
Extensiones del Enfoque Genético
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El doctorando David Garćıa Muñoz y los directores de la tesis Anto-
nio González Muñoz y Francisco G. Raúl Pérez Rodŕıguez. Garan-
tizamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado por
el doctorando bajo la dirección de los directores de la tesis y hasta donde
nuestro conocimiento alcanza, en la realización del trabajo, se han respetado
los derechos de otros autores a ser citados, cuando se han utilizado sus re-
sultados o publicaciones.

Granada a 17 de Abril de 2015.

Director/es de la Tesis Doctorando
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Chapter 1

Introduction

1.1 Motivation

According to the RAE (Real Academia Española de la Lengua), Artificial
Intelligence (AI) is defined as ”the development and usage of computers with
which the processes of human intelligence are reproduced”. John McCarthy,
considered one of the pioneers in the Artificial Intelligence, first used this
term in the Dartmouth Conference in 1956. In this conference, it was es-
tablished the hypothesis that ”any learning aspect or any other feature of
intelligence can be, in principle, described in such an accurately way that
can be simulated with a machine”. One of the first definitions related to
this topic came from Marvin Minsky, who belonged to the set of 10 scien-
tists attendant to the conference. Minsky defined the AI as ”the science of
building machines so that they are able to make tasks that, if were made by
humans, it would be needed some intelligence”.

From that moment, the activity in this field has been very strong, arising
several classic researching areas as learning. One of the main objectives of
learning inside AI is to allow these systems to evolve depending on the expe-
rience acquired. Those intelligent systems having their learning capabilities
limited or even containing all the knowledge inside, can repeat the same
mistakes as many times as the situation occurs. In [80], Michalski deeply
thinks about this idea, giving some definitions about learning, concluding in
the following way: ”Learning is constructing or modifying representations
of what is being experienced”.

One of the best known learning strategies is inductive learning. This is
characterized by its ability to infer knowledge from the environment or an ex-
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pert. Thus, in [78], Michalski distinguishes among two main classes of induc-
tive learning: concept learning from examples (concept acquisition)
and concept learning from observation (descriptive generalization).
In the first one, the objects (situations, processes) are pre-classified by an
expert in one or more classes (concepts). The induced hypothesis can be
seen as a concept recognition rule, that is, if an object satisfies the rule,
then it represents the concept. In the descriptive generalization, the objec-
tive is to obtain a general description (law, theory) which characterize a set
of observations. Both categories include a wide variety of problems [78].

Among the different methods of inductive learning and during the devel-
opment of this work, the main efforts have been focused in one of the most
well knowm methods, which is the inductive learning through rules. These
rules usually represent ”not evident” patterns (hidden patterns) existing in
the original data. That is why they are an useful and powerful tool in data
mining. Normally, they respond to the following structure:

if ( attribute1, value1) and ( attribute2, value2) and ... and

( attributen, valuen) then (class, value).

The data from which these rules are obtained are often previously clas-
sified by an expert. That is the reason why this kind of learning is know as
supervised learning.

Unfortunately, in real-world problems it is difficult to find structured
data representing accurate situations. Even in our everyday language, terms
like ”very high” can represent different values depending on the problem do-
main, context, etc. So, the information is usually given in a imprecise or
vague way. Fuzzy logic [119], provides good solutions when handling vague-
ness and uncertainty, due to its simplicity, flexibility and interpretability
(similar to human thinking). Thus, in this framework it is represented by
means of fuzzy rules, which are tools for managing this imprecise knowledge.

So, as it is explained in [26], ”fuzzy if/then rules are rules whose an-
tecedents, consequences or both are fuzzy rather than crisp”. An example
of this kind of rules is shown below:

IF Petal Lenght is {VeryLow} and Petal Width is {Medium} THEN

class is IrisSetosa

where the fuzzy values for the variables Petal Length and Petal Width
are {V eryLow,Low,Medium,High, V eryHigh} and class takes its values
in a discrete domain in the set {IrisSetosa, IrisV ersicolor, IrisV irginica}
(Iris database, UCI Machine Learning Repository [8]).

4



1.1. Motivation

During the last years, many techniques have been developed to iden-
tify fuzzy rule-based systems (FRBSs), some of which make use of ad-hoc
methods, neural networks, genetic algorithms, etc.

Particularly, in this dissertation the idea of working with methods that
try to obtain knowledge bases formed by such rules using genetic algorithms
(GAs) is proposed. These methods are known in the literature with the
name of genetic fuzzy rule-based systems (GFRBSs) [24]. The main charac-
teristic of these systems is their capacity of learning using an evolutionary
process in order to obtain the rule base describing the problem.

These rule bases or knowledge bases (KB) can be obtained using dif-
ferent strategies, being one of the most important those using an iterative
approach, that is, the iterative rule learning (IRL) approach. The IRL ap-
proach is based on the sequential covering (SC) strategy [81], together with
genetic algorithms for learning fuzzy rules. This model allows to extract in
each iteration the best rule that will be part of the rule base later on.

A fuzzy rule learning algorithm using this idea is NSLV [46, 37]. This
algorithm is an evolved version of the SLAVE algorithm [45, 37], which can
be considered as the first fuzzy rule-based learning algorithm using the IRL
approach. Thus, NSLV was developed with the objective of learning a set
of interpretable and accurate fuzzy rules.

The SC strategy can be seen as an application of the hill climbing tech-
niques to the learning problems. This strategy uses a greedy methodology
in order to obtain the best rule after each iteration. This allows the use
of an incremental model in which each step improves the previous solution
by adding a new rule. However, this mechanism inherits one of the main
drawbacks of the hill climbing methods, that is, the occurrence of a local
optimum.

It is well-known that about hill climbing methods many proposals have
been presented in order to avoid local optimums, some of which allow to
improve the behavior of the original technique.

In classification problems employing the SC strategy it is commonly
considered that a local optimum is reached if it is not possible to find a new
useful rule when there exist examples not correctly classified by the already
learned rules. This fact, in general, reduce the prediction capability and also
interpretability to the knowledge extracted by the classification algorithm.

One of the techniques employed by the hill climbing methods for avoiding
local optimums consist in extending the decision neighbourhood. The idea
of this technique is to extend the locality of the decisions taking a farther
view of the solutions.

An adaptation of this idea in classification problems by applying the SC
strategy consist in taking into account the indirect relevance of the input
attributes of the problem. This means trying to construct new attributes
from the existing ones so that it is possible to describe in some other new
way the examples of the training set.
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On the other hand, the backtracking is a technique frequently used in
searching problems in order to overcome local optimums and find new ways
towards the solution. This technique recursively acts undoing the last opera-
tor applied and looks for a new path guided to the solution. The adaptation
of this idea to the classification problems and, what is more, those based
in the SC strategy is interesting because it introduces a new functionality
in the learning process, that is, the decisions taken change from being ir-
reversible to reversible. It also allows the review of the knowledge learned
establishing new ways for finding better knowledge bases.

The purpose of this work is just taking the algorithm NSLV as a starting
point in order to study some techniques similar to those previously exposed
with the aim of extending the SC strategy. The development of different
strategies in the SC tries to improve the rules extraction using basic criteria
of accuracy and interpretability. In the next section a detailed description
of these objectives is given.

1.2 Aims and Contributions

Thereby, the main objective of this thesis is to extend the iterative rule
learning model for learning fuzzy rules so that, on the one hand, the indirect
relevance of the input attributes is considered in the learning process and,
on the other hand, the model used in NSLV is improved in order to review
the knowledge extracted after each step.

In this way, the following sub-objectives (or partial objectives) have been
proposed:

• Define a new model of rule and an inference model appropriate for
handling the feature construction process.

• Define a filtering method for new attributes as well as the process of
attribute selection used by the GA.

• Adapt the SC strategy so that the knowledge extracted after each
iteration can be reviewed.

• Apply a pruning mechanism to limit the searching spaces of new solu-
tions.

The main objective previously mentioned of extending the genetic it-
erative model is justified by the growing tendency of working with great
amount of data, most of which are representative samples of bigger collec-
tions. These data are neither always uniform nor correctly structured. Even
when they are classified by an expert they could be ambiguous. Because of
this, last years, the learning algorithms and the fuzzy rule-based learning
algorithms in particular, have been even more important. As the knowledge
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extraction is more and more complex and necessary (as a consequence of the
data complexity), the learning algorithms have evolved for going on being
efficient.

The word ”efficient” refers to a set of parameters different from each
other. It can be referred when talking about the efficiency in time of an
algorithm, the complexity of the knowledge extracted, the prediction capa-
bility, etc. Thus, the priority is to find a good trade off among all these
measures which is one of the main problems to solve.

Particularly, the proposed techniques are focused in the study of the
accuracy or prediction capability of the rule base, the time needed to obtain
the model and the interpretability, this last one understood at rule base
level (number of rules) and at a single rule level (number of conditions and
closeness to natural language).

Improving the prediction capability of the rule base directly connects
with the idea of considering the indirect relevance of the input attributes.
As it was previously mentioned, sometimes the data are abundant but may
be they are not very representative, that is, they give few information in or-
der to establish a criterion for classification. One of the emerging techniques
during the last years which allows working with datasets having these char-
acteristics is the feature construction. This technique basically consists in
creating new attributes from the combination of the original variables. The
main contribution of the feature construction is the possibility of extract-
ing additional and not trivial information apart from the single information
associated to each variable.

This idea of constructing new attributes arises by means of the use of
relations and functions in the antecedent of fuzzy rules. In addition to the
improvement of the prediction capability, it is important to mention that an
improvement of the interpretability of rules is also expected, as they should
be closer to the use of natural language. However, the main disadvantages
are expected to appear in relation to the increase of the complexity of the
rule base and the time employed to obtain the model.

Opposite to this new situation in which the increase of the complexity of
the rule base would reduce its interpretability, we connect with the second
part of the objective, which is related to the extension of the SC strategy
in order to review the knowledge extracted for being able to decide the
way the rule base should be updated. This new model allows reducing
the complexity of the rule base, the number of conditions per rule and the
runtime. The main disadvantage of this strategy of knowledge review has to
do with the dependency of the learning process to the appearance of general
rules. These rules, which are difficult to replace, accelerate the learning
of very specific rules with low influence when representing examples. For
this reason, the appearance of very general rules should be delayed and the
specificity of the final rules should also be limited. This is achieved by using
pruned searching spaces through a completeness condition, which establishes
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a covering threshold for each extracted rule.

It is important to mention that the knowledge review model provides the
basic elements in order to evolve to a new model of incremental learning.

Next sections will describe in details the methods previously explained,
focusing the main efforts in the changes made in the SC model of each
algorithm.

1.3 Description of Chapters

This work is structured in seven chapters, including the current one, where
it is introduced the general framework in which the proposed ideas underlie,
together with the main motivations and goals.

Thereby, in Chapter 2, the problem of learning fuzzy rule-based systems
is addressed. Moreover, the iterative rule learning approach (basic structure
of our proposals), is described. Finally, some representative examples of
learning methods based on genetic algorithms are presented.

Chapter 3 is devoted to describe SLAVE, a fuzzy rule-based learning
algorithm characterized by the use of a genetic algorithm inside an iterative
rule learning structure, as well as its evolutions: SLAVE2 and NSLV.
The main components of each one of the algorithms are deeply studied.
This chapter ends with a detailed experimental section in which the most
important results are summarized.

Chapter 4 aims to introduce the use of the feature construction technique
under the genetic learning approach. In this sense, the feature construction
has been developed through two different strategies: the use of relations in
the antecedent of fuzzy rules and the use of functions. As a consequence,
three different algorithms are presented: one for each strategy separately
(NSLV-R and NSLV-F) and one more combining both strategies in the
same learning method (NSLV-FR). After that, the results obtained by
the different proposals together with a comparative study among them, are
shown. Finally, the last section shows a real application of our feature con-
struction method (NSLV-FR) to remotely sensed imagery. This last section
results from the work developed during a three-months stay in the Aristotle
University of Thessaloniki (Greece), under the supervision of Professor Dr.
John B. Theocharis.

The application of the feature construction techniques usually results in
more interpretable rule bases. Here, the term ”interpretable” refers to an
approximate model to natural language. However, the fact is that feature
construction techniques normally increase the searching space, which trans-
lates in rule bases formed by higher number of rules and more conditions
per rule and this is contrary to some interpretability measures. Due to this,
in Chapter 5, a modified version of the iterative rule learning approach able
to review the knowledge extracted, is proposed. The chapter also includes
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an experimental study in which the proposed method (NSLV-AR) demon-
strate a good performance when dealing with complex problems.

With the purpose of taking advantage of the strong points associated to
the strategies used in the different proposals previously exposed, in Chap-
ter 6 an integrated method combining feature construction and knowledge
review, is defined (SLAVE3). Apart from that, three more sections take
place in this chapter as part of the global experimental study. The first one
is a full comparison between the algorithms proposed in the dissertation.
The second one is devoted to compare SLAVE3 against other well known
learning algorithms. The last section establishes the basic principles towards
the definition of an incremental learning model.

Chapter 7 includes the conclusions derived from the results achieved by
the different proposals described in this dissertation as well as their main
contributions. It also contains some considerations in order to point out
those potentially interesting elements for future developments.

1.4 Publications

This subsection will be devoted to enumerate the different publications in
International Workshops, Conferences and Journals that have been carried
out during the development of the research.

• Garćıa, D., González, A., Pérez, R., “A two-step approach of feature
construction for a genetic learning algorithm”, IEEE International
Conference on Fuzzy Systems, 1255–1262 (2011, June).

• Garćıa, D., González, A., Pérez, R., “An iterative strategy for feature
construction on a fuzzy rule-based learning algorithm”, 11th Inter-
national Conference on Intelligent Systems Design and Applications
(ISDA), 1235–1240 (2011, November).

• Garćıa, D., González, A., Leyva, E., Pérez, R., “Un estudio experi-
mental del uso de dominios con intensificaciones”, Congreso Español
sobre Tecnoloǵıas y Lógica Fuzzy (2012, February).

• Garćıa, D., González, A., Pérez, R., “A filter proposal for including
feature construction in a genetic learning algorithm”, International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20
(supp 02), 31–49 (2012, October).

• Garćıa, D., González A., Pérez R., “An empirical study about the
behavior of a genetic learning algorithm on searching spaces pruned by
a completeness condition”, Proceedings of the 2013 IEEE International
Workshop on Genetic and Evolutionary Fuzzy Systems, GEFS 2013 -
2013 IEEE Symposium Series on Computational Intelligence, SSCI,
8–15 (2013, April).
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• Garćıa, D., González, A., Pérez, R., “A new iterative model to simplify
the knowledge extracted on a fuzzy rule-based learning algorithm”,
IEEE International Conference on Fuzzy Systems (2013, July).

• Garćıa, D., González, A., Pérez, R., “Overview of the SLAVE learn-
ing algorithm: A review of its evolution and prospects”, Interna-
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ings of the IEEE International Conference on Fuzzy Systems (2015,
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1.5 Motivación

Según la Real Academia Española de la Lengua, la Inteligencia Artificial
(IA) se define como ”el desarrollo y utilización de ordenadores con los que
se intenta reproducir los procesos de inteligencia humana”. John McCarthy,
considerado uno de los padres de la Inteligencia Artificial, acuñó este término
en la Conferencia de Dartmouth en 1956. En ella, se establećıa la conjetura
de que ”cualquier aspecto del aprendizaje o cualquier otro rasgo de la in-
teligencia puede, en principio, ser descrito de manera tan precisa que puede
construirse una máquina para simularlo”. Una de las primeras definiciones
al respecto vino de la mano de Marvin Minsky, también perteneciente al
grupo de 10 cient́ıficos asistentes a la conferencia. Según Minsky la IA ”es
la ciencia de construir máquinas para que hagan cosas que, si las hicieran
los humanos, requeriŕıan inteligencia”.

A partir de entonces, la actividad en este campo ha sido muy intensa,
dando lugar a diversas áreas de investigación clásicas entre las que se en-
cuentra el aprendizaje. Uno de los principales objetivos del aprendizaje
dentro de la inteligencia artificial es permitir a estos sistemas evolucionar
en función de la experiencia adquirida. Aquellos sistemas inteligentes que
tienen limitadas sus propiedades de aprendizaje o bien contienen todo el
conocimiento programado en ellos, pueden repetir los mismos errores tan-
tas veces como se genere la situación en cuestión. Michalski en [80], hace
una profunda reflexión sobre esta idea y aporta diferentes definiciones de
aprendizaje, concluyendo de la siguiente manera: ”Aprender es construir o
modificar representaciones de aquello que está ocurriendo”.

Una de las estrategias de aprendizaje mas conocidas es la de aprendizaje
inductivo. Ésta se caracteriza por su capacidad de inferir conocimiento
a partir del entorno o del conocimiento experto. Aśı, en [78], Michalski
distingue entre dos grandes tipos de aprendizaje inductivo: aprendizaje
a partir de ejemplos (adquisición de conceptos) y aprendizaje a
partir de la observación (generalización descriptiva). En el primero
de ellos, los objetos (situaciones, procesos, etc) son preclasificados por un
experto, en una o más clases (conceptos). La hipótesis de inducción se
puede ver como una regla de reconocimiento conceptual, esto es, si un objeto
satisface la regla, entonces ésta representa el concepto. En la generalización
descriptiva, el objetivo es obtener una descripción general (ley, teoŕıa), que
caracterice una colección de observaciones. Ambas categoŕıas engloban una
amplia variedad de problemas [78].

Entre los diferentes métodos de aprendizaje inductivo y durante el desar-
rollo de esta tesis, nos hemos centrado en uno de los más conocidos, esto es,
el aprendizaje inductivo por medio de reglas. Estas reglas suelen expresar
de forma natural e intuitiva patrones ”no evidentes” existentes en los datos.
Es por esto que conforman una herramienta muy útil en la mineŕıa de datos.
Habitualmente, éstas se representan de la forma:
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if ( attribute1, value1) and ( attribute2, value2) and ... and

( attributen, valuen) then (class, value).

Los datos a partir de los cuales se obtienen estas reglas inductivas son,
por lo general, previamente clasificados por un experto. De ah́ı que este tipo
de aprendizaje se conozca con el nombre de aprendizaje supervisado.

Lamentablemente, en problemas del mundo real, no es fácil encontrar
datos tan perfectamente estructurados o tales que representen situaciones
exactas. Incluso en nuestro lenguaje natural, términos como ”muy alto”
pueden representar valores muy diferentes dependiendo del dominio del
problema, contexto en el que se ubique, etc. Es decir, es muy habitual
que la información de la que se dispone sea vaga o imprecisa. La lógica
difusa [119] aporta soluciones a la hora de manejar esta incertidumbre e
imprecisión, debido principalmente a su simplicidad, felxibilidad e inter-
pretabilidad (proximidad al razonamiento humano). Aśı, en el marco en
el que nos estamos situando, esto viene representado por el uso de reglas
difusas, que van a servir como herramienta para representar conocimiento
impreciso y/o incierto.

De esta forma, tal como se explica en [26], ”las reglas difusas del tipo
si/entonces son reglas donde bien el antecedente, el consecuente o ambos
son difusos en lugar de crisp”. Un ejemplo de este tipo de reglas se muestra
a continuación:

IF Petal Lenght is {VeryLow} and Petal Width is {Medium} THEN

class is IrisSetosa

donde los valores difusos para las variables Petal Length y Petal Width son
{V eryLow,Low,Medium,High, V eryHigh} y class toma sus valores en un
dominio discreto en el conjunto {IrisSetosa, IrisV ersicolor, IrisV irginica}
(Iris database, UCI Machine Learning Repository [8]).

En los últimos aos, se han desarrollado diferentes técnicas que permiten
identificar sistemas basados en reglas difusas (FRBS), algunas de las cuales
usan métodos ad-hoc, redes neuronales, algoritmos genéticos, etc.

En particular, en esta tesis se plantea la idea de trabajar con métodos
que buscan obtener bases de conocimiento formadas por este tipo de re-
glas usando algoritmos genéticos (GAs). Por tanto, se hace uso de lo que
en la literatura aparece con el nombre de genetic fuzzy rule-based systems
(GFRBS) [24]. La principal caracteŕıstica de estos sistemas es su capacidad
de aprender por medio de un proceso evolutivo, obteniendo la base de reglas
que describe el problema.
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Estas bases de reglas o de conocimiento (KB) se pueden generar con
diferentes estrategias, siendo una de las más reconocidas aquella que usa
un enfoque iterativo (enfoque de aprendizaje de reglas iterativo, en inglés
IRL). Éste está basado en el uso del estrategia de recubrimiento secuencial
(SC) [81], junto con algoritmos genéticos para el aprendizaje de reglas di-
fusas. Dicho modelo permite extraer en cada iteración la mejor regla que
posteriormente pasará a formar parte de la base de reglas.

Un algoritmo de aprendizaje de reglas basado en estas ideas es NSLV
[46, 37]. Este algoritmo es la evolución del algoritmo SLAVE [45, 37], que
puede considerarse como el primer algoritmo de aprendizaje de reglas difusas
basado en el enfoque iterativo de aprendizaje de reglas. Aśı, NSLV fue desar-
rollado con la idea de aprender un conjunto de reglas difusas interpretables
y con un alto grado de precisión.

La estrategia de recubrimiento secuencial puede verse como una apli-
cación de las técnicas de escalada a los problemas de aprendizaje. Esta es-
trategia hace uso de una metodoloǵıa ”greedy” para obtener la mejor regla
en cada iteración. Esto permite el uso de un modelo incremental en el que
en cada paso se mejora la solución previa con la adición de una nueva regla.
Sin embargo, también se hereda una de las principales deficiencias de los
métodos de escalada, es decir, se corre el riesgo de que el proceso se quede
bloqueado por alcanzar un óptimo local.

Es conocido que sobre los métodos de escalada se han presentado difer-
entes propuestas para intentar salir de los óptimos locales, dando lugar a
nuevas técnicas derivadas que permiten mejorar el comportamiento de la
técnica original.

En los problemas de clasificación que usan la estrategia de recubrimiento
secuencial, se puede entender que se ha alcanzado un óptimo local cuando
no es posible encontrar una nueva regla útil existiendo aún ejemplos que no
son correctamente clasificados por las reglas ya aprendidas. Este hecho, en
general, resta capacidad de predicción e interpretabilidad al conocimiento
extráıdo por el algoritmo de clasificación.

Una de las técnicas usadas por los métodos basados en ascensión de
colinas para evitar los óptimos locales consiste en ampliar el vecindario de
decisión. La idea de esta técnica es extender la localidad de los caminos
de decisión, tomando una visión de las soluciones sobre un horizonte más
lejano. Una adaptación de esta técnica de ampliación de vecindario al prob-
lema de la clasificación usando recubrimiento secuencial consiste en tener
en cuenta la relevancia indirecta de los atributos de entrada al problema.
Esto es, intentar construir nuevos atributos a partir de los ya existentes que
permitan establecer una nueva forma de explicar los ejemplos del conjunto
de entrenamiento.

Por otra parte, el ”backtracking” es una técnica bastante usada en prob-
lemas de búsqueda para salir de óptimos locales y buscar nuevos caminos
hacia la solución. Esta técnica consiste en deshacer de forma recursiva el
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último operador aplicado y buscar un nuevo camino hacia la solución. La
adaptación de esta idea a los problemas de clasificación, y en especial a aquel-
los basados en SC strategy, es interesante ya que introduce una funcionalidad
valiosa en el proceso de aprendizaje, esto es, las decisiones tomadas pasan
de tener caracter irrevocable a tener caracter revocable. La aplicación de
una idea equivalente a la de backtraking en un algoritmo de clasificación
otorga a las decisiones el caracter de revocable, y por consiguiente, permite
revisar el conocimiento aprendido hasta el momento y establecer caminos
alternativos para encontrar mejores bases de conocimiento.

La idea de esta tesis es precisamente tomar el algoritmo NSLV como
punto de partida y estudiar la aplicación de técnicas, semejantes a las que se
acaban de describir, para adaptar su estrategia de recubrimiento secuencial
con la intención de mejorar la capacidad de extracción de reglas del mismo
con criterios básicos de precisión e interpretabilidad. En la siguiente sección
se hace una descripción más detallada de estos objetivos.

1.6 Objetivos y Aportaciones

De esta forma, el objetivo fundamental de la tesis es extender el modelo
genético iterativo para el aprendizaje de reglas difusas de manera que, por
un lado, se incorpore al proceso de aprendizaje la relevancia indirecta de los
atributos de entrada, y por otro, sea capaz de mejorar el modelo empleado
por NSLV de forma que dotemos al sistema de la capacidad de revisar el
conocimiento extráıdo en cada paso.

Para ello, se han planteado los siguientes subobjetivos (u objetivos par-
ciales):

• Definir un nuevo modelo de regla y un modelo de inferencia apropiados
para gestionar el proceso de construcción de atributos.

• Definir un mecanismo de filtrado de nuevos atributos, aśı como el
proceso de selección de atributos usado por el algoritmo genético.

• Adaptar el SC strategy de forma que permita revisar el conocimiento
extráıdo en cada iteración.

• Aplicar un mecanismo de poda que acote los espacios de búsqueda de
nuevas soluciones.

Este objetivo principal de extender el modelo genético iterativo, lo jus-
tifica en parte la creciente tendencia a trabajar con cantidades ingentes de
datos, muchos de ellos muestras representativas de colecciones aún may-
ores. Estos datos no siempre son homogéneos ni están perfectamente es-
tructurados e incluso a la hora de ser clasificados por un experto, podŕıan
presentar ambiguedad. Es por ello que en los últimos años los algoritmos
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de aprendizaje en general y de aprendizaje de reglas difusas en particular,
han cobrado una creciente importancia. A medida que la extracción de
conocimiento se hace cada vez más necesaria y compleja (dada la compleji-
dad de los datos), los algoritmos de aprendizaje han necesitado evolucionar
y adaptarse para seguir siendo eficientes.

El termino ”eficiente”, hace referencia a un conjunto de argumentos
(parámetros) que vaŕıan entre śı. Puede hacerse referencia, por tanto, a
un algoritmo eficiente en tiempo, en complejidad del conocimiento extráıdo,
en capacidad de predicción, etc. Aśı, lo deseable seŕıa encontrar un buen
balance entre todas estas medidas, lo que supone uno de los principales
problemas a resolver.

En concreto, las técnicas que se proponen se centran en el estudio de
la precisión o capacidad de predicción de la base de reglas, el tiempo re-
querido para obtener el modelo y la interpretabilidad, esta última a nivel de
base de reglas (número de reglas) y a nivel de regla individual (número de
condiciones y aproximación al lenguaje natural de las mismas).

Mejorar la capacidad de predicción de la base de reglas enlaza directa-
mente con la idea de considerar la relevancia indirecta de los atributos de
entrada. Como hemos mencionado anteriormente, en ocasiones los datos,
aunque abundantes, pueden no ser suficientemente representativos, es de-
cir, aportan poca información a la hora de establecer un criterio claro de
clasificación. Una de las técnicas emergentes en los últimos años y que per-
mite trabajar con conjuntos de datos que presentan estas caracteŕısticas, es
la construcción de atributos. Esta técnica consiste básicamente en generar
nuevos atributos a partir de la combinación de las variables originales. El
aporte más importante de la construcción de atributos es la posibilidad de
extraer información adicional, no evidente, además de la individual asociada
a cada variable.

Esta idea de construir nuevos atributos se plantea por medio del uso de
relaciones y funciones en el antecedente de reglas difusas. Ademas del pre-
visible incremento de la capacidad de predicción, es importante mencionar
que se espera una mejora en la interpretabilidad de las reglas, dado que
deben aproximarse más al uso del lenguaje natural. Sin embargo, es posi-
ble que las principales deficiencias vengan de la mano de un incremento en
la complejidad de la base de reglas y del tiempo empleado para obtener el
modelo.

Frente a esta nueva situación, en la que el incremento de la complejidad
de la base de reglas iŕıa en detrimento de la interpretabilidad de la misma,
conectamos con la segunda parte del objetivo en la que extendemos el SC
strategy para que sea capaz de revisar el conocimiento extráıdo y decidir,
en cada caso, si es conveniente sustituir alguna de las reglas previamente
aprendidas. Este nuevo modelo permite reducir la complejidad de la base
de reglas, incluso el numero de condiciones de las mismas, además del tiempo
de ejecución. El inconveniente que presenta esta estrategia de revisión del
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conocimiento es la dependencia en el proceso de aprendizaje de la aparición
de reglas muy generales. Estas reglas, dif́ıciles de reemplazar, conducen hacia
el aprendizaje de reglas muy espećıficas que tienen poca incidencia en la
representación de ejemplos. Es por esta razón, que conviene guiar el proceso
de aprendizaje hacia un comportamiento en el que se retarde lo máximo
posible la aparición de reglas muy generales y se limite la especificidad de
las reglas en etapas finales. Esto lo conseguiremos acotando los espacios
de búsqueda por medio de una condición de completitud, que permitirá
establecer un umbral de cobertura mı́nimo para cada regla extráıda.

Es importante destacar que este modelo de revisión del conocimiento,
establece las bases para evolucionar hacia un nuevo modelo de aprendizaje
incremental.

En las siguientes secciones desarrollaremos con detalle los métodos de-
scritos anteriormente, haciendo especial hincapié en los cambios del modelo
de recubrimiento secuencial de cada algoritmo.

1.7 Descripción de los Caṕıtulos

Esta memoria está estructurada en 7 caṕıtulos, incluyendo el actual, en el
que se introducen las ideas básicas que enmarcan el contexto donde se ubica
el trabajo llevado a cabo. De igual forma, se especifican las principales
motivaciones y objetivos del mismo.

De esta forma, en el Caṕıtulo 2 se aborda el problema de aprendizaje de
sistemas basados en reglas difusas. Además, también se describe el modelo
iterativo de aprendizaje de reglas, que constituye la base en la que se sus-
tentan los métodos aqúı propuestos. Finalmente, en el caṕıtulo se describen
algunos ejemplos representativos de métodos de aprendizaje basados en al-
goritmos genéticos.

El Caṕıtulo 3, se centra en la descripción de SLAVE, un algoritmo de
aprendizaje basado en reglas difusas caracterizado por el uso de un algoritmo
genético dentro de un modelo iterativo. De igual manera, se estudian en
profundidad dos de sus evoluciones más importantes: SLAVE2 y NSLV.
El caṕıtulo finaliza con un exhaustivo estudio experimental donde se resumen
los resultados más destacados.

El objetivo en el Caṕıtulo 4 es introducir el uso de la técnica cono-
cida como construcción de atributos bajo un enfoque de aprendizaje con
genéticos. En este sentido, la construcción de atributos se ha llevado a cabo
mediante dos estrategias distintas: el uso de relaciones en el antecedente de
las reglas difusas y por medio del uso de funciones en el antecedente de dichas
reglas. Como consecuencia, se presentan tres algoritmos: dos correspondi-
entes a la aplicación de cada técnica por separado (NSLV-R y NSLV-F)
y uno más combinando ambas técnicas en el mismo método de aprendizaje
(NSLV-FR). A continuación, se detallan los resultados obtenidos por las

16



1.8. Publicaciones

distintas propuestas junto con un estudio comparativo entre ellas. Final-
mente, la última sección muestra una aplicación real de nuestro algoritmo
de construcción de atributos (NSLV-FR) sobre un problema de imágenes
obtenidas por satélite. Esta última sección es el resultado del trabajo desar-
rollado durante una estancia de tres meses en la Universidad Aristóteles de
Tesalónica (Grecia), bajo la supervisión del profesor D. John B. Theocharis.

El uso de técnicas de construcción de atributos normalmente da como re-
sultado bases de reglas más interpretables. Aqúı el término ”interpretable”
hace referencia a una mayor aproximación al lenguaje natural. Sin embargo,
la realidad es que estas técnicas suelen incrementar el espacio de búsqueda
de soluciones, lo que se traduce en bases de reglas formadas por un mayor
número de reglas, cada una de las cuales hace uso de un número mayor de
condiciones. Este incremento tanto de reglas como del número de condi-
ciones, es contrario a determinadas medidas de interpretabilidad. Debido a
esto, en el Caṕıtulo 5, se propone una modificación del modelo de apren-
dizaje iterativo de manera que el algoritmo incorpore la capacidad de revisar
el conocimiento extráıdo en cada iteración. El caṕıtulo incluye un estudio
experimental en el que el método propuesto (NSLV-AR) demuestra un
buen comportamiento a la hora de trabajar con una amplia variedad de
problemas.

Con el propósito de aprovechar las principales virtudes de las estrate-
gias utilizadas por las distintas propuestas expuestas con anterioridad, en el
Caṕıtulo 6 se define un modelo integrado capaz de combinar técnicas de cons-
trucción de atributos con revisión del conocimiento (SLAVE3). Además de
esto, hay que ubicar en el caṕıtulo tres secciones más como parte del estu-
dio experimental global. En la primera de ellas, se incluye una comparación
completa entre las principales propuestas presentadas en la tesis. La segunda
sección está dedicada a comparar SLAVE3 con otros conocidos algoritmos
de aprendizaje. Por último, en la tercera se establecen los principios básicos
para la definición un modelo de aprendizaje incremental.

El Caṕıtulo 7 contiene las conclusiones que se derivan de los resultados
obtenidos por las distintas propuestas descritas en esta tesis, aśı como sus
principales aportaciones. De igual manera, se aportan algunas considera-
ciones que podŕıan ser potencialmente interesantes en futuras implementa-
ciones.

1.8 Publicaciones

Esta sección está dedicada a enumerar todas aquellas publicaciones en Con-
gresos y Revistas que se han llevado a cabo durante el desarrollo de esta
tesis doctoral.

• Garćıa, D., González, A., Pérez, R., “A two-step approach of feature
construction for a genetic learning algorithm”, IEEE International
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Conference on Fuzzy Systems, 1255–1262 (2011, June).

• Garćıa, D., González, A., Pérez, R., “An iterative strategy for feature
construction on a fuzzy rule-based learning algorithm”, 11th Inter-
national Conference on Intelligent Systems Design and Applications
(ISDA), 1235–1240 (2011, November).

• Garćıa, D., González, A., Leyva, E., Pérez, R., “Un estudio experi-
mental del uso de dominios con intensificaciones”, Congreso Español
sobre Tecnoloǵıas y Lógica Fuzzy (2012, February).

• Garćıa, D., González, A., Pérez, R., “A filter proposal for including
feature construction in a genetic learning algorithm”, International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20
(supp 02), 31–49 (2012, October).

• Garćıa, D., González A., Pérez R., “An empirical study about the
behavior of a genetic learning algorithm on searching spaces pruned by
a completeness condition”, Proceedings of the 2013 IEEE International
Workshop on Genetic and Evolutionary Fuzzy Systems, GEFS 2013 -
2013 IEEE Symposium Series on Computational Intelligence, SSCI,
8–15 (2013, April).

• Garćıa, D., González, A., Pérez, R., “A new iterative model to simplify
the knowledge extracted on a fuzzy rule-based learning algorithm”,
IEEE International Conference on Fuzzy Systems (2013, July).

• Garćıa, D., González, A., Pérez, R., “Overview of the SLAVE learn-
ing algorithm: A review of its evolution and prospects”, Interna-
tional Journal of Computational Intelligence Systems, 7 (6), 1194–
1221 (2014, August).

• Garćıa, D., González, A., Pérez, R., “A feature construction approach
for genetic iterative rule learning algorithm”, Journal of Computer and
System Sciences, 80(1), 101–117 (2014, December).

• Garćıa, D., Gámez, J. C., González, A., Pérez, R., “Using a sequential
covering strategy for discovering fuzzy rules incrementally”, Proceed-
ings of the IEEE International Conference on Fuzzy Systems (2015,
August).
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Chapter 2

Learning fuzzy rule bases
under the Iterative Rule
Learning approach

2.1 Introduction

Generally, FRBSs can be considered as rule-based systems using fuzzy logic
(FL) for representing knowledge related to problems of different kinds. As
it is explained in [23], these types of systems are extensions of classic rule-
based systems, because they work with ”IF-THEN” rules in which both,
antecedent and consequent use linguistic or fuzzy variables. They mainly
present two advantages with regards to the first ones:

• they allow handling vague information, and

• the inference methods are more robust and flexible thanks to the use
of FL.

So, according to the shape of the fuzzy rules and the types of inputs/outputs,
three main classes of FRBSs can be distinguished:

• Mamdani FRBSs: Proposed by Mamdani [72], they are mainly char-
acterized by four elements: a KB, an inference system and Fuzzyfica-
tion and Defuzzyfication interfaces [73]. Likewise, fuzzy rules are com-
posed by input/output linguistic variables, which give a high level of
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interpretability. These linguistic rules present the following structure:

IF X1 is A1 and ... and Xn is An THEN Y is B.

with Xi and Y input and output linguistic variables and Ai and B
linguistic labels with fuzzy sets associated.

Figure 2.1: Structure of a Mamdani FRBS

• Takagi-Sugeno-Kang FRBSs: Proposed by Takagi, Sugeno and
Kang [111, 109], it is a rule-based model in which the antecedent
is formed by linguistic variables and the consequent is represented
through a function applied over the input variables, frequently de-
scribed by means of a lineal function. These kind of rules ara com-
monly described by:

IF X1 is A1 and ... and Xn is An THEN

Y = p1 ∗X1 + ...+ pn ∗Xn + p0.

with Xi and Y input and output variables, Ai linguistic labels with
fuzzy sets associated and pi members of a vector of real parameters.

Figure 2.2: Structure of a TSK FRBS

In Figure 2.2, Yi represents the individual output provided by the i-th
rule and hi refers to the matching degree between the antecedent of the i-th
rule and the inputs to the system.
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Also in [23], two main tasks are highlighted when designing a FRBS.
One of them is related to the inference engine, that is, the operators used
in the inference process while the other one is related to the way to obtain
a knowledge base describing a specific problem. Both tasks directly affects
the accuracy of the FRBS.

At the same time, the available information when designing a FRBS
can be basically of two different types: numeric (observing the system) and
linguistic (using information given by an expert). Thus, in order to obtain
a KB representing the problem, two methods can be applied:

• Expert knowledge: the linguistic labels associated to each variable are
defined by an expert in the domain.

• Learning methods based on numeric information: through numeric
inductive learning methods.

Working with linguistic FRBSs helps improving the interpretability of
rules and, as a consequence, of the model obtained. This makes the results
easily understandable by humans.

2.2 Learning FRBSs

In the literature it is possible to find several examples of fuzzy rule-based
learning algorithms, which can be classified according to the technique they
use for learning in the following groups:

• Ad hoc: considered those which are based in the learning of fuzzy rules
guided by a covering criteria of data belonging to the example set.
According to [17], these methods present some interesting advantages:

– Due to their simplicity, they are easily understandable and inter-
pretable.

– Short time-consuming when learning non high-dimensional prob-
lems.

– They are suitable for obtaining preliminary fuzzy models in the
modeling process.

Some of the most representative works are those published by Wang
and Mendel [116] and Nozaki et al. [88].

• Neural Networks (NNs): focused in the shaping of the biological func-
tions of the human brain, according to [114]. From a technical point of
view, artificial neural networks (ANNs) are defined as computational
models that emerged as mathematical formalization of the structure

21



Chapter 2. Learning fuzzy rule bases under the Iterative Rule
Learning approach

of the brain [4]. Many other definitions can be found in the literature
about this topic [54, 68, 84, 102, 86], but in the first work Vieira et al.
establish a relation among neuro fuzzy systems and NNs. First of all,
some advantages and disadvantages of NNs are noted.

Some of the advantages are:

– The learning capacity.

– The generalization capacity.

– The robustness against noise.

On the other hand, the main disadvantages are:

– It is difficult to interpret the functionality.

– It is difficult to determine the number of neurons and layers

From these advantages and disadvantages it is suggested the combina-
tion of NNs and fuzzy systems in order to increase the positive aspects
of both approaches and reduce the negative ones. Thus, the combina-
tion of techniques involving neural networks and fuzzy logic is known
as neuro fuzzy systems.

Some examples of algorithms using NNs for classification problems are
[63, 61, 76].

• Genetic Algorithms: which are general-purpose search algorithms that
use principles inspired by natural population genetics to evolve solu-
tions to problems [4, 41, 55]. The basic idea is to maintain a chromo-
some population representing potentially useful solutions for a specific
problem [92]. These chromosomes evolve along time through a process
of competition and controlled variation. They also have a goodness
measure (fitness function), which represents the adaptation to the so-
lution they represent. The new individuals are created through genetic
operators such as crossover and mutation operators. GAs have been
successfully applied on searching and optimization problems. They
are specially useful due to their ability to exploit the stored informa-
tion about the searching space. Thus, it is possible to guide future
searchings to better subspaces.

A GA starts with a population of randomly generated chromosomes,
and obtains better chromosomes by applying genetic operators, mod-
eled on the genetic processes occurring in nature. During each iteration
an evaluation function (fitness function) is used to distinguish between
good and bad solutions. The process of going from the current popu-
lation to the next one constitutes one iteration in the execution of a
genetic algorithm.
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Although there are many possible variants of GAs, the main mech-
anisms guiding their behavior imply changing in each iteration the
population according to the three operations below:

– Evaluation of the individual of the population.

– Creation of an intermediate population.

– Creation of a new population using the genetic operators.

These steps are repeated until no improvement is achieved or after a
maximum number of iterations (established by the user) is reached.
Figure 2.3 shows the main structure of a GA [22].

Figure 2.3: General structure of a GA. Figure extracted from [22].

In the last years the importance of the application of GAs in the
learning problems has grown. As it was previously said, the GAs give
an evolutionary nature to the searching of solutions for a problem.
The main disadvantage is to find an uniform representation of the
information of the problem as well as the solutions.
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Considering this idea and as explained in [42] and [23], it is possible
to distinguish among three classic approaches of genetic learning:

– The Michigan approach [56, 12]: The chromosomes are indi-
vidual rules and a rule set is represented by the entire population.
The collection of rules are modified over time via interaction with
the environment. This model maintains the population of classi-
fiers with credit assignment, rule discovery and genetic operations
applied at the level of the individual rule. Figure 2.4 shows the
learning process under the Michigan approach [22].

Figure 2.4: Michigan approach. Figure extracted from [22].

– The Pittsburgh approach [104]: Each chromosome encodes a
whole classifier set. Credit is assigned to the complete set of rules
via interaction with the environment. Crossover serves to provide
a new combination of rules and mutation provides new rules.
In some cases, variable-length classifier sets are used, employing
modified genetic operators for dealing with these variable-length
and position independent genomes. Figure 2.5 shows the learning
process under the Pittsburgh approach [22].

– The iterative rule learning (IRL) approach: A chromosome
codes an individual rule and a novel rule is adapted and added
to the rule set in a iterative fashion in every GA run. The GA
provides a partial solution to the learning problem and, contrary
to both previous approaches, it is run several times to obtain the
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Figure 2.5: Pittsburgh approach. Figure extracted from [22].

complete set of rules. This approach was initially used in SLAVE
[45, 37] and SIA [113] systems.

As it is explained in [16], the role of the GA in the Pittsburgh and
Michigan models is different depending on the level in which it is
applied. Because of that, both approaches suffer some problems.

The main problem in the Michigan approach is related to the conflict
between the individual and collective interests of system classificators.
In this model, the rules cooperate in order to receive a gratification
but they also compete with each other under the GA action.

In the Pittsburgh model the behavior is different, because the repro-
ductive competition is carried out at a ruleset level instead of a single
rule. The inconvenience is that the maintenance and evaluation of
these rulesets needs a higher computational cost (memory and pro-
cessing time).

In the iterative approach, contrary to the Michigan model, only the
best individual is considered as solution, discarding the rest of chro-
mosomes of the population.

Anyway, as the methods presented in this dissertation are based on
the IRL approach, next section will briefly describe some of its most
important points.
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2.3 The IRL approach

This approach was initially created to combine the best characteristics
of the Michigan and Pittsburgh approaches and to solve their main
problems. In this model, the GA gives a partial solution to the learning
problem, reducing the searching space of possible solutions. With the
idea of optimizing this process, the GA is included in an iterative
structure (that was previously referred as SC strategy [81]), which
is the basic scheme of the approach and responds to the following
description:

1. Use a GA to obtain a rule for the system.

2. Incorporate the rule into the final set of rules.

3. Penalize this rule.

4. If the set of rules obtained is adequate to represent the examples
in the training set, the system ends up returning the set of rules
as the solution. Otherwise, return to step 1.

An easy way to penalize the rules already obtained, and going on
learning new rules, consist in removing from the training set those
examples that are covered by the set of rules.

So, in order to implement a learning algorithm based on GAs using
the IRL approach, we need at least the following:

1. A criterion for selecting the best rule in each iteration.

2. A penalization criterion.

3. A criterion for determining when are available enough rules to
represent the examples in the training set.

The first criterion is normally associated with one or several charac-
teristics to measure the goodness of a rule like the consistency or the
simplicity, for example. The second criterion is often associated with
the elimination of the examples covered by the previous rules. Fi-
nally, the third one is related to the completeness of the set of rules
and must be taken into account when the examples in the training set
are sufficiently covered, so that no more rules are needed to represent
them.

2.4 Genetic algorithms based methods

This section tries to collect some representative genetic fuzzy rule learning
algorithms following the IRL approach. A brief description of each algo-
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rithm is given using as a reference the classification appearing in the KEEL
platform [3]. Some of them have been used in the experimental study.

2.4.1 SLAVE

As it was said in Chapter 1, SLAVE was the first fuzzy rule-based learning
algorithm using the IRL approach. It iteratively extracts a single rule, using
a GA. Then, this rule is added to the rule base and the process is repeated
until no more rules improving the rule base are found or a maximum number
of iterations without changes is reached.

It is characterized by the model of rule used and by the rule selection
heuristic criterion based on the consistency and completeness conditions.

A detailed description of SLAVE and its evolutions NSLV and SLAVE2
is given in Chapter 3.

2.4.2 MOGUL

As its name suggests, MOGUL (a Methodology to Obtain Genetic fuzzy rule-
based systems Under the iterative rule Learning approach) [21, 20], works
under the IRL approach and it may be used to generate different types of
fuzzy rule-based systems (FRBSs): approximate Mamdani-type [73], and
TSK-type ones [111].

In order to improve the accuracy of the FRBS, MOGUL handles two
different tasks, the simplification of the knowledge base and the refinement
of the fuzzy rules by adjusting their membership functions.

With this purpose, the postprocessing stage is divided in two others:
the genetic multisimplification process and the evolutionary tuning process.
The first one is capable of generating different definitions that present the
best possible cooperation between the fuzzy rules and thereby the best pos-
sible behaviour. Then, the evolutionary tuning process is applied over these
definitions and the most accurate is the definition given as the output of
the multistage GFRBS. Therefore, a knowledge base that does not present
the best behaviour after the second stage may be the best after the third
stage due to the fact that the new membership function shapes make its
rules cooperative in a better way.

Some other important aspects of MOGUL to take into account are:

• The designer is allowed to build the generation stage by using different
kinds of algorithms, rather than only a GA. It is possible to employ
a non evolutionary inductive algorithm or an evolution strategy [10],
instead of the usual GA. The operation mode is the same, but the
difference is the speed of the generation process, which is higher in the
former case.
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• Several important statistical properties have to be verified by the
knowledge base in order to obtain an FRBS that presents good be-
haviour [44]. The satisfaction of completeness and consistency is con-
sidered in the GFRBSs obtained from MOGUL in order to improve
the behaviour of the generated knowledge bases.

• Focusing on the evolutionary algorithm (EA) search, there is a need
to make use of suitable techniques to develop an accurate trek on the
search spaces tackled in each stage to obtain the best possible solu-
tions. Several factors have to be considered to reduce the search space
complexity and to perform an adequate exploration and exploitation
over it to allow the search process to be effective. MOGUL proposes
the use of many techniques.

• The available knowledge is incorporated into the genetic learning pro-
cess in order to improve its performance by either directly incorpo-
rating partial definitions obtained from expert knowledge or using the
available knowledge to generate de initial population of the evolution-
ary algorithms considered in each stage.

2.4.3 Logitboost

Logitboost [29, 90], is a boosting method that tries to minimize the likeli-
hood of the classifier, which in turn is restricted to a parametric family of
density functions. It is used for learning fuzzy rule based classifiers, using
the following structure:

The algorithm produces rules with a single consequent in two-class prob-
lems, and rules with more than one consequent in multiclass problems. The
search is carried out through a genetic algorithm, that finds the combination
of antecedents (the fuzzy set A) which, in combination with its optimal value
of sj best approximates the residual, in the weighted least squares sense.

2.4.4 GCCL

Ishibuchi et al. present in [62] a fuzzy genetics-based machine learning
method for multidimensional pattern classification problems with continuous
attributes.

The proposed method uses genetic operators such as selection, crossover
and mutation for generating combinations of antecedents of fuzzy if-then
rules. The outline is shown below:

• Step 1: Generate an initial population of fuzzy if-then rules.

• Step 2: Evaluate each fuzzy rule in the current population.

• Step 3: Generate new rules through the genetic operations.
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Figure 2.6: Outline of the basic version of backfitting applied to a logistic extended
additive model or Logitboost. The scheme has been extracted from [90].

• Step 4: Replace a part of the current population with the new gen-
erated rules.

• Step 5: Terminate the algorithm if a stopping condition is satisfied,
otherwise return to Step 2.

According to the results given in the paper, the proposal achieves both
high performance and high comprehensibility and demonstrates to work well
for real-world pattern classification problems with more than ten continuous
attributes.

2.4.5 SGERD

In [74], Mansoori et al. propose a steady-state genetic algorithm to extract
a compact set of fuzzy rules from numerical data, called SGERD. It is gen-
erational and population-based and its generations are finite and bounded
to the problem dimension. Regarding to the selection process only the best
individuals can survive. Each parent produces a finite number of offspring
through reproduction. The rule selection mechanism in SGERD induces
competition among rules by only considering the performance of each rule.
The cooperation among rules is carried out through a heuristic approach
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that selects only the most cooperative rules among the final population for
a rule base.

The algorithm is described through the following steps:

Inputs: m labeled patterns of an n-dimensional M -class problem and a
prespecified number of Q rules per class.

Outputs: Possibly R = M ×Q fuzzy classification rules.

• Step 1: i=1 (i: generationnumber).

• Step 2: Generate all fuzzy rules having only one active antecedent
variable (at most C = 14 × n candidate rules would be generated).

• Step 3: Determine the consequent class of each candidate rule using
a measure for evaluating the confidence of a fuzzy association rule.

• Step 4: Divide the candidate rules into M groups according to their
consequent class.

• Step 5: Rank, in descending order of their fitness values, the candidate
rules in each group.

• Step 6: Choose the best Q rules from each class (i.e., possibly R =
M ×Q rules in total) as the population in the i-th generation. In the
first generation only, choose the second best R rules as the auxiliary
population and put away for mutation.

• Step 7: Increment i, if i > n, goto Step 11.

• Step 8: Use all individuals in the previous generation (i.e., R rules) as
parents and do reproduction (i.e., crossover, mutation, or elitism) on
them. That is, for each parent rule, generate as offspring all fuzzy rules
having one more active antecedent variable than its parent, provided
each new offspring be fitter than its parent. In this case, the number
of offspring will totally be R× 14 at most.

• Step 9: If no offspring fitter than the parents is produced in Step 8,
goto Step 11.

• Step 10: Consider both parents and offspring in Step 8 as candidate
rules (at most C = R+R× 14 rules in total) and goto Step 3.

• Step 11: Use R = M × Q rules (obtained in Step 6 for the i-th
generation) as the final population and stop. The actual length of
these rules is i or less.
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The authors indicate that SGERD demonstrate to be fast enough to be
applied to high-dimensional data set including numerical attributes. They
also list some of its main advantages:

• It is a simple an intuitive algorithm.

• It generates a few general rules that are short, accurate and inter-
pretable.

• Its population size and number of generations are small, so it saves
memory space.

• It is fast and can be applied to high-dimensional problems.

As it was said before, these are only a representative selection of some
algorithms capable to obtain FRBSs using GAs. From now on, this disser-
tation will be focused in the description of algorithms working under the
IRL approach.

Thus, next chapter will present the learning algorithm SLAVE and its
evolutions, one of which, NSLV, has been used as the base algorithm for the
development of the later methods.
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Chapter 3

The learning algorithm of
SLAVE and its evolutions:
SLAVE2 and NSLV

3.1 SLAVE

3.1.1 Motivation

In the previous chapter we placed and introduced SLAVE as a fuzzy rule
learning algorithm using genetic algorithms for learning single rules. Now,
we will deeply describe this algorithm together with some of its most relevant
evolutions.

SLAVE (Structural Learning Algorithm in a Vague Environment) was
first proposed in 1994[51] and later developed in 1996[43] with the goal of
extracting a set a fuzzy rules to represent a problem. At that time there
were not many algorithms for fuzzy rule learning available. The only relevant
proposals were those of Wang and Mendel[116] and Jang[63], published two
years and one year earlier respectively. Both algorithms were focused mainly
on control rule learning (regression problems), where fuzzy modeling had
proven to be useful, so they were not designed specifically for classification
problems. Although these proposals used different methodologies, they had
in common the Mamdani rule model. The main drawback of these proposals
was the limitation in the number of variables they could handle. When
working with a high enough number of variables, the response time becomes

33



Chapter 3. The learning algorithm of SLAVE and its evolutions:
SLAVE2 and NSLV

unmanageable.
Probably the origin of SLAVE lies to a large extent on the weaknesses

of these proposals and the lack of a fuzzy rule learning proposal for clas-
sification problems. When SLAVE was developed, the main objective was
to build a fuzzy rule learning algorithm targeting classification problems,
featuring a performance similar to that provided by the classical learning
algorithms, and able to manage problems involving many variables, missing
data, etc.

3.1.2 What is SLAVE?

SLAVE is a fuzzy rule learning algorithm based on the use of a sequential
covering strategy [81]. A prototypical description of this family of algorithms
is shown below:

SEQUENTIAL-COVERING (Y,X,E,Learned-rules)

• Learned-rules ← {}

• Rule ← LEARN-ONE-RULE (Y, X, E)

• while PERFORMANCE (Rule,E) > 0, do

– Learned-rules ← Learned-rules + Rule

– E ← E-examples correctly classified by Rule

– Rule ← LEARN-ONE-RULE (Y, X, E)

• Learned-rules← sort Learned-rules according to PERFORMANCE (Rule,E)
over Examples

• return Learned-rules

where Y is the target attribute, X is the attribute set, E is the set of exam-
ples and Learned-rules is the output of the procedure containing the final
set of rules. PERFORMANCE is a procedure that measures the contribu-
tion caused by the inclusion of the last rule in the rule base. It measures
the increase in the degree of completeness that causes the last learned rule
over the set of examples E.

To describe the implementation of this strategy in SLAVE, we must first
define the type of rule and the process used to implement the LEARN-ONE-
RULE procedure, together with other details that we mention below.

3.1.3 Description of the main elements

3.1.3.1 DNF model of rule

A very well known extension of a simple rule is the DNF rule, in which
each input variable takes as possible values a set of linguistic terms whose
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members are joined by a disjunctive operator. On the other hand, the
output variable uses a common linguistic variable with a single associated
value. SLAVE employs a fuzzy extension of the DNF rule model:

IF X1 is A1 and X2 is A2 and . . . and Xn is An

THEN Y is B with weight w

where X1, . . . , Xn are the attributes, A = (A1, . . . , An) are the values taken
for each attribute, each Ai is a subset of Di, the fuzzy domain of Xi, Y is
the consequent variable and B is the value of the consequent variable. We
denote this rule as RB(A)RB(A)RB(A). Finally, w is a measure of the weight associated
to the rule.

This rule model has been used in SLAVE to learn the structure of a
rule, since when a variable takes all possible fuzzy values of its domain, it is
not relevant for the consequent and therefore can be removed from the rule.
Moreover, the DNF fuzzy rule model allows compacting the set of rules and
makes it more interpretable.

Figure 3.1: Fuzzy domains for variables X1 and X2.

A specific example of a DNF fuzzy rule is:

IF X1 is {Low or Medium or High} and X2 is {Medium or High}

THEN Y is 2 with weight w

where the fuzzy domains of X1 and X2 are described in Figure 3.1, and Y
takes its values in a discrete domain with class in the set {1, 2, 3}. Since X1

takes all the possible values of its domain, the previous rule is equivalent to:

IF X2 is {Medium or High} THEN Y is 2 with weight w

Moreover, the label {Medium or High} can be interpreted as the convex hull
of both labels [43, 45].
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3.1.3.2 The LEARN-ONE-RULE function

SLAVE uses a genetic algorithm (GA) to implement the LEARN-ONE-
RULE function. The input of this GA is a target attribute, representing
the consequent variable, the complete set of antecedent variables and the set
of examples, and the output is a single rule. In SLAVE, function LEARN-
ONE-RULE is called following a particular order. It sets a specific value of
the consequent class and this procedure iterates until all the rules needed
for describing this class are obtained; then another class is selected and the
process is repeated.

One of the main components of the LEARN-ONE-RULE is the criterion
to extract a single rule. The main idea is to extract the rule that offers the
best representation of the set of examples. The best rule criterion is related
to an extension of the classical conditions of completeness and consistency.
In order to propose a fuzzy version of these concepts we first need a way to
decide whether an example is positive or negative for a rule, and a way to
count the number of examples in both cases.

3.1.3.2.1 Positive and negative examples

The way to calculate the number of positive and negative examples for
a rule RB(A) in SLAVE changed over the years. The first approximation
for calculating the number of positive and negative examples[51] was based
on a possibility measure. Thus, let a and b be two fuzzy sets in a common
referential set U , and * a t-norm. The compatibility between a and b was
defined by the function:

σ(a, b) = supx∈U{µa(x) ∗ µb(x)} (3.1)

where µr(s) is the degree of membership of value s to the fuzzy set r.

In order to calculate the compatibility between two sets of fuzzy sets,
let us consider Dom1 and Dom2, two domains consisting of fuzzy sets in
a common referential set U , and C1 ⊆ Dom1 and C2 ⊆ Dom2, two sets
of fuzzy sets. In this case, the compatibility between both sets follows this
formula:

σ(C1, C2) = supa∈C1supb∈C2σ(a, b). (3.2)

Considering these expressions it was possible to define the following mea-
sure of possibility:

Poss(Ai|ei) =
σ(ei, Ai)

σ(ei, Di)
(3.3)

representing the adaptation between the i-th component of the example
and the fuzzy set Ai, where E = (e1, e2, . . . , en) is an example, Ai ⊆ Di is
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the value of variable Xi, and Di is the domain of this variable. This concept
is critical to the interpretation of two adjacent fuzzy sets as the convex hull
of both.

From these definitions we could obtain two adaptation concepts, one for
the antecedent part and another for the consequent part:

• Adaptation between the example and the antecedent of RB(A):

U(e,A) = ∗i=1...nPoss(Ai|ei). (3.4)

• Adaptation between the example and the consequent of RB(A):

U(e,B) =
σ(class(e), B)

σ(class(e), F )
(3.5)

where e is an example, class(e) represents the consequent of the example,
and * is a t-norm.

Using the previous concepts we can define the set of positive and negative
examples for rule RB(A):

E+(RB(A)) = {(e, U(e,A) ∗ U(e,B))|e ∈ E} (3.6)

E−(RB(A)) = {(e, U(e,A) ∗ U(e,B))|e ∈ E}. (3.7)

where B is the set of all the fuzzy values of Di, except B. Finally, the
number of positive examples and the number of negative examples for fuzzy
rule RB(A) are:

n+E(RB(A)) = |E+(RB(A))| (3.8)

and

n−E(RB(A)) = |E−(RB(A))| (3.9)

respectively, where |.| is the cardinality of a fuzzy subset.

3.1.3.2.2 Completeness and consistency

Completeness and consistency are two conditions typically used to ex-
tract rules. The completeness condition states that every example of some
class must satisfy some rule from this class. On the other hand, the con-
sistency condition states that if an example satisfies a description of some
class, then it cannot be a member of a training set of any other class. Both
conditions provide the logical foundation of algorithms for concept learning
from examples.
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From the classical definitions of completeness and consistency[78], the
following two extensions were defined in[45]. Given an example set E, the
degree of completeness of a rule RB(A) is:

Λ(RB(A), E) =
n+E(RB(A))

nEB

(3.10)

where

nEB
=
∑
e∈E

U(e,B) (3.11)

is the number of examples of class B in the training set.

In relation to consistency, we propose a soft extension of this measure by
allowing some noise in the rules. Thus, to define the soft consistency degree
we use the following set:

4k
E = {RB(A)|n−E(RB(A)) < kn+E(RB(A))} (3.12)

with

40
E = {RB(A)|n−E(RB(A)) = 0} (3.13)

which represents the set of rules having a number of negative examples
strictly less than a percentage (that depends on k) of the positive examples,
and being

4 = P (D1)× P (D2)× . . .× P (Dn)× F (3.14)

where P (χ) denotes the set of subsets of χ, Di is the domain of antecedent
variables, and F is the domain of the consequent variable.

Thus, the degree to which a rule R = RB(A) satisfies the soft consistency
condition is:

Γk1k2(R,E) =


1 if R ∈ 4k1

E
k2n

+
E(R)−n−E(R)

n+
E(R)(k2−k1)

if R ∈ (4k2
E −4

k1
E )

0 otherwise

(3.15)

where k1, k2 ∈ [0, 1] and k1 < k2, and n−E(R), n+E(R) are the number of
positive and negative examples for rule R, respectively.

This definition uses two parameters: k1 is the lower bound of the noise
threshold, and k2 is the upper bound. The above formula gives degree 1 to
rules in4k1

E , that is, rules having an admissible number of negative examples
(measured as a percentage in k1 of the number of positive examples). It gives
degree 0 to rules out of 4k2

E , that is, rules having an excessive number of
negative examples (measured as a percentage in k2 of the number of positive
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examples). If k1 < k2 then 4k1
E ⊆ 4

k2
E , so a linear variation is assigned to

rules between both extremes.

After an experimental study, and from the publication of [48], the values
for k1 and k2 were set to k1 = 0 and k2 = 1. In this case, the above
expression is equivalent to:

Γ0,1(R,E) =
n+E(R)− n−E(R)

n+E(R)
. (3.16)

The criterion to select the best rule given a set of examples in SLAVE is
finally

Λ(R,E)× Γ0,1(R,E) =
n+E(R)− n−E(R)

nEB

. (3.17)

3.1.3.2.3 λ-covering concept

The adaptation between an example and a rule should not be a crisp
concept when working with fuzzy information. In this way, an example has
a degree of adaptation to a fuzzy rule. An important task is to know the
minimum degree of adaptation that should exist between an example and
a rule for considering that the example satisfies the rule. In order to solve
this problem, SLAVE uses a parameter called λ ∈ [0, 1]. The meaning of λ
is exactly the minimum adaptation required to consider that the example
is covered by the rule. λ is an input parameter of the learning algorithm,
and it plays an important role in the design of the algorithm. Low values of
λ imply a low requirement for adaptation between examples and rules, and
this fact has two consequences: The first one is that the system searches
a small number of very general rules, and the second one is that there is
probably too much overlap among rules competing for classifying, which
often leads to less predictability. On the other hand, values of λ very close
to 1 tend to force a very ”crisp” rule behavior in relation to examples, which
results in a greater number of more specific rules.

The concept of λ-covering is used for the removal of examples correctly
classified in the sequential covering algorithm and in the termination condi-
tion.

From the work published in [51] and after an experimental study, the
value of this parameter was set to λ = 0.8.

3.1.3.3 The genetic algorithm used in SLAVE

SLAVE, using the above criterion for selecting the best rule, employs a
genetic algorithm to implement the LEARN-ONE-RULE function. Next we
will describe the main components that define the behavior of the genetic
algorithm.
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3.1.3.3.1 Representation of a population element

Related to the genetic representation, SLAVE uses a binary codification.
If the database has n antecedent variables

X1, . . . , Xn

each having an associated fuzzy domain Di with mi components, the an-
tecedent of a rule is any element of

P (D1)× . . .× P (Dn),

and it is encoded as a vector of m1 + . . . + mn zero-one components. The
value of each component (m1 + . . . + mr−1 + s) is 1 if the s-th element in
domain Dr is a value of variable Xr, and 0 otherwise.

In order to better understand the representation, let us consider the
following example:

Figure 3.2: Domains of variables X1, X2 and X3.

Example 1 Let us assume that we have three variables X1, X2, and X3,
such that their associated fuzzy domains are

D1 = {A11, A12, A13}

D2 = {A21, A22, A23, A24, A25}

D3 = {A31, A32}.
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These domains are represented in Figure 3.2. In this case, a vector
1100010111 represents the following antecedent:

X1 is {A11, A12}, X2 is {A23, A25} and X3 is {A31, A32}.

Since X3 takes all possible values from domain D3, the antecedent is equiv-
alent to:

X1 is {A11, A12} and X2 is {A23, A25}.

3.1.3.3.2 Generation of the initial population

The generation of the initial population is an important aspect in the
process of getting antecedents with a high possibility of guiding the search
process toward good solutions. The procedure used in SLAVE consists in
randomly taking a subset of examples among those with the current con-
sequent that have not been eliminated yet. For each of these examples,
the most specific antecedent with the highest adaptation to the example is
selected.

The procedure for selecting the initial population is similar to the one
used in AQ algorithms[79], as the generation of the initial antecedent for a
class uses examples of this class in the training set as a starting point, and
the genetic process can be considered as a generalization process over the
chosen antecedents.

Example 2 Let X1, X2, and X3 be variables with the associated domain
shown in Figure 3.2, and let (r1, r2, r3) be the randomly selected example
from the training set for a class. The most specific antecedent that best
represents it would be:

X1 is A13 and X2 is A23 and X3 is A31

with the binary representation 0010010010.

3.1.3.3.3 Evaluation function

The main purpose of the function LEARN-ONE-RULE is to find the best
rule verifying the completeness and consistency conditions to the highest
possible degree, and for this task we use a genetic algorithm. According to
that, given a rule R and a set of training examples E, we define the fitness
function of the genetic algorithm in the following way:

fitness(R,E) = Λ(R,E)× Γ0,1(R,E) (3.18)

where Γ0,1(R,E) is the degree to which the rule R satisfies the soft consis-
tency condition and Λ(R,E) is its degree of completeness, previously defined.
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The combination of these two values provides rules that are simulta-
neously complete and consistent to the highest degree. Furthermore, we
use the product t-norm, as the combination through this operator is very
interactive compared to other proposals.

3.1.3.3.4 Genetic operators

The following genetic operators are used in SLAVE to generate new
populations:

• Selection operator

This is a selection model that sorts the elements in the population
using its fitness valuation and assigns a probability selection to each
position in the population.

• Crossover operator over two points

This type of crossover establishes two cutoff points between two ele-
ments in the population and exchanges the central segment, like the
one shown in Figure 3.3.

Figure 3.3: Crossover operator over two points.

• Mutation operator

In the genetic algorithm used in SLAVE, this operator changes one
gene of an element in the population with a certain probability.

Figure 3.4: Mutation operator.

• Generalization operator

This operator tries to clarify the rules returned by the learning algo-
rithm and make them more understandable, and only acts over those
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variables that have an associated ordered domain. We say that an an-
tecedent variable with an associated ordered domain is stable if there
is a single continuous sequence of 1-values in the binary representa-
tion of its value. We say that a variable is unstable if there are several
continuous sequences of 1-values in the binary representation of its
value.

Taking all this into account, the generalization operator tries to obtain
stable variables by removing their unstable regions. The behavior is
shown below (Figure 3.5).

Figure 3.5: Generalization operator.

3.1.3.3.5 Termination condition

The implementation of this condition is necessary to distinguish between
a class that has at least one rule and a class that does not. The idea is to
make a more exhaustive search when we want to find the first rule of a class,
and relax this search process when we already have some rules for a class.

The genetic algorithm returns the best rule for the last population if one
of the following conditions is verified:

• The number of iterations is greater than a fixed limit.

• The fitness function of the best rule in the population does not increase
the value during at least a fixed number of iterations and there are
some other rules for the class we are working with.

• No rules with this value of the consequent have been obtained before,
but the fitness function does not increase the value during a fixed
number of iterations and the current best rule λ-covers at least one
example from the training set.
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3.1.3.4 Other components of SLAVE

3.1.3.4.1 The role of PERFORMANCE

The sequential covering previously described uses a PERFORMANCE
(Rule,E) function, which receives a rule (Rule) and the set of examples
(E ) and measures how representative is that rule over the examples. In
SLAVE this function is related to the concept of completeness. Specifically,
when a new rule is added to the set of learned rules, the completeness
of the set increases. When there is a non-zero increase, the new rule is
considered useful and relevant. The rule is then added to the set of learned
rules and the algorithm starts a new iteration. On the other hand, if the
PERFORMANCE function is equal to zero, the rule is considered irrelevant,
so it is discarded and the iterative process ends (as the rule base can not be
improved anymore).

3.1.3.4.2 Removing examples

Another important aspect of the sequential covering is the removal of
examples correctly classified by the learned rule. In each iteration, SLAVE
removes the examples that were λ-covered by the last learned rule (i.e., the
examples considered as sufficiently well classified).

3.1.3.4.3 Inference Model

SLAVE uses a typical fuzzy inference mechanism for classification: The
winner rule. This model has a simple description.

Let Rules = {RB1(A1), . . . , RBq(Aq)} be the set of rules and e an ex-
ample. The inference engine assigns to the examples the class Bj related to
the associated rule RBj (Aj) verifying

U(e,Aj) ≥ max
0≤i≤q

{U(e,Ai)}. (3.19)

When working with rules, it may occur that two or more rules describing
different concepts can be applied to the same input system. In this case, it
is necessary to establish a way to decide which of the possible rules should
be applied.

The conflict resolution mechanism used in this version is based on rules
confidence. This confidence degree is calculated taking into account the
behavior of each rule over the training set, and it is related to their prediction
capability. Thus, we define the weight of a rule as a value in [0, 1] that
measures the relation between the examples correctly represented over the
training set and the total set of examples covered.
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Let E be a set of examples and RB(A) a rule. We can define the weight
of rule RB(A) as:

ωE(RB(A)) =
n+E(RB(A)) + 1

n+E(RB(A)) + n−E(RB(A)) + 1
. (3.20)

Therefore, the two criteria taken into account to break the tie between
two rules are (in the order of appearance):

• The rule with higher weight.

• The rule that was learned first.

3.1.4 Main advantages of SLAVE

The first advantage of SLAVE is that it works with DNF rules, which
are widespread in the field of classical machine learning (since they have
a greater ability to represent information than the typical rules used in the
soft computing field), and keeps the interpretability of the linguistic rules.

In the area of fuzzy sets, SLAVE also incorporates feature selection, an
important concept that was already used in classical learning. In particular,
SLAVE defines an embedded feature selection, a very useful characteristic
for tackling problems with high dimensionality in the number of attributes.

Finally, SLAVE was defined assuming that the rule learning can be per-
formed independently for each class. This independence allows us to imple-
ment SLAVE in a parallel way for each class of the consequence variable.
Obviously, this results in an improved response time of the algorithm when
working with multi-processor computers.

3.2 SLAVE2

3.2.1 Motivation

3.2.1.1 Disadvantages of SLAVE

SLAVE presented two main disadvantages which justified the appearance of
SLAVE2:

• While it addresses the issue of the partial relevance of input attributes,
the mechanism to detect the irrelevance of an attribute is relatively
weak for two reasons. The first one is that the fitness function does
not encourage the detection of irrelevant variables, and the second
one is that the mechanism to eliminate irrelevant variables is slow
and requires increasing the cycles of the genetic algorithm to converge
towards a solution.
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• The dependence on the λ parameter. This parameter is essential for
the algorithm, since it is related to both the number of rules needed
to describe a concept and the classification ability of the knowledge
acquired. Additionally, this parameter is not easy to estimate a priori,
since it depends on the distribution of the examples in the training
set.

3.2.1.2 Contributions of SLAVE2

SLAVE2[48, 47, 18] was developed with the objective of improving the be-
havior of SLAVE when working with high dimensional data and also with
the idea of improving the interpretability of the rules obtained during the
learning process. To achieve this, it introduces three fundamental changes
with respect to SLAVE:

1. A new criterion to penalize examples.

2. A new codification of the individuals in the population.

3. A new evaluation function.

These changes are aimed to correct the problems identified in SLAVE.
The first one reduces the dependence on the λ-covering parameter. The sec-
ond change will allow us to establish a more efficient mechanism to eliminate
irrelevant variables and thus to be able to work with databases with a large
number of variables. Finally, the third change is motivated by the idea of
giving priority to the most simple and interpretable rules.

3.2.2 Description of the main elements

3.2.2.1 A new criterion to penalize examples

SLAVE was not able to appropriately consider the interaction between the
rule that was just being learned and the rules already learned. The cause of
this problem is that the degree of interaction among rules of different classes
is determined by the value of the parameter λ previously described. Let us
remember that the value of parameter λ is fixed throughout the process.

The main idea implemented in SLAVE2 to fix this problem was to pro-
vide some flexibility in the use of the λ-covering parameter. Thus, to con-
sider that an example is covered by a rule not only requires having an adap-
tation value for the rule higher than parameter λ (SLAVE), it also requires
that the adaptation value of a rule with the correct class exceeds the adap-
tation value for rules of other classes (SLAVE2).

So, the key idea is that now an example has a certain degree of positive-
ness (negativeness) only if that degree is enough to correctly (incorrectly)
classify the example. In this sense, it is necessary to modify the criterion
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for penalizing examples: On each stage of the sequential covering strategy,
once the first class is learned, the penalization criterion is adapted for each
particular example.

The formal description of this penalization model[48] uses the following
values. Let λ+Rules(e) be the best adaptation between example e and the
learned rules that have the same class as the example, and λ−Rules(e) the best
adaptation between example e and the learned rules that have a different
class:

λ+Rules(e) = max{U(e,A) ∗ U(e,B)|∀RB(A) ∈ Rules
and Class(e) = B} (3.21)

λ−Rules(e) = max{U(e,A) ∗ U(e,B)|∀RB(A) ∈ Rules
and Class(e) 6= B}. (3.22)

From these expressions, we can write new definitions for the number of
positive and negative examples of a rule RB(A):

n+E(RB(A)) = |{(e, U(e,A) ∗ U(e,B))}| such that

λ−Rules(e) > λ+Rules(e) and

U(e,A) ∗ U(e,B) > λ+rules(e) (3.23)

n−E(RB(A)) = |{(e, U(e,A) ∗ U(e,B))}| such that

λ+Rules(e) > λ−rules(e) and

U(e,A) ∗ U(e,B) > λ+rules(e) (3.24)

where Rules is a set of rules previously learned, and U(e,A), U(e,B) are the
adaptation values between example e and the antecedentA or the consequent
B respectively, which were previously defined.

So, an example e of the training set E is positive for a new rule RB(A)
if e was incorrectly classified before selecting RB(A) and it can be correctly
classified using this rule. In the same sense, an example is negative for
a rule if the example was correctly classified and the inclusion of the rule
misclassifies it.

Now, during the learning process of a certain class B, the examples
removed from the training set E are those e ∈ E that satisfy

Class(e) = B and

λ+Rules(e) ≥ λ and

λ+Rules(e) > λ−Rules(e) (3.25)

That is, those examples that are correctly classified for class B and their
best match for the rules of their class is equal to, or greater than, λ.
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3.2.2.2 A new rule codification for the genetic algorithm

The genetic algorithm used in SLAVE can obviously eliminate irrelevant
variables. However, the genetic representation of the information used by
SLAVE makes more difficult to eliminate a variable than to add it, and
the system might take a long time to find a good solution. Consequently,
if we want to improve the detection of irrelevant variables, we first need
to change the genetic representation. So, our goal consists in obtaining a
better representation of the genetic solutions to make a feature selection
for each possible rule. The idea is to include information associated to
each antecedent variable in order to discover whether the variable should be
considered as part of the antecedent of the rule or not.

In this way, the second change of SLAVE was a new codification of
rules[47]. This new codification implemented in SLAVE2 tries to improve
the capacity for detecting irrelevant attributes. The idea is to expand the
representation with a new level to codify the variables in the rule. Now each
individual consists of two substructures or levels, one codifying the values
and the other one codifying the variables.

Therefore, a genetic algorithm with two levels maintains two different
representations: One for determining the subset of relevant variables asso-
ciated to a particular class (the variable level) and another one (the value
level) to find the best variable-value assignation for that class. On each
representation, a process of genetic co-evolution is applied, where each level
has its own genetic operators, but the goodness of the solution is calculated
by considering the collaboration between both levels of the individual.

Thus, the variable level codifies the variables from the initial set that
are considered to be relevant for inclusion in the rule. This information
is modified during the evolutionary process. The value level codifies the
particular values not only for the variables considered relevant, but also for
those considered irrelevant, being the latter not considered when calculating
the goodness of the rules.

The separation of these learning tasks (variable learning and value learn-
ing) has proven to be very efficient for problems involving a large number
of variables. When the genetic algorithm obtains the best description for a
concept, it can select a subset of variables and start the search process using
this information. Moreover, during the evolutionary process, the subsets of
selected variables can be changed with the inclusion of new variables or the
removal of some of the variables that were initially selected.

The genetic algorithm has a single population, a single selection crite-
rion and a single fitness function, but it works in a different way for each
component of the chromosome through different genetic operators.

The next section briefly describes the main components of the genetic
algorithm.
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3.2.2.3 The genetic algorithm used in SLAVE2

3.2.2.3.1 Representation of a population element

The representation of an individual in the genetic population is encoded
using two structures (see Figure 3.6): One codifies the relevance of the
variables and the other codifies the variable-value assignments. With this
decomposition, the GA representation has a complex chromosome composed
of two structures: A variable chromosome and a value chromosome. This
division allows us to clearly distinguish between the two different tasks that
are simultaneously carried out by the genetic algorithm (search for the ap-
propriate variables and search for the appropriate value assignment), and
we can associate and apply the most appropriate set of genetic operators on
each structure.

Figure 3.6: Representation of a population individual in SLAVE2.

Let us suppose there are n possible antecedent variables X1, . . . , Xn,
each with an associated fuzzy domain Di containing mi components. In
order to find the best rule, SLAVE2 fixes a class and then searches for the
best antecedent for this class. Therefore, the genetic code must contain
information about the relevant variables of the rule and also information
about the values of these variables:

• A variable chromosome.

• A value chromosome.

The variable chromosome codifies the relevant/irrelevant variables for
the particular rule. It uses a real code with n+ 1 components, in which the
i-th element of the j-th chromosome τC(Xj

i ) (i = 1, . . . , n) contains a real
value between 0 and 1, representing the relevance degree of the i-th variable
with respect to class C, that is, a number indicating the possibility of being
a member of the relevant variable set for a rule. The n + 1 value, named
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Tj , is a real value between 0 and 1 representing an activation threshold
associated to the j-th chromosome. A variable Xi will be considered as
a component of the rule antecedent for a particular class if τC(Xj

i ) ≥ Tj .
Otherwise, the variable will be considered irrelevant for the rule. The next
subsection explains how to obtain these values for the first population. The
genetic algorithm will change these initial values in order to obtain a better
estimation of them.

The value chromosome codifies any elements of P (D1)× . . .×P (Dn) and
it is exactly the same one used in SLAVE.

Example 3 Let us suppose that we have three variables, X1, X2, and X3;
the fuzzy domain associated with each one is shown in Figure 3.2. In this
case, m1 = 3, m2 = 5, and m3 = 2. Let us consider that the relevance
degrees for class C of a population individual are:

τC(X1) = 0.5, τC(X2) = 0.7, τC(X3) = 0.1

Figure 3.7: Combination variable-value for an individual.

If the combination variable-value for both chromosomes is defined by Fig-
ure 3.7 and we take the value 0.6 as the threshold, the antecedent represen-
tation would be:

X2 is {A21, A22, A23}
since

• (110) represents {A11, A12}, but X1 is not included in the antecedent
since it is not activated in the variable chromosome (0.5 ≤ 0.6).

• (11100) represents {A21, A22, A23} and is included in the antecedent
since X2 is activated in the variable chromosome (0.7 ≥ 0.6).
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• (01) represents {A32}, but X3 is not included in the antecedent since
it is not activated in the variable chromosome (0.1 ≤ 0.6).

Obviously, changing the threshold also changes the current description
of the antecedent.

3.2.2.3.2 Generation of the initial population

The initial population is generated following a procedure similar to that
used in SLAVE for the chromosome value. Thus, each value chromosome
is obtained by randomly selecting examples from the class that must be
learned and assigning the most specific antecedent that better covers it.
This antecedent is made up of only one label for each antecedent variable
and the selected label is the one that gives the highest degree of membership
for each component in the example. If we consider the domains and variables
given in Figure 3.2, the generated chromosome would be

(001)(00100)(10)

and would correspond to the following antecedent:

X1 is A13 and X2 is A23 and X3 is A31.

On the other hand, the variable chromosome is built up by using an
information function τC for each variable with respect to the fixed class on
the training examples. The value τC(X) is calculated using the following
expression:

τC(X) =
I(X,Y = C)

H(X,Y = C)
(3.26)

where the information measure I for variables X, Y is given by the following
expression:

I(X,Y ) =
∑
x

∑
y

−p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(3.27)

where x and y are specific values of variables X and Y, C is a fixed class of
the consequent variable, and

H(X,Y ) =
∑
x

∑
y

−p(x, y) log2p(x, y) (3.28)

is the Shannon entropy over two variables, where p is a probability measure.
The value τC(X) measures the degree of dependence or independence

between variable X and the value C of the consequent variable. It can be
interpreted as the relevance value of each variable X with respect to class
C [47].
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When using linguistic variables, it is necessary to define the calculation
of this value through the definition of the probability of X when taking a
value ai on its domain {a1, a2, . . . , as}:

p(X = ai) =
1

m

m∑
j=1

(
µai(ej)∑s
t=1 µat(ej)

)
(3.29)

where m is the number of examples from the training set E, ej is an example
from E, and µw is the membership function of the fuzzy set w.

In this formula it is assumed that all the examples are crisp. The bi-
dimensional probability is similar to the previous formula, but requires com-
bining the information on two variables using a t-norm (denoted by the
symbol *).

p(X = ai, Y = bj) =
1

m

m∑
j=1

(
µai(ek) ∗ µbj (ek)∑
t,h µat(ek) ∗ µbh(ek)

)
(3.30)

where the domain of variable Y is {b1, b2, . . . , br} and the t-norm is defined
by a ∗ b = min{a, b}.

Moreover, we need to define an initial value for the activation threshold.
Tj takes a random value in the following interval:

[mini τC(Xj
i ), maxi τC(Xj

i )].

Both τC(Xj
i ) and Tj are affected by the genetic operators during the

evolution of the genetic algorithm. Therefore, the initial relevance degree,
calculated using the above mentioned formulas, is modified during the evo-
lution process until it reaches an appropriate value.

3.2.2.3.3 A new evaluation function based on the simplicity cri-
teria

As mentioned above, the fitness function in SLAVE combines the com-
pleteness and consistency measures using a product operator. This fitness
function has proven to be very useful for learning on different kinds of
problems[43, 50, 44]. However, with this heuristic criterion, many differ-
ent rules can have the same evaluation function value. The SLAVE genetic
algorithm randomly selects one of these rules. SLAVE2 includes a new mul-
ticriteria method to discriminate among these rules, instead of using random
selection. Among the best rules, the algorithm prefers those which are sim-
pler and more understandable.

This new criterion was included to achieve two different goals:

• To improve the comprehension of the acquired knowledge.

52



3.2. SLAVE2

• To obtain a set of rules with a higher degree of accuracy over unseen
examples.

The following definitions, proposed in [18], will be useful to introduce
new concepts in order to formalize these ideas.

Definition 3.2.1 Let RB(A) be a rule with antecedent A = (A1, . . . , An)
and Ai ∈ P (Di). A variable Xi, with i = 1, . . . , n, is considered to be
irrelevant in this rule if Ai = Di. The number of irrelevant variables of a
rule will be denoted as i(RB(A)).

This definition is based on the treatment of rules used in SLAVE, where
the disjunction of adjacent values is taken as the convex hull of the fuzzy
labels [43, 45].

This definition allows us to propose the concept of rule simplicity: A
rule is simpler than other if it has a lower number of relevant variables.
Therefore, the following definition is proposed.

Definition 3.2.2 Let RB(A) be a rule. The simplicity degree in variables
of this rule is:

svar(RB(A)) =
i(RB(A))

n
(3.31)

where n is the number of possible antecedent variables.

The second concept is presented through the following example.

Example 4 Let X2 be a variable with an associated ordered domain D2

(see Figure 3.2). Let A = {A23, A24, A25} and A′ = {A23, A25} be two
possible values for X2. The first value is equivalent to ”X2 is greater than
or equal to A23”, using the adaptation concept of SLAVE[45], whereas the
second one does not have a similar interpretation. If both values are equally
appropriate for describing the value of a variable, it is preferred the first one
since it is easier to understand. The tie situation is generated by the lack
of examples covered by label A24. The preference of the second antecedent is
directly related to the generalization principle applied when there is a lack of
information.

Let us consider the definition of stable value:

Definition 3.2.3 Given a specific value Ai ∈ P (Di) for variable Xi, we
say that Ai is stable if and only if Ai is composed of a unique sequence of
adjacent values of Di.

Definition 3.2.4 Let RB(A) be a rule with A = (A1, . . . , An) and Ai ∈
P (Di). We define e(RB(A)) as the number of Xi variables required to make
Di an ordered domain and to make Ai or Ai a stable value.
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The use of the complementary in the previous definition is justified since
a unique sequence of adjacent values in the complementary corresponds to
a simple description as NOT A, with A being a stable value. By using this
concept, we can define the concept of simplicity regarding the values of a
rule.

Definition 3.2.5 Let RB(A) be a rule. We define the simplicity degree in
values of a rule as:

sval(RB(A)) =
1 + e(RB(A))

1 + p
(3.32)

where p ≤ n is the number of variables with an associated ordered domain.

With all these elements, we can define a multi-criteria fitness function
(consisting of three components) for rule R[18]:

fitness(R,E) =

= (Λ(R,E)× Γ01(R,E), svar(R), sval(R)). (3.33)

Finally, the selection of the best rule responds to a multi-criteria evalua-
tion function guided by a lexicographical order; that is, the initial criterion
(consistency and completeness) is maintained. In case of a tie situation, the
simplicity criterion in variables is used; if the tie situation remains, then we
appeal to the simplicity criterion in values. Thus, the lexicographical order
uses (max, max, max) as the optimization criteria. That is, to maximize
on the first component, then on the second component in case of tie, and
finally to maximize on the last component in case of a new tie situation.

Example 5 Let us suppose we have three variables X1, X2, and X3 with
domain D1, D2, and D3 respectively (see Figure 3.2). Let us consider a
fixed consequent B and three possible antecedents:

A = ({A11, A13}, {A23, A25}, {A31})

A′ = ({A11, A12, A13}, {A23, A24, A25}, {A31})

A′′ = ({A11, A12, A13}, {A23, A25}, {A31})

with the same value of (consistency × completeness).
In this case, the fitness function uses the previous concepts to decide the

best antecedent:

• Antecedent A corresponds to

X1 is {A11, A13} and X2 is {A23, A25} and

and X3 is {A31}
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with values svar(RB(A)) = 0 and sval(RB(A) = 3
4), since {A11, A13}

is equivalent to NOT (A12).

• Antecedent A′ corresponds to

X1 is {A11, A12, A13} and X2 is {A23, A24, A25} and

and X3 is {A31}
with values svar(RB(A)) = 1

3 and sval(RB(A)) = 1.

• Antecedent A′′ corresponds to

X1 is {A11, A12, A13} and X2 is {A23, A25} and

and X3 is {A31}
with values svar(RB(A)) = 1

3 and sval(RB(A)) = 1
2 .

Then, the best choice would be antecedent A′, as it complies with:

fitness(A) ≤ fitness(A′′) ≤ fitness(A′).

3.2.2.3.4 Genetic operators

As a consequence of the two levels used to codify each individual in
the population, one with real codification (variable chromosome) and the
other one with binary codification (value chromosome), it was necessary to
use different genetic operators for each structure. Taking into account the
ones used in SLAVE, the value level inherited them as it uses the same
codification. As for the variable level, after some experimental tests the
genetic operators that performed better were the uniform mutation, the
crossover, and the selection operators. In summary, the genetic operators
employed for both levels were:

• Variable level:

1. Real uniform mutation.

2. Crossover operator over two points.

• Value level:

1. Binary uniform mutation.

2. Crossover operator over two points.

3. Generalization operator.

It is important to note that we also made some tests using the BLXα

crossover operator at the variable level, but it showed no improvement over
the results obtained using the two-point crossover operator.
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3.2.2.4 Other components of SLAVE2

3.2.2.4.1 Inference model

Apart from the previously described changes, SLAVE2 includes a mod-
ification in the inference mechanism related to the rule weight. In SLAVE,
the weight of the rule is used as a secondary criterion for solving conflicts
in order to select the winner rule (see Section 3.1.3.4.3). However, SLAVE2
uses the classical inference mechanism of the winner rule, but in contrast
with SLAVE, the weight of each rule plays a relevant role in this process. A
simple description of this new inference process is shown. Let us consider:

Rules = {RB1(A1), . . . , RBq(Aq)}

the set of rules, Ω = {ω1, . . . , ωq} the weight associated to each rule, and
e an example. The examples are assigned the class Bj of the rule RBj (Aj)
verifying

j = argmax0≤i≤q{U(e,Ai) ∗ ωi}. (3.34)

In a similar way to SLAVE, the conflict resolution mechanism used keeps
the two criteria mentioned above to break possible ties among the rules, that
is,

• The rule with higher weight.

• The rule that was first learned.

3.2.3 Main advantages of SLAVE2

SLAVE2 provides two important advantages with respect to SLAVE. The
first one is related to a lower dependency on the λ parameter. This fact
causes an increment in the collaboration/competition among rules during
the learning process. So, the rules selected previously in the iterative strat-
egy are used to guide the search mechanism and allow reducing inappropriate
interactions on the knowledge obtained. The second advantage is a signifi-
cant improvement of the embedded feature selection, allowing the algorithm
to obtain simpler and more general rule sets.

3.3 NSLV

3.3.1 Motivation

3.3.1.1 Disadvantages of SLAVE2

The reduction of the dependency on the λ parameter presents a computa-
tional inconvenient, since the algorithm does not admit a parallel version.
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Another important problem is that the algorithm maintains a strong bias
caused by the need to learn the rules in a particular order. This order is
associated with the arbitrary choice of a class before another.

3.3.1.2 Contributions of NSLV

NSLV[46] could be seen as an evolution of SLAVE2 that learns fuzzy rules
without fixing the class of the consequent variable.

This simple description is valid, but hides important nuances that must
be highlighted. On the one hand, many SLAVE2 drawbacks are solved by
not fixing the class during the learning process: The bias due to class selec-
tion order disappears; furthermore, it removes the dependence on parameter
λ, since the consideration that an example is covered by a rule in its class is
determined by the interaction among rules already learned. This parameter
is adjusted automatically as new rules are included in the knowledge base.

Moreover, the inclusion of the rule consequent in the search process
forces a major redefinition of the algorithm, although the required changes
are natural extensions that keep the usual format of SLAVE and SLAVE2.

However, a major problem arises, related to the diversity of the pop-
ulation associated with the genetic algorithm. It is well known that the
convergence of GAs can result in a final population where most of the in-
dividuals are very similar. To solve this problem, the iterative approach
followed in SLAVE and SLAVE 2 resets the initial population to enhance
the rule in the next iteration.

However, alternative solutions are possible, and NSLV uses an alternative
approach. This approach is based on the use of subpopulations. Thus, NSLV
maintains a subpopulation for rules of each class and a combination operator
adapted to maintain the diversity in classes. After completing one iteration
step, the final population obtained by the GA contains the best rule, but
also other promising rules that could be useful and therefore can be used as
the starting point for the next iteration.

The following subsections describe in more detail the implementation of
these ideas in the algorithm.

3.3.2 Description of the main elements

3.3.2.1 The genetic algorithm used in NSLV

The genetic algorithm of NSLV maintains the basic structure of SLAVE2,
with some differences in the representation of individuals, the search mech-
anism (now we are looking for complete rules), the genetic operators, and
the termination condition.
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3.3.2.1.1 Representation of a population element

Unlike SLAVE and SLAVE2, NSLV does not learn classes in a specific
order. That is why the representation of an individual must include a new
level which allows considering the class that is being learned in each moment.
This new level is called consequent level. So, the complete structure of an
individual (and therefore of a rule), would be (See Figure 3.8):

Figure 3.8: Representation of a population individual in NSLV.

The consequent level codifies the value of the classification variable of
the rule. This level is composed by one gene that is represented through an
integer value and is randomly generated in the initial population.

A real example extracted from database Glass[3] that could be helpful
to better understand the codification of each level in the rule representation
is shown in Figure 3.9. The Glass database, created by the USA Forensic
Science Service, classifies 6 types of glass which can be found in a crime
scene, defined in terms of their oxide content (i.e. Na, Fe, K, etc). The first
attribute measures the refractive index, while the remaining attributes in
the antecedent measure the weight percentage in corresponding oxide.

According to this figure, and focusing our attention on the variable level,
we can see that the only variables that exceed the threshold are ”Sodium”
(Na) and ”Magnesium” (Mg), so they are considered in the rule with their
respective value levels. For variable ”Na”, the value level has only one
active position related to label ”Very Low”. Regarding to variable ”Mg”,
the active label is also ”Very Low”. Thus, this codification corresponds to
the rule:

IF Na is {VeryLow} and Mg is {VeryLow} THEN

TypeOfGlass is BuildingWindowsNonFloatProcessed

with weight 0.93.
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Figure 3.9: Example of a rule codification.

The weight is also encoded in the rule, but since it does not change with
the evolution model, it is not included in the representation of a population
individual in the genetic algorithm.

So, the previous rule would be easily interpreted as:

”IF Sodium is Very Low and Magnesium is Very Low

THEN

TypeOfGlass is BuildingWindowsNonFloatProcessed

with weight 0.93”

3.3.2.1.2 Keeping diversity in the genetic population

In order to obtain ”good individuals”, the genetic algorithm must main-
tain the diversity in the different classes. That is, it must ensure that there
are always individuals of all classes. To achieve this, NSLV uses a popula-
tion composed of subpopulations or niches (one for each class to be learned)
and a modified version of a steady state genetic algorithm whose selection
process ensures that no niche disappears from the population.

The selection process is as follows: Two individuals in the population
are selected; the crossover operator on each level is applied between them
obtaining two new individuals. The mutation operator is used for modifying
the new individuals. A standard genetic algorithm replaces these two new
individuals with the two worst in the population. This procedure could lead
to the elimination of all individuals in a niche. Thus, it is necessary to modify
the standard criterion. In this way, the genetic algorithm of NSLV takes an
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alternative approach which consists in replacing the two new individuals
with the two worst of those subpopulations or niches that are not at risk of
being removed from the population. It is considered that a subpopulation
is not at risk of being eliminated if it maintains at least m individuals in
its niche, where m = NPopulation/(Nclasses + 1), NPopulation is the number of
individuals in the population, and Nclasses is the number of classes evolved
in the problem.

This steady state algorithm provides some important advantages. Un-
like SLAVE and SLAVE2, which after each iteration had to calculate the
initial relevant degree of each variable for defining the variable level for the
next population, NSLV defines the variable level of the next initial popula-
tion as the variable level of the last population. This modification has two
advantages:

• A runtime reduction, since the time required for obtaining the initial
relevant degree is expensive when there is a large number of examples
or variables.

• The last population keeps the best individuals found, and this setting
is a good starting point for the next search.

3.3.2.1.3 Genetic operators

As for genetic operators, NSLV uses different ones depending on the level
involved. As occurred with SLAVE2, we can distinguish between:

• Variable level:

1. Real uniform mutation.

2. Crossover operator over two points.

• Value level:

1. Binary uniform mutation.

2. Crossover operator over two points.

• Consequent level:

1. Integer uniform mutation.

3.3.2.2 Other components of NSLV

3.3.2.2.1 Penalization of examples and termination condition

NSLV uses a new module for the penalization of examples. SLAVE
and SLAVE2 removed the examples covered by a rule to avoid considering
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them in a later step. In contrast, NSLV marks these examples so they are
considered by rules of other classes. As the evaluation of a rule is guided by
the examples not covered by any previous one, the marked examples do not
affect any rule positively, but they influence the evaluation of rules belonging
to other classes.

With respect to the termination condition, the iterative process ends
under the consideration of the completeness degree over the whole fuzzy
rule set. Thus, if a new rule is added and the completeness degree does not
improve, then the learning process ends. The final solution obtained by the
algorithm is the complete set of extracted rules, excluding the last one.

3.3.2.2.2 Rule Filtering module

According to our experimental tests, NSLV can add irrelevant rules dur-
ing the learning process. A rule is considered irrelevant if it is not used
at least once for classifying correctly an example. This situation can occur
when using an iterative rule learning approach frequently, since it can hap-
pen that very specific rules are subsumed by more general rules obtained in
later steps. In order to simplify the final rule set, NSLV uses a module for
removing irrelevant rules from the learned rule set.

3.3.3 Main advantages and further improvements of NSLV

As already mentioned, NSLV has two major advantages over its predeces-
sors: the elimination of bias in the presentation order of the classes during
the learning process, and the elimination of the dependence on the λ param-
eter of minimum coverage rules. These two advantages have two practical
consequences for the algorithm. First, we get knowledge bases with fewer
rules, and secondly, the learning time is lower. The reason why we obtain
fewer rules is that, when the algorithm learns all the rules (after fixing one
class), it must ensure that most of the examples of this class are well cov-
ered by the rules. In general, this involves adding additional rules in the
knowledge base, in anticipation of possible conflicts with the rules of the
classes that are to be learned. This does not happen in NSLV, as it does
not have to anticipate future conflicts. The improvement in learning time
is related to the reuse of the final population of an iteration as the initial
population of the next iteration, since this initial population is now closer
to the solutions.
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3.4 Experimental study

In this section, the performance of the previously described methods SLAVE,
SLAVE2, and NSLV1 is studied. We have to stand out that these algorithms
were originally implemented in C++ language and afterwards they have
been translated into JAVA language in order to be included in the KEEL
platform [3].

The experimental study has been carried out considering the settings
described in Chapter A. The statistical tests applied to perform the com-
parisons are the Friedman and Iman-Davenport ones in order to find out the
significant differences among all the mean values. After that, Holm’s test is
used to compare the best ranking method against the remaining methods.
Apart from these settings, the parameters used for each algorithm in this
experimentation are detailed in Tables 3.1, 3.2 and 3.3.

Table 3.1: Specific conditions for SLAVE. NGVL means the number of genes in the
value level.

Specific Conditions SLAVE
Size of genetic population 20

λ parameter 0.8
Number of iterations 500

Mutation prob. (Value level) 0.5/NGVL
Crossover prob. (Value level) 0.1

Table 3.2: Specific conditions for SLAVE2. NGVL means the number of genes in
the value level and NAV means the number of antecedent variables.

Specific Conditions SLAVE2
Size of genetic population 20

λ parameter 0.8
Number of iterations 500

Mutation prob. (Value level) 0.5/NGVL
Mutation prob. (Variable level) 1/NAV
Crossover prob. (Value level) 0.1

Crossover prob. (Variable level) 0.2

It is important to note that NSLV uses a GA based on a steady state ap-
proach, keeping niches (one for each class) in the genetic population. These
niches are the reason why the size of the population have been increased from
20 to 20*n class (n class is the number of classes of the problem) individuals

1These algorithms have been recently added to the KEEL platform (http://keel.es/).
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Table 3.3: Specific conditions for NSLV. NAV means the number of antecedent
variables and n class represents the number of classes of the specific problem.

Specific Conditions NSLV
Size of genetic population 20*n class

Number of iterations 500
Mutation prob. (Value level) 0.01

Mutation prob. (Variable level) 1/NAV
Mutation prob. (Consequent level) 0.01

Crossover prob. 1

(compared with SLAVE and SLAVE2). The use of a steady state approach
requires changing the probabilities associated to the genetic operators.

The analysis is focused in the study of four parameters related to the
fuzzy rule learning algorithms: the accuracy on training and testing sets,
the average number of rules and the time employed to obtain the model.

Considering the results given by the Friedman and Iman-Davenport tests
regarding to the accuracy on training and test sets (tables 3.4 and 3.6), we
note that there are not significant differences among the best ranked al-
gorithm and the rest (p-value > 0.05). Anyway, when looking at the test
parameter, the Holm’s test indicates that NSLV (the best algorithm in ran-
king) is close to achieve statistical differences if compared with SLAVE. In
this sense, this situation would happen with a significance level of 0.077.
With more details, we observe that the best algorithm regarding to the
training parameter is SLAVE and the worst is NSLV, which does not corre-
spond to the test results in which NSLV obtains the best results. This means
that NSLV is the algorithm that least overfits (Figure 3.10). SLAVE2 has
an intermediate behavior, being the best one in training when talking about
average values and not far from NSLV in test results (also talking about
average values, tables B.1 and B.2).

Table 3.4: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (accuracy on training set).

Algorithm Ranking

SLAVE 1.8125
SLAVE2 2.0375

NSLV 2.15

Friedman p-value Iman-Davenport p-value

0.306895 0.31065665038
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Table 3.5: Adjusted p-values (accuracy on training set).

i algorithm unadjusted p pHolm
1 NSLV 0.13121 0.262421
2 SLAVE2 0.314305 0.314305

Table 3.6: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (accuracy on testing set).

Algorithm Ranking

SLAVE 2.25
SLAVE2 1.9625

NSLV 1.7875

Friedman p-value Iman-Davenport p-value

0.1129 0.112263862167

Table 3.7: Adjusted p-values (accuracy on testing set).

i algorithm unadjusted p pHolm
1 SLAVE 0.038606 0.077212
2 SLAVE2 0.433848 0.433848

Table 3.8: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (average number of rules).

Algorithm Ranking

SLAVE 2.5875
SLAVE2 2.15

NSLV 1.2625

Friedman p-value Iman-Davenport p-value

0 0.00000000005

Table 3.9: Adjusted p-values (average number of rules).

i algorithm unadjusted p pHolm
1 SLAVE 0 0
2 SLAVE2 0.000072 0.000072

On the other hand, referring to tables 3.9 and 3.11, we can see that
NSLV obtains significant differences in rules when compared with SLAVE
and SLAVE2 (p-value 6 0.05). In Figure 3.11, it is shown a comparative
graphic representing the number of rules obtained by the different methods.
With regard to the time parameter, NSLV significantly wins SLAVE and
SLAVE2 (again, both p-values are under the α value). Figure 3.12 shows
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Figure 3.10: Difference training-test for each one of the algorithm involved in the
comparison: SLAVE, SLAVE2 and NSLV.

Table 3.10: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (time employed to obtain the model).

Algorithm Ranking

SLAVE 2.1125
SLAVE2 2.8125

NSLV 1.075

Friedman p-value Iman-Davenport p-value

0 0

Table 3.11: Adjusted p-values (time employed to obtain the model).

i algorithm unadjusted p pHolm
1 SLAVE2 0 0
2 SLAVE 0.000003 0.000003

how NSLV achieves better results than the other two algorithms in almost
all databases. Its behavior is more regular as it has fewer peaks and its line
appears under the lines of SLAVE and SLAVE2 in almost all cases. If we
focus on average values (tables B.3 and B.4), we realise that the number of
rules achieved by SLAVE is around four times greater than those obtained
by NSLV. Moreover, the time employed by SLAVE in order to get the model
is almost ten times greater than NSLV, and SLAVE2 invests more than twice
the time needed by NSLV to obtain the model. Anyway, these conclusions
based on the average results are strongly influenced by the results obtained
by the SLAVE algorithm in the splice dataset. In this dataset SLAVE
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presents very poor results and this fact conditions the average values. If
the splice dataset would not be considered, the global conclusions would
be maintained, but the differences between SLAVE and SLAVE2 would be
much closer.

Figure 3.11: Comparison among the number of rules achieved by SLAVE, SLAVE2
and NSLV.

Figure 3.12: Time measured in seconds that SLAVE, SLAVE2 and NSLV employs
to obtain the model.
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Summarizing, the ability of removing the bias caused by the order in
which classes are learned allows NSLV to reduce the overfitting and improves
the prediction capability (greater accuracy in testing set), when compared
with SLAVE and SLAVE2. Moreover, it also allows reducing the final num-
ber of rules of the model in a significant factor. One more important point
is that, unlike SLAVE and SLAVE2 (which are generational algorithms),
NSLV is a stationary algorithm, which explains why the overall time (refer-
ring to mean values), employed to generate the model is much smaller.

3.5 Conclusions

In this chapter we have described the evolution of the SLAVE learning al-
gorithm according to the inflection points during its development.

SLAVE is the oldest of the three proposals, and defines the basic princi-
ples and the general framework that were used by later extensions. It was
one of the first algorithms that represented knowledge using fuzzy rules,
with a structure similar to that of the classical learning algorithms.

SLAVE2 is the next step in the evolution and incorporates two interesting
aspects: A new criterion for considering the positivity and negativity of the
examples, and model feature selection built in the genetic algorithms.

NSLV is the most recent version, and the first to learn complete rules
without having to fix the consequent variable. Furthermore, it uses a steady
state genetic algorithm and a niche structure in the population to reduce
the learning time.

The experimental study shows that NSLV presents the best overall be-
havior, being the one obtaining the best results in accuracy and also with
less overfitting. It also achieves the best results in number of rules and time
with significant differences regarding to the other two algorithms, SLAVE
and SLAVE2. Simultaneously, talking about average values, SLAVE2 ob-
tains good results in accuracy, being much better than SLAVE in rules and
time parameters.
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Chapter 4

Feature construction in a
genetic learning algorithm:
NSLV-R, NSLV-F and
NSLV-FR

4.1 Contribution of feature construction under the
learning approach

In Chapter 1, one of the main objectives mentioned in relation to this work
talked about the indirect relevance of the input attributes. This fact is
considered through an elemental concept called feature construction.

In the learning field, we can define the feature construction [11] as the
process of constructing new features by the combination, through operators
or functions, of the original variables of the problem. The main objective is
to extract hidden useful relationships among them in order to better describe
the target concept.

Feature construction methods are mainly used to achieve two different
goals: on the one hand, for reducing data dimensionality and, on the other
hand, for improving the prediction performance. As it is said in [106], the
building of automatic feature construction methods keeps being , in nowa-
days, a challenge. Particularly, we look for methods which:
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• Generate new features improving the prediction capability.

• Are efficient from a computational point of view.

• Are easy to generalize.

• Allow easy addition of domain knowledge.

Thus, regarding to feature construction, many different methods have
been defined. In order to classify them according to the techniques they use
for defining and searching the feature space (as it is proposed in [106]), we
can distinguish among three main groups: related to decision trees, related
to genetic algorithms and related to ILP (Inductive Logic Programming)
based methods.

4.1.1 Decision trees

Most of the early feature construction methods were based on decision trees.
In this sense, one of the first works was published by Pagallo [91], in which
the learning algorithm FRINGE is proposed. This algorithm uses a find-
feature procedure for generating new features as boolean combinations of
the variables that occur near the fringe of the tree. The set of new features
is added to the variable set and the process is iteratively repeated until no
new features are added or a maximum number of variables is reached. In [77]
it is proposed a system, called CITRE, for performing constructive induction
on decision trees using simple domain knowledge. It behaves in a similar
way than FRINGE, but differs in the use of the domain knowledge, feature
generalization and feature evaluation. Feature construction is performed
through the use of disjunctive regions. CITRE collects the feature-value
pairs at nodes along these disjunctive regions and proposes all pairs of the
binary feature-value pairs as candidate operands. The domain knowledge is
limited to simple facts, defining permissible relationships among construc-
tive operands. Regarding to the generalization operator, it works in the
following way: if a constructor’s operand consists of two features having
the same value, a generalized featured appears with its values replaced by a
variable. Finally, the evaluation of each feature is measured in terms of the
information gained by using the feature to split the whole training set into
disjoint subsets.

A later work presented by Hu and Kliber [59] proposes a preprocessing
method (independent of the learning algorithm) called GALA, an approach
to constructive induction which generates a small number (1 to 3 on average)
of new attributes. The method finds new features that are outside the space
generated by standard machine learning algorithms. They demonstrate a
significant improvement in several artificial and real-world domains and no
degradation in accuracy in any domain.
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Another related work is shown in [75], where Markovitch and Rosen-
stein describe an algorithm, called FICUS, which receives as input a set of
classified objects, a set of attributes, and a specification for a set of con-
structor functions that contains their domains, ranges and properties. The
algorithm produces as output a set of generated features that can be used
by standard concept learners to create improved classifiers. It maintains a
set of its best generated features and improves this set iteratively. The algo-
rithm also defines a language for formulating specifications of representation
schemes (Feature Space Specifications, FSS), which define the space of the
constructed features that will be searched by the generation algorithm.

4.1.2 ILP based methods

According to the definition given in [106], Inductive Logic Programming is
used for developing predicate descriptions from examples and background
knowledge. ILP based feature construction methods can provide a gener-
alized framework for incorporating background knowledge into the feature
generation process. In [105], it is given another definition from a function-
ally point of view. Thus, ILP can be largely characterized by two classes
of programs. The first one, predictive ILP, is concerned with constructing
models (set of rules, firs-order variants of classification, regression trees), for
discriminating accurately among two set of examples (”positive” and ”neg-
ative”). The second category, descriptive ILP, is concerned with identifying
relationships among the background knowledge and examples, without a
view of discrimination. Anyway, many other definitions and more detailed
information regarding to ILP can be found in the literature, such as in [82].

One of the early exponents in the use of first-order predicates as features
was the LINUS program [71]. Other examples can be found as [105], where
Specia et al. investigate the use of ILP for Word Sense Disambiguation
(WSD) in two different ways: (a) the construction of models that can be
used directly to disambiguate words and (b) the construction of interesting
features that can be used by standard feature-based algorithms such as
SVMs to build models to disambiguate verbs. They call both kind of models
”ILP models” and ”ILP-assisted models” respectively.

On the other hand, in [64], Joshi et al. introduce the term ”propo-
sitionalization” as the process of feature construction by an ILP system.
They explain that this is usually used as a pre-processing step (in which
a large set of possibly useful features are constructed first and then a pre-
dictive model is constructed) or by tightly coupling feature construction
and model construction (in which a predictive model is constructed with
each new feature and only those that result in a significant improvement in
performance are retained). In this same work they investigate the applica-
bility of using a randomised search technique for feature construction using
ILP. Going on with this idea, in [96], Rückert and kramer introduce a new
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margin-based approach to first-order rule learning. The approach uses a
novel optimization criterion, Margin Minus Variance (MMV) that is partic-
ularly well-suited because it can be calculated in time linear in the number of
examples and allows the derivation of error bounds for capacity control. An-
other work is [70], where Kuz̆elka and Z̆elezný describe an algorithm called
RelF (Non-redundant Relational Feature Constructor), able to construct a
set of tree-like feature set by identifying building blocks (smaller conjunc-
tions) out of which all features can be composed. The main assumption on
which the algorithm is built is that the features it constructs, when viewed
graphically, correspond to hypertrees while blocks correspond to their sub-
trees. The feature construction strategy is bottom-up so that the initial
set of blocks correspond to all leaves of possible features. Blocks are then
progressively combined together with further connecting atoms into larger
blocks and eventually into features. Also, in [14], Bresso et al. propose as
a first contribution to apply ILP on a logical representation of protein 3D
patches corresponding to positive or negative examples of Protein-Binding
Sites (PBS), in order to induce a general definition of the PBS concept.
As a second contribution, they propose an approach using Formal Concept
Analysis for effective interpretation of reached ILP rules with the possibility
of adding domain knowledge. Just for finishing with the examples of the
use of propositionalization, in [28] it is proposed a fast system for relational
learning based on a new form of propositionalization, called Bottom Clause
Propositionalization (BCP). Bottom clauses are boundaries on the hypoth-
esis search space and are built from a random positive example, background
knowledge and language bias. The idea of using BCP for learning is due to
their attempts to represent and learn first-order logic in neural networks.

4.1.3 Genetic algorithms

The use of genetic algorithms for feature construction allows the iterative
extraction of new features from the set of initial variables. As a consequence,
these new features help to iteratively improve the prediction capability of
the model. The main characteristic of evolutionary algorithms is the use of
genetic operators (crossover, mutation, etc.), for modifying the population
in order to obtain better individuals during the learning process.

In this sense, one of the first works that used feature construction by
means of genetic algorithms was [112], in which this strategy is employed by
an induction system in order to be tested on difficult texture classification
problems.

In [67], Krawiec proposes an extended approach of the framework of GP
(Genetic Programming)-based feature construction, where the useful com-
ponents of features are preserved during an evolutionary run. The function
set is composed by +, - , *, %, log, arithmetic comparison operators (LT,
GT, EQ), the conditional expression (IF) and the approximate equality op-
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erator (EQap). This extended approach proved to statistically outperform
the standard approach on some benchmark problems. One more related
attempt is shown in [89], where Otero et al. propose a GP algorithm devel-
oped for attribute construction. The main motivation is that it performs a
global search in the space of candidate solutions. The GP constructs new
attributes out of the continuous (real-valued) attributes of the data set being
mined. They also evaluate the ability of the attributes constructed by the
GP in reducing the error rate associated with the original attributes. They
do that by comparing the error rate obtained by C4.5 using only the original
attributes with the error rate obtained by C4.5 using both the original and
the new attributes constructed by the GP.

Some other works have also been published as [103], where an approach
to improve the performance of the induction algorithm C4.5 is presented.
Smith and Bull use GP and a Genetic Algorithm (GA) to construct new
features. In this context, they use GP individuals consisting of a number
of separate trees/automatically defined functions (ADFs) [66] to construct
features for C4.5. The GA is then used to select over the combined set of
original and constructed features for a final hybrid C4.5 classifier system.
In [99], Shafti et al. propose a new fitness function based on Minimum
Description Length (MDL). The MDL principle establishes that the optimal
solution is obtained by selecting a theory that minimizes the sum of the code
lengths corresponding to theory and errors. This fitness is incorporated in
MFE2/GA [100] to improve its accuracy. Finally, this system is compared
with other ones based on Entropy or error-rate fitness.

Considering different real problems solved through genetic programming,
we can find some examples as [5], in which Alfred proposes an algorithm
called DARA designed to summarize data stored in nontarget tables by
clustering them into groups, where multiple records exist in nontarget ta-
bles that correspond to a single record stored in the target table. In [6], a
methodology for obtaining accurate and comprehensible classification rules
of small and huge datasets is presented. It uses hybrid techniques repre-
sented by knowledge discovering. Finally, in [65], Kamath et al. explore the
use of Evolutionary Algorithms (EAs) to search in a large and complex fea-
ture space. The goal is to obtain features able to significantly improve the
classification accuracy of Support Vector Machine (SVM). This approach is
evaluated on the difficult problem of DNA splice site prediction.

Once we have seen different ways in the use of feature construction,
we have to say that we have focused our efforts in the implementation of
this technique through genetic algorithms. So, next sections are devoted to
describe two methods that include feature construction by means of relations
and functions as a part of the antecedent of a fuzzy rule.
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4.2 Learning fuzzy relational rules

4.2.1 Motivation

In the previous section we analysed the main contributions of the feature
construction approach in the learning field. Once we are inside of feature
construction, we can deal with this technique through different methods. As
we are addressing in this section, now we are focused in the use of relations
in the antecedent of a fuzzy rule. This kind of rules, also called Fuzzy
Relational Rules (FRR), is characterized by making flexible partitioning of
the input space. Thus, the relations as a part of a fuzzy rule let us to
obtain models with a good trade-off between accuracy, interpretability (at
rule level) and simplicity in the description of the problem.

Related to this topic, we can find several works using relations as a
method of feature construction. In [38] Gaweda and Zurada present an
approach to fuzzy rule-based modeling of nonlinear system from numerical
data. They introduce interpretable relational antecedents that incorporate
local linear interactions between the input variables into the inference pro-
cess. A later study is proposed in [1] by Akbarzadeh et al. in which an
evolutionary system for derivation of fuzzy classification rules is presented.
The system uses two populations for discovering classification rules. The
first one for encoding and the second one keeps the membership functions
definition for fuzzification of continuous attributes and the relational oper-
ators between the attributes that have the same type.

Some more recent works can be cited as [97] where Scherer defines a ba-
sic relational fuzzy model to be applied on relational neuro-fuzzy systems.
These kind of systems are versatile and can be used in various tasks of clas-
sification, modelling and prediction. In [87] Nojima and Ishibuchi examine
the use of fuzzy relational conditions with respect to the relation between
two input variables. They define three simple fuzzy relational conditions
for pattern classification to demonstrate the usefulness of generated fuzzy
relational rules in their multiobjective genetic fuzzy rule selection.

According to the ideas previously exposed, in next section we briefly
describe the most important components of a learning algorithm that uses
relations in the antecedent of fuzzy rules.

4.2.2 The learning algorithm NSLV-R

The main contribution of the relations in the antecedent of fuzzy rules is to
extract useful information from the comparison between the input variables.
They improve the interpretability from a human point of view and also
increase the simplicity of each rule (reducing the number of conditions in
the antecedent). In this sense, in order to incorporate this functionality, a
learning algorithm called NSLV-R [15, 49] was developed. Thus, NSLV-R
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is a fuzzy rule learning algorithm that inherits the basic properties of its
predecessor NSLV [37] and introduces relations among the initial variables
in the antecedent of a rule.

This algorithm introduces three main changes with respect to NSLV:

• The genetic representation of a rule.

• An index set to handle the most interesting relations, called Catalog
of Relations (CR).

• A new criterion for calculating the number of positive and negative
examples to a rule.

These changes are devoted to manage the relations in the learning pro-
cess. The first one is associated to a new substructure to encode the active
fuzzy relations appearing in the rule. The second change is related to the
storage of the most interesting relations able to be considered in a rule.
Finally, the third one is needed in the definitions of consistency and com-
pleteness in order to be adapted to the new structure of the rules.

Thereby, an example of the kind of rules we are interested in, is shown
below:

IF X1 is aproximately equal to X2 is Low and X3 is High THEN Y is Low

where aproximately equal to is a fuzzy relation that would generate the par-
tition shown in Figure 4.1.

Figure 4.1: Partition generated by the fuzzy relation X is aproximately equal to Y.
This figure has been taken from [15].

4.2.2.1 First change: The genetic representation of a rule

In Section 3.3, we described, among others, the different levels in the genetic
representation of a rule for NSLV. Basically, we had three: the variable level,
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the value level and the consequent level. Now, NSLV-R adds a new level to
encode the active fuzzy relations called relation level (Figure 4.2).

• The relation level. This level represents the relation set included in
the antecedent of the rule. Each gene codes a possible relation of the
catalog of relations (CR). It uses an integer coding where 0 indicates
”no relation” and any other positive value refers to the index of the
relation in the catalog. In the initial population, all individuals begin
with all the genes of this level with zero value, that is, at the beginning
of the genetic process, no relations are considered in the chromosome.

Figure 4.2: The genetic coding in NSLV-R.

4.2.2.2 Second change: Catalog of Relations (CR)

The Catalog of Relations can be seen as a storage structure that works as
an index set. The idea associated to the use of this structure is to contain
the most promising relations selected after a filtering process. The filtering
mechanism is carried out in two stages. Thus, in the first stage relations
are discarded through an approach based on the overlapping between the
domains. Every two variables with continuous domains (discrete ones are not
considered) are compared. If the degree of overlapping exceed a threshold,
then any relation between both variables would be candidate to be part of
the CR.

In the second stage, the filter depends on an information measure in order
to select only the most relevant relations. This information is associated to
each candidate relation selected in the previous stage.

In Figure 4.3, it is shown an example of the representation of the relation
level together with the content of the CR.
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Figure 4.3: The genetic coding in NSLV-R and the CR.

4.2.2.3 Third change: Criterion for calculating the number of
positive and negative examples to a rule

Taking into account the change in the representation of an individual of the
population, the calculation of the number of positive and negative examples
to a rule must be adapted in the definitions of consistency and completeness.

So, given a fuzzy relational rule, RB(Ã, H), the number of positive ex-
amples to this rule is defined as the cardinal of the fuzzy set of positive
examples to the rule. This set is defined using a membership degree to each
example over the concept ”to be positive” to a rule. This membership degree
is defined by

τ(Ã1, . . . , Ãn, H) ∧ B(y)

maxB′B′(y)

representing the simultaneous adaptation of the example to the antecedent
and the consequent of the rule. The number of negative examples is the
cardinal of the fuzzy set of negative examples to the rule. The membership
degree of each example to this set is defined by

τ(Ã1, . . . , Ãn, H) ∧
maxB′ 6=BB

′(y)

maxB′B′(y)

representing the adaptation to the antecedent and any of the other possible
values of the consequent variable different to that considered in the rule.

In the previous formulation Ãi represents a set of fuzzy values on the
universe Ui, B is the consequent value and H ⊆ CR is an index subset
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defining the concrete relation part of the rule, where:

τ(Ã1, . . . , Ãn, H) = Ã ∧ {∧(i,j,k)∈HRk(xi, xj)}

and
Ã = Ã1(x1) ∧ . . . ∧ Ãn(xn).

Taking the previous information under consideration, the final rule model
used in this approach would be given by:

IF X1 is Ã1 ∧ . . . ∧Xn is Ãn ∧ {∧(i,j,k)∈H [(Xi, XJ) are Rk]}

THEN Y is B

being Rk the k-th relation in the catalog involving the antecedent variables
Xi and Xj .

These are, basically, the most significant changes that NSLV-R intro-
duces with respect to NSLV. Anyway, in Section 4.4, we will explain with
more details the mechanism used in the learning process to handle the rela-
tions. In Figure 4.4, we can see a global view of how NSLV-R works.

Figure 4.4: Global view of NSLV-R.

4.3 Learning fuzzy rules with functions in the an-
tecedent

4.3.1 Motivation

The success of any classification algorithm depends on its ability to represent
any inherent pattern in the data set and, hence, depends on the set of
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predictive attributes available, or its attribute vector. If the set of available
attributes does not include one or more powerfully predictive attributes,
this will limit the performance of classification algorithms that are unable
to combine these attributes in any way. Thus, one approach to overcome
this problem is to allow the induction process the flexibility to identify and
construct these powerfully predictive combinations.

We have just seen that the use of relations in the antecedent of a fuzzy
rule allowed to obtain models with a good interpretability and accuracy
but maintaining the simplicity in the description of the problem. This is
a consequence of the flexible partitioning of the input space that the FRR
make.

Now, we are interested in addressing the feature construction through
the use of functions in the antecedent of fuzzy rules. We want to explore the
influence of adding to the antecedent of a fuzzy rule non-trivial information
derived from the combination of the initial set of variables.

In the literature, it is possible to find some examples in which this way of
feature construction is used. For instance, in [110] Tackett developed a GP
to construct new features from features extracted from segmented images
relating to target identification. Classification trees were constructed using
the GP features and compared with more conventional methods. The GP
achieved a higher performance with reduced computational effort. In [83],
Muharram and Smith use four different fitness functions in the attribute
construction with Genetic Programming (GP), applying four different clas-
sifiers, thoroughly analysing the evolved variables and resulting trees and,
finally, comparing the GP used in feature construction with GP used as a
”decision tree classifier.

On the other hand, in [25] Dor et al. presents a feature discovery ap-
proach called FEADIS, which tries to iteratively extract new features formed
by different mathematical functions like ceil, mod, sin, etc. The main ob-
jective is to improve the learning performance of the extracted features.
They experimentally demonstrate that FEADIS is an efficient resource when
working across datasets with both nominal or numeric target feature and
periodical datasets.

Commonly, it is easy to find many problems in which the number of func-
tions and also of attributes can be very large. As a consequence, it could
be interesting to use a mechanism to reduce possible combinations between
initial variables through the set of defined functions. The main idea used
in this proposal is to define a filter model, based on the use of information
measures so that the genetic algorithm only explores the particular new fea-
tures that may be more interesting to the final identification of the system.
Therefore, a key problem in the scope is the complexity added by the use
of a new model of rule. Initially, the number of functions and attributes
that could be used in these functions would make that the possible number
of particular functions to be taken into account by the algorithms would be
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too large, and the benefit of using new attributes would not be profitable
given the time required. Thus, previously to use new features in the learning
algorithm we need a procedure to extract the most relevant combinations
of functions and features for the particular problem. This procedure makes
use of an information measurement that evaluate the relevance of each new
attribute in relation to the consequent variable. Then the procedure selects
the most relevant new variables, which are then supplied to the learning
algorithm, which performs a special treatment of these variables. The ba-
sic idea is to include a new variable only when there is a clear improvement
caused by this inclusion. The set of new attributes is called Catalog of Func-
tions (CF). Since this set is obtained in a previous step to its use by the
learning algorithm, we are really using a filter feature construction. Finally,
the learning algorithm takes the Catalog of Functions and the training ex-
ample set for obtaining a knowledge base representing the system. Figure
4.5 shows a graphical representation of the procedure.

Figure 4.5: Filter feature construction.

4.3.2 Inclusion of functions in the antecedent of a fuzzy rule

According to the ideas previously exposed, now we want to improve the ca-
pacity of knowledge representation of fuzzy models allowing that a function
can be included as part of the description of a rule. To extend the rule
model is easy since a function can be considered like other new variable.
For example, let’s consider {X1, X2, X3} three antecedent variables and Y a
consequent variable. The fuzzy domain for all the variables is described in
Figure 4.6. If we want to use the following rule (the definition of the final
rule model will be given in (4.7)):

80



4.3. Learning fuzzy rules with functions in the antecedent

IF SUM{X1, X2} is Low and X3 is V eryHigh THEN Y is Medium

it is necessary to define the fuzzy domain of the new variable SUM(X1, X2)
representingX1+X2, and Low must be a value of this domain. Obviously, we
can interpret that Z = SUM(X1, X2) is a new linguistic variable, therefore,
to work with functions in the antecedent of the rule does not modify the
traditional inference process of the linguistic rules.

Figure 4.6: Domains associated to the variables of the example

In order to define the fuzzy domain of the new attributes the general
process is so simple. Let’s suppose that the following variables Xi, Xj , are
defined in a fuzzy bounded domain

Ui = [infi, supi]

and
Uj = [infj , supj ]

respectively. The range for the resultant variable Z, that represents the
function f(Xi, Xj), will depend on the operation selected in each case, but
in general, it could be defined as

[minxi∈Ui,xj∈Ujf(xi, xj),maxxi∈Ui,xj∈Ujf(xi, xj)].

where Ui and Uj are the universe for Xi and Xj respectively. For this range,
we consider a fixed number of uniformly distributed linguistic labels in order
to define the domain of the new variable (in this work, this value is fixed
to five). The fuzzy domain of the SUM(X1, X2) of the previous example is
defined in Figure 4.7.

4.3.3 The feature construction filter

The feature construction filter tries to find a set of new attributes that allow
us to acquire more information about the problem. As it is shown in Figure
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Figure 4.7: Domain of Z=SUM(X1, X2) variable

4.5, the input of this module is the initial variables set (V), the training
example set (E) and a set of predetermined functions (F). When we set
a number of general functions that the algorithm can use, we are really
reducing the search space. In this process is very important a previous
analysis of the database from which we want to learn.

The new variables are constructed applying the functions over some of
the initial input variables. Although the general model could work with any
kind of functions, from now on we will only work with binary functions, that
is, functions over two variables.

In principle for a general function, as the sum of variables, we could
consider any subset of two variables obtained from E. However, applying
the sum of any two variables may not provide an easy interpretation. So,
in many cases it is useful to consider the units associated with each vari-
able, and apply functions such as addition, only over variables that have
the same type of units. A simple example is that if we take as the first
variable the age of a person and as the second variable the weight of this
person, to consider the sum of these two variables probably has no special
interest, however, other combinations of variables could be more interesting.
Of course the use of units depends of the particular function. No doubt the
information provided by an expert could be critical to limit the combina-
tion of variables considering their units. In this sense, we consider a value
Unit(X) associated with each variable involved in the problem that tries to
represent the concept of unit. This value, coded by an integer, permits to
the filter process to determine if a subset of variables could be combined
by a determined function. So, Unit(X) = 0 indicates that X could not be
combined with any other variable. For other values of Unit(X), X could
be combined with other variables by a function f , if the subset of variables,
where X is included, satisfies the restriction considered by f with respect to
the units. For example, the addition function SUM(X1, X2) is applicable
if Unit(X1) = Unit(X2) being Unit(X1) 6= 0 and Unit(X2) 6= 0.

When the combination is possible, the relevance of each new attribute is
evaluated using an information measure on the examples from the training
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set. The following code describes the process:

• FOREACH f in F

– FOREACH subset S of X that could be combined by f

∗ info(f(S), E) is a measure of the relevance of the f function with
S variables, calculated on the training set E.

∗ IF (info(f(S), E)) > ϑ, being ϑ a threshold that establishes the
minimum value for a function to be considered THEN f(S), is
added to the provisional set of new attributes E.

• ORDER all the new variables obtained in previous step using the info func-
tion, and eliminates all but the top N. Where N is an user parameter that
established the maximum number of new variables to be used by the learning
algorithm.

• RETURN the set of new attributes X̂, where |X̂| ≤ N .

To implement this process we will detail below how we will obtain the
measure info(f(S), E) and the value of the parameter ϑ.

Let F be a set of previously defined (by an expert) functions. For each
one of these functions we consider a subset of two input variables. In order
to know the relevance degree of the function over the set of examples we
use an information measure (the same as that used in Chapter 3, Section
3.2.2.3.2). This measure is detailed below [69, 117]:

ρ(X,Y ) =
I(X,Y )

H(X,Y )
(4.1)

where

I(X,Y ) =
∑
x

∑
y

−p(x, y) log2(
p(x)p(y)

p(x, y)
) (4.2)

and H(X,Y) is the Shannon entropy over two variables, defined as

H(X,Y ) =
∑
x

∑
y

−p(x, y) log2 p(x, y). (4.3)

The ρ measure estimates the dependence between two generic variables
X and Y in the following way: values of ρ(X,Y ) close to zero determine a
high degree of independence of both variables, whereas values close to one
demonstrate a high degree of functional dependency between them.

In our case, where we have a new candidate variable, for example,

Zk = fk(Xi, Xj)
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obtained by the use of the function fk ∈ F and the particular initial variables
Xi and Xj both belong to V , then, we calculate:

ρ(Zk, Y ) =
I(Zk, Y )

H(Zk, Y )
(4.4)

where Y is the classification variable.
In this way, the measure info(f(S), E) is exactly that described in (4.4).

Once we have this information measure we compare it with a threshold
(ϑ) that establishes the minimum value for a function to be selected. The
comparison method is as follows. We consider the value MI as the maximum
information given by any possible initial variable and it is defined by:

MI = maxp(ρ(Xp, Y )),∀p ∈ {1...n} (4.5)

being n the number of initial variables and Y the classification variable.
Then, the threshold value is calculated with the following expression:

ϑ = α ∗MI

being α ∈ [0, 1], that is, the threshold is taken as a percentage of the maxi-
mum relevance value for the initial variables. In the experimental studies we
have considered α = 0.9. Using this parameter, the comparison expression
used in the previous code to consider the variable Zk is:

ρ(Zk, Y ) > ϑ. (4.6)

So, if the function’s information measure exceeds the established thresh-
old, this new variable is candidate to be added to the final set of new at-
tributes. Finally, this set of new attributes is returned at the end of the
process taking the best N variables.

The output of the previous algorithm is used to define a new structure
that we will call “Catalog of Function” (CF). In a formal way it is an index
set where each entry is an unique relevant function (the function and the
particular variables involved) to be considered by the learning algorithm.
For a given i, j, k, we define an entry in the CF as a three-position vector
where the first and the second values make reference to the variables involved
in the function and the last one is the function applied to these variables. An
illustrative example for the previous given values would be fk(Xi, Xj). In
this way, we will be able to associate to this function an integer representing
the index of the particular function fk(Xi, Xj) in the catalog. This integer
can be described by means of the expression β(i, j, k), because it is ordered
in the catalog. We also define

Zβ(i,j,k) = fk(Xi, Xj),

as a new variable resulting of applying the function fk over the variables
(Xi, Xj).

84



4.3. Learning fuzzy rules with functions in the antecedent

Now we can define the new proposed model of fuzzy rules as follows:

IF X1 is A1 ∧ . . . ∧Xn is An ∧ {∧(i,j,k)∈Hfk(Xi, Xj) is Vk} THEN Y is B

with weight w

where Ai are the antecedent values, B is the consequent value, H ⊆ CF is
an index subset defining the specific function participating in the rule and
w the weight of the rule. On the other hand, Vk is a fuzzy value of the fuzzy
domain of fk(Xi, Xj).

As we have been managing an extended version of DNF rules, we are
able to assign a set of values from its domains to each antecedent variable,
so now the new rule definition is:

IF X1 is Ã1 ∧ . . . ∧Xn is Ãn ∧ {∧(i,j,k)∈Hfk(Xi, Xj) is Ṽk} THEN Y is B

with weight w

(4.7)

with Ãi being a set of fuzzy values on universe U and Ṽk a set of fuzzy values
defined on the fuzzy domain of fk(Xi, Xj).

From now on, we will refer to this kind of rules as Fuzzy Rules with
Functions in the Antecedent (FRFA). It is important to mention that the
new variables Zβ(i,j,k) will have their own domain depending on the domains
of the variables involved in the function, as was described in the previous
section.

Actually, we use a model of FRFA which includes a weight on each rule.
This weight, a value in [0, 1], is interpreted as a measure of its prediction
capability, and its value is calculated as the percentage of examples correctly
covered by the rule divided by the total number of examples. This value
depends on the particular rule and the training set only, and keeps fixed
during the evolutionary process. In the inference process, the weight of each
rule modifies the adaptation to the example with the antecedent of the rule
by means of a product operation. The winner rule is the one that obtains
the highest value in this adaptation process.

4.3.4 The learning algorithm NSLV-F

One of the major changes that NSLV-F introduces is related with the cod-
ification of a rule. This new codification together with the use of the CF
allows to handle a reduced number of combinations between the original
variables. Thus, we propose a different treatment of the new variables in
relation to the original ones. With this purpose, we maintain the variable
and value levels of the initial variables and we add a new substructure called
function level that encodes the active functions that appear in the rule.
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• The function level. This level represents from the total set of func-
tions, those that are part of the antecedent of the rule. The maximum
number of functions that can be included in a single rule is defined by
a parameter. In the experiments we have considered up to 10 func-
tions in each rule. This function level uses an integer coding where 0
indicates “no function considered” and any other positive value will
refer to the index of the function in the CF (Fig. 4.8).

Figure 4.8: A rule representation in NSLV-F

Regarding to genetic operators, we keep the same operators for the vari-
able, value and consequent levels as used in NSLV. Due to the integer cod-
ification of the function level, we use two points crossover and mutation
operators for integer coding. The mutation operator defined for this level
has an associated probability. This probability establishes whether a value
of the structure is modified (for experimental studies this value has been set
to 0.2). When the previous fact occurs, a position of the level is randomly
selected. If that position has zero value then a new random value is gener-
ated for selecting a new function of the CF. If the position has a different
value from zero, then zero value is assigned to that position.

On the other hand, we also have a new value level associated to the
function level which uses a binary coding, so we define the same two genetic
operators that were defined for the value level associated to the variable level.
That is, two points crossover and binary uniform mutation. Obviously, the
level is associated to the particular fuzzy domain of each function.

In the initial population all individuals start having the genes of their
function level with zero value. That means that at the beginning of the
genetic process no functions are considered in the chromosome. The value
level associated to each function gene is randomly assigned.
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4.4 Learning fuzzy rules with relations and func-
tions

Considering the assumptions given in the previous sections, the purpose now
is to present an integrated model that combines the main ideas exposed
above.

Thus, the objective in this case is to learn fuzzy rules with relations and
functions in the antecedent so that it is possible to exploit the advantages
of both methods in order to extract more information from the original
variables.

Regarding to the performance of this model, the learning algorithm takes
as inputs the initial variable set, the training example set, the catalog of
functions (CF) and the catalog of relations (CR). It also considers a set of
pre-defined functions together with another set with the pre-defined rela-
tions. Initially, with the set of pre-defined relations and functions, the origi-
nal variables and the example set, the feature construction module looks for
those relations and functions that applied over each two original variables
give the best information measure. The selected relations are then stored
in the CR while the most promising functions are stored in the CF. Then,
the learning algorithm iteratively extracts one rule for a selected class and
repeat the process while the new extracted rule improves the last one and
till no more rules are needed to cover the examples of that class.

In Figure 4.9 it is summarized the previous process. There are two
separated stages: the first one devoted to feature construction, in which
both catalogs are built, and the second one, where the learning process
takes place.

The catalogs keep the same structure and behavior as commented in
subsections 4.2.2.2 and 4.3.3. Taking it into account, it is possible to define
a new model of rule mixing both structures in the following way:

IF X1 is Ã1 ∧ . . . ∧Xn is Ãn ∧ {∧(s,r,t)∈Q[(Xs, Xr) are Rt]}∧

∧{∧(i,j,k)∈Hfk(Xi, Xj) is Ṽk} THEN Y is B with weight w

where Ãi are the antecedent values, B is the consequent value, Q ⊆ CR
and H ⊆ CF are index subsets defining the specific operations (relations or
functions), participating in the rule, Rt is a relation applied over the initial
variables Xs and Xr, and Ṽk is a fuzzy value belonging to the domain of the
function fk(Xi, Xj). As occurred with the previous models, w is a value in
[0, 1], that indicates the weight associated to the rule and is interpreted as
a measure of its prediction capability. The expression is calculated through
the definition of the number of positive (n+) and negative (n−) examples
given in 3.2.2.1 as:

w = (n+ + 1)/(n+ + n− + 1)

87



Chapter 4. Feature construction in a genetic learning algorithm:
NSLV-R, NSLV-F and NSLV-FR

Figure 4.9: General view of the feature construction and learning process.

In order to clarify the structure and the representation of the different
levels in a rule, Figure 4.10 shows an example extracted from Glass database
A.1.

According to this figure, in the variable level the only variables exceeding
the threshold are ”Aluminium” (Al) and ”Calcium” (Ca). So, these are
the only one considered in the rule with their respective value levels. For
variable ”Al”, the value level has two active positions, tha is, labels ”Low”
and ”Medium”. The same occurs with variable ”Ca”, which has the active
label ”Low”. Thus, the first part of the rule would be:

IF Al is {Low, Medium} and Ca is {Low} ...

In the relation level, there is only one position with value different to
zero which indicates the corresponding entry in the CR (in this case, the
first entry). Now, the rule would be:

IF Al is {Low, Medium} and Ca is {Low} and Mg / K ...

With regards to the function level, the active positions indicate the en-
tries in the CF (the third entry in the example). As functions can be con-
sidered new variables, they have their own value level. In this case the
value level presents four active labels: ”VeryLow”, ”Medium”, ”High” and
”VeryHigh”. The rule would change as follows:

IF Al is {Low, Medium} and Ca is {Low} and Mg / K and

SUBT (Na, Mg) is {VeryLow, Medium, High, VeryHigh} ...
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Figure 4.10: Example of a rule coding for Glass database.

Finally, the complete description of the rule considering the target at-
tribute and the weight would be:

IF Al is {Low, Medium} and Ca is {Low} and Mg / K and

SUBT (Na, Mg) is {VeryLow, Medium, High, VeryHigh} THEN

TypeOfGlass is tableware with weight 0.97

being all variables defined with five uniformly distributed labels within the
range of their domains and also taking into account that label ”Low” of a
variable does not have to coincide with the same label of a different variable.

The previous rule would be easily interpreted as:

”IF Aluminium is Low or Medium and Calcium is Low and Magnesium

is approximately less than or equal to Potassium and Sodium minus Magnesium

is not Low THEN TypeOfGlass is Tableware with weight 0.97”

4.4.1 The genetic algorithm of NSLV-FR

Once the main ideas have been exposed, the next step is to describe the
characteristics of the algorithm associated to the model previously explained,
that is, NSLV-FR (NSLV Functions and Relations) [34]. Thus, some of its
properties are listed below:
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• It uses an additional level in the representation of a rule, either the
relation or the function level, depending on the version it is being
compared with (NSLV-F or NSLV-R).

• It keeps the same genetic operators as NSLV for variables, values and
consequent, using two-point crossover and mutation operators for in-
teger coding in the relation and function levels.

• The mutation operation defined for the function and relation levels
uses a probability that establishes if the corresponding chromosome
has been modified (in the experimental study this value has been set
to 0.2). When this occurs, a position of the level is randomly selected.
If that position has zero value a new random value is generated for
selecting a new function of the catalog. If the position has a different
value from zero, then zero value is assigned.

• The two points crossover operator and the binary uniform mutation
operator are applied over the new value level associated to the function
level.

• All individuals from initial population start having the genes of the
relation and function levels with zero value. That means that at the
beginning of the genetic process no functions neither relations are con-
sidered.

• Before the evaluation of each rule, the algorithm uses a mechanism for
removing repeated relations and functions. It considers only the first
occurrence of each one of them from left to right.

One of the main disadvantages associated to the use of relations and
functions is the increasing of the searching space, so that many rules are
needed for covering few examples of a class (too specific rules).

For solving this issue, the completeness degree related to a rule plays an
additional role in the fitness function. In this way, a rule will be considered
only if it covers a certain percentage of the examples of the class the rule
belongs to. So, the first component of the fitness function changes. On
the one hand, it introduces the weight of the rule raised to the number of
conditions in order to penalize those rules having a high number of conditions
in the antecedent. On the other hand, the completeness degree is added as
a condition together with a covering threshold for considering the rule. This
threshold is iteratively decreased to make this condition more restrictive.

Thus, the fitness function for NSLV-FR can be summarized in the fol-
lowing expression:

fitness(R) = [Ψδ(R), svar(R), sval(R)]

being:
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• Ψδ(R): the first component of the fitness function, that works in the
following way:

Ψδ(R) =

{
(Γ′k1,k2(R)× Λ(R)× wn) if (Λ(R) ≥ δ)
−∞ otherwise.

(4.8)

• Γ′k1,k2(R): a modified version of Γk1,k2(R), being the last one the orig-
inal consistency degree detailed in Section 3.1.3.2.2. This modifica-
tion has been included in order to consider those situations where the
number of successes of a rule is less than the number of failures, be-
ing Γk1,k2(R) > 0. The new expression used to define the consistency
degree is:

Γ′δ(R) =

{
Γk1,k2(R) if (ns(R) > nf (R))
0 otherwise.

where ns(R) is the number of successes of the rule and nf (R) is the
number of failures.

• Λ(R): the completeness degree, whose expression is detailed in Chap-
ter 3.1.3.2.2.

• w: the weight of the rule.

• n: the number of conditions, understanding as conditions the initial
variables, relations and functions considered in the antecedent of a
rule.

• svar(R): the simplicity degree of a rule determined by the number
of irrelevant variables. The expression is detailed in Section 3.2.2.3.3,
equation 3.31.

• sval(R): the simplicity degree of a rule determined by the number of
understandable assignments to the variables of a rule. The expression
is detailed in Section 3.2.2.3.3, equation 3.32.

• δ: the threshold that represents the minimum percentage of examples
(of the class that is being learned), that must be covered by a rule.
The initial value for δ has been experimentally fixed.

It is important to point out that the value wn appears in the fitness
function with the objective of obtaining simpler rules, as it acts limiting the
number of conditions appearing in those rules.

It is also important to note that the selection of the best rule (through the
fitness function), keeps being guided by a lexicographical order, as occurred
with previous versions.
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4.5 Experimental study

In this section, the aforementioned versions, NSLV-R, NSLV-F and NSLV-
FR, are compared with each other and also with the base algorithm NSLV.
The statistical tests applied in the study are the Friedman and Iman-Davenport
tests and the post-hoc procedures of Holm and Shaffer. The information
about the databases used in the comparison as well as the rest of assump-
tions are available in Chapter A. Some extra details will be given below
regarding to the set of pre-defined relations and functions considered in the
study.

4.5.1 Pre-defined relations

The set of relations considered by the learning algorithm consist in four
fuzzy relations and two crisp ones:

• Approximately equal to

• Very different to

• Approximately less than or equal to

• Approximately greater than or equal to

• Less than

• Greater than

All these relations are defined for variables Xi and Xj with bounded do-
mains [infi, supi] and [infj , supj ] respectively and verifying that degreeo(Xi, Xj) >
0.9.

Associated to the domains of these variables, we define the parameter

qij =
|Ii − Ij |

c

with Ii = min{supi, supj), Ij = max{infi, infj) and where c is a strictly
positive parameter (the experiments were performed using c = 10). The
value qij represents the size of the partition in c fragments of the domain
of the difference variable |Xi − Xj |. Thus, let us describe each one of the
relations considered:

The approximately equal to relation:

µXi≈Xj (xi, xj) =

{
1− |xi−xjqij

| if |xi − xj | < qij

0 otherwise.

The very different to relation:
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µXi<>Xj (xi, xj) =

{
0 if |xi − xj | < (c− 1)qij
|xi−xj |−(c−1)qij

qij
otherwise.

The approximately less than or equal to relation:

µXi<≈Xj (xi, xj) =


1 if xi < xj
1− |xi−xjqij

| if 0 < |xi − xj | < qij

0 otherwise.

The approximately greater than or equal to relation is included in an
indirect way since Xi >≈ Xj is equivalent to Xj <≈ Xi.

4.5.2 Pre-defined functions

Regarding to the set of functions taken into account in the experimental
study, they can be summarized in:

• SUM (Xi,Xj), defined as Xi + Xj

Restriction: Unit(Xi) 6= 0 and Unit(Xj) 6= 0 and Unit(Xi) = Unit(Xj).

• SUBT (Xi,Xj), defined as Xi −Xj

Restriction: Unit(Xi) 6= 0 and Unit(Xj) 6= 0 and Unit(Xi) = Unit(Xj).

• PRODUCT (Xi,Xj), defined as Xi * Xj

Restriction: Unit(Xi) 6= 0 and Unit(Xj) 6= 0.

• DIV (Xi, Xj), defined as Xi
Xj

Restriction: Unit(Xi) 6= 0 and Unit(Xj) 6= 0

being Unit(X) the measuring unit associated to variable X. If Unit(X) =
0, it means that X can not be combined with any other variable. Other
different value (Unit(X) 6= 0), means that the involved variable can be
combined with those that have the same value as it has.

The SUM and SUBT functions can only be applied over variables with
the same measuring units, while PRODUCT and DIV operations can be
applied over variables with different measuring units. The fact is that in the
KEEL platform the databases do not consider units, so in order to develop
this study we have assumed that for each database all variables can be
combined. It is important to remark that the domain of the new variables
generated will also be divided into five uniformly distributed linguistic labels.

Table 4.1 show the configuration of the different parameters associated
to the algorithms involved in the comparison.
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Table 4.1: Specific conditions for NSLV, NSLV-R, NSLV-F and NSLV-FR. NAV
means the number of antecedent variables and n class represents the number of
classes of the specific problem.

Specific Conditions
Size of genetic population 20*n class

Number of iterations 500
Mutation prob. (Value level) 0.01

Mutation prob. (Variable level) 1/NAV
Mutation prob. (Consequent level) 0.01

Crossover prob. 1

This analysis will be centred in the study of four parameters: the accu-
racy on training and testing sets, the average number of rules and the time
employed to get the model.

Table 4.2: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (accuracy on training set).

Algorithm Ranking

NSLV 3.15
NSLVR 2.7875
NSLVF 2.375

NSLVFR 1.6875

Friedman p-value Iman-Davenport p-value

0.000003 0.000000618749

According to the results shown in tables 4.2 and 4.3, we can see that
NSLV-FR obtains statistical differences with regard to the rest of algorithms
involved in the comparison, that is, NSLV-R, NSLV-F and NSLV.

Table 4.3: Adjusted p-values (accuracy on training set).

i algorithm unadjusted p pHolm
1 NSLV 0 0.000001
2 NSLVR 0.000139 0.000277
3 NSLVF 0.017239 0.017239

Looking at tables 4.4 and 4.5, we observe that NSLV-F is the best al-
gorithm in ranking and obtains significant differences when compared with
NSLV (attending to Holm’s test). In order to check all possible pairwise
comparisons, we also applied Shaffer’s test. Paying attention to Table 4.6,
we can see that all the algorithms working with feature construction obtain
significant differences with respect to NSLV. So, joining with the results
shown in tables B.5 and B.6, we can see that NSLV-FR achieves the best
average results although it is the third one in ranking classification (talking
about test parameter), being the best one in training. This means that the
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Table 4.4: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (accuracy on testing set).

Algorithm Ranking

NSLV 3.15
NSLVR 2.3375
NSLVF 2.075

NSLVFR 2.4375

Friedman p-value Iman-Davenport p-value

0.001652 0.001179981795

Table 4.5: Adjusted p-values (accuracy on testing set).

i algorithm unadjusted p pHolm
1 NSLV 0.000196 0.000588
2 NSLVFR 0.209211 0.418423
3 NSLVR 0.363178 0.418423

model including both, relations and functions, presents some overfitting. On
the other hand, NSLV-F is the one having the best global behavior (regard-
ing to training and test parameters), as it is the best algorithm in test and
the second one in training (talking about ranking classification) and closely
followed by NSLV-R in average values.

Table 4.6: Adjusted p-values (accuracy on testing set)

i hypothesis unadjusted p pShaf
1 NSLV vs .NSLVF 0.000196 0.001177
2 NSLV vs .NSLVR 0.004884 0.014652
3 NSLV vs .NSLVFR 0.01358 0.040741
4 NSLVF vs .NSLVFR 0.209211 0.627634
5 NSLVR vs .NSLVF 0.363178 0.726355
6 NSLVR vs .NSLVFR 0.729034 0.729034

Now, focusing our attention in the number of rules (tables 4.7, 4.8 and
B.7), we realize that NSLV presents the best results but closely followed
by NSLV-R and NSLV-F (with very similar results in ranking). It obtains
significant differences with NSLV-FR. Regarding to average values (Table
B.7), NSLV achieves almost 5 rules less in average than the worst version,
NSLV-FR, which means that the use of feature construction increases the
complexity of the rule base.

Finally, with regard to the time parameter (tables 4.9 and 4.10), we
observe that NSLV-R (and given the extremely close ranking value, NSLV),
significantly win NSLV-F and NSLV-FR. Both pairs present similar values
in ranking (NSLV with NSLV-R and NSLV-F with NSLV-FR), but quite
different results when talking about average values (B.8). Even though
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Table 4.7: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (average number of rules).

Algorithm Ranking

NSLV 2.3
NSLVR 2.3125
NSLVF 2.35

NSLVFR 3.0375

Friedman p-value Iman-Davenport p-value

0.02582 0.023823766813

Table 4.8: Adjusted p-values (average number of rules).

i algorithm unadjusted p pHolm
1 NSLVFR 0.010626 0.031877
2 NSLVF 0.86249 1.72498
3 NSLVR 0.965461 1.72498

Table 4.9: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (time employed to obtain the model).

Algorithm Ranking

NSLV 1.775
NSLVR 1.7
NSLVF 3.325

NSLVFR 3.2

Friedman p-value Iman-Davenport p-value

0 0

Table 4.10: Adjusted p-values (time employed to obtain the model).

i algorithm unadjusted p pHolm
1 NSLVF 0 0
2 NSLVFR 0 0
3 NSLV 0.795012 0.795012
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Table 4.11: Results obtained by the algorithms in the 9th partition of the wdbc
database. The table shows the accuracy on training and testing sets.

Algorithm Training (%) Test (%)
NSLV 98.6 92.9

NSLV-R 99.2 98.2
NSLV-F 99 94.7

NSLV-FR 98.8 98.2

NSLV-R is the best algorithm according to the results given by the Friedman
and Holm tests, it invests almost ten seconds more in average than NSLV.
The same occurs between NSLV-F and NSLV-FR, where the last one is
almost 25 seconds faster in average than the one using only functions.

Thus, considering the global results we can extract some conclusions.
Talking in general terms and according to the ranking classification, we find
that:

• NSLV-FR shows some overfitting, as it is the best algorithm in train-
ing, the third one in test and the model which obtains the rule base
with higher number of rules.

• NSLV-F is the best model in accuracy. Anyway, its average results
are rather similar to NSLV-R in relation to the number of rules. This
means that the model using functions is more accurate than the one
using relations. So, taking these facts into account, may be functions
provide more information than relations. Nevertheless this could be
a hasty assertion, as it would depend on the problem, the restrictions
about the combinations between variables, etc.

In order to prove the influence of the feature construction approach over
the extracted rules, we will now expose some examples of rule bases obtained
(by the different algorithms), for the wdbc database (Figure A.1). Table 4.11
shows the accuracy of the different proposals when running the 9th partition
of the wdbc dataset.

According to the rulesets shown in figures 4.11, 4.12, 4.13, 4.14 and tables
4.11 and 4.12, we can see that in the aforementioned partition used in this
example, the algorithms obtaining the higher accuracy are NSLV-R and
NSLV-FR. Looking at Table 4.12, we observe that NSLV-R has also the rule
base with higher number of rules while NSLV-FR has the lower value. This
explains, in part, the high accuracy achieved (by NSLV-R) when compared
with NSLV-F, for instance.

One more point with regard to NSLV-R is that all rules part of the rule
base are used for classifying testing examples, which means that the rules
learned from the training set are all useful in order to represent the testing
set. On the other hand, NSLV-FR gets also the higher accuracy (together
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Table 4.12: For each one of the algorithms, this table shows the number of suc-
cesses/fails of each rule part of the different rule bases in the testing set.

NSLV NSLV-R NSLV-F NSLV-FR
#Rule Succ. Fails Succ. Fails Succ. Fails Succ. Fails

R0 31 3 13 0 9 0 30 0
R1 12 1 2 0 11 0 16 0
R2 2 0 6 0 7 1 3 0
R3 0 0 2 1 0 2 0 1
R4 1 0 8 0 25 0 5 0
R5 3 0 2 0 0 0 2 0
R6 0 0 11 0 1 0 - -
R7 3 0 1 0 1 0 - -
R8 1 0 8 0 0 0 - -
R9 - - 2 0 - - - -
R10 - - 1 0 - - - -

with NSLV-R), but employing less rules. In this case, the learned rules own
more information themselves.

Now, if we pay attention to the number of successes/fails, we notice that
considering the two more informative rules from each ruleset, one of them
does use relations or functions (in the algorithms using feature construction,
of course). So, feature construction methods could be seen as a way to refine
the searching process. We also stand out that some of the most representa-
tive attributes appearing in the rules are Area3 and Concave points1 (this
last one is involved in some relations and functions), which enhances the
importance of both of them when describing the set of examples.

4.6 Conclusions

In this chapter we have talked about feature construction in a fuzzy rule
learning algorithm. This technique has been developed through two different
approaches. The first one uses relations in the antecedent of the rules while
the second one employs functions en the antecedent of such rules. Both of
them pursue a common purpose: to extract additional information from the
original variables.

On the one hand, the use of relations allows making flexible partitioning
of the input space. This translates in models with a good trade-off among
accuracy and interpretability, maintaining the simplicity in the description.

On the other hand, by using functions in the antecedent of fuzzy rules,
it is possible to increase the number of variables describing the problem
through the combination of the original ones.

Both methods employ a structure to store either the most promising
relations and functions, called Catalog of Relations (CR) and Catalog of
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Functions (CF). They act as an index set where each entry is a relevant
relation or function to be considered during the learning process.

Thus, in the chapter, three algorithms have been presented. The first two
algorithms introduce the use of relations and functions respectively (NSLV-
R and NSLV-F), while the third one (NSLV-FR) combines both methods in
order to exploit the main advantages of the relations and functions. As a
consequence of the increasing of the searching space associated to the use
of feature construction methods, NSLV-FR introduces a new criterion in
the fitness function based in the use of a threshold to ensure a minimum
percentage of examples covered by each rule.

The experimental results show that the use of relations and functions
(either separated or combined methods), improves the prediction capability
of the rule model extracted. As a consequence, the number of rules and
the average time employed to obtain the model is also increased. Anyway,
the significant differences achieved in accuracy in favour of the algorithms
using feature construction techniques, justify a relative increase in the rest
of parameters studied.
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R0: IF Concave points1 = { VeryLow Low} Area2 = { VeryLow} Area3
= { VeryLow} Compactness3 = { VeryLow Low} THEN Class IS B W
0.9279778959021685

R1: IF Perimeter3 = { Medium High VeryHigh} THEN Class IS M W
0.9427146601010222

R2: IF Smoothness1 = { Medium High VeryHigh} Compactness2 =
{ VeryLow Low High VeryHigh} Concavity2 = { VeryLow Low}
Fractal dimension2 = { VeryLow Low} Texture3 = { Medium High
VeryHigh} Concave points3 = { Medium High VeryHigh} THEN
Class IS M W 0.8289296712126152

R3: IF Texture1 = { Medium VeryHigh} Symmetry1 = { Low}
Compactness2 = { VeryLow Low High} Concavity2 = { VeryLow
Low} Fractal dimension2 = { VeryLow Low} Compactness3 = { Low}
Concave points3 = { Medium High VeryHigh} THEN Class IS M W
0.7284836582193538

R4: IF Texture1 = { VeryLow} Area1 = { VeryLow Low} Smoothness1
= { VeryLow Low VeryHigh} Perimeter2 = { VeryLow} Symmetry3 =
{ VeryLow Low} THEN Class IS B W 0.9877149519361487

R5: IF Texture1 = {Medium High VeryHigh} Concave points2 = {Medium
High VeryHigh} Area3 = { Low Medium VeryHigh} Concave points3 =
{ VeryLow High VeryHigh} THEN Class IS M W 0.9624991605824593

R6: IF Radius1 = { Medium High} Texture1 = { High VeryHigh}
Concave points1 = { Low Medium High} Symmetry1 = { Medium
High VeryHigh} Texture3 = { VeryLow Low High VeryHigh} THEN
Class IS M W 0.9479497004775931

R7: IF Perimeter1 = { VeryLow Low} Compactness1 = { VeryLow Low}
Symmetry1 = { VeryLow Low VeryHigh} Perimeter2 = { VeryLow
High} Concave points2 = { VeryLow Low} Texture3 = { VeryLow
Low} Smoothness3 = { VeryLow Low VeryHigh} Concavity3 = {
VeryLow Medium} Concave points3 = { VeryLow Medium}
Symmetry3 = { VeryLow Low} THEN Class IS B W
0.9761545147538883

R8: IF Concavity2 = { VeryLow Low} Symmetry3 = { High VeryHigh}
THEN Class IS M W 1.0

Figure 4.11: Ruleset obtained by the algorithm NSLV in the 9th partition of the
wdbc database.
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R0: IF Concave points3 6E Smoothness1 THEN Class IS B W
0.9789855072463768

R1: IF Perimeter1 = { Low} Symmetry3 = { VeryLow Low}
Concave points1 6E Compactness2 THEN Class IS B W
0.9953421120333216

R2: IF Concave points3 ! =E Compactness2 Radius1 ! =E Area2
Fractal dimension1 6E Concavity1 THEN Class IS M W
0.9682109452978712

R3: IF Radius3 = { VeryLow Low VeryHigh} Texture3 = {
VeryLow Low VeryHigh} Concave points3 = {VeryLow Low Medium}
Symmetry3 = { Low} Concavity1 < Compactness1 THEN Class IS B
W 0.9602658183702274

R4: IF Symmetry1 = { VeryLow Medium High VeryHigh} Symmetry2 = {
Low Medium High VeryHigh} Symmetry3 = { VeryLow Low}
Concavity3 < Symmetry3 Area2 6E Texture3 Concave points1 <
Fractal dimension1 THEN Class IS B W 0.9942367244275221

R5: IF Radius1 = { Medium High} Texture1 = { Medium High VeryHigh}
Compactness2 = { VeryLow Low Medium} Area2 ! =E Radius3 THEN
Class IS M W 0.9840801436017024

R6: IF Compactness2 = { VeryLow Low High} Texture3 = { VeryLow
Low Medium} Concave points1 6E Compactness2 Concave points1 <
Fractal dimension1 THEN Class IS B W 0.9955326739518494

R7: IF Radius3 = { Medium High VeryHigh} Texture3 = { Medium High
VeryHigh} THEN Class IS M W 0.962907449522046

R8: IF Texture3 = { Medium High VeryHigh} Perimeter3 = { Medium
High VeryHigh} Area2 ! =E Radius1 THEN Class IS M W
0.9853738371603674

R9: IF Symmetry1 = { Medium High VeryHigh} Texture3 = { Medium
High VeryHigh} Compactness3 = { VeryLow Medium High VeryHigh}
Fractal dimension3 = { Low Medium} Smoothness3< Concave points3
THEN Class IS M W 0.962883542223363

R10: IF Concave points1 = { VeryLow Medium High VeryHigh} THEN
Class IS M W 0.3746933668901874

Figure 4.12: Ruleset obtained by the algorithm NSLV-R in the 9th partition of the
wdbc database.
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R0: IF Area3 = { VeryLow} Concave points3 = { VeryLow Low} THEN
Class IS B W 0.9749258286226512

R1: IF (Concave points1*Texture3) = { L1 L4} THEN Class IS M W
0.9961450989002424

R2: IF Symmetry3 = { Low Medium High VeryHigh} (Texture2+Radius3)
= { L1 L2 L4} THEN Class IS M W 0.9496300316306346

R3: IF Concavity1 = { VeryLow High} Area3 = { VeryLow} Smoothness3
= { VeryLow Low Medium} THEN Class IS B W 0.9637171703782214

R4: IF Area3 = { VeryLow} Concavity3 = { VeryLow High VeryHigh}
Symmetry3 = { Low} THEN Class IS B W 0.9783593589599837

R5: IF Texture3 = { High VeryHigh} Concave points3 = { Medium High
VeryHigh} THEN Class IS M W 0.9258864889435975

R6: IF Texture1 = { VeryLow} Concavity3 = { VeryLow Low} THEN
Class IS B W 0.9753145946537688

R7: IF Fractal dimension1 = { VeryLow} (Concave points1-
Fractal dimension1) = { L0 L2 L3} THEN Class IS M W
0.9385971221300116

R8: IF (Smoothness2+Concave points3) = { L0 L2 L3} THEN Class IS M
W 0.3475388454968819

Figure 4.13: Ruleset obtained by the algorithm NSLV-F in the 9th partition of the
wdbc database.

R0: IF Area3 = { VeryLow} Concave points3 = { VeryLow Low} THEN
Class IS B W 0.9749258286226512

R1: IF (Radius1/Area3) = { L0 L2} Fractal dimension1 < Concave points1
Smoothness1 < Concavity1 THEN Class IS M W 0.9998451137419374

R2: IF Texture3 = { Medium High VeryHigh} (Radius1/Area3) = { L0}
Concave points3 ! =E Compactness2 Fractal dimension1 6E
Concavity1 THEN Class IS M W 0.9732671722874883

R3: IF Compactness2 = { VeryLow Medium High VeryHigh} Radius3 = {
Medium VeryHigh} Texture3 = { Medium High VeryHigh} THEN
Class IS M W 0.9490180336074999

R4: IF Symmetry1 = { VeryLow Medium VeryHigh} Texture3 = { VeryLow
Low} (Compactness1-Perimeter3) = { L1 L2 L3} THEN Class IS B
W 0.8258497508137139

R5: IF (Concavity2-Radius3) = { L1 L2 L3 L4} (Radius3-Perimeter3) = {
L1 L2 L3 L4} Concave points2 ! =E Concave points1 THEN Class IS
M W 0.9387358486204522

Figure 4.14: Ruleset obtained by the algorithm NSLV-FR in the 9th partition of
the wdbc database.
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4.7 An application of a feature construction algo-
rithm to remotely sensed imagery

This section is the result of a three months stay in the Aristotle University of
Thessaloniki. During this time the work in Thessaloniki was supervised by
Professor J. B. Theocharis. Next subsections will describe the cooperative
work developed as well as the results obtained.

4.7.1 Introduction

In certain real-world applications, some complex relations exist between the
input variables (features). Such relations are typically identified through
expert knowledge and after careful examination of the natural properties
of the problem at hand. Thus, the learning algorithm NSLV-FR provides
an useful tool to automatically infer more complex relationships among the
input variables, through the feature construction technique.

Remote sensing classification tasks are typical examples of problems
where the input variables are interdependent. The primary information
is provided by satellite-borne (or airborne) sensors, which collect the earth’s
reflected solar radiation in specific portions of the electromagnetic spectrum.
It is well-known that different land cover types (and especially plants), ab-
sorb specific regions of the spectrum and reflect the remaining radiation
[115]. This property has been exploited in the past for devising a number
of indices that characterize specific properties of vegetation (greenness, hu-
midity, chlorophyll content, etc.) [94]. For example, the most frequently
employed vegetation index is the so-called normalized difference vegetation
index (NDVI), which is calculated as the normalized difference between the
near-infrared (NIR) and red channels of the image. NDVI relies on the fact
that vegetation absorbs the red portion of the spectrum for photosynthetic
purposes, but reflects most of the NIR radiation. To this end, green vegeta-
tion can be easily differentiated from other land cover types, as it exhibits
high NDVI values. This is the primary reason for which all modern sensors
targeting at land cover applications bear a NIR channel.

Nevertheless, well-established vegetation indices typically characterize
broad categories of vegetation types and not specific species, despite the
advent of hyperspectral spectroscopy, which has led to the construction of
many new vegetation and chlorophyll content indices [52]. Moreover, equiv-
alent relations for higher-order spectral and textural features (commonly
extracted in order to increase classification accuracy when using multispec-
tral images), do not exist. So, the main idea here is to apply a GFRBCS
that exploits a feature construction methodology on a crop classification task
using multispectral satellite imagery. The objective is to identify any new
useful relationships between the input variables that can identify the specific
crop species of the study area, by analyzing the linguistic interpretation of
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(a) (b)

(c)

Figure 4.15: Study area: (a) pseudo-color composite of the satellite image, (b) the
labeled testing polygons, and (c) the respective legend.

the fuzzy rules achieved by the learning algorithm NSLV-AR.

4.7.2 Study area and dataset description

As study area for this work we have selected an agricultural region northwest
of Lake Koronia, which is a lake-wetland ecosystem of ecological importance
in northern Greece (40◦ 41′′ N, 23◦ 09′′ E). An IKONOS bundle image
(exhibiting 4 m spatial resolution in the multispectral channel) was acquired
on 7 August 2005 for classification purposes. The IKONOS image has three
bands in the visible region of the electromagnetic spectrum, which will be
hereafter referred as red (R), green (G) and blue (B) bands/features, and
one in the near-infrared (NIR) region.

A portion of 1000× 1000 pixels from the original image was used in this
paper. Figure 4.15(a) depicts a false-color composite of the satellite image,
using the NIR, R, and G bands in lieu of the red, green, and blue channels
of the color image, respectively. This specific view exploits the vegetation
properties discussed in the introduction: green vegetation absorbs visible
radiation and reflects NIR; hence it appears red in the color image (only the
first channel has high values). Other land cover types also reflect a portion
of the visible radiation and so they exhibit different colorings.

The class scheme includes five classes: alfalfa, cereals (primarily wheat),
maize, orchards, and artificial surfaces (roads and buildings). After extensive
field surveys and subsequent careful photo-interpretation, a large number of
polygons were identified in the image and assigned to one of the five classes
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(Figure 4.15(b)). All labeled pixels (577,316 in total) inside those poly-
gons participate in the testing set. Moreover, 3000 random points (pixels)
were selected for the training set. The training patterns were sampled from
additional polygons, which do not participate in the testing set.

Due to the limited information provided by the four bands of the initial
image, it is customary practice to extract additional higher-order features
when dealing with classification tasks involving multispectral images. For
this purpose, the following higher-order features were derived from the orig-
inal bands of the image:

• Spectral transformations. We used the Brightness, Greenness, and Wet-
ness components of the so-called tasseled cap transformation [58], as
well as the first three components of the intensity-hue-saturation (IHS)
transformation [120] (the saturation component exhibited almost zero
variability in the whole image and was therefore not used).

• Textural transformation. As a source of textural information, we ap-
plied the gray-level co-occurrence matrix (GLCM) transformation [53].
For each band of the image, four measures from the co-occurrence ma-
trix have been calculated: contrast (CON), angular second moment
(ASM), correlation (COR), and homogeneity (HOM). For convenience,
we use the notation <measure>:<band> in the following. For exam-
ple, ASM:R denotes the angular second moment measure calculated
from the red band of the original image.

A more thorough description of the study area and the extracted features
can be found in [108]. The final feature space of our classification task
comprises all 25 aforementioned features (4 initial bands, 5 transformed
spectral features, and 16 GLCM measures). Of course, each fuzzy rule in
NSLV-FR can also use any derivative relation and function feature from the
respective catalog, as described in the previous section.

4.7.3 Experimental study

This experimental section aims to show how the interpretability properties
of FRBCSs can be exploited in the remote sensing framework and (most
importantly), how the feature construction abilities of NSLV-FR can identify
new useful relationships in the specific land cover task considered.

Nevertheless, we first provide a brief comparative from the classification
accuracy point of view, in order to validate whether NSLV-FR can achieve
comparable performance with other classifiers. With this purpose, we con-
sider two reference classifiers that have been shown to achieve very high ac-
curacy in many and diverse classification tasks, namely, the support vector
machine (SVM) and the random forest (RF) [13] classifiers. The parameters
C and γ for the SVM classifier (we employed a radial basis function kernel)
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Classifier
Classification accuracy (%)

Training Testing
Average Best Average Best

NSLV-FR 76.0 75.3 77.6 79.2
RF 100.0 100.0 82.6 82.8
SVM 84.8 82.4

Table 4.13: Training and testing classification accuracies for the compared classi-
fiers. For NSLV-FR and RF both average and best accuracies are reported.

were determined through a 5-fold cross-validation search in the training set,
considering a grid of possible values. The final classification model was pro-
duced after retraining the SVM with the whole training set and the selected
parameters. The same procedure was employed in order to determine the
optimal number of trees and random features per tree for the RF classifier.
Since NSLV-FR and RF exhibit stochastic characteristics, 20 independent
runs were performed using different seeds for the pseudo-random generator.

Table 4.13 reports the comparative results for the three classifiers. For
NSLV-FR and RF both average accuracies are reported, along with the ex-
hibited by the best run, which is defined as the one achieving the highest
accuracy on the testing set. Since SVM’s learning algorithm is a determin-
istic one, only the respective accuracies for the (single) model are reported.

RF exhibits the highest testing accuracy, closely followed by SVM. NSLV-
FR displays somewhat lower testing accuracy, although the absolute differ-
ence is not that big, especially if we consider the best model. In this analysis
we should also take into consideration the much higher complexity of the
former two classifiers. Indeed, NSLV-FR creates classification models with
40.6 rules on average, whereas each fuzzy rules comprises an average of
1.67 features. In contrast, the SVM model uses all features and comprises
1436 support vectors, whereas the RF model constructs 100 trees, each of
which considers 10 random features. To this end, NSLV-FR’s classification
accuracy can be relatively considered as satisfactory.

In order to exploit NSLV-FR interpretability and feature construction
properties, we focus on the best model obtained. As shown in Table 4.13,
this model exhibits a testing accuracy of 79.2% (run 17). The primary source
of misclassifications stems from the confusion between the alfalfa and maize
classes, which are the major green vegetation species in our study area.
Errors are also observed between the alfalfa and cereals classes, although to
a relatively smaller extent. The latter case is observed because the image
was acquired in August, when the cereals crops (most of which were wheat),
had been harvested. Hence, sparsely vegetated alfalfa areas are confused
with harvested cereal fields, because of the exposed soil. On the other hand,
artificial structures can be easily discerned from all other classes, whereas
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orchards represent a very small percentage of the total land cover.

Therefore, it would be very interesting to analyze the best NSLV-FR
model in terms of the features constructed for the discrimination of the
alfalfa and maize classes. For this purpose, the fuzzy rules for each class
have been sorted in decreasing order with respect to their significance. As a
measure of significance for each rule we have employed the (crisp) proportion
of positive examples, that is, the number of training patterns that activate
the rule and belong to the class described in its consequent, divided by the
total number of this class’s patterns.

Here we present an example for the maize class. Each feature variable has
been uniformly partitioned into fuzzy sets, for which we assign the linguistic
labels {VerySmall, Small, Medium, Large, VeryLarge}. The antecedent part
of the most significant fuzzy rule comprises two derivative function features:

IF (blue/green) is Large and

(brightness+ wetness) is VerySmall

The rule uses a ratio between bands (blue and green) and the sum of two
tasseled cap features (brightness and wetness). We should note that neither
of these features have some well-established use or expert interpretation in
the vegetation indices literature.

Figures 4.16(c) and 4.16(d), respectively, depict the grayscale represen-
tation of the two new features. For convenience, the study area’s pseudo-
color composite and the testing polygons have been replicated as the two
top subfigures. Areas not belonging to the (testing) reference have been
masked out from all images, in order to assist the visual comparison. The
fuzzy rule declares that maize exhibits a high blue/green ratio. Indeed,
all maize fields in Figure 4.16(c) have higher grayscale values (brighter ar-
eas). At the same time, however, maize is characterized by low values
for the brightness+wetness feature (comparatively darker regions in Fig-
ure 4.16(d)). Since NSLV-FR employs the minimum operator for the con-
junction of the individual predictive variables, both of these conditions must
be satisfied in order for a pattern (pixel in our case) to be characterized as
maize.

One way to visualize both features at the same time is to insert them
into two channels of a color image and then try to interpret the different
colorings produced, based on the description provided by the fuzzy rule.
Such false-color composites are very popular in the remote sensing commu-
nity (in the previous subsection we have actually provided such an example
with the description of Figure 4.15(a)). In our case, however, an even easier
way to produce an aggregate image is to just calculate the rule’s activa-
tion degrees (memberships) for all image pixels. The result is shown in
Figure 4.16(e). Comparing the latter representation with the reference sites
(Figure 4.16(b)), it becomes apparent that the rule identifies almost all maize

107



Chapter 4. Feature construction in a genetic learning algorithm:
NSLV-R, NSLV-F and NSLV-FR

(a) Satellite image pseudo-color
composite

(b) Testing polygons

(c) (Blue/Green) feature (d) (Brightness+Wetness) feature

(f) NDVI of the original image

(e) Rule activation degrees

Figure 4.16: The extracted features used by the most significant rule produced for
the maize class and the rule’s activation degrees for all pixels.
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fields accurately. Lower (but non-zero) memberships are also observed for
a few alfalfa fields as well. This is expected, since the two classes exhibit
a strong correlation and are the main source of the misclassifications in the
testing set. Nevertheless, most of these regions exhibit membership degrees
below 0.5 and as such they can be easily identified.

If we compare the rule activation image and the pseudo-color compos-
ite of Figure 4.16(a) with the reference image, it is evident that the former
is far more enlightening with respect to the maize/alfalfa discrimination.
Although some alfalfa fields can be singled out from Figure 4.16(a) as vi-
brant red, most maize and alfalfa fields are rather indiscriminable. In the
previous section we explained that the pseudo-color composite shown in
Figure 4.16(a) relies on the absorption properties of green vegetation in the
red and NIR portion of the electromagnetic spectrum. As mentioned in
the introduction, NDVI is based on the same principle, being defined as
(NIR − Red)/(NIR + Red), and is ubiquitously employed to identify green
vegetation (Figure 4.16(f)). Again, many alfalfa fields exhibit similar NDVI
values with the typical maize ones and cannot be discriminated. To this end,
it seems that NSLV-FR’s feature construction ability can prove invaluable
for easily discriminating related land cover types in a specific region.

4.7.4 Conclusions

So, in this section it has been presented the first results from the application
of the feature construction concept in the context of land cover classification
tasks from remotely sensed imagery. With this purpose, we exploited the
advantages of the NSLV-FR classifier, which effectively embeds a feature
construction procedure within a powerful genetic fuzzy rule-base learning
framework. The experimental analysis was performed on a challenging crop
classification task, using a very high resolution satellite image. The linguis-
tic interpretation of the fuzzy rule base resulted in interesting conclusions,
since we have been able to visually discriminate spectrally similar vegetation
species.
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Chapter 5

A modified version of the
IRL approach to simplify
the extracted knowledge

5.1 Motivation

In previous chapters, the influence of the amount of information in the learn-
ing process was addressed. As a consequence, one of the most important
issues when working with genetic fuzzy rule learning algorithms is to obtain
a good balance among accuracy and interpretability, even more in real-world
problems [108, 40, 85, 7, 39, 93].

The feature construction methods are more focused in improving the ac-
curacy of the model, because of the possibility of obtaining new information
from the combination of the original variables. However, one of the side
effects of this technique is related to its trend to obtain models with a high
number of rules, which directly affects to the idea of interpretability.

In this chapter, the problem of the interpretability of the learned model is
studied. In [32], it is shown a categorization of the interpretability measures
based on two factors:

• Complexity versus semantic interpretability.

• Rule base versus fuzzy partition.
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The taxonomy proposed in [32] comes from the combination of both
factors. The scope of this study centres in the combination of complexity-
based interpretability at the rule base level. Basically, interpretability in
this case is related with the measure of the number of conditions and the
number of rules of the fuzzy rule base.

So, when dealing with this topic, there are two main tasks in order to
achieve interpretable rule models. One of them is related to the reduction
of the number of conditions in a rule and the other one has to do with the
reduction of the number of rules of the rule base.

In the literature it is possible to find many examples of complexity re-
duction of rule bases. Such is the case of [9], where Azam et al. propose
a method to reduce the number of rules that are fired, keeping the per-
formance of that of large rules, using a membership value of the linguistic
variable to calculate a equilibrium value. Thus, rules are fired only if the
inputs have membership value higher than the equilibrium value.

In [121], Zhao et al. propose a hybrid learning method combining a
modified harmony search method with a fast recursive algorithm for learning
a TSK-type rule-based fuzzy system with a compact model structure and a
high model accuracy. With this purpose, they consider not only the number
of fuzzy rules but also the structure of each rule premise and consequent.
Thus, each fuzzy rule is associated with two sets of input attributes, in
which the first is used for constructing the rule premises while the other is
employed in the rule consequents.

Some other works can be found like [33], where a post-processing method-
ology to reduce the complexity of data-driven linguistic fuzzy models is pro-
posed. The approach is based on rule selection via the formulation of a
bi-objective problem with one objective focusing on accuracy and the other
one on interpretability.

On the other hand, Soua et al. talk in [107] about improving the com-
prehensibility through a supervised learning method by automatic gener-
ation of fuzzy classification rules (SIFCO-PAF). The method reduces the
complexity by decreasing the number of rules and of antecedent conditions,
making it thus adapted to the representation and the prediction of rather
high-dimensional pattern classification problems.

Finally, in [27] Fazzolari et al. investigate the influence of the application
of a single granularity learning approach to the performance of fuzzy asso-
ciative rule-based classifiers with the objective of reducing the complexity of
the models obtained, trying to maintain a good accuracy on classification.

Next section addresses the main steps performed in order to give some
solutions to the problem exposed.
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5.2 Knowledge review

In Chapter 2, the IRL approach was described as the combination of the SC
strategy together with GAs. This scheme characterizes by the iterative ex-
traction of a single rule, which is the best one representing a set of examples
of a class. Then, the rule becomes part of the final rule base.

It is easy that, during the learning process, some interesting rules im-
proving in some way another one previously learned appear. Until now,
each learned rule was irrevocably added to the rule base and no any other
action could be carried out (at a rule base level). In order to consider this
situation in which a new learned rule could improve some other and also
to allow some action that handles the learning process in consequence, the
knowledge review could be seen as a possible solution.

Thus, the knowledge review could be understood as a continuous evalua-
tion process of the learned rules, that is, a refinement mechanism embedded
in the learning process.

Including the knowledge review in an IRL approach implies three main
tasks: learning a new rule, compare the new rule against the previously
learned ones and to make a decision, which will be related to the replacement
of one or more rules involved in the comparison. So now, the idea is to be
able not only to add rules, but also to replace those which could be improved
by the new learned one if appropriate.

Taking into account this philosophy, it will be next presented a first
approximation of a IRL approach able to review the knowledge.

5.2.1 A sequential covering strategy for reviewing the knowl-
edge

As stated before, the new capability of adding and replacing rules if consid-
ered, implies two different paths. Normally, by adding rules, the accuracy is
increased (normal behavior of the IRL approach) and the replacement action
is more related to the improvement of the interpretability. So, two different
”objectives” are shown. The difficulty is to establish a procedure for com-
paring both terms. In this work, a two-rules extraction process in order to
measure both parameters is presented. This means that after each iteration,
two different rules are extracted: the best one increasing the accuracy and
the best one improving the interpretability.

Thus, following the considerations above, in [36], an iterative model able
to replace rules was proposed. It was based on the learning algorithm NSLV.
As it has been just said, the main difference now is that in each step a
decision is taken among adding the best rule increasing the accuracy of the
rule base, adding the best rule replacing one or more rules previously learned
or adding no rules if it is considered that the rule base can not be improved.
So, the sequential covering presents the following structure:
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SEQUENTIAL COVERING (E, f)

1. Learned rules ← {}

2. Action← RETURN ONE ACTION (E, f, Learned rules, new rule, rules to remove)

3. While (Action 6= STOP) Do

(a) Learned rules ← Add (Learned rules, new rule)

(b) If (Action == REPLACE) Then

i. Learned rules ← Remove (Learned rules, rules to remove)

(c) E ← Penalize (Learned rules, E)

(d) Action← RETURN ONE ACTION (E, f, Learned rules, new rule, rules to remove)

4. Return Learned rules

where the most important elements are described below:

• RETURN ONE ACTION : It is a procedure implemented through a
genetic algorithm. It introduces some additional capabilities regard-
ing to the classical LEARN ONE RULE procedure, in order to choose
among the two possible rules extracted during the learning process,
that is, the best rule increasing the accuracy or the best rule replac-
ing rules. So, to select either of these options, this procedure must
consider a decision criterion (later explained), returning not only the
selected rule (new rule) and the list of replaceable rules if appropriate
(rules to remove) but also the action to be applied. It also incorpo-
rates a new genetic operator that replaces to the crossover operator in
the following sense. The new operator applies the crossover operator
as usual with probability p, and replaces the worst two individuals by
two random rules from the set of learned rules, with probability (1−p).
In the experimental study has been considered p = 0.05.

• Action: Represents the selected action in the RETURN ONE ACTION
procedure. It may take three possible values: ”AGGREGATE” if the
selected rule is the best that increases the prediction capability of the
rule base, ”REPLACE” if the chosen one is the best rule replacing
rules and ”STOP” if none of them is selected as the rule base can not
be improved.

• Add : It is a function that adds the new rule to the set of learned rules.

• Remove: It is a function that removes the list of rules replaced by the
new rule from the set of learned rules.

Regarding to the behavior of the algorithm, the first time the SC is run,
the action carried out is to add the already learned rule. After that, while
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more rules can be added to the rule base (that is, the rule base is able to go
on being improved from the ”interpretability” point of view), two different
rules are learned in each iteration (the best rule increasing the accuracy and
the best one replacing rules), but one of three possible actions may be taken.
The first one is to ”AGGREGATE” the best rule increasing the accuracy
of the rule base. The second one is to ”REPLACE” one or more rules of
the rule base with the new one learned for this purpose (not increasing
the accuracy, but maintaining and improving the interpretability). Finally,
the last action (”STOP”) implies that no rule is added. In this case, it
is considered that no more rules are needed as the rule base cannot be
improved. If the action carried out is ”REPLACE”, the rule base needs to
be updated, which means that those rules that will be replaced by the new
learned one, must be removed from the rule base.

Using this scheme, in which some learned rules can be replaced, the algo-
rithm tries to reduce the complexity of the rule base (less rules), improving
the interpretability. In order to allow this operation, one more consideration
was taken into account. In the basic version, NSLV, one subpopulation for
each class was used while this proposal maintains an extra subpopulation
for rules able to replace rules. So, at the end of each call to the GA, two
rules are available for choosing.

Thus, the evaluation function also introduces some changes for support-
ing this functionality. Now, the number of replaceable rules becomes part
of the fitness:

fitness(R) = [Ψ(R), |Ω(R)|, svar(R), sval(R)]

where:

• Ψ(R) is the product of the consistency and completeness conditions.

• |Ω(R)| is the number of rules that can be replaced by R in the set of
learned rules.

• svar(R) the number of irrelevant variables.

• sval(R) the number of understandable assignments.

In this fitness function all the elements are known but |Ω(R)|, where
Ω(R) represents the set of replaceable rules.

Thus, before going in this definition it is necessary to previously establish
when a rule can replace a set of rules and to determine a criterion to update
the rule base. In order to give a formal definition it is necessary to decide
when a rule is critical for an example. This concept is associated to the SC
strategy and uses the sequence of rules that have been learned at a certain
time. The idea is that a rule is critical for an example when it is fired for
this example, provides the correct class and if the alternative rule (the next
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rule applicable for this example if any) is used, then it provides an erroneous
classification of this example.

Definition 5.2.1 Let E be an example set and Rules a set of already learned
rules. We say that R ∈ Rules, is a critical rule for the example e ∈ E
given Rules iff:

R ∈ FRules(e) ∧

class(e) = consequent(R) ∧

[|FRules(e)| = 1 ∨ class(e) 6= consequent(Next(R,FRules(e)))]

where FRules(e) ⊆ Rules is the set of rules with non zero adaptation to
the example e sorted by the inference criterion and Next(R,FRules(e)) is
a function that returns the rule that would be fired if R were not member of
FRules(e).

In order to clarify this definition, let us consider the next example. The
rule R4 is critical for the example e in these two possible situations:

• FRules(e) = {R4} is the set of firing rules (consisting only in one rule)
and the class of e is equal to the consequent of R4 or

• FRules(e) = {R4, R1, R6, R3} is the set of firing rules in the order in
which they would be fired for the example e, (R4 before R1 ... before
R3). In this situation, the class of e is equal to the consequent of
R4 and the next rule that would be fired (excluding R4), that is, R1,
belongs to a different class from e. In other words, if the consequent
of R1 would be the same as R4 (and equal to the class of e), then R4

would not be a critical rule for e.

The critical rule for an example e given a set of rules Rules could not exist,
but if it exists, we can say that it is the only one critical rule for e. So, we
can note it as CriticRule(e,Rules) being able to take two possible values:

(1) CriticRule(e,Rules)=R, in this case, if R were eliminated of Rules
the example e will be incorrectly classified,

(2) CriticRule(e,Rules)=∅, in this case, the critical rule doesn’t exist.
This may happen for two reasons:

a) e is not correctly classified by Rules or

b) two o more rules of Rules correctly classify the example e.

Thereby, given an example set E and a rule set Rules and applying the
previous definitions we can determine if there are rules in Rules that could
be removed from it, keeping the accuracy of the modified rule base. Only
the rules in Rules that are critical rules of at least one example are needed
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for keeping the classification capacity. Following this idea, the definition of
the set of replaceable rules that is produced when a new rule is added to the
set Rules is given below.

Definition 5.2.2 Let E be a set of examples, Rules a set of learned rules
and R a new rule, R 6∈ Rules. We define the set of rules from Rules that
can be removed when R is added to Rules as:

Ω(R) = {R′ ∈ Rules | 6 ∃ e ∈ E such as R′ = CriticRule(e,Rules ∪R)}

Coming back to the fitness definition, one more time the fitness function
follows a lexicographical order in which the first component dominates in
the selection of the best rule and the rest of them are used if a tie situation
occurs.

As it was previously said, when the RETURN ONE ACTION procedure
was described, it is necessary to use a decision criterion to know which one
among the two options (rules) to select in order to update the rule base.
Since these two ”best rules” have different ”objectives”, it is not possible to
measure or compare them from a quantitative point of view. So, the decision
can not be based in which one of them is better. Thus, the choice is based in
a logic criterion taking into account that the priority now is to improve the
interpretability at a rule base level. In this sense, if the rule that increases
the accuracy of the model has a number of examples correctly classified
greater than the number of replaceable rules of the best rule replacing rules,
then the first one is selected. If not, the second one is chosen. We prefer
reducing the number of rules of the rule base instead of considering a rule
whose number of examples correctly classified is smaller than the number of
replaceable rules.

So, summarizing, the knowledge review could be seen like a refinement
process embedded in the learning process, since in the firsts stages the sys-
tem tends to include new rules while in later stages the tendency is to
replace rules and therefore to refine the knowledge seeking to improve its
interpretability.

5.3 Main problems with knowledge review

In the preceding sections, it was mentioned that a rule replacing one or more
rules is usually more general than those which are going to be replaced. This
is important, because early replacements, may easily condition the rest of
the rule extraction as the algorithm will converge sooner to more specific
rules, being the first ones very difficult to replace later on.

As a consequence, the use of very specific rules increases the size of the
rule base, so also the complexity. The point is that these specific rules
usually cover few examples and they are almost useless in test set.
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Thereby, next section is devoted to describe a possible solution in order
to deal with these situations.

5.4 Pruning of searching spaces

As stated before regarding early replacements and also because of the normal
behavior of the IRL approach, we are interested in finding a way to control
the specificity level of the rules, since it has been demonstrated that too
specific rules result useless in test set.

Some techniques were tried in order to solve this effect. One of them
consisted in delaying the replacement of a rule forcing this operation only
in final stages of the learning process. Rules were added to the rule base
till the moment in which the replacement was allowed (something like a
supervised learning). By using this strategy, no many rules were replaced
and the complexity of the rule base was barely reduced.

Another technique was attempted using information about the clusters
of each database. This information allowed to know the distribution of the
examples in the databases as a preprocessing tool. Using these data to
drive the learning process, the rule base was formed by significant but too
general rules, which reduced the difference between training and test results
in exchange for prediction capability.

Finally, the use of pruned searching spaces [35] gave us a tool which
allowed to control ’how general’ and ’how specific’ could be the extracted
rules. It demonstrated a good behavior, reducing the specificity level of the
extracted rules (mainly in final stages). Thus, the idea now is related to
define some restrictions on the completeness condition.

5.4.1 A SC strategy for searching on spaces pruned by a
completeness condition

According to the explanations above and taking into account that the re-
ducing of the searching space is seek, the objective is to modify the fitness
function to avoid those rules covering few examples. This is done by reject-
ing the rules which are not supported by a minimum number of examples,
through a parameter in the fitness.

Thereby, a parametric version of the fitness function is proposed:

Ψδ(R) =

{
Ψ(R) if Λ(R) ≥ δ
−∞ otherwise

where δ is a threshold that represents the minimum percentage of positive
examples that must be covered by a rule.

This expression was similarly used in Section 4.4.1, equation 6.1, when
talking about feature construction. Now, the idea keeps being the same, but
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without considering the parameter wn, since the antecedent of the rules are
not as complex as those including relations and functions.

So, the searching space is reduced as the algorithm only selects rules with
a minimum completeness degree δ. In this sense, we say that the algorithm
is working in a pruned searching space and the completeness conditions is
determined by the parameter δ.

Figure 5.1: Pruned searching space in a decreasing sequence of the parameter δ.
The completeness condition (Λ(R)) is restricted by this parameter.

The final expression of the fitness function is:

fitness(R, δ) = [Ψδ(R), svar(R), sval(R)].

The parameter δ determines a threshold representing the minimum num-
ber of examples that should be covered by a rule in order to be considered.
For higher values of δ, the algorithm explores over rules with high redun-
dancy in the training set. These rules tend to be more general (with few
conditions in the antecedent), and represent the most relevant information
in the example set. On the other hand, lower values of δ implies to collect
less redundant information and, as a consequence, to obtain more specific
rules.

Thus, the purpose is to use a decreasing sequence of δ so that the al-
gorithm starts learning more general rules and in final stages learns more
specific ones, but controlling the specificity level (Figure 5.1).

The decreasing sequence consists of k values of the parameter δ

∆ = {δ1, δ2, . . . , δk}

where δi ∈ [0, 1] and δi > δi+1.
With this sequence a new sequential covering strategy is proposed. The

main idea is to use the function fitness(R, δ) in a iterative scheme in which
the parameter δ is moving in the previously defined order.
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SEQUENTIAL-COVERING (E,Fδ,∆)

1. Learned-rules ← {}

2. For i=1 to |∆| Do

(a) Rule ← LEARN-ONE-RULE (E,Fδi)

(b) While PERFORMANCE (Rule, E) > 0, Do

i. Learned-rules ← Learned-rules + Rule

ii. E ← Penalize{E}
iii. Rule ← LEARN-ONE-RULE (E,Fδi)

iv. Learned-rules ← FILTER(Learned-rules)

3. Return Learned-rules

where E is the set of examples, Fδ the fitness function that depends on the δ
parameter, ∆ is a decreasing sequence of δ values and FILTER is a procedure
to remove the rules already included in the set of rules Learned-rules and
that has not been fired (using the inference process) by any example of E.

It was experimentally observed that the appropriate δ value differed
for each dataset and it was not easy to estimate. Anyway, in [35], this
experimental experience proved that the best values in most cases were in the
interval [0.3, 0.1], choosing k = 2. In the configuration of the experimental
study we have considered δmax = δ1 = 0.3 and δmin = δ2 = 0.1, for all
datasets.

5.5 NSLV-AR: A new iterative model that im-
proves the knowledge review

Considering the information exposed in sections 5.2, 5.3 and 5.4, this one
is devoted to describe a new iterative model combining pruned searching
spaces and knowledge review in order to improve the interpretability of the
rule base without loosing accuracy. Using this idea, the new iterative scheme
is described below:

NEW SEQUENTIAL COVERING (E,Fδ,∆)

1. Learned rules ← {}

2. For i=1 to |∆| Do

(a) Action ← RETURN ONE ACTION (E, Fδi , Learned rules, new rule,
rules to remove)

(b) While (Action 6= STOP) Do

i. Learned rules ← Add (Learned rules, new rule)

ii. If (Action == REPLACE) Then
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A. Learned rules ← Remove (Learned rules, rules to remove)

iii. E ← Penalize (Learned rules, E)

iv. Action← RETURN ONE ACTION (E, Fδi , Learned rules, new rule,
rules to remove)

3. Return Learned rules

with E the set of examples, Fδ the fitness function that depends on the δ pa-
rameter, ∆ a decreasing sequence of δ values and RETURN ONE ACTION
the procedure described in Section 5.2.1. The actions maintain the same
behavior as the model previously described as well as the Add and Remove
functions.

Finally, the fitness function supporting this proposal is:

fitness(R, δ) = [Ψδ(R), |Ω(R)|, svar(R), sval(R)].

where Ψδ(R) is the product of consistency and completeness considering
the parameter δ, |Ω(R)| is the number of replaceable rules, svar(R) is the
number of irrelevant variables and sval(R) is the number of understandable
assignments.

The algorithm acts searching for rules covering at least a percentage of
examples of the class that is being learned, given by the parameter δ. The
individuals are sorted according to their fitness function using a subpopula-
tion for each class of the problem and an extra one for rules replacing rules.
In each iteration three actions are possible (the algorithm decides which one
is better among them): to add the best rule increasing the accuracy of the
rule base, to add the best rule replacing rules or not to add any rule if the
rule base can not be improved. The criterion for selecting the best option is
maintained with regards to the one explained in Section 5.2.1.

5.6 Experimental study

Now, the information related to the experimental part is described. The
algorithm aim of study is NSLV-AR, which has been deeply explained in
previous sections. Following the same structure as those used in the other
chapters, the results of the experimental study have been obtained using
the configuration settings available in Chapter A. Due to the comparison
between two classifiers, the statistical test used in this section have been the
Wilcoxon’s one. Some other important parameters related to the algorithms
part of the analysis are detailed in Tables 5.1 and 5.2.

As was mentioned above, this algorithm focuses in the simplicity/interpretability
criterion, so the parameters taken under consideration in the study are:
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Table 5.1: Specific conditions for NSLV. NAV means the number of antecedent
variables and n class represents the number of classes of the specific problem.

Specific Conditions NSLV
Size of genetic population 20*n class

Number of iterations 500
Mutation prob. (Value level) 0.01

Mutation prob. (Variable level) 1/NAV
Mutation prob. (Consequent level) 0.01

Crossover prob. 1

Table 5.2: Specific conditions for NSLV-AR, where n class represents the number
of classes of the specific problem.

Specific Conditions NSLV-AR
Size of genetic population 20*n class

Number of iteration 500
δmax 0.3
δmin 0.1

Mutation prob. (Value level) 0.01
Mutation prob. (Consequent level) 0.01

Mutation prob. (Variable level) 1
Replacement prob. 0.05

Crossover prob. 0.95

• the accuracy on training,

• the accuracy on test,

• the average number of rules and

• the average number of conditions per rule base.

Thus, according to the Wilcoxon’s test when using two classifiers and
40 datasets, and comparing the best algorithm in ranking (coincide with
the best one in average) versus the other one (Table B.9), we observe that
the null hypothesis is rejected in training (p-value 6 α, Table 5.3), but not
in test (Table 5.4). This means that NSLV obtains significantly the best
performance in training with regard to NSLV-AR, but the results in test are
quite similar. In fact, the average difference between training and test in
NSLV-AR is around 5.8%, while in NSLV is near 8.8% ((Table B.9)).

Table 5.3: Results obtained by the Wilcoxon’s test for algorithm NSLV (accuracy
on training set), using α = 0.05.

Vs R+ R− p-value Hypothesis
NSLV-AR 741.0 79.0 0.000007 Rejected
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Table 5.4: Results obtained by the Wilcoxon’s test for algorithm NSLV (accuracy
on testing set), using α = 0.05.

Vs R+ R− p-value Hypothesis
NSLV-AR 485.0 295.0 0.17575 Not Rejected

Table 5.5: Results obtained by the Wilcoxon’s test for algorithm NSLV-AR (average
number of rules), using α = 0.05.

Vs R+ R− p-value Hypothesis
NSLV 769.0 11.0 0 Rejected

Table 5.6: Results obtained by the Wilcoxon’s test for algorithm NSLV-AR (average
number of conditions per rule base), using α = 0.05.

Vs R+ R− p-value Hypothesis
NSLV 808.0 12.0 0 Rejected

If we center now in the results shown in tables 5.5, 5.6 and B.10, we
can see that the null hypothesis is rejected, both in rules and conditions,
which means that NSLV-AR significantly wins NSLV in both parameters.
It is important to point out that, talking about average values, NSLV-AR
reduces the number of rules almost half the number of rules achieved by
NSLV. This fact also happens with regard to the number of conditions per
rule base, where NSLV obtains more than twice the number of conditions
achieved by NSLV-AR.

So, by making an overall view of the parameters included in the study,
we realise that, despite significantly reducing the number of rules, NSLV-AR
reaches similar values to NSLV in accuracy. This is important, because it
means that NSLV-AR achieves a simpler knowledge without loosing predic-
tion capability.

As occurred in the previous chapter, now we will briefly explain the
differences among the rule bases obtained by each one of the proposals.
Table 5.7 shows the accuracy on training and testing sets of both algorithms
in the specific partition involved in the study.

Looking at figures 5.3 and 5.4 and the information given in Table 5.8, we
can see that NSLV-AR gets a simpler rule base formed by a lower number
of rules. It also obtains more interpretable rules, using less conditions. In
this field, NSLV presents 44 conditions in its ruleset while NSLV-AR uses 32
conditions. Nevertheless, the last one achieves better prediction capability
than NSLV obtaining 94.7% of accuracy on testing set against 92.9% of
NSLV (Table 5.7).

Finally, Figure 5.2 gives a graphical representation of the behavior of
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Table 5.7: Results obtained by the algorithms in the 9th partition of the wdbc
database. The table shows the accuracy on training and testing sets.

Algorithm Training (%) Test (%)
NSLV 98.6 92.9

NSLV-AR 98.4 94.7

Table 5.8: For each one of the algorithms, this table shows the number of suc-
cesses/fails of each rule part of the different rule bases in the testing set.

NSLV NSLV-AR
#Rule Succ. Fails Succ. Fails

R0 31 3 22 0
R1 12 1 1 1
R2 2 0 6 0
R3 0 0 0 0
R4 1 0 7 0
R5 3 0 6 1
R6 0 0 7 0
R7 3 0 5 1
R8 1 0 - -

Figure 5.2: Evolution of accuracy and number of rules in each iteration of the
learning process.

124



5.7. Conclusions

the algorithms during the learning process. It shows how the accuracy on
training set and the number of rules evolve in each iteration.

5.7 Conclusions

This chapter presents a new iterative model able to review the learned knowl-
edge while it is still learning. It also works on searching spaces pruned
through a completeness condition in order to avoid extracting too specific
rules which are almost useless to classify testing examples. Thus, this com-
pleteness condition is handled with a threshold (δ) moving on a decreasing
sequence. This allows start searching more general rules in first stages of
learning and moving to more specific ones in final stages. The threshold, in
this situation, establishes the minimum percentage of examples that must be
covered by a rule in order for it to be considered by the learning algorithm.

The experimental results demonstrate that the proposal (NSLV-AR)
achieves simpler knowledge bases, improving the interpretability with re-
gard to NSLV. It obtains significant differences in number of rules, reducing
not only the number of rules per rule bases, but also the number of con-
ditions per rule. It is also important to note that all these improvements
are obtained without loosing accuracy. So, we finally have a model able to
learn more interpretable rule bases with simpler rules and maintaining the
prediction capability.
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R0: IF Concave points1 = { VeryLow Low} Area2 = { VeryLow} Area3
= { VeryLow} Compactness3 = { VeryLow Low} THEN Class IS B W
0.9279778959021685

R1: IF Perimeter3 = { Medium High VeryHigh} THEN Class IS M W
0.9427146601010222

R2: IF Smoothness1 = { Medium High VeryHigh} Compactness2 =
{ VeryLow Low High VeryHigh} Concavity2 = { VeryLow Low}
Fractal dimension2 = { VeryLow Low} Texture3 = { Medium High
VeryHigh} Concave points3 = { Medium High VeryHigh} THEN
Class IS M W 0.8289296712126152

R3: IF Texture1 = { Medium VeryHigh} Symmetry1 = { Low}
Compactness2 = { VeryLow Low High} Concavity2 = { VeryLow
Low} Fractal dimension2 = { VeryLow Low} Compactness3 = { Low}
Concave points3 = { Medium High VeryHigh} THEN Class IS M W
0.7284836582193538

R4: IF Texture1 = { VeryLow} Area1 = { VeryLow Low} Smoothness1
= { VeryLow Low VeryHigh} Perimeter2 = { VeryLow} Symmetry3 =
{ VeryLow Low} THEN Class IS B W 0.9877149519361487

R5: IF Texture1 = {Medium High VeryHigh} Concave points2 = {Medium
High VeryHigh} Area3 = { Low Medium VeryHigh} Concave points3 =
{ VeryLow High VeryHigh} THEN Class IS M W 0.9624991605824593

R6: IF Radius1 = { Medium High} Texture1 = { High VeryHigh}
Concave points1 = { Low Medium High} Symmetry1 = { Medium
High VeryHigh} Texture3 = { VeryLow Low High VeryHigh} THEN
Class IS M W 0.9479497004775931

R7: IF Perimeter1 = { VeryLow Low} Compactness1 = { VeryLow Low}
Symmetry1 = { VeryLow Low VeryHigh} Perimeter2 = { VeryLow
High} Concave points2 = { VeryLow Low} Texture3 = { VeryLow
Low} Smoothness3 = { VeryLow Low VeryHigh} Concavity3 = {
VeryLow Medium} Concave points3 = { VeryLow Medium}
Symmetry3 = { VeryLow Low} THEN Class IS B W
0.9761545147538883

R8: IF Concavity2 = { VeryLow Low} Symmetry3 = { High VeryHigh}
THEN Class IS M W 1.0

Figure 5.3: Ruleset obtained by the algorithm NSLV in the 9th partition of the
wdbc database.
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R0: IF Radius1 = { VeryLow Low} Area2 = { VeryLow} Concave points3
= { VeryLow Low} THEN Class IS B W 0.9697728341533557

R1: IF Radius1 = { VeryLow Low High VeryHigh} Texture1 = {
VeryLow Low} Radius2 = { VeryLow VeryHigh} Texture3 = {
VeryLow Low} Area3 = { VeryLow} Symmetry3 = { Low} THEN
Class IS B W 0.964425985101706

R2: IF Smoothness1 = { Medium High} Fractal dimension2 = {
VeryLow} Area3 = { Low Medium High VeryHigh} Smoothness3 = {
Medium High VeryHigh} Concavity3 = { Medium High} THEN Class
IS M W 0.9573650565508308

R3: IF Texture1 = { VeryLow} Area1 = { Low} Compactness1 = { Low
High VeryHigh} Concavity1 = { VeryLow Low} Perimeter2 = {
VeryLow} THEN Class IS B W 0.9777279010275604

R4: IF Fractal dimension1 = { VeryLow Low High VeryHigh} Radius3
= { VeryLow} Symmetry3 = { Low Medium} THEN Class IS B W
0.9918865510091466

R5: IF Radius1 = { Medium} Concave points3 = { VeryLow Low High
VeryHigh} THEN Class IS M W 0.7206203310773723

R6: IF Perimeter1 = { Low Medium VeryHigh} Area3 = { Low Medium
High VeryHigh} Smoothness3 = { Medium VeryHigh} Concavity3 = {
Low Medium} THEN Class IS M W 0.5909202519518316

R7: IF Concavity1 = { VeryLow} Fractal dimension1 = { Low Medium
High VeryHigh} Texture2 = { VeryLow} Texture3 = { VeryLow Low}
THEN Class IS B W 0.9709823485535519

Figure 5.4: Ruleset obtained by the algorithm NSLV-AR in the 9th partition of the
wdbc database.
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Chapter 6

An integrated method using
feature construction and
knowledge review

6.1 Introduction and foundations

According to the structure of this dissertation, two main branches can be
distinguished: on the one hand the proposals related to feature construc-
tion, mainly focused on the improvement of the prediction capability of the
models. On the other hand, the proposal related to knowledge review, more
focused on interpretability. Although both ideas are contrary related (nor-
mally, the improvement of one of them implies the decrease of the other),
now the objective is to integrate them in an algorithm in order to find a
good trade-off among accuracy and interpretability.

The feature construction techniques normally increase the searching space
of possible solutions. The use of relations and functions give a tool for han-
dling additional information apart from the one given by the original vari-
ables. As a consequence, the prediction capability of the model obtained
using this approach, is normally increased, because some more examples
can be represented by the set of rules. The problem is that some of these
examples are isolated or very specific and do not give useful information for
classifying test examples.

The knowledge review can be seen as a refinement process which spe-
cially in final stages of learning, helps replacing those rules which can be
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improved by a later one. This mechanism improves the rule base from an
interpretability point of view without loosing accuracy. The combination of
this idea together with the use of pruned searching spaces allows defining the
specificity level of the learned rules. So, both of them, the interpretability
at a rule base level and for each single rule, are improved.

Thus, the proposal described in this chapter, called SLAVE3 in order
to recover the line previously established by SLAVE and SLAVE2, aims to
be an algorithm that integrates the techniques aforementioned. The main
objective is to achieve a good trade-off among accuracy and interpretability.
In this sense, it includes feature construction through the use of relations and
functions and also knowledge review together with pruned searching spaces.
Thereby, it maintains the same ideas as the rest of proposals following the
IRL approach and applying all these techniques embedded in the learning
process.

A global view of the steps given until reaching this version, SLAVE3, is
shown in Figure 6.1.

Figure 6.1: Steps given until reaching SLAVE3.

In this way, SLAVE3 uses the same rule codification as the one described
in Section 4.4, Figure 4.10, namely, that employed to take into account both
relations and functions in the antecedent of fuzzy rules. It also inherits the
same rule model and the same genetic operators as those used by NSLV-
FR, together with the replacement operator introduced when talked about
knowledge review (Section 5.2.1).

With regard to the fitness function, the proposed method considers the
one given below:
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fitness(R) = [Ψδ(R), |Ω(R)|, svar(R), sval(R)]

being:

• Ψδ(R): the first component of the fitness function, expressed as:

Ψδ(R) =

{
(Γ′k1,k2(R)× Λ(R)× wn) if (Λ(R) ≥ δ)
−∞ otherwise.

(6.1)

• Γ′k1,k2(R): the consistency definition given in Section 4.4.1.

• Λ(R): the completeness degree definition detailed in Section 3.1.3.2.2.

• w: the weight of the rule.

• n: the number of conditions, understanding as conditions the initial
variables, relations and functions considered in the antecedent of a
rule.

• svar(R): the simplicity degree of a rule determined by the number
of irrelevant variables. The expression is detailed in Section 3.2.2.3.3,
equation 3.31.

• sval(R): the simplicity degree of a rule determined by the number of
understandable assignments to the variables of a rule. The expression
is shown in Section 3.2.2.3.3, equation 3.32.

• δ: the threshold that represents the minimum percentage of examples
(of the class that is being learned), that must be covered by a rule.

Finally, one important characteristic of SLAVE3 is its ability to be con-
figured in order to behave as the methods that integrate it. In this sense, we
are able to decide whether to consider relations, functions or the reviewing
functionality.

Next section is devoted to describe a wide experimental study including
the main proposals presented in this work.

6.2 Experimental study

6.2.1 Comparison among all proposals

In this subsection, SLAVE3 is compared with the rest of proposals described
in the dissertation. The objective of this comparison is to demonstrate
that the behavior of each model is consistent with the storyline. On the
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other hand, the idea here is to show the SLAVE3 learning algorithm as the
final model including the main advantages of the previous algorithms but
minimizing their weaknesses. With this purpose, the statistical test that
allows this comparative study is the Shaffer’s test.

One more time, the results in this experimental analysis have been ob-
tained considering the general settings mentioned in Chapter A. Some other
specific conditions associated to the different algorithms are shown in tables
6.1, 6.2 and 6.3.

Table 6.1: Specific conditions for NSLV and NSLV-FR. NAV means the number
of antecedent variables and n class represents the number of classes of the specific
problem.

Specific Conditions NSLV/NSLV-FR
Size of genetic population 20*n class

Number of iterations 500
Mutation prob. (Value level) 0.01

Mutation prob. (Variable level) 1/NAV
Mutation prob. (Consequent level) 0.01

Crossover prob. 1

Table 6.2: Specific conditions for NSLV-AR, where n class represents the number
of classes of the specific problem.

Specific Conditions NSLV-AR
Size of genetic population 20*n class

Number of iteration 500
δmax 0.3
δmin 0.1

Mutation prob. (Value level) 0.01
Mutation prob. (Consequent level) 0.01

Mutation prob. (Variable level) 1
Replacement prob. 0.05

Crossover prob. 0.95

The parameters in which the experimental study is based are listed be-
low:

• the accuracy on training set,

• the accuracy on testing set,

• the average number of rules and

• the average number of conditions per rule.
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Table 6.3: Specific conditions for SLAVE3, where n class represents the number of
classes of the specific problem.

Specific Conditions SLAVE3
Size of genetic population 20*n class

Number of iteration 500
δmax 0.3
δmin 0.1

Mutation prob. (Value level) 0.01
Mutation prob. (Consequent level) 0.01

Mutation prob. (Variable level) 1
Replacement prob. 0.05

Crossover prob. 0.95

According to all these considerations and as it is usual in all the experi-
mental analysis made up to now, we will describe the results using the tables
given by the statistical tests.

Table 6.4: Average Rankings of the algorithms (Friedman) and computed p-value
by Friedman (accuracy on training set).

Algorithm Ranking

NSLV 2.6375
NSLVAR 3.675
NSLVFR 1.3375
SLAVE3 2.35

Friedman p-value

4.429012712137137E-11

Table 6.5: Adjusted p-values (accuracy on training set).

i hypothesis unadjusted p pShaf
1 NSLVAR vs .NSLVFR 0 0
2 NSLVAR vs .SLAVE3 0.000004 0.000013
3 NSLV vs .NSLVFR 0.000007 0.00002
4 NSLV vs .NSLVAR 0.000326 0.000977
5 NSLVFR vs .SLAVE3 0.000453 0.000977
6 NSLV vs .SLAVE3 0.319285 0.319285

So, looking at Table 6.5, we can see that all the algorithms obtain signif-
icant differences in training with regard to NSLV-AR (the worst algorithm
in ranking), and the same occurs among NSLV-FR and the rest of proposals.
On the other hand, in relation to Table 6.7, we observe that all the methods
including feature construction (NSLV-FR and SLAVE3), significantly win
NSLV-AR in test (and both are close to obtain statistical differences also
with NSLV, but considering a significance level of α = 0.058 and α = 0.113,
respectively). Regarding to ranking classification and average values (tables
6.4, 6.6, B.11 and B.12), it is proved that the methods using the feature
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construction techniques present the best prediction capability with similar
results in test. In this situation, SLAVE3 is the second best algorithm in
accuracy, very near to NSLV-FR which is the one achieving the best results.

Table 6.6: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (accuracy on testing set).

Algorithm Ranking

NSLV 2.7625
NSLVAR 2.9875
NSLVFR 2.0875
SLAVE3 2.1625

Friedman p-value

0.0026763709780885936

Table 6.7: Adjusted p-values (accuracy on testing set).

i hypothesis unadjusted p pShaf
1 NSLVAR vs .NSLVFR 0.001823 0.010936
2 NSLVAR vs .SLAVE3 0.004265 0.012794
3 NSLV vs .NSLVFR 0.019373 0.05812
4 NSLV vs .SLAVE3 0.037667 0.113001
5 NSLV vs .NSLVAR 0.435731 0.871461
6 NSLVFR vs .SLAVE3 0.795012 0.871461

Table 6.8: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (average number of rules).

Algorithm Ranking

NSLV 2.75
NSLVAR 1.3625
NSLVFR 3.225
SLAVE3 2.6625

Friedman p-value

6.764379056889425E-10

Now, focusing in Table 6.10, we observe that NSLV-AR significantly
wins the rest of algorithms in number of rules, something expected as it
is the only one including the knowledge review technique alone. It is the
best one also when talking about average values and ranking classification
(tables 6.8 and B.13). It is important to note that SLAVE3, which also
includes knowledge review, is the second best algorithm, although it obtains
almost twice the average number of rules achieved by NSLV-AR. Anyway,
it is comprehensible because SLAVE3 also uses feature construction which
is susceptible to increase the knowledge base.
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Table 6.9: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (average number of conditions per rule).

Algorithm Ranking

NSLV 3.2875
NSLVAR 1.65
NSLVFR 2.875
SLAVE3 2.1875

Friedman p-value

2.9091349995624682E-8

The same happens with the last parameter, shown in Table 6.11. The
number of conditions per rule is significantly reduced by the proposals in-
cluding knowledge review (NSLV-AR and SLAVE3). In this sense, NSLV-
AR is again the best algorithm, closely followed by SLAVE3 (in average
values, Table B.14). We can also appreciate that SLAVE3 is near to obtain
statistical differences with NSLV-FR, something that would be possible with
a significance level of 0.052.

Table 6.10: Adjusted p-values (average number of rules).

i hypothesis unadjusted p pShaf
1 NSLVAR vs .NSLVFR 0 0
2 NSLV vs .NSLVAR 0.000002 0.000005
3 NSLVAR vs .SLAVE3 0.000007 0.00002
4 NSLVFR vs .SLAVE3 0.051348 0.154045
5 NSLV vs .NSLVFR 0.099877 0.199755
6 NSLV vs .SLAVE3 0.761807 0.761807

Table 6.11: Adjusted p-values (average number of conditions per rule).

i hypothesis unadjusted p pShaf
1 NSLV vs .NSLVAR 0 0
2 NSLVAR vs .NSLVFR 0.000022 0.000066
3 NSLV vs .SLAVE3 0.000139 0.000416
4 NSLVFR vs .SLAVE3 0.017239 0.051717
5 NSLVAR vs .SLAVE3 0.062609 0.125219
6 NSLV vs .NSLVFR 0.153021 0.153021

Therefore, globally, SLAVE3 successfully achieves a good trade-off among
accuracy and interpretability. In fact, SLAVE3 proves to be a learning
algorithm that successfully combines feature construction techniques with
knowledge review, minimizing their main disadvantages.

In order to show the different rule bases obtained by each algorithm,
next we will present some examples for the wdbc database (Figure A.1).
Table 6.12 shows the accuracy of the different proposals when running the
9th partition of the wdbc dataset.

Paying attention to figures 6.2, 6.3, 6.4 and 6.5 and Table 6.12, we can see
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Table 6.12: Results obtained by the algorithms in the 9th partition of the wdbc
database. The table shows the accuracy on training and testing sets.

Algorithm Training (%) Test (%)
NSLV 98.6 92.9

NSLV-AR 98.4 94.7
NSLV-FR 98.8 98.2
SLAVE3 97.4 96.4

that the conclusions extracted in the previous analysis are maintained. Thus,
the higher accuracy is again achieved by NSLV-FR, followed by SLAVE3.
However, contrary to the results shown in Table B.13, in this particular set
of examples NSLV-FR obtains the rule base with lower number of rules.
Anyway, the simpler rule base is just one measure of interpretability. When
looking at Table 6.14, we realize that the algorithm with simpler rules is
SLAVE3. So, one more time, SLAVE3 demonstrate having a good trade-off
accuracy/interpretability.

Table 6.13: For each one of the algorithms, this table shows the number of suc-
cesses/fails of each rule part of the different rule bases in the testing set.

NSLV NSLV-AR NSLV-FR SLAVE3
#Rule Succ. Fails Succ. Fails Succ. Fails Succ. Fails

R0 31 3 22 0 30 0 32 2
R1 12 1 1 1 16 0 6 0
R2 2 0 6 0 3 0 1 0
R3 0 0 0 0 0 1 4 1
R4 1 0 7 0 5 0 1 0
R5 3 0 6 1 2 0 8 0
R6 0 0 7 0 - - 3 0
R7 3 0 5 1 - - - -
R8 1 0 - - - - - -

Table 6.14: Results obtained by the algorithms in the 9th partition of the wdbc
database. The table shows the average number of conditions per rule.

Algorithm Conditions per rule
NSLV 4.88

NSLV-AR 3
NSLV-FR 4
SLAVE3 2.71

Regarding to the results appearing in Table 6.13, it is important to say
that, as occurs with the rest of algorithms, the first rule of SLAVE3 is the
one with higher successes index. The second one according to the number
of successes is R5, which uses two fuzzy relations and obtains the higher
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weight of the whole ruleset.

R0: IF Concave points1 = { VeryLow Low} Area2 = { VeryLow} Area3
= { VeryLow} Compactness3 = { VeryLow Low} THEN Class IS B W
0.9279778959021685

R1: IF Perimeter3 = { Medium High VeryHigh} THEN Class IS M W
0.9427146601010222

R2: IF Smoothness1 = { Medium High VeryHigh} Compactness2 =
{ VeryLow Low High VeryHigh} Concavity2 = { VeryLow Low}
Fractal dimension2 = { VeryLow Low} Texture3 = { Medium High
VeryHigh} Concave points3 = { Medium High VeryHigh} THEN
Class IS M W 0.8289296712126152

R3: IF Texture1 = { Medium VeryHigh} Symmetry1 = { Low}
Compactness2 = { VeryLow Low High} Concavity2 = { VeryLow
Low} Fractal dimension2 = { VeryLow Low} Compactness3 = { Low}
Concave points3 = { Medium High VeryHigh} THEN Class IS M W
0.7284836582193538

R4: IF Texture1 = { VeryLow} Area1 = { VeryLow Low} Smoothness1
= { VeryLow Low VeryHigh} Perimeter2 = { VeryLow} Symmetry3 =
{ VeryLow Low} THEN Class IS B W 0.9877149519361487

R5: IF Texture1 = {Medium High VeryHigh} Concave points2 = {Medium
High VeryHigh} Area3 = { Low Medium VeryHigh} Concave points3 =
{ VeryLow High VeryHigh} THEN Class IS M W 0.9624991605824593

R6: IF Radius1 = { Medium High} Texture1 = { High VeryHigh}
Concave points1 = { Low Medium High} Symmetry1 = { Medium
High VeryHigh} Texture3 = { VeryLow Low High VeryHigh} THEN
Class IS M W 0.9479497004775931

R7: IF Perimeter1 = { VeryLow Low} Compactness1 = { VeryLow Low}
Symmetry1 = { VeryLow Low VeryHigh} Perimeter2 = { VeryLow
High} Concave points2 = { VeryLow Low} Texture3 = { VeryLow
Low} Smoothness3 = { VeryLow Low VeryHigh} Concavity3 = {
VeryLow Medium} Concave points3 = { VeryLow Medium}
Symmetry3 = { VeryLow Low} THEN Class IS B W
0.9761545147538883

R8: IF Concavity2 = { VeryLow Low} Symmetry3 = { High VeryHigh}
THEN Class IS M W 1.0

Figure 6.2: Ruleset obtained by the algorithm NSLV in the 9th partition of the
wdbc database.
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R0: IF Radius1 = { VeryLow Low} Area2 = { VeryLow} Concave points3
= { VeryLow Low} THEN Class IS B W 0.9697728341533557

R1: IF Radius1 = { VeryLow Low High VeryHigh} Texture1 = {
VeryLow Low} Radius2 = { VeryLow VeryHigh} Texture3 = {
VeryLow Low} Area3 = { VeryLow} Symmetry3 = { Low} THEN
Class IS B W 0.964425985101706

R2: IF Smoothness1 = { Medium High} Fractal dimension2 = {
VeryLow} Area3 = { Low Medium High VeryHigh} Smoothness3 = {
Medium High VeryHigh} Concavity3 = { Medium High} THEN Class
IS M W 0.9573650565508308

R3: IF Texture1 = { VeryLow} Area1 = { Low} Compactness1 = { Low
High VeryHigh} Concavity1 = { VeryLow Low} Perimeter2 = {
VeryLow} THEN Class IS B W 0.9777279010275604

R4: IF Fractal dimension1 = { VeryLow Low High VeryHigh} Radius3
= { VeryLow} Symmetry3 = { Low Medium} THEN Class IS B W
0.9918865510091466

R5: IF Radius1 = { Medium} Concave points3 = { VeryLow Low High
VeryHigh} THEN Class IS M W 0.7206203310773723

R6: IF Perimeter1 = { Low Medium VeryHigh} Area3 = { Low Medium
High VeryHigh} Smoothness3 = { Medium VeryHigh} Concavity3 = {
Low Medium} THEN Class IS M W 0.5909202519518316

R7: IF Concavity1 = { VeryLow} Fractal dimension1 = { Low Medium
High VeryHigh} Texture2 = { VeryLow} Texture3 = { VeryLow Low}
THEN Class IS B W 0.9709823485535519

Figure 6.3: Ruleset obtained by the algorithm NSLV-AR in the 9th partition of the
wdbc database.

138



6.2. Experimental study

R0: IF Area3 = { VeryLow} Concave points3 = { VeryLow Low} THEN
Class IS B W 0.9749258286226512

R1: IF (Radius1/Area3) = { L0 L2} Fractal dimension1 < Concave points1
Smoothness1 < Concavity1 THEN Class IS M W 0.9998451137419374

R2: IF Texture3 = { Medium High VeryHigh} (Radius1/Area3) = { L0}
Concave points3 ! =E Compactness2 Fractal dimension1 6E
Concavity1 THEN Class IS M W 0.9732671722874883

R3: IF Compactness2 = { VeryLow Medium High VeryHigh} Radius3 = {
Medium VeryHigh} Texture3 = { Medium High VeryHigh} THEN
Class IS M W 0.9490180336074999

R4: IF Symmetry1 = { VeryLow Medium VeryHigh} Texture3 = { VeryLow
Low} (Compactness1-Perimeter3) = { L1 L2 L3} THEN Class IS B
W 0.8258497508137139

R5: IF (Concavity2-Radius3) = { L1 L2 L3 L4} (Radius3-Perimeter3) = {
L1 L2 L3 L4} Concave points2 ! =E Concave points1 THEN Class IS
M W 0.9387358486204522

Figure 6.4: Ruleset obtained by the algorithm NSLV-FR in the 9th partition of the
wdbc database.

R0: IF Concave points3 = { MuyBaja Baja} THEN Class IS B W
0.9450622665520259

R1: IF Concave points3 = { Alta MuyAlta} Concave points1 ! =E
Concave points2 THEN Class IS M W 0.9858711171095856

R2: IF Texture3 = { Media MuyAlta} (Smoothness2+Perimeter3) = { L2
L3} THEN Class IS M W 0.9715859133303734

R3: IF Texture3 = { Media MuyAlta} Fractal dimension1 < Concavity1
Area2 ! =E Radius1 Smoothness1 < Concave points3 THEN Class IS
M W 0.9762838732075463

R4: IF Texture1 = { MuyBaja Baja Alta} Texture2 = { MuyBaja}
(Concave points1*Concavity3) = { L2 L3} Concavity1 <
Compactness1 Area1 =E Area3 THEN Class IS B W
0.9907741137371731

R5: IF Fractal dimension2 = {MuyBaja} Texture3 = {Media} Concavity1
! =E Compactness2 Concave points1 ! =E Concave points2
THEN Class IS M W 0.9955177092569343

R6: IF Concave points1 6E Concavity2 THEN Class IS B W
0.936713110626154

Figure 6.5: Ruleset obtained by the algorithm SLAVE3 in the 9th partition of the
wdbc database.
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6.2.2 SLAVE3 Vs other learning algorithms

This section is devoted to compare the last method proposed in this work,
that is, SLAVE3, against some well-known classical algorithms and some
more recent proposals. Some of the algorithms involved in the comparison
have been properly described in Chapter 2. The rest of them are briefly
summarized below:

• C4.5([95]): Proposed by R.S. Quinlan, it is an inductive classification
algorithm that represents knowledge using a decision tree.

• FURIA ([60]): It is a fuzzy rule-based classifier proposed by Hühn
and Hüllermeier, which is an advancement of the RIPPER ([19]) al-
gorithm, differing from the last one mainly in the use of fuzzy instead
of conventional rules. It also introduces a rule stretching technique to
reduce the computational complexity improving the performance.

• FARC-HD ([2]): Proposed by J. Alcalá et al., it is a fuzzy associative
classification method for high-dimensional datasets. It is based on
three stages to obtain accurate and compact fuzzy rule bases: the first
one is related to fuzzy association rule extraction for classification, the
second one is devoted to preselect the most interesting rules from the
rule base obtained in the previous stage and finally, the third one is
responsible of rule selection and lateral tuning.

This time, we have used the Shaffer’s statistical test to be able to com-
pare all possible pairwise. All methods have been run through the KEEL
platform and using the default settings. SLAVE3 maintains the same spe-
cific conditions as shown in Table 6.3. The rest of considerations related to
the experimental settings can be consulted in Chapter A.

Table 6.15: Average Rankings of the algorithms (Friedman) and computed p-value
by Friedman (accuracy on training set).

Algorithm Ranking

GCCL 5.225
C45 2.4625

SGERD 5.55
FARC-HD 2.125

FURIA 2.9
SLAVE3 2.7375

Friedman p-value

5.778677536483201E-11

Now, the study focuses in four parameters: the accuracy on training and
testing sets, the average number of rules and the average trade-off measured
as the ratio given by the accuracy on test and the number of rules. In
this section, the study has not been extended to the number of conditions,
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as some of the algorithms did not give that parameter available. Anyway,
this situation does not constitute a penalty and the purpose of the study is
successfully achieved.

First of all and starting with the accuracy on training set we can see in
Table 6.15 that the best algorithm in ranking is FARC-HD, closely followed
by SLAVE3. According to the Friedman p-value, some statistical differences
are found. In this sense, Table 6.16 shows that FARC-HD, SLAVE3, FU-
RIA and C4.5 achieve significant differences when compared to GCCL and
SGERD, but not among them. In average values (Table B.15), C4.5 presents
the best results with FARC-HD and SLAVE3 moving in similar ranges.

Table 6.16: Adjusted p-values (accuracy on training set).

i hypothesis unadjusted p pShaf
1 SGERD vs .FARC-HD 0 0
2 GCCL vs .FARC-HD 0 0
3 C45 vs .SGERD 0 0
4 SGERD vs .SLAVE3 0 0
5 GCCL vs .C45 0 0
6 SGERD vs .FURIA 0 0
7 GCCL vs .SLAVE3 0 0
8 GCCL vs .FURIA 0 0
9 FARC-HD vs .FURIA 0.063939 0.447574
10 FARC-HD vs .SLAVE3 0.143152 0.85891
11 C45 vs .FURIA 0.295642 1.182567
12 C45 vs .FARC-HD 0.419794 1.679175
13 GCCL vs .SGERD 0.437219 1.679175
14 C45 vs .SLAVE3 0.510939 1.679175
15 FURIA vs .SLAVE3 0.697684 1.679175

Table 6.17: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (accuracy on testing set).

Algorithm Ranking

GCCL 4.8
C45 3.05

SGERD 5.2125
FARC-HD 2.675

FURIA 2.25
SLAVE3 3.0125

Friedman p-value

4.43937109295689E-11

Regarding to the test parameter, in Table 6.17 we observe that the ran-
king classification changes in relation to the training parameter. Now, the
best method is FURIA and SLAVE3 holds the third position. Again, the
Friedman p-value indicates statistical differences among the algorithms. As
occurred before, FURIA, FARC-HD, SLAVE3 and C4.5 obtain statistical
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differences with GCCL and SGERD (Table 6.18). No significant differences
are found among them. If looking at average values (Table B.16), the best
algorithm keeps being FURIA but SLAVE3 becomes the second best one
(slightly better than FARC-HD).

Table 6.18: Adjusted p-values (accuracy on testing set).

i hypothesis unadjusted p pShaf
1 SGERD vs .FURIA 0 0
2 GCCL vs .FURIA 0 0
3 SGERD vs .FARC-HD 0 0
4 SGERD vs .SLAVE3 0 0.000001
5 C45 vs .SGERD 0 0.000002
6 GCCL vs .FARC-HD 0 0.000004
7 GCCL vs .SLAVE3 0.000019 0.000135
8 GCCL vs .C45 0.000029 0.000201
9 C45 vs .FURIA 0.055829 0.390805
10 FURIA vs .SLAVE3 0.068345 0.410072
11 FARC-HD vs .FURIA 0.309656 1.238624
12 GCCL vs .SGERD 0.324102 1.296408
13 C45 vs .FARC-HD 0.370028 1.296408
14 FARC-HD vs .SLAVE3 0.419794 1.296408
15 C45 vs .SLAVE3 0.928572 1.296408

Table 6.19: Average Rankings of the algorithms (Friedman) and computed p-values
by Friedman and Iman-Davenport (average number of rules).

Algorithm Ranking

GCCL 4.8
C45 3.5

SGERD 1.2
FARC-HD 4.8

FURIA 3.4
SLAVE3 3.3

Friedman p-value

6.764379056889425E-10

Looking at Table 6.19, we realize that the algorithm achieving fewer
number of rules is SGERD. This algorithm obtains statistical differences
with the rest of methods involved in the comparison (Table 6.20). SLAVE3,
FURIA and C4.5 present similar results, not only in ranking, but also in
average values (Table B.17). In this sense, they significantly win FARC-HD
and GCCL, but without differences among them. Considering the average
results, GCCL (the worst algorithm), obtains almost nine times more rules
than SGERD (the best one). The rest (but FARC-HD), get similar values in
average, reducing the number of rules almost in 20 rules per dataset (when
compared with GCCL).
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Table 6.20: Adjusted p-values (average number of rules).

i hypothesis unadjusted p pShaf
1 GCCL vs .SGERD 0 0
2 SGERD vs .FARC-HD 0 0
3 C45 vs .SGERD 0 0
4 SGERD vs .FURIA 0 0.000001
5 SGERD vs .SLAVE3 0.000001 0.000005
6 GCCL vs .SLAVE3 0.000336 0.003362
7 FARC-HD vs .SLAVE3 0.000336 0.003362
8 GCCL vs .FURIA 0.000818 0.005726
9 FARC-HD vs .FURIA 0.000818 0.005726
10 GCCL vs .C45 0.001886 0.011317
11 C45 vs .FARC-HD 0.001886 0.011317
12 C45 vs .SLAVE3 0.632585 2.53034
13 FURIA vs .SLAVE3 0.81107 2.53034
14 C45 vs .FURIA 0.81107 2.53034
15 GCCL vs .FARC-HD 1 2.53034

Finally, considering as a new parameter the trade-off between accuracy
(in test) and interpretability (measured through the number of rules), we
can make the following study. First, we have to point out that this trade-off
have been measured following the criterion accuracyTest/numberRules for
each single database.

Table 6.21: Average Rankings of the algorithms (Friedman) and com-
puted p-values by Friedman and Iman-Davenport (average trade-off accuracy
(test)/interpretability (rules)).

Algorithm Ranking

GCCL 5.2
C45 3.375

SGERD 1.25
FARC-HD 4.725

FURIA 3.3
SLAVE3 3.15

Friedman p-value

6.529232710050792E-11

So, according to the results shown in Table 6.21, we appreciate that the
algorithm obtaining the best trade-off accuracy/interpretability is SGERD.
The next one is SLAVE3, closely followed by FURIA and C4.5. With more
details, we can see in Table 6.22, that the same conclusions as those given
for the rules parameter, are maintained. So, again, SGERD is significantly
better than the rest of proposals.

Thus, in summary, we can say that SLAVE3 achieves good results, be-
longing to the group of the algorithms with higher prediction capability, with
no significant differences with respect to the best ones (FARC-HD or FURIA,
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Table 6.22: Adjusted p-values (average trade-off accuracy (test)/interpretability
(rules)).

i hypothesis unadjusted p pShaf
1 GCCL vs .SGERD 0 0
2 SGERD vs .FARC-HD 0 0
3 C45 vs .SGERD 0 0.000004
4 SGERD vs .FURIA 0.000001 0.00001
5 GCCL vs .SLAVE3 0.000001 0.00001
6 SGERD vs .SLAVE3 0.000006 0.000056
7 GCCL vs .FURIA 0.000006 0.000056
8 GCCL vs .C45 0.000013 0.00009
9 FARC-HD vs .SLAVE3 0.000167 0.001166
10 FARC-HD vs .FURIA 0.000658 0.00395
11 C45 vs .FARC-HD 0.00125 0.005002
12 GCCL vs .FARC-HD 0.25618 1.024719
13 C45 vs .SLAVE3 0.590679 1.772036
14 FURIA vs .SLAVE3 0.719918 1.772036
15 C45 vs .FURIA 0.857714 1.772036

depending on the training/test parameter). It also presents good classifica-
tions in number of rules and trade-off accuracy/interpretability, being the
second best algorithm in both parameters. In these cases, SGERD obtains
the best results and the rest of methods are far away from it. Anyway, we
have to take into account that SGERD is also one of the worst algorithms
in prediction capability, being a 10% worse in average than SLAVE3. This
is important, because the simplicity in number of rules of the rule bases
generated by SGERD, translates in an important loss of accuracy. As a
consequence, we can conclude that SLAVE3 has a good general behavior,
also when dealing with complex problems.

6.2.3 A first step towards the incremental learning

6.2.3.1 Motivation and general purpose

During the development of this dissertation, the main efforts have focused
in obtaining fuzzy rule-based systems describing the examples of a partic-
ular problem. Normally, these problems have been represented through
databases formed by a set of pre-selected examples which do not change
along time. Therefore, it can be considered that all methods exposed up
to now exclusively make an offline learning. This means that each time a
fuzzy system representing changing examples is required, the whole learning
process should be repeated.

Some of the real problems today move in a changing environment. This
implies continuously considering new information and under a learning point
of view, to re-adapt the knowledge. This situation is commonly associated
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in the bibliography to the terms: incremental learning, online learning or
concept drift.

The purpose in this section is to give a first step towards this capability
of re-adapting the learned knowledge. In this sense, the main purpose is to
check the capability of SLAVE3 to behave on an incremental way. Following
this idea, we will assume that the algorithm stores all the training cases and
it is able to handle the examples used in the previous learning stage.

Therefore, we will employ the SLAVE3 learning algorithm but disabling
the use of relations and functions in the antecedent of the rules (because
the use of relations and functions increase both the learning complexity
and time requirements, and because we are also focused on interpretability
measures more related to the knowledge review), and we will refer to it as
SLAVE3*. Then, the idea is to work in several steps considering increments
of information given by the training examples. Two main tasks are now
taken into account. The first one is related to the way the ruleset is managed,
as in each new step the previously learned ruleset is considered as the new
initial ruleset. The second change is related to the update of the weights of
each initial ruleset but using the new set of examples.

Now, let us imagine an initial situation in which the algorithm handles
a training set E0 = E and a ruleset R0 = ∅ and obtains a set of rules R1.
So, if at any time the number of examples increases, E1 = E0 + τ1, being τ1
an incremental set of examples, then the algorithm would learn by using the
training set E1 and the input rule base R1. Here, the sub-indexes should be
understood as an ordered sequence of time steps (i.e., R0 = Rt, with t = 0).
Thereby, the process can then continue while new increments of examples
arrive.

With regard to the selection of the initial population each time a new
training set is added, it is important to point out that the initial population
in the time step t + 1 is obtained by randomly taking the misclassified
examples by the current rule base Rt with the new set of examples Et+1.

6.2.3.2 Experimental study

Up to now, we have been working with offline data, and we still do, so with
the purpose of checking the behavior of the proposal, two different exper-
iments have been conducted. In the first one, we analyze the evolution of
the accuracy in some particular databases when the training set is increased
using short increments. In the second experimental part, we consider only
two steps, the first one using the 90% of the training data, and the second
one adding the remaining 10%. This second configuration is then compared
with the original (non-incremental) version using the whole list of databases
described in Table A.1. Figure 6.6 shows a graphic scheme of the behavior
of the proposed model in this experimental part.
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Figure 6.6: Example of how SLAVE3* acts in this experimental study.

Another important point regarding to the definition of the incremental
example sets used in this experimentation is that they must satisfy the
following conditions:

• E0 ∩ E1 ∩ ... ∩ En = ∅

• E0 ∪ E1 ∪ ... ∪ En = E.

6.2.3.2.1 First experiment

In this first subsection, we analyze how the accuracy evolves in three
particular datasets using short increments of the training sets. These incre-
ments act as correlated time sequences.

The selected datasets in the study have been australian, dermatology
and wisconsin, which are described in Table A.1. The training sets of
each one of these databases have been divided into ten disjunct subsets
with approximately the same number of examples (10% of the total set of
examples).

The evolution followed by the algorithm in each database (learning curve)
is graphically shown in Figures 6.7(a), 6.7(b) and 6.7(c), where ti represents
the moment in which the incremental set of examples Ei is considered.

According to these representations, we can conclude that the behavior
in the three databases is not exactly the same, but there are some similar
components. Specifically, there is a very quick growth of the accuracy in
all cases, later on it is gradually improved and finally it makes stable. This
behavior seems desirable in a process of incremental learning. This ”stable”
point can be considered as the point in which the learned model is reliable.
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In general, it is not easy to identify this moment in the learning process and
it is highly dependent of the problem concerned.

(a) Australian database

(b) Dermatology database

(c) Wisconsin database

Figure 6.7: Learning curve of SLAVE3* with the Australian, Dermatology and
Wisconsin databases using 10 increments.
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6.2.3.2.2 Second experiment

The second part of the experimental study focuses in the comparison be-
tween the incremental behavior of SLAVE3* and the non incremental version
of SLAVE3* (equivalent to NSLV-AR), which means that the Wilcoxon’s
test has been applied. To distinguish among them, from now on, we will call
SLAVE3* to the incremental model and NSLV-AR to the non-incremental
version of SLAVE3*. Both methods use the default settings and the incre-
mental approach makes the whole process in two steps. It starts learning
with the 90% of the training examples and after that, in a second step, it
uses the remaining 10%.

We have globally centred the analysis in the study of four parameters:
accuracy on training and testing sets, the average number of rules and the
average number of conditions per rule base.

Table 6.23: Results obtained by the Wilcoxon’s test for SLAVE3* (accuracy on
training set), using α = 0.05.

Vs R+ R− p-value Hypothesis
NSLV-AR 573.0 207.0 0.009155 Rejected

Table 6.24: Results obtained by the Wilcoxon’s test for SLAVE3* (accuracy on
testing set), using α = 0.05.

Vs R+ R− p-value Hypothesis
NSLV-AR 462.5 357.5 0.46796 Not Rejected

Table 6.25: Results obtained by the Wilcoxon’s test for NSLV-AR (average number
of rules), using α = 0.05.

Vs R+ R− p-value Hypothesis
SLAVE3* 697.0 123.0 0.000074 Rejected

Table 6.26: Results obtained by the Wilcoxon’s test for NSLV-AR (time to obtain
the model), using α = 0.05.

Vs R+ R− p-value Hypothesis
SLAVE3* 594.5 225.5 0.011862 Rejected

According to the results shown in tables 6.23, 6.24 and B.18, we can
see that SLAVE3* obtains better results in accuracy, both in training and
testing sets, achieving significant differences in the first parameter, where
the null hypothesis is rejected (Table 6.23). Looking at the average values we
realise that both models get similar results (specially in testing set), so we
can finally conclude that this incremental proposal does not loose prediction
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capability despite the use of incremental example sets. Moreover, it slightly
improves the non-incremental model.

Regarding to the other two parameters (tables 6.25, 6.26 and B.19), we
observe that the number of rules is significantly increased in the proposed
incremental model. Looking at each single dataset, we can see that the
difference is very small in most cases and the average results are strongly
influenced by the ring (which almost triples the number of rules obtained
by NSLV-AR), and vehicle datasets. This higher number of rules could be
due, however, to the isolation of each set of examples considered in each
iteration (characterized by the incremental approach).

Talking about the time parameter, the null hypothesis is again rejected
(Table 6.26), so NSLV-AR presents the best performance in this case. Any-
way, this conclusion is strongly conditioned by the results achieved in the
ring dataset (where the time invested by SLAVE3* is more than three times
the time employed by the original one). This parameter measures (in sec-
onds), the time needed to obtain the final rule model. This means that
in NSLV-AR, it measures the time needed to obtain the model considering
the 100% of training examples. On the other hand, the time in SLAVE3*
includes the two previously mentioned steps (learning using the 90% of train-
ing examples and, after that, the remaining 10%). It is important to point
out this event, because one of the most interesting conclusions comes from
the fact that the time needed for learning the last set of examples (this in-
formation has not been shown in order not to overload the tables), is less
than the time needed to learn with the non-incremental version.
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Conclusions and Future
Work

It is a fact that nowadays is ever more frequent to find problems working
with large amounts of data. These data frequently include vague or im-
precise information, difficult to handle. Due to this complexity, learning
techniques must deal with these difficulties and evolve in order to represent
in an accurate and efficient way these problems.

Inside this framework, the main purpose in this dissertation is basically
to consider the indirect relevance of the input attributes in the learning
process and also to improve the IRL model used in NSLV to be able to
iteratively review the learned knowledge when working with a wide variety
of data.

In this sense, the first objective is achieved through the use of feature
construction techniques which allows the extraction of additional informa-
tion resulting from the combination between the original variables. So, the
learning algorithm handles not only the information given by the input vari-
ables, but also that given by the new constructed features. Following this
idea, in this work we have presented three methods including feature con-
struction techniques: one of them using relations in the antecedent of fuzzy
rules, another one using functions in the antecedent of such rules and the
last one combining both relations and functions.

The experimental results demonstrate a significant improvement of the
prediction capability of the proposals using feature construction with regard
to NSLV. Moreover, when comparing among them and talking about aver-
age values, NSLV-FR obtains the best results in accuracy closely followed by
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NSLV-F and NSLV-R. The penalty here, comes from the other two param-
eters: the average number of rules and the time needed to get the model.
According to the results, NSLV is clearly better than the rest on average,
something expected at all.

So, it was experimentally proved that feature construction techniques
work well when looking for accurate models, with an interpretability level
nearer to natural language. Nevertheless, some well-known interpretability
measures refers to the number of rules of rule bases and the number of
conditions per rule (also per rule base), as key elements in order to consider
a ruleset as interpretable.

It is inside this searching process of interpretable rule bases where the
second main objective takes place. The ability of a fuzzy rule-based learning
algorithm to review the knowledge as part of its own learning process, allows
tuning the knowledge in each step. In this way, our proposal including
knowledge review (NSLV-AR), decides in each iteration whether to replace
or not a previously learned set of rules.

From the experimental point of view, NSLV-AR definitely demonstrates
having a good performance, significantly reducing the complexity of both,
rules and rulesets, without loosing prediction capability.

Finally, the last proposal (SLAVE3), arises from the need to integrate
the ideas previously exposed into a new model achieving a good trade-off
between accuracy and interpretability. So, on the one hand we were looking
for an algorithm with a high level of accuracy, similar to those using feature
construction, and on the other hand, which also were able to improve the
interpretability (by reducing the complexity at a rule/rule base level), when
compared with those last ones.

According to the experimental results, SLAVE3 is close enough in av-
erage to NSLV-FR to be considered an accurate algorithm (following the
expected behavior of an algorithm using feature construction), but signif-
icantly reduces the number of conditions per rule regarding this last one
(with a significance level of 0.052). Another important point is that the
average number of rules is also reduced when compared with NSLV-FR.

When comparing SLAVE3 against other learning algorithms, its behavior
is quite similar to the one previously described. It maintains a high level
of accuracy but achieving simpler rulesets. In brief, we may conclude that
SLAVE3 finds a good trade-off among accuracy and interpretability at a
rule base level when working with different real-world problems.

Concerning to future work, next steps are guided to improve the con-
figuration capabilities of SLAVE3 as well as its adaptation in order to be
included into the KEEL platform. In the same way, the idea is to extend
some of the methodologies here exposed with the purpose of working on
Ordinal Classification Problems (OCM). These kind of problems are mainly
characterized by working with a set of ordered classes with the objective
of minimizing the error between the known class value and the class value
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predicted by the learning algorithm.
Last, one more idea would be related to the development of the incremen-

tal model briefly described in this dissertation towards an on-line learning
algorithm. Thus, the problem of learning new concepts (not initially in-
cluded in the system knowledge base), while the system goes on working,
should be handled. In this sense, two main tasks should be carried out.
The first one is more related to the detection of the degradation level of the
knowledge base while the second one would be responsible for learning the
examples obtained from the interaction with the environment.
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Experimental Settings

All the experimental results shown in this dissertation have been obtained
through the KEEL platform [3] using 40 datasets available for this tool, with
the same partitions in all databases and with the recommended settings. Ta-
ble A.1 describes these databases, where each row represents the number of
examples (#E), variables (#V), real variables (#R), integer variables (#I),
nominal variables (#N), classes (#Cl), and missing values (M) respectively.

For all databases we have considered five uniformly distributed linguistic
labels to define the domain of the continuous variables. The results have
been obtained using ten-fold cross validation and the same partitions for all
the algorithms.

To perform the comparison we used the nonparametric tests of Wilcoxon
[101, 118] (for pairwise comparisons) and Friedman [31, 30] (for multiple
comparisons, 1xN and NxN). All hypotheses of equality between the con-
trol method an the rest of algorithms (1xN), have been tested through the
Holm’s post-hoc procedure [57]. When necessary, in NxN comparisons, the
hypotheses of equality between all existing pairs have been tested through
the Shaffer’s post-hoc procedure [98]. All comparisons have been performed
by using a level of significance α = 0.05.

Additionally, some chapters show examples of rule bases obtained over
the wdbc database. This database, which is available in the KEEL platform
[3], is fully described in Figure A.1.

Particularly, all these examples of rule bases have been extracted from
the execution of the different algorithms over the 9th partition (considering
the partitions given in the KEEL platform when using ten-fold cross vali-
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Table A.1: Datasets used in the experimental studies.

Dataset #E #V #R #I #N #Cl M

Appendicitis 106 7 7 0 0 2 No
Australian 690 14 3 5 6 2 No
Automobile 205 25 15 0 10 6 Yes
Balance 625 4 4 0 0 3 No
Banana 5300 2 2 0 0 2 No
Breast 286 9 0 0 9 2 Yes
Bupa 345 6 1 5 0 2 No
Chess 3196 36 0 0 36 2 No
Cleveland 303 13 13 0 0 5 Yes
Contraceptive Method 1473 9 0 9 0 3 No
Credit Approval 690 15 3 3 9 2 Yes
Dermatology 366 34 0 34 0 6 Yes
Ecoli 336 7 7 0 0 8 No
Flare 1066 11 0 0 11 6 No
Glass 214 9 9 0 0 7 No
Haberman 306 3 0 3 0 2 No
Hayes-Roth 160 4 0 4 0 3 No
Heart 270 13 1 12 0 2 No
Housevotes 435 16 0 0 16 2 Yes
Iris 150 4 4 0 0 3 No
Led7Digit 500 7 7 0 0 10 No
Lymphography 148 18 0 3 15 4 No
Monk-2 432 6 0 6 0 2 No
Movement Libras 360 90 90 0 0 15 No
New Thyroid 215 5 4 1 0 3 No
Pima 768 8 8 0 0 2 No
Post-operative 87 8 0 0 8 3 Yes
Ring 7400 20 20 0 0 2 No
Saheart 462 9 5 3 1 2 No
Sonar 208 60 60 0 0 2 No
Spectfheart 267 44 0 44 0 2 No
Splice 3190 60 0 0 60 3 No
Thyroid 7200 21 6 15 0 3 No
Titanic 2201 3 3 0 0 2 No
Vehicle 846 18 0 18 0 4 No
Vowel 990 13 10 3 0 11 No
Wisconsing Diagnostic 569 30 30 0 0 2 No
Wine 178 13 13 0 0 3 No
Wisconsing 699 9 0 9 0 2 Yes
Yeast 1484 8 8 0 0 10 No
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The ”Breast Cancer Wisconsin (Diagnostic)” (wdbc) database contains 30
features computed from a digitized image of a fine needle aspirate (FNA) of
a breast mass. They describe characteristics of the cell nuclei present in the
image.
The task is to determine if a found tumor is benign or malignant (M =
malignant, B = benign).
The ten real-valued features that are computed for each of three different
cell nucleus are the following:

1. radius: Mean of distances from center to points on the perimeter.

2. texture: Standard deviation of gray-scale values.

3. Perimeter.

4. Area.

5. Smoothness: local variation in radius lengths.

6. Compactness: perimeter2/area− 1.0.

7. Concavity: severity of concave portions of the contour.

8. Concave points: number of concave portions of the contour.

9. Symmetry.

10. Fractal dimension: ”coastline approximation” - 1.

Figure A.1: Description of the wdbc database.

dation), of the wdbc database. Taking under consideration the information
given in Figure A.1, we can see that this dataset has two classes (M , B),
whose distribution of examples in the 9th partition is given below:

• Class M = 191 examples in training set and 21 examples in testing
set.

• Class B = 321 examples in training set and 36 examples in testing set.
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Chapter B

Comparative Tables

In this chapter we will present the comparative tables resulting from the
experimental analysis carried out with the purpose of demonstrating the
performance of the methods described in this dissertation. Thus, the tables
are ordered according to the chapter they belong to.
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Appendix B. Comparative Tables

B.1 Chapter 3: results obtained by SLAVE, SLAVE2,
and NSLV on 40 databases

Table B.1: Results obtained by SLAVE, SLAVE2, and NSLV on 40 databases. The
table shows the accuracy on training set.

Training
Data SLAVE SLAVE2 NSLV

appendicitis 91.4 (3) 91.7 (2) 93.3 (1)
australian 88.3 (3) 89.1 (2) 90.3 (1)
automobile 99.5 (1) 98.3 (2) 97.6 (3)

balance 93.8 (2) 94.4 (1) 85.8 (3)
banana 78 (1) 77 (2) 76.5 (3)
breast 93.4 (1) 92.1 (2) 86 (3)
bupa 64.9 (3) 65.5 (2) 69.9 (1)
chess 97.9 (2) 98.4 (1) 95 (3)

cleveland 94.3 (1) 91.6 (3) 92.9 (2)
contraceptive 62.7 (1) 59.6 (2) 49.3 (3)

crx 94 (2) 95.2 (1) 89.9 (3)
dermatology 99.9 (1) 99.6 (2) 99.1 (3)

ecoli 88.4 (1) 87.8 (2) 87.3 (3)
flare 76.8 (1) 76.7 (2) 74 (3)
glass 71 (2) 70.6 (3) 80.2 (1)

haberman 77.9 (2) 77.4 (3) 78.1 (1)
hayes-roth 89.7 (1) 89.3 (2) 88.7 (3)

heart 96.8 (1) 95.3 (2) 91.7 (3)
housevotes 100 (1) 99.9 (2) 97.4 (3)

iris 97.2 (3) 97.3 (1.5) 97.3 (1.5)
led7digit 71.1 (1) 69 (2) 65.2 (3)

lymphography 98.7 (1) 98.3 (2) 96.3 (3)
monk-2 100 (1.5) 100 (1.5) 97.5 (3)

movement libras 91.4 (3) 97.2 (2) 98.2 (1)
new thyroid 93.3 (2) 93.2 (3) 95.1 (1)

pima 78.4 (2) 77.9 (3) 79.5 (1)
post operative 92.8 (1) 90.3 (2) 81.6 (3)

ring 91.8 (3) 93.4 (2) 94.9 (1)
saheart 79.9 (2) 78.2 (3) 81.1 (1)
sonar 99.4 (1) 97.9 (3) 98.1 (2)

spectfheart 81.5 (2) 81.9 (1) 79.8 (3)
splice 59.3 (3) 98.3 (1) 94.6 (2)

thyroid 92.6 (3) 93.1 (1) 93 (2)
titanic 79 (1.5) 79 (1.5) 77.2 (3)
vehicle 70.3 (3) 70.4 (2) 84.5 (1)
vowel 77.9 (3) 79.1 (2) 94.5 (1)
wdbc 95.2 (3) 96.5 (2) 98.1 (1)
wine 99.8 (1.5) 99.7 (3) 99.8 (1.5)

wisconsin 99.6 (1) 99.3 (2) 98.3 (3)
yeast 56.8 (1) 43.6 (3) 51.8 (2)
Mean 86.6175 87.0775 86.985
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B.1. Chapter 3: results obtained by SLAVE, SLAVE2, and
NSLV on 40 databases

Table B.2: Results obtained by SLAVE, SLAVE2, and NSLV on 40 databases. The
table shows the accuracy on testing set.

Test
Data SLAVE SLAVE2 NSLV

appendicitis 84.6 (3) 86.4 (1) 85.4 (2)
australian 83 (2.5) 83 (2.5) 85 (1)
automobile 77.1 (2) 79.4 (1) 74.2 (3)

balance 64.4 (3) 66.9 (2) 76.3 (1)
banana 78 (1) 77 (2) 76.5 (3)
breast 65.4 (2) 64.8 (3) 72.9 (1)
bupa 61.6 (1) 59.6 (2) 57.9 (3)
chess 97.4 (2) 98.1 (1) 94.6 (3)

cleveland 49.5 (3) 52.4 (1) 50.1 (2)
contraceptive 43.7 (1) 41.3 (2) 35.7 (3)

crx 83.3 (2.5) 83.3 (2.5) 84.6 (1)
dermatology 85.9 (3) 92.6 (2) 96.6 (1)

ecoli 82.4 (2) 82.7 (1) 80.4 (3)
flare 67.9 (2) 68.2 (1) 67 (3)
glass 59.5 (3) 59.8 (2) 61.7 (1)

haberman 71.8 (2.5) 71.8 (2.5) 72.8 (1)
hayes-roth 76.8 (2) 75.6 (3) 78.1 (1)

heart 73.3 (3) 78.8 (2) 80 (1)
housevotes 96.5 (1) 95.7 (3) 96 (2)

iris 96 (2.5) 96 (2.5) 97.3 (1)
led7digit 63.6 (1) 62 (2) 59.9 (3)

lymphography 67.7 (3) 68.2 (2) 77.1 (1)
monk-2 100 (1.5) 100 (1.5) 97.5 (3)

movement libras 70 (3) 79.9 (2) 80.2 (1)
new thyroid 91.6 (2.5) 91.6 (2.5) 92.6 (1)

pima 74.7 (1) 73.1 (3) 74.4 (2)
post operative 56.2 (2) 50.8 (3) 64.4 (1)

ring 91.8 (3) 93 (1) 92.9 (2)
saheart 69.2 (1.5) 69 (3) 69.2 (1.5)
sonar 67.7 (3) 80.3 (1) 76.9 (2)

spectfheart 78.6 (3) 79.4 (1.5) 79.4 (1.5)
splice 7.7 (3) 90 (2) 91.1 (1)

thyroid 92.6 (3) 93 (1.5) 93 (1.5)
titanic 78.8 (1.5) 78.8 (1.5) 76.8 (3)
vehicle 62.9 (3) 64.6 (2) 67.8 (1)
vowel 74.4 (2) 72.8 (3) 82 (1)
wdbc 93.1 (3) 95 (1) 94.5 (2)
wine 96 (2) 96.6 (1) 93.2 (3)

wisconsin 92.8 (3) 92.9 (2) 94.4 (1)
yeast 54.9 (1) 41 (3) 49.1 (2)
Mean 74.56 77.135 78.2375
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Table B.3: Results obtained by SLAVE, SLAVE2, and NSLV on 40 databases. The
table shows the average number of rules.

Rules
Data SLAVE SLAVE2 NSLV

appendicitis 6.2 (3) 5.6 (2) 5.3 (1)
australian 12.4 (1.5) 15.6 (3) 12.4 (1.5)
automobile 27.7 (3) 22.8 (2) 18.2 (1)

balance 72.1 (3) 70.7 (2) 17.8 (1)
banana 8 (3) 7.9 (2) 6.3 (1)
breast 19.4 (3) 18.8 (2) 12.3 (1)
bupa 8.3 (2) 9.8 (3) 6.7 (1)
chess 12.7 (2) 13 (3) 5.3 (1)

cleveland 57.7 (3) 53.7 (2) 50.9 (1)
contraceptive 74 (3) 60.5 (2) 44.8 (1)

crx 21.3 (2) 23.2 (3) 7.7 (1)
dermatology 23 (3) 12 (2) 9.7 (1)

ecoli 19 (3) 16 (2) 14.6 (1)
flare 26.5 (1) 26.6 (2) 29.1 (3)
glass 18 (3) 17.6 (2) 15.1 (1)

haberman 8.8 (3) 7.6 (2) 4.8 (1)
hayes-roth 10 (3) 9.8 (2) 9 (1)

heart 21.5 (3) 19.7 (2) 11.2 (1)
housevotes 6.2 (3) 5.9 (2) 2.7 (1)

iris 6 (3) 5.9 (2) 3.5 (1)
led7digit 19.3 (3) 15.7 (2) 12.3 (1)

lymphography 13.7 (3) 12.9 (2) 10.4 (1)
monk-2 4 (2.5) 4 (2.5) 2.5 (1)

movement libras 112.4 (3) 91.1 (2) 49.9 (1)
new thyroid 9.2 (3) 7.6 (2) 6 (1)

pima 13.7 (3) 12.5 (2) 12 (1)
post operative 11.6 (3) 10 (2) 5.7 (1)

ring 12.2 (1) 14.3 (2) 29.3 (3)
saheart 25.4 (3) 18.5 (2) 14.7 (1)
sonar 59.9 (3) 21.4 (2) 10.8 (1)

spectfheart 11.8 (2) 12.5 (3) 2.1 (1)
splice 1529.8 (3) 58.9 (2) 15.5 (1)

thyroid 4 (2) 5.9 (3) 3.2 (1)
titanic 4.1 (2.5) 4.1 (2.5) 3.7 (1)
vehicle 23.5 (2) 22.1 (1) 41.1 (3)
vowel 82.2 (2) 76.8 (1) 82.3 (3)
wdbc 7.5 (1) 11.5 (3) 8.1 (2)
wine 13 (2) 13.6 (3) 6.5 (1)

wisconsin 11 (3) 9.9 (2) 8 (1)
yeast 24.3 (3) 16.1 (1) 19.9 (2)
Mean 61.285 21.5525 15.785
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B.1. Chapter 3: results obtained by SLAVE, SLAVE2, and
NSLV on 40 databases

Table B.4: Results obtained by SLAVE, SLAVE2, and NSLV on 40 databases. The
table shows the time employed to get the model (in seconds).

Time
Data SLAVE SLAVE2 NSLV

appendicitis 1 (2) 1.5 (3) 0.6 (1)
australian 11.6 (2) 21.9 (3) 6.2 (1)
automobile 10.6 (2) 13 (3) 3.9 (1)

balance 23.4 (2) 45.3 (3) 3.8 (1)
banana 24.8 (2) 47.5 (3) 9.3 (1)
breast 6.2 (2) 9.8 (3) 2 (1)
bupa 3.9 (2) 7.5 (3) 1.8 (1)
chess 108 (3) 91.6 (2) 12.8 (1)

cleveland 31.9 (2) 43.6 (3) 18.9 (1)
contraceptive 111.6 (2) 167.5 (3) 51.3 (1)

crx 18.9 (2) 29.3 (3) 4.5 (1)
dermatology 20.5 (3) 11.7 (2) 3.4 (1)

ecoli 8.1 (2) 12.5 (3) 2.7 (1)
flare 28.3 (2) 57.4 (3) 16.5 (1)
glass 7.3 (2) 11.1 (3) 2.7 (1)

haberman 2 (2) 3.1 (3) 0.7 (1)
hayes-roth 1.5 (2) 2.4 (3) 0.7 (1)

heart 8.2 (2) 10.3 (3) 2.4 (1)
housevotes 1.7 (3) 1.6 (2) 0.4 (1)

iris 1 (2) 1.3 (3) 0.3 (1)
led7digit 11.9 (2) 17.6 (3) 1.9 (1)

lymphography 3.8 (2) 3.9 (3) 1.2 (1)
monk-2 1.7 (2.5) 1.7 (2.5) 0.4 (1)

movement libras 391.1 (2) 410.2 (3) 110 (1)
new thyroid 2.1 (2) 2.8 (3) 0.7 (1)

pima 13.8 (2) 21.6 (3) 7.1 (1)
post operative 1.1 (2) 1.7 (3) 0.4 (1)

ring 547.3 (2) 393.2 (1) 590.5 (3)
saheart 16.1 (2) 17.3 (3) 5.5 (1)
sonar 57 (3) 35.7 (2) 7.9 (1)

spectfheart 31.8 (2) 38.2 (3) 2 (1)
splice 9343.6 (3) 726 (2) 61.7 (1)

thyroid 62.6 (2) 109.3 (3) 14 (1)
titanic 8.2 (2) 12.9 (3) 2 (1)
vehicle 77.3 (2) 97 (3) 58.7 (1)
vowel 138.3 (1) 221.3 (3) 138.6 (2)
wdbc 26.3 (2) 30.7 (3) 9.7 (1)
wine 4.9 (2) 6 (3) 1.3 (1)

wisconsin 9 (2) 12.5 (3) 4.1 (1)
yeast 55.8 (2) 68.8 (3) 15.2 (1)
Mean 280.855 70.4575 29.445

163



Appendix B. Comparative Tables

B.2 Chapter 4: results obtained by NSLV, NSLV-
R, NSLV-F and NSLV-FR on 40 databases

Table B.5: Results obtained by NSLV, NSLV-R, NSLV-F and NSLV-FR on 40
databases. The table shows the accuracy on training set.

Training
Data NSLV NSLV-R NSLV-F NSLV-FR

appendicitis 93.3 (1) 92.8 (3) 93.2 (2) 92 (4)
australian 90.3 (2) 88.7 (4) 89.5 (3) 90.7 (1)
automobile 97.6 (4) 98.5 (3) 99.3 (1) 99.1 (2)

balance 85.8 (4) 98.1 (2) 94.6 (3) 98.4 (1)
banana 76.5 (4) 79.3 (3) 87 (2) 88.8 (1)
breast 86 (1) 81 (3) 79.9 (4) 82.4 (2)
bupa 69.9 (4) 78.8 (3) 80.7 (2) 85.3 (1)
chess 95 (1) 94.3 (4) 94.5 (2.5) 94.5 (2.5)

cleveland 92.9 (1) 86.3 (4) 89.4 (3) 90.6 (2)
contraceptive 49.3 (4) 63.7 (3) 70.3 (1) 70.1 (2)

crx 89.9 (1) 89.5 (2) 87.5 (4) 88.9 (3)
dermatology 99.1 (4) 99.6 (1.5) 99.5 (3) 99.6 (1.5)

ecoli 87.3 (4) 94.1 (2) 92.8 (3) 95.2 (1)
flare 74 (4) 80.7 (1) 79.3 (3) 80.4 (2)
glass 80.2 (4) 83.6 (2) 83.3 (3) 85.6 (1)

haberman 78.1 (1) 73.7 (4) 74.6 (3) 74.7 (2)
hayes-roth 88.7 (3) 88.1 (4) 90.9 (1) 90.6 (2)

heart 91.7 (4) 92.3 (2) 91.9 (3) 94.4 (1)
housevotes 97.4 (4) 97.7 (3) 97.8 (2) 98.3 (1)

iris 97.3 (3) 97 (4) 99.1 (1) 98.9 (2)
led7digit 65.2 (4) 79 (3) 79.2 (1.5) 79.2 (1.5)

lymphography 96.3 (2) 96.6 (1) 95.1 (4) 96.1 (3)
monk-2 97.5 (4) 99.1 (1) 98.6 (3) 98.7 (2)

movement libras 98.2 (4) 99.2 (3) 99.5 (1) 99.4 (2)
new thyroid 95.1 (4) 96.4 (3) 97.6 (1.5) 97.6 (1.5)

pima 79.5 (4) 81.8 (3) 82 (2) 82.8 (1)
post operative 81.6 (1) 76.7 (3) 74 (4) 78.4 (2)

ring 94.9 (4) 95.1 (3) 97.2 (1) 96.1 (2)
saheart 81.1 (3) 81 (4) 82.2 (2) 85.1 (1)
sonar 98.1 (2) 97.6 (4) 98 (3) 98.7 (1)

spectfheart 79.8 (2) 79.7 (3) 79.4 (4) 80.5 (1)
splice 94.6 (3) 94.9 (2) 94.4 (4) 96 (1)

thyroid 93 (3) 93.8 (2) 92.7 (4) 94 (1)
titanic 77.2 (4) 78.3 (3) 78.6 (1) 78.4 (2)
vehicle 84.5 (4) 87.1 (3) 90 (1) 89.1 (2)
vowel 94.5 (4) 94.8 (3) 97 (1) 96.1 (2)
wdbc 98.1 (4) 98.7 (2.5) 98.8 (1) 98.7 (2.5)
wine 99.8 (4) 100 (2) 100 (2) 100 (2)

wisconsin 98.3 (4) 98.7 (2.5) 98.7 (2.5) 98.8 (1)
yeast 51.8 (4) 65.3 (3) 67.9 (2) 70.1 (1)
Mean 86.985 88.79 89.4 90.3075
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Table B.6: Results obtained by NSLV, NSLV-R, NSLV-F and NSLV-FR on 40
databases. The table shows the accuracy on testing set.

Test
Data NSLV NSLV-R NSLV-F NSLV-FR

appendicitis 85.4 (2) 85.5 (1) 84.5 (3) 84.4 (4)
australian 85 (4) 85.6 (2.5) 85.7 (1) 85.6 (2.5)
automobile 74.2 (4) 80.6 (2) 78.4 (3) 81.3 (1)

balance 76.3 (4) 98.1 (1) 89 (3) 96.2 (2)
banana 76.5 (4) 78.6 (3) 86.5 (2) 88 (1)
breast 72.9 (2) 70.7 (4) 73.3 (1) 72.6 (3)
bupa 57.9 (4) 70.4 (1) 67.1 (2) 66.4 (3)
chess 94.6 (1.5) 94.2 (3.5) 94.2 (3.5) 94.6 (1.5)

cleveland 50.1 (4) 56.1 (1) 54.7 (3) 55 (2)
contraceptive 35.7 (4) 52.3 (2.5) 55.1 (1) 52.3 (2.5)

crx 84.6 (4) 86 (2) 86.4 (1) 85.2 (3)
dermatology 96.6 (1) 93.5 (4) 95.2 (2.5) 95.2 (2.5)

ecoli 80.4 (2) 81.5 (1) 80 (3) 79.7 (4)
flare 67 (4) 74.8 (2) 75 (1) 74.3 (3)
glass 61.7 (4) 69.9 (1) 64.9 (3) 68.8 (2)

haberman 72.8 (2.5) 72.8 (2.5) 73.1 (1) 72.2 (4)
hayes-roth 78.1 (3) 80.6 (1) 79.3 (2) 77.5 (4)

heart 80 (3) 80.3 (2) 84.4 (1) 79.6 (4)
housevotes 96 (4) 96.2 (2.5) 96.2 (2.5) 97.1 (1)

iris 97.3 (1.5) 97.3 (1.5) 94.6 (4) 95.3 (3)
led7digit 59.9 (4) 72 (1) 71.6 (2) 71.2 (3)

lymphography 77.1 (3) 76.8 (4) 78.3 (2) 79.8 (1)
monk-2 97.5 (4) 99 (1) 97.9 (2.5) 97.9 (2.5)

movement libras 80.2 (1) 74.7 (3) 74.1 (4) 76.1 (2)
new thyroid 92.6 (3) 91.6 (4) 93.5 (1) 93 (2)

pima 74.4 (2) 73.5 (3) 74.8 (1) 72.9 (4)
post operative 64.4 (4) 67.9 (2) 70.1 (1) 64.5 (3)

ring 92.9 (2) 91.8 (4) 93.6 (1) 92.8 (3)
saheart 69.2 (3) 70.5 (2) 71 (1) 68.4 (4)
sonar 76.9 (3) 77.2 (2) 72 (4) 79.3 (1)

spectfheart 79.4 (3) 79.7 (1) 79.4 (3) 79.4 (3)
splice 91.1 (4) 93.5 (3) 93.7 (2) 94.2 (1)

thyroid 93 (3) 93.7 (2) 92.7 (4) 93.9 (1)
titanic 76.8 (4) 78.3 (2.5) 78.6 (1) 78.3 (2.5)
vehicle 67.8 (4) 69.4 (3) 70.5 (2) 73.1 (1)
vowel 82 (2) 77.4 (4) 82.1 (1) 79.9 (3)
wdbc 94.5 (3) 94.1 (4) 94.7 (1.5) 94.7 (1.5)
wine 93.2 (3.5) 94.9 (1) 93.2 (3.5) 93.8 (2)

wisconsin 94.4 (4) 95.1 (3) 95.8 (1) 95.4 (2)
yeast 49.1 (4) 54.9 (3) 57.6 (1) 56.8 (2)
Mean 78.2375 80.775 80.82 80.9175
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Table B.7: Results obtained by NSLV, NSLV-R, NSLV-F and NSLV-FR on 40
databases. The table shows the average number of rules.

Rules
Data NSLV NSLV-R NSLV-F NSLV-FR

appendicitis 5.3 (4) 4.8 (3) 4.5 (2) 4.2 (1)
australian 12.4 (4) 7.1 (1) 8.7 (2) 10.7 (3)
automobile 18.2 (2.5) 18 (1) 18.4 (4) 18.2 (2.5)

balance 17.8 (3) 9 (1) 18.2 (4) 12.8 (2)
banana 6.3 (1) 10.3 (2) 16 (3) 22.3 (4)
breast 12.3 (4) 6.1 (2) 6 (1) 6.7 (3)
bupa 6.7 (1) 11.9 (2) 14.5 (3) 20.4 (4)
chess 5.3 (4) 4.1 (1) 4.7 (3) 4.3 (2)

cleveland 50.9 (4) 32.2 (1) 35.2 (2) 37 (3)
contraceptive 44.8 (1) 54.1 (2) 76.4 (3) 80.1 (4)

crx 7.7 (4) 6 (3) 4 (1) 5.1 (2)
dermatology 9.7 (2) 11.6 (4) 9.5 (1) 10.3 (3)

ecoli 14.6 (1) 24.7 (3) 23 (2) 27.1 (4)
flare 29.1 (4) 24.9 (2) 22.2 (1) 25.6 (3)
glass 15.1 (1) 15.7 (2) 16.2 (3) 16.6 (4)

haberman 4.8 (4) 2.1 (1) 2.6 (2) 2.8 (3)
hayes-roth 9 (2.5) 9 (2.5) 8.9 (1) 9.1 (4)

heart 11.2 (3) 10.9 (2) 9.7 (1) 12.5 (4)
housevotes 2.7 (1) 3 (2) 3.2 (3) 3.3 (4)

iris 3.5 (2) 3.1 (1) 4.2 (3) 4.6 (4)
led7digit 12.3 (1) 21.7 (4) 21.3 (3) 20.6 (2)

lymphography 10.4 (4) 9.7 (3) 8.5 (1) 9.1 (2)
monk-2 2.5 (1) 3.7 (3) 3.4 (2) 4.1 (4)

movement libras 49.9 (3) 47.8 (1) 51.9 (4) 48.1 (2)
new thyroid 6 (1.5) 6.3 (3) 7 (4) 6 (1.5)

pima 12 (1) 17.6 (2) 19.1 (3) 23 (4)
post operative 5.7 (4) 3.5 (2) 2.5 (1) 3.8 (3)

ring 29.3 (1) 68.6 (2) 76.5 (4) 76.4 (3)
saheart 14.7 (1) 17.9 (2) 19.8 (3) 24.9 (4)
sonar 10.8 (1) 12 (2) 12.4 (4) 12.2 (3)

spectfheart 2.1 (2) 2.2 (3.5) 2 (1) 2.2 (3.5)
splice 15.5 (3) 15 (2) 11.7 (1) 20.9 (4)

thyroid 3.2 (3) 2.9 (2) 2.5 (1) 3.3 (4)
titanic 3.7 (4) 2.3 (1.5) 2.9 (3) 2.3 (1.5)
vehicle 41.1 (1) 53.9 (4) 53.4 (3) 52.6 (2)
vowel 82.3 (2) 93.3 (4) 82.1 (1) 86.4 (3)
wdbc 8.1 (1) 8.8 (3) 9 (4) 8.3 (2)
wine 6.5 (1) 7.4 (4) 6.7 (2) 7.2 (3)

wisconsin 8 (2.5) 8.4 (4) 7.7 (1) 8 (2.5)
yeast 19.9 (1) 56.5 (2) 64.7 (3) 76.2 (4)
Mean 15.785 18.2025 19.28 20.7325
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and NSLV-FR on 40 databases

Table B.8: Results obtained by NSLV, NSLV-R, NSLV-F and NSLV-FR on 40
databases. The table shows the time employed to get the model (in seconds).

Time
Data NSLV NSLV-R NSLV-F NSLV-FR

appendicitis 0.6 (1) 0.7 (2) 1 (4) 0.9 (3)
australian 6.2 (4) 2.9 (1) 5.4 (2) 5.8 (3)
automobile 3.9 (1) 5.5 (2) 9 (4) 6.9 (3)

balance 3.8 (2) 2.6 (1) 10.7 (4) 5 (3)
banana 9.3 (1) 26.6 (2) 83 (3) 125.2 (4)
breast 2 (4) 1 (1) 1.4 (2) 1.5 (3)
bupa 1.8 (1) 3 (2) 6.1 (3) 7.3 (4)
chess 12.8 (3) 8.4 (1) 15.8 (4) 11.2 (2)

cleveland 18.9 (2) 12.6 (1) 30.7 (4) 24.7 (3)
contraceptive 51.3 (1) 141.7 (2) 255.5 (4) 243.4 (3)

crx 4.5 (4) 2.9 (3) 1.7 (1) 2.5 (2)
dermatology 3.4 (1) 4.1 (2) 8 (4) 5.4 (3)

ecoli 2.7 (1) 7.2 (2) 10.5 (3) 10.8 (4)
flare 16.5 (1) 22.8 (2) 32.5 (4) 26.5 (3)
glass 2.7 (1) 3.5 (2) 7.2 (4) 5.3 (3)

haberman 0.7 (4) 0.4 (1) 0.6 (2.5) 0.6 (2.5)
hayes-roth 0.7 (1) 0.8 (2) 1.2 (4) 1 (3)

heart 2.4 (2) 2 (1) 2.7 (3) 3.4 (4)
housevotes 0.4 (1) 0.5 (2.5) 0.5 (2.5) 0.6 (4)

iris 0.3 (1) 0.4 (2) 0.7 (3.5) 0.7 (3.5)
led7digit 1.9 (1) 7.6 (2) 15.4 (4) 12.2 (3)

lymphography 1.2 (1.5) 1.2 (1.5) 1.4 (4) 1.3 (3)
monk-2 0.4 (1) 0.8 (2.5) 0.8 (2.5) 0.9 (4)

movement libras 110 (2) 95.9 (1) 1158.7 (4) 388.6 (3)
new thyroid 0.7 (1) 0.9 (2) 1 (3) 1.2 (4)

pima 7.1 (1) 9.5 (2) 15.5 (3) 18.1 (4)
post operative 0.4 (3) 0.4 (3) 0.3 (1) 0.4 (3)

ring 590.5 (1) 692.4 (2) 1519.5 (4) 1239.9 (3)
saheart 5.5 (1) 6.5 (2) 12.3 (4) 12.2 (3)
sonar 7.9 (2) 6.5 (1) 12.5 (4) 10.8 (3)

spectfheart 2 (4) 0.7 (1) 1 (2.5) 1 (2.5)
splice 61.7 (3) 53.3 (1) 61.5 (2) 91.5 (4)

thyroid 14 (2) 12.1 (1) 15.3 (3) 19.8 (4)
titanic 2 (1.5) 2 (1.5) 2.8 (4) 2.4 (3)
vehicle 58.7 (1) 78.8 (2) 125.4 (4) 113.4 (3)
vowel 138.6 (1) 243 (2) 322.4 (4) 283.4 (3)
wdbc 9.7 (3) 6.5 (1) 9.9 (4) 8.3 (2)
wine 1.3 (2) 1 (1) 1.6 (4) 1.4 (3)

wisconsin 4.1 (1) 5 (2) 6.9 (3.5) 6.9 (3.5)
yeast 15.2 (1) 156.2 (2) 292.9 (3) 331.7 (4)
Mean 29.445 40.7475 101.533 75.8525
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Table B.9: Results obtained by NSLV and NSLV-AR on 40 databases. The table
shows the accuracy on training and testing sets.

Training Test
Data NSLV NSLV-AR NSLV NSLV-AR

appendicitis 93.3 (1) 91.9 (2) 85.4 (2) 87.1 (1)
australian 90.3 (1) 87.4 (2) 85 (2) 85.3 (1)
automobile 97.6 (1) 97.3 (2) 74.2 (2) 76 (1)

balance 85.8 (1) 81.1 (2) 76.3 (1) 75.3 (2)
banana 76.5 (1) 75.2 (2) 76.5 (1) 74.6 (2)
breast 86 (1) 75.9 (2) 72.9 (1) 71.1 (2)
bupa 69.9 (1) 66.5 (2) 57.9 (1) 55.2 (2)
chess 95 (1) 94.4 (2) 94.6 (1) 94 (2)

cleveland 92.9 (1) 62.8 (2) 50.1 (2) 56.1 (1)
contraceptive 49.3 (1) 35.2 (2) 35.7 (1) 34.3 (2)

crx 89.9 (1) 86.2 (2) 84.6 (2) 85.3 (1)
dermatology 99.1 (1.5) 99.1 (1.5) 96.6 (1) 94.4 (2)

ecoli 87.3 (1) 83.6 (2) 80.4 (1) 77 (2)
flare 74 (1) 64.5 (2) 67 (1) 63.8 (2)
glass 80.2 (1) 74.9 (2) 61.7 (2) 62.6 (1)

haberman 78.1 (1) 76.7 (2) 72.8 (2) 74.1 (1)
hayes-roth 88.7 (2) 90.6 (1) 78.1 (2) 80.6 (1)

heart 91.7 (1) 90.8 (2) 80 (1) 79.6 (2)
housevotes 97.4 (1) 97 (2) 96 (2) 97 (1)

iris 97.3 (1) 96.5 (2) 97.3 (1) 95.3 (2)
led7digit 65.2 (2) 70.5 (1) 59.9 (2) 66.3 (1)

lymphography 96.3 (1) 95 (2) 77.1 (2) 83.3 (1)
monk-2 97.5 (2) 98 (1) 97.5 (2) 97.9 (1)

movement libras 98.2 (1) 96.7 (2) 80.2 (1) 72.5 (2)
new thyroid 95.1 (1.5) 95.1 (1.5) 92.6 (1) 92 (2)

pima 79.5 (1) 76.6 (2) 74.4 (1) 74.2 (2)
post operative 81.6 (1) 73.4 (2) 64.4 (2) 70.1 (1)

ring 94.9 (1) 92.1 (2) 92.9 (1) 91.5 (2)
saheart 81.1 (1) 76.5 (2) 69.2 (2) 69.6 (1)
sonar 98.1 (2) 98.6 (1) 76.9 (1) 74 (2)

spectfheart 79.8 (1) 79.4 (2) 79.4 (1.5) 79.4 (1.5)
splice 94.6 (1) 92.1 (2) 91.1 (2) 91.7 (1)

thyroid 93 (1) 92.8 (2) 93 (1) 92.8 (2)
titanic 77.2 (1) 72.2 (2) 76.8 (1) 72 (2)
vehicle 84.5 (1) 64.1 (2) 67.8 (1) 55.9 (2)
vowel 94.5 (1) 86.2 (2) 82 (1) 72.8 (2)
wdbc 98.1 (1) 98 (2) 94.5 (2) 94.7 (1)
wine 99.8 (1) 99.6 (2) 93.2 (1) 91.5 (2)

wisconsin 98.3 (2) 98.4 (1) 94.4 (2) 94.7 (1)
yeast 51.8 (1) 49.1 (2) 49.1 (1) 46.2 (2)
Mean 86.985 83.3 78.2375 77.545
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Table B.10: Results obtained by NSLV and NSLV-AR on 40 databases. The table
shows the average number of rules and the average number of conditions per rule
base.

Rules Conditions
Data NSLV NSLV-AR NSLV NSLV-AR

appendicitis 5.3 (2) 3.7 (1) 12.3 (2) 7.4 (1)
australian 12.4 (2) 4.9 (1) 49 (2) 12.8 (1)
automobile 18.2 (2) 14.2 (1) 70.2 (2) 58 (1)

balance 17.8 (2) 10.7 (1) 47.7 (2) 19.3 (1)
banana 6.3 (2) 5.1 (1) 12 (2) 8.9 (1)
breast 12.3 (2) 4.6 (1) 36.2 (2) 9.3 (1)
bupa 6.7 (2) 4.3 (1) 24.7 (2) 13 (1)
chess 5.3 (2) 4.1 (1) 16.7 (2) 9.4 (1)

cleveland 50.9 (2) 8.5 (1) 240.5 (2) 34.2 (1)
contraceptive 44.8 (2) 3.2 (1) 200.3 (2) 10.8 (1)

crx 7.7 (2) 3.3 (1) 25.7 (2) 5.2 (1)
dermatology 9.7 (2) 8.9 (1) 32.7 (1) 33.7 (2)

ecoli 14.6 (2) 11.1 (1) 51.5 (2) 28.8 (1)
flare 29.1 (2) 4.4 (1) 97.6 (2) 9.9 (1)
glass 15.1 (2) 9.1 (1) 52.2 (2) 24.8 (1)

haberman 4.8 (2) 2.9 (1) 10.3 (2) 5.2 (1)
hayes-roth 9 (2) 8.4 (1) 19.3 (2) 13.2 (1)

heart 11.2 (2) 9.6 (1) 36.1 (2) 26.8 (1)
housevotes 2.7 (2) 2.2 (1) 2.8 (2) 1.4 (1)

iris 3.5 (2) 3 (1) 4.2 (2) 2.5 (1)
led7digit 12.3 (2) 11.4 (1) 52.7 (2) 36.4 (1)

lymphography 10.4 (2) 9.3 (1) 27.6 (2) 20.3 (1)
monk-2 2.5 (1) 2.8 (2) 2.3 (1) 2.7 (2)

movement libras 49.9 (2) 41.1 (1) 345.3 (2) 261 (1)
new thyroid 6 (1) 6.1 (2) 14.6 (2) 10.2 (1)

pima 12 (2) 4.6 (1) 43 (2) 10.6 (1)
post operative 5.7 (2) 2.5 (1) 13.7 (2) 4.5 (1)

ring 29.3 (2) 10.4 (1) 200.7 (2) 63.3 (1)
saheart 14.7 (2) 7.8 (1) 58 (2) 22.1 (1)
sonar 10.8 (2) 10.1 (1) 54.6 (1) 56.5 (2)

spectfheart 2.1 (2) 1 (1) 17.4 (2) 0 (1)
splice 15.5 (2) 5.2 (1) 70.2 (2) 16.1 (1)

thyroid 3.2 (2) 1.3 (1) 9 (2) 3.2 (1)
titanic 3.7 (2) 2.5 (1) 6.3 (2) 4.2 (1)
vehicle 41.1 (2) 16.6 (1) 227.8 (2) 72.1 (1)
vowel 82.3 (2) 60.4 (1) 511.8 (2) 310.9 (1)
wdbc 8.1 (2) 6.9 (1) 33 (2) 24.5 (1)
wine 6.5 (1.5) 6.5 (1.5) 22.4 (2) 15.5 (1)

wisconsin 8 (1) 8.8 (2) 17.2 (1) 18.1 (2)
yeast 19.9 (2) 9 (1) 72.4 (2) 34.1 (1)
Mean 15.785 8.7625 71.05 33.0225
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B.4.1 Results obtained by NSLV, NSLV-AR, NSLV-FR and
SLAVE3 on 40 databases

Table B.11: Results obtained by NSLV, NSLV-AR, NSLV-FR and SLAVE3 on 40
databases. The table shows the accuracy on training set.

Training
Data NSLV NSLV-AR NSLV-FR SLAVE3

appendicitis 93.3 (1) 91.9 (4) 92 (3) 92.5 (2)
australian 90.3 (2) 87.4 (4) 90.7 (1) 89.2 (3)
automobile 97.6 (3) 97.3 (4) 99.1 (1) 98.1 (2)

balance 85.8 (3) 81.1 (4) 98.4 (1) 96.6 (2)
banana 76.5 (3) 75.2 (4) 88.8 (2) 89.2 (1)
breast 86 (1) 75.9 (4) 82.4 (2) 78.2 (3)
bupa 69.9 (3) 66.5 (4) 85.3 (1) 81.5 (2)
chess 95 (1) 94.4 (3) 94.5 (2) 94.3 (4)

cleveland 92.9 (1) 62.8 (4) 90.6 (2) 86.6 (3)
contraceptive 49.3 (3) 35.2 (4) 70.1 (1) 67 (2)

crx 89.9 (1) 86.2 (4) 88.9 (2.5) 88.9 (2.5)
dermatology 99.1 (3.5) 99.1 (3.5) 99.6 (1) 99.3 (2)

ecoli 87.3 (3) 83.6 (4) 95.2 (1) 93.6 (2)
flare 74 (3) 64.5 (4) 80.4 (1) 79.4 (2)
glass 80.2 (3) 74.9 (4) 85.6 (1) 83.8 (2)

haberman 78.1 (1) 76.7 (2) 74.7 (3) 73.6 (4)
hayes-roth 88.7 (4) 90.6 (1.5) 90.6 (1.5) 90.3 (3)

heart 91.7 (3) 90.8 (4) 94.4 (1) 92.5 (2)
housevotes 97.4 (3) 97 (4) 98.3 (1) 98 (2)

iris 97.3 (3) 96.5 (4) 98.9 (1) 97.7 (2)
led7digit 65.2 (4) 70.5 (3) 79.2 (1) 79.1 (2)

lymphography 96.3 (1) 95 (3) 96.1 (2) 94.9 (4)
monk-2 97.5 (4) 98 (3) 98.7 (1) 98.4 (2)

movement libras 98.2 (2) 96.7 (4) 99.4 (1) 97.5 (3)
new thyroid 95.1 (3.5) 95.1 (3.5) 97.6 (1.5) 97.6 (1.5)

pima 79.5 (3) 76.6 (4) 82.8 (1) 82.3 (2)
post operative 81.6 (1) 73.4 (3.5) 78.4 (2) 73.4 (3.5)

ring 94.9 (3) 92.1 (4) 96.1 (2) 96.4 (1)
saheart 81.1 (3) 76.5 (4) 85.1 (1) 82.5 (2)
sonar 98.1 (3) 98.6 (2) 98.7 (1) 97.2 (4)

spectfheart 79.8 (3) 79.4 (4) 80.5 (1) 79.9 (2)
splice 94.6 (2) 92.1 (4) 96 (1) 94.5 (3)

thyroid 93 (3) 92.8 (4) 94 (1) 93.4 (2)
titanic 77.2 (3) 72.2 (4) 78.4 (1) 78.3 (2)
vehicle 84.5 (3) 64.1 (4) 89.1 (1) 88.4 (2)
vowel 94.5 (3) 86.2 (4) 96.1 (1) 94.6 (2)
wdbc 98.1 (3) 98 (4) 98.7 (1) 98.4 (2)
wine 99.8 (2.5) 99.6 (4) 100 (1) 99.8 (2.5)

wisconsin 98.3 (4) 98.4 (3) 98.8 (1) 98.7 (2)
yeast 51.8 (3) 49.1 (4) 70.1 (1) 68.3 (2)
Mean 86.985 83.3 90.3075 89.0975

170



B.4. Chapter 6

Table B.12: Results obtained by NSLV, NSLV-AR, NSLV-FR and SLAVE3 on 40
databases. The table shows the accuracy on testing set.

Test
Data NSLV NSLV-AR NSLV-FR SLAVE3

appendicitis 85.4 (2) 87.1 (1) 84.4 (3) 82.8 (4)
australian 85 (4) 85.3 (3) 85.6 (2) 86 (1)
automobile 74.2 (4) 76 (3) 81.3 (1) 79.7 (2)

balance 76.3 (3) 75.3 (4) 96.2 (1) 95.9 (2)
banana 76.5 (3) 74.6 (4) 88 (2) 88.3 (1)
breast 72.9 (1) 71.1 (3) 72.6 (2) 70.3 (4)
bupa 57.9 (3) 55.2 (4) 66.4 (2) 67.9 (1)
chess 94.6 (1.5) 94 (4) 94.6 (1.5) 94.3 (3)

cleveland 50.1 (4) 56.1 (2) 55 (3) 56.7 (1)
contraceptive 35.7 (3) 34.3 (4) 52.3 (2) 53.1 (1)

crx 84.6 (4) 85.3 (2) 85.2 (3) 85.7 (1)
dermatology 96.6 (1) 94.4 (3) 95.2 (2) 93.5 (4)

ecoli 80.4 (1) 77 (4) 79.7 (3) 80 (2)
flare 67 (3) 63.8 (4) 74.3 (2) 74.9 (1)
glass 61.7 (4) 62.6 (3) 68.8 (1) 66.8 (2)

haberman 72.8 (3) 74.1 (1) 72.2 (4) 73.8 (2)
hayes-roth 78.1 (3) 80.6 (2) 77.5 (4) 81.8 (1)

heart 80 (1) 79.6 (2.5) 79.6 (2.5) 77.7 (4)
housevotes 96 (3) 97 (2) 97.1 (1) 95.7 (4)

iris 97.3 (1) 95.3 (2.5) 95.3 (2.5) 94.6 (4)
led7digit 59.9 (4) 66.3 (3) 71.2 (2) 71.6 (1)

lymphography 77.1 (4) 83.3 (1) 79.8 (2) 79.2 (3)
monk-2 97.5 (3.5) 97.9 (1.5) 97.9 (1.5) 97.5 (3.5)

movement libras 80.2 (1) 72.5 (4) 76.1 (2) 73.8 (3)
new thyroid 92.6 (2) 92 (3) 93 (1) 91.1 (4)

pima 74.4 (2) 74.2 (3) 72.9 (4) 74.5 (1)
post operative 64.4 (4) 70.1 (1.5) 64.5 (3) 70.1 (1.5)

ring 92.9 (1) 91.5 (4) 92.8 (2) 92.7 (3)
saheart 69.2 (3) 69.6 (1.5) 68.4 (4) 69.6 (1.5)
sonar 76.9 (3) 74 (4) 79.3 (1) 77.8 (2)

spectfheart 79.4 (3) 79.4 (3) 79.4 (3) 79.7 (1)
splice 91.1 (4) 91.7 (3) 94.2 (1) 93.6 (2)

thyroid 93 (3) 92.8 (4) 93.9 (1) 93.3 (2)
titanic 76.8 (3) 72 (4) 78.3 (1.5) 78.3 (1.5)
vehicle 67.8 (3) 55.9 (4) 73.1 (1) 71.3 (2)
vowel 82 (1) 72.8 (4) 79.9 (3) 81.1 (2)
wdbc 94.5 (4) 94.7 (2.5) 94.7 (2.5) 94.8 (1)
wine 93.2 (2.5) 91.5 (4) 93.8 (1) 93.2 (2.5)

wisconsin 94.4 (4) 94.7 (2.5) 95.4 (1) 94.7 (2.5)
yeast 49.1 (3) 46.2 (4) 56.8 (1.5) 56.8 (1.5)
Mean 78.2375 77.545 80.9175 80.855

171



Appendix B. Comparative Tables

Table B.13: Results obtained by NSLV, NSLV-AR, NSLV-FR and SLAVE3 on 40
databases. The table shows the average number of rules.

Rules
Data NSLV NSLV-AR NSLV-FR SLAVE3

appendicitis 5.3 (4) 3.7 (1) 4.2 (2) 4.7 (3)
australian 12.4 (4) 4.9 (1) 10.7 (3) 6.9 (2)
automobile 18.2 (2.5) 14.2 (1) 18.2 (2.5) 19.2 (4)

balance 17.8 (4) 10.7 (2) 12.8 (3) 8.5 (1)
banana 6.3 (2) 5.1 (1) 22.3 (3) 24.8 (4)
breast 12.3 (4) 4.6 (1) 6.7 (3) 5 (2)
bupa 6.7 (2) 4.3 (1) 20.4 (4) 16.6 (3)
chess 5.3 (4) 4.1 (1) 4.3 (2) 4.6 (3)

cleveland 50.9 (4) 8.5 (1) 37 (3) 32.9 (2)
contraceptive 44.8 (2) 3.2 (1) 80.1 (4) 62.7 (3)

crx 7.7 (4) 3.3 (1) 5.1 (3) 4.8 (2)
dermatology 9.7 (2) 8.9 (1) 10.3 (4) 10.1 (3)

ecoli 14.6 (2) 11.1 (1) 27.1 (4) 24.5 (3)
flare 29.1 (4) 4.4 (1) 25.6 (3) 19.6 (2)
glass 15.1 (2) 9.1 (1) 16.6 (4) 16.4 (3)

haberman 4.8 (4) 2.9 (3) 2.8 (2) 2.1 (1)
hayes-roth 9 (2) 8.4 (1) 9.1 (3.5) 9.1 (3.5)

heart 11.2 (3) 9.6 (1) 12.5 (4) 10.2 (2)
housevotes 2.7 (2) 2.2 (1) 3.3 (3.5) 3.3 (3.5)

iris 3.5 (2) 3 (1) 4.6 (4) 4.3 (3)
led7digit 12.3 (2) 11.4 (1) 20.6 (3) 21.1 (4)

lymphography 10.4 (4) 9.3 (3) 9.1 (2) 8.5 (1)
monk-2 2.5 (1) 2.8 (2) 4.1 (4) 3.5 (3)

movement libras 49.9 (4) 41.1 (1) 48.1 (3) 47.5 (2)
new thyroid 6 (2.5) 6.1 (4) 6 (2.5) 5.9 (1)

pima 12 (2) 4.6 (1) 23 (4) 21.9 (3)
post operative 5.7 (4) 2.5 (2) 3.8 (3) 2.3 (1)

ring 29.3 (2) 10.4 (1) 76.4 (3) 77.2 (4)
saheart 14.7 (2) 7.8 (1) 24.9 (4) 20.5 (3)
sonar 10.8 (2) 10.1 (1) 12.2 (3) 12.9 (4)

spectfheart 2.1 (2) 1 (1) 2.2 (3.5) 2.2 (3.5)
splice 15.5 (3) 5.2 (1) 20.9 (4) 13 (2)

thyroid 3.2 (3) 1.3 (1) 3.3 (4) 2.7 (2)
titanic 3.7 (4) 2.5 (3) 2.3 (1) 2.4 (2)
vehicle 41.1 (2) 16.6 (1) 52.6 (4) 48.8 (3)
vowel 82.3 (3) 60.4 (1) 86.4 (4) 80.4 (2)
wdbc 8.1 (3) 6.9 (1) 8.3 (4) 7.8 (2)
wine 6.5 (1.5) 6.5 (1.5) 7.2 (3) 7.7 (4)

wisconsin 8 (1.5) 8.8 (3) 8 (1.5) 11 (4)
yeast 19.9 (2) 9 (1) 76.2 (4) 63.8 (3)
Mean 15.785 8.7625 20.7325 18.785
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Table B.14: Results obtained by NSLV, NSLV-AR, NSLV-FR and SLAVE3 on 40
databases. The table shows the average number of conditions per rule.

Conditions
Data NSLV NSLV-AR NSLV-FR SLAVE3

appendicitis 2.2 (3.5) 1.9 (2) 2.2 (3.5) 1.6 (1)
australian 3.8 (4) 2.4 (1) 3.2 (3) 2.7 (2)
automobile 3.8 (2) 4 (3.5) 3.7 (1) 4 (3.5)

balance 2.4 (4) 1.7 (1) 2.2 (3) 2.1 (2)
banana 1.8 (2) 1.7 (1) 3.4 (3.5) 3.4 (3.5)
breast 2.9 (4) 1.4 (1) 2.7 (3) 2 (2)
bupa 3.4 (4) 2.7 (1) 3.3 (3) 3.1 (2)
chess 3.1 (4) 2.2 (3) 1.6 (2) 1.4 (1)

cleveland 4.7 (2.5) 3.7 (1) 5 (4) 4.7 (2.5)
contraceptive 4.4 (2) 3.4 (1) 5 (3) 5.1 (4)

crx 3.2 (4) 1.3 (1) 2.1 (2) 2.3 (3)
dermatology 3.3 (3) 3.7 (4) 2.5 (1) 2.7 (2)

ecoli 3.5 (2.5) 2.5 (1) 3.7 (4) 3.5 (2.5)
flare 3.2 (4) 2.2 (1) 2.9 (3) 2.6 (2)
glass 3.4 (4) 2.6 (1) 3.1 (3) 2.9 (2)

haberman 2 (4) 1.7 (3) 1 (2) 0.2 (1)
hayes-roth 2.1 (4) 1.5 (1.5) 1.7 (3) 1.5 (1.5)

heart 3.1 (4) 2.7 (1.5) 3 (3) 2.7 (1.5)
housevotes 0.9 (2) 0.6 (1) 1.3 (3.5) 1.3 (3.5)

iris 1.1 (2) 0.8 (1) 1.6 (4) 1.2 (3)
led7digit 4.2 (4) 3.1 (2.5) 3.1 (2.5) 3 (1)

lymphography 2.6 (4) 2.1 (2.5) 2 (1) 2.1 (2.5)
monk-2 0.9 (1.5) 0.9 (1.5) 1.2 (4) 1.1 (3)

movement libras 6.9 (2) 6.3 (1) 8.3 (4) 7.5 (3)
new thyroid 2.4 (4) 1.6 (1) 1.9 (3) 1.8 (2)

pima 3.3 (2.5) 2.1 (1) 3.7 (4) 3.3 (2.5)
post operative 2.3 (4) 1.7 (1) 2 (3) 1.8 (2)

ring 6.6 (4) 5.6 (2) 5.1 (1) 5.8 (3)
saheart 3.9 (3.5) 2.5 (1) 3.9 (3.5) 3.6 (2)
sonar 5 (3) 5.6 (4) 4.6 (2) 4.2 (1)

spectfheart 8.4 (4) 0 (1) 1 (3) 0.4 (2)
splice 3.9 (3) 2.7 (1) 4.8 (4) 3.2 (2)

thyroid 2.6 (4) 1.9 (2) 2.1 (3) 0.9 (1)
titanic 1.6 (3.5) 1.6 (3.5) 1 (2) 0.8 (1)
vehicle 5.4 (4) 3.9 (1) 4.2 (3) 4 (2)
vowel 6.2 (4) 5.1 (1.5) 5.6 (3) 5.1 (1.5)
wdbc 4 (4) 3.5 (3) 2.7 (1.5) 2.7 (1.5)
wine 3.4 (4) 2.4 (1) 2.8 (3) 2.7 (2)

wisconsin 2.1 (2) 2 (1) 2.9 (4) 2.6 (3)
yeast 3.6 (1) 3.8 (2) 5 (3) 5.3 (4)
Mean 3.44 2.5775 3.0775 2.8225
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B.4.2 Results obtained by GCCL, C4.5, SGERD, FARC-
HD, FURIA and SLAVE3 on 40 databases

Table B.15: Results obtained by GCCL, C4.5, SGERD, FARC-HD, FURIA and
SLAVE3 on 40 databases. The table shows the accuracy on training set.

Training
Data GCCL C4.5 SGERD FARC-HD FURIA SLAVE3

appendicitis 83.7 (6) 90.9 (3) 87.7 (5) 93.9 (1) 90.7 (4) 92.5 (2)
australian 75.4 (6) 93 (1) 85.5 (5) 90.6 (2) 89.3 (3) 89.2 (4)
automobile 62.6 (5) 93.7 (3) 59.6 (6) 98.8 (1) 91.2 (4) 98.1 (2)

balance 88.5 (4.5) 89.9 (3) 75.1 (6) 92.1 (2) 88.5 (4.5) 96.6 (1)
banana 75.2 (5) 91.4 (1) 60.7 (6) 86.3 (4) 89.5 (2) 89.2 (3)
breast 70.7 (5) 77.5 (3.5) 69.9 (6) 91.3 (1) 77.5 (3.5) 78.2 (2)
bupa 59.9 (5) 86.4 (1) 59.8 (6) 78.9 (3) 77.5 (4) 81.5 (2)
chess 0 (6) 99.6 (2) 61.7 (5) 97.5 (3) 99.7 (1) 94.3 (4)

cleveland 58.1 (5) 82.9 (3) 54.5 (6) 87.7 (1) 62.4 (4) 86.6 (2)
contraceptive 43.8 (6) 73.2 (1) 49.4 (5) 62.5 (3) 55.9 (4) 67 (2)

crx 73.3 (6) 90.8 (2) 86.3 (5) 91.2 (1) 89.3 (3) 88.9 (4)
dermatology 86.9 (5) 98.2 (4) 83.4 (6) 99.9 (1) 98.6 (3) 99.3 (2)

ecoli 67.8 (6) 91.7 (3) 76.9 (5) 92 (2) 90.2 (4) 93.6 (1)
flare 31 (6) 78.5 (3) 71.2 (5) 79.8 (1) 75.9 (4) 79.4 (2)
glass 68.5 (5) 93.7 (1) 62.8 (6) 81.5 (4) 86.3 (2) 83.8 (3)

haberman 73.8 (5) 75.8 (3) 74.4 (4) 80.5 (1) 76.5 (2) 73.6 (6)
hayes-roth 81.3 (5) 88.8 (3) 65.6 (6) 91.5 (1) 87.4 (4) 90.3 (2)

heart 89.4 (4) 91.7 (3) 75.5 (6) 93.8 (1) 88.8 (5) 92.5 (2)
housevotes 53.4 (6) 97.1 (4) 90.2 (5) 98.3 (1.5) 98.3 (1.5) 98 (3)

iris 95.7 (5) 98 (2) 95.1 (6) 98.5 (1) 97.8 (3) 97.7 (4)
led7digit 78 (2) 77.1 (3) 40.8 (6) 74.8 (5) 76.4 (4) 79.1 (1)

lymphography 73.2 (5) 92.3 (4) 69.6 (6) 100 (1) 95.1 (2) 94.9 (3)
monk-2 97.2 (5) 100 (1.5) 80.5 (6) 99.9 (3) 100 (1.5) 98.4 (4)

movement libras 19 (6) 94.3 (3) 51.7 (5) 95.5 (2) 91.8 (4) 97.5 (1)
new thyroid 87.4 (6) 98.5 (3) 88.5 (5) 98.8 (2) 99.3 (1) 97.6 (4)

pima 69.7 (6) 83.1 (1) 73.6 (5) 82.8 (2) 79.3 (4) 82.3 (3)
post operative 71.2 (5.5) 71.7 (4) 71.9 (3) 90.5 (1) 71.2 (5.5) 73.4 (2)

ring 90.5 (5) 98.6 (2) 72.2 (6) 95.2 (4) 98.7 (1) 96.4 (3)
saheart 68.1 (6) 78.8 (3) 70.7 (5) 82.6 (1) 75.5 (4) 82.5 (2)
sonar 75.9 (5) 97.7 (3) 73.7 (6) 98.7 (1) 98 (2) 97.2 (4)

spectfheart 79.4 (5) 98.2 (1) 79 (6) 91.5 (3) 94.3 (2) 79.9 (4)
splice 0 (6) 96.2 (3) 81.6 (5) 96.5 (2) 99.4 (1) 94.5 (4)

thyroid 92.6 (5) 99.8 (1.5) 92 (6) 94.2 (3) 99.8 (1.5) 93.4 (4)
titanic 78.2 (5) 78.4 (3) 71.9 (6) 79 (1) 78.6 (2) 78.3 (4)
vehicle 62 (5) 88.9 (1) 52.8 (6) 79.4 (4) 80.1 (3) 88.4 (2)
vowel 60.1 (5) 97.1 (1) 44.4 (6) 80.4 (4) 96.7 (2) 94.6 (3)
wdbc 91.8 (5) 99.1 (2) 90.9 (6) 98.6 (3) 99.3 (1) 98.4 (4)
wine 97.6 (5) 98.8 (4) 93.2 (6) 99.8 (1.5) 99.3 (3) 99.8 (1.5)

wisconsin 97.3 (5) 97.7 (4) 93.7 (6) 98.3 (2.5) 98.3 (2.5) 98.7 (1)
yeast 48.9 (5) 81.5 (1) 39.5 (6) 63.8 (3.5) 63.8 (3.5) 68.3 (2)
Mean 69.4275 90.265 71.9375 89.6725 87.655 89.0975

174



B.4. Chapter 6

Table B.16: Results obtained by GCCL, C4.5, SGERD, FARC-HD, FURIA and
SLAVE3 on 40 databases. The table shows the accuracy on testing set.

Test
Data GCCL C4.5 SGERD FARC-HD FURIA SLAVE3

appendicitis 83 (5) 83.2 (3) 83.1 (4) 87.1 (2) 88.1 (1) 82.8 (6)
australian 73.6 (6) 85.7 (3) 85.5 (4) 86.2 (1) 85.3 (5) 86 (2)
automobile 53.2 (5) 80.9 (1) 47.5 (6) 80.2 (2) 76.8 (4) 79.7 (3)

balance 81.9 (4) 76.7 (5) 75.9 (6) 86.5 (2) 82.9 (3) 95.9 (1)
banana 75.2 (5) 89.1 (1) 60.5 (6) 85.6 (4) 88.1 (3) 88.3 (2)
breast 70.8 (4) 76.9 (1) 70.4 (5) 75 (3) 75.4 (2) 70.3 (6)
bupa 58.4 (5) 69.3 (1) 57.3 (6) 63.7 (4) 68.6 (2) 67.9 (3)
chess 0 (6) 99.4 (1.5) 61.4 (5) 96.9 (3) 99.4 (1.5) 94.3 (4)

cleveland 54.4 (4.5) 54.4 (4.5) 46.8 (6) 56.5 (2) 56 (3) 56.7 (1)
contraceptive 43.3 (6) 53.8 (2) 47.9 (5) 52.3 (4) 54.2 (1) 53.1 (3)

crx 71.7 (6) 85.2 (5) 86.2 (2) 86.1 (3) 86.6 (1) 85.7 (4)
dermatology 82.1 (5) 94.3 (2) 81.2 (6) 91.8 (4) 95.2 (1) 93.5 (3)

ecoli 65.5 (6) 79.4 (4) 74.6 (5) 82.1 (1) 80.6 (2) 80 (3)
flare 31 (6) 74.2 (3) 70.7 (5) 73.8 (4) 74.8 (2) 74.9 (1)
glass 63.2 (5) 67.4 (3) 61 (6) 68.3 (2) 70.4 (1) 66.8 (4)

haberman 73.2 (4) 73.1 (5) 73.5 (3) 72.5 (6) 75.4 (1) 73.8 (2)
hayes-roth 74.3 (5) 80 (2.5) 44.9 (6) 79.3 (4) 80 (2.5) 81.8 (1)

heart 78.8 (3) 78.5 (4) 77 (6) 85.1 (1) 82.5 (2) 77.7 (5)
housevotes 52.9 (6) 97 (1) 87.4 (5) 94.5 (4) 96.6 (2) 95.7 (3)

iris 95.3 (3.5) 96 (1.5) 95.3 (3.5) 96 (1.5) 94 (6) 94.6 (5)
led7digit 71.2 (2) 71 (3) 40 (6) 66.8 (5) 69.4 (4) 71.6 (1)

lymphography 68.5 (5) 74.2 (4) 65.4 (6) 76 (3) 81.5 (1) 79.2 (2)
monk-2 97.2 (5) 100 (1.5) 80.6 (6) 99.5 (3) 100 (1.5) 97.5 (4)

movement libras 15.2 (6) 69.4 (3) 42.5 (5) 73.3 (2) 66.1 (4) 73.8 (1)
new thyroid 86.1 (6) 92.5 (3) 87 (5) 94.3 (1) 93.5 (2) 91.1 (4)

pima 68.2 (6) 73.9 (4) 73 (5) 75.7 (2) 75.9 (1) 74.5 (3)
post operative 71.2 (1) 68.8 (4.5) 69 (3) 57 (6) 68.8 (4.5) 70.1 (2)

ring 91 (4) 90.2 (5) 71.4 (6) 94 (1) 93.8 (2) 92.7 (3)
saheart 65.5 (6) 67 (5) 68.5 (4) 69.6 (2.5) 70.8 (1) 69.6 (2.5)
sonar 61 (6) 70.5 (4) 66.6 (5) 80.6 (1) 76.9 (3) 77.8 (2)

spectfheart 79.4 (3.5) 76.4 (6) 78.2 (5) 83.1 (1) 79.4 (3.5) 79.7 (2)
splice 0 (6) 94.1 (2.5) 81.8 (5) 94.1 (2.5) 94.8 (1) 93.6 (4)

thyroid 92.5 (5) 99.5 (2) 91.9 (6) 94.1 (3) 99.6 (1) 93.3 (4)
titanic 78.3 (3.5) 77.3 (5) 71.9 (6) 78.8 (1) 78.5 (2) 78.3 (3.5)
vehicle 57.2 (5) 74.1 (1) 51.8 (6) 67.9 (4) 71.6 (2) 71.3 (3)
vowel 54.6 (5) 81.5 (1) 38.6 (6) 71.6 (4) 80.1 (3) 81.1 (2)
wdbc 91.3 (5) 95.2 (3) 90.6 (6) 95.9 (1.5) 95.9 (1.5) 94.8 (4)
wine 91 (6) 94.9 (2) 92 (5) 94.2 (3) 97.1 (1) 93.2 (4)

wisconsin 97.2 (1) 94.7 (4.5) 93.5 (6) 96.6 (2) 95.7 (3) 94.7 (4.5)
yeast 47.4 (5) 55.5 (4) 38.8 (6) 59.5 (1) 59.4 (2) 56.8 (3)
Mean 66.645 80.38 69.53 80.5525 81.4925 80.855
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Table B.17: Results obtained by GCCL, C4.5, SGERD, FARC-HD, FURIA and
SLAVE3 on 40 databases. The table shows the average number of rules.

Rules
Data GCCL C4.5 SGERD FARC-HD FURIA SLAVE3

appendicitis 21 (6) 3.2 (2) 2.5 (1) 6.6 (5) 3.9 (3) 4.7 (4)
australian 45.7 (6) 9.8 (4) 2 (1) 25.4 (5) 8.4 (3) 6.9 (2)
automobile 36.8 (5) 15.7 (2) 7.1 (1) 37.5 (6) 16 (3) 19.2 (4)

balance 87.1 (6) 35.5 (4) 3.8 (1) 63.3 (5) 22.6 (3) 8.5 (2)
banana 19 (4) 42.4 (6) 2.4 (1) 12.3 (2) 18.2 (3) 24.8 (5)
breast 1 (1) 14.1 (5) 2 (2) 46.9 (6) 4.7 (3) 5 (4)
bupa 34.4 (6) 9 (2) 2.6 (1) 10.3 (4) 9.1 (3) 16.6 (5)
chess 0 (1) 31 (5) 2 (2) 32.8 (6) 28.3 (4) 4.6 (3)

cleveland 56.5 (5) 9.7 (3) 6.7 (1) 61.4 (6) 8.8 (2) 32.9 (4)
contraceptive 76.3 (6) 29.6 (3) 4.5 (1) 73.9 (5) 8.7 (2) 62.7 (4)

crx 28 (6) 12.8 (4) 2 (1) 24.5 (5) 7.4 (3) 4.8 (2)
dermatology 54.8 (6) 9.2 (2) 8.2 (1) 28.2 (5) 10.9 (4) 10.1 (3)

ecoli 62.2 (6) 11.6 (2) 8.9 (1) 34 (5) 17 (3) 24.5 (4)
flare 1 (1) 25.3 (5) 6.1 (2) 46.1 (6) 9.4 (3) 19.6 (4)
glass 49 (6) 10.3 (2) 6.1 (1) 23.8 (5) 12.1 (3) 16.4 (4)

haberman 10.1 (5) 4.3 (4) 3.1 (2) 10.7 (6) 3.7 (3) 2.1 (1)
hayes-roth 28.3 (6) 10 (4) 5.3 (1) 18.5 (5) 9 (2) 9.1 (3)

heart 69 (6) 10.1 (3) 2.7 (1) 27.3 (5) 8.6 (2) 10.2 (4)
housevotes 1 (1) 5.3 (5) 2 (2) 9.6 (6) 5.1 (4) 3.3 (3)

iris 12.8 (6) 5 (5) 3.9 (1) 4.4 (3) 4.5 (4) 4.3 (2)
led7digit 64 (6) 16.1 (3) 7.1 (1) 26.3 (5) 13.4 (2) 21.1 (4)

lymphography 8.7 (3) 11.4 (4) 4.2 (1) 22.4 (6) 14 (5) 8.5 (2)
monk-2 8.9 (5) 6 (4) 2.1 (1) 13.4 (6) 5 (3) 3.5 (2)

movement libras 25.7 (2) 27.3 (3) 20.9 (1) 82.7 (6) 32.6 (4) 47.5 (5)
new thyroid 28 (6) 6.6 (3) 3.3 (1) 9.5 (5) 6.8 (4) 5.9 (2)

pima 65.1 (6) 9.2 (3) 2.9 (1) 24.7 (5) 9.1 (2) 21.9 (4)
post operative 1 (1) 4.6 (5) 2.1 (2) 23.5 (6) 2.5 (4) 2.3 (3)

ring 85.7 (4) 103.3 (6) 5.2 (1) 23.8 (2) 87.3 (5) 77.2 (3)
saheart 68.8 (6) 6.9 (3) 2.7 (1) 29.3 (5) 6.8 (2) 20.5 (4)
sonar 51.1 (6) 8.9 (2) 3.4 (1) 18.2 (5) 10.6 (3) 12.9 (4)

spectfheart 7.4 (3) 11.7 (4) 2.4 (2) 14.1 (6) 12.8 (5) 2.2 (1)
splice 0 (1) 135.7 (5) 4.3 (2) 79.8 (4) 143.6 (6) 13 (3)

thyroid 23.3 (6) 10.4 (4) 2 (1) 4.8 (3) 14.9 (5) 2.7 (2)
titanic 10 (6) 5 (4) 2 (1) 4.5 (3) 5.7 (5) 2.4 (2)
vehicle 80 (6) 19.7 (2) 6.4 (1) 45.4 (4) 24.4 (3) 48.8 (5)
vowel 82.4 (6) 52.9 (2) 18.3 (1) 73.4 (4) 60.6 (3) 80.4 (5)
wdbc 60 (6) 9.5 (3) 3.4 (1) 10.9 (4) 11.6 (5) 7.8 (2)
wine 61.7 (6) 5 (2) 4 (1) 9.1 (5) 6.4 (3) 7.7 (4)

wisconsin 30.2 (6) 10 (2) 2.2 (1) 13.6 (4) 14.4 (5) 11 (3)
yeast 75.1 (6) 35.4 (4) 12.5 (1) 34.9 (3) 23.4 (2) 63.8 (5)
Mean 38.2775 19.9875 4.8825 29.045 18.0575 18.785
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B.4.3 Results obtained by NSLV-AR and SLAVE3* on 40
databases

Table B.18: Results obtained by NSLV-AR and SLAVE3* on 40 databases. The
table shows the accuracy on training and testing sets.

Training Test
Dataset NSLV-AR SLAVE3* NSLV-AR SLAVE3*

appendicitis 91.9 (2) 92 (1) 87.1 (1) 86.2 (2)
australian 87.4 (2) 88.5 (1) 85.3 (2) 86 (1)
automobile 97.3 (1) 95.6 (2) 76 (1) 73.1 (2)

balance 81.1 (2) 82.8 (1) 75.3 (2) 76.7 (1)
banana 75.2 (2) 76.8 (1) 74.6 (2) 76.8 (1)
breast 75.9 (2) 78.1 (1) 71.1 (2) 71.2 (1)
bupa 66.5 (2) 66.6 (1) 55.2 (2) 56.7 (1)
chess 94.4 (1) 94.1 (2) 94 (1.5) 94 (1.5)

cleveland 62.8 (2) 69 (1) 56.1 (1) 53.1 (2)
contraceptive 35.2 (2) 36 (1) 34.3 (2) 35.4 (1)

crx 86.2 (1) 84.2 (2) 85.3 (1) 82.4 (2)
dermatology 99.1 (1.5) 99.1 (1.5) 94.4 (1) 93 (2)

ecoli 83.6 (2) 84.7 (1) 77 (2) 77.9 (1)
flare 64.5 (2) 67.9 (1) 63.8 (2) 67 (1)
glass 74.9 (2) 75 (1) 62.6 (2) 64 (1)

haberman 76.7 (1) 75.9 (2) 74.1 (2) 74.4 (1)
hayes-roth 90.6 (1) 89.7 (2) 80.6 (1) 79.3 (2)

heart 90.8 (2) 90.9 (1) 79.6 (2) 82.5 (1)
housevotes 97 (2) 97.6 (1) 97 (1) 96.4 (2)

iris 96.5 (1.5) 96.5 (1.5) 95.3 (1.5) 95.3 (1.5)
led7digit 70.5 (2) 72.4 (1) 66.3 (2) 67.9 (1)

lymphography 95 (2) 95.4 (1) 83.3 (1) 80.4 (2)
monk-2 98 (1) 97.4 (2) 97.9 (1) 97.7 (2)

movement libras 96.7 (1) 96.2 (2) 72.5 (1) 71.1 (2)
new thyroid 95.1 (1) 91.7 (2) 92 (1) 87.4 (2)

pima 76.6 (2) 76.9 (1) 74.2 (1) 72.9 (2)
post operative 73.4 (2) 75.7 (1) 70.1 (1) 66.6 (2)

ring 92.1 (2) 95.1 (1) 91.5 (2) 92.6 (1)
saheart 76.5 (2) 77.2 (1) 69.6 (1) 67.1 (2)
sonar 98.6 (1) 97.7 (2) 74 (2) 80.7 (1)

spectfheart 79.4 (1.5) 79.4 (1.5) 79.4 (1.5) 79.4 (1.5)
splice 92.1 (2) 92.8 (1) 91.7 (2) 92.1 (1)

thyroid 92.8 (2) 93.4 (1) 92.8 (2) 93.4 (1)
titanic 72.2 (2) 74.1 (1) 72 (2) 74.4 (1)
vehicle 64.1 (2) 76.6 (1) 55.9 (2) 64.3 (1)
vowel 86.2 (2) 90 (1) 72.8 (2) 75.6 (1)
wdbc 98 (2) 98.4 (1) 94.7 (2) 95.6 (1)
wine 99.6 (1) 99 (2) 91.5 (2) 93.1 (1)

wisconsin 98.4 (1) 98.1 (2) 94.7 (1) 93.8 (2)
yeast 49.1 (2) 51 (1) 46.2 (2) 50.7 (1)
Mean 83.3 84.2375 77.545 77.955

177



Appendix B. Comparative Tables

Table B.19: Results obtained by NSLV-AR and SLAVE3* on 40 databases. The
table shows the average number of rules and the time employed to get the model
measured in seconds.

Rules Time
Dataset NSLV-AR SLAVE3* NSLV-AR SLAVE3*

appendicitis 3.7 (1) 3.8 (2) 1.1 (2) 0.9 (1)
australian 4.9 (1) 6.8 (2) 7 (1) 7.6 (2)
automobile 14.2 (1) 14.3 (2) 9.9 (2) 9 (1)

balance 10.7 (1) 11.4 (2) 4.1 (2) 3.6 (1)
banana 5.1 (1) 6.4 (2) 14.8 (1) 18.4 (2)
breast 4.6 (1) 5.6 (2) 1.9 (2) 1.7 (1)
bupa 4.3 (2) 4.2 (1) 2.1 (2) 1.9 (1)
chess 4.1 (1) 5.6 (2) 17.6 (1) 31.9 (2)

cleveland 8.5 (1) 12.8 (2) 6.4 (1) 8.4 (2)
contraceptive 3.2 (1) 3.6 (2) 4.2 (1) 6 (2)

crx 3.3 (1) 4 (2) 3.2 (1) 4.4 (2)
dermatology 8.9 (1) 9.3 (2) 8.3 (2) 7.1 (1)

ecoli 11.1 (1) 12.6 (2) 6.2 (2) 6 (1)
flare 4.4 (1) 6.8 (2) 3.6 (1) 6.1 (2)
glass 9.1 (1) 9.3 (2) 5.5 (2) 5.3 (1)

haberman 2.9 (1.5) 2.9 (1.5) 1.1 (2) 1 (1)
hayes-roth 8.4 (2) 7.6 (1) 1.5 (2) 1.2 (1)

heart 9.6 (2) 9.1 (1) 4.2 (2) 3.9 (1)
housevotes 2.2 (1) 3.3 (2) 0.6 (1) 0.8 (2)

iris 3 (1) 3.2 (2) 0.6 (1.5) 0.6 (1.5)
led7digit 11.4 (1) 12.1 (2) 5.9 (2) 5.7 (1)

lymphography 9.3 (1.5) 9.3 (1.5) 2.6 (2) 2 (1)
monk-2 2.8 (2) 2.6 (1) 0.9 (1.5) 0.9 (1.5)

movement libras 41.1 (1.5) 41.1 (1.5) 152.7 (1) 162.7 (2)
new thyroid 6.1 (2) 5.1 (1) 1.6 (2) 1.3 (1)

pima 4.6 (1) 5.8 (2) 5.8 (1) 7.1 (2)
post operative 2.5 (1) 3.2 (2) 0.6 (1.5) 0.6 (1.5)

ring 10.4 (1) 34.9 (2) 253.4 (1) 1034.6 (2)
saheart 7.8 (1) 9.9 (2) 5.7 (1) 7.8 (2)
sonar 10.1 (1) 10.7 (2) 17.4 (1) 18.7 (2)

spectfheart 1 (1.5) 1 (1.5) 0.7 (1) 1.1 (2)
splice 5.2 (1) 6.2 (2) 25 (1) 35.3 (2)

thyroid 1.3 (1) 1.9 (2) 13.6 (1) 32.6 (2)
titanic 2.5 (2) 2.4 (1) 2.8 (1) 3.7 (2)
vehicle 16.6 (1) 28.2 (2) 38.9 (1) 62.4 (2)
vowel 60.4 (1) 69.1 (2) 113.9 (1) 119.8 (2)
wdbc 6.9 (1) 8.4 (2) 15.5 (1) 16.8 (2)
wine 6.5 (2) 6.3 (1) 2.4 (2) 1.9 (1)

wisconsin 8.8 (2) 8.4 (1) 8.4 (2) 7.4 (1)
yeast 9 (1) 9.1 (2) 15.2 (1) 16.4 (2)
Mean 8.7625 10.4575 19.6725 41.615
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[46] González, A., Pérez, R., “Improving the genetic algorithm of SLAVE”,
Mathware & Soft Computing, 16, 59–70 (2009). 5, 13, 57
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