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Abstract 
We prove that the multiplication ring of a centrally closed semiprime ring R has a finite rank op-
erator over the extended centroid C iff R contains an idempotent q such that qRq is finitely gener-
ated over C and, for each x qRq∈ , there exist z qRq∈  and e an idempotent of C such that xz eq= . 
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1. Introduction 
The symmetric ring of quotients ( )sQ R  of a semiprime ring R  is probably the most comfortable ring of quo-
tients of R . This notion was first introduced by W.S. Martindale [1] for prime rings and extended to the semi-
prime case by Amitsur [2]. Recall that a ring R  is said to be semiprime (resp. prime) if 2 0I ≠  for every 
nonzero ideal I  of R  (resp. if 0IJ ≠  for all nonzero ideals ,  I J  of R ). The center C  of ( )sQ R  is 
called the extended centroid of R , and the C -subring :RQ RC=  of ( )sQ R  generated by R  is called the 
central closure of R . A semiprime R  is said to be centrally closed whenever R RC= . For every q R∈ , 
we will denote qL  and qR  the left and right multiplication operators, respectively, by q  on R . The multip-
lication ring of R , ( )M R , is defined as the subring of ( )L R  generated by the identity operator RId  and 
the set { },  q qL R q R∈ . The goal of this paper is to give a semiprime extension of the following well-known re-
sult (see for instance [3], Theorem A.9): 

“If the multiplication ring of a centrally closed prime ring R  has a finite rank operator over C  then R  
contains an idempotent q  such that qRq  is a division algebra finitely generated over C ”. 
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It is also well know that the extended centroid of a prime ring is a field, however, for a semiprime ring, we 
can only assert that said extended centroid is a von Neumann regular ring. This is the cause of the difficulty of 
extending this result. The starting point of this path relies on the fact that each subset S  of ( )sQ R  has an 
associated idempotent [ ]Se  of the extended centroid C  (see [4], Theorem 2.3.9) and on a consequence (see 
[4], Theorem 2.3.3 and Proposition 1.1 below) of the Weak Density Theorem ([4], Theorem 1.1.5). 

2. Tools 
We shall assume throughout this paper that R  is a centrally closed semiprime ring. First of all, we recall that if 

R  is the set of all idempotents in C  has a partial order given by e f≤  iff e ef= . Moreover, R  is a 
Boolean algebra for the operations 

,    ,    and    1 .e f ef e f e f ef e e∗∧ = ∨ = + − = −  

In fact, [5], Theorem 1.8 remains valid in case that A R=  is a ring, and so this Boolean algebra is complete, 
that is, every subset of R  admits supremum and infimum. We will use the properties of the idempotent 
associated to a subset referred to in ([4], Theorem 2.3.9 (i) and (ii)) without notice. 

Given a C -submodule M  of R , we will say that M  is C -finitely generated if there exist 1 2, , ,q q   
nq R∈  such that 

1
n

iiM Cq
=

⊆ ∑ . 
Next, we establish our main tool. 
Proposition 1.1 Let N  be a C -finitely generated C -submodule of R , and let q R∈ . Then there exists 

0 Rf ∈  such that: a) [ ]0 Nf e≤ , b) 0f q N∈  and c) ( )01N Cq N f q+ = ⊕ − . 
Proof. We denote [ ]Ne e= . If q N∈ , then [ ]0 Nf e= . Suppose that \q R N∈ . If 0N Cq∩ = , then we take 

0 0f = . In other case, take e q N Cqλ ∈ ∩ , for some Cλ ∈ . By ([4] Theorem 2.3.9), there exists Cµ ∈  such 
that λµλ λ=  and Rλµ ∈ . In particular, eq Nλµ ∈ , and e eλµ ≤ . Thus, the family { }i Rf ⊆   of all non-
zero idempotents satisfying if e≤  and if q N∈  is not empty. Let 0 if f= ∨ . Note that 0 Rf ∈  because of 
completeness of R , and, of course, 0f e≤ . If 0f q N∉ , then, by ([4], Theorem 2.3.3), there exists ( )F M R∈   
such that ( )0 0F f q ≠  and ( ) 0F N = . But, since ( ) 0iF f q = , we have ( ){ } 0i F qf e  

=  and so ( ){ }1i F qf e  
≤ −   

for all i . Hence ( ){ }0 1 F qf e  
≤ − , that is, ( ){ }0 0F qf e  

= , which is a contradiction with ( )0 0F f q ≠ . Therefore  

0f q  belongs to N . Take ( )01m f q= − . Let us see that N Cq N Cm+ = ⊕ . Indeed, for every p N Cq∈ + , 
we can write: 

0 .p m q m f q m M Cmλ λ λ′ ′= + = + + ∈ +                           (1) 

Moreover, if there exists 0m N∈  and Cλ ∈  such that 

( )0 01 ,m em e f qλ λ= = −  

then 0 0eq m ef q Nλ λ= + ∈ . Take Cµ ∈  such that 2λ µ λ=  and µλ  is an idempotent in C . It is clear that 
eq Mµλ ∈ , and so 0e fµλ ≤  by maximality. Thus, ( )01 0e fµλ − =  and 0 0mµ = . Finally, note that: 

( ) ( )2
0 0 0 00 1 1 .m e f q e f q mλµ λ µ λ= = − = − =  

Thus, the sum is direct. Note that 0 Rf ∈  verifies properties a), b) and c). □  
As a consequence, we have the following: 
Corollary 1.2 Let M  be a nonzero C-submodule of R  and q R∈  such that M Cq⊆ . Then there exists 

Re∈  such that M Ceq= . 
Proof. If q M∈  take 1e = . In other case, M Cq Cq+ = . By Proposition 1.1, there is Re∈  such that 

eq M∈  and ( )1Cq M C e q= ⊕ − . Thus, ( ) ( )1 1Ceq C e q M C e q⊕ − = ⊕ − , and so, Ceq M= . □  
Note that if ,  p q R∈  then it may be that p Cq∈  but q Cp∉ . This forces us to make a convenient defini-

tion of set C -linearly independent. We will say that n  nonzero elements 1 2, , , nq q q  of R are C-linearly 
independent (or that the set { }1 2: , , , nS q q q=   is C -linearly independent) if, for all 1 2, , , n Cλ λ λ ∈ , 

0i iqλ =∑  implies 0i iqλ =  for all { }1, ,i n∈  , or equivalently, if the C -linear envelope M  of the subset  
S satisfies: 1

n
iiM Cq==⊕ . Note that for every 0 q R≠ ∈  and Re∈ , if eq  and ( )1 e q−  are nonzero, then  
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the sets { }: q=  and ( ){ }1 : , 1eq e q= −  are C-linearly independent and both generate the C-module Cq . In 
general, any C-finitely generated C-module M  can be obtained as the C-linear envelope of C-linearly inde-
pendent sets with different cardinal. In this sense, in ([4] Theorem 2.3.9. (iv)) is asserted that one can select a 
C-linearly independent set with a minimal number of generators under certain conditions. In any case, certain 
properties of the vector spaces remain true for the C-submodules: the next results, probably well-known, are ob-
tained as a consequence of Proposition 1.1. 

Corollary 1.3 Let { }1 2, , , nq q q  be a subset of R  and N M  two C-finitely generated C-submodules 
of R  such that 

1
n

iiM N Cq
=

= +∑ . Then there are 1 2, , , n Re e e ∈   such that the subset of R  

{ } ( ) ( ) ( ) ( ){ }1 2 1 1 2 2, , , 1 , 1 , , 1 1 0m n n i ip p p e q e q e q e q= − − − − ≠ 
 

is C -linearly independent, and 1
m

jjM N Cp== ⊕ . 
Proof. If 1q N∈ , we take 1 1e = . In other case, by Proposition 1.1, there exists 1 Re ∈  such that  

( )1 1 11N Cq N C e q+ = ⊕ − . Now, if ( )2 1 11q N C e q∈ ⊕ −  then take 2 1e = , and if ( )2 1 11q N C e q∉ ⊕ −  then,  
by Proposition 1.1, there exists 2 Re ∈  such that ( ) ( ) ( )1 1 2 1 1 2 21 1 1N C e q Cq N C e q C e q⊕ − + = ⊕ − ⊕ − . To 
conclude, it is enough to repeat this procedure n  times. □  

Corollary 1.4 If N  is a C-finitely generated C-submodule then there exist m n≤  and 1 2, , , mp p p N∈   
such that 1

m
iiN Cp==⊕ . 

Proof. Let 1 2, , , nq q q R∈  such that 
1

n
iiN Cq

=
⊆ ∑ . By Corollary 1.3 we can assume that the set 

{ }1 2, , , nq q q  is C-linearly independent. 
It is clear that 11

n n
i iiiN Cq Cq==

+ =∑ ⊕ . By Proposition 1.1, there exist 1 2, , , n Re e e ∈   such that, for every  
1 j n≤ ≤ , 1

1
j

j j iie q N Cq−
=∈ ⊕⊕  and 

( )
1 1

1 .
n n

i i i
i i

Cq N C e q
= =

= ⊕ −⊕ ⊕  

Hence, 

( ) ( ) ( )
1 1

1 1
1 1 1 .

n n

i n n n n i i n n
i i

Cq Ce q C e q N C e q C e q
− −

= =
⊕ ⊕ − = ⊕ − ⊕ −⊕ ⊕  

Therefore, ( )1 1
1 1 1 .n n

i n n i ii iCq Ce q N C e q− −
= =⊕ = ⊕ −⊕ ⊕  Analogously, since 2n

n n ne q r s−= +  with  
( )22

1 1nn
n i iir N C e q−−

=∈ ⊕ −⊕  and ( )1 11 n ns C e q− −∈ − , we have 

( ) ( ) ( )
2 2

2
1 1 1 1 1 1

1 1
1 1 1 ,

n n
n

i n n n n n i i n n
i i

Cq Cr Ce q C e q N C e q C e q
− −

−
− − − − − −

= =

   + + ⊕ − = ⊕ − ⊕ −      
⊕ ⊕  

and so, ( )2 22
1 11 1 1n nn

i n n n i ii iCq Cr Ce q N C e q− −−
− −= =+ + = ⊕ −⊕ ⊕ . 

By repeating this procedure, there are ( )1 1 1
1 2 1 1, , , 1n nr r r N C e q− ∈ ⊕ −  such that 

( ) ( ) ( )1 1
1 3 2 2 2 2 1 1 2 21 1 1 ,nCq Cr Cr Ce q C e q N e q e q + + + + ⊕ − = ⊕ − ⊕ −   

and hence, ( )1 1
1 2 2 3 1 11nCq Ce q Cr Cr N C e q+ + + + = ⊕ − . Therefore, since, 2 2 2 2e q r s= +  with 2r N∈  and 

( )2 1 11s e q∈ − , and, for each 2j > , 1
j j jr r s= +  with jr N∈  and ( )1 11js e q∈ − , we deduce that 

( ) ( )1 1
1 1 2 1 1 1 11 1 ,nCe q Cr Cr C e q N e q + + + ⊕ − = ⊕ −   

and so, 1 1 2 nCe q Cr Cr N+ + + = . Again, by Corollary 1.3, we obtain 1 2, , , mp p p  C -linear independent  
elements of R  such that 1

m
iiN Cp==⊕ . □  

Let 0I ≠  be a right ideal of R. We say that I  is a R -minimal right ideal if for every nonzero right ideal 
J  of R  contained in I , there exists some Re∈  such that 0 eJ eI≠ = . Note that if R  is prime then, 
since C  is a field, { }1R = , and so, the concepts of R -minimal right ideal and minimal right ideal agree. 
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Recall that for a subset S  of R  the left annihilator { }: 0x R xS∈ =  will be denoted by ( )l S . The right 
annihilator ( )r S  is similarly defined. 

Proposition 1.5 Let I  be a R -minimal right ideal of R . Then there exists an idempotent 0 q R≠ ∈  and 
Re∈  such that eI qR= . As a consequence qR  is a R -minimal ideal of R . 

Proof. Since 0I ≠  and R is semiprime, 20 I I≠ ⊆ , and hence there exists 0 q I′≠ ∈  such that 0 q I I′≠ ⊆ . 
Note that this implies the existence of some Rf ∈  such that 0 fq I fI′≠ = . Since q I′∈ , there exists p I∈  
such that 0 fq p fq′ ′≠ = . Note that 2fq p fq p′ ′= , and then: ( )2 0fq p p′ − = , that is, ( ) ( )2f p p r fq fI′− ∈ ∩ . 
Since ( )r fq′  is a right ideal of R , if ( ) 0r fq fI′ ∩ ≠ , by minimality there exists Rg ∈  such that 

( )0 gr fq gfI gI′≠ ∩ = . But, since gN gfI⊆ , we have 0gI fgI fq gI′= = = , a contradiction. Hence, 2fp fp=  
( 0 fp≠  because 0fq p′ ≠ ). Then 20 fp fp fpR fI I≠ = ∈ ⊆ ⊆ . Since I  is R -minimal, there exists some 

Re∈  such that efpR eI= . □  
We finalized this section with a desirable result, which is similar to the well-known result for minimal right 

ideals (see for instance [4], Proposition 4.3.3). 
Proposition 1.6 Let q  be an idempotent of R . The following assertion are equivalent: 
1) qR  is R -minimal right ideal of R . 
2) For every { }\ 0x qRq∈  there exist z qRq∈  and Re∈  such that xz eq= . 
Proof. (1) ⇒  (2). Since q  is an idempotent, it is clear that q  is the unit of qRq . Take { }\ 0x qRq∈ . It 

is clear that 0 xR qxR qR≠ = ⊆ , and so, since xR is right ideal of R, there exists Rf ∈  such that fxR fqR= . 
In particular, there is z R′∈  such that fxz fq′ = . Therefore xfqz q fxz q fq′ ′= = . 

(2) ⇒  (1) 

Let I be a nonzero right ideal of R such that I qR⊆ . Let us see that there exists Rf ∈  such that fq I∈ . 
Indeed, if we take 0 p I≠ ∈ , by semiprimeness of R, there exists q R′∈  such that 0 pq p′≠ . Note that 
qp p′ ′=  for every p I qR′∈ ⊆ . Consequently, pq q qpq q′ ′=  is a nonzero element of qRq , and hence there 
are z R∈  and Re∈  such that ( )( )pq q qzq eq′ = . Therefore eq pR I∈ ⊆ , and so, eqRq eI eqRq⊆ ⊆ . 
Thus eI eqRq= . □  

A nonzero idempotent q of R is said to be R -minimal when the above assertions are fulfilled. 

3. Theorem 
In this section we will prove a semiprime extension of [3], Theorem A.9. Concretely, 

Theorem 2.1 Let R be a centrally closed semiprime ring. Then ( )M R  has a C-finite rank operator if, and 
only if, R  contains a R -minimal idempotent q  such that qRq  is C -finitely generated. 

We begin this proof with an another consequence of Proposition 1.1,which is an improvement of Corollary 
1.2 to case 1n > . Given a nonzero C-module M C-finitely generated, we will say that ( )dim

R
M n=  when- 

ever 

{ }2
1

Min : , , , \ 0  such that .
k

i k i
i

n k p p p R M Cp
=

 = ∈ ∃ ∈ ⊆ 
 

∑   

Lemma 2.2 Let M  be a nonzero C -submodule of R  and suppose that, for every Rf ∈  such that 
0fM ≠ , ( )dim 1

R
fM n= > . If 1

n
iiM Cq=⊆⊕  for some { }\ 0iq R∈  then there exists Re∈  such that  

10 n
iieM Ceq=≠ =⊕ . 

Proof. It is clear that 11
n n

i iiiM Cq Cq==
+ =∑ ⊕ . By Proposition 1.1, there exist n Rf ∈  such that 

( )
1

1 1
1

n n

i i n n
i i

Cq M Cq C f q
−

= =

 = + ⊕ −  
⊕ ⊕  

and 1
1

n
n n iif q M Cq−

=∈ +⊕ , in fact, 1
1

n
n n n n iif q f M Cf q−

=∈ +⊕ . Moreover, 

( ) ( )
1 1

1 1
1 1 .

n n

i n n n n i n n
i i

Cq Cf q C f q M Cq C f q
− −

= =

 ⊕ ⊕ − = + ⊕ −  
⊕ ⊕  

Hence, 
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1 1

1 1
.

n n

i n n i
i i

Cq Cf q M Cq
− −

= =
⊕ = +⊕ ⊕  

If 0n nf q = , then 
1 1

1 1
,

n n

i i
i i

Cq M Cq
− −

= =
= +⊕ ⊕  

that is, 1
1

n
iiM Cq−

=⊆⊕ , and this is a contradiction. Thus, 0n nf q ≠  and 
1

1 1
.

n n

n i n n i
i i

Cf q f M Cf q
−

= =
= +⊕ ⊕  

Note that if 0nf M =  then 1
10 n

n n n iif q Cf q−
=≠ ∈⊕ , which is a contradiction. By Proposition 1.1, there exist 

1n Rf − ∈  such that 

( )
2

1 1
1 1

1
n n

n i n n i n n n
i i

Cf q f M Cf q C f f q
−

− −
= =

 = + ⊕ −  
⊕ ⊕  

and 2
1 1 1

n
n n n n n iif f q f M Cf q−
− − =∈ +⊕ . Therefore, since n nf q p p′= +  with 2

1
n

n n iip f M Cf q−
=∈ +⊕  and  

( )1 11 n n np C f f q− −′∈ − , it is clear that 

( ) ( )
2 2

1 1 1 1 1 1
1 1

1 1 .
n n

n i n n n n n n n n i n n n
i i

Cf q Cp Cf f q C f f q f M Cf q C f f q
− −

− − − − − −
= =

   + + ⊕ − = + ⊕ −      
⊕ ⊕  

Hence, 
2 2

1 1
1 1

.
n n

n i n n n n n i
i i

Cf q Cp Cf f q f M Cf q
− −

− −
= =

+ + = +⊕ ⊕  

If 1 1 0n n nf f q− − = , then nf M  is contained in 1n −  summands, which is a contradiction. Hence, since 
1 1n n n nf p f f q− −= , we have 

2

1 1 1
1 1

.
n n

n n i n n n n i
i i

Cf f q f f M Cf f q
−

− − −
= =

= +⊕ ⊕  

Note that if 1 0n nf f M− = , then 2
1 1 110 n

n n n n n iif f q Cf f q−
− − −=≠ ∈⊕ , which is a contradiction. By repeating this 

procedure, we find 2 , , n Rf f ∈   such that, 2 2 2 2 1n n nf f q f f M Cf f q∈ +   , 20 nf f M≠  , and 

1 2 2 2 1
n
i n i n nCf f q f f M Cf f q=⊕ = ⊕   . 

Therefore, denoting 2 2 ne f f=  , again by Proposition 1.1, there exists 1 Rf ∈  such that 1 2 1 2f e q e M∈  
and, 

[ ] ( ) ( )1 2 1 2 2 2 1 2 1 2 1 2 11 1 ,nCf e q Ce q e q C f e q e M C f e q+ + + ⊕ − = ⊕ −  

and hence, 

1 2 1 2 2 2 2nCf e q Ce q Ce q e M+ + + = , 

or even 

1 2 1 1 2 2 1 2 1 2nCf e q Cf e q Cf e q f e M+ + + = . 

Of course, 1 2 10 f e q≠  because ( )2dim
R

e M n= , and so, 1 20 f e M≠ . Thus, take 1 2e f e= . □  
The next result is an immediate consequence of the Weak Density (see [4], Theorem 2.3.3). We will denote 

by ,p qM  the operator p qL R  for all ,  p q R∈ . 
Lemma 2.3 Let 1 1, , , , ,n np p q q R∈  . Assume that { }1, , np p  or { }1 2, , , nq q q  are C-linearly inde- 

pendent sets such that ,1 0
i i

n
p qi M

=
≠∑ . Then there are 1 j n≤ ≤  and ( )G M R∈  such that  
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( ) ( ),1,
0

i ij j

n
p G qip G q

M M
=

≠ = ∑ . 

Proof. Assume that 1 2, , , nq q q R∈  are C-linearly independent. If [ ] [ ] 0
i ip qe e =  for all { }1, ,i n∈   then, 

since 
[ ] [ ], ,1 1i i i ip qi i

n n
p q p e e qi iM M

= =
=∑ ∑ , we deduce that ,1 0

i i

n
p qi M

=
=∑ , is a contradiction. For simplicity, we  

can suppose that [ ] [ ]1 1
0p qe e ≠ . By [4] (Theorem 2.3.3), there exists ,1 j j

m
s tjG M

=
= ∑  with ,  j js t R∈ , such that  

[ ]( )1 1 0pG e q ≠  and ( ) 0iG q =  for all { }2, ,i n∈  . Put [ ]( )11 1 0pq G e q′ = ≠ , and note that, for every q R′∈ , 
we have: 

( ) [ ]( ), 1 1
1 1 1

j j i

m n n

i s t i i ip
j i i

p q M q p q G e q p q q
= = =

 ′ ′ ′ ′= = 
 

∑ ∑ ∑ . 

As a consequence: ( ) ( )1 1 1 1, ,,1 i i

n
p q p G qp G qi M M M

′=
= =∑ . Moreover, by [4] (Corollary 2.3.10), ( )1 1,0 p G qM≠ . □  

First step in the proof of Theorem 
Proposition 2.4 If ( )M R  has a C -finite rank operator then there are ,  p q R∈  such that pRq  is C - 

finitely generated. 
Proof. First of all, given a nonzero operator ( )G M R∈  with C-finite rank we can find an operator of the  

form ,1 i i

n
p qi M

=∑ , which has also C-finite rank. In fact, the most general form of G is: r s r s Ri i
L R L R Idα+ + +∑   

for some α ∈ , and , , ,i ir s r s R∈ . We can take an element q R∈  such that 0pL G ≠ , because in other case 
we would have ( ) ( ) 0G R r R⊆ = , a contradiction. Analogously, there exists some q R∈  such that 0q pR L G ≠ . 
Now, ,p qF M G=  is a nonzero operator with the desired form. Moreover, if ( )G R  is C -finitely generated 
then ( )F R  is also C -finitely generated. Secondly, taking in mind Corollary 1.3, we can assume without loss 
of generality that the set { }1 2, , , np p p  is C-linearly independent. Finally, by Lemma 2.3 there are ,  p q R∈   
and ( )H M R∈  such that ( ), ,10

i i

n
p q p H qiM M

=
≠ = ∑ , and so, pRq  is also C -finitely generated. □  

Second step in the proof of Theorem is a consequence of Lemma 2.2, and its proof can be obtained from a 
careful reading of the proof of [4] (Lemma 6.1.4). 

Proposition 2.5 Let ,  p q R∈  such that 0 pRq≠  is C -finitely generated. Then there exist a R -minimal 
idempotent eq R∈  such that e eq Rq  is C -finitely generated. 

Proof. Without loss of generality we can assume that p q= . Since, in other case, if we take 0 r pRq≠ ∈   
then 0 rRr pRq≠ ⊆ . Suppose further that 

1
n

iiqRq Cr
=

= ∑ , for ir R∈ . By Corollary 1.3, we can assume that  
the sum is direct. Consider the set 

{ }1
1

: : ; , , , \ 0 .  
k

k i
i

H k k n q q q R s t qRq Cq
=

 = ∈ ≤ ∃ ∈ = 
 

⊕  . 

It is clear that n H∈ . Take m as the minimum of H and q R∈  such that 1
m
i iqRq Cq== ⊕  for some iq R∈ . 

Let I qRqR= . If 0I = , then ( ) 0qRq l R⊆ = , which is a contradiction because of semiprimeness of R . 
Thus 0I ≠ . Let 0 J I≠ ⊆  be a right ideal of R  and 0 i iiz qx qy J≠ = ∈∑ , where ,  i ix y R∈ . Setting  

i iiu x qy= ∑  we note that z qu= . Note that if 0zRq =  then 0 quRqu= , a contradiction with the semi-  
Primeness. Take 0 q zRq′≠ ∈ , it is clear that q Rq zRq qRq′ ′ ⊆ ⊆ . Note that M q Rq′ ′=  satisfies the hypo-
thesis either of the Corollary 1.2 (if 1m = ) or of the Proposition 2.2 (if 1m > ), in any case, there is Re∈  
such that ( )10 m

i ieq Req Ceq e qRq=′ ′≠ = ⊕ = . In particular, eI eq Req R ezR J′ ′= ⊆ ⊆ . Therefore, 0 eJ eI≠ = , 
that is, I  is a R -minimal right ideal of R . By Proposition 1.5, there exist Re∈ , and eq R∈  such that  

eeI q R= . Clearly 2
e eq q eM= ∈ , and so 

1
n

e i iiq qu qv
=

= ∑  where ,  i iu v R∈ . Hence 
1

n
e e iiq Rq qRqv

=
⊆ ∑  and  

so e eq Rq  is C -finitely generated. □  
Finally, the converse is obvious. 
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