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the Universidad de Granada in Spain,

Guarantee by signing this thesis:

that the research work contained in the present report, entitled Calculation of the

electronic structure and transport properties of semiconductor nanowires,

has been performed under the full guidance of the Ph.D Supervisors and, as far as our

knowledge reaches, during the work, it has been respected the right of others authors

to be cited, when their publications or their results have been used.

Granada, 5th February, 2015.
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Abstract

Nanoelectronics Research Group

Departamento de Electrónica y Tecnoloǵıa de los Computadores

Calculation of the electronic structure and transport properties of

semiconductor nanowires

by Celso Jesús Mart́ınez Blanque

The main objective of this PhD Thesis is the study of the performance of nanowire

transistors, as they are postulated as an alternative for future technological nodes. To

do so, this work presents the physical background and the numerical tools employed

to achieve an accurate description of the electrostatic and transport properties of such

devices, accounting for the dominant quantum effects which they undergo.

We begin with the self-consistent solution of the Poisson and Schrödinger equa-

tions in the 2D cross-section of an arbitrary nanowire, to obtain the potential and the

charge distribution. The simulator is especifically designed to achieve a satisfactory

description of the holes behavior in devices fabricated with Si, Ge, Si1−xGex and III-V

materials. For this purpose the Schrödinger equation is solved by means of the k·p
method, extended to 2D confined systems using the envelope function approximation.

An important part of this manuscript is devoted to the implementation from scratch

of this k·p method, including the physical treatment of the problem, the mathematical

and numerical implementation of the method, and the validation of the results.

Then, the numerical simulator is used to carry out several electrostatic and trans-

port studies of Si, Ge and III-V NWs, for different orientations and geometries. The

influence of the NW size on the bandstructure and the charge distribution as a function

of the applied gate bias is assessed. As the diameter is reduced, the LH subbands split

from the HH ones. For the smallest sizes the LH subbands predominate with respect

to the HH ones, yielding a reduction of the mean effective mass. This effect is stressed
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in Si devices compared to Ge ones, and similar mean effective masses can be achieved

for the smallest devices, specially along the [111] orientation.

Furthermore, in order to determine the transport properties, the linearization of the

1D Boltzmann Transport Equation using the momentum relaxation time approximation

is implemented, accounting for phonons and alloy disorder as scattering mechanisms.

Finally, the mobility is calculated by means of the Kubo-Greenwood formula.

In this regard, we have focused on the hole mobility in Si, Ge and Si1−xGex

nanowires. We demonstrate that for low inversion charge, Ge NWs clearly outper-

form their Si counterpart. However, in the high inversion regime the hole mobility

shows a significant degradation in Ge channels, with a reduced improvement compared

to Si NWs. For Si1−xGex devices, the influence of the AD on the total mobility was

evaluated, demonstrating its dominance at low inversion, whereas for high inversion the

optical phonon contribution degrades considerably the hole mobility for any Ge molar

fraction, reducing the beneficial effect of the alloy. Furthermore, the impact of using

two common approximations for the overlap integrals is assessed. These approaches

neglect the dependence of the wave function with the wave vector kz. Both approxi-

mations lead to a high dispersion of the hole mobility values calculated compared with

our full band procedure.
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Resumen

Nanoelectronics Research Group

Departamento de Electrónica y Tecnoloǵıa de los Computadores

Calculation of the electronic structure and transport properties of

semiconductor nanowires

by Celso Jesús Mart́ınez Blanque

Esta tesis tiene por objeto el estudio de las propiedades electrónicas y de transporte

de los nanohilos semiconductores. La importancia tecnológica de estos dispositivos se

basa en su potencial como alternativa de futuro a los dispositivos tradicionales dada la

mejora en las prestaciones que presentan. Precisamente para poder predecir de manera

precisa las prestaciones de estos dispositivos hemos comenzado con el estudio de la

estructura de bandas en sistemas semiconductores confinados en dos dimensiones. Para

ello hemos hecho uso del método k·p que permite una descripción correcta de la relación

E − k en estos sistemas con un coste computacional limitado. Hemos comprobado la

calidad de los resultados mediante comparaciones con el método Tight-Binding, que

corresponde a una descripción atomı́stica. Hemos observado ligeras desviaciones, dentro

de lo previsto en aproximaciones basadas en parámetros semiemṕıricos.

A continuación hemos resuelto de manera autoconsistente las ecuaciones de Poisson

y Schrödinger en la sección transversal de un nanohilo. Como resultado obtenemos la

distribución de potencial y de carga. Nos hemos centrado en el estudio de huecos como

portadores de carga, puesto que se trata de un tema poco analizado en la literatura

si lo comparamos con la cantidad de trabajos dedicados a los electrones. El simulador

numérico nos ha proporcionado una gran cantidad de resultados relativos a propiedades

electroestáticas y de transporte en nanohilos compuestos de Si, Ge, Si1−xGex y com-

puestos III-V. Hemos analizado la influencia del tamaño y la tensión de puerta aplicada

sobre la estructura de bandas. Se ha observado que al reducir el tamaño dominan las
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bandas de huecos ligeros sobre los pesados, produciendo una reducción de la masa

efectiva promedio, sobre todo a lo largo de la orientación [111].

Para el análisis de las propiedades de transporte se ha procedido a linealizar la

ecuación de Boltzmann mediante la aproximación MRT (Momentum Relaxation Time).

Se ha considerado la dispersión de los portadores producida por fonones acústicos y

ópticos aśı como por el desorden en las aleaciones (alloy disorder AD). Finalmente la

movilidad de los huecos se ha estimado mediante el fórmula de Kubo-Greenwood.

Con este simulador nos hemos centrado en la movilidad de huecos en nanohilos

fabricados con Si, Ge y Si1−xGex. Se ha comprobado que en baja inversión la movilidad

de huecos en Ge es muy superior a la que se obtiene con Si. No obstante, en fuerte

inversión, esta movilidad se degrada considerablemente debido al efecto de los fonones

ópticos. Se ha realizado un estudio pormenorizado de los nanohilos compuestos de

Si1−xGex, en concreto del efecto del AD sobre la movilidad de los huecos. Se ha

comparado el efecto de distintos parámetros que modelan la importancia relativa de

este mecanismo de dispersión. Además, hemos analizado distintas aproximaciones que

se realizan con frecuencia al calcular la integral de solapamiento entre estados iniciales

y finales en los elementos de matriz y se han comparado con la situación más precisa

obtenida al considerar la evolución de las funciones de onda con k.

XVIII



Contents

Declaration of authorship I

Acknowledgements V

Physical constants V

Acronyms VII

List of Symbols IX

Greek Symbols XIII

Abstract XV

Resumen XVII

I Introduction 1

1 Introduction 3

1.1 Problematic and limits of downscaling . . . . . . . . . . . . . . . . . . . 4

1.2 Beyond the limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Computational Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II k·p implementation 13

2 Electrostatics of nanowires: background 15

XIX



2.1 Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Translational Symmetry and Brillouin zone . . . . . . . . . . . . . . . . 18

2.3 Band structure determination . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Envelope function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Operator Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Quantum carrier concentration . . . . . . . . . . . . . . . . . . . . . . . 25

3 The k·p method 27

3.1 The k·p formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The k·p method for holes: Luttinger-Kohn Hamiltonian . . . . . . . . . 30

3.2.1 Three band k·p theory . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 The six band k·p method: spin orbit coupling . . . . . . . . . . 33

3.3 The k·p method for direct semiconductors: Kane’s model . . . . . . . . 36

3.4 Strain for the valence band . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Two band k·p method for electrons in Si . . . . . . . . . . . . . . . . . 42

3.6 k·p envelope function approximation . . . . . . . . . . . . . . . . . . . . 43

3.7 Spurious solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Parameter calculation in alloys . . . . . . . . . . . . . . . . . . . . . . . 47

3.8.1 Ternary III-V alloys . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8.2 SiGe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 SP2D Simulation Tool 51

4.1 TCAD Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Outline of the SP2D Simulator . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Confinement of the device . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Arbitrary Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Definition of the discretized function . . . . . . . . . . . . . . . . 59

4.5.2 Discretization of the system . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Evaluation of the inner products . . . . . . . . . . . . . . . . . . 66

4.5.4 Construction of H and M . . . . . . . . . . . . . . . . . . . . . 69

4.5.5 Hermiticity of the operators . . . . . . . . . . . . . . . . . . . . . 73

4.6 Self-Consistent Schrödinger-Poisson Solver . . . . . . . . . . . . . . . . . 78

4.6.1 Predictor-Corrector Algorithm . . . . . . . . . . . . . . . . . . . 80

4.7 Performance Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 82

XX



4.7.1 Optimization of the calculation of H . . . . . . . . . . . . . . . . 82

4.7.2 Calculation for positive kz . . . . . . . . . . . . . . . . . . . . . . 83

4.7.3 Optimization of the eigenvalue interval . . . . . . . . . . . . . . . 86

4.7.4 Memory saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7.5 Estimation of the bandstructure . . . . . . . . . . . . . . . . . . 88

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 SP2D simulator evaluation and validation 93

5.1 Validation of the two-band k·p simulator . . . . . . . . . . . . . . . . . 95

5.2 Band structure for the valence band . . . . . . . . . . . . . . . . . . . . 98

5.3 III-V Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Gallium Arsenide . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Indium Arsenide . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.3 Linear Carrier Density in III-V NWs . . . . . . . . . . . . . . . . 111

5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

III Results 115

6 k·p simulation of NW electrostatics 117

6.1 Band structure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.1 Subband crossing and anti-crossing . . . . . . . . . . . . . . . . . 118

6.1.2 Carrier velocity and effective mass . . . . . . . . . . . . . . . . . 121

6.1.3 Valence Band structure of Si and Ge NWs . . . . . . . . . . . . . 125

6.1.4 Self Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Hole density and centroid calculation . . . . . . . . . . . . . . . . . . . . 131

6.2.1 Inversion charge centroid . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Charge and capacitance analysis of SiGe NWs . . . . . . . . . . . . . . . 134

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Carrier transport in semiconductor NWs 141

7.1 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Momentum Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 Calculation of the momentum relaxation time . . . . . . . . . . . . . . . 147

7.4 Implementation of scattering mechanisms . . . . . . . . . . . . . . . . . 150

7.4.1 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4.2 Acoustic phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

XXI



7.4.3 Optical phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.4 Alloy Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 Mobility calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.6.1 Form Factors. Overlap integral calculation . . . . . . . . . . . . 159

7.6.2 Phonon-limited mobility . . . . . . . . . . . . . . . . . . . . . . . 163

7.6.3 Alloy disorder (AD) influence . . . . . . . . . . . . . . . . . . . . 164

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

IV Conclusions and future work 169

8 Conclusion and future work 171

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

V Appendixes 175

Appendix A Perturbation theory 177

A.1 Perturbation theory for degenerate states . . . . . . . . . . . . . . . . . 180
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Chapter 1

Introduction

Electronics have powered the advances in technology and science for the last decades,

producing a huge social impact on the industry and society that has induced changes

in the world beyond anything that could have been imagined before. This amazing

progress has been possible due to the astonishing performance increase of the Metal-

Oxide-Semiconductor Field-Effect-Transistor (MOSFET) on account of its continuous

size reduction [30]. The cost of a single transistor on an integrated circuit (IC) has been

reduced in more than a millionfold, whereas the number of devices on a single chip has

increased in a similar rate during the last decades. This exponential size reduction

follows the so-called Moore’s law [95]. The most direct consequence of this progression

is the increase in the integration capacity of transistors in an IC, and hence, in the

computational power.

Integrated circuits use the MOSFET as a basic switching element for digital logic

applications and as an amplifier for analog ones, and its supremacy is expected to con-

tinue in the future. Nevertheless, it is not clear that the semiconductor industry can

keep on with the scaling process in the future, due to the numerous technological chal-

lenges arising from both device physics and manufacturing capabilities. However, the

size reduction trend still remains, supported by the society demand on new products,

and new technological nodes are reached every few years [3].

Each processor generation involves a leap forward in the fabrication technology,

and it materializes in a noticeable enhancement of the device and system performance.

Nowadays, new challenges have to be addressed in order to keep up this trend and to

respond to the voracity of the technology market for new groundbreaking products.
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1.1. Problematic and limits of downscaling

Intel claims that between the 45 nm of 2007, and the 14 nm of 2014, they have achieved

to double the performance of their CPUs.

The performance enhancement comes along with an essential challenge: the reduc-

tion of power consumption. This is a very relevant issue since the portable devices

are of major importance in the society and there is a strong demand for, not only

computational power, but also energy saving and autonomy. Moreover, there is not

a halt expected on the incessant progression of the semiconductor industry: the next

generation is expected for 2016, the 10 nm node [3].

1.1 Problematic and limits of downscaling

Since the birth of electronics, the MOSFET downscaling has led to a general improve-

ment of the performance in several aspects: the smaller the device size, the better the

performance in terms of density, speed, cost, functionality and power figures. These im-

provements are the result of a better control of the channel by the gate terminal, which

involves less energy and time to gather and remove the charge. Therefore, the boost

of the performance was subjected to the reduction of the device size, which is purely a

technological challenge but not a design problem. Back then, the end of the road was

still supposed to be caused by technological issues: in the seventies, the lithography

resolution seemed to be the main concern [57, 144]; while in the early eighties, tun-

neling through the insulator, and the resulting inadmissible current leakage and device

breakdown, was thought to be the ultimate restriction [59, 127].

Nonetheless, the benefits obtained by shrinking the devices as they approximate to

the end of the roadmap [51] have some limitations due to the arising of undesirable

effects such as:

1. The short channel effects (SCEs) which result in the lost of control of the gate

terminal over the channel charge. They arise when the drain-source field controls a

large fraction of the charge located below the gate. This effects can be exacerbated

as the channel length is in the nanometer range.

2. The increase in the circuit power density, resulting from the impossibility to fur-

ther scaling the supply bias and threshold voltage while keeping a high ION/IOFF

ratio.

3. Unacceptable high device variability, as a consequence of technological fabrication
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issues.

Moreover, these undesirable effects are strongly interrelated, complicating the prob-

lem: an improvement of one of them may lead to an aggravation of the other.

The main concern to achieve a good operation of the device is to keep a reasonable

ION/IOFF ratio, which allows to differentiate both states. A reduction of the device size

leads to an increase in the integration density and consequently in the power density

for the same current levels. Therefore, a scaling of ION is required to keep the power

density within safe levels. The reduction of ION could be achieved by lowering the

supply voltage VDD, resulting in a lower power consumption. However, this trend

cannot be hold indefinitely since there are two constraints: the limitation of the VDD

reduction and the enhancement of the IOFF.

To compensate the ION drop and keep the ON-OFF ratio constant, the IOFF cur-

rent should be reduced in the same amount. However, when the VDD is lowered, the

threshold voltage VT has to be reduced to keep the same gate overdrive voltage. As a

result, there is an exponential increase in IOFF due to the dependence of the subthresh-

old current with the gate voltage. This increase is determined by the subthreshold

swing, SS, which for MOSFETs at room temperature under ideal conditions faces to a

theoretical barrier of 60mV/dec. In the practice, the best MOSFET implementations

cannot bring SS<70–80mV/dec, which leads to an even worse situation [28, 73]. New

designs such as tunnel FETs should be considered to achieve lower SS values.

As for the SCEs, the channel length shortening may also contribute making possible

the direct tunneling between the source and the drain, and the drain induced barrier

lowering (DIBL) [124] which strongly affects the ON-OFF ratio by yielding a punch-

through in the channel. A traditional solution for the SCEs is to reduce the oxide

thickness to increase the gate control over the channel by augmenting the transverse

electric field. The reduction in the SiO2 thickness to avoid short channel effects halts

due to direct tunneling. The limit for the scaling of the SiO2 thickness is around to 3

atomic layers, which corresponds to 1 nm. The technology required to manipulate the

material structure in such a precise manner has some limitations, and the variability

becomes a critical feature which affects the device performance [5, 133].

Finding solutions to these issues has slowed down the shrinking of the device size,

leading to the use of new materials and device designs. The electronics industry has

been able to reinvent itself keeping a continuous improvement of their product’s per-

formance. There is still a long way to go before the MOSFET technology is exhausted,
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as it is detailed in the next section.

1.2 Beyond the limits

We have already enumerated some of the critical issues which affect the traditional

miniaturization process. However, the scaling of the electronic devices has continued

using new strategies that have overcome the adversities. Among them, we focus on the

use of strain, high-κ insulators (e.g., Zr02, HfO2,La2O3), and metal gate materials, since

they have driven the last generations of planar technology and will be also determinant

for the future generations.

Strain was adopted as a carrier mobility booster for the first time in the 90 nm

technology node, and it has been commonly used up to now for advanced planar and

non-planar devices. It is based on the modification of the lattice structure of the

material produced by applying external forces, resulting in a compressed or stretched

lattice. This change in the arrangement of the atoms cause modifications on the band

structure of the material, leading to an enhancement of the carrier mobility [4]. The

chosen material, the strain direction, its intensity, and the device orientation give rise

to a vast number of possibilities in the tailoring of the transport properties that can be

denominated as strain engineering. However, there are also some restrictions, as not all

the possibilities lead to performance improvements and, unfortunately, the best option

for one type of carrier is not necessarily convenient for the other type [135, 136].

Beginning at the 45 nm node, the use of high-κ insulators has allowed further im-

provements concerning the gate leakage current of ultrascaled planar Si CMOS devices.

The ultimate goal is to improve the gate control over the channel keeping a reason-

able insulator thickness to avoid gate leakage currents [45, 147]. The main drawback

of this technology is the low quality of the interface between the insulator and the

semiconductor, although stacking the high-κ material on a thin SiO2 film can over-

come this problem [94]. Nevertheless, active research is being conducted to achieve

high-quality insulators directly on the semiconductor, reducing the equivalent oxide

thickness (EOT). Some promising results are being obtained for La2O3 to reduce the

EOT below 1nm [70]. Along with the new insulators, the use of metallic gates has

mitigated the harmful polysilicon depletion contribution to the EOT. The combination

of these two techniques has successfully extended the lifetime of planar silicon CMOS

to the 32 nm technology node.
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From this point on, further device improvements require more revolutionary modifi-

cations in the design of the Field Effect Transistors (FETs). Due to the higher influence

of SCEs, bulk planar technology can no longer satisfy the miniaturization requirements.

In this new scenario, different proposals affecting the traditional structure of the device

are being considered to enhance the gate control over the channel.

One possible solution is the use of silicon-on-insulator (SOI) technology, which con-

sists on the introduction of a buried insulator layer underneath the active semiconduc-

tor, which isolates it from the bulk substrate. The insulator reduces the active volume

of the transistor and, consequently, enhances the gate control mitigating the SCEs. The

compatibility and versatility of this technology has resulted in an industrial consolida-

tion and a promising future [122]. In addition, it also presents other benefits, such as

the reduction of the negative effects produced by ionizing radiation, reduction of the

parasitic capacitance [25], or the possibility of integration of different components such

as Micro-Electro-Mechanical Systems (MEMS) or waveguides.

MultiGate (MuG) architectures were proposed to increase the control of the gate

over the semiconductor channel. The idea is to add gates around the channel in order

to enclose it as much as possible. The first of these devices, the Double Gate (DG)

MOSFET, was postulated by Sekigawa et al. in the early eighties [121]. They demon-

strated that these devices controlled more efficiently the energy barrier between the

source and the drain, alleviating the SCEs. Since then, different MuG devices have

been postulated to exploit their properties. A variation of the DG MOSFET is the

FinFET, where the two gates are placed in a vertical direction, and they are altogether

covered by the gate terminal [137]. The main advantage of the FinFET device is that it

is CMOS compatible, while maintaining the main advantages of DG devices. The Tri-

Gate device appeared as an evolution of the FinFET, where the insulator thickness of

the top region is reduced, creating a top channel [34]. Finally, in the Gate All Around

(GAA) or Nanowire (NW), the channel is completely surrounded by the gate [152].

GAA structures are considered as the ultimate architecture to achieve the best gate

control over the channel. However, there is still a lot of work to be done before NW

devices can be commercially feasible, especially from a technological point of view.

Another alternative to improve the device performance is the use of alternative

semiconductor materials. Silicon has some limitations and, in terms of mobility, there

are different materials with better properties. Consequently, along the history of elec-

tronics, many candidates have emerged.
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Figure 1.1: Evolution of the design in the MOSFET technology.

Among the present day alternatives, one of the strongest candidates are the III-V

compound materials. These materials are well-known in the electronic industry since

they have been extensively used in specific applications, such as high electron mobility

transistor (HEMTs), and optoelectronics applications (light emitting diode, laser,..),

and they have been postulated for a long time as the replacement of Si in logic applica-

tions. The main interest of these materials is their exceptional electron mobility, which

is due to the low Γ valley effective mass, and their high injection velocity. However, the

small effective mass also means a small density of states and, therefore, a low carrier

concentration which can result in a lower conductivity. Therefore, a trade-off must be

adopted between the carrier concentration and the carrier velocity in order to enhance

ION. Moreover, there are different compounds, with their particular characteristics,

which can be combined to form ternary alloys. Strain can also be applied to modify

the material features. So that, researchers have at their disposal a lot of designing

possibilities.

While III-V compound materials are a good alternative to Silicon for NMOS fab-

rication, they do not show promising features for hole transport (although antimonide

compounds may be an exception [150]). Thus, for PMOS, Germanium (Ge) and SiGe

compound remain as the most promising materials. Hybrid technology, including III-V

materials for NMOS and Ge for PMOS, has already been experimentally demonstrated

[131].

The implantation of these materials replacing silicon constitutes a challenge since
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there are some issues that must be overcome. The combination of materials and strain

are being studied in order to get an optimum CMOS design. Moreover, some technical

problems, such as the choice of an appropriate gate insulator, or the incompatibility

with the Si fabrication process, have to be addressed. In any case, III-V compounds

and Ge are considered as a possible alternative to boost the performance of future

electronic devices [3].

1.3 Computational Modeling

The fabrication of new semiconductor nanostructures involves costly cutting-edge tech-

nological processes which are only affordable by a few companies and research labs.

Consequently, the experiments are prohibitive and must be performed only when strictly

necessary. In this context, it is of prime importance to be able to predict the perfor-

mance of these devices in advance. This is not a straightforward task, since the consid-

eration of different physical phenomena is mandatory to estimate the device electrical

properties. Thus, appropriate physical models must be implemented and validated to

achieve reliable results.

In this context, computational modeling becomes very useful since it provides a fea-

sible opportunity to implement the physical models, and therefore, to reveal the details

of the device behavior, describing different features from the macroscopic description

to the atomic scale. Once the models are implemented and validated, they provide a

valuable insight at a reduced economic cost and in a short time interval.

As the technological progress allows the fabrication of smaller devices, quantum

phenomena become dominant and the traditional classical models are no longer accept-

able. This fact obliges to adopt new strategies and to develop new models accounting

for these new issues. The quantum phenomena involved are well known by physicists

and there are different theories that can accurately describe the behavior of the car-

riers in such small devices at different levels of approximation. While some complex

methods, such as the Density Functional Theory (DFT) or Tight-Binding (TB) can

model the atomic interaction with high accuracy at a high computational cost, other

macroscopic models can provide information at a different level of description, creating

a hierarchy of physical models.

In any case, the adoption of new models to describe the features of a device is not

an easy task. Many factors influence the behavior of the carriers in a device, and the
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assumptions must be validated by testing the results with experimental data.

1.4 Objectives

This PhD Thesis is devoted to the study of one of the most promising alternative device

to continue the MOSFET downscaling process beyond the 14nm technology node: the

Gate All Around transistor. Also, we have placed an special emphasis in SiGe and

III-V based devices as an alternative to Si ones.

Our study is particularly aimed to the description of the valence band for bidimen-

sional confined structures. To achieve this goal, the k·p method has been implemented,

and the hole mobility has been modeled using the Momentum Relaxation Time (MRT)

approximation to solve the Boltzmann Transport Equation (BTE).

The main goals of this work are:

1. Implementation of the simulation tools required for the solution of the equations

involved.

2. Study of the electrostatic behavior of GAA devices using the k·p method.

3. Analysis of the hole mobility in SiGe NWs including the most relevant scattering

mechanisms that influence the hole transport properties.

1.5 Methodology

The aim of this manuscript is to present the algorithms that have been developed for

the SP2D simulation tool. Some preliminary results are also reported in this document;

however, the full potential of the developed simulator has to be still exploited in future

research works.

The manuscript is structured as follows:

Chapter 2 In this chapter, the theoretical background needed for the numerical and

analytical solution of the 2D Schrödinger and Poisson equations is summarized.

Chapter 3 The k·p method as well as the different implementations that have been

developed in this thesis for different materials and carrier types are described:

two band k·p for electrons in Si, six band k·p for holes in diamond and zinc
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blende semiconductors, and eight band k·p for electrons and holes in III-V semi-

conductors and alloys.

Chapter 4 The implementation of the 2D electrostatic simulator is described, with

specific emphasis in its main features: arbitrary geometries, orientation effects,

efficiency boosters, etc. A special attention is paid to the description and im-

plementation of the numerical method to solve the k·p hamiltonian, the Finite

Element Method (FEM).

Chapter 5 The implemented simulator is validated, comparing its results with those

obtained using Tight-Binding (TB). In particular, the band structure of III-V

NWs with different dimensions are compared.

Chapter 6 This chapter is devoted to the electrostatic analysis of NWs using the k·p
method. Si, Ge and III-V devices are simulated, and parameters such as the mean

effective mass, the hole linear density and the gate capacitance are studied.

Chapter 7 The hole mobility of SiGe NWs is studied, by means of the Momentum

Relaxation Time (MRT) approach resulting from the linearization of the Boltz-

mann Transport Equation (BTE). Specifically, the mobility dependence on the

NW diameter and the Ge molar fraction is assessed, and the role of AD is deter-

mined.

Chapter 8 The main conclusions of this Thesis, along with some future work, are

summarized.

Appendixes Some additional explanations useful for a better understanding of the

results are provided.
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Chapter 2

Electrostatics of nanowires:

background

In this Chapter we briefly introduce some physical concepts which will be useful for

the analysis and simulation of the nanoelectronic devices analyzed in this manuscript.

These concepts are thoroughly explained in general quantum mechanic and solid state

textbooks [6, 117], nano and microelectronics textbooks [29, 128, 129, 148], and course

lectures [1].

In this thesis we are interested in the study of semiconductor nanowires as a poten-

tial option for the development of the future technology nodes. In general terms, the

MOSFET behavior is regulated by the combination of two electric fields: the transversal

field produced by the gate contact, whose function is to set the charge in the channel,

and the longitudinal field induced by the drain-source voltage, which drifts the carriers

in the channel. Assuming a long channel we can apply the gradual channel approxima-

tion (GCA), that establishes the dominance of the transversal field over the longitudinal

one. Under this approximation the charge distribution in a cross-section of the device

can be described through the self-consistent solution of the Poisson and Schrödinger

equations.

So that, both equations are required to describe the electrostatic properties of the

device. First, the Poisson equation is solved to provide the relationship between the po-

tential and the charge distribution. Second, the Schrödinger equation yields the energy

levels and their corresponding wave functions for the potential well previously obtained.

Therefore, these two equations are closely related and must be self-consistently solved.
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This Chapter is organized as follows. In Section 2.1 we present the general Schrödinger

equation, which is solved for crystalline lattices in Section 2.2, introducing the concept

of band structure. Section 2.3 deals with the methods to calculate the band structure,

particularly, the k·p method, which will be extended in the next Chapter. Section 2.4

outlines the envelope function approximation for confined devices which will require

the introduction of operator ordering in Section 2.5. Finally, Section 2.6 is devoted

to briefly explain the Poisson equation to calculate the electrostatic potential, particu-

larized in Section 2.7 for 2D confined devices, providing the expression for the carrier

concentration.

2.1 Schrödinger Equation

The Schrödinger Equation plays for the quantum mechanics the same role as the New-

ton Laws for the classical mechanics. In particular, it is of major relevance for the

description of the carrier behavior in semiconductor nanodevices, where the quantum

mechanic laws gain relevance as dimensions are reduced to the nanometer range. The

dynamic Schrödinger equation for a particle of mass m can be written as:

(
− ~

2

2m
∇2 + V (r, t)

)
Ψ(r, t) = i~

∂Ψ(r, t)

∂t
, (2.1)

where i is the imaginary unit, ~ = h/2π is the reduced Planck constant, r is the position

vector, t is the time, and V (r, t) is the potential energy. This equation describes the

time evolution of the quantum state of a physical system. The Hamiltonian Ĥ (the

term into parenthesis in the left hand side of Eq. (2.1)) yields the contribution of the

kinetic and the potential energy terms. Ψ(r, t) corresponds to the wave function of the

system that provides a probabilistic description of its properties.

The complexity of Eq. (2.1) prevents from achieving an analytical solution. How-

ever, some approximations can be carried out to obtain a solution in some scenarios. In

some cases it is useful to consider static potentials to look for solutions with separated

variables, as the product of a position dependent function and a time dependent one:

Ψ(r, t) = φ(r) · ζ(t). So that, the new equation reads as

1

φ(r)

(
− ~

2

2m
∇2 + V (r)

)
φ(r) =

1

ζ(t)
i~
∂ζ(t)

∂t
. (2.2)
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This equation can be split in two eigenvalue problems involving the same constant

E as:

(
− ~

2

2m
∇2 + V (r)

)
φ(r) = Eφ(r) , (2.3)

i~
∂ζ(t)

∂t
= Eζ(t) . (2.4)

This Equation is the so-called static Schrödinger equation and the term in parenthe-

sis is the Hamiltonian operator1 Ĥ which provides the description of the energy of the

system. This equation is an eigenvalue problem for the Hamiltonian, which provides

the states of the system. For each state, the eigenvalue of the Hamiltonian corresponds

to its energy E and the eigenfunction to its wave function φ(r). The Hamiltonian

encompasses the kinetic and potential energy contributions.

A system may have different solutions, that can be differentiated by a subbindex

n, or principal quantum number, in their corresponding energy and wave function.

Depending on the type of problem it can be necessary to use more quantum numbers

to unequivocally define a particular solution of the problem.

The temporal evolution of the state is described by Eq. (2.4), the solution of which

is harmonic and depends on the energy of the state

ζ(t) = Ke−iEt/~ , (2.5)

where K is an arbitrary constant.

In a system composed by several particles, the Hamiltonian includes sums over

all of them and their possible cross interactions, resulting in an extremely complex

problem. This is the case for semiconductors that present a crystalline structure where

the atoms are periodically arranged over all the space. Therefore, more approximations

[148] should be done to simplify the scenario. In this context, the electrons are separated

into two groups: 1) Core electrons which are close and tightly bound to the core of the

atom, and usually considered as lumped with it, creating the ion cores. 2) The valence

electrons which are responsible for the electronic properties and chemical reactivity.

They are usually located in the incomplete outermost shell of the electronic structure.

The adiabatic approximation assumes that the ions are almost static for the elec-

1We use the notation ˆ to define operators.
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trons, which therefore feel a stationary potential due to the core. The vibration of the

atomic core is treated in a different way, considering it as quasi-particles, the so-called

phonons. Finally, another important approximation to be made is the mean-field ap-

proximation, that assumes that all the electrons experience the same average potential

V (r).

Consequently, the potential energy included in the Schrödinger Eq. (2.3), can be

split into two components: the one resulting from the crystalline lattice Vcr, and the

contribution of other electric fields, such as those coming from external fields and

lumped in a term V (r).

(
− ~

2

2m
∇2 + Vcr(r) + V (r)

)
φ(r) = Eφ(r) . (2.6)

The lattice potential is not known a priori. However, due to the periodic nature

of the crystal, symmetry can be used to unveil some of its properties. Here “symme-

try” means geometrical transformations that leave the crystal unchanged, and can be

used to simplify the calculations. The study of systems with these symmetries is ad-

dressed using group theory, the explanation of which is out of scope of this manuscript.

However, some basic concepts will be used. More details can be found elsewhere [148].

2.2 Translational Symmetry and Brillouin zone

The crystalline lattices are highly symmetric and the most characteristic symmetry that

they exhibit is the Translational Symmetry, that states the invariance of the crystal

under certain spatial translation operations when no external fields are present. We

only consider the periodic lattice potential Vcr(r) of period R in Eq. (2.6). The

crystal lattice is composed of unit cells, where the potential has an specific form that

is repeated periodically in all the space, ideally to infinity. A direct consequence of

this invariance is the Bloch Theorem, which imposes the periodicity of the carrier wave

function corresponding to a particular state n:

φn(r) =
1√
ΩC

unk(r)e
ik·r , (2.7)

where φn(r) is the so-called Bloch function which is normalized to ΩC, the volume of the

unit cell, and unk(r) is a lattice-periodic function thereby having the same periodicity
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Figure 2.1: Bandstructure for Si from [26].

of the potential:

unk(r) = unk(r +R) . (2.8)

The Bloch function of Eq. (2.7) depends on the wave vector k, which determines

the periodicity of the phase of the wave functions. Therefore, the solutions of the

system are periodic functions enveloped by a planar wave with wave vector k, and

whose momentum, the so-called crystal momentum, is ~k.

Since there is a solution for all the possible values of k, we can consider the kspace

as a reciprocal space where the states are defined. Therefore, the different energies

calculated for each specific value of kform the band structure En(k). Figure 2.1 shows

the band structure calculated for Si. The solutions of the Hamiltonian can be indexed

as |n,k〉. The bands defined in the reciprocal space are also periodic, and therefore

their study can be restricted to the primitive cell of the reciprocal space, the Brillouin

zone (BZ) [148].

Crystalline lattices also present other symmetries that keep the problem invariant,

as stated by group theory. If the crystal remains invariant after a rotation it means

that this rotation applied to a solution φn(k) is also a solution with the same energy.

This property leads to the definition of equivalent points of high symmetry in the

BZ, and, therefore, to a symmetrically repeated bandstructure inside the Brillouin

zone according to the symmetries of the crystal. The wave functions associated to

those states are the result of applying the symmetry operations to φn(k). As a result,
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Figure 2.2: Brillouin zone of face centered cubic lattices. The high
symmetry points are detailed. Extracted from [135].

the complete characterization of the band structure is finally restricted to a wedge of

the BZ limited by the main symmetry points. Figure 2.2 illustrates the BZ and its

high symmetry points for the particular case of face centered cubic (fcc) lattices, very

common in semiconductors: in particular, Si and Ge are of this type.

2.3 Band structure determination

There are different methods to achieve solutions to equation (2.6), depending on the

considered assumptions [129]. As a result, the complexity of the problem is variable,

from atomistic methods, where the position of each atom is taken into account, lead-

ing to quite complex problems, to the most simple Effective Mass Approach (EMA).

Depending on the material, device, dimensions, purpose, and required accuracy, one

can choose among the different options to obtain the best solution with a reasonable

computational cost.

In this manuscript, we mainly address the calculation of the valence band of di-

amond and zinc blende semiconductors. In those cases the valence band structure is

not accurately described by the EMA, specially when the states are mixed due to the

effect of broken symmetries. Therefore, a more accurate approach is mandatory. The

chosen option in this work is the k·p method. This method was initially introduced by

Bardeen [9] and Seitz [120] and it has been widely used by many researchers [35, 65, 81].

The full theory is extensively covered by Bir and Pikus [17]. This method derives the

analytical expressions for the band structure, using symmetry arguments and experi-

mental measurements, and it is particularly useful to describe with high precision the
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band structure around the Γ point of the Brillouin zone for this type of semiconductors.

The k·p theory begins with the substitution of the Bloch functions in the Schrödinger

equation, where we use the definition of the momentum operator p̂ = −i~∇:

[
p̂2

2m0
+ V (r)

]
eik·runk(r) = En(k)e

ik·runk(r) . (2.9)

After some algebra, this equation reads:

[
~
2|k|2
2m0

+
~

m0
k · p̂+

p̂2

2m0
+ V (r)

]
unk(r) = En(k)unk(r) . (2.10)

In this new Hamiltonian the contribution of the planar wave component eik·r, and

of the lattice-periodic functions unk, are separated. The result is a Hamiltonian acting

on the Bloch functions, where the planar wave influence is considered by means of its

wave vector k and how it couples with the momentum of the Bloch functions, achieved

by applying the momentum operator p̂.

The resulting Hamiltonian is split into two terms,H0 andH1, whereH1 is considered

as a perturbation of the unperturbed term H0:

(
Ĥ0 + Ĥ1

)
unk(r) =Wnkunk(r) , (2.11)

Ĥ0 =
p̂2

2m0
+ V (r) , (2.12)

Ĥ1 =
~

m0
k · p̂ , (2.13)

Wnk = En(k)−
~
2|k|2
2m0

. (2.14)

This equation system can be solved using perturbation theory. Thus, considering

the known-solutions for an initial k0 as a set of basis functions, it is possible to calculate

the solution at a value k close to the original k0. In the next Chapter, a more detailed

discussion on this method will be presented, including the solution of the previous

equation system.
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Figure 2.3: Sketch of a Bloch function for the envelope function ap-
proximation, represented along the confined direction. The size of the
unit cell has been exaggerated for clarity. For the sake of simplicity, a
single lattice-periodic function, and therefore, only the corresponding
envelope function, has been represented.

2.4 Envelope function

In the previous Section, the Translational Symmetry of the crystal was assumed. Thus,

the crystal was presumed to be homogeneous and infinitely extended. When the Trans-

lational Symmetry is not fulfilled in any of the directions, this assumption is no longer

valid. Consequently, the carriers are confined in the direction where the symmetry is

broken, but can still propagate in the other directions2. In the case of a quantum well,

the symmetry is broken in one direction, for a quantum wire in two directions, and

for a quantum dot in the three directions. As a result, the number of directions where

the carriers can freely propagate, is also reduced. Hence, the spatial coordinates can

be separated as r = (r,z), where the z accounts for the directions where carriers can

freely move as planar waves and r are the coordinates in which the carrier are confined.

The wave functions have to be rewritten as a combination of lattice-periodic func-

tions um(r) [13], which form an orthonormal basis function, weighted by the envelope

functions ξnk(r) in the confined directions. Thus, a wave function for an state |n,k〉
can be expressed as:

φnk(r,z) =
∑

m

um(r)e
ik·zξnk,m(r) . (2.15)

2As a consequence, the wave vector k reduces its dimensionality.
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In Eq. (2.15) the formerly planar waves enveloping the lattice-periodic functions

are separated into planar waves for the non confined direction z and a slowing varying

envelope function ξnk(r) for the confined directions, where planar waves cannot propa-

gate. The plane wave expansion is restricted to the first BZ, which fulfills the boundary

conditions. As a consequence, the crystal momentum in the confined directions cannot

take continuous values and the states are quantized, resulting in bands splitting into

the so-called subbands.

In this case, the crystal momentum in the confined direction is no longer defined as

a constant ~k, but as the result of applying the momentum operator −i~∇r, with ∇r

defined in the confined coordinates r. Traditionally, the wave vector in the confined

directions is substituted as [139]:

k → k̂ = −i∇ , (2.16)

kα → k̂α = −i
∂

∂α
. (2.17)

With this replacement, the solutions for the resulting Hamiltonian Ĥ(−i∇r) are

the envelope functions of the problem, providing the eigenenergies of the system:

Ĥξ(r) = E ξ(r) . (2.18)

Assuming that the lattice constant is much smaller than the confinement size, the

slowly varying envelope functions provide a description of the probability distribution

along the confinement directions. The spatial probability density for the state |n,k〉,
neglecting the rapid oscillation near the core, can be calculated as ξnk(r)

∗ · ξnk(r) =
|ξnk(r)|2.

Hereinafter, when referring to the wave functions, we will be actually working with

their envelope functions.

2.5 Operator Ordering

The replacement proposed in Eq. (2.16) is a widely accepted and usual approximation,

but it gives rise to non trivial difficulties in the treatment of the interfaces of the device.

As explained in [139], the effect is estimated to be small in abrupt interfaces and for
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slowly-varying envelopes. So that, its influence on the energies calculation is believed

to be rather small, although it may be relevant to study the effect of interface mixing.

For further explanations, see [139] and [23]. Some ad-hoc fixes can be carried out to

achieve accurate solutions.

One usual fix, justified to assure the continuity of the probability flux of the wave

function in both sides of the interface, which is defined for the second order operator

as:

− ~
2∇2

2m(z)
→ −∇ ~

2

2m(z)
∇ . (2.19)

This operator ordering [14] also assures the hermiticity of the operator for spacial

dependent parameters as for example the effective mass. However, it produces problems

when dealing with crossed differential terms of the form k̂iC(r) k̂j with i 6= j. In

this case, the operation is not reversible, and the chosen ordering for k̂i and k̂j when

constructing the system is essential. The usual fix is to choose an average of the two

terms:

k̂i C(r) k̂j → − ∂

∂i

C(r)

2

∂

∂j
− ∂

∂j

C(r)

2

∂

∂i
. (2.20)

This ordering is referred to as symmetric operator ordering and might provide wrong

results in some cases. In the next Chapter we detail the operator ordering chosen for

the k·p calculations.

2.6 Poisson equation

In order to solve Eq. (2.6) it is necessary to find the potential energy, V (r), due to

the external forces and to the rest of electrons in the system. This relationship is

determined by the Poisson equation, which relates the electrostatic potential, and the

charge density in the device, ρq as:

∇[ε(r)∇V (r)] = −ρq(r) , (2.21)

where ε(r) is the dielectric constant. The charge density, ρq(r), is given by:
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ρq(r) = q
[
p(r)− n(r) +N+

D −N−
A

]
, (2.22)

where p(r) and n(r) are the electron and hole concentrations respectively, q is the

elementary charge, and N+
D and N−

A are the ionized donor and acceptor impurity con-

centrations respectively.

The Poisson equation together with the Schrödinger equation presented in Sec. 2.1

complete the physical background necessary for the determination of the electrostatic

behavior of the devices under study in this manuscript.

2.7 Quantum carrier concentration

Carries in confined systems are distributed according to the weighted distribution func-

tions determined by the squared norm of the wave functions, which are solution of the

Schrödinger equation. To calculate the charge density it is necessary to know the

number of available states and their occupation probability. The first magnitude is

determined by a function g(k) known as the density of states (DOS).

The periodicity of the crystal lattice implies a discretization of the wave vector

space. Each k state occupies a volume in the wave vector space given by ΩB/N where

ΩB is the volume of the Brillouin zone and N is the number of unit cells in the real

space for the given volume, V, of the semiconductor: N = V/ΩC, being ΩC the unit

cell volume. Then, the density of states is given by:

g(k) = gs
N/ΩB

V = gs
(V/ΩC)/ΩB

V =
gs

(2π)3
, (2.23)

where ΩBΩC = (2π)3 and gs accounts for the spin degeneracy. As can be seen, the

states are uniformly distributed over all the wave vector space.

When the 1D electron gas approximation is considered, ΩB and ΩC represent lengths

instead of volumes, hence ΩBΩC = 2π. The wave vector density of states is thus:

g(kz) = gs
N/ΩB

L = gs
(L/ΩC)ΩB

L =
gs
2π

. (2.24)

where L is the length of the device.

As for the occupation of each state, it depends on its energy E by means of the

Fermi-Dirac function:
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f0(E) =
1

1 + e
E−EF
kBT

, (2.25)

being kB the Boltzmann constant and EF the Fermi level. This is a statistical expression

that determines the probability of occupation of a certain state with an energy E.

In statistical terms, the contribution of an electron in the state |n,k〉 to the total

electron density n(r) is the result of weighting the probability distribution of such

state with the Fermi-Dirac function, |φnk(r)|2 f0(En(k)). Since a hole is the absence

of an electron, the hole density p is calculated as the probability of an state not being

occupied, and can be calculated by substituting f0(E) by (1 − f0(E)) in the previous

expression. Then, the total electron-hole density for a 1D gas can be calculated as:

n(r) =
gs
2π

∑

n

ˆ

|φnkz(r)|2 f0(En(kz)) dkz , (2.26)

p(r) =
gs
2π

∑

n

ˆ

|φnkz(r)|2 (1− f0(En(kz))) dkz , (2.27)

where the summation runs over all the subbands of the system, and the wave functions

are normalized to the area of the cross-section S of the device. These equations involve

the wave functions for all the states of the system. Due to complexity, it is usual to

simplify by means of approximations, such as employ only the wave function at kz = 0

[40]. Nevertheless, we will deal with the full band calculation of Eqs. (2.26) and (2.27).

The accuracy of these two approaches is assessed in Chapter 6.

As for ionized impurities due to dopants, classical expressions are considered.

N−
A = NA f0(EA) =

NA

1 + 1
gA

e
EA−EF

kBT

, (2.28)

N+
D = ND[1− f0(ED)] =

ND

1 + gDe
−

ED−EF
kBT

, (2.29)

where NA (ND), gA (gD) and EA (ED) are the acceptor (donor) concentration, level

degeneracy and energy, respectively.
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Chapter 3

The k·p method

In Chapter 2, we mentioned that the electronic structure of semiconductor nanowires

can be studied using different methods. Among them, the k·p method has been chosen

for this purpose in this thesis. This method is widely used to calculate the band

structure around high symmetry points of the reciprocal lattice, where the edges of

the electronic bands are located. Besides, it has raised a high interest as a numerical

tool to calculate the bandstructure in quantum devices, with many works employing

the k·p approach to analyze different phenomena [18, 46, 111, 139]. So that, in this

chapter we provide a more extended insight into the k·p method, which is necessary

for its later implementation into the simulation tool.

Among the strengths of this method that make it so popular, we can enumerate a

few:

1. It is a continuum approach, which simplifies the lay out of the problem and allows

to keep the semi-classical point of view used in simpler methods such as the EMA.

2. A reduced set of parameters, which can be empirically adjusted, is enough to

determine the band structure near the band edges.

3. It is able to analyze the influence of the lattice symmetry breaking due to different

phenomena such as strain, which can be included as additional perturbations.

4. It also captures the spin orbit interaction of the different states.

5. It suits nicely with the envelope function approximation, thereby allowing the

description of nanostructures.
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Nevertheless, there are also some weaknesses that must be taken into account:

1. It only reproduces the behavior of the band structure around a point of interest,

and therefore the representation is less accurate for more distant k values. Nev-

ertheless, it works well enough when the conduction carriers are located around

a band maximum or a minimum.

2. It is not an atomistic method, thereby it is not able to capture all the physical

processes involved.

3. For confined devices, the envelope function approximation is considered, making

the problem much more complex since the k·p Hamiltonian is transformed into

a partial differential equation system.

The k·p method is based on the perturbation theory, making use of it to study the

band structure evolution from a point of interest in the reciprocal space. In [36], the

importance of the k·p approach as a basis for the semi empirical determination of the

band structure was established. By using symmetry arguments, it was shown that the

evolution of the band structure in a small region near a point of interest of the k space

depends only on a few parameters. Extensive derivations and calculations using the

k·p method, and many review papers by E.O. Kane et al. [64–67], have transformed

this perturbation approach into a very extended method in Solid State Physics.

A thorough study of the k·p theory involves the knowledge of the lattice symmetry

as well as the different symmetry groups that the basis functions belongs to. Therefore,

an initial knowledge in group theory is recommended, e.g. in [148]. This will be

useful since the matrix elements are calculated mixing the basis states by means of

the momentum operator. Those matrix elements determine the evolution of the band

structure in the reciprocal space. In this chapter we provide a general insight into these

k·p features and the resulting mathematical problem to be solved. A more detailed

view of the symmetry operations which lead to the final layout of the model is provided

in [139].

Some discrepancies are found in the literature when defining the different sets of

parameters to be used in k·p calculations, which might cause confusion. Therefore,

our intention here is to provide a clear definition of them, remarking the possible

misunderstandings.
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Chapter 3. The k·p method

3.1 The k·p formalism

As introduced in Sec. 2.3, the k·p formalism is based on the consideration of the

Bloch functions as solutions of the single electron Scrhödinger equation (Eq. (2.6)) for

a crystalline lattice. Let us rewrite the resulting system for clarity:
(
Ĥ0 + Ĥ1

)
unk(r) =Wnkunk(r) , (3.1)

Ĥ0 =
p̂2

2m0
+ Vcr(r) , (3.2)

Ĥ1 =
~

m0
k · p̂ , (3.3)

Wnk = En(k)−
~
2k2

2m0
. (3.4)

Equation (3.1) can be solved using perturbation theory, as outlined in Appendix A,

assuming that the states for the unperturbed Hamiltonian Ĥ0, i.e., the lattice-periodic

functions for k = 0, are known1. The perturbation term H1, after which the method

is named, contains the product of the wave vector k and the momentum operator p̂.

Therefore, the evolution of the electronic states with k can be estimated from the

mixing of the unperturbed Hamiltonian states.

Using perturbation theory for non degenerate states, as described in Appendix A,

the term Wnk can be approximated as:

Wnk ≈W
(0)
nk +W

(1)
nk +W

(2)
nk = En0 +

∑

m6=n

|k · pmn|2
Em0 − En0

, (3.5)

where the term W
(1)
nk vanishes since 〈un0|p̂|un0〉 = 0, and the momentum matrix ele-

ments pmn are given by

pmn = 〈um0|p̂|un0〉 . (3.6)

Then, the energy En(k) can be calculated by substituting Eq. (3.5) into (3.4):

En(k) = En0 +
~
2k2

2m0
+
∑

m6=n

|k · pmn|2
Em0 − En0

, (3.7)

1Actually, the method can be solved using the functions at any k0, but usually, for simplicity, k0 = 0
is considered.
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As for the wave functions, they can be calculated in a first order approximation as:

unk ≈ un0 +
∑

m6=n

k · pmn
Em0 − En0

um0 (3.8)

Equation (3.7) demonstrates that the E-k relation can be approximated by a

parabolic expression. After some algebra, and considering the symmetry of the cu-

bic semiconductors, this expression can be reduced to the effective mass approximation

[129]:

En(k) = En0 +
~
2k2

2m∗
, (3.9)

where m∗ is the effective mass, given by

1

m∗
=

1

m0


1 + 2

∑

m6=n

|px,mn|2
Em0 − En0


 , (3.10)

and px,mn stands for the x component of the momentum matrix element pmn, since its

three components are equal for the particular case of cubic semiconductors. Observe

that the effective mass contains a term depending on the bare electron mass and a term

accounting for the coupling with other states.

3.2 The k·p method for holes: Luttinger-Kohn Hamilto-

nian

The study of holes in diamond type semiconductors, such as Si and Ge, can be restricted

to the edge of the valence band (VB) around the Γ point. In that case, the VB edge can

be described by means of degenerate perturbation theory, which is briefly presented in

Appendix A.1. According to this theory, there are three degenerate states, denoted as

|X〉, |Y 〉 and |Z〉, while the rest of the bands are accounted for as remote states. The

three degenerate states are related to the bonding states of the orbitals |px〉, |py〉, and
|pz〉, thereby keeping their symmetry [129] and odd parity.

Different approaches can be considered to solve the resulting Hamiltonian. In this

document, we start outlining the three band k·p, even though it does not yield an

accurate approximation since it does not appropriately consider the effect of the spin
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coupling. However, this method is of interest since it allows to present the origin of the

different valence bands, from the mixing of the |X〉, |Y 〉 and |Z〉 states. Later, the six

band k·p method, which includes the spin orbit coupling, is analyzed.

3.2.1 Three band k·p theory

As a first approximation, the spin of the states forming the VB at the Γ point (|X〉,
|Y 〉 and |Z〉) is not considered. So that, the problem is reduced to three degenerate

bands, resulting in:

Hnm =

[
E′

v +
~
2k2

2m0

]
δnm +

~
2

m2
0

∑

β

k · pnβk · pβm
E′

v − Eβ
, (3.11)

where δnm is the Kronecker delta function, E′
v is the valence band edge2, and the sum

runs over all the remote states β.

The matrix elements can be simplified making use of the symmetries of the basis

states, and how they couple with the momentum operator [139]. For example, the

element H11, resulting from the self-coupling of the |X〉 state reads:

H11 = E′
v +

∑

j=x,y,z


 ~

2

2m0
+

~
2

m2
0

∑

β

|〈X |p̂j |β〉|2
E′

v − Eβ


 k2j (3.12)

It can be proven that, as a consequence of the orbital symmetry, it is fulfilled:

|〈X|p̂y|β〉|2 = |〈X|p̂z|β〉|2 , (3.13)

and therefore, Eq. (3.12) can be rewritten as:

H11 = E1 + Lk2x +M(k2y + k2z ) , (3.14)

with

L =
~
2

2m0
+

~
2

m0

∑

β

|〈X|p̂x|β〉|2
E′

v −Eβ
(3.15)

2Actually, E′

v is the valence band edge before SO coupling, or the energy position of the states |X〉,
|Y 〉 and |Z〉. After SO coupling, the valence band edge varies its position, as it will be shown later.
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and

M =
~
2

2m0
+

~
2

m0

∑

β

|〈X|p̂y|β〉|2
E′

v − Eβ
. (3.16)

Similarly,

H12 = Nkxky , (3.17)

with

N =
~
2

m2
0

∑

β

〈X|p̂x|β〉 〈β|p̂y|Y 〉+ 〈X|p̂y|β〉 〈β|p̂x|Y 〉
E′

v − Eβ
. (3.18)

Therefore, the three band k·p Hamiltonian can be written as the matrix:

Hkp,3 = (3.19)



|X〉 |Y 〉 |Z〉

|X〉 E′
v + Lk2x +M(k2y + k2z ) Nkxky Nkxkz

|Y 〉 Nkykx E′
v + Lk2y +M(k2z + k2x) Nkykz

|Z〉 Nkzkx Nkzky E′
v + Lk2z +M(k2x + k2y)




As can be seen, the evolution of the valence bands for a bulk semiconductor can

be calculated using only three different parameters: L, M and N . These parameters

depend on the coupling of the non perturbed states |X〉, |Y 〉 and |Z〉 with the rest

of the states, as a consequence of the k·p perturbation. The resulting valence band

is threefold degenerate in the Γ point and can evolve into non degenerate states for

different reciprocal space orientations. This is a direct consequence of the symmetry of

the lattice, and therefore, of the states composing the valence bands.

The L and M parameters defined in Eqs. (3.15) and (3.16), respectively, are com-

posed by a term related to the free electron dispersion and a summation depending

on the coupling with the remote states. An alternative, traditional definition of the L

and M parameters takes into account only the coupling part, and therefore the free

electron dispersion must be accounted for externally to the parameter in the diagonal

of the matrix, e.g. as in [7, 36]. For practical reasons, we have chosen to include the

free electron dispersion term into L and M to simplify the notation, as in [129, 139].

This issue has to be taken into account when seeking parameter values in the literature

for different materials.
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3.2.2 The six band k·p method: spin orbit coupling

The three band k·p method yields an intuition on how the valence bands behave in

relation with the symmetry of the semiconductor: there are three degenerate bands

in the center zone that evolve anisotropically into non degenerate ones. However, this

method does not provide an accurate description of these bands since it ignores the

effect of the spin orbit (SO) coupling. Up to now, the spin of the states was ignored,

that is, the independence of the spin states was wrongly assumed.

The spin orbit coupling is produced by the coupling of the spin with the orbital

angular momentum, which contributes to the total energy of the system, and can be

accounted for introducing the following term into the Hamiltonian operator:

ĤSO =
~

4m2
0c

2
(∇Vcr × p̂) · σP . (3.20)

where c is the vacuum light velocity, ∇Vcr is the crystal potential divergence, and

σP = (σx,σy,σz) are the Pauli matrices. In the k·p formalism, ĤSO splits into two

terms [7], which are also treated as perturbations. The first one accounts for the

momentum

ĤSO,p =
~

4m2
0c

2
(∇Vcr × p̂) · σP , (3.21)

and the second one for the wave vector

ĤSO,k =
~

4m2
0c

2
(∇Vcr × k) · σP . (3.22)

Then, after applying the perturbation theory, total Hamiltonian matrix reads:

H = Hkp +HSO,p +HSO,k , (3.23)

where the last term due to the interaction between p-type states vanishes [7], and thus,

the total SO matrix can be approximated as HSO ≈ HSO,p.

The basis states, accounting for spin, are |X ↑〉, |Y ↑〉, |Z ↑〉,|X ↓〉, |Y ↓〉, and |Z ↓〉.
Each of these basis functions does not couple with opposite spin basis functions by

means of the k·p operator, and the spin contribution depends strictly on the contri-

bution of the SO operator. Thus, the total six band k·p matrix accounting for SO
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coupling can be written as

Hkp,6 =

(
Hkp,3 0

0 Hkp,3

)
+HSO , (3.24)

where Hkp,3 is the k·p matrix for the three band k·p method (Eq. (3.19)). However,

the spin orbit perturbation couples up and down spin states, thereby yielding the SO

matrix:

HSO =
∆SO

3




0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0




, (3.25)

where∆SO is the spin orbit splitting, an intrinsic parameter of the material under study

that can be experimentally measured.

In order to show the effect of the SO coupling, the total H matrix can be expressed

in a different basis, for which HSO is diagonal. For this basis there are two eigenvalues:

a fourfold degenerate∆SO/3 and a twofold degenerate −2∆SO/3. Therefore, the valence

band edge is shifted from E′
v, the energy of the p-type states that coincides with the

valence band edge in the three band k·p model, to the actual valence band edge Ev

after considering SO coupling:

Ev = E′
v +

∆SO

3
. (3.26)

This relationship is of major importance, since the actual valence band edge Ev,

which can be determined empirically, does not lie on the position introduced by the

three band Hamiltonian E′
v, but it is lifted ∆SO/3.

The valence bands now can be classified in three types with a twofold spin degen-

eracy each one: heavy holes (HH) and light holes (LH), which are degenerate in the Γ

point, and spin orbit band (SO), which lies ∆SO below HH and LH. This scenario is

schematically depicted in Fig. 3.1.

The eigenvectors of HSO have the physical meaning that they form the basis for

the total angular momentum [129]. The new basis as a function of the p-states is:
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SO coupling

HH LH SO

CBCB

VB

Figure 3.1: Band representation obtained with the k·p method for
an arbitrary orientation in the reciprocal space: before considering
SO coupling (left) and after considering it (right). The degeneration
in the Γ point is partially removed, and the valence bands are split
into: degenerate HH, LH; and SO, which lies a ∆SO energy below the
previous ones.

|HH ↑〉 = − 1√
2
(|X ↑〉+ i |Y ↑〉) ,

|HH ↓〉 = 1√
2
(|X ↓〉 − i |Y ↓〉) ,

|LH ↑〉 = − 1√
6
(|X ↓〉+ i |Y ↓〉 − 2 |Z ↑〉) ,

|LH ↓〉 = 1√
6
(|X ↑〉 − i |Y ↑〉+ 2 |Z ↓〉) , (3.27)

|SO ↑〉 = − 1√
3
(|X ↓〉+ i |Y ↓〉+ |Z ↑〉) ,

|SO ↓〉 = 1√
3
(|X ↑〉 − i |Y ↑〉 − |Z ↓〉) .

From Eq. (3.27), the rotation matrix RSO between these two bases can be readily

obtained. Therefore, a Hamiltonian with a different set of parameters, usually labeled

as P , Q, R , and S [129], can be constructed. This set of parameters is widely used

in the literature, since it allows to express the wave functions as a linear combination

of physically meaningful states, the spin states for the valence bands, i.e, the HH, LH

and SO states.

There is another useful set of parameters, the Luttinger parameters, that are related

to L, M and N , as:
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− ~

2m0
γ1 =

1

3
(L+ 2M) , (3.28)

− ~

2m0
γ2 =

1

6
(L−M) , (3.29)

− ~

2m0
γ3 =

N

6
. (3.30)

The Eqs. (3.28-3.30) are valid for using the L, M , and N parameters as defined in

this manuscript3 in Eqs. (3.15), (3.16) and (3.18).

This alternative parameter set is usually provided in the literature, and hence, it

is important to know its relationship with the rest of parameters presented in this

manuscript. These parameters are related to the carrier effective masses along different

orientations and, therefore, can be extracted from experimental measurements of the

effective masses. To do it, the following relationships between HH effective mass for

two different orientations and the Luttinger parameters can be used [106, 129]:

(
m0

m∗
HH

)[001]

= γ1 − 2γ2 , (3.31)

(
m0

m∗
HH

)[011]

= γ1 −
√
γ22 + 3γ23 . (3.32)

Whereas, the LH effective masses are related to the Luttinger parameters using:

(
m0

m∗
LH

)[001]

= γ1 + 2γ2 , (3.33)

(
m0

m∗
LH

)[011]

= γ1 +
√
γ22 + 3γ23 . (3.34)

3.3 The k·p method for direct semiconductors: Kane’s

model

In the previous Section we have considered that the valence band can be calculated

in a basis of p type states, considering the rest of states as remote interactions. This

model is appropriate for large band gaps, since the contributions of remote states to

the perturbation is usually small. However, for small direct gap semiconductors, as

3Let us recall that a different definition of L and Mcan be found which does not account for the
free electron dispersion implicitly.
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it is the case of narrow gap III-V semiconductors, the coupling between the valence

and the conduction bands is strong. Among these semiconductors, we are focusing on

those presenting a zinc blende structure, which present the minimum of the conduction

band at the Γ symmetry point. These materials have been widely studied due to their

interest for optical and high frequency applications, and the k·p method has been

usually employed to calculate their main features.

The inclusion of the conduction band, composed by s-type states |S〉, is recom-

mended to achieve an accurate representation of the conduction and valence bands

around the Γ point. Hence, this approach is known as the eight band k·p method.

Now, according to the Löwdin perturbation theory, which is described in Appendix

B, the |S ↑〉 and |S ↓〉 states are accounted for directly as A class states, introducing

their self-interaction and the interaction with the three main p-states directly in the

Hamiltonian. If we ignore the SO coupling at this point, a 4× 4 submatrix Hkp,4 can

be constructed, in a similar way to the three band k·p method, by adding a new row

and column for the |S〉 state [7]:

Hkp,4 = (3.35)



|S〉 |X〉 |Y 〉 |Z〉

|S〉 Ec + Ãck
2 iPkx +Bkykz iPky +Bkxkz iPkz +Bkxky

|X〉 −iPkx +Bkykz E
′
v + L̃k2x + M̃(k2y + k2z ) Ñkxky Ñkxkz

|Y 〉 −iPky +Bkxkz Ñkykx E′
v + L̃k2y + M̃(k2z + k2x) Ñkykz

|Z〉 −iPkz +Bkxky Ñkzkx Ñkzky E′
v + L̃k2z + M̃(k2x + k2y)




Here, we would like to highlight some aspects of the previous Hamiltonian. First,

the tilde in the parameters is used to remark they are different from the analogous

parameters in the six band k·p model, and to keep coherence with the notation in

[139].

The terms coupling the conduction and the valence band in Eq. (3.35) encompass

a linear term with k and a quadratic one. The linear term is the first order term in

the Löwdin perturbation theory, which is only non zero for the momentum applied in

the direction of the basis state. It is characterized by the momentum interband matrix

element P ,
P = −i

~

m0
〈S | p̂x |X〉 , (3.36)

which is usually given in terms of the optical energy parameter EP
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EP =
2m0

~2
P 2 . (3.37)

Regarding the second order term of the conduction and valence bands coupling,

governed by the parameter B, it vanishes for diamond structures. However, this is

not the case for zinc blende structures as they do not show inversion symmetry [7].

Nevertheless, it is usually neglected [139] and, furthermore, its value is not easily found

in the literature. Hence, we also consider it negligible.

As for the term in position (1,1), it corresponds to the self-coupling of the |S〉 state,
and involves the conduction band parameter Ãc. In a single band perturbation theory,

with the rest of remote subbands being neglected, this term would be directly related to

the electron effective mass, as in Eq. (3.10). However, in this model, the p-type states

are accounted for explicitly, thus their effect must be subtracted from the parameter.

The conduction band effective mass is related to Ãc as:

(
m0

m∗
el

)
= Ac = Ãc +

P 2

E′
g

(3.38)

It is usual to find an alternative parameter Fc in the literature [143] instead of Ãc,

which stands for the coupling between Ãc and the remote, class B states:

Fc =
1

m0

B∑

β

|〈S | p̂x |ur〉|2
Ec −Eβ

, (3.39)

with

Ãc =
~
2

2m0
(1 + 2Fc) . (3.40)

The rest of the parameters, corresponding to the coupling between the p-type states,

are similar to those found in the six band model, although in this case the coupling with

the |S〉 must not be included. Therefore, the set of parameters corresponding to the

six band approach have to be renormalized to be used in the eight band Hamiltonian

[139]:
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L = L̃+
P 2

E′
g

, (3.41)

M = M̃ , (3.42)

N = Ñ +
P 2

E′
g

. (3.43)

Observe that E′
g = Ec − E′

v is not the real band gap, but the difference with the

energy corresponding to the p-type states. Thus, E′
g is given by

E′
g = Eg +

∆SO

3
. (3.44)

Regarding the SO coupling, it is not necessary to add new terms as the s-type states

do not couple with either themselves or the p-type ones. Therefore, the matrix HSO

only has to be resized4, adding zeros to the rows and columns corresponding to the

s-states.

Then, the final form of the whole Hamiltonian, accounting for the SO coupling is

Hkp,8 =

(
Hkp,4 0

0 Hkp,4

)
+HSO , (3.45)

3.4 Strain for the valence band

As mentioned in Chapter 1, strain engineering has had a major relevance in the latest

CMOS technology nodes, since it has been able to improve the device performance.

Furthermore, when dealing with heterostructures, strain might appear spontaneously

as a consequence of the lattice mismatch between materials [135]. Thus, strain plays a

very important role in the device design, and it is of major importance to account for

it in the models.

One of the strengths of the k·p method is that strain can be easily accounted for

as an additional perturbation. In this Section we briefly explain the main concepts

related to strain and how to account for it using the k·p method. The topic is further

addressed in many publications, such as [17, 129, 130, 135].

Strain is produced when the lattice constant of a crystalline semiconductor is modi-

fied by a technological process. A common example is achieved in an epitaxial process,

4The term HSO,k is also neglected for the zinc blende semiconductors
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when the overlayer and the substrate have different lattice constants. Assuming small

deformations, the previously developed k·p models are still valid and the effect of the

strain can be included making use of the perturbation theory. In this respect, the k·p
approach is able to translate the strain effect into the band structrure.

The deformation of the solid leads to the creation of a force per unit area or stress.

The Hooke’s law states that the relationship between the stress σ and the strain ǫ is

linear, and determined by the tensor formed by the elastic stiffness constants C. For

cubic semiconductors, such as diamond and zinc blende ones, many of the terms of C

vanish, and the relationship between the stress and the strain reduces to:




σxx

σyy

σzz

σyz

σxz

σxy




=




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44




·




ǫxx

ǫyy

ǫzz

2ǫyz

2ǫxz

2ǫxy




. (3.46)

According to the linear deformation potential theory, originally developed by Bardeen

[10] and generalized by Herring [55], the strained Hamiltonian can be written by sum-

ming an additional term dependent on ǫ, the so-called strain interaction matrix:

[Hst(ǫ)]ij =

x,y,z∑

α,β

Dαβ
ij ǫαβ (3.47)

being Dαβ
ij the deformation potential constants. Therefore, the strain tensor ǫ must

be calculated from the stress σ in the lattice, resulting from the external forces (see

Appendix C for details). Then, the deformation potential constants are used to define

a strain interaction matrix that is added to the Hamiltonian.

Particularly, for the three band k·p theory without spin orbit coupling, the strain

interaction matrix can be expressed as:

Hst =



Dl ǫxx +Dm( ǫyy + ǫzz) Dn ǫxy Dn ǫxz

Dn ǫyx Dl ǫyy +Dm( ǫxx + ǫzz) Dn ǫyz

Dn ǫzx Dn ǫzy Dl ǫzz +Dm( ǫxx + ǫyy)


 ,

(3.48)
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where only the reduced set of deformation potentials5 Dl, Dm and Dn is required be-

cause of the crystal symmetry [7]. However, it is easier to find the alternative parameters

av, b and d in the literature, which depend on the latter as:

av =
1

3
(Dl + 2Dm) , b =

1

3
(Dl −Dm) , d =

1√
3
Dn . (3.49)

As can be observed, due to the crystal symmetry, the strain interaction matrix

exhibits a similar form to the k·p Hamiltonian given by Eq. (3.19).

If the conduction band is accounted for, the strain interaction matrix must be

expanded using the additional deformation potentials6 Da and Db as [7]:

Hst = (3.50)



Da(ǫxx + ǫyy + ǫzz) Db ǫyz − iP
∑

j ǫxjkj Db ǫxz − iP
∑

j ǫyjkj Db ǫxy − iP
∑

j ǫzjkj

Db ǫyz + iP
∑

j ǫxjkj Dl ǫxx +Dm (ǫyy + ǫzz) Dn ǫxy Dn ǫxz

Db ǫxz + iP
∑

j ǫyjkj Dn ǫyx Dl ǫyy +Dm (ǫxx + ǫzz) Dn ǫyz

Db ǫxy + iP
∑

j ǫzjkj Dn ǫzx Dn ǫzy Dl ǫzz +Dm (ǫxx + ǫyy)




In this case, the CB and the VB are coupled with two terms. The first one depends

on the shear deformation potential constant Db, which is zero for diamond structures,

and is usually ignored for zinc blende ones. For this reason it is not usually tabulated

in the parameter collections, e.g., in Ref. [143]. The second term depends linearly on

the wave vector, and it is also usually ignored in the literature [129, 135, 139], assuming

that the wave vector is small enough. Thus, the effect of the strain in the coupling of

the CB and the VB can be neglected.

Finally, to account for the spin orbit interaction, the up and down spin states must

be considered, thus leading to an strain matrix interaction term for the spin orbit

coupling, as shown in [7]. However, the usual model also neglects this interaction and

then, the total spin orbit interaction matrix is formed as follows, for both six and eight

band k·p methods:

Hst,so =

(
Hst 0

0 Hst

)
(3.51)

5These parameters are usually denoted as l, m, and n because of the analogy with the k·p param-
eters. However we use D to keep the coherence with the denomination of the deformation parameters.

6As previously, we use denote them as D to keep coherence with our notation. These potentials are
usually denoted as ac and b′ [7, 143].
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3.5 Two band k·p method for electrons in Si

A different k·p model is used to calculate the conduction band in Si. In this material,

the edge of the conduction band is not in the Γ point but in the ∆ direction, near the

X point at a distance k0 = 0.15(2π/a0), denoted as ∆1 valley. Due to the periodicity of

the reciprocal space, the valley is replicated symmetrically with respect to the X point,

where it is degenerate, thereby defining a second valley, placed in +k0 and denoted

∆′
2. These valleys can interact and mix when external perturbations, such as strain,

are applied. Therefore, using these two bands it is possible to apply the k·p method

to get the following expression for the two band k·p matrix [54]

Hkp,2 =

(
H+ Hbc

Hbc H−

)
, (3.52)

where the matrix elements of the diagonal H± and the coupling terms Hbc are

H± = Ec +
~
2k2z
2ml

+
~
2
(
k2x + k2y

)

2mt
± ~

2k0kz
2ml

, (3.53)

Hbc =
~
2kxky
M

. (3.54)

with the + and - sign denoting H+ and H−, respectively. These elements describe

the two parabolic bands, with their corresponding longitudinal ml and transversal mt

effective masses and the parameter M is given by

1

M
=

2

m2
0

∣∣∣∣∣∣
∑

l 6=1,2

〈∆1 |p̂x| l〉 〈l |p̂x|∆2′〉
E∆2′

− E∆1

∣∣∣∣∣∣
, (3.55)

and is usually approximated as:

1

M
≃ 1

mt
− 1

m0
. (3.56)

The resulting Hamiltonian can be completed by taking into account the effect of

strain. This only requires adding the shifting of the conduction band Duǫzz to the

diagonal elements, and the shear strain effect 2Dshǫxy to the non diagonal elements,

whereDu andDsh are the uniaxial and shear deformation potentials for the conduction7

band of Si and the parameters ǫαβ are the crystal deformations due to the applied strain.

7They can usually be found in the literature as Ξu and Ξ
′

u [126, 135].
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3.6 k·p envelope function approximation

Burt [21–23] carried out an extensive work to demonstrate that the exact envelope

equations can be derived from the Schrödinger equation. However, Burt’s theory is

not widely adopted as the envelope function approximation is preferred by most of the

authors. An interesting analysis of the derivation of the exact envelope function and the

assumptions made to reach the approximated theory is developed in [139]. The main

concerns on this approximation come from: 1) those terms related to the interfaces

between materials, where the periodicity of the potential is broken, and 2) the operator

ordering. By neglecting the interface terms, which are rarely considered in literature

[44], the envelope function approximation is generally valid. However, the operator

ordering still remains as a major concern for the numerical stability of the envelope

equations [140, 142]. Foreman [43] firstly described the correct operator ordering for

zinc blende crystals, which is commonly referred to as Burt-Foreman operator ordering.

Then, the envelope function approximation, introduced in Sec. 2.4, can be used

in the k·p approach. As a result of replacing the wave vector k by the momentum-

like operator8 k̂ ( Eq. (2.16)) applied to the envelope functions, the k·p Hamiltonian

becomes a matrix of operators. This matrix does not exhibit an unique form since

the operators may be ordered in different ways. However, it is essential to assure the

hermiticity in order not to obtain imaginary energies as solutions. The general form of

the Hamiltonian is thus of the form

Ĥkp =H(0)(r;k)

+
∑

i

(
H

(1)
i;L(r;k)

∂

∂i
+
∂

∂i
H

(1)
i;R(r;k)

)
(3.57)

−
∑

i,j

∂

∂i
H

(2)
ij (r;k)

∂

∂j
,

where i and j are the spatial coordinates along the confined directions. The total k·p
matrix is then constructed using matrices H(0), H

(1)
i;L , H

(1)
i;R, and H

(2)
ij , corresponding

to the zero-th, first and second order momentum operators. These matrices account

for the k·p parameters, which may depend on the position, and the wave vectors along

8The so-called momentum-like operator differs from the momentum operator p̂ only in a ~ constant.
Hereinafter, when we refer to the momentum operator in the context of the EFA for the k·p method, we
actually mean k̂ = (k̂x, k̂y, k̂z), acting on the envelope function. The missed ~ is intrinsically assimilated
in the parameters.
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the non confined directions k. Using this general expression, the hermiticity of the

operator is assured if the following conditions are fulfilled:

H(0) =
(
H(0)

)†
, (3.58)

H
(1)
i;L =

(
H

(1)
i;R

)†
, (3.59)

H
(2)
ij =

(
H

(2)
ji

)†
. (3.60)

Any ordering fulfilling these conditions is physically meaningful since it provides a

set of real energies. However, as aforementioned, the ordering can be crucial for the

numerical stability of the problem, mainly in the eight-band k·p model. So that, we

are focusing in describing the operator ordering for such model. The six band approach

can be readily extracted from the eight band approach by neglecting the dependence

on the conduction band.

The derivation of the eight band approach stems from the four band bulk Hamilto-

nian in Eq. (3.35). Some modifications must be performed to assure the hermiticity of

the matrix operator adapting it to the form shown in Eq. (3.57). The resulting matrix

operator accounting for the correct operator ordering is shown in Eq. (3.63).

In this representation, the arbitrary symmetrization of the operators shown in Eq.

(2.20) is not used. Instead, the Burt-Foreman symmetrization has been used in the

coupling terms of the p-type states, i.e., the terms related to the N parameter in

the bulk approximation. Actually, this parameter naturally lies in the contribution of

different sets of remote functions [82], giving rise to two different parameters N+ and

N− related to two different operator orderings, e.g., k̂xN+k̂y+k̂yN−k̂x [44]. Since these

parameters are not directly accessible from the Luttinger ones, Eqs. (3.28-3.30), they

can be derived from the rest as:

N− =M − ~
2

2m0
, (3.61)

N+ = N −N− . (3.62)

For those elements coupling the CB and the VB, the ordering of the first order terms,

e.g. iP k̂x and −ik̂xP , is an ad-hoc choice to assure the hermiticity of the matrix, in

particular when P varies in an interface. The symmetric ordering of the second order

term, k̂yBk̂z + k̂zBk̂y, is derived directly from the symmetry of the problem [139].

However, as aforementioned, B is usually negligible and dropped from the Hamiltonian.
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Ĥkp,4 = (3.63)



Ec + kÃck iP k̂x + k̂yBk̂z + kzBk̂y iP k̂y + k̂xBk̂z + k̂zBk̂x iP k̂z + k̂xBk̂y + k̂yBk̂x

−ik̂xP + k̂yBk̂z + k̂zBk̂y E′
v + k̂xL̃k̂x + k̂yM̃ k̂y + k̂zM̃ k̂z k̂xÑ+k̂y + k̂yÑ−k̂x k̂xÑ+k̂z + k̂zÑ−k̂x

−ik̂yP +Bk̂xBk̂z + k̂zBk̂x k̂yÑ+k̂x + k̂xÑ−k̂y E′
v + k̂yL̃k̂y + k̂xM̃ k̂x + k̂zM̃ k̂z k̂yÑ+k̂z + k̂zÑ−k̂y

−ik̂zP +Bk̂xBk̂y + k̂yBk̂x k̂zÑ+k̂x + k̂xÑ−k̂z k̂zÑ+k̂y + k̂yÑ−k̂z E′
v + k̂zL̃k̂z + k̂xM̃ k̂x + k̂yM̃ k̂y




HSO,p̂ =
∆SO

3




0 0 0 0 0 0 0 0

0 0 −i 0 0 0 0 1

0 i 0 0 0 0 0 −i

0 0 0 0 0 −1 i 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 i 0

0 0 0 −i 0 −i 0 0

0 1 i 0 0 0 0 0




(3.64)

Ĥ =

(
Ĥkp,4 0

0 Ĥkp,4

)
+HSO (3.65)
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3.7. Spurious solutions

3.7 Spurious solutions

In the previous Section we have shown how to modify the intrinsically bulk k·p method

to a confined system. Thus, this method provides a procedure to calculate the band

structure of devices composed by different semiconductor materials, i.e., heterostruc-

tures. However, the numerical implementation of this method is sometimes affected by

a serious problem, the appearance of spurious solutions, which was firstly reported for

the eight band k·p method in [119, 145]. This issue consists on the appearance of solu-

tions that do not have a physical interpretation. Some examples are subbands warping

in the wrong direction (CB bending downwards or VB bending upwards), subbands

located inside the semiconductor gap, highly oscillatory wave functions that violate

the assumption of a slowly varying envelope function, or wave functions that lead to

a charge distribution located at forbidden regions. Some mathematical artifices have

been proposed to overcome this issue and to obtain a set spurious-free solutions. We

can mention a few of them: adding parameters to the Hamiltonian [58], imposing spe-

cial boundary conditions [113], filtering out any out-of-zone components [49] or simply

discarding the suspicious solutions.

A thorough study based on the mathematical nature of the problem is performed

by Veprek et al. in Refs. [139–141], who attribute the spurious solutions to a wrong

selection of the parameters, and not to the numerical method employed. The goal

is to assure the ellipticity of the k·p method through a careful selection of the k·p
parameters, thereby achieving the expected band behaviour.

The Burt-Foreman operator ordering intrinsically provides values to the parameters

close to fulfill the ellipticity of the operator, thus reducing the incidence of the problem.

However, it does not eliminate it and further efforts must be done to assure the criterion

of ellipticity. For the six band k·p method, the ellipticity of the operator is assured if

the parameters fulfill [140] the following relations:

Ac > 0 , M −N− < 0 , M +N− < 0, (3.66)

L−N− < 0 , L+ 2N+ < 0 .

For the eight band model, in principle it is more difficult to assure the ellipticity

since the valence and the conduction bands are considered at the same time. However,

as the second order terms coupling the CB and the VB are negligible compared to the

rest, the ellipticity can be assured by achieving the ellipticity for the CB and the VB
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independently. Therefore, the conditions imposed in Eq. (3.66) must be fulfilled for

the analogous renormalized parameters Ãc, L̃, M̃ , Ñ+, and Ñ−.

The reason for the greater incidence of spurious solutions in the eight band model

is related to the renormalization of the parameters which, when not being carefully

chosen, is more likely to violate the ellipticity criteria.

Therefore, when spurious solutions appear, a reduction of the EP parameter is sug-

gested. This procedure is not physically justified. However, the EP value is normally

used to fit experimental data and thus it can be tuned [143]. When the rest of the

parameters are correctly renormalized, the effective masses resulting from these pa-

rameters do not change, and therefore the results are still reliable. Obviously, the band

structure away from the Γ point depends on the parameters chosen. Further studies

are required for a better adjustment of the parameters through the comparison with

either experimental data or other methods. However, we can assume that the main

electrostatic features will not change drastically (subband energies, effective masses,

density of states, and envelope functions), leading to an accurate description of the

device behavior.

3.8 Parameter calculation in alloys

An alloy is a mixture of two or more semiconductors yielding a new material with

modified properties, such as the band-gap energy and the carrier effective mass, useful

to optimize and improve the device performance [15, 60, 96, 97, 149]. These tailored

materials also provide an extra degree of freedom in the design of heterostructure

devices, since the potential barriers and energy gaps can be accurately designed.

The alloys of interest in this manuscript are Si1−xGex, composed by Si and Ge in

different molar fraction x, and ternary III-V alloys. These ternary alloys can be viewed

as the mixture of two binary III-V compounds which share one of their constituent

elements. For example, AlxGa1-xAs results as a composition of AlAs with GaAs, with

x being the AlAs molar fraction.

Alloys have a well-defined crystal structure, but the randomness of atoms on the

lattice sites breaks down the periodicity in the background crystalline potential. A

rigorous treatment of this problem obliges to use the virtual crystal approximation

(VCA) [13], where the random potential is replaced by an average periodic potential

and the random variation is treated as a perturbation. Under some assumptions, the
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k·p method can be employed to calculate the band structure of different compounds.

In particular, SiGe is a diamond like semiconductor and the six band k·p method is

appropriate to calculate its band structure, whereas the ternary alloys are zinc blende

semiconductors that require the implementation of the eight band k·p method when

the gap is small.

Since the constituent materials are of similar nature, the properties of the alloys are

expected to be a hybridization of them. Therefore, the parameters can be calculated

as a function of the parameters of the original materials.

3.8.1 Ternary III-V alloys

The most important parameter of the III-V ternary alloys analyzed in this manuscript

is the band gap. The dependence of the energy gap on the alloy composition is generally

assumed to fit a simple equation [138]:

Eg(A1-xBx) = (1− x)Eg(A) + xEg(B)− x(1− x)b , (3.67)

where the band gap is interpolated between the extremal values for the two pure bi-

nary compounds A and B, using a bowing parameter b to add a quadratic correction.

Depending on the binary compound, the conduction band minimum can be set by a

different valley; therefore, a gap must be defined for each specific conduction band

valley, and the interpolation must be performed accounting for it in both materials.

The general assumption is to consider that a quadratic correction also leads to a

correct representation of other modeling parameters [143]. In that case, an expres-

sion analogous to Eq. (3.67) can be used. In this manuscript we use the parameters

tabulated in Ref. [143]. For those parameters that are not tabulated there, a linear

interpolation is employed. Usually, the parameters that can be interpolated, with or

without bowing, are those assigned to direct magnitudes, such as the lattice constant,

energy gaps, effective masses, or the optical matrix element EP. However, it is not

recommended to interpolate indirect parameters such as the Luttinger ones, since they

depend inversely on the effective masses.
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3.8.2 SiGe

As a rule of thumb, the Si1−xGex parameters are calculated in a similar way to III-

V alloys. Therefore, a quadratic interpolation can be carried out. However, further

studies of the parameters performed by Rieger and Vogl [112] found that the L, M

and N parameters could be derived from the pure Si and Ge ones using the following

expressions:

C(x) = C(0) + αln
(
1− Sxβ

)
, (3.68)

S = 1− exp(C(1)− C(0)/α) , (3.69)

where C(x) stands for any of the three parameters as a function of the Ge molar fraction

x. The parameters for pure Si and Ge, and the adjusting parameters α and β are the

following:

α = 6.7064 , (3.70)

β = 1.35 , (3.71)

L(0) = −6.69 ,L(1) = −21.65 , (3.72)

M(0) = −4.62 ,M(1) = −5.02 , (3.73)

L(0) = −8.56 ,L(1) = −23.48 . (3.74)

Let us remark two issues regarding these parameters. First, they are in ~
2/2m0

units, so that they must be multiplied by this quantity before using them in the con-

struction of the Hamiltonian. Second, these parameters are defined without considering

the free electron dispersion relation. Thus, to be consistent with our notation, it must

be added to them, as mentioned in Sec. 3.2.1. Therefore, it is necessary to add 1 (the

free electron dispersion is the unity in this normalization) to the L and M parameter

after the interpolation carried out using Eq. (3.68).
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Chapter 4

SP2D Simulation Tool

In the previous Chapters we have outlined general concepts and equations related to

the physics of semiconductor devices. Now we are ready to address the most specific

problem that concerns us in this manuscript: the simulation of 2D confined nanode-

vices. So that, this chapter is devoted to the computational treatment of the equations

that have to be solved to achieve an accurate physical description of semiconductor

nanowires.

In order to achieve an accurate description of the behavior of the carriers inside

the semiconductor nanowires, it will be necessary to deal with several differential and

integral equations and systems. In some scenarios, approximations and simplifications

of the problems are enough to provide either with a description or an intuition about the

device behavior. Unfortunately, as the devices are shrunk, the quantum effects arise,

requiring the use of more sophisticated models able to describe the carrier behavior.

The study of realistic devices usually complicates the resolution of the equations as

several issues have to be taken into account. Some of them are: 1) different geometries

that may not be easily represented in a rectangular coordinate system; 2) different ma-

terials, introducing discontinuities in the most important parameters of the problem; 3)

boundary conditions that may not be described by analytical expressions. The simplic-

ity required for the analytical treatment is not fulfilled because it is confronted to the

complexity needed to properly describe the device underlying physics. Consequently,

in most of the cases, the problem can not be analytically solved.

For these reasons, the assistance of computers in the simulation process has played

an important role among the nanoelectronic community for many years. The devel-
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opment of TCAD (Technology Computer Aided Design) tools has allowed a better

understanding of the semiconductor devices and has helped to establish procedures

to improve their performance. In this context, different simulation tools have been

developed by various companies, such as SentaurusTM from Synopsisr, AtlasTM from

Silvacor, VSP from Global TCAD Solutions, or Garand from Gold Standard Simula-

tions.

One of the main goals of this thesis deals with the development of a simulation tool

fully implemented within our group, SP2D, to analyze 2-D confined structures. Despite

the variety of simulators in the market, the decision of implementing a simulation tool

is mainly motivated by:

• Absolute control of the code: commercial simulation tools usually are conceived

as black boxes with insufficient information about what is happening inside.

• Versatility, adaptability and extensibility: modifications, improvements and ex-

tensions can be added to the simulator in order to satisfy the necessities at the

time they arise.

• Complete knowledge of the limitations of the solutions: as we choice the models

used to solve the problem, we can evaluate each of them in different scenarios.

This is of major importance in research, since the limitations of the models and

their range of application is sometimes not well defined.

• Economic saving: the licenses of commercial simulators are usually quite expen-

sive.

There are nonetheless trade-offs that have to be taken into account:

• Time consuming: the development process requires a lot of time and effort, which

translates into an economic cost. Moreover, the results are not achieved until the

whole program is finished.

• Deep knowledge on mathematics and physics: an extensive background in these

fields is needed to put down the whole problem and to face all the issues that can

emerge.

• General programming skills: the problem is not only related to mathematics or

physics, but also requires a deep knowledge about programming.
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• No technical support: there is not a supporting staff that can help you to solve

the problems found during the programming process.

4.1 TCAD Simulator

The first decision to be made to develop a simulation tool is the choice of the program-

ming tool or language. Different options can be considered: a general purpose language

(C++, Python) or a higher level programming tool (MATLAB). We have chosen MAT-

LAB as a high-performance language for technical computing, which is integrated in

a whole development environment which easily defines, debugs, solves, and represents

the mathematical problems and solutions. The main motivation was the huge library of

functions and tools, including algorithms and methods suitable for addressing most of

the scientific and engineering problems. Nevertheless, there are many other advantages

that make MATLAB a very interesting option for technical computing:

• Extensive and thorough documentation of all the built-in functions and algo-

rithms.

• Clear and straight syntax specifically created for mathematics, and specially for

matrix processing. Thus, the learning curve is more steep than for other general

purpose languages.

• Easy debugging by using breakpoints. The development environment provides a

debugging tool which allows checking line by line for errors.

• The graphical output is optimized for interaction. Data can be easily plotted,

and interactive tools are provided for changing colors, sizes, scales, etc, in order

to get high quality graphics.

• Technical support from a professional organization.

• Large user community providing help and free code implementations.

For these reasons, MATLAB is a very interesting option during the process of

programming the simulation tools. Nevertheless, there are also some disadvantages

that were also evaluated:

• It is a proprietary language, subject to licenses. The sharing of the code is

restricted to those having a license.
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• The functionality of the simulator is subject to the renewal of the license. The

simulator will be no longer useful if the license is not renewed.

• The code is not easily portable to other languages. Sometimes it is not even com-

patible between different MATLAB versions due to the use of specific toolboxes.

• There are restricted functions that work as black boxes.

• It is a platform where the code does not run directly on the operating system

but in a virtual machine. This additional layer reduces the efficiency of the codes

even though the algorithms are optimized.

In particular, MATLAB includes a very useful toolbox to solve a large variety of

numerical problems involving partial differential equations: the PDE ToolboxTM [2]. It

is a built-in set of functions providing the functions needed to define and solve problems

that can be described by a system of 2D partial differential equations. The key feature

of PDE ToolboxTM is the discretization method. Instead of using the Finite Differences

Method (FDM) for a regular discretization of the equations, PDE ToolboxTM is based

on the Finite Element Method (FEM). The main advantages of FEM over FDM, can

be summarized as:

• More flexibility in terms of dealing with complex geometries and thin sections.

• Better treatment of inhomogeneous media.

• Reduced requirements on the regularity or smoothness of the solutions.

• Flexible discretization of the geometry under study.

The PDE toolbox implementation of FEM discretize the equations using a non

regular grid composed of triangles which allows a better adaptation to curved complex

geometries.

Other remarkable characteristics of PDE ToolboxTM are:

• Versatile boundary condition specification.

• Flexible non-linear solvers.

• Visualization tools for solutions, mesh and geometries.
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The toolbox offers a very complete set of functions able to solve the different parts

of the FEM problem at different levels (mesh, algorithms, eigenvalues, visualization,

integration, etc.), which are extremely useful during the implementation of the problem.

However, the numerical solution of the k·p matrix will produce a coupled system of

partial differential equations that precludes the direct use of these functions making

necessary a deeper understanding of the problem in order to implement the necessary

functions.

4.2 Outline of the SP2D Simulator

In this section we provide a brief description of the SP2D simulator, whose main fea-

tures will be detailed in subsequent sections. As aforementioned, the simulator deals

with semiconductor nanowires designed to work as transistors. These devices are based

on the CMOS technology, thus, they present at least three different materials and re-

gions: a metallic gate, a semiconductor channel where the carriers flow and an insulator

preventing the carriers to flow from the gate to the channel. As the traditional planar

MOSFETs, the nanowire FETs are ended by a source and a drain regions, and the car-

riers flow from one to the other, controlled by the potential applied to the gate contact.

The particularity of the devices under consideration, the nanowire (NW) or Gate All

Around (GAA), is that the gate completely surrounds the channel, as shown in Fig.

4.1. In our study we assume that the length of the channel (transport direction) is much

larger than the length of the confined directions. So that, the transverse electric field

generated by the gate on the channel is much higher than the electric field along the

channel, and the gradual channel approximation can be applied. At this point, one can

simplify the problem to a cross-section of the device, extracting valuable information

of the electrostatics and, later, of the transport properties of the device.

The electrostatic description of the device involves the calculation of the potential

and the charge distribution on the cross-section of the nanowire. The charge distri-

bution is determined by: 1) the wave functions that yield the charge distribution, 2)

the energy of the states and the relative position of the Fermi level, which determines

the probability of finding a carrier in that state. The wave functions and energies are

provided by the Schrödinger Equation, which depends on the potential of the struc-

ture. Whereas, the potential is obtained from the charge distribution using the Poisson

Equation. Therefore, these two equations are coupled, and have to be self-consistently
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S

D
G

Figure 4.1: 3D schematic view of a SGT device. The insulator is
colored in yellow, the semiconductor channel in orange while the gate
contact, in blue. The three terminals are pinned as G (gate), D (drain)
and S (source).

solved. A typical approach is to consider that these two equations are decoupled and

the potential is a flat well. This approximation is very rough since in nanostructures,

with a considerable charge density, the potential varies strongly along the structure,

affecting to the solutions of the Schrödinger Equation. For this reason, we have decided

to take into account the coupling of these two equations by self consistently solving the

Schrödinger and Poisson’s equations, thereby obtaining more realistic results.

In this manuscript the Schrödinger Equation is solved using the k·p method, which

leads to a more accurate description of the band structure than the EMA, specially for

the valence band in diamond and zinc blende semiconductors.

4.3 Confinement of the device

Let us now take an insight into the geometry of the devices. Figure 4.1 depicts a

nanowire transistor. As we already know, assuming a weak longitudinal field, the

study can be reduced to the section of the device. Therefore, we have defined the

following coordinate system, using the device as a reference:

• The x and y coordinates, r = (x, y), are the coordinates of the cross-sectional

plane of the device, where the carriers are confined.

• The z coordinate denotes the transport direction, along which planar waves can

travel freely.
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In order to solve the device band structure, the k·p method, detailed in Chapter 3,

is used. Since the device is confined, the envelope function approximation is used. As

seen in Sec. 2.4, the wave function φnk(r) is fully determined, if neglecting the rapid

oscillation of the core, by the envelope function ξnkz(r), which only depends on the

confined coordinates r = (x, y). Then, the calculation of the envelope functions corre-

sponding to the k·p method using the EFA, detailed in 3.6, involves the substitution of

the wave vectors (kx, ky) by the the momentum-like operators 1 (k̂x, k̂y), acting on the

envelope functions. As a result, the simple k·p matrix turns into a matrix of operators

Ĥ(∇r, kz), as explained in Sec. 3.6. The system to be solved is then transformed into

a non-linear system of partial differential equations, the solutions of which depend on

the confined coordinates x and y:

Ĥ(r, kz)ξnkz(r) = Enkzξnkz(r) . (4.1)

The consequence of the confinement is that the carriers are quantized in the r

directions, yielding a subband pattern. As for the resulting envelope function, it is

a function of kz and the position r. This may be interpreted as follows: the orbital

solutions used in the k·p method as initial solutions mix differently in each position

r, according to the weights of the different components of the envelope function. As

the periodicity is not altered along the transport direction, and the envelope function

is not a function of the corresponding coordinates, the Blöch Theorem still holds and

the dependence on these coordinates keeps the periodicity of the crystal, enveloped by

the factor exp(ikzz). Nevertheless, considering the envelope function approximation,

the oscillation of the crystal solutions are negligible in the calculation of the charge

distribution, so that, the envelope function will be enough to determine the charge

distribution and the information related to the coupling between states.

4.4 Arbitrary Orientation

Up to here, we have defined coordinates in the Device Reference System (DRS). How-

ever, the k·p matrix is referred to the Crystal Reference System (CRS) and it does not

have to match necessarily with the principal axes of the device. This issue is treated

in this Section. The device orientation determines the device quantization, and the

momenta along the different orientations. In contrast, the k·p method is defined in

1Hereinafter, simply momentum operator.
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a different reference system where the lattice exhibits some symmetries, including the

anisotropical properties and behavior of the carriers as a function of the wave vectors

defined in the CRS. Since the confinement forces us to consider the momenta instead

of the wave vector, it is necessary to calculate them in the CRS so as to evaluate the

k·p matrix. The direct consequence is that the alignment of the crystal structure with

the device is decisive to the carriers behavior, because it determines the periodicity of

the lattice along the device transport direction.

To address this problem we must choose the reference system to lay out the equa-

tions. The momentum operator in the DRS, the one used so far, can be readily defined

as k̂D = ~(k̂x, k̂y, kz)
D. A rotation of this operator must be performed so as to get

the momentum in the CRS, which can be substituted in the k·p matrix. Since the

momentum operator is linear, it can be rotated using the matrix rotation between the

two coordinate systems:

k̂C = RCDk̂D , (4.2)

where RCD is the rotation matrix from the DRS to the CRS. After performing this

rotation, each component of the momentum in the CRS may be described as a mixing

of partial derivatives and the wave vector kz.

k̂Cx = RCD
11 k̂Dx +RCD

12 k̂Dy +RCD
13 k

D
z , (4.3)

k̂Cy = RCD
21 k̂Dx +RCD

22 k̂Dy +RCD
23 k

D
z , (4.4)

k̂Cz = RCD
31 k̂Dx +RCD

32 k̂Dy +RCD
33 k

D
z . (4.5)

Substituting this expressions into the k·p matrix we obtain the final partial differ-

ential system, which, applying the boundary conditions of the device, must be solved

to calculate the electronics states.

4.5 Finite Element Method

At this point we have achieved a system of partial differential equations and now we

will look for its numerical solution using the Finite Element Method. This Section is

devoted to the mathematical implementation of the FEM for two dimensional function,
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required in the case of two dimensional confinement . The description of this method

can easily be found in many handbooks, but particularly, we have followed Ref. [110],

to which we refer for further details.

FEM allows to get an approximated discrete solution over a domain where the

differential equations are defined in weak form. The weak formulation consists in a

transformation of the partial derivatives and integrals into equations that can be op-

erated using linear algebra over a vectorial space of finite dimension, or over a Hilbert

space of functions. In algebraic terms it means to define a basis of functions where

any solution of the problem can be represented as a vector with a finite number of

dimensions.

In the FEM, the solution is sought over a finite number of points in the spatial

domain forming a triangular mesh, being each triangle called element. The denser

the mesh is, the more accurate the solution gets. The main advantage of this type

of numerical method compared by its more popular alternative, the Finite Difference

Method, is that the nodes can be placed anywhere to adapt any complex geometry.

If Nn is the number of nodes, which are placed in the positions ri , withi ∈ 1, . . . Nn,

we define the set of positions as the discrete domain D. In this scenario, Nn coefficients

will be necessary to achieve the definition of a given function f at the Nn nodes:

f(ri), withr ∈ D. The function in the rest of the spatial domain can be evaluated as a

linear interpolation from f(ri).

In this section, we present the main features of the FEM and its implementation

on the SP2D simulator.

4.5.1 Definition of the discretized function

As aforementioned, this method focuses on the discretization of the continuous domain

and tries to give an approximated solution for those points belonging to the discretized

domain. Our problem involves the discretization of the cross-section of the device, the

plane labeled2 as XY , thus, it is a bidimensional problem. The element resulting from

connecting all the adjacent nodes of D is triangular. Each triangular element enclosed

by the nodes placed in ra, rb and rc is labeled as âbc. It is a continuous subdomain

where the functions defined on it can be forced to take any value on the vertexes and

to be linearly interpolated in the rest of the triangle. Therefore, we can imagine the

2In the following, the default coordinate system is the DRS.
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Figure 4.2: Example of a mesh corresponding to the domain of
the function f and approximated function f̃ using the discretization
patterns of the FEM.

function f̃ in an element as a triangular plane whose vertexes match the values of f(ri),

as seen in Fig. 4.2.

We want to reformulate the partial differential equations as an algebraic problem.

To do so, the function f is expressed as a vector in a basis of functions, obtaining the

approximated function f̃ . The basis of functions is composed by Nn functions Λi(r),

associated to every node i, defined as:

• The value at node ri is 1.

• The value at any node j 6= i is 0.

• The function away of the nodes is calculated as the interpolation of the adjacent

nodes.

Thus, a basis function evaluated only at the nodes can be expressed as:

Λi(rj) = δij . (4.6)

From this definition, only the basis function Λi contributes to the value in node i.

The approximation f̃ of the function f can thus be defined as:

f(r) ≃ f̃(r) =

Nn∑

i=1

f(ri)Λi(r) . (4.7)

As a result, the approximated function f̃ can be unequivocally defined by a set of

coefficients, which match the value of function f in the nodes of the domain D. The
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i

1

Figure 4.3: Representation of the basis function Λi. Its shape is a
pyramid whose base (the domain Di) is composed by the triangular
elements sharing the node i.

conversion of the functions into vectors of coefficients is the first step for the weak

formulation, where the derivatives and integrals must only be calculated on the basis

functions.

We can regard the basis function Λi as a pyramid of irregular basis and height 1

(Fig. 4.3). The base of the pyramid is formed by all the triangular elements of the mesh

sharing the node ri as a vertex. These are the only elements we must consider when

operating with the basis function Λi, since the basis function in the rest of the space

is 0, and thus we refer to it as the domain Di of the wave function. This visualization

will be very useful to understand the operations involving the basis functions.

The result of summing all the basis functions associated to the vertexes of a triangu-

lar element is the interpolation of the values of f(ra), f(rb) and f(rc) in the subdomain

of the triangular element, as can be seen in Fig. 4.4. These are the only three basis

functions to be accounted for when operating the function in that subdomain.

To evaluate the basis function in a triangular element, the result is an interpolation

plane whose value is 1 in the i vertex and 0 in the other two. We denote these new

functions as nodal functions N(x, y), and their value is supposed to be zero out of the

subdomain. Thus, a basis function Λi is composed by the summation of all the nodal

functions whose value is 1 in the vertex i.

The nodal functions are associated to a triangular element, and each triangle has

three nodal functions: one per vertex. To accurately define a nodal function, we must

provide the triangle âbc it belongs to and enumerate the node whose value is 1. As

a result, the three nodal functions associated to a node can be labeled as N1(x, y),

N2(x, y) and N3(x, y) (Fig. 4.5), as the 1 valued node is a, b or c, respectively. Nev-
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Figure 4.4: Representation of f̃ in the domain of the triangle âbc.
The contribution of the weighted basis functions involved in the inter-
polation Λa, Λb and Λc (red, blue and green respectively) is shown.
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Figure 4.5: Nodal functions N1,N2 andN3 for the triangular element

âbc.

ertheless, according to this nomenclature, there are different ways to define the same

nodal function, for instance, N1 in âbc is the same as N2 in b̂ac.

Thus, when dealing with the basis functions, we can subdivide the problem into

the different nodal functions, operate on them and sum all the contributions. For

example, to calculate the value of f̃ in a triangular element âbc, the only contributing

basis functions are Λa, Λb and Λc, as shown in Fig. 4.6. Particularly, the part of the

function Λa circumscribed to âbc has the form N1 for Λa, N2 for Λb and N3 for Λc.

As a consequence, the interpolation on the triangle âbc can be written in terms of the

nodal functions as:

f̃(x, y) = f(ra)N
âbc
1 (x, y) + f(rb)N

âbc
2 (x, y) + f(rc)N

âbc
3 (x, y) ,(x, y) ∈ âbc . (4.8)

To sum up, we have shown in this section how to get an approximate function f̃
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a b

c

Figure 4.6: Representation of the domains Da, Db and Dc of the
three basis functions Λa, Λb and Λc (red, blue and green respectively)

sharing a triangular element âbc.

that can be expressed as a vector on a basis of functions, defined by the functions Λi(r).

Since the basis functions are chosen to be 1 in a node and 0 in the rest, the value of the

function f̃(ri) depends only on one basis function Λi. Therefore, the coefficients of the

resulting vector are the values of f discretized in D and the position dependency of the

function has been removed. Therefore, we can treat it as a vector using conventional

linear algebra.

4.5.2 Discretization of the system

Once we now how the functions are discretized in the 2D FEM, we are going to analyze

how to implement the k·p equation system. The system is formed by Nc differential

equations, which correspond to the number of bands of the k·p method, and therefore,

the number of components of the wave functions. For the sake of simplicity, we use a

system of only two equations as an example, Nc = 2, which can be written in a generic

form as:

Ĥ11ξ1(x, y) + Ĥ12ξ2(x, y) = Eξ1(x, y)

Ĥ21ξ1(x, y) + Ĥ22ξ2(x, y) = Eξ2(x, y) .
(4.9)

Where Ĥij is a generic operator, ξ1 and ξ2 are the coefficients of the envelope wave

functions for the confined coordinates (hereinafter we call them simply ’wave functions’)

which are still position dependent. We rewrite the wave functions in their discretized

form as:
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ξ1(x, y) ≃
Nn∑

i=1

ξ1i Λi(x, y) ,

ξ2(x, y) ≃
Nn∑

i=1

ξ2i Λi(x, y) .

(4.10)

Substituting Eq. (4.10) into Eq. (4.9), we obtain a system of Nc ×Nn unknowns:

Ĥ11

Nn∑

i=1

ξ1i Λi(x, y) + Ĥ12

Nn∑

i=1

ξ2i Λi(x, y) = E
Nn∑

i=1

ξ1i Λi(x, y)

Ĥ21

Nn∑

i=1

ξ1i Λi(x, y) + Ĥ22

Nn∑

i=1

ξ2i Λi(x, y) = E

Nn∑

i=1

ξ2i Λi(x, y) .

(4.11)

To completely eliminate the dependence of the system on the position (x,y), we

project the equations on a basis function Λj , i.e , we multiply by3 Λ∗
j (x, y) and integrate

in the whole domain. We use the Dirac notation, which defines a generic inner product

between the states represented as Λi and Λj as:

〈Λj |Λi〉 =
ˆ

Λ∗
j Λi dr , (4.12)

〈
Λj

∣∣∣ Ĥlm
∣∣∣Λi
〉
=

ˆ

Λ∗
j Ĥlm Λi dr . (4.13)

Then, the whole system reads:

Nn∑

i=1

(
ξ1i

〈
Λj

∣∣∣ Ĥ11

∣∣∣Λi
〉
+ ξ2i

〈
Λj

∣∣∣ Ĥ12

∣∣∣Λi
〉)

= E

Nn∑

i=1

ξ1i 〈Λj |Λi〉

Nn∑

i=1

(
ξ1i

〈
Λj

∣∣∣ Ĥ21

∣∣∣Λi
〉
+ ξ2i

〈
Λj

∣∣∣ Ĥ22

∣∣∣Λi
〉)

= E

Nn∑

i=1

ξ2i 〈Λj |Λi〉 .
(4.14)

Since the bra-kets affect to the known basis functions, these terms can be easily

3Although Λ is a real function, we use the conjugation so as to obtain a most general expression.
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calculated. Thus, the system of Nc partial differential equations has turned into a

linear equation system determined by two matrices H and M [105], whose eigenvalues

and eigenvectors must be found,

Hξ = EMξ (4.15)

where ξ is a vector formed by the coefficients of ξ1i and ξ2i, H and M are matrices of

dimension NcNn×NcNn, that can be subdivided into Nn×Nn sublocks of size Nc×Nc.

The subblock ij corresponds to the inner product of the two basis functions Λi and Λj,

either the direct product in the case of Mij, or applying the matrix operator for Hij as

shown in Eq. (4.16).

Hij =



〈
Λi

∣∣∣ Ĥ11

∣∣∣Λj
〉 〈

Λi

∣∣∣ Ĥ12

∣∣∣Λj
〉

〈
Λi

∣∣∣ Ĥ21

∣∣∣Λj
〉 〈

Λi

∣∣∣ Ĥ22

∣∣∣Λj
〉

 , (4.16)

Mij =

(
〈Λi |Λj〉 0

0 〈Λi |Λj〉

)
. (4.17)

(4.18)

And the matrices H and M read as

H =




H11 H12 . . . H1Nn

H21 H22 . . . H2Nn

...
...

. . .
...

HNn1 HNn2 . . . HNn Nn




, (4.19)

M =




M11 M12 . . . M1Nn

M21 M22 . . . M2Nn

...
...

. . .
...

MNn1 MNn2 . . . MNn Nn




. (4.20)

The inner products are non zero only where the basis functions overlap Di ∩ Dj ,

namely, they share any triangular element in their domains. These products are cal-

culated as the sum of all the contributions of each triangular element shared by both
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basis functions.

Let us focus on the calculation of the inner product in the domain of a triangular

element shared by two basis functions. For each of the involved basis functions, its

representation in the subdomain of the triangular element can be characterized as a

nodal function. We will operate with the corresponding nodal functions summing the

contribution of all the triangular elements involved.

So that, there are two types of inner products between basis functions. First, a

function Λi multiplied by itself, which corresponds to the diagonal subblocks Hii and

Mii of the matrices H and M , which share the same triangular elements. Second,

those corresponding to two different basis functions Λi and Λj , which corresponds to

non diagonal subblocks Hij and Mij , where only two triangular elements are shared,

as can be seen in Fig. 4.6.

4.5.3 Evaluation of the inner products

In order to calculate each element of H and M it is necessary to study the inner

products of the form in Eqs. (4.12) and (4.13) involved in the construction of the k·p
matrices. We use the generic operator Ô so as to refer the operator in the inner products

of the type of Eq. (4.13). This operator can involve derivatives of the second order,

which are not well defined in the basis functions. For this reason, it is desirable to split

these operators into two, each one involving derivatives of the first order, Ô = Ô1Ô2,

giving expressions of the form:

〈
Λi

∣∣∣ Ô
∣∣∣Λj

〉
=
〈
Λi

∣∣∣ Ô1Ô2

∣∣∣Λj
〉
, (4.21)

which can be rewritten using the adjoint of the operator Ô1 as:

〈
Λi

∣∣∣ Ô
∣∣∣Λj

〉
=
〈
Ô1

†
Λi

∣∣∣ Ô2Λj

〉
, (4.22)

Let us now analyze the products involved in the calculation of each subblock Hij,

corresponding to the inner products of two basis functions Λi and Λj . According to the

operator ordering for the k·p operator introduced in Sec. 3.6, the products needed to

construct the k·p matrices, in the integral form, are:
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ˆ

Λi(x, y)C Λj(x, y) dxdy , (4.23a)
ˆ

Λi(x, y) k̂α C Λj(x, y) dxdy , (4.23b)
ˆ

Λi(x, y)C k̂α Λj(x, y) dxdy , (4.23c)
ˆ

Λi(x, y) k̂α C k̂β Λj(x, y) dxdy , (4.23d)
ˆ

Λi(x, y) k̂α C kz Λj(x, y) dxdy , (4.23e)
ˆ

Λi(x, y) kz C k̂α Λj(x, y) dxdy , (4.23f)
ˆ

Λi(x, y)V (x, y)Λj(x, y) dxdy . (4.23g)

where α and β refer to either of the confined directions x or y; kz is constant; and C

refers to a generic parameter that depends on the material, i.e., it is considered constant

inside a triangular element, but can change abruptly from one element to another if

their materials are different. Finally, V (x, y) refers to the potential depending on the

position, which is interpolated using the nodal functions4:

V (x, y) =
3∑

i=1

ViNi . (4.24)

As a result of the application of the property in Eq. (4.22), the inner products

involving the momentum operator can be rewritten as:

ˆ

Λ∗
i k̂α C kzΛj dxdy =

ˆ (
k̂αΛi

)∗
C kzΛj dxdy , (4.25)

ˆ

Λ∗
i k̂α C k̂βΛj dxdy =

ˆ (
k̂αΛi

)∗
C
(
k̂βΛj

)
dxdy , (4.26)

The integrals are carried out over all theXY plane. However, the basis functions are

non zero in a small subdomain Di. These inner products between basis functions can

be calculated by summing the contribution of the integrals performed in the subdomain

4For a simpler notation, the dependence of the nodal and basis functions with (x, y) is no longer
included.
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of each triangular element. Only the elements in the intersection of the subdomains

Di ∩ Dj of both basis functions contribute to the total integral. Then, the integrals

restricted to the subdomain of a triangular element can be expressed in terms of the

nodal functions with their corresponding shape N1, N2 or N3.

ˆ

N∗
l ÔNm dxdy =

ˆ (
Ô†

1Nl

)∗
Ô2Nm dxdy , (4.27)

where l,m = 1, 2, 3 denotes the specific nodal function.

In the case that concerns us, the operator Ô1,2 stands for any of the momentum

operators k̂x, k̂y, kz or for the unit operator. The parameter C depends also on the

position, since it can change abruptly between materials. Thus, it must be considered

as a part of Ô2 for consistence.

Ô1 → k̂x, k̂y, kz , (4.28a)

Ô2 → Ck̂x, Ck̂y, Ckz . (4.28b)

The momentum operators are self adjoint, but the operators involving the multipli-

cation by a function P depending on the position are not. Then, the adjoint operators

of the previous ones are, respectively:

Ô†
1 → k̂x, k̂y, kz, C , (4.29a)

Ô†
2 → k̂xC, k̂yC, kzC . (4.29b)

Thus, the adjoint of an operator with a generic form k̂αCk̂β is given by:

k̂αCk̂β
†−→ k̂βCk̂α . (4.30)

However, since the parameter C depending on the material is constant in the domain

of a triangular element, it can be pulled outside of the integral of the nodal functions.

Therefore, it is not considered in the next subsections when operating with the nodal

functions.

These operations can be numerically calculated by means of a change of variable as

a function of the coordinates (xi, yi) of the vertexes of the triangle and its surface S,

which is also calculated from these coordinates. The change of variable is described in

Appendix D.
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a b

c

Figure 4.7: Triangular elements involved in the calculation of the
diagonal subblocks. All the triangles composing the basis function Λa

take part in the product between Λa and itself.

4.5.4 Construction of H and M

Once we know how to deal with the differential operators in the inner products, we can

proceed to calculate the matrices H and M . We already know that these matrices are

composed by submatrices or subblocks, corresponding to the inner products between

the basis functions. Therefore, since there are Nn basis functions, there are also Nn×Nn

inner products, with only some of them non-zero because most of the basis functions

do not overlap.

As it was already commented, the product of two basis functions can be decomposed

into the summation of the products of the nodal functions in each triangle where the

two basis functions overlap. In the domain of a triangular element, each basis function

takes the shape of a nodal function, and therefore, the product can be expressed as a

sum of terms with the form of Eq. (4.27). Therefore, for each block it is necessary to

identify the triangular elements that overlap, and their corresponding nodal functions

for each one.

The submatrices can be classified into two groups: those placed on the diagonal

and labeled as Hii and Mii, which involve only one basis function; and those involving

two different basis functions, placed out of the diagonal and labeled as Hij and Mij .

Diagonal Submatrices

Let us start with the inner products of a basis function Λa (centered at node a) with

itself. These terms correspond to the submatrices Haa andMaa, located at the diagonal.

The equations must be solved for Λi = Λj = Λa. We denote this products generically

as
〈
Λa

∣∣∣ Ô
∣∣∣Λa

〉
, where Ô stands for any of the operators in Eq. (4.16).

We divide the integral in a sum of the integrals over the triangular elements over-

k·p implementation 69



4.5. Finite Element Method

lapped in the product between the two basis functions. In this case, since the function

to be multiplied is the same, all the triangles belonging to the domain of the basis

function contribute to the total integral (Fig. 4.7).

Considering a triangular element âbc, the nodal function associated to Λa is N1,

i.e., the nodal function which is one in the node a. We remark that there are different

ways of defining the same nodal function for different ordering of the vertexes of the

triangles. Nevertheless, we always consider the ordering of the triangle with the a

vertex in the first position to use the nodal function N1. The calculation of the inner

products of this type is detailed in Apendix E. The results are collected in Table 4.1,

where xi and yi correspond to the coordinates of the triangle vertexes, and S is the

area of the triangle (defined in Appendix D).

The expressions in the tables show ± and ∓ signs that are related to the sign of

S. According to our convention of positive surfaces and counterclockwise ordering of

vertexes, we take the upper sign.

Non Diagonal submatrices

As for calculating the non diagonal submatrices Hab and Mab, we must consider the

inner products between two different basis functions Λa and Λb. Since the basis func-

tions are non zero only in a small subdomain, there are only a few non zero products,

corresponding to overlapping basis function, i.e., those basis functions centered in the

adjacent nodes. This means that for a basis function with n adjacent nodes, there are

only n non zero out of diagonal submatrices. For example, the node a in Fig. 4.8 is

the adjacent node of six basis functions centered in the six external nodes of Λa.

As in the previous case, the inner products are calculated for each triangle. For this

case, there are only two contributing elements shared by the two basis functions (Fig.

4.8). The functions Λa and Λb show different nodal functions in the triangle âbc. The

same product can be labeled in different ways, for instance, N3 times N1 in the triangle

b̂ca (nodes are labeled counterclockwise). Since any product can be expressed in terms

of the type (N1, N2) or (N2, N1) according to a determined ordering of the vertexes,

we define these products in Tab. 4.2. The calculation of these products is detailed in

Apendix E.

Summing the contribution of the inner products calculated for the two triangles, we

obtain the complete inner product of Λa with Λb. The opposite ordering of the nodal

functions yields the inner product
〈
Λb

∣∣∣ Ô
∣∣∣Λa

〉
.
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Ô
´

N1 ÔN1 dxdy

k̂xk̂x
(y2 − y3)

2

4|S|
k̂xk̂y

(y2 − y3)(x3 − x2)

4|S|
k̂xkz ±ikz

y2 − y3
6

k̂yk̂x
(y2 − y3)(x3 − x2)

4|S|
k̂yk̂y

(x3 − x2)
2

4|S|
k̂ykz ±ikz

x3 − x2
6

kzk̂x ±ikz
y3 − y2

6

kzk̂y ±ikz
x2 − x3

6

kzkz
k2z |S|
6

C C
|S|
6

V |S|3V1 + V2 + V3
30

Table 4.1: Constituent terms of the elements in the diagonal blocks.

Once we know which nodal functions are involved in each subblock, let us emphasize

on the importance of the correct labeling of the vertexes of the triangles. The choice of

the products (N1, N1), (N1, N2) and (N2, N1) is not made randomly. Each triangular

element contributes to nine different interactions between the three basis functions that

share it. Assuming that the vertexes are always ordered in the same orientation5, a

triangle can be ordered in three different ways, for which the latter products represent

all the nine overlaps between functions, as shown in Table 4.3.

Consequently, it is possible to follow a simple algorithm so as to avoid either the

skipping or the repetition of contributions. The algorithm consists in a loop for the

triangular elements, where the nine products are calculated and their contribution

summed to the corresponding subblock. Thus, when the loop is finished, all the sub-

blocks will have been completed with all their contributions.

5We use counterclockwise ordering.
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a b

c

d

Figure 4.8: Triangular elements involved in the calculation of the
non diagonal subblocks. Only the two triangles shared by the basis
function Λa and Λb take part in the product between them.

Rotation of the Triangular Elements

The terms calculated so far are referred to the DRS. However, as seen in Sec. 4.4, the

k·p hamiltonian is referred to the CRS, and consequently, it is necessary a rotation

between both reference systems.

The rotation operation is linear, and therefore, the inner products involving the

momentum in the CRS can be calculated as

〈
Λa

∣∣∣ k̂C
∣∣∣Λb
〉
=
〈
Λa

∣∣∣RCDk̂D
∣∣∣Λb
〉
= RCD

〈
Λa

∣∣∣ k̂D
∣∣∣Λb
〉
, (4.31)

where
〈
Λa

∣∣∣ k̂D
∣∣∣Λb
〉
is a vector whose components are the inner products of k̂x, k̂y and

kz calculated for Λa and Λb.

The same change of reference system must be done for the second order momentum

operator, though it is represented by a tensor which in the DRS is:

K̂D =




−∂2/∂x2 −∂2/∂xy −i∂/∂x kz

−∂2/∂yx −∂2/∂y2 −i∂/∂y kz

−i kz∂/∂x −i kz∂/∂y k2z


 . (4.32)

The rotation of the coordinate system in this case is

〈
Λa

∣∣∣ K̂C
∣∣∣Λb
〉
= RCD

〈
Λa

∣∣∣ K̂D
∣∣∣Λb
〉 (

RCD
)T

, (4.33)

where
〈
Λa

∣∣∣ K̂C
∣∣∣Λb
〉
corresponds to a matrix formed by the arrange of the inner prod-

ucts in Tabs. 4.1 or 4.2, depending on whether or not Λa = Λb respectively. Thus, the

inner products in the CRS can be calculated by simply rotating the inner products in
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Ô
´

N1 ÔN2 dxdy
´

N2 ÔN1 dxdy

k̂xk̂x
(y2 − y3)(y3 − y1)

4|S|
(y2 − y3)(y3 − y1)

4|S|
k̂xk̂y

(y2 − y3)(x1 − x3)

4|S|
(y3 − y1)(x3 − x2)

4|S|
k̂xkz ±ikz

y2 − y3
6

±ikz
y3 − y1

6

k̂yk̂x
(x3 − x2)(y3 − y1)

4|S|
(x1 − x3)(y2 − y3)

4|S|
k̂yk̂y

(x3 − x2)(x1 − x3)

4|S|
(x1 − x3)(x3 − x2)

4|S|
k̂ykz ±ikz

x3 − x2
6

±ikz
x1 − x3

6

kzk̂x ±ikz
y1 − y3

6
±ikz

y3 − y2
6

kzk̂y ±ikz
x3 − x1

6
±ikz

x2 − x3
6

kzkz
k2z |S|
12

k2z |S|
12

C C
|S|
12

C
|S|
12

V |S|2V1 + 2V2 + V3
60

|S|2V1 + 2V2 + V3
60

Table 4.2: Constituent terms of the elements in the non diagonal
blocks

the DRS. As a consequence, all the momenta expressed in the CRS, which are used in

the k·p matrix, may depend on the three orientation DRS momenta6 k̂x, k̂y and kz.

4.5.5 Hermiticity of the operators

In order to provide physically meaningful energies, the operator Hamiltonian Ĥ has to

be Hermitian:

Ĥ = Ĥ† , (4.34)

that is to say, the element in position ij is the adjoint operator of that in position ji

6From now on, the superscript D is dropped since the DRS is assumed to be the default reference
system.
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a b

c
âbc b̂ca ĉab

N1, N1 (Λa, Λa) (Λb, Λb) (Λc, Λc)
N1, N2 (Λa, Λb) (Λb, Λc) (Λc, Λa)
N2, N1 (Λb, Λa) (Λc, Λb) (Λa, Λc)

Table 4.3: Correspondence between the products of the nodal func-

tions evaluated in the triangular element âbc (and its rotations) and
the product of the basis functions they contribute to.

Ĥji = Ĥ†
ij . (4.35)

Each element in the matrix may consist of the sum of different operators like those

used in Eq. (4.23), and the form of the operator matrix so as to fulfill the hermiticity

condition was introduced in Section 3.6.

Regarding the inner products of the nodal functions in Tables 4.1 and 4.2, it is

shown that the numerical calculation fulfills the hermiticity condition of the operators

for each triangular element, since:

ˆ

Nlk̂αP k̂βNm dxdy =

(
ˆ

Nmk̂βP k̂αNl dxdy

)∗

, (4.36)

ˆ

Nlk̂αPNm dxdy =

(
ˆ

Nmk̂βP k̂αNl dxdy

)∗

. (4.37)

As a result, the inner products of the basis functions can be calculated also to be

Hermitian summing the contribution of each triangular element:

ˆ

Λak̂αCk̂βΛb dxdy =

(
ˆ

Λbk̂βCk̂αΛa dxdy

)∗

, (4.38)

ˆ

Λak̂αCΛb dxdy =

(
ˆ

Λbk̂βCk̂αΛa dxdy

)∗

. (4.39)

This condition, if the operator matrix is constructed according to Eq. (4.34), is

enough to assure that the total k·p matrix in its weak form H is Hermitian, and

therefore, to assure that it provides real energies, since all the subblocks fulfill:

74 k·p implementation



Chapter 4. SP2D Simulation Tool

Hab = H
†
ba . (4.40)

Let us now take a deeper insight into the form of the subblocks Hab, in two different

scenarios: for a uniform material and for an interface between two materials.

Uniform material

As seen before, the hermiticity is a sufficient condition to obtain real energies.

However, as the momentum operators are linear, if the parameter C is constant in the

domain of a inner product, the operator ordering should be indifferent, i.e., Ô1Ô2 =

Ô2Ô1: 〈
Λa

∣∣∣ k̂αk̂β
∣∣∣Λb
〉
=
〈
Λa

∣∣∣ k̂β k̂α
∣∣∣Λb
〉
. (4.41)

Clearly, regarding the Tables 4.1 and 4.2, this condition does not seem to be fulfilled.

Let us now look into this issue. Firstly, we consider the kzk̂α term (with α = x, y).

According to the previous calculations, we can obtain the integrals corresponding to

the diagonal terms 〈Λv1|Ô1Ô2|Λv1〉:

ˆ

N1kzk̂xN1dxdy = ±ikz
y3 − y2

6
,

ˆ

N1k̂xkzN1dxdy = ±ikz
y2 − y3

6
,

ˆ

N1kzk̂yN1dxdy = ±ikz
x2 − x3

6
,

ˆ

N1k̂ykzN1dxdy = ±ikz
x3 − x2

6
. (4.42)

These terms do not fulfill the commutative property of the operators. However, this

operation is only performed in the domain of a single triangular element, and the full

product is obtained by summing the contribution of all triangles that share the same

vertex, multiplied each one by their respective C parameter, which is constant for all of

them. It can be shown that this summation vanishes. If we label vertexes such that v1

is the common vertex and v1,v2,t and v3,t are in counterclockwise order (see Fig. 4.9),

we obtain for the kzk̂x term:

n∑

t=1

ikz
y3,t − y2,t

6
= ikz

y3,n − y2,1
6

= 0 , (4.43)

since y3,n ≡ y2,1 are the same node with different labeling. The same result is obtained
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v1 v2,1

v3,1

v2,2v3,2

v2,n

v3,n

Figure 4.9: Labeling of vertexes for the sum in a diagonal subblock.

for the term k̂ykz. Therefore, the hermiticity is fulfilled, and these terms are expected

to vanish when solving analytically the product.

As for the integrals containing products of elements centered on different vertexes

we obtain:

ˆ

N1kzk̂xN2dxdy = ±ikz
y1 − y3

6
,

ˆ

N1k̂xkzN2dxdy = ±ikz
y2 − y3

6
,

ˆ

N1kzk̂yN2dxdy = ±ikz
x3 − x1

6
,

ˆ

N1k̂ykzN2dxdy = ±ikz
x3 − x2

6
. (4.44)

Summing the contribution of the two triangles in the product 〈Λv1|Ô1Ô2|Λv2〉 (Fig.
4.10), it yields:

ikz
y1 − y3,1

6
+ ikz

y3,2 − y1
6

= ikz
y3,2 − y3,1

6
(for kzk̂x term),

ikz
y2 − y3,1

6
+ ikz

y3,2 − y2
6

= ikz
y3,2 − y3,1

6
(for k̂xkz term). (4.45)

which are the same, thereby fulfilling the commutative condition. An analogous calcu-

lation can be done for the term containing k̂y.

Let us calculate now the product 〈Λv2|Ô1Ô2|Λv1〉:

ikz
y3,1 − y2

6
+ ikz

y2 − y3,2
6

= ikz
y3,1 − y3,2

6
(for kzk̂x term),

ikz
y3,1 − y1

6
+ ikz

y1 − y3,2
6

= ikz
y3,1 − y3,2

6
(for k̂xkz term). (4.46)

We can observe that these terms are equal, thereby fulfilling the symmetry of the

operator.
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v1 v2

v3,1

v3,2

Figure 4.10: Labeling of vertexes for the sum in a non diagonal
subblock.

Another pair of terms that are not symmetric at first sight is k̂xk̂y and its reverse.

The diagonal subblocks are symmetric, as shown in Tab. 4.1. As for non diagonal

subblocks, the product is not trivially symmetric so we have to consider the sum over

the two triangles in Fig. 4.10. Using Eq. (D.5) we can write:

(y2 − y3)(x1 − x3)

4|S| =
2S + (x3 − x2)(y3 − y1)

4|S| = ±1

2
+

(x3 − x2)(y3 − y1)

4|S| , (4.47)

where the +(−) sign must be used for counterclockwise (clockwise) order. When sum-

ming over the two triangles as in Fig. 4.10, the two ±1/2 terms cancel out because of

the differently ordered labelings, so that the matrix element of the two terms k̂xk̂y and

k̂yk̂x coincides.

As a consequence of the commutativity of these operators for constant C value, the

Hab subblocks are symmetric matrices (not Hermitian then). Nevertheless, this issue

does not conflict with the hermiticity of the total matrix of the system H.

Heterostructures

In an interface between different materials, the material parameter C becomes a

function of the position, and therefore

Ô1Ô2 6= Ô2Ô1 , (4.48)

where Ô1 and Ô2 are those defined in Eq. (4.28). Thus, we get:
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〈
Λa

∣∣∣ k̂αCk̂β

∣∣∣Λb
〉
6=
〈
Λa

∣∣∣ k̂βCk̂α

∣∣∣Λb
〉
. (4.49)

As a result, the subblocks Hab are not symmetric. In this case, any linear combi-

nation of the operator orderings can be chosen as long as the conditions in Sec. 3.6

are fulfilled. It is an usual approach to force the symmetry of these subblock matrices

corresponding to the interface of the device. However, as it was introduced in Sec. 3.7,

the symmetrization has been reported to provide spurious solutions in some cases [27].

Thus, the Burt-Foreman operator ordering is chosen so as to mitigate this issue. Let

us then remark that, for this operator ordering, the subblock matrices corresponding

to the interface are not symmetric, but it does not conflict with the hermiticity of the

total matrix H.

4.6 Self-Consistent Schrödinger-Poisson Solver

In order to evaluate the electrostatic behavior of long-channel nanowires, the potential

as a function of the charge distribution has to be evaluated using the Poisson equation.

However, the charge distribution also depends on the potential through the solution

of the Schrödinger equation (in our case, using the k·p evaluation), since an especific

potential yields to a bandstructure and the corresponding set of wave function. The

occupation of these states, according to the Fermi distribution, determines the total

charge distribution in the cross-section of the device. As a result, we get a coupled

system whose solution has to be self-consistent. To achieve this self-consistency, an

iterative method must be adopted, where the final solution is sought by using the

result of one of the equations as the input of the other. To start the iterative scheme,

an initial assumption is chosen for any of the two equations. Depending on this choice

the algorithm can quickly converge or even not converge at all.

To sum up, the description of a self-consistent algorithm is:

1. The potential V (r) for the iteration j+1 is calculated using the Poisson equation,

and it depends on the charge distribution ρq(r) calculated in the previous iteration

j, or the initial solution assumed if it is the first iteration.

∇ε∇V (j+1)(r) = −ρ(j)q (r) . (4.50)
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2. Once the potential is known, the envelope wave functions and the corresponding

energies are calculated by solving the partial differential equation system that

yields from the discretization of the k·p equation.

Ĥ
(
V (j+1)(r)

)
ξ
(j+1)
nkz

(r) = E
(j+1)
nkz

ξ
(j+1)
nkz

(r) . (4.51)

3. The charge is calculated using the envelope wave functions, to determine the

probability distribution of the charge density, and their energies, to estimate the

probability of occupation.

ρ(j+1)
q (r) = ρq

(
E

(j+1)
nkz

, ξ
(j+1)
nkz

(r)
)
. (4.52)

4. The convergence is evaluated for the charge density in the last two iterations.

The relative error must be below a limit ǫq.

∣∣∣ρ(j+1)
q (r)− ρ

(j)
q (r)

∣∣∣
2

∣∣∣ρ(j+1)
q (r)

∣∣∣
2 ≤ ǫq . (4.53)

This process may be problematic since convergence is not assured. The convergence

may depend on the validity of the initial solution, and even if it converges, it usually

occurs in too many iterations. An usual approach to assure the convergence is the

underrelaxation of the solution by using a weighted solution between iterations [134],

i.e., a solution of one iteration depends also on the previous as

ρj+1
q = ωρ(j+1)

q,raw + (1− ω)ρjq , (4.54)

where ρq,raw stands for the charge obtained using the regular expression in step 3,

and ω is the weighting factor, which may also depend on the iteration if the algorithm is

designed to be adaptive. The weighting factor is determinant to assure the convergence

since it prevents the oscillation of the solution. However, if it is too small, many

iterations would be required. Due to the computational burden of each iteration, it is

very important to minimize its number. Therefore, we must adopt a better algorithm

able to assure and accelerate the convergence.
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4.6.1 Predictor-Corrector Algorithm

To improve the performance of the iterative method and assure the convergence, we

implemented a predictor-corrector scheme similar to the one described in Ref. [134].

This algorithm is based in a prediction of the charge density ρ̃q(r), instead of the

value ρq(r), based in an estimation that explicitly accounts for the potential. This

prediction of the charge is then corrected by solving the Schrödinger equation with the

new potential.

In the first step of this algorithm, the potential V (j+1)(r) of the new iteration is

calculated from the charge density given by the previous iteration, modified to take

into account the variation of the potential, yielding a more accurate description of the

charge. Consequently, this step becomes more complex because of the transformation

into a non linear differential equation. However, this non linear equation can be solved

using the Newton’s Method and leads to an acceleration of the whole algorithm by

reducing the number of iterations needed.

Including the modifications, the algorithm (see Fig. 4.11) can be described as:

1. The potential V (j+1)(r) in the cross-section of the device is calculated taking into

account the prediction of the charge distribution ρ̃q(r), which depends on the new

potential, as well as on the values of energy and wave functions of the previous

iteration. The system is solved considering the boundary conditions set by the

gate potential for the external borders.

∇ε∇V (j+1)(r) = −ρ̃q
(
V (j+1)(r);V (j)(r), ξ

(j)
nkz

(r), E
(j)
nkz

)
. (4.55)

2. The k·p method is solved to get the envelope wave functions and the energies as

a function of kz.

Ĥ
(
V (j+1)(r)

)
ξ
(j+1)
nkz

(r) = E
(j+1)
nkz

ξ
(j+1)
nkz

(r) . (4.56)

3. The value of the charge for the (j + 1) − th iteration is calculated with the new

wave functions and energies, obtained from the new potential.

ρ(j+1)
q = ρq

(
E

(j+1)
nkz

, ξ
(j+1)
nkz

(r)
)
. (4.57)

4. The convergence is checked for the charge density in the last two iterations. The
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Figure 4.11: Flow diagram of the simulator SP2D. The iterative
part is remarked in a dashed rectangle.

relative error must be below a limit ǫq.

∣∣∣ρ(j+1)
q (r)− ρ

(j)
q (r)

∣∣∣
2

∣∣∣ρ(j+1)
q (r)

∣∣∣
2 ≤ ǫq . (4.58)

The predicted value of charge, ρ̃q(r), is calculated as in Ref. [134], although taking

into account that for k·p the band profile is not parabolic and has to be integrated

numerically from the expression:

ρ̃q[V (r)] =
1

2π

∑

n

ˆ ∣∣∣ξ(j)nkz(r)
∣∣∣
2
f0

(
EF − E

(j)
nkz

+ q
(
V (r)− V (j)(r)

)

kBT

)
dkz , (4.59)
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where the probability distribution of an state |n, kz〉 is calculated as the square modulus

of the vectorial envelope function
∣∣∣ξ(j)nkz(r)

∣∣∣
2
, and f0 is the Fermi distribution, which

depends in the position. Therefore, the prediction is based in the modification of the

probability distribution of every state by using the Fermi distribution as a position de-

pendent weighting function. As the difference between the potential of two consecutive

iterations is reduced, Eq. (4.59) tends to fulfill the convergence criteria.

The application of this algorithm achieves a remarkable acceleration of the conver-

gence, as it was already shown in Ref. [134].

4.7 Performance Improvements

The self-consistent solution of the k·p method and the Poisson equation demands a

large amount of computational resources, particularly, when implementing the k·p
calculation. This method has to be solved for each point of the discretized kz grid,

and each one involves: 1) the creation of all the matrices of the system, with size

is NcNp × NpNc, and 2) the calculation of the eigenvalues of the system, and the

storage of all the resulting wave functions. The calculation of the eigenvalues is usually

the most expensive task due to the size of the equations system. Moreover, we have to

recall that the k·p method is usually solved several times until convergence is achieved.

Hence, any simplification in the algorithm can result in a considerably reduction in the

computational cost and time. Next, we enumerate the main optimizations carried out

to the program.

4.7.1 Optimization of the calculation of H

Regarding the first point, the matrix H must be created for each kz value. Although it

is not the most time consuming part of the algorithm, it has to be solved several times

for each iteration. However, once we have calculated the matrix for an specific kz, this

calculation can be skipped for the rest of kz values. Let us detail the procedure.

As it is well known, the k·p matrix in confined systems turns into an operator

matrix Ĥ which depends on the momentum operators of first and second order referred

to the crystal reference system, Ĥ(∇2,∇). The operators in this reference system can

be expressed as a linear combination of the operators in the device reference system, as

seen in Sec. 4.5.4. After the discretization of the problem, the operators are evaluated
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as a linear combination of the terms gathered in Tables 4.1 and 4.2, which either depend

on kz or k2z , or are constants. Therefore, the operators corresponding to the momenta

of first and second order for the construction of the k·p matrix yield a polynomial

function of first and second order of kz when the FEM is applied:

∇ → p1(kz) ,

∇2 → p2(kz) . (4.60)

Consequently, the whole k·p matrix is also a linear combination of powers of kz,

and can be written as:

H = H0 +H1kz +H2k
2
z . (4.61)

We refer to the matrices H0, H1 and H2 as matrices of zeroth, first and second

order, respectively. They are calculated accounting for the constant, first order and

second order parts of the operators. The advantage of calculating these matrices, is

that they depend on the geometry of the problem and the potential V of the iteration,

but are constant for any value of kz. Consequently, by calculating them once for an

iteration, the matrix system for the rest of values of kz is simply calculated using Eq.

(4.61), avoiding the costly computational process of recalculating the system matrix

from scratch.

4.7.2 Calculation for positive kz

The positive kz states and the negative kz states are related to each other. So that,

it is not necessary to solve both systems if the relationship is known, saving as much

as half of the computational time and memory. This relationship stems from the time

reversal property of a physical system. Since the Hamiltonian is invariant under time

reversal, the following pair of eigenstates linked by the time reversal operator will be

degenerate:

|k, ↑〉 Θ−→ |−k, ↓〉 , (4.62)

where Θ is the time reversal operator. Eq. (4.62) means that for an state k, or in our

case, kz, the opposite state −kz is the result of time reversal symmetry, and it has the

same energy and opposite spin. Therefore, the energy levels are known and there exists
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a link between the wave functions. Thus,If this relationship is known, the problem does

not need to be solved for negative values of kz.

Let us start with the six band k·p as an example, and then, extend the reasoning

to the eight band k·p. Equation (4.62) suggests that the relationship between the wave

functions in ±kz lies on the spin eigenstates. The six band k·p hamiltonian uses the

orbital states |X〉, |Y 〉 and |Z〉 with their corresponding up and down spin as a basis.

Not applying by now the spin orbit coupling, i.e., taking into account only the k·p
operator matrix Ĥ(kz), the application of the time reversal operator results into its

Hermitian:

Ĥ(−kz) = ΘĤ(kz) = Ĥ†(kz) . (4.63)

In this case, the eigenfunctions for −kz are the complex conjugate of the eigenfunc-

tions for kz. However, we have seen that these states mix due to the spin orbit coupling

term. Therefore, in this basis, we cannot relate the wave functions with their opposite.

To do that, the k·p Hamiltonian must be represented in a different basis consisting of

the eigenfunctions of the spin orbit interaction. As already seen in Sec. 3.2.2, there is

a rotation matrix RSO which diagonalizes the spin orbit matrix MSO. This rotation

mixes the original states of the Hamiltonian to obtain the spin eigenfunctions corre-

sponding to the states |HH〉, |LH〉 and |SO〉 and their corresponding up and down

spins:

MSO = RSODSO R
†
SO . (4.64)

Then, applying this rotation to the full k·p Halmitonian

Ĥξ = E ξ , (4.65)

RSO(ĤD +DSO)R
†
SO ξ = E ξ , (4.66)

(ĤD +DSO)R
†
SO ξ = ER

†
SOξ , (4.67)

where ĤD is the representation of the Ĥ matrix in the basis of the eigenfunctions of

the spin states. The rotation matrix RSO is an antiunitary operator which conserves

the norm of the eigenfunctions and does not affect to the eigenvalues either. The result
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is a new Hamiltonian in the spin basis for which the eigenfunctions are:

ξD = R
†
SOξ . (4.68)

In this new basis, the Hamiltonian for the opposite wave vector ĤD(−kz) can be

calculated from the direct wave vector Hamiltonian ĤD(kz) as a combination of complex

conjugate and a shuffling of the up and down spin states:

ĤD(−kz) = ΘĤD(kz) = (−1)
(
S ĤD(kz)S

)∗
. (4.69)

where S depends on the k·p method employed. For six band k·p method:

S6 =




0 0 0 1 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0




, (4.70)

is the shuffling matrix which interchanges the corresponding spin up and down states.

According to this transformation, now the wave functions of the state kz and his

opposite can be readily calculated as:

ξD,−kz = S ξ∗D,kz . (4.71)

This transformation conserves the norm, and therefore, the spacial probability dis-

tribution of the eigenstate.

For the eight band k·p, the reasoning is similar, since the spin orbit coupling is the

same for the valence band states and they do not couple with the conduction band ones.

Therefore, the reasoning can be easily expanded using the following shuffling matrix :
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S8 =




0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0




. (4.72)

Finally, the S matrix for the two band k·p method reads:

S2 =

(
0 −1

1 0

)
, (4.73)

and the RSO is the identity since in the two conduction bands in this method does not

couples by means of the spin.

4.7.3 Optimization of the eigenvalue interval

The slowest part of the program corresponds to the search of the eigenvalues. The

Arnoldi algorithm is used to solve the problem, which slows down when the number of

eigenvalues in the interval of search is large. The optimization of the algorithm, which

is provided by the pdetool package, is not an easy task, since it already provides an

efficient computational implementation. However, we can reduce the calculation time

by carefully choosing the interval where the eigenvalues are sought.

One of the limits of the interval is clear: the edge of the conduction or valence band.

The other is linked, but not solely, to the probability of occupation of the state, i.e.,

the Fermi distribution function, which determines the weight of the state. Therefore,

the width of the interval will depend on the precision required for the algorithm, and

which probabilities are considered negligible. The main problem is that, a priori, these

limits are not well known, and the interval is usually chosen arbitrarily large to ensure

that all the relevant states are included.

In order to determine the band edges, a simple approximation can be done, taking

into account that no energy levels can lie in the gap. A better approximation can

be done if the conduction and valence band shifting due to the quantization can be
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Figure 4.12: Representation of the edges of the bulk band struc-
ture in a potential well: the flat well is represented in black and the
self-consistent potential, in red. The position of the resulting band-
structure edge is marked with a dashed lines.

evaluated. As the potential yielding the lowest quantization is the flat one (Fig. 4.12),

we use it as a minimum energy solution. The quantization shifting due to a flat well

can be calculated for a wire, and used to correct the limits estimated in the bulk case.

Once the bandstructure is known, it is easy to readjust the interval in order to accel-

erate subsequent iterations. In this case, the definition of the total charge distribution

as a function of the energy is useful to accurately determine which energies contribute

noticeably to the total charge, and which ones have a negligible contribution. There-

fore, we can again use information coming from previous iterations to get the final

estimation of the optimal limits of the interval and, thus, reduce the computation time.

4.7.4 Memory saving

The memory usage is another aspect to care about when programming, since the man-

agement of big amounts of data and the overflow issue affects severely the performance.

The main memory consumer structure is that corresponding to the wave function at

each state. We spotlight some important considerations to reduce its size.

The calculation of the band structure only for positive kz values implies a reduction

of the memory storage to the half. However, the amount of consumed memory is

still huge due to the amount of wave functions to be stored. In principle, each wave

function needs to store Nc ×Nn imaginary numbers. Furthermore, the wave functions

are calculated at each value of the kz grid, with size Nk. Let us assume that we want to
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calculate a maximum of Ns subbands. If all the data are saved in a single array, a very

large four dimensional array is required, with dimensions Nc×Nn×Ns×Nk. A better

solution is to use a matrix of Ns ×Nk pointers to save the defined wave functions, as

for many kz values most of the wave function are not evaluated.

Another reduction of the size can be achieved by only keeping in the program

memory the squared wave function, corresponding to the probability distribution of

the state, which is needed to evaluate the charge distribution of each state. By doing

this, each wave function is reduced to Nn real numbers, instead of Nc ×Nn imaginary

numbers. As the complete wave functions are required for the mobility calculations,

they cannot be discarded, but can be stored in the disk instead of keeping them in the

program memory.

4.7.5 Estimation of the bandstructure

Some additional improvements in terms of computational time efficiency can be achieved

by carefully choosing the initial solution of the problem before starting the iteration.

We can assume, once the convergence is assured by the algorithm described above, that

the closer the initial solution is to the sought one, the faster the algorithm will converge.

Some rough choices are the zero potential solution, or the solution achieved after solv-

ing the classical problem. However, in this type of problem, a battery of simulations is

performed varying the gate potential. As a consequence, usually some results have been

previously calculated for close VG values which can yield some valuable information to

accelerate the convergence of our problem.

For a new value of VG, the external boundary condition is changed. The immediate

effect is a shifting on the Fermi level, and therefore, the occupation probability of

the states in the bandstructure and the charge distribution. This charge affects the

potential, which, in turn, changes the bandstructure.

Using the solutions for a previous gate potential, the Hamiltonian of which as a

function of kz is Ĥ0(kz), and its eigenfunctions, ξ0,nkz , the new Hamiltonian can be

expressed as a perturbed one:

(
Ĥ0(kz) +∆V (r)

)
ξnkz =Wnkzξnkz (4.74)

where the perturbation is the variation of the potential in the structure ∆V (r) between

the two Hamiltonians, with
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Wnkz ≈W
(0)
nkz

+W
(1)
nkz

= E0,nkz(k) + 〈ξ0,nkz |∆V (r) | ξ0,nkz〉 (4.75)

and we can calculate the resulting variation of the new energies with respect to the

previous ones, ∆Enkz , for each state |n, kz〉, as:

∆Enkz = 〈ξ0,nkz |∆V (r) | ξ0,nkz〉 . (4.76)

Only the first order term of the perturbation is considered, since the second or-

der term vanishes for nearly constant values of ∆V . Weighting each state with its

probability function and summing over all the states we have

∑

n

ˆ

f0(Enkz)∆Enkz dkz =
∑

n

ˆ

f0(Enkz) 〈ξnkz |∆V (r) | ξnkz〉 dkz

=
∑

n

ˆ

f0(Enkz)

ˆ

|ξnkz |2∆V (r) drdkz

=

ˆ

∆V (r)
∑

n

ˆ

f0(Enkz)|ξnkz |2 dkz dr

=

ˆ

∆V (r)ρq(r) dr .

(4.77)

For small or nearly constant ∆V (r) values, we can expect a small variation of the

bandstructure, and the shift of the gate potential can be accounted for as a shifting of

the Fermi level. This effect is shown in Fig. 4.13, where, for different values of VG, we

observe that the first subband of a 5nm width [001]-oriented Si NW, is mainly shifted,

but does not changes its shape dramatically. As a result, the ∆E is constant for all the

states, and therefore

∑

n

ˆ

f0(Enkz)∆E dkz = ∆E

ˆ

ρq(r) dr . (4.78)

From Eqs. (4.77) and (4.78), a prediction of the new bandstructure is the old one

shifted:

∆E =

´

∆V (r)ρq(r) dr
´

ρq(r) dr
. (4.79)

This expression corresponds to the variation of the potential energy averaged with
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Figure 4.13: Behavior of the self consistent potential for different
gate voltages along the radial direction r of a 5nm width [001]-oriented
Si NW. The arrow aims toward higher values of |VG|. On the left, the
cross-section of the potential is plotted. On the right, the first subband
is plotted, using as a reference the Fermi level. The gray dashed lines
denote the oxide-semiconductor interface position.

the charge distribution ρq. According to that, the variation of the Fermi level is ex-

pected to be equivalent to the variation of the potential energy.

Therefore, based on a previous result, we can perform a self consistent loop where

the k·p calculation is substituted by the calculation of the new Fermi level for the

previous bandstructure. The solution of this loop will be a reasonable approximation

to start the final self-consistent loop, where the k·p is used. Let us recall that if this

approximation fails to predict a good solution, it will be corrected by the posterior

self-consistent loop.

Fig. 4.14 illustrates the potential and the charge distribution for each iteration

before the convergence as dashed lines. The final solution is depicted as a thicker solid

line. As can be seen, the first iteration is a reasonable prediction of the final value.

This algorithm is specially useful for the low inversion calculations, where the po-

tential is flat. In this case, the self-consistent solutions are a mere shifting of the Fermi

level, which is calculated by this algorithm. Therefore, if there is a previous solution

in the low inversion regime, no iterations of the k·p algorithm are required.
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Figure 4.14: Representation of the potential and the charge density
for each iteration at different gate voltages along the radial direction
r of a 5nm width [001]-oriented Si NW. The arrow aims toward higher
values of |VG|. The dashed lines stand for the iterations before the
convergence, the solid thicker line is the final result. On the left, a
zoomed version of the potential shown in Fig. 4.13 for the higher gate
voltages. On the right, the hole density for each iteration along the
NW diameter. The gray dashed lines denote the oxide-semiconductor
interface position.

4.8 Summary

A self-consistent Schrödinger-Poisson solver was developed to simulate nanowires FETs,

which is able to deal with different materials, geometries and orientations. The k·p
method is used as an approximation of the Schrödinger Equation to calculate the band-

structure and the wave functions, leading to the electrostatic description of the device.

In order to deal with the numerical problem, a Finite Element Method has been imple-

mented. A comprehensive description of the discretization problem has been provided,

and the process followed to lay out a partial differential equations system. Finally,

some particularities of the code such as the optimization strategies are exposed.
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Chapter 5

SP2D simulator evaluation and

validation

Once the theoretical bases and the implementation of the SP2D simulator have been

introduced, the next step is the validation and analysis of its results. The main topic

of this thesis is the implementation and use of the k·p method to calculate the band

structure of different materials and device structures. So that, the aim of this chapter

is twofold. First, we will check that the simulation results are coherent and there are no

errors on its implementation; second, we will check that the results provided using the

k·p method are accurate in the description of the band structure for multigate devices.

As already mentioned in Chapter 3, the k·p method is appropriate to estimate the

band edges in bulk materials [17, 129], providing a more accurate description than the

effective mass approximation, which is no longer valid to describe the valence band

in diamond and zinc blende semiconductors. However, the k·p method still holds

the continuum approach, which means that it avoids the atomistic description of the

material. This characteristic is desirable in terms of simplicity and reduction of the

computational burden. Moreover, this method is also able to capture the physics related

to the symmetry of the underlying crystalline structure and the electronic states mixing.

Most of the electrostatic and transport properties of a semiconductor device are

determined by the carries located around the band edges. So that, as long as the k·p
method provides an accurate description of the band structure around the Fermi level,

it can be considered as an appropriate choice for our calculations.

Our SP2D code is intended to provide a good physical description for devices with
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2D confinement. In particular, we are interested in the performance of NWs, as they

have demonstrated a good control of the SCEs. In some indirect materials, such as Si

and Ge, the band structure can be accurately reproduced by considering that there is

no coupling between the conduction and the valence band. Consequently, the valence

band is depicted considering a six band k·p method, described in Sec. 3.2.2, and the

conduction band is calculated making use of the EMA accounting for non parabolicity,

or a two band k·p method for Si. However, for III-V materials with zinc blende

structure, the energy gap is much smaller. Thus, the CB and the VB are close enough

so as to couple to each other. In this case, an eight band k·p method that couples the

VB with the CB becomes mandatory (Sec. 3.3).

The validation of the results obtained with our simulator is carried out through the

comparison with a different approach: the Tight Binding method (TB). This method

considers the position of each atom in the structure explicitly (see Fig. 5.1). Hence,

it deals with the confinement of the devices in a transparent manner. On the other

hand, the k·p method makes an infinite bulk assumption to calculate the electrostatic

properties of an infinite lattice. The envelope function method, outlined in Section

3.6, must be used to apply the k·p method to confined systems in order to adapt a

continuum approach to the confined device. Regarding the theoretical bases of both

approaches, the Tight Binding method provides a full band description, not limited to

the band edges. Notwithstanding, the k·p method has demonstrated to be effective

in the description of the band structure near the band edges, which are the energy

intervals of interest for electronic applications [143]. For example, it is widely used

for the calculation of the bulk band structure around the Γ symmetry point (k = 0),

where the top of the Valence Band (VB) and the bottom of the Conduction Band

(CB) are placed for most of the III-V compound semiconductors. Since the k·p is a

computationally efficient algorithm, it becomes a very interesting alternative to the

more complex atomistic approaches. Furthermore, it can be described with a reduced

set of parameters commonly used in the literature. Therefore, the aim is to unveil the

extent to which this method can accurately reproduce the band structure of the NWs.

The TB simulation data used in our comparisons have been gently provided by Dr.

Triozon and his research group in CEA-LETI, Grenoble (France). The TB simulations

account for the sp3d5s∗ orbitals [61].
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z

Figure 5.1: Unit cell employed with the Tight Binding Model for
a squared 5 nm × 5nm standalone Si nanowire. The nanowire is free
standing and passivated with hydrogen.

5.1 Validation of the two-band k·p simulator

As seen in Chapter 3, the simplest implementation of the k·p method is the two-band

model of the conduction band in Si. This approximation is very similar to the EMA

but implicitly accounts for the non parabolicity, and strain effect can be easily added

[125]. Although this is not the main focus of this manuscript, we consider it as a good

starting point to validate our simulator. The k·p matrix is simple enough to test and

validate the FEM implementation, debug the program, and analyze the first results

of the k·p method, which can be compared with those shown by other authors in the

literature as well as from our collaboration with LETI.

The two-band k·pmethod calculates the interaction between two adjacent ∆ valleys

found at ±0.852π
a0
[1, 0, 0], close to the X point (being a0 the lattice constant). Because

of the periodicity of the band structure, another ∆ valley lies just in the opposite place

of the X-point. As a consequence, these two valleys are close enough to interact, spe-

cially when strong confinement is applied. Let us recall that there are three equivalent

∆ directions in the reciprocal space, and therefore six equivalent conduction valleys on

Si. When 2D confinement is considered, these valleys project on the transport direc-

tion. This projection depends on the orientation of the nanowire with respect to the

crystal reference system [125]. As an example, for the [001]-oriented NWs, four of the

valleys project on the Γ point, whereas the other two remain shifted from that point.

The former are called the unprimed subbands, and the latter, the primed ones. This

terminology is used hereinafter to denote the valleys of the conduction band in any
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Figure 5.2: Comparisons of the different implementations of the 2
band k·p method for the conduction band of a 5 nm × 5 nm squared
Si-NWs. Left figure: the FEM method (UGR-solid line) is compared
to the FDM (LETI-crosses). Right figure: comparison between the
k·p method and the TB method.

orientation.

The first comparison to validate our simulator has been performed against a two-

band k·p simulator developed at LETI. The main difference is that this simulator is

implemented using the Finite Difference Method. In order to perform a fair comparison,

the size of the elements and differences has to be very small in the two implementations

in order to minimize the numerical error: 10000 triangles for FEM and 0.5Å for FDM.

The simulations have been performed for squared Si nanowires, since the FDM is con-

ceived for rectangular structures. The size of the device is 5 nm × 5 nm, it is oriented

in the [001] direction, and an infinite potential well is considered.

The left plot in Fig. 5.2 illustrates the results of these two simulations, using solid

lines for FEM and crosses for FDM. The primed subbands are depicted in red, and the

unprimed ones, in blue. As can be observed, the results match almost perfectly, except

for some small shift in some of the high energy subbands. We can conclude that the

implementations of the FEM and FDM tend to the same solution when their meshes

are sufficiently refined.

Then, the k·p method is compared to the Tight Binding method. The results

are represented in the right plot of Fig. 5.2. Both simulations match in terms of

energies and curvature. Notwithstanding, the valleys along the transport direction are

slightly shifted in kz. This shift is reported in the literature to depend on the set of

parameters used to implement the TB [89] and can be easily reproduced by the k·p
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Figure 5.3: Comparison of the two band k·p method and the EMA
for Si 5 nm × 5 nm [001] squared NWs. The unprimed valleys are
plotted on the left and the primed ones on the right.

method changing the position k0 of the minimum of the valleys. Nevertheless, this fact

does not affect the electrostatic behavior of the device, as the density of states and

the position of the subbands are correctly described. Therefore, we conclude that the

two-band k·p method is able to yield an accurate description of the band structure for

the conduction band in Si nanowires.

We can also observe that both approaches provide nearly parabolic bands as a

result. Because of that, we wonder if the EMA could also reproduce these results.

The comparison is shown in Fig. 5.3 (for the same nanowire as in Fig. 5.2). As can

be seen, the EMA represents moderately well the shape of the valleys. In the case of

the unprimed subbands, it nearly reproduces exactly the quantization of the levels and

the effective mass. However, the EMA is not able to capture the non parabolicity by

itself, and this has to be done by include a non parabolic effective mass approach. As

for the primed subbands, the effect of the coupling between the two adjacent valleys

is evident: the lowest subbands match perfectly in the two approaches, whereas, for

higher subbands, the EMA cannot reproduce the coupling between the two valleys.

This coupling becomes more noticeable for smaller sizes and under strain conditions,

as demonstrated in [125], justifying the use of the k·p approach for small size NWs.

k·p implementation 97



5.2. Band structure for the valence band

5.2 Band structure for the valence band

Once we have tested the first results of the SP2D simulator and we have proved it works

properly, we continue with the validation of the k·p method for the valence band. As

explained in Chapter 3, the k·p method has been widely used for the description of

the VB of diamond and zinc blende semiconductors. In particular, for diamond bulk

semiconductors the six band k·p method is proved to yield good results. However, for

zinc blende semiconductor compounds, the reduced and direct gap suggests that there

exists interaction between the CB and the VB that must be accounted for. An extension

of the six band k·p method, accounting for the |S〉 states of the CB, is expected to

achieve a good description, resulting in the eight band k·p method. Therefore, we

assume that the validation of the results achieved with the eight band k·p for NWs

must automatically validate the six band approach.

The aim of this Section is the assessment of the results obtained for bulk materials

by the eight band k·p method and the TB, so that we can compare and adjust the k·p
parameters. To this end, we will analyze two III-V alloys: GaAs and InAs. Both of

them are direct gap materials. They have been chosen because the GaAs has a relatively

high energy gap, (1.41 eV), compared with the rest of III-V materials, whereas InAs

has a small one (0.37 eV). This difference will help us later to evaluate the interaction

of the VB and the CB in NWs.

Both methods are defined by a set of semi-empirical parameters. As a starting

point, we must define the parameters which provide the best fitting between both

methods. First, we use parameters reported in the literature by Veprek et al. [140],

and Vurgaftman et al. [143] for the k·p simulations; and those by Boykin et al. [19],

and Jancu et al. [61] for the TB simulations provided by CEA-LETI.

The results depicted in Fig. 5.4 demonstrate that the k·p method provides the

band structure description around the Γ point, which is the region of interest for direct

gap semiconductors. The k·p results given by the two set of data are quite similar,

and they are in good agreement with the TB simulations around the Γ point for both

CB and VB. Nevertheless, satellite valleys of the CB placed in the L and X point

respectively, are not modeled by k·p. Normally, these valleys are weakly populated for

a bulk material at low inversion charges and can be neglected. However, we must be

aware of their existence and of their effect when confinement is present. Nevertheless, as

the employed parameters have been obtained from different authors, some mismatches
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Figure 5.4: Band structure for the bulk GaAs calculated using two
different methods: eight band k ·p and TB. For each method two
different set of parameters have been employed: those provided by
Veprek et al. (Ref. [140]), and Vurgaftman et al. (Ref [143]) for the
k·p simulations; and those by Boykin et al. (Ref. [19]), and Jancu et
al. (Ref. [61]), for the TB simulations. For the TB simulations, only
the bands with correspondence with the k·p simulations have been
plotted.

in the gap and curvature are found. A better agreement can be achieved by tuning

these bulk parameters so as to make a fairer comparison. Later, we will achieve a better

fitting of the k·p simulation to those of the TB obtained using the Boykin et al. [19]

parameters as a reference.

However, the small mismatches are not so relevant compared with another effect

also observed in the figure: the CB warps down near the L point for the k·p parameters

from Ref. [143]. If we took a look at the evolution of this band outside the first BZ,

i. e. , beyond the L point, we would observe that its warping leads to a conduction

band tending to minus infinity, and therefore, to unphysical states. This effect is not

relevant in bulk analysis, when restricting the calculations to the first BZ. However, it is

critical in the introduction of spurious solutions when confinement is added, since these

unphysical conduction band states outside the BZ interact and are projected into the

reduced BZ. Actually, the set of parameters provided in Ref. [139] are free of spurious

solutions, as discussed in Sec. 3.7. Consequently, tunning the parameters is essential
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to avoid spurious solutions.

Before going on with the comparisons, let us summarize how to obtain the Lut-

tinger parameters from the experimental measurements. As seen in Chapter 3, for the

characterization of the valence bands, some parameters are necessary: L, M , N , and

∆SO. However, the most common parameters reported in the literature for the VB

are the Luttinger parameters γ1, γ2, and γ3, whose relationship with the L, M and N

parameters is shown in Eqs. (3.28 -3.30). These parameters can be in turn calculated

from the effective masses as [38]:

γ1 =
1

2

(
m0

m001
LH

+
m0

m001
HH

)
,

γ2 =
1

4

(
m0

m001
LH

− m0

m001
HH

)
,

γ3 =
1

4

(
m0

m111
LH

− m0

m111
HH

)
.

(5.1)

Therefore, from the TB simulations, a set of parameters useful to carry out the k·p
simulations can be calculated whether the hole effective masses are known. The effective

masses we have obtained from the TB simulations of GaAs and InAs are presented in

Table 5.1.

The parameters calculated so far correspond to the six band model, and they have

to be renormalized by means of the EP matrix element, according to Eq. (3.41), so as

to use them in the eight band model (L̃, M̃ , and Ñ). As discussed in Sec. 3.7, when

the coupling is considered, the Luttinger parameters must be modified and, therefore,

may no longer fulfill the ellipticity of the Hamiltonian [140]. When this happens, some

modifications must be done to guarantee the ellipticity, and assure a spurious-free

solution.

The proposal of Veprek et al. [140, 142] is to reduce the parameter EP, in order

to decrease the interaction, and assure that the modified parameters still fulfill the

elliptic condition. The smaller the EP parameter, the more parabolic is the conduction

band. This non-parabolicity of the band is the cause of its warping. By reducing it, a

spurious-free solution can be achieved, but at the expense of a less accurate description

of the non-parabolic conduction band. For this reason, we have considered the EP used

in [140] to guarantee a spurious free solution.
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GaAs [001] [011] [111]

Electron mass (mc) 0. 06574 – –

Heavy hole mass (mHH) 0. 37686 0. 65307 83905

Light hole mass (mLH) 0. 08249 0. 07550 0. 07362

Split-Off hole mass (mSO) 0. 16243 – –

Gap (Eg) 1. 41585 – –

Spin-Orbit Splitting (∆SO) 0. 32648 – –

InAs [001] [011] [111]

Electron mass (mc) 0. 02353 – –

Heavy hole mass (mHH) 0. 35158 0. 56111 0. 69813

Light hole mass (mLH) 0. 02811 0. 02729 0. 02703

Split-off hole mass (mSO) 0. 09959 – –

Gap (Eg) 0. 36991 – –

Spin-Orbit Splitting (∆SO) 0. 39317 – –

Table 5.1: Parameters for GaAs and InAs, obtained from TB sim-
ulations along different directions: [001], [011] and [111]. For clarity,
when the parameter is isotropic for the three orientations, the second
and third cells are filled with ’−’. The effective masses are provided
relative to the bare electron mass m0 and the gap in eV.

Taking into account all the previous considerations, we reach to the parameters for

the k·p simulations shown in Table 5.2, which will be used hereinafter

The comparison between the bulk band structure for the TB and k·p simulations

after the adjustment of the parameters is shown in Figures 5.5 and 5.6 for GaAs and

InAs, respectively, showing a very good agreement between the k·p and the TB for the

region around the Γ point. As mentioned before, GaAs is a III-V direct gap material

with a larger energy gap, but also has a L valley close in energy ( 0.5 eV) which may

become important in some cases. On the other hand, InAs has a much smaller gap

resulting on a higher coupling of the CB and the VB. For this material, the rest of the

valleys lie on higher energies, and as a consequence, they are scarcely populated. The

main divergence between the two approaches lies in the SO band in InAs.

We can also conclude that the evolution of the band structure for high values of kz

cannot be depicted by the eight band k·p approach, and this fact is specially remark-

able for the CB of the GaAs. These divergences occur far from the band edges, and

therefore, these subbands should not be heavily populated, minimizing their impact on

the behavior of the device. Nevertheless, it may become significant in those cases where

high fields are applied and the Fermi level penetrates deeply in either the conduction
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Figure 5.5: Comparison of the bulk GaAs band structure for TB
and k ·p method along different orientations: [001], [011] and [111].

GaAs InAs

Eg 1. 41585 0. 36991

∆SO 0. 32648 0. 39316

EP 27. 96 (→20) 19. 7 (→18)

mc 0. 06574 0. 02353

γ1 7. 39 19. 2

γ2 2. 37 8. 18

γ3 3. 10 8. 89

Table 5.2: k ·p parameters for GaAs and InAs. In parenthesis, the
modified EP value to avoid the spurious states.

or the valence band.

Another minor effect which cannot be reproduced by the eight band k·p method is

the splitting of the conduction and LH bands into non-degenerate for the [110] orien-

tation in both materials (see the center plot in Figs. 5.5 and 5.6). To reproduce this

behavior, a ten-band k·p model would be needed, which is able to account for states

close in energy to the conduction band [108]. Nevertheless, this band splitting is so

weak that the effect on the resulting band structure is not relevant for electrostatic

purposes, and it does not justify the extra computational cost.
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Figure 5.6: Comparison of the bulk InAs band structure for TB and
k·p method with respect to the wave vector along different orienta-
tions:[001], [011] and [111].

5.3 III-V Nanowires

In this Section we will study the effect of the confinement on the band structure of

NWs. As aforementioned, the k·p method intrinsically considers infinite bulk crystal

and it is necessary to make use of the envelope function approach to account for the

confinement. Therefore, it is important to assess the validity of the k·p method in

highly confined systems.

Simulations are performed for three different squared NWs with lateral sizes of

5 nm, 7 nm and 10 nm respectively. GaAs and InAs are considered as the channel

materials, and different orientations are taken into account. In order to carry out TB

simulations, standalone NWs are considered since this method does not account for

the insulator atoms, and hydrogen passivation of the channel is considered instead. So

that, to compare with the k·p model, an infinite flat potential well is used. Therefore,

no self-consistent potential is accounted for.

The k·p parameters used for this simulation are those obtained in the previous

Section and presented in Table 5.2. In the comparisons, we will focus on those features

that determine the electrostatic and transport behavior of the device, i. e. , the energy

gap, the quantization of the levels, the effective masses and the density of states.
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Figure 5.7: Comparison of the band structure obtained from TB
and k·p simulations for [001]-oriented GaAs square NWs with lateral
sizes of 10nm (left), 7nm (center), and 5 nm (right).

5.3.1 Gallium Arsenide

In this wide gap material, the effect of the coupling between the conduction and the va-

lence bands is small, and therefore, the CB is expected to be more parabolic. However,

since the satellite valleys (such as the L and X) are close in energy to the minimum of

the CB (located at the Γ valley), their effect can be relevant in the overall electrostatic

behavior of the device [84].

Figure 5.7 depicts a global overview of the band structure for [001]-oriented nanowires

of different sizes. In general, the k·p method reproduces properly the energy gap, the

curvature of the bands and the energy of the subbands for the VB and for the CB at

the Γ valley. However, as we already mentioned, the k·p method used here does not

take into account satellite L and X valleys. In this orientation, the L valleys, which

are the closest in energy, project along the transport direction, and lie closer in energy

to the CB edge (Γ valley) than for the bulk case. Taking into account the four-fold

degeneration of the L valley in this orientation (eight-fold degeneration accounting for

the spin), and its high conduction effective mass, we can conclude that it would con-

tribute strongly to the total population if the Fermi level penetrated deeply into the

conduction band. As for the X valley, it is projected to kz = 0, and its energy also

gets closer to the band edge as quantization is stronger. As it exhibits a higher density

of states, it reduces the relevance of the Γ valley projection in the overall electrostatic

behavior. The effect of these valleys in the bans structure makes difficult to represent

the CB structure accurately using exclusively the k·p method.
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In these cases, it is necessary to consider these valleys somehow. The easiest way

would be to use of the EMA to describe these valleys, since they will have a small

coupling with the rest of valleys. The non-parabolic EMA has indeed been proven

to be a good approximation to model III-V NWs [83]. Anyway, to determine the

actual position of the Fermi level into the conduction band, and therefore, the relative

contribution of the L valleys, a self consistent simulation is required. If the charge

associated to the Γ valley is high enough, the gate potential will be screened and

therefore the L valleys will not be very relevant. Therefore, a thorough study must be

performed to determine in which situations is necessary to consider these valleys.

A more detailed view of the band structure for the different sizes is shown in Figs.

5.8 and 5.9, for [001] and [011] oriented devices respectively. These figures focus on

the region of interest for the Γ valleys, around kz = 0, where both methods can be

compared. Fig. 5.8 shows that the k·p method correctly depicts the band gap and

curvature for both, CB and VB. The quantization of the states, i. e. , the energetic

position of the subbands, is also generally well determined, although some mismatches

appear as the device is shrunk. For the VB, a slightly higher separation of the subbands

can be observed, whereas the CB calculated with TB exhibits a zone of energies with

a denser number of subbands above 2eV. This additional subbands are due to the

projection at kz = 0 of the X valley which cannot be captured using the 8 band k·p,
as aforementioned. Notwithstanding, the lowest conduction bands, which corresponds

to the Γ valley, are in good agreement with the results of TB.

As for [011]-oriented NWs (see Fig. 5.9), a good agreement between the results

provided by both methods is again achieved, except for the projections of the satellite

valleys, as they appear at slightly lower energies. Therefore, their influence on the

electrostatic behavior is expected to be more relevant. Regarding the valence band, it

is well represented by the k·p calculation although there is a higher separation among

the subbands compared with the TB results. A better agreement could be achieved by

tuning the k·p parameters as a function of the device size [123].
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Figure 5.8: Detail of the conduction (left) and the valence (right)
bands in [011]-oriented GaAs square NWs with width of 10nm (top),
7nm (center) and 5 nm(bottom).
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Figure 5.9: Detail of the conduction (left) and the valence (right)
bands in [011]-oriented square GaAs NWs with width of 10nm (top)
and 7 nm (bottom).
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Figure 5.10: Detail of the conduction (left) and the valence (right)
bands in [001]-oriented square InAs NWs and width of 10nm (top),
7nm (center), and 5 nm (bottom).

5.3.2 Indium Arsenide

This material has a narrow bandgap, and therefore, the effect of the coupling between

conduction and valence bands is noticeable. Besides, satellite valleys lie at a much

higher energy, and their effect on the conduction properties is negligible.

Figure 5.10 shows a general overview of the band structure of InAs nanowires of

different sizes. A more detailed view of the band structure for the different sizes is shown

on Figs. 5.12 and 5.11, for [001] and [011]-oriented devices, respectively. By inspection

of these figures, we can assert that the k·p method provides fine results for the valence

band along the different orientations considered. As expected, the projection of the Γ

valley (in kz = 0) is the main conduction band, with the L valley falling more than

1eV above the CB edge. The CB exhibits high non parabolicity because of the strong

coupling with the valence band. However, the non parabolic behavior is not fully

captured by the k·p method. For the larger device, the representation of the CB seems

to be quite accurate. However, for the smaller sizes, the non parabolicity effect is more

evident, affecting the separation between the subbands. The reason of this mismatch

on the parabolicity is the artificial reduction of the coupling parameter EP, needed

to cancel the spurious solutions, as discussed in Sec. 3.7. A smaller value of that

parameter reduces the coupling between bands, thereby resulting in a more parabolic

representation of the CB. Despite these differences, the effective masses near the band

edges are still correct.

In general terms, it is safe to conclude that the k·p method provides a correct
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Figure 5.11: Detail of the conduction (left) and the valence (right)
bands in [011]-oriented square InAs NWs with width of 7nm (top),
and 5 nm (bottom).

representation of the energy gap and the curvature of the bands. There are some

improvements which may be achieved in the calculation of the separation between

levels and the non parabolic behavior for high kz values. A careful selection of the k·p
parameters could lead to those improvements.
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Figure 5.12: Detail of the conduction (left) and the valence (right)
bands in [001]-oriented square InAs NWs with width of 10nm (top),
7nm (center), and 5 nm (bottom).
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5.3.3 Linear Carrier Density in III-V NWs

It is difficult to evaluate the performance of the k·p method only by comparing the

calculated band structure with that obtained by a different method like TB. A more

practical approach is the comparison between the carrier densities yielded by each one.

In this Subsection, we calculate the carrier density per unit length confined in the cross-

section of the NW. To do that, we perform the integration over every state weighted

by its probability of occupation, which depends on the relative position of the Fermi

level.

Figure 5.13 illustrates the linear carrier density calculated with both methods in a

GaAs and InAs square NW, [001] oriented, for the three considered sizes: 5nm (blue),

7nm (green), and 10 nm (red). The reference is the valence band edge, namely, the zero

energy corresponds to the top of the VB. In general, we can observe that the represen-

tation of the carrier densities is very similar for both methods for low penetration of

the Fermi level into the valence band. Thus, as we demonstrated in the previous Sub-

sections, the k·p method yields fine results. Nevertheless, a better matching could be

achieved by tuning the parameters. For lower positions of the Fermi level, we observe

a decrease in the slope for the TB. This issue results from the fact that the data pro-

vided from the TB simulations only consisted of a limited number of subbands, those

around the band edges. Therefore, the carrier density is poorly estimated for very high

inversion.

For the conduction bands, higher differences can be appreciated. The electron

density for the GaAs NW is much lower in k·p simulation than in TB one, even when

a good match in the conduction band is achieved. The reason is that for small energies

(0. 1 or 0. 2 eV above the CB), the L and X valleys projections start to be strongly

populated because of their high density of states. The energy at which satellite valleys

get populated is remarkably evident in the case of InAs devices (right figures in Fig.

5.13), where a change in the slope is observed. The effect of these satellite valleys masks

the good matching existing between the population of the Γ valley achieved with both

approaches. To prove this fact, a more detailed representation of the population of

each valley is shown in Fig. 5.14 for a 10 nm wide [001] oriented NW. We observe a

good match of the electron density in the Γ valley calculated using the TB and the k·p
methods. For the InAs, the results seem to be better because of the higher energetic

distance between the Γ and the L valley. In this case, the electron density calculated

using the TB method shows a steep slope when the L valley starts to be populated.
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Figure 5.13: Carrier density per unit length in GaAs (left) and InAs
(right) [001]-oriented square NWs, for three sizes: 5nm (blue), 7nm
(green), and 10 nm (red). Dashed lines correspond to TB and solid
lines to k·p. The carried density is calculated by varying the position
of the Fermi level with respect to the VB edge. Dotted vertical lines
remark the positions of the CB and VB edges.
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Figure 5.14: Linear electron density corresponding to the Γ and
the L valleys in GaAs (left) and InAs (right) NWs (10x10nm, [001]
orientation). Solid line corresponds to the k·p simulation and dashed
line to the TB one.
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5.3.4 Summary

In this chapter we have calculated and compared the electrostatic characteristics of

different NWs making use of the TB and k·p methods. The results show a good

agreement for different magnitudes such as the energy gap, curvature and separation

of the Γ valley subbands, which is very important in III-V materials. Nevertheless, for

very high electron densities, the L valley should also be considered [83, 85–87]. This

valley is naturally included by the TB calculation. Unfortunately this not the case

when the 8 bands k·p approach is employed, and alternative methods should be used

to account for it.

As for the valence band, it can be concluded that results yielded by both methods

are in good agreement, although slight differences are shown. This fact was expected,

as there is a large number of parameters involved which are semiempirically estimated.

Besides, the TB approach has its own limitations since it is applied in an standalone

wire with surface states passivated with hydrogen. This means that an infinite potential

barrier is assumed, precluding the wave function penetration inside the insulator gate.

As a consequence, differences are justified and can be reduced by an appropriate tunning

of the parameters.

To sum up, we can conclude that our simulation tool has been tested and it provides

good enough results to characterize the electrostatic behavior of NWs.
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Chapter 6

k·p simulation of NW

electrostatics

This chapter is devoted to the study of electrostatic properties of NWs with different

shapes, materials, and geometries. We will focus on the effects of the 2D confinement

on the carriers, which leads to: (a) a shift of the charge centroid, pushed away from

the semiconductor-insulator interface [115] and (b) a reduction of the density of states

due to the separation of the energy subbands.

We will analyse the results provided by the SP2D simulation tool described in previ-

ous chapters. Different magnitudes are employed to assess the electrostatic performance

of the device, such as the gate capacitance, effective mass, charge distribution, etc.

In this chapter we will analyse the results provided by the SP2D simulation tool

described in the previous chapters. The direct outcomes of the k·p simulator are: 1)

the band structure of the device in a discrete set of points of the wave vector space kz,

and 2), their associated eigenfunctions ξnkz(x, y) in the real space discretized by means

of the FEM method. However, to efficiently assess the performance of different devices

and compare them, several parameters must be estimated: gate capacitance, charge

centroid, effective mass, and group velocity. Along this chapter, these parameters and

their estimation will be briefly introduced.

The Chapter is organized as follows. First, in Sec. 6.1, we analyze the band struc-

ture of NWs with different size and materials, introducing some important parameters

such as the group velocity and the effective mass, and dealing with the subbands cross-

ing issue. Then, in Sec. 6.2 the behavior of the charge density is analyzed, and the

Results 117



6.1. Band structure analysis

evolution of the charge centroid as a function of the device bias is studied. Next, the

electrostatic behavior of SiGe NWs is studied in Sec. 6.3, in terms of the inversion

charge and the gate capacitance. Finally, the main conclusions are drawn.

6.1 Band structure analysis

In this Section, we deal with the band structure of different semiconductor NWs. One

relevant consideration regarding the band structure calculation is the complexity of the

problem in terms of the large amount of data to be managed. So as to achieve an efficient

solution of the problem, a tradeoff between accuracy, computational cost, and memory

expense must be made. Sometimes, some assumptions are made in order to simplify

such a complex problem. We have shown that the band structure in NWs is composed

by different subbands which evolve as a function of kz. Under some approaches, such

as the EMA, they are characterized as a whole by some parameters, e.g., the wave

function in the edge, the effective mass, or a linear group velocity depending on kz.

Then, it is quite common to use the same definitions and approaches to refer to the

subbands in more complex methods, such as the k·p method. Unfortunately, these

definitions must be taken with a grain of salt since these interpretations may yield to

confusion and wrong results.

On the one hand, since the band structure resulting from our simulations is dis-

cretized in kz, it is not easy to determine which values correspond to each subband,

since either a crossing or an anti-crossing can occur between these subbands [39, 92]

as we will treat in the following Subsection. On the other hand, a subband no longer

evolves independently to the rest. Each subband is formed by the contribution of dif-

ferent basis states at each kz point and it varies continuously. Consequently, the wave

function can drastically change its shape for different kz values.

6.1.1 Subband crossing and anti-crossing

In Fig. 6.1 the band structure for two different NWs is shown (cylindrical GaAs NW

with 2Rs = 5nm for [001] (a) and [011] (b) orientations respectively). The approaching

bands exhibit two possibilities: a) a crossing between them, and b) the so-called anti-

crossing. For the representation of that figure, the subbands are ordered by their energy:

first subband corresponds to the higher energy for each kz and so on. As can be seen
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Figure 6.1: Representation of the crossing (a) and anti-crossing (b)
of subbands in two GaAs NWs with 2Rs = 5nm for [001] (a) and [011]
(b) orientations, respectively. The crosses mark the discrete point were
the energies are calculated in the first subbands. The area of interest
is zoomed to show the actual behavior of the subbands. The dark
larger crosses remark the states corresponding to the wave functions
represented in Fig. 6.2.

in Fig. 6.1(a), with this ordering the subbands change their slope abruptly, which can

be viewed as an abrupt change of the carrier velocity for a low variation in kz.

This issue is usually eluded in the literature when the k·p method is implemented.

However, in some cases it may be of major relevance if some cautions are not taken.

Firstly, the wrong ordering of the subbands induces additional numerical error in the

charge calculation, since the evolution of the subband in the crossing is misrepresented.

This error can be kept low with a fine discretization of kz. Furthermore, an evident

consequence is the difficulty to determine the magnitudes involving the derivation of

the energy with respect to kz, which would not be well defined in the crossing points.

This problem is aggravated by the numerical calculation of the derivatives as we will

see in the next Subsection.

Notwithstanding, the most serious concern arises when doing some approximations

without taking the necessary cautions. Due to the large amount of data required to

define the wave functions in all the calculated states, it is not unusual to find some

approximations involving the reduction of the total number of wave functions used to

determine either the charge or other magnitudes depending on them (see Ref. [40]).

One of these approximations is to use the same wave function of the edge of the subband

for the whole subband, thus neglecting the dependence of the wave functions on kz.

In this case, the charge distribution can be severely affected depending on the chosen
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Figure 6.2: Probability density distribution |ξnkz
|2, for a state

|n, kz〉, along the section of the NW corresponding to the states
remarked in Fig. 6.1. These states are those corresponding to
the three first subbands (not considering two-fold degeneracy) and
kz = (0, 0.2, 0.4, 1.4)nm−1. The upper row corresponds to the [001]-
oriented GaAs NW (crossing case), whereas the lower row corresponds
to the [011]-oriented GaAs NW (anti-crossing case).

ordering.

Let us now take an insight on this approximation. Fig. 6.2 shows a slice of |ξnkz |2, for
the first three subbands, along the x direction (y = 0) and at the kz values remarked in

Fig. 6.1. Since all of them are two-fold spin degenerate, the contribution of both states

is summed to get the actual charge distribution associated to each state. As illustrated

in Fig. 6.2(a), it is clear that the second and the third subbands exchange their wave

function after an undetected crossing. This issue may be solved by elaborating a method

to detect the subband crossing. However, as shown in Fig. 6.2(b), even when the

subbands present anti-crossing, the |ξnkz |2 distribution still varies appreciably with kz

even for the same subband.

We can assert that the approximation of a single wave function for the whole sub-

band is highly inaccurate in the definition of the probability distribution of the states,

and therefore, the charge distribution provided is not correct, as Fig. 6.3 illustrates.
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Figure 6.3: Hole density along the section of a NW (the same as in
Fig. 6.1(a)). Solid line represent the calculation of the charge using
the complete set of wave functions, whereas dashed lines represent the
calculation considering only the wave function at kz = 0 for the whole
subband. For (a) the charge has been computed directly from the band
structure, and in (b) a self-consistent iteration has been employed.

Here, the charge has been calculated in the high inversion regime using the band struc-

ture represented in Fig. 6.1(a), and setting the Fermi level at 0eV, for both approaches:

solid lines for the complete set of wave functions, dashed lines for the wave function cal-

culated at kz = 0. As can be seen, a relevant error (∼ 1.5%) in the charge distribution

can be appreciated for both cases.

6.1.2 Carrier velocity and effective mass

The carrier velocity and the effective mass of a subband are calculated through the first

and second derivatives of its energy with respect to kz, respectively:

vn(kz) =
1

~

∂En
∂kz

, (6.1)

1

mnkz

=
1

~2

∂2En
∂k2z

. (6.2)

When a parabolic energy band is assumed, the effective mass has a well defined

value for each subband. However, for non parabolic bands as those shown in Fig. 6.1,

the effective mass can be different for each state |n, kz〉. It would be quite useful to be
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able to estimate a global effective mass that provides information regarding the overall

behavior of the carriers in the device. Thus, to take into account the contribution of

all the occupied states to the mean effective mass, we define a mean effective mass for

the transport 〈meff〉 [33], where each state is weighted by its occupation probability

function:

1

〈meff〉
=

〈
1

mnkz

〉
=
∑

n

ˆ

1

mnkz

f0(En(kz)) dkz

/∑

n

ˆ

f0(En(kz)) dkz (6.3)

In theory, the velocities and effective masses could be calculated by numerical differ-

entiation. However, this procedure is not advisable due to the difficulty of tracking the

evolution of a subband in a discrete kz space. Thus, a fine grid for kz would be required

to obtain accurate results, which involves the resolution of the k·p algorithm in a high

number of points for each iteration. Furthermore, a subband ordering accounting for

the crossing of the subbands must be defined. Nevertheless, peaks might appear when

performing the numerical differentiation, where the subband crossing calculation has

failed and an abrupt change of the trend of the band is located (see upper plots in Fig.

6.4). The calculation of the effective mass would be even more troublesome since a

second derivative is required.

As we will see in Chapter 7, it is of major importance to calculate a reliable value

of the carrier velocity to reduce the numerical error in the mobility calculation. For

this reasons, we have chosen the procedure proposed by Stanojevic et al. [126] to

calculate the first derivative. This approach stems directly from the Hamiltonian and

uses only the local information of the point where the derivative is calculated, avoiding

information coming from adjacent points, yielding a reduction of the number of points

in kz. This method is based in the non-degenerate perturbation theory described in

Appendix A, which states that in the presence of a small perturbation δĤ(kz) the

energy of a state will change according to

δEn(kz) ≈
〈
ξnkz

∣∣∣ δĤ(kz)
∣∣∣ ξnkz

〉
+
∑

j 6=i

∣∣∣
〈
ξnkz

∣∣∣ δĤ(kz)
∣∣∣ ξn′kz

〉∣∣∣
2

En(kz)− En′(kz)
. (6.4)

We assume δĤ(kz) as the difference in the Hamiltonian between points kz and
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Figure 6.4: Comparison of the four first subbands (left plots) and
their corresponding carrier velocity (right plots) for the disordered
(upper plots) and ordered (lower plots) cases.

kz + δkz and approximate it using the derivative of the Hamiltonian to get

δEn(kz) ≈
〈
ξnkz

∣∣∣∣∣
∂Ĥ

∂kz

∣∣∣∣∣ ξnkz

〉
δkz , (6.5)

and obtain the derivative of the energy, which is related to the carrier velocity of the

n-th subband as

∂En
∂kz

= ~vn(kz) ≈
〈
ξnkz

∣∣∣∣∣
∂Ĥ

∂kz

∣∣∣∣∣ ξnkz

〉
. (6.6)

The calculation of the group velocity for a state |n, kz〉 involves the inner product

of the derivative of the Hamiltonian. This derivative is easily calculated since the

dependence of the Hamiltonian with respect to kz is a polynomial of second order. As
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it was explained in Section 4.5, the k·p matrix can be constructed as:

H(kz) = H0 +H1kz +H2k
2
z . (6.7)

Thus, its derivative is given by:

∂H

∂kz
= H1 + 2H2kz . (6.8)

So that, the derivative of the energy can be approximated numerically by a simple

matrix product
∂En
∂kz

= ξ
†
nkz

(
∂H

∂kz

)
ξnkz , (6.9)

where now ξnkz stands for the discrete form of the envelope vector function (Eq. (4.10)).

This procedure was described for non degenerate states. However, the resulting

band structure is two-fold degenerate due to the presence of the spin. Notwithstanding,

this theory is still applicable since the spin degeneracy is not lifted along kz, and

therefore
〈
ξnkz

∣∣∣ δĤ(kz)
∣∣∣ ξn′kz

〉
vanishes for two degenerate subbands n and n′. In the

case that the degeneration of the subbands is local, as in the crossings, the degenerate

perturbation theory should be used.

From Eq. (6.4) we can also obtain the second derivative of the energy by includ-

ing the second order term. This is not practical though, since the calculation of the

second order term would requires to calculate all the interactions between all the wave

functions, or a sufficiently large number of them to keep a low error. On the contrary,

the first derivative only requires the diagonal matrix elements, i.e., the interaction of

a wave function with itself. Therefore, so as to calculate the second derivative, it is

usually a satisfactory approach to use the numerical derivative of the first derivative in

Eq.(6.6), in regions where there are not subband crossing. However, we are interested

in the mean effective mass, and therefore, the local values of meff are weighted by their

corresponding population. Consequently, certain amount of error is assumed in this

magnitude, which is not of major relevance since this magnitude is used as an esti-

mation. We have implemented an ordering algorithm for the subbands, which detects

as many band crossing as possible, being a good way to reduce this error as much as

possible.

The ordering algorithm is based in the fact that the energy of a subband and its

derivative (the velocity) are already known. Figure 6.4 shows the disordered band
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structure and their corresponding velocity, which abruptly changes where a crossing is

present. It is evident that an abrupt slope change in a subband produces an unphysical

step in vn. Then, the criterion to order subbands must be to achieve a smooth evolution

of the velocity of every subband. The detection of the steps in vn leads to identify the

crossings in the band structure. The lower plots in Fig. 6.4 depict the band structure

and the group velocities after applying this algorithm. It is shown that it correctly

captures the main crossing points and the subbands no longer exhibit abrupt changes.

A numerical derivative can be performed to obtain a reasonable second derivative, used

to calculate the mean effective mass.

6.1.3 Valence Band structure of Si and Ge NWs

The bandstructure of bulk diamond and zinc blende semiconductors was described

in Chapter 3. The most relevant bands in the VB were denominated LH, HH, and

SO. These bands evolve independently and anisotropically in the wave vector space k.

However, as we saw, when confinement is added, the envelope function approximation

in Sec. 3.6 must be applied and these energy bands are quantized in subbands, which

no longer correspond to the bulk LH, HH, and SO, but to a mixture of them. Here, we

will show how the quantization affects the valence band structure in cylindrical NWs

made of Si and Ge, for the usual transport orientations ([001], [011], and [111]), and

different diameters from 3nm to 20nm. The insulator thickness is kept constant to

Tins = 1nm for all the devices and the metal has been chosen to be midgap for Si (the

same metal has been used for Ge). The results of this section were calculated under

the flat potential well assumption.

Figure 6.5 illustrates the band structure for [111] oriented Si NWs (left column)

and Ge NWs (right column) for two different diameters, 3nm (upper row) and 10nm

(lower row). The energy reference in these figures is the maximum of the VB. We can

corroborate the lighter overall effective mass for Ge than for Si, as in the bulk scenario.

The consequence is that Ge is also more affected by quantization of the levels, i.e, the

shifting is larger and the density of subbands lower. As a result, the total density of

states is also reduced.

As can be seen, in all cases the subbands do not show a parabolic behavior as they

evolve in kz, and so, an effective mass can not be formally attributable to them. How-

ever, in a general overview, we can identify two marked trends of the overall ensemble

of subbands: one corresponding to a large curvature (lighter effective mass) and other
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Figure 6.5: Subband structure for cylindrical Si (left column) and
Ge (right column) [111]-oriented NWs. Two diameters 2Rs are repre-
sented: 3nm (upper row) and 10nm (lower row).

corresponding to a smaller curvature (heavier effective mass). Then, we can keep in

mind the idea of the LH and HH, which are degenerated in bulk semiconductors, split-

ting differently for different confinements. Indeed, there are studies which use the k·p
results for adjusting an effective mass approach, as in [123].

The effect of confinement in the bandstructure is very remarkable, and so that, we

detail it in Figure 6.6, where the evolution of the first two subbands is represented for

different diameters in Ge NWs oriented along the [001] and [111] directions.

As the NW diameter is reduced, the lighter subbands are predominant in the energy

region close to the VB edge. These subbands are the most relevant in the electrostatic

behavior of the smaller device and also in the transport, and so that, the performance

in smaller devices is driven by these light holes subbands. Lighter holes have two

implications, one negative and other positive for electronic purposes: 1) a reduced

density of states which degrades the gate voltage control over the channel charge, and
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Figure 6.6: The subband structure of the first two subbands (solid
line for the first and dashed line for the second) are depicted for Ge
NWs oriented along the [001] (left figure) and [111] (right figure) direc-
tions for different diameters: 2Rs = 3, 5, 10, 20nm. The plots for the
extremal diameters are highlighted in darker tonalities. The arrows
aim to larger devices.

2) a higher injection velocity and a higher mobility which are desirable for transport.

Regarding both issues, and although a comprehensive study must be performed, Ge

NWs are expected to exhibit better transport performance than Si, but driving less

charge.

Another manifestation of the subband quantization is the shifting of the ground

state, which drops for smaller sizes, as can be seen in Fig. 6.7. This dropping of the

VB edge means that the threshold voltage will be higher (in absolute value) and a

larger negative gate voltage is thus required to yield a certain inversion charge. As can

be seen in Fig. 6.7, large devices present a nearly constant E1 value which drops for

sizes smaller than 15nm in Ge and 10nm in Si. The variation in Ge is specially relevant,

since devices with a diameter of 3nm will undergo a decay of ∼ 0.35eV with respect to

the valence band edge of large devices. This effect is consistent and attributable to a

smaller effective mass in Ge which magnifies the quantum effects.

To finalize this brief analysis of the effect of geometric confinement on the band

structure, we will study the mean effective mass for these devices, as defined in Eq.

(6.3), which provides an overall insight on the weight of each subband.
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Figure 6.7: Representation of the ground state (VB), E1, referenced
to the E1 value achieved for the largest device considered, as a function
of the diameter of the channel. Si and Ge NWs (crosses) are oriented
along the [001] (solid line), [011] (dotted line) and [111] (dashed lines).
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Figure 6.8: Mean effective mass of the valence band for Si and Ge
NWs (marked with crosses) oriented in the directions [001] (solid line),
[011] (dotted line) and [111] (dashed lines) as a function of 2Rs.
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Figure 6.8 illustrates the mean effective mass for Si and Ge NWs for the different

device orientations as a function of the device size. As can be seen, the mean effective

mass is smaller in all the cases as the devices are shrunk. This is a consequence of the

aforementioned splitting between the lighter and heavier subbands. In this case, Si NWs

experiment a higher drop in the effective mass as they are shrunk, and for the smallest

sizes its value gets closer to that calculated for Ge NWs. We can also corroborate

that the devices oriented in the [111] direction, exhibit the lowest effective mass and

therefore they concentrate the potential to improve the transport properties [98]. These

results are in agreement with those presented in the literature [52, 98, 103, 123].

6.1.4 Self Consistency

Previously we have studied the effect of confinement in the band structure under the

flat band assumption. However, we are also interested in the effect of the applied gate

voltage VG on the band structure and therefore on the electrostatic behavior of the

device. To do that, the self-consistent iteration procedure described in Sec. 4.6 is used

to determine the potential and charge in the device, for an arbitrary VG value. In that

Section, the necessity of adopting such procedure to assure accurate results for the

charge and the potential distributions was justified. The use of self-consistency for the

resolution of the k·p method has been recurrent in the last decades [8, 31, 98, 104, 151].

In this Section, we assess how the self-consistent solution modifies the band structure

and compare its results with those achieved with a non self-consistent approximation.

First we observe the effect of the self-consistent solution on the band structure. In

Fig. 6.9, the highest energy subband for a [001]-oriented GaAs NW with 2Rs = 5nm

[001] oriented NW is shown for different gate voltages, from −0.8V to −1.6V. These

voltages are chosen so as to depict the region where the device is driven to high inversion.

As VG increases, the inversion charge becomes more relevant and sets up a position

dependent potential in the semiconductor channel, which simultaneously affect to the

solutions of the k·p Hamiltonian. It can be seen the noticeable change of the first

subband as VG grows, modifying its curvature. As a consequence, an appreciable

increase of the mean effective mass is observed (Fig. 6.9.b) as the device is driven

deeply to inversion. This effect is not captured by the flat band approximation.
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Figure 6.9: First subbands of a Rs = 5nm [001]-oriented GaAs NW
for different values of VG = −0.8,−1,−1.2,−1.4,−1.6V. The arrow
aims to higher |VG|. The subbands are referenced to the VB edge at
kz = 0.
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Figure 6.10: Comparison of the hole density calculated in GaAs
2Rs = 5nm [001]-oriented NWs using the self-consistent (solid lines)
algorithm and the non self-consistent (dashed lines) solution. On the
left, hole density along the section of the device is represented for
different values of VG = −0.8,−1,−1.2,−1.4,−1.6V (from blue to red
tonalities respectively) with the arrow aiming to higher values of |VG|.
On the right, the linear hole density as a function of VG is depicted.
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Figure 6.10 illustrates the comparison of the charge density for different values of

VG. On the left, the surface hole density is shown for both approaches. In the self-

consistent case (solid lines), the charge gets closer to the interface as VG increases. The

flat well approximation is not able to reproduce this effect, and the charge is positioned

around the center for all the VG values. This is a manifestation of the fact that not

only the shape of the band structure is modified by the potential but also the wave

functions associated to each state. Fig. 6.10 (right) also depicts the total integrated

charge for this device, showing that not only the charge position but also the total

integrated charge is affected by the self-consistent solution, which therefore becomes

mandatory to find accurate results.

6.2 Hole density and centroid calculation

In this Section, we will have a deeper insight in the charge distribution along the NW,

as a function of the applied gate bias and the device orientation.

Figure 6.11 illustrates the hole density in the cross section of cylindrical Ge NWs,

with 4nm of diameter, and for different orientations. A gate overdrive voltage of VG −
VT = −1V has been considered. The threshold voltage was obtained from the maximum

of the second derivative of the charge with respect to the gate voltage [85]. As it can

be observed, the charge is mainly placed close to the interface due to the high applied

VG. A very remarkable issue is the anisotropy of the charge distribution in a highly

symmetric structure as a cylindrical NW, specially for the [011] orientation, which

stems from the anisotropy of the valence band.

Figure 6.11: Hole density calculated for cylindrical Ge NWs with
4nm of diameter and different orientations: [001] left, [011] center,
and [111] right. A gate overdrive voltage VG − VT = −1 has been
considered.
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Figure 6.12: Section of the hole density calculated for cylindrical
Ge NWs with three different orientations at a gate overdrive voltage of
VG−VT = −1, and for different diameters 2Rs = 3, 4, 5, 8, 10, 15, 20nm.
Two slices are considered to study the anisotropy (shown in the inset):
an horizontal slice (solid lines), and a diagonal one (dashed lines).
Arrows aims to larger devices.

A more intuitive vision of the charge distribution is shown in Fig. 6.12, where

the charge density along an horizontal direction (solid lines) and a diagonal direction

(dashed lines) are represented for Ge NWs of different diameters, ranging from 3nm to

20nm, and three orientations ([001], [011] and [111]). In order to compare the shape of

the charge distributions, the position along the channel has been normalized by each

device radius. We can observe that the smaller the device, the more confined the charge

is in the center of the device, pushing the carriers away from the interface. Furthermore,

the peak of the charge density is larger for the smaller devices. It is also shown that

[111]-oriented NWs exhibit an almost isotropic behavior, whereas the [001] and [011]

(in particular the latter) oriented NWs are anisotropic for all the sizes.

6.2.1 Inversion charge centroid

The inversion charge centroid is an useful magnitude, which assesses the average dis-

tance of the inversion charge from the semiconductor-insulator interface. This magni-

tude is related to the gate capacitance, and is also related to the interaction between

the charge and the surface-related scattering mechanisms, such as surface roughness or

Coulomb scattering.

In a classical description of the device behavior, the charge is located right at the

insulator-semiconductor interface. However, one of the more relevant consequences of

the quantum effects in a NW regards with the distribution of the charge inside the
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Figure 6.13: Representation of the inversion charge centroid for a
2Rs = 15nm Ge NW for two different VG values: 0V (dashed), -1V
(solid). The hole density for both polarization have been represented
in two different scales: the reference for VG = 0V is the right axis,
whereas for VG = −1V is the right axis.

device, which is shifted away from the interface.

To measure this effect, the inversion charge centroid zI was defined [77, 114, 115].

In a cylindrical NW, it can be calculated as:

zI = Rs −∆ , (6.10)

with

∆ =

´ Rs

0 r2ρq(r) dr
´ Rs

0 rρq(r) dr
, (6.11)

where Rs is the radius of the cylindrical semiconductor channel and ρq is the charge

density. For a better intuition on the centroid meaning, Fig. 6.13 shows an example of

their calculation for a 2Rs = 15nm cylindrical Ge NW at low and high inversion.

Figure 6.14 illustrates the centroid calculated as a function of the total hole density

for Si (left) and Ge (right) [001]-oriented NWs. We can observe that the charge is

mainly placed in the center of the device for low inversion and, as the device is driven

to high inversion, the carriers approach to the interface (centroid is reduced). This

effect is negligible for very small devices, which means that the charge remains in the

center of the device.
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Figure 6.14: Charge centroid calculated for Si (left figure) and
Ge (right figure) NWs oriented along the [001] direction as a func-
tion of the inversion hole density for different diameters 2Rs =
3, 5, 7, 10, 15, 20nm. The arrow aims to larger diameters.

6.3 Charge and capacitance analysis of SiGe NWs

In this section, we will analyze the behavior of Si1−xGex NWs, in terms of their charge

and capacitance behavior, as a function of the Ge molar fraction x. To do it, let us

study first the behavior of Si and Ge NWs, which constitute the limit cases for x = 0

and x = 1, respectively.

Figure 6.15 illustrates the linear hole density as a function of the gate overdrive volt-

age (VG − VT) for NWs of Si and Ge of different diameters (2Rs = 3, 5, 7, 10, 15, 20nm)

along two orientations ([001] and [111]). As can be observed, the differences for the

total charge are not very relevant between both orientations. However, there are im-

portant differences between the Si and Ge in terms of the threshold voltage variation

with the device size (which is depicted in the insets). This stronger influence of the

confinement on VT for Ge is due to its lower mean effective mass.

Another very relevant parameter in the performance of semiconductor devices is

the gate capacitance CG, defined as

CG =
∂QG

∂VG
= − ∂

∂VG
(Qins +Qs) ≈ −∂Qs

∂VG
, (6.12)

where QG, Qins, and Qs stand for the gate charge, the insulator charge and the semi-

conductor charge, respectively. In the previous equation we assumed that the insulator

charge is negligible compared to Qs. In order to express the gate capacitance in terms
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Figure 6.15: Hole linear density vs gate overdrive voltage (VG−VT)
for Si (left figure) and Ge (right figure) for different diameters 2Rs =
3, 5, 7, 10, 15, 20nm and for two orientations: solid lines for [001] and
dashed lines for [111]. The arrow aims to larger diameters.

of its different contributions we write

1

CG
= −∂VG

∂Qs
= −∂(VG − ψs)

∂Qs
− ∂ψs

∂Qs
, (6.13)

where ψs is the semiconductor surface potential that can be related to VG by means of

the Gauss’s law:

VG − Φms = ψs −
Qs

Cins
(6.14)

with Cins the insulator capacitance per unit length and Φms is the difference between

the metal and semiconductor work functions. Neglecting any contribution coming from

the depletion charge we can write:

1

CG
=

1

Cins
+

1

Cinv
(6.15)

where Cinv = −∂Qinv

∂ψs
is the inversion capacitance.

The inversion capacitance measures the gate control over the inversion charge in

the channel, and it is desirable to keep it as large as possible. One important challenge

faced when device dimensions are shrunk is to achieve high values for that capacitance.

Cins is determined by the insulator thickness, the geometry of the structure and by the

insulator permittivity.
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Figure 6.16: Capacitances of Si (left figure) and Ge (right figure)
[001] oriented NWs for different diameters 2Rs = 3, 5, 7, 10, 15, 20nm
(Tins = 1nm for all cases). The plots for the extremal diameters
are highlighted: triangles for 20nm, and circles for 3nm, whereas the
intermediate values are depicted in a lighter tonality for clarity. The
total CG (solid lines) and their contributions Cins (dotted lines) and
Cinv (dashed lines) are represented.

For cylindrical NWs, the insulator capacitance per unit length can be calculated

analytically as [116]

Cins =
2πǫs

ln
(
1 + Tins

R

) . (6.16)

From Eq. (6.16), it can be inferred that the value of the insulator capacitance

could be increased by reducing the insulator thickness or by choosing an insulator with

high permittivity, i.e., high-κ insulators. Both approaches face numerous technological

challenges. Meanwhile, the value of Cinv depends on the density of states, and thereby,

on the subband distribution, but also on the charge distribution along the channel [116].

This effect is also related to the charge centroid presented in the previous Section: the

higher the charge centroid, the lower Cinv and, as a consequence, CG.

Let us then compare Si and Ge NWs in terms of their CG behavior. The gate

capacitance and its components can be calculated from the simulated Q-V curves.

Figure 6.16 shows the different capacitances calculated from the curves depicted in

Fig. 6.15. As can be seen, Si NWs exhibit a better performance in terms of the total

gate capacitance CG (solid lines) than Ge NWs. These differences are produced by

Cinv, which depends on the charge centroid and the density of states. In this case, Si
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Figure 6.17: Hole linear density for Si1−xGex 10nm NWs [001]
oriented of different Ge molar fractions x = 0, 0.25, 0.5, 0.75, 1.

outperforms Ge in terms of the electrostatic performance.

We have finally simulated Si1−xGex NWs with different Ge molar fraction. Fig. 6.17

illustrates the Q-V characteristic for different x values for a [001]-oriented Si1−xGex NW

with 10nm diameter. It can be observed that the intermediate values are a progressive

mixture of the characteristics of the pure Si and Ge, as expected. It should be high-

lighted that the threshold voltage is tuned by the x value, due to the different work

functions of Si and Ge. In Fig. 6.18, the resulting capacitances are represented and

it again confirms the progressive transformation of the capacitances from those corre-

sponding to Si to the Ge ones. As can be seen, high Ge molar fractions degrade the

total gate capacitance, due to the reduction of the inversion capacitance.
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Figure 6.18: Capacitances of Si1−xGex NWs with 10nm of di-
ameter along the [001] direction for different Ge molar fractions
x = 0, 0.25, 0.5, 0.75, 1. The plots for Si are marked with triangles,
and Ge with circles, whereas the intermediate values are depicted in
a lighter tonality for clarity. The total CG (solid lines) and their con-
tributions Cins (dotted lines) and Cinv (dashed lines) are represented.

6.4 Conclusions

In this Chapter, different electrostatic magnitudes have been analyzed using the results

provided by the SP2D simulator. The self consistent solution and the dependence of

the band structure on the gate voltage have been assessed. It was demonstrated that

the self-consistent solution is needed to get accurate results.

We have studied the electrostatic results provided by the k·p method for NWs

made of Si, Ge, and III-V semiconductors from 3nm to 20nm. Different orientations,

geometries and materials were considered. The evolution of the band structure as a

function of the device size in Si and Ge NWs was shown. As the diameter is reduced,

the LH subbands split from the HH ones. For the smallest sizes the LH subbands

predominate with respect the HH, and, as a consequence, a reduction of the mean

effective mass is expected. This effect is more accentuated in Si devices than in Ge ones,

and similar mean effective masses can be achieved for the smallest devices, specially

along the [111] orientation.

It was demonstrated that the mean effective mass increases at high inversion since
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the HH states get more populated. Regarding the hole density, a strong anisotropy has

been observed for [011] oriented NWs, whereas, for the [001] and [011] orientations, the

anisotropy is much smaller.

We have analyzed the hole linear density and the gate capacitance for Si and Ge

NWs. A higher capacitance for the Si NWs has been reported, due to its higher

density of states. A study on Si1−xGex NWs has depicted the progressive variation of

the electrostatic properties as a function of the Ge molar fraction.
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Chapter 7

Carrier transport in

semiconductor NWs

This chapter is focused on the study of the carrier mobility in semiconductor NWs.

To perform this study, a semi-classical approach, that implies the resolution of the

Boltzmann Transport Equation (BTE) is employed [40, 79]. This approach proposes

a classical model where many particles can fly freely in a volume until a scattering

event occurs and its momentum and/or energy change. Moreover, quantum effects are

included to achieve an accurate description of the problem.

The lay out of the problem is very difficult due to the huge complexity of mod-

eling statistically all the possible events that might occur. As it happened with the

Schrödinger and Poisson equations in the electrostatic description, it is not straightfor-

ward to achieve an analytical solution of the BTE in most practical cases.

For that reason, a numerical solution of the BTE is commonly used to analyze

the transport behavior in different types of electronic devices. Among others, we can

highlight the deterministic description [74], the Monte Carlo approach, which solves

the BTE collecting statistics [47, 118], or the Momentum Relaxation Time (MRT)

approximation, which linearizes the BTE [12, 37, 63, 83, 100, 107]. In particular, in

this work we will make use of the latter one, the MRT, to solve the BTE. In this regard,

an in-house simulation tool has been developed to implement this method, that will

allow to estimate the carrier mobility in semiconductor NWs. More details on this

theory can be found elsewhere [83].

The main goals of this Chapter are: 1) to present a brief summary on the theoretical
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background of the BTE, in particular for a 1D carrier gas, 2) to solve the BTE by means

of the MRT discussing the main approaches employed, highlighting those related to the

k·p method used to calculate the devices band structure and wave functions, and 3)

to employ this approach to analyze a high-interest practical case, the mobility of SiGe

NWs.

The Chapter is outlined as follows. In Section 7.1 we introduce the BTE to describe

the carrier transport in a 1D gas. In Section 7.2, the linearization of the BTE and the

definition of the MRT are presented. Section 7.3 shows how to calculate the MRT,

explaining the explicit approximation used in this work. Then, in Section 7.4 the

different types of scattering events are enumerated and characterized. Section 7.5 is

devoted to the Kubo-Greenwood formula for the calculation of the mobility from the

solutions of the linearized BTE. Section 7.6 uses the developed method to determine

the hole mobility in Si1−xGex NWs as a function of the Ge molar fraction, analyzes the

influence of the form factor approach used to evaluate the scattering mechanisms MRTs,

and studies the influence of the alloy disorder on the behavior of the devices. Finally,

Section 7.7 recapitulates the main conclusions obtained throughout the Chapter.

7.1 Boltzmann Transport Equation

This Section is devoted to the BTE and its particularization to the carrier transport in

a 1D gas scenario. The BTE is based on a statistical description of the classical particle

behaviour, providing with the probability distribution of the particle evolution in real

space, momentum space and time. To do this, we define f = f(r,k, t) as the probability

of finding an occupied state determined by a certain momentum k, in the position r,

at an instant t. Its derivation can be found in several textbooks [29, 40, 41, 53, 79].

The most general formulation establishes that the change of the distribution function

f with respect to the time can be written as:

∂f(r,k, t)

∂t
± 1

~
∇kE(r,k) · ∇f(r,k, t)∓ qF

~
· ∇kf(r,k, t) = Sin(r,k, t)− Sout(r,k, t) ,

(7.1)

where the upper sign is used for electrons and the lower sign for holes (this notation will

be kept hereinafter). The second term on the lhs of Eq. (7.1) takes into account the

change in f due to the diffusion of particles, accounting for changes in the position, and
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can be expressed in terms of the group velocity of the particle, vn(k) = ±∇kEn(k)/~.

The third term on the lhs of Eq. (7.1) stands for the external forces producing a change

in the carrier momentum. Finally, the rhs of the equation is due to the presence of

random scattering events which change the carrier trajectory in the classical sense, i.e.,

making the particle to change from one state to another. So that, Sin and Sout stand

for the scattering rate of particles jumping from any state to |k, r〉 after a collision and

the scattering rate of particles changing from state |k, r〉 to another one, respectively.

Equation (7.1) determines the rate of change in the occupation probability assigned

to each state in a 3D carrier gas under a semi-classical approach. However, in this

manuscript the object of study are NWs, and thus the carriers are confined in 2D.

Therefore, the BTE defined for classical system, must be reassembled to take into

account the quantum effects determined by the solution of the Schrödinger equation

by means of the k·p method.

To do so, we make use of the Gradual Channel Approximation (GCA) which as-

sumes that the variation of the electric field along the transport direction, z, is much

lower than the corresponding variation in the confinement plane. Then, the Hamil-

tonian is assumed to be constant along z and the inclusion of V (z) is modeled as a

variation of the Fermi level along the NW length that has no effect on the quantum

description of the device [63]. In this scenario, the determination of the quantum be-

havior of the device is restricted to the solution of the k·p equation in the cross-section

of the device, defined by the coordinates r = (x, y), as described in Chapter 4. This

slowly varying potential along the z axis causes the drift of the carriers.

From the previous reasoning we infer that the three dimensional problem involving

a six dimensional space formed by (r,k) is reduced to (z, kz) for 2D confined systems1.

In this scenario, equation (7.1) is particularized for the 1D carrier gas as:

∂fn(z, kz, t)

∂t
± 1

~

∂En(kz)

∂kz

∂fn(z, kz, t)

∂z
∓ qFz

~

∂fn(z, kz, t)

∂kz
=

= Sin,n(z, kz, t)− Sout,n(z, kz, t) , (7.2)

where Sin, Sout and f are particularized for each subband n and Fz = −∂V (z)/∂z is

the longitudinal component of the electric field.

1Let us recall that the momentum of a carrier in 2D systems is described by two quantum numbers:
the wave vector kz and the subband index n.
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Once the probability distribution fn is known, several macroscopic magnitudes such

as the carrier concentration (n for electrons or p for holes), and the current Iz can be

determined.

The carrier concentration is determined from the probability distribution of each

state, which in NWs reads

n(r, t) =
1

L
∑

n

fn(z, kz, t)|ξnkz(r)|2 , (7.3)

p(r, t) =
1

L
∑

n

fn(z, kz, t)|ξnkz(r)|2 , (7.4)

for electrons and holes, respectively. The current can be calculated as:

Iz = ±qSL
∑

n

∑

kz

vn(kz)fn(z, kz, t) , (7.5)

where the plus sign is for electrons and the minus for holes.

The Sin,n and Sout,n can be attributed to random scattering events that modify the

carrier free flights, changing their ballistic trajectory, and therefore, their momentum.

There are three assumptions to be considered in the modeling of the scattering rates

[79]: 1) the collisions occur in a very short time scale almost instantaneous; 2) the

collisions produce a change in the particles trajectory modifying their wavenumber but

they do not change their position; and 3) the scattering interaction is weak. Under

these three assumptions, Sout,n can be written as:

Sout,n(z, kz, t) = fn(z, kz, t)
∑

n′,k′z

Snn′(kz, k
′
z)
[
1− fn′(z, k′z, t)

]
, (7.6)

where Snn′(kz, k
′
z) is the so-called scattering rate and denotes the probability per unit

time that a particle suffers a transition from an initial state |n, kz〉 to the final state

|n′, k′z〉, and the sum runs over all the final states. The interpretation of Eq. (7.6) is

that the rate of electrons leaving the state i depends on the probability of occupation

of that state multiplied by the sum of all the probabilities that a transition to an empty

state j happens. A similar reasoning can be inferred to obtain the scattering-in flux,
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Sin,n:

Sin,n(z, kz, t) = [1− fn(z, kz, t)]
∑

n′,k′z

Snn′(kz, k
′
z)fn′(z, k′z, t) . (7.7)

Substituting Eqs. (7.6) and (7.7) into Eq. (7.2), the resulting 1D BTE for the n-th

subband in terms of the occupation probability of all the states involved is:

dfn(z, kz, t)

dt
− 1

~

∂En(kz)

∂kz

∂fn(z, kz, t)

∂z
+
qFz

~

∂fn(z, kz, t)

∂kz
=

[1− fn(z, kz, t)]
∑

n′k′z

Snn′(kz, k
′
z)fn′(z, k′z, t)− fn(z, kz, t)

∑

n′k′z

Sn′n(k
′
z, kz)

[
1− fn′(z, k′z, t)

]

(7.8)

where the scattering rate Snn′(kz, k
′
z) is defined independently for the different phys-

ical processes. The scattering events are consequence of a small perturbation of the

Hamiltonian describing the system. Under this premise it is possible to use the time

dependent perturbation theory which lead us to the so-called Fermi Golden Rule:

Snn′(kz, k
′
z) =

2π

~

∣∣Mnn′(kz, k
′
z)
∣∣2δ(En(kz)− En′(k′z)) . (7.9)

This expression will be employed to determine the scattering rate associated to each

mechanism. A comprehensive derivation for confined system can be found in different

textbooks [29, 40, 79].

7.2 Momentum Relaxation Time

So far, an expression to calculate the evolution of the distribution function fn(z, kz, t)

has been provided using a description of the semi-classical BTE. However, this expres-

sion is a complex integro-differential non linear equation and further approximations

must be carried out to address it. In this Section we present the Momentum Relaxation

Time approximation (MRT), which can be used to solve the BTE and then to calculate

the mobility, as shown in Section 7.5.

The MRT assumes small displacements of the distribution function f ≈ f0+δf from

the equilibrium due to an external stimulus such as the electric field in the transport

direction Fz. It also assumes uniform transport conditions, i.e., the deviation from
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equilibrium is constant along the transport direction:

fn(z, kz, t) = fn(kz, t) , (7.10)

fn(z, kz, t) = f0(En(kz)) + δfn(kz, t) , (7.11)

where the equilibrium occupation probability f0(E) is the Fermi-Dirac function, and

δfn(kz) is the deviation of the distribution function fn(kz, t) from the equilibrium due

to an external stimulus, the electric field Fz .

The calculation of the mobility depends on the initial and the final states, which

are determined by their subband index and wave vector. In the following, we simplify

the notation by only using the subbindex i or j so as to denote the initial and final

states respectively:

i→ |n, kz〉 , (7.12)

j →
∣∣n′, k′z

〉
. (7.13)

The MRT assumes that the rhs term in Eq. (7.8), corresponding to the input and

output scattering fluxes, can be expressed as:

Sin,i − Sout,i = −δfi
τi

, (7.14)

where τi is the momentum relaxation time of the state i because it is related to the

time that δfi takes to vanish or relax from the instant that the stimulus Fz ceases.

From Eq. (7.8), assuming that Fz = 0, we can write:

dfi(t)

dt
=

d

dt
δfi(t) = −δfi(t)

τi
→ δfi(t) = δfi0 e

−t/τi . (7.15)

So that, τi measures the mean time that the distribution function fi needs to be

reduced in a factor e after the origin of the perturbation is switched off.

However, the MRT approach also assumes stationary behavior, i.e., the system has

evolved to stationary equilibrium and ∂fi/∂t = 0. Therefore, under a small electric

field Fz, Eq. (7.2) can then be written as:

− qFz

~

∂fi
∂kz

= −δfi
τi

. (7.16)
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The partial derivative of fi on the left, using the definition in Eq. (7.11), can be

expressed as:
∂fi
∂kz

=
∂δfi
∂kz

+
∂f0(Ei)

∂kz
=
∂δfi
∂kz

+ ~
∂f0(Ei)

∂E
vi , (7.17)

where vi is the carrier velocity in the transport direction, vi = 1/~ ∂Ei/∂kz. The first

term on the rhs, corresponding to the small deviation, can be neglected when it is

multiplyed by the small Fz. Then, Eq. (7.16) leads to:

δfi = −qFzviτi
∂f0(Ei)

∂E
. (7.18)

Equation (7.18) shows that the deviation δfi, and thus, the probability function fi

can be uniquely determined by the momentum relaxation time τi. Therefore, once the

momentum relaxation time is calculated, an estimation of macroscopic quantities which

are determined from fi can be evaluated. The next step is to calculate this relaxation

time.

7.3 Calculation of the momentum relaxation time

In this Section, we calculate the momentum relaxation time from the scattering-in and

scattering-out fluxes. We firstly relate δfi to the scattering rates in Eqs. (7.6) and

(7.7), to achieve an expression for τi as a function of the scattering rate Sij and δfn.

The difference of the input and output fluxes can be written as [40]:

Sin,i − Sout,i = −δfi
∑

j

Sij

[
1− f0(Ej)

1− f0(Ei)
− δfj
δfi

f0(Ei)

f0(Ej)

]
, (7.19)

where we have substituted fi = δfi+f0(Ei), discarded the second order terms involving

the product δfiδfj, and used the expression of the flux balance at equilibrium:

f0(Ej)Sij(1− f0(Ei)) = f0(Ei)Sij(1− f0(Ej)) . (7.20)

The ratio δfj/δfi can be calculated using Eq. (7.18) as:

δfj
δfi

=
qτjFzvj

∂f0(Ej)
∂E

qτiFzvi
∂f0(Ei)
∂E

=
τjvjf0(Ej)[1 − f0(Ej)]

τivif0(Ei)[1− f0(Ei)]
, (7.21)
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where the derivative of the Fermi-Dirac function ∂f0(Ei)/∂E = (1/kBT ) fo(Ei)[1− f0(Ei)]

is employed. Then, substituting Eq. (7.21) in the rhs term Eq. (7.19), and (7.14) in

the lhs, the following expression for the momentum relaxation time τi is obtained:

1

τi
=
∑

j

Sij

[
1− f0(Ej)

1− f0(Ei)

][
1− τjvj

τivi

]
. (7.22)

When different scattering mechanisms are accounted for, the scattering rate Sij

includes the contribution of each of them (Smij ) as:

Sij =
∑

m

Smij , (7.23)

where m runs over all the possible scattering mechanisms.

The MRT associated to the m-th scattering mechanism can be calculated as in

Eq.(7.22):

1

τmi
=
∑

j

Smij

[
1− f0(Ej)

1− f0(Ei)

][
1− τjvj

τivi

]
. (7.24)

So that, the total MRT τi can be calculated once the MRT corresponding to each

scattering mechanism τmi is known as:

1

τi
=
∑

m

1

τmi
. (7.25)

This expression is the general formulation for the calculation of the momentum

relaxation times for all the scattering mechanisms. Notwithstanding, τmi can not be

calculated directly since it depends on the total τi (Eq. (7.24)), and thus, on the

MRT of the rest of states τj. Hence, an implicit calculation would be needed to solve

Eqs. (7.24) and (7.25). This problem is still computationally affordable and an example

about how to do deal with it can be found in [83], particularized for the EMA. However,

a drastic simplification of the problem can be achieved under the so-called explicit

approximation.

To avoid the complexity inherent to the implicit model, a drastic simplification is

carried out using the explicit approximation for the calculation of the MRT, which has

been extensively used in the literature [12, 37, 63, 69, 99, 107]. So that, we have decided

to make use of this approach to simplify the calculations.
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The usual assumption of the explicit calculation considers that the momentum

relaxation times for the initial τi and final τj states exhibit small differences between

them. Then, it can be considered that τj/τi ≃ 1, and the general form for the MRT in

Eq. (7.22) can be simplified to:

1

τmi
=
∑

m

Smij

[
1− f0(Ej)

1− f0(Ei)

][
1− vj

vi

]
. (7.26)

Therefore, the explicit approach allows to calculate the MRT for each state inde-

pendently, avoiding the dependence on the total τi. Once the MRTs for the different

scattering mechanisms are calculated, Eq. (7.25) is employed to calculate the total

MRT. The explicit assumption has been proven to provide excellent results in different

cases [42, 72].

The evaluation of Eq. (7.26) can be simplified for different scattering mecha-

nisms. For example, if an elastic scattering mechanism is considered, no change in

energy between the initial and the final state is produced, and therefore the term

(1− f0(Ej))/(1 − f0(Ei)) = 1, reducing the equation to:

1

τmi
=
∑

j

Smij

[
1− vj

vi

]
. (7.27)

Another useful case in which Eq. (7.26) can be simplified is in isotropic mechanisms,

where Sij can be written as Snn′, i.e., there is no dependence with kz and k′z. In that

case, the second term into brackets disappears, reducing the complexity of the problem.

Nevertheless, it should be highlighted that, under the k·p method, this situation is not

usual, as the initial and final wave functions depend on kz and k′z, respectively, and

therefore so it does Sij.

Figure 7.1 presents the available transitions from an initial state i to the final states

j for elastic transitions (left) and inelastic transitions (right), where ∆E = ±~ω is the

energy emission and absorption of the inelastic transition, respectively. As can be seen,

several states can be reached in a transition. When the final subband coincides with the

initial one, it is denominated intrasubband transition. Otherwise, it is a intersubband

transition. It should be noticed that in k·p band structures, for a given energy, there

can be several states corresponding to the same subband. This fact will be important

when dealing with the mobility calculation in Sec. 7.5.
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Figure 7.1: Available transitions from an initial state i (marked
with a circle) to other states (marked with diamonds). The elastic
transitions are shown on the left while the inelastic transitions are
plotted on the right figure, where ∆E = ±~ω is the energy for the
emission and absorption respectively.

7.4 Implementation of scattering mechanisms

Carrier transport in NWs is determined by different scattering mechanisms: surface

roughness, coulomb dispersion, bulk phonons (optical and acoustic), polar optical

phonons and alloy disorder [83]. In this chapter we will focus on acoustic and op-

tical phonons and alloy disorder. Our aim is to implement these scattering mechanism

taking into account the k·p method particularities.

7.4.1 Phonons

Acoustic (AC) and optical phonons (OP) are usually the main cause of scattering in

semiconductors. They are related to the vibration of the lattice atoms around their

equilibrium positions. This vibration produces a perturbation in the potential that

affects the motion of the carriers by changing their momentum and/or energy. The

mathematical description of the carrier-phonon interaction can be found in several

textbooks [40, 148]. In this manuscript, we sketch the main ideas necessary to estimate

the matrix elements that describe the interaction.

The usual scheme is to model the atoms of the lattice as harmonic oscillators, with

wave vector q, and energy Eph = ~ω, being ω their oscillation frequency. There are two

modes of oscillations according to how adjacent atoms behave: a) when the two atoms

oscillate with the same phase, they are named as acoustic (AC) phonons, b) when the
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Figure 7.2: Phonon energy EPh of the different modes for bulk Si
as a function of the phonon wave vector magnitude |q| along the [001]
direction. Transversal and longitudinal modes are plotted as dashed
and solid lines respectively. Acoustic and optic modes are marked as
AC and OP, respectively. After Refs. [20, 76].

two atoms oscillate with opposite phases, they are named as optical (OP) phonons.

Regarding the direction of vibration of the modes, they can be transverse (T) when the

atoms vibrate perpendicularly to the phonon wave vector q direction (there are two

transverse modes), and longitudinal (L) when the atoms vibrate aligned with q (there

is one longitudinal mode).

The phonon oscillation modes are shown in Fig. 7.2, where the phonon energy is

plotted as a function of the phonon wave vector magnitude |q|. The transversal modes

(TA, TO) are degenerated. Under the assumption of low |q| values, acoustic phonon

modes exhibit a linear dependence of the energy with respect to the phonon wave vector

EPH = ~vs|q|, where vs is the slope of the ~ω-|q| curve and it is the so called sound

velocity in that direction. For optical phonons, LO and TO, a constant energy with

value proportional to the angular frequency of the phonon EPH(|q|) = ~ωPH, can be

assumed.

The potential induced by the vibrations of the crystal is given by [40]:

UPH(r, t) = D(q)

√
~

2ρΩωPH(q)
aν(q)e

±ı(qr−ωPH(q)t) , (7.28)
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where the ± sign corresponds to phonon emission and absorption processes, respec-

tively, D(q) is the phonon deformation potential, ρ is the semiconductor density, ωPH =

EPH/~ is the phonon frequency and aν(q) is the wave magnitude of the phonon branch

ν, which is related to the number of phonons, nPH(q), as aν(q) =
√
nPH(q) +

1
2 ± 1

2 ,

being nPH(q) given by the Bose-Einstein distribution:

nPH(q) =
1

e
EPH
kBT − 1

. (7.29)

7.4.2 Acoustic phonons

In the case of acoustic phonons, small values of |q| lead to negligible energies for the

phonons compared to those of electrons, and then, the scattering mechanism can be

modeled as an elastic process. So that, three simplifications can be made [79]: a)

the time dependence in Eq. (7.28) can be dropped, b) Eq. (7.29) is approximated to

nPH(|q|) ≈ kBT/EPH = kBT/~vs|q|, and c) isotropy of the phonons [40, 42]. These

assumptions lead to the following definition for the matrix elements corresponding to

transitions from the initial state i = |n, kz〉 to the final one j = |n′, k′z〉:

|Mij|2 =
1

L
D2

ackBT

ρv2s
Fij , (7.30)

where Dac is the acoustic deformation potential, L the wire length, ρ is the density of

the material, and vs is the sound velocity. Fij is the so-called form factor, an overlap

integral coupling the initial and final envelope functions calculated on the cross-section

S of the NW as

Fij =

ˆ

S

∣∣∣ξ†j(r) · ξi(r)
∣∣∣
2
dr . (7.31)

Eq. (7.30) includes both, emission and absorption processes. According to (7.30)

the transition from one state i to other j is determined by the coupling of the wave

functions expressed in Eq. (7.31), and does not depend on the phonon wave vector qz.

Then, our major concern will be the calculation of the form factors. This is not

a trivial problem since it involves a huge amount of data to be stored and processed.

Some simplifications can be applied to these form factors, such as consider just one

wave function for the complete subband, assuming that it does not changes too much

(as proposed in [40]), or even approximate Fij as a constant depending on whether the
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transition is intrasubband or intersubband [80]. The limitations and consequences of

applying these approaches are analyzed in Section 7.6.1.

7.4.3 Optical phonons

In the case of optical phonons, small q does not imply small energy. From Figure 7.2,

it can be observed that the energy of the optical phonons is almost constant for any q

value. The number of phonons (nPH) and the deformation potential (Dop) can also be

assumed to be constant. Therefore, the energy of these phonons can be approximated

by a constant E = ~ωPH. Hence, the carrier scattering by optical phonons is an inelastic

process.

The square matrix element for NWs can then be written as [62, 68]:

|Mij |2 =
D2

op

L
~

2ρωop

(
nPH +

1

2
± 1

2

)
Fij . (7.32)

According to this expression, like for acoustic phonons, the phonon matrix element

does not dependen on the phonon wave vector qz, being therefore modeled as an inelastic

isotropic mechanism. Again, our main concern is the calculation of the form factors

for the available transitions, in this case, the levels with energies Ej = Ei ± ~ωPH (the

plus and minus signs are for emission and absorption respectively). Then, the complete

scattering rate for emission and absorption of optical phonons can be written as:

Sop,em
ij =

2π

~

D2
op

L
~

2ρωop
(nPH + 1)Fij δ(Ei + ~ω − Ej) , (7.33)

Sop,abs
ij =

2π

~

D2
op

L
~

2ρωop
nPHFij δ(Ei − ~ω − Ej) . (7.34)

7.4.4 Alloy Disorder

In alloy semiconductors, such as ternary III-V and SiGe, there is some randomness in

the distribution of atoms in the lattice due to the substitution of some species of atoms

by others. For Si1−xGex, this randomness consists in the substitution of the atoms of

a pure Si lattice by atoms of Ge to a certain molar fraction x. In the case of ternary

III-V alloys with zinc blende structure, the scenario is different since the pure lattice
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already has two different types of atoms. The zinc blende lattice can be imagined as

two interpenetrating fcc lattices, corresponding to the elements of the compound. The

ternary alloy only substitutes the atoms of one of these fcc lattices by a different one.

For example, In1−xGaxAs is composed by InAs and GaAs that share the As. The

ternary compound alloy consists in a fcc of pure As interpenetrated by a fcc composed

by a mixture of In and Ga atoms in a ratio determined by the molar fraction x.

The random distribution produces a perturbation potential that scatters the carri-

ers in their movement, the so-called Alloy Disorder (AD) scattering. To address this

problem, the most common approach is the virtual crystal approximation, which as-

sumes a periodic potential produced by a virtual lattice of average atoms, i.e., the

potential is the mean of the potential produced by both types of atoms. An statistical

study can be found in Refs. [13, 91]. The resulting scattering mechanism is considered

to be elastic and the matrix element is written as:

|Mij|2 =
2π

~
x(1− x)∆U2ΩFij , (7.35)

where Ω is the volume of the unit cell.

Regarding to the AD deformation potential ∆U , there is a certain controversy on

its definition. Some authors consider it as the difference between the band edges of

the different components of the alloy [13], while others try to physically explain its

origin using atomistic models [91]. In other cases, it is simply considered as a fitting

parameter, adjusted to reproduce experimental data [109].

7.5 Mobility calculation

As described in Section 7.2, under the assumption of small displacements from equilib-

rium, the MRT approximation can be employed and the distribution function fn(r, kz, t)

used to calculate different macroscopic quantities.The mobility µ can be estimated us-

ing these quantities by means of the Kubo-Greenwood formula [50, 71]. In this section,

we gather the necessary expressions for the mobility calculation in confined systems.

Assuming a linear relation between the current and the electric field (which is at the

basis of the MRT approach), the current density of the n-th subband can be written as

Jn = qPI,nµnFz , (7.36)
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where PI,n is the hole inversion density of the n-th band.

We can define the current density per unit length for the n-th subband as the

contribution of all the initial states i = |n, kz〉 in that subband [40] as

Jn = ∓ q

L

∑

kz

vn(kz)fn(kz) = ∓ q

L

∑

kz

vn(kz)δfn(kz) , (7.37)

where fn(kz) = f0(En(kz))+ δfn(kz) and the product vn(kz)f0(En(kz)) vanishes due to

its odd symmetry with kz, which is coherent with the fact that there is no current flow at

equilibrium, and it depends exclusively on the variation of the probability distribution

induced by the external field. Due to the continuity of the subband n in kz, the sum

must be converted to an appropriate integral by using the general prescription for 1D∑
kz

= L/2π
´

dkz [40] , resulting into:

Jn = ∓ q

2π

ˆ ∞

−∞
vn(kz)δfn(kz) dkz . (7.38)

Substituting Eq. (7.38) in Eq. (7.18) we obtain

Jn =
q2

2π
Fz

ˆ ∞

−∞
v2n(kz)τn(kz)

∂f0(En(kz))

∂E
dkz . (7.39)

Finally, we get the mobility µn for the n-th subband from Eqs. (7.39) and (7.36):

µn =
q

PI,n2π

ˆ ∞

−∞
v2n(kz)τn(kz)

∂f0(En(kz))

∂E
dkz , (7.40)

which is the Kubo-Greenwood formula for the mobility of a 1D carrier gas [50, 71], or

after operating on the derivative:

µn =
q

PI,n2πkBT

ˆ ∞

−∞
v2n(kz)τn(kz)f0(En(kz))[1− f0(En(kz))] dkz , (7.41)

It is interesting to express Eq. (7.41) in terms of the energy. To do this, it is

necessary to perform a change of variable using the relation dkz = dE/~vn(kz)

µn =
q

PI,n~πkBT

ˆ En

−∞
vn(E)τn(E)f0(E)[1− f0(E)] dE . (7.42)

This change of variable is only valid when integrating monotonic functions. Then,
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Figure 7.3: Representation of the intersecting points of subband E2

with the energy E for non monotonic subbands. Vertical dotted lines
represent the intervals for which E2 is monotonic.

a monotonic dispersion relations En(kz) is required. This is the case for example in

EMA for only the positive (or negative) values of kz. So that, the integral in Eq. (7.42)

is performed only in the positive kz using
´∞
−∞ dkz = 2

´∞
0 dkz.

Notwithstanding, the band structure in k·p is non monotonic since for a certain

value of energy, En may be defined for different values of kz, as shown in Fig. 7.3. Then,

Eq. (7.41) must be split in subintervals Ka of kz where the dispersion is monotonic

µn =
q

PI,n~πkBT

Ka∑ˆ

vn(E)τn(E)f0(E)[1− f0(E)] dE . (7.43)

Since (7.43) is going to be solved numerically for discrete values of E, we can express

it in a more intuitive manner as

µn =
q

PI,n~πkBT

ˆ En

−∞



En(kz)=E∑

kz

|vn(kz)τn(kz)|


f0(E)[1− f0(E)] dE , (7.44)

which means that the summation |vn(kz)τn(kz)|, for a certain energy E must be per-

formed on the kz values such that the En(kz) = E. The absolute value is needed to

take into account the change on the sign of the integral limits in each Ka subinterval.
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7.6 Results

This section is focused on the assessment of the hole mobility in SiGe NWs. Its interest

stems from the fact that SiGe is postulated as a potential alternative to pure silicon

technology for high performance pMOS devices [93]. Moreover it will be useful to test

and show the performance of the mobility simulator implemented in this thesis. The

main results of this work were published in [88].

It has been experimentally demonstrated that SiGe produces a boost in the hole

mobility compared with pure Si, while keeping the compatibility with the Si technology.

However, the behavior of SiGe NWs still has to be studied. As mentioned in Sec. 7.4.4,

for this compound material there is an additional source of scattering with respect to

the pure materials, the alloy disorder, which can counteract the hypothetical benefits

that alloying would provide on the mobility due to their lower effective mass. Hence, our

aim in this section is to assess the influence of the AD scattering on the hole mobility

of Si1−xGex NWs as a function of the Ge molar fraction x.

To calculate the band-structure and the envelope eigenfunctions, we have used the

self-consistent solution of the Poisson equation and the six-band k·p method in the

cross-section of a cylindrical NW with a diameter of 10 nm, and three different transport

orientations: [001], [011] and [111]. The band structures for pure Si and Ge are shown

in Fig. 7.4, where low (PI = 1010cm−2) and high inversion (PI = 5 × 1012cm−2) are

represented in solid and dashed lines respectively 2.

The mobility is calculated as described in this chapter. The scattering mechanisms

accounted for are phonons (acoustic and optical) and AD. To evaluate the MRT for

acoustic phonons, we have considered the bulk phonon model, which has been proven

to deviate only slightly from the results provided by the confined phonons model [32].

In SiGe, there are three different optical modes to be considered, which stem from

the vibration of the different pair of atom species Si-Si, Ge-Ge and Si-Ge. These modes

are weighted by the probability of occurrence of each pair on the lattice [16]. Therefore,

the MRT must be calculated for these three types of phonons, averaging them according

to their probability of appearance [42].

AD is also considered as an elastic mechanism and the relaxation time is calculated

in a similar way to acoustic phonons, as described in Sec. 7.4.4. The AD scattering

2The charge per unit of surface is calculated as the linear charge density in a cross-section divided
by its perimeter.
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Figure 7.4: Bandstructure for Si (left side) and Ge (right side) NWs
with a diameter of 10nm along the [001] orientation. Low inversion
is represented in solid lines whereas high inversion is represented in
dashed lines (PI = 5× 1012cm−2). The energy reference is the top of
the valence band edge in each case.

rate has been modeled using different parameters reported in the literature. As it

was previously mentioned, there is a strong controversy on the definition of the ∆U

parameter and different values can be found in the literature [42]. Due to the lack

of comprehensive study of SiGe NWs, we have considered interesting to carry out

simulations using different values of ∆U to analyze its influence on the total hole

mobility as a function of the Ge molar fraction x.

1Ref. [42]
2Ref. [16]

Parameter Literature Our value

Dac (eV) 7.12 + 0.98x 1 7.12 + 2.8x
Dop (108eV cm−1) 13.24 − 1.07x 1 –
~ωSi-Si (eV) 61.22 –
~ωSi-Ge (eV) 45.02 –
~ωGe-Ge (eV) 37.02 –

Table 7.1: Parameters of the Si1−xGex alloy used for the calculation
of the relaxation times.
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First of all, the simulator has been benchmarked against results found in the litera-

ture for similar devices made on pure Si and Ge. To do this we have used the parameters

presented in Table 7.1, where we have just modified the acoustic deformation potential

to adjust our simulations with those presented in Ref. [101] for Ge. The results, shown

in Table 7.2, are in good agreement with those provided by Niquet et al. in Ref. [102]

for pure Si, and in Ref. [101] for pure Ge. Those results were calculated using the Tight

Binding method for obtaining the band structure of the device. The comparison with

these results validates the use of the k·p method to describe the electrostatic properties

of Si and Ge NWs.

For the chosen parameters, however, there is a noticeable difference between these

results and those found in [99], which were also calculated using the TB method. A

better fit with them can be obtained by choosing a larger acoustic deformation constant

for Si, e.g., Dac = 9.2eV [109], as it will be shown later.

We have depicted in Fig. 7.5 the hole mobility as a function of the Si NW diameter.

As can be seen, the performance of the [111]-oriented NWs is much higher than for the

other orientations. This is mainly due to their lower effective mass, as it was already

demonstrated by other authors [99, 102], and also corresponds to our observations in

Sec. 2.3. Moreover, the increase on the mobility for the [011] and [111]-oriented devices

with the reduction of the diameter is also related to the reduction of their corresponding

effective mass, which was depicted in Fig. 6.8.

7.6.1 Form Factors. Overlap integral calculation

The accurate calculation of the overlap integrals Fi,j in Eq. (7.31) may be troublesome

because of the high computational cost of operating with all the envelope functions.

Therefore, some approximations are usually made. The simplest one is to consider

Literature Our results
Orientation Si (Refs. [102],[99]) Ge (Ref. [101]) Si Ge

[001] 245, 75 1175 300 1297
[011] 435, 145 2030 373 2059
[111] 655, 275 2790 604 2901

Table 7.2: Comparison of the mobilities (in cm2 V−1 s−1) for pure
Si and Ge with the results of other authors. The simulations are
performed for cylindrical, 10 nm diameter, NWs.
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Figure 7.5: Mobility for Si NWs of different diameters calculated
with our simulator (solid lines with solid symbols). The results pro-
vided for Rs = 10nm in Ref. [101] are also included as larger filled
symbols. The three standard orientations [001],[011], and [111] are
represented as squares, triangles, and circles.

this overlap integral as a constant, depending on whether the transition between states

is considered intersubband (Fi,j = 1/S) or intrasubband (Fi,j = 9/4S) (e.g. in Ref.

[90]). Another approach is to use the envelope function calculated at kz = 0 for the

whole subband, i.e, Fi,j = Fn,n′ (0, 0) [40]. A priori, there are no physical arguments

supporting the validity of any of these approximations.

To assess the impact of these approaches we have performed simulations considering

the coupling between the initial and final states as they are provided by the band

structure calculation, and compared these results with those obtained from the two

aforementioned approaches.

Figure 7.6 shows the overlap integrals calculated for a Si0.5Ge0.5 NW of 10 nm di-

ameter at a low hole density. Two orientations are considered, [001] on the left column

and [111] on the right column. The first (second) row shows the overlap integral of the

first (second) subband with the first four subbands as a function of k′z. The intrasub-

band overlap integrals are represented with a line thicker than those corresponding to

intersubband ones. The two approximations are also depicted: dashed lines for the con-

stant approximation, and circles highlighting the value Fn,n′ (0, 0) used in the second
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Figure 7.6: Form factors calculated for a Si0.5Ge0.5 NW of 10 nm
diameter at low inversion, for [001] (left) and [111] (right) device ori-
entation. The first (second) row shows the overlap integral of the first
(second) subband with the first four subbands as a function of k′z. The
dashed lines represent the constant approximation, while the circles
highlight the value Fn,n′(0, 0).

approximation.

As can be seen in that Figure, the evolution of the overlap integral with kz can not

be considered as a constant. The weight of the intrasubband transition decays quickly

for values away from kz = 0. This effect is neglected in both approximations due to

the lack of knowledge about the evolution of Fi,j with kz. In general, for the cases

represented, the form factor in intrasubbands transitions is overestimated, whereas the

intersubband transitions are in some cases overestimated and underestimated in others.

Anyhow, resulting from this misrepresentation of the overlap integrals as a function of

kz, there is an unpredictable weighting of the transitions. Obviously, the so-called

constant approximation is more incorrect since its estimation of the intrasubband and

intersubband overlap integrals does not match the actual value at any point.

Let us now remark that for the representation in Fig. 7.6, the subbands evolution

in kz has been carefully chosen so as to reduce errors induced by a misrepresentation

of the subband structure, i.e., the subband crossing points have been calculated using
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Figure 7.7: Mobility calculated for a Si0.5Ge0.5 NW using three
models: considering all the form factors (solid line), approximating
by constants the intersubband and intrasubband terms (dashed line)
and considering that the wave function remains constant (dotted line)
to the value obtained for kz = 0. Circles are used to distinguish the
[111] orientation from the [001] one.

the procedure in Sec. 6.1. If these cautions are not taken, the uncertainty is even

greater, since the choice of the intrasubband or intersubband overlap integral can be

erroneous if a crossing point is not detected properly. Moreover, the treatment of the

intrinsic two-fold degeneracy of the subbands due to the spin, makes the problem also

cumbersome. It is evident that the transition from a subband to its degenerate is an

intersubband transition with small probability, and thus the overlap integral should be

negligible. The problem is that the wave functions are not unequivocally determined

for an state and its degenerate, since all their linear combinations are also solutions of

the problem. Therefore, when one tries to track the evolution of a subband, the wave

function provided by the k·p method for a kz value may differ drastically to the wave

function of the same subband at kz+∆kz, as it is the result of a different mixing of the

degenerate wave functions. These issues do not have any influence in the case where

all the overlap integrals are calculated, since each transition is evaluated individually.

However, in both of the two approximations presented before, we had to account for

them carefully, in order to reduce the uncertainty in the mobility results.

Then, in order to address the effect of the different approximations on the total

mobility, we proceed to calculate the hole mobility in a Si0.5Ge0.5 NW with 10 nm di-
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ameter making use of the three aforementioned models. Figure 7.7 shows the total

mobilities calculated for the different approaches, and we can assert that none of the

approximations fit the values of the mobility obtained considering the detailed calcu-

lation of the form factors. Whereas the Fn,n′ (0, 0) approximation seems to follow the

curve for [001] NWs, it clearly fails in the [111] orientation. The constant approach

(dashed line) severely underestimates the hole mobility for both orientations. This un-

certainty of the mobility results stem from the overestimation of the matrix element of

the intrasubband and the intersubband transitions, which depends on the device ori-

entation and the wave vector. Hence, these crude approximations limit the capability

of the simulator to predict the performance of the device under study.

We can assert that, although these approximations provide a much more simple

and efficient calculation of the mobility, they are not based on physical arguments

and therefore preclude the use of these simulators to predict the device performance.

The uncertainty in the results might even compromise the benefits achieved by using

accurate models for the band structure calculation. Therefore, these approximations

must be avoided as far as possible to achieve reliable results for the mobility.

7.6.2 Phonon-limited mobility

Once we have analyzed the non negligible effects of the different approaches used to

calculate the form factors, let us now take a deeper insight on the phonon-limited

mobility of Si and Ge NWs, where we have used the accurate procedure to guarantee

the best results.

As shown in Fig. 7.7, the mobility is roughly constant at low inversion charges and

quickly decays for high densities. However, according to Fig. 7.4, the mean effective

mass for high inversion seems to be dominated by the light holes, and a higher mobility

could be expected. Contrarily, the behavior of the mobility is just the opposite. To

explain this situation, a thorough study on the different components of the mobility

should be carried out.

Figure 7.8 illustrates the total mobility and the contribution of the mobilities limited

by the acoustic and optical phonons in Si and Ge NWs for the [111] orientation. It

can be observed that for high inversion both types of phonon-limited mobilities drop

quickly. However, the rate of decay is mainly determined by the optical phonons.As

a consequence, the Ge NWs undergo a high degradation of the hole mobility for high

inversion charges, which might counteract the benefits of a lower effective mass.
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Figure 7.8: Mobility broken down in the contribution of acoustic
phonons (dashed lines) and optical phonons (dash dot) for Si (left
plot) and Ge (right plot) 10nm NWs along the [111] orientation. Lines
marked with circles stand for the acoustic phonon limited mobilities
and the corresponding total mobilities calculated for a higher Dac

(9.2eV for Si and 11eV for Ge as in Ref. [109]).

Nonetheless, usually a larger value of the acoustic deformation potential is needed

to fit the experimental mobility data in highly confined systems, and then the previous

conclusions should be revised. This fact could reduce the relative importance of optical

phonon scattering with respect to other mechanisms. To check it, we have represented

in the same Figure (marked with circles) the mobility calculated using the Si and Ge

acoustic deformation potentials employed in Ref. [109]. As can be seen, the mobility

is reduced as expected due to the higher acoustic phonon scattering rate. However,

the influence of the optical phonons is still quite relevant, and the total mobility is

degraded a general degradation but still exhibit the same behavior. Consequently, a

noticeable degradation of the mobility for high inversion densities can be expected for

Ge, such that its value drops more than in Si.

7.6.3 Alloy disorder (AD) influence

Let us focus now on the influence of the AD on the hole mobility of Si1−xGex NWs. As

already mentioned, the alloying of Si with Ge is expected to improve the performance

with respect to pure Si NWs, since Ge exhibits a lower effective mass and thus a larger

mobility. However, when alloying, there is an additional scattering mechanism which

is not present in the pure materials, the AD. In this section we study the influence of
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Figure 7.9: Total hole mobility in 10 nm cylindrical SiGe NWs at
low hole inversion, [111] orientation, as a function of the Ge molar
fraction. Five values of ∆U are used: 0 eV (◦), 0.2 eV [109] (�),
0.513 eV [132](♦), 0.6 eV [42](∗), and 0.75 eV [91] (×).

this mechanism on the total mobility.

Figure 7.9 depicts the dependence of the hole mobility on the Ge molar fraction, for

[111]-oriented SiGe NWs and low inversion charge. The following values of ∆U were

considered: 0 eV (circles), 0.2 eV [109] (squares), 0.513 eV [132] (diamonds), 0.6 eV [42]

(asterisks), and 0.75 eV [91] (crosses). In this figure we can see that ∆U has a strong

influence on the total mobility behavior. For the two smallest values, the alloy disorder

is lightweight compared to the phonon scattering, and, therefore, the mobility shows a

monotonic (quasi linear) increase. This scenario does not seem very realistic since it has

been widely studied and proven that the alloy scattering affects strongly the mobility

in SiGe [24, 42, 48]. Nevertheless, for the rest of ∆U values, we observe a behavior

more similar to that measured in bulk SiGe, where the alloy scattering dominates in the

balanced alloys, counteracting the hypothetical improvement of the mobility produced

by the reduction of the hole effective mass. In fact, for low Ge concentration alloys

there is a decay on the mobility compared to the pure Si as it happens in bulk and

inversion layers. Thus, high Ge molar fractions, at least larger than 0.6, are needed to

achieve an actual improvement on the mobility.

Next, we will use ∆U = 0.6eV and study the behavior at low and high inversion

charge for the three channel orientations (see Fig. 7.10). As can be seen, at high

inversion charge the mobility undergoes a strong degradation compared to the results
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Figure 7.10: Total mobility in 10 nm cylindrical SiGe NWs of
different orientations for a fixed ∆U = 0.6eV in high inversion
p = 5× 1012cm−2 (solid line) and low inversion p = 109cm−2 (dashed
line).

achieved at low inversion (dashed lines), particularly for rich Ge alloys. The origin of

this degradation has to be traced on the higher influence of optical phonon scattering,

as discussed in the previous Section.

This reduction of the hole mobility for high inversion reduces severely the advantage

of using SiGe alloys or even pure Ge NWs. In this scenario, the actual potential of

mixing both elements lies on the possibility of adding strain, reducing the hole effective

mass and the scattering due to intrasubband transitions. This technique has been

proven experimentally to enhance the NW performance [146]. An in-depth study of

this topic is planned as a continuation of this work.

7.7 Conclusions

In this Chapter, we have introduced the Boltzmann Transport Equation as the mathe-

matical tool necessary to describe the transport of carriers in NWs. So as to solve the

BTE, the momentum relaxation time approximation is employed. This approximation

simplifies the problem to the calculation of the scattering rates, and is intrinsically

related to the distribution of probabilities for each state in the system. Then, the

Kubo-Greenwood is used to calculate the mobility in the device from the MRT.
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Finally, a specific case has been considered: the study of the hole mobility in SiGe

NWs limited by phonons and alloy disorder. It was demonstrated that the influence

of the AD is dominant at low inversion charge, whereas for high inversion the optical

phonon contribution degrades considerably the hole mobility for any Ge molar fraction,

reducing the beneficial effect of the alloy.

We have also given an insight in the calculation of the overlap integrals, needed

to evaluate the scattering rates. Two approaches, that neglect the dependency of the

wave function with kz to reduce the computational cost, have been compared with our

full band procedure, depicting a high dispersion of the calculated hole mobility values.

Therefore, we conclude that an accurate estimation of the hole mobility in SiGe

NWs can be affected by different sources of uncertainty that can be reduced carrying

out accurate calculations as those shown in this manuscript.
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Chapter 8

Conclusion and future work

8.1 Conclusion

The main objective of this PhD Thesis has been the study of the electrostatic and

transport properties of MOSFET devices based in nanowires. The research has been

focused on holes as the charge carriers, as they have been usually circumvented due to

their inherent difficulties.

In this context, the main contributions of this work are listed next:

1. Implementation of the k·p method for different scenarios: two band, six band

and eight band. They have been applied to estimate the conduction and the

valence bands in diamond semiconductors (Si, Ge, and SiGe) and both of them

simultaneously for zinc blende semiconductors (III-V compounds). A spurious

free solution for the eight band k·p method has been achieved by modifying the

parameters to keep the ellipticity of the system.

2. Development of an electrostatic simulator which implements the self-consistent

solution of the Poisson and Schrödinger equations in the cross-section of the NWs.

The Schrödinger equation is solved by means of the k·p method restricted to two

dimensional confined systems using the envelope function approximation. The

simulator is preferentially designed to achieve a satisfactory description of the

holes.

3. Comparison of the k·p results obtained for NWs with Tight-Binding simulations.

The k·p method suffers the limitation of the lack of an accurate description of
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satellite valleys. This drawback can be overcome by considering the effective

mass approach for these satellite valleys. In general, a good agreement has been

achieved between both descriptions although slight differences are found. This

fact was expected as there is a large number of parameters which are empirically

estimated. As a consequence, differences are justified and can be reduced by an

appropriate tunning of the parameters.

4. Study of the electrostatic results provided for NWs made of Si, Ge, and III-

V semiconductors from 3nm to 20nm. Different orientations, geometries and

materials were considered. The evolution of the band structure as a function of

the device size in Si and Ge NWs was shown. As the diameter is reduced, the

LH subbands split from the HH ones. For the smallest sizes the LH subbands

predominate with respect the HH, and, as a consequence, a reduction of the mean

effective mass is expected. This effect is more accentuated in Si devices than in Ge

ones, and similar mean effective masses can be achieved for the smallest devices,

specially along the [111] orientation.

5. Assessment of the self consistent solution and also of the dependence of the band

structure on the gate voltage. It was demonstrated that the mean effective mass

increases at high inversion since the HH states gets more populated. Regarding

the hole density, a strong anisotropy has been observed for [011] oriented NWs,

whereas, for the [001] and [011] orientations, the anisotropy is much smaller.

6. Analysis of the hole linear density and the gate capacitance for Si and Ge NWs.

A higher capacitance for the Si NWs has been reported. A study on Si1−xGex

NWs has depicted the progressive variation of the electrostatic properties as a

function of the Ge molar fraction.

7. Solution for the subband crossing issue based on the group velocity, which has

been calculated from the Hamiltonian rather than from the numerical derivative.

8. Calculation of the carrier mobility for a 1D gas based on the linearization of the

Boltzmann Transport Equation (BTE) using the momentum relaxation time ap-

proximation (MRT). Then, the mobility is calculated using the Kubo-Greenwood

formula. Bulk phonons (acoustic and optical) and alloy disorder scattering mech-

anisms have been implemented.

9. Calculation of the hole mobility in Si, Ge and Si1−xGex nanowires. Ge NWs
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exhibit better mobility than Si in the low inversion regime. However, for high

inversion this difference is severely mitigated. In Si1−xGex devices, it was demon-

strated that the influence of the AD is dominant at low inversion, whereas for

high inversion the optical phonon contribution degrades considerably the hole

mobility for any Ge molar fraction, reducing the beneficial effect of the alloy.

10. Assessment of the impact of using two common approaches for the calculation

of the overlap integrals that neglect the dependency of the wave function with

k. The two approximations depict a high dispersion of the hole mobility values

compared with our full band procedure.

8.2 Future Work

The simulation tools implemented in this Thesis exhibit a great potential for future

works and our aim is to exploit it with further studies on the matter. There is still a

lot of work to do concerning NWs and we think these simulators are letting us continue

with the research in that field.

The future work planning is described on the following lines:

1. The study of the carrier mobility will be completed with the inclusion of other

scattering mechanisms such as: surface roughness, coulomb dispersion, and polar

optical phonons. Their influence on the carrier mobility as a function of the

geometry, size and applied bias is of major relevance in order to determine the

feasibility of these devices for future technological nodes.

2. We will perform further investigations concerning the use of a full band descrip-

tion, where all the wave functions corresponding to different subbands and wave

vectors are employed to achieve an accurate calculation of the electrostatic and

the transport problem. Since the storage of the wave functions and the operation

with them are the more limiting issues in the simulator, it is quite important to

assess the limits of different approaches commonly used in the literature to reduce

the computational burden.

3. A thorough study of the effect of strain on the device performance will be ad-

dressed. This task should be linked with a realistic distribution of strain along
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the channel of the device as it has been demonstrated that strain depicts a non-

uniform distribution as the dimensions are shrunk to the nanometer scale.

4. Core-shell structures will be studied using the k·p simulator. These devices are

NWs composed by different layers of semiconductor materials and are promising

to provide higher currents as they reduce the surface roughness and produce

strained channels [11].

5. We will develop physically based compact models which fit the simulation data.

These simulators would be useful to be included in circuit simulators.
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Appendix A

Perturbation theory

The perturbation theory separates the total Hamiltonian Ĥ into an unperturbed one

Ĥ0, the solutions of which are known, and a perturbed one Ĥ1. The total solutions for

Ĥ, labeled as umk(r), are sought in terms of the solutions of Ĥ0, um0(r), which naturally

form an orthonormal basis of functions, if their eigenvalues are not degenerate1:

unk(r) =
∑

m

cm,n(k)um0(r) (A.1)

So as to seek the solutions of the system, a parameter λ is included to decouple the

solutions in different orders2:

(
Ĥ0 + λĤ1

)
unk =Wnkunk (A.2)

For this system, the solutions in a polynomial form are sought:

unk = u
(0)
nk + λu

(1)
nk + λ2u

(2)
nk + λ3u

(3)
nk + . . . (A.3)

Wnk =W
(0)
nk + λW

(1)
nk + λ2W

(2)
nk + λ3W

(3)
nk + . . . (A.4)

Introducing Eqs. (A.3) and (A.4) into (A.2) and rearranging terms, it reads:

1In the case that there are degenerate eigenvalues, still a set of orthonormal function can be found
among the solutions

2Hereinafter, we drop the explicit dependency in r for the sake of a simpler notation.
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(
Ĥ0 −W

(0)
nk

)
u
(0)
nk

+λ
(
Ĥ0 −W

(0)
nk

)
u
(1)
nk

+λ2
(
Ĥ0 −W

(0)
nk

)
u
(2)
nk

+λ3
(
Ĥ0 −W

(0)
nk

)
u
(3)
nk

+ . . .

=

0

+λ
(
W

(1)
nk − Ĥ1

)
u
(0)
nk

+λ2
[(
W

(1)
nk − Ĥ1

)
u
(1)
nk +W

(2)
nk u

(0)
nk

]

+λ3
[(
W

(1)
nk − Ĥ1

)
u
(2)
nk +W

(2)
nk u

(1)
nk +W

(3)
nk u

(0)
nk

]

+ . . .

(A.5)

The different values of u
(x)
nk and W

(x)
nk can be obtained by equaling the same order

terms. The total solution is finally obtained for λ = 1. The solution to the perturbed

system is usually achieved by only considering the first order solutions and neglecting

the superior orders. Next we present the first solutions up to second order.

Zeroth order solution It corresponds to the terms with λ = 0, and the solutions

are straightforwardly calculated as:

(
Ĥ0 −W

(0)
nk

)
u
(0)
nk = 0 , (A.6)

W
(0)
nk = En0 , (A.7)

u
(0)
nk = un0 . (A.8)

These solutions are those of the unperturbed system and do not provide new infor-

mation.

First order solution The equation for the terms of first order is:

(
Ĥ0 −W

(0)
nk

)
u
(1)
nk =

(
W

(1)
nk − Ĥ1

)
u
(0)
nk (A.9)

As aforementioned, the solutions, for any i-th order solution, are sought as coordi-

nates in a basis formed by the unperturbed solutions:

u
(x)
nk =

∑

m

c(x)m,num0 , (A.10)

Thus, the coefficients c
(x)
m,n, which are the projection of the solution u

(x)
nk in the basis

function um0, are needed:
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c(x)m,n = 〈um0|u(x)nk 〉 . (A.11)

These coefficients can be calculated by projecting Eq.(A.9) in each basis function:

〈un0|Ĥ0|u(1)nk〉 −En0 〈un0|u(1)nk〉 =W
(1)
nk − 〈un0|H1|un0〉 , (A.12)

where u
(1)
nk can be expanded as in Eq. (A.10), and we can use the relationship 〈um0|Ĥ0|un0〉 =

En0δmn.

Then, for m = n, the first order energy term can be obtained as:

W
(1)
nk = 〈un0|Ĥ1|un0〉 . (A.13)

This term might vanish for some perturbations, such as for the k·p one, since Ĥ1

is related to the momentum, which applied in Eq. (A.13) yields 0.

The coefficients c
(1)
m,n, for m 6= n, are obtained as:

c(1)m,n =
〈um0|Ĥ1|un0〉
Em0 − En0

. (A.14)

Consequently, the wave function approximation of first order reads:

u
(1)
nk =

∑

m6=n

〈um0|Ĥ1|un0〉
Em0 − En0

um0 . (A.15)

Second order solution When the first order solution for the energy either vanishes

or is not accurate enough to describe the total solution, the second order solution is

needed:

(
Ĥ0 −W

(0)
nk

)
u
(2)
nk =

(
W

(1)
nk − Ĥ1

)
u
(1)
nk +W

(2)
nk u

(0)
nk . (A.16)

Working as in the first order solution, Eq. (A.16) is projected on the basis functions.

Now, u
(2)
nk is the function expanded as in Eq. (A.10), and u

(1)
nk is substituted using Eq.

(A.15).

Then, for m = n, the second order energy term reads:
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W
(2)
nk =

∑

m6=n

∣∣∣〈un0|Ĥ1|um0〉
∣∣∣
2

Em0 − En0
(A.17)

Although the second order functions can also be obtained for m 6= n, their com-

plexity makes them not useful in most of the cases.

Therefore, the energies of the perturbed system can be approximated as:

Wnk ≈W
(0)
nk +W

(1)
nk +W

(2)
nk = En0 + 〈un0|Ĥ1|un0〉+

∑

m6=n

∣∣∣〈un0|Ĥ1|um0〉
∣∣∣
2

Em0 −En0
. (A.18)

As can be seen, the evolution of the non perturbed energy level n0 into nk depends

on the coupling of the initial state n0 with the rest of the states m0 by means of the

perturbation hamiltonian Ĥ1. However, not all the states contribute equally to the final

solution, being those states with closer energy more relevant due to the term Em0−En0
in the denominator of the last term of Eq. (A.18).

A.1 Perturbation theory for degenerate states

If there are states with the same energy but different wave function forms (degener-

ate states), their contribution to Eq. (A.17) would be undetermined. A priori, the

eigenfunctions associated to two degenerate states might not be orthonormal, since a

subspace of solutions is formed with all their linear combinations. Therefore, the actual

unperturbed function associated to a degenerate state which might evolve to non degen-

erate states, is unknown. However, a new set of orthonormal eigenfunctions |n〉′ can be

found which fulfills this condition. These eigenfunctions are a linear combination of the

N eigenfunctions |1〉, |2〉,..|N〉, which share the same eigenstate E1 = E2 = · · · = EN ,

as in Eq. (A.19).

Consequently, the basis functions can be divided in two classes: one class consists of

the N degenerate states, and the second class, consists of the rest of the remote states.
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Zeroth order solution The degenerate states belonging to the new set of eigenfunc-

tions, can be expressed as a sum of the old ones:

|n〉′ =
N∑

m=1

|m〉 〈m|n〉′ (A.19)

The remote states remain unchanged and also do the energies.

First order solution Using a similar reasoning as for the non degenerate pertur-

bation theory, considering the evolution of a degenerate state, the first order equation

reads:

(
Ĥ0 −W

(0)
nk

) N∑

m=1

|m〉 〈m|n〉′ =
(
W

(1)
nk − Ĥ1

) N∑

m=1

|m〉 〈m|n〉′ (A.20)

Projecting that equation in a degenerate function |j〉:

W
(1)
nk 〈j|n〉′ −

N∑

m=1

〈j|Ĥ1|m〉 〈m|n〉′ = 0 for |j〉 in N (A.21)

〈j|n〉′ =
N∑

m=1

〈j|Ĥ1|m〉
E1 − Ej

〈m|n〉′ for j /∈ N (A.22)

Now, the first order energy W
(1)
nk is computed as a N -coupled equation system. The

calculation for the rest of non degenerate states is not affected, and is performed as in

the previous section.

For the k·p perturbation, the first order energy also vanishes, and therefore the

second order perturbation must be calculated.

Second order solution When projecting a |j〉 function on the second order equation,

Eq. (A.16), the second order energy and the coefficients can be calculated as an N -

coupled equation system, which must be solved for the different eigenvalues W
(2)
nk and

for the coefficients of |n〉′, which are the eigenvectors of the system:
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N∑

l=1

Aln′ 〈l|n〉′ −W
(2)
nk 〈j|n〉′ = 0 para j ∈ N , (A.23)

where the matrix elements Aln′ are calculated as the coupling of all the remote states

by means of the perturbation:

Aln′ =
∑

α/∈N

〈j|Ĥ1|α〉 〈α|Ĥ1|l〉
E1 − Eα

(A.24)
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Löwdin perturbation theory

The Löwdin perturbation theory was postulated in [78]. This theory aims at expressing

the eigenfunctions of a Hamiltonian as the coefficients in a basis functions of a reduced

subspace A, and another subspace B. The main idea is that the states of the class A

are more relevant than those in class B, which can be treated as remote states that

contribute to the total solution as corrections.

Lets consider a generic Hamiltonian:

Ĥφ = Eφ , (B.1)

whose eigenfunctions φ can be expressed in a basis φm0 which forms a space of functions

S. This space can be split into the subspaces A, the reduced subspace, and B, the

remote states subspace. Then the solutions are:

φ =

A,B∑

m

cmφm0 . (B.2)

Substituting Eq. (B.2) into Eq. (B.1) and projecting in a state φn0:

A,B∑

n

Ĥmncn = E cm , (B.3)

A,B∑

n 6=m

Ĥmncn = (E −Hmm) cm , (B.4)
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where the Hamiltonian matrix elements are

Hmn = 〈φm0|Ĥ|φn0〉 . (B.5)

Therefore, according to Eq. (B.4), a coefficient cm depends on the rest as:

cm =

A∑

α,m6=α

Hmα

E −Hmm
cα +

B∑

β,m6=β

Hmβ

E −Hmm
cβ (B.6)

By substituting all the coefficients β ∈ B in the Eq. (B.6), one can express the

coefficients cm with m ∈ A in terms of only coefficients belonging to A. Thus, the

system for the α coefficients is reduced to:

A∑

α

Umαcα = E cm , m ∈ A (B.7)

with

Umα ≡ Hmα +
B∑

β,β 6=m

HmβHβα

E −Hββ
+

B∑

β,β 6=m

B∑

γ,γ 6=m

HmβHβγHγα

(E −Hββ)(E −Hγγ)
+ · · · m ∈ A

(B.8)

As can be seen, the hamiltonian has a term accounting for the direct coupling of

the class A states Hmα, whereas the class B states are considered as remote ones in a

similar manner than in the regular perturbation theory.

The rest of coefficients, those corresponding to class B states, can be calculated in

terms of the coefficients of class A :

cm =

A∑

α

Umα
E −Hmm

cα . m ∈ B (B.9)

These coefficients, if corresponding to remote states, are expected to be negligible,

since they are divided by the difference of energies. Therefore, an approximated solution

can be obtained by only considering the coefficients of class A states. They are obtained

from the solution of the more reduced system in Eq. (B.7), which is a correction of the

original hamiltonian matrix elements.

Unfortunately, the system in Eq. (B.7) cannot be directly solved, since the coeffi-
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cients depend in turn on E. Therefore, some strategies must developed to eliminate this

dependence [75] to express the coefficients in terms of the known unperturbed energies.
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Strain matrix calculation

In this Appendix, the calculation of the strain matrix ǫ from the stress σ of the lattice

[135] is addressed. The stress is the result of applying external forces to the structure

which deform the lattice. The two principal types of deformations are uniaxial and

biaxial strain.

C.1 Uniaxial strain

The uniaxial stress along an arbitrary direction consists in the application of a pressure

of magnitude P along that direction.

Firstly, we adopt a coordinate system (x′, y′, z′) referred to the strain, in which the

x′ axis is parallel to the stress direction. This coordinate system is related to the crystal

reference system (x, y, z) by a rotation U

U(φ, θ) =




cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ


 , (C.1)

where θ and φ are the polar and azimuthal angles of the stress direction relative to the

crystal reference system. In the primed coordinate system, the stress tensor has only

one non-zero component, σ′xx = P .

When uniaxial stress is applied along one of the directions of main interest [001],

[011], and [111], stress tensors can be calculated using the rotation matrix and their
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expressions are given by:

σ[001] =




0 0 0

0 0 0

0 0 P


 , σ[011] =




0 0 0

0 P/2 P/2

0 P/2 P/2


 , (C.2)

σ[011] =




P/3 P/3 P/3

P/3 P/3 P/3

P/3 P/3 P/3


 . (C.3)

C.2 Biaxial strain

The biaxial strain usually appears in electronics as the result of the epitaxial growth

of a material with relaxed lattice constant a0 over a substrate with lattice constant a0.

The strain in the plane of the interface can be determined from the lattice mismatch

ǫ|| =
as − a0
a0

. (C.4)

The strain tensor for arbitrary substrate orientations can be directly calculated accord-

ing to [56] and it is given here for the most frequently used substrate orientations:

ǫ(001) = ǫ||




1 1 0

0 1 0

0 0 −2C12

C11


 , (C.5)

ǫ(011) = ǫ||




2C44 − C12

C11 + C12 + 2C44
− C11 + 2C12

C11 + C12 + 2C44
0

− C11 + 2C12

C11 + C12 + 2C44

2C44 − C12

C11 + C12 + 2C44
0

0 0 1




, (C.6)

ǫ(111) = ǫ||




4C44

C11 + 2C12 + 4C44
− C11 + 2C12

C11 + 2C12 + 4C44
− C11 + 2C12

C11 + 2C12 + 4C44

− C11 + 2C12

C11 + 2C12 + 4C44

4C44

C11 + 2C12 + 4C44

− C11 + 2C12

C11 + 2C12 + 4C44

− C11 + 2C12

C11 + 2C12 + 4C44

− C11 + 2C12

C11 + 2C12 + 4C44

4C44

C11 + 2C12 + 4C44




,

(C.7)
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where the interface plane is denoted in the Miller notation and the C parameters are

the elastic stiffness constants.
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Appendix D

Change of coordinates for the

FEM

Due to the fact that the mesh in the FEM is irregular, the solution of the integrals

and derivatives is more complex than in FDM. To deal with this issue, a change of

coordinates (x, y) to (ξ, η) simplifies the task. The particularity of the new set of

coordinates is that the triangle is standardized, as Fig. D.1 illustrates. The advantage is

that the partial derivatives and integrals of the nodal functions defined in that triangle

are readily calculated since the nodal functions can be easily estimated in the new

coordinates as

N1(ξ, η) = 1− ξ − η

N2(ξ, η) = ξ

N3(ξ, η) = η

(D.1)

Using the new nodal functions, we can relate the interpolation of a function f(x, y)

with the new coordinate system

f(x, y) ≃ f̃(x, y) =

3∑

i=1

fiNi(ξ, η). (D.2)

This is the general case for any f function, then we can particularize for f(x, y) = x

and f(x, y) = y to achieve the direct relation between the two coordinate systems only
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(x1, y1)

(x2, y2)

(x3, y3)

y

x 0

1

1

2

1 3

η

ξ

Figure D.1: Mapping of the irregular triangular element to the stan-
dard rectangular triangle.

by knowing the coordinates of the triangle vertexes

x = x1N1(ξ, η) + x2N2(ξ, η) + x3N3(ξ, η)

y = y1N1(ξ, η) + y2N2(ξ, η) + y3N3(ξ, η)
(D.3)

After substituting and rearranging terms, the change of variables reads:

(
x− x1

y − y1

)
=

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)(
ξ

η

)
= JF

(
ξ

η

)
(D.4)

Where the right-hand matrix corresponds to the Jacobian matrix JF, and its de-

terminant (Jacobian) is the transformation rate of the differential element dxdy and

dξ dη, and its value is twice the area of the triangle. We are aware that the Jacobian

might be positive or negative, thus the so-defined area could also be positive or nega-

tive, depending on the ordering of the vertexes. For the sake of simplicity we convey

ordering the vertexes counterclockwise in order to get a positive S.

det(JF) = (r2 − r1)× (r3 − r1)

= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

= x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) = 2S

(D.5)
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The relation between the surface differentials is

dxdy = 2|S|dξ dη. (D.6)

After some algebra, the partial derivatives of f̃ are[110]:

∂

∂x
f(x, y) =

∂

∂x

3∑

i=1

fiNi(ξ, η) =

3∑

i=1

fi
∂

∂x
Ni

=
1

2S

∑

i,j

fiyj

(
∂Ni

∂ξ

∂Nj

∂η
− ∂Ni

∂η

∂Nj

∂ξ

)

=
1

2S
[(f2 − f1)(y3 − y1)− (f3 − f1)(y2 − y1)]

∂

∂y
f(x, y) =

1

2S

∑

i,j

fixj

(
−∂Ni

∂ξ

∂Nj

∂η
+
∂Ni

∂η

∂Nj

∂ξ

)

=
1

2S
[(f3 − f1)(x2 − x1)− (f2 − f1)(x3 − x1)]

(D.7)

From this formulation, we conclude that the partial derivatives can be calculated

as a function of the coordinates x and y of the vertexes as:

∂N1

∂x
=
y2 − y3
2S

∂N2

∂x
=
y3 − y1
2S

∂N3

∂x
=
y1 − y2
2S

∂N1

∂y
=
x3 − x2

2S

∂N2

∂y
=
x1 − x3

2S

∂N3

∂y
=
x2 − x1

2S

Furthermore, to solve the integrals of the nodal function products it is necessary to

know some integrals defined in the standard triangle:

I =

ˆ 1

0

ˆ 1−ξ

0
f(ξ, η) dη dξ

where f(ξ, η) is a nodal function or a product of up to three of them, shown in Table

D.1. According to [110, §9.3, pg. 227] we can write:

I =

ˆ 1

0

ˆ 1−ξ

0
ξαηβ(1− ξ − η)γ dη dξ =

α!β!γ!

(α+ β + γ + 2)!
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f(ξ, η) I

1 1/2
N1,N2,N3 1/6
N2

1 ,N
2
2 ,N

2
3 1/12

N1N2,N1N3,N2N3 1/24
N3

1 ,N
3
2 ,N

3
3 1/20

N2
1N2,N1N

2
2 ,N

2
1N3,· · · 1/60

N1N2N3 1/120

Table D.1: Integrals in the standard triangle.
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Inner products for the nodal

functions

In this Appendix, we calculate the inner products of the nodal functions Ni affected by

the Hamiltonian operators, which are needed to calculate the FEM equation system:

ˆ

Ni(x, y)C Nj(x, y) dxdy , (E.1a)
ˆ

Ni(x, y) kx,y C kx,yNj(x, y) dxdy , (E.1b)
ˆ

Ni(x, y) kx,y C kz,0Nj(x, y) dxdy , (E.1c)
ˆ

Ni(x, y) kz k0Nj(x, y) dxdy , (E.1d)
ˆ

Ni(x, y)V (x, y)Nj(x, y) dxdy , (E.1e)

where i, j = 1, 2. The expressions show ± and ∓ signs which are related to the sign of

S. According to our convention of positive surfaces and counterclockwise ordering of

vertexes, we take the upper sign.

Firstly, we calculate the products involving the same nodal function 〈N1|Ô|N1〉 ,

which are used for the construction of the diagonal subblocks1:

1The parameter C, constant in the triangular element, have been dropped for simplicity in the
notation.
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ˆ

N1k̂xk̂xN1dxdy =

ˆ

(
∂

∂x
N1

)2

dxdy =

(
y2 − y3
2S

)2

2|S|
ˆ

dξdη =
(y2 − y3)

2

4|S|
ˆ

N1kykyN1dxdy =

ˆ

(
∂

∂y
N1

)2

dxdy =

(
x3 − x2

2S

)2

2|S|
ˆ

dξdη =
(x3 − x2)

2

4|S|
ˆ

N1kzkzN1dxdy = k2z

ˆ

N2
1dxdy = k2z2|S|

ˆ

N2
1dξdη =

k2z |S|
6

ˆ

N1k̂xkyN1dxdy =

ˆ

(
∂

∂x
N1

)(
∂

∂y
N1

)
dxdy =

y2 − y3
2S

x3 − x2
2S

2|S|
ˆ

dξdη

=
(y2 − y3)(x3 − x2)

4|S|
ˆ

N1k̂xkzN1dxdy = ikz

ˆ

(
∂

∂x
N1

)
N1dxdy = ikz

y2 − y3
2S

2|S|
ˆ

N1dξdη

= ±ikz
y2 − y3

6
ˆ

N1kyk̂xN1dxdy =

ˆ

(
∂

∂y
N1

)(
∂

∂x
N1

)
dxdy =

x3 − x2
2S

y2 − y3
2S

2|S|
ˆ

dξdη

=
(y2 − y3)(x3 − x2)

4|S|
ˆ

N1kykzN1dxdy = ikz

ˆ

(
∂

∂y
N1

)
N1dxdy = ikz

x3 − x2
2S

2|S|
ˆ

N1dξdη

= ±ikz
x3 − x2

6
ˆ

N1kzk̂xN1dxdy = −ikz

ˆ

N1

(
∂

∂x
N1

)
dxdy = −ikz

y2 − y3
2S

2|S|
ˆ

N1dξdη

= ±ikz
y3 − y2

6
ˆ

N1kzkyN1dxdy = −ikz

ˆ

N1

(
∂

∂y
N1

)
dxdy = −ikz

x3 − x2
2S

2|S|
ˆ

N1dξdη

= ±ikz
x2 − x3

6
ˆ

N1k0k̂xN1dxdy = −ik0

ˆ

N1

(
∂

∂x
N1

)
dxdy = −ik0

y2 − y3
2S

2|S|
ˆ

N1dξdη

= ±ik0
y3 − y2

6
ˆ

N1k0kyN1dxdy = −ik0

ˆ

N1

(
∂

∂y
N1

)
dxdy = −ik0

x3 − x2
2S

2|S|
ˆ

N1dξdη

= ±ik0
x2 − x3

6
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ˆ

N1k0kzN1dxdy = kz k0

ˆ

N2
1dxdy = k0 kz2|S|

ˆ

N2
1dξdη =

k0 kz|S|
6

ˆ

N1N1dxdy = 2|S|
ˆ

N2
1dξdη =

|S|
6

ˆ

N1N1V dxdy = 2|S|
ˆ

N2
1 (V1N1 + V2N2 + V3N3)dξdη

= 2|S|
(
V1
20

+
V2 + V3

60

)
= |S|3V1 + V2 + V3

30

Finally, we calculate the products involving different nodal functions, which, as seen

in Subsection 4.5.4, can be always be expressed as a product of the nodal functions N1

and N2 for a determined ordering of the triangle vertexes. These products, which

have the form either 〈N1|Ô|N2〉 or 〈N2|Ô|N1〉, are used for the construction of the non

diagonal subblocks:

ˆ

N1k̂xk̂xN2dxdy =

ˆ

(
∂

∂x
N1

)(
∂

∂x
N2

)
dxdy =

y2 − y3
2S

y3 − y1
2S

2|S|
ˆ

dξdη

=
(y2 − y3)(y3 − y1)

4|S|
ˆ

N2k̂xk̂xN1dxdy =

ˆ

(
∂

∂x
N2

)(
∂

∂x
N1

)
dxdy =

y2 − y3
2S

y3 − y1
2S

2|S|
ˆ

dξdη

=
(y2 − y3)(y3 − y1)

4|S|
ˆ

N1k̂xkyN2dxdy =

ˆ

(
∂

∂x
N1

)(
∂

∂y
N2

)
dxdy =

y2 − y3
2S

x1 − x3
2S

2|S|
ˆ

dξdη

=
(y2 − y3)(x1 − x3)

4|S|
ˆ

N2k̂xkyN1dxdy =

ˆ

(
∂

∂x
N2

)(
∂

∂y
N1

)
dxdy =

y3 − y1
2S

x3 − x2
2S

2|S|
ˆ

dξdη

=
(y3 − y1)(x3 − x2)

4|S|
ˆ

N1k̂xkzN2dxdy = ikz

ˆ

(
∂

∂x
N1

)
N2dxdy = ikz

y2 − y3
2S

2|S|
ˆ

N2dξdη

= ±ikz
y2 − y3

6
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ˆ

N2k̂xkzN1dxdy = ikz

ˆ

(
∂

∂x
N2

)
N1dxdy = ikz

y3 − y1
2S

2|S|
ˆ

N1dξdη

= ±ikz
y3 − y1

6
ˆ

N1kyk̂xN2dxdy =

ˆ

(
∂

∂y
N1

)(
∂

∂x
N2

)
dxdy =

x3 − x2
2S

y3 − y1
2S

2|S|
ˆ

dξdη

=
(x3 − x2)(y3 − y1)

4|S|
ˆ

N2kyk̂xN1dxdy =

ˆ

(
∂

∂y
N2

)(
∂

∂x
N1

)
dxdy =

x1 − x3
2S

y2 − y3
2S

2|S|
ˆ

dξdη

=
(x1 − x3)(y2 − y3)

4|S|
ˆ

N1kykyN2dxdy =

ˆ

(
∂

∂y
N1

)(
∂

∂y
N2

)
dxdy =

x3 − x2
2S

x1 − x3
2S

2|S|
ˆ

dξdη

=
(x3 − x2)(x1 − x3)

4|S|
ˆ

N2kykyN1dxdy =

ˆ

(
∂

∂y
N2

)(
∂

∂y
N1

)
dxdy =

x1 − x3
2S

x3 − x2
2S

2|S|
ˆ

dξdη

=
(x1 − x3)(x3 − x2)

4|S|
ˆ

N1kykzN2dxdy = ikz

ˆ

(
∂

∂y
N1

)
N2dxdy = ikz

x3 − x2
2S

2|S|
ˆ

N2dξdη

= ±ikz
x3 − x2

6
ˆ

N2kykzN1dxdy = ikz

ˆ

(
∂

∂y
N2

)
N1dxdy = ikz

x1 − x3
2S

2|S|
ˆ

N1dξdη

= ±ikz
x1 − x3

6
ˆ

N1kzk̂xN2dxdy = −ikz

ˆ

N1

(
∂

∂x
N2

)
dxdy = −ikz

y3 − y1
2S

2|S|
ˆ

N1dξdη

= ±ikz
y1 − y3

6
ˆ

N2kzk̂xN1dxdy = −ikz

ˆ

N2

(
∂

∂x
N1

)
dxdy = −ikz

y2 − y3
2S

2|S|
ˆ

N2dξdη

= ±ikz
y3 − y2

6
ˆ

N1kzkyN2dxdy = −ikz

ˆ

N1

(
∂

∂y
N2

)
dxdy = −ikz

x1 − x3
2S

2|S|
ˆ

N1dξdη

= ±ikz
x3 − x1

6
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ˆ

N2kzkyN1dxdy = −ikz

ˆ

N2

(
∂

∂y
N1

)
dxdy = −ikz

x3 − x2
2S

2|S|
ˆ

N2dξdη

= ±ikz
x2 − x3

6
ˆ

N1kzkzN2dxdy = k2z

ˆ

N1N2dxdy = k2z2|S|
ˆ

N1N2dξdη

=
k2z |S|
12

ˆ

N2kzkzN1dxdy = k2z

ˆ

N2N1dxdy = k2z2|S|
ˆ

N1N2dξdη

=
k2z |S|
12

ˆ

N1k0k̂xN2dxdy = −ik0

ˆ

N1

(
∂

∂x
N2

)
dxdy = −ik0

y3 − y1
2S

2|S|
ˆ

N1dξdη

= ±ik0
y1 − y3

6
ˆ

N2k0k̂xN1dxdy = −ik0

ˆ

N2

(
∂

∂x
N1

)
dxdy = −ik0

y2 − y3
2S

2|S|
ˆ

N2dξdη

= ±ik0
y3 − y2

6
ˆ

N1k0kyN2dxdy = −ik0

ˆ

N1

(
∂

∂y
N2

)
dxdy = −ik0

x1 − x3
2S

2|S|
ˆ

N1dξdη

= ±ik0
x3 − x1

6
ˆ

N2k0kyN1dxdy = −ik0

ˆ

N2

(
∂

∂y
N1

)
dxdy = −ik0

x3 − x2
2S

2|S|
ˆ

N2dξdη

= ±ik0
x2 − x3

6
ˆ

N1k0kzN2dxdy = k0 kz

ˆ

N1N2dxdy = k0 kz2|S|
ˆ

N1N2dξdη

=
k0 kz|S|

12
ˆ

N2k0kzN1dxdy = k0 kz

ˆ

N2N1dxdy = k0 kz2|S|
ˆ

N1N2dξdη

=
k0 kz|S|

12
ˆ

N1N2dxdy = 2|S|
ˆ

N1N2dξdη =
|S|
12

ˆ

N2N1dxdy = 2|S|
ˆ

N1N2dξdη =
|S|
12
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ˆ

N1N2V dxdy = 2|S|
ˆ

N1N2(V1N1 + V2N2 + V3N3)dξdη

= 2|S|
(
V1 + V2

60
+

V3
120

)
= |S|2V1 + 2V2 + V3

60
ˆ

N2N1V dxdy = 2|S|
ˆ

N1N2(V1N1 + V2N2 + V3N3 +Ev)dξdη

= 2|S|
(
V1 + V2

60
+

V3
120

+
Ev
24

)
= |S|2V1 + 2V2 + V3 + 5Ev

60
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Isabel M. Tienda-Luna, and Francisco Gámiz. EUROSOI,2012.

• Isabel M. Tienda-Luna, Juan B. Roldán, Francisco J. Garćıa Ruiz,Celso Martinez-
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I. Tienda-Luna, F. Martinez-Carricondo, and B. Biel. Multi-Subband Ensemble

Monte Carlo simulation of bulk MOSFETs for the 32nm-node and beyond. Solid-

State Electronics, 65-66:88–93, Nov. 2011.

[119] M. F. H. Schuurmans and G. W. Hooft. Simple calculations of confinement states

in a quantum well. Physical Review B, 31(12):8041–8048, June 1985.

[120] F. Seitz. Modern theory of solids. Mc Graw Hill, New York, 1940.

[121] T. Sekigawa and Y. Hayashi. Calculated threshold-voltage characteristics of an

XMOS transistor having an additional bottom gate. Solid-State Electronics,

27(8):827–828, Aug. 1984.

[122] G. G. Shahidi. SOI technology for the GHz era. IBM Journal of Research and

Development, 46(2.3):121–131, Mar. 2002.

[123] M. Shin, S. Lee, and G. Klimeck. Computational Study on the Performance of Si

Nanowire pMOSFETs Based on the k·p Method. IEEE Transactions on Electron

Devices, 57(9):2274–2283, Sept. 2010.

[124] T. Skotnicki, J. Hutchby, T. King, H.-S. Wong, and F. Boeuf. The end of CMOS

scaling: toward the introduction of new materials and structural changes to im-

prove MOSFET performance. IEEE Circuits and Devices Magazine, 21(1):16–26,

Jan. 2005.
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