܨ, as a function of compressive 
strain, ߝ, for different magnetic fields. Blue dashed line corresponds to 
Equation 2.14; ܨ ⁄ܣ ൌ 1 ሺ1 െ ⁄ሻߝ . Black solid line corresponds to 
Equation 2.9; ܨ ⁄ܣ ൌ 1 ሺ1 െ ሻହߝ ଶ⁄⁄ . Red dotted line corresponds to the 
expression ܨ ⁄ܣ ൌ ݁ଵ.ହఌ ሺ1 െ ሻହߝ ଶ⁄⁄ . Red stars represent particle-level 
simulation results. 

 

D. Squeeze combined with torsional small-amplitude oscillatory flow 

To further investigate the structural changes during squeeze, we carried 

out compression tests by superposition of a small-amplitude oscillatory 
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shearing (SAOS) flow where the upper plate was made to undergo rotary 

oscillations about a mean position (5 ൈ 10ି଺݀ܽݎ) at a given frequency 

(݂ ൌ  in the viscoelastic linear region. This kind of test would allow (ݖܪ10

us to monitor viscoelasticity changes at the same time the sample is being 

compressed. It is worth to remark here that few works exist in the 

literature concerning combined flows in spite of their  

 

H (kA/m)  (-) ଶߙ ଵ (N)ߙ

88 0.0107 ± 0.0004 4.81 ± 0.09

133 0.0174 ± 0.0020 4.90 ± 0.26

177 0.0425 ± 0.0019 4.98 ± 0.10

221 0.0463 ± 0.0028 5.21 ± 0.13

265 0.0904 ± 0.0021 4.93 ± 0.05

354 0.1030 ± 0.0034 4.91 ± 0.07

 

Table 2.3. Fitting parameters ߙଵ and ߙଶ for normal force – compressive 
strain curves reported in Figure 2.7 in accordance with ܨ ൌ  ଵ݁ఈమఌ. Theߙ
approaching speed is ݒ ൌ 0.1 ~ ߝ The strain fitting range is .ݏ/݉ߤ10 െ
0.5. 

importance to get structural information. Relevant papers on this subject 

are those by Kulkarni et al. (2003) and See (2006). 

Preliminary tests were carried out to ensure that SAOS was not affecting 

the resulting normal force measured under compression. We obtained a 

very good reproducibility using different samples. The typical viscoelastic 

response is shown in Figure 2.10a for an approaching speed of ݒ ൌ

10 μm/s. We observe that GԢ initially increases with increasing the strain 

in agreement with experiments carried out by See et al. (2006). Then, the 

viscoelastic moduli reach a peak at a gap thickness corresponding to 

 These results suggest that when the MR fluid is squeezed, not .0.5 ~ ߝ



 

 

Chapter 2. 148 

only the compressive stress (as demonstrated above) but also the shear 

resistance increases with the gap reduction in an initial stage. However, 

for strains larger than 0.5 ~ ߝ, the loss factor  ߜ݊ܽݐ ൌ ீᇱᇱ
ீᇱ

 becomes 1 and 

then viscous shear flow occurs for larger strains. In Figure 2.10b we show 

that the shear viscoelastic moduli scale with ߤ଴ߤ௦௥ߚଶܪଶ suggesting that 

dipolar magnetostatic interactions drive the microstructural evolution 

under compression. As anticipated in section above, the squeeze-

strengthening effect is found to roughly increase following an exponential 

law as demonstrated by the dashed line in Figure 2.10b. This further 

supports the idea of a filtration-dominated regime and also the fact that the 

internal magnetic field is not significantly changing upon compression. 

In summary, experiments presented above provide a complicated picture 

of the squeeze flow behavior of MR fluids under constant volume in the 

presence of DC magnetic fields. At very low strains structures are able to 

resist without breaking (results not shown here because of a technical 

limitation of our magnetorheometer). Upon increasing the compressive 

strain structures do eventually break. The behavior at larger strains is 

dictated by the balance between reformation and fragmentation processes. 

In the case of slow compression rates particles do have time to find a 

minimum energy configuration and structures reform under compression. 

This is manifested in an increase of the normal force and an enhancement 

of the shear storage and loss moduli. Interestingly, for very large strains 

normal forces do continue increasing. However, viscoelastic moduli stop 

growing entering in a region that is shear viscosity dominated.   
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Figure 2.10. Strain dependence of the shear viscoelastic moduli for 
different magnetic field strengths. a) Storage and loss moduli as a function 
of compressive strain. Closed symbol, ܩԢ; open symbol, ܩԢԢ. b) Normalized 
storage and loss moduli as a function of strain. Dashed line corresponds to 
Ԣܩ ሺߤ଴ߤ௦௥ߚଶܪଶሻ⁄ ൌ 0.07݁ଵ.ହఌ. 
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Figure 2.11. Evolution of the magnetic energy normalized with the 
number of particles in the absence of flow for five different 
replicates. ݄଴ ൌ 40ܽ.  

Both macroscopic and microscopic models employed above suffer from 

important drawbacks at medium and large strains mostly due to the fact 

that the field-induced microstructure evolves under compression. A more 

direct approach involves the use of particle-level computer simulation 

techniques. 

2.6.3. Simulations 

Initially, 600 particles are placed in a cylindrical volume (radius 48ܽ, 

height 40ܽ) at random positions. This corresponds to a volume fraction of 

~1 vol%. Then, at כݐ ൌ 0 the magnetic field is applied instantaneously. 

Soon after the application of the magnetic field short chains are formed 

that rapidly result in longer chains created by tip-to-tip aggregation. Five 

runs were performed with different initial configurations to obtain 

averages. In Figure 2.11 we show the development of the magnetic energy 
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 normalized with the number of particles ܰ− with time for five− כܷ

randomly generated structures. Very similar results are obtained 

independently of the initial configuration. Also, average energy values are 

shown for replicate simulations. As expected, the magnetic energy 

decreases towards a minimum energy value which is around ܷכ ܰ⁄ ൌ െ2. 

 

FIigure 2.12. Side view snapshots of 3D simulations squeezed at (a) 
݄ ൌ 40ܽ (a), (b) ݄ ൌ 32ܽ, (c) ݄ ൌ 22ܽ and (d) ݄ ൌ  .%݈݋ݒ 1~ .12ܽ
כݒ ൌ 10ିଶ. 

Grown structures, previously annealed in the presence of a magnetic field, 

were later squeezed at a very slow constant speed of כݒ ൌ 10ିଶ, resulting 

in a nonstationary flow where magnetic forces dominate over the 

hydrodynamic forces. To do so the gap was taken from an initial height of 

40ܽ to a final height of 10ܽ according to Equation 2.20. In Figure 2.12 

we show snapshots of the systems under slow compression at a constant 

approaching speed. As expected, the particles are able to find a minimum 

energy configuration in a more or less static condition.  
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Figure 2.13. Average magnetic energy normalized with the number of 
particles as function of the compressive strain. The periodic fluctuation of 
the normal force shown in the inset is associated to macroscopic 
rearrangements.  

The straight chain-like structure is mostly conserved and the excess stress 

is relieved through minor dislocations. Similar results were found in 

simulations by Lukkarinen and Kaski (1998). 

In Figure 2.13 the average magnetic energy is shown as function of the 

compressive strain. At small strains, the energy increases slowly with the 

strain. However, violent fluctuations occur partially caused by 

macroscopic rearrangements of the chain-like structures in agreement with 

Chu et al. (2000) (see inset in Figure 2.13). At a certain strain value, the 

curve deviates from this behavior, with the energy increasing much more 

rapidly. By derivation of the magnetic energy, Equation 2.23, we 

calculated the normal force exerted by the field-induced structures. These 

results are shown in Figure 2.9 for their comparison with experimental 
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and analytical models predictions. Interestingly, particle level simulations 

qualitatively capture the normal force increase under compression. The 

extent of the quantitative agreement is somewhat surprising given the 

approximations in the simulation model. 

To get a better understanding of the normal force evolution with the 

compressive strain, the kinetics of structure formation was first probed by 

following the number of percolating clusters, ௖ܰ, as a function of strain 

since the appearance of percolating clusters should be related to 

appearance of normal forces. Cluster statistics were evaluated using the 

connectivity matrix method where sphere pairs with separations ݎ ൏ 2.2ܽ 

are considered directly connected. The number of percolating clusters, 

averaged over five simulation runs, are plotted as a function of 

compressive strain in Figure 2.14. As observed, the number of percolating 

clusters is a linear function of the strain and consequently it does not 

solely explain the significant increase in normal force for strains larger 

than 0.5 ~ ߝ.  

The number of percolating clusters is not the only contribution to the 

normal force since the compression-driven structural evolution of these 

percolating clusters does also contribute to the normal force. A simple 

estimation of the aspect ratio, thickness and strength of the aggregates 

may be obtained through the Π parameter. The existing correlation 

between this parameter and the resulting normal force is manifested by the 

linear relationship shown in Figure 2.15. This suggests that the normal 

force increase under compression is governed by the average strength and 

thickness of the percolating aggregates. This was somehow expected 

because we calculated the normal force acting on the surfaces by taking 

the derivative of the magnetic energy. 
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Figure 2.14. Evolution of the number of percolating clusters, ௖ܰ, as a 
function of the compressive strain. The number of percolating clusters is 
strongly dependent on the connectivity criterion employed and roughly 
increases linearly with the strain. The red solid line is a linear fit with 
slope 0.89 േ 0.04 and correlation coefficient ݎ ൌ 0.99. 
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Figure 2.15. Π parameter as a function of the normalized normal force. 
The red solid line is a linear fit with slope 0.20 േ 0.01 and correlation 
coefficient ݎ ൌ 0.99. Inset corresponds to the correlation between F F଴⁄  
(black squares) and Π (red open circles) versus the compressive strain 
dependence. 
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2.7. CONCLUSIONS  

It is well known that compression resistance of field-responsive fluids 

increases when the gap separation is reduced and compressive strain 

increases. Much of the work reported to date on the squeeze flow behavior 

of field-responsive fluids has focused on ER fluids under constant area 

and constant voltage operation. As a consequence, as the gap closes both 

the electric field intensity and particle concentration increase causing an 

extra-hardening in the ER fluid. A significantly more simplified scenario 

results when compressing MR fluids under constant volume conditions. In 

this case, any compression-assisted hardening must be significantly 

dependent on the structural reorganization. 

In this work the structural reorganization of MR fluids was proved using 

very small compressive speeds in the so-called filtration regime under the 

creeping flow approximation. Hence, the compressive stress can be 

looked as all contributed by the field-induced yield shear stress of the 

fluid and the contribution of the viscous force to the compressive stress 

can be neglected. Even though it is well known that continuum Bingham 

and bi-viscous equations for ER fluids in oscillatory squeeze flow 

underestimate experimental results for the compressive stress under 

constant area operation, to date, this model had not been checked yet in 

the case of MR fluids. In this work we verified that Bingham and bi-

viscous equations are able to reasonably predict compressive stresses in 

the case of MR fluids under constant volume operation. Furthermore, a 

standard micromechanical model consisting in a cubic network of single 

chains is able to predict the low-strain plateau as well by considering 

Hertzian contacts between the particles. However, the micromechanical 

model underestimates the normal force increase at large strains mainly 

due to the fact that only single chains are permitted in this model. This 
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point was later demonstrated through the use of particle-level simulations. 

A close inspection of the experimental data reveals that macroscopic 

models slightly underestimate the compressive resistance when the gap 

separation decreases. This larger than expected increase of the normal 

force under compression can be explained in terms of a shear 

strengthening effect as proved here using combined squeeze and small-

amplitude shear tests.  

Experiments reported here concern low-concentration, no-slip and very-

slow-rate loading conditions where the strain rate although small is not 

constant during compression (maximum strain rate ߝ ሶ  .(ଵିݏ 0.2 ~

Simulation studies demonstrate that normal forces are strongly strain rate 

dependent. Actually, fast loading rates introduce an additional time scale 

which together with the structure evolution time scale, makes the system 

very complicated. Commercial application of this technology requires the 

utilization of highly concentrated suspensions (~ 30 ݈݋ݒ%), large loading 

rates and partial slip conditions. So, in our opinion, future work should be 

devoted to better understand the effect of volume fraction, elongational 

rate and slip at the surfaces in the squeeze flow behavior or MR fluids. 

ACKNOWLEDGMENTS 

This work was supported by MAT 2010-15101 project (Spain), by the 

European Regional Development Fund (ERDF) and by Junta de 

Andalucía P07-FQM-02496, P07-FQM-03099 and P07-FQM-02517 

projects (Spain). J. A. Ruiz-López acknowledges support by the 

“Universidad de Granada. Becas de iniciación a la investigación” and 

“Ministerio de Educación. Becas de colaboración.” 



 

 

Chapter 2.  157 

References 

Andablo-Reyes, E, R. Hidalgo-Álvarez, and J. de Vicente “Controlling 

friction using magnetic nanofluids,” Soft Matter, submitted for 

publication (2010a). 

Andablo-Reyes, E, R. Hidalgo-Álvarez, and J. de Vicente “A method for 

the estimation of the film thickness and plate tilt angle in thin film 

misaligned plate-plate rheometry,” J. Non-Newtonian Fluid Mech. 

165, 1419-1421 (2010b). 

Bell, R. C., J. O. Karli, A. N. Vavreck, D. T. Zimmerman, G. T. Ngatu, 

and N. M. Wereley, “Magnetorheology of submicron diameter 

microwires dispersed in silicon oil,” Smart Mater. Struct. 17, 

015028-1-6 (2008) 

Bird, R. B. “Dynamics of polymeric liquids,” New York, 1987, 22. 

Bossis, G., O. Volkova, S. Lacis, and A. Meunier, “Magnetorheology: 

fluids, structures and rheology,” in: S. Odenbach (Ed) Ferrofluids. 

Magnetically controllable fluids and their applications (Lecture 

notes in Physics, 594, Springer-Verlag 2002) pp 202-230. 

Campanella, O. H., and M. Peleg, “Lubricated squeezing flow of a 

Newtonian liquid between elastic and rigid plates,” Rheol. Acta 

26(4), 396-400 (1987). 

Chu, S. -H., S. J. Lee, and K. H. Ahn, “An experimental study on the 

squeezing flow of electrorheological suspensions,” J. Rheol. 44(1), 

105-120 (2000). 

Collomb, J., F. Chaari, and M. Chaouche, “Squeeze flow of concentrated 

suspensions of spheres in Newtonian and shear-thinning fluids,” J. 

Rheol. 48(2), 405-416 (2004). 

Connelly, R. W., J. Greener, “High-shear viscometry with a rotational 

parallel-disk device,” J. Rheol. 29, 209-226 (1985). 



 

 

Chapter 2. 158 

Conrad, H. “Properties and design of electrorheological suspensions,” 

MRS Bull 23, 35-42 (1998). 

Covey, G. H., and B. R. Stanmore, “Use of the parallel-plate plastometer 

for the characterization of viscous fluids with a yield stress,” J. 

Non-Newtonian Fluid Mech. 8, 249-260 (1981). 

de Gans, B. J., C. Blom, A. P. Philipse, and J. Mellema, “Linear 

viscoelasticity of an inverse ferrofluid,” J. Phys. Rev. E 60, 4518-

4527 (1999). 

de Vicente, J., and J. Ramírez, “Effect of friction between particles in the 

dynamic response of model magnetic structures,” J. Colloid Interf. 

Sci. 316, 867-876 (2007). 

de Vicente, J., F. Vereda, J. P. Segovia-Gutiérrez, M. P. Morales, and R. 

Hidalgo-Álvarez, “Effect of particle shape in magnetorheology,” J. 

Rheol. in press (2010). 

de Vicente, J., J. P. Segovia-Gutiérrez, E. Andablo-Reyes, F. Vereda, and 

R. Hidalgo-Álvarez, “Dynamic rheology of sphere- and rod-based 

magnetorheological fluids,” J. Chem. Phys. 131, 194902-1-10 

(2009). 

de Vicente, J., M. T. López-López, F. González-Caballero, J. D. G. 

Durán, “A rheological study of the stabilization of magnetizable 

colloidal suspensions by addition of silica nanoparticles,” J. Rheol. 

47(5), 1093-1109 (2003). 

de Vicente, J., M. T. López-López, J. D. G. Durán, and G. Bossis, “A 

slender-body micromechanical model for viscoelasticity of 

magnetic colloids: Comparison with preliminary experimental 

data,” J. Colloid Interf. Sci. 282, 193-201 (2005). 

de Vicente, J., M. T. López-López, J. D. G. Durán, and F. González-

Caballero, “Shear flow behavior of confined magnetorheological 

fluids at low magnetic field strengths,” Rheol. Acta 44, 94-103 

(2004). 



 

 

Chapter 2.  159 

Diennes, G. J., and H. F. Klemm, “Theory and application of the parallel 

plate plastometer,” J. Appl. Phys. 17, 458-471 (1946). 

Ekwebelam, C. C., and H. See, “Using oscillatory shear to probe the 

effects of bidispersity in inverse ferrofluids,” Korea-Aust. Rheol. J. 

19, 35-42 (2007). 

El Wahed, A. K., J. L. Sproston, and E. W. Williams, “The effect of a 

time-dependent electric field on the dynamic performance of an 

electrorheological fluid in squeeze,” J. Phys. D: Appl. Phys. 33, 

2995-3003 (2000). 

El Wahed, A. K., J. L. Sproston, and R. Stanway, “The performance of an 

electrorheological fluid in dynamic squeeze flow: the influence of 

solid phase size,” J. Colloid Interf. Sci. 211, 264-280 (1999). 

El Wahed, A. K., J. L. Sproston, and R. Stanway, “The performance of an 

electrorheological fluid in dynamic squeeze flow under constant 

voltage and constant field,” J. Phys. D: Appl. Phys. 31, 2964-2974 

(1998). 

El Wahed, A. K., J. L. Sproston, R. Stanway, and E. W. Williams, “An 

improved model of ER fluids in squeeze-flow through model 

updating of the estimated yield stress,” Journal of Sound and 

Vibration 268, 581-599 (2003). 

Engmann, J., C. Servais, and A. S. Burbidge, “Squeeze flow theory and 

applications to rheometry: A review,” J. Non-Newtonian Fluid 

Mech. 132, 1-27 (2005). 

Gartling, D. K., and N. Phan-Thien, “A numerical simulation of a plastic 

fluid in a parallel-plate plastometer,” J. Non-Newtonian Fluid 

Mech. 14, 347-360 (1984). 

Ginder, J. M., “Behavior of magnetorheological fluids,” MRS Bulletin, 

August, 26-29 (1998). 



 

 

Chapter 2. 160 

Gong, H., and M. K. Lim, “Experimental investigation on tension and 

compression properties of an electro-rheological material,” J. Intel. 

Mat. Syst. Str.  7, 89-96 (1996). 

Havelka, K. O., and J. W. Pialet, “Electrorheological technology : The 

future is now,” CHEMTECH 36, 36-45 (1996). 

Heine, M. C., J. de Vicente, and D. J. Klingenberg, “Thermal transport in 

sheared electro- and magnetorheological fluids,” Physics of Fluids 

18, 023301 (2006). 

Jiles, D. Introduction to magnetism and magnetic materials (Chapman and 

Hall, London, 1991). 

Jolly, M. R., and J. D. Carlson, Actuator 96, 5th Int. Conf. on New 

Actuators, eds. H. Borgmann and K. Lenz, Axon Technologies 

Consult GmbH (1996). 

Kim, D. H., S. –H. Chu, K. H. Ahn, and S. J. Lee, “Dynamic simulation of 

squeezing flow of ER fluids using parallel processing,” Korea-Aust. 

Rheol. J.  11(3), 233-240 (1999). 

Klingenberg, D. J., F. van Swol, and C. F. Zukoski, “The small shear rate 

response of electrorheological suspensions. I. Simulation in the 

point-dipole limit,” J. Chem. Phys. 94, 6160-6169 (1991). 

Klingenberg, D. J., F. van Swol, and C. F., Zukoski, “Dynamic simulation 

of electrorheological suspensions,” J. Chem. Phys. 91, 7888-7895 

(1989). 

Kulkarni, P., C. Ciocanel, S. L. Vieira, and N. Naganathan, “Study of the 

behavior of MR fluids in squeeze, torsional and valve modes,” J. 

Intel. Mat. Syst. Str. 14, 99-104 (2003). 

Laun, H. M., M. Rady, and O. Hassager, “Analytical solutions for squeeze 

flow with partial wall slip,” J. Non-Newtonian Fluid Mech. 81, 1-

15 (1999). 



 

 

Chapter 2.  161 

Lee, C. Y., and C. Y. Wen, “The oscillatory squeeze flow of 

electrorheological fluid considering the inertia effect,” Smart Mater. 

Struct. 11, 553-560 (2002). 

Lipscomb, G. G., and M. M. Denn, “Flow of Bingham fluids in complex 

geometries,” J. Non-Newtonian Fluid Mech. 14, 337-346 (1984). 

Lukkarinen, A., and K. Kaski, “Computational studies of compressed and 

sheared electrorheological fluid,” J. Phys. D: Appl. Phys 29, 2729-

2732 (1996). 

Lukkarinen, A., and K. Kaski, “Simulation studies of electrorheological 

fluids under shear, compression, and elongation loading,” J. Appl. 

Phys. 83(3), 1717-1725 (1998). 

Lynch, R., Y. Meng, and F. E. Filisko, “Compression of dispersions to 

high stress under electric fields: effects of concentration and 

dispersing oil,” J. Colloid Interf. Sci.  297, 322-328 (2006). 

Mazlan, S. A., K. H. Ekreem, and A. G. Olabi, “An investigation of the 

behaviour of magnetorheological fluids in compression mode,” 

Journal of Materials Processing Technology 201, 780-785 (2008). 

McIntyre, E. C., “Compression of smart materials: squeeze flow on 

electrorheological and magnetorheological fluids,” The University 

of Michigan PhD Thesis (2008). 

McIntyre, E. C., and F. E. Filisko, “Filtration in electrorheological 

suspensions related to the Peclet number,” J. Rheol. 54(3), 591-603 

(2010). 

McIntyre, E. C., and F. E. Filisko, “Squeeze flow of electrorheological 

fluids under constant volume,” J. Intel. Mat. Syst. Str.  18, 1217-

1220 (2007). 

Meng, Y., and F. E. Filisko, “Unidirectional compression of 

electrorheological fluids in electric fields,” J. Appl. Phys. 98, 

074901 (2005). 



 

 

Chapter 2. 162 

Monkman, G. J., “Design and application of magneto-rheological fluid,” 

J. Phys. D: Appl. Phys. 28, 588-593 (1995). 

Olabi, A. G., and A. Grunwald, “Design and application of magneto-

rheological fluid,” Materials and Design 28, 2658-2664 (2007). 

Park, B. J., I. B. Jang, H. J. Choi, A. Pich, S. Bhattacharya, and H. –J. 

Adler, “Magnetorheological characteristics of nanoparticle-added 

carbonyl iron system,“ J. Magn. Magn. Mater 303, 290-293 (2006). 

Ramos, J., D. J. Klingenberg, R. Hidalgo-Álvarez and J. de Vicente, 

"Steady shear magnetorheology of inverse ferrofluids", J. Rheol. 

55(1), 127-152 (2011). 

Ramos, J., J. de Vicente, and R. Hidalgo-Álvarez, “Small-amplitude 

oscillatory shear magnetorheology of inverse ferrofluids,” 

Langmuir 26(12), 9334-9341 (2010a). 

Rankin, P. J., J. M. Ginder, and D. J. Klingenberg, “Electro- and 

magnetorheology,” Curr. Opin. Colloid In., 3, 373-381 (1998). 

Raphaelides, S. N., and A. Gioldasi, “Elongational flow studies of set 

yogurt,” J. Food Engineering 70(4), 538-545 (2004). 

Saldivar-Guerrero, R., R. Richter, I. Rehberg, N. Aksel, L. Heymann, and 

O. S. Rodríguez-Fernández, “Viscoelasticity of mono- and 

polydisperse inverse ferrofluids,” J. Chem. Phys. 125, 084907-1-7 

(2006). 

Scott, J. R. Trans. Inst. Rubber Ind. 4, 347 (1929). 

See, H., “Field dependence of the response of a magnetorheological 

suspension under steady shear flow and squeezing flow,” Rheol. 

Acta 42, 86-92 (2003). 

See, H., J. S. Field, and B. Pfister, “The response of electrorheological 

fluid under oscillatory squeeze flow,” J. Non-Newtonian Fluid 

Mech. 84, 149-158 (1999). 



 

 

Chapter 2.  163 

See, H., S. Mackenzie, and B. T. Chua, “Effect of compression on the 

response of a magneto-rheological suspension,” Korea-Australia 

Rheology Journal 18(3), 121-126 (2006). 

Sproston, J. L., S. G. Rigby, E. W. Williams, and R. Stanway, “A 

numerical simulation of electrorheological fluids in oscillatory 

compressive squeeze-flow,” J. Phys. D: Appl. Phys. 27, 338-343 

(1994b). 

Sproston, J. L., R. Stanway, E. W. Williams, and S. G. Rigby, “The 

electrorheological automotive engine mount,” J. Electrostatics 32, 

253-259 (1994a). 

Stanway, R., J. L. Sproston, and N. G. Stevens, “Non-linear modelling of 

an electro-rheological vibration damper,” J. Electrostatics 20, 167-

184 (1987). 

Stanway, R., J. L. Sproston, M. J. Prendergast, J. R. Case, and C. E. 

Wilne, “ER fluids in the squeeze-flow mode: an application to 

vibration isolation,” J. Electrostatics 28, 89-94 (1992). 

Stefan, J., “Versuche uber der scheinbare adhasion,”  Sitz. Kais. Akad. 

Wiss Math. Nat. Wien 69(2), 713-735 (1874). 

Tang, X., X. Zhang, R. Tao, and Y. Rong, “Structure-enhanced yield 

stress of magnetorheological fluids,” J. Appl. Phys. 87(5), 2634-

2638 (2000). 

Tao, R., Y. C. Lan, and X. Xu, “Structure-enhanced yield shear stress in 

electrorheological fluids,” Int. J. Mod. Phys. B 16, 2622-2628 

(2002). 

Tian, Y., Y. Meng, H. Mao, and S. Wen, “Electrorheological fluid under 

elongation, compression, and shearing,” Phys. Rev. E 65, 031507 

(2002a). 

Tian, Y., Y. Meng, H. Mao, and S. Wen, “Mechanical property of 

electrorheological fluid under step compression,” J. Appl. Phys. 92, 

6875-6879 (2002b). 



 

 

Chapter 2. 164 

Tian, Y., S. Wen, and Y. Meng, “Compressions of electrorheological 

fluids under different initial gap distances,” Phys. Rev. E 67, 

051501 (2003a). 

Tian, Y., M. Zhang, X. Zhu, Y. Meng, and S. Wen, “Ultrahigh yield stress 

in a general electrorheological fluid under compression,” Smart 

Mater. Struct. 19, 035009 (2010). 

Tian, Y., and Q. Zou, “Normalized method for comparing tensile 

behaviors of electrorheological fluids,” App.  Phys.  Lett. 82(26), 

4836-4838 (2003b). 

Vereda, F., J. de Vicente, and R. Hidalgo-Álvarez, “Influence of a 

magnetic field on the formation of magnetite particles via two 

precipitation methods,” Langmuir 23, 3581-3589 (2007). 

Vereda, F., J. de Vicente, and R. Hidalgo-Álvarez, “Physical properties of 

elongated magnetic particles: magnetization and friction coefficient 

anisotropies,” ChemPhysChem 10, 1165-1179 (2009). 

Vieira, S. L., M. Nakano, R. Oke, and T. Nagata, “Tension and 

compression of electrorheological fluid,” Int. J. Mod. Phys. B 15, 

714-722 (2001). 

Volkova, O., G. Bossis, M. Guyot, V. Bashtovoi, and A. Reks, 

“Magnetorheology of magnetic holes compared to magnetic 

particles,” J. Rheol. 44, 91-104 (2000). 

Wang, X., and F. Gordaninejad, “Study of magnetorheological fluids at 

high shear rates,” Rheol. Acta 45, 899-908 (2006). 

Williams, E. W., S. G. Rigby, J. L. Sproston, and R. Stanway, 

“Electrorheological fluids applied to an automotive engine mount,” 

J. Non-Newtonian Fluid Mech. 49, 221-238 (1993). 

Wollny, K., J. Lauger, and S. Huck, “Magneto sweep - a method for 

characterizing the viscoelastic properties of magneto-rheological 

fluids,” Appl. Rheol. 12, 25-31 (2002). 



 

 

Chapter 2.  165 

Wu, C. W., and H. Conrad, “Shear strength of electrorheological particle 

clusters,” Mater Sci. Eng. A, 248, 161-164 (1998). 

Yang, F., “Tension and compression of electrorheological fluid,” J. 

Colloid Interf. Sci. 192, 162-165 (1997). 

Zhang, M. L., Y. Tian, J. L. Jiang, X. L. Zhu, Y. G. Meng, and S. Z. Wen, 

“Compression enhanced shear yield stress of electrorheological 

fluid,” Chin. Phys. Lett. 26(4), 048301 (2009). 

Zhang, X. Z., X. L. Gong, P. Q. Zhang, and Q. M. Wang, “Study on the 

mechanism of the squeeze-strengthen effect in magnetorheological 

fluids,” J. Appl. Phys. 96(4), 2359-2364 (2004).





 

 

Chapter 3.  

On the validity of continuous 
media theory for plastic 
materials in MR fluids under 
slow compression 
 

José Antonio Ruiz-López, Roque Hidalgo-Álvarez and Juan de 

Vicente. 

This article is published in Rheological Acta. Volume: 51(7). Pages: 

595-602. 2012. 

Abstract 

In this manuscript, we address the long-standing question of whether a 

single theory for model plastic fluids is suitable to deal with the 

unidirectional compression problem in magnetorheological (MR) fluids. 

We present an extensive experimental investigation of the performance of 

MR fluids in slow-compression, no-slip, constant-volume squeeze mode 

under different magnetic field strengths (0 – 354 kA/m), dispersing 

medium viscosities (20 – 500 mPa·s) and particle concentrations (5 – 30 

vol%). Normal force versus compressive strain curves reasonably collapse 

when normalizing by the low-strain normal force. Deviations from the 

squeeze flow theory for field-responsive yield stress fluids are associated 
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to microstructural rearrangements under compression in good agreement 

with the so-called squeeze strengthening effect. Yield compressive 

stresses are found to scale as ∼ η0.33 φ2.0 H2.0.  

3.1. Introduction 

Magnetorheological (MR) fluids are magnetically responsive colloidal 

suspensions with tunable mechanical properties (de Vicente et al. 2011a; 

Park et al. 2010). In the case of conventional MR fluids, dispersed 

micronsized particles become magnetized in the presence of external 

magnetic fields, eventually aggregating in the direction of the field and 

forming elongated chain-like structures. MR fluids are typically 

characterized by a field-dependent yield stress (i.e. the minimum stress 

value required for the suspension to flow).  

Because of their unique mechanical properties, MR fluids are already used 

in a wide range of commercial applications including automobile 

suspension systems, shock absorbers, etc (Carlson 2007; Olabi and 

Grunwald 2007). In general, available devices using these fluids can be 

classified according to their flow mode as direct-shear flow mode, 

pressure-driven flow mode and squeeze-film flow mode. Among the three 

modes, it is well known that the squeeze flow mode provides the largest 

yield stress under the same field (Havelka and Pialet 1996). The 

rheological properties of MR fluids under shearing flows (i.e. direct-shear 

and pressure-driven flows) have been extensively investigated in the 

literature. However, the understanding of the behavior of MR fluids under 

non-shearing elongational flows, and particularly in squeeze flow mode is 

still far to be complete mainly because of the lack of both a thorough 

understanding of the basic MR mechanisms and reliable experimental data 

(de Vicente et al. 2011b). 
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First reports on squeeze flow magnetorheology were devoted to 

investigate the enhancement of MR performance by the so-called 

compression-assisted aggregation process (Tang et al. 2000; Zhang et al. 

2004; Zhang et al. 2009). This consists of enhancing the yield shear stress 

by the formation of thick strong columns under compression. Later, See 

(2003) reported a series of low-strain tests on MR fluids where the 

behaviors under constant velocity squeezing flow and shear flow were 

compared. A field dependence of H0.91 was found for compression in 

contrast to the H1.4 dependence observed under shearing. Constant area 

squeeze flow MR experiments were carried out by Mazlan et al. (2007, 

2008). More recently, Gstöttenbauer et al. (2008) designed a test rig to 

explore the flow behavior of MR fluids under sinusoidal loading modes.  

Traditionally, the squeeze flow behavior of field-responsive fluids has 

focused on the electric counterparts of MR fluids; i.e. electrorheological 

(ER) fluids (El Wahed et al. 1998; Meng and Filisko 2005; Stanway et al. 

1987; Tian et al. 2002a; Tian et al. 2003b). Currently, the use of MR 

fluids under non-shearing flows has received attention mostly because of 

two reasons: i) border effects, that are unavoidably present when working 

with electrorheological (ER) fluids, are not an issue for MR fluids; ii) the 

magnetic field strength can be kept essentially constant (when 

neglecting/controlling the change in magnetic resistance when decreasing 

the gap) if compared to ER analogues working under constant voltage 

operation. However, a thorough investigation of the stress-strain 

characteristics of MR fluids in compression mode is still not complete. To 

the best of our knowledge, only the effect of magnetic field strength has 

been investigated under slow-compression, no-slip, constant-volume 

squeeze mode (de Vicente et al. 2011b; See 2003).  
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On the one hand, the effect of medium viscosity in the squeeze flow 

performance has been scarcely investigated. Chu et al. (2000) observed 

that the normal stresses in ER fluids containing lower medium viscosity 

not only possessed larger value but also increased more rapidly with the 

strain. These findings were explained in terms of a smaller drag force 

acting on field-induced structures. Interestingly, the medium viscosity 

does also influence the sedimentation rate of the dispersed particles. 

Experimental work and particle-level simulations demonstrate that body 

forces can significantly influence the structure and rheology of ER and 

MR suspensions even when the magnitude of the body force is small 

compared to the field-induced force (eg. in the filtration-dominated 

squeeze regime) (Klingenberg et al. 2007). On the other hand the 

understanding of the effect of particle concentration has been traditionally 

impeded by the fact that most experiments reported in the literature 

concern ER fluids working under constant area operation. For these 

systems, once the field is applied, the volumetric concentration increases 

under compression due to the "sealing/condensation effect" originated by 

the field intensification near the electrodes edges (Chu et al. 2000; Lynch 

et al. 2006; McIntyre and Filisko 2007; Tian et al. 2002a).  

In the current work we follow a previous paper where we investigated the 

effect of magnetic field strength in the appearance of normal forces under 

no-slip compression in the filtration dominated regime (de Vicente et al. 

2011b). In that paper we demonstrated a good scaling when normalizing 

by the low-strain normal force and a reasonably good agreement with 

macroscopic plastic models at large enough magnetic fields and particle 

level dynamic simulations --see Figure 9 in de Vicente et al. (2011b)--. In 

the present manuscript we report new experimental data to better 

understand the effect of dispersing liquid viscosity and particle content in 

the squeeze flow behavior. We also address a macroscopic model that 



 

 

Chapter 3.  171 

may capture dependencies with magnetic field strength, dispersing 

medium viscosity and particle concentration. The development of a 

general constitutive framework for MR fluids would find use in the design 

of better MR engineering devices. 

3.2. Theory 

The squeeze flow behavior of inelastic yield stress fluids under no-slip 

conditions has been extensively investigated in the literature since the 

pioneering work by Scott (1929). Usually, a plasticity number ܵ is defined 

that separates the preyield and postyield regimes (Covey and Stanmore 

1981): 

ܵ ൌ ఎ೛௩ோ
௛మఛ೤

           (3.1) 

Here ߟ௣ is the Bingham plastic viscosity, ݒ is the approaching speed, ܴ is 

the radius of the sample, ݄ is the gap thickness and ߬௬ is the yield shear 

stress.  

Starting from the Bingham constitutive equation, Covey and Stanmore 

(1981) obtained an analytical relation between the normal force ܨ and the 

gap thickness ݄ for small ܵ numbers (ܵ < 0.5): 

ܨ ൌ  ଶగఛ೤ோయ

ଷ௛
൅ ସగ

଻௛మ ට2߬௬ߟ௣ܴݒ଻               (3.2) 

Later Williams et al. (1993) analytically solved the squeeze flow problem 

for a bi-viscous fluid instead of a Bingham plastic. The final result reads 

as follows: 

ܨ ൌ  ଶగఛ೤ோయ

௛ఞయ ቂ ఊయ

ଵ଴଼
൅ ׬ ܵଶܩ ݀ܵఞ

ఊ/ଷ ቃ     (3.3) 

where ߛ, ߯, and ܩ are parameters defined by: 
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ߛ ൌ ఎ
ఎೝ

; ߯ ൌ ܵሺݎ ൌ ܴሻ; ܩ ൌ െ ௛
ଶఛ೤

 ௗ௣
ௗ௥

           (3.4) 

Here ߟ௥ is the preyield viscosity and ߟ the viscosity above the yield point 

in the bi-viscous model. 

Interestingly, for ܵ ا 1, in the so-called filtration dominated regime 

(McIntyre and Filisko 2010), both Equation 3.2 and Equation 3.3 

converge to the following analytical expression: 

ܨ ൌ ଶగఛ೤ோయ

ଷ௛
           (3.5) 

After some algebra, the normal force in the case of constant volume tests 

can be written as follows: 

ܨ ൌ ଶఛ೤௏య/మ

ଷ√గ௛బ
ఱ/మሺଵିఌሻఱ/మ

                     (3.6) 

where ܸ represents the total volume of the sample (ܸ ൌ  ଶ݄) and theܴߨ 

elongational strain ߝ is defined here as the ratio of the moving distance of 

the upper plate to the initial distance between the plates ߝ ൌ ሺ݄଴ െ ݄ሻ/݄଴. 

It is worth to remark here that in the derivation of Equation 3.6 we have 

assumed a small gap to radius ratio and a constant plastic yield stress that 

is independent of the deformation rate. Also, surface tension effects are 

neglected. Importantly, Equation 3.6 reveals that the resistance to 

deformation for low plasticity numbers comes from the yield shear stress 

component while viscous stresses are negligible. Equation 3.6 has been 

validated in the literature for the compression of ER fluids under constant 

area operation (Tian et al. 2002b). However, deviations from this 

description have been also reported (Tian et al. 2003b).  
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3.3. Experimental 

Conventional MR fluids were prepared by carefully mixing carbonyl iron 

microparticles (HQ grade, BASF) in silicone oil (Sigma-Aldrich). A 

parallel plate magnetorheometer MCR-501 (Anton Paar) was used to 

perform constant volume squeeze flow experiments in the presence of 

magnetic fields. The schematic of the compression test system is shown in 

Figure 3.1. Non magnetic titanium plates (diameter 2 cm) were employed. 

The initial separation was ݄଴ ൌ  Plates were supposed to be .݉ߤ 300

perfectly parallel even though a small misalignment exist (Andablo-Reyes 

et al. 2010, 2011). The distortion of the force sensor under pressures 

generated in this work was neglected. Previous work suggested that no-

slip assumptions do apply for all experiments reported in this manuscript 

(de Vicente et al. 2011b). Also, magnetic fields are expected to be 

reasonably uniform in the MRD-180 magnetocell employed as the typical 

magnetic field strength values remained smaller than 300 kA/m (Laun et 

al. 2008). 

Compression experiments were run at constant volume ܸ, and constant 

velocity ݒ ൌ ሶߝ :elongational rate range) ݏ/݉ߤ10 ׽ 0.03 െ  ଵ). Thisିݏ 0.2

corresponds to low plasticity numbers ܵ ൏ 0.5 and low Reynolds numbers 

׽ ܴ݁ 10ିଷ ا 1 so lubrication and creeping flow approximations can be 

used. Additionally, preliminary tests were performed under different 

approaching speeds and constant compressive rates to ensure that the tests 

were safely done in the so-called “filtration” regime (McIntyre and Filisko 

2010). Prior to the test, the sample was equilibrated at rest in the presence 

of a suddenly applied external magnetic field during 60 s. Results 

presented below are always averages over at least three separate runs. All 

experiments were run at 25 ºC.  
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Figure 3.1 Schematic view of the constant volume squeeze flow 
experiment and typical behavior of normal force growth for a 5 vol% MR 
fluid. Magnetic field strength 177 kA/m. Dispersing medium viscosity 200 
mPa·s. Approaching speed ݒ ൌ 10 μ݉/ݏ. 

Static and dynamic yield shear stress measurements were carried out in 

controlled shear stress mode. In a first step a preshear (ߛሶ ൌ  ଵ) isିݏ 200

applied in the absence of a magnetic field for 30 seconds. Then, the 

magnetic field is turned on without any shear applied yet. After 30 

seconds of equilibration the shear stress was logarithmically increased 

from 0.1 Pa at a rate of 10 points per decade. On the one hand, the static 

yield stress is determined from the low-shear extrapolation in double 

logarithmic representations of shear stress versus shear rate. On the other 

hand, the dynamic yield stress is obtained from curve fitting using the 

Bingham model at large shear rates in a lin-lin representation.  

3.4. Results and discussion 

A series of unidirectional slow compression tests has been carried out 

with different magnetic field strengths, dispersing medium viscosities and 
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particle volume fractions. As a way of example, a typical result is shown 

in Figure 3.1. In general, when a MR fluid is compressed under the 

presence of a magnetic field, its compressive resistance increases with the 

gap reduction. At large gaps (i.e. low strains), the normal force tends 

towards a limiting plateau value that is associated to the yield compressive 

stress of the field-induced structure. 

In a previous work we reported on the collapse of slow compression 

curves obtained for different magnetic field strengths when normalizing 

by the low strain normal force plateau (de Vicente et al. 2011b). In Figure 

3.2 we reproduce these data along with new experiments for a wide range 

of dispersing liquid viscosities and particle volume fractions. As observed, 

a reasonably good collapse is also found. As a reference, included in 

Figure 3.2 we also show the theoretical prediction according to Equation 

3.6 for yield stress fluids. At first glance, the theoretical prediction 

satisfactorily explains experimental data.  

Next, we will take a closer look to the experimental data in a more 

convenient way by plotting the normal force ܨ versus 1 െ  in a log-log ߝ

representation (see Figure 3.3). Results show a reasonably good linear 

relationship as theoretically predicted (cf Equation 3.6). Deviations from 

linearity appear at large 1 െ  values may be due to inertia and initial ߝ

transient effects. A least squares fitting routine was used to fit normal 

force data according to ܨ ൌ ܣ ሺ1 െ ⁄ሻ஻ߝ  in a log-log representation. 

Intercept ܣ and slope ܤ fitting parameters are included in Table 3.1. 
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Figure 3.2 Dimensionless normal force ܨ as a function of compressive 
strain ε for different magnetic field strength, dispersing medium viscosity 
and particle volume fraction. The force ܨ is normalized by the low-strain 
normal force value ܣ. Solid line corresponds to the prediction by the 
continuous media theory for plastic materials Equation 3.6. Approaching 
speed ݒ ൌ 10 μ݉/ݏ. 
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Figure 3.3 Log-log representation of normal force ܨ vs. 1 െ  .curves ߝ
Solid lines are best fits to ܨ ൌ ሺ1/ܣ െ  ሻ஻ with fitting parametersߝ
included in Table 3.1. (a) ߟ ൌ 20 ݉ܲܽ · ߶ ,ݏ ൌ ܪ (b) ;%݈݋ݒ 5 ൌ
߶ ,݉/ܣ݇ 177 ൌ ܪ and (c) ;%݈݋ݒ 5 ൌ ߟ ,݉/ܣ݇ 177 ൌ 20 ݉ܲܽ ·  .ݏ
Approaching speed ݒ ൌ 10 μ݉/ݏ. 
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H 

(kA/m) 
η 

(mPas) 

φ 

(vol%) 

ε  

(-) 

A  

(N) 

B 

 (-) 

R2

(-) 

Static 

(Pa) 

Dynamic 

(Pa) 

88 20 5 0.1-0.8 0.015 ± 0.001 2.98 ± 0.07 0.991 80 650 

133 20 5 0.1-0.8 0.030 ± 0.001 2.70 ± 0.03 0.997 160 880 

177 20 5 0.1-0.8 0.066 ± 0.001 2.55 ± 0.01 0.989 380 1070 

221 20 5 0.1-0.8 0.097 ± 0.002 2.45 ± 0.06 0.989 400 1530 

266 20 5 0.1-0.8 0.172 ± 0.004 2.37 ± 0.06 0.986 390 1500 

354 20 5 0.1-0.8 0.207 ± 0.005 2.28 ± 0.06 0.984 810 2650 

177 20 5 0.1-0.8 0.066 ± 0.001 2.55 ± 0.01 0.989 380 1070 

177 50 5 0.4-0.8 0.093 ± 0.006 2.54 ± 0.05 0.995 708 2500 

177 100 5 0.4-0.8 0.132 ± 0.006 2.68 ± 0.04 0.997 1580 4000 

177 200 5 0.4-0.8 0.140 ± 0.006 2.78 ± 0.03 0.998 708 3200 

177 500 5 0.4-0.8 0.191 ± 0.006 2.72 ± 0.03 0.999 2240 5250 

177 20 5 0.1-0.8 0.066 ± 0.001 2.55 ± 0.01 0.989 380 1070 

177 20 10 0.1-0.8 0.375 ± 0.003 2.74 ± 0.01 0.983 990 2800 

177 20 20 0.1-0.6 1.51 ± 0.04 2.86 ± 0.04 0.999 4750 5620 

177 20 30 0.1-0.5 2.32 ± 0.05 3.11 ± 0.05 0.998 5690 7380 

 

Table 3.1. Fitting parameters (A and B) and correlation coefficients (R2) 
for normal force vs. 1 െ  curves reported in Figure 3.3 according to ߝ
ܨ ൌ ሺ1/ܣ െ  ሻ஻. The compressive strain range used in the fitting routineߝ
is also showed. Also exposed are the values of the static yield shear stress 
(static) and the dynamic yield shear stress (dynamic) obtained from the 
ramp-up shear flow rheograms. 

On the one hand, intercept values A do increase with increasing the 

magnetic field strength, medium viscosity and particle concentration. This 

finding suggests that the yield compressive stress is a function of these 

quantities. On the other hand, the slopes of the experimental curves B 

approach the theoretical value of 2.5 (in agreement with results presented 

in Figure 3.2). However, non-negligible deviations in B parameters with 

respect to the theoretical value exist (ranging from 2.4 to 3.1). These 

deviations may suggest that the compression resistance increases 
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generally faster than the prediction of the squeeze flow theory, for 

example with a ߬௬ that increases when decreasing the gap. To check this 

hypothesis we took pictures of the MR fluids under compression using a 

rheomicroscopy device. In Figure 3.4 we show a typical example where 

field induced structures are seen to actually evolve under compression 

leading to thicker columnar aggregates. These thicker structures are 

presumably more resistant to deformation and eventually would give a 

larger ߬௬ in view of the squeeze strengthen effect (Tang et al. 2000). 

 

Figure 3.4 Structure evolution of a 5 vol% suspension in a 20 mPa·s 
silicone oil under compression, in the presence of an external magnetic 
field that is perpendicular to the paper. (a) initial gap ݄଴ ൌ  in the ݉ߤ 300
absence of an external magnetic field; (b) initial gap ݄଴ ൌ  in ݉ߤ 300
presence of an external magnetic field; (c) intermediate gap ݄଴ ൌ  ݉ߤ 190
in presence of an external magnetic field. 
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Figure 3.5.  Low-strain compressive stresses as a function of magnetic 
field strength H (squares), dispersing medium viscosity η (circles) and 
particle volume fraction φ (triangles). (a) Comparison between 
experiments ߬஼,ா and calculations ߬஼,஼ using Equation 3.7 for the static 
yield shear stress; solid symbols, experimental; open symbols, 
calculations. (b) Calculations of the low-strain compressive stresses using 
dynamic yield shear stress measurements in Equation 3.7. 
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A further insight into the compressive behavior of MR fluids can be 

obtained by directly measuring the static yield shear stress ߬௬ of the 

samples using conventional steady simple shear rheometry (de Vicente et 

al. 2011a). With this, compressive stresses can be calculated from 

Equation 3.6 as follows: 

߬஼,஼ ൌ ଶఛ೤௏య/మ

ଷగయ/మ௛బ
ఱ/మ௥బ

మ ൌ ଶఛ೤௥బ

ଷ௛బ
          (3.7) 

where ݎ଴ is the initial sample radius (ݎ଴ ൌ 3.8 േ 0.3 ݉݉). For a 

comparative analysis, in Figure 3.5 we show experimentally measured 

compressive yield stresses ߬஼,ா ൌ ଴ݎߨ/ܣ
ଶ (solid symbols) as well as 

calculations ߬஼,஼ using Equation 3.7 (open symbols). As demonstrated, 

calculated compressive yield stresses compare reasonably well with 

experimental measurements especially taking into account that there are 

not free parameters in these calculations. The yield compressive stress 

does increase with increasing the magnetic field strength, medium 

viscosity and particle content. A power law dependence is found in the 

three cases. Even though similar values are obtained for the experimental 

and calculated yield compressive stresses, the slopes seem to differ from 

each other (see Table 3.2).  

 

 H η φ 

τC,E (kPa) 2.0 ± 0.1 0.33 ± 0.08 2.0 ± 0.2 

τC,C (static) (kPa) 1.47 ± 0.07 0.46 ± 0.02 1.62 ± 0.04 

τC,C (dynamic) (kPa) 1.0 ± 0.1 0.44 ± 0.06 1.0 ± 0.1 

 

Table 3.2. Power law exponent α for the yield compressive stress τC 
according to τC ∝ Xα being X = H, η or φ. Data used are taken from Figure 
3.5. 
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The experimentally measured yield compressive stress ߬஼,ா varies with the 

magnetic field strength as H2.0 ± 0.1. This H dependency of normal stresses 

in the squeezing flow turns out to be larger than the well-known H1.5 

dependence of shear stresses in simple shearing flow (de Vicente et al. 

2011a; Ginder et al. 1996; See 2003). In agreement with the literature, our 

MR fluid exhibited a yield shear stress that scaled as H1.47 (see Table 3.2). 

Similarly to our results, Tian et al. (2003b) reported that the yield 

compressive stress in ER fluids was proportional to the square of the 

external electric field for large gap separations. They argued that the 

exponent should be 2 if there is no saturation effect in ER fluids according 

to the polarization model (Wen et al. 2008). On the contrary, Chu et al. 

(2000) measured an exponent larger than 4 in ER fluids for the E 

dependence, and See (2003) found that in the case of highly concentrated 

MR fluids the normal force varies with H0.91 under the higher fields 

investigated.  

The dispersing medium viscosity dependence is significantly low as 

expected in a slow compression filtration-dominated regime (≈ η0.33 ± 0.08). 

The slight increase in the stress with increasing viscosity may be due to an 

enhancement in the kinetic stability and hence slightly stronger field 

induced structures (Klingenberg et al. 2007). This hypothesis is confirmed 

from yield shear stress measurements; actually, the yield shear stress did 

also slightly increase with increasing the medium viscosity (≈ η0.46 ± 0.02, 

see Table 3.2). 

As expected, the effect of particle concentration is found to be 

significantly more important than the effect of oil viscosity. Again, a 

power law dependence is found between the yield compressive stress and 

the volume fraction (≈ φ2.0 ± 0.2). This result is larger than the slope 

obtained from yield shear stress measurements, that predict a power law 
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of approximately 1.5 (see Table 3.2), and in qualitative good agreement 

with Tian et al. (2003a). It is worth to remark here that contrary to ER 

fluids where φ increases with decreasing the electrode separation, in our 

experiments, φ remains constant as the magnetic field is presumably 

uniform (Laun et al. 2008). 

For completeness, in Figure 3.5b we show calculated compressive stresses 

by substituting the dynamic yield shear stress --instead of the static yield 

shear stress-- in Equation 3.9. By comparing Figure 3.5a and Figure 3.5b, 

we observe that a much better accordance between experiments and 

calculations is obtained when using the static yield stress data. This was 

expected as the field-induced structures were not supposed to slip on the 

plates. 

3.5. Conclusions 

Most of the squeeze flow results reported in the literature on field-

responsive fluids deal with ER fluids where both the electric field strength 

and particle concentration change during compression. Many efforts have 

been done in the past to better understand their squeeze flow behavior 

under the framework of continuum media theories. In some cases, 

experimental data are satisfactorily explained using a continuum squeeze-

flow theory whereas it has been recently reported that this theory fails for 

small initial gaps and high voltages (Meng and Filisko 2005; Tian et al. 

2003b). 

In this paper we performed a systematic experimental study of 

conventional MR fluids under conditions of slow compression, no-slip, 

and constant volume. We proposed a unified description of the behavior 

of MR fluids in terms of a continuous media theory for plastic materials. 

This allowed us to collapse compression curves obtained for a wide range 
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of magnetic field strengths, medium viscosity and particle concentration. 

Deviations from the theory were explained in terms of the squeeze 

strengthening effect. On the one hand, a quadratic dependence with the 

magnetic field strength (2.0 ± 0.1) and particle concentration (2.0 ± 0.2) is 

found. On the other hand, a η0.33 ± 0.08 dependence of the compressive 

stress is found. Experiments reported here suggest another procedure to 

determine static yield shear stresses when slowly compressing the MR 

fluids.  
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Abstract 

The enhanced mechanical response of magnetorheological fluids under 

slow compression has been investigated by means of experiments, theory 

and particle-level simulations. A wide range of magnetic field strengths 

(0–354 kA/m), dispersing medium viscosities (20–500 mPa·s) and particle 

concentrations (5–30 vol%) were investigated. Plastic media theory in 

compressive flow was in good agreement with experimental data. Slight 

deviations from the theory were associated to the so-called strengthening 

effect as the yield shear stress could increase during compression. 

Particle-level simulations were in good agreement with both experiments 

and simulations.  
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4.1. Introduction 

In general, available devices using magnetorheological (MR) fluids can be 

classified according to their flow mode as direct-shear flow mode, 

pressure-driven flow mode and squeeze-film flow mode. Among the three 

modes, it is well known that the squeeze flow mode provides the largest 

yield stress under the same field [1]. The rheological properties of MR 

fluids under shearing flows have been extensively investigated in the 

literature. However, the understanding of the behavior of MR fluids under 

non-shearing elongational flows, and particularly in squeeze flow mode is 

still far to be complete mainly because of the lack of both a thorough 

understanding of the basic MR mechanisms and reliable experimental data 

[2, 3]. 

First reports on squeeze flow magnetorheology were devoted to 

investigate the enhancement of MR performance by the so-called 

compression-assisted aggregation process [4-6]. Later, in a study, a series 

of low-strain tests on MR fluids where the behaviors under constant 

velocity squeezing flow and shear flow were compared [7]. A field 

dependence of H0.91
 was found for compression in contrast to the H1.4

 

dependence observed under shearing. 

In this work, we follow previous papers where we experimentally 

demonstrated the appearance of normal forces under no-slip compression 

in the filtration dominated regime [3, 8]. In the present study the long-

standing question of whether a single theory for model plastic fluids is 

suitable to deal with the unidirectional compression problem in MR fluids 

was addressed. In this work, an extensive experimental and particle-level 

simulation investigation of the performance of MR fluids in 

slowcompression, no-slip, constant-volume squeeze mode under different 
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magnetic field strengths (0–354 kA/m), dispersing medium viscosities 

(20–500 mPa s) and particle concentrations (5–30 vol%) were 

investigated. 

4.2. Theory 

Plastic media theory in squeeze flow mode was first developed by Covey 

and Stanmore [9]. The solution of the motion equation for a Bingham 

fluid depends of the plasticity number, defined as: 

ܵ ൌ ఎ೛௩ோ
௛మఛ೤

          (4.1) 

where ߟ௣ is the Bingham plastic viscosity, ݒ is the approaching speed, ܴ 

is the radius of the sample, ݄ is the gap thickness and ߬௬ is the yield shear 

stress. For low plasticity numbers, in the so-called filtration dominated 

regime, both Bingham and biviscous theories are applied that reduce to 

the following analytical expression in the case of constant volume tests 

[8]: 

ܨ ൌ ଶఛ೤௏య/మ

ଷ√గ௛బ
ఱ/మሺଵିఌሻఱ/మ

                (4.2) 

where ܸ represents the total volume of the sample (ܸ ൌ  ଶ݄) and theܴߨ 

elongational strain ߝ is defined here as the ratio of the moving distance of 

the upper plate to the initial distance between the plates ߝ ൌ ሺ݄଴ െ ݄ሻ/݄଴. 

4.3. Simulations 

A three-dimensional particle-level simulation method to understand the 

effect of particle concentration was also employed. Magnetic forces were 

approximated by the point-dipole limit and high-order magnetic 

multipoles were neglected. A free draining approximation was used for 
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including hydrodynamic interactions. Short-range repulsive interactions 

between particles, and particles and walls were taken as an exponential 

interaction [3, 8]. 

Finally, the normal force, כܨ, acting on the plate is calculated by simply 

differentiating the total magnetic energy, ܷכ , according to: 

כܨ ൌ െ ௗ௎כ

ௗ௛כ ,           (4.3) 

4.4. Results and discussion 

Uniaxial monotonic compression tests were carried out in the presence of 

a uniaxial magnetic field at low compression rates under constant volume 

conditions. In all cases, the resulting normal force shows an initial 

‘plateau’ in the low-strain region related to the compressive yield stress. 

This initial plateau is in agreement with Equation 4.2 [3]. 

The compressive yield stress was obtained from experimental data by 

dividing the initial normal force plateau value by the MR fluid area. For a 

comparative analysis, in Figure 4.1, experimentally measured compressive 

yield stresses ߬஼,ா ൌ ܣ ଴ݎߨ
ଶ⁄  (open symbols) as well as calculations 

߬஼,஼ ൌ ଶఛ೤௏య/మ

ଷగయ/మ௛బ
ఱ/మ௥బ

మ ൌ ଶఛ೤௥బ

ଷ௛బ
 (open symbols) were shown. As demonstrated, 

calculated compressive yield stresses compare reasonably well with 

experimental measurements especially taking into account that there are 

not free parameters in these calculations. The yield compressive stress 

does increase with increasing the magnetic field strength, medium 

viscosity and particle content. A power law dependence is found in the 

three cases. 
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Figure 4.1 Low-strain compressive stresses as a function of magnetic field 
strength H (squares), dispersing mediumviscosity η (circles) and particle 
volume fraction φ (triangles). 

0,01 0,1 1
0

20

40

60

80

100
 

 

F/
A

 (-)

ε (-)

   20 mPa.s    5 vol%  177 kA/m
   50 mPa.s    5 vol%  177 kA/m
 100 mPa.s    5 vol%  177 kA/m
 200 mPa.s    5 vol%  177 kA/m
 500 mPa.s    5 vol%  177 kA/m
   20 mPa.s  10 vol%  177 kA/m
   20 mPa.s  20 vol%  177 kA/m
   20 mPa.s  30 vol%  177 kA/m
   20 mPa.s    5 vol%    88 kA/m
   20 mPa.s    5 vol%  133 kA/m
   20 mPa.s    5 vol%  221 kA/m
   20 mPa.s    5 vol%  266 kA/m
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Figure 4.2 Dimensionless normal force as a function of compressive strain 
ε for different magnetic field strength, dispersing medium viscosity and 
particle volume fraction. Solid line corresponds to the prediction by the 
continuous media theory for plastic materials Eq. 1. Stars correspond to 
particle level dynamic simulations. 
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In order to compare theory, experiments and particle-level simulations, a 

normalization of the normal force with the low-strain plateau value was 

carried out. According to equation 2, this normalized normal force must 

only depend on the elongational strain. As shown in Figure 4.2, 

experimental data reasonably collapse in a master curve and are in good 

agreement with both theoretical plastic models and simulations [3, 8]. 

4.5. Conclusions 

A unified description of the behavior of MR fluids in terms of a 

continuous media theory for plastic materials were proposed. This allowed 

us to obtain collapsed compression curves for a wide range of magnetic 

field strengths, medium viscosity and particle concentration. Deviations 

from the theory were explained in terms of the squeeze strengthening 

effect. On the one hand, a quadratic dependence with the magnetic field 

strength (2.0±0.1) and particle concentration (2.0±0.2) was found. On the 

other hand, a negligible dependence with the continuous phase viscosity 

was found. Experiments reported here validated another procedure to 

determine static yield shear stresses when slowly compressing the MR 

fluids. Particle-level dynamic simulations at large 1 െ  suggest a ߝ

quadratic volume fraction dependence (1.94 ± 0.22) in good agreement 

with experimental data. 
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Abstract 

 

A methodology is proposed to simulate the squeeze flow behavior of 

model magnetorheological (MR) fluids. The model includes Brownian 

motion and local field corrections. Results are presented for preassembled 

structures comprising single-particle-width chains, random and lattice 

structures, and particle suspensions. Calculations are compared to 

experimental data and a recently developed microscopic model. Single-

particle-width simulations predict larger normal stresses than experiments 

and the micromechanical model. However, simulations on particle 

suspensions are in much better agreement. 
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5.1.  INTRODUCTION 

Magnetorheological (MR) fluids are typically suspensions of 

magnetizable particles in a liquid carrier fluid. In the presence of a 

magnetic field, the particles aggregate forming anisotropic structures as a 

result of interparticle magnetostatic interactions. These structures are 

behind a rich rheological behavior that spans from a liquid-like system at 

low fields to a solid-like paste, exhibiting an apparent yield stress, in the 

presence of sufficiently large fields [Bossis et al. (2002); de Vicente et al. 

(2011a); Wereley (2013)]. 

Currently, there exists an important portfolio of devices incorporating this 

technology, most of them related to stress transfer control. In these 

devices, MR fluids are subjected to very complex flows. However, most 

of the studies reported in the literature concern viscometric flows, and in 

particular, steady shear flow tests. Very few works have been done 

involving other kinds of flows (e.g. elongational flows) in spite of the fact 

that recent investigations on squeeze (i.e. compression) flows demonstrate 

a significantly larger yield stress than in conventional shearing flows 

[Havelka and Pialet (1996); de Vicente et al. (2011b); Galindo-Rosales et 

al. (2015)]. Undoubtedly, the rheological behavior of MR fluids under 

compression is not completely understood yet. 

During the last decade, several experimental studies have been reported 

under constant volume operation, creeping flow approximation and for 

low plasticity numbers (slow speeds) [de Vicente et al. (2011b); Ruiz-

López et al. (2012); Guo et al. (2013); Xu et al. (2014)]. In these works, 

experimental data are reasonably well confronted to predictions from 

continuous media theories in Bingham plastics. These theories lead to a 

yield compressive stress ߬௒஼  that is related to the usual shear yield stress 
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as follows: ߬௒஼ ൌ ଶ
ଷ ට ௏

గ௛బ
య ߬௬, where ܸ is the constant volume, ݄଴ is the 

initial gap and ߬௬ is the shear yield stress. Therefore, the yield 

compressive stress dependence on the magnetic field strength and the 

particle volume fraction is solely provided by the dependence of the shear 

yield stress on these two magnitudes. It is also important to note that if the 

initial gap is small compared to the initial radius of the sample, ݄଴ ا  , ଴ݎ

the yield compressive stress can be much higher than the shear yield 

stress.  

Interestingly, previous works demonstrate that the shear yield stress 

increases during the compression stage due to the so-called strengthening 

effect [Tang et al. (2000)]. This is claimed to be so because chain-like 

structures become thicker under compression [Becnel et al. (2015)]. The 

strengthening effect was theoretically explained using local field theory 

by Zhang et al. (2004). Recently, the strengthening effect was also 

explained in terms of the Péclet number [Bigué et al. (2015)] 

In a recent study, Ruiz-López et al. (2015) developed a micromechanical 

model to explain the rheological properties of MR fluids under slow 

compression. They found that the yield compressive stress depends 

linearly on the particle volume fraction and on the magnetic field strength 

squared: ߬௒஼~߶ܪଶ. The validity of this model is limited to dilute MR 

fluids at sufficiently small deformations and therefore some deviations 

with experimental results were obtained at the particle volume fractions 

used in commercial applications. To get a better insight, in the current 

manuscript we aim to use particle-level simulations to explore the yielding 

behavior of MR fluids under compression flows. 

Simulations of field-responsive fluids under compression are very scarce 

in the literature. Simulations for electrorheological (ER) fluids were 
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carried out by Lukkarinen and Kaski (1996 and 1998) and Kim et al. 

(1999). In these works the compressive stress sharply increases as a 

function of the compressive strain and the yield compressive stress is 

higher than the shear yield stress (in accordance with available 

experimental data). However, these simulations were carried out at a 

constant voltage and therefore, the electric field strength increases under 

compression complicating the analysis. To the best of our knowledge 

there is only one paper dealing with the simulation of MR fluids under 

compression [de Vicente et al. (2011b)]. In this particular study, the 

external magnetic field strength remains constant during compression 

facilitating the interpretation of the results. The authors reported particle-

level molecular dynamic simulations and satisfactorily confronted these 

data with experimental results. However, the number of particles in those 

simulations was scarce due to the non-periodical boundary conditions and 

results were only obtained at a particle volume fraction of 5 vol %. 

 In this manuscript we propose a novel particle-level simulation 

methodology to explore the squeeze flow behavior of MR fluids using 

periodic boundary conditions and local field corrections. We pay special 

attention to the influence of particle microstructures in the compressive 

yield stress as a function of the particle volume fraction. Results are 

compared to experimental data, continuous media theories and 

micromechanical models available in the literature [de Vicente et al. 

(2011b); Ruiz-López et al. (2015)]. 

 

5.2. SIMULATION MODEL 

Brownian molecular dynamic simulations were carried out to study the 

rheological behavior of model MR fluids under slow compression. The 
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MR fluid was modeled as a suspension of ܰ monodisperse buoyant and 

inertialess particles with a diameter, ߪ, in a Newtonian fluid confined in a 

rectangular box of volume ܸ. The volume of the simulation box is a 

function of the number of particles ܰ and the particle volume fraction  ߶ 

as follows: ܸ ൌ ଷܰߪߨ 6߶⁄ . We chose a coordinates system centered in 

the simulation box as shown in the Figure 5.1. 

 

 

 

Figure 5.1 Schematics of the simulation box and coordinates systems. 

During the compression test, the horizontal plates approach together with 

a relative constant velocity, ݒ ; the upper plate moves down towards the 

lower plate with a velocity – ݒ 2⁄  while the lower plate moves up ݖ̂

towards the upper plate with a velocity ൅ ݒ 2⁄  is the unit vector ݖ̂ Here . ݖ̂

in the z-direction. Periodic boundary conditions were applied in the 

vertical walls (x- and y-directions). Stick boundary conditions were 

applied for particles within a distance to the walls of 0.55 ߪ. These stick 

boundary conditions could prevent the chain-like structures to move in the 
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radial direction and therefore the local concentration could increase during 

compression. In order to make the simulations more realistic, Brownian 

motion was also included in the simulations to allow the structures to 

move in the radial direction following the flow. Simulations were run 

keeping ܸ constant. This means that during the compression, the lateral 

box length ݈ increases, while the gap between the plates ݄ diminishes 

according to ݈ ൌ ඥܸ ݄⁄ .  

For simplicity, magnetostatic interaction was modeled using the point-

dipole approximation. Hence, the magnetostatic force between two 

particles, ݅ and ݆, separated by a distance, ݎ௜௝, is given by: 

Ԧ௜௝ܨ
௠௔௚

ൌ ଷఓబఓ೎ೝ
ସగ

ൣଷሺ௠ሬሬሬԦ೔൉௥̂ሻ൫௠ሬሬሬԦೕ൉௥̂൯ି௠ሬሬሬԦ೔൉௠ሬሬሬԦೕ൧௥̂ିൣ൫௠ሬሬሬԦ೔൉ఏ෡൯൫௠ሬሬሬԦೕ൉௥̂൯ାሺ௠ሬሬሬԦ೔൉௥̂ሻ൫௠ሬሬሬԦೕ൉ఏ෡൯൧
௥೔ೕర    (5.1) 

where ߤ଴ is the magnetic permeability of the vacuum, ߤ௖௥ is the relative 

magnetic permeability of the continuous medium, ሬ݉ሬԦ௜ and ሬ݉ሬԦ௝ are the 

magnetic moments of the particles ݅ and ݆, respectively, and ̂ݎ and ߠ෠ are 

the radial and polar angle unit vectors, respectively. In this work, the 

magnetic moments of the particles are assumed to be of equal strength 

(݉௜ ൌ ௝݉ ൌ ݉).  

Under the so-called mean-magnetization approximation, the magnetic 

moments can be expressed as a function of the magnetic field strength 

[Ruiz-López et al. (2015)]:  ሬ݉ሬԦ௜ ൌ  is the so-called ߚ ,ሬሬԦ/2. Hereܪߚଷߪߨ

contrast factor that depends on the difference between the magnetic 

permeabilities of the particles and the continuous medium, ߚ ൌ

൫ߤ௣௥ െ ௖௥൯ߤ ൫ߤ௣௥ ൅ ௖௥൯ൗߤ2  ௣௥ is the relative magnetic permeability ofߤ ,

the particles, and ܪሬሬԦ is the magnetic field strength. The magnetic field 

strength was calculated using the Local Field Theory, ܪሬሬԦ ൌ  ሬሬԦ௟௢௖ . At theܪ

position of the particle ݅, the local field can be expressed as follows: 
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ሬሬԦ௟௢௖,௜ܪ ൌ ሬሬԦ଴ܪ ൅ ∑ ሬሬԦ௠ೕܪ
ே
௝ஷ௜                    (5.2) 

ሬሬԦ௠ೕܪ ൌ ଷ൫௠ሬሬሬԦೕ൉௥̂൯௥̂ି௠ሬሬሬԦೕ

௥೔ೕయ     (5.3) 

where ܪሬሬԦ଴ is the external magnetic field, applied in the z-direction, and 

ሬሬԦ௠ೕܪ  is the magnetic field produced by the magnetic dipole, ሬ݉ሬԦ௝ at the 

center of the particle ݅. As the local magnetic field depends on the 

magnetic moments of the particles and the magnetic moments depend on 

the local magnetic field, both magnitudes must be solved in a self-

consistent manner. Although the magnetic interactions are long-ranged, in 

order to reduce the total simulation time, a cutoff ݎ௖,௠௔௚ ൌ ݈/2 in the 

magnetic interaction was included. The external magnetic field used in all 

the simulations was ܪ଴ ൌ  and the contrast factor for this ݉/ܣ݇ 177

magnetic field strength was estimated from the magnetization curves of 

typical MR fluids, ߚ ൌ 0.706 [de Vicente et al. (2011b)]. 

The fluid-particle interaction was simulated by the Stokes law. According 

to this, the drag force, ܨԦ௜
௛௬ௗ

, exerted by the fluid on the particle ݅, is given 

by the expression: ܨԦ௜
௛௬ௗ

ൌ െ3ߟߨ௖ߪ ቀௗ௥Ԧ೔
ௗ௧

െ ሬԦ௜ݑ
ஶቁ, where ߟ௖ is the 

continuous medium viscosity and  ݑሬԦ௜
ஶ is the laminar viscous fluid 

velocity at the center of the particle ݅ (in the absence of particles). In the 

squeeze flow mode, under no slip conditions and creeping flow 

approximation, the velocity of the fluid is given by [Engmann et al. 

(2005)]: 

ሬԦ௜ݑ
ஶ ൌ ଷ௩

ସ
ఘ೔
௛

ቀ1 െ ସ௭೔
మ

௛మ ቁ ොߩ ൅ ௩
ଶ

௭೔
௛

ቀ3 െ ସ௭೔
మ

௛మ ቁ  (5.4)          ݖ̂

where, ߩ௜ and ݖ௜ stand for the cylindrical coordinates of the particle ݅, and 

 are its corresponding unit vectors. Due to the periodic boundary ݖ̂ ො andߩ

conditions applied in the simulation box and the radial increase of the 
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fluid velocity, a particle moving outside the box would have a radial 

velocity leading the particle into the box and an artificial equilibrium 

could occur at the edges of the simulation box. However, it is worth to 

note that the lateral box edges are also moving and it can be shown that 

the velocity of the lateral side of the box is equal to the average velocity 

of the fluid at this lateral side. Thus, a particle cannot move outside the 

box because of the drag force. 

An exponential short-rage repulsive force was used in order to avoid an 

overlap between particles and particles and walls, ܨԦ௜௝
௥௘௣

and ܨԦ௜
௪௔௟௟

 

respectively: 

Ԧ௜௝ܨ
௥௘௣

ൌ െܨ଴exp ሾെ݇൫ݎ௜௝ െ  (5.5)      ݎ൯ሿ̂ߪ

Ԧ௜ܨ
௪௔௟௟

ൌ ଴exp ሾെ݇ሺ݀௜ܨ െ ሻሿߪ0.5 ො݊       (5.6) 

Here, ܨ଴ is defined as the magnetostatic force between two magnetic 

dipoles in a head-to-tail configuration aligned in the direction of the 

external magnetic field (neglecting local field corrections): ܨ଴ ൌ
ଷ

ଵ଺
଴ܪଶߚ௖௥ߤ଴ߤߨ

ଶߪଶ, ݇ is the stiffness constant of the repulsive force and it 

was chosen to be ݇ ൌ 100 ⁄ߪ , ݀௜ is the particle distance to any horizontal 

wall (݀௜ ൌ ݄ 2⁄ െ ௜ for the upper wall and ݀௜ݖ ൌ ݄ 2⁄ ൅  ௜ for the lowerݖ

wall) and ො݊ is the unit vector normal to the particular wall. Two cutoff 

radii in the repulsive forces for particles and particles and walls were also 

applied for particles within a distance of ݎ௖,௥௘௣ ൌ ௖,௪௔௟௟ݎ and ߪ2 ൌ  ,ߪ

respectively. 

Overall, the motion of a particle ݅, is governed by the Langevin equation: 

ߪ௖ߟߨ3 ௗ௥Ԧ೔
ௗ௧

ൌ ሬԦ௜ݑߪ௖ߟߨ3
ஶ ൅ Ԧ௜ܨ ൅ Ԧ݂஻ሺݐሻ        (5.7) 
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where ܨԦ௜ is the total force exerted on the particle ݅, and Ԧ݂஻ሺݐሻ is a random 

force introduced to mimic the Brownian motion of the particles. The 

random force was calculated as ஻݂ ן ඥ3ߟߨ௖݇ߪ஻ܶ/Δݐ, where ݇஻ is the 

Boltzmann constant, ܶ is the temperature and Δݐ is the time variation. In 

this work we focus on isothermal conditions; the temperature was fixed at 

ܶ ൌ  :We used the following scales for the length, force and time .ܭ 298

݈௦ ൌ ௦ܨ ,ߪ ൌ ௦ݐ ଴ andܨ ൌ ଶߪ௖ߟߨ3 ⁄଴ܨ  in order to work in dimensionless 

units. Equation 5.7 was solved in this work using the Euler algorithm and 

the time variation was calculated at every step taking into account that the 

maximum displacement of a particle in any direction is Δݔ, Δݕ, Δݖ ൌ

 The maximum of the time step was imposed to be 10ିଷ in .ߪ0.05

dimensionless units and the approaching velocity of the plates was set at 

כݒ ൌ 10ିଶ. 

The normal stress in the suspension was estimated as follows: 

߬௭௭ ൌ െ ଵ
௏

∑ ௭,௜௝ܨ௜௝ݖ
ே
௜ழ௝           (5.8) 

where ݖ௜௝ is the difference between the z-coordinates of the particles ݅ and 

݆, and ܨ௭,௜௝ is the ݖ-component of the total pair-wise force between the 

particles ݅ and ݆. However, a more easily accessible experimental 

observable is the normal force instead of the normal stress. The normal 

force was calculated in this work using two different approaches. On the 

one hand, the normal force acting on the upper plate is computed by 

multiplying the normal stress times the surface area of the plate (݈ଶ). 

Another possibility is to calculate the normal force by differentiating the 

magnetic energy with the gap thickness similarly to de Vicente et al. 

(2011b). It is important to remark here that fluctuations in the energy due 

to the limited number of particles make it difficult to carry out the 

differentiation [Ahnert and Abel (2007)]. In this work we first fitted the 
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simulation data to a fourth-order polynomial and then differentiated the 

polynomial expression. 

Three different kinds of simulations were carried out. In the first set of 

simulations, we compressed single-particle-width chains (having different 

number of particles) placed at the center of the simulation box. In the 

second set of simulations, the effect of the increasing local concentration 

in the normal force, due to the stick boundary conditions, was tested using 

random and lattice structures. Finally, in the third set of simulations, we 

compressed collectivities of magnetizable particles randomly distributed 

in the box. The methodology consisted in two differentiated steps. First, 

particles within the box were subjected to a suddenly applied magnetic 

field for structuration. Once the system reached a stationary state, in a 

second step, a squeeze flow field was superimposed still in the presence of 

the magnetic field. In both steps, magnetic energy, normal stresses and the 

average of nearest neighbors were monitored as a function of time. In the 

second step the normal force acting on the compressing plates (see Figure 

5.1) was also calculated from the normal stress distribution acting on it. 

5.3. SINGLE‐PARTICLE‐WIDTH CHAINS 

The first simulations to be studied concerned isolated single-particle-

width chains. These constitute the simplest structures possible and a first 

approximation to the squeeze flow behavior of real suspensions. 

Preassembled chains were initially aligned in the ݖ-direction in head-to-

tail configuration spanning the whole separation between plates. Hence, 

the number of particles in the simulation was proportional to the initial 

gap between plates according to ܰ ൌ ݄଴ ⁄ߪ . Tests were carried out for 

different number of particles and initial gaps (ܰ א ሾ30,100ሿ) and different 
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particle loadings (߶ א ሾ0.01,0.20ሿ). In all simulations the final separation 

gap was fixed at ݄௙ ൌ  .ߪ20

Figure 5.2a depicts the dimensionless normal stress ߬௭௭
 as a function of כ

1 െ ε, where ε ൌ ሺ݄଴ െ ݄ሻ/݄଴ is the compressive strain, at different 

particle loadings for chains of different lengths. The normal stress seems 

to be independent on the number of particles in the chain (ܰ) and 

therefore the initial gap (݄଴). The stress remains essentially constant upon 

compression for the lowest particle concentrations although some jumps 

are observed at high strains. These jumps can be related to the single-to-

double chain transitions especially in the most dilute case where the 

interaction with other chains is minimal. However, for the highest 

concentration, ߶ ൌ 0.20, the stress decreases upon compression for 

1 െ ε ൎ 0.4. This different trend can be explained by the fact that single-

particle-width chains do not actually exist for this concentration, bearing 

in mind the particles we consider in the periodical boundary conditions 

can affect to the stress in the chain. These results suggest that there is a 

critical concentration at approximately  ߶ ൌ 0.10 above which the 

hypothesis of single-particle-width chains is not valid. This finding is in 

good agreement with previous reports in the recent literature involving 

both experiments and shearing flows [Ruiz-López et al. (2015); Segovia-

Gutiérrez et al. (2012); Fernández-Toledano et al. (2014)].  

From the inspection of Figure 5.2a, the dimensionless normal stress seems 

to be linearly dependent on the particle concentration. This result is in 

good agreement with a recently proposed micromechanical model for 

squeeze flow Ruiz-López et al. (2015).  According to this model, the yield 

compressive stress, obtained in the zero-strain limit, can be written as 

follows: ߬௒஼ ൌ ଶ଻
ଷଶ

௔ߚ௖௥ߤ଴ߤ߶
ଶܪଶ. Here, ߚ௔ is the contrast factor of the 

aggregates, ܪ ൌ ሺ1 െ ሺ3ሻߞߚ 2⁄ ሻିଵܪ଴ is the local field of an infinite chain 
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and ߞ is the Riemann Zeta function. Figure 5.2b shows the dimensionless 

normal stress divided by the dimensionless yield compressive stress from 

the referred micromechanical model: ߬௒஼
כ ൌ ଽ

ଶగ
߶ ఉೌ

మுమ

ఉమுబ
మ . Here, ߚ is the 

contrast factor of the particles. As shown in Figure 5.2b, the 

dimensionless normal stress reasonably scales with the theoretical 

compressive yield stress. The variations among all data, for different 

concentrations and chain sizes, in the zero-strain limit are below 25% 

suggesting that results reasonably collapse in a master curve. Obviously, 

deviations become apparent for the largest concentrations as a result 

interaggregate interactions. These interactions are not included in the 

micromechanical model.  
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Figure 5.2.- a) Dimensionless normal stress ߬௭௭
כ  in single-particle-width 

chains simulations for chains of different lengths (ܰ א ሾ30,100ሿ) and particle 
loadings (߶ א ሾ0.01,0.20ሿ). b) Dimensionless normal stress divided by the 
dimensionless yield compressive stress from the micromechanical model by 

Ruiz-López et al. (2015): ߬௒஼
כ ൌ ଽ

ଶగ
߶ ఉೌ

మுమ

ఉమுబ
మ. Closed symbols: ߶ ൌ 0.01. 

Open symbols: ߶ ൌ 0.05. Vertically and horizontally crossed symbols: 
߶ ൌ 0.10. Diagonally crossed symbols: ߶ ൌ 0.20. 

Next, the normal force ܨ acting on the confining plates was calculated 

from ߬௭௭ by simply multiplying by the surface ܵ (Figure 5.3): 

ܨ ൌ ߬ܵ ൌ ߬ ௏
௛

ൌ െ ௏
௛

ଵ
௏

∑ ௭,௜௝ܨ௜௝ݖ
ே
௜ஷ௝ ൌ െ ଵ

௛
∑ ௭,௜௝ܨ௜௝ݖ

ே
௜ஷ௝         (5.9) 

Hence, the normal force is simply the normal stress divided by the gap, 

and scales as 1 െ  Thus, because the normal stress remains essentially .ߝ

constant, the normal force obtained becomes proportional to 1/ሺ1 െ  .ሻߝ

Similarly to the case of the normal stress, the normal force reasonably 

collapses onto a master curve for the range of ߶ and ܰ values 

investigated. This result was expected bearing in mind that the force scale 

is ܨ଴ ൌ ଽ
଼

଴ܪଶߚ௖௥ߤ଴ߤ
ଶ߶ ௏

௛బ
. It is important to remark that the force scale is 
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proportional to the yield force obtained in the micromechanical model 

proposed by Ruiz-López et al. (2015). 

Although the simulations for the normal stress and the normal force scale 

with both the yield compressive stress and the yield normal forces 

predicted by theoretical approaches, the simulation dependence on the 

compressive strain is different to the model. Simulations predict a scaling 

with ሺ1 െ ሻିଵ and the theoretical model predicts a scaling with ሺ1ߝ െ

 ,ሻିଶ. This can be explained because in the simulations explored till nowߝ

the stress remains essentially unaltered during compression as the contact 

with the surface is only due to one single particle. However, both the 

experiments and the micromechanical model consider multiple contacts. 

In these simulations, particles on the sides slip along the gap-spanning 

chain and hence their contribution to the stress is not important. 
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Figure 5.3 Dimensionless normal force כܨ as a function of 1 െ  in ߝ
single-particle-width chains simulations for chains of different lengths 
(ܰ א ሾ30,100ሿ) and particle loadings (߶ א ሾ0.01,0.20ሿ). Closed symbols: 
߶ ൌ 0.01. Open symbols: ߶ ൌ 0.05. Vertically and horizontally crossed 
symbols: ߶ ൌ 0.10. Diagonally crossed symbols: ߶ ൌ 0.20. 
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5.4. RANDOM AND LATTICE STRUCTURES 

Another important aspect in the simulation performance of MR fluids 

under squeeze flow could be whether the structures move in the radial 

direction with the flow or contrarily they are stuck in their initial positions 

and the local concentration of particles increases under compression. In 

fact, the normal force can increase upon compression because of two 

reasons: i.- by an increase in the local concentration of particles, and ii.- 

by changes in the aspect ratio of the field induced structures under 

squeeze. 

In order to evaluate the effect of local concentration we calculated the 

normal stress for different preassembled structures at different gaps. In 

this case, the number of particles was fixed to ܰ ൌ 3600 and we 

considered either the external field strength or the local field theory. In the 

simulations, the normal surface area of the structures was the same for all 

the gaps, hence showing the effect of the increase in the local 

concentration. 

Results obtained are included in Figure 5.4. The first observation is that 

the particular arrangement of the particles either in a lattice or in random 

distribution is not relevant; the same results are obtained for lattice and 

random structures. The second observation is that the normal stress 

strongly depends on the field approximation used. In the case where the 

external magnetic field is considered, the normal stress monotonically 

increases under compression. However, when considering the local field, 

a stress maximum is found for a dimensionless gap distance in between 10 

and 20. In practice, such a small separation distance cannot be achieved 

because of experimental limitations (misalignment between the plates and 

surface roughness). However, the slope of the normal stress as a function 
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of gap distance for large gaps is the same for both approximations. This 

was expected due to the increment of the number of chains. But there 

were not effects due to the increment of the local concentration. Hence, 

the effect of the interaction between aggregates (at least at low 

concentrations) is not important and it is enough to consider only a single 

chain and then multiplying results by the number of chains. 
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Figure 5.4 Dimensionless normal stress ߬௭௭
כ  as a function of ݄כ 

demonstrating the importance of particle concentration and local field 
correction in the squeeze flow. Squares and circles: external magnetic 
field. Triangles: local field correction. 

5.5. MAGNETORHEOLOGICAL FLUIDS 

5.5.1. Field-induced structuration at rest 

As a way of example, magnetic energy, ܷכ ܰ⁄ , normal stress, ߬௭௭
כ , and 

average nearest neighbors, ௡ܰ௘௔௥ ܰ⁄ , are shown as a function of time 

during field-driven structuration for MR fluids at a range of particle 

loadings ߶ א ሾ0.05, 0.30ሿ in Figure 5.5. 
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For dimensionless times larger than approximately כݐ  ൌ 500 the 

magnetic energy becomes constant (Figure 5.5a). This suggests that the 

structure achieves a stationary state for כݐ ൐ 500. Concomitantly, the 

stress and average number of nearest neighbors also reach a constant 

value (Figure 5.5b and Figure 5.5c, respectively). The magnetic energy 

per particle at the stationary state prior to compression increases upon 

increasing the particle concentration. This can be explained as the 

particles cannot find their equilibrium position in the more compact 

structures generated at higher particle volume fractions. As a 

consequence, the stress of the system is also higher when increasing the 

particle volume fraction and obviously the number of nearest neighbors 

increases when the particle concentration increases. It is important to 

remark that the average number of nearest neighbours is larger than 2, so 

the ideal model of single-particle-width chains is not suitable to explain 

these results even for a ߶ ൌ 0.05 MR fluid. 
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Figure 5.5.- Field-induced structuration of quiescent MR fluids: a) 
magnetic energy, b) normal stress, c) average nearest neighbors. 

5.5.2 Squeeze flow 

In Figure 5.6, magnetic energy, normal stress and average nearest 

neighbours are shown as a function of 1 െ  during the compression of the ߝ

MR fluid. Figure 5.6a shows that the magnetic energy increases as the 
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strain increases. The magnetic energy increases more sharply in the case 

of higher particle volume fractions than in the case of low concentrations. 

This result was expected due to the fact that the derivative of the magnetic 

energy gives the normal force and the later is well known to increase 

when increasing the particle concentration [Ruiz-López et al. (2012); Guo 

et al. (2013); Xu et al. (2014)].  

In Figure 5.6b, the normal stress is represented as a function of 1 െ  As .ߝ

expected, similarly to the normal stress results for single-particle-width 

chains, the normal stress increases when increasing the concentration (see 

Figure 5.2a). Although the normal stress decreases upon compression, the 

normal surface increases more rapidly, and this will lead to a increasing 

normal force. 

In Figure 5.6c we show the average number of nearest neighbors. For 

߶ ൌ 0.05 the number of nearest neighbors increases upon compression as 

expected because compression can assist the formation of thicker 

aggregates. However, for higher concentrations, the number of nearest 

neighbors initially increases for higher gaps but then decreases. It can be 

explained due to the fact that thicker aggregates can be formed in the 

initial stages of compression but for at certain strain, the structure breaks 

due to the viscous drag and the number of nearest neighbors decreases. 
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Figure 5.6.- Squeeze flow simulation of MR fluids: a) magnetic energy, b) 
normal stress, c) average nearest neighbours. 

Figure 5.7 represents the compression evolution of the simulated normal 

force divided by the dimensionless yield normal force predicted by the 

micromechanical model [Ruiz-López et al. (2015)]: ܨ௒
כ ൌ ଽ

ଶగ
߶ ఉೌ

మுమ

ఉమுబ
మ

௏כ

௛బ
 . כ

The normal force is calculated using two different procedures: i) by taking 

the derivate of the energy with the gap [see Equation 23 in de Vicente et 

al. (2011b)] and ii) by using Equation 5.9. The two paths used here to 

obtain the normal force give very different results especially at the onset 

of the compression. The normal force obtained by multiplying the normal 

stress by the surface area is higher than the normal force obtained by 

taking the derivative of the magnetic energy. However, the normal force 

obtained by taking the derivative of the magnetic energy increases more 

rapidly under compression than the normal force obtained by multiplying 

the normal stress by the surface area. These differences can be explained 

by the numerical differences of these processes. In order to compare with 

the micromechanical model the theoretical prediction is also included in 

Figure 5.7 (see the black line). A slope of -2 is found for the 
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micromechanical model, simulations from energy differentiation and 

experimental data. 
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Figure 5.7 Dimensionless normal force כܨ ௒ܨ
⁄כ  as a function of 1 െ  for ߝ

MR fluids calculated by the multiplication of the stress by the surface area 
using Equation 5.9 (closed symbols) and calculated by the derivative of 
the energy with the gap using Equation 23 in de Vicente et al. (2011) 
(open symbols). The normal force כܨ is divided by the dimensionless yield 
normal force ܨ௒

௒ܨ :from the micromechanical model for squeeze כ
כ ൌ

ଽ
ଶగ

߶ ఉೌ
మுమ

ఉమுబ
మ

௏כ

௛బ
 Black line corresponds to the micromechanical model for .כ

squeeze [Ruiz-López et al. (2015)]: כܨ ௒ܨ
⁄כ ൌ 1/ሺ1 െ  .ሻଶߝ

The zero-strain limiting values in Figure 5.7 correspond to the so-called 

yield compressive stress. Figure 5.8 depicts these yield compressive 

stresses as a function of the concentration in single-particle-width chain 

simulations, suspensions simulations and experiments. The 

micromechanical model prediction is also included for completeness. The 

yield compressive stress corresponding to single-particle-width chain 

simulations overestimates suspensions simulations and the theoretical 

prediction. This implies that the assumption of single-particle-width 

chains is not plausible whatever the concentration. For the lowest 

concentrations investigated (߶ ൌ 0.05) a good agreement is found 
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between experiments and suspensions simulations. However, for higher 

concentrations (߶ ൐ 0.05), the yield compressive stress for experiments 

increases more rapidly than the theoretical and simulated compressive 

yield stress. Overall, the volume fraction dependence of the yield 

compressive stress is linear according to the simulations and theoretical 

prediction. However, experimental data exhibit a larger than linear 

dependence above ߶ ൌ 0.05 in good agreement with other experimental 

works reported in the literature. 
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Figure 5.8 Yield compressive stress ߬௒
כ  as a function of the particle 

concentration. Squares: simulations in single-particle-width chains. 
Circles: simulations in MR fluids. Triangles: Experimental data from 
Ruiz-López et al. (2015). 

5.6. CONCLUSIONS 

Brownian molecular dynamic simulations were carried out under squeeze 

flow using periodic boundary conditions for different initial structures: 

single-particle-width chains, random and lattice structures and initially 

randomly-distributed particles at different concentrations. Results from 
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single-particle-width chains showed that the normal force and the 

compressive stress scales with the particle volume fraction and the 

magnetic field strength squared, in agreement with the micromechanical 

model developed by Ruiz-López et al. (2015). Random and lattice 

structures demonstrated that the use of the Local Field Theory in the 

simulations is important for plate-plate separations below 15ߪ. 

Simulations for initially randomly-distributed particles showed that the 

results are strongly dependent on the method used to calculate the normal 

force. Two possibilities are explored in this work: either the normal force 

is calculated from the compressive stress or the normal force is calculated 

from the derivative of the magnetic energy.  

The analytical dependence of the normal force (and the compressive 

stress) on the compressive strain differed from the micromechanical 

model and experimental data. This fact was rationalized because the 

structures interact with the walls at individual points in single particles. 

The yield compressive stress was obtained as a function of the particle 

loading from single-particle-width simulations, initially randomly-

distributed particle simulations, experiments and a micromechanical 

model. As expected, single-particle-width simulations lead to a linear 

particle-loading dependence of the yield compressive stress in good 

agreement with the micromechanical model. On the contrary, in 

experiments, deviations from linearity appear for higher concentrations. 

Although this discrepancy between micromechanical models and 

experimental results has been usually explained by the existence of 

interactions between chain-like structures [e.g. Zhang et al. (2004), Ruiz-

López et al. (2015)], initially randomly-distributed simulations showed 

that the yield compressive stress increases linearly or even less-than-

linearly as a function of the concentration.  
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Abstract 

We investigate model magnetorheological fluids (inverse ferrofluids) 

under both steady and dynamic oscillatory shear. Analytical theories, 

particle-level simulations and magnetorheometry are used in an attempt to 

obtain universal master curves. Steady shear flow data can be collapsed 

when plotted as a function of a dimensionless Mason number. The critical 

Mason number associated to the transition from magnetostatic to 

hydrodynamic control of the suspension structure is demonstrated to 

linearly increase with particle concentration in good agreement with 

theories and our simulations. Experimental linear viscoelastic moduli are 

in good agreement with micromechanical and macroscopic models in the 
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dilute regime. However, upon increasing particle concentration, 

theoretical predictions underestimate experimental data while particle-

level simulations are in good agreement. The accordance with particle-

level simulations suggests that the mean (average) magnetization 

approximation gives a good prediction and multibody and hydrodynamic 

forces are not expected to play a crucial role in the shear flow behavior of 

model magnetorheological fluids. 

6.1. INTRODUCTION 

Magnetorheological (MR) fluids are magnetic-field responsive colloids 

that exhibit a dramatic change in their rheological properties upon the 

application of an external magnetic field. In practice they exhibit a 

“liquid-to-solid” transition for sufficiently large Lambda ratios (i.e. ratio 

between the magnetostatic energy to the thermal energy). This field-

induced transition is currently exploited in many commercial applications 

[Rabinow (1948); Parthasarathy and Klingenberg (1996); Ginder (1998); 

Klingenberg (2001); Vekas (2008); Olabi and Grunwald (2008); Park et 

al. (2011); de Vicente et al. (2011a)]. 

Traditionally, MR fluids are grouped in conventional MR fluids that 

consist in carbonyl iron microparticles dispersed in a non-magnetic carrier 

fluid, and inverse ferrofluids that consist in non-magnetic microparticles 

dispersed in a ferrofluid. In both cases, (spherical) particles (either being 

magnetic or not) aggregate under magnetic fields forming field-directed 

structures that strongly affect the fluid flow and hence the rheological 

properties of the colloid at the macroscale [de Gans et al. (1999a); de 

Gans et al. (1999b); Volkova et al. (2000); Bossis et al. (2002); Saldivar-

Guerrero et al. (2006); Ramos et al. (2010), Ramos et al. (2011); de 

Vicente (2013)]. 
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Conventional MR fluids are clearly preferred in commercial applications 

because of the exceedingly large MR effect if compared to inverse 

ferrofluids; the response of inverse ferrofluids is severely limited by the 

saturation magnetization of the ferrofluid. However, inverse ferrofluids 

are preferred as model magnetic suspensions when exploring the driving 

physical mechanisms associated to the yielding and flow regimes. This is 

so because: i) in inverse ferrofluids the magnetic permeability difference 

between particles and carrier fluid is generally small and therefore, the 

interaction between particles can be approximated in terms of dipoles 

located at the centers of the particles [Fujita and Mamiya (1986)]; ii) in 

the case of inverse ferrofluids magnetic moments are co-linear with the 

external field at any field strength; iii) remanence and multipolar 

interactions complicate the use of conventional MR fluids in model 

studies [Skjeltorp (1983)]. For these reasons, in this work we will employ 

inverse ferrofluids as model magnetorheological fluids.    

The size of the non-magnetic particles constituting inverse ferrofluids has 

been demonstrated in the past to play a significant role in their shear flow 

behavior [de Gans et al. (2000); Ramos et al. (2011)]. Below a certain size 

(approx. 100 nm diameter), chainlike structures induced by the field are 

not long enough to connect the bounding surfaces and a purely shear 

thinning behavior prevails. For these particularly small sizes Brownian 

and depletion forces come into play as the ferrofluid is not a continuum 

anymore. On the contrary, for larger particle sizes the rheological 

behavior seems to be essentially independent on the particle size [de Gans 

et al. (2000)]. In this work we are interested in inverse ferrofluids 

constituted by large enough silica particles where gap spanning structures 

necessarily exist. 
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Generally speaking two of the main variables that determine the MR 

response are magnetic field strength and particle concentration. While the 

former has been extensively investigated in the past and seems to be 

currently well understood [Ginder (1998); Klingenberg (2001); 

Klingenberg et al. (2007); de Vicente et al. (2011a)], the understanding of 

the later in the MR performance is still not complete. The reason for this 

is probably the lack of reliable and sufficient data for a wide range of 

particle concentrations. In the particular case of conventional MR fluids, 

Volkova et al. (2000) found that both static and dynamic yield stresses 

increase monotonically with the particle concentration. For the larger 

concentrations employed, a faster than linear increase was reported. On 

the other hand, experiments by Segovia-Gutiérrez et al. (2012) 

demonstrate that material functions such as the apparent yield stress and 

the storage moduli rapidly increase with particle loadings below 10 vol% 

and then continue increasing but at a lower rate for concentrations larger 

than 10 vol%. Recently, a two-step yielding has been proposed to explain 

this different trend in behavior that occurs as a result of the interplay of 

short-range attractive interactions [Fernández-Toledano et al. (2014)]. In 

the case of inverse ferrofluids the effect of particle loading has been 

scarcely investigated and in many cases the monodispersity of the non-

magnetic particles is not assured. Volkova et al. (2000) did not arrive at a 

clear conclusion about the volume fraction dependence of the static yield 

stress. However, they found that the dynamic yield stress exhibited a 

maximum (or saturates) for concentrations of approximately 30 vol%. 

This maximum was explained in terms of macroscopic models and is in 

disagreement with micromechanical ones that predict a linear increase 

because according to them the yield stress is proportional to the number of 

percolating chains. Unfortunately, only four concentrations were explored 

and therefore it becomes difficult to get sound conclusions. One of the 
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goals of this manuscript is to get a deeper understanding of the effect of 

particle concentration in highly monodisperse inverse ferrofluids. 

Available micromechanical models and theories in magnetorheology are 

restricted to the case of dilute systems (generally lower than ≈ 1 vol%) 

where interaggregate interactions can be neglected. As a result, their 

applicability is severely limited because most of the applications involve 

highly concentrated suspensions (generally larger than ≈ 10 vol%). A 

possibility to address this issue is through a particle-level simulation 

approach. Particle-level simulations have been extensively used in the past 

to get a better understanding of the physical mechanisms underlying the 

MR effect [e.g. steady shear flows in Chen et al. (1995) and Lagger et al. 

(2014, 2015); rotating fields in Melle et al. (2003); poiseuille flow in 

Pappas and Klingenberg (2006); heat transfer mechanisms in Heine et al. 

(2006); effect of non-magnetic interparticle forces in Klingenberg et al. 

(2010); bidisperse suspensions in Kittipoomwong and Klingenberg 

(2005); squeeze flows in de Vicente et al. (2011b); polydisperse MR 

fluids in Fernández-Toledano et al. (2015)]. These simulations are most 

frequently done under Stokes drag approximation and neglecting 

multibody and multipolar interactions [Melrose and Heyes (1993); Lagger 

et al. (2015)]. In spite of the many simplifications within particle-level 

simulations, predictions agree qualitatively with experimental data 

reported in the literature. However, in the vast majority of cases, 

experimental systems used for the comparison were not appropriate 

because of remanence and multipolar interactions (conventional MR 

fluids are generally used), and the effect of particle loading was not 

studied (comparisons are typically done at only one concentration that is 

chosen for convenience). In general, simulation models underestimate the 

viscosities of conventional MR (and ER) fluids and this is not surprising 

as the point dipole model underestimates the magnetic interactions. 
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Imposing more realistic electro and magnetostatics on the point dipole 

configurations improves the comparison. Besides this, comparisons with 

experiments and theories are very scarce and limited. 

Current simulation models are based on a mean (average) magnetization 

approximation according to which the magnetic force on a spherical 

particle can be treated as the force on a magnetic dipole of strength equal 

to the volume times the magnetization of the sphere. This approximation 

is exact in two limiting scenarios: i) when the particles are saturated, ii) 

when the particles are isolated in the presence of a uniform magnetic field 

[Klingenberg et al. (2007)]. However, in many circumstances, these 

conditions are not achieved. In this work we also aim to elucidate the 

validity of this approximation by direct comparison of particle-level 

dynamic simulations to experiments on inverse ferrofluids. With respect 

to inverse magnetorheological fluids, Ramos et al. (2010, 2011) carried 

out a systematic experimental investigation on monodisperse inverse 

ferrofluids. They demonstrated a very good agreement with analytical 

predictions for the lower concentrations investigated in steady [Ramos et 

al. (2011)] and linear dynamic oscillatory shear [Ramos et al. (2010)]. 

Unfortunately, only three particle loadings were studied and the 

comparison of either experimental data or theoretical predictions with 

numerical simulations was not done. Another goal of this manuscript is to 

ascertain the applicability range of particle-level simulations to explore 

whether these simulations are capable of explaining the mechanical 

behavior of model MR fluids (in steady and unsteady shear flow) at high 

concentrations.  

In this contribution we employ analytical theories, Brownian molecular 

dynamic simulations and torsional rheometry to extensively explore the 

rheological properties in steady and dynamic oscillatory shear of model 
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MR fluids (highly monodisperse inverse ferrofluids) at different magnetic 

field strengths and especially in a very wide range of particle loadings. 

The minimum particle loading investigated will be given by the sensitivity 

of the MR device (∼1 vol%). On the other hand, the maximum particle 

concentration will be limited by the poor redispersibility of the suspension 

at high loadings (20 vol%). For the suspensions investigated in this work, 

the so-called Lambda ratio (i.e. the ratio between magnetostatic to thermal 

energy) ranges from 10 to 1000. 

The manuscript is structured as follows. First we will review the 

theoretical models and simulation techniques employed in this work. Then 

we will describe the preparation of the model MR fluids and experimental 

rheological techniques. Finally, the experimental, theoretical and 

simulation results will be compared and discussed. 

6.2. ANALYTICAL THEORIES 

In this section, we review some of the existing theories and models 

published in the MR literature. We classify these models in two groups. 

Those named as "macroscopic" come from magnetic energy minimization 

principles and assume a bi-continuous structure consisting of spheroidal, 

cylindrical or layered particle aggregates [Rosensweig (1995); Bossis et 

al. (1997)]. A second group is formed by "microscopic" models including 

single-width particle chains sheared under an external field [Martin and 

Anderson (1996); de Vicente et al. (2004); de Gans et al. (1999a); 

Volkova et al. (2000)]. 

In all analytical models considered in this manuscript, the ferrofluid is 

assumed to be a continuous phase on the length scale of the diameter of 

the dispersed non-magnetic particles. The shear stress is dominated by the 

magnetostatic interactions between the non-magnetic particles, and shear-
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induced deformation is assumed to be affine. Furthermore, field-induced 

structures are assumed not to interact between them. The latter assumption 

restricts the applicability of these models to low particle concentrations 

(dilute limit).  

Most analytical theories predict a Bingham-like plastic behaviour under 

steady shear flow. In dimensionless form, this equation can be written: 

( )
Mn

*Mn1 φ
η
η

+=
∞

    (6.1) 

where, Mn  is the so-called Mason number which is a dimensionless 

shear rate that can be defined as the ratio of hydrodynamic and 

magnetostatic forces acting on the particles. In the linear magnetization 

regime, the Mason number reads as follows [de Vicente et al. (2011a)]:  

 
2
0

2
0

8
Mn

Hcr

c

βμμ
γη &

=     (6.2) 

Here, cη  is the continuous phase (ferrofluid) viscosity, ∞η  is the field-

independent high-shear viscosity, γ&  is the magnitude of the shear rate 

tensor, 0μ  is the permeability of vacuum, crμ  is the relative permeability 

of the continuous phase, ( ) ( )crprcrpr μμμμβ 2+−=  is the contrast 

factor, prμ  is the relative permeability of the particles, 0H  is the external 

magnetic field strength, and ( )φ*Mn  is a critical Mason number (see 

below). In the case of inverse ferrofluids β  can take values between -0.5 

(low fields) and 0 (large fields). Other definitions for Mn  exist that are 

especially useful for conventional MR fluids away from linearity 

[Klingenberg et al. (2007)]. However, in the case of inverse ferrofluids 

Equation 6.2 works extraordinarily well because the mean magnetization 
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of the particle remains 03 HM p β>=<  for a very wide range of 

magnetic field strengths [Ramos et al. (2010); Ramos et al. (2011); Ruiz-

López et al. (2015)]. 

The critical Mason number ( )φ*Mn  determines the transition from 

magnetisation to hydrodynamic control of suspension structure. It exactly 

corresponds to the intersection of the linear fall of the ( )∞ηηlog  versus 

Mn log  with the horizontal line representing the high shear viscosity 

plateau. Interestingly, it solely contains the volume fraction dependence of 

MR fluids under flow. Concretely, according to existing (microscopic) 

micromechanical models, the volume fraction dependence is captured by 

∞η  and φ  according to the following expression [de Vicente et al. 

(2011a)]: 

( )
∞

=
η
φηφ cC*Mn      (6.3) 

where different values for C  are derived in the literature depending on 

specific assumptions and/or simplifications in the mechanical stability 

conditions in the problem; Martin and Anderson (1996) ( C  = 8.82), de 

Vicente et al. (2004) ( C  = 8.485), de Gans et al. (1999a) ( C  = 5.25), 

and Volkova et al. (2000) ( C  = 1.91). In all case, the C  coefficients 

given in parentheses have been calculated assuming the bare point-dipole 

approximation although in some of the original models multipolar 

corrections are provided. These micromechanical models have shown to 

qualitatively explain experimental data for a wide range of MR fluids 

[Volkova et al. (2000); Saldivar-Guerrero et al. (2006); Ramos et al. 

(2011)]. A linear dependence with the volume fraction is strictly expected 
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for ( )φ*Mn  in the case of dilute suspensions because in this case 

cηη
φ

=∞→0
lim .  

Recently, Berli and de Vicente (2012) developed a structural viscosity 

model for magnetorheology to account for typical deviations from the 

Bingham model predictions. According to this model, the steady shear 

flow behavior is rationalized in terms of a constitutive equation that, in its 

general form, reads: 

( )
( ) ( )

2

2121
0

21

*MnMn
*MnMn1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
=

∞∞ ηηη
η

       (6.4) 

This equation was successful in explaining a low shear viscosity plateau 

that is frequently observed in inverse ferrofluids, and a smoother 

transition from the magnetostatic to the hydrodynamic dominated regime 

with respect to the classical Bingham model. However, when interparticle 

magnetic interactions are very strong the low shear viscosity plateau value 

(if exists) is exceedingly large and hence it becomes very difficult to be 

observed within the experimental time scales typically explored. As a 

consequence, an apparent yield stress and a plastic-like behavior come up. 

Actually, expanding Equation 6.4 for ∞>> ηη0 , the following expression 

is obtained: 

( ) ( ) 211 *MnMn2*MnMn1 −−
∞ ++=ηη            (6.5) 

It can be demonstrated that Equation 6.5 is a dimensionless form of the 

Casson plastic equation. This new model provides a more gradual 

transition from the pre-yield to the flow region as is otherwise 

experimentally observed in many experiments [Wang and Gordaninejad 

(1999); Gabriel and Laun (2009); Berli and de Vicente (2012)]. Finally, it 

is worth to stress here, that under this framework, the critical Mason 
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number, ( )φ*Mn , contained in Equations 6.1 and 6.5 physically 

corresponds to an apparent (Bingham or dynamic) yield stress yτ  that in 

the linear regime scales with 2
0

2
0 Hcr βμμ∝  [de Vicente et al. (2011)]. 

Hence, a larger yield stress under field always results in a larger ( )φ*Mn

. According to our definition of Mn , both Equation 6.1 and Equation 6.5 

correspond to: 

( )
∞

=
η
η

βμμ
τ

φ c

cr

y

H 2
0

2
0

8
*Mn     (6.6) 

There are currently a large number of analytical models in 

magnetorheology compatible with the existence of an apparent yield stress 

-for a recent review on yield stress theories we refer to Ramos et al. 

(2011)-. An overview of some of these models is included in Table 6.1. 

The yield stress is the result of interparticle forces. Therefore, for the field 

range investigated here, a convenient way to describe the yielding 

properties of MR fluids is by using the normalized yield stress defined as 

( )2
00, Hcryny μμττ = . On the one hand, macroscopic models only take 

into account the shape anisotropy of the strained aggregates under small 

deformation. Three different macroscopic model structures are tested in 

this work: spheroidal, cylindrical and layered particles aggregates. 

Following Bossis et al. (1997) we will make the following simplifications 

and assumptions. i.- we will assume a random close packing of spheres 

within the aggregates ( 64.0=aφ ). ii.- we will also assume an aspect ratio 

for the aggregates of 10, and iii.- a mean field theory (Maxwell-Garnett 

theory in this case) will be used in the calculation of the permeability of 

the aggregates and the inverse ferrofluid. On the other hand, 

micromechanical models involve a microscopic description of the 

aggregates where interparticle forces are considered. All micromechanical 
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models predict a yield stress, which linearly depends on volume fraction 

and, in contrast to macroscopic models, quadratically on the contrast 

factor. 

The understanding of MR fluids in the dynamic regime is also of 

outstanding interest, especially in commercial applications. The material 

functions most commonly employed in the description of the viscoelastic 

properties of MR fluids are the (normalized) linear viscoelastic moduli 

defined as ( )2
00'' HGG crn μμ= and ( )2

00'''' HGG crn μμ= . There are 

also a large number of analytical models in the literature for the prediction 

of, particularly, the storage modulus (see Table 6.1). These analytical 

theories have been thoroughly tested against rheological measurements on 

inverse ferrofluids [Saldivar-Guerrero et al. (2006); Ramos et al. (2010)]. 

The effect of magnetic field strength in the linear viscoelastic regime is 

well known in the literature on inverse ferrofluids. In fact, experimental 

data are reported to collapse reasonably well when scaled with 
2
0

2
0 Hcr βμμ  [Saldivar-Guerrero et al. (2006); Ramos et al. (2010) and 

references therein]. Conversely, the effect of particle concentration is 

definitely not well understood. Typically, material functions scale with φ  

at low particle concentrations 
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Table 6.1 Overview of the different micromechanical and macroscopic models for magnetorheology. ( )2
00, Hcryny μμττ = . 2

0000 '' HGG crn μμ= . φ  is the non-

magnetic particle volume fraction. 64.0=aφ  is the packing fraction of the particles within the aggregates. 1n  and 2n  are the demagnetization factors in the directions 

parallel and perpendicular to the magnetic field, respectively. as φφφ ≡ , ( ) 1~ −= μμμ aa  is the relative permeability difference between the aggregate ( aμ ) and the 

inverse ferrofluid ( μ ). ς  represents the Riemann function and 3k  is defined as 
12
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However, when the particle concentration increases, a larger dependence 

with φ  is typically found that is not predicted by neither microscopic not 

macroscopic approaches. More important, to the best of our knowledge, 

experimental data and theoretical predictions for steady and dynamic 

oscillatory shear have not been directly compared to particle-level 

simulation data yet. 

6.3. Particle‐level simulations 

In this work we consider Brownian molecular dynamic simulations 

already described in a previous work by Fernández-Toledano et al. (2015) 

but restrict ourselves to monodisperse MR fluids. Briefly, the MR fluid 

was composed by 1000=N  neutrally buoyant hard spheres of diameter 

σ  immersed in a Newtonian continuous phase with a viscosity cη  and 

confined between two parallel walls. The particles are displaced by 

solving the Langevin equation: 

( )tfFu
dt

trd
dt

trd
M Bii

ii rrr
rr

++⎟
⎠

⎞
⎜
⎝

⎛ −−= ∞)()(
2

2

ζ   (6.7) 

where M  is the mass of the particles, )(tri
r

 is the position of particle i  at 

the time t , σπηζ c3=  is the friction coefficient, ∞
iur  is the  ambient 

fluid velocity at the center of particle i , and ( )tfB

r
 is a random force 

introduced to model the Brownian motion of the particles 

tTf BB Δ∝ ζκ . Here, Bκ  is the Boltzmann constant, T  is the 

absolute temperature and tΔ  is the time step. 

In general, the motion of the sphere i  is governed by the sum of the 

magnetostatic polarization forces under the field, the interaction of the 
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particle with other particles and the walls, and the hydrodynamic 

resistance. Point-dipole approximation is used here to calculate magnetic 

forces using the mean magnetization approximation. Therefore, multipolar 

interactions are neglected. The dimensionless magnetic field strength was 

fixed to =*
0H  150. Stokes' law is used to approximate the 

hydrodynamic force acting on each sphere with a dimensionless friction 

coefficient of =*ζ 722.1 [Fernández-Toledano et al. (2015)]. Hence, 

hydrodynamic interactions are also neglected. Models that incorporate 

hydrodynamic interactions are generally restricted to small numbers of 

particles in monolayers and in this work we are interested in 3D 

simulations involving a large number of particles. A recent publication by 

Lagger and co-workers demonstrates that only if the hydrodynamic stress 

constitutes the main contribution to the total stress, a coupled model might 

be necessary since the hydrodynamic contribution might be overestimated 

in the pure discrete element method (DEM) model [Lagger et al. (2015)]. 

A quasi-hard sphere exponential model is used to mimic the short range 

repulsive forces between particles-walls and particles-particles. Contrary 

to stiff power law repulsions, this particular interaction force predicts the 

formation of thick aggregates in agreement with experimental 

observations reported in the literature [Melrose and Heyes (1993); 

Segovia-Gutiérrez et al. (2013)]. The dimensionless temperature was 

fixed at 1.0/* == σBB FTkT  . Here, BF  is the force scale, taken as the 

magnetostatic force considered for a magnetic field of 200 A/m  [see 

Fernandez-Toledano et al. (2015) for details]. 

We consider two shearing flows: stress growth tests (start-up tests) and 

unsteady oscillatory shear tests. In both cases, we switch-off the Langevin 

thermostat in the direction in which non-conservative external forces are 

applied. In this way, the momentum is conserved in the shear direction 
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and we recovers momentum conservation in the shear direction, while 

conserving the temperature by applying the thermostat the others 

directions. The detailed computation of the stress tensor under these flows 

can be also found in Fernández-Toledano et al. (2015). 

In the start-up tests, the steady shear stress is calculated by averaging the 

large-strain value of the stress tensor in 500 configurations over the strain 

of 2=γ   to 10=γ  .The long time (large strain) stress value is taken here 

as the steady stress corresponding to the fixed shear rate. In unsteady 

oscillatory shear tests, the measurements are taken after 10 cycles to 

safely overcome initial transients. The frequency used in the simulations 

of oscillatory flow was 0.021 Hz in real units. According to the 

normalization used in this work, this particular frequency corresponds to a 

reduced frequency of 2.0* =ω . However, using the Klingenberg (1993) 

scaling, the result is 014.0* =Kω  that is two orders of magnitude lower 

than the transition frequency. Experimental dimensionless frequency 

using the Klingenberg scaling depends on the magnetic field and is ranged 

within ]37.0,06.0[* ∈Kω . Although experimental dimensionless 

frequency is in general higher than the frequency used in simulations, the 

frequency dependence is expected to be insignificant since all the 

frequencies studies in this manuscript are below the transition frequency 

reported in Klingenberg (1993). Due to the inclusion of the inertial term 

and the Brownian motion in the equation of movement, the calculation of 

the particles positions is quite expensive. Therefore, we select this value 

for the frequency because it is affordable for computer simulations and 

also from the experimental point of view. The time step in all simulations 

was set as =Δ *t  10-4 in order to capture the inertia time scale as 

explained in Fernández-Toledano et al. (2015). 
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The simulation technique employed here has successfully predicted a 

wide range of experimental observations on MR and ER fluids. However, 

none of the experimental systems employed in those previous works can 

be considered to be model systems in the sense that multipolar, remanence 

and other colloidal interactions exist as well and therefore a full 

quantitative agreement was never found. 

6.4. EXPERIMENTAL 

6.4.1.  Materials 

Tetraethyl orthosilicate (TEOS) (Acros Organics, 98%), ethanol absolute 

(Scharlau, reagent grade), ammonia (Scharlau, solution 32%), and 

ultrapure distilled water (Milli-Q Academic, Millipore) were used for the 

synthesis of silica nanoparticles. The ferrofluids were purchased from 

Ferrotec Co. They have a density of 1120 kg/m3, an initial magnetic 

susceptibility of 1.81, a saturation magnetization of 25.5 kA/m and a shear 

viscosity of 44 mPa·s. The magnetic properties of the ferrofluids used in 

this work are summarized in Figure 3 in Ramos et al. (2010) and in Table 

III in Ramos et al. (2011) and the magnetization curve is included in the 

Supplemental material (see Figure S6.1). These data were used in the 

calculation of the β  parameter.  

6.4.2. Synthesis of silica particles 

Two kinds of spherical monodisperse silica nanoparticles with number 

diameters of σn = 248 (S200) and 689 nm (S600) were prepared by 

condensation polymerization of tetraethyl orthosilicate (TEOS) using the 

Stöber method [Stöber and Fink (1968)] as follows. Absolute ethanol, 

ammonia, and water were mixed in a 500 mL reaction vessel. Then TEOS 

was added quickly and the reaction mixture was stirred at 350 rpm at 
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room temperature during 1 day. The molar concentration of the mixed 

solution determined the desired size of silica nanoparticles. In this case, 

the molar concentrations were water/ammonia = 2.49/1.06 and 7.01/3.00 

for S200 and S600 respectively. The volume of absolute ethanol was 

adjusted in each reaction up to 500 mL, and the concentration of TEOS 

was fixed to 0.2 M. Silica nanoparticles were collected by centrifugation 

(15,000 rpm, 15 min) and washed by repeating redispersion in absolute 

ethanol three times. The final product was dried in vacuum oven at 80 ºC 

for 24 h. The most relevant particle size results are shown in Table 6.2. 

Silica Particle σn (nm) σw (nm) σv (nm) PDI 

S200 248 251 255 1.044 

S600 689 690 691 1.004 

 

Table 6.2 Number, weight-, and volume-average diameters (σn,σw,σv) and 
polydispersity indices (PDIs) of synthesized silica nanoparticles. 

6.4.3.  Preparation of inverse ferrofluids 

Inverse ferrofluids were prepared as follows: 1) First, silica powders and 

ferrofluids were mixed. 2) Next, the suspension was ultrasonicated for 5 

min. 3) Finally, the sample was manually stirred for another 10 min. Steps 

2) and 3) were repeated to get a homogeneous dispersion. Suspensions 

therefore prepared were found to be stable, and phase separation was not 

observed over the course of several days. The volume fractions of silica 

nanoparticles ranged from 1 vol% to 25 vol% assuming a silica density of 

2.64 g/mL. Lower concentrations did not provide significant torque to 

obtain reproducible data in the rheometer. On the other hand, larger 

concentrations did not result in kinetically stable dispersions and the 

redispersibility was hard. Also, the mean distance between particles was 

too small for the continuum approach to hold.  



 

 

Chapter 6.  245 

6.4.4. Magnetorheometry 

Rheology tests were carried out using parallel disks (diameter 20 mm, gap 

thickness 300 μm) in a MCR 501 stress-controlled Anton Paar rheometer 

with the MRD180 magnetorheology fixture. In this assembly, the 

magnetic field is applied perpendicular to the plates in the velocity 

gradient direction. External magnetic field strengths investigated ranged 

from 17 to 354 kA/m. All the tests reported in this contribution were 

carried out under isothermal conditions (25 ºC).  

Steady shear flow tests were performed using the following protocol: (i) 

precondition at a constant shear rate of 100 s−1 for 30 s, (ii) suspension is 

left to equilibrate for 1 min, (iii) shear stress is logarithmically increased 

at a rate of 10 points/decade from 0.1 to 1000 Pa. The tests where stopped 

if the shear rate exceeded 1000 s-1. The acquisition time was 5 s per data 

point. Once the resulting strain was measured, the apparent viscosity was 

calculated by dividing the applied shear stress, calculated at the rim of the 

plates, by the shear rate. We used stress instead of strain control tests to 

obtain the flow curves because the effect of duration time used in ramp-up 

rate of stress is not as severe as in the case of strain controlled 

experiments, in agreement with Ekwebelam and See (2008). Precautions 

were taken for the measurements to be as close as possible to the steady 

state [for further details see Ramos et al. (2011)]. Viscosity curves of the 

inverse ferrofluids in the absence of magnetic fields are shown in the 

Supplemental material (Figure S6.2).  

Dynamic oscillatory strain amplitude sweep tests were performed at a 

frequency of 1 Hz. The experimental procedure is summarized as follows: 

(i) precondition at a constant shear rate of 100 s-1 for 30 s, (ii) suspension 

is left to equilibrate for 1 min, (iii) strain amplitude is logarithmically 

increased at a constant excitation frequency (1 Hz). Then the resulting 
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stress and phase lag between strain and stress signals are measured, and 

from them both storage modulus, G’, and loss modulus, G’’, are 

calculated.  The storage and loss moduli were apparently not dependent on 

the frequency used in the accessible range with the device (from 0.01 Hz 

to 100 Hz). 

When desired, a magnetic field was applied during steps (ii) and (iii). To 

check reproducibility, in all cases, experiments were repeated at least 

three times with fresh new samples. Error bars will not be shown in the 

figures below if the uncertainty falls within the symbol size.  

6.5. RESULTS AND DISCUSSION 

6.5.1. Viscosity curves: magnetic field strength dependence 

As a way of example, Figure 6.1 contains some results for steady shear 

tests in dimensionless form for S600 suspensions (results for S200 are 

very similar as demonstrated in the Supplementary material, Figure S6.3). 

Inspection of Figure 6.1 reveals that all experimental data under shear, for 

various silica contents and magnetic field strengths, reduce to a master 

curve when the relative viscosity ( ∞ηη ) is plotted as a function of the 

Mason number ( Mn ). This was expected because the silica particles 

within the inverse ferrofluids essentially interact through dipolar 

magnetostatic interactions. Furthermore, this scaling demonstrates that 

inverse ferrofluids formulated in this work do actually serve as model MR 

fluids and the mean magnetization approximation applies [Klingenberg et 

al. (2007); Ruiz-López et al. (2015)]. As observed, the collapse is worse 

for the less concentrated suspension (5 vol%) because the torque signal is 

lower here and therefore the error is larger. In any case, as expected, 

contrary to Figure 6 in Klingenberg et al. (2007), the lowest viscosities in 
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Figure 6.1 are not associated to larger fields. Generally speaking viscosity 

curves move downwards for larger fields when scaling is not appropriate. 

A marked shear thinning trend is found in a wide range of Mn  values in 

good agreement with theoretical predictions. For large enough 

concentrations, the viscosity at low Mn  flattens out as discussed in 

previous works [Ramos et al. (2011); Berli and de Vicente (2012)]. 
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Figure 6.1 Dimensionless viscosity ( ∞ηη ) as a function of the Mason 
number ( Mn ). Experimental data on inverse ferrofluids prepared with 
S600 silica particles are represented as solid symbols. Lines correspond to 
theoretical predictions: Black solid line corresponds to Berli and de 
Vicente predictions (Equation 6.5). Red dashed line corresponds to 
Bingham predictions (Equation 6.1). Green dotted lines correspond to the 
full structural model of Berli and de Vicente (Equation 6.4). Cyan stars 
correspond to particle-level simulations. 
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Apart from experimental data, in Figure 6.1 we also include best fittings 

to theoretical predictions. Black solid lines correspond to the classical 

Bingham model (Equation 6.1) and red dashed lines correspond to the 

Berli and de Vicente model (Equation 6.5). For completeness we also 

include green dotted lines that correspond to regression fitting results for 

the full structural model of Berli and de Vicente (Equation 6.4). As 

observed, experimental data are reasonably well described with all of the 

theoretical models used. The full structural model is definitely needed to 

capture the low shear viscosity plateau, for the most concentrated inverse 

ferrofluids, and the Casson model is needed to better fit the transition 

region. As expected, the Bingham model overestimates the experimental 

data at low shear and underestimates them in the transition region. These 

findings are in good agreement with Berli and de Vicente (2012). 

In Figure 6.1 we also include simulation data (cyan star symbols). Again, 

the simulation approach that was followed in this work does not predict a 

low shear viscosity plateau. For this to occur, the no-slip condition should 

be modified. In spite of the many simplifications in the model, simulated 

viscosity data seem to be in very good agreement with experiments. A 

good agreement is also observed for the S200 inverse ferrofluid (see 

Supplementary information, Figure S6.3). No free fitting parameters are 

needed to construct simulation data contained in Figure 6.1. Generally 

speaking, a good agreement is found between experiments, simulations 

and analytical theories under steady shear flow for all particle loadings 

explored.  

As stated in the Introduction, the performance of an MR fluid essentially 

depends on two variables: the magnetic field strength and the particle 

loading. From the inspection of Eqs. 1, 4 and 5, it is clear that the field 

dependence is fully captured by Mn  (within the field range explored) and 
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the loading dependence is solely contained in *Mn . The field 

dependence is demonstrated in Figure 6.1 and has been extensively 

reported in the literature [e.g. Marshall et al. (1989)]. Next we aim to 

study the concentration dependence within *Mn  which in its turn is 

clearly less understood.  

Importantly, any difference in the shear flow behavior of any MR fluid is 

given by the *Mn  parameter only. This means that the difference in the 

flow behavior resides only in the way the transition from magnetostatic to 

hydrodynamic control of the suspension structure occurs. Actually, all 

MR fluids should scale in the same curve by simply rescaling the X-axis 

as a new dimensionless number *MnMn  [see Berli and de Vicente 

(2012)]. However, it is important to remark here, that *Mn  is, a priori, 

dependent on the specific formulation of the MR fluid and in particular 

contains the particle concentration dependence. Next we aim to 

interrogate the volume fraction dependence of *Mn  using analytical 

theories, simulations and experiments.  

6.5.2. Critical Mason number: concentration dependence 

The critical Mason number *Mn  was obtained by fitting the 

experimental and simulation data with the form of dimensionless viscosity 

( ∞ηη ) as a function of the Mason number ( Mn ). Of course, the 

particular value of *Mn  depends on the fitting equation employed. 

However, differences are minimal and within experimental error when 

using Equation 6.4 and Equation 6.5. It is worth to stress again that the 

*Mn  value is analogous to a dynamic yield stress following the 

terminology by Volkova et al. (2000) and Ramos et al. (2011) in contrast 

to the so-called static yield stress which is typically smaller in these 

systems [see Figure 9 in Ramos et al. (2011)]. 
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In Figure 6.2 we show the *Mn  obtained from fitting the Berli and de 

Vicente plastic equation (Equation 6.5). Equation 6.5 is used for the fitting 

because it has been reported that a better accordance with the 

experimental data exists in the transition regime when using this equation 

if compared to the classic Bingham model. These data are shown as a 

function of concentration φ  in log-log representation. The standard 

deviation, which is calculated with averages for measurements at five 

different magnetic field strengths, falls within the symbol size and are 

indications of the confidence of the fit. In Figure 6.2a we show the results 

for S200 particles, while in Figure 6.2b we show the results for S600 

particles. Together with experimental data, we also include experimental 

data reported by Ramos et al. (2011) (755 nm in diameter) and particle-

level simulation data. 
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Figure 6.2 Volume fraction dependence of *Mn  as obtained from 
fittings to Berli and de Vicente plastic equation (Equation 6.5). a) and b) 

*Mn  versus φ  for S200 and S600 respectively. c) and d) 
cη

η∞*Mn  

versus φ  for S200 and S600 respectively. The error bars in the figures are 
obtained from the average to all field strengths. 

As expected from inspection of Figure 6.1, a reasonably good collapse is 

observed. Experiments are in good agreement with previous literature data 

and simulation results. As anticipated above, we can appreciate a quasi-

linear slope ( φ∝*Mn ). However, for the largest concentration (25 

vol%), in the case of S600 particles, the experimental slope slightly 

decreases (c.f. Figure 6.2b). This can be explained because the linear 

dependence is expected at low loadings where cηη =∞ . For larger 

concentrations, ∞η  can become noticeably larger than cη  and therefore 

the dependence of *Mn  with particle loading becomes smaller (cf. 

Equation 6.3). A similar volume fraction dependence of *Mn  has been 

reported on ER fluids by Marshall et al. (1989) and on inverse ferrofluids 

by Ramos et al. (2011). However, in both cases the number of volume 
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fractions investigated was too low to get sound conclusions and a 

comparison to simulation data was missing. 

Figures 6.2c and 6.2d compare all experimental and simulation data to 

micromechanical model predictions [Martin and Anderson (1996), de 

Vicente et al. (2004), de Gans et al. (1999a), and Volkova et al. (2000)]. 

For this aim, in these Figures 6.2c and 6.2d we show cηη∞*Mn  versus 

φ . This kind of representation corrects the volume fraction dependence of 

∞η  and allows a direct comparison to micromechanical models. As 

observed, experiments and simulations data do exhibit a linear slope 

(power law behavior) in good agreement with micromechanical models. 

All micromechanical models predict a yield stress that scales linearly with 

the volume fraction of the particles. This is due to the fact that interchain 

interactions are neglected in the models. Recalling the fact that the 

magnetic moment scales linearly with the particle volume, the yield stress, 

and consequently *Mn , is found to be independent of particle size. In 

general, micromechanical models in steady shear flow overestimate the 

experimental and simulation data. The fact that micromechanical models 

usually overestimate the experimental data on inverse ferrofluids is not 

novel as was reported by Ramos et al. (2011) and de Gans (1999a). The 

model that more closely fits the experimental and simulation data is the 

one by Volkova et al. (2000). This finding is in agreement with 

experiments reported by Ramos et al. (2011) (see Figure 6.3b in their 

paper) and suggests that the particular hydrodynamic stress considered in 

the model is crucial for a better comparison. 

The data were also fit with the Bingham model and the results are shown 

in the Supplementary material (Figure S6.4). Results are qualitatively 

similar and therefore not included in this manuscript. It is also worth to 

remark here that the comparison to macroscopic models is not possible 
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under the frame of Figure 6.2 because the β  dependence of the yield 

stress according to these models is not quadratic [see Table 6.1]. 

As shown above, the simulation results in steady shear are in reasonably 

good agreement with experimental and theoretical calculations. To better 

appreciate the goodness of this comparison, we next employ oscillatory 

shear flow to again compare simulation data with experiments and 

theoretical models. Strain amplitude sweep tests are used to explore the 

non-linear region as well, contrary to de Gans et al. (1999b) and Ramos et 

al. (2010) where only linear viscoelastic data are reported. 

6.5.3. Dynamic oscillatory shear 

Figure 6.3 depicts the normalized storage and loss moduli as a function of 

strain amplitude for a constant frequency for a range of different silica 

(S600) concentrations from 5 vol% to 20 vol%. For a direct comparison 

with simulation data, experimental viscoelastic moduli are normalized by 
2
0

2
0 HG crmag βμμ=  and the contribution of the dispersing medium to 

the loss modulus was subtracted since it is not considered in simulations (

ηω−= '''' GG p ). When increasing the volume fraction, both storage and 

loss moduli increase. This is expected because more gap spanning and 

compacted aggregates appear.  
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Figure 6.3 Strain amplitude sweep oscillatory shear data normalized by 
2
0

2
0 HG crmag βμμ= . The "non-magnetic" contribution was subtracted 

to the total loss modulus: ηω−''G . Here, η  was estimated using 

Quemada expression ( ) 21 −−= ac φφηη  with 64.0=aφ .  Symbols 
correspond to experimental measurements at different magnetic field 
strengths. Cyan stars correspond to particle-level simulations. Excitation 
frequency: 1 Hz in experiments and 100 Hz in simulations. Below 5 vol% 
the storage modulus remains lower than the loss modulus. 
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The presence of these aggregates would store more energy hence 

increasing the storage modulus and also generate a stronger viscous 

dissipation. In general, the loss modulus embeds contributions from: i) 

magnetic field-driven structuration, ii) interparticle solid friction and iii) 

hydrodynamic forces [Ramos et al. (2010)]. 

The inspection of Figure 6.3 reveals that, as expected, the normalized 

experimental data for various silica contents and magnetic field strengths 

reduce to a master curve when the normalized viscoelastic moduli are 

plotted as a function of the strain amplitude. Also, a good agreement is 

found for the storage and loss moduli between experimental data and 

simulation results, especially in the low strain amplitude regime and for 

the less concentrated suspensions. For larger concentrations (≥ 10 vol%), 

the simulated loss moduli become remarkably smaller than the 

experimental values. It could be explained because hydrodynamic 

interactions are not satisfactorily included in the simulations. The 

simulated storage modulus decreases at a lower rate at high strains 

compared to the experimental values. Currently we do not have an 

explanation for this observation.   

A.  Linear viscoelastic regime 

To get a better understanding of the behavior in the linear viscoelastic 

region, in Figure 6.4 we show the normalized low strain storage modulus 
2
0000 '' HGG crn μμ=  as a function of the contrast factor β  for different 

concentrations. The contrast factor β  is tuned by changing the magnetic 

field strength and therefore the ferrofluid permeability. Together with the 

experimental data we also show experimental data from the literature, 

macroscopic model theories and simulation data. In general, a good 

agreement is found between experiments, theories and simulations bearing 
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in mind the error in the measurements. Similarly to Ramos et al. (2010), 

the macroscopic spheroidal model captures well the observed trend, 

especially for the less concentrated suspensions. However, upon 

increasing the particle concentration, the macroscopic theoretical models 

tend to underestimate the experimental results. It is believed that this 

discrepancy comes from the presence of mutual interactions between 

particle aggregates. At this stage it is worth to note that macroscopic 

models were also capable to explain the Bingham yield stresses in inverse 

ferrofluids investigated by Ramos et al. (2011). 

The comparison with microscopic chain-like models is performed in 

Figure 6.5 (normalizing experimental values by magG ). These models are 

only valid at infinitesimal deformation. As a result, in this figure we plot 

the normalized low strain amplitude viscoelastic moduli magGG 0'  and 

magGG 0''  as a function of particle loading. Experimental data are shown 

for inverse ferrofluids having two different diameters. For completeness, 

in Figure 6.5 we also include experimental data on other inverse 

ferrofluids involving other carrier fluids and particle sizes by Ramos et al. 

(2010). The collapse of all experimental data demonstrates that the low 

strain viscoelastic moduli are independent of particle size in agreement 

with Saldivar-Guerrero et al. (2006) and de Gans et al. (2000). 

Lines in Figure 6.5a correspond to micromechanical model predictions. 

As observed, a good agreement is found with experimental and simulation 

results for the less concentrated inverse ferrofluids. In agreement with 

Ramos et al. (2010) (see Figure 7 in that paper) the better agreement is 

found with de Vicente model. Similar to our observation for macroscopic 

models, as the concentration increases, the micromechanical models 

underestimate experimental results as a result of aggregate-aggregate 
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interactions and/or the formation of thick columnar structures instead of 

isolated slender bodies. 
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Figure 6.4 Comparison between experiments, macroscopic theoretical 
models (see Table 6.1) and simulations for inverse ferrofluids at four 
different particle volume fractions 5, 10, 15 and 20 vol %. Solid squares: 
S600; Open squares: S200; Black circles: experimental data from Ramos 
et al. (2010). Black solid line: spheroidal model. Red dashed line: 
cylindrical model. Green dotted line: layered aggregates model. Cyan 
dashed-dotted line: simulations. Y-axis represents the normalized low 
strain storage modulus 2

0000 '' HGG crn μμ= . Note that a different 
density for silica is assumed in Ramos et al. (2010); data reported here for 
10, 15 and 20 vol% correspond to 9.9, 15.4, and 21.2 vol% in Ramos et al. 
(2010) paper, respectively.  
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Two regions are clearly identified from oscillatory shear flow tests 

reported in Figure 6.5a. At low particle concentrations (below 10 vol%), a 

power law dependence on volume fraction is found for the storage 

modulus similar to the case of other weakly-flocculated colloidal 

dispersions. This linear dependence is explained in terms of both 

macroscopic and microscopic models (see Table 6.1). When the particle 

concentration is larger than 10 vol% the power law exponent clearly 

increases at a higher rate. This finding has been previously noted in the 

literature and has been tentatively associated with the interaction of 

thicker structures [e.g. Ramos et al. (2010)]. In the literature it has been 

reported a linear dependence between the storage modulus and the volume 

fraction up to loadings of 26 vol% [de Gans et al. (1999b)]. From the 

inspection of Figure 6.5a their finding is not very different from ours. The 

two regions, clearly observed in oscillatory shear flows, were not found in 

steady shear flow tests (see Figure 6.2) suggesting a qualitative difference 

in the structures under both kinematics. 

Interestingly, experimental data for the storage modulus contained in 

Figure 6.5a compare very well with steady shear and large amplitude 

oscillatory shear particle-level simulations. The storage modulus was 

calculated from the slope of the stress as a function of the strain using 

steady shear data. Simulations capture reasonably well the change in slope 

that is observed around 10 vol% and demonstrate a change in the inner 

structure of the clusters from single linear chains to more interconnected 

aggregates at equilibrium for concentrations above 10 vol% [see Figure 

6.5c]. This is in good agreement with the observations in Figure 6.4. 

The effect of particle concentration in the normalized low-strain loss 

modulus is shown in Figure 6.5b. The important point here is that 

simulations clearly underestimate the experimental loss moduli for large 
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enough concentrations. This is a consequence of hydrodynamic 

interactions between aggregates being neglected in the simulations. The 

influence of magnetic multipoles is expected to be negligible because of 

the weak magnetostatic interactions in the inverse ferrofluid. As expected, 

the critical concentration where the deviation from experiments occurs is 

clearly correlated to the deviation from the linear slope in the 'G  versus 

φ  curve. Unfortunately, analytical theories for ''G  are not available in 

the MR literature. 
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Figure 6.5 Volume fraction dependence of the linear viscoelastic moduli 
normalized by 2

0
2

0 HG crmag βμμ= . a.- Low strain storage modulus 

'G . b.- Low strain loss modulus ηω−''G . "Simulations LAOS" data 
correspond to low strain values in dynamic oscillatory shear particle-level 
simulations. "Simulations Steady" data correspond to the storage modulus 
obtained from the slope of stress versus strain in steady shear particle-level 
simulation curves. Black circles from Ramos et al. (2011) correspond to 
756 nm diameter silica particles dispersed in a ferrofluid of viscosity 44 
mPa·s. Lines correspond to analytical theories. c.- Quasiequilibrium 
configurations for four packing fractions 1, 5, 10 and 15 vol% evidencing 
the distinct lateral aggregation between single-width gap spanning chains 
above 10 vol%.  

Paragraphs above demonstrate that particle-level simulations can explain 

the linear viscoelastic regime at low particle concentration. In the case of 
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the storage modulus, particle-level simulations also reproduce well the 

behavior at large particle loadings. However, in the case of the loss 

modulus, clear deviations between experiments and simulations appear at 

larger concentrations (> 10 vol%) due to interaggregate interactions 

between gap spanning structures that are not included in the simulations 

because the medium contribution to the loss modulus is not considered. 

Upon further increasing the strain amplitude in Figure 6.3, the inverse 

ferrofluids start to deviate from the linear regime (at the yield point) and 

eventually flow when ''G  overcomes 'G  (at the flow point). In the next 

section we investigate the onset of flow regime. 

B.  Onset of flow under oscillatory shear 

In Figure 6.6a we illustrate the critical yield and flow strain values as a 

function of particle concentration as obtained from experiments and 

simulations. The yield point is defined as the strain where 'G  reduces 90 

% with respect to its value in the viscoelastic linear region. On the other 

hand, the flow point is defined as the strain where ''' GG = . Figure 6.6a 

clearly shows that the experimentally observed onset of flow of the field-

induced structures is also reasonably well captured using particle-level 

simulations. 

The yield strain, which corresponds to the onset of nonlinearity, occurs at 

very low strain values (see Figure 6.6a). This fact is well documented in 

the literature, especially in the case of conventional MR fluids, and, in 

general, is expected to be due to small particle-level cluster arrangements 

under shear [Parthasarathy and Klingenberg (1999)]. The reasonably good 

agreement between experiments and simulations suggests that, as 

expected, wall slip does not occur in the experiments. In the case of using 

conventional MR fluids prepared by dispersion of micrometric iron 
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particles in a non-magnetic carrier, the simulated yield strain is typically 

much larger than the experimental one [Parthasarathy and Klingenberg 

(1995)]. Consistently, the yield strain values reported here are very similar 

to those reported in Table II by de Gans et al. (1999a). Also, as expected, 

these yield strain values very closely correspond to the yield strains 

obtained from the stress-strain tangent method on steady shear flow data 

reported in section 6.5.1 [results not show here for the sake of brevity. For 

more details see Ramos et al. (2011)]. 
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Figure 6.6 a) Critical strain and b) critical dimensionless stress, magGτ , 
as obtained from the strain amplitude sweep data from experimental (S200 
particles) and simulation curves. Error bars correspond to measurement at 
different field strengths. For each field there were three independent 
measurements. Closed symbols correspond to the "yield" points. Open 
symbols correspond to the onset of "flow". 

Again, two regions are clearly differentiated in the yield strain data from 

experiments and simulations. At low particle concentrations, the yield 

strain remains constant at a very low value. Next, the yield strain 

decreases when increasing the particle content for particle concentrations 

larger than 10 vol% suggesting the formation of thicker aggregates. 

Chain-like bead-rod model predictions in MR fluids provide the right 

order of magnitude for the yield strain observed at low concentrations 

(approximately 10 %) [de Gans et al. (1999a)] and suggests that the 

aggregates break at the tips in contrast to the middle of the aggregate.  

The flow strain value is largely independent of particle concentration. In 

this case, again a good agreement is found between simulation data and 

experiments. These results are expected because the flow strain is 

basically determined by the rupture of the last doublet present in 

suspension whose strength is essentially determined by magnetostatic 
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dipolar forces. This is essentially the strain corresponding to the dynamic 

(Bingham) yield stress reported in section 6.5.1 in the form of a critical 

Mason number *Mn . In fact, the average value for the flow strain is 

around 40 %, which is in good agreement with conventional 

micromechanical models for MR fluids available in the literature such as 

Klingenberg and Zukoski (1990) and de Gans et al. (1999b) that predict a 

flow strain of exactly 38.9 %. 

The volume fraction dependence of the critical stress is represented in 

Figure 6.6b. These critical stresses are expected to be the multiplication of 

the critical strain (yield or flow) by the corresponding storage modulus (

γτ 'G= ). In view of Figures 6.5a and 6.6a, the volume fraction 

dependence of the critical stress is dominated by the storage modulus at 

low particle loadings. However, for larger concentrations (above 10 vol%) 

both the storage modulus and the critical strain contribute to the stress; as 

a result, the stress levels off. The particle concentration dependence of the 

critical stress strongly differs from that observed in conventional MR 

fluids prepared by simple dispersion of carbonyl iron in silicone oils 

[Segovia-Gutiérrez et al. (2012)]. In the current case, a single yielding is 

found as clearly demonstrated by strain amplitude sweep curves. 

Results presented in this section suggest two well-differentiated regions. 

At low particle concentrations, isolated chain-like structures may exist 

connecting the plates that support the shear stresses acting on the 

suspension. For higher concentrations, chain-like structures start to 

interact resulting in a volume-filling colloidal gel structure. The fact that 

the storage modulus furthers increases and the (limiting) yield strain 

decreases for this particular concentration range is in accordance with the 

existence of a strong-link gel. However, a priori one may think that an 

aggregate of chains will have a higher critical strain, as the breaking of 
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one of the chains will not have as a consequence the collapse of the entire 

structure. 

6.6. CONCLUSIONS 

The rheological behavior of inverse ferrofluids under steady shear and 

time-dependent (dynamic oscillation) flow regimes has been revisited 

under the frame of particle-level simulations, the structural viscosity 

model recently proposed by Berli and de Vicente (2012) and other 

micromechanical and macroscopic models reported in the MR literature. 

Special attention has been given to the effect of particle loading in an 

attempt to understand the *Mn  versus concentration dependence and the 

behavior under large-amplitude oscillatory shear.  

Under steady shear, simulations, theories and experiments are in good 

agreement and demonstrate a linear dependence between *Mn  and 

particle loading φ . Differences appear under oscillatory shear flow. Here, 

as expected, a good agreement is generally found between particle-level 

simulations, analytical theories and experiments in the dilute regime. 

However, upon increasing the particle loading, analytical theories clearly 

underestimate experimental observations while particle-level simulations 

still give a correct prediction. The only disagreement between simulations 

and experiments is found in the loss modulus. However, this discrepancy 

was expected and is attributed to the fact that hydrodynamics is not 

properly considered in the simulations.  

Overall, taking into account that the simulation model contains 

considerable simplifications the agreement with other analytical theories 

and experiments is remarkably good. 
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Figure S6.1 Magnetization curve of the ferrofluid at room temperature. 
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Figure S6.2 Viscosity curves of the inverse ferrofluids (S600) in the 
absence of magnetic fields for different silica concentrations. The curves 
were obtained using a stress sweep starting at 1 Pa. 
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Figure S6.3 Dimensionless viscosity ( ∞ηη ) as a function of the Mason 
number ( Mn ). Experimental data on inverse ferrofluids prepared with 
S200 silica particles are represented as solid symbols. Lines correspond to 
theoretical predictions: Black solid line corresponds to Berli and de 
Vicente predictions (Equation 5). Red dashed line corresponds to Bingham 
predictions (Equation 1). Green dotted lines correspond to the full 
structural model of Berli and de Vicente (Equation 4). Cyan stars 
correspond to particle-level simulations.  
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Figure S6.4 Volume fraction dependence of *Mn  as obtained from 
fittings to the Bingham plastic equation (Equation 5). a) and b) *Mn  

versus φ  for S200 and S600 respectively. c) and d) 
cη

η∞*Mn  versus φ  

for S200 and S600 respectively. The error bars in the figures are obtained 
from the average to all field strengths.  
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Abstract 

The mean magnetization (MM) approximation is undoubtedly the most 

widely used approximation in magnetorheology both from a theoretical 

and simulation perspective. According to this, spherical magnetizable 

particles under field can be replaced by effective dipole moments m  

placed at their center with strength pp MVm = . Here pV  and pM  

are the volume and mean (average) magnetization of the particles, 

respectively. In spite of being extensively used, there is not a 

mathematical justification to do so in most cases. In this manuscript, we 

test this approximation using experiments, theories and simulations, for a 

wide range of magnetic field strengths and particle loadings, in both 

conventional magnetorheological fluids (CMRFs) and inverse ferrofluids 
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(IFFs). Results demonstrate that the MM approximation is applicable in 

IFFs for a very wide range of field strengths (up to external fields of 265 

kA/m) and particle loadings (up to 20 vol%). For CMRFs, the MM 

approximation is only applicable in two particular circumstances; in 

magnetic saturation or in infinite dilution. 

7.1. Introduction 

Generally speaking, magnetorheological (MR) fluids are non-Brownian 

magnetic field-responsive suspensions. There are essentially two kinds of 

MR fluids: i) conventional MR fluids (CMRFs) prepared by dispersion of 

magnetizable particles in a non-magnetic liquid carrier,1 and ii) inverse 

ferrofluids (IFFs) prepared by dispersion of non-magnetic particles within 

a ferrofluid.2-3 In the absence of magnetic fields, MR fluids behave as 

regular dispersions. However, in the presence of magnetic fields particles 

interact through magnetic forces eventually forming elongated structures 

in the field direction.4-7 

 Despite their different magnetization mechanisms, the mechanical 

(rheological) behavior of CMRFs and IFFs can be understood using the 

same principles -under the Particle Magnetization Model.7 CMRFs are 

clearly preferred in commercial applications, while IFFs are considered 

model systems and generally used for fundamental studies.5,6,8 The main 

reason for this is that magnetostatic interactions in IFFs are weak and the 

dispersed particles can be easily prepared with a very high monodispersity 

level.4 

At large field strengths colloidal interactions do not play a role and, as a 

result, only two dimensionless numbers are needed to describe the 

rheology of MR fluids: the Mason number, Mn, and particle 
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concentration, φ . Currently, the scaling with Mason number seems well 

understood. However, the understanding of the effect of particle loading is 

still incomplete.7-10 Interestingly, the effect of particle concentration in the 

dimensionless shear viscosity (normalized by the high-shear viscosity) is 

solely contained in the critical Mason number *Mn  (i.e. an apparent 

yield stress) that is associated to the transition from magnetostatic to 

hydrodynamic control.8,11  

A major approximation that is commonly used in the description of MR 

fluids is the so-called mean (average) magnetization (MM) 

approximation. According to this, dispersed particles can be substituted by 

a magnetic dipole placed at their center. This approximation is not 

justified in most experimental cases and only becomes exact in two 

limiting scenarios: i) at low field strengths in dilute systems, and ii) in 

magnetic saturation. For a given particle concentration, the MM 

approximation has been successful in the description of the field 

dependence in CMRFs.12,13 Also, the MM approximation has been 

successfully employed as well in the case of IFFs to ascertain the effect of 

particle loading on the MR performance. A linear dependence with 

volume fraction φ∝*Mn  has been reported in very good agreement with 

analytical theories and experiments in the dilute regime.8  

To the best of our knowledge, the MM approximation has not been 

exhaustively tested yet in the case of CMRFs and IFFs for different 

concentrations. The benefit of using this approximation with appropriate 

dimensionless numbers is that the effect of shear rate, field strength and 

particle concentration can be ascertained with only a few experimental 

measurements. Thus, in this work we aim to test the MM approximation 

using theoretical developments, particle level simulations and 

experimental data on CMRFs and IFFs for a wide range of field strengths 
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(from the linear to nearly the saturation regime) and particle 

concentrations (from dilute to concentrated suspensions).  

7.2. Mean magnetization (MM) 

approximation 

Within the MM approximation, the interaction force between two 

spherical particles can be calculated in the equivalent problem of two 

dipoles located at the center of the spheres. In particular, a given particle 

(radius a , volume pV ) with average magnetization pM  is assimilated 

as a magnetic moment of strength: 

ppp MaMVm 3

3
4π

==           (7.1) 

In this work we will use φsuspp MM = , where suspM  is the 

suspension magnetization and φ  is the particle concentration. 

The magnetostatic interaction force between two dipoles of strength m  

separated a distance r  can be written as:   

]ˆ)2sin(ˆ)1cos3[(2

]ˆ)2sin(ˆ)1cos3[(
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               (7.2) 

where θ  is the angle formed between the center-to-center line and the 

magnetic field direction, 0μ  is the permeability of vacuum, crμ  is the 

relative permeability of the continuous phase, and magF  is a measure of 
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the strength of the magnetostatic force. By substitution of Equation 7.1 in 

Equation 7.2 we get an expression for magF  as a function of PM : 

22
012

1
pcrmag MaF μπμ=         (7.3) 

As stated above, for MR fluids, the Lambda ratio (i.e. ratio between 

magnetostatic and thermal forces; TMa Bpcr κμπμλ 18
23

0= ) is 

generally very large, and as a result their flow behavior is governed by 

only two dimensionless numbers: particle volume fraction φ  and Mason 

number Mn.7 The Mason number is defined as the ratio between the 

viscous shear forces, 26 aF cdrag γπη &= , and the magnetostatic forces, 

magF . Here cη  stands for the viscosity of the continuous phase and γ&  is 

the magnitude of the shear rate tensor. It is important to remark that 

different considerations for magF  lead to different definitions of the 

Mason numbers. Using Equation 7.3, the Mason number can be written as 

follows: 

2

0

M
72

MnMn
pcr

c

mag

drag

MF
F

μμ

γη &==≡ ><       (7.4) 

Improvements to Equations 7.3 and 7.4 for non-dilute suspensions involve 

the substitution of cη  (and crμ ) by the viscosity (and permeability) of the 

suspensions as a whole. Interestingly, the use of Equation 7.4 permits the 

construction of scaling rheological curves also facilitating the modeling 

and simulation of these systems. Actually, Equation 7.4 has been 

successfully used in the past to collapse steady shear viscosity data for 

CMRFs12,14,15 and IFFs4.  
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However, in spite of being widely used, strictly speaking, the MM 

approximation is not applicable in most of the experimental data reported 

on MR fluids to date. The reason for this is that the MM approximation is 

only valid for homogeneous magnetic fields (i.e. generally speaking, 

exceedingly low concentrations) and/or magnetically saturated suspension 

(i.e. exceedingly large field strengths). On the one hand, the former 

condition is never realized in practice because MR fluids are never dilute 

by definition. On the other hand, the later condition is only guaranteed for 

sufficiently large magnetic field strengths and this is difficult to achieve 

because of field-induced particle migration and/or undesirable heating of 

the samples. In summary, most of the available data reported in the 

literature concern concentrated, non-saturated MR fluids and therefore, 

strictly speaking, the MM approximation is not applicable. 

7.3. Validity of the MM approximation: 

Mason numbers and magnetic stress 

7.3.1. Low fields and dilute suspensions 

In the case of very low magnetic field strengths in dilute suspensions (i.e. 

within the linear magnetization regime), the magnetostatic interparticle 

force magF  is proportional to the external magnetic field strength squared (

2
0HFmag ∝ ) because 03 HM p β= . Here 

( ) ( )crprcrpr μμμμβ 2+−=  is the contrast factor (or coupling 

parameter) and prμ  is the relative permeability of the particles.  

Under these conditions, it can be demonstrated that Equations 7.3 and 7.4 

reduce to:7 
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2
0

22
0, 4

3 HaF crLmag βμπμ=               (7.5a) 

2
0

2
0

L
8

Mn
Hcr

c

βμμ
γη &=     (7.5b) 

According to Equation 7.5a, the magnetic force between the particles 

comes from the permeability mismatch between the two phases, β . 

Interestingly, β  is a function of the magnetic field strength. In the case of 

CMRFs β  can take values between 0 (large fields) and 1 (low fields). In 

contrast, in the case of IFFs the contrast factor reduces to 

( ) ( )crcr μμβ 211 +−=  and, as a consequence, β  can take values 

between -0.5 (low fields) and 0 (large fields). Equation 7.5b has been 

successfully used in the past to collapse steady shear viscosity data for 

low and intermediate (non-linear) magnetic field strengths in CMRFs,11 

IFFs,6 and ER systems.16  

When the magnetic field strength is further increased the suspensions 

approach to the saturation regime and Equations 7.5a and 7.5b do not 

apply anymore. In particular, in this regime the magnetostatic interparticle 

force is no longer proportional to 2
0

2 Hβ  because the magnetization 

vector varies with position inside each interacting particle; in particular 

the magnetization in the polar regions begins to saturate (see 

Klingenberg12 and references therein). FEM simulations carried out by 

Ginder and Davies17 demonstrate that in this case the power law exponent 

of the magnetic field strength becomes smaller than 2.  

7.3.2. Saturating fields 

For very large magnetic field strengths the suspensions completely 

magnetize; satsuspsusp MM ,= . In the case of magnetically saturated 
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suspensions the particles acquire a uniform magnetization within their 

volume, satpM , , and the MM approximation is truly applicable. Here 

φsatsuspsatpp MMM ,, == . In this case, Equations 7.3 and 7.4 become 

independent of the magnetic field strength and reduce to:12  

2
,

2
0, 12

1
satpcrsatmag MaF μπμ=                 (7.6a) 

2
,0

sat
72

Mn
satpcr

c

Mμμ
γη &

=        (7.6b) 

7.3.3. Magnetic stress scale 

Starting from the expressions for the magnetostatic force in every field 

strength regime (linear and saturation), a magnetic stress magτ  can be 

simply estimated by the ratio of the corresponding magnetostatic force 

(Equations 7.3, 7.5a and 7.6a) divided by the particle area pA . A simple 

estimation of pA  can be carried out if we assume a single-width particle 

chain like structuration. In this particular case, it can be demonstrated that 

φπ 32 2aAp ∝  (see Annex), and therefore the magnetic stress reads as 

follows: 

2

0, 8
1

pcrMmagmag Mμφμττ =≡ ><   (7.7a) 

(Linear)fieldsLow
8
9 2

0
2

0, HcrLmag βμφμτ =  (7.7b) 

n)(SaturatiofieldsLarge
8
1 2

,0, satpcrsatmag Mμφμτ =        (7.7c) 

1≈crμ  in the case of saturating fields for IFFs (e.g. see Figure 7.3b in 

reference 5). 
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At this point it is very important to emphasize that the particle area pA  

expression assumes a single-width particle chain arrangement that is not 

necessarily the case in highly concentrated and strongly magnetized MR 

fluids where more complex structures appear. As a result, Equation 7.7 is 

only strictly applicable in the case of dilute MR fluids. Magnetostatic 

stresses given by Equation 7.7 physically correspond to a typical stress 

scale in terms of particle loading and magnetic field strengths. In the 

absence of other interparticle interactions, the magnetic stress, magτ  will 

be proportional to the so-called yield stress, yτ  (i.e. the minimum stress 

required for the onset of flow).  

7.4. Analytical theories 

To model the rheological behavior of MR fluids, plastic analytical 

theories are generally employed. The Bingham model is undoubtedly the 

most widely used for steady shear flow. In dimensionless form it can be 

written as follows: 

 
Mn

*Mn1+=
∞η

η
            (7.8) 

where ∞η  is the (field-independent) high-shear viscosity and *Mn  is the 

critical Mason number. *Mn  essentially represents the apparent yield 

stress in the MR fluid. For a given concentration, if *MnMn <  

magnetostatic interactions predominate and the viscosity diverges. 

However, if *MnMn >  hydrodynamic interactions predominate and the 

viscosity approaches to the high-shear viscosity. In general, assuming that 

other colloidal interactions are small, the only dependence of the critical 

Mason number would be on the particle loading; ( )φ*Mn*Mn = . 
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Microscopic models have been proposed in the literature to explain the 

critical Mason number dependence on the volume fraction: 

( ) ∞= ηφηφ /*Mn cC where C is a constant whose particular value 

depends on the particular assumptions or simplifications of the model.4,18-

20 According to these models a linear dependence with the volume fraction 

is expected for ( )φ*Mn  in the case of dilute suspensions because, in this 

case, cηη
φ

=∞→0
lim . For larger concentrations a non-linear dependence 

would be expected and indeed a maximum with particle concentration 

could also appear (see below). 

In spite of the success of the Bingham model, deviations from the 

Bingham model have also been described in the literature with regards to 

CMRFs and IFFs (e.g. see Ramos et al.6 and references therein). In order 

to explain these discrepancies, a structural viscosity model was recently 

proposed by Berli and de Vicente:11 

( )
( ) ( )

2

2121
0

21

*MnMn
*MnMn1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

=
∞∞ ηηη

η
       (7.9) 

This model predicts a smoother transition between the magnetostatic and 

hydrodynamic regimes in the case of CMRFs and a low-shear viscosity 

plateau for IFFs. In the particular case of CMRFs, the low-shear plateau is 

not experimentally accessible because i) ∞>> ηη0  and ii) limited torque 

resolution of the rheometers. In this case, Equation 7.9 can be reduced to a 

dimensionless Casson-like equation:11 

( ) ( ) 211 *MnMn2*MnMn1 −−
∞ ++=ηη        (7.10) 

Interestingly, both Bingham and Casson models predict a divergent 

viscosity for low shear rates that corresponds to an apparent yield stress 
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yτ . This yield stress yτ  is related to the critical Mason number *Mn  as 

follows: 

∞
>< =≡

η
η

μμ

τ c

pcr

y

M
2

0

M

72
*MnMn*          (7.11a) 

(Linear)fieldsLow
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*Mn 2
0

2
0

L
∞

=
η
η

βμμ

τ c

cr
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H
      (7.11b) 

n)(SaturatiofieldsLarge
72

*Mn 2
,0

sat
∞

=
η
η

μμ

τ c

satpcr

y

M
          (7.11c) 

Starting from the Casson model, the dimensionless shear stress magτ/τ  can 

be expressed, as a function of the critical Mason number *Mn  as 

follows: 

( )2/12/1 Mn*Mn2Mn*Mn
9

++= ∞

cmag φη
η

τ
τ

          (7.12) 

In Equation 7.12, the first term is independent of the Mason number and, 

hence, independent of the shear rate (i.e. it is the apparent yield stress). 

Thus, the yield stress can be expressed scaled by the magnetic stress, 

cmagy /ττ φηη 9*Mn∞= . Micromechanical models4,18-20 and experiments 

for IFFs8 suggest that φηη ∝∞ c*Mn , and therefore the ratio magy /ττ  is 

independent on both the particle loading and the magnetic field strength. 

As a consequence, the magnetic stress magτ  is a suitable scale for the 

dipolar magnetostatic interactions and the particle volume fraction. 

Obviously, similar to Equation 7.10, a master curve can be obtained for 

the stress simply dividing by the yield stress: 

2/1

*Mn
Mn2

*Mn
Mn1 ⎟

⎠
⎞

⎜
⎝
⎛++=

yτ
τ

               (7.13) 
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Equation 7.13 provides different curves for the different values of the 

critical Mason number. However, all these curves can be collapsed into 

only one curve if the Mason number is normalized by the critical Mason 

number. Thus, the knowledge of the magnetization of the suspension and 

the particle loading suffice to describe the rheology of the MR fluids 

under the assumptions considered.  

7.5. Particle level simulations 

Brownian molecular dynamic simulations were carried out in order to test 

the MM approximation. The simulation method was originally described 

in Fernández-Toledano et al.21 and is now restricted to monodisperse 

particles (i.e. the particle diameter was fixed to σ  ). MR fluids were 

modeled by 1000=N  neutrally buoyant Hard Spheres in a Newtonian 

continuous medium. The system was confined between two parallel walls 

perpendicular to the field direction, z , and periodic boundary conditions 

were applied in the x  and y  direction. The system was subjected to a 

constant dimensionless temperature 1.0* =T .  

The Langevin equation involved contributions coming from interparticle 

magnetostatic interactions, hydrodynamic drag and short range repulsions. 

We assumed pair-wise and point-dipole approximation to calculate 

magnetic forces. The dimensionless external magnetic field was fixed to 

150*
0 =H . Hydrodynamic interactions were neglected and particles were 

subjected to an external flow by using Stokes’ law. This approximation 

was used bearing in mind that the hydrodynamic stress is not the main 

contribution of the total stress as demonstrated in Lagger et al.22 The 

friction coefficient was set as 1.722* =ζ . In order to avoid overlapping 

between particles and between a particle and the walls, short-range 
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exponential repulsive forces were used. Exponential law forces were used 

instead of power law forces since the former promotes the formation of 

thick aggregates that are actually observed experimentally.23,24 

 The Langevin thermostat was switched-off in the direction of non-

conservative forces. Therefore, the momentum is conserved in the shear 

direction while the temperature was conserved by applying the thermostat 

in the other directions.21 Shear stress was calculated using the following 

equation at each time step: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∑ ∑

= ≠

N

i ji
ijij

i

ii Fr
M

pp
V 1

1 βα
βα

αβτ      (7.14) 

where αβτ is the α-β-component of the stress tensor, V  is the volume of 

the simulation box, α
ip and α

ip  are respectively the α and β-components 

of the linear momentum of the particle i , iM is the mass of the particle i , 

α
ijr is the α-component of the distance between a particle i  and j  and 

β
ijF is the β-component of the total pair-wise interaction between the 

particle i  and j .  

Stress growth simulations were carried out under external magnetic fields. 

They consisted in three stages: First, the particles were randomly 

distributed in the simulation box. Secondly, the MR fluid was structured 

at rest (quiescent conditions) under the presence of magnetostatic 

interactions. Finally, a start-up test was initiated. The dimensionless shear 

rate was ranged between 001.0* =γ&  and 1000* =γ&  and the shear stress 

for each shear rate was calculated by averaging the large-strain values of 

the stress tensor over 500 configurations in the interval [ ]10,2∈γ  where 

the shear stress achieves an steady value. The time step was fixed as 
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4* 10 −=Δt . From start-up tests, full rheograms were first obtained and 

latter, the Equation 7.10 was fitted to the data to ascertain *Mn . 

7.6. Experimental 

Two kinds of MR fluids were tested in this work. On the one hand, 

conventional MR fluids (CMRFs) prepared by dispersion of carbonyl iron 

microparticles (grade HQ from BASF SE Germany) in silicone oils (

smPac ·20=η  from Sigma-Aldrich). On the other hand we formulated 

inverse ferrofluids (IFFs) by dispersion of silica particles (obtained from 

Stöber method) in a commercial APG ferrofluid ( smPac ·44=η from 

Ferrotech). Further details on the preparation and characterization of the 

IFFs can be found in Ruiz-López et al.8 

Magnetic properties of carbonyl iron particles and ferrofluids were 

obtained by measuring their hysteresis cycles at room temperature in a 

Quantum Design (San Diego, CA) MPMS-XL 5.0 T magnetometer. The 

external magnetic field strength was varied from mkA /4000  to 

mkA /4000− . The magnetization curves of the suspensions were also 

measured in order to calculate the mean magnetization of the particles to 

use the MM approximation. More details on the characterization of the 

ferrofluids used in this work can be found in Ramos et al.6 

As stated above, the MM approximation is strictly valid only in the case 

of low fields at infinite dilution and at saturating fields. As a result, to test 

this approximation we decided to explore intermediate fields and 

concentrated suspensions. Magnetic fields investigated ranged H0 ∈ [17, 

665] kA/m. Concentrations investigated were φ ∈ [0.01, 0.50] in the case 

of CMRFs and φ ∈ [0.10, 0.20] in the case of IFFs. 
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Steady shear flow curves were obtained in a commercial 

magnetorheometer (MCR 501 with the MRD70/1T magnetocell, Anton 

Paar) in plate-plate configuration (20 mm diameter, 300 microns gap). All 

tests were carried out in isothermal conditions (25 ºC). The protocol 

consisted as follows: (i) precondition at a constant shear rate of 100 s−1 for 

30 s, (ii) the magnetic field is suddenly applied and the suspension is left 

to equilibrate for 1 min, (iii) the rheogram starts. Two kinds of tests were 

performed to obtain the rheograms either controlling the shear stress or 

the shear rate: (a) in the first test, the shear stress was logarithmically 

increased at a rate of 10 points/decade from 10-1 Pa to 105 Pa in the case of 

CMRFs and from 10-1 to 103 Pa in the case of IFFs. In the particular case 

of CMRFs, the stress range depended on the particle volume fraction. In 

all cases, the acquisition time was 5 s per data point and the test was 

stopped if the shear rate overpassed 103 s-1; (b) in the second test, for 

CMRFs the shear rate was logarithmically increased at a rate of 10 

points/decade from 10-2 to 104 s-1. The acquisition time was 10 s per data 

point. Once the resulting shear rate in (a) or shear stress in (b) was 

measured, the apparent viscosity was calculated by dividing the applied 

shear stress by the shear rate, calculated at the rim of the plates. 

Precautions were taken for the measurements to be as close as possible to 

the steady state (for further details see Ramos et al.6). 

Rheograms for CMRFs did not exhibit a high-shear viscosity plateau 

under field. Several attempts were performed to reach it by using highly 

viscous Newtonian carriers (up to 790 Pa.s). However the high-shear 

viscosity plateau was still not observable. In this work, we estimated the 

high-shear viscosity using the Quemada expression: 2)1( −
∞ −= ac φφηη

, where aφ  is the maximum packing fraction. Here, we assumed a 

Random Close Packing fraction for spheres, 64.0=aφ  . As we will see 
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latter, this resulted in a reasonably good estimation of the high-shear 

viscosity in view of the scaling curves (c.f. Figure 7.3). 

7.7. Results and discussion 

Figure 7.1 represents typical steady shear rheograms for 20 vol% CMRFs 

at different external magnetic fields. Experimental data are shown for 

stress-controlled and strain-controlled tests demonstrating a reasonably 

good collapse in steady regime, as otherwise expected. Although not 

shown in this manuscript, rheograms were also obtained for other particle 

concentrations giving qualitatively similar results. The rheograms exhibit 

three clearly differentiated regions: i) an initial region with a noticeable 

noise because of the limited torque resolution of the magnetorheometer, 

ii) a plateau in the stress as expected in yield-stress materials, and iii) an 

increase in stress at large Mn corresponding to the flow region. 
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Figure 7.1 Dimensionless shear stress ( ><MmagsatmagLmag ,,, ,, ττττττ ) 

curves as a function of the Mason number ( ><MsatL Mn,Mn,Mn ) for 
CMRFs at 20 vol% concentration: a) scaled by the linear magnetostatic 
stress, Lmag,τ  and saturated magnetostatic stress, satmag,τ  as a function of 

LMn  and satMn ; b) scaled by the mean magnetization magnetostatic 

stress, ><Mmag,τ  as a function of ><MMn . These rheograms were 
constructed using both strain-controlled (closed symbols) and stress-
controlled (open symbols) modes. Labels correspond to the external 
magnetic field strength. 

In Figure 7.1a we show scaling curves within the linear and saturation 

regimes according to Equations 7.7b and 7.5b, and 7.7c and 7.6b, 

respectively. The curves tend to collapse for the lowest field strengths 

(below 665 kA/m). Deviations in the collapse are due to the fact that this 

particular MR fluid is actually not dilute and hence a perfect scaling is not 

expected. The perfect scaling does not occur because single-width particle 

chains do not necessarily exist at this concentration (e.g. see Figure 9 in 

Fernández-Toledano et al.10). As expected, a better scaling was observed 

for particle concentrations below 20 vol% (results not shown here for 

brevity). Interestingly, the curve corresponding to 665 kA/m (that is very 
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close to saturation as we will demonstrate later) is clearly below 

measurements in the linear regime. This suggests that other interparticle 

interactions (remanence, short range attractions, colloidal interactions, etc 

...) exist between the particles, that become noticeable at low fields, by 

increasing the stress level. These interactions have been already reported 

in the literature, for instance, under the frame of a two-step yielding.10 

Interestingly, when the magnetic field strength increases up to saturation, 

magnetostatic forces govern and therefore the stress curves stay below 

those corresponding to the linear regime. 

In Figure 7.1b we show the rheograms in dimensionless form now using 

Equations 7.7a and 7.4. The calculation of ><Mmag ,τ  and ><MMn  requires 

the computation of the magnetization of the particle pM  using the 

internal magnetic field strength H  instead of the external one 0H . For 

the calculation of the internal magnetic field strength we used the 

expression: 02
3

HH
crpr

cr

μμ
μ
+

= , that corresponds to the internal field in 

an isolated and magnetically linear spherical particle (see section 5.11 in 

reference 25). Here, prμ and crμ  were calculated from the experimental 

magnetization curves using the MM approximation. The process required 

a self-consistent approach: (i) the internal magnetic field was calculated 

using the magnetic permeabilities for the external magnetic field, (ii) the 

magnetization was calculated by interpolation in the magnetization curve, 

(iii) the magnetic permeabilities for the internal field were calculated, (iv) 

the steps (ii) and (iii) were repeated until convergence. The magnetization 

and the internal magnetic field were thus obtained. The inspection of 

Figure 7.1b reveals that, as expected, the collapse in the linear regime is 

now much better than in Figure 7.1a (note that there are not free fitting 
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parameters), and saturation values (at 665 kA/m) still remain clearly 

below the data corresponding to the linear regime, as previously 

discussed, because of the presence of other interparticle interactions.  

Rheograms for IFFs are represented in Figure 7.2. The scaling in the 

linear and saturation regimes is shown in Figure 7.2a. Obviously, the 

scaling with the magnetic field strength for IFFs is even better than in the 

case of CMRFs for the same particle concentration. A very good collapse 

is found for all magnetic field strengths investigated because in this case 

03 HM p β≈   in a very wide range of magnetic fields in agreement with 

Ruiz-López et al.8 (we will come back later to this point in the discussion 

of Figure 7.4). The good collapse with measurements on CMRFs at 665 

kA/m (i.e. very close to saturation) also reinforces the statement that other 

interparticle interactions exist in CMRFs that appear at low fields (c.f. 

Figure 7.2a). Contrary to the case of CMRFs, IFFs tend to exhibit a low-

shear viscosity plateau instead of an apparent yield stress. For more details 

on the appearance of this low-shear viscosity plateau we refer to Berli and 

de Vicente11. Together with experimental data we also show the 

predictions of Equation 7.12 in Figure 7.2a. As expected a very good 

agreement is found. In Figure 7.2b we show the stress versus Mason 

number curves scaled by 
><Mmagτ  and ><MMn  under the MM 

approximation. The good scaling demonstrates that the MM 

approximation is valid in these systems and solely magnetostatic and 

hydrodynamic interactions play a role, contrary to CMRFs where other 

interparticle interactions exist. 

Next, rheograms contained in Figures 7.1 and 7.2 are plotted in the form 

of dimensionless viscosity curves for a direct comparison to theoretical 

models, using the mean magnetization of the particles. Results are shown 

for 20 vol% MR fluids in Figure 7.3. They demonstrate again that the MM 
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approximation works reasonably well for a wide range of external 

magnetic field strengths from 17 kA/m to 265 kA/m in both MR fluids 

investigated, independently of the obvious physical differences in the 

magnetization mechanism of the suspensions. The shift towards the right 

in the viscosity curves for the lowest fields, when compared to saturation, 

is again a consequence of the existence of other interparticle interactions. 

In agreement with Figure 7.2, data for IFFs collapse reasonably well with 

CMRFs at fields close to saturation. From the inspection of Figure 7.3 we 

can appreciate again the difficulty in identifying the high-shear viscosity 

plateau in CMRFs and justifies the use of Quemada expression to estimate 

it (see Experimental section). The good scaling obtained demonstrates that 

taking the viscosity from this particular analytical expression is a 

reasonable approximation. 
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Figure 7.2 Dimensionless shear stress ( ><MmagsatmagLmag ,,, ,, ττττττ ) 

curves as a function of the Mason number ( ><MsatL Mn,Mn,Mn ) for IFFs 
at 20 vol% concentration: a) scaled by the linear magnetostatic stress, 

Lmag,τ  and saturated magnetostatic stress, satmag,τ  as a function of LMn  
and satMn ; b) scaled by the mean magnetization magnetostatic stress, 

><Mmag,τ  as a function of ><MMn . These rheograms were constructed 
using stress-controlled mode. Labels correspond to the external magnetic 
field strength. Solid and dashed lines correspond to Equation 7.12 for IFFs 
and CMRFs in saturation regime, respectively. 

Curves similar to those shown in Figure 7.3 were also measured for a 

wide range of concentrations in both CMRFs and IFFs. The collapse was 

similarly good to the 20 vol% example reported in this work. Once the 

viscosity curves were measured for a given concentration at a range of 

magnetic field strengths, a Casson plastic model (Equation 7.10) was 

fitted to obtain the critical Mason number *Mn  associated to the 

transition from magnetostatic to hydrodynamic control of the suspension 

structure. 
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Figure 7.3 Dimensionless viscosity η  curves (scaled by the high-shear 

viscosity ∞η  of the MR fluid) as a function of Mason number ><MMn  for 
MR fluids at 20 vol% reported in Figures 1 and 2. For CMRFs the high-
shear viscosity is taken from the Quemada expression (see text).  

At this point, it is important to highlight that for a very wide range of 

particle loadings, the mean magnetization of a particle in suspension is not 

dependent on the particle loading: ( )φpp MM ≠ . This is clearly 

appreciated in Figure 7.4 for both CMRFs and IFFs. This finding means 

that the magnetic stress magτ  is proportional to the particle volume 

fraction because in its derivation we assumed a linear dependence of the 

particle area with concentration: φ∝pA  (see Equation 7.7 and Annex). 

The later assumption is valid in a wide range of experimental data for 

IFFs. However, in the case of CMRFs this assumption is only valid at 

very low concentrations (see below). Bearing in mind that in dilute 

systems magy ττ ∝  and cηη ≈∞ , in view of Equation 7.11 the MM 

approximation predicts a linear dependence of the critical Mason number 

*Mn  with the particle concentration. 
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Figure 7.4 Mean magnetization of the particle pM  scaled with the 

saturation magnetization as a function of the external magnetic field 
strength 0H  for different particle loadings φ  in CMRFs (closed symbols) 
and IFFs (open symbols). For details on the self-consistent approach used 
to calculate pM  we refer to the text.

 satM  = 1707 kA/m for CMRFs 

and satM  = 25.5 kA/m for IFFs.  

To test this prediction we now discuss the volume fraction dependence of 

the critical Mason number *Mn . The scaling for the linear ( L*Mn ) and 

saturation ( sat*Mn ) approximations gave very similar results to 

><M*Mn . As expected, a slightly better collapse was observed for 

><M*Mn . Hence, in this discussion we will focus on the scaling of 

><M*Mn . Results obtained for the critical Mason number ><M*Mn  as a 

function of particle concentration φ  are contained in Figure 7.5. We 

observe that the stress-controlled and strain-controlled tests provide very 

similar numbers giving also an estimate of the consistency of the fitting to 

the Berli and de Vicente model (Equation 7.10). IFFs closely follow a 

straight line of slope one in very good agreement with the MM 
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approximation for a very wide range of particle loadings (up to 20 vol%); 

the larger the particle concentration, the larger the number of single-width 

particle chains per unit surface. As a result this will promote a linearly 

increasing yτ  and *Mn  with concentration. Together with our data on 

IFFs we also include data from Ramos et al.6 These data are in reasonably 

good agreement with our data on IFFs. Our simulation data are also 

contained in Figure 7.5 and demonstrate again a linear dependence with 

volume fraction. This was expected because the MM approximation is 

employed in the simulations and because only magnetostatic interactions 

are considered between Hard Spheres. Interestingly the simulation results 

are very close to experiments on IFFs in spite of the many simplifications 

in the simulation model. This was expected in view of Ruiz-López et al.8 

In Figure 7.5 we also include experimental data on CMRFs both in the 

linear ( [ ]mkAmkAH /265,/170 ∈ ) and saturation ( mkAH /6650 = ) 

regimes. In the low concentration regime (below 5 vol%), results collapse 

very well with simulations and experiments on IFFs. This was expected 

because the MM approximation becomes exact in this limit. However, 

results for CMRFs in the linear regime are clearly higher than in 

saturation for particle loadings above 5 vol%. The reason for this is that 

other contributions to the yield stress yτ  play a role in the linear regime 

in agreement with the discussion of  Figure 7.1. This gives a stronger than 

linear dependence of yτ  with φ . *Mn  data for saturated CMRFs are 

obviously closer to those obtained in IFFs because dipolar magnetostatic 

interactions prevail. However, data for CMRFs do not exactly overlap 

onto IFFs suggesting that complete saturation is not fully reached in 

CMRFs (c.f. Figure 7.4). 
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Figure 7.5 Volume fraction dependence of the critical Mason number 
><M

*Mn  for CMRFs and IFFs as obtained by fitting the dimensionless 
viscosity curves to the Casson model (Equation 7.10). In these fittings the 
high-shear viscosity for the CMRFs is taken from the Quemada equation 
and for the IFFs is taken from the high-shear viscosity in the absence of 
fields during the preshear.  

For even larger concentrations a maximum with particle concentration is 

observed because of two contributions to *Mn : on the one hand, for 

larger concentrations, the high-shear viscosity contribution to *Mn  

becomes more important and therefore, according to Equation 7.11a the 

volume fraction dependence reduces as follows: 2)1( ac φφηη −=∞ . 

On the other hand, when the volume fraction increases, the permeability 

of the carrier fluid crμ  in Equation 7.11a must be replaced by the 

permeability of the suspension srμ . This is so because srμ  will become 

closer and closer to the permeability of the particles when increasing the 

concentration. Hence, the yτ  and *Mn  will decrease with the particle 

loading because the magnetostatic interactions will decrease as well. 
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At this point it is worth to remark that we explored different possibilities 

in the calculation of the Mason number for the saturated CMRFs 

(Equation 7.6b). In particular, we explored three cases: i) the suspension 

magnetization was directly measured in a magnetorheometer, ii) the 

suspension magnetization was calculated using psusp MM φ=  from 

magnetization measurements in carbonyl iron powders, and iii) the 

suspension magnetization was calculated again using psusp MM φ=

from Frohlich-Kennelly equation fittings to magnetization curves in 

carbonyl iron powders. Results for the three cases demonstrate that the 

particular way of calculating the suspension magnetization in saturation 

was negligible in the results presented in this work.  

Overall, Figure 7.5 suggests that even though the MM approximation is 

not strictly applicable to these systems, it is still a very good 

approximation for IFFs and it is also valid for CMRFs in both the dilute 

case and saturation regimes.  

Finally, in Figure 7.6 we show the dimensionless yield stresses as a 

function of the dimensionless mean magnetization of the particles 

satp MM . This figure allows us to evaluate the theoretical quadratic 

dependence predicted by Equation 7.7 in dilute MR fluids. In Figure 7.6a 

we include the static yield stresses as obtained from the low-shear stress 

plateau in log-log representation (see Figures 7.1 and 7.2). In the case of 

the IFFs, an apparent static yield stress is estimated using two approaches 

(tangent method6 and the stress level at 11.0 −= sγ& ). In both kinds of MR 

fluids a quadratic dependence with the particle magnetization is observed 

suggesting that the MM approximation is valid. In fact, under the 

assumption that magy ττ ≈ , from Equation 7.7 we get 
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22

, satpsatyy MM=ττ . This equation is plotted as a solid line in 

Figure 7.6a and as observed is in very good agreement with the data. 

In Figure 7.6b we show results for the dynamic yield stress obtained by 

fitting the shear stress as a function of the shear rate in lin-lin 

representation, for shear rates above 1100 −s . In the case of CMRFs, it 

was necessary to work under strain-controlled mode  to increase the 

number of points for better statistics in the fittings (see Experimental 

section). In this case, the data clearly deviate and do not superimpose 

although the slope seems to be still 2. In our opinion, a key point to 

understand the deviation of the data on the dynamic yield stress is the fact 

that extrapolations are done on a narrow range of shear rates (or stresses) 

and the high-shear viscosity is hardly ever achieved in CMRFs. These 

results are coherent with the shift towards the right in the viscosity curves 

for the lowest fields observed in Figure 7.3 as a consequence of the 

existence of other interparticle interactions. As expected, for the largest 

fields investigated and the lower concentrations the agreement is much 

better with data on IFFs and theoretical predictions. 
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Figure 7.6 Particle magnetization dependence of the static staticy ,τ  (a) and 

dynamic dynamicy ,τ   (b) yield stresses, normalized by the yield stress in 

saturation saty ,τ . Particle magnetization >< pM  was normalized by the 

saturation magnetization satM . Solid line corresponds to the theoretical 

prediction 22

, satpsatyy MM=ττ . Open symbols in Figure 7.6a: 
11.0 −= sγ& . Crossed open symbols in Figure 6a: tangent method.  

7.8. Conclusions 
The mean magnetization (MM) approximation has been tested against 

conventional MR fluids (CMRFs) and inverse ferrofluids (IFFs). Results 

demonstrate that although the approximation is not strictly valid in the 

field strength and concentration range of general interest, and in spite of 

the physical differences in the magnetization mechanism of the 

suspensions, the approximation is still applicable in some particular cases. 

In IFFs the MM approximation applies very well for all magnetic field 

strengths and concentrations studied. However, in the case of CMRFs the 
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MM approximation is only applicable in the dilute regime and/or 

magnetic saturation. 
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Annex: Estimation of the area per particle 

The estimation of the area per particle was achieved assuming the 

following statements: First, the MR fluid is assumed to be formed by 

single-width particle chains, and confined in a plate-plate configuration 

with upper and lower area, A , and a gap between the plates, h . The 

volume fraction can be expressed as the volume of all the particles divided 

by the total volume of the suspension: 

 
Ah

aN
V
VN ppp

3
4 3π

φ ==   (7.A1) 

Here pN is the number of particles in the sample, pV is the particle 

volume, a  is the particle radius and AhV =  is the total volume of the 

MR fluid. Assuming gap-spanning single-width particle chains, the 

number of chains, CN , can be written as haNN pC 2= . In terms of 
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stress, the total force is going to be exerted on the surfaces by the upper or 

the lower particles. So, the area per particle, pA  can be obtained as the 

total area divided by the number of chains and all the particles have a 

surrounding area distributed in shells around the fluid in cylindrical 

symmetry: 

φ
π 22

2
a

aN
Ah

N
AA

pc
p ===        (7.A2) 
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Abstract 

A simulation method is proposed to explore the effect of particle size 

polydispersity in magnetorheology including Brownian motion. The 

method aims to extend the classical particle-level simulation methodology 

developed by Klingenberg and co-workers in the 90's for the case of 

polydisperse MR fluids. The simulation study concerns the aggregation 

kinetics at rest as well as the rheological behavior under start-up of steady 

shear and dynamic oscillatory shear tests at increasing strain amplitudes. 

Results demonstrate that the effect of polydispersity is only relevant at the 

transition regime between magnetostatic to hydrodynamic control of the 

suspension structure. The yielding behavior is correlated to the structural 
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characteristics (radial distribution functions, pair correlation functions and 

angular connectivities) of the magnetorheological (MR) fluids before the 

onset of flow. A more abrupt transition is observed for polydisperse MR 

fluids because interparticle links are weaker in this case if compared to 

monodisperse suspensions in spite of the fact that polydisperse MR fluids 

exhibit a larger connectivity. 

8.1. INTRODUCTION 

Conventional magnetorheological (MR) fluids are colloidal systems 

essentially formulated by dispersion of micron-sized carbonyl iron 

(magnetizable) particles in a non magnetic carrier. They have the ability to 

change from a liquid-like to a solid-like state upon the application of an 

external magnetic field (so-called MR effect). On the other hand, 

electrorheological (ER) suspensions are the electric analog of MR 

suspensions, whose rheological properties are enhanced by the application 

of an electric field. Both MR and ER fluids are characterized by the 

appearance of a yield stress for sufficiently large particle loadings and 

field strengths [Parthasarathy and Klingenberg (1996); Bossis et al. 

(2002); Gonzalves et al. (2006); Park et al. (2010); de Vicente et al. 

(2011); Segovia-Gutiérrez et al. (2012)].  

Carbonyl iron particles employed in the formulation of commercial MR 

fluids are obtained by thermal decomposition of pentacarbonyl iron, and 

this process typically results in a very polydisperse powder with 

polydispersity 20.0≥ν  [Phule (1998)]. Here ν  stands for the ratio 

between the standard deviation and the average diameter of the particles. 

For instance, 38.0=ν  for a fine carbonyl iron grade (HS grade) 

commercialized by BASF SE and can be even larger for other grades (

42.0=ν  for HQ grade and 52.0=ν  for OM grade). Currently, to the 
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best of our knowledge, there is not a chemical route available in the 

literature to obtain monodisperse ( 0=ν ) carbonyl iron particles of 

micrometric size. Separation and fractionation approaches seem to be the 

only possibilities to get less polydisperse powders but these methods are 

costly and time-consuming [e.g. Chiriac and Stonian (2009)]. As a result, 

all experiments reported up to now in the MR literature on conventional 

MR fluids having commercial applications, concern inherent polydisperse 

suspensions and therefore a question arises: would ideal monodisperse 

MR fluids have better MR performance than their polydisperse 

counterparts for the same mean particle diameter? In our opinion, particle-

level simulations can help to answer this question. 

Despite the fact that in practice MR fluids are highly polydisperse in 

particle size, in most particle-level simulations reported in the literature 

the MR fluid is treated as a suspension of neutrally buoyant monodisperse 

spherical particles dispersed in a Newtonian carrier liquid. As the typical 

experimental mean particle sizes are of the order of microns, thermal 

motion and inertial effects are discarded in the simulations [Klingenberg 

et al. (1989); Klingenberg et al. (1991); See and Doi (1992); Klingenberg 

et al. (1993); Liu et al. (2013)]. 

If compared to particle-level simulations on monodisperse systems, 

simulation studies on MR fluids containing dispersed particles with 

different sizes are very scarce. Furthermore, most of them focus on 

bidisperse MR fluids where particles having only two different sizes 

coexist in suspension [Kittipoomwong et al. (2002); Kittipoomwong et al. 

(2005); Ekwebelam and See (2009)]. Kittipoomwong et al. (2002) 

reported simulation data on bidisperse MR fluids under shearing flows. 

They demonstrated that the yield stress of bidisperse suspensions was 

larger than that of monodisperse suspensions at the same overall particle 
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volume fraction. In a follow-up paper by the same authors 

[Kittipoomwong et al. (2005)], a more comprehensive simulation was 

carried out to demonstrate that the enhanced stress transfer in bidisperse 

suspensions is not associated with an increase in particle packing. 

Actually, the smaller particles cause the larger particles to form more 

chainlike aggregates than those formed in monodisperse suspensions. 

These results were confirmed later by simulations carried out by See and 

coworkers [Ekwebelam and See (2009)]. Their simulations revealed that 

bidisperse suspensions have a higher tendency to form straight or close-to-

aligned structures than the monodisperse suspensions. The stress 

enhancement in bidisperse suspensions was anticipated to be due to the 

population and orientation of interacting large particles in the bidisperse 

suspensions. 

The number of simulation papers on MR fluids involving a continuous 

particle size distribution is even smaller. To the best of our knowledge, 

only two papers, the papers by Wang and coworkers [Wang et al. (1997)] 

and Wereley and coworkers [Sherman and Wereley (2013)] address this 

issue. A pioneering paper by Wang et al. (1997) used 2D molecular 

dynamic simulation methods to demonstrate that the shear stress of ER 

fluids decreases with increasing the standard deviation of a Gaussian 

distribution of the particle size and then reaches a steady value at high 

polydispersity levels. In their simulations, they adopt a local-field 

approximation to consider mutual polarization effects between particles. 

The standard deviation of the distribution changed from 0.0 to 3.0. The 

reduction of the yield stress when increasing the polydispersity level was 

ascribed to the imperfection and weakness of the chain-like disordered 

structures. Thermal forces were not included in the simulations and only 

two Mason numbers were investigated. More recently, Sherman and 

Wereley (2013) carried out a large-scale (high particle count) simulation 
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study on polydisperse MR fluids with log-normal distribution at a particle 

volume concentration of 30.0=φ . In their study, the mean particle 

diameter was fixed at 8 microns and the carrier fluid viscosity was 0.1 

Pa·s. They investigated the structure formation and shear rheology for a 

wide range in standard deviation of the distribution from 0.001 to 0.3. 

Their results demonstrate that: i) as the particle distribution size parameter 

increases, particles tend to form more irregular structures; ii) increasingly 

irregular structures manifest as a 25 % reduction in the shear stress at low 

Mason numbers; iii) wide particle size distributions correspond to a 

reduction in particle cluster size, and a small increase in connectivity. 

Again, thermal motion was neglected. 

In an attempt to better understand the effect of particle size polydispersity, 

in this manuscript we carry out a comprehensive 3D simulation study to 

compare the behavior of perfectly monodisperse MR fluids and 

polydisperse suspensions having the same average diameter but different 

standard deviation, in the absence and presence of shearing flows. Bearing 

in mind the success of the classical particle-level simulation methodology 

developed by Klingenberg and coworkers in the 90’s [e.g. Parthasarathy 

and Klingenberg (1996)], in this manuscript we extend, for the first time, 

this methodology to include a continuous polydispersity in particle size 

and thermal motion to capture the different time scales and Brownian 

diffusion of the particles (due to the difference in particle size). Particle 

concentrations and size distributions explored here are chosen to be 

similar to those employed in the formulation of commercial MR fluids. In 

particular, we study concentrated MR fluids (up to 20 vol%, 20.0=φ ) 

with particle sizes that follow a skewed distribution as frequently 

observed in experiments (in this case a Schultz distribution with standard 

deviation 2.0=ν  and polydispersity index 12.1=PDI ). Also, for the 

first time, the range of Mason numbers simulated will span from the 
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"solid-like" to the "liquid-like" regimes. The effect of polydispersity in 

particle size is studied here during field driven structuration at rest, under 

stress growth (also known as start-up tests) and unsteady dynamic 

oscillatory shear tests. 

8.2. SIMULATION TECHNIQUE 

Brownian dynamics simulations were used to model mono- and 

polydisperse MR fluids in a confined geometry between parallel plates. 

The MR fluid was composed by 1000=N  neutrally buoyant hard 

spheres of diameter iσ  in a Newtonian continuous phase with a viscosity 

cη . The particles were initially distributed randomly in a box with 

dimensions xL , yL , and zL  with LLL yx == . The box height was 

mzL σ15=   for all the simulation results shown in this work. This is a 

typical box height used in this kind of simulations for the monodisperse 

case. We also carried out simulations at mzL σ20=  but did not find any 

significant differences. Here, mσ  is the mean value of the particle 

diameter. ∑
=

=
N

i
i

zL
L

1

3

6
σ

φ
π  changes according to the total volume 

fraction, φ , of the MR fluid and the diameter distribution { }iσ . Periodic 

boundary conditions were imposed in the x  and y  directions. The 

shearing flow was created in the x  direction. 

8.2.1 Particle size distribution 

Polydispersity is included in the form of a Schultz particle diameter 

distribution with the following normalized probability [Schultz (1939)]: 
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where ( )xΓ  is the gamma function and the z  parameter is a measure of 

the width of the distribution through the quadratic dispersion of the 

distribution: 

( ) ( )
1

11 2
2

2

+
=−= ∫ z

dPm
m

σσσσ
σ

ν   (8.2) 

The polydispersity index ( PDI ), defined as the fourth moment of the 

distribution divided by the third moment and the average diameter, is in 

this case given by the following equation 13 2 += νPDI . In Figure 8.1 

we show the histogram of the particle size distribution used in this work 

together with the Schultz distribution for 2.0=ν  (i.e. 12.1=PDI ). For 

completeness, in Figure 8.1 we also include another distribution that is 

frequently used in particle size characterization: the log-normal 

distribution. As observed, both distributions are very similar. In this work, 

we will stay with the Schultz distribution. 
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Figure 8.1.- Particle size distribution for the polydisperse MR fluid 
investigated in this work. The lines correspond to the Schultz and Log-
normal ( 1=mσ  and 2.0=ν ) distributions. 

8.2.2. Equation of movement 

The time evolution of the system is described by the Langevin equation: 

( )tfFu
dt

trd
dt

trd
M Bii

i
i

i
i

rrr
rr

++⎟
⎠
⎞

⎜
⎝
⎛ −−= ∞)()(

2

2

ζ   (8.3) 

where iM  is the mass of particle i , ici σπηζ 3=  is the friction 

coefficient, ∞
iur is the  ambient fluid velocity at the center of particle i , 

and ( )tf B

r
 is a random force introduced to model the Brownian motion of 

the particles tTf iBB Δ∝ ζκ . Here, Bκ  is the Boltzmann constant, T  

is the absolute temperature and tΔ  is the time step. In this way, Langevin 

dynamics allows controlling the temperature like a thermostat. The force 

acting on particle i , iF
r

, includes induced magnetostatic forces coming 
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from interparticle interactions mag
iF
r

, short range repulsive forces between 

spheres HS
iF
r

, and between spheres and walls wall
iF
r

. 

)()()()( i
wall

ii
HS

ii
mag

iii rFrFrFrF rrrrrrrr
++=        (8.4) 

This simple model neglects the hydrodynamic interactions between the 

particles. Despite this assumption, it is found that the macroscopic 

dynamics is predicted rather accurately by this model and avoiding the 

calculation of hydrodynamic force, makes this method the fastest. 

Moreover, it has been reported that the inclusion of hydrodynamic 

interactions has quantitative but no qualitative importance in the dynamic 

response of ER suspensions [Parthasarathy et al. (1999)]. More 

sophisticated numerical schemes based on the Stokesian Dynamics [Brady 

and Bossis (1988)] are capable of treating multi-body hydrodynamic 

interactions. This technique has valuable properties when small-scale 

phenomena are investigated, but still computationally too demanding. 

8.2.3. Interactions 

As frequently done in the simulation of MR fluids, the magnetostatic force 

between spheres is treated in the dipole-dipole limit [Klingenberg et al. 

(1989, 1991)]. This dipolar approximation is known to underestimate the 

magnetostatic interaction between closely-spaced particles. Accordingly, 

the application of an external magnetic field zHH ˆ0=
r

 induces a 

magnetic moment in each particle: 

mimi
i

ii mzmzHzmm rr 3*3*0
3

ˆˆ
2

ˆ σσβπσ
====   (8.5) 

where 20
3 Hm mm βπσ=  is the magnetic moment for a mean particle 

size, mii σσσ =*  is the reduced diameter of the particle i  (see below), 
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( ) ( )crprcrpr μμμμβ 2+−=  is the contrast factor, 0μμμ ppr =  is the 

relative magnetic permeability of the particles, 0μμμ ccr =  is the relative 

magnetic permeability of the carrier fluid, and 0μ  is the permeability of 

vacuum. Under this frame, multibody interactions are neglected, and 0H  

represents the internal magnetic field within the suspension. With this, the 

force on sphere i  due to sphere j  is given by: 

( )[ ]θθθσ ee
r

FrF ijrij
ij

mij
ij

mag
ij ˆ2sinˆ1cos3)( 2

4

0 +−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

rr
     (8.6) 

where ijr  is the center-to-center distance between spheres i  and j , ijθ  is 

the angle between the line-of-centers and the ẑ  direction, and rê  and θê  

are unit vectors in the r  and ijθ  direction respectively. 

The factor ijF0  is defined as follows: 

3*3*
4

0
0 4

3
jim

m

jicrij F
mm

F σσ
πσ

μμ
==    (8.7) 

where 4

2
0

4
3

m

mcr
m

mF
πσ
μμ

= . Here, ijF0 is defined in terms of the average 

diameter due to the continuous particle size distribution. It is a 

generalization of the parameter 2/)(min jir σσ +=  used by 

Kittipoomwong et al. (2002) for bidisperse particles to a continuous 

distribution of particle diameters.  

Short range repulsive forces between particles are modeled as an 

exponential interaction similarly to the Klingenberg approach 

[Klingenberg et al. (1989, 1991, 1993)]: 
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( ) ( )[ ] ijijij
ij

ij
rep

ij rrFrF ˆexp0 σκ −−=
rr

  (8.8) 

where ( )jiij σσσ += 5.0  and κ  is chosen to be mσκ /100= .  

Again, a quasi-hard sphere exponential model is used to mimic the short-

range repulsive forces between particles and walls: 

( ) ( )[ ]zzFrF iii
bottomwall

i ˆ5.0exp0
, σκ −−=

rr
            (8.9) 

( ) ( )( )[ ]zLzFrF izii
topwall

i ˆ5.0exp0
, σκ −−−=

rr
        (8.10) 

The Brownian motion is also considered to satisfactorily describe the 

motion of the smallest particles in the distribution. The thermal force on 

an isolated i  particle is random with zero mean ( ) 0=tf B , and 

uncorrelated with a strength described by: 

( ) ( ) iBBB Tttftf ζκ2=Δ+        (8.11) 

The relative magnitude of magnetic to Brownian energy is given by the 

so-called λ  parameter [de Vicente et al. (2011)]: 

T
H

B

mcr

κ
σβμπμ

λ
16

2
0

32
0=     (8.12) 

This parameter is usually high for typical experimental parameters and 

therefore Brownian motion is frequently neglected, in the monodisperse 

case [Klingenberg et al. (1989), Wang et al. (1997), Kittipoomwong et al. 

(2002), Sherman and Wereley (2013)]. Although this consideration does 

not affect significantly the structure of the particles for high enough λ  

values [Segovia-Gutiérrez et al. (2013)], experiments are usually 

performed at a constant temperature and the Brownian motion could affect 
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to the diffusion of the smallest particles in the polydisperse MR fluid 

when a shear flow field is applied.
  

8.2.4. Flow kinematics 

In this work we consider two shearing flows. On the one hand we perform 

stress growth tests (start-up tests) where the ambient fluid velocity ( )iru rr∞  

is given by: 

⎩
⎨
⎧

>
≤

=∞

0ˆ
00

txz
t

u
i

i γ&
r          (8.13) 

Here, γ&  is the magnitude of the shear rate tensor. On the other hand we 

also explore unsteady oscillatory shear tests. In this case, a local shear 

strain ( ) ( )tt ωγγ sin0=  is imposed on the top wall, while the lower wall 

keeps stationary. Here, the ambient fluid velocity is given by: 

xtzu ii ˆcos0 ωωγ=∞r          (8.14) 

where 0γ  and ω  are the amplitude and the angular frequency of the 

shear strain, respectively. 

In order to use the Langevin thermostat for simulations under external 

flow, we switch-off the thermostat in the direction in which non-

conservative external forces are applied. In this way, momentum 

conservation in the shear direction is recovered. 

8.2.5. Stress tensor calculations 

The microscopic derivation of the stress tensor is due to Irving and 

Kirkwood [Irving et al. (1950)]: 
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The first term in Equation 8.15 is the summation of the kinetic 

contribution to the stress tensor; here α
ip  is the α  component of the 

momentum of the particle i . The second term represents the contribution 

of the potential to the stress tensor; here α
ijr  is the α  component of the 

center-to-center distance connecting particles i  and j , and β
ijF  is the β  

component of the total pairwise interaction between particles i  and j  

(magnetostatic plus short range repulsive interactions). The contribution 

of the momentum, ipr , to the stress tensor will be neglected for the shear 

rates considered in this work, and therefore the shear stress will be 

approximated by: 

∑
≠

−≈
ji

ijij Fr
V

βα
αβτ 1

                (8.16) 

8.2.6. Reduced units 

It is important to choose appropriate reduced units to solve the equations 

of motion. In this manuscript we choose three natural scales: mS σσ = , 

mS MM =  and BS FF =  for the length, mass and force, respectively. 

Here, mσ  stands for the mean diameter, mM  represents the mean particle 

mass, and finally BF  corresponds to a typical force of the order of the 

thermal force. With these natural scales one can define dimensionless 

variables. For instance, the reduced diameter is mii σσσ =*  and the 

reduced mass can be written as:  
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where ρ  is the density of the particle. 

The origin of the force BF  can be explained as follows. The magnetic 

force contribution is orders of magnitude larger than the Brownian force 

for typical magnetic field strengths. In order to equilibrate the magnetic 

and Brownian contribution to the total force, we choose as a moment unit: 

2

3
Bm

B
Hm βπσ

=         (8.18) 

Here BH  is a relative low external magnetic field ( mAH B /200= ), 

where the magnetic and Brownian contribution to the total force are 

similar. We select BH  and Bm  as units of magnetic field strength and 

magnetic moment, respectively. With this, the moment of each particle 

can be expressed as follows: 
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where the magnetic field parameter *
0H  is defined as 

BB HH
HHH

)(
)( 00*

0 β
β

= . 

This normalization of the magnetic field differs from the normalization in 

Klingenberg et al. (1989), using the magnetic field strength, and 

Kittipoomwong et al. (2002), using the saturation magnetization as the 

normalization factor of the magnetic field. This normalization comes from 

numerical reasons for the inclusion of the thermal force. 

For the reduced forces we use BF  as the force unit and as a result: 
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On the other hand, the friction coefficient of particle i  is given by: 
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where mcm σπηζ 3≡  is the friction coefficient of the mean size particle. 

With this, the reduced friction coefficient, can be obtained dividing 

Equation 8.21 by the scaling factor ( ) 21
mBmS FM σζ = : 

***
21

*
imim

Bm

m

S

i
i FM

σζσζ
σ

ζ
ζ

ζ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==          (8.22) 

where 
2121

23
* 3

Bm

mc
m FM

σπη
ζ ≡ .  

Next step is to write the main dimensionless numbers employed in 

magnetorheology in reduced form. On the one hand, the ratio between 

magnetostatic to thermal energies (i.e. Lambda ratio, Equation 8.12) can 

be written as )3/( *2*
0 TH=λ  where )/(*

mBB FTkT σ=
 

is the reduced 

temperature. On the other hand, the ratio between hydrodynamic to 

magnetostatic energy (i.e. Mason number) can be written as 

( ) ( )2*
0

**2
0

2
0 28 HHMn mcr ζγβμμγη && ==  where *γ&  is the reduced 

magnitude of the shear rate tensor. In this work, the scaling factor for the 

shear rate, γ& , is given by )/( mmBS MF σγ =& . At this point we would 

like to remark that different definitions for the dimensionless numbers can 

be found in the literature, all differing in a constant factor. For instance, 

the Mason number defined in Klingenberg et al. (2007) is sixteen times 

larger than the Mason number used in this manuscript and the normalized 
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shear rate employed by Klingenberg et al. (1991), *
Kγ& , is related to our 

Mason number through the following expression: ( )2*
0

*** 4HmK ζγγ && = . 

Finally, using reduced units, the equation of movement for the 

polydisperse MR fluid is given by: 
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In the simulations reported in this manuscript we consider that the MR 

fluid is composed of iron particles ( ρ = 7.8 × 103 kg/m3) of diameter mσ  

= 10-6 m suspended in a Newtonian fluid ( cη = 1 × 10-3 Pa·s). This results 

in BF  = 4.17 × 10-14 N and *
mζ  = 722.09. Three values for the magnetic 

field parameter *
0H  have been investigated: 5*

0 =H , 25 and 50 . These 

field strength values correspond to 85=λ , 339
 
and 8541, respectively. 

As a summary, the real and reduced parameters used in the simulations 

are shown in Table 8.1. As shown in Table 8.1, the reduced parameters 

used in this work are different from the reduced parameters used in the 

MR simulation literature [e.g. Klingenberg et al. (1989), Kittipoomwong 

et al. (2002)]. mσ , mM  and BF  are chosen here as fundamental 

normalization factors of length, mass and force, respectively, due to the 

inclusion of Brownian motion in the simulation code. 
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Magnitude 
Simulation 

Parameter 
Real Unit Scale 

Reduced 

Unit 

Length mσ  m610 −  mσ  1.0 

Friction 

Coefficient mζ  
msN /·10·43.9 9−

 mBm FM σ/  722.09 

Magnetic 

Field 0H  mkA

mkAmkA

/2.10

,/04.5,/1  
)(/)( 0HHH BB ββ  

5.0, 25.0, 

50.0 

Temperature T  K300  BmB kF /σ  0.099 

Time step tΔ  s910 −  Bmm FM /σ  3.2·10-4 

 

Table 8.1. Reduced units and natural scales employed in the simulation 
code. 

 

8.2.7. Solving the equations 

Introducing thermal noise and inertia into the simulation model has to be 

done with especial care. The drawback of introducing Brownian forces in 

strongly interacting large-size particle dispersions is that the magnetic 

forces are huge in comparison and this is computationally inconvenient. 

From Equation 8.3 we can identify three different time scales: the inertial 

time, iiM M ζτ /= ; the diffusive time, Tk BmD /3 3πηστ = ; and the 

characteristic relaxation time, 2
0

2
0/8 HcrR βμμητ =  [Dhont (1996)]. 

From the parameters used in the simulations (see Table 8.1) we can obtain 

the order of magnitude of the different time scales: sM
710~ −τ , 

sD 1~τ  and sR
410~ −τ . This scaling analysis reveals that the 

relaxation processes are separated by at least 7 orders of magnitude in 

time. As a result, in order for the simulation to faithfully represent all 

associated relaxation processes, the time step should be lower than 
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s710~ −  and the total simulation time should be higher than 1~  (i.e. 

number of integration steps higher than 710~ ). 

Equation 8.23 was solved using the standard Velocity-Verlet-like 

algorithm with neighbors list [Allen and Tildesley (1991)]. The particles 

with the selected diameter distribution { }iσ  were randomly distributed in 

the simulation box. Then, a magnetic field was applied and the suspension 

was left to reach a steady state under rest. In particular we looked to the 

long time plateau in the energy of the system. Initially we performed 

simulations using a time step of st 710 −=Δ  and no change in the energy 

neither in the structural parameters was observed after 108 simulation 

steps (10 seconds in real units) for all the simulations performed. Two 

different routes were followed in order to analyze the influence of the time 

step on the simulations' results. In the first route, we restarted the 

simulations with a shorter time step st 910 −=Δ  for another 108 

simulation steps. Here, the total energy value remained constant and there 

was not variation in the final structure of the system. In the second route, 

new simulations were performed starting from fresh/new randomly 

distributed particles with a time step of st 910 −=Δ  for 108 simulation 

steps  (0.1 seconds in real time). Computed total energies and structural 

parameters were found to be identical to those obtained for the 

st 710 −=Δ  simulations. Therefore, we conclude that the results are 

independent on the selected time step. Mean Square Displacement (MSD) 

calculations (not shown here for brevity) revealed that the simulated 

structures are in "quasi-equilibrium" with MSD 27.0~ t  at long times. As a 

way of example, after 2 seconds the mean movement of the particles is 

negligible, around 0.01 the diameter size.  



 

 

Chapter 8.  335 

In the second stage, a shear flow field was imposed to the structured 

suspensions and the stress evolution was monitored as a function of time. 

In the case of start-up tests, the time step of the simulation was tuned 

∈Δt  [10-9, 10-4] to ensure that the results were independent of the 

selected time step and each simulation run was carried out up to a total 

strain of 10=γ . The steady shear stress was calculated by averaging the 

large-strain value of the stress tensor in 500 configurations over the strain 

of 2=γ  to 10=γ . For the oscillatory sweep tests, the simulation was 

stopped after 10 cycles. This was a long enough time to overcome the 

initial transients. In all cases, when the flow field was applied, we 

considered a no-slip condition for the particles in contact with the wall 

boundaries. Particles within a distance ii σδ 05.0=  of a bounding surface 

are considered stuck and as a result, their velocity components are given 

by ( ) ( )0,0, =yx vv  and ( ) ( )0,, 0Vvv yx =  for particles close to the bottom 

and top wall, respectively. Here, 0V  is the velocity of the top wall. The 

sticking condition is based on many experimental observations and more 

important, it is required to observe a yield stress within the frame of this 

simulation model [for a detailed discussion we refer to Klingenberg 

(1993)].  

The connectivity of the system was monitored by considering the 

following interparticle bounding criteria; two particles i  and j  are 

considered bonded when the distance between their centers is smaller than 

2/)(05.1 ji σσ + . The connectivity )(θC  is defined here as the mean 

number of particles in contact to a central one with an orientation between 

angles θ  and θθ d+  with respect to the z  axis: 

( ) ( )
1−

=
N
NC θθ              (8.24) 
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Here, ( )θN  is the number of connected particles oriented between angles 

θ  and θθ d+ , and N  is the total number of particles in the system. 

8.3. RESULTS AND DISCUSSION 

8.3.1. Aggregation kinetics at rest 

The aggregation kinetics was studied in terms of magnetostatic energy, 

nearest neighbours (mean number of particles located at a distance 

σ05.1≤d  to a central one), mean cluster size (average number of 

monomers within the clusters), radii of gyration [see for instance Dhont 

(1996)] and angular connections evolution as a function of time. With the 

exception of the energy and angular connectivities (to be discussed further 

below), all magnitudes increase with time and eventually reach a final 

plateau that is associated to the stationary state and/or to the fact that the 

structures fully connect the gap in z -direction. For all the magnetic fields 

investigated ( 5*
0 =H , 25*

0 =H  and 50*
0 =H ), the energy of 

monodisperse systems is smaller, in absolute value, than the case of 

polydisperse MR fluids independently of the size of the simulation box. 

This is expected because of the cubic dependence of the magnetostatic 

interaction force with particle size (see Equation 8.7). However, the 

number of nearest neighbours is slightly sensitive to the box size because 

of confining effects. During structuration, the mean cluster size is a 

power-law function of time at small times and the exponent increases with 

particle concentration. At a certain time the curves deviate from the 

power-law behavior and approach an asymptotic plateau value. This is 

due to the clusters coming into contact with the boundary walls. Actually, 

simulations for 20.0=φ  predict the formation of only one percolating 

cluster. Generally speaking, the growing kinetics of the clusters is slightly 
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increased for the polydisperse system than for the monodisperse case, but 

one does not observe a significant difference in the final mean cluster size 

at equilibrium as also corroborated with calculations of radii of gyration 

of the clusters.  

Undoubtedly, during structuration, the most relevant information was 

given by the evolution with time of the angular connections. Figure 8.2 

shows the time dependent connection evolution )(θC
 for 10.0=φ  and 

50*
0 =H . The aggregation kinetics in the case of monodisperse MR 

fluids (see Figure 8.2a) is driven by the evolution of the connections at 

[ ]º10,º0∈θ  and [ ]º70,º50∈θ . Connections at other angles remain 

constant at a very low value (below 0.05) during the equilibration which 

suggests a crystal-like structure (to be discussed further below). First, 

[ ]º10,º0∈θ  connections form (vertical connections). This is a very fast 

process that is limited by the size of the box ( zL ); in only *t  = 20.0 all 

connections are formed. Once, vertical connections are formed, lateral 

connections start to appear with angles [ ]º70,º50∈θ  while the rest of 

angular connections remain constant. At this stage, the system is 

composed basically as linear chains with few lateral interconnections -

BCT packing- that increase with the magnetic field strength. Qualitatively 

similar results are obtained in the case of larger particle loadings, 

20.0=φ . However, here the number of horizontal connections 

overcomes the number of vertical connections as time passes because of 

the formation of thicker aggregates.  

A more complex scenario appears for the polydisperse MR fluids (see 

Figure 8.2b). As expected, the first connections to form correspond again 

to [ ]º10,º0∈θ , but now these connections decrease during the 
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equilibration due to the increase of the [ ]º30,º10∈θ  connections in stark 

contrast to what happened for monodisperse case. This means, that the 

first clusters to form are linear at the beginning but the particle 

rearrangements provokes the lost of linearity of the clusters as a 

consequence of the polydisperse nature of the samples. If compared to the 

monodisperse case, at short times the total number of vertical connections 

is significantly smaller for polydisperse systems. This is the result of the 

fact that the connectivity of the system is much larger. It is remarkable 

that the majority of the lateral interconnections of the clusters for the 

polydisperse case are due to [ ]º40,º30∈θ , instead of the connection 

[ ]º70,º50∈θ  which is the typical for the monodisperse system where a 

BCT structure has been predicted using theoretical arguments 

[Parthasarathy and Klingenberg (1996)]. Moreover, pure horizontal 

connections ( [ ]º90,º80∈θ ) are not negligible for the polydisperse case 

and could be even larger than the horizontal connections of the 

monodisperse system. 
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Figure 8.2 Time-dependent connection evolution for monodisperse (a) 
and polydisperse (b) MR fluids. 10.0=φ . 50*

0 =H . º10=θd . Each 
point corresponds to an average of 20 configurations time-separated by 
500 time steps.  

8.3.2. Quasi-equilibrated structures  

After the "equilibration" time, the final typical structures obtained are 

depicted in Figure 8.3 for two particle concentrations ( 10.0=φ  and 

20.0=φ ) both in the case of monodisperse and polydisperse systems. As 

observed, the clusters formed in monodisperse simulations at equilibrium 

are elongated highly ordered structures spanning in the direction of the 
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magnetic field while polydispersity in particle size frustrates order. In an 

attempt to quantify the crystalline character of the field-induced 

structures, we calculated the radial distribution functions in 3D space 

( )rg , in the xy  plane ( )rg XY , and along the z  axis ( )rgZ . 

Additionally we also calculated the pair correlation function in the XY 

plane of the clusters mass center, CMg . Briefly, very well defined peaks 

were observed for monodisperse MR fluids in the three different 

representations of the radial distribution function revealing a crystalline 

structure of the field-induced clusters. The MR fluid becomes more 

ordered at the highest fields explored as a consequence of the fact that the 

peaks in the radial distribution functions, ( )rg  and ( )rg XY , grow as the 

magnetic field increases. Only ( )rgZ  remains unaltered under the 

increase of the magnetic field strength as a result of an arrested structure 

in the field direction. A similar observation was recently reported in 

Segovia-Gutiérrez et al. (2013). When including polydispersity in the MR 

fluids crystal formation is prevented and the radial distribution functions 

resemble that of a liquid-like structure. The most concentrated, 

monodispersed, MR fluids investigated ( 20.0=φ ) also exhibited 

pronounced peaks in the radial distribution functions that are placed at the 

same positions as in less concentrated MR fluids. The main difference is 

that for MR fluids containing a particle concentration of 20.0=φ  there 

exists only one percolating cluster independently of the magnetic field 

strength. Again, including polydispersity results in a disordered structure 

manifested by the disappearance of the peaks in the radial distribution 

functions. 

To further quantify the field-induced structure in the MR fluid, in Figure 

8.4 we show the angular connectivities )(θC  for the MR fluids under 

study. As expected, monodisperse systems exhibit two peaks at angles 
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º0≈vθ  (vertical connections) and º60≈hθ  (lateral connections). In the 

case of monodisperse MR fluids at 10.0=φ , different structures appear 

depending on the strength of the magnetic field. The vertical angle vθ  

becomes closer to zero when the magnetic field strength increases. This is 

a result of better aligned structures under stronger fields. On the other 

hand, the lateral angle hθ  remains essentially constant at the same value 

º60≈hθ  independently of the magnetic field strength and is the result of 

a crystal-like packing of the particles within the aggregates. However, it 

grows with the field as a consequence of a more efficient particle packing 

in the structure under stronger fields. For monodisperse MR fluids at 

20.0=φ , the angular connectivity does not depend on the magnetic field 

strengths explored due to the large packing fraction. For the polydisperse 

case, the angular connectivity is one order of magnitude lower and 

remains flatter if compared to the monodisperse case. This is the result of 

a non-crystalline structure. 

 

Figure 8.3 Quasi-equilibrium configurations for 50*
0 =H  and two 

packing fractions 10.0=φ  and 20.0=φ  in monodisperse (left column) 
and polydisperse (right column) cases. The colors have been introduced to 
distinguish between different clusters. 



 

 

Chapter 8. 342 

 

Figure 8.4 Angular connectivity )(θC  for three different values of the 

reduced magnetic field *
0H . Left: monodisperse MR fluid. Right: 

polydisperse MR fluid. The connectivities are averaged over more than 
10000 configurations separated by 100 time steps. 

8.3.3. Stress growth simulations: yield stress 

Start-up simulations were carried out for shear rates in the range 

]10,10[ 3* −∈γ&  ( ]102.3,2.3[ 141 −− ×∈ ssγ&  in real units). It is worth to 

remark here that the minimum shear rate investigated in simulations is 

already large from an experimental point of view. However, as will be 

seen below, this shear rate value is well within the simulated low shear 

rate plateau region for the stress in conventional rheograms (stress versus 

shear rate representations). Figure 8.5a is a typical example where we 

show the results for the xz
 component of the microscopic stress evolution 

calculated through the Equation 8.16 under continuous shear. Therefore, 

the stress component represented in Figure 8.5a does not include the 

hydrodynamic contribution under shear. Below a certain strain level, the 
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stress versus time (or shear strain) response consists of an initially linear 

portion indicating quasielastic solid behavior, followed by a nonlinear 

region, a stress overshoot, a stress decay region and a high-strain plateau. 

There is no consensus in the rheology literature on the actual critical strain 

associated to the yielding point. In fact, some workers defend that yielding 

actually starts where the stress-time curve ceases to be linear [e.g. Mewis 

and Meire (1984)]. On the contrary, others defend that the peak in shear 

stress corresponds to the complete breakdown of the structure [e.g. 

Papenhuijzen (1972)]. In practice, the peak is easier to detect and 

therefore, as a first approximation, the magnitude of this critical stress 

value could be considered a good measure of the static yield value as soon 

as the shear rate is sufficiently low to discard the viscous contribution 

[Vinogradov and Malkin (1980)]. On the other hand, the plateau stress for 

large strains in the limit of small shear rates is identified as the dynamic 

yield stress. Because direct simulations at very small shear rates are 

computationally expensive, stress relaxation simulation experiments are 

generally preferred instead [Klingenberg et al. (1991)]. However, in this 

contribution, because the box size is not too large, direct simulations are 

not overly computationally expensive and this is the reason why direct 

simulations are run instead of stress relaxation tests.  

For convenience, the peak value is determined by fitting a Gaussian 

function in the exit of the linear region (see Figure 8.5b) and represents 

the so-called static yield stress when the shear rate is exceedingly small. 

The critical strain above which the structure becomes unsTable 8.for a 

given shear rate, although not exactly the same, is rather close to the strain 

corresponding to the overshoot (maximum) in the start-up test 

[Parthasarathy and Klingenberg (1995a)]. Simulations performed here 

demonstrated that the effect of polydispersity is negligible in the critical 

strain associated to the maximum in the stress; it remains essentially 
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constant within the range 0.1-0.5 for shear rates ]10,10[ 3* −∈γ& . 

Simulations on monodispersed suspensions by Parthasarathy and 

Klingenberg (1995b), and micromechanical model predictions by Martin 

and Anderson (1996) and de Gans et al. (1999) give a critical strain of 0.1 

and 0.34, respectively, in good agreement with our simulations results. 

Finally, the steady response is obtained by averaging the stress values in 

the high strain plateau for strain values between 2=γ  and 10=γ . Figure 

8.5c represents the distribution of the stress values in the steady region, 

i.e., the region where the stress values are statistical independent on the 

strain. From the steady response it is possible to calculate the so-called 

dynamic yield stress in the limit of small shear rates. The effect of particle 

size polydispersity in the steady response is discussed further below. 

 

Figure 8.5.- a) Microscopic stress tensor ( xz  component) as obtained 
from Equation 8.16 (i.e. without hydrodynamic interactions) versus the 
shear strain. Simulation parameters: 10.0=φ , 0.0=ν , 50*0 =H , 

1* =γ& . b) Calculation of the peak stress: Fitting from 20 to 100 points of 
the stress peak (depending on the strain rate) using a Gaussian of mean 

*
pγ  and value at the peak of *

pτ . c) Calculation of the steady stress: 
Distribution of the stress value in the steady region (strain higher than 2 in 
subplot a). The mean steady stress value *

sτ  has been calculated using 
more than 1000 stress values.  
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Next we aimed to explore the occurrence of structural changes in the MR 

fluid under the application of a constant shear rate. In particular, we 

focused on the change of the angular connectivities )(θC  upon 

increasing the strain value. Color maps on top of Figure 8.6 represent the 

connectivity evolution under the flow application. Horizontal axis 

represents the strain while the vertical axis corresponds to the bond angle 

with respect the magnetic field vector. The connectivities )(θC  are 

represented in a color scale where warmer colors are associated to a larger 

number of interparticle connections. Below the color map figures we also 

include the corresponding xz component of the stress tensor versus the 

strain curves in an attempt to correlate the stress evolution with particle-

level microstructural changes. The results for mono- and polydisperse 

cases included in Figure 8.6 correspond to 20.0=φ , 0.1* =γ&  and 

25*
0 =H . For the monodisperse case (see Figure 8.6a), the initial 

structure has predominant angles at º0=θ  and º60=θ . During the flow 

application, vertical ( º0=θ ) and horizontal ( º60=θ ) connections start 

to break. Some of vertical connections evolve to º20=θ , and the 

horizontal connections evolve to º20=θ  and º80=θ  connections. An 

explanation for this may come from the tilting of the columns and particle 

aggregates. At steady shear rate, a balance between hydrodynamic and 

magnetostatic torques must be reached and a maximum angle is predicted 

by micromechanical models [Martin and Anderson (1996)]. The predicted 

critical angle is º23.39=Cθ  for the linear chain model and º26.35=Cθ  

for rigid chains. These simplified models overestimate the critical angle 

obtained in simulations as expected because lateral interconnections 

between primary structures aligned with the field are not considered in 

micromechanical models. The stress peaks seem to be related with the 

total rupture of the º60=θ  connections. As expected, the polydisperse 
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MR fluids (see Figure 8.6b) have not as pronounced peaks as in the 

monodisperse cases. Here, the main connections remain at º20=θ  and 

º80=θ . The mean peak appears when the º80=θ  connections 

disappear and the relaxation after the peak can be explained as the 

reduction of the º20=θ  connections. 

 

Figure 8.6 Bond angle (top) and stress (bottom) evolution during a start-
up test simulations. 20.0=φ . 0.1* =γ& . 25*

0 =H . a) 0.0=ν  , b) 

20.0=ν . The stress tensor and the connectivities have been averaged 
over 20 configurations separated by 500 time steps. 

Then we studied the shear rate dependence of the total stress. The total 

stress is estimated here by simply adding the pairwise interaction 

contribution (Equation 8.16) to the hydrodynamic (Newtonian fluid) 

contribution (i.e. carrier viscosity times the apparent shear rate). First we 

checked that the total stress obtained for different magnetic fields 

overlapped in a single curve when normalized by the magnetic field 

strength squared. This was expected from the simplifications of the 

simulation model, in good agreement with the particle magnetization 

model. Then, in order to quantify the accuracy of the simulations 

performed and to improve the statistics of the simulations, in the 

following we will carry out simulations for three different magnetic field 

strengths and then dimensionless curves will be averaged. Figure 8.7 



 

 

Chapter 8.  347 

shows the peak (a) and high strain plateau (b) values for the total stress as 

a function of the shear rate. As observed in Figure 8.7 the shear stress 

decreases and levels off as the shear rate is decreased. The low shear 

plateau occurs when hydrodynamic forces become negligible and the 

field-induced structure slowly evolves due to the movement of the 

particles stuck at the moving plate. This low shear plateau value of the 

stress is identified as the static or dynamic yield stress when the peak or 

high strain plateaus are considered, respectively [Klingenberg et al. 

(1991)]. The yield stress results are included in Table 8.2. As expected, 

we observe a clear increase in the static and dynamic yield stresses with 

increasing the packing fraction. Importantly, no significant differences 

have been observed in the static and dynamic yield stress between 

monodisperse and polydisperse simulations in spite of their different 

structural characteristics. In other words, the yield stress is not affected by 

the polydispersity level that typically exists in experimental MR fluid 

formulations. At the other extreme, at high shear rates, it is the 

hydrodynamic contribution that dominates magnetostatic interactions and 

therefore a power-law behavior is observed with exponent 1. The effect of 

polydispersity is not relevant in this high shear rate region either and only 

the particle volume fraction plays a role. In summary, the fact that both 

monodisperse and polydisperse curves collapse at very low and very high 

shear rate (i.e. Mason numbers), suggests that the effect of polydispersity 

is negligible at these two extremes, well within the solid-like and fluid-

like regimes, respectively. These two regions are solely governed by the 

particle loading and are in good agreement with analytical theories and 

micromechanical models available in the literature that anticipate a plastic 

behavior. However, from the inspection of Figure 8.7, particle size 

polydispersity does clearly influence the yielding region; i.e. the transition 

region from magnetostatic (low shear rate) to hydrodynamic (high shear 

rate) control. Actually, a more abrupt transition is observed in the case of 
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polydisperse systems as a result of the fact that the bonds between 

polydisperse particles are more susceptible to break under shear than for 

the monodisperse case. 

Steady shear stress data versus shear rate curves reported in Figure 8.7b 

are traditionally plotted in the MR literature in terms of shear viscosity 

versus Mason number curves. And, in its turn, these viscosity curves can 

be contrasted with dimensionless plastic-like constitutive equations such 

as the Bingham equation [de Vicente et al. (2011) and references therein] 

( ) 1*1 −

∞ += MnMnηη        (8.25) 

or the Casson plastic equation [Berli and de Vicente (2012)]: 

( ) ( ) 21*1* 21 −−

∞ ++= MnMnMnMnηη       (8.26) 

Here *Mn  is the critical Mason number that determines the transition from 

magnetization to hydrodynamic control of the suspension structure. Linear 

regression fittings to the Bingham and Casson equations were carried out 

and best fitting parameters are included in Table 8.3. Both models give a 

good fitting to the simulation data. In general, polydisperse MR fluids are 

better fitted with the Bingham model and the critical Mason number as 

obtained from the regression fitting is always smaller than the 

monodisperse case as anticipated from Figure 8.7.  
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Figure 8.7. Total stress as a function of the shear rate: a) Constructed by 
using the peak values for the stress tensor. b) Constructed from the steady 
shear stress at long γ . Each curve has been averaged over the three 
magnetic field strengths used in this work. For better clarity, error bars are 
not shown because they are smaller than the symbol size.  

8.3.4. Dynamic oscillatory strain amplitude sweep tests 

Strain amplitude sweep simulations were also carried out, at two packing 

fractions ( 10.0=φ  and 20.0=φ ) and for the mono ( 0.0=ν ) and 

polydisperse ( 2.0=ν ) MR fluids. In these particular tests, the choice of 

the excitation frequency deserved careful attention because previous 

simulation works demonstrate a relaxation mechanism from the 

competition between magnetostatic and hydrodynamic forces acting on 

the particles, resulting in a transition in the dynamic structure and 

rheological response between small and large frequency limits. At small 

frequencies (large times), the deformation is completely determined by the 
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particles attached to the plates, hydrodynamic resistance to the particle 

motion is negligible and magnetostatic interactions dominate. As a result, 

motion is not affine. On the other hand, at large frequencies (short times), 

hydrodynamic forces dominate the motion of the dispersed particles and 

particles do not have sufficient time to move to lower energy positions. In 

this case the motion is affine. Bearing this in mind, in this work we 

worked at a constant excitation frequency. The selected reduced frequency 

of excitation was 2.0* =ω , which corresponds to a real frequency of 100 

Hz -that is easily accessible experimentally with torsional rheometry-. 

This frequency is approximately two orders of magnitude lower than the 

transition frequency reported in Klingenberg (1993) ( ** 057.0 ωω =K ) and 

therefore, strain amplitude sweep tests presumably only explore the low 

frequency regime. Knowing the shear strain and the resulting shear stress, 

one can easily calculate two materials functions: storage modulus ( 'G ) 

and loss modulus ( ''G ) which respectively characterize the solid-like and 

fluid-like contributions to the measured stress response. In the linear 

regime, the strain amplitude is sufficiently small that both viscoelastic 

moduli are independent of strain amplitude, the oscillatory stress response 

is sinusoidal, and the results can be discussed within the frame of linear 

viscoelasticity theory. In the non-linear regime, the stress response to a 

sinusoidal excitation contains higher harmonic contributions, the storage 

and loss moduli are functions of the strain amplitude (not material 

functions anymore), and the periodic stress waveform deviates from a 

sinusoidal wave. Figure 8.8 depicts the strain amplitude dependence of 

'G  and ''G  for these simulations.  

The simulated viscoelastic moduli curves shown in Figure 8.8 are in very 

good qualitative agreement with previously reported dynamic oscillatory 

shear experiments [Brooks et al. (1986); de Vicente et al. (2005); 



 

 

Chapter 8.  351 

McLeish et al. (1991)]. At very low strain values both 'G  and ''G  remain 

constant within the linear viscoelastic region and, as expected from the 

field-induced structures, 'G  overcomes ''G . For slightly larger strain 

amplitudes both moduli start to decrease but the field-induced columnar 

structures do not break. Only above the flow point (i.e. when 'G  = ''G ), 

there is a massive reorganization and the formation of layered structures 

aligned in the flow direction (see inset in Figure 8.8) in agreement with 

previous experimental results by Bossis and coworkers [Cutillas et al. 

(1998)]. 

 

Figure 8.8.- Strain amplitude sweep curves in dynamic oscillatory shear 
rheology at a constant frequency of 2.0* =ω . This dimensionless 
frequency corresponds to a real frequency of 100 Hz. 50*

0 =H . a) 
10.0=φ , b) 20.0=φ . The snapshots inside panel a) represent the steady 

structure observed for mono- and polydisperse simulations at 10.0=φ : 
left) 005.00 =γ  and  right) 0.100 =γ . For better clarity, error bars are 
not shown because they are smaller than the symbol size. 
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Generally speaking, the viscoelastic moduli within the linear viscoelastic 

regime clearly increase with increasing particle content and 

monodispersity in size. However, the larger the particle loading, the lesser 

the effect of particle polydispersity in the rheological response. These 

results are in agreement with experimental data by Ahn and Klingenberg 

(1994). In their paper, they demonstrated that polydispersity does not 

significantly alter the response observed for concentrated monodisperse 

suspensions under linear deformation regime. In agreement with previous 

results on steady shear, polydisperse MR fluids do more abruptly break, at 

slightly smaller strain values, if compared to monodisperse suspensions.  

The evolution of the connectivities under oscillatory shear is presented in 

Figure 8.9 at different strain values. For the monodisperse simulations, no 

variation in the connectivities is observed for 1.00 =γ . At this strain 

value the MR fluid behaves in the linear viscoelastic regime. However, 

when the strain gets closer to the flow point ( 5.00 =γ ), oscillations come 

up for [ ]º20,º0∈θ  and [ ]º70,º40∈θ . If the strain is further increased to 

0.10 =γ , almost all connectivities at º0=θ  disappear and now the 

connectivities oscillate in the range [ ]º80,º20∈θ . This corresponds to 

the formation of the layers in the direction of the flow. Finally, at 

0.100 =γ , the connectivities are sTable 8.and located at º20=θ  and 

º80=θ . These connectivity values closely correspond to those 

dominating the steady shear response in Figure 8.6a. 
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Figure 8.9 Connectivities evolution for the oscillatory strain simulations 
for 10.0=φ  for different strain values (see Figure 8.8). a) Monodisperse 
and b) Polydisperse. Each plot is obtained from the average of 10 
configuration separated by 1000 time steps. 

Next we discuss the evolution of the connectivity for the polydisperse MR 

fluids. For very low strain values, 1.00 =γ , we observed both the 

fragmentation and formation of interparticle bonds at º20=θ  and 

º60=θ . However, in contrast to the monodisperse case, for polydisperse 

MR fluids we do not observe a clear transition between well defined 

angles. This is because the polydisperse particles can rearrange at more 

different angles than the monodisperse particles. When the strain 

amplitude is increased, the connectivities between º30=θ  and º70=θ  
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progressively disappear and the layers come up. Finally, at 0.100 =γ  the 

remaining connectivities are º20=θ  and º80=θ  similarly to the 

monodisperse case. Results on the evolution of the connectivity for MR 

fluids at 20.0=φ  are qualitatively similar.  

8.4. CONCLUSIONS 

Starting from the well-known particle-level simulation methodology 

developed by Klingenberg in the 90's, a 3D particle-level dynamic 

simulation method is developed here to investigate the importance of 

particle size polydispersity on the kinetics of aggregation at rest and the 

rheological behavior under start-up and dynamic oscillation in 

magnetorheology. For the first time, two particle size distributions are 

compared both having the same mean diameter. One of them corresponds 

to a perfectly monodisperse MR fluid. The other corresponds to a skewed 

Shultz-like distribution with 2.0=ν  (Polidispersity Index 12.1=PDI ) 

as this is the typical polydispersity level encountered in commercial MR 

fluid formulations. In addition to the forces typically employed in these 

particle-level simulations (field-induced magnetic, hydrodynamic drag 

and short-range repulsive forces) the simulation approach used here also 

considers Brownian motion, which is particularly important for the 

smallest particles in the size distribution. Similar to previous papers in this 

research field, the simulation code employed here does ignore multipolar 

and multibody contributions, as well as hydrodynamic interactions 

between particles and between spheres and walls. As a consequence, the 

conclusions are valid at a qualitative level. 

The growing kinetics of the clusters is slightly faster for polydisperse 

systems. Not much difference is observed in the final mean cluster size at 

equilibrium when comparing mono- and polydisperse cases. The 
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aggregation kinetics in monodisperse systems is determined by 0º and 60º 

connections while 30º connections dominate in the case of polydisperse 

systems. Equilibrated structures were characterized in terms of radial 

distribution, pair correlation functions and angular connectivities. A 

perfect crystal is formed in the case of monodisperse MR fluids. 

Polydispersity is demonstrated to frustrate order.   

Direct simulations are employed to calculate the stress during start-up 

tests. Simulations demonstrate a stress overshoot that is attributed to 

structural breakdown; initially there is a stress build-up, then the stress 

reaches a peak value and finally reaches an asymptotic plateau. In the 

particular case of concentrated suspensions, the stress build-up comes 

from the crowding of particles and the collisions between them, the stress 

peak corresponds to the maximum stress required to cause rotation of the 

adventitious aggregates, and finally, for large enough strains aggregates 

break and particles tend to align along the direction of flow and to move 

in rafts. In the case of the MR fluids simulated in this work, as the strain 

level increases in the monodisperse case, vertical ( º0=θ ) and horizontal 

( º60=θ ) connections start to break. Some of vertical connections evolve 

to º20=θ , and the horizontal connections evolve to º20=θ  and 

º80=θ  connections. The stress peaks seems to be related with the total 

rupture of the º60=θ  connections. In the case of polydisperse systems, 

the main angular connections remain at º20=θ  and º80=θ  during the 

shearing process. The mean peak occurs when the º80=θ  connections 

completely disappear and the relaxation after the stress overshoot is 

explained as the reduction of the º20=θ  connections. The critical strain 

associated to the peak stress occurs at approximately 0.1-0.5, in good 

agreement with micromechanical models and particle-level simulations on 

monodisperse MR fluids, and is not affected by the polydispersity level.  
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From (shear) stress growth curves, static and dynamic yield stresses are 

determined and rheograms are constructed. Static yield stresses are 

inferred from the low shear rate limit of the stress peak at low strain 

values while steady shear flow behavior of the MR fluids is obtained by 

taking long time (i.e. long strain) stress values. Importantly, introducing 

polydispersity does not affect the yield value and classical theories and 

models for monodisperse systems still apply. On the contrary, the effect of 

polydispersity is remarkable in the yielding region (i.e. in the frontier 

between the solid-like and fluid-like regimes). In fact, a clearly more 

abrupt transition (a lower critical Mason number *Mn ) is observed in the 

case of polydisperse systems. This result is a consequence of the very 

different structural properties of the field-induced aggregates at the 

beginning of the shearing process. In polydisperse MR fluids the number 

of connections is larger than in the monodisperse case, but as an average 

interparticle links are much weaker because of the topological limitations.  

Dynamic oscillatory shear tests were also carried out. In agreement with 

start-up tests, for the less concentrated MR fluids ( 10.0=φ ), a slightly 

more drastic drop in the viscoelastic moduli is obtained for polydisperse 

MR fluids if compared to monodisperse counterparts. Both mono- and 

polydisperse MR fluids initially exhibit a linear viscoelastic regime 

associated to nearly constant neighbors and connectivities. When strain 

amplitude increases, a layered structure appears for both mono- and 

polydisperse MR fluids. Future work should involve a more detailed study 

on other excitation frequencies to explore if particle size polydispersity 

actually broadens the frequency dispersion. 

Overall, this work suggests that using monodisperse particles in the 

formulation of conventional MR fluids would not have any major effect in 

the yield stress nor the high shear behavior. Using monodisperse MR 
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fluids would solely affect the yielding region by delaying the rupture of 

the field-induced structure to higher shear rates and hence increasing the 

critical Mason number *Mn . 
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This article is under review 

Abstract 

An extensive experimental and simulation study is carried out in 

conventional magnetorheological fluids formulated by dispersion of 

mixtures of carbonyl iron particles having different sizes in 

Newtonian carriers. Apparent yield stress data are reported for a 

wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI 

= 3.31, which for a log-normal distribution corresponds to the 

standard deviation ranging from 38.0=ν  to 76.0=ν . These 

results demonstrate that the effect of polydispersity is negligible in 

this range in spite of exhibiting very different microstructures. 

Experimental data in the magnetic saturation regime are in 
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quantitative good agreement with particle-level simulations under 

the assumption of dipolar magnetostatic forces. The insensitivity of 

the yield stresses to the polydispersity can be understood from the 

interplay between the particle cluster size distribution and the 

packing density of particles inside the clusters. 

9.1. INTRODUCTION 

Conventional magnetorheological (MR) fluids are dispersions of carbonyl 

iron microparticles in non-magnetic carriers. In the absence of magnetic 

fields, the dispersions exhibit a liquid-like behavior. However, upon the 

application of a large enough magnetic field (≥ 10 kA/m), the particles are 

magnetized and interact with each other to form elongated structures in 

the direction of the magnetic field. This results in a field-controllable 

increase in the viscosity and the eventual appearance of an apparent yield 

stress at appropriate particle loadings and field strengths (so-called MR 

effect).1-5  

Enhancing the yield stress under external fields is a priority for 

commercial applications. In this sense, it is well known that increasing the 

particle concentration results in an increase of the yield stress under the 

field (on-state) (e.g. Segovia-Gutierrez et al.6), but it also gives place to a 

large off-state (no field) viscosity7 and eventually leads to a reduction in 

the MR effect8. One way to increase the particle volume fraction without 

increasing the off-state shear viscosity is by using polydisperse MR fluids 

(i.e., dispersions of magnetizable particles with different sizes). In fact, 

polydisperse MR fluids inherently exhibit a lower off-state viscosity than 

monodisperse MR fluids due to the different particle packing 

characteristics; larger packing fractions are achieved with polydisperse 

systems. This means that using polydisperse MR fluids, the particle 
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volume fraction can be increased, without increasing the off-state 

viscosity, hence developing a larger MR effect.  

The effect of particle size in the case of monodisperse systems has been 

largely reported in the literature for MR fluids, ER fluids and inverse 

ferrofluids;9-12 in general, larger particles exhibit a larger yield stress 

under the presence of magnetic fields (e.g. Lemaire et al.9, Foister8, 

Trendler and Bose12). On the contrary, the understanding of polydisperse 

MR fluids is still not complete. As a first approximation towards the full 

understanding of the effect of particle size polydispersity, in recent years, 

a number of studies have focused on bimodal distributions (i.e. mixtures 

of particles having only two different sizes).13-18 Experiments and 

simulations demonstrate that it is possible to substantially increase the 

yield stress of an initially monodisperse MR fluid with the addition of a 

small amount of smaller particles (at the same total particle 

concentration), while simultaneously reducing the viscosity of the 

suspension.8,14 In most cases, particle packing arguments are employed to 

explain such an increase (e.g. Weiss et al.15 for MR fluids; e.g. See et al.19 

for ER fluids). However, more recently, Kittipoomwong et al.20 proposed 

an alternative mechanism for the enhanced yield stress in bidisperse 

suspensions by using particle level simulations. Interestingly, 

microstructure analysis revealed that the enhanced stress transfer in 

bidisperse suspensions was not associated with an increase in particle 

packing. Instead, the enhanced yield stress was associated with the 

presence of more highly anisotropic clusters of large particles than 

observed in monodisperse suspensions. 

A complete understanding of the effect of particle size distribution in the 

MR effect of sphere-based suspensions is still missing in the literature. 

Actually, there are very few papers involving a continuous size 
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distribution. To the best of our knowledge, there are only three papers 

addressing this issue from the simulation side. Wang et al.21 reported a 

two-dimensional (2D) simulation study of ER fluids under the assumption 

of Gaussian distribution of particle sizes and negligible thermal and 

inertial terms. They introduced a local-field approximation to take into 

account the mutual polarization effects between the particles. Shear 

stresses were simulated for a constant shear rate value at different 

standard deviations of the Gaussian distribution (from s = 0 to 3). It was 

found that the stresses first dropped quickly with increasing polydispersity 

and then gradually saturate as s > 0.5 (corresponding to PDI > 1.07, 

considering that the particle sizes were limited in a range of within 50% 

from the mean size). The decrease in the shear stress was interpreted as a 

result of the formation of imperfect chain-like structures by particles of 

different sizes that are easier to break under shear than those formed by 

particles of uniform size. Recently, Sherman and Wereley22 carried out a 

comprehensive 3D simulation study under the assumption of log-normal 

distribution, again neglecting thermal and inertial terms. Their results 

demonstrate that as the particle distribution size parameter increases, 

particles tend to form more irregular structures and a 25 % reduction in 

the shear stress at low Mason numbers is observed. More recently, 

Fernández-Toledano et al.23 carried out 3D Brownian dynamic 

simulations of MR fluids with PDI = 1.12 (i.e., the standard deviation of 

log-normal distribution 2.0=ν ). The results obtained were compared 

with purely monodisperse systems. The effect of polydispersity was very 

small and basically only noticeable in the yielding region: a slightly more 

abrupt decrease in viscosity was found in viscosity curves for polydisperse 

suspensions. 

Also, very few papers have been published on the effect of a continuous 

size distribution in the MR performance from the experimental point of 
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view. The reason for this is that generally polydispersity is achieved by 

mixing only two populations having different particle sizes at different 

proportions (e.g. See et al.19 for ER fluids; e.g. Bombard et al.16 for MR 

fluids) and in most cases the particle size ratio is either large or extremely 

large.18,24 To the best of our knowledge, there is only one paper in the 

scientific literature that addresses a continuous distribution by mixing 

more than two systems.25 In their paper, Chiriac and Stonian25 carried out 

an experimental investigation to elucidate the effect of particle size 

distribution on MR effect. Distributions were obtained first by sieving 

commercial micrometric iron particles (Sigma-Aldrich) to obtain narrow 

distribution powders and then mixing the finer powders in order to obtain 

three batches with tailored size distributions. MR fluids investigated were 

formulated at a 10 vol% by mixing the powders in mineral oil. 

Unfortunately, although some changes were detected when measuring the 

MR response, the mean particle size changed among the batches prepared 

and this complicated the interpretation of their results. 

In this work we carry out an extensive experimental study on the effect of 

particle size polydispersity in conventional MR fluids prepared by 

dispersion of mixtures of three varieties of carbonyl iron microparticles 

that only differ in size and having all other physical properties essentially 

the same (chemical composition and magnetic properties). Particle 

concentrations and size distributions explored are within the range of 

those of interest in commercial applications (clearly larger than that 

reported by Fernández-Toledano et al.23). Special care is taken for the 

mean particle size of the distributions to remain constant (variations less 

than 5 %). Also, experimental results are compared to particle-level 

simulation data. 
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9.2. EXPERIMENTAL 

Three types of carbonyl iron particles were obtained from BASF SE and 

used without further purification (grades HQ, HS and OM). These three 

powders were conveniently mixed to further produce mixed particle 

systems with different particle size distribution and polydispersity but 

similar mean size and magnetic properties. MR fluids were prepared by 

dispersion of the carbonyl iron powders in a silicone (PDMS) oil of 

viscosity 20 mPa·s (Sigma-Aldrich). The particle concentration was fixed 

at 10 vol%. Table 9.1 summarizes relevant information on the 

polydispersity and magnetic properties of the iron grades and mixtures 

used in this manuscript. Magnetic properties of carbonyl iron powders 

were modelled using the Fröhlich-Kenelly law.26 Figure 9.1 contains the 

particle size distributions for the different MR suspensions investigated. 

 MR fluid Fraction in mixed 

suspensions (wt%) 
mσ (μm) PDI ν  sM  (kA/m) 

HQ HS OM 

S 100 0 0 1.26 1.64 0.42 1691 

M 0 100 0 2.20 1.63 0.38 1703 

L 0 0 100 4.30 1.85 0.52 1550 

P1 13 80 7 2.22 2.48 0.52 1691 

P2 20 70 10 2.22 2.71 0.58 1685 

P3 25 60 15 2.28 2.88 0.64 1677 

P4 33 50 17 2.25 3.02 0.68 1673 

P5 40 40 20 2.24 3.13 0.72 1668 

P6 50 30 20 2.15 3.31 0.76 1666 

Table 9.1 Physical characteristics of the MR fluids used in this work. mσ  
stands for the mean particle diameter, PDI is the polydispersity index and 
ν the standard deviation of log-normal distribution. sM  is the saturation 
magnetization of the suspensions using a mixing rule.  
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Figure 9.1 Particle size distributions for the polydisperse MR fluids 
investigated in experiments. 

A MCR302 magnetorheometer (Anton Paar, MRD70/1T) was used in 

plate-plate configuration (20 mm diameter and 300 microns gap 

thickness). The magnetic field applied was always perpendicular to the 

plates and the temperature was maintained at 25 ºC during the test. 

Experiments were carried out in saturation ( mkAH /8850 = ) for better 

comparison with the simulation results where the dipolar approximation is 

assumed. 

The rheological protocol was as follows. First the sample was 

preconditioned at a high constant shear rate (100 s-1) for a duration of 30 s 

to remove history effects. Next, the suspension was left to equilibrate at 

rest for 60 s under the presence of a magnetic field. Finally, the 

rheological test started. It consisted of a logarithmic stress ramp from 

1000 Pa to 10000 Pa. The logarithmic increase of the stress was done at a 

rate of 50 points/decade and the acquisition time was 5s. The static yield 

stress was obtained from the stress corresponding to a sudden change in 
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shear rate in log-log stress versus shear rate representations. For the 

dynamic yield stress, a regression fit was carried out in lin-lin 

representation for the data points measured at the largest shear rates. All 

experimental data reported in this work were averages of at least three 

independent measurements with fresh new samples. As an example, the 

calculation of the static and dynamic yield stress is shown in the 

Supporting material (Figure S9.1). 

9.3. SIMULATION TECHNIQUES 

Molecular dynamic simulations were carried out in order to understand 

the microscopic mechanisms behind the performance of polydisperse MR 

fluids under shearing flow. The simulation method was an extension of 

the methodology developed by Klingenberg and coworkers1,13,20 for 

polydisperse particles taking the expressions for the forces from a 

previous work by Fernandez-Toledano et al.23 The method concerns non-

Brownian inertialess simulations. In general, this restriction can be easily 

accepted in the case of conventional MR fluids, since the so-called 

Lambda ratio (i.e. the ratio between the magnetostatic energy and the 

thermal energy) is generally large enough to safely neglect the thermal 

motion. MR fluids were thus modeled as 1000=N  neutral buoyant 

particles in a continuous Newtonian medium. Hydrodynamic interactions 

were also neglected and the Stokes’ law approximated the drag force. This 

approximation is generally adopted because of computational reasons. 

Also, a recent study by Lagger et al.27 demonstrated that hydrodynamic 

interactions can be safely neglected if the hydrodynamic stress is not the 

main contribution to the total stress. Considering these approximations, 

the equation of motion of a particle i , can be expressed as follows: 
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⎞
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where ici σπηζ 3=  is the friction coefficient of the particle with cη  the 

Newtonian medium viscosity and iσ  the diameter of the particle, 

respectively. ir
r  is the position vector of the particle. xii ezu )

&
r γ=∞  is the 

ambient fluid velocity at the particle center with γ&  the magnitude of the 

shear rate tensor, iz  the z-coordinate of the particle and xe)  the unit 

vector in the x-direction in Cartesian coordinates. Finally, iF
r

 is the total 

force acting on the particle. 

In Equation 9.1, the term iF
r

 includes the pair-wise magnetostatic forces 

exerted by all other particles on particle i , ∑
≠

=
ij

mag
ij

mag
i FF

rr
. 

Magnetostatic interaction force between two particles was modeled in the 

dipolar approximation as follows: 

]ˆ2sinˆ)1cos3[( 2
42

33

0 θθθ
σ

σσ
ee

r
FF ijrij

ijm

jimag
ij +−=
r

 (9.2) 

Here, 16/3 22
0

2
00 mcr HF σβμπμ=  stands for the typical magnetic 

interaction force between two particles with sizes of the average diameter 

mσ . 0μ  is the magnetic permeability of the vacuum, crμ is the relative 

permeability of the continuous medium, )2/()( crprcrpr μμμμβ +−=  is the 

so-called contrast factor (or coupling parameter), prμ  is the magnetic 

permeability of the particles, 0H  is the external magnetic field strength, 

ijr  is the center-to-center distance between two particles i  and j , ijθ  is 

the angle between the line joining the centers of the two particles and the 
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magnetic field direction, and rê  and θê  are the unit vectors in the 

directions r  and θ  using a spherical coordinate system. 

Exponential short-range repulsive forces were included to avoid 

overlapping between particles, rep
ijF
r

, and between each particle and the 

two confining walls, topwall
iF ,
r

 and bottomwall
iF ,
r

. Exponential forces are 

applied instead of stiff power law forces, since it was shown that 

exponential forces help the formation of thicker aggregates as already 

observed in experiments.28,29 Expressions for the exponential forces used 

in this manuscript for continuous particle size distributions can be found 

in the work of Fernández-Toledano et al.23. 

The equation of motion was made dimensionless using the following 

units: msl σ= , 0FFs =  and 0
2 /3 Ft mcs σπη= . In simulations of 

continuously polydisperse systems we used a Log-normal distribution. 

The Log-normal distribution is a continuous probability distribution where 

the logarithm of the random variable is normally distributed. The Log-

normal random variable was obtained, thus, by first calculating a normal 

variable of mean mσln  and standard deviation ν  and then calculating the 

Log-normal random variable by taking the exponential of the normally 

distributed variable. Simulations also involved tri-disperse particle size 

distributions (i.e., mixtures of particles with three different sizes) to better 

understand the relationship between the field-induced microstructures and 

the rheological performance of the polydisperse MR fluids. Tri-disperse 

particle sizes, bas σσσ << , for each given polydispersity index were 

obtained by taking three different average diameters from the Log-normal 

distribution with fixed probabilities of 16.0)()( == bs PP σσ  and 

68.0)( =aP σ . Table 9.2 summarizes tri-disperse diameters as a function of 
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the standard deviation, ν , and so correspondingly the polydispersity 

index. From now on, we will also refer ν  as the polydispersity index.  

 

ν σs
* σa

* σb
* 

0.38 0.567 1.021 1.713 

0.52 0.464 1.040 2.277 

0.58 0.425 1.050 2.515 

0.64 0.391 1.061 2.780 

0.72 0.350 1.077 3.183 

0.76 0.330 1.086 3.409 

Table 9.2.- Dimensionless particle diameters, *** ,, bas σσσ , as a function 
of the polydispersity index ν  for tri-disperse molecular dynamic 
simulations. Probabilities for finding particles of different sizes were fixed 
at 16.0)()( == bs PP σσ  and 68.0)( =aP σ . 

Once the total force acting on a particle was calculated, its equation of 

motion was solved using the Euler algorithm. Time variation was 

calculated at every step such that the maximum displacement of any 

particle, i , in one direction was no larger than iσ05.0  in order to avoid 

particles to be ejected from the box due to the fact that big-small particle 

interactions can provoke the smallest particle to move outside the box. 

This condition typically reduced the time variation and the total 

simulation time increases specially for the highest polydispersity indexes. 

Stress growth tests (start-up tests) were carried out at a small-normalized 

shear rate, 3* 10−=γ& . This velocity was found to provide a stress value 

close to the yield stress.23 Simulations were composed of three stages: (i) 

Particles were randomly distributed in the simulation box, (ii) Particles 

were allowed to move under the presence of the magnetic field in 

quiescent state until reaching a stationary state. The stationary state was 
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found to be established for all polydispersity indexes at a dimensionless 

time 3000* =statt  ; (iii) Start-up test was properly initiated and steady 

shear flow was fully achieved when reaching a total strain of 3=γ . The 

stress tensor was calculated at each time step as follows: 

∑
≠

−=
ji

ijij Fr
V

βα
αβτ 1

   (9.3) 

where αβτ  is the α-β-component of the stress tensor, V  is the volume of 

the simulation box, α
ijr  is the α-component of the distance between 

particles i  and j  and β
ijF  is the β-component of the total pair-wise 

interaction between the two particles. Three regions were clearly 

identified in the stress versus time (or strain) curves: elastic, peak and 

steady regions.23 The elastic region corresponds to the low-strain regime 

where the stress is found to be proportional to the shear strain. Then, a 

maximum in the stress (peak) is observed. Finally, for large enough strain 

values the stress levels off to a nearly constant value as a function of time 

in a steady region. As the shear rates imposed were very low, the static 

yield stress can be assimilated as the stress peak. Also, the dynamic yield 

stress was calculated as the shear stress averaged over 4000 configurations 

saved from strain 2=γ  to 3=γ . Simulation results were the average 

values of at least 3 different tests for each case. In order to obtain a better 

estimation of the static yield stress, more simulation runs (at least 10) 

were carried out up to a reduced total strain of 1=γ . 

To better understand the rheological performance of polydisperse MR 

fluids, we ran a microstructural analysis through the calculation of the 

particle pair distribution function. In the canonical ensemble, the 
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probability of finding a pair of particles at positions 1r
v  and 2r

v  respectively 

is given by the pair distribution function: 

 

]/),...,,(exp[...)1(),( 21432212 TkrrrUrdrdrd
Z
NNrrg BNN

NVT

vvvvvvvv −
−

= ∫ρ
   (9.4) 

where ρ  is the number density of the particles, NVTZ  is the partition 

function, ),...,,( 21 NrrrU vvv  is the total interaction potential, Bk  is the 

Boltzmann constant and T  is the temperature of the system.  

Due to the spherical and azimuthal symmetries in the pair dipolar 

magnetic interaction, Equation 9.4 could be reduced to a function of the 

radial distance between two particles, r  , and the angle between the 

direction vector linking the centers of these two particles and the direction 

of the magnetic field, θ . Then the pair distribution function is converted 

to ),(),(2 θθ rgrg ≡ . In simulations, this function could be obtained simply 

by the following expression:30 

∑∑
≠

−−=
i ij

ijijrr
N
Vrg )()(),( 2 θθδδθ   (9.5) 

where the bracket refers to a volume average. Also, a radial distribution 

function could be easily obtained from the radial and angular distribution 

function by the integration of this function as a function of θ : 

∫=
2/

0
),()sin()(

π
θθθ rgdrg . 
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9.4. RESULTS AND DISCUSSION 

9.4.1. Experimental yield stresses 

In Figure 9.2 we show the rheograms (steady-state shear stress versus 

shear rate curves) corresponding to MR fluids having different 

polydispersity levels (from 38.0=ν  to 76.0=ν ) at particle volume 

fraction 10.0=φ . For low stress levels the shear rate remains below 10-3 

s-1 suggesting that the sample is not flowing. However, for stresses above 

6000-7000 Pa the shear rate dramatically increases in accordance to the 

initiation of flow. As observed, the curves essentially overlap suggesting 

that the effect of polydispersity is not important within the standard 

deviation of the data. 

These results are in qualitative agreement with the simulation work of 

Fernández-Toledano et al.23. In that work, a simulation study was carried 

out for both mono- and polydisperse (with 2.0=ν ) MR fluids. These 

two MR fluids exhibited very similar behavior, the only difference being 

in the transition region between the solid and liquid-like regimes. 

Actually, for polydisperse MR fluids a slightly sharper transition was 

found if compared to the monodisperse case.  
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Figure 9.2 Experimental rheograms (shear stress versus shear rate) for 
different polydispersity levels in 10.0=φ  MR fluids. 

Figure 9.3 contains experimental (static and dynamic) yield stresses for a 

particle concentration of 10.0=φ . As observed, the yield stresses do not 

depend much on the polydispersity index. They remain basically constant 

over the range of ν values we studied, with the dynamic yield stress being 

higher than the static one (see Figure S9.1 for the measurement of the two 

stresses). Only a very slight local maximum in the yield stress was 

measured for a polydispersity index of 7.0≈ν . Experiments were also 

carried out for other particle concentrations including 01.0=φ , 

05.0=φ  and 20.0=φ , all giving very similar results. These 

experiments are not shown for brevity. To get a better insight into the 

effect of polydispersity we pursued particle-level simulations. 
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Figure 9.3 Experimental static and dynamic apparent yield stresses as a 
function of polydispersity index ν  for 10.0=φ  MR fluids. 

9.4.2. Simulated yield stresses for MR systems with continuous 

particle size distributions 
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Figure 9.4 Typical example of the simulated shear stress-strain curves for 
10.0=φ  and 64.0=ν . Every curve corresponds to an independent 

simulation run. a) Tests up to strain 1=γ . b) Tests up to 3=γ . 

Dimensionless shear rate is 3* 10−=γ&  .  

The static and dynamic yield stresses of the MR systems with continuous 

particle size distributions were determined using particle-level 

simulations. The start-up tests were performed at a low shear rate (
3* 10−=γ& ) similar to that used by Fernández-Toledano et al.23. As an 

example, typical stress-strain curves for 10.0=φ  and 64.0=ν  are 

presented in Figure 9.4 for a total of 13 independent runs for strains up to 

1=γ  (4 runs for strains up to 3=γ ) to appreciate the repeatability of the 

simulations. In general, three regions can be identified: a first elastic 

region where the stress grows linearly with strain, a maximum (peak) in 

the stress, and finally a monotonous decay of the stress towards a final 

steady region marked by the long-time plateau. On the one hand, the 

maximum of the stress in each stress-strain curve is taken here as an 

estimate for the static yield stress in the suspension. On the other hand, the 

long-time stress plateau is taken as the dynamic yield stress of the 

suspension. In this sense, the dynamic yield stress was obtained as the 
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average of the stress values from 2=γ  to 3=γ . It is worthwhile to note 

that the high number of repetitions was necessary to obtain a good 

estimation for the static yield stress (more than 10 independent runs). In 

the case of the dynamic yield stress, as it was already taken as a time 

average in each individual test, less (but at least 3) repetitions were 

needed to get a reasonably good estimation. 

Simulated yield stresses are reported in Figure 9.5 for the particle 

concentration 10.0=φ . In good agreement with the experimental 

observations (c.f. Figure 9.3), both the static and dynamic yield stresses 

exhibit very minor changes with the variation of the degree of 

polydispersity. Despite many simplifications made in the simulation 

model, the simulation data fall well into the same quantitative range as the 

yield stresses measured in experiments. It is useful to remark that the 

definitions of the static and dynamic yield stresses differ between the 

experimental and simulation cases, as described in the previous sections. 

This difference, however, has no qualitative effect on the observed 

behavior of the yield stresses with respect to the level of polydispersity. 

The mechanical properties of the MR fluids are inherently correlated to 

the microstructures formed by the particles. For convenience of structural 

analysis, we have also decided to carry out simulations on tri-disperse MR 

systems. 
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Figure 9.5 Experimental and simulation static and dynamic yield stresses 
as obtained from the maximum and long-time plateau in stress-strain 
curves reported in Figure 4 for different polydispersity indexes in the 

10.0=φ  MR fluids. Squares correspond to continuous particle size 
distributions. Circles correspond to tri-disperse distributions. Triangles 
correspond to experimental data. 

9.4.3. Simulated yield stresses for MR systems with tri-disperse 

particle size distributions 

Simulation results on the static and dynamic yield stresses of the tri-

disperse MR fluids are also contained in Figure 9.5. It can be seen that 

these stress values are very similar to those obtained from the MR systems 

with continuous size distributions, suggesting that the tri-disperse 

suspensions can closely capture the behavior of the experimental systems 

with continuous particle size distributions. Simulations of penta-disperse 

model systems have also performed. As expected, they provided 

consistent results (not shown for simplicity) with the case of tri-disperse 

suspensions, suggesting again that the tri-disperse model suspension is 

sufficient to represent the continuous size distribution. We can then 

analyze the structural properties of these model systems for getting 
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insights into the physical reasons of the negligible dependence of the yield 

stresses on the polydispersity.  

9.4.4. Characterizing structural formation in simulated MR systems 

with continuous size distributions 

To explore the structural characteristics of the particle aggregates formed 

in the MR systems, we calculated the average number of clusters cN , the 

average number of particles in each cluster cc
i

ipc NNNnN == ∑  

and the weight-averaged number of particles in each cluster 

NnnnS
i

i
i

i
i

i ∑∑∑ == 22
2

 
for the cases both prior to and under 

shear. Here, in  is the number of particles in the cluster i . The simulation 

results on pcN  are shown in Figure 9.6, while those for cN and 2S are 

given in Figures S9.2 and S9.3 in the Supporting Information. Note that 

there is a simple inverse relationship between cN  and pcN because of the 

use of constant number of particles in the simulation box. 
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Figure 9.6 Simulation results on the average number of particles per 
cluster, pcN , for MR fluids with continuous particle size distributions at 

fixed particle concentration 10.0=φ  . a) Prior to shear; b) Under shearing. 

Simulation results in the absence of shear demonstrate a monotonic 

increase of cN , and a concomitant decrease of pcN  and 2S  with the 

increased polydispersity. For the highest polydispersities, the stationary 

state is difficult to achieve but the number of clusters only varies in less 

than 1 for reduced times higher than 2700. Considering the insensitivity of 

the yield stresses to the polydispersity, these simulation results reveal the 

importance of the internal microstructure of the aggregates for 

understanding the experimentally observed trends in the yield stress. They 

indicate that the yield stress depends not only on the number and sizes of 

the aggregates, but also on their mechanical strength to deformation. This 

is further supported by the simulation data upon shear, which show 

qualitatively similar structural changes with respect to polydispersity. 
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9.4.5. Particle radial distribution function for MR systems with 

continuous particle size distributions 

The particle radial distribution functions can provide more detailed 

information about the particle packing inside the clusters. The ݃ሺݎሻ curves 

obtained from the MR systems with continuous particle size distributions 

are shown in Figure 9.7. These functions are calculated at three different 

stages of the deformation process: at 1.0=γ  within the elastic region, at 

the stress peak, and in the steady regime from 2=γ  to 3=γ . As can be 

seen, all pair distribution functions exhibit a maximum (first peak) close 

to the average particle diameter. The width of the peak increases with 

increasing polydispersity, which is expected as a result of the connections 

between particles of a broader range of sizes. Interestingly, the height of 

this peak is also found to grow with the increased polydispersity. This 

means that on average each particle in the suspension with higher 

polydispersity finds more nearest neighbors than the particles in the less 

polydisperse suspensions. In other words, the particle packing density is 

higher in the former case. This phenomenon can be easily understood 

from the fact that small particles can get into the voids left by large 

particles in the clusters. The more heterogeneous packing of particles in 

the highly polydisperse systems leave only one peak in their ݃ሺݎሻ curves. 

On the contrary, the particle pair distribution functions of the less 

polydisperse systems possess a long-distance peak at reduced distance of 

כݎ ൎ 5 or 6. The long-distance peak is related to the mean distance 

between clusters since ),( θrg  is higher for angles from [60º,90º] that in 

angles from [0º,30º]. 
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Figure 9.7 Particle radial distribution function in MR fluids with 
continuous particle size distributions and 10.0=φ  at three different stages 
of the deformation: a) elastic region (at 1.0=γ ), b) stress peak, c) steady 
region. The results in the steady region were calculated by averaging over 
4000 configurations saved from 2=γ  to 3=γ .  

Comparing the simulation results in Figures 9.6 and 9.7, it can be seen 

that although the aggregates or clusters formed in the more polydisperse 

systems are of smaller sizes, the packing density of particles in these 

clusters are higher. Since the higher packing density may allow the 

clusters to sustain stronger mechanical load or deformation, this 

contribution could effectively cancel out the stress reduction effect caused 

by the decrease in cluster sizes. It is the interplay between the two 

opposite effects that leads to the nearly invariant yield stress upon changes 

of polydispersity. 

The particle packing effect on the yield stress can be further examined by 

analyzing the angle-dependent pair distribution function ),( θrg  (Equation 

9.5). Figure 9.8 presents the polydispersity dependence of the maximum 
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(peak) value of the pair distribution function averaged within different 

angle limits, ∫∫=∈
2

1

2

1
21

)sin(),()sin()( ],[

θ

θ

θ

θθθθ θθθθθ drgdrg . Two 

angle intervals are included. We show the simulation data for the (dipolar) 

energetic-favorable angles, ]º30,0[∈θ  and for the energetic-unfavorable 

angles, ]º90,º60[∈θ . Although in both cases the peak values show a 

monotonic increase with increasing polydispersity, the corresponding 

increases in the packing densities at different angles contribute to the total 

interaction energy and consequently the yield stress of the system in very 

different ways. The increase in the peak value of the pair distribution 

function at the energetic-favorable angles ( ]º30,0[∈θ ) suggests the 

formation of well-arranged and so stronger structures along the magnetic 

field direction. But the increase of the pair distribution function at the 

energetic-unfavorable angles ( ]º90,º60[∈θ ) implies that the structures 

also contain more bonds that are easier to break. As will be seen below, it 

is not only the average local density of particles what contributes to the 

yield stress, but also the direction-dependent microscopic arrangements of 

the particles inside the clusters. It is also important to remark that the 

maximum value of the pair distribution function for the smallest angles 

decreases in the steady region compared with the elastic region, 

suggesting the break-up of the column- or chain-like structures along the 

field direction. 
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Figure 9.8 Polydispersity dependence of the maximum value of the pair 
distribution function, ),( θrg , averaged within different angle limits for 
the 10.0=φ  MR fluids. 

These results in Figure 9.8 are in agreement with the results from 

Fernandez-Toledano et al.23 (see Figure 9.4 in that work) where the 

particle connectivities in the polydisperse system demonstrated a 

continuous distribution as a function of the connecting angle, instead of 

individual peaks marking the more favorable connections in the 

monodisperse system, for ]º60,0[∈θ . The dependence of particle 

connections on their sizes can be identified more easily for the tri-disperse 

systems, as shown below.  

9.4.6. Radial distribution function for tri-disperse MR systems 

In Figure 9.9 we show the radial distribution function curves for the tri-

disperse MR suspensions. We observe that there are very reproducible 

peaks associated with the discrete particle sizes, namely the distances 

between particles of different sizes (small, average and big). In the case of 

the lowest polydispersity, another long-distance peak (at כݎ ൎ 5 െ 6) is 
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found, which does not occur in the highly polydisperse systems. This peak 

cannot be associated to the three different sizes of the particles, but can be 

well understood from microstructural snapshots shown in Figure 9.10 for 

two different polydispersities, ߥ ൌ 0.52 and ߥ ൌ 0.72. These snapshots 

demonstrate that bunches of average-size particles serve as bridges 

connecting big particles to from chain-like structures. As in the 

continuous case, for larger polydispersities, the pair distribution function 

and the interparticle connections suggest a stronger cluster formation, 

which implies a higher yield stress. However, these microstructural 

differences are not enough to provide a significantly higher yield stress, 

and so only a slight enhancement can be observed in experiments and 

simulations. 
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Figure 9.9 Radial distribution function for tri-disperse particle size 
distributions. 10.0=φ . a) elastic region, b) stress peak, c) steady region. 
The steady region was calculated by averaging over 4000 configurations 
from 2=γ  to 3=γ . 
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a) 

 

b) 

 

Figure 9.10 Snapshots of the microstructure prior to shear for 10.0=φ : a) 
52.0=ν  and b) 72.0=ν .  

First row in Figure 9.11 (from Figure 9.11a to Figure 9.11c) contains the 

maximum (peak) values in the radial distribution functions shown in 

Figure 9.9 for different polydispersity indexes, taking into account all 

possible connections between particles of different sizes. At first sight, 

these figures suggest that the average-average (a-a) particle connections 

dominate the response. However, this could be misleading, because the 
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probability of finding a big or small particle is much lower than the 

probability of finding an average-size particle. It is more helpful to obtain 

the relative importance of the connections among particles. In the 

simulations, we have 68.2 % of average-size particles and only 15.9 % of 

small-big particles, respectively. Hence, the results in the first row of 

Figure 9.11 were normalized by the probabilities of finding the different 

pairs of particles and presented in the second row of the figure. It then 

becomes evident that the small-small, small-big and big-big connections 

present a higher relative importance in determining the yield stress. 
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Figure 9.11 Peak heights of the radial distribution functions in tri-disperse 
simulations as a function of the polydispersity index. The particle 
concentration is 10.0=φ . a) elastic region, b) peak region and c) steady 
region. Normalization of the peak heights by the probabilities: d) elastic 
region, e) peak region and f) steady region. 

Similar results have been found in the radial distribution functions in the 

peak and steady shear regions (these results are included in Figure 9.11). 

Interestingly, the long-distance peak observed in the elastic region of the 

lowest polydisperse systems is not observed now in the peak and steady 

shear regions due to the breakage of large columnar structure. The heights 

of the peaks are also lower in the steady region than those found in the 

elastic region. 

9.5. CONCLUSIONS 

In this work we investigate the role of the particle size polydispersity 

using experimental and simulation start-up tests. Polydispersity index was 

varied in a wide range containing typical experimental polydispersities, 

from PDI = 1.63 to PDI = 3.31. In this PDI range, the effect of the 
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polydispersity on the yield stress can be considered as negligible in 

experiments; only a very slight maximum can be observed in the 

experimental case for PDI = 2.88 ( 64.0=ν ). 

Two different particle size distributions were used in simulations: a 

continuous log-normal particle size distribution and a tri-disperse (i.e. 

three fixed different particle sizes) distribution. The results for the yield 

stress in both particle size distributions are in agreement with the 

experimental data and a slight but non-significant increase of the yield 

stress is found for the highest polydispersities. 

Although variations in the yield stress were of minor importance, 

differences in the microscopic structures were found in simulations in the 

continuous and tri-disperse distributions. Analysis results on the particle 

cluster sizes and the particle radial distribution function show that 

increasing the level of polydispersity of the MR system leads to a smaller 

average number of particles per cluster but a higher packing density of the 

particles inside the clusters. Although the smaller cluster sizes may result 

in a reduction in the yield stress, the higher packing density can enhance 

the sustainability of the clusters to stronger mechanical load or 

deformation. It is the interplay between the two opposite effects that lead 

to the nearly negligible dependence of the yield stresses on the 

polydispersity.  

Moreover detailed analysis of the angle-dependent pair distribution 

functions reveals that at high level of polydispersity particle connections 

are increased at all the angles with respect to the magnetic field direction 

(both energetic-favorable and energetic-unfavorable directions). This 

suggests another effect that, although the structure gets denser with 

increasing polydispersity, the bonds between particles can become 
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weaker. This also contributes to maintain nearly constant yield stress upon 

variation of polydispersity. 
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Figure S9.1 Calculation of the static yield stress and the dynamic yield 
stress for experimental results for the MR fluid with 76.0=ν  and 

10.0=φ . 
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Figure S9.2 Simulation results on the average number of cluster, cN  for 
MR fluids with continuous particle size distributions at particle 
concentration 10.0=φ  . a) prior to shear, b) under shearing. The total 
number of particles in the simulation box is N = 1000. 
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Figure S9.3 Simulation results on the weight-averaged number of 
particles in each cluster 2S  for MR fluids with continuous particle size 
distributions at fixed particle concentration 10.0=φ . a) prior to shear; b) 
under shearing. 
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Conclusions 
In this dissertation, both the squeeze flow behavior and the effects of the 

particle size distribution in the magnetorheological performance have 

been investigated. The main conclusions are summarized as follows: 

Magnetorheology in squeeze flow mode 

1. The normal force and the compressive stress increase under 

compression as a result of the reorganization of the particles 

within the aggregates. 

2. The micromechanical model satisfactorily predicts the normal 

force and the compressive yield stress in a wide range of particle 

concentrations, magnetic field strengths, sample volumes and 

initial gap distances for small deformations. The model also 

explains deviations from continuous media theories.  

3. Particle-level simulations predict the dependence of the normal 

force and the compressive yield stress on the particle 

concentration and the magnetic field strength but fail in the 

prediction of the normal force dependence on the compressive 

strain. 

4. Including local field corrections in the micromechanical model 

and simulations is crucial for a satisfactory prediction at the 

lowest gap separations. 

5. Continuous media theories predict reasonably well the normal 

force in the case of MR fluids in the constant volume regime at 5 

vol%. However, deviations are observed for dilute MR fluids. 
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Model magnetorheology: inverse ferrofluids  

1. The Structural Viscosity Model successfully explains the 

rheological behavior of inverse ferrofluids under shearing for a 

wide range of particle volume concentrations. It also provides a 

smoother transition from the magnetostatic to the hydrodynamic 

regime than the widely used Bingham model.   

2. The Mean Magnetization approximation is applicable to inverse 

ferrofluids for a wide range of magnetic field strengths. However, 

it can only be applicable to conventional MR fluids for small 

magnetic field strengths and dilute suspensions. 

3. Particle-level simulations successfully predict the rheological 

behavior of inverse ferrofluids under steady shear and large 

amplitude oscillatory shear tests. They also predict the critical 

Mason number and the storage modulus for all the concentration 

range investigated. However, simulations fail in the prediction of 

the loss modulus for the highest concentrations because 

hydrodynamic interactions are neglected in the model.  

Effect of the polydispersity in particle size in magnetorheology 

1. Experiments for highly polydisperse MR fluids show that the 

shear yield stress is not significantly dependent on the 

polydispersity index.  

2. Brownian dynamic simulations for polydisperse MR fluids also 

show a non-dependent yield stress on the polydispersity. 

3. Although the yield stress does not vary with the polydispersity, 

the microstructure of polydisperse MR fluids changes: there are 

more clusters but clusters have a higher particle density.



 

 

Conclusiones 
En esta tesis, el comportamiento en compresión y los efectos de la 

distribución de tamaños en la respuesta magneto-reológica han sido 

investigados. Las principales conclusiones se resumen como sigue: 

Magneto-reología en compresión 

1. La fuerza normal y el esfuerzo de compresión se incrementan en 

compresión debido a la reorganización de partículas dentro de los 

agregados. 

2. El modelo micro-mecánico predice satisfactoriamente la fuerza 

normal y el esfuerzo umbral de compresión en in intervalo amplio de 

concentraciones, campos magnéticos, volúmenes de la muestra y 

distancias iniciales de los platos para deformaciones pequeñas. El 

modelo también predice las desviaciones de las teorías para medios 

continuos. 

3. Las simulaciones a nivel de partícula predicen la dependencia de la 

fuerza normal y el esfuerzo umbral de compresión con la 

concentración y el campo magnético pero fallan en la predicción de 

la dependencia de la fuerza normal con la deformación de 

compresión. 

4. Incluyendo las correcciones de campo local en el modelo micro-

mecánico y las simulaciones es crucial para unas predicciones 

satisfactorias sobre todo a distancias entre platos pequeñas. 

5. Las teorías de medios continuos predicen razonablemente bien la 

fuerza normal en el caso de fluidos magneto-reológicos en 
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compresión a volumen constante para el 5% vol. Sin embargo, se 

observan desviaciones para fluidos magneto-reológicos diluidos. 

Magneto-reología en sistemas modelo: ferrofluidos inversos 

1. El modelo de viscosidad estructural explica satisfactoriamente el 

comportamiento reológico de ferrofluidos inversos en cizalla para un 

gran intervalo de concentraciones. Este modelo aporta una transición 

más suave desde el régimen magnetoestático al régimen 

hidrodinámico que el modelo de Bingham, usado comúnmente. 

2. La aproximación de magnetización promedio es aplicable a 

ferrofluidos inversos en un gran intervalo de campos magnéticos. Sin 

embargo, sólo se puede aplicar a fluidos magneto-reológicos 

convencionales para campos magnéticos pequeños y suspensiones 

diluidas. 

3. Las simulaciones a nivel de partícula predicen exitosamente el 

comportamiento de ferrofluidos inversos en cizalla simple y 

experimentos en cizalla oscilatoria de amplitud grande. También 

predicen el número de Mason crítico y el módulo de almacenamiento 

para todas las concentraciones investigadas. Sin embargo, las 

simulaciones fallan en la predicción del módulo de pérdidas debido a 

que se desprecian interacciones hidrodinámicas. 

Efecto de la polidispersidad en tamaño en magneto-reología 

1. Los experimentos para fluidos magneto-reológicos altamente 

polidispersos muestran que el esfuerzo umbral de cizalla no depende 

significativamente del índice de polidispersidad. 
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2. Simulaciones de dinámica browniana para fluidos magneto-

reológicos polidispersos también muestran que el esfuerzo umbral no 

depende de la polidispersidad. 

3. Aunque el esfuerzo umbral no varíe significativamente con la 

polidispersidad, la micro-estructura cambia: hay más agregados pero 

una mayor densidad de éstos al aumentar la polidispersidad. 

 


