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ABSTRACT 

 

The water shortage represents for some regions, in particular for the Iberian Peninsula 

(IP), one of the most severe limiting factors to maintain a sustainable development, since water 

resources play a crucial role in various socio-economic and environmental needs, such as 

agriculture, industry, hydropower industry, and tourism sector. The problem of water scarcity is 

likely to become more severe according to the projected decrease/increase in water 

availability/demand. Then, the motivation of this dissertation relies on the necessity to improve 

the understanding of the large-scale climate variability that drives the streamflow variability on 

the IP, which becomes the basis for developing streamflow forecast at scales that are of 

paramount importance for reservoir operations and irrigation management decisions, protection 

of the environment or in the reduction of expenses in flood and drought mitigation.  

During the first part of this work, an analysis of the streamflow database was performed. 

A process to identified stations with inhomogeneities in data series, mainly derived from the 

regulation processes, was carried out using a combined methodology based on Pettitt test and 

Common Area Index over original database of 1380 gauging stations. As result, a total 382 

stations were selected for this study, covering the period from October 1975 to September 2008. 

Also, the main spatial and temporal characteristics of streamflow variability in the IP were 

described. 

The second part of this Thesis consisted on identifying the main climate factors that have 

a noteworthy influence on near future (lagging from one to four seasons) seasonal streamflow 

variability of the IP Rivers and provides an insight into the possible mechanisms and physical 

processes behind these relationships. Firstly, teleconnection indices, which represent most of the 
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dominant sources of climate variability, were evaluated as potential predictors. Secondly, 

Singular Value Decomposition (SVD) technique was employed to identify and isolate the main 

modes of covariability between seasonal streamflow and the climate variables (sea surface 

temperature, geopotential height at 500 hPa in Northern Hemisphere and global temperature and 

precipitation) that precede it from one to four seasons. Once the main climatic predictors were 

identified, predictions based on them were conducted. A leave-one-out cross-validation approach 

based on a multiple linear regression approach that combining Variance Inflation Factor and 

Stepwise Backward selection was used to avoid multicollinearity and select the best subset of 

predictors. The forecasting methodology was developed for four forecasting scenarios, related to 

the number of seasons prior to which the forecasting is made, from one year (4S scenario) until 

one season (1S scenario) in advance, updating and improving the predictions seasonally.  The 

correlation coefficient (RHO), Root Mean Square Error Skill Score (RMSESS) and the Gerrity 

Skill Score (GSS) were used to evaluate the forecasting skill. 

For the predictions made based on teleconnection indices, in case of autumn streamflow, 

good forecasting skill (RHO > 0.5, RMSESS > 20%, GSS > 0.4) was found for a third of the 

stations located in the Mediterranean Andalusian Basin, the North Atlantic Oscillation of the 

previous winter being the main predictor. Also, fair forecasting skill (RHO > 0.44, RMSESS > 

10%, GSS > 0.2) was found in stations in the northwestern IP (16 of these located in the Douro 

and Tagus Basins) with two seasons in advance. For winter streamflow, fair forecasting skill was 

found for one season in advance in 168 stations, with the Snow Advance Index as the main 

predictor. Finally, forecasting was poorer for spring streamflow than for autumn and winter, 

since only 16 stations showed fair forecasting skill in with one season in advance, particularly in 

the northwestern of IP.  

The use of SVD improved the forecasting skills of the autumn streamflow, in particular 

relevant for 3S scenario. In this case, up to 42 stations present fair forecasting skills (RHO > 

0.44, RMSESS > 10%, and GSS > 0.2), particularly in the Mediterranean Andalusian Basin, 

with Zdjf2 and Adjf2 (related to winter NAO) as predictors, but also in the north-northwestern IP 

(Douro, Miño-Sil, Cantabrian and upper Ebro Basins), being Rson1, Adjf1 and Rdjf1 (linked to 

ENSO) the main predictors. Also, a refinement in spring streamflow forecasting is observed, 

specially in 3S scenario, when values of RHO > 0.44, RMSESS > 10%, and GSS > 0.2 are 

obtained in 21 stations, mainly locate in the northeastern quadrant of IP. In those cases Pjja1 

(linked to summer ENSO phenomenon), Zjja1 and Tjja1 (which could be associated with the 

summer Northern Annular Mode and with criosphere variability) were used as predictors. 
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Conversely, winter streamflow was not forecasted in almost any stations. In this case, SAI 

appeared to be the only reliable predictor.  

In conclusion, this Thesis presents a valuable contribution to the studies regarding 

seasonal streamflow forecasting of the IP Rivers. Some distinguishing features are that it relies on 

a long, complete, reliable and spatially well-distributed streamflow database, which enables to 

describe with a high spatial resolution the potential use of different climate signals as predictors 

of seasonal streamflow in different areas of the IP, which become very useful for making local 

decision in water resources management. Also, it explores the links between climate signal and 

streamflow variability of the IP Rivers, not only evaluating the most commonly used climate 

indices but also exploring further relationships between climate variability and streamflow in the 

following seasons. Finally, this study can provide a more comprehensive view of relationship of 

climate variability and streamflow on seasonal timescales in a way that can significantly 

contribute to streamflow forecasting purposes (with various forecasting schemes, according to the 

time in advance the predictions are made), providing the option of developing water-management 

policies some seasons in advance and with the possibility of modifying or adjusting these 

strategies as the predictions are updated.  
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RESUMEN 

 

La escasez de agua representa para algunas regiones, en especial para la Península Ibérica 

(PI), uno de los factores limitantes más severos para poder mantener un desarrollo sostenible, 

debido a que los recursos hídricos juegan un papel fundamental en la satisfacción de las 

necesidades socioeconómicas y ambientales, tales como la agricultura, industria, la industria 

hidroeléctrica y el sector turístico. Asimismo, el problema de escasez del recurso hídrico es 

probable que se agrave en el futuro, de acuerdo a las proyecciones de disminución y de la 

disponibilidad de agua y el aumento en la demanda. En consecuencia, la motivación de este 

trabajo de Tesis radica en la necesidad de avanzar en el entendimiento de la variabilidad 

climática relacionada con la variabilidad del caudal de los ríos ibéricos, lo cual se convierte en la 

base para la predicción del caudal a escalas temporales de gran importancia para la gestión de 

embalses, manejo de regadíos, protección medioambiental o mitigación de los daños provocados 

por sequías e inundaciones. 

Durante la primera parte de este trabajo se llevo a cabo un profundo análisis de la base de 

datos de caudales disponible. En particular, se realizó un estudio para identificar posibles 

inhomogenidades en las series de datos, las cuales derivan principalmente de la actuación de 

procesos de regulación de caudales (coincidiendo muchas de ellas con puestas en marcha de 

embalses en las cabeceras de determinados ríos). La metodología llevada a cabo para identificar 

estas inhomogeneidades consistió en una combinación del test de Pettitt y de un test que analiza 

el porcentaje de área común que encierra las curvas del caudal intraanual antes y después del 

posible punto de ruptura de la serie. Como resultado, de la base de datos original formada por 

1380 estaciones de medida de caudal, 382 fueron seleccionadas como adecuadas para este 
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estudio, cumpliendo, además del criterio de homogeneidad utilizado, que cubran el periodo 

temporal 1975-2008 con menos de un 10% de datos faltantes. 

La segunda parte de este trabajo consistió en identificar los factores climáticos más 

importantes que influyen en la variabilidad del caudal estacional de los ríos ibéricos en un futuro 

cercano (entre 1 y 4 estaciones), así como en discutir sobre los posibles mecanismos físicos que 

hay detrás de estas relaciones. En primer lugar se evaluó la potencial predictibilidad de los 

índices de teleconexión, los cuales son una representación de los principales modos de 

variabilidad climática. En segundo lugar, es utilizó la técnica de descomposición del valor 

singular (SVD, por sus siglas en inglés) para determinar los principales modos de variabilidad 

acoplada entre el caudal estacional y una serie de variables climáticas (temperatura de la 

superficie del mar, altura geopotencial a 500 hPa en el Hemisferio Norte, y valores de 

temperatura y precipitación globales) precediendo al caudal entre 1 y 4 estaciones. Una vez que 

se identificaron los principales predictores climáticos, se llevó a cabo un ejercicio de predicción 

del caudal estacional. Para ello se optó por un enfoque de validación cruzada y se utilizaron 

modelos de regresión lineal múltiple, combinando el test de factor de inflación de la varianza y 

la selección por pasos para evitar problemas derivados de la correlación excesiva entre 

predictores y elegir el mejor conjunto de predictores. La metodología de predicción se basa en la 

creación de 4 escenarios de predicción, de acuerdo a diferentes (hasta 4) numero de estaciones de 

adelanto con las cuales las predicciones son efectuadas, desde cuatro estaciones (escenario 4S) 

hasta una estación previa (escenario 1S) al caudal estacional a predecir. El coeficiente de 

correlación (RHO), el coeficiente de mejora respecto a la climatología de la raíz cuadrada del 

error cuadrático medio (RMSESS) y el parámetro de Gerrity (GSS) se utilizaron para evaluar la 

calidad de las predicciones. 

Para el caso de predicciones basadas en los índices de teleconexión, y en el caso del 

caudal de otoño, predicciones de buena calidad (RHO > 0.5, RMSESS > 20%, GSS > 0.4) se 

encontraron para un tercio de las estaciones de caudal pertenecientes a la Cuenca Mediterránea 

Andaluza, siendo la Oscilación del Atlántico Norte del invierno previo el principal predictor. 

Predicciones moderadamente buenas (RHO > 0.44, RMSESS > 10%, GSS > 0.2) se obtuvieron 

para el escenario 3S en estaciones de caudal localizadas en el cuadrante noroeste de la PI (16 de 

las cuales estaban localizadas en las cuencas del Duero y Tajo). En el caso del caudal de 

invierno, moderadas predicciones se encontraron en hasta 168 estaciones de caudal (de hecho en 

bastantes de ellas se podrían clasificar de buenas) para el escenario 1S, siendo el Índice de 

Avance de la Nieve del Octubre previo el principal predictor. Finalmente, peores predicciones se 
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obtuvieron para el caudal de primavera en comparación con el de otoño e invierno, pues solo 16 

estaciones mostraron una calidad moderada en las predicciones en el escenario 1S, mayormente 

ubicadas en el cuadrante noroeste de la PI.  

El uso de la metodología basada en SVD mejoró la calidad de las predicciones del caudal 

de otoño, en particular en el caso del escenario 3S. En este caso se incrementaron hasta 42 las 

estaciones con moderada predictibilidad (RHO > 0.44, RMSESS > 10%, and GSS > 0.2), sobre 

todo en la Cuenca Mediterránea Andaluza, siendo Zdjf2 y Adjf2 (relacionados con la Oscilación 

del Atlántico Norte) los principales predictores, así como en las cuencas del noroeste de la PI 

(Duero, Miño-Sil, Cantábrica y alto Ebro), siendo Rson1, Adjf1 y Rdjf1 (relacionados con el 

fenómeno del Niño). Así mismo, las predicciones del caudal de primavera mejoraron, 

especialmente en el escenario 3S, donde valores de RHO > 0.44, RMSESS > 10%, and GSS > 

0.2 se obtuvieron en 21 estaciones de medida, mayormente localizadas en el cuadrante noroeste 

de la PI. En esos casos, Pjja1 (relacionado al desarrollo de fenómeno del Niño en verano), Zjja1 

y Tjja (los cuales podrían estar ligados a la variabilidad del Modo Anular del Norte y la criosfera 

durante el verano, respectivamente). Por el contrario, en el caso del invierno apenas de encontró 

capacidad predictiva en casi ninguna estación de caudal, por lo cual el Índice de Avance de la 

nieve parece ser el único predictor válido en este caso de entre todos los estudiados. 

En conclusión, esta Tesis presenta una valiosa contribución a los estudios relacionados 

con la predicción estacional del caudal de los ríos ibéricos. Algunas de sus características 

diferenciadoras son el hecho de usar una base de datos de caudales extensa, completa y cuya 

calidad ha sido comprobada, permitiendo describir con un alto grado de resolución espacial el 

potencial uso de diferentes señales climáticas como predictores del caudal estacional en 

diferentes regiones de la PI, lo cual es de gran utilidad para efectuar decisiones a nivel local 

acerca de gestión de los recursos hídricos. De igual modo, se exploran las relaciones entre 

señales climáticas y la variabilidad del caudal de los ríos ibéricos, no sólo evaluando los índices 

climáticos más comunes, sino analizando otras relaciones más allá de las cubiertas por los 

mismos. Finalmente, este estudio puede proporcionar una visión más completa de la relación 

entre la variabilidad climática y el caudal estacional de los ríos ibéricos de una forma que pueda 

ser utilizada con fines predictivos (con varios esquemas de predicción de acuerdo al tiempo de 

antelación con el cual las predicciones son efectuadas), dando lugar a tener la opción de 

desarrollar políticas de gestión de recursos hídricos con algunas estaciones de antelación, así 

como de modificar o ajustarlas a medida que se acerca la estación en cuestión.  

  



viii 

 

 



LIST OF FIGURES  
 

 ix 

 

 

 

 

 

LIST OF FIGURES 

 

Figure 2.1. Location of the IP (left) and main geographical features (right). 

Figure 2.2. Location and capacity of major reservoirs (greater than 1 hm
3
) in Spain. 

Figure 2.3. Identification of the river basins used in this work. Line separating Douro, Tagus 

and Guadiana basins represent the border between Spanish and Portuguese parts. 

Figure 3.1. Spatial distribution of gauging stations (green circles) and reservoir entrances (red 

triangles) of the original database. 

Figure 3.2. Location of non-missing values (different colours mean different basins, white 

means missing value), for gauging stations and stations in reservoirs in Spanish 

territory, a) and b), respectively, and for gauging stations in Portugal, c). 

Figure 3.3. Over the raw database of 1380 stations (in red), and filled in orange, the 504 

stations selected for this study (circles for gauging station and triangles for 

entrance reservoir stations). 

Figure 3.4. Box plot of the streamflow serial correlation (1 month lag).  

Figure 3.5. Results from the normality tests. In green, seasonal time series following a normal 

distribution. In red, seasonal time series following a normal distribution after a 

logarithmic transformation. In green, those station that neither the seasonal time 

series and its logarithmic transformation follow a normal distribution. 

Figure 3.6. a) Year of the break point detected by Pettitt’s test applied to the seasonal time 

series. b) CAI value calculated using the data before and after the year of the 



 LIST OF FIGURES 
 

 x 

break identified in the seasonal time series. Unfilled white circles indicate no 

break. 

Figure 3.7. a) Sesonal time series for station id=3067. The year of the break detected by 

Pettitt’s test is indicated with a dashed vertical line. b) Intraannual streamflow 

regime before (blue) and after (red) the break. The common area between both 

curves is colored. 

Figure 3.8. As Figure 3.7 but for station id=9018. 

Figure 3.9.  Filled in red, the 382 stations that overcome the quality control. Filled in orange, 

the 122 stations considered as no homogeneous. Unfilled the remaining stations 

up to the 1380 total original database.  

Figure 4.1.  Seasonal streamflow averages for different gauging stations analysed for the 

period 1975-2008. 

Figure 4.2. Seasonal (red bars at the background) and monthly (blue bars at the front) 

streamflow average for all stations in each basin.  

Figure 4.3. Season with the highest streamflow averages at the different gauging stations. 

Figure 4.4. Interannual variability of the seasonal streamflow averages (hm
3
) for each basin. 

Figure 4.5. Spatial distribution of significant seasonal trends. The marks are filled when the 

trends are significant at 95% confidence level. Values are in percentage of change 

per year. 

Figure 4.6. Loading factors of rotated components 1-5 (in columns) from the PCA analysis of 

the seasonal streamflow series (in rows). 

Figure 5.1. Approximate location of the main areas associated to the teleconnection indices 

used in this study. In blue, indices based on data from sea surface temperature. In 

red, indices calculated using data from atmospheric pressure at different levels. In 

black, indices computed using other variables. 

Figure 5.2. Running correlation (15-year windows) between autumn streamflow in station 

id=10020 and previous winter NAO (in dark orange), winter streamflow in station 

id=3153 and previous October SAI (in blue) and spring streamflow in station 

id=1607 and previous summer SOI (in green). Straight dark orange, blue and 

green lines represent the threshold of 80% confidence level for the previous cases. 



LIST OF FIGURES  
 

 xi 

The value of correlation for each moving window is indicated in the first year 

(i.e., correlation in 1994 is referred to 1994-2008 period).. 

Figure 5.3. Number of stations that present a significant (at 95% confidence level) (in grey 

bars), stable (light blue and orange bars) and strongly stable (dark blue and dark 

red bars) correlation between teleconnection indices and lagging seasonal 

streamflow for autumn (OND) streamflow (upper panel); winter (JFM) 

streamflow (middle panel) and spring (AMJ) streamflow (lower panel) are 

presented; son1, djf1, mam1 and jja1 correspond to autumn, winter, spring and 

summer of the previous year, respectively. Note that negative numbers mean sum 

of stations with negative correlations. 

Figure 5.4. Maps of the correlation between the teleconnection indices selected a predictor 

and autumn (OND) streamflow. In the title of each map, the acronym of the 

corresponding teleconnection index and its season (subindex) is shown. Only 

significant and stable correlations are displayed. Circles and triangles mean 

gauging stations located mainstreams of rivers and reservoirs respectively. 

Figure 5.5. As Figure 5.4 but for winter (JFM) streamflow. 

Figure 5.6. As Figure 5.4 but for spring (AMJ) streamflow. 

Figure 5.7.  Temperature data at 0.5º of spatial resolution were obtained from CRU TS v.3.1 

dataset (Harris et al., 2014). Precipitation data at 1º of spatial resolution where 

obtained from: GPCC Precipitation (Schneider et al., 2013), NAA/OAR/ESRL 

PSD, Boulder, Colorado, USA, from their Web site at 

http://www.esrl.noaa.gov/psd/). 

Figure 6.1.  a)-p) Selected modes from lagging SVD analysis between seasonal atmospheric 

and oceanic variables leading autumn streamflow. Left panels display the 

homogeneous maps (contours indicate areas with significant correlation), central 

panels show the left (A, blue line) and right (B, black line) normalized expansion 

coefficient time series, and right panels display the heterogeneous maps. 

Figure 6.2. Correlations between left expansion coefficients of the selected SVD modes 

shown in Table 6.1 and teleconnection indices for the same season. a) autumn 

(son), b) winter (djf), c) spring (mam) and d) summer (jja). 

http://www.esrl.noaa.gov/psd/
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Figure 6.3. Correlations between left expansion coefficients of the selected SVD modes 

shown in Table 6.1 and the principal components of the respective atmospheric 

and oceanic fields for the same season. a) autumn (son), b) winter (djf), c) spring 

(mam) and d) summer (jja). 

Figure 6.4.  a)-h) Selected modes from lagging SVD analysis between seasonal atmospheric 

and oceanic variables leading winter streamflow. Left panels display the 

homogeneous maps (contours indicate areas with significant correlation), central 

panels show the left (A, blue line) and right (B, black line) normalized expansion 

coefficient time series, and right panels display the heterogeneous map. 

Figure 6.5.  Correlations between left expansion coefficients of the selected SVD modes 

shown in Table 6.2 and teleconnection indices for the same season. a) winter (djf), 

b) spring (mam). 

Figure 6.6. Correlations between left expansion coefficients of the selected SVD modes 

shown in Table 6.2 and the principal components of the respective atmospheric 

and oceanic field for the same season. a) winter (djf), b) spring (mam). 

Figure 6.7.  a)-l) Selected modes from lagging SVD analysis between seasonal atmospheric 

and oceanic variables leading spring streamflow. Left panels display the 

homogeneous maps (contours indicate areas with significant correlation), central 

panels show the left (A, blue line) and right (B, black line) normalized expansion 

coefficient time series, and right panels display the heterogeneous maps. 

Figure 6.8. Correlations between left expansion coefficients of the selected SVD modes 

shown in Table 6.3 and teleconnection indices for the same season. a) spring 

(mam) and b) summer (jja), c) autumn (son), d) winter (djf). 

Figure 6.9. Correlations between left expansion coefficients of the selected SVD modes 

shown in Table 6.3 and the principal components of the respective atmospheric 

and oceanic field for the same season. a) spring (mam) and b) summer (jja), c) 

autumn (son), d) winter (djf). 

Figure 6.10. Maps of the correlation between the SVD modes selected and autumn (OND) 

streamflow. Only significant and stable correlations are displayed.  

Figure 6.11.  As Figure 6.10 but for winter (JFM) streamflow. 

Figure 6.12.  As Figure 6.10 but for spring (AMJ) streamflow. 
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Figure 6.13. Correlations between the expansion coefficients of the SVD modes corresponding 

to autumn streamflow. 

Figure 6.14. As Figure 6.13 but for SVD modes corresponding to winter streamflow. 

Figure 6.15. As Figure 6.13 but for SVD corresponding to spring streamflow. 

Figure 7.1.  Maps of the forecasting skill classification (poor, fair or good) according with 

RHO, RMSESS and GSS values. They are displayed only in stations where some 

forecast skills were found. In rows the seasonal streamflow forecasted and in 

columns the forecasting scenario. 

Figure 7.2.  In rows, an example of forecasted seasonal streamflow time series for a gauging 

station in each season. a) For the autumn streamflow in station id=10020 

(Mediterranean Andalusian Basin), b) for the winter streamflow in station 

id=3144 (Tagus Basin) and c) for the spring streamflow in station id=1710 (Miño-

Sil Basin). In left panels, the location of these stations; in middle panels, scatter 

plots between the observed and forecasted seasonal streamflow in each station 

(black dashed line indicate the 33
rd

 and 66
th

 percentiles); and in right panels, the 

observed (black line) and forecasted (coloured lines) streamflow time series in 

each forecasting scenario. 

Figure 7.3.  Maps of the forecasting skill classification (poor, fair or good) according with 

RHO, RMSESS and GSS values. They are displayed only stations where some 

forecast skills were found. In rows the seasonal streamflow forecasted and in 

columns the forecasting scenario. 

Figure 7.4.  In rows, an example of forecasted seasonal streamflow time series for a gauging 

station in each season. a) for autumn streamflow in station id=10028 

(Mediterranean Andalusian Basin), b) for winter streamflow in station id=46 

(Internal Catalonian Basins) and c) for spring streamflow in station id=3013 

(Tagus Basin). In left panels, the location of these stations; in middle panels, 

scatter plots between the observed and forecasted seasonal streamflow in each 

station (black dashed line indicate the 33
rd

 and 66
th

 percentiles); and in right 

panels, the observed (black line) and forecasted (coloured lines) streamflow time 

series in each forecasting scenario. 

Figure 7.5.  Maps of the forecasting skill classification (poor, fair or good) according with 

RHO, RMSESS and GSS values. They are displayed only stations where some 
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forecast skills were found. In rows the seasonal streamflow forecasted and in 

columns the forecasting scenario. 

Figure 7.6.  In rows, an example of forecasted seasonal streamflow time series for a gauging 

station in each season. a) For autumn streamflow in station id=10028 

(Mediterranean Andalusian Basin), b) for winter streamflow in station id=3163 

(Tagus Basin) and c) for spring streamflow in station id=1710 (Miño-Sil Basin). 

In left panels, the location of these stations; in middle panels, scatter plots 

between the observed and forecasted seasonal streamflow in each station (black 

dashed line indicate the 33
rd

 and 66
th

 percentiles); and in right panels, the 

observed (black line) and forecasted (coloured lines) streamflow time series in 

each forecasting scenario. 

Figure 7.7. Maps of the forecasting skill classification (poor, fair or good) according with 

RHO, RMSESS and GSS values. Only stations with some forecast skills are 

displayed. In rows the seasonal streamflow forecasted and in columns the 

forecasting scenario. 

Figure B.1. Definition sketch for the first four L-moments. 

Figure B.2. L-moments plot for samples and theoretical distributions used. The fitted 

distribution curves were drawn using the polynomial approximations given by 

Hosking (1990). 

Figure B.3. In top left panel, the empirical CDF of data series (in dots), and the CDF 

corresponding to the Pearson 3 distribution that fitted to the data series in a red 

line. Top right panel represent the CDF for a standard normal distribution. Bottom 

panels are the original winter streamflow time series (left) and the correspondent 

standardized time series. 

Figure B.4. For all seasons, probability distribution functions selected to standardize seasonal 

streamflow time series and bar plots summing up the number of stations that 

follow each probability distribution function. 

Figure C.1.  Loading factors associated with principal components 1-5 (in columns) from the 

PCA analysis of the seasonal time series of Pacific Ocean surface temperature (in 

rows). 
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Figure C.2. Loading factors associated with principal components 1-5 (in columns) from the 
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rows). 
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PCA analysis of the seasonal time series of global temperature (in rows). 

Figure C.5.  Loading factors associated with principal components 1-5 (in columns) from the 

PCA analysis of the seasonal time series of global precipitation (in rows). 
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CHAPTER 1 

INTRODUCTION 

 

In this chapter, the motivation that supports the research carried out in 

this work is presented, especially in the context of the importance of long-term 

prediction of the availability of water resources in a region subjected to 

recurrent water stress. Also, the objectives and outline of the dissertation are 

described. 

 

1.1 Water resources management. A challenging issue 

The water shortage represents for some countries one of the most severe limiting factors 

to maintain a sustainable development, since water resources play a crucial role in various socio-

economic and environmental needs, such as agriculture, industry, hydropower industry, and 

tourism sector. The problem of water scarcity becomes more complex in the Mediterranean 

areas, where water demand from agriculture and tourism is mostly concentrated during summer, 

the drier season.  

A recent study about changes in climate extremes and their impacts (Seneviratne et al., 

(2012) found that since the 1950s some regions of the world have experienced trends toward 

more intense and longer droughts, in particular in southern Europe and West Africa. Also, they 

found that anthropogenic influence has contributed to some changes in the drought patterns 

observed in the second half of the 20
th

 century, based on its attributed impact on precipitation 
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and temperature changes. As European regions regard, Dai et al. (2004) found an increase in 

dryness for most of the European continent based on Palmer Drought Severity index (PDSI).  On 

the contrary, Lloyd-Hughes and Saunders (2002) and van der Schrier et al. (2006) analysed the 

variability of Standard Precipitation Index (SPI) and self-calibrating PDSI for the 20th century 

(for 1901-1999 and 1901-2002, respectively), concluding that no statistically significant changes 

were observed in extreme and moderate drought conditions in Europe, with the exception of the 

Mediterranean region in van der Schrier et al. (2006). Sheffield and Wood (2008) also found 

contrasting dryness trends in Europe, with increases in the southern and eastern part of the 

continent, but decreases elsewhere. Other authors have also found increases in warm-dry 

conditions in the central and southern part of Europe (Beniston, 2009; Alexander et al., 2006). 

Focusing in river discharge, Stahl et al. (2010) investigated streamflow data across Europe and 

found negative trends (lower streamflow) in southern and eastern regions, and generally positive 

trends (higher streamflow) elsewhere (especially in northern latitudes).  

Consequently, the observed increases of drought events in the Mediterranean region 

further increase the complexity of water scarcity management over this area. A clear example is 

Spain, one of the European areas that suffer from hydric stress, where major droughts have 

severe effects on the agricultural economy and have evidenced the lack of reliability of urban 

water supply to the majority of the Spanish territory, either due to the lack of regulation (north) 

or restrictions (south and central). Particularly, Lorenzo Lacruz et al., (2012) found a marked 

decrease in annual, winter, and spring streamflows in most of the Iberian sub-basins, especially 

those in the south. In terms of streamflow droughts, Lorenzo-Lacruz et al., (2010) found a 

marked reduction in water availability in Tagus Basin, related to the more frequent droughts. 

López-Moreno et al. (2009) examined the effects of a large dam on hydrological droughts in the 

transboundary Tagus River, central Spain and Portugal, concluding that because of the reservoir 

construction, the Portuguese part of the basin has experienced more severe droughts than the 

upstream part, in terms of both magnitude and duration. Furthermore, Lorenzo-Lacruz (2013a) 

studied the spatial and temporal patterns of streamflow droughts in the IP finding a trend toward 

increased drought severity in the majority of regions. Additionally, Vicente-Serrano et al., (2014) 

found that hydrological drought frequency and severity have also increased in the past five 

decades in natural, regulated and highly regulated basins.  

The situation of water stress to which it is subjected the IP, it is not only because the 

decrease in water availability but also de increase in water demand. Usually, water demands 

consist on urban supply, industrial demand and irrigation and also environmental requirements. 
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Each demanding sector presents different characteristic regarding quantitative and qualitative 

requirements. From the National Hydrological Plan of 2001 (PHN, 2001), some statistics can be 

extracted in relation to water demands in the IP: 

 Urban supply includes the demand for domestic consumptions and other activities related 

to industrial services based on urban areas. In Spain, it is about 4.700 hm
3
/yr, which 

means around 15% of the total demand. Its spatial distribution is closely related with the 

density of population. This is particularly notorious in case of the southern Mediterranean 

countries where tourist population is very significant. Tourist water consumption in the 

southern Mediterranean countries is about three times higher than local demands (EEA, 

2000). Although it is highly seasonal, the related activity increases permanent water 

demand for facilities and leisure structures. Particularly, Spain is experiencing a tourist 

and second-home boom all across the Mediterranean coast and together with the 275 golf 

courses (75 more are on project only along the Mediterranean coast), represent a demand 

increase of about 30 million m
3
. In conclusion, some of the areas with higher natural 

hydrological constraints present a remarkable process of urban concentration and a strong 

development of the tourism sector. Despite its proportion in relation with the total of 

water demand is small, the risk of shortages is notable. 

 The water requirements for industries represent around 1700 hm
3
 in Spain (which is 

about 5% of total demands). These consumptions do not include those related to urban 

distribution networks or for energy production (cooling and hydropower), whose net 

consumptions are scarce.  

 Irrigation is, from a quantitative point of view, the main water use in Spain, with a water 

demand above 24000 hm
3
 per year (~ 80% of the total consumptions). The million 

hectares for the traditional irrigable area was tripled, especially in the mildest parts of the 

country, and the water resources demand increased in all regions especially in the driest 

ones. During the last years, there has also been an important reduction in the trend of 

irrigated land in Valencia and Barcelona but an increase has been observed in certain 

areas (Albacete, Almería, Murcia, among others) (Programa AGUA, 2004). Among the 

new irrigated areas in some central parts of Spain, common dry-crops (cereals) irrigation 

through pumping wells is currently taking place.  

In order to mitigate the effects of the unreliable water available resulting from the high 

spatial and seasonal hydrological variability across the Iberian Peninsula (IP), it has been 

developed a complex network of dams and channels, particularly during the second half of the 
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twentieth century (Berga-Casafont, 2003). These storage structures (e.g., reservoirs, canals) are 

developed to store water to ride out the dry spells and to provide socio-economic benefits 

through power generation, ensure irrigation (which is the major aim for most of reservoirs) and 

urban water supplies during periods of water scarcity or reducing the impact of floods and 

droughts. While reservoirs have limited capacity, the demands are diverse and often in 

competition (e.g., the conflict between the amount of water stored and the timing of releases to 

meet agriculture, hydropower generation and environmental needs). Additionally, dam 

operations have an impact on the natural functioning of rivers and related subsystems. On this 

regard, Morán-Tejeda et al. (2012) investigated the effect of reservoirs on river regimes in the 

Duero Basin. They found that the degree of regulation was highly dependent on annual inflows 

into the reservoir, and consequently alterations to river regimes were more intense during dry 

years. Also, they observed an absence of a common approach to reservoir management, and the 

dominance of other interests over environmental concerns, particularly in the context of 

hydrological change in the basin. Then, skilful long-lead streamflow forecasting (e.g., 

seasonal/monthly volume, timing of peak flow) are key to efficient and sustainable water 

resources development, providing information for appropriate reservoir management. 

The increasing demands on limited water resources during the last decades are 

contemplated to continue in future (WWAP, 2014). In fact, the last Intergovernmental Panel on 

Climate Change Assessment Report (IPCC, 2013: Summary for Policymakers), it is emphasized 

that warming of the climate system is unequivocal, and since the 1950s, many of the observed 

changes are unprecedented over decades to millennia. For example, 1983–2012 was likely the 

warmest 30-year period of the last 1400 years in the Northern Hemisphere. Also, the upper 

ocean has warmed, the amounts of snow and ice have diminished, sea level has risen, and the 

concentrations of greenhouse gases have increased. Furthermore, under continued emissions of 

greenhouse gases, global surface temperature change for the end of the 21st century is likely to 

exceed 1.5°C relative to 1850 to 1900 and it will continue beyond 2100 for most Representative 

Concentration Pathways (RPC) scenarios. Warming will continue to exhibit interannual-to-

decadal variability and will not be regionally uniform. Concerning the effects on water cycle, it 

is virtually certain that, in the long term (Collins et al., 2013), global precipitation will increase 

with increased global mean surface temperature. These changes will exhibit substantial spatial 

variation. General pattern of change indicates that high-latitude land masses are likely to 

experience greater amounts of precipitation due to the increased specific humidity of the warmer 

troposphere as well as increased transport of water vapour from the tropics by the end of this 
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century under the RCP8.5 scenario (the pathway with the highest greenhouse gas emissions). 

Many mid-latitude and subtropical arid and semi-arid regions will likely experience less 

precipitation and many moist mid-latitude regions will likely experience more precipitation by 

the end of this century under the RCP8.5 scenario. Decreases in annual runoff are likely in parts 

of southern Europe, the Middle East, and southern Africa by the end of the 21st century under 

the RCP8.5 scenario. An increase of agricultural drought are likely in presently dry regions and 

are projected with medium confidence by the end of the 21st century under the RCP8.5 scenario. 

Soil moisture drying in the Mediterranean, southwest USA and southern African regions is 

consistent with projected changes in the Hadley Circulation and increased surface temperatures, 

so surface drying in these regions as global temperatures increase is likely with high confidence 

by the end of this century under the RCP8.5 scenario.  

Concerning the impacts of future climate change on water resources in the Mediterranean 

Basin, an ensemble of regional climate models driven by several GCMs using the A1B scenario 

have a robust decrease in runoff emerging only after 2050 (Sanchez-Gomez et al., 2009). Feyen 

and Dankers (2009) analysed the impact of global warming on streamflow drought in Europe, 

finding that frost-free season streamflow droughts will become more severe and persistent in 

most parts of Europe by the end of this century, except in the most northern and northeastern 

regions. Estrela et al., (2012) studied the impacts of climate change on water resources in Spain, 

concluding that runoff is expected to be reduced between 10 and 30% for the whole country 

through the 21st century. Also, Arguëso et al. (2012) indicated that a substantial decrease of 

precipitation in Spain is likely expected by the end of the 21
st
 century. Forzieri et al. (2014) 

addressed the issue of future developments in streamflow drought characteristics across Europe 

under a multimodel ensemble projections approach. This analysis shows that streamflow 

droughts will become more severe and persistent in many parts of Europe due to climate change, 

except for the northern and northeastern parts of Europe. In particular, southern regions will face 

strong reductions in low flows. Koriala et al. (2014) evaluated the changes in streamflow at the 

end of 21st century by using runoff outputs from 11 atmosphere–ocean general circulation 

models (AOGCMs) participating in the fifth phase of Coupled Model Intercomparison Project 

(CMIP5). They concluded that mean and low flows are both projected to decrease in Europe, 

particularly in the south, under both RCP8.5 and RCP4.5 scenarios. 

Taking into consideration the observed and postulated changes in water resources, 

particularly in the Mediterranean region, maximizing water management efficiency based on 

streamflow forecasting plays a key role in water resources management and planning. While 
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short-term streamflow forecasting such as hourly or daily forecasting is crucial for flood warning 

and defence, long-term forecasting based on monthly, seasonal or annual time scales is very 

useful in reservoir operations and irrigation management decisions, protection of the 

environment or in the reduction of expenses in flood and drought mitigation. Furthermore, every 

year, management decisions for operating river diversions and dams are made early in the year in 

anticipation of the forthcoming seasonal streamflow. Because of this, in recent years, interest in 

long-range predictability of river discharge variability has increased markedly in most of the 

world regions. 

 

1.2 Overview of current streamflow prediction framework 

The hydrological system acts as spatial and temporal integrator of precipitation (rain and 

snow), temperature, and related evapotranspiration over a specific region. Hence, variations in 

these fields are amplified in streamflow, and in general, it is easier to detect a change in discharge 

that directly in the basic climatic variables (Dettinger and Diaz, 2000; Trigo et al., 2004).  

The skill of the long-range forecasts largely rests on the influence of slow variations in the 

Earth’s surface conditions of soil moisture, snow cover, sea-ice and ocean surface temperature 

(Shukla and Kinter, 2005), and somehow also the stratosphere (Marshall and Scaife, 2009; 2010). 

In addition, on seasonal timescales, anomalous atmospheric conditions are often linked with 

seasonal variations in the river streamflows and reservoir storages, via variations in precipitation 

and temperature (Dettinger and Diaz, 2000; Cullen et al., 2002; Trigo et al., 2004). 

Most of the dominant sources of climate variability are naturally recurring and persistent 

phenomena referred to as “teleconnection patterns” (Barnston and Livezey, 1987). These 

patterns, associated with some large-scale oscillations in atmospheric dynamics, may influence 

temperature, rainfall, storm tracks, and other meteorological phenomena over vast areas. A 

comprehensive review can be found in Hurrell et al. (2003) and some updates have been carried 

out in from Quadrelli and Wallace (2004) and Trenberth et al. (2005). 

Two of the most important phenomena that influence streamflow variability are El Niño/ 

Southern Oscillation [ENSO; Philander (1990); Halpert and Ropelewski (1992); Neelin et al. 

(1998)] and the North Atlantic Oscillation [NAO; Barnston and Livezey (1987); Hurrell (1995); 

Visbeck et al. (2002)]. The ENSO pattern encompasses two linked phenomena, a quasi periodic 

warming behaviour in the tropical Pacific near South America around and an adhering effect 

which is the zonal anomaly of SLP in the tropical Pacific (the Southern Oscillation), that is the 
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atmospheric component of El Niño (Bjerknes, 1969). The North Atlantic Oscillation (NAO) is 

the most prominent and recurring extratropical teleconnection pattern in the Northern 

Hemisphere (NH). Generally, the NAO refers to the meridional seesaw, or the dipole structure, 

typically associated with the north center near Iceland and the south center near the Azores of the 

SLP field. These main teleconnection patterns have been commonly used as potential predictors 

of hydrological variables. For example, several studies have shown significant relationships 

between ENSO events and streamflows at global (Dettinger et al., 2000; Chiew and McMahon, 

2002), and, particularly, for the European area (van Oldenborgh et al., 2000; Mariotti et al., 2002; 

Park, 2004; Zanchettin et al., 2008; Shaman and Tziperman, 2010; García-Serrano et al., 2011) 

and the IP has been also addressed (Rodó et al., 1997; Pozo-Vázquez et al., 2005; Vicente-

Serrano 2005; Lorenzo et al., 2010; Vicente-Serrano et al., 2011). Significant lag-correlations 

were identified between NAO index and several river streamflow anomalies from the IP (Trigo et 

al., 2004) and Tigris-Euphrates streamflow anomalies (Cullen et al., 2002). Also, the effects of 

NAO in Iberian rivers have been addressed (Lopez-Moreno et al., 2007; Lorenzo-Lacruz et al., 

2011; Moran-Tejeda et al., 2011). Rimbu et al. (2004) found significant lag-correlation between 

NAO and ENSO indices and Danube streamflow. However, the association between NAO and 

ENSO and streamflow for the IP (Trigo et al., 2004) and for south-east Europe (Cullen et al., 

2002; Rimbu et al., 2004) is non-stationary, i.e. the strength of the correlation between these two 

phenomena and streamflow anomalies has changed over time. On this regard, López-Moreno and 

Vicente-Serrano (2008) evaluates the non-stationary influence of the North Atlantic Oscillation 

on European precipitation, finding a general trend toward a strengthening of the NAO-

precipitation relationship over most of Europe has been detected for the twentieth century. 

Because of this, the identification of stable relationships between atmospheric and oceanic modes 

of variability and the hydrological variables to be predicted becomes a major step in forecasting 

experiments. 

Additionally, atmospheric and oceanic variability in regions different from the used to 

define the main teleconnection patterns could have a non-negligible influence on the climate in a 

particular area. Therefore, researchers have emphasised in the analysis of the relationship 

between seasonal or interannual streamflow variability in many large river basins with changes in 

the large-scale oceanic and atmospheric phenomena to make potential previsions. Some examples 

of studies using climatic information, from both teleconnection indices and other climatic fields, 

from previous seasons or months to make long-range streamflow forecasting in many regions of 

the world are: in North America (Hanson et al., 2004; Tootle and Piechota, 2004; Grantz et al., 
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2005; Opitz-Stapleton et al., 2007; Tootle et al., 2007; Soukup et al., 2009; Timilsena et al., 2009; 

Kalra et al., 2009, 2012; Bracken et al., 2010; Lamb et al., 2010; Oubeidillah et al., 2011; Tang et 

al., 2011; Anderson et al., 2012), South America (Gutierrez and Dracup, 2001; Tootle et al., 

2008; Córdoba-Machado et al., 2014), Europe (Rimbu et al., 2005; Ionita et al., 2008, 2011; 

Bierknes and van Beek, 2009; Gámiz-Fortis et al., 2010, 2011; Oubeidillah et al., 2012; 

Hernández-Martínez et al., 2014) , Asia (Shrestha and Kostaschuk,2005; Chandimala and Zubair, 

2007; Maity and Kumar, 2008), Africa (Eldaw et al., 2003; Sittichok et al., 2014) or Australia 

(Piechota et al., 2001; Chiew et al., 2003; Ruiz et al., 2007).  

Due to the importance of hydrologic forecasting, a considerable number of forecasting 

models and methodologies have been developed and applied in streamflow forecasting. The 

streamflow forecasting models may fall into two general classes, process-driven methods and 

data-driven methods (Wang, 2006). Process-driven models treat a streamflow process as the 

output of a watershed system. Some examples are the rainfall-runoff models such as lumped, 

semi-distributed and distributed, and snowmelt-runoff and low flow models. Data-driven models, 

on the other hand, identify the relationship between the inputs and outputs on a mathematical 

ground, without taking into account the physical mechanism. This Thesis focuses on the data-

driven models to identify the relationships between the atmospheric-oceanic variability and the 

seasonal streamflow variability and develop forecasting models able to make accurate seasonal 

streamflow predictions.  

Among the statistical forecasting models, regression models are probably the most common 

in climate applications (Goddard et al., 2001; Zwiers and von Storch, 2004). Also, other models 

commonly used are Canonical Correlation Analysis (CCA) or Singular Value Decomposition 

(SVD), which expands simple regression, one variable upon another, to multidimensional 

vectors. These models are more useful because they can be quite simple and applicable, so they 

have become more popular in streamflow forecasting, due to the increase in data availability from 

stations, real-time data retrieval, and increasing computational capability with the development of 

more robust methods and computer techniques (Wang, 2006). Instead of using linear modeling, 

some recent studies advocate non-linear modeling since it offers more flexibility and possibly 

better performance; more importantly, non-linearity may be closer to the nature of climate 

mechanisms. Among these non-linear models, some of the most used are the artificial neural 

network (ANN) (Hsieh and Tang, 1998; Tangang et al., 1998; Tang et al., 2000), the non-linear 

generalizations of CCA (Hsieh, 2001) or the discriminant analysis (Mason, 1998) and specific 

techniques from machine learning (Lima et al., 2009; Lima and Lall, 2010). However, the 
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utilization of non-linear models is subjected to the availability of streamflow time series long 

enough.  

Regarding the IP, some authors have recently centered their efforts on produce advances on 

the study of the seasonal or interannual streamflow forecasting. In particular, Gámiz-Fortis et al. 

(2008a) examined the interannual variability and predictability of the winter streamflow of the 

main IP international rivers (Douro, Tagus, and Guadiana) for the period 1923–2004. These 

authors used a singular spectral analysis to isolate the main oscillatory components of the 

streamflow series. Then, they fitted autoregressive-moving-average (ARMA) models to the 

Singular Spectrum Analysis (SSA) filtered streamflow in order to conduct an intereannual 

forecast experiment. Additionally, in a companion paper, Gámiz-Fortis et al. (2008b) analysed 

the role of the Atlantic summer and autumn sea surface temperatures (SSTs) on the predictability 

of these winter IP River flows. A similar approach, combining the predictability skill of SST in 

seasonal and interannual streamflow variability with the knowledge of main oscillatory modes of 

variability presented in streamflow time series, was used to investigate the predictability of the 

Douro (Gámiz-Fortis et al., 2010), the Ebro River flow anomalies (Gámiz-Fortis et al., 2011), and 

streamflow in the Internal Catalonian Basins (Hernández-Martínez et al., 2014).  

 

1.3 Proposed research 

The main goal of the research presented here is to contribute to the evaluation of medium 

and long-range scales seasonal streamflow forecasting of the IP Rivers. The key contribution of 

the work focuses on providing a global perspective to the entire area, using the greater density 

coverage of stations as possible and exploring the atmospheric-oceanic forcings driving seasonal 

streamflow. Specifically, the proposed research framework has four major components.  

1) To develop a streamflow database covering the entire IP (or as many areas as possible), 

able to be used in climate studies. To do that, a balance between density of available 

gauging stations records and their length is needed. A careful check for inhomogeneities 

in streamflow time series has to be done to ensure that gauging stations belonging this 

database do not present important alterations in the natural regime. Additionally, the 

main spatial and temporal characteristic of the IP Rivers are studied.  

2) To understand and identify the main global land-ocean-atmospheric drivers of seasonal 

variability of IP Rivers. This involves analyzing the multivariate space-time data of 

large-scale climate variables to find any statistically significant relationship between 
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different climatic variables (e.g. sea surface temperature, precipitation) and the seasonal 

variability of discharge anomalies. The large-scale climate variables explored are not 

only restricted to the main climate patterns (known as ‘teleconnection patterns’) but also 

the identification of the main modes of covariability between climate variables and 

seasonal streamflow and investigate the potential use of these new regions in long lead-

time hydrologic forecasting. In addition, the problem of non-stationarity of climate 

variability and streamflow variability relationship is addressed by identifying stable 

predictors. 

3) To develop statistical forecasting models to make long-range predictions with different 

updatable forecasting scenarios. So, as the lag between predictor and predictand is 

reduced, the new climatic information is incorporated to the statistical models and a 

new set of predictions are made. This work focuses on the developing of linear models 

to establish the relationships between predictors and predictands. Forecasting based on 

the identification of non-linear signals between the climate system and the river 

discharge variability requires long records, which are not available in most of the 

Iberian River Basins. Since, to provide a forecasting perspective covering the IP is one 

of the main goal, a linear modelling approach is preferred until longer time series are 

available for most of the streamflow records.  

4) To evaluate the skill of streamflow forecasts using a set of different verification 

measures in order to identify those basins and seasons where more accurate predictions 

can be obtained. The quality of the forecast is not only about how well is the fitting of 

the predicted time series but also with how many months or seasons is the prediction 

given in advance.  

 

1.4 Outline of this thesis 

The work is divided into eight chapters, including the introductory and conclusion chapters. 

An outline of the chapters that follow is provided here. 

 Chapter 2 gives the details of the study area, its geographical and climatic features and a 

brief description of the different basins.  

 Chapter 3 provides a description of the original streamflow database, together with the 

procedure followed to discard gauging stations with non-homogeneous behaviour. 

 Chapter 4 presents an overview of the spatial and temporal variability of the seasonal 



INTRODUCTION 1 
 

 11 

streamflow in the IP. Multivariate methods are used to determine the main spatial 

patterns, whereas a non-parametric approach is employed to detect temporal trends.  

 Chapter 5 attempts to find stable predictors among most common teleconnection indices 

representing main large-scale atmospheric and oceanic patterns.  

 Chapter 6 describes the connections between seasonal streamflow and Atlantic and 

Pacific sea surface temperature, geopotential height at 500 hPa and global temperature 

and precipitation. These connections are explored using Singular Value Decomposition 

analysis.  

 Chapter 7 presents a forecasting experiment of seasonal streamflow using as predictors 

the teleconnection indices and significant coupled modes identified as stable predictors in 

Chapters 5 and 6, respectively. Predictions are made with various lead times, using linear 

regression models.  

 Chapter 8 summarizes the main conclusions and future work. 
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CHAPTER 2 

STUDY AREA 

 

A general overview of the geographic, climatic and hydrological features of 

the Iberian Peninsula is carried out in this chapter. A special emphasis is made in 

relation with the effect that the development of wide dams network during the 

second half of twentieth century have had on the Iberian Peninsula hydrological 

system.  

 

2.1 Geographical and climatic features of the Iberian Peninsula  

The Iberian Peninsula is located between 36ºN - 44ºN and 3ºE - 10ºW. The region is 

surrounded by the Atlantic Ocean to the west, the European continent to the northeast, the 

Mediterranean Sea to the east and the Sahara desert to the south. Its complex orography, with 

crucial geographical features such as the Strait of Gibraltar or localized mountainous systems, 

become an important key for the climate of the region. Figure 2.1 displays the location and main 

topographic features of IP. 

The climate of the IP is characterized by high intra-annual variability. The origin of the 

air masses makes its temperature and water content vary dramatically, which represent an 

important component of local variability for both precipitation and temperature. According to 

Köppen climate classification, the climatic regimes in the IP are: temperate climate, such as Csa 

(temperate with dry or hot summer, over the majority of the southern-central plateau region, and 
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the Mediterranean coastal regions, with the exception of the arid zones in the southeast), Cfa 

(temperate with a dry season and hot summer, mainly in the northeast, within an area of medium 

altitude which surrounds the Pyrenees and the Iberian mountains) or Cfb (temperate with a dry 

season and temperate summer, in the Cantabrian mountains, in the Iberian mountain ranges, as 

well as part of the northern central plateau region and a large part of the Pyrenees, with the 

exception of areas of high altitude), dry climates, such as Bsk (in the southeast of the IP) and 

also cold climates in the mountains. A more detailed definition of the IP climates can be found in 

AEMET (2011). The main factors affecting the climate of the IP are its location, in mid-latitudes 

of the NH, the influence of two important bodies of water (the Atlantic Ocean and the 

Mediterranean Sea) and its rugged terrain, with the mountain ranges acting as barriers and 

passageways that determine local climates. These factors generate a northwest-southeast gradient 

in annual precipitation distribution (De Castro et al., 2005; González-Hidalgo et al., 2011), 

varying from more than 2000 mm/year in north-western to less than 300 mm/year in the south-

eastern. The large-scale precipitation is mainly modulated by the position of the Azores 

anticyclone that acts as a blocking structure in the summer, preventing the low-pressure systems 

from reaching the IP, and bringing hot and dry weather. The scarce summer precipitation is 

mostly due to local factors and convective storms (Serrano et al., 1999). On the contrary, during 

winter months, which account about 40% of annual precipitation, the Azores high moves toward 

the tropics accompanied by a southward displacement of the jet-stream letting the low-pressure 

systems get into the IP, resulting in wetter conditions. Note that in the eastern façade, mesoscale 

convective systems are also responsible for high rainfall rates, especially in transient seasons 

(Paredes et al., 2006; García-Herrera et al., 2005). Additionally, spatial variability is also 

remarkable, with a strong contrast between the northern (wet) and southern (arid) areas. 

Regarding its variability in temperature, high temperature values are reached in river valleys 

during summer (mainly in southern basins), whereas very low records are registered in the 

elevated mountainous areas in winter. Also, temperature range varies from inland areas (higher) 

to coastal areas (lower).  
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Figure 2.1. Location of the IP (left) and main geographical features (right). 

 

2.2 Hydrology of the Iberian Peninsula 

The river system in the IP has many peculiarities and strong contrasts, due to a rich and 

diverse environment and landscape, being the irregularity and the asymmetry of the slopes the 

main features defining the IP rivers. The major IP rivers run in the same direction of the 

parallels, flowing towards the Atlantic Ocean (the Miño, Douro, Tagus, Guadiana and 

Guadalquivir Basins) and the Mediterranean Sea (the Segura, Júcar and Ebro Basins), except for 

the Cantabrian and the southern peninsular rivers, which born in mountains near the sea and 

follow the direction of the meridians. In natural regime, the Spanish river system accounts for 

111000 hm
3
/yr, which represents about a third of mean annual precipitation and almost total 

cumulative flow form rivers (Water in Spain, 2003), although this value is unevenly distributed 

along time and space. River basins in northern sector of Atlantic watershed present higher mean 

annual flow (of 10570 hm
3
/yr for the Miño River, 13788 hm

3
/yr for the Douro River, and 12350 

hm
3
/yr for the Tagus River) than rivers in the southern sector of Atlantic watershed (4039 hm

3
/yr 

for the Guadiana River and 3780 hm
3
/yr for the Guadalquivir River). On the contrary, most of 

streamflows belonging to basins in the Mediterranean watershed (the Mediterranean Andalusian, 

Segura, Júcar, and Inland Catalonian Basins) are generally lower. The exception is the Ebro 

Basin, which has an abundant flow (mean 12279 hm
3
/yr) that is generated in the Cantabrian 

Range and in the Pyrenees. 

Water resources in the IP, which play a crucial role in the economy of the area, are under 

recurrent water stress. In addition, the climate models project a decrease in precipitation and an 

increase in evapotranspiration in the IP during this century (IPCC 2013, summary for 
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policymakers).  Together with these expectations, water demands still grow insatiably, especially 

where resources are scarce (the tourist sector in the Mediterranean areas or a competitive export-

oriented agricultural sector). The unbalanced distribution of water resources within the IP 

together with the rising demand for water have culminated in conflict among users and regions 

(Quiroga et al., 2011), especially in the Mediterranean area, and in the planning of a variety of 

inter-basin water transfer formulas (such as the water law reform in 1999, enabling water market 

transaction; the EU Water Framework Directive in 2000; the 2001 National Hydrological Plan 

and its subsequent reform in 2004, with the controversial repealing of Ebro water transfer 

(Arroyo-Ilera, 2007). 

Also, in addition to the situation of recurrent water stress, the increasing frequency of 

drought events in the IP since the 1970s (Vicente-Serrano et al., 2006a; Iglesias et al., 2007) has 

resulted in the construction of a complex network of dams and channels to optimize the use of 

available water resources. In the early twentieth century, there is reference of about 100 dams 

(with a capacity of 100 hm
3
), being 60 of them are currently in operation (Berga-Casafont, 

2003). During the first half of the twentieth century 218 large dams were built, increasing the 

reservoir capacity in 6034 hm
3
. However, it was in the second half of the century when the 

construction of dams experienced a substantial increase, especially between 1955 and 1975, 

multiplying by six the reservoir capacity (mainly due to hydroelectric purposes). Currently there 

are about 1.300 reservoirs in Spain, with a capacity of about 60.000 hm
3
 (which is approximately 

equal to the mean annual streamflow of the 8 major rivers of the IP), and a regulated volume of 

about 46000 hm
3
/yr (41% of natural resources). The 98.2% of the reservoir capacity is 

concentrated in 347 reservoirs with a capacity greater than 10 hm
3
. Figure 2.2 shows the location 

and capacity of major reservoirs in Spain. Table 2.1, from Berga-Casafornt (2003), summarizes 

the evolution of the major dams in the second half of the twentieth century.  

Advantages of reservoirs construction are multiple, such as providing socio-economic 

benefits through power generation, ensuring irrigation (which is the major aim for most of 

reservoirs) and urban water supplies during periods of water scarcity or reducing the impact of 

floods and droughts. However, there are some drawbacks related to these infrastructures. In 

particular, they involve substantial modifications to the river system from a hydrological, 

ecological or geomorphological perspective. Hence, the comparison of natural and altered 

regimes in the IP is very useful to evaluate the effects of reservoirs on the entire river system 

(such as in Batalla et al., 2004, López-Moreno, 2009a).  
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INCREASE IN MAJOR DAMS IN 1950-2000 

Period Nº major 

dams 

Annual mean 

increase 

Storage capacity 

(hm3) 

Annual mean storage 

capacity (hm3) 

< 1950 276 4 6142 120 

50-60 464 19 18167 1200 

60-70 666 20 36919 1875 

70-80 859 19 41717 480 

80-90 1016 16 49313 760 

90-00 1195 18 56500 720 

 

Table 2.1. Evolution in the number of major dams during the second half of twentieth century (from 

Berga-Casafornt, 2003) 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Location and capacity of major reservoirs (greater than 1 hm3) in Spain. 

 

In the Atlantic sector, the trans-boundary character of the Duero River (which flows from 

Spain into Portugal) creates difficulties for the management of water and reservoirs in the basin, 

and often causes conflicts between users and policymakers in both countries. The case of Tagus 
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River, probably the most affected by the construction of large reservoirs, is also controversial. 

There are a total of 40 reservoirs with more than 15 hm
3
 of capacity in the Tagus Basin, which 

affect most of the main tributaries (Flores, 2004). In the headwaters, the Entrepeñas (802 hm
3
) 

and Buendía (1638 hm
3
) reservoirs provide water for the Tagus-Segura transfer (Gómez-

Mendoza and Mata, 1999; Morales et al., 2005). This inter-basin water transfer between the 

Tagus and Segura Rivers in the upper Tagus is undertaken to solve the problem of the near-

chronic water deficit experienced in coastal areas of the Spanish Mediterranean. Since the 

construction of the inter-basin channel in 1979, the annual discharge of the Tagus has been 

generally below the historical average, and water transfer has been only able to supply about 

40% of the planned volume of 600 hm
3
/yr (Morales et al., 2005). This water transfer has 

aggravated the observed decreasing in Tagus streamflow (Gallart and Llorens, 2002), which has 

changed from 7515 hm
3
/yr during the pre-dam period (1943-1969) to 6208 hm

3
/yr for the post-

dam period (1970-2003). The determination of the amount of available water for transferring 

during dry years has caused severe social and political conflicts in Spain. The trans-boundary 

nature of the Tagus Basin also leads to difficulties in flow management, mainly during large 

floods and drought periods (Azevedo et al., 2004). Another important reservoir, in terms of its 

potential to modify the river regime downstream, is the Alcántara reservoir (with a gross storage 

capacity of 3162 hm
3
). It is located close to the border between Spain and Portugal, and it was 

built in 1969 for hydropower generation. In the Guadiana catchment (whose headwater is one of 

the driest areas of Europe), the increase of water storage (from almost zero in 1954 to 4000 hm
3
 

in 1963 (Brandão and Rodrigues, 2000) and to 12000 hm
3
 in 1991) to satisfy the large water 

consumption from agricultural projects and public water supply, has significantly modified the 

natural regime of the river. 

As regards of the river basins in the Mediterranean sector, in the Segura Basin is one of 

the most highly regulated, especially since 1957, because of the major reservoirs constructed in 

the headwaters. It is worth to mention the negative impact on the natural flow that the inter-basin 

transfer Tagus-Segura has had. Also, major rivers in the Jucar Basin are strongly regulated, 

while short watercourses are less affected, although the quantitative assessment of this type of 

pressure is vague in absolute terms as well as associated impact (Gil-Olcina, 2006). Concerning 

the situations of water transfer and regulation of the Ebro River, an annual amount of 150 hm
3
 is 

transferred for Bilbao metropolitan area and an extra of 55 hm
3
/yr for Tarragona's lands, in 

Catalonia. In the last years, a dispute regarding the projected, and thereafter revoked, water 

transfer from the Ebro to negative balanced Mediterranean Basins has involved several politic 
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and social disputes. How water demands from these basins are going to be cover is still under 

study. 

 

 2.3 Description of the IP main basins 

The Spanish hydrographical map is integrated by different river basins and districts, as a 

result of the application of Royal Decree 125/2007 and subsequent amendments and other 

constraints established from the regional arrangements. Figure 2.3 shows the spatial delimitation 

of the river basins considered for this study. The different river basins considered, together with 

a brief description (main geographical features, climatology and water resources and demands) 

are summarized in Table 2.2 (this information has been compiled from the website of each river 

basin authority and the Spanish National Hydrological Plan).  

 

 

 

 

 

 

 

 

Figure 2.3. Identification of the river basins used in this work. Line separating Douro, Tagus and 

Guadiana basins represent the border between Spanish and Portuguese parts. 

 

In addition to the Spanish River basins described in Table 2.2, gauging stations belonging 

the main basins located in Portugal were also considered. Particularly the gauging stations 

located in the basins shared between Portugal and Spain (Douro, Tagus and Guadiana), but also 

stations belonging the main Portuguese basins, such as the Mondego (between the Portuguese 

part of Douro and Tagus Basins) and Sado (between the Portuguese part of Tagus and Guadiana 

basins). The Mondego River is the greatest Portuguese river (237 km), with a drainage area of 

6670 km
2
 and a discharge of 411 hm

3
/yr in average. The Sado River basin has a catchment area 

of 7640 km
2
, and in general, its streamflow discharge is smaller (253 hm

3
/yr). 
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BASIN Hydrological 

features 

Climatology Regulation and Water 

demands 

Miño-Sil CA = 17757 km2 

MC = 8393 hm3/yr 

 

Temperate and humid oceanic 

climate, with soft winters and 

cold summers. 

AMP = 1175 mm/yr 

AMT = 11.3ºC  

Total storage capacity is 

above 3000 hm3 (mainly for 

hydroelectrical purposes). 

Total demand 436.4 hm3/yr, 

especially for agriculture 

(70%) and urban supplies 

(26%). 

Douro CA = 97290 km2 

(Spanish part, 81%)  

MC = 13500 hm3/yr 

Length of Douro 

river: 897 km (572 

km Spanish part) 

 

Mediterranean climate (highly 

continental), with cold winter 

(freeze) and mild summers. 

AMP = 618 mm/yr irregularly 

distributed, mainly in autumn 

and spring, almost non-existent 

in summer.  

AMT ranges between 10-12 ºC, 

with peaks of almost -25ºC and 

45ºC. Great variability in the 

diurnal temperature range, from 

3.5ºC (cold months) to 20.5ºC 

(warm months). 

Storage dams capacity of 

8000 hm3.  

The total water demand is 

about 4884 hm3/yr, being 

92% for agriculture 

(particularly irrigation) and 

the rest for human demand 

and industries.  

 

Tagus  CA = 88700 km2 

(55800 km2 in 

Spain),  

MC = 12350 hm3/yr 

(in Spain). 

The length of Tagus 

River is 1100 km 

(827 km in Spain).  

 

Climate varies from 

Mediterranean, in the east, to 

Atlantic conditions, in the west. 

Marked seasonal variability (dry 

and warm summers, and cold 

winters). 

AMP is 650 mm, ranging 

between 1100 mm/yr in 

mountainous areas and 450 

mm/yr in arid zones. 

AMT is about 11ºC, with clear 

The total capacity of the 

reservoirs is 14500 hm3 

(12500 hm3 belong to 

Spain).  

Supplies 11 millions of 

people (6 million in Spain), 

and 120000 (110000) ha of 

public (private) irrigation 

land. Industries demand 250 

hm³/yr 
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spatial variations (5-7ºC in the 

mountain areas, and 14–15ºC in 

the central part)  

Guadiana CA = 60256 km2 

(48656 km2 Spain).  

MC = 5860 hm3/yr 

Length Guadiana 

River is 744 km. 

Mediterranean-continental 

climate.  

AMP: 550 mm (mainly in period 

October-April) 

AMT: 16-17º C (with spatial 

variations between, 14ºC in 

header, and 18-19ºC in the river 

mouth. 

Total storage capacity of 

8189.4 hm3. 

Water demand reaches 

2238.57 hm3/yr. Irrigation 

demands are notable (90% of 

total water demand). 

Problems derived of 

overexploitation of water 

resources. 

Guadalquivir CA = 57527 km2 

MC = 7230 hm3/yr.  

Length of 

Guadalquivir River 

is 722 km.  

 

Mediterranean climate.  

AMP is 550 mm, being irregular, 

torrential in some cases, and with 

recurrent summer drought. 

Mean annual temperature is 

about 16.8ºC, with high records 

during summer. 

Highly regulated, with a total 

storage capacity of 8782 

hm3.  

High evapotranspiration 

levels. Water demands, for 

agriculture and animal 

husbandry (87%) and for 

human supplies (11 %) are 

above 3600 hm3, generating 

a ‘structural deficit’.   

Cantabrian CA = Western sub-

basin 19000 km2, 

Eastern sub-basin 

5788 km2 

MC = 4659 hm3/yr 

(eastern subbasin) 

and 11849 

hm3/yr (western 

subbasin) 

 

Soft winters and cold summers, 

with a cold Pyrenean regime in 

mountainous areas.  

AMP is 1250 mm (ranging from 

800 to 1700 mm in the basin), 

with a homogeneous annual 

distribution, being scarcer in 

summer.  

 

Major dams are located in 

western sub-basin (Salime, 

with 266 hm3 and Doiras 

with 114.6 hm3). 

Water demands are 353 

hm3/yr in the eastern 

subbasin (68 % for urban and 

30 % for industrial supplies) 

and 474.1 hm3/yr in western 

subbasin (50 % for urban 

supply, 35 % for industry 

and 15 % for agriculture) 
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Jucar CA = 42.851 km2.  

MC: 4142 hm3/yr  

 

Mediterranean climate, with 

warm summers and soft winters.  

AMP is 500 mm, ranging 

spatially form 300 to 750 mm. 

AMT between 14-16.6 ºC 

Dam storage 3000 hm3, 

allowing annual regulation of 

1200 hm3. 

Water demands come from 

agriculture (80 %) and urban 

uses (17 %) 

Segura CA: 18870 km2. 

MC = 640 hm3 /yr 

(surface waters) and 

220 hm3/yr of 

groundwater. 

Tagus-Segura 

transfer: 545 hm3/yr. 

 

Mediterranean climate. 

AMP about 500 mm, with spatial 

ranges from 300-750 mm.  

AMT ranging between 14-16.5 

ºC. Maximum annual 

temperature during summer (and 

dry) months.  

Dam storage capacity 1.359 

hm3. 

Negative water balance, 

(overexploitation of 

aquifers). 89 % of water 

demands comes from 

agriculture, 10 % for urban 

supplies and 1 % for 

industries. 

Uncontrolled expansion of 

irrigation derived from inter-

basin water transfer. 

Ebro CA = 85997 km2  

MC = range 7305-

12279 hm3/yr, for 

dry-rainy years. 

Heterogeneous climatology, 

although predominately 

Mediterranean with different 

subtypes. AMP is about 600 mm, 

with spatial variability of  261-

2.187 mm, and AMT is about 

12.6ºC, with spatial variability of 

5.6-15.8ºC.  

Storage capacity 8360 hm3. 

Water demands reach 50000 

hm3/yr, for urban and 

industrial supply, 

hydroelectric and nuclear 

power generation, and, 

especially, for irrigation of 

800000 ha (with an 

estimated water demand of 

6310 hm3/yr). 

Internal 

Catalonian  

CA = 16600 km2. 

MC = 2315 hm3/yr 

Mediterranean climate, with soft 

winters and dry and warm 

summers. Scarce precipitation, 

predominantly in mid seasons, 

with spatial variability from 400 

mm/yr in central depression to 

There are 10 reservoirs in 

total in the internal basins 

giving the ability to regulate 

695 hm3. 

Provides 1186 hm3/yr (38% 

of total consumptions in 
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1200 mm/yr in the Pyrenees. 

High spatial temperature 

variability due to its contrasting 

topography.  

Catalonia, mainly for urban 

and industrial uses)  

Mediterranean  

Andalusian 

CA = 17952 km2 

MC = 1187 hm3/yr  

2102 km of water 

masses (with a 

maximum river 

length of 70 km).  

Because of its contrasting 

topography, it presents a highly 

variable climate (Mediterranean 

subtropical, sub-desert, semi-

continental, mountainous) and 

precipitation regime (from 2.000 

mm/yr in western slopes, to 200 

mm/yr in eastern façade).  

The storage dams capacity of 

1368 hm3. 

In general, the water balance 

is negative. Water demands 

are 1410 hm3/yr, being 75% 

for agriculture (irrigation) 

and 18% for urban supply. 

 

Table 2.2. Summary of the main features of the analysed basins, with CA = Catchment Area, MC = 

Mean Contribution, AMP = mean total annual precipitation and AMT = annual mean temperature. 
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CHAPTER 3 

STREAMFLOW DATABASE 

 

This chapter presents a description of the original database and the 

quality control processes followed to select, among all gauging stations 

available, those which overcome the homogeneity tests, the percentage of 

missing values allowed and the minimum length required.  

 

3.1 The original database 

Streamflow time series (on a monthly scale) of gauging stations in each river basin were 

established from the following water agencies: 

 Centro de Estudios Hidrográficos (CEDEX). 

http://hercules.cedex.es/anuarioaforos/default.asp  

 Agència Catalana de l’Aigua. http://aca-web.gencat.cat/aca/appmanager/aca/aca/  

 Agencia Andaluza del Agua. http://www.agenciamedioambienteyagua.es/  

 Sistema Nacional de Informaçao de Recursos Hídricos (SNIRH) de Portugal.  

http://snirh.pt/  

Data files with the information of the river basins boundaries, rivers location and the 

capacity and location of the reservoirs were obtained from the website of the Spanish Ministry of 

Agriculture, Food and Environment, (http://servicios2.marm.es/sia/visualizacion/descargas 

/mapas.jsp) 

http://hercules.cedex.es/anuarioaforos/default.asp
http://aca-web.gencat.cat/aca/appmanager/aca/aca/
http://www.agenciamedioambienteyagua.es/
http://snirh.pt/
http://servicios2.marm.es/sia/visualizacion/descargas%20/mapas.jsp
http://servicios2.marm.es/sia/visualizacion/descargas%20/mapas.jsp
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The streamflow records from CEDEX and SNIRH are measured in hm
3
 (contributions) at 

monthly scale. In hydrology, contributions refer to the volume of water supplied by the river at 

the measuring point for a month (in case of monthly data). By contrast, data of rivers in the 

Internal Catalonian Basins were expressed in m
3
/s (which refers to the average daily value), so 

they were translated into monthly contributions.  

In order to increase the spatial coverage of gauging stations (scarce in some places, 

particularly in the south half of the IP), those stations located at the entrances of the main 

reservoirs were added (obtained from CEDEX website). It worth to be note how these entrances 

are calculated. Generally, two values are measured in reservoirs, the outputs and the water mass 

stored. The entrances are not directly measured, but they are calculated balancing the outputs and 

the water mass stored. These data should be treated cautiously, since they are not a direct 

measure, and effects as evaporation in reservoir are not taking into account. Despite these 

limitations, records in entrances of reservoirs were considered so as to complete de database in 

areas where quality and quantity of gauging stations were insufficient. 

The compiled dataset comprises 808 gauge stations in Spain, 246 in Portugal, and 326 

reservoir entrances in Spain, totalling 1380 data series. Figure 3.1 shows their spatial 

distribution. From this Figure, it could be seen how the incorporation of data from reservoir 

entrances complete the spatial coverage, particularly in Guadalquivir and Guadiana Basins, 

where the density of gauging stations available is inferior. 
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Figure 3.1. Spatial distribution of gauging stations (green circles) and reservoir entrances (red 

triangles) of the original database. 

 

3.2 Data quality control. Methodology 

3.2.1 Balance between temporal coverage and missing values 

Establishing the most suitable time period for this study was the first question addressed. 

This period had to be the one that maximize the number of years (at least 30 years for climatic 

studies), the number of stations, its spatial density, minimize the number of missing values in 

time series and to be common for all stations and the as recent as possible.  

 

3.2.2 Homogeneity test 

The second stage of the quality control consisted in assessing the homogeneity of 

seasonal time series. Homogeneity testing is necessary in climate studies, since inaccurate 

conclusions can be derived from the analysis of time series that present unnatural behaviour. 

Some common causes of a lack of homogeneity in the climate data series are changes in the 

location of the stations, or environmental changes around the station. Particularly for the 

streamflow time series in the IP, the high degree of dam regulation in Spain may be the cause of 

alterations on the natural regime of streamflow, introducing a non-homogeneous behaviour in 

time series.  
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Detection of inhomogeneities or abrupt changes in hydrological series is a difficult issue 

to address, because the diversity of tests that can be found in the literature. The importance of 

specific information on the timing of changes in the station observing system or microclimate 

cannot be overemphasized. Most of this information, usually called metadata, becomes a very 

useful tool for determining inhomogeneities. However, when this information is not available, 

users can employ some of the several methods available for detecting inhomogeneities in climate 

records in the absence of information about the history of the observations. Although extremely 

useful, these methods should be taken with precaution, because without information of metadata 

the inhomogeneities detected could not be properly identified or corrected. An interesting review 

of the methodology more commonly employed in the study of changes in hydrologic series can 

be found in Kundzewicz sand Robson (2004). These authors recommended the use of various 

change-detection tests, and also presenting the results accompanied with the careful graphical 

inspection of the time series behaviour itself, as well as background knowledge (possible impacts 

from reservoir changes in land use or type of instrumentation) or metadata to help complete the 

study. Other authors such as Wijngaard et al. (2003) use the results of several tests, such as the 

Standard Normal Homogeneity Test, SNHT (Alexandersson, 1996), Buishand (Buishand, 1982), 

Pettitt (Pettitt, 1979) and von Neumann ratio test (Neumann, 1941), to classify the series based 

on the accordance between the different tests.  

Some of the statistical tests developed to assess the homogeneity of time series assume 

normality in these time series. In this regard, it is known that meteorological time series, such as 

precipitation or streamflow, usually suffer from a lack of normality. Then, addressing the 

normality of the seasonal streamflow time series is a necessary previous step. Razali and Wah 

(2011) compared four statistical tests to evaluate the normality assumption of the data: Shapiro-

Wilk (Shapiro and Wilk, 1965), Kolmogorov-Smirnov (Massey, 1951), Lilliefors (Lilliefors, 

1967) and Anderson-Darlin (Stephens, 1974), concluding that Shapiro-Wilk was the most 

powerful. In addition, Steinskog et al. (2007), in a cautionary note on the use of the 

Kolmogorov-Smirnov test for normality, put on show that, a power comparison of eight tests for 

normality favoured Jarque-Bera (Jarque and Bera, 1987) and Shapiro-Wilk tests. In line with 

these findings, three tests were used to check the normality of the streamflow time series: the 

Lilliefors test, the Jarque-Bera and the Shapiro-Wilk. It was concluded that a time series follows 

a normal distribution if the three tests agree.  

Bearing in mind the likely non-normal behaviour of hydrological time series, the Pettitt 

test was selected among the proposed test by Kundzewicz and Robson (2004) to analyse the 



STREAMFLOW DATABASE 3 
 

 29 

possible existence of abrupt changes in the seasonal streamflow time series. The main reason of 

using this test is its non-parametric nature, so it does not assume that the data fit any probability 

distribution, and that it is more sensible to detect break points in the middle of the series. The 

Pettitt test has been used in multiple studies to determine the existence of change points in 

hydrological series (Aka et al., 1996; Tu et al., 2004; Salarijazi et al., 2012, among others) and it 

is considered robust in terms of changes in the shape of the distribution of data.  

The Pettitt test is essentially a sequential version of the non-parametric Mann-Whitney 

test, designed to search for points of abrupt changes in a time series. If we consider a sequence 

of variables X1, X2, ..., XT, it is said to have a change point at time τ if Xt, for t = 1, ..., τ has a 

distribution function F1(x) and, Xt for t = τ +1, ... T has a distribution function F2(x) such as 

F1(x) ≠ F2(x). No further assumptions about the shape of the distributions are made except that 

they are continuous. It tests the null hypothesis of no change against the alternative of a change 

at time τ through the statistic Kt. Let r1, ..., rT the ordered sequence of variables X1, ... XT, the 

statistic is defined as  
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If P0A is less than 0.05 (95% confidence level), then the null hypothesis of 'no change' is 

rejected and the alternative hypothesis of an abrupt change in the series at the point t, where Kt 

is maximized, is accepted. 

When nonhomogeneous behaviour of seasonal time series is detected, the results from the 

Pettitt test indicate the year of the break point (at time t, where K takes its maximum).  

The Pettitt test was applied to the ‘extended’ seasonal streamflow time series. The term 

‘extended’ means that the all records available where considered, not only the period from 

10/1975 to 9/2008. The reason behind this is that the effects of river regulation could appear 

before 1975, and the time series for the period 1975-2008 could not reflect the natural behaviour 

of the river flow.  
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The main gaol of this quality control is identifying those stations that are strongly 

affected by dam regulation, so the original signal can be masked. For instance, an additional 

indicator was proposed (following the recommendations of Kundzewics and Robson (2004) of 

using multiple tests) to determine if the abrupt change found for Pettitt test could be associated 

with a change in natural regime as a consequence of dam regulation. The proposed indicator, 

called the ‘Common Area Index’ (CAI), is defined as the percentage of common area between 

the curves of the annual cycles calculated using data from before and after the change point. 

Hence, the CAI was calculated for each year where a seasonal time series presented an abrupt 

change (i.e., there were calculated as much CAI as seasons showing an abrupt change). Those 

stations that present any of these CAI inferior to 50 % were considered as inhomogenous, since 

the natural streamflow regime was strongly affected after the break.  

 

3.2.3 Gap filling 

A simple method based on linear regression has been developed to fill each gap. As 

predictor, it was chosen the station with the higher correlation with the station to be filled 

(predictand), with the restriction that this correlation had to be greater than 0.8. In those cases 

where there was not available any predictor well correlated, the gap was filled using the mean 

value of the correspondent season. 

 

3.3 Results 

The identification of missing values in time series was the first step (Figure 3.2). It could 

be seen from Figure 3.2 that the amount of stations available increases significantly after 1970s 

for gauging stations within Spanish territory (Figure 3.2a). This is the case of stations in 

Cantabrian and Tagus Basins, where a remarkable number of gauging stations are available from 

the seventies. In addition, stations with larger periods present some lacks during decades of 

1920s and 1930s, especially during years of Spanish Civil War. In case of reservoirs entrances, 

as it is shown in Figure 3.2b, the first records started in mid 1940s and early 1950s, with the 

notable development in these infrastructures during 1970s. Regarding the degree of missing 

values in Portuguese gauging stations (Figure 3.2c), the number of stations available with a 

remarkable record length and quality was notably reduced. According to this evaluation, a period 

between 1970s until present could be considered appropriate for this study, because is long 
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enough for climate studies (more than 30 years) and display an appropriated spatial density of 

stations (most of basins were represented).  

 

 

 

Figure 3.2. Location of non-missing values (different colours mean different basins, white means 

missing value), for gauging stations and stations in reservoirs in Spanish territory, a) and b), 

respectively, and for gauging stations in Portugal, c). 
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In terms of completeness of time series, only those stations with less than 10% of missing 

data in the selected period were considered. Then, different time periods (starting from late 

sixties until late seventies) were considered, and balanced between number of stations, 

percentage of missing values and its spatial distribution. As a result, the period starting in 

October 1975 and ending in September 2008 (years are considered as hydrological years, it 

means from October to September) was considered. The number of stations that present less than 

10% of missing values on this period was 325 of the 808 stations belonging the gauging stations 

in Spanish territory, 9 of the 246 gauging stations in Portugal and 170 of 326 reservoir entrances 

in Spain, totalling 504 stations. Figure 3.3 shows the spatial location of the 504 stations selected. 

As it can be seen in Figure 3.3, the southern Portugal and the Guadiana Basin are the areas with 

poorer spatial coverage of stations. 

Subsequently, monthly streamflow time series were seasonally averaged. Often, in 

climate studies, seasons are defined as: winter (December to February, DJF), spring (March to 

May, MAM), summer (June to August, JJA), and autumn (September to November, SON). 

However, the components of the hydrological cycle interact in multiple ways in a catchment, 

which introduces time lags between a decline in precipitation and when this becomes evident in 

other components of the hydrological cycle (Wilhite and Glantz, 1985; Vicente-Serrano and 

López-Moreno, 2005; Lorenzo-Lacruz et al., 2010). Thus, it is reasonable to consider a possible 

lag response of streamflow with respect to precipitation. Accordingly, Trigo et al. (2004) studied 

the response of precipitation and streamflow in the IP to the NAO and found that, whereas DJF 

precipitation is well related to DJF NAO, the JFM mean river flow proved to be more closely 

associated with the 1-month leading (DJF) NAO index than was the simultaneous (DJF) river 

flow. Additionally to these results, the month-to-month streamflow correlation was evaluated 

(see Figure 3.4). From this figure, it could be seen that March-April correlation presents smaller 

values than most of the month-to-month correlation, so it does not seem appropriate to include 

both months together in the seasonal average. Taking into account these results together with the 

findings from Trigo et al. (2004), March was decide to be grouped together with February and 

January for winter streamflow definition. Consequently, spring season was defined as April to 

June, summer as July to September and autumn as October to December. 
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Figure 3.3. Over the raw database of 1380 stations (in red), and filled in orange, the 504 stations 

selected for this study (circles for gauging station and triangles for entrance reservoir stations). 

 

 

Figure 3.4. Box plot of the streamflow serial correlation (1 month lag). 

 

Prior to apply the Pettitt test to the seasonal streamflow time series, the normality of the 

time series was checked by applying the Lilliefors, Jarque-Bera and Shapiro-Wilk tests. The 

results from the normality tests are summarized in Table 3.1 and Figure 3.5. The percentage of 

time series that fit to a normal distribution is quite low (from 6.9 % in case of autumn to 14.1% 

for spring), and mainly located in the northern sector. When a previous logarithmic 

transformation is done, the number of time series fitted to a normal distribution increase notably 
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(being between 43.6 % of stations in case of summer and 61.9 % in case of spring). However, 

there is still a notably percentage of stations (between 32.9 % for spring and 46.9 % for summer) 

that do not fit to a normal or log-normal distribution (especially located in the eastern of the IP). 

Hence, since around more than a third of data do not follow a normal or log-normal distribution, 

it seems reasonable use test that do not assume normality for homogeneity analysis, such as the 

Pettitt test.  

 JFM AMJ JAS OND 

NORMAL 9.3 14.1 12.5 6.9 

LOG-NORMAL 53.6 61.9 43.6 57.9 

NORMAL or 

LOG-NORMAL 

61.1 67.1 53.1 61.9 

 

Table 3.1. Percentage of stations (relative to the 504 total stations analysed) where the hypothesis of 

normality or log-normality (or one of them) is accepted by the three tests used (Jarque-Bera, Lilliefors 

and Shapiro-Wilk). 

 

Results from the Pettitt test indicated that 375 of the 504 stations selected shown a 

change point in at least one seasonal time series. The Figure 3.6a displays the results of Pettitt 

test indicating the year of the change point. In autumn, change points were found in stations 

located in the headwaters of Tagus, Douro and Guadalquivir and also in the Mediterranean 

sector (except in Catalonian Basin), especially in Segura and Jucar Basins. These changes 

mainly happened in the sixties (in Douro Basin) and late seventies (in the rest of the areas). In 

winter, the number of change points lightly increases with respect to autumn and they occurred 

in late seventies and early eighties in most stations. The number of change points detected 

presents a considerable increase in spring, particularly in the Douro, Cantabrian and Catalonian 

Basins. In this season, the year of the breaks varies from sixties (especially in some stations in 

the Douro and Cantabrian basins), late seventies and even nineties (particularly in the Cantabrian 

Basin and upper Ebro). Finally, summer is the season where most breakpoints were detected, in 

almost all of the territory, with a happening in a wide range of years (since sixties until late 

nineties). This result was, in somehow, expected, because the low flow levels during this season 



STREAMFLOW DATABASE 3 
 

 35 

makes that the effect of regulation (to cover the necessities for agricultural and tourism sector) 

be more important in relative terms. 

 

Figure 3.5. Results from the normality tests. In green, seasonal time series following a normal 

distribution. In red, seasonal time series following a normal distribution after a logarithmic 

transformation. In green, those station that neither the seasonal time series or its logarithmic 

transformation follow a normal distribution. 

 

From the CAI analysis (Figure 3.6b), it could be seen as the CAI values related to break 

points in stations located in the north-west of the IP are above 50 %, indicating that there is not a 

clear sign of serious alteration in the natural regime of the river flow. However, stations located 

in the Mediterranean slope and also in the headwaters of Douro, Tagus, Guadiana and 

Guadalquivir Rivers present CAI below 50 % between the flow before and after the year of the 

break detected. 
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Figure 3.6. a) Year of the break point detected by Pettitt test applied to the seasonal time series. b) 

CAI value calculated using the data before and after the year of the break identified in the seasonal 

time series. Unfilled white circles indicate no break.  
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Figure 3.7. a) Seasonal time series for station id=3067. The year of the break detected by Pettitt’s test 

is indicated with a dashed vertical line. b) Intraannual streamflow regime before (blue) and after (red) 

the break. The common area between both curves is colored. 

 

Figure 3.8. As Figure 3.7 but for station id=9018. 

 

To sum up the process described to detect inhomogenous time series, two examples are 

shown. The first example (Figure 3.7) represents the analysis for a station (id=3067) located in 

the Tagus Basin. From the Pettitt test, a break point was found in all four seasonal time series 

(Figure 3.7a), around late seventies and early eighties. In all cases, the seasonal streamflow after 
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the break was notably inferior to the observed before that. The CAI calculated for each year 

identified as change point (1976 in case of autumn, spring and summer and 1980 for winter) was 

always inferior to 50 % (Figure 3.7b), indicating a serious alteration of the natural regime after 

the break. On the other hand, Figure 3.8a shows that, for the station id=9018 (in the Ebro Basin), 

two change points were found, in winter and spring, located in 1972 and 1973 respectively. 

However, the CAI computed according to these break points (Figure 3.8b) was greater than 50 

%. Hence, there was not a clear evidence of alteration of the natural regime after the break point. 

Finally, after the quality control carried out, 122 of the 504 stations selected were 

considered that present a non homogenous behaviour. Hence, a total of 382 stations overcome 

the quality control and were considered as adequate to this study. The location of these stations 

is shown in Figure 3.9. 

 

Figure 3.9. Filled in red, the 382 stations that overcome the quality control. Filled in orange, the 122 

stations considered as no homogeneous. Unfilled the remaining stations up to the 1380 total original 

database.  

 

3.4. Summary 

From the original database comprises 1380 gauging stations, a trade off between number 

of available stations, the percentage of missing values and the length of the period was carried 

out, resulting in 504 stations covering the period 1975-2008, with less than 10% of missing 

values. Note that most of stations located in Portugal did not overcome these criteria. Moreover, 

the quality and homogeneity of streamflow time series was evaluated as a prerequisite for carried 

out reliable studies of streamflow variability and predictability. To investigate the presence of 
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inhomogeneities in hydrological time series (particularly because of regulation effects), a 

combined methodology based on Pettitt test (which not assume normality in data series) and 

Common Area Index was applied to the 504 seasonal time series selected. Consequently, 122 of 

them were discarded because of the existence of a non-natural behaviour. These stations were 

mainly located in mainstream of the Tagus River, Guadiana, Guadalquivir, Segura and Jucar 

Basins. Changes in time series were mainly identified in summer, with increase in discharge in 

years after the construction of a reservoir upstream (probably because of reservoir management 

to ensure water availability during the drier months). Sometimes this change is related to a 

decrease in river discharge in wet season (for water storage in reservoirs), which can be 

significantly enough to result in a great alteration of annual cycle. Then, for the remaining 382 

stations, a reconstruction scheme was performed to fill in missing values by linear regression. 
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CHAPTER 4 

SPATIAL AND TEMPORAL SEASONAL 

STREAMFLOW VARIABILITY  

 

In this chapter, the temporal and spatial variability of seasonal 

streamflow was studied in order to identify the main spatio-temporal patterns 

of variability, providing a more complete description of the streamflow over 

the IP. 

 

4.1 Introduction 

Trenberth (1999) postulated an intensification of the hydrological cycle due to the 

increase in greenhouse gases which intensifies downwelling infrared radiation, leading higher 

surface temperatures that signifies greater water-holding capacity of the atmosphere as well as 

increased evaporation. The combination of both effects should increase atmospheric moisture. In 

fact, some observations and modelled simulations agree with this hypothesis (Groisman et al., 

2005; Kharin and Zwiers, 2005; Tebaldi et al., 2006). In addition, some significant impacts on 

water resource management can be derived from increased temperature values. For example, 

increasing winter temperatures could reduce the amount of snow in a basin (e.g., more 

precipitation falling as rain than snow), as it has been observed in several parts of western United 

States (Aguado et al., 1992; Dettinger and Cayan, 1995). Also, higher spring temperatures could 

initiate earlier runoff and peak streamflow in snowmelt-dominated basins (Aguado et al., 1992; 
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Cayan et al., 2001). Other impacts related to the alteration of the hydrological cycle include the 

alteration in the magnitude and timing of runoff, frequency and intensity of floods and droughts, 

and also in the regional water availability.  

The study of the changes in the streamflow and its temporal variability within a global 

change context plays an important role for water managers develop successful water policies. On 

this regard, a number of studies worldwide have been undertaken to characterize the variability 

and trends in observed records of streamflow, such as Fu et al. (2009) in United States, Burn et 

al. (2010) in Canada, Genta et al. (1998) in South America, Petrone et al. (2010) in Australia and 

Hu et al. (2011) in China. In Europe, Stahl et al. (2010) analyzed the evolution of 441 river 

basins in the last 40 years and showed a generalized pattern of decreasing streamflow trends in 

the southern part of Europe. These results are in agreement with those found for the Iberian 

Peninsula by Lorenzo-Lacruz et al. (2012). Also other studies regarding streamflow trends in 

different European regions can be found in Birsan et al. (2005), for the rivers in Switzerland, 

Hannaford and Marsh (2006) in the United Kingdom, Hyvarinen (2003) in Finland, Khaya and 

Kalaycy (2004) in Turkey, Lindstrom and Bergstrom (2004) in Sweden, Wilson et al. (2010) in 

the Nordic countries, and Massei et al. (2010) in France. Hence, the identification of hydrologic 

impacts of climate change for catchment in the IP was addressed in this chapter. To do this, the 

possible existence of significant trends in seasonal streamflow, their quantification and the 

analysis of the spatial distribution of catchments exhibiting or not trends was evaluated.  

Another important aspect in the analysis of streamflow variability on the IP is the 

identification spatio-temporal patterns of variability that allow establishing regions with common 

climatic evolution. This classification is necessary because streamflow conditions over a region 

can vary from one area to other, even inside the same basin.  

 

4.2 Methodology 

4.2.1 Intra-annual variability 

Brief descriptions of the intra-annual variability in each basin (at seasonal and monthly 

time scales) have been calculated to have a clearer understanding about the streamflow regimes 

in each basin, which become a background for the subsequent analysis carried out on this 

section.  
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4.2.2 Interannual variability. Trend estimation 

Trends of seasonal streamflows have been estimated using the Sen’s estimator of slope, 

also called the “median of pair-wise slopes” or Theil-Sen estimator (Sen, 1968). The statistical 

significance of the trends was tested using the Mann-Kendall test (Kendall, 1975; Mann, 1945) 

at 0.05 significance level, against the null hypothesis of no trend. This method is a rank-based 

test, robust to outliers and does not depend on the assumption of a Gaussian distribution of 

residuals. This methodology is commonly used in trend detection of hydroclimatic variables 

(Khaya and Kalaycy 2004; Hidalgo-Muñoz et al., 2011; Hu et al., 2011; Lorenzo-Lacruz et al., 

2012; among others). 

Prior to studying temporal trends, the effects of autocorrelations in the series were 

removed, because of this increase the probability that the test detect a significant trend (von 

Storch and Navarra, 1995), with an approach similar to the used for Lorenzo-Lacruz et al (2012). 

These authors used the pre-whitening procedure to correct the effects of autocorrelation in 

trends. This method is based on the 1-lag autocorrelation coefficient of the series (Burn and Hag 

Elnur, 2002), as follows: 

 1 1

p

t t tX X r X     (4.1) 

 

where 
p

tX  is the value of the pre-whitened series for the t interval, X is the value of the 

original series for the t interval, and r1 is the estimated autocorrelation coefficient. 

Prior to the correction of the effects of auto-correlation, we followed the trend-free pre-

whitening method proposed by Yue et al. (2002) to remove the trend (if present). The procedure 

involved the following steps. 

1. Calculation of the slope (b) of the original series using a linear regression. If b ≠ 0, this is 

removed from the time series as follows: 1 1

p

t t tX X r X   

 
b

t tX X bt     (4.2) 

 

where 
b

tX  is the value of the detrended series for the t interval, tX  is the original value 

of the series for the t interval, b is the slope value for the t interval. 
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2. Calculation of the autocorrelation coefficient r, between the detrended series tX  and the 

lag-1 detrended series 1

b

tX . Removal of the auto- correlation coefficient of the detrended 

series was performed as follows: 

 1 1

b b b

t t tY X r X      (4.3) 

 

where the resulting series 
b

tY  is independent. 

3. Adding the linear trend to the 
b

tY : 

 
b

t tY Y bt     (4.4) 

 

This procedure ensures that the resulting series preserves the original trend and was not 

affected by autocorrelation. 

Finally, the Mann-Kendall test was applied together with the Sen’s estimator for the 

magnitude of trends. Since the Sen’s estimator if given in hm
3
/yr, and in order to ensure 

comparability among gauging stations (as magnitude of seasonal streamflow presents a notable 

spatial variability), it was necessary to use a relative measure of trends in the magnitude of 

streamflow. To do this, the strength of the change was determined by dividing the slope by the 

average of each series, and multiplying by 100 (to express it as percentage). 

 

4.2.3 Spatial variability. Principal Components Analysis 

Among the methodologies developed to classify regions with similar temporal behavior 

of a particular climatic variable, Principal Components Analysis (PCA; Preisendorfer, 1988) is 

probably the most widespread used. Examples of its application in the streamflow 

regionalization context can be found in Khaya et al. (2008) and Lorenzo-Lacruz et al. (2013b), 

among others. Here, the PCA has been used to identify the main modes of variability of seasonal 

streamflow. The PCA is a useful tool to reduce the dimensionality of the data, identifying 

dominant modes of variability. It consists in an orthogonal linear transformation of the original 

set into a new coordinate system. So the new variables are linear combinations of the original 

dataset, subject to a maximization of the covariance (or correlation).  

When the measurement units of the variables differ in size and type, as it is the case of 

streamflow data (where there are large spatial differences between the variances), the correlation 
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matrix should be used instead of the covariance, because of those stations whose variances are 

largest will tend to dominate the first few PCs (Jollife, 2002). Therefore, taking into account the 

variance of stations located in mainstream of major rivers in the IP, and, especially, in the 

stations near to the mouth of the Douro, Tagus and Ebro Rivers, the PCA based on the 

correlation matrix has been carried out. To this end, streamflow were standardized to z-scores 

before conducting the PCA.  Being mindful of the fact that the hydrological time series, in 

particular, seasonal streamflow time series, aim of this study, do not follow a normal distribution 

in most cases (as it was shown in Chapter 3), the procedure needed to standardize them requires 

more steps than subtract the mean and divide by the standard deviation (which assumes that data 

series follow a Gaussian distribution). Some studies concerning streamflow variability of the IP 

rivers have used different distributions to fit the streamflow time series, such as Pearson type 3 

(Vicente-Serrano, 2006b; López-Moreno et al., 2009a; Lorenzo-Lacruz et al., 2010; Gámiz-

Fortis et al., 2010) or lognormal (Gámiz-Fortis et al., 2011). In this study, the approach proposed 

in Vicente-Serrano et al. (2011) was followed. These authors selected the most appropriated 

distribution for each time series between a subset of three parametric distributions commonly 

used in hydrology. See the Appendix B for more details about this step. 

Once the seasonal time series were standardized, the PCA was carried out. Although this 

technique is commonly used in the field of climatology, a brief explanation of PCA procedure is 

given in order to familiarize the lector with this.  

Let us assume that the matrix F is formed by the standardized time series of each station. 

So the dimension of F is [N (times)  K (stations)].  

We form the correlation matrix F by calculating: 

 
TR F F    (4.5) 

where F
T
 is the transpose matrix of F. 

Note that this definition of correlation matrix is the one followed by Preisendorfer (1988). 

Other authors, as Peixoto and Oort (1992) use instead 

    (4.6) 

 

However there is no difference in eigenvectors calculation but a constant factor.  

The problem of finding a new coordinates system which maximizes the correlations is 

reduced to solve an eigenvalues problem: 

 RE EL    (4.7) 

1 TR F F
N
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where L is a diagonal matrix containing the eigenvalues li of R (non negatives). The Ei 

columns vectors of E are the eigenvectors of R corresponding to the eigenvalue li. The size of 

both E and L is [KK].  

The property T TEE E E I   (where I is the identity matrix) means that the eigenvectors 

are uncorrelated over space (they are orthogonal to each other). Because of this, they are 

commonly named Empirical Orthogonal Functions (EOFs). 

The eigenvalues in the diagonal of L are in descending order, so the first eigenvector is 

aligned in the direction in which the data vectors jointly exhibit the most variability (understood 

as spatial correlation in this case), the second one is calculated so that it is orthogonal to the 

previous principal component and represents the second spatial structure more coherent, and so 

on. 

The trace of L is equal to the trace of R, and represents the maximum variance of the 

dataset. Hence, the percentage of variance explained in the direction of the eigenvector Ei is:  

 

    (4.8) 

 

Each eigenvector represents a standing pattern when is plotted as a map (for each station, 

a weight is given, and a map is displayed by plotting these weights in the location of each 

station). The time evolution of these eigenvectors is calculated by projecting the original dataset 

of standardized time series onto the new coordinate system:  

    (4.9) 

 

where columns of the matrix PC, dimensions [NK] represent the time evolution of the 

pattern related to each eigenvector. The columns of the Pc matrix are usually called Principal 

Components (PCs) or Expansion Coefficients, and, as the EOFs are uncorrelated in space, they 

are uncorrelated in time. So, a PC groups the temporal behaviour of the set of stations identified 

by the related EOF, and its variance is associated with its eigenvalue.  

A common way to represent the EOFs is through the correlation map between the PCs 

associated with the eigenvector and the original dataset F. These correlations are called loading 

factors. When the matrix of correlations is used, instead covariances, these loading factors are a 

direct interpretation of spatial variability patterns (they are proportional, by the square root of the 

eigenvalue, to the eigenvectors). 

100
( )

ilVariance
trace L



Pc FE
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The identification of the number of principal components that can be considered as 

significant is still a matter of controversy. There are different methods to address this issue, such 

as a method called The North Rule of Thumb (North et al., 1982), based on the degeneration of 

eigenvalues. That is, if the spacing between two consecutive eigenvalues is smaller than the error 

of the first one, then they cannot be considered as different true eigenvalues. Other selection 

rules are the scree plot (a graphical tool), where the eigenvalues are plotted and the number of 

component to be retained are the number of components before a break in the curve; The Kaiser 

Rule, which considers significant those eigenvalues greater than the average value of eigenvalues 

(usually 70% of this value), or also the number of components that account a minimum (fixed) 

threshold of the total variance. 

Bearing in mind that the atmospheric processes are not independent, the orthogonal 

constraint might sometimes hamper the physical interpretation because the examination of 

independent modes of variability might not be justified (North, 1984; Wilks, 2006). In order to 

circumvent this problem, the significant eigenvectors are often rotated with the aim to produce a 

simple structure in the results. Among the different techniques that exist to rotate the 

eigenvectors (Richman, 1986), the Varimax rotation was employed here. 

 

4.3 Results 

4.3.1 Seasonal streamflow regime. Intra-annual Variability 

Before to present the spatial and temporal variability, the seasonal averaged streamflow 

values at the gauging stations are shown (Figure 4.1). It could be appreciated as gauging stations 

located in the mainstream of the major IP Rivers present larger values of these parameters 

(whose differences goes to various degrees of magnitude). These high differences are not only 

found for the average values but also for the variances (not shown). As it was mentioned in the 

description of the basins in Chapter 2, it could be seen that stations belonging rivers in Atlantic 

slope present higher seasonal discharges than those located in the Mediterranean and Cantabrian 

slopes. On this regard, the northwestern quadrant of the IP presents the higher seasonal 

streamflow regimes.  

Additionally, the intra-annual variability is also presented (Figure 4.2), showing the 

monthly and seasonal streamflow values (averaged between all stations) in each basin. From this 

Figure, it is discernible a common feature in the Miño-Sil, Douro, Tagus, Guadiana and 

Gualdaquivir Basins, where winter months (from December to March) present the higher 
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streamflow averages, diminishing through spring months till reaching their minimum values 

during summer. In the Cantabrian and Ebro Basins, these high values showed in winter are 

extended till May, mainly due to the snowmelt contribution (from Pyrenees and Iberian System). 

However, it could be appreciated as the Júcar and Segura basins present fairly regular 

interannual contributions, being particularly noteworthy the case of Segura basin, where summer 

months show high average values. This is likely due to these basins are subjected to high 

regulation regimes to ensure water availability in summer months (especially because demands 

for tourism and irrigation purposes are high in this area). Also, it is worth to mention that in the 

Internal Catalonian Basins, the autumn, winter and spring averages are fairly similar. This could 

be explained from the fact that some rivers have their headwaters in the Pyrenees, which ensure 

high levels during spring because of snowmelt contributions, whereas other gauging stations near 

to the coast present high values in autumn (since the Mediterranean sector presents high 

precipitation values in this season as a consequence of convective storms in the late summer and 

early autumn), such as in the case of the Mediterranean Andalusian Basin.  

 

Figure 4.1. Seasonal streamflow averages for the different streamflow gauging stations analysed for the 

period 1975-2008. 
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Figure 4.2. Seasonal (red bars at the background) and monthly (blue bars at the front) streamflow 

average for all stations in each basin. 

 

Seasons with the maximum streamflow contributions are presented in Figure 4.3 for each 

basin. In particular, gauging stations of most part of the IP exhibit the maximum contribution 

during winter. The stations that present their maximum during spring are located in the Ebro, 

(because of the high contributions of snowmelt from surrender ranges, Pyrenees and Iberian 

system). Autumn is the season when stations located in the Mediterranean slope exhibits their 

maximum contributions, whereas only few stations present their maximum in summer, which 

could be due to effects of regulation.  

 

 

 

 

 

 

 

 

Figure 4.3. Season with the highest streamflow averages at the different gauging stations. 



4 SPATIAL AND TEMPORAL SEASONAL STREAMFLOW VARIABILITY 
 

 50 

4.3.2 Temporal variability of seasonal streamflow 

The interannual variability of the averaged (between all gauging stations) seasonal 

streamflow for each basin has been displayed in Figure 4.4. From this Figure, it could be noted a 

dry period in early nineties is observed in all basins. Also, wet periods are observed, as in winter 

of 1996 (in all basins) and 2001 (mainly in the Miño-Sil, Douro and Tagus Basins). Last 

seventies present wet years (in almost all basins), along with autumn and winter of 1996/1997 

hydrological year, with high streamflow values in south-western basins. 

 

Figure 4.4. Interannual variability of the seasonal streamflow averages (hm3) for each basin. 

 

Figure 4.5 displays the results obtained from the trends analysis. From this Figure, it can 

be observed that significant trends located in the eastern half of the IP show most of them a 
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negative sign, with magnitudes ranging from -4 to 4 per cent by year. In particular, in autumn, 

significant negative trends are located in eastern part of IP, in headwaters of the Segura and Jucar 

Basins, along the Ebro River, in upper Tagus, and also in some stations in the Guadalquivir 

Basin and Mediterranean Andalusian Basin. On the contrary, some stations near the 

Mediterranean coast present high significant positive trends, which could be related to an 

increase in convective precipitation on Mediterranean façade during autumn, which also is the 

season with maximum streamflow in this area. Also, significant upward trends appear in stations 

placed in the Douro basin, especially in headwaters of the northern tributaries of Douro River. In 

winter, significant trends were found in the Miño Basin, upper part of the Douro Basin, 

headwater of the Tagus River, upper and medium part of the Jucar, Segura and Guadalquivir 

Basins, and except for some gauging stations, most of these trends present negative sign. In the 

case of spring streamflow, the significant trends exhibit a similar spatial pattern to that found in 

winter, with predominantly negative trends, and with the difference that a minor amount of 

stations presents significant trend in the Miño Basin and, on the contrary, most of stations in the 

Cantabrian Basin presents significant downward trends. During summer, significant trends are 

found in most of the basins. Whereas the northern and eastern half of the IP presents, generally, 

decreasing trends, as in previous seasons, it is remarkable the stations with significant upward 

trends observed in in the central and western of the IP, in particular in the Douro, Tagus and 

Guadalquivir Basins.  
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Figure 4.5. Spatial distribution of significant seasonal trends. The marks are filled when the trends are 

significant at 95% confidence level. Values are in percentage of change per year. 

 

4.3.3 Spatial variability of seasonal streamflow 

After an evaluation of the information provides by the tests for determining the number 

of significant components in PCA, five components were considered as significant in the four 

principal components analyses (one for each season). The percentage of total variance explained 

by the five first components are: 71.38% for autumn, 78.41% for winter, 66.11% for spring and 

51.43% for summer streamflow.  

The loading factors (correlation between the time series of each principal component and 

the seasonal streamflow) related to the rotated Principal Components are shown in Figure 4.6 as 

an indicator of the stations represented by each principal component. Taking into consideration 

that the sign of loading factors only refer to the eigenvector sense, spatial patterns for autumn 

and winter are rather similar, where EOF1 represents stations in the central and northern sectors 

of the IP rivers with Atlantic slope, accounting for 33.90% (45.57%) of the variance in autumn 
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(winter). EOF2 is associated with the northern IP rivers in the Cantabrian slope, explaining 

13.94% (11.90%) of the variance for autumn (winter). Southern half of the IP is represented by 

EOF3, with differences between winter and autumn. Despite both EOF3, for autumn (10.53% of 

variance) and winter (9.05% of variance), group stations in southern and central part of the IP, in 

case of autumn this pattern include most of stations of the Mediterranean Andalusian Basin, 

whereas EOF3 of winter does not (these stations are grouped into the winter EOF5). Internal 

Catalonian Basins and some stations in lower Ebro are classified into EOF4 for both seasons, 

presenting a slightly difference in the explained variances (7.19% in autumn and 6.92% in 

winter). Finally, EOF5 (which explains 5.80% in autumn and 5.39% in winter) is related to 

stations located near the Ebro Delta (and some stations of the Mediterranean Andalusian Basin in 

winter, as it was noted before). Conversely to what happens for autumn and winter, spatial 

patterns identified for spring and summer present more dissimilarity, and also there is less 

difference between the percentages of variance associated with each pattern, mainly in summer. 

In the case of spring, the first EOF explains 20.64% of the variance and groups stations in the 

north-western of the IP. The second EOF (14.18% of the variance) represents stations in the 

central and western of the IP. The third EOF is mainly associated with stations in the 

Guadalquivir Basin and explains 13.09% of the variance. The fourth EOF (13.08%) groups 

stations in the Ebro Valley and Internal Catalonian Basins. The fifth EOF seems to group 

stations in the Mediterranean Andalusian Basin, although the spatial pattern is not as clear as the 

previous ones. Finally, the spatial patterns obtained for summer group the north-western of the 

IP (EOF1, 17.14% of variance), the central and southern half of the IP (EOF2, 13.00% of 

variance), the Ebro Delta and Catalonian Basins (EOF3, 9.10% of variance) and the 

Mediterranean Andalusian Basin (EOF4, 6.82% of variance). The EOF5 does not make a clear 

grouping of stations. 
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Figure 4.6. Loading factors of rotated components 1-5 (in columns) from the PCA analysis of the 

seasonal streamflow series (in rows). 

 

4.4 Summary 

To sum up, the analysis of temporal trends in seasonal streamflow reveals a common 

pattern of decreasing of streamflow, especially in the eastern part of the IP, in all seasons. These 

negative trends agree with the result observed by other authors. In particular, Lorenzo-Lacruz et 

al. (2012), using a database of 187 stations covering 1945-2005, found a marked decrease in 

winter and spring streamflows in most of the IP Basins during the period 1945-2005. Also, 

Morán-Tejeda et al. (2011b) and López-Moreno et al. (2011) highlighted dominant negative 

trends in various sub-catchments of the Duero and Ebro Basins, respectively, during the second 

half of the Twentieth Century. In addition, these decreasing trends agree with the found by other 

authors in catchments in the south of Europe, such as in Stahl et al. (2010), Mavromatis and 

Stathis (2010) and Lespinas et al. (2010). Conversely with this general finding, some stations 

present positive significant trends, such as some stations in northern part of the Douro Basin and 
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the Miño-Sil Basin during autumn. Also, positive trends are observed in some stations during 

summer, which are likely influenced by reservoir operations; the filling of reservoirs occurs 

during the maximum annual flows generated by winter and spring precipitation (López-Moreno 

et al., 2009a), and water is progressively released during the dry season to guarantee the summer 

water supply for human consumption and irrigation. One of the factor responsible of these 

negative trends could be the climate variability in the Mediterranean region, which has been 

associated with generally negative rainfall trends during the second half of the 20th century 

(Xoplaki et al., 2004; Dünkeloh and Jacobeit, 2003), which is more pronounced in winter 

(López-Moreno et al., 2009b). Specifically for the IP, it has been observed a decrease in 

precipitation (Rodrigo and Trigo, 2007; Mourato et al., 2010, González-Hidalgo et al., 2011) and 

in winter snow accumulation (Sanz-Elorza et al., 2003; López-Moreno and García-Ruiz, 2004; 

López-Moreno, 2005), which can directly influence the decline in spring flows. In addition to the 

observed decrease in precipitation and snow accumulation, there are other factors than can 

contribute to the observed decrease in streamflow, such as water management strategy (filling 

the reservoirs during the wet season to guarantee water supply in summer), changes in land 

cover/land use (increasing the forested land within the IP, and expanding of the irrigated 

surface).  

Regarding the spatial patters of seasonal streamflow, it is found a similar grouping in 

autumn and winter (the wettest seasons) according to PCA results, when stations in the Miño-Sil, 

Douro, Tagus, Guadiana and Guadalquivir Basins are grouped into the first mode, stations in the 

Cantabrian and Upper Ebro Basins in the second mode, and stations in the Mediterranean 

Andalusian and Internal Catalonian Basins in the third and fourth modes. On the other hand, 

spatial patterns differ in spring and summer (drier half of the year), displaying a north-south 

gradient in the first two or three modes. In addition, it is reduced the difference between the 

variance explained by the first modes with respect to winter and autumn.  
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CHAPTER 5 

ASSESSING TELECONNECTION INDICES AS 

POTENTIAL PREDICTORS OF SEASONAL 

STREAMFLOW OF THE IP RIVERS 

 

In this chapter, the main teleconnection patterns controlling the large-

scale atmospheric and oceanic variability are evaluated as potential predictors 

of autumn, winter and spring streamflow of the IP Rivers. Several lag times 

(from one up to four seasons) between teleconnection indices and streamflow 

are considered. The main plausible physical causes explaining the relationships 

found are also discussed.  

 

5.1 Introduction  

The global atmospheric circulation presents a number of preferred spatial patterns of 

variability. This variability occurs in well-defined spatial patterns (Wallace and Gutzler, 1981; 

Barnston and Livezey, 1987), especially during the boreal winter over the Northern Hemisphere 

(NH). Such variations can be associated with some large-scale oscillations in atmospheric 

dynamics (e.g., planetary waves, jet streams, and monsoons) resulting in simultaneous or lagging 

variations in weather and climate over widely separated points over the earth. These variations 
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are commonly referred as “teleconnections”, a term that is defined in The Glossary of 

Meteorology (Glickman, 2000) as:  

1. A linkage between weather changes occurring in widely separated regions of the 

globe. 

2. A significant positive or negative correlation in the fluctuations of a field at 

widely separated points. 

Climate analysis is facilitated by the construction of a teleconnection map, which 

describes the linkage between a region of interest and all other points in the domain that are 

farther than the de-correlation length scale of the variable. Teleconnection maps thus provide 

information about the structure of recurrent climate variability that is characterized by the 

correlation-at-a-distance feature. 

Teleconnections, because of its definition as climate links between geographically 

separated regions, have been commonly used as predictor of variables such as precipitation, 

temperature or streamflow, specially through the variability of other variables, such as Sea Level 

Pressure (SLP) or Sea Surface Temperature (SST) in remote areas. The main goal of this chapter 

is to identify which of the large-scale variability modes (teleconnection patterns) have an 

influence on seasonal streamflow in the IP some seasons later.  

 

5.2 Teleconnection indices  

5.2.1 Definition 

In this chapter, the main teleconnection indices that summary the main large-scale 

atmospheric and oceanic variability indices used are: Artic Oscillation (AO), North Atlantic 

Oscillation (NAO), East Atlantic pattern (EA), Pacific/North American pattern (PNA), Western 

Pacific pattern (WP), East Pacific North Pacific pattern (EP-NP), Scandinavian pattern 

(SCAND), East Atlantic Western Russian pattern (EA-WR), Atlantic Multidecadal Oscillation 

(AMO), Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Indian 

Ocean Dipole (IOD), Southern Oscillation Index (SOI), ENSO indices (specifically: El Niño-

1+2, Niño-3, Niño-4, and Niño-3.4 and SOI), El Niño Modoki (EMI), Western Mediterranean 

Oscillation (WeMO) and the Snow Advance Index (SAI). The monthly time series of AO, NAO, 

EA, EA-WR, SCAND, AMO, WP, EP-NP, PNA, Niño1+2, Niño3, Niño4, Niño3.4, SOI and 

PDO were obtained from the Climate Prediction Center (CPC) at the National Center of 
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Environmental Predictions (NCEP; www.cpc.noaa.gov). The procedure used for CPC to identify 

the Northern Hemisphere teleconnection patterns and indices is the Rotated Principal 

Component Analysis -RPCA (Barnston and Livezey 1987) of Geopotential Height at 500 hPa. 

The monthly time series of EMI and IOD were obtained from the Japan Agency for Marine-

Earth Science and Technology website (www.jamstec.go.jp/). The monthly time series of 

WeMO index were downloaded from the website http://www.ub.edu/gc/English/wemo.htm. The 

time series of NPGO were obtained from the website http://www.o3d.org/npgo/. The time series 

of SAI were kindly provided by the Justin Jones in personal communication. A brief definition 

of each index together with a schematic map indicating its location (Figure 5.1) is provided. 

Some of them, such as NAO, AO, SCAND, EA, WeMO, ENSO indices or SAI, have been 

selected because they are specifically related to the climate in the IP (it will be widely discussed 

in the next section). The rest of the teleconnection indices were selected for exploratory 

purposes. That is, although the literature does not contain specific evidence that connects them to 

the IP climate, it would be worthwhile to determine whether they are useful for improving long-

range forecast over the study area. 

 

 

Figure 5.1. Approximate location of the main areas associated to the teleconnection indices used in 

this study. In blue, indices based on data from sea surface temperature. In red, indices calculated using 

data from atmospheric pressure at different levels. In black, indices computed using other variables. 
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Artic Oscillation (AO)  

The AO index is usually defined as the first EOF of the mean sea level pressure field in 

the Northern Hemisphere, and it is a robust result from EOF analysis of this field on timescales 

from weeks to decades in any season (Thompson and Wallace, 1998). It describes the relative 

intensity of a semi-permanent low-pressure centre over the North Pole. A band of upper-level 

winds circulates around this centre, forming a vortex. When the AO index is positive and the 

vortex intense, the winds tighten like a noose around the North Pole, locking cold air in place. 

However, with a negative AO and a weak vortex, it is allowed intrusions of cold air to plunge 

southward into North America, Europe, and Asia. 

North Atlantic Oscillation (NAO) 

The North Atlantic Oscillation is one of the most prominent teleconnection patterns in all 

seasons (Barnston and Livezey, 1987), which especially influences on the northern Atlantic 

Ocean (Visbeck et al., 2001). The NAO consists of a north-south dipole of pressure anomalies, 

with one centre located over Greenland and the other centre of opposite sign spanning the central 

latitudes of the North Atlantic, between 35°N and 40°N. It has also been identified as part of the 

Northern Annular Mode, the Arctic Oscillation (Marshall et al., 2001). The positive phase of the 

NAO reflects below-normal heights and pressure across the high latitudes of the North Atlantic 

and above-normal heights and pressure over the central North Atlantic, the eastern United States 

and Western Europe. The negative phase reflects an opposite pattern of height and pressure 

anomalies over these regions. Both phases of the NAO are associated with basin-wide changes in 

the intensity and location of the North Atlantic jet stream and storm track, and in large-scale 

modulations of the normal patterns of zonal and meridional heat and moisture transport (Hurrell, 

1995), which in turn results in changes in temperature and precipitation patterns often extending 

from eastern North America to western and central Europe (Walker and Bliss, 1932; van Loon 

and Rogers, 1978; Rogers and van Loon, 1979). 

East Atlantic pattern (EA) 

The East Atlantic pattern is the second main pattern of low-frequency variability over the 

North Atlantic, and appears as a leading mode in all months, although is more prominent in 

winter. Structurally is similar to the NAO, with a north-south dipole of pressure anomaly centres 

spanning the North Atlantic from east to west. The anomaly centres of the EA pattern are 

displaced southeastward to the approximate nodal lines of the NAO pattern (often interpreted as 

a “southward shifted” NAO pattern). However, the lower-latitude centre contains a strong 
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subtropical link in association with modulations in the subtropical ridge intensity and location. 

This subtropical link makes the EA pattern distinct from its NAO counterpart. The EA pattern 

exhibits very strong multi-decadal variability in the 1950-2004 record, with the negative phase 

prevailing during much of 1950-1976, and the positive phase occurring during much of 1977-

2004.  

East Atlantic-Western Russia pattern (EA-WR) 

The East Atlantic/West Russia pattern is one of three prominent teleconnection patterns 

that affect Eurasia throughout year. The EA-WR pattern consists of four main geopotential 

height anomaly centres. The positive (negative) phase is associated with positive (negative) 

height anomalies located over Europe and northern China, and negative (positive) height 

anomalies located over the central North Atlantic and north of the Caspian Sea. 

Atlantic Multi-decadal Oscillation (AMO) 

The Atlantic Multi-decadal Oscillation represents a persistent SST pattern observed in the 

northern Atlantic Ocean between 0º – 70ºN bounded by the continents (Gray et al., 2004). In 

contrast to the other indices, the AMO does not vary drastically, and it is by far the index with 

the longest cycle period. It is estimated from modelling studies to be between 50-70 years, and 

from tree-ring and Arctic ice regression as closer to 80 years (Schlesinger and Ramankutty, 

1994; Kerr, 2000). Analyses of global climate from measurements dating back to the nineteenth 

century show the AMO as a leading large-scale pattern of multidecadal variability in surface 

temperature. This AMO cycles are known to alternately mask and amplify the anthropogenic 

impact of global warming (Knight et al., 2006). Over the instrumental period (1856-Present) the 

AMO exhibited warm phases at roughly 1860 – 1880 and 1930– 1960 and cool phases during 

1905 – 1925 and 1970 – 1990. The AMO appears to have returned to a warm phase beginning in 

the mid 1990s.  

Scandinavian pattern (SCAND) 

The Scandinavian pattern consists of a primary circulation centre over Scandinavia, with 

weaker centres of opposite sign over Western Europe and eastern Russia/western Mongolia. The 

positive phase of this pattern is associated with positive height anomalies, sometimes reflecting 

major blocking anticyclones over Scandinavia and western Russia, while the negative phase of 

the pattern is associated with negative height anomalies in these regions. 
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Western Pacific pattern (WP) 

The Western Pacific pattern is a primary mode of low-frequency atmospheric variability 

over the North Pacific in all months. During winter and spring, the pattern consists of a north-

south dipole of anomalies, with one centre located over the Kamchatka Peninsula and another 

broad centre of opposite sign covering portions of southeastern Asia and the western subtropical 

North Pacific. Therefore, strong positive or negative phases of this pattern reflect pronounced 

zonal and meridional variations in the location and intensity of the entrance region of the Pacific 

(or East Asian) jet stream. These anomalies exhibit a strong northward shift from winter to 

summer, which is consistent with the observed northward shift of the East Asian jet stream. A 

third anomaly centre is located over the eastern North Pacific and southwestern United States in 

all seasons. 

East Pacific-North Pacific pattern (EP-NP)  

The East Pacific/North Pacific pattern is a spring-summer-fall pattern with three main 

anomaly centres. The positive phase of this pattern features positive height anomalies located 

over Alaska/Western Canada and negative anomalies over the central North Pacific and eastern 

North America. Strong positive phases of the EP-NP pattern are associated with a southward 

shift and intensification of the Pacific jet stream from eastern Asia to the eastern North Pacific, 

followed downstream by an enhanced anticyclonic circulation over western North America, and 

by an enhanced cyclonic circulation over the eastern United States. Strong negative phase of the 

pattern is associated with circulation anomalies of opposite sign in these regions. 

Pacific/North American pattern (PNA) 

The Pacific/North American teleconnection pattern is one of the most prominent modes 

of low-frequency variability in the Northern Hemisphere extratropics. The PNA is comprised of 

four teleconnection centres at 500mb (Wallace and Gutzler, 1981) or 700 hPa geopotential 

height fields (Barnston and Livezey, 1987). The positive (negative) phase of the PNA pattern is 

defined as two above-average (below-average) height centres located in the vicinity of Hawaii 

(20ºN, 160ºW) and Alberta (55ºN, 115ºW), along with two below-average (above-average) 

height centres located in the vicinity of the northern Pacific Ocean (45ºN, 165ºW) and the Gulf 

Coast region (30ºN, 85ºW). The linear combination of the normalized height anomalies at these 

centres specifies the PNA index. The PNA pattern is associated with strong fluctuations in the 

strength and location of the East Asian jet stream. The positive phase is associated with an 

enhanced East Asian jet stream and with an eastward shift in the jet exit region toward the 
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western United States. The negative phase is associated with a westward retraction of that jet 

stream toward eastern Asia, blocking activity over the high latitudes of the North Pacific, and a 

strong split-flow configuration over the central North Pacific. 

El Niño-Southern Oscillation (ENSO) 

El Niño-Southern Oscillation (ENSO), see overviews by Philander (1990) and Neelin et 

al. (1998), is an anomalous large-scale ocean-atmosphere phenomenon associated with strong 

fluctuations in ocean currents and surface temperatures. ENSO is a major example of the 

interrelationship between ocean currents and atmospheric conditions and it consists of two 

components: El Niño and the Southern Oscillation. El Niño (Halpert and Ropelewski, 1992) 

involves warming of the tropical Pacific surface waters, weakening the usually strong SST 

gradient across the Pacific, with associated changes in ocean circulation. It’s linked with an 

atmospheric counterpart, the Southern Oscillation (SO), which involves changes in trade winds, 

tropical circulation and precipitation. During El Niño events (warmer than normal central and 

eastern equatorial Pacific SSTs), the low-level atmospheric winds are weaker along the equator 

and there is an enhanced convection across the entire equatorial Pacific. During La Niña events 

(cooler than normal central and eastern equatorial Pacific SSTs), the low-level atmospheric 

winds are stronger along the equator and convection decreases across the entire equatorial 

Pacific. 

Currently, there are several indices used to define the ENSO phenomenon. The most 

commonly used indices include several sea surface temperature (SST) areas such as the Niño1+2 

(80º-90ºW,0º-10ºS), Niño3 (90ºW-150ºW, 5ºN-5ºS), Niño3.4 (120ºW-170ºW, 5ºN-5ºS) and 

Niño4 (150ºW-160ºE, 5ºN-5ºS), and an index created from sea level pressure (SLP) differences 

between Darwin (Australia) and Tahiti, called the Southern Oscillation Index (SOI).  

El Niño Modoki (EMI) 

El Niño Modoki is a coupled ocean-atmosphere phenomenon in the tropical Pacific 

(Ashok et al., 2007). This phenomenon appears as the second dominant mode of interannual 

variability in the tropical Pacific (being El Niño the first one). Conventional El Niño is 

characterized by a strong anomalous warming in the eastern equatorial Pacific, whereas El Niño 

Modoki is associated with a strong anomalous warming in the central tropical Pacific and a 

cooling in the eastern and western tropical Pacific. Also, teleconnections are very different from 

those related to the conventional El Niño. 
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Pacific Decadal Oscillation (PDO)  

The Pacific Decadal Oscillation is the second most common climatic index in the Pacific. 

The PDO is defined as the first mode of the principal component analysis of the Pacific Ocean 

SSTs poleward of 20ºN. During a warm or positive phase, the west Pacific becomes cool and a 

part of the eastern ocean warms; during a cool (or negative) phase, the opposite pattern occurs. 

PDO fluctuations have a period between 50-70 years with a given warm or cool phase persisting 

for about 15–25 years (Chao et al., 2000; Minobe, 1997). Several independent studies find 

evidences for just two full PDO cycles in the past century: cool PDO regimes prevailed from 

1890-1924 and again from 1947-1976, while warm PDO regimes dominated from 1925-1946 

and from 1977 through (at least) the mid-1990's. 

North Pacific Gyre Oscillation (NPGO)  

The North Pacific Gyre Oscillation is a climate pattern that emerges as the second 

dominant mode of sea surface height (SSH) variability in the Northeast Pacific (Di Lorenzo et 

al., 2008; 2010). The NPGO mode closely tracks the second EOF of North Pacific SST 

anomalies, also referred to as the "Victoria Mode" (Bond et al., 2003). The NPGO is distinct 

from the Pacific Decadal Oscillation (PDO) mode (Mantua et al., 1997), which emerges as the 

first mode of SST anomalies and SSH anomalies in the Northeast Pacific. 

Indian Ocean Dipole (IOD) 

Large interannual variability of SST in the Indian Ocean has been associated with the 

Indian Ocean Dipole (IOD), also referred to as the Indian Ocean Zonal Mode (IOZM; Saji et al., 

1999; Webster et al., 1999). This pattern manifests through the difference in sea surface 

temperature between two areas, the Arabian Sea (western Indian Ocean) and the eastern Indian 

Ocean (south of Indonesia). This dipole, characterized by cooling (warming) in the eastern ocean 

and warming (cooling) in the western ocean, is referred to as the positive (negative) phase of the 

IOD. The phase changes in the IOD imply the anomaly of moisture transport, which impacts 

many regions significantly.  

Western Mediterranean Oscillation (WeMO) 

The Western Mediterranean Oscillation was defined by Martin-Vide and Lopez-Bustins 

(2006) within the synoptic framework of the western Mediterranean basin and its vicinities. It is 

a pressure dipole between the Po Plain, in the north of the Italian Peninsula, an area with a 

relatively high barometric variability, and the Gulf of Cádiz, in the southwest of the IP, often 
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subject to the influence of the Azores anticyclone and, episodically, to the cut off of circumpolar 

lows or to its own cyclogenesis In positive phase of WeMO, below/above normal pressure 

anomalies appear in the Po Plain/Gulf of Cádiz, with a prevalence of northwesterly winds from 

the Atlantic Ocean. During negative phase, above/below normal pressure anomalies appear in 

the Po Plain/Gulf of Cádiz, favouring the airflow entrance from the Mediterranean.  

Snow Advance Index (SAI) 

The Snow Advance Index (SAI), accounts how rapidly the Eurasian snow cover increases 

in October (Cohen and Jones, 2011). Specifically, it is a standardized index that measures the 

rate of increase (by means of the regression coefficient of the least square fit) of Eurasian snow 

cover in October, as described by the regression coefficient of the least squares fit of the daily 

(available since 1997) or weekly (available from 1973, from NOAA’s satellite-sensed 

observations) Eurasian snow cover extension equatorward of 60ºN.  

 

5.2.2 Influence of teleconnection indices on European region 

Two of the most important teleconnection patterns are El Niño/Southern Oscillation 

(ENSO) and the North Atlantic Oscillation (NAO). The ENSO encompasses two linked 

phenomena, a quasi-periodic warming in the tropical Pacific near South America and an 

adhering effect, the zonal anomaly of Sea Level Pressure (SLP) in the tropical Pacific (the 

Southern Oscillation). The NAO is the most prominent and recurring extratropical 

teleconnection pattern in the Northern Hemisphere (NH). Generally, the NAO refers to the 

meridional seesaw, or the dipole structure, typically associated with the north center near Iceland 

and the south center near the Azores of the SLP field. These main teleconnection patterns have 

been commonly used as potential predictors of hydrological variables. For example, several 

studies have shown significant relationships between ENSO events and precipitation or 

streamflow variability at the global scale (Dettinger et al., 2000; Chiew and McMahon, 2002), 

and, particularly, for the European area (van Oldenborgh et al., 2000; Mariotti et al., 2002; Park, 

2004; Zanchettin et al., 2008; García-Serrano et al., 2011; Shaman and Tziperman, 2010) and the 

IP has been also addressed (Rodó et al., 1997; Pozo-Vázquez et al., 2005; Vicente-Serrano, 

2005; Lorenzo et al., 2010; Frías et al., 2010; Vicente-Serrano et al., 2011). The importance of 

winter NAO as the major atmospheric mechanism controlling the precipitation during wintertime 

in the central and western IP has been described by several authors (Zorita et al., 1992; Corte-

Real et al., 1995; Rodó et al., 1997; Rodríguez-Puebla et al., 2001; González-Rouco et al., 2000; 
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Trigo and Palutikof, 2001). Also, effects of NAO on winter streamflow in Iberian Rivers have 

been identified (Trigo et al., 2004; López-Moreno et al., 2007; Lorenzo-Lacruz et al., 2011; 

Morán-Tejeda et al., 2011a).  

There are other teleconnection patterns that account for an important percentage of the 

climatic variability and have an influence on IP climate. For example, Rodríguez-Puebla et al. 

(2001) studied the influence of North Atlantic Oscillation (NAO), East-Atlantic (EA), the East-

Atlantic/Western-Russia (EA-WR) and the Polar/Eurasian (POL) patterns on winter precipitation 

in the IP. In addition, it has been found that the EA and EA-WR patterns represent a significant 

contribution for the precipitation over the northern IP (Sáenz et al., 2001) as well as parts of the 

eastern Mediterranean areas (Quadrelli et al., 2001; Xoplaki et al., 2004; Krichak et al., 2002). 

De Castro et al. (2006) found a significant contribution of the NAO and also Scandinavian 

(SCAND), EA-WR and EA patterns in explaining the main variability of precipitation and river-

flow regimes in Galicia (north-west of IP). Casanueva et al. (2014) examined the relationship 

between the variability of extreme precipitations events in Europe and different teleconnection 

patterns, such as the Arctic Oscillation (AO), NAO, SCAND, EA, EA-WR, the Southern 

Oscillation Index (SOI), the Atlantic Multidecadal Oscillation (AMO) and the Madden–Julian 

Oscillation (MJO). The Western Mediterranean Oscillation (WeMO; Martin-Vide and Lopez-

Bustins, 2006) has been related to precipitation episodes in the Mediterranean façade of IP 

(Martin-Vide and Lopez-Bustins, 2006; Lopez-Bustins et al., 2008; Martin-Vide et al., 2008; 

Hidalgo-Muñoz et al., 2011) and with IP river discharge (Martín i Díaz, 2010; Lorenzo-Lacruz et 

al., 2013b).  

During the last years, there has been an increase in studies about the influence of the 

variability in Siberian snow cover during autumn on the climate of the following winter on the 

northern hemisphere (NH) and its connection to the winter Artic Oscillation (Cohen et al., 2001; 

Bojariu and Gimeno, 2003; Cohen and Saito, 2003; Saito and Cohen, 2003; Cohen and Fletcher, 

2007). For instance, Cohen and Entekhabi (1999) showed that the Eurasian snow cover in early 

fall is significantly correlated with the following winter Arctic Oscillation (AO). These authors 

hypothesize that a possible dynamical mechanism linking Eurasian snow cover anomalies and 

North Atlantic climate variability is through the strength and position of the Siberian high. The 

conceptual model is explained by Cohen (2011) and briefly summarized here. The presence of 

snow cover can increase the amount of sunlight reflected back into space from 20% to 80% 

(Cohen and Rind, 1991). Also snow cover is a good insulator or a thermal blanket, preventing 

heat from the ground escaping into the atmosphere. These radiative properties of snow cover 
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cold the atmosphere above the earth’s surface. The presence of snow cover can lead to much 

colder temperatures than the absence of snow cover. This cold and dense air promotes a stronger 

and more expansive Siberian high. As a consequence, the amount of energy transfer from 

troposphere (or lower stratosphere) to the stratosphere (or upper troposphere) can be increased. 

Often, when such an excess energy exists, this is absorbed in the polar stratosphere, leading a 

warming of the polar stratosphere and a weakening of the polar vortex (a fast stream of air that 

flows west to east around the pole and it derives its energy from the temperature gradient pole-

equator in the upper troposphere). In case of weakening of polar vortex, the flow of air is weaker 

turning north-south (rather than west-east), favouring that cold air from the Arctic penetrates into 

the mid-latitudes and warm air from the subtropics is carried into the Arctic. This mixing of air 

masses favours more storms and snow in the mid-latitudes. During a weak polar vortex, high 

pressure occurs in the Arctic region (negative AO phase). In contrast, below normal snow cover 

anomalies during fall are related to a positive phase of AO in the following winter. This index 

has proved being a reliable predictor of winter climate conditions over the IP (Brands et al., 

2012; 2013). 

In addition to these commonly used teleconnection indices, others related to the North 

Atlantic climate have been examined in this chapter. The North Pacific has also been 

hypothesized to influence decadal variations in different geographical regions, through the 

Pacific Decadal Oscillation (PDO; Baik and Paek, 1998; Tomita et al., 2001). Particularly, the 

teleconnection between the PDO and rivers in Europe has been investigated by various authors 

(Dettinger and Diaz, 2000; Rimbu et al., 2002; Bardin and Voskresenskaya, 2007; Labat, 2010; 

Gámiz-Fortis et al., 2011). Also, The Pacific North Atlantic (PNA) has been proposed as one of 

the links between the tropical forcing and the extratropical circulation response in the North 

Atlantic area (Pozo-Vázquez et al., 2005). In addition to these indices, the ability of other 

patterns related to the North Pacific Ocean, such as the Western Pacific pattern (WP), the East 

Pacific-North Pacific pattern (EP-NP) and the North Pacific Gyre Oscillation (NPGO, Di 

Lorenzo et al., 2010). Also, the Indian Ocean has been identified as possibly modulating ENSO 

variability through an extension of the Walker Circulation to the west and associated flow of 

warm tropical ocean water from the Pacific into the Indian Ocean (e.g. Jansen et al., 2009; Izumo 

et al., 2010; Frauen and Dommenget, 2012). The potential influence of the Indian Ocean on IP 

climate, especially over river-flow variability, has been pointed out (Hernández-Martínez et al., 

2014). Here, we used the Indian Ocean Dipole (IOD), a western-eastern dipole of sea surface 

temperature differences in the Indian Ocean in order to evaluate the teleconnection with Indian 
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Ocean. Finally, the Atlantic Multidecadal Oscillation (AMO) was included, which has also been 

related to streamflow variability in France (Oubeidillah et al., 2012). 

 

5.3 Stable predictors selection 

The seasonal teleconnection indices were defined as averages of 3-month periods, 

autumn (September to November, ‘son’), winter (December to February, ‘djf’), spring (March to 

May, ‘mam’) and summer (June to August, ‘jja’). Teleconnection indices from up to four 

seasons in advance were evaluated as potential predictors. For example, in case of spring 

streamflow forecast, the teleconnection indices of the previous spring, summer, autumn and 

winter were evaluated. When a ‘1’ is added to these acronyms means the season belongs to the 

previous year. The identification of the teleconnection indices that can be used as predictors for 

seasonal streamflow at each gauging station was carried out by evaluating the significance and 

stability of point linear correlation between the seasonal streamflow and the teleconnection 

indices.  

Before determining the critical correlation coefficient, it has to be addressed if serial 

correlation could affect its calculation. Note that if serial correlation is not accounted for, 

positive serial correlation could lead to too many type-1 errors because of an artificial lowering 

of the correlation coefficient’s p-value, arising from the fact that the number of temporally 

independent data pairs is lower than the sample size (Trenberth, 1984; Kristjánsson et al., 2002). 

The effective sample size (Neff) is given, according Bretherton et al. (1999), by: 

  (5.1) 

 

where r1 and r2 are the serial correlation (lag 1) of the time series 1 and 2 (streamflow and 

teleconnection index), respectively, which assumes that the time series follow a first-order 

autoregressive process.  

Finally, the significance of the correlation between the streamflow data and the potential 

predictor considered is determined using 

  (5.2) 
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where rcri is the critical correlation coefficient; t95 is the 95
th

 quantile of the t-distribution with 

Neff -2 degrees of freedom; and Neff is the effective sample size. A correlation value is considered 

as significant if the calculated correlation coefficient r (in absolute value) is bigger than rcri.  

A seasonal time series corresponding to a teleconnection index was considered a stable 

predictor if it showed stable teleconnection with at least 20 stations (around 5% of the total) or 

with a set grouped stations. To evaluate the stability of the correlations, a similar approach to the 

one used by Ionita et al. (2008) and Gámiz-Fortis et al. (2010) was followed. The correlation 

between seasonal streamflow and teleconnection indices was calculated for 19 moving windows 

of 15 years (running 1 year). The correlation between predictor and predictand is considered to 

be strongly stable (stable) when more than 80% of the total 19 moving windows present 

significant correlations at 90% (80%) level, are two sided, and show no change in correlation 

signs. Note that the serial correlation was taken into account in determining the critical value for 

correlation significance 

 

5.4 Results 

Prior the evaluation of the stability of the significant correlations between seasonal 

teleconnection indices leading seasonal streamflow time series, a special reference to the SAI is 

needed. The SAI measures the ratio of the increase in the extent of the snow cover during 

October in Eurasia (through the regression coefficient between snow cover and time). In this 

regard, there are two versions of the SAI (both were kindly provided by Dr Justin Jones). The 

first one, which we called ‘SAIw’, covered the period from October 1972 to October 2010 and 

was calculated using weekly data of snow cover (i.e. four points, as weeks in October, are used 

in the regression fit). In the second, which we called ‘SAId’, each value was calculated as the 

regression coefficient using daily data of the extent of snow cover (i.e. 31 points are used in the 

regression fit), available since 1997. It was correlated the seasonal streamflow with both indices 

to evaluate the possible variations related to the differences in how they were calculated 

(basically in the number of points used in the regression fit). The most noteworthy results were 

found in the case of winter streamflow, with 248 stations showing significant correlations (with 

values above 0.344, significant at 95% confidence level with 33 years) with ‘weekly SAI’, 0.478 

being the average of all these values. On the other hand, 255 stations showed significant 

correlation for the ‘daily SAI version’ (with values above 0.602, significant at 95% confidence 

level with 11 years) their average being 0.761. At this point, it seems that the SAId shows higher 
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correlation with winter streamflow. Additionally, the correlations using SAIw in the same period 

as SAId (i.e., 1997-2007) were computed and compared with SAId. In this case, only a few 

stations significantly correlated with ‘1997-2007 SAIw’, reinforcing the idea that the daily 

version of SAI provides more trustworthy measures of the advance of snow cover in October in 

Eurasia and presents higher correlations with winter streamflow in the IP. Therefore, to make the 

potential forecasting ability provided by SAId useful (since the length of the SAId time series is 

still short), we created a combined SAI index, composed of the data from the ‘weekly’ version of 

SAI from 1974 to 1996 and the ‘daily’ version of SAI from 1997 to 2007. Hereafter, the results 

refer to this ‘combined’ SAI.  

An example of the stability analysis is shown in Figure 5.2. It could be seen as SAI is a 

stable predictor of winter (JFM) streamflow of gauging station id=3153 (in Tagus Basin) since 

all 15-year running window correlations are above the critical threshold. This critical threshold at 

a given significance level (80% level, two-sided, in this study) is calculated accounting the effect 

of possible serial correlation in both time series (streamflow and predictor). As it can be seen in 

Figure 5.2, this threshold is the same in case of winter and spring but different (slightly higher) 

in case of autumn (the existence of serial correlation diminishes the degree of freedom). 

Similarly, NAO of previous winter appears as a stable predictor for autumn (OND) streamflow 

in the gauging station id=10020 (sited in Mediterranean Andalusian Basin). On the contrary, SOI 

of previous summer was not considered as a stable predictor of spring (AMJ) streamflow in 

gauging station id=1607 (in Cantabrian basin) since there was less than 80% of running windows 

with a significant correlation at the established significance level and, also, the sign of 

correlation in running windows changed after 1991-2006 (from negative to positive). 

A summary of the stability of correlations between seasonal streamflow and 

teleconnection indices is shown in Table 5.1 and Figure 5.3. This figure indicates the number of 

gauging stations that present significant and stable (and also strongly stable) correlations with 

teleconnection indices corresponding to different seasons. An asterisk indicates the seasonal 

teleconnection indices that present stable correlations with at least 20 stations (~5% of the total) 

or, in case of less than 20, if they are grouped together belonging to a basin represented by less 

than 20 stations in the database used here (such as the Mediterranean Andalusia or the Internal 

Catalonian Basin). From this figure, it is worth highlighting the large number of stations where 

the OND streamflow is significantly correlated with ENSO indices of the previous autumn. 

However, the number of stations where these correlations are stable was lower. This feature 

(significant but not stable correlations) was also found in correlations between OND streamflow 
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and WeMO in the previous spring and SCAND and SOI in the previous summer.  A total of 18 

teleconnection indices (those with an asterisk in Figure 5.3) of the 77 evaluated are considered 

stable predictors for autumn streamflow. For JFM streamflow, it bears noting that few 

teleconnection indices (only 8 of the 77 analyzed) were identified as stable predictors (with 

asterisk in Figure 5.3). For example, there is a notable number of stations with significant but 

unstable correlations with WP and SCAND in previous winter and summer, respectively. A 

remarkable case is that of SAI, which was found to be a stable predictor of winter streamflow in 

238 stations. In the case of AMJ streamflow, 16 of the 77 seasonal teleconnection indices 

evaluated were considered stable predictors (with asterisk). Notably, none of the teleconnection 

indices in the previous spring was considered to be a stable predictor, most of them being in 

previous summer. Additionally, significant but unstable correlations appear with SOI in the 

previous summe 

 

Figure 5.2. Running correlation (15-year windows) between autumn streamflow in station id=10020 

and previous winter NAO (in dark orange), winter streamflow in station id=3153 and previous 

October SAI (in blue) and spring streamflow in station id=1607 and previous summer SOI (in 

green). Straight dark orange, blue and green lines represent the threshold of 80% confidence level 

for the previous cases. The value of correlation for each moving window is indicated in the first year 

(i.e., correlation in 1994 is referred to 1994-2008 period).  

 

The correlation maps between stable predictors (with asterisk in Figure 5.3) and seasonal 

streamflow are displayed in Figures 5.4 to 5.6 for autumn, winter and spring, respectively. 

Regarding the predictors corresponding to the previous autumn (Figure 5.4), the most relevant is 

the presence of various indices related to the ENSO phenomenon (Niño3, Niño4, El Niño3.4, 

and SOI). Although with some minor differences, they present stable correlations with stations 

located in the Douro and Tagus Basins, but also some stations located in the upper Jucar and 

Guadalquivir Basin). El Niño4 is the index that presents stable correlation with the largest 
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number of stations (45, Table 5.1). These correlations are not high in magnitude (around 0.4 in 

absolute value). The SAI of the previous October displays a stable correlation with stations in the 

northern mountains of the Douro Basin and the Mediterranean Andalusian Basin (reaching 

values of around 0.56 in this basin). The NAO and AO of the previous winter were found to be 

stable predictors, particularly for stations in Mediterranean Andalusian Basin. In this case, the 

correlation values reach up to 0.7 and 0.6 for NAO and AO, respectively. Although the winter, 

spring, and summer WeMO appear as a potential predictor, they do not display a similar 

correlation map. Winter WeMO correlates stably with stations in the Mediterranean Andalusian 

Basin, whereas spring and summer WeMO present stable correlations with stations in the 

northern basins (mostly in Miño-Sil, Douro, and upper Ebro). Spring and summer East Atlantic 

were found to be a stable predictor for stations in Miño-Sil Basin and also some located in the 

headwaters of the Douro and Tagus. The EP-NP of the previous spring also shows stable 

correlations with a remarkable number of stations (74, Table 5.1) situated in the northwestern 

quadrant of the IP. The Niño3.4 and SOI in summer present stable correlations with some 

stations in northern half of IP. However, it bears noting that the sign of these correlations is the 

opposite of that found for the previous autumn ENSO indices. 

 

 OND JFM AMJ 

son1 djf mam jja djf1 mam1 jja1 son1 mam1 jja1 son1 djf 

NAO 1 15 7 6 1 2 1 0 4 2 3 17 

EA 0 1 21 26 0 2 7 1 7 8 0 2 

WP 14 6 15 0 3 67 0 0 1 0 3 1 

EP-NP 2 0 74 6 0 18 2 4 5 20 2 2 

PNA 10 0 2 1 2 1 13 0 0 33 6 3 

EA-WR 0 0 3 3 1 0 1 0 1 2 2 7 

SCAND 1 5 1 6 2 3 6 45 1 9 1 18 

PDO 1 0 0 9 4 1 1 5 0 4 10 1 

AMO 2 1 1 1 2 1 1 1 16 13 3 2 

AO 0 20 1 3 1 2 0 0 0 53 4 10 

Niño1+2 9 3 1 1 1 1 0 0 4 37 54 28 

Niño3 20 4 9 8 6 0 0 3 4 33 5 4 

Niño4 45 22 2 5 4 2 4 2 5 7 4 2 

Niño3.4 29 7 8 16 4 2 1 2 5 11 4 2 

SOI 41 5 3 16 4 5 2 1 1 7 6 3 

EMI 2 3 0 0 5 1 3 2 3 6 10 10 

NPGO 3 0 1 9 0 0 0 0 4 4 12 3 

IOD 9 1 0 3 0 2 2 4 8 10 27 4 

WeMO 2 8 47 17 6 5 1 9 2 2 0 2 

SAI 21 - - - - - - 238 - - 7 - 

Table 5.1 Number of stations with stable correlations between seasonal streamflow (OND, JFM and 

AMJ) and teleconnection indices in the preceding seasons (son1, djf, mam, jja in case of OND, djf1, 

mam1, jja1 and son1 for JFM and mam1, jja1, son1 and djf for AMJ). 
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For winter streamflow, Figure 5.5 displays the correlation maps for the stable predictors. 

Although previous winter EMI and WeMO shows stable correlation with few stations, they are 

grouped. A notable number of stations (67, Table 5.1) present stable correlations with previous 

spring WP, particularly in the Douro, Tagus, and Guadalquivir Basins. However, the magnitude 

of these correlations is weak (0.40 in average). Previous spring EP-NP, summer PNA, and 

autumn SCAND also show stable but weak correlations (around 0.40 and 0.45 on average), 

mainly in the Douro, Tagus, and Ebro for spring EP-NP, the Douro and Tagus for summer PNA 

and, in case of autumn SCAND, the Miño-Sil, Douro, Tagus, and Ebro Basins. Previous autumn 

WeMO also present stable correlations in stations on the Mediterranean slope. Finally, the most 

remarkable results are found for the SAI of the previous October, which has stable correlations 

with 238 stations (Table 5.1), except with those located near the Cantabrian and Mediterranean 

slopes. In addition, the average of these correlations is higher (around 0.6) than observed with all 

the previous indices.  

 

Figure 5.3 Number of stations that present a significant (at 95% confidence level) (in grey bars), stable 

(light blue and orange bars) and strongly stable (dark blue and dark red bars) correlation between 

teleconnection indices and lagging seasonal streamflow for autumn (OND) streamflow (upper panel); 

winter (JFM) streamflow (middle panel) and spring (AMJ) streamflow (lower panel) are presented; 

son1, djf1, mam1 and jja1 correspond to autumn, winter, spring and summer of the previous year, 

respectively. Note that negative numbers mean sum of stations with negative correlations. 
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Figure 5.4. Maps of the correlation between the teleconnection indices selected a predictor and 

autumn (OND) streamflow. In the title of each map, the acronym of the corresponding teleconnection 

index and its season (subindex) is shown. Only significant and stable correlations are displayed. 

Circles and triangles mean gauging stations located mainstreams of rivers and reservoirs respectively. 
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Figure 5.5. As Figure 5.4 but for winter (JFM) streamflow. 

 

In case of spring streamflow (Figure 5.6), while no index in the previous spring is 

identified as a predictor, up to 9 teleconnection indices of the previous summer do. In particular, 

summer EA correlates stably with stations in the Douro Basin. The summer EP-NP correlates 

with the stations in the eastern IP, the summer SCAND with stations in the Guadalquivir Basin, 

and summer PNA appears as a potential predictor of spring streamflow for stations located in the 

Miño-Sil, Douro, and Tagus Basins. ENSO-related indices in summer (Niño1+2, Niño3, Niño3.4 

and IOD) present stable correlations with spring streamflow in stations located in the Miño-Sil, 

Cantabrian, and Douro Basins as well as some in the upper Ebro Basin. The presence of ENSO-

related indices as a stable predictor extend through the autumn (Niño1+2 and IOD) and winter 

(Niño1+2). Also previous October SAI and winter NAO/AO correlate stably with stations in the 

Douro, Tagus, and Guadalquivir Basins, especially in case of NAO and AO, and winter SCAND 

correlate stably with stations in the Miño-Sil, Douro, and Tagus Basins. The magnitude of these 

correlations is, in general, relatively weak (around 0.4 and 0.45), the previous winter NAO being 

the index presenting the highest correlations (-0.48 in average). 
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Figure 5.6. As Figure 5.4 but for spring (AMJ) streamflow. 

 

5.5 Discussion 

In this chapter, it has been identified stable correlations between seasonal teleconnection 

indices and lagging seasonal streamflow in the IP. Based on these stable correlations, 

teleconnection indices leading seasonal streamflow have been evaluated as potential predictors. 

However, understanding the physical mechanisms responsible for these relationships requires 

additional analysis. The connection between teleconnection indices leading seasonal streamflow 

in some months or seasons in the IP might be explained through changes in slowly varying 



ASSESSING TELECONNECTION INDICES AS POTENTIAL PREDICTORS OF SEASONAL 
STREAMFLOW OF THE IP RIVERS 

5 

 
 

 
 

77 

boundary conditions, such as SST or ice-sea extension in the Arctic or the snow cover in high-

latitude land masses. Moreover, the individual features of each basin play an important role in 

the lag response to the teleconnection indices, in particular on shorter time scales (one season) 

responses. To evaluate this, a hydrological model would be needed for each individual basin. 

With the large number of teleconnection indices and seasonal streamflow analyzed, a detailed 

description of the physical basis of these relationships becomes a substantial amount of work and 

is beyond the scope of this study. Nonetheless, based on the literature, we postulate on which of 

the physical links might explain the most noteworthy relationships. 

One of the most remarkable results is the acceptable winter streamflow prediction in a 

high number of gauging stations found when the SAI of the previous October is used as the 

predictor. These results agree with those of Brands et al. (2012, 2013), who found reasonable 

forecasting skill for winter precipitation over the central and western IP when using the SAI as 

the predictor. The role that Eurasian snow cover plays in the winter Northern Hemisphere 

climate has attracted greater attention in the last two decades (Cohen et al., 2001; Cohen and 

Saito., 2003; Gong et al., 2003; Cohen and Flecher, 2007; Cohen et al., 2007, among others). 

The links between observed snow cover and Northern Hemisphere wintertime circulation were 

also reproduced by model simulations (Orsolini and Kvamstø, 2009). Cohen and Entekhabi 

(1999) showed that the Eurasian snow cover in early fall is significantly correlated with the 

following AO. These authors hypothesize that a possible dynamical mechanism linking Eurasian 

snow cover anomalies and North Atlantic climate variability involves the strength and position 

of the Siberian high. The conceptual model, explained in Cohen (2011), proposes that the 

presence of snow cover can increase the amount of sunlight reflected back into space from 20 to 

80% and also avoid the heat escaping from the earth’s surface, leading to colder air 

temperatures. This cold and dense air promotes a stronger and more expansive Siberian high. As 

a consequence, the amount of energy transfer from the troposphere (or lower stratosphere) to the 

stratosphere (or upper troposphere) can be increased. Often, when such an excess energy exists, 

it is absorbed in the polar stratosphere; warming the polar stratosphere and weakening of the 

polar vortex. In the case of weakening of polar vortex, the flow of air is weaker and turns north-

south (rather than west-east), encouraging the cold Arctic air to penetrate the mid-latitudes while 

the warm air from the subtropics is carried into the Arctic. The mixture of these air masses 

foment more storms and snow in the mid-latitudes. During a weak polar vortex, high pressure 

occurs in the Arctic region (negative phase of AO). By contrast, below-normal snow-cover 

anomalies during fall are related to a positive phase of AO in the following winter. As winter 
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NAO (regional manifestation of AO) is a major driver of winter precipitation in the western IP, 

the ability of SAI to predict the following winter AO is reflected in high correlation values with 

winter streamflow in the IP. However, the stationary relationship of Siberian snow-cover extent 

in the fall and following winter Arctic Oscillation has recently been questioned (Peings et al., 

2013), indicating that it could be modulated by the Quasi-Biennal Oscillation in the equatorial 

stratosphere. Thus, the SAI-AO relationship should be taken in careful consideration and 

examined when more data are available, especially if it is to be used for forecasting purposes. 

In addition, it worth to be noted the strong correlation (above 0.6 in absolute values) 

found between October SAI and winter NAO and AO with following autumn streamflow in the 

Mediterranean Andalusian Basin (Figure 5.4). As it was previously remarked, the SAI is 

considered a useful index for predicting winter conditions in the North Atlantic, in particular 

winter AO and NAO, which are major drivers of winter precipitation in the western IP. 

However, the relationship between NAO and precipitation in the Mediterranean slope of the IP is 

weak. We examined the correlation between winter (December to February) NAO and winter 

(January to March) streamflow in the Mediterranean Andalusian Basin, which is not significant 

in most of stations (not shown). A possible link between winter NAO/AO and October SAI with 

following OND streamflow in the Mediterranean Andalusian Basin could be through later spring 

and summer snowmelt contribution. This basin is located between the Mediterranean Sea and the 

Betics System, a high-mountain ridge (with the highest peaks of the IP, i.e. over 3000 m high), 

which accumulate large amounts of snow during winter (it acts as a natural barrier for fronts 

coming from Atlantic Ocean in winter). Thus, the snowmelt during late spring and summer 

months could contribute to an increase in runoff during the summer months, and this effect could 

remain until the next autumn. To corroborate this hypothesis, it was evaluated the correlation 

between summer (June to August) and autumn (October to December) streamflow in this basin. 

As a result, only 3 of the 15 stations presented a significant correlation, so this hypothesis can be 

discarded. Consequently, the explanation for the connection between these indices and autumn 

streamflow in the Mediterranean Andalusian Basin needs additional analyses. A possible 

physical explanation of this relationship might be in the line of the results found by Báez et al. 

(2013). These authors postulated a relationship between winter NAO and AO conditions and 

following summer SST in the Alboran Sea (a part of the Mediterranean Sea close to the 

Mediterranean Andalusian Basin), through the accumulated snow in Sierra Nevada, which 

increases the input of continental freshwater in the Alboran Sea during summer, maintaining the 

mixed layer at a greater depth and increasing the SST. With this hypothesis borne in mind, 
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warmer than average SSTs in the Mediterranean could lead to enhanced local evaporation, and 

hence to increased lower-tropospheric humidity. This additional moisture is likely to be advected 

from the western Mediterranean to the southern IP during late summer and autumn and, together 

with the rugged terrain, promote greater rainfall over this area. Note that an atmospheric 

configuration at sea level providing advection from the Mediterranean together with a cut-off 

low in the upper levels, have been associated with intense rainfall events over southeastern Spain 

during autumn (Hidalgo-Muñoz et al., 2011).  

Another notable result concerns the stable correlations (negative) identified between 

summer Arctic Oscillation and seasonal streamflow in following spring (Figure 6), particularly 

in western or northwestern IP. One possible physical mechanism responsible for this lag 

relationship could be the associated with summer Arctic Sea ice extension. Matsumura et al. 

(2014) evaluated the influence of spring Eurasian snow cover on summer Arctic atmospheric 

circulation and the possible linkage with the increased Arctic sea-ice loss. Specifically, they 

indicate that the reduced albedo due to earlier spring snowmelt over Eurasia leads to a warmer 

land surface, which amplifies stationary Rossby waves, decelerating the subpolar jet. As a 

consequence of the rising motion enhanced over land, compensating subsidence and adiabatic 

heating occur in the Arctic troposphere, forming a negative Northern Annular Mode (NAM). 

Note that AO and NAM resemble similar height anomalies pattern. The recent trends towards a 

negative phase of NAM during summer have been linked to the accelerating trend of sea-ice 

extension retreat in the Arctic during summer (Ogi and Yamazaki, 2010). In addition, the effects 

of Arctic sea-ice reduction in summer in the mid-latitudes weather in the following winter have 

received special attention in recent years (two noteworthy reviews have been recently published 

by Cohen et al. (2014) and Vihma (2014). In Cohen et al. (2014), the authors indicate three 

possible dynamical pathways through which Arctic amplification may influence mid-latitude 

weather: changes in storm tracks in the North Atlantic sector, in the characteristic jet stream and 

in the planetary wave configurations. Some of the studies reviewed in Vihma (2014), such as the 

one made by Francis et al. (2009) and Overland and Wang (2010), suggest that summer sea ice 

declining in the Arctic causes a deepening of the atmospheric boundary layer, a warming and 

destabilization of the lower troposphere, and a decreasing of the poleward gradient in the 

thickness of the atmospheric layer between 500 and 1000 hPa pressure levels, which weakens 

the polar jet stream. This configuration is similar to a negative phase of Arctic Oscillation. In 

addition, Outten and Esau (2012), on the basis of ERA-Interim reanalysis, identified cooling 

trends of wintertime near-surface air temperature along a band that extends across mid-latitude 
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Eurasia. By their interpretation, the weakened north–south temperature gradient has decreased 

wintertime westerly winds over mid-latitude Eurasia, resulting in lower temperatures. The 

cooling in northern Eurasia resulting from less sea ice extent in the Arctic in September is also 

supported by Rinke et al. (2013) and Peings and Magnusdottir (2013) using model experiments. 

With these findings in mind, it could be postulated that this cooling in winter combined with 

more precipitation could result in an increased snowfall during winter. Consequently, an increase 

in spring streamflow could be expected by snowmelt contribution. A correlation analysis was 

conducted between summer AO and winter and spring temperature (using CRUTS3.0 

temperature dataset, with 0.5º degree of spatial resolution) and precipitation (using GPCC 

precipitation dataset, with 1º degree of spatial resolution) over Europe. It was found significant 

positive correlation (not shown) with winter temperature over Finland and western Russia. Also 

some areas in the IP present positive but no significant correlations. In case of spring 

temperatures (Figure 5.7a), the above positively correlated area in western Russia increases in 

extension, and also appears a positive significant correlation in the western half of the IP but a 

negative correlation with precipitation (Figure 5.7b). This positive/negative correlation with 

spring temperature/precipitation over the IP means that negative AO anomalies (or NAM) in 

summer is linked with below-normal temperature in the western IP in spring (late winter and 

early spring) and with positive precipitation anomalies and perhaps increased snowfall in 

mountain ranges because of the lower temperatures. This could explain an above-normal 

streamflow during spring as a consequence of both higher precipitation and snowmelt 

contribution. However, uncertainties remain concerning these dynamical pathways (Cohen et al., 

2014). For example, although observational analysis has shown links between summer sea-ice 

loss in the Arctic and winter NAO/AO, modeling simulations do not. Also, there are other 

factors, besides the near-surface meridional temperature gradient, influencing the zonal jet that 

should be considered. In addition, more statistically robust results regarding the influence of 

alteration in planetary waves over Eurasia are needed. 
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Figure 5.7. Correlation of summer AO with spring (March to May) a) temperature and b) 

precipitation. Temperature data at 0.5º of spatial resolution were obtained from CRU TS v.3.1 dataset 

(Harris et al., 2014). Precipitation data at 1º of spatial resolution where obtained from: GPCC 

Precipitation (Schneider et al., 2014), NAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their 

Web site at http://www.esrl.noaa.gov/psd/). 

 

The correlation found between winter NAO and SCAND with following spring 

streamflow might be associated with the lagging response in each basin and the contribution of 

snowmelt that accumulated during winter in high-mountain systems, as NAO and SCAND are 

major teleconnection indices driving winter precipitation in the western IP. 

The WeMO index has also been identified as a stable predictor for seasonal streamflow 

(with different lags). The WeMO index has been associated with extreme precipitation events 

over the Mediterranean façade of the IP (Martin-Vide et al., 2008; Hidalgo-Muñoz et al., 2011), 

particularly during autumn and early winter. The correlation between WeMO and streamflow in 

autumn was calculated (not shown), finding stable positive correlations in the Cantabrian range 

and negative in the Mediterranean slope. The positive phase of WeMO resembles a low/high 

pressure centre in Padua/Gibraltar. This configuration favors the entrance of humid winds from 

the Atlantic Ocean/Cantabrian Sea that bring about precipitation on the northern Slope of the 

Cantabrian ranges. Correspondingly, positive correlations with the Cantabrian Basin were found 

when September to November WeMO was correlated with October to December streamflow 

(not shown). Similarly, Figure 5.4 displays a positive correlation in the Upper Ebro (near the 

Cantabrian coast) between summer WeMO and following autumn streamflow. Thus, it seems 

that the origin of this teleconnection is likely due to a lagging response of streamflow. However, 

the teleconnection between previous winter and spring WeMO with autumn streamflow is not 

well understood as a lagging response to the coetaneous relationship between WeMO and 
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precipitation in the IP. This sea-level pressure configuration related to WeMO phases could be a 

regional reflection of a larger-scale phenomenon. Nevertheless, further analyses are needed.   

In relation with the lagging influence of teleconnection indices located in the Pacific, 

ENSO indices have been also found stably correlated with autumn (Figure 5.4) and spring 

(Figure 5.6) streamflow, especially with stations located in the Northwestern quadrant of the IP. 

Numerous studies have demonstrated statistical associations between ENSO and precipitation in 

the Mediterranean Basin. In case of the IP, precipitation has been shown to increase during late 

summer, autumn, and early winter when El Niño conditions are present in the Pacific (Rodó et 

al., 1997; Mariotti et al., 2002; Park, 2004; Pozo-Vázquez et al. 2005; Vicente-Serrano, 2005; 

Sordo et al., 2008). In agreement with this, positive correlations were found between summer 

ENSO indices (which represent the beginning of the phenomenon) and following OND 

streamflow (Figure 5.4). Also, it was conducted a correlation analysis between September to 

November ENSO indices and October to December streamflow, finding an increase in the 

number of stations with positive correlations. Hence, the link between autumn and early winter 

ENSO with autumn and early winter streamflow in the IP begins in summer, with the beginning 

of the phenomenon. Also notable was the contrary sign observed between previous autumn and 

winter ENSO indices with autumn streamflow of the following year with respect to the 

correlation between summer and autumn ENSO indices and autumn streamflow of the same 

year. This change in the sign of the correlation, also observed by Córdoba-Machado et al. (2014) 

in a study of the relationship between Pacific SST and precipitation in Colombia, could be 

related to a 2-year periodicity observed in El Niño (Yu and Kim, 2010). Rodó et al. (1997) and 

Knippertz et al. (2003) found an association between boreal winter ENSO conditions and spring 

precipitation over Spain and southwestern Europe, respectively. Furthermore, Mariotti et al. 

(2002) found that precipitation in the Mediterranean area in late winter and spring is suppressed 

during an El Niño event. However, Lorenzo et al. (2010) concluded that the negative phase of 

ENSO, “La Niña”, almost always announces dry springs in northwestern IP, whereas the positive 

phase of ENSO, “El Niño”, does not anticipate the appearance of wet springs. In the line of these 

results (negative ENSO associated with negative precipitation), we found stable positive 

correlations in spring streamflow the northwestern basins (Figure 5.6) with ENSO related indices 

(such as Niño1+2, Niño3, Niño3.4, IOD, PNA) in summer and autumn. The influence of tropical 

pacific SST variability on North Atlantic sector has been widely studied (Giannini et al., 2001; 

Shaman et al., 2009; Shaman and Tziperman, 2010; Shaman, 2014; among others). For instance, 

in Giannini et al. (2001), a physical explanation of the teleconnection between the SST 
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anomalies in tropical Pacific related to an ENSO events and spring precipitation in north Atlantic 

sector is provided. Accordingly, in a warm ENSO event SLP is lower than average over the 

warm waters of the central and eastern equatorial Pacific, and higher than average over the 

equatorial Atlantic. Related to this anomalous seesaw in SLP is a weakening of the meridional 

SLP gradient in both hemispheres of the Atlantic basin, consistent with reduced trade winds at 

subtropical latitudes. During boreal winter, the weakening of the meridional SLP gradient is 

reinforced at sub-tropical latitudes in the Northern Hemisphere by a low-pressure center over the 

southeastern United States and southwestern North Atlantic, related to the Pacific–North 

American (PNA) wave train (Horel and Wallace 1981; Wallace and Gutzler 1981). The end 

result is the oceanic component of the teleconnection: a warming of the tropical North Atlantic 

Ocean surface that peaks in boreal spring, that is, with a delay of about one season with respect 

to the attainment in winter of maximum SST anomalies in the tropical Pacific. More recently, 

Shaman and Tziperman (2010) observed that ENSO modulates southwestern European 

precipitation during the September–December wet season. They indicated that the precipitation 

anomalies are associated with changes in large-scale atmospheric fields to the west of Iberia that 

alter low-level westerly winds and onshore moisture advection from the Atlantic. The 

interannual variability of fall and early winter precipitation over southwestern Europe is linked 

to ENSO variability in the eastern Pacific via an eastward-propagating atmospheric stationary 

barotropic Rossby wave train. 

Other teleconnection patterns related to atmospheric variability in the Pacific have also 

been identified as stable predictors, such as summer PNA (for following winter and spring 

streamflow), spring EP-NP (for following autumn) and spring WP (for following autumn and 

winter). Studies linking these teleconnection patterns with precipitation or streamflow in 

southwestern Europe are still scarce. One explanation relating these atmospheric patterns with 

following autumn to spring is that they reflect changes in tropical Pacific SST or the extent of 

sea ice in the Arctic. For example, in the discussion in Pozo-Vázquez et al. (2005), the PNA is 

proposed as one of the links between tropical forcing and extratropical circulation response in 

the North Atlantic area, triggering a standing wave train that propagates downstream to the 

North Atlantic area. In fact, Lau and Nath (2001) showed that the influence of ENSO is not 

limited to the tropical Atlantic but is also significant in the extratropical North Atlantic, which 

supports the idea that the PNA mechanism plays an important role in the Atlantic response to 

ENSO (Alexander et al., 2002). In the case of WP, recent works, such as in Linkin and Nigam 

(2008), have related the WP with the sea-ice extent in marginal zones in the Arctic, establishing 
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relationships with PNA and ENSO in the Pacific. However, how this pattern influences 

streamflow in late autumn and winter is still a matter of study. 

Concluding, this chapter provides a useful evaluation of the ability of main 

teleconnection indices as potential predictors of seasonal streamflow on the IP, which becomes a 

helpful tool for forecasting seasonal streamflow. This will be the main goal of Chapter 7. 

However, there exist some limitations regarding the use of teleconnection indices as potential 

predictors. For example, the predefined character of teleconnection indices (calculated as the 

average of a climatic variable over an area or the difference of a climatic variable between two 

locations), which could be overcome by exploring the relationship between climate variables 

(such as sea surface temperature or atmospheric pressure) with seasonal streamflow. Chapter 6 

focus on this, on studying the possible influence of climate variability on remote areas (beyond 

the defined teleconnection indices) on seasonal streamflow of IP Rivers.  
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CHAPTER 6 

COVARIABILITY ANALYSIS 

 

In this chapter, the singular value decomposition technique is used to 

identify climate-hydrology response relationships using gridded global climatic 

data such as sea surface temperature, geopotential height, temperature and 

precipitation over land, and lagging seasonal streamflow. Additionally, the 

significance of these relationships is evaluated and the main physical bases 

supporting them are discussed. Finally, the ability of these main coupled modes 

as stable predictors of seasonal streamflow in the IP is addressed. 

 

6.1 Introduction 

In the previous chapter, the ability of main teleconnection indices (such as ENSO, SAI or 

NAO) as potential predictors of seasonal streamflow of IP Rivers was addressed. Although each 

of these oceanic/atmospheric phenomena represent part of the ocean or atmospheric variability, 

they are referred to a specific and spatially predetermined region (e.g., tropical Pacific Ocean, 

northern Pacific Ocean, northern Atlantic Ocean, a particular mode of atmospheric variability or 

the pressure differences between two particular areas), which may not take into account 

additional information of climatic system that could have an influence in seasonal streamflow on 

the IP. In addition, the non-stationarity of the teleconnection patterns (Trigo et al., 2004; De 

Castro et al., 2006; Vicente-Serrano and López-Moreno, 2008) compels us to seek new variables 
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that can provide information regarding the variability of climate system. These variables could 

have an influence on streamflow fluctuations and, therefore, be used as climatic predictors. 

Variables that could be used as predictors for streamflow forecasting are air temperature, 

humidity, wind or precipitation. For example, precipitation is related to the impact of a large-

scale climatic phenomenon, and could provide a clearer signal of this phenomenon for 

forecasting purposes, temperature and humidity are very much related to the amount of moisture 

in the air, wind, which is a determinant factor for moisture transport in the atmosphere, or 

geopotential height at 500 hPa, which is a direct indicator of the atmospheric conditions that 

originates precipitation or its absence. Bearing in mind that the oceans are the largest resources 

of water moisture of the earth, the ocean dynamics should be considered since it plays a 

significant role in streamflow variability. For example, the passage of a cold front over a cold 

ocean area induces the stabilization of the air column, diminishing associated rainfall, while a 

positive SST anomaly increases rainfall, via enhanced evaporation and the decrease of the 

vertical stability. Hence, SST can provide important predictive information about hydrologic 

variability in regions around the world. Therefore, the identification of coupling modes between 

these climatic variables and the seasonal streamflow variability could be a useful tool to improve 

long lead-time streamflow forecasting. On this regard, Gámiz-Fortis et al. (2010, 2011) and 

Hernández-Martínez et al. (2014) evaluated the influence of SST regions on forecasting IP 

Rivers discharge, Rimbu et al. (2005) used SST as predictor of seasonal discharge in Danube 

River or Ionita et al. (2008), which predicted spring discharge in Elbe River using Global SST, 

temperature and precipitation as predictors. 

In this Chapter, the possible links between the seasonal streamflow in the IP Rivers and 

climatic variables such as SST, geopotential height or land surface temperature and precipitation 

data for entire regions (Pacific and Atlantic Oceans in case of SST, the Northern Hemisphere in 

case of geopotential height or global in case of temperature and precipitation) are going to be 

evaluated. This could result in new oceanic, atmospheric or surface regions being identified as 

having coupled impacts.  

Various methods are available to determine coupled relationships between two spatial-

temporal fields, such as SST and climatic variables. For example, Ionita et al. (2008) used linear 

correlation between the gauging station representing Elbe River and global SST, temperature and 

precipitation. However, when multiple stations are simultaneously evaluated, this strategy is not 

practical, and other methods are required to find possible links between climate fields and 

streamflow variability over the IP. Bretherton et al. (1992) compared four methods for isolating 
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the important coupled modes of variability between two fields. The methods compared were 

principal component analysis with combined fields (CPCA), canonical correlation analysis 

(CCA), principal component analysis of one field followed by correlation of its component 

amplitude with the second field (SFPCA) and singular value decomposition of the covariance 

matrix between two fields (SVD). In general, CCA and SVD present advantages such as their 

lack of systematic bias and good general performance. Also they produce explicit measures of 

relatedness between the derived coupled patters (unlike CPCA). In addition, their results 

indicated that SVD was simpler to apply than CCA and preferable for general use since it does 

not require user-chosen variables. Wallace et al. (1992) also used SVD to study the inter-annual 

relationship between the Pacific Ocean SST anomalies and 500mb atmospheric pressure in 

wintertime and found that SVD isolates the most important modes of covariability. Hence, the 

SVD is a powerful method used to identify pairs of coupled spatial patterns and their temporal 

variations. Each pair explains a fraction of the covariance between the two jointly analysed 

fields. This decomposition allows the extraction of dominant modes of coupled variability 

between the two analysed fields. The SVD (also referred in literature as Maximum Covariance 

Analysis, MCA) have been widely used to identify air-sea interactions. For example, to establish 

the relation between Atlantic SST and the atmospheric circulation in the north Atlantic European 

sector (Czaja and Frankignoul, 1999, 2002; Drévillon et al., 2001; Frankignoul et al., 2003; 

Frankignoul and Kastenare, 2005; García-Serrano et al., 2008; Gastineau et al., 2013; Robertson 

et al., 2000; Rodwell and Folland, 2002; Rodríguez-Fonseca et al., 2006) and also in other 

regions, such as the Indo-Pacific SST relationships (Sewell and Landman, 2001), or the impact 

of North Pacific SST on the atmosphere (Liu et al., 2006). Additionally, and in the line with the 

aim of this chapter, the coupling between atmospheric or oceanic fields and hydrologic 

variability has also been analysed by using SVD technique for several authors. For example, 

considering the following hydrological variables: 

Drought: Rajagopalan et al. (2000) utilized SVD and applied a lagging approach to 

evaluate global SST impacts on continental U.S. drought (e.g., Palmer Drought Severity Index, 

PDSI). Shabbar and Skinner (2004) utilized a lagging approach in which the link between winter 

global SST and summer Canadian drought (PDSI) was evaluated. Feng et al. (2011) addressed 

the influence of Atlantic SST on the persistent droughts in North America.  

Precipitation: Ting and Wang (1997) established a relationship between summertime US 

precipitation and the Pacific SST. Uvo et al. (1998) applied SVD to evaluate Pacific and Atlantic 

Ocean SSTs and northeast Brazilian precipitation. The Pacific and Atlantic Oceans were 
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evaluated independently using both a simultaneous and lagging approach. Wang and Ting (1999) 

analysed the covariability of winter US precipitation and Pacific SST. Wang and Ting (2000) 

evaluated Pacific Ocean SST and winter U.S. precipitation for concurrent (overlapping) time 

periods. They found that the precipitation patterns associated with North Pacific SST anomalies 

account for more U.S. precipitation variability than those associated with the tropical SST 

variations, except when only El Niño and La Niña years are considered. Rodríguez-Fonseca and 

de Castro (2002) used SVD to study the relationship between monthly winter precipitation 

anomalies in Europe and North Africa with North Atlantic Ocean SST and sea level pressure 

(SLP). The authors argued that the lagging connection between the different periods could make 

possible to use the SST and SLP for long lead-times forecasting of the precipitation. Liu (2003) 

used SVD to improve predictions of monthly seasonal precipitation over East Asia by coupling 

with previous soil moisture. Joly et al. (2007) explored the teleconnections between tropical 

SSTs and African monsoon at interannual to multidecadal time scales via a SVD analysis applied 

to low and high frequency signals of the dataset. Polo et al. (2008) presented a description of the 

coupling between tropical Atlantic SST variability modes and the West African rainfall during 

the monsoon season. Peings and Douville (2010) reviewed the possible influence of 

winter/spring Eurasian snow cover on Indian summer monsoon. Taschetto and England (2009) 

used SVD to assess the impacts of El Niño Modoki pattern on Australian rainfall. Omondi et al. 

(2013) investigated the linkages between global SST and decadal rainfall variability over Eastern 

Africa region. Wei et al. (2012) explored the relationships between SLP over east Asia and 

summer precipitation in eastern China during the period 1850-2008 using SVD. Finally, 

Córdoba-Machado et al. (2014) studied the forecast skill provided by the tropical Pacific SST 

associated with El Niño and El Niño Modoki over seasonal precipitation in Colombia through a 

lagging SVD. 

Streamflow: Grantz et al. (2005) and Soukup et al. (2009) identified 500 hPa 

geopotential height (Z500) values as a useful long lead-time predictor of streamflow in Truckee-

Carson River System and North Platte River, in United States, respectively. Tootle and Piechota 

(2006) evaluated the relationship between Atlantic and Pacific Ocean SST with U.S. streamflow 

variability, considering cold and warm phases in both oceans (through positive or negative 

phases of PDO and AMO). Tootle et al. (2008) evaluated the relationships between the Pacific 

and Atlantic Ocean SSTs and Colombian streamflow variability applying SVD in a lead-time 

approach. They found that the use of SSTs for entire regions eliminates any spatial bias as to 

which oceanic SST region impact hydrology. Anderson et al. (2012) added the contribution of 
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Pacific Ocean climate variability (via SVD) to tree rings chronologies in order to improve 

hydrologic reconstructions in the Upper Green River Basin (located in North America). 

Oubeidillah et al. (2011) studied the use of oceanic and atmospheric variables as predictors for 

long lead-time forecasting of the streamflow and snowpack in the Upper Colorado River and 

Great Basin (U.S.). Lamb et al. (2010) identified a Pacific Ocean region when evaluating the 

streamflow in Colorado River Basin (U.S.). Oubeidillah et al. (2012) studied the relationship 

between the Atlantic SST and the streamflow in Adour-Garonne Basin (France). 

The goal of this work is to improve the understanding of the climate drivers for the 

seasonal streamflow variability in the IP in order to develop an improved long-lead forecasting 

technique. For this purpose the lagging SVD approach was used for the combined fields of 

streamflow and the potential predictor variables SST, Z500, temperature and precipitation. The 

significance and the predictability skill of the covariability coupled modes obtained by SVD 

were also evaluated. 

 

6.2 Datasets 

The large-scale atmospheric and oceanic variables, covering from September of 1974 to 

February of 2008, were obtained from the following datasets: 

 The monthly data for the sea surface temperature (SST) were obtained from The Hadley 

Centre Global Sea Ice and Sea Surface Temperature (HadISST, Rayner et al., 2003), with 

a resolution of 1º x 1º. The region of Pacific Ocean SST data used for the analysis is 

[120°E-70°W, 40°S-70°N], while the region of Atlantic Ocean SST data used is [80°W-

30°E, 40°S-70°N]. 

 The monthly mean geopotential height at 500 hPa (Z500) was downloaded from the 

NCEP Reanalysis (Kalnay et al., 1996), with a resolution of 2.5º x 2.5º. Only Z500 data 

northern than 20ºN are used here. 

 The monthly values for global precipitation (RR) were downloaded from the Global 

Precipitation Climatology Centre (GPCC) version 6- Total Full (Scheneider et al., 2014). 

The dataset has a 1º x 1º resolution.  

 The monthly global surface temperature data over land (TMP) were taken from the high-

resolution database of the Climatic Research Unit (CTU-TS.3.10, Harris et al., 2014), 

with a 0.5º x 0.5º of spatial resolution. 
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For computational efficiency, all dataset were regridded into a coarse grid of 2.5º x 2.5º. 

Seasonal time series were created by averaging the months: September-October-November (son) 

for autumn, December-January-February (djf) for winter, March-April-May (mam) for spring 

and June-July-August (jja) for summer.  

 

6.3 Methodology 

6.3.1 Coupling patterns. Singular Value Decomposition (SVD) 

In order to perform the SVD technique, the temporal cross-covariance matrix between the 

two space-time distributed data fields needs to be computed. Let’s X and Y be the left and right 

data fields representing the climatic variable (SST, Z500, TMP or RR) and seasonal streamflow 

respectively. The dimension of X is N x Mx and the dimension of Y is N x My, where N represents 

times (years), Mx the number of grid points and My the number of gauging stations. The temporal 

cross-covariance matrix can be constructed as: 

 

1 1 1

1
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x x y

M

T

M M M

X Y X Y

C X Y

X Y X Y
 (6.1)

 

which has Mx x My dimension, with each element of the matrix, <XiYj>, corresponding to the 

spatial cross-covariance between the time series Xi and Yj at grid i and station j, respectively. 

Based on the cross-covariance matrix, C, matrices U, V and L can be computed such that: 

  TC ULV  (6.2) 

The singular vectors for X are the columns of U (often-called left patterns), and the 

singular vectors of Y are the columns of V (right patterns). Each pair of singular vectors is a 

mode of covariability between the fields X and Y. 

These vectors, a set of Nx dimensional orthogonal vectors Uk (k=1,.., Nx) for X, and a set 

of Ny dimensional orthogonal vectors Vq (q=1,…, Ny) for Y, are determined so the covariance 

between the projections of the fields on them is maximized, subjected to orthogonalty: 

 TUU I  (6.3) 

 TVV I  (6.4) 
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The matrix L is a diagonal matrix whose dimension is of Mx x My, with its elements being 

zero except the first R (with min( , ) x yR M N ) diagonal elements, which are referred as 

singular values. The expansion coefficients, which describe the time variability of each mode, 

can be obtained by projecting each field onto their respective singular vectors: 

 A XU  (6.5) 

 B YV  (6.6) 

The k
th

 columns of the A and B matrices contain the expansion coefficients for the k
th

 

SVD mode for fields X and Y, respectively. Since both U and V are orthogonal, the original fields 

can be easily reconstructed as: 

  TX AU  (6.7) 

  TY BV  (6.8) 

Hence, using equations (6.1), (6.2), (6.7) and (6.8), the temporal covariance between the 

two fields can be expressed in terms of the expansion coefficients as follows: 

 TA B L  (6.9) 

That is, an expansion coefficient of the left field is correlated only with the time series of 

the same mode in the right field.  

The relative importance of each SVD mode is indicated by the percentage of square 

covariance (SC) for the associated mode. If ( , )kl L k k  is the i
th

 singular value, the fraction of 

the squared covariance (SCF) explained by this mode is:  
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 (6.10) 

The strength of the coupling is represented by the correlation between the expansion 

coefficients corresponding to the left and right fields (A and B, respectively). For example, in 

case of the k
th

 mode:

   
k kk A BSTR r

 (6.11) 

In order to present the spatial patterns corresponding to the SVD modes, the 

homogeneous and heterogeneous maps are used. The k
th

 homogeneous correlation map is 
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defined as the vector of correlation values between the expansion coefficient of the k
th

 mode of a 

field and the values of the same field at each point. It is a useful indicator of the spatial 

localization of the covarying part between the field and its k
th

 mode. The k
th

 heterogeneous map 

is defined as the vector of correlation values between the expansion coefficient of the k
th

 mode of 

a field and the values of the other field. It indicates how well the grid point values of the second 

field can be predicted from the knowledge of the expansion coefficient of the first field. 

Particularly, in this study, the homogenous maps refer to the correlations between the left 

expansion coefficients and the values of the same field (in this case, SST, Z500, TMP or RR), 

while the heterogeneous maps refer to the correlations between the left expansion coefficients 

(associated to SST, Z500, TMP or RR) and the right field (streamflow). 

Significance of SVD coupled patterns 

Although SVD is a useful technique in the statistical analysis of two spatio-temporal 

fields, there are some conditions that must be satisfied for SVD to be used correctly (Newman 

and Sardeshmukh, 1995). These authors indicate that the relationship between the two fields (X 

and Y) in the underlying dynamical system is unclear. The assumption always made is that the 

relationship between the two data fields being analysed is fundamentally a linear one. The 

success of SVD in recovering the relationship between two variables depends not only on the 

relationship but also on the covariance structure of the data (e.g., two analysis separated with a 

given set of variables, such as precipitation and SST, could be relatively successful one time but 

unsuccessful the next). SVD is able to isolate the most frequently occurring pairs of patterns of X 

and Y. It could be thought that a SVD pair, say X1 and Y1, occur ‘simultaneously’ or ‘go together’ 

in some sense. Even this interpretation needs to be treated with caution. Three possibilities can 

be considered in this context: 

1. The coefficient time series of X1 and Y1 are not highly correlated. Then, the notion of the 

simultaneous occurrence of X1 and Y1 is clearly dubious.  

2. The coefficient time series are highly correlated but X1 and Y1 do not project strongly on 

the dominant EOFs of X and Y. In this case X1 and Y1 might occur simultaneously but 

they are not important because the total covariability of X and Y is small. 

3. The coefficient time series are highly correlated and X1 and Y1 project strongly on 

dominant EOFs of X and Y respectively. In this case, SVD might appear useful. 
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Additionally, Cherry (1996) recommend be cautious when interpreting results from SVD 

and CCA methods, because both have a high potential to produce spurious spatial patterns, 

especially with small size samples. 

According to that, the question of whether there is a physical connection between the two 

fields together with the evaluation of the predictability skill that left field could have on right 

field have been carefully addressed. This was handled in similar way to Czaja and Frankignoul 

(1999), Martín et al. (2004) or Rodwell and Folland (2002) by adopting the null hypothesis that 

there is no physical connection. If true, then temporally shuffling the sequences of the fields and 

applying the SVD analysis should not lead to a statistically different outcome. In particular, the 

approach used in Martín et al. (2004) was followed here. So, Monte Carlo realizations were 

carried out shuffling the left field (climatic variables, such as SST or Z500), keeping the same 

order in the right field (streamflow). From the combined action of shuffling and applying the 

SVD 100 times, a Monte Carlo-style test is conducted based on the value of Square Covariance 

(SC), calculating the percentage of Cs from the test that exceed the true SC. This percentage is an 

estimate of the significance level (SL) of the strongest test that is satisfied. The smaller the SL, 

the stronger the test passed and the more confident one can be of the existence of a physical 

connection between the covarying patterns. Although, other authors have applied the test to other 

statistics such as Covariance Fraction (CF; Rodwell and Folland, 2002), or the Squared 

Covariance Fraction (SCF; Iwasaka and Wallace, 1995), Martín et al. (2011) suggested that 

whereas the SCF and STR are indirect measures of the relationship between the SVD modes, the 

square covariance is a direct measure of the relationship between the climatic variables and 

streamflow and between the coupled SVD patterns. One may find a large SCF and STR in the 

leading SVD modes of the two weakly related fields, even though these modes actually account 

for little squared covariance (Wallace et al., 1992). Therefore, the SCF and STR are only 

meaningful when they are associated with a significant square covariance. Additionally, in order 

to improve the understanding of the physical meaning of the identified SVD patterns, the left 

expansion coefficients (associated with the climatic variables) were correlated with the EOFs of 

their corresponding fields (see Appendix C), and also with the main teleconnection indices 

(those used in Chapter 5). For example, the left expansion coefficients of the SVD modes 

coupling winter Z500 and following autumn streamflow were correlated with winter EOFs of 

Z500 and winter teleconnection indices.  

Further, the usefulness of the forecast system based on the lagging SVD technique was 

also estimated (following Rodwell and Folland, 2002). The procedure is similar to standard 
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‘cross-validation’ tests for other statistically based forecasting systems (Livezey, 1995). 

Considering the original input data, X and Y, one common year, t, is removed to give X
*

t and Y
*

t. 

After that, the SVD analysis to these reduced time series is applied to obtain the pair of patterns 

U
*

t, V
*

t. 

The ‘cross-validated time series’ values are then defined by: 

 
* * *( )  t tA t X U

 (6.12) 

 
* * *( )  t tB t Y V

 (6.13) 

Repeating this procedure 33 times (number of years) the cross-validated time series are 

built up. The cross-validated time series based on the leading (i.e. earlier) field is the ‘left time 

series’. The cross-validated time series based on the lagging (i.e. later) field is the ‘right time 

series’. The correlation between the two cross-validated time series for the k
th

 mode is:  

 * *,


k k
k A B

COR r
 (6.14)

 

The patterns that emerge from a SVD analysis have an arbitrary joint sign, so that the 

lagging SVD analysis could produce –(U
*

t, V
*

t) rather than (U
*

t, V
*

t) for a particular mode. Here, 

the joint sign is determined by ensuring that the lagging pattern ‘projects’ positively onto the 

lagging pattern from the full 33-year analysis. ‘Projection’ is defined here as the scalar product 

of two fields. 

Note that the cross-validated time series (A
*

t and B
*

t) could be somewhat different from 

the non-cross validated time series A and B, and the correlation ,k kA Br  is found to be quite a bit 

larger than COR. This is no doubt an artefact of the covariance maximisation of the SVD 

technique and it is the reason for cross-validating when assessing true predictive skill. Also, 

negative values of COR imply no link detected, so no predictability skill is expected. 

 

6.3.2 Selection of stable predictors 

After identifying the significant modes of covariability between the climatic variables 

and seasonal streamflow, the next step consisted on studying their potential as stable predictors. 

To do that, a similar method to that used in Chapter 5 was followed, i.e. evaluating the stability 

of the correlation between predictors and predictands at each gauge station through a running 

window correlation approach (see Chapter 5, Section 5.3 for further details). 
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6.4 Results 

6.4.1 Significance of covariability modes 

The seasonal values of the atmospheric and oceanic fields were passed to anomalies by 

subtracting the mean, whereas the seasonal streamflow were standardized. The use of 

standardized anomalies in seasonal streamflow time series is because it exists a great disparity in 

variance between streamflow in gauging stations located in lower part of main rivers and those 

located in the headwaters or in small rivers. Both left and right fields were detrended to remove 

any trends in the data sets that may bias the analysis and mask the underlying variability. In 

addition, prior to construct the cross-covariance matrix, the seasonal anomalies of the left field 

were weighted by the square root of the cosine of latitude, which ensures that equal areas are 

given equal weight in the analysis. 

For each seasonal streamflow (autumn, winter and spring), the SVD was performed 

considering the atmospheric and oceanic fields leading the seasonal streamflow for the previous 

four seasons (i.e., in case of autumn streamflow, the SVD was carried out with seasonal Atlantic 

and Pacific SST, Z500, TMP and RR corresponding to the previous autumn, winter, spring and 

summer). This accounts for a total 20 SVD computations (5 variables and 4 seasons) for each 

seasonal streamflow.  

In all SVD analyses only the three first modes were evaluated, because of they account 

for 70% or more of the SCF in most cases, and the SCF for the fourth and subsequent modes 

usually drops below 10%, which means that the amount of information accounted for these 

modes respecting the two fields is not very relevant. Among all coupling modes determined in 

SVD analysis between the oceanic and atmospheric fields and the seasonal streamflow, only 

those modes in which COR is significant at 90% of confidence level (0.29) have been considered 

and described. The reasons to do that are, on one hand, a reduction in the number of modes 

(bearing in mind the five leading fields, with four lags and the three first modes in each SVD, 

totals 60 coupled modes for each seasonal streamflow), and, on the other hand, to focus on those 

modes that have real predictability skills (given by a significant COR value).  

Modes are named with the first capital letter indicating the climatic field (where ‘P’ 

correspond to Pacific Ocean SST, ‘A’ to Atlantic Ocean SST, ‘Z’ to geopotential height at 500 

hPa, ‘T’ to global temperature and ‘R’ to global precipitation), with the next three letters 

meaning the season of the climatic field (son, djf, mam, and jja) and with the last number 

denoting the mode order (ordered descending in SCF values). The modes are presented from 
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those found in SVD analysis considering the maximum lag (one year) until the minimum lag 

(previous season) between climatic variables and seasonal streamflow. 

Covariability with autumn (OND) streamflow  

The covariability SVD modes selected (those with COR value significant at 90%) for 

autumn (OND) streamflow are summarized in Table 6.1. This table presents the information of 

the SCF, the significance level provided by Monte Carlo test (MC) and also the strength of the 

coupling (STR) and the potential predictability skill (COR).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1. Summary of the square covariance fraction (SCF), confidence level given by Monte 

Carlo test (MC), both in percentage, the strength of the coupling (STR), and the predictability 

skill (COR) corresponding to each selected mode from SVD between climatic variables and 

autumn (OND) streamflow. 

Mode SCF MC STR COR 

Pson1 75.2 98 0.51 0.32 

Ason2 18.0 87 0.79 0.49 

Zson2 28.2 35 0.60 0.51 

Tson1 57.1 93 0.58 0.30 

Tson3 8.9 85 0.72 0.34 

Rson1 51.8 98 0.76 0.35 

Adjf1 54.5 99 0.72 0.45 

Adjf2 14.9 87 0.80 0.50 

Zdjf2 18.3 88 0.72 0.48 

Rdjf1 48.2 94 0.73 0.31 

Rdjf3 9.1 43 0.92 0.29 

Pmam2 27.9 95 0.54 0.50 

Amam2 20.9 79 0.73 0.29 

Rmam2 17.1 95 0.81 0.29 

Ajja2 23.1 89 0.66 0.43 

Tjja2 20.7 94 0.75 0.34 
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These selected coupled modes of Table 6.1 are represented in Figure 6.1 by plotting the 

homogeneous maps, their left and right normalized expansion coefficient time series, and the 

heterogeneous maps. Additionally, Figure 6.2 shows the correlations between left expansion 

coefficients of the selected SVD modes shown in Table 6.1 and the teleconnection indices for the 

same season, while Figure 6.3 shows the correlations between these expansion coefficients and 

the principal components of the respective atmospheric and oceanic fields. 

 

 

Figure 6.1. a)-p) Selected modes from lagging SVD analysis between seasonal atmospheric and 

oceanic variables leading autumn streamflow. Left panels display the homogeneous maps (contours 

indicate areas with significant correlation), central panels show the left (A, blue line) and right (B, 

black line) normalized expansion coefficient time series, and right panels display the heterogeneous 

maps. 
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Figure 6.1. Cont. 
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Figure 6.2. Correlations between left expansion coefficients of the selected SVD modes shown in 

Table 6.1 and teleconnection indices for the same season. a) autumn (son), b) winter (djf), c) spring 

(mam) and d) summer (jja). 

 

 

Figure 6.3. Correlations between left expansion coefficients of the selected SVD modes shown in 

Table 6.1 and the principal components of the respective atmospheric and oceanic fields for the same 

season. a) autumn (son), b) winter (djf), c) spring (mam) and d) summer (jja). 
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Subsequently, a description of the modes summarized in Table 6.1 is presented.  

a) Pson1: The first SVD mode corresponding to the coupling between OND streamflow and 

Pacific SST of previous autumn (son) is significant at 98% of confidence level and 

comprises 75.2% of the square covariance fraction. According to the homogenous map 

(Figure 6.1a, left panel), this mode represents the Equatorial Pacific SST area, which is 

related to the El Niño phenomenon. In fact, the left expansion coefficient correlates 

significantly (above 0.8 in absolute values) with indices El Niño1+2, El Niño3, El 

Niño3.4 and SOI in autumn (Figure 6.2a). In addition, it presents a high correlation with 

the first EOF of Pacific SST variability in autumn (Figure 6.3a). The associated 

heterogeneous map links this mode to the following autumn streamflow variability in the 

north-western quadrant of the IP (Figure 6.1a, right panel). This result also agrees with 

that found in Chapter 5, where teleconnection indices related to autumn ENSO correlate 

with following autumn streamflow. The strength of the coupling is not very high (0.51), 

and the COR value is 0.32 (significant at 90%).  

b) Ason2: It is the second mode of the SVD between previous autumn Atlantic SST and 

following autumn streamflow in the IP accounts 18.0% of SCF. However, the Monte 

Carlo test indicates that is only significant at 87% of confident level. Figure 6.1b shows 

the homogeneous and heterogeneous maps corresponding to this mode. The 

homogeneous map displays a like ‘horse-shoe pattern’ in the North Atlantic Ocean. The 

expansion coefficient of the left pattern presents a high correlation value with AMO 

index (Figure 6.2a). In addition, this mode correlates notably (higher than 0.80) with the 

first EOF of autumn Atlantic SST (Figure 6.3a). The heterogeneous map groups stations 

in the Mediterranean slope. The correlation between left and right expansion coefficient 

(the strength of the coupling) is 0.79 and the COR value is 0.49.  

c) Zson2: This mode accounts 28.2% of the square covariance, however, the level of 

significant is only 35 %, according to Monte Carlo test. Although the strength of the 

coupling is not very high (0.60), the COR shows the greatest value between all selected 

modes (0.51). When analysing the homogeneous map of this mode (Figure 6.1c), 

significant correlations appear with opposite signs in the Arctic and the east of China. 

From Figure 6.2, this mode also presents significant correlation with AO and with 

WeMO indices. This last finding could be related to the negative and positive centres 

(though no significant) identified near Canary Islands and central Europe, similar to the 

pressure centres that define the WeMO index. The expansion coefficient of the left field 
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(autumn Z500) correlates significantly with the first EOF from the PCA of autumn Z500 

(Figure 6.3a), showing some similitudes with its spatial pattern (although the intensity of 

action centres is smaller than in case of the EOF mode). The heterogeneous map 

identifies significant negative correlation in the Cantabrian Basin and upper Ebro Basin 

and positive in lower Ebro area. 

d) Tson1: The first mode from the SVD between autumn temperature over land and 

following autumn streamflow is selected for the purpose of this study since COR value is 

0.30. This mode, significant at 95% level according to Monte Carlo test, comprises 

57.1% of the square covariance, and the strength of the coupling is 0.58. It presents a 

significant correlation with autumn SCAND index (Figure 6.2a), which can be explained 

since the region highly correlated with the expansion coefficient of the left field (autumn 

temperature) including most of Siberia (Figure 6.1d, left), which is also identified when 

correlating SCAND index with land temperature (figure available in Climate Prediction 

Centre, CPC, website). In addition, this pattern is highly correlated with the first EOF of 

autumn land temperature (Figure 6.3a). The heterogeneous map shows significant 

negative correlations with OND streamflow of most of the IP (except in the 

Mediterranean and Cantabrian slopes). This correlation pattern differs from that obtained 

when correlating with autumn SCAND index.  

e) Tson3: Despite neither the SCF explained by this mode and the significant level are very 

high (8.9% and 85%, respectively), the strength of the coupling is (0.72). Also, COR 

value is significant (0.34). The homogeneous map for this mode (Figure 6.1e) identifies 

positive correlations in a region located in western Canada and Alaska and also in a small 

region in central Asia. This mode presents a correlation value around 0.7 with the second 

EOF of autumn land temperature (Figure 6.3a). In addition its correlation with PNA, and 

AMO indices is reasonably high (0.65 and 0.50, Figure 6.2a) and with AO (-0.4, Figure 

6.2a). In fact, positive correlation in Alaska and west of Canada appears in the 

temperature pattern associated with October PNA index (from CPC website). Positive 

correlation with the expansion coefficient of the left field appears in stations located in 

the Cantabrian and upper Ebro Basins and negative in some stations of the Segura and 

Jucar Basins (Figure 6.1e). This correlation pattern presents some similarities with the 

correlation map obtained between autumn PNA index and autumn streamflow.  

f) Rson1: This mode explains 51.8% of the square covariance, with a significance level of 

98%. The strength of the coupling is 0.76 and COR value is 0.35. According the 

correlation between the left expansion coefficient and teleconnection indices of previous 
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autumn, high values (above 0.70 in absolute value) are found with ENSO, SOI and IOD 

indices (Figure 6.2a). The positive phase of IOD is related to above normal precipitation 

over western Indian Ocean and below normal precipitation over Indonesia and Australia. 

This spatial pattern is similar to the homogenous map corresponding to this mode (Figure 

6.1f). Additionally, the impact of El Niño events on precipitation (see CPC website) 

displays a correlation map similar to the homogenous map of this mode. Also the Indian 

Ocean has been identified as a candidate for the modulation of ENSO variability (e.g. 

Jansen et al., 2009; Izumo et al., 2010; Frauen and Dommenget, 2012). Hence, it seems 

that this mode represents in some way the influence of atmospheric mechanism related to 

ENSO and IOD in autumn streamflow of IP Rivers (in most of them, according to the 

heterogeneous correlation map shown in Figure 6.1f). Additionally, it presents a high 

correlation (again greater than 0.70) with the first EOF of autumn global precipitation 

(Figure 6.3a).  

g) Adjf1: A total of 54.5% of the SCF is explained by this mode and the Monte Carlo test 

indicates that is significant at 99%. The strength of the coupling is 0.72 and COR value is 

0.45. The homogeneous map (Figure 6.1g) shows the existence of four areas with 

significant correlations. In the north Atlantic, there are three centres that display a pattern 

similar to the ‘Atlantic tripole’. A fourth centre (with stronger correlation than the 

previous ones) appears in the tropical Atlantic (between 0-30ºS) as significant. When 

correlating the left expansion coefficient with the EOFs of winter Atlantic SST, the 

highest correlation is found with the second EOF (whose pattern mainly represents the 0-

30ºS region). The correlation of this mode with the teleconnection indices in winter 

(Figure 6.2b) does not show any relevant result (considering as relevant correlations 

higher than 0.5). The heterogeneous correlation map exhibits significant correlations is 

most of the IP (Figure 6.1g). 

h) Adjf2: This mode accounts for 14.9% of the square covariance and the strength of 

coupling is 0.80, the COR value is found significant (0.50), while the SCF is only 

significant at 87% of confidence level. However, the correlation of the expansion 

coefficient of left field with the first EOF of winter Atlantic SST is remarkable (above 

0.9). This dominant mode of North Atlantic SST variability is associated with the NAO 

variability (Visbeck et al., 2001). Also, correlation with winter AMO index (Figure 6.2b) 

is high (above 0.75 in absolute value). The homogenous and heterogeneous maps of this 

mode (Figure 6.1h) are reasonably similar to those found for Ason2 mode (Figure 6.1b), 
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so it seems logical to consider it as a temporal evolution of the coupling between Atlantic 

SST and autumn IP streamflow.  

i) Zdjf2: The SCF explained by this mode reaches up 18.3%, with a significance of 88%, 

according to Monte Carlo. The strength of the coupling is 0.72 and COR value is 0.48. 

The homogeneous map (Figure 6.1i) describes three centres of action. One centre 

(negative) is located over Greenland and another one (positive) is located over Azores. 

This configuration is similar to the north-south dipole of anomalies corresponding to 

winter NAO. The difference lies on a third centre (positive) located over Siberia. The 

heterogeneous map reveals significant negative correlation of this mode with stations 

located in some areas of the Iberian System and, especially, in the Mediterranean 

Andalusian Basin. This finding is rather similar to the obtained in Chapter 5, where NAO 

index of previous winter was found a good predictor of following autumn streamflow for 

stations in the Mediterranean Andalusia Basin. Additionally, the correlation with 

teleconnection indices (Figure 6.2b) shows a high value with NAO index (around 0.75) 

and it presents a remarkable correlation with the second EOF obtained from the PCA 

analysis of the winter geopotential height at 500 hPa (Figure 6.3b).  

j) Rdjf1: This mode, significant at 94% of confidence level, comprises 48.2% of the square 

covariance fraction. The strength of the coupling is 0.73 and the COR value is 0.31. The 

left expansion coefficient presents a high correlation with winter ENSO signal (Figure 

6.2b). In addition to this, the homogeneous map (Figure 6.1j) is rather similar to the 

impacts of El Niño events on winter precipitation (see CPC website). A positive phase 

(El Niño) is related to an increase of precipitation in California and Mexico, due to a 

more southerly, zonal, storm track. Also, drier conditions are found in South Africa and 

the northern coast of South America. Conversely, in Uruguay and southern Brasil rainfall 

increases on average. Hence, this pattern identified through SVD analysis, seems to be 

closely related with El Niño phenomenon during winter. The heterogeneous map 

indicates high negative correlations of the expansion coefficient with most stations 

(except Mediterranean and Cantabrian slopes) of the IP (Figure 6.1j).  

k) Rdjf3: The third mode of the SVD between winter precipitation and following autumn 

streamflow in the IP only account for 9.1% of the SCF, with Monte Carlo test throwing a 

significance level of 43%, the strength of coupling is 0.92 and COR value is 0.29 

(significant at 90%) (0.29). The homogeneous map (Figure 6.1k) identifies a high 

significantly correlated region over the IP, which means that this mode is linked to the 

winter precipitation over the IP. In fact, when correlating this mode with winter 
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teleconnection indices (Figure 6.2b), it can be seen a high correlation with NAO index 

(which is known as the main driven of winter precipitation over the IP). The 

heterogeneous map (Figure 6.1k) shows high correlation mainly with stations in 

Mediterranean Andalusian Basin and with stations located along the mountain ranges of 

the Iberian System. As it was remarked when mode Zdjf2 was described (Figure 6.1i), 

this heterogeneous map looks like similar to that found in Chapter 5 when we analysed 

the correlation of winter NAO index with following autumn streamflow. Furthermore, it 

presents a notable correlation (about 0.7) with the third EOF of winter global 

precipitation (Figure 6.3b).  

l) Pmam2: This mode represents 27.9% of the square covariance, with a significance of 

95%. The strength of the coupling is 0.54, and COR value is 0.50. The homogeneous map 

(Figure 6.1l) shows high correlations in North Pacific and Central Equatorial Pacific. The 

correlation with teleconnection indices (Figure 6.2c) reveals the highest values for El 

Niño-3.4, NPGO and EP-NP indices. The homogenous map (Figure 6.1l) displays a 

spatial structure similar to the second EOF of north Pacific SST (also known as Victoria 

mode), which is related to NPGO index (Di Lorenzo, 2010). Also the significantly 

correlated area in central Pacific is close to the region defined by El Niño-3.4, and, in 

relation with EP-NP, the homogeneous map resemblance the map of the correlation 

between EP-NP and surface temperature departures in April (CPC website), with 

opposite sign. The heterogeneous map (Figure 6.1l) presents high correlations in 

Cantabrian Basin, upper Tagus, Douro and Ebro Basins and also in some stations in the 

Internal Catalonian Basin. 

m) Amam2: The second mode from SVD between spring Atlantic SST and following 

autumn streamflow explains 20.9 % of the square covariance. The Montecarlo test 

indicates a level of significance of the square covariance of 79%. The strength of the 

coupling is 0.73, whereas COR value is 0.29. From Figure 6.3c, the expansion coefficient 

for left field correlates highly with the first EOF of spring Atlantic SST (above 0.9), and 

also presents a high correlation with AMO index (Figure 6.2c). In addition, the 

homogeneous and heterogeneous maps (Figure 6.1m) looks like those found for the 

Adjf2 (Figure 6.1h) and Ason2 (Figure 6.1b) modes, which shows signs to be all related 

to the same oceanic variability mechanism.  

n) Rmam2: A total of 17.1 % of the square covariance is explained by this mode, with a 

significance level of 95%. Although the strength of coupling is 0.81, the COR value is 

notably lower (0.29). The homogeneous map (Figure 6.1n) shows positive significant 
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correlation with precipitation over Brazil, Centre of Canada and Indonesia, and negative 

in some area of central Asia. This correlation map presents some similarities with the 

map of ENSO impact on precipitation in spring. Also, the correlation with ENSO indices 

(Figure 6.2c) is remarkable (around 0.6), which indicates that the physical mechanism 

behind it, is related to the ENSO phenomenon. In fact, from Chapter 5, correlation of 

some indices, such as El Niño-3 and El Niño-3.4, with autumn streamflow were found 

significant in stations located in the eastern Cantabrian Basin and upper Ebro Basin. 

However, these correlations are less extended than the ones described by the 

heterogeneous map (Figure 6.1n). 

o) Ajja2: This mode account for 23.1 % of the square covariance, with a significance level 

of 89% according to Monte Carlo test and a strength of coupling of 0.66. Additionally, 

the COR values is also relatively high (0.43). The homogenous map (Figure 6.1o) reflects 

a highly correlated area below Greenland and also a wide area in the tropical Atlantic. 

This mode presents a high correlation with the first EOF of summer Atlantic SST (Figure 

6.3d) and also with AMO index and with EA-WR pattern (Figure 6.2d). Note that one of 

the centres of summer EA-WR is placed near to the area in north Atlantic that presents 

high correlation with this index. The heterogeneous map shows significant correlations 

with stations located in the Mediterranean sector. 

p) Tjja2: The SCF explained by this mode is 20.7%, being significant at 94% significance 

level. The strength of the coupling is 0.75 whereas the COR value is 0.34. In addition, 

from Figure 6.2d, the teleconnection index with the highest correlation value with this 

mode is the EA-WR index (around 0.6). Also, the homogeneous map (Figure 6.1p) 

displays some common areas with the map of EA-WR impacts on temperature in July 

(CPC website), which could indicate some kind of relationship with this pattern. When 

focusing on the heterogeneous map (Figure 6.1p), stations in Cantabrian Basin and upper 

Ebro present positive correlations whereas some stations in lower Ebro and the southern 

half of IP present negative correlations. This pattern differs from that obtained by 

correlation analysis between previous summer EA-WR index and autumn streamflow. 

Hence, despite some similarities found with EA-WR pattern, there should be an 

additional physical mechanism behind.  

Covariability with winter (JFM) streamflow  

Similarly to the previous autumn streamflow analysis, Table 6.2 gives a summary for the 

SVD modes selected (those with COR above 0.29) from the analysis of the covariability patterns 
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between winter streamflow and the climate variables used in this study. In this Table, the 

information of the SCF, together with the significance level provided by Monte Carlo test (MC), 

the strength of the coupling (STR) and also the potential predictability skill (COR) are presented.  

Mode SCF  MC STR COR 

Pdjf3 6.5  82 0.71 0.45 

Adjf2 15.4  94 0.81 0.35 

Adjf3 11.3  99 0.83 0.51 

Zdjf1 54.1  22 0.49 0.29 

Tdjf2 27.8  87 0.44 0.36 

Pmam3 10.8  99 0.68 0.44 

Amam2 23.2 85 0.65 0.34 

Tmam3 8.3  66 0.79 0.60 

Table 6.2. Summary of the square covariance fraction (SCF), the significance given by Monte 

Carlo test (MC), both in percentage, the strength of the coupling (STR), and the predictability 

skill (COR) corresponding to each selected mode from SVD between climatic variables and 

winter (JFM) streamflow. 

The selected coupled modes shown in Table 6.2 are represented in Figure 6.4 by plotting 

the homogeneous maps, their left and right normalized expansion coefficient time series, and the 

heterogeneous maps. Figures 6.5 and 6.6 display the correlations between left expansion 

coefficients of the selected SVD modes and the teleconnection indices for the same season, and 

the correlations between these expansion coefficients and the principal components of the 

respective atmospheric and oceanic fields, respectively. 
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Figure 6.4. a)-h) Selected modes from lagging SVD analysis between seasonal atmospheric and 

oceanic variables leading winter streamflow. Left panels display the homogeneous maps (contours 

indicate areas with significant correlation), central panels show the left (A, blue line) and right (B, 

black line) normalized expansion coefficient time series, and right panels display the heterogeneous 

map. 
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Figure 6.4. Cont. 

 

 

 

Figure 6.5. Correlations between left expansion coefficients of the selected SVD modes shown in 

Table 6.2 and teleconnection indices for the same season. a) winter (djf), b) spring (mam). 
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Figure 6.6. Correlations between left expansion coefficients of the selected SVD modes shown in 

Table 6.2 and the principal components of the respective atmospheric and oceanic field for the same 

season. a) winter (djf), b) spring (mam). 

 

Subsequently, a description of the modes summarized in Table 6.2 is provided:  

a) Pdjf3: This mode presents a strong coupling (0.71) and a relative high COR value (0.45), 

but only accounts 6.5% of the square covariance, with a low significance level (82%). 

However, there are some reasons that suggest this mode should be considered in this 

study. In particular, this mode presents a high correlation with EMI, El Niño-4 and 

NPGO indices (Figure 6.5a). In the definition of EMI index given in Chapter 5, this index 

is related to a strong anomalous warming in central tropical Pacific (also the SST region 

where El Niño-4 index is defined). This region shows high correlation values in the 

homogeneous map (Figure 6.4a, left panel). In addition, the two highly correlated areas 

in North Pacific (with opposite signs) are similar to the NPGO pattern from the North 

Pacific SST. Di Lorenzo (2010) postulated that Central Pacific warming (related to EMI) 

drives changes in the large-scale atmospheric circulation in the central North Pacific, 

which is integrated by the ocean to yield NPGO. The heterogeneous map (Figure 6.4a, 

right panel) indicates that this mode is linked with the winter streamflow variability 

mainly in lower Ebro and Catalonian Basin. In addition, significant correlations with 

winter EMI were found in Chapter 5 in Catalonian Basin when correlating winter EMI 

with following winter streamflow.  

b) Adjf2: The SCF represented by this mode is 15.4%, with a significance level of 94% 

according to Monte Carlo test. The coupling is strong (0.81), but the COR value is 

moderately inferior (0.35). The homogenous map (Figure 6.4b) looks like the Atlantic 

tripole SST pattern, similar to the Adjf2 mode coupled with autumn streamflow (Figure 

6.1h), and the SST pattern related to winter NAO. Moreover, the heterogeneous map 

(Figure 6.4b) resembles the obtained for Adjf2 coupled with autumn streamflow 
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(although in this case the Catalonian Basin are not linked with this mode). Also, it 

strongly correlates with the first EOF of winter Atlantic SST (Figure 6.6a) and with 

AMO and NAO indices (Figure 6.5a).  

c) Adjf3: Despite the SCF corresponding to this mode (11.3%) is significant (99%) and the 

strength of the coupling and COR value are high (0.83 and 0.51, respectively), some 

doubts arise about the physical meaning of this mode when observing the homogenous 

map (Figure 6.4c). On this map, only a small area in the central North Atlantic presents 

significant correlation with the left expansion coefficient. Also, the left expansion 

coefficient does not present a high correlation with the EOFs of winter Atlantic SST 

(Figure 6.6a). Additionally, only AO index presents a reasonable high (above 0.5) 

correlation with this mode (Figure 6.5a). On the other hand, the heterogeneous map 

(Figure 6.6c) reflects negative correlations with most stations in the Cantabrian slope and 

positive with stations in the Mediterranean slope, particularly in the lower Ebro area. 

d) Zdjf1: This mode accounts for a large fraction of the square covariance (54.1%), which 

is not found significant according to Monte Carlo test (22% of confidence level). Despite 

the strength of the coupling is not very high (0.49) the COR value remains significant 

(0.29). The homogeneous map (Figure 6.4d) shows a pattern similar to the winter AO, 

with presence of a negative correlated area in the North Pole and a positive correlated 

area at mid-latitudes (from IP to the east coast of North America), and a centre of 

positive correlation in east Asia-west Pacific. In addition, it presents a high correlation 

with the first EOF found from a PCA of winter Z500 (Figure 6.6a), which correspond to 

the AO, and with winter AO index (Figure 6.5a). The heterogeneous map (Figure 6.4d) 

reveals negative correlations with stations in the Cantabrian slope and positive in 

Mediterranean area (except in Ebro and Catalonian Basins). This map is rather similar to 

that obtained from the correlation analysis between winter AO index with following 

winter streamflow in Chapter 5. Hence, despite the SCF is not significant, this SVD 

mode shows sign of being related to the AO index. 

e) Tdjf2: The fraction of the square covariance explained by this mode is 27.8%, with a 

significance level of 87%. The coupling is not very strong (0.44), although COR value is 

significant (0.36). The homogeneous map (Figure 6.4e) displays positive correlations 

over northern Europe-Asia, and the east coast of United States, and negative correlations 

in northern Africa and Greenland. This pattern has the appearance of the impact of 

January NAO on temperature (see CPC website). Furthermore, the left expansion 

coefficient correlates highly with winter NAO index (Figure 6.5a) and with the first EOF 
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of winter global temperature (Figure 6.6a). For this reason, this mode seems to be 

associated with winter NAO. The heterogeneous map indicates that it correlates 

negatively with some stations in Cantabrian range and positively with stations in Miño-

Sil and Catalonian Basins. 

f) Pmam3: This mode explains 10.8% of the square covariance (with a significance level of 

99%). Also, the STR and COR values are significant (0.68 and 0.44, respectively). The 

homogeneous and heterogeneous maps (Figure 6.4f) are similar to the ones associated 

with Pdjf3 mode. Moreover, this mode presents as high correlations with NPGO, EMI 

and El Niño-4 as Pdjf3 did. In addition, from Figure 6.5b it could be also seen high 

correlations with EP-NP index (note that this pattern is a spring-summer-autumn pattern, 

which explains why it was not found correlation with it in winter). 

g) Amam2: A total of 23.2% of the square covariance is explained by this mode, with a 

significance level of 85%. The strength of the coupling is 0.65 and COR reaches up 0.34. 

Similarly to what was commented for Adjf2, the homogenous map (Figure 6.4g) looks 

like the ‘tripole pattern’ of North Atlantic SST. However, the heterogeneous map (Figure 

6.4g) presents some differences with respect to that found for Adjf2 mode. In this case, 

stations significantly correlated with this mode are located mostly in Cantabrian Basin 

and upper Ebro. This mode exhibits a high correlation value with AMO (Figure 6.5b) and 

with the first EOF of North Atlantic spring SST (Figure 6.6b).  

h) Tmam3: This mode explains only 8.3% of the square covariance, with a significance 

level of 66%. The strength of the coupling is 0.79 and the COR is the highest of all SVD 

modes coupled with winter streamflow selected (0.60). The homogeneous map (Figure 

6.4h) shows significant correlations in Canada. When correlating the left expansion 

coefficient of this mode with teleconnection indices (Figure 6.5b) and spring land 

temperature EOFs (Figure 6.6b), only relevant (above 0.5) correlations are found with 

EP-NP and the third EOF, respectively. Regarding the possible connection with EP-NP, 

the correlation map of this index with spring land temperature (see CPC website) also 

displays an area with high correlation in western North-America. Stations significantly 

correlated with this mode are mainly located in the Mediterranean Andalusian area. 
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Covariability with spring (AMJ) streamflow  

Table 6.3 summarizes the information of the SCF, together with the significance level 

provided by Monte Carlo test (MC) and also the strength of the coupling (STR) and the potential 

predictability skill (COR) for the SVD modes selected. Modes are named following the 

previously indicated nomenclature.  

Mode SCF MC STR COR 

Rmam3 12.2 95 0.85 0.52 

Pjja1 56.2  84 0.55 0.29 

Ajja2 21.1  78 0.74 0.43 

Zjja1 74.4  100 0.58 0.42 

Tjja1 43.9  89 0.82 0.30 

Tjja2 16.9  95 0.72 0.29 

Ason1 43.3  69 0.68 0.32 

Zson3 12.7  97 0.69 0.38 

Adjf2 21.7  100 0.72 0.58 

Zdjf1 57.5  77 0.55 0.29 

Tdjf1 56.3  89 0.58 0.30 

Rdjf3 11.7  100 0.84 0.55 

 

Table 6.3. Summary of the square covariance fraction (SCF) and its significance given by 

Monte Carlo test (MC), both in percentage, the strength of the coupling (STR), and the 

predictability skill (COR) correspondent to each selected mode from SVD between climate 

variables and spring (AMJ) streamflow. 

 

Figure 6.7 represents the homogeneous and heterogeneous maps (left and right panels, 

respectively) and the temporal series of the expansion coefficients (central panel) for the selected 

modes. And Figures 6.8 and 6.9 show the correlations between left expansion coefficients of the 

selected SVD modes and the teleconnection indices and the principal components of the 

respective atmospheric and oceanic fields, respectively, for the same season.  
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Figure 6.7. a)-l) Selected modes from lagging SVD analysis between seasonal atmospheric and oceanic 

variables leading spring streamflow. Left panels display the homogeneous maps (contours indicate areas 

with significant correlation), central panels show the left (A, blue line) and right (B, black line) 

normalized expansion coefficient time series, and right panels display the heterogeneous maps. 
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Figure 6.7 Cont 
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Figure 6.8. Correlations between left expansion coefficients of the selected SVD modes shown in 

Table 6.3 and teleconnection indices for the same season. a) spring (mam) and b) summer (jja), c) 

autumn (son), d) winter (djf). 

 

 

Figure 6.9. Correlations between left expansion coefficients of the selected SVD modes shown in 

Table 6.3 and the principal components of the respective atmospheric and oceanic field for the same 

season. a) spring (mam) and b) summer (jja), c) autumn (son), d) winter (djf). 
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A brief description of the modes summarized in Table 6.3 is carried out:  

a) Rmam3: This mode explains 12.2% of the total square covariance with a significance 

level of 95%. It also presents a strong coupling (0.85) and a high COR value (0.52). 

However, the expansion coefficient corresponding to the left field (precipitation) does not 

present a notable correlation value with teleconnection indices (Figure 6.8a) or with the 

main modes of variability of this field in spring (Figure 6.9a). The homogeneous map 

associated with this mode (Figure 6.7a) shows a couple of significantly correlated small 

areas (positive around Venezuela and negative in northeast of Brazil), which are 

associated with spring streamflow in Miño-Sil Basin and with stations in the southern 

half of IP (according the heterogeneous map shown in Figure 6.7a). 

b) Pjja1: The SCF associated with this mode is 56.2% (with a significance level of 84%), 

the strength of the coupling is 0.55 and COR value is 0.29. The homogenous map (Figure 

6.7b) describes a highly correlated area in equatorial Pacific, similar to the related to El 

Niño phenomenon. In fact, the correlation of the left expansion coefficient with summer 

teleconnection indices (Figure 6.8b) is high with the PDO, El Niño-1+2, El Niño-3, El 

Niño-4, El Niño-3.4 and SOI indices. In addition, it presents high correlation with the 

first mode of Pacific summer SST (Figure 6.9b). The heterogeneous map (Figure 6.7b) 

shows significant correlations in the northwest quadrant of the IP. These findings are in 

agreement with the results showed in Chapter 5 and also with that found by other authors 

(Lorenzo et al., 2010), about the influence of equatorial Pacific summer SST on 

streamflow or rainfall on the northwestern of IP in the following spring. 

c) Ajja2: The fraction of the square covariance explained by this mode reaches up 21.1%, 

at 78% of significance level. The strength of the coupling is 0.74 and COR value is 0.43. 

The homogenous map (Figure 6.7c) shows an Atlantic SST region in front of the coast of 

north-western Africa and the IP and also near Greenland and Iceland. This pattern 

presents some similitudes with the third EOF of summer Atlantic SST (which has a third 

centre located between the two commented, with opposite sign), correlating above 0.75 

in absolute value (Figure 6.9b). Also, it shows high correlation with AMO (Figure 6.8b). 

The heterogeneous map (Figure 6.7c) displays positive correlations in stations placed in 

Miño-Sil and lower Tagus Basins, and negative in lower Ebro, Jucar, Segura and 

Guadalquivir Basins. 

d) Zjja1: This mode explains 74.4% of the square covariance fraction, being significant at 

100% level. The strength of the coupling is 0.58 and COR is 0.42. The homogeneous 
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map (Figure 6.7d) displays negative correlations in North Pole and Mediterranean Sea, 

and positive ones in Canada. This configuration looks like summer AO pattern (or 

Northern Annular Mode). Actually, this mode correlates highly with summer AO index 

(above 0.75, according to Figure 6.8b) and with the first EOF of summer geopotential 

height in Northern Hemisphere (Figure 6.9b). The heterogeneous map (Figure 6.7d) 

indicates that this mode significantly correlates with stations located in north-western 

quadrant of IP (Tagus, Douro, Miño-Sil, Cantabrian and upper Ebro Basins). This 

correlation pattern looks like that found when we computed the correlation between the 

summer AO index and the spring streamflow in Chapter 5.  

e) Tjja1: A total of 43.9% of the square covariance is explained by this mode, with a 

significance level of 89%. The coupling strength is 0.82 and COR value is 0.30. The 

homogeneous map (Figure 6.7e) shows two zones with significant correlations, one 

located over north Canada and other over north-western Russia. There is not a high 

correlation between this mode and summer teleconnection indices (in Figure 6.8b it can 

be seen as only indices related to ENSO present significant correlations, but always 

below 0.5). It correlates (Figure 6.9b) with the third EOF of summer land temperature 

variability (which seems to be related with summer temperature in western Russia). The 

heterogeneous map indicates that this mode is highly associated with streamflow 

variability in most of the IP (except for the Mediterranean slope). 

f) Tjja2: This mode accounts for 16.9% of the SCF (with a significance level of 95%). STR 

and COR values are 0.72 and 0.29, respectively. The homogenous map (Figure 6.7f) 

presents significant negative correlations in western Russia, middle-east and eastern 

Canada, and north-eastern United States (surrounding Hudson Bay). This mode is highly 

correlated with the WP and EP-NP indices (Figure 6.8b). Certainly, the impacts of both 

summer WP and EP-NP patterns in surface temperature departures (CPC website) 

present negative values over western North America). In addition, this pattern presents 

high correlation with first EOF of summer surface temperature (Figure 6.9b). The 

heterogeneous map (Figure 6.7f) presents significant positive correlation with stations in 

Miño-Sil and Mediterranean Andalusian Basins, and negative in lower Ebro, Catalonian 

and Guadalquivir Basins. A similar correlation pattern with spring streamflow was found 

in Chapter 5 when we calculated the correlation with summer WP and EP-NP indices 

(with the exception of the Miño-Sil Basin, which did not present significant correlations). 

g) Ason1: The SCF related to this mode is 43.3% (with a significance level of 69%), 

coupling strength and COR values are 0.68 and 0.32, respectively. According to the 
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homogeneous map (Figure 6.7g), this pattern looks like the Atlantic SST tripole pattern, 

which is similar to the Ason2 spatial pattern found when coupling autumn Atlantic SST 

with following autumn streamflow (Figure 6.1b). On the contrary, the heterogeneous map 

presents some differences. In this case, it shows negative correlations with most of 

stations (except in Miño-Sil and some parts of Douro, Segura and Jucar Basins). The left 

expansion coefficient significantly correlates with AMO index and with the first EOF of 

autumn Atlantic SST variability (Figures 6.8c and 6.9c, respectively). 

h) Zson3: This mode explains 12.7% of the SCF (at 97% of significance level) and is 

coupled with strength of 0.69. The COR value is 0.38. The homogenous map (Figure 

6.7h) represents a configuration similar to the Pacific Transition, which is a leading mode 

during late summer/early autumn (August and September) that captures anomalous wave-

train at 500 hPa heights extending from central Pacific to eastern United States. In 

particular, this pattern presents five significant correlation centres (three positives placed 

in central Pacific, western United States and Greenland, and two negatives located in 

front of the coast of Alaska and eastern United States). In addition, the correlation 

between the left expansion coefficient and September Polar Transition is 0.53. Also, from 

Figure 6.8c, it shows significant correlation with NAO index (mainly related to the centre 

of anomalies located in Greenland and eastern United States, which is similar to the 

configuration of NAO in autumn) and WP index (related to the anomalous centres 

located in the Pacific Ocean). The mode also correlates significantly with the fourth EOF 

of autumn Z500 variability (Figure 6.9c). The heterogeneous map couples this mode with 

streamflow variability in upper Tagus, Jucar, Ebro and Catalonian Basins. 

i) Adjf2: The SCF corresponding to this mode is 21.7% (with a significance level of 

100%). It presents a coupling strength of 0.72 and COR value is the highest of the 

selected SVD modes (0.58). The homogeneous map (Figure 6.7i) shows a pattern rather 

similar to the found for the Ason1 mode (the Atlantic SST tripole pattern), but also 

appears some significant correlations in South Atlantic Ocean. This mode is highly 

correlated with the first EOF of winter Atlantic SST variability and correlates moderately 

with winter AMO as well (Figure 6.9d and 6.8d, respectively). The heterogeneous map 

(Figure 6.7i) displays positive correlations with stations placed in Miño-Sil and Douro 

Basins and negatives with stations located in Tagus, Guadalquivir, Segura, Jucar and 

lower Ebro Basins. 

j) Zdjf1: This mode accounts for 57.5% of the square covariance (with a significance level 

of 77%). The coupling strength is 0.55 and COR value is 0.29. Although the SCF is not 
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significance at 90%, the homogenous map (Figure 6.7j) is rather similar to the winter 

AO/NAO pattern. In fact, the correlations with these teleconnection indices are around 

0.8 and 0.55, respectively (Figure 6.8d). In addition, it correlates significantly with the 

first EOF of winter geopotential height at 500 hPa variability (Figure 6.9d). The 

heterogeneous map (Figure 6.7j) looks like that found when we correlated winter AO 

index with spring streamflow in Chapter 5, showing significant correlations in stations 

throughout the IP (except for the Cantabrian and Mediterranean slopes).  

k) Tdjf1: A total of 56.3% of the square covariance is explained by this mode (with a 

significance level of 89%). The strength of the coupling is 0.58 and COR value is 0.30. 

These values are similar to that found for Zdjf1 mode. This is not the only point they 

share, since both present similar high correlation values with winter NAO and AO 

indices (Figure 6.8d). If focusing on the homogenous map (Figure 6.7k), it is rather 

similar to the impacts of winter NAO on surface temperature (see CPC website), showing 

positive correlations in north Europe, Siberia and east coast of United States, and 

negative ones in Greenland and northern Africa. Also, this pattern is highly correlated 

with first EOF of winter land surface temperature (Figure 6.9d). The heterogeneous map 

(Figure 6.7k) is almost the same that the observed for Zdjf1 mode, with negative 

correlations in most of IP, except for the Cantabrian and Mediterranean slopes. 

l) Rdjf3: This coupled pattern is responsible for the 11.7% of the SCF, with a significance 

level of 100%. The strength of the coupling and the COR value are remarkable (0.84 and 

0.55, respectively). The homogenous map (Figure 6.7l) presents two zones with 

significant positive correlations (one in the northwestern United States and the other in 

north of Brazil), and a more extended region with significant negative correlations in 

southwestern United States. On the other hand, correlations with teleconnecton indices 

do not clearly associate this precipitation pattern to any of them (Figure 6.8d). This 

precipitation pattern, despite does not present high correlation with the EOFs of winter 

global precipitation over land (Figure 6.9d), looks like similar to the one associated with 

the fourth EOF. The heterogeneous map shows significant correlations with stations 

located in the Cantabrian Basin and with some of them in the Mediterranean slope. 
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6.4.2 Stability analysis 

Figure 6.10, 6.11 and 6.12 show the correlation maps between SVD modes and seasonal 

streamflow in those stations where correlations are found stable, for autumn, winter and spring 

streamflow, respectively. The most interesting results can be observed when comparing these 

maps with the corresponding heterogeneous maps displayed before (Figures 6.1, 6.4 and 6.7, 

right panels).  

In case of autumn streamflow (Figure 6.10), the correlation with the Amam2 and Ajja2 

modes was not found stable in most stations. Regarding Pson1 mode, stations in Miño-Sil Basin 

did not correlate stably with this mode. For Ason2 and Adjf2 modes, stations in Internal 

Catalonian Basins showed significantly but no stable correlations. In case of Tson1 and Adjf1, 

they did not correlate stably with stations in Tagus Basin. Only stations in Cantabrian Basin 

correlate stably with Tson3. In the remaining modes, most of the stations that correlate 

significantly with them also do it stably. 

In case of winter streamflow (Figure 6.11), the most remarkable finding is that Tdjf2, 

Amam2 and Tmam3 modes do not correlate stably with almost any station. 

Results from correlation stability analysis between SVD modes and spring streamflow 

(Figure 6.12) indicate that most of the stations that correlate significantly with Rmam3 do not do 

it stably. Also, it is worth to mention that some stations in Douro Basin correlate significant but 

not stable with Pjja1. Tjja2 do not correlates stably with stations in Internal Catalonian and 

Miño-Sil Basins. Similarly, stations in Miño-Sil, the headwater of Douro River and Guadalquivir 

Basin correlate significantly but not stably with Tdjf1, and Adjf2 only presents stable correlation 

with stations in Jucar and Segura Basin. 
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Figure 6.10. Maps of the correlation between the SVD modes selected and autumn (OND) 

streamflow. Only significant and stable correlations are displayed.  
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Figure 6.11. As Figure 6.10 but for winter (JFM) streamflow. 

 

 

 

Figure 6.12. As Figure 6.10 but for spring (AMJ) streamflow. 
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6.5 Discussion 

A thorough investigation regarding the influence of climatic variables (Atlantic and 

Pacific sea surface temperature, geopotential height at 500 hPa in the Northern Hemisphere and 

global temperature and precipitation over land surface) of previous seasons (until four preceding 

seasons) on seasonal streamflow (autumn, winter and spring) of IP Rivers has been carried out to 

identify the primary drivers of seasonal streamflow in the IP. In this section, a summary of the 

main significant coupled modes, their interrelation and some considerations regarding the 

physical basis behind them are presented.  

As it can be noticed from the description of the selected SVD modes, some of them are 

related to the same atmospheric or oceanic mechanism. In order to quantify this, a cross-

correlation analysis between them was conducted. Figures 6.13 to 6.15 display the correlation 

values between SVD modes corresponding to the coupling with autumn, winter and spring 

streamflow, respectively. The summary results of this analysis are started herein. 

In particular for autumn streamflow, three modes were discarded as its significant levels 

according to Montecarlo tests dropped below 80% (Zson2, Rdjf3 and Amam2) and another one 

because of the few number of stations that correlated stably (Ajja2). On the contrary, some 

modes with significance levels between 80-90% were selected because of they are related to a 

well-known climatic phenomena (Ason2, Tson3, Adjf2 and Zdjf2). According previous studies, 

some comments regarding the physical basis behind the statistical links are proposed: Pson1, 

Rson1 and Rdjf1 modes (left expansion coefficients) are highly correlated to each other, and 

with El Niño indices. Moreover, they display similar heterogeneous maps (particularly the 

northwest and centre of the IP). The relationship between ENSO events in autumn and IP Rivers 

discharge in following autumn (one year lagging response) was also found in Chapter 5 with 

teleconnection indices. Relationship between the SST anomalies in tropical Pacific related to 

ENSO and precipitation in the North Atlantic sector has been observed by several authors (Rodó 

et al., 1997; van Oldenborgh et al., 2000; Rimbu et al., 2004; Mariotti et al., 2002; Park, 2004; 

Pozo-Vázquez et al., 2005; Vicente-Serrano, 2005; Zanchettin et al., 2008; García-Serrano et al., 

2010; Shaman and Tziperman, 2010). Most of them are related to the autumn and spring 

precipitation response to an El Niño event. They found positive precipitation anomalies in the 

Mediterranean area when El Niño phenomenon is presented and negative when La Niña 

conditions prevail. In this case, the lag in the response is larger (about one year), and positive 

SST anomalies in autumn/winter in equatorial Pacific are associated with negative streamflow 

anomalies in north-west quadrant of the IP during the following autumn. This is contrary to the 
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sign observed between previous autumn and winter ENSO indices with autumn streamflow of 

the following year with respect to the correlation between summer and autumn ENSO indices 

and autumn streamflow of the same year. This change in the sign of the correlation was also 

observed in Chapter 5, using ENSO indices and by Cordoba-Machado et al. (2014) in a study of 

the relationship between Pacific SST and precipitation in Colombia, and could be related to a 2 

years periodicity observed in El Niño (Yu and Kim, 2010). 

The Ason2 and Adfj2 modes are also highly correlated between them, with AMO and 

with winter NAO. The homogenous maps of these modes display the Atlantic SST horseshoe 

and tripole pattern, respectively. The transition between North Atlantic Horseshose (NAH) in 

summer/autumn and the North Atlantic tripole (NAT) in winter and its relation to precipitation in 

North-Atlantic European sector in winter have been considered in Czaja and Frankignoul (1999; 

2002), Garcia-Serrano et al. (2008) or Gastineau et al. (2013), among others. These authors 

indicated the possibility of a positive feedback between the NAT pattern and the NAO, which 

begins before the established NAO phase. The gap in the covariance between autumn NAH and 

winter NAO have been also found in previous studies (Czaja and Frankignoul, 1999, 2002; 

Rodwell and Folland, 2002; Frankignoul and Kestenare, 2005). García-Serrano et al. (2008) also 

suggested that the damping shown by the NAH through autumn could be understood as a 

decaying forced by alterations in the Atlantic Hadley cell, and associated with the subtropical 

warming, via Rossby wave extension from the Amazon convergence zone. In late autumn, the 

SST anomaly weakly resembles the NAT, and the subtropical forcing leads to a displacement of 

the Intertropical Convergence Zone (ITCZ) and changes in the upper divergence over 

northwestern South America. Such anomalous outflow forces another Rossby wave train of 

opposite polarity from the Caribbean, affecting the trade winds (cyclonic barotropic circulation), 

which also acts during early winter. Also during early winter the transient eddy activity adds its 

effects by affecting the airmass exchange between the Azores high and Iceland low through 

changes in the zonal extension of the subtropical Atlantic jet. Finally, the anomalous circulation 

seems to be the response of the atmosphere to the subtropical SST anomaly, adding the direct 

Gill and forced Rossby responses, not via perturbations in the ITCZ. The transient activity acts 

as a positive feedback inducing a large cyclonic anomaly over Western Europe. They also found 

that the larger amplitude of NAT through early spring (which could be related to the mode 

Amam2) is due to atmospheric forcing. The correlation of both modes, Ason2 and Adjf2 with 

winter NAO (coetaneous with Adjf2) is 0.50 and 0.53, respectively. Once it has been manifested 

the link between NAH-NAT-NAO, the next step is to understand the basis of the relationship 
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between them and streamflow in following autumn. On this regard, in case of the stations in the 

Mediterranean Andalusian Basin, the possible link between winter NAO and following autumn 

streamflow was pointed out in Chapter 5. Regarding other stations in the Mediterranean slope 

displayed in the heterogeneous maps of Ason2 and Adf2, in addition to the before mentioned 

physical link, the possibility of a contribution via regulation should be considered, because the 

level of regulation in Segura and Jucar Basins is non negligent. Not surprisingly, Adj2 correlates 

with Zdjf2 and Rdjf3, which are both related to the winter NAO, and also present similar 

heterogeneous maps, with high correlation for the streamflow of the Mediterranean Andalusian 

Basin. However, only Zdjf2 has been selected since its level of significance is 88%, while in 

case of Rdjf3 is only 43%. The heterogeneous maps displayed in both cases look like that found 

in Chapter 5 for winter NAO and the same possible physical explanation is extended here. 

The Adjf1 mode exhibits high negative correlation with Rdjf1 mode and both display 

similar heterogeneous maps. As it was remarked before, the Rdjf1 presents a homogeneous map 

similar to El Niño impacts on winter precipitation (see CPC website) and also positive 

correlation with El Niño indices (around 0.6),. However, Adjf1 does not correlate significantly 

with ENSO indices (except with El Niño1+2, with a correlation value of -0.37). However, it 

exists significant correlation between Adjf1 and El Niño indices of following autumn (in 

particular, 0.46 with El Niño1+2, 0.52 with El Niño3 and 0.47 with El Niño3.4). In addition, the 

correlation map of El Niño indices in autumn with OND streamflow (not shown) looks like 

similar to the heterogeneous map of Adjf1. Then, the relationship between Adjf1 and OND 

streamflow is likely through ENSO, with Atlantic SST acting as precursor of ENSO events. On 

this regard, Kayano et al. (2013) found, during 1975-200 period, a positive correlation between 

the first mode of an EOF analysis of tropical Atlantic SST (which features a negative dipole with 

the negative centre at 15° S, 0ºW and the positive at 37.5°S, 25ºW) and the first mode of an EOF 

analysis in the tropical Pacific (which reflects mainly the ENSO-related SST variations in the 

tropical Pacific), when Atlantic SST dipole leads from 1 to 4 seasons. So, a negative (positive) 

South Atlantic SST dipole precedes by one season to 1 year the establishment of an El Niño (a 

La Niña) event. The physical explanation given by these authors indicate that once the of 

negative (positive) South Atlantic dipole persists, the persistent descending (ascending) motion 

in the equatorial Atlantic related to the cooling (warming) there gradually drives an anomalous 

east–west circulation in the equatorial–vertical plane with an ascending (descending) branch in 

the eastern equatorial Pacific. This east–west circulation contributes to weaken (enhance) the 

surface divergence in the eastern equatorial Pacific, leading to the sinking (shallowing) the 
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equatorial termocline. Under this persistent condition, an El Niño (a La Niña) is established one 

season to 1 year later. This agrees with the relation between Adjf1 and OND streamflow via 

following autumn El Niño indices (i.e. positive values of Adjf1, which maps the negative dipole 

indicated by Kayano et al., 2013, correlate positive and significantly with El Niño indices in 

following autumn). Moreover, Kucharski et al. (2014) found significant time-delayed impact of 

the tropical Atlantic on tropical Pacific sea surface temperatures, leading to an anticorrelation 

between the tropical Atlantic and the eastern Pacific if the Atlantic is leading by about 10 

months. They postulated that this teleconnection is likely to be trigger by an atmospheric bridge 

and a modification of the Walker circulation, which causes low-level wind anomalies in the 

central-western Pacific that in turn trigger oceanic Kelvin waves that move to the east and 

initiate the Bjerknes feedback in the eastern equatorial Pacific (Rodríguez- Fonseca et al., 2009; 

Ding et al., 2012; Frauen and Dommenget, 2012). 

The physical basis supporting the links between the remaining SVD modes (Tson1, 

Tson3, Pmam2, Rmam2, and Tjja2) and autumn streamflow are not totally understood and 

require more complex analyses. For example, Pmam2 and Rmam2 also establish a relationship 

between Pacific SST and autumn streamflow (in northern IP). However, both modes are not 

clearly associated with the ‘canonical El Niño’, particularly in case of Pmam2, but with the 

central equatorial Pacific and the north Pacific mode related to NPGO (which has been linked 

with the second mode of SST variability in North Pacific, the Victoria Mode, by Di Lorenzo et 

al., 2010) and reveal a variability with a stronger decadal component. Additionally, it is 

remarkable a feature that involves two modes (Rmam2 and Tjja2), where both left and right 

expansion coefficients exhibit a strong shift around 1990 and the heterogeneous maps are also 

similar (particularly including stations in Cantabrian Basin). At this point, it worth to note that 

the coetaneous WeMO is the major atmospheric driver of autumn streamflow over Cantabrian 

slope (not shown here), and this shift around 1990 also appear in the seasonal time series of 

autumn WeMO. How they could be related to a local atmospheric pattern as WeMO is not clear 

and need further investigations. 
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Figure 6.13. Correlations between the expansion coefficients of the SVD modes corresponding to 

autumn streamflow. 

 

Figure 6.14. As figure 6.13 but for SVD modes corresponding to winter streamflow. 

 

Figure 6.15. As Figure 6.13 but for SVD corresponding to spring streamflow. 

 



COVARIABILITY ANALYSIS 6 
 

 129 

Also, two SVD modes have significant SC but no significant COR (Pjja1 and Tdjf2) so 

they were not shown studied here, as they lacked of predictability skill. The Pjja1 mode (MC = 

95% and COR = 0.22) linked the variability in Pacific SST in El Niño region with autumn 

streamflow variability in north-western quadrant of the IP, similarly as Pson1, but with contrary 

sign. The link between ENSO in summer (initialization of the phenomenon) with following 

winter streamflow was also found in Chapter 5. In addition, Tdjf2 (MC = 94% and COR = 0.17) 

displays a homogeneous pattern similar to the impact of NAO on winter temperature and a 

heterogeneous map sharing some characteristic with that associated with Zdjf2. 

In case of winter streamflow, Figure 6.11 displays the correlation between the SVD 

modes. Two modes, Zdjf1 and Tmam3 were discarded due to the lack of significance (22% and 

66% respectively, according to Montecarlo test). A third mode (Adjf3) was not selected because 

the homogeneous map does not represent a wide and well-known mode in the Atlantic Ocean. In 

fact, only a small portion of grid points in the Atlantic SST correlates significantly with this 

mode. Finally, two modes (Tdjf2 and Amam2) were not considered as they correlated stably 

with few stations. 

Pdjf3 and Pmam3 modes, which are highly correlated to each other (about 0.8), are 

linked with the same physical mechanism, the anomalies in central Pacific SST (El Niño 

Modoki) and their influence on north Pacific SST (in particular in the region associated with the 

NPGO pattern). These modes also have similar heterogeneous maps (showing stations in 

Mediterranean slope, mainly in lower Ebro and Catalonian Basin). These results agree with that 

obtained in Chapter 5 where correlations between EMI conditions in winter and following winter 

streamflow in Internal Catalonian Basin were found. 

Adjf2 (which also correlates with Tdjf2 and Amam2) presents significant correlation with 

winter NAO. Also, Adjf2 presents high correlation values with the Ason2 and Adjf2 modes 

linked with autumn streamflow (0.86 and 0.94, respectively) and the heterogeneous map of 

Adjf2 is similar to that found for autumn streamflow, which indicates that the link could be due 

to an extension of this teleconnection to wintertime. 

In case of spring streamflow, from the 12 SVD modes described, four were discarded. 

Ajja2, Ason1 and Adjf1 were not considered since the significance of these modes was inferior 

to 80%, and Rmam3 was not accounted for subsequent analysis because it was not well related 

to any known pattern of variability (teleconnection indices or EOFs) and the lack of stability in 

correlation with spring streamflow. Regarding the significant SVD modes considered, it can be 

discussed some characteristic that could help to understand the physical mechanism behind. 
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Tjja2 and Zson3 modes present strong negative correlation and, as it was previously 

commented, also correlate significantly with WP pattern. Then, both modes seem to be 

associated with a similar atmospheric mechanism and display similar heterogeneous maps 

(especially regarding correlations with stations in lower Ebro, Catalonia, Jucar and upper Tagus 

Basins). Additionally, Zson3 presents significant correlation with Pacific Transition pattern in 

September (0.53). This pattern captures anomalous wave-train of 500-hPa heights extending 

from the central subtropical North Pacific to the eastern United States. Both patterns, Tjja2 and 

Zson3 exhibit heterogeneous maps similar to Ajj2 and Ason1 (which were not found significant). 

These two non-significant Atlantic modes are related to the NAH pattern, and correlates 

significantly with Zson3 and Adjf1 (see Figure 6.12). Furthermore, Adjf2 (significant according 

to Monte Carlo test) also shows a similar heterogeneous map. This pattern presents a structure 

similar to NAT in the North Atlantic sector, and correlates significantly with Ason1 and Ajja2 

(see all comments related to the NAH-NAT transition given before). Moreover, Adjf2 presents a 

high correlation with the Adjf2 mode found in the SVD analysis coupling Atlantic SST in winter 

with autumn and winter streamflow (0.78 and 0.82, respectively). This pattern also presents an 

SST dipole in south tropical Atlantic. However, how the wave train-like pattern associated with 

Zson3 and also with Tjja2 is related to spring streamflow, particularly in the Mediterranean 

sector, and if it has also a link with NAH-NAT pattern, require further investigation.  

A high correlation is also found between Zdjf1 and Tdjf1. Both modes are related to a 

configuration similar to the winter AO/NAO, which is the main driver of winter precipitation 

over most of the IP (as observed in heterogeneous maps of both modes). The lagging response 

could be due to streamflow persistence, snowmelt contribution and a persistence of atmospheric 

winter conditions driving precipitation over IP in early spring. This finding agrees with the 

correlation analysis using teleconnection indices summarized in Chapter 5. 

Pjja1 mode relates tropical Pacific SST (El Niño region) in summer with following spring 

streamflow variability in the northwestern quadrant of the IP. According homogeneous and 

heterogeneous maps, positive (negative) anomalies in equatorial Pacific SST are related to 

positive (negative) spring streamflow anomalies in northwestern IP. This relationship was also 

identified in Chapter 5 through the correlation with teleconnection indices. Significant 

precipitation anomalies related to ENSO has been pointed out mostly for winter and spring 

seasons. Particularly for the IP, Rodó et al. (1997) found a significant connection between winter 

ENSO events and spring precipitation over the Spain, and Lorenzo et al. (2010) demonstrated 

that spring precipitation in the northwestern IP is related to ENSO. Although in these studies 
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refers to winter ENSO, the Pjja1 mode found here refers to summer Pacific SST, being related to 

the initialization of the phenomenon, which acquires its mature state in winter. In fact, SVD 

coupled modes between autumn and winter Pacific SST with spring streamflow in IP revealed a 

similar pattern, but they were not shown since they were not found significant. Bulic and 

Kucharski (2012) indicated that Rossby wave propagation mechanism (see Trenberth et al., 

1998, for a review of mid–latitude teleconnections) is too fast to be responsible for such a 

delayed impact of winter sea-surface temperature (SST) anomalies in tropical Pacific on spring 

precipitation over the North Atlantic/European (NAE). Instead they suggest that a chain of air-

sea interaction may explain the delayed response. The link between the tropical Pacific and 

extratropical SST anomalies may be established via the so-called ‘atmospheric bridge’ (see e.g. 

Lau and Nath, 1996). In detail, they posit that a positive (negative) ENSO event leads to a quasi-

barotropic trough (ridge) in the North Atlantic region. The resulting wind and cloud changes 

cause anomalies in the surface heat fluxes that result in negative (positive) SST anomalies in the 

central North Atlantic and anomalies of the opposite sign further to the south. The SST 

anomalies persist into spring and the atmospheric response to these anomalies is an extension of 

the ENSO-induced trough (ridge) into the European region, leading to enhanced (reduced) 

moisture flux and low-level convergence (divergence) and thus positive (negative) precipitation 

anomalies. 

Zjja1 mode is related with the northern annular mode in summer. In fact, it presents high 

correlation with AO. Furthermore, the heterogeneous map is rather similar to that found when 

we correlated summer AO with following spring streamflow (Chapter 5). The plausible physical 

basis behind this relationship is the same that were debated in Chapter 5 for summer AO (see 

Chapter 5 for further explanation).  

Tjja1 and Rdjf3 were considered since they were significant in both terms, Montecarlo 

and COR results, although there are not clearly established relationships with well-know climatic 

phenomena. For example, in spite of Tjja1 presents significant correlation with El Niño indices 

and with Pjja1 and also similar heterogeneous pattern, the magnitude of this correlation is not 

high enough to establish a clear relationship between Tjja1 and ENSO.  

To sum up, the SVD technique applied in this chapter has been able to identify climate-

hydrology response relationships between global data (sea surface temperature, geopotential 

height, temperature and precipitation over land) and lagging seasonal streamflow. Among the 

SVD modes obtained, those considered significant and stably correlated with a sufficient number 

of stations were the following: 
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 Linked with OND streamflow: Pson1, Ason2, Tson1, Tson3, Rson1, Adjf1, 

Adjf2, Zdjf2, Rdjf1, Pmam2, Rmam2 and Tjja2. 

 Linked with JFM streamflow: Pdjf3, Adjf2 and Pmam3. 

 Linked with AMJ streamflow: Pjja1, Zjja1, Tjja1, Tjja2, Zson3, Adjf2, Tdjf1 and 

Rdjf3.  

The relevance of these results lies not only in helping to clarify the underlying physical 

mechanisms to explain the variability of streamflow, but also in becoming the basis for 

streamflow forecasting models. This task is addressed in the next chapter. 
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CHAPTER 7 

SEASONAL STREAMFLOW FORECASTING 

BASED ON LARGE-SCALE CLIMATE 

VARIABILITY 

 

In this chapter, the ability of teleconnection indices and the significant 

covariability modes between seasonal streamflow and atmospheric and oceanic 

variables, identified in Chapters 5 and 6, respectively, as potential predictors of 

seasonal streamflow of IP Rivers are investigated. A forecasting scheme based 

on linear regression models is used to elaborate seasonal streamflow 

predictions with different seasons in advance. The skill of predictions is 

evaluated through a set of verification scores. 

 

7.1 Introduction 

In Chapter 5, the ability of main teleconnection indices as potential predictor of seasonal 

streamflow in the IP was addressed. As a result, those teleconnection indices that showed stable 

correlation with a remarkable number of the stations were considered as potential predictors. In 

Chapter 6, the covariability modes between atmospheric and oceanic fields (sea surface 

temperature SST, geopotential height at 500 hPa Z500, global temperature TMP and 

precipitation RR) and seasonal streamflow of the IP Rivers were analyzed through singular 
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value decomposition (SVD) method. As in Chapter 5, from all significant modes of covariability 

found, only those that correlate stably with an important number of stations were considered. In 

this chapter, it is pretended to evaluate the skill of these indices and modes of covariability in 

forecasting the seasonal streamflow. With the aim of addressing the individual performance of 

each set of predictors in forecasting the seasonal streamflow, the evaluation will be carried out 

for each set of predictors independently and for a combination of both. 

Although atmospheric processes are basically nonlinear, linear statistical forecast models 

can contribute toward understanding the mechanisms associated with large-scale teleconnection 

patterns of the general atmospheric and ocean circulation (Kung and Sharif, 1980). They are 

particularly interesting when time series are relatively short (in terms of climatological studies) 

and finding non-linear relations is challenging. Given the relatively short length of the 

streamflow records used in this study (33 years), the utilization of linear models was considered 

the most appropriate for forecasting the seasonal streamflow (autumn –OND–, winter –JFM–, 

and spring –AMJ–) at each gauging station.  

Teleconnection indices have been used as predictors in forecasting streamflow studies in 

many different areas across the world such as in North America (Tootle and Piechota 2004; 

Grantz et al., 2005; Timilsena et al., 2009; Soukoup et al., 2009; Oubeidillah et al., 2011; Tang et 

al., 2011; Kalra et al., 2013), South America (Gutiérrez and Dracup, 2001; Tootle et al., 2008), 

Europe (Ionita et al., 2008, 2011; Gámiz-Fortis et al., 2011; Oubeidillah et al., 2012), Asia 

(Chandimala and Zubair, 2007), Africa (Sittichok et al., 2014) or Australia (Piechota et al., 2001; 

Chiew et al., 2003), using different forecasting methodologies (for example, Artificial Neural 

Networks, Partial Least Squares Regression, Principal Component Regression or Multiple Linear 

Regression, among others). 

Regarding the SVD technique used in Chapter 6, different ways to predict one field using 

information of the other coupled field can be found in a literature review. In particular, Wei et al. 

(2012) applied SVD analysis to reconstruct summer SLP over East Asia from 1470 to 2008 

using the summer precipitation in eastern China as predictor. They obtained the SLP field by 

projecting the first n expansion coefficients on their corresponding eigenvectors of the SLP 

fields. The first n expansion coefficients of precipitation were computed using their obtained first 

n eigenvectors and the observed precipitation record Oubeidillah et al. (2011) used the Pacific 

Ocean SST and Z500 regions identified from SVD analysis with the Upper Colorado River and 

the Great Basin streamflow and snowpack to create indices (averaging the values in the area 

represented by these indices) that were then used as predictors in a non-parametric forecasting 
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model. Anderson et al. (2012) also followed this approach, to determine the region in the Pacific 

SST linked with the streamflow in the northern portion of the Upper Colorado River Basin. Once 

a region was identified they created an index by averaging the SST values of this region and 

used it as predictor. 

Other authors, such as Lamb et al. (2010) and Soukup et al. (2009) used the left 

expansion coefficients obtained from the SVD between Pacific SST and streamflow in the 

Colorado River Basin and the North Platte River, respectively, as predictor in a non-parametric 

model to develop continuous exceedance probability forecasts. Also, Tootle et al. (2008) 

postulated the ability of left expansion coefficients (corresponding to Pacific and Atlantic SST) 

as predictors of Colombian streamflow. However, Lamb et al. (2010) manifested the question if 

making forecast using a model that requires the identification of a forecast point is or not 

adequate. This is the case when left expansion coefficients are calculated using data from the 

whole period, and they are used as predictors in a cross-validation exercise. This fact was also 

been argued by García-Serrano and Frankignoul (2014) in a study about the predictability of 

winter Euro-Atlantic climate form cryospheric variability. They used the expansion coefficients 

of the left field (determined via MCA using the whole subset) in the one-year-out cross-validated 

hindcast, so the regression coefficients and predictor value of the statistical model are estimated 

assuming the knowledge of the MCA fields in the year out. Then, they repeated all calculations 

performing MCA on the subset of data without the target year, repeating all the procedure with 

each withdrawn year. The predictability skill obtained under this approach was lower than the 

previous one, so they concluded that the first methodology is likely to produce an overestimation 

of the cross-validation skill, because of the a priori knowledge of the forecast point.  

Following this line, Wang and Ting (1999) predicted US precipitation for summer of 

1997 and winter 1997/98 using tropical Pacific SST through SVD. The prediction algorithm 

consisted on perform a SVD analysis between the observed tropical Pacific SST and US 

precipitation with the target year removed. Then, the SST for the target year is projected on the 

SVD vectors to obtain a value for the expansion coefficient of this field. Using the relation 

between left and right expansion coefficient given by SVD, the expansion coefficient for 

precipitation is obtained and, subsequently, the precipitation values. A similar approach was 

followed by Liu (2003), removing from the original subset each year to be predicted and 

conducting a SVD between soil moisture leading precipitation in United States. Finally the 

precipitation values are calculated using soil moisture values of the withdrawn year. Also, 
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Córdoba-Machado et al. (2014) used a similar technique for forecasting precipitation in 

Colombia.  

Taking into consideration the high number of predictors and predictands available and the 

limited length of the time series, a multiple linear regression using leave-one-out was adopted for 

developing forecasting models. When SVD modes were used as predictors, an algorithm was 

built based on SVD carried out in each iteration of the cross-validation process, predicting the 

removed year and repeating the process for all years (similar to Wang and Ting, 1999; Liu, 2003 

and Córdoba-Machado et al., 2014). In addition, in order to evaluated the overestimation in 

forecasting skills derived from using as predictors the left expansion coefficient calculated using 

the entire period, all the calculation were repeated based using this approach.  

 

7.2 Methodology 

Three separated forecasting exercises have been carried out in this chapter, considering 

up to three different subsets of predictors (only the significant and stably correlated 

teleconnection indices identified in Chapter 5, only the significant and stable correlated SVD 

modes identified in Chapter 6 and a combination of both). The procedure followed for making 

seasonal predictions consists of the establishment of four forecasting scenarios. Each scenario 

refers to the seasons in advance for which the predictions are made. For example, in case of 

spring streamflow forecast based on teleconnection indices, in the first scenario (referred as ‘4S’ 

hereafter) the predictions are made four seasons in advance, using the teleconnection indices of 

the previous spring as predictors. The following scenario (‘3S’) uses as predictors the 

teleconnection indices from four to three seasons beforehand, i.e. the teleconnection indices of 

the previous spring and summer. The next scenario (‘2S’) uses as predictors the teleconnection 

indices from four to two seasons beforehand, i.e. the seasonal teleconnection indices of the 

previous spring, summer and autumn. The last scenario (‘1S’) uses as predictors the 

teleconnection indices from four to one season beforehand, i.e. the teleconnection indices of the 

previous spring, summer, autumn, and winter. Then, for each forecasting scenario, seasonal 

streamflow to be predicted at each gauging station, the predictors and predictands will be 

separated into calibration and validations subsets, and the calibration subsets will be used in 

building a forecasting model based on linear regression. Finally, validation subsets will be used 

to assess the forecasting skills. Before proceeding with a more detailed explanation of the 
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forecasting methodology, a brief explanation about how the calibration and validation subsets 

are built is provided.  

 

7.2.1 Leave-one-out cross-validation 

In order to avoid artificial skill effects in forecasting, data are usually divided into two 

subperiods: ‘calibration’ and ‘validation’. Then, the model is fitted to the calibration data and 

tested on the independent information contained in the validation subset. However, in small 

samples, this procedure could not perform effectively. In these cases, cross-validation is 

arguably the best approach for estimating true skill, because it makes all data available for 

validation. In this approach, the first step consists on withholding a small part of the sample. The 

model is fitted to the data that are retained and is used to make forecasts or specifications of the 

data that are withheld. These steps are performed separately, either until no new verification data 

sets can be selected or until there are enough forecast/verification or specification/verification 

pairs to estimate skill accurately. Therefore, many different (but highly related) models are used 

to make independent forecasts. According to the relatively small sample size in streamflow 

records, a leave-one-out cross-validation approach was performed here. 

In the procedure followed to generate the ‘forecasted’ time series, for the seasonal 

streamflow at each station, each model is formulated based on N-1 years and tested on the 

remaining year not used in the construction of the model. Assuming the dataset yt, with t = 

1,...,N, a particular value yi is removed from the set and a model is fitted based on the remaining 

N - 1 values. Then, the model is utilized to forecast the i
th

 value; that is, fi is obtained. This 

procedure is repeated N times and the forecast dataset f1, . . . ,fN is determined. To exclude the 

possibility that the results of the leave-one-out cross-validation could be biased by linear trends, 

the predictor/predictand samples used are linearly de-trended and centred to have zero mean. To 

eliminate a further potential source of dependency/artificial skill, the removal of the trend and 

the mean is repeated in each step of the cross-validation (von Storch and Zwiers, 1999). That is, 

the i
th

 forecast is obtained from predictor/predictand samples having zero linear trend and zero 

mean in any case. The trend and mean values obtained in the i
th

 step of the cross-validation are 

also removed from the i
th

 withheld predictors and predictand values, respectively. Note that, 

although the word ‘hindcast’ could be more appropriated when calibration and validation dataset 

(via cross-validation) belong to the past, the term ‘forecast’ is used in this study in relation with 

the validation subset.  
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Calibration and validation for predictors from SVD analysis 

When the forecasting procedure uses as predictors the left expansion coefficients of the 

significant SVD modes identified in Chapter 6, the methodology presents some differences with 

respect to the use of teleconnection indices as predictors. The reason is that SVD analysis was 

repeated in each one-year-out iteration of the cross-validation exercise. This is mandatory, 

because when using the entire dataset to conduct the SVD analysis, if you use the left expansion 

coefficients obtained in a leave-one-out cross-validation exercise (dropping one year, which it 

will be used in the validation process, and using the remaining years to calibrate the model) the 

years used for calculating the parameters of the regression models ‘knows’ about the dropped 

year (because all years were used in the SVD), so an overestimation of the cross-validation skill 

is likely to be produced, because a priori knowledge of the forecast point exists. To overcome 

this problem, for each seasonal streamflow to be predicted, each forecasting scenario and in each 

leave-one-out cross-validation step, the prediction algorithm developed consists on the following 

steps: 

1. To remove the target year from the streamflow time series and from the 

atmospheric/oceanic datasets (Pacific and Atlantic SST, Z500, TMP and RR). 

2. To identify the significant SVD modes (see Chapter 6) used as predictors according the 

forecasting scenario, performing a new SVD between the corresponding climatic field 

and the seasonal streamflow. For each one of the significant SVD modes, to correlate the 

corresponding eigenvector of this new SVD analysis with that calculated using the whole 

period to ensure the new and the original mode are the same (without alteration in modes 

order). To calculate the new left expansion coefficients (predictors) projecting the field 

values onto the eigenvectors.  

3. To calculate the associated value of the left expansion coefficient used for validation by 

projecting the value of climate field of the dropped year onto the associated eigenvector.  

Steps 1-3 are repeated 33 times (for each year being out) until left expansion coefficients 

values for calibration (33 time series of 32 years) and validation (33 years time series) processes 

are obtained, for each station, scenario and seasonal streamflow to be predicted.  

 

7.2.2 Multiple Linear Regression 

Taking into account the large number of predictands and predictors, as well as the limited 

length of the time series, an approach based on linear relationship (via multiple linear regression) 
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between predictors and predictands was followed. This linear statistical technique allows to find 

the best relationship between a variable (dependent, predictant) and several other variables 

(independent, predictor) through the least square method. Multiple regression models can be 

presented by the following equation: 

 0 1 1      n nY X X  (7.1)  

Where Y is the predictand, i are the regression coefficients, estimated as 

1( )  t tX X X Y , and Xi are the predictors. 

When a large set of predictors is used to build a regression model, an excessive 

correlation among explanatory variables (collinearity) can complicate or prevent the 

identification of an optimal set of explanatory variables for a statistical model. This situation can 

be found in this work, for example, when various of the teleconnection indices related to ENSO 

are used as predictors. Hence, it is mandatory to address the possible problems related to 

collinearity between predictors.  

Von Storch and Zwiers (1999) indicated that two or more factors are multicollinear when 

the corresponding columns in the design matrix point in similar directions in R
n
, i.e. when they 

are strongly correlated. The effect of multicollinearity is to make the matrix X
t
X nearly 

uninvertible (the denominator in an ordinary least-squares approach to estimate the regression 

coefficients), resulting in highly variable parameter estimators and making it difficult to 

diagnose the factors that are most important in specifying Y. Furthermore, multicollinearity 

increases the standard errors of the coefficients, so that coefficients for some independent 

variables may be found not to be significantly different from 0, whereas without 

multicollinearity and with lower standard errors, these same coefficients might have been found 

to be significant and the researcher may not have come to null findings in the first place. 

To answer the question about how to address multicollinearity in hydrologic regression 

models, Kroll and Song (2013) compared four techniques: ordinary least squares (OLS), OLS 

with variance inflation factor screening (VIF), principal component regression (PCR), and partial 

least-squares regression (PLS). They observed the performance of these four techniques for 

varying sample sizes, correlation coefficients between the explanatory variables, and model error 

variances consistent with regional hydrologic regression models, concluding that negative effects 

of multicollinearity are magnified at smaller sample sizes, higher correlations between the 

variables, and larger model error variances (smaller R
2
). Also they found that if the true model is 

known, multicollinearity is present, and the estimation and statistical testing of regression 



7 SEASONAL STREAMFLOW FORECASTING BASED ON LARGE-SCALE CLIMATE VARIABILITY 
 

 140 

parameters are of interest, then PCR or PLS should be employed. However, when the model is 

unknown, or when the interest is solely on model predictions, then it would be recommended 

that OLS be employed since using more complicated techniques offers no improvement in model 

performance.  

Bearing in mind the recommendations given in Kroll and Song (2013), it was opted by a 

simple approach to identify collinearity, the variance inflation factor (VIF), and combining its 

results in a backward stepwise multiple-linear regression to select the most appropriate set of 

predictors. Stepwise regression has also been used in streamflow reconstruction (Woodhouse et 

al., 2006; Barnett et al., 2010).  

Formally, VIF measures how much the variance of the estimated coefficients is increased 

over the case of no correlation among the X variables. VIF calculations are straightforward and 

easily comprehensible; the higher the value, the higher the collinearity. A VIF for a single 

explanatory variable is calculated using the r-squared value of the regression of that variable 

against all other explanatory variables. 

 
2

1
VIF

1



j

jR
 (7.2) 

where the VIF for variable j is the reciprocal of the inverse of   , coefficient of 

determination from a regression of predictor j on the remaining predictors. 

When the variation of predictor j is largely explained by a linear combination of the other 

predictors, 2

jR  is close to 1, and the VIF for that predictor is correspondingly large. The inflation 

is measured relative to a      of 0 (no collinearity), and a VIF of 1. A VIF is calculated for each 

explanatory variable and those with high values are removed. The definition of ‘high’ is 

somewhat arbitrary, and depends merely on the requirements of the tolerance level. Most 

practical suggestions put an acceptable tolerance at lower than 0.2 or 0.1 (R
2
 higher than 0.9 or 

0.8) to detect the problem. These levels corresponding to a VIF should be larger than 10 and 5 

values (Menard, 1995; Hair et al., 1995; Mason, 1998; Kennedy, 1992). In small samples, less 

than 50 points, a threshold of 5 is preferable. The solution proposed here is similar to the 

approach suggested by Zuur et al. (2010). For the original subset of predictors, calculate the VIF. 

If there are two or more variables with a VIF greater than 5, proceed by removing the variable 

with the highest VIF, recalculate all VIF values with the new set of variables (VIF values 

changes after a variable is removed), and again remove the variable with the next highest value if 

it exceeds the threshold, repeating the process until all VIF values are below the threshold.  

2

jR

2

jR
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After removing the predictors with VIF higher than 5, the next step is to identify which 

ones of the final set should be used to build the regression model. To do this, we used a stepwise 

regression approach. Stepwise regression is an iterative semi-automated process of building a 

model by successively adding or removing variables based on the F-statistics of their estimated 

coefficients. The F-statistic tests whether the change in the sum of squared errors by the 

regression model for the predictor under consideration is significantly large compared to the 

mean of the squared errors after including the predictor. The greater the value of the F-statistic 

(exceeding a predefined threshold according to a given level of significance), the more 

significant is the predictor. 

The stepwise option lets us either starts with no variables in the model and proceed 

forwards (adding one variable at a time), or start with all potential variables in the model and 

proceed backwards (removing one variable at a time). In the forward selection, the common 

criterion is the ratio of the reduction in residual sum of squares caused by the next candidate 

variable to be considered to the residual mean square from the model including that variable. 

This criterion can be expressed in terms of a critical “F-to-enter”, where F is the “F-test” of the 

partial sum of squares of the variable being considered. The forward selection terminates when 

no variable outside the model meets the criterion to enter. In this chapter, it was used the 

backward-elimination procedure, which operates similarly to the forward-selection procedure. In 

this case, the stopping rule is the “F-test” of the smallest partial sum of squares of the variables 

remaining in the model. Again, this criterion can be stated in terms of an “F-to-stay”. Backward 

elimination terminates when all variables remaining in the model meet the criterion to stay. 

 

7.2.3. Forecasting skill evaluation. Verification Scores 

Verification measures enable us to evaluate the quality of the forecast, its weakness and 

strengths. A large number of verification measures have been suggested to this end (Jolliffe and 

Stephenson, 2003). In this study, a set of verification measures has been used: Pearson’s 

correlation coefficient (called ‘RHO’ hereafter), the Root Mean Square Error Skill Score 

(RMSESS) and the Gerrity Skill Score (GSS). The RHO is a measure of the linear relation. The 

RMSESS provides a measure of error. It is referenced to the climatology mean, so that positive 

(negative) values of RMSESS indicate better (worse) forecasting skill than climatological mean. 

The GSS identifies the accuracy in forecasting streamflow that are in the same category as the 

observations. To the calculation of GSS, three categories were considered: below normal, 
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normal, and above normal, by the 33
rd

 and 66
th

 terciles. A more detailed description of GSS is 

given in Appendix A. 

 

7.3 Results 

The teleconnection indices and SVD modes used as predictors in each forecasting 

scenario are displayed in Table 7.1 and Table 7.2, respectively. These predictors are called 

according the abbreviation used as in Chapters 5 and 6. In case of teleconnection indices, the 

letter in the subindex refer to the season (‘d’ for winter, ‘s’ for spring, ‘j’ for summer and ‘a’ for 

autumn) and when a ‘1’ is added to these acronyms means the season belongs to the previous 

year. Note that in this table, the use of ‘d’ instead ‘djf’ to refer winter seasons was just 

considered for reducing the length of the predictor name. The same happens to the other seasons.  

 

Table 7.1. Teleconnection indices selected used as predictors according each forecasting scenario each 

seasonal streamflow predicted.  

 

 

For SVD modes, the first capital letter indicates the climatic field (‘P’ correspond to 

Pacific Ocean SST, ‘A’ to Atlantic Ocean SST, ‘Z’ to geopotential height at 500 hPa, ‘T’ to 

global temperature, and ‘R’ to global precipitation), the next three letters mean the season of the 

	

SCENARIOS  

S4 S3 S2 S1 

WPs1 

Niño3s1 

Niño4s1 

Niño3.4s1 

SOIs1 

SAIs1 

WPs1 

Niño3s1 

Niño4s1 

Niño3.4s1 

SOIs1 

SAIs1 

NAOd 

AOd 

Niño4d 

WeMOd 

 

WPs1 

Niño3s1 

Niño4s1 

Niño3.4s1 

SOIs1 

SAIs1 

NAOd 

AOd 

Niño4d 

WeMOd 

 

EAm 

WPm 

EP-NPm 

WeMO m 

 

WPs1 

Niño3s1 

Niño4s1 

Niño3.4s1 

SOIs1 

SAIs1 

NAOd 

AOd 

Niño4d 

WeMOd 

 

EAm 

WPm 

EP-NPm 

WeMO m 

 

 EAj 

Niño3.4j 

SOIj 

WeMOja 
OND 

EMId1 

WeMOd1 

 

EMId1 

WeMOd1 

 

WPm1 

EP-NPm1 

 

EMId1 

WeMOd1 

 

WPm1 

EP-NPm1 

 

PNAj1 EMId1 

WeMOd1 

 

WPm1 

EP-NPm1 

 

PNAj1 SCANDs1 

WeMOs1 

SAIs1 

JFM 

 EAj1 

EP-NPj1 

PNAj1 

SCANDj1 

AOj1 

Niño1+2j1 

Niño3j1 

Niño3.4j1 

IODj1 

EAj1 

EP-NPj1 

PNAj1 

SCANDj1 

AOj1 

Niño1+2j1 

Niño3j1 

Niño3.4j1 

IODj1 

Niño1+2s1 

IODs1 

SAIs1 

EAj1 

EP-NPj1 

PNAj1 

SCANDj1 

AOj1 

Niño1+2j1 

Niño3j1 

Niño3.4j1 

IODj1 

Niño1+2s1 

IODs1 

SAIs1 

NAOd 

SCANDd 

AOd 

Niño1+2d 

AMJ 
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climatic field (son, djf, mam and jja) and with the last number being the mode (ordered 

descending in SCF values). 

 

Table 7.2. SVD modes selected in the analysis carried out in Chapter 6 used as predictors according 

each forecasting scenario and each seasonal streamflow predicted.  

 

In order to summarize the results from the forecasting skill evaluation, a classification 

was made according the values of the verification scores to evaluate the accuracy of the 

forecasting. The classes are defined as follow: 

 Bad: RHO <= 0.34 or RMSESS <= 0 or GSS <= 0 

 Poor: RHO > 0.34 and RMSESS > 0 and GSS > 0 

 Fair: RHO > 0.44 and RMSESS > 10 % and GSS > 0.2 

 Good: RHO > 0.5 and RMSESS > 20 % and GSS > 0.4 

Note that the values 0.34 and 0.39 used as thresholds in the case of RHO score, 

correspond to the 90% and 95% significance levels in Pearson’s correlation coefficient.  

7.3.1 Prediction based on teleconnection indices 

Prior to evaluate the quality of the forecasting results, it is briefly mentioned how the 

possible problems derived from the multicollinearity were addressed when calibrating the 

	

SCENARIOS  

S4 S3 S2 S1 

Pson1 

Ason2 

Tson1 

Tson3 

Rson1 

Pson1 

Ason2 

Tson1 

Tson2 

Rson1 

Adjf1 

Adjf2 

Zdjf2 

Rdjf1 

 

Pson1 

Ason2 

Tson1 

Tson2 

Rson1 

Adjf1 

Adjf2 

Zdjf2 

Rdjf1 

 

Pmam2 

Rmam2 

Pson1 

Ason2 

Zson2 

Tson1 

Tson2 

Rson1 

Adjf1 

Adjf2 

Zdjf2 

Rdjf1 

Rdjf3 

Pmam2 

Rmam2 

Tjja2 

 

OND 

Pdjf3 

Adjf2 

 

Pdjf3 

Adjf2 

 

Pmam3 

 

Pdjf3 

Adjf2 

 

Pmam3 

 

Pdjf3 

Adjf2 

 

Pmam3 

 JFM 

 Pjja1 

Zjja1 

Tjja1 

Tjja2 

Pjja1 

Zjja1 

Tjja1 

Tjja2 

Zson3 Pjja1 

Zjja1 

Tjja1 

Tjja2 

Zson3 Adjf2 

Tdjf1 

Rdjf3 
AMJ 
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regression model used to predict the seasonal streamflow at each gauging station. The 

results from the combined VIF and backward selection iterative procedures were carefully 

checked, particularly when various of the indices representing the ENSO phenomenon were 

considered as predictors.  

An illustrative example of the iterative process that combines VIF and backward 

stepwise selection criteria is presented. Let’s assume a scheme where it is pretended to 

forecast the autumn (OND) streamflow in the station id=1734 (Miño-Sil Basin) for the 1S 

scenario. The stable predictors (from the previous autumn) are: 

 Niño3son1 

 Niño4son1 

 Niño3.4son1 

 SOIson1 

Because of the high cross-correlation values between predictors (see Table 7.3), a 

problem of multicollinearity could arise.: 

 

 Niño3son1 Niño4son1 Niño3.4son1 SOIson1 

Niño3son1 1.000 0.767 0.964 -0.796 

Niño4son1 0.767 1.000 0.890 -0.812 

Niño3.4son1 0.964 0.890 1.000 -0.848 

SOIson1 -0.796 -0.812 -0.848 1.000 

 

Table 7.3. Cross-correlation between predictors for the autumn streamflow in the station id=1734 for 

the 1S forecating scenario.  

 

To evaluate this, the VIF was calculated: 

 VIF (Niño3son1) = 32.724 

 VIF (Niño4son1) = 11.538 

 VIF (Niño3.4son1) = 65.570 

 VIF (SOIson1) = 3.773 
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As a threshold of 5 has been chosen for VIF, there are 3 predictors with VIF>5. Then, the 

predictor with the largest VIF value (Niño3.4) was removed and the calculation of cross 

correlation matrix was repeated. The new VIF values were: 

 VIF (Niño3son1) = 3.092 

 VIF (Niño4son1) = 3.326 

 VIF (SOIson1) = 3.731 

In this case all the predictors have a VIF<5, so, according with the established threshold 

for VIF, it is concluded that the level of collinearity between predictors is not strong enough to 

notably affect the regression parameters calculation.  

Subsequently the backward stepwise procedure was carried out to select the best subsets 

of predictors according to the ‘F-criterion’ introduced in the methodology section. In this case, 

for all iteration (for all the years been withdrawn) in the leave-one-out cross-validation exercise, 

the backward selection only the Niño3 predictor was retained.  

A summary of this procedure is shown in Tables 7.4 to 7.6 (for autumn, winter and spring 

streamflow respectively), for all forecasting scenarios, which show the number of stations where 

predictors (teleconnection indices) present stable correlations, stable correlation and overcome 

the VIF criterion and present stable correlation, overcome the VIF criterion and also the 

backward stepwise selection. For example, for autumn streamflow forecasting in 4S scenario 

(Table 7.4), after applying the VIF criterion, Niño3.4s1, in 4S scenario, was considered as stable 

predictor in 11 stations (originally it showed stable correlation with 29 stations), and in one of 

them, it did not passed the stepwise backward selection. Also, it could be seen that something 

similar happens with other ENSO related indices (such as Niño3s1 and Niño4s1). Note that in 

these tables the subindices indicating the seasons present a reduced format (‘s’ instead ‘son’, ‘d’ 

instead ‘djf’, ‘m’ instead ‘mam’ and ‘j’ instead ‘jja’).  In case of the winter streamflow 

forecasting (Table 7.5), the most notable feature regarding the predictors selection is that PNAj1 

was not selected as predictor in any station after combining the VIF and backward stepwise 

criteria (originally it correlates stably with 13 stations). As it happened with the predictor 

selection for the autumn streamflow forecasting, the ENSO related indices are the most affected 

by these criteria in case of the spring streamflow (Table 7.6). 

 

 4S 3S 2S 1S 
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Table 7.4. Number of stations where the predictors (teleconnection indices) of the autumn streamflow 

present stable correlations and overcome the VIF criterion and the backward stepwise selection for the 

four forecasting scenarios. 

 

 

 

 

 

 

 

 

 

 

7.5. As Table 7.4 but for winter streamflow. 
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WPs1 14 14 14 14 14 14 14 13 11 14 13 11 

Niño3s1 20 18 14 20 12 11 20 14 9 20 14 9 

Niño4s1 45 45 19 45 27 12 45 31 16 45 31 15 

Niño3.4s1 29 11 10 29 13 9 29 9 6 29 9 6 

SOIs1 41 41 30 41 40 29 41 35 28 41 35 29 

SAIs1 21 21 21 21 21 14 21 21 13 21 21 13 

NAOd - - - 15 15 15 15 15 15 15 15 15 

AOd - - - 20 20 7 20 20 4 20 20 5 

Niño4d - - - 22 22 15 22 18 15 22 18 14 

WeMOd - - - 8 8 8 8 8 8 8 8 8 

EAm - - - - - - 21 21 18 21 21 18 

WPm - - - - - - 15 13 10 15 13 10 

EP-NPm - - - - - - 74 71 69 74 71 70 

WeMO m - - - - - - 47 45 38 47 45 34 

EAj - - - - - - - - - 26 26 18 

Niño3.4j - - - - - - - - - 16 16 10 

SOIj - - - - - - - - - 16 16 12 

WeMOja - - - - - - - - - 17 17 17 
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EMId1 5 5 5 5 5 5 5 5 5 5 5 5 

WeMOd1 6 6 6 6 6 6 6 6 6 6 6 6 

WPm1 - - - 67 67 66 67 67 65 67 67 62 

EP-NPm1 - - - 18 18 16 18 18 16 18 18 18 

PNAj1 - - - - - - 13 13 11 13 13 0 

SCANDs1 - - - - - - - - - 45 45 12 

WeMOs1 - - - - - - - - - 9 9 9 

SAIs1 - - - - - - - - - 238 238 238 



SEASONAL STREAMFLOW FORECASTING BASED ON LARGE-SCALE CLIMATE VARIABILITY 7 
 

 147 

 

 

 

 

4S 3S 2S 1S 

st
a

b
le

 

V
IF

 

st
ep

w
is

e 

st
a

b
le

 

V
IF

 

st
ep

w
is

e 

st
a

b
le

 

V
IF

 

st
ep

w
is

e 

S
ta

b
le

 

V
IF

 

st
ep

w
is

e 

EAj1 - - - 20 20 20 20 20 20 8 8 7 

EP-NPj1 - - - 33 33 32 33 33 31 20 20 20 

PNAj1 - - - 9 9 9 9 9 9 33 33 31 

SCANDj1 - - - 53 53 53 53 53 53 9 9 8 

AOj1 - - - 37 37 31 37 37 25 53 53 53 

Niño1+2j1 - - - 33 31 11 33 31 7 37 37 27 

Niño3j1 - - - 11 11 9 11 11 7 33 31 7 

Niño3.4j1 - - - 10 10 9 10 10 0 11 11 6 

IODj1 - - - - - - 54 45 22 10 10 0 

Niño1+2s1 - - - - - - 27 27 25 54 33 16 

IODs1 - - - - - - 7 7 7 27 27 25 

SAIs1 - - - - - - - - - 7 7 4 

NAOd - - - - - - - - - 17 17 16 

SCANDd - - - - - - - - - 18 18 14 

AOd - - - - - - - - - 10 10 7 

Niño1+2d - - - - - - - - - 28 23 5 

Table 7.6. As Table 7.4 but for spring streamflow. 

 

Once selected the best subsets of predictor and avoided the inconvenient related to highly 

correlated predictors, the results obtained according with the established classification of 

forecasting skill based on the verification scores (bad, poor, fair and good forecasting skill) are 

summarized in Table 7.7 and Figure 7.1. 

In case of the autumn streamflow forecasting, only 24 of the 96 predicted time series 

present some forecasting skill for the 4S scenario. Some stations located in the Miño-Sil, Douro, 

and Tagus Basins are poorly forecasted. In this case, the indices related to ENSO phenomenon in 

the previous autumn seem to be the main predictors used. Conversely, some stations located in 

the Mediterranean Andalusian Basin show fair or moderate forecasting skill, being the SAI index 

of previous October the predictor used for forecasting autumn streamflow at these stations. 

Regarding the 3S scenario, 30 of the 115 stations where the autumn streamflow was forecasted 

present accurate results. The most noteworthy feature is the improvement in forecasting at 

stations located in the Mediterranean Andalusian Basin, where most stations present fair and 

good forecasting results. For these stations, NAO and AO indices of previous winter are the 

predictors related to this improved forecasting skill. For 2S scenario, forecasting skill somewhat 
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improve (up to 63 stations present some forecasting skill, whereas 127 stations do not), 

particularly in the central and northwestern quadrant and the Ebro Basin. The increase in 

forecasting skill could be related to the inclusion of spring EP-NP and WeMO patterns. 

Forecasting skill does not vary notably in 1S scenario (79 stations present some forecasting skill, 

whereas 140 stations give bad forecasting results).  

Winter streamflow is forecasted only in 11 stations in the 4S scenario, being skillful in 6 of 

them. In the 3S scenario, when the spring WP and EP-NP patterns were added to the winter EMI 

and WeMO as predictors, the winter streamflow is predicted in 90 stations. However, these 

predictors were considered skillful in only 17 of them (mostly poorly forecasted). In addition, 

there is no remarkable improvement in the forecasting results when summer PNA was added as 

the predictor for the 2S scenario. However, a substantial increase in forecasting skill is achieved 

in the 1S scenario. In this case, winter streamflow was forecasted at 269 stations, being skillful 

in 236 of them. In particular, at 166 stations the forecasting is considered fair or good, with RHO 

reaching values above 0.6, RMSESS up to 30% and GSS above 0.6 for some cases. The SAI is 

the predictor responsible for this noteworthy improvement in the forecasting results. The stations 

that present some forecasting skill are located in most of the IP, with the exception of the 

Cantabrian range and some areas in the Mediterranean slope.  

In case of spring streamflow forecasting, there was no predictor for the 4S scenario. For 3S 

scenario, up to 9 predictors are used (from teleconnection indices in the previous summer). In 

this case, spring streamflow is predicted in 150 stations, but only in 52 of them with some skill 

(mostly poor). The stations where some forecasting skill is found are located mainly in the Miño-

Sil, mountains surrounding the Douro Basin borders and Guadalquivir Basin. When predictors 

corresponding to the previous autumn are added to the forecasting model (2S scenario), there is 

no improvement in the forecasting results. In fact, the number of stations with skillful forecasted 

spring streamflow is slightly inferior (probably because the verification scores are low enough to 

fall below the classification thresholds). In case of the 1S scenario, the use of winter NAO, 

SCAND, and AO indices improve the forecasting results (up to 58 stations skillfully forecasted), 

particularly in the southern of IP. 

 

 

 

 



SEASONAL STREAMFLOW FORECASTING BASED ON LARGE-SCALE CLIMATE VARIABILITY 7 
 

 149 

 

 
4S 3S 2S 1S 

b
ad

 

P
o

o
r 

F
ai

r 

g
o

o
d

 

b
ad

 

P
o

o
r 

F
ai

r 

g
o

o
d

 

b
ad

 

P
o

o
r 

F
ai

r 

g
o

o
d

 

b
ad

 

P
o

o
r 

F
ai

r 

g
o

o
d

 

OND 72 17 7 0 85 16 7 7 127 31 24 8 140 43 25 11 

JFM 5 5 1 0 73 14 3 0 79 16 3 0 33 70 127 39 

AMJ 0 0 0 0 98 46 6 0 125 37 7 0 133 43 15 1 

 

Table 7.7. Number of stations belonging to each class defined for summarizing forecasting skill (bad, 

poor, fair and good). In rows the four scenarios considered and in columns the seasonal streamflow 

forecasted (autumn -OND-, winter -JFM-, and spring -AMJ-). 

 

Figure 7.1. Maps of the forecasting skill classification (poor, fair or good) according with RHO, 

RMSESS and GSS values. They are displayed only in stations where some forecast skills were found. 

In rows the seasonal streamflow forecasted and in columns the forecasting scenario. 

 

An example of the forecasting for seasonal time series (standardized) is shown in Figure 

7.2, displaying the results for one station in each season (OND streamflow in station id=10020, 

JFM streamflow in station id=3144 and AMJ streamflow in station id=1710, where ‘id‘ indicates 
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the identifier of each station). The stations were selected among the more skilfully forecasted 

with the consideration to be located in different basins. The values of the verification scores are 

given in Table 7.8.  

In Figure 7.2a, station id=10020 is used as an example of autumn streamflow forecasting 

in the 3S scenario. This station is located in the Mediterranean Andalusian Basin (Figure 7.2a, 

left panel). The predictor used (after backward stepwise selection) was the previous winter NAO. 

Figure 7.2a, central panel, shows the good agreement between the observed and forecasted 

autumn streamflow (RHO, RMSESS and GSS are 0.67, 21.1% and 0.45, respectively). That is 

also manifested in the right panel, where the time series of both observed and forecasted 

streamflow are plotted. In particular, the similarity in the 1970s and 1980s is noteworthy. On the 

other hand, the variability in the 1990s is not completely reproduced. Figure 7.2b presents the 

forecasting results for winter streamflow in station id=3144 in the Tagus Basin (left panel) for 1S 

forecasting scenario. In this case, October SAI and spring WP were the two predictors selected 

in the backward stepwise procedure (the SAI being the most correlated predictor). In this case, 

verification scores are even higher than in the previous example (RHO, RMSESS and GSS are 

0.72, 29.8% and 0.66, respectively), as reflected in the central and right panels, where the good 

agreement between observed and forecasted time series is evident. Figure 7.2c shows an 

example of spring streamflow forecasting in scenario 1S. The station selected is located in the 

Miño-Sil Basin (left panel). The verification scores reach values up to 0.63, 20.6%, and 0.43 for 

RHO, RMSESS and GSS, respectively. The IOD of the previous autumn and the SCAND of 

previous winter constitute the predictors selected after the combination of VIF and backward 

stepwise selection. From the observed and forecasted time series displayed in the right panel, the 

forecasting skill improves after the 1990s, whereas the variability of the forecasted time series 

during the 1980s is significantly lower than the observed streamflow. 

 

Season Station Id Basin Scenario RHO RMSESS GSS CLASS 

OND 10020 Mediterranean 

Andalusian 

3S 0.67 21.1 % 0.45 Good 

JFM 3144 Tagus 1S 0.72 29.8 % 0.66 Good 

AMJ 1710 Miño-Sil 1S 0.63 20.6 % 0.43 Good 

 

Table 7.8. Values of the verification scores (RHO, RMSESS and GSS) for the three stations selected 

as examples in Figure 7.2. 
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Figure 7.2. In rows, an example of forecasted seasonal streamflow time series for a gauging station in 

each season. a) For the autumn streamflow in station id=10020 (Mediterranean Andalusian Basin), b) 

for the winter streamflow in station id=3144 (Tagus Basin) and c) for the spring streamflow in station 

id=1710 (Miño-Sil Basin). In left panels, the location of these stations; in middle panels, scatter plots 

between the observed and forecasted seasonal streamflow in each station (black dashed line indicate 

the 33rd and 66th percentiles); and in right panels, the observed (black line) and forecasted (coloured 

lines) streamflow time series in each forecasting scenario. 

 

7.3.2 Prediction based on SVD 

Similarly to the previous section (prediction based on teleconnection indices) a summary 

of the main results of the VIF and backward stepwise selection steps is shown in Tables 7.9 to 
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7.11 (for autumn, winter and spring streamflow respectively), for all the forecasting scenarios, 

with the number of stations where the SVD modes selected as predictors overcome the VIF 

criterion and those where the predictor was selected after the backward stepwise selection. 

For autumn streamflow forecasting (Table 7.9), the predictors most affected by the VIF 

criterion are Ason2 and Rson1 from 3S scenario. The reason is the relatively high correlation 

between Ason2 and Adjf2 (related to the horseshoe-tripole pattern) on one hand, Rson1, Pson1 

and Rdjf1 (associated with the ENSO phenomenon). For most of SVD modes (excepts, perhaps, 

Zdjf2 and Rmam2), differences arise after applying the backward stepwise selection between the 

number of stations stably correlated and the number of stations that they are predictors for (for 

example, in the 3S scenario, Rson1 correlated stably with 200 stations, but it was finally used as 

predictor in 89 of them). In case of winter streamflow (Table 7.10), there are only three 

predictors, being Adjf2 the one that is not selected in most of stations as predictor after VIF and 

backward stepwise selection are applied. Also, for spring streamflow (Table 7.11), the most 

remarkable difference is observed for Pjja1, particularly due to backward stepwise selection.  
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Pson1 38 38 4 38 38 5 38 38 5 38 38 5 

Ason2 25 25 20 25 15 6 25 15 6 25 17 7 

Tson1 110 110 61 110 110 61 110 110 59 110 110 59 

Tson3 9 9 7 9 9 6 9 9 4 9 9 4 

Rson1 200 200 193 200 166 89 200 166 90 200 166 91 

Adjf1 - - - 150 150 110 150 150 89 150 150 87 

Adjf2 - - - 20 15 13 20 15 13 20 13 11 

Zdjf2 - - - 22 22 21 22 22 21 22 22 21 

Rdjf1 - - - 185 185 112 185 185 113 185 185 113 

Pmam2 - - - - - - 81 81 28 81 81 28 

Rmam2 - - - - - - 46 46 42 46 46 41 

Tjja2 - - - - - - - - - 42 42 24 

 

Table 7.9 Number of stations where predictors (SVD modes) of autumn streamflow present stable 

correlations and overcome the VIF criterion and the backward stepwise selection for the four 

forecasting scenarios. 
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Table 7.10 As Table 7.9 but for winter streamflow. 
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Pjja1 - - - 78 78 36 78 78 36 78 78 36 

Zjja1 - - - 104 104 85 104 104 86 104 104 86 

Tjja1 - - - 189 189 181 189 189 181 189 189 181 

Tjja2 - - - 27 27 26 27 27 21 27 27 21 

Zson3 - - - - - - 46 46 34 46 46 34 

Adjf2 - - - - - - - - - 7 7 3 

Tdjf1 - - - - - - - - - 41 41 32 

Rdjf3 - - - - - - - - - 14 14 11 

Table 7.11. As Table 7.9 but for spring streamflow. 

 

Table 7.12 shows the number of stations belonging to each class for each seasonal 

streamflow and forecasting scenario. Figure 7.3 displays the stations where poor, fair or good 

forecasting is found, for each seasonal streamflow and forecasting scenario. 

According to Table 7.12, autumn streamflow is forecasted for 234 stations in the 4S 

scenario, presenting some forecasting skill in 43 of them (classified as poor). From Figure 7.3, 

most of the stations are in Miño-Sil, Douro, and Tagus Basins, particularly in upper part of the 

basins, being Rson1 and Tson1 the main predictors accounting for these results. Interesting 

results are found in the scenario 3S, where it is found an interesting balance between quality of 

the forecast and seasons in advance that it is made. It is observed an increase in the number of 

forecasted stations (299), with forecasting skills found in 109 of them (in 67 stations is classified 

as poor skill, in 38 of them as fair and in 4 as good). The stations with reasonable skillful 

predictions are located in Miño-Sil, Cantabrian, upper Douro, Tagus and Ebro Basins and 

Mediterranean Andalusian Basin. In particular, 14 of the 15 stations belonging to the 

Mediterranean Andalusian Basin are forecasted in this scenario, with a fair or good forecasting 
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Pdjf3 12 12 11 12 12 11 12 12 11 12 12 11 

Adjf2 25 25 9 25 25 9 25 25 9 25 25 9 

Pmam3 - - - 11 11 6 11 11 6 11 11 6 
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results in 13 of them. In this case, Zdjf2 is found the main predictor for autumn streamflow 

(which is related to the winter AO/NAO phenomenon). Also, the incorporation of Adjf1 and 

Rdjf1 is translated in an increase of the number of stations where forecasting results are slightly 

skillful in the northern corner of the IP. Although four predictors more are incorporated when 

forecasting for scenarios 2S and 1S, slightly modifications in forecasting results are found (only 

stations in the Cantabrian Basin present more skillful predictions).  

As winter streamflow forecasting concerns, the main disadvantage is the reduced number 

of stable predictors found. Only three of the six SVD modes identified (Pdjf3, Adjf2 and 

Pmam3) can be used in forecasting winter streamflow. This circumstance limits notably the 

forecasting experiment. The only profit is that this forecasting can be made with three seasons in 

advance (these three predictors are linked to the climatic information of previous winter and 

spring). In fact, from Figure 7.3 and Table 7.1, it could be seen that winter streamflow is 

predicted in only 28 stations in 3S scenario (being these predictions skillful in 7 of them). These 

stations are mainly located in Catalonian and Mediterranean Andalusian Basins 

Regarding spring streamflow forecasting, the most noteworthy features are, on one hand, 

that there is not any predictor for 4S scenario and, on the other hand, that the quality of number 

of stations forecasted increase as lag between predictors and predictands decrease. In the 3S 

scenario, a total of 230 stations are forecasted, with some skill identified in 77 of them (56 

classified as poor and 21 as fair). These skillfully forecasted stations are mainly located in the 

northern half of IP, in particular in the Miño-Sil and Douro Basins. Pjja1, Tjja1 and Zjja1 are the 

predictors used in these stations. In the scenario 1S (Zson3, Adjf2, Tdjf1 and Rdjf3 are added as 

predictors), the number of stations forecasted increase up to 267 (being skillful in 100 of them, 

68 poorly, 31 fairly and 1 good forecasted). This increase is more remarkable in the 

Mediterranean slope and in the Tagus Basin, and it is due to the incorporation of Tdjf1 (close 

related to each other and with NAO phenomenon) as predictor. 

 

 

 

4S 3S 2S 1S 

B
ad

 

P
o
o
r 

F
ai

r 

G
o
o
d
 

B
ad

 

P
o
o
r 

F
ai

r 

G
o
o
d
 

B
ad

 

P
o
o
r 

F
ai

r 

G
o
o
d
 

B
ad

 

P
o
o
r 

F
ai

r 

G
o
o
d
 

OND 191 43 0 0 190 67 38 4 189 77 35 4 189 76 40 4 

JFM 14 4 3 0 21 4 3 0 21 4 3 0 21 4 3 0 

AMJ 0 0 0 0 153 56 21 0 160 62 22 0 167 68 31 1 

Table 7.12. Number of stations belonging to each class defined for summarizing forecasting skill (bad, 

poor, fair and good). In rows the four scenarios considered and in columns the seasonal streamflow 

forecasted (autumn -OND-, winter -JFM- and spring -AMJ-). 
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Figure 7.3. Maps of the forecasting skill classification (poor, fair or good) according with RHO, 

RMSESS and GSS values. They are displayed only stations where some forecast skills were found. In 

rows the seasonal streamflow forecasted and in columns the forecasting scenario. 

 

As in case of the forecasting streamflow based on teleconnection indices, an example is 

shown in Figure 7.4, showing the forecasting results for one station in each season (OND 

streamflow in the station id=10028, JFM streamflow in the station id=46 and AMJ streamflow in 

the station id=3013, where ‘id’ indicates the identifier of each station). The stations were 

selected among the more skilfully forecasted with the consideration to be located in different 

basins. The values of the verification scores are given in Table 7.13.  

In Figure 7.4a, station id=10028 is used as an example of autumn streamflow forecasting 

in the 3S scenario. This station is located in the Mediterranean Andalusian Basin (Figure 7.4a, 

left panel). The predictor used (after backward stepwise selection) was Zdjf2. Figure 7.4a, 

central panel, shows the good agreement between the observed and forecasted autumn 

streamflow (RHO, RMSESS and GSS are 0.69, 27.1% and 0.53, respectively). That is also 

manifested in the right panel, where the time series of both observed and forecasted streamflow 
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are plotted. Some notable details are the good agreement at the beginning and ending of the time 

series, whereas the variability of the forecasted time series during late eighties and early nineties 

is smaller than the observed and some peaks are not well reproduced. The more reduced 

variability observed in the middle of the time series is associated with the observed in winter 

NAO index during these years. Figure 7.4b presents the forecasting results for winter streamflow 

in station id=46 in the Internal Catalonian Basin (left panel) for 4S forecasting scenario. In this 

case, Pdjf3 was the predictor selected in the backward stepwise procedure and verification scores 

RHO, RMSESS and GSS are 0.53, 14.6% and 0.31, respectively. In general, low frequency 

variability is well reproduced although the low and high flows are usually underestimated, 

particularly in the middle of the time series. Figure 7.4c shows an example of spring streamflow 

forecasting in scenario 1S. The station selected (id=3013) is located in the Tagus Basin (left 

panel). The verification scores reach values up to 0.66, 24.7%, and 0.54 for RHO, RMSESS and 

GSS, respectively. The mode used as predictor was Tdjf1. From the observed and forecasted 

time series displayed in the right panel, it is seen a general good agreement in general, 

particularly in the late nineties and first years of twentieth century.  

 

Season Station Id Basin Scenario RHO RMSESS GSS CLASS 

OND 10028 Mediterranean 

Andalusian 

3S 0.69 27.1 % 0.53 Good 

JFM 46 Internal 

Catalonian 

4S 0.53 14.6 % 0.31 Fair 

AMJ 3013 Tagus 1S 0.66 24.7 % 0.54 Good 

Table 7.13. Values of the verification scores (RHO, RMSESS and GSS) for the three stations selected 

as examples in Figure 7.4. 
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Figure 7.4 In rows, an example of forecasted seasonal streamflow time series for a gauging station in 

each season. a) for autumn streamflow in station id=10028 (Mediterranean Andalusian Basin), b) for 

winter streamflow in station id=46 (Internal Catalonian Basins) and c) for spring streamflow in station 

id=3013 (Tagus Basin). In left panels, the location of these stations; in middle panels, scatter plots 

between the observed and forecasted seasonal streamflow in each station (black dashed line indicate 

the 33rd and 66th percentiles); and in right panels, the observed (black line) and forecasted (coloured 

lines) streamflow time series in each forecasting scenario. 
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7.3.3 Prediction based on teleconnection indices and SVD modes 

Tables 7.14 to 7.16 show the result from the application of the combining VIF and 

backward stepwise methods for selecting predictors (for autumn, winter and spring streamflow 

respectively), for all forecasting scenarios, when the pool of predictors is integrated by 

teleconnection indices and SVD modes. In these tables, it is displayed the number of stations 

where the teleconnection indices and the SVD modes are identified as stable predictor, those 

where the predictor overcome the VIF criterion and those where the predictor was selected after 

the backward stepwise selection. 
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WPs1 14 12 11 14 13 12 14 12 8 14 13 11 

Niño3s1 20 13 10 20 12 5 20 4 1 20 1 0 

Niño4s1 45 25 7 45 23 9 45 24 5 45 25 2 

Niño3.4s1 29 10 8 29 1 0 29 2 0 29 1 0 

SOIs1 41 34 27 41 23 14 41 31 11 41 26 5 

SAIs1 21 21 18 21 21 13 21 21 11 21 20 13 

Pson1 38 29 1 15 15 0 38 24 9 38 24 8 

Ason2 25 25 7 25 25 3 25 25 2 25 19 9 

Tson1 110 108 29 110 105 69 110 106 24 110 97 39 

Tson3 9 9 6 9 9 1 9 9 3 9 9 4 

Rson1 200 196 24 200 194 24 200 166 55 200 166 87 

NAOd - - - 20 19 14 15 15 14 15 15 2 

AOd - - - 22 13 3 20 18 7 20 16 7 

Niño4d - - - 8 8 4 22 11 2 22 5 0 

WeMOd - - - 38 23 7 8 7 6 8 7 5 

Adjf1 - - - 150 148 59 150 140 22 150 142 77 

Adjf2 - - - 20 20 4 20 20 1 20 11 9 

Zdjf2 - - - 22 22 2 22 22 8 22 22 20 

Rdjf1 - - - 185 178 131 185 172 161 185 174 107 

EAm - - - - - - 21 21 9 21 19 5 

WPm - - - - - - 15 12 4 15 12 2 

EP-NPm - - - - - - 74 67 55 74 61 46 

WeMO m - - - - - - 47 42 15 47 42 11 

Pmam2 - - - - - - 81 81 70 81 81 23 

Rmam2 - - - - - - 46 12 8 46 46 39 

EAj - - - - - - - - - 26 25 6 

Niño3.4j - - - - - - - - - 16 13 7 

SOIj - - - - - - - - - 16 16 8 

WeMOja - - - - - - - - - 17 17 10 

Tjja2 - - - - - - - - - 42 42 24 

Table 7.14 Number of stations where predictors (teleconnection indices and SVD modes) of autumn 

streamflow present stable correlations and overcome the VIF criterion and the backward stepwise 

selection for the four forecasting scenarios. 
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In Table 7.14 (for autumn streamflow forecasting), although VIF exclude some predictors 

(such as those associated with ENSO), the most remarkable predictor exclusion is carried out by 

the backward stepwise selection. For example, in 4S scenario although Rson1 correlates with 

200 stations, it was finally used as predictor in 24 of them. On the other hand, Rdjf1 remains as 

predictor in most of the stations. In general, it is observed a decreasing in the number of stations 

where the ENSO related indices are used as predictor (because they represent the same 

phenomenon, and the method choses the best one in each case). In the case of winter streamflow, 

predictors are not highly correlated between them, because of they do not usually represent the 

same event, so they are not usually dropped during the VIF and backward stepwise selection. For 

spring streamflow forecasting, something similar to autumn with ENSO related indices happen 

(it is observed pronounced decreasing in the number of stations where they are used as 

predictors). Also, It is noticeable a ‘dance of numbers’ between scenarios for a particular 

predictor (i.e., a particular teleconnection index or SVD mode can be selected as predictor in 

more stations in some scenarios than in other, which is due to the modification of predictor 

selection as a result of the incorporation of new predictors in the upcoming scenarios). 

 

 

 

 

 

 

 

 

 

 

Table 7.15 As Table 7.14 but for winter streamflow. 
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EMId1 5 5 4 5 5 4 5 5 4 5 5 1 

WeMOd1 6 6 5 6 6 5 6 6 5 6 6 5 

Pdjf3 12 12 0 12 12 0 12 12 3 12 12 10 

Adjf2 25 25 1 25 25 9 25 25 3 25 25 10 

WPm1 - - - 67 67 63 67 67 61 67 67 58 

EP-NPm1 - - - 18 18 15 18 18 15 18 18 17 

Pmam3 - - - 11 11 4 11 11 9 11 11 4 

PNAj1 - - - - - - 13 13 10 13 13 0 

SCANDs1 - - - - - - - - - 45 45 13 

WeMOs1 - - - - - - - - - 9 9 8 

SAIs1 - - - - - - - - - 238 238 237 
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Table 7.16 As Table 7.14 but for spring streamflow. 

 

Table 7.17 and Figure 7.5 display the result for the forecasting skill assessment. With 

respect to autumn streamflow forecasting, although it was forecasting in 243 stations in 4S 

scenario, only in 37 and 8 of them the quality of the forecast was classified as poor and fair, 

respectively. From Figure 7.5, most of the stations are in the Miño-Sil, Douro and, especially, 

Mediterranean Andalusian Basins. Rson1, Tson1 and SAI seem to be the main predictors 

accounting for these results. The forecasting skill increases when moving to 3S scenario (i.e., 

including predictor from previous winter). On one hand, the number of stations forecasted goes 

to 306, with a notable increase in the number of stations with satisfactory forecasting results 

(classified as poor, fair and good 70, 34 and 7 cases, respectively). In particular, it is noteworthy 

how the quality of the forecast improves in Mediterranean Andalusian Basin, where 12 stations 

are fair or good forecasted (as a consequence of the inclusion of winter NAO as predictor) and in 

the Miño-Sil, Cantabrian and upper Ebro Basins. In this case, Adjf1 and Rdjf1 give the 
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EAj1 - - - 8 8 6 8 8 5 8 8 5 

EP-NPj1 - - - 20 20 19 20 20 19 20 20 13 

PNAj1 - - - 33 33 31 33 33 30 33 30 11 

SCANDj1 - - - 9 9 8 9 9 8 9 9 7 

AOj1 - - - 53 53 51 53 53 51 53 53 14 

Niño1+2j1 - - - 37 37 23 37 37 19 37 21 14 

Niño3j1 - - - 33 29 2 33 31 7 33 18 2 

Niño3.4j1 - - - 11 10 8 11 11 6 11 10 1 

IODj1 - - - 10 10 1 10 10 0 10 6 1 

Pjja1 - - - 78 58 23 78 78 7 78 46 10 

Zjja1 - - - 104 103 40 104 104 34 104 99 75 

Tjja1 - - - 189 189 13 189 189 42 189 180 172 

Tjja2 - - - 27 27 6 27 27 4 27 27 19 

Niño1+2s1 - - - - - - 54 45 25 54 27 10 

IODs1 - - - - - - 27 27 21 27 27 7 

SAIs1 - - - - - - 7 7 4 7 7 1 

Zson3 - - - - - - 46 46 4 46 46 32 

NAOd - - - - - - - - - 17 17 12 

SCANDd - - - - - - - - - 18 18 8 

AOd - - - - - - - - - 10 9 1 

Niño1+2d - - - - - - - - - 28 20 9 

Adjf2 - - - - - - - - - 7 7 3 

Tdjf1 - - - - - - - - - 41 41 31 

Rdjf3 - - - - - - - - - 14 14 11 
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impression of being behind these results. Also, the number of stations skillful forecasted in the 

Mediterranean Basins increases. In case of 2S scenario, although the number of stations 

forecasted is similar (316), it is observed an improvement of the forecasting skill (from 111 to 

137 stations), particularly in Tagus and Ebro Basins (as a result of adding EP-NP in spring and 

Rmam2 to the predictor pool). Finally, in 4S scenario, it is observed an increase in the quality of 

the forecast in Cantabrian Basin, which it seems to be related to the inclusion of Tjja2 as 

predictor. 

Results of forecasting winter streamflow are not competent until 1S scenario, when SAI 

is included as predictor. Whereas in previous scenarios, only some stations in the Mediterranean 

slope exhibit some forecasting skills (for example, 22 in 3S scenario), in 1S scenario, a total of 

285 stations (covering most of IP) were forecasted, with poor, fair and good forecasting skill in 

100, 107 and 36, respectively.  

In case of spring streamflow, predictions are made from three seasons in advance (3S 

scenario), because of there are not any predictor from previous spring. In 3S scenario, a total of 

254 stations are forecasted, but only 95 of them present some noteworthy results (in 61 the 

forecast was classified as poor, in 32 as fair and in 2 as good). These skillfully forecasted 

stations are mainly located in the northwestern of IP, especially in Miño-Sil, Douro and Tagus 

Basins. The most relevant predictors in this case are likely summer AO and Zjja1 (closely 

related) and those associated with ENSO (such as Niño1+2, Pjja1 or PNA). The quality of the 

forecast increases slowly as moving to the target season. For instance, in 1S scenario 105 

stations are skillfully forecasted (only 10 more than in 3S scenario). This improvement is 

particularly observed in Tagus Basin, after including winter NAO as predictor. 
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OND 198 37 8 0 195 70 34 7 179 91 38 8 181 81 49 9 

JFM 16 6 5 0 88 15 7 0 94 17 7 0 42 100 107 36 

AMJ 0 0 0 0 159 61 32 2 174 70 25 3 198 69 34 2 

 

Table 7.17. Number of stations belonging to each class defined for summarizing forecasting skill (bad, 

poor, fair and good). In rows the four scenarios considered and in columns the seasonal streamflow 

forecasted (autumn -OND-, winter -JFM- and spring -AMJ-). 



7 SEASONAL STREAMFLOW FORECASTING BASED ON LARGE-SCALE CLIMATE VARIABILITY 
 

 162 

 

Figure 7.5. Maps of the forecasting skill classification (poor, fair or good) according with RHO, 

RMSESS and GSS values. They are displayed only stations where some forecast skills were found. In 

rows the seasonal streamflow forecasted and in columns the forecasting scenario. 

 

Finally, as in the previous forecasting schemes, an example of forecasting results when 

combining both subsets of predictors, teleconnection indices and SVD modes is provided in 

Figure 7.6, showing forecasting results for one station in each season (OND streamflow in 

station id=10028, JFM streamflow in station id=3163 and AMJ streamflow in station id=1710, 

where ‘id’ indicates the identifier of each station). The stations were selected among the more 

skilfully forecasted with the consideration to be located in different basins. The values of the 

verification scores are given in Table 7.18.  

In Figure 7.6a, station id=10028 is used as an example of autumn streamflow forecasting 

in the 3S scenario. This station is located in the Mediterranean Andalusian Basin (Figure 7.6a, 

left panel). The predictor used (after backward stepwise selection) was the previous winter NAO. 

Figure 7.6a, central panel, shows the good agreement between the observed and forecasted 

autumn streamflow (RHO, RMSESS and GSS are 0.73, 31.6% and 0.66, respectively). That is 
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also manifested in the right panel, which looks like similar to Figure7.6a, right panel, where a 

general good agreement in general is observed, particularly at the beginning and ending of the 

time series. Figure 7.6b presents the forecasting results for winter streamflow in station id=3163 

in the Tagus Basin (left panel) for 1S forecasting scenario. In this case, WP in previous spring 

and SAI in previous autumn were the predictors selected in the ‘VIF + backward stepwise’ 

procedure and verification scores RHO, RMSESS and GSS are 0.73, 30.0% and 0.68, 

respectively. In general, low frequency variability is well reproduced although the low and high 

flows are usually underestimated, particularly in the middle of the time series. Figure 7.6c shows 

an example of spring streamflow forecasting in 3S scenario. The station selected (id=1710) is 

located in the Miño-Sil Basin (left panel). The verification scores reach values up to 0.62, 21.6%, 

and 0.47 for RHO, RMSESS and GSS, respectively, being Tjja1 the predictor used. From the 

observed and forecasted time series displayed in the right panel, although good overall 

agreement is found, variability in the forecasted time series is reduced when comparing with the 

observed, which means that most of higher peaks are not properly reproduced. 

 

Season Station Id Basin Scenario RHO RMSESS GSS CLASS 

OND 10028 Mediterranean 

Andalusian 

3S 0.73 31.6 % 0.66 Good 

JFM 3163 Tagus 1S 0.73 30.0 % 0.68 Good 

AMJ 1710 Miño-Sil 3S 0.62 21.6 % 0.47 Good 

 

Table 7.18. Values of the verification scores (RHO, RMSESS and GSS) for the three stations selected 

as examples in Figure 7.6. 
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Figure 7.6. In rows, an example of forecasted seasonal streamflow time series for a gauging station in 

each season. a) For autumn streamflow in station id=10028 (Mediterranean Andalusian Basin), b) for 

winter streamflow in station id=3163 (Tagus Basin) and c) for spring streamflow in station id=1710 

(Miño-Sil Basin). In left panels, the location of these stations; in middle panels, scatter plots between 

the observed and forecasted seasonal streamflow in each station (black dashed line indicate the 33rd 

and 66th percentiles); and in right panels, the observed (black line) and forecasted (coloured lines) 

streamflow time series in each forecasting scenario. 
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7.4 Summary 

In this chapter it has been evaluated the ability of teleconnection indices and left 

expansion coefficients of the significant SVD modes as predictors of seasonal streamflow. 

Additionally it has been evaluated the advantage of using both datasets together. The forecasting 

methodology, based on multiple linear-regression models, was developed for four forecasting 

scenarios, related to the number of seasons prior to which the forecasting is made, from one year 

until one season in advance, updating and improving the predictions seasonally. This approach 

becomes a useful tool for decision making related to water management, since predictions are 

given with different seasons in advance. The question of multicollinearity among predictors was 

addressed by combining two iterative methods in the regression analysis: variance inflation 

fraction and backward stepwise selection.  

For forecasting based on teleconnection indices: 

 In case of autumn streamflow forecasting, reasonable good predictions (with RHO > 0.5, 

RMSESS > 20% and GSS > 0.4) are found for stations located in the Mediterranean 

Andalusian Basin, particularly from 3S scenario (i.e. considering the information 

provided by seasonal teleconnection indices from previous autumn and winter). In these 

cases, the SAI measured in October of the previous year, and the previous winter NAO 

and AO indices constitute the predictors used. Moderately accurate predictions (RHO > 

0.44, RMSESS > 10% and GSS > 0.2) were also found in the 3S and 2S scenario for 

stations located in the northern basins of the IP (Miño-Sil, Douro, Ebro, and Tagus 

Basins), ENSO indices in the previous autumn, together with spring EP-NP and WeMO 

indices being the most widely used predictors.  

 For winter streamflow forecasts, in the scenarios 4S, 3S, and 2S, forecasting skill was 

found only in stations located in the Mediterranean sector, although most of them 

presented poor forecasting skill. On the other hand, a significant number of stations (168) 

presented moderate or good predictions (with RHO > 0.44, RMSESS > 10% and GSS > 

0.2) for the 1S scenario, especially in basins located in the central and western IP. The 

SAI was identified as the main predictor for winter streamflow, in both the number of 

stations significantly correlated and the highest correlation values. From this result, 

teleconnection indices are not able to predict winter streamflow more than two months in 

advance, and only when the October SAI is added, skillful predictions are made. These 

results agree with those of Brands et al. (2012, 2013), who forecasted winter precipitation 

with reasonable skill over the central and western IP by using the SAI as the predictor. In 
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addition to this, SAI is a very helpful predictor not only for following winter precipitation 

and streamflow but also for following autumn streamflow in Mediterranean Andalusian 

Basin. Bearing in mind that the temporal coverage of the ‘daily’ version of SAI (which 

presents higher correlations with JFM streamflow than the ‘weekly’ version) is still short, 

we conclude that the larger time series of SAI available, the more skillful winter 

streamflow forecasting.  

 Spring presents the poorest forecasting results (only 17 stations showed moderate or good 

predictions in the most favorable scenario, 1S). Stable positive correlations were found 

with indices related to atmospheric or oceanic variability in the Pacific, such as Niño1+2, 

Niño3, Niño3.4, IOD, PNA or EP-NP in summer for stations in the northwest. Also, 

summer AO was found to be a stable predictor of stations in the northern half of the IP. 

In the case of stations located in central and southern basins of the IP, the previous winter 

SCAND and NAO are the teleconnection indices best correlated with them. 

Results from forecasting experiment based on significant SVD modes indicate that: 

 In case of autumn streamflow forecasting, moderately skillful predictions are obtained 

from 3S scenario, particularly in the northwestern of IP (Miño-Sil, Cantabrian, and upper 

Douro, Ebro and Tagus Basins) and also in the southern part (Mediterranean Andalusian 

Basin). In case of the Mediterranean Andalusian Basin, 13 of 15 stations in this Basin 

were fair or good forecasted (with RHO > 0.44, RMSESS > 10% and GSS > 0.2). The 

predictors associated with the acceptable results in northern basins are Pson1 and Rson1, 

related to El Niño phenomenon, Tson1, linked with the impacts of autumn SCA in global 

temperature, and Adjf1, which could be related to the influence of tropical Atlantic on 

tropical Pacific (as a precursor of El Niño phenomenon). On the other hand, the autumn 

streamflow in the central and eastern façade of the IP is not properly forecasted. The 

reason behind is basically that there was few stations located in the Mediterranean slope 

(except those in the Mediterranean Andalusian Basin and some in the Jucar and Segura 

Basins) with stable predictors. Then, despite the quality of predictions is not very high 

(except for stations in the Mediterranean Andalusian Basin), they are obtained with up to 

seven months in advance, which is an interesting gap for developing water management 

strategies.  

 Regarding winter streamflow forecasting, the results in both number of stable predictors 

and number of stations with a reasonable good forecast are too low to make conclusions. 

Only some stations (mainly in the Catalonian and Mediterranean Andalusian Basins) 



SEASONAL STREAMFLOW FORECASTING BASED ON LARGE-SCALE CLIMATE VARIABILITY 7 
 

 167 

were forecasted. In case of stations in the Mediterranean Andalusian Basin, the predictor 

used in Adjf2, which resembles the ‘tripole’ pattern in North Atlantic, which is linked to 

NAO. This finding agrees with the found in the autumn streamflow forecasting in the 

Basin, indicating that the influence of winter NAO on streamflow on the Mediterranean 

Andalusian Basin could extent from following autumn to winter.  

 As spring streamflow forecasting concerns, there is no predictor for the 4S scenario. The 

first predictions are found in the 3S scenario, particularly for stations in the Miño-Sil and 

Douro Basin (up to 57 stations in both basins). The Pjja1 (associated with ENSO), Zjja1 

(linked to Northern Annular Mode) and Tjja1 are the main predictors for those stations. 

Moving to 2S and 1S scenario, there is a slight increase in the quality of predictions, 

which is more significant in case of 1S (particularly in the Douro and Tagus Basins), 

when Zdjf1 and Tdjf1 are added as predictors. Both modes are related to winter NAO, 

which is major driver of winter precipitation in western IP.  

One last comment regarding forecasting streamflow based on SVD modes. It was noted 

in the ‘Introduction’ and ‘Methodology’ sections that the SVD must be conducted for each 

calibration subset to create the left expansion coefficients for each leave-one-out realization, 

because of the use of the coefficient calculated using the whole period could lead in a 

overestimation of forecasting skills produced when information about the year to be forecasted is 

used to identify and construct the predictors. To evaluate this ‘overestimation’, the entire 

forecasting methodology was repeated using as predictors the left expansion coefficients derived 

from the SVD carried out with the entire period, and removing the target year from these left 

expansion coefficients for calibrating the regression models. Figure 7.7 and table 7.19 

summarize the classification of forecasting skills. It could be seen a remarkable increasing in 

both number of stations skillful predicted and quality of predictions, particularly in case of 

autumn and spring. Then, it is noteworthy how the incorrect use of SVD for forecasting purposes 

(i.e., using the information of the target years in the construction of SVD modes, which are used 

as predictors) produces an overestimation in forecasting skills. 
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OND 46 53 99 40 58 80 106 58 46 68 123 74 49 69 119 79 

JFM 4 12 6 0 11 13 7 0 11 13 7 0 11 13 7 0 

AMJ 0 0 0 0 39 42 100 48 46 42 105 54 54 48 116 55 

Table 7.19. Number of stations belonging to the each of the classes defined for summarizing 

forecasting skill (bad, poor, fair and good). In rows the four scenarios considered and in columns the 

seasonal streamflow forecasted (autumn-OND-, winter-JFM-and spring-AMJ-). 

 

 

Figure 7.7. Maps of the forecasting skill classification (poor, fair or good) according with RHO, 

RMSESS and GSS values. Only stations with some forecast skills are displayed. In rows the seasonal 

streamflow forecasted and in columns the forecasting scenario. 

 

Finally, the main conclusions from forecasting experiment combining teleconnection 

indices and significant SVD modes indicate that: 

4S 3S 2S 1S 

OND 

JFM 

AMJ 
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 In case of autumn streamflow, forecast based on SVD modes provide better results than 

the based on teleconnection indices, particularly in the northern IP. Nevertheless, adding 

teleconnection indices as predictors improve forecasting in some basins and scenarios, 

such as in the Mediterranean Andalusian Basin (for the 4S scenario) or the Tagus Basin 

(for the 2S and 1S scenarios). 

 Predictability of winter streamflow is almost inexistent (excluding some stations in the 

Mediterranean slope) for all cases of predictors (SVD modes, teleconnection indices or a 

combination of both), except when SAI of previous October is considered as predictor. In 

that case, most station in the IP are reasonable well forecasted (except in the Cantabrian 

and Mediterranean slopes).  

 Similarly to autumn streamflow, the use of SVD modes as predictors provides overall 

more skillful predictions of spring streamflow. However, when teleconnection indices are 

added as predictors, some improvements are observed in forecasting skills, particularly in 

the southern IP for the 3S, 2S and 1S scenarios.  
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CHAPTER 8 

CONCLUSIONS 

 

This chapter recapitulates the main conclusions obtained from this 

dissertation. It is structured in three parts: the first one summarizes the results 

related to the analysis of the raw database and the spatial and temporal 

description of the seasonal streamflow variability. The second part outlines the 

results derived from the analysis of potential climate predictors and their 

forecasting skills. Finally, the third section addresses the limitations of this 

study and the fundamental lines of future work.  

 

 

Streamflow forecasting is challenging because of the complexity of the hydrologic 

system. Improving the quality of streamflow forecasting has always been an important task for 

researchers and hydrologic forecasters. Then, the motivation of this dissertation relies on the 

necessity to improve the understanding of the large-scale climate variability that drives the 

streamflow variability on the Iberian Peninsula, which becomes the basis for developing 

streamflow forecast at scales that are of paramount importance for population and natural 

environment.  

The original database comprises 1380 gauging stations. From the trade off between number 

of available stations, covering period and percentage of gaps, 504 stations involving 1975-2008, 
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with less than 10% of missing values, were selected. In addition to data availability, the quality 

and homogeneity of streamflow time series are prerequisites for reliable and trustworthy 

assessment of seasonal streamflow forecasting. Hence, to investigate the presence of 

inhomogeneities in hydrological time series (particularly because of regulation effects), a 

combined methodology based on Pettitt test and Common Area Index was applied to the seasonal 

time series. Consequently, 122 gauging stations were discarded because of the existence of a non-

natural behaviour. These stations were mainly located in the main stream of the Tagus River and 

the Guadiana, Guadalquivir, Segura and Jucar Basins. Changes in time series were mainly 

identified in summer, with increase in discharge in years after the construction of a reservoir 

upstream (probably because of reservoir management to ensure water availability during the drier 

months). Sometimes the change in summer is related to a decrease in river discharge in the wet 

season (for water storage in reservoirs), which could be significantly enough to result in a great 

alteration of annual cycle. Then, for the remaining 382 stations, a reconstruction scheme was 

performed to fill in missing values by linear regression. 

The first part of this work attempts to explore spatial and temporal characteristics of 

streamflow variability in the Iberian Peninsula. Regarding the time-location of the highest 

intrannual discharge, stations located in the western IP (Cantabrian, Miño-Sil, Douro, Tagus, 

Guadiana, Guadalquivir, Jucar and upper Ebro Rivers) present their highest seasonal values in 

winter. These stations usually present a highly marked seasonality (with higher values in winter 

and smaller in summer). The Jucar and Segura Basins usually present a similar streamflow 

regime during all year, which is mainly due to regulation effects. Stations in the Ebro Basin and 

also some stations belonging the Internal Catalonian Basin (those nearest to the Pyrenees) show 

their maximum discharge values in spring (because of snowmelt contributions). Also, there are 

some stations located in the Mediterranean slope (particularly those in the Mediterranean 

Andalusian Basin) with their maximum discharges in autumn (as consequence of convective 

precipitation in that area). 

Streamflow variability in autumn and winter (the wettest seasons) presents similar spatial 

patterns according to PCA results, grouping the stations in the Miño-Sil, Douro, Tagus, Guadiana 

and Guadalquivir Basins in the first mode, stations in the Cantabrian and Upper Ebro Basins in 

the second mode, and stations in the Mediterranean Andalusian and Internal Catalonian Basins in 

the third and fourth modes. On the other hand, spatial patterns differ in spring and summer (drier 

half of the year), when they reveal a clear north-south gradient. 



CONCLUSIONS 8 
 

 173 

From trend analysis, overall significant trends are negative in all seasons, particularly in 

the northern and eastern stations, with some exceptions. For example, positive trends are found 

in autumn in Douro Basin, which could be partially related to an observed increase in their 

variability during the second half of the study period. Negative trends found in winter and spring 

could be related to the persistence of positive NAO phase during the last two decades of 

twentieth century, translated in a minor precipitation and snow during winter in most of the IP. 

The positive trends found in summer are likely to be a consequence of hydrological regulation to 

ensure water requirements for urban supplies and irrigation. 

The second part of this Thesis consisted on identifying the main climate factors that have a 

noteworthy influence on near future (lagging from one to four seasons) seasonal streamflow 

variability of IP Rivers. Summer was not considered in these analyses because most stations 

present the lowest streamflow discharge and variability in this season. Moreover, this part 

provides an insight into the possible mechanisms and physical processes behind these 

relationships. Once identified, they were used as predictors in a seasonal streamflow forecasting 

exercise. The forecasting methodology, based on multiple linear-regression models, was 

developed for four forecasting scenarios, related to the number of seasons prior to which the 

forecasting is made, from four seasons (4S scenario) until one season (1S scenario) in advance, 

updating and improving the predictions seasonally. This approach becomes a useful tool for 

decision making related to water management, since predictions are given with different seasons 

in advance. 

Firstly, teleconnection indices that summarize the main modes of variability of climate 

system were evaluated as potential predictors of seasonal (autumn, winter and spring) streamflow 

through an analysis of the stability of the significant correlations found. Major findings are 

recapitulated as: 

 Although El Niño indices in previous autumn appear as potential predictors of following 

autumn streamflow for stations in the northwestern corner of the IP, the quality of the 

predictions based on them is not very high (classified as poor forecast). Conversely, 

autumn streamflow in the Mediterranean Andalusian Basin is good predicted (RHO > 

0.5, RMSESS > 20%, and GSS > 0.4) with three seasons in advance, when information 

about previous October SAI and winter NAO are available. Moderate predictions (RHO 

> 0.44, RMSESS > 10%, and GSS > 0.2) are also found in the 3S and 2S scenarios for 

stations located the northern basins of the IP (Miño-Sil, Douro, Ebro, and Tagus Basins), 
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when spring EP-NP and WeMO indices are added to ENSO indices of the previous 

autumn as predictors.  

 For winter streamflow forecasts, in scenarios 4S, 3S, and 2S, forecast is skilful only in 

stations located in the Mediterranean sector, although most of them presented poor 

forecasting skill. On the other hand, a significant number of stations (168) presented 

moderate or good predictions (with RHO > 0.44, RMSESS > 10%, and GSS > 0.2) for 

the 1S scenario, especially in basins located in the central and western IP. The SAI is 

identified as the main predictor for winter streamflow, in both the number of stations 

significantly correlated and the highest correlation values. Consequently, teleconnection 

indices are not able to predict winter streamflow more than two months in advance (when 

the October SAI is used as predictor). Hence, SAI is found a very helpful predictor not 

only for following winter precipitation and streamflow but also for following autumn 

streamflow in the Mediterranean Andalusian Basin.  

 Spring was only fair or good forecasted in 17 stations in the most favourable scenario 

(1S). Although several indices related to atmospheric or oceanic variability in the Pacific 

in summer, such as Niño1+2, Niño3, Niño3.4, IOD, PNA or EP-NP and also summer AO 

present stable correlations with stations in the northern IP, prediction based on them are 

mostly classified as poor (46 of the 52 that present forecasting skill). These forecasting 

skills slightly increase in 1S scenario (specially in the southern half of the IP), when 

previous winter SCAND and NAO indices are added as predictors.  

Secondly, Singular Value Decomposition (SVD) technique was employed to identify and 

isolate the main modes of covariability between seasonal streamflow and the climate variables 

(sea surface temperature, geopotential height at 500 hPa in Northern Hemisphere and global 

temperature and precipitation) that precede it from one to four seasons. This procedure allows us 

to establish new modes of covariability apart from the represented by teleconnection indices, 

which can be used as predictors of seasonal streamflow. Next paragraphs summarize the 

significant modes of covariability found and their ability as potential predictors of seasonal 

streamflow: 

 Up to 13 modes of covariability were used to predict autumn streamflow (most of them 

associated with climate variability in previous autumn and winter). In fact, forecasting 

results for 3S scenario (with information of previous autumn and winter) are quite 

acceptable (42 stations with RHO > 0.44, RMSESS > 10%, and GSS > 0.2), particularly 

in the Mediterranean Andalusian Basin, with Zdjf2 and Adjf2 (related to winter NAO) as 
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predictors, but also in the north-northwestern IP (Douro, Miño-Sil, Cantabrian and upper 

Ebro Basins), being Rson1, Adjf1 and Rdjf1 (linked to ENSO) the main predictors. 

 Only 3 modes of covariability between climate variables and winter streamflow were 

selected as potential predictors (significant and stable). Forecasting results were poor and 

only few stations in the Mediterranean Andalusian and Internal Catalonian Basins 

showed some forecasting skills, being Adjf2 (related to winter NAO) and Pdjf3 (related 

to El Niño Modoki) the predictors used.  

 In case of spring streamflow, 8 modes of covariability were used as predictors. Four of 

them are related to summer climate variability, Pjja1 (similar to El Niño SST pattern), 

Zjja1 (resembling the summer Northern Annular Mode), Tjja1 and Tjja2. Forecasting 

models based on these four predictors (3S scenario) provide some skilful predictions (up 

to 21 stations with RHO > 0.44, RMSESS > 10%, and GSS > 0.2) in the northeastern 

quadrant of IP (specially in the Miño-Sil and Douro Basins). Prediction skills increase in 

Tagus Basin when Tdjf1 (related to winter NAO) is added to the pool of predictors in 1S 

scenario. 

To sum up, the use of SVD improves the forecasting skills of autumn and spring 

streamflow with respect to the use of teleconnection indices as predictors. This improvement, 

likely due to the inclusion of additional information of climate system not reflected in 

teleconnection indices, is particularly relevant for 3S scenario. Conversely, winter streamflow 

was not forecasted in almost any stations. In this case, SAI appears to be the only reliable 

predictor.  

In conclusion, this study can be advantageous compared with earlier studies examining the 

potential predictability of large-scale climate variability on seasonal streamflow variability of the 

IP Rivers in several ways. First, it depends on a dataset of long, complete, reliable and spatially 

well-covered time series, which enable us to describe with a high spatial resolution the potential 

use of different climate signals as predictors of seasonal streamflow in different areas of the IP. 

This fact becomes interesting for making local decision in water resources management, 

highlighting the need to adopt their future policy and development plans on a more local scale to 

meet future demands. Previous studies were only restricted to very smaller number of gauging 

stations. Second, this study explores the links between climate signal and streamflow variability 

of the IP Rivers, not only evaluating the most commonly used climate indices but also exploring 

further relationships between climate variability and streamflow in the following seasons. Third, 

this study can provide a more comprehensive view of relationship of climate variability and 
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streamflow on seasonal timescales in a way that can significantly contribute to streamflow 

forecasting purposes (with various forecasting schemes, according to the time in advance the 

predictions are made). In particular, the use of an approach based on seasonally updated 

predictions allows the option of developing water-management policies some seasons in advance 

and with the possibility of modifying or adjusting these strategies as the predictions are updated. 

Having skilful forecasting with several months in advance provides helpful information for 

water-management strategies. 

 

Future work 

There are several areas of the proposed research that can be significantly improved in future 

work, which are listed below:  

 Bearing in mind that the temporal coverage of the ‘daily’ version of SAI (which presents 

higher correlations with JFM streamflow than the ‘weekly’ version) is still short, it can be 

concluded that the larger time series of SAI available, the more skilful winter streamflow 

forecasting. However, as the stationary of the relationship between October SAI and 

following winter AO has been questioned, it must be checked in future studies.  

 Improving the understanding of physical basis supporting the links between winter NAO 

and following autumn streamflow in the Mediterranean Andalusian Basin, such as the 

role of summer SST in the Mediterranean Sea close to this Basin or other related 

mechanisms, requires more thoughtful investigation.  

 In addition to SAI, the role of the cryosphere, in particular the sea-ice Arctic variability in 

summer, in streamflow of the IP Rivers in subsequent seasons is a matter of further 

investigations. In particular, the relationships between sea-ice decline and Northern 

Annular Mode in summer and its effect on following winter climate. 

 When larger time series of seasonal streamflow become available, it will be interesting to 

explore the non-linear relationships between ENSO and seasonal streamflow, with 

separate analysis of the response to El Niño, Neutral and La Niña years. Also, the 

modulation that low frequency variability modes, such as PDO or AMO, could result in 

ENSO or NAO conditions, and its repercussion on seasonal streamflow variability, could 

be evaluated. 
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 Also, larger time series are more appropriate for applying different forecasting 

methodologies, such as categorical forecast framework based on probabilities, which 

could explore further the relationships between predictors and predictands.  

 With the basis established here, forecasting at smaller spatial scales (basin or subbasin) 

can be improved considering the effects of variables such as land-cover, the snowmelt 

contribution, soil moisture or topography factors, and also using different forecasting 

methodologies, such as those based on hydrological models. 
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CHAPTER 8 

CONCLUSIONES 

 

Este capítulo resume las principales conclusiones obtenidas de esta Tesis 

Doctoral. Se estructura en tres partes: en la primera se resumen los resultados 

relacionados con el análisis de la base de datos y la descripción espacial y 

temporal de la variabilidad del caudal estacional en la Península Ibérica En el 

segundo apartado se exponen los resultados derivados del análisis de los 

posibles predictores climáticos y las predicciones obtenidas a partir de ellos. 

Por último, la tercera parte se ocupa de las limitaciones de este estudio y las 

líneas fundamentales de futuros trabajos. 

 

 

La predicción del caudal entraña una alta dificultad, como consecuencia de la 

complejidad del sistema hidrológico. Mejorar la calidad de las predicciones del caudal ha sido 

siempre una tarea importante para los investigadores y los hidrometeorólogos. Por consiguiente, 

la motivación de esta Tesis radica en la necesidad de mejorar la comprensión de la variabilidad 

climática de gran escala que influye en la variabilidad del caudal de los ríos ibéricos, que a su 

vez constituye la base para el desarrollo de predicciones de caudal a escalas temporales de suma 

importancia para la población y el medioambiente. 
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La base de datos original comprende 1.380 estaciones de aforo. Tras un pormenorizado 

análisis del número de estaciones disponibles, período que cubren y porcentaje de datos 

faltantes, se seleccionaron 504 estaciones para el periodo 1975-2008 con menos del 10% de los 

valores perdidos. Además de la disponibilidad de datos, la calidad y homogeneidad de las series 

temporales de caudales son requisitos previos para una evaluación fiable de la predictibilidad del 

caudal estacional. Por lo tanto, se ha investigado la presencia de inhomogeneidades (sobre todo 

debido a los efectos de regulación) utilizando una metodología combinada basada en el test de 

Pettitt y el Índice de Área Común. Como resultado, 122 de las anteriores estaciones fueron 

descartadas debido a la existencia de un comportamiento no natural en las mismas. Estas 

estaciones se localizan principalmente en las cuencas del Tajo, Guadiana, Guadalquivir, Segura 

y Júcar. Los puntos de ruptura identificados en dichas series se localizan principalmente en 

verano, lo cual está probablemente relacionado con aumentos del caudal a partir de la 

construcción de un embalse en la parte superior del río y la gestión del mismo con el fin de 

asegurar la disponibilidad de agua durante los meses más secos. En ocasiones, este cambio va 

acompañado de una disminución del caudal durante los meses de invierno (para el 

almacenamiento de agua en los embalses), que en algunos casos es lo suficientemente 

significativo como para dar lugar a una gran alteración de ciclo anual. Finalmente, los huecos 

encontrados en las 382 estaciones restantes se han rellenado usando métodos de regresión lineal. 

Una vez preparada la  base de datos, la primera parte de este trabajo tiene el objetivo de 

explorar las características espaciales y temporales de la variabilidad del caudal de los ríos 

ibéricos. En este sentido, las estaciones situadas en el oeste de la península (Cantábrico, Miño-

Sil, Duero, Tajo, Guadiana, Guadalquivir, Júcar y alto Ebro) presentan sus valores más altos de 

caudal en invierno. Estas estaciones generalmente presentan una estacionalidad muy marcada 

(con valores más altos en invierno y más pequeños en verano). Por otro lado, las cuencas del 

Júcar y Segura presentan un régimen de caudal similar durante todo el año, lo que se debe 

principalmente a efectos de regulación. Las estaciones de la cuenca del Ebro y también algunas 

estaciones que pertenecen a las cuencas internas catalanas (las más cercanas a los Pirineos) 

muestran sus valores de descarga máxima en primavera (debido a las contribuciones del 

deshielo). Además, hay algunas estaciones ubicadas en la vertiente mediterránea (en particular 

las de la cuenca mediterránea andaluza) cuyos máximos de caudal se alcanzan en otoño (como 

consecuencia del mayor aporte de la precipitación de carácter convectivo en esa zona, que 

sucede a final del verano y principios de otoño). 



CONCLUSIONES 8 
 

 181 

En cuanto a la variabilidad espacial de los caudales en el otoño y el invierno (las 

estaciones más húmedas), ésta presenta patrones espaciales similares según los resultados del 

análisis PCA, agrupando las estaciones de las cuencas del Miño-Sil, Duero, Tajo, Guadiana y 

Guadalquivir en el primer modo, las estaciones del Cantábrico y Alto Ebro en el segundo modo, 

y estaciones de las cuencas mediterránea andaluza e internas catalanas en el tercer y cuarto 

modo, respectivamente. Por otra parte, estos patrones espaciales difieren más en la primavera y 

el verano (la mitad más seca del año), revelando un claro gradiente norte-sur. 

Acerca del análisis de la variabilidad temporal del caudal estacional, en general, 

predominan las tendencias negativas, especialmente en las estaciones localizadas en cuencas del 

norte y del este, con algunas excepciones. Por ejemplo, las tendencias positivas encontradas en 

otoño en la cuenca del Duero, que podrían deberse a un aumento en su variabilidad observada en 

la segunda mitad del período de estudio. Las tendencias negativas encontradas en el invierno y la 

primavera podrían estar relacionadas con la persistencia de la fase positiva de la NAO durante 

las dos últimas décadas del siglo XX, lo que se traduce en una menor precipitación y nieve 

durante el invierno en la mayor parte de la península. Por el contrario, las tendencias positivas 

encontradas en verano es probable que sean una consecuencia de la regulación hidrológica para 

garantizar las necesidades de agua para abastecimiento urbano y regadíos. 

La segunda parte de esta Tesis ha consistido en la identificación de los principales 

factores climáticos que influyen notablemente en la variabilidad del caudal en  estaciones 

posteriores (con un retraso de entre una y cuatro estaciones). En este caso, el verano no ha sido 

considerado debido a que tanto el promedio del caudal como su variabilidad presentan sus 

menores valores en la mayoría de las estaciones de aforo. Por otra parte, otro objetivo abordado 

en este apartado ha sido dar una idea de los posibles mecanismos y procesos físicos que sirven 

como base de estas relaciones. Una vez identificados, han sido utilizados como predictores en un 

experimento de predicción estacional del caudal. La metodología de predicción se ha basado en 

la construcción de modelos de regresión lineal múltiple, y se ha desarrollado para cuatro 

escenarios de predicción, de acuerdo con el número de estaciones previas con las que se realiza 

la predicción, desde cuatro estaciones (escenario 4S) hasta una estación (escenario 1S) de 

adelanto, llevándose a cabo una actualización y mejora de las predicciones a medida que se 

avanza en el tiempo hacia el caudal a predecir. Este enfoque se convierte en una herramienta útil 

para la toma de decisiones relacionadas con la gestión del agua, ya que las predicciones se dan 

con la antelación correspondiente al escenario empleado. 
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En primer lugar se han evaluado como potenciales predictores los índices de teleconexión 

que resumen los principales modos de variabilidad del sistema climático, a través de un análisis 

de la estabilidad de las correlaciones significativas encontradas con el caudal estacional en las 

estaciones siguientes. Los principales hallazgos se recapitulan como sigue: 

 Los índices relacionados con el fenómeno de El Niño en el otoño anterior aparecen como 

posibles predictores del caudal del otoño siguiente para estaciones de aforo ubicadas en 

el cuadrante noroeste de la península. Sin embargo, la calidad de las predicciones 

obtenidas no es muy alta. Por el contrario, el caudal de otoño en la cuenca mediterránea 

andaluza se predice mejor (RHO> 0.5, RMSESS> 20% y GSS> 0,4) con tres estaciones 

de antelación, cuando se utiliza la información sobre el SAI del octubre anterior y el 

índice  NAO del invierno anterior. Se obtienen predicciones moderadas (RHO> 0,44, 

RMSESS> 10% y GSS> 0,2) en los escenarios 3S y 2S para estaciones ubicadas en las 

cuencas del norte de la península (Miño-Sil, Duero, Ebro y Tajo), cuando los índices EP-

NP y WeMO de la primavera anterior se añaden a los índices del ENSO del otoño 

anterior como predictores. 

 En relación con la predicción del caudal de invierno, en los escenarios 4S, 3S y 2S, sólo 

algunas estaciones ubicadas en el sector mediterráneo fueron susceptibles de predicción, 

aunque la mayoría de ellas presentan pobre habilidad predictiva. Sin embargo, en un 

número significativo de estaciones (168) se presentan predicciones moderadas o buenas 

(con RHO > 0,44, RMSESS > 10% y GSS > 0,2) para el escenario 1S, especialmente en 

las cuencas situadas en el centro y oeste peninsular. El SAI del octubre previo se 

identifica como el principal predictor para el caudal de invierno. Como consecuencia, los 

índices de teleconexión no son capaces de predecir los caudales de invierno con más de 

dos meses de antelación (cuando el SAI de octubre se utiliza como predictor). La 

capacidad predictiva del SAI sobre el caudal de invierno en la mayor parte de la 

península (excepto para estaciones en las vertientes cantábrica y mediterránea), se suma a 

la ya encontrada sobre el caudal del otoño siguiente en las estaciones de aforo de la 

cuenca mediterránea andaluza. 

 Para el caudal de primavera, solamente en 17 estaciones, en el escenario más cercano 

(1S), se obtienen predicciones razonablemente buenas. A pesar de que varios índices 

relacionados con la variabilidad atmosférica u oceánica, como los índices Niño1+2, 

Niño3, Niño3.4, IOD, PNA, EP-NP y AO de verano presentan correlaciones estables con 

estaciones en el norte de la península, las predicciones obtenidas se clasifican como 
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pobres en la mayoría de los casos en los que se identifica cierta habilidad predictiva (46 

de 52). La calidad de la predicción aumenta ligeramente en el escenario 1S 

(especialmente en la mitad sur), cuando se añaden los índices SCAND y NAO del 

invierno anterior como predictores. 

En segundo lugar, se ha empleado la técnica de descomposición en valores singulares 

(SVD) para identificar y aislar los principales modos de variabilidad acoplada entre el caudal 

estacional y las variables climáticas (temperatura de la superficie del mar, altura geopotencial a 

500 hPa en el Hemisferio Norte y la temperatura y precipitación globales) que preceden entre 

una y cuatro estaciones al caudal. Este procedimiento permite establecer nuevos modos de 

variabilidad acoplada adicionales a los representados por los índices de teleconexión, que pueden 

ser utilizados como predictores del caudal estacional. Los párrafos siguientes resumen los modos 

significativos de variabilidad acoplada encontrados, así como su capacidad como posibles 

predictores de caudal estacional. 

 Se han utilizado hasta 13 modos de variabilidad acoplada para predecir el caudal de 

otoño (la mayoría de ellos asociados con la variabilidad climática en el otoño y el 

invierno previos). De hecho, los resultados de predicción para el escenario 3S (con 

información del otoño y el invierno previos) son bastante aceptables (42 estaciones con 

RHO > 0,44, RMSESS > 10% y GSS > 0,2), en particular en la cuenca mediterránea 

andaluza, con Zdjf2 y Adjf2 (relacionados con la NAO de invierno) como predictores, y 

en el norte-noroeste de la península (cuencas del Duero, Miño-Sil, Cantábrico y alto 

Ebro), con Rson1, Adjf1 y Rdjf1 (vinculados al fenómeno de El Niño) como principales 

predictores. 

 Sólo 3 modos de variabilidad acoplada entre las variables climáticas y el caudal de 

invierno fueron seleccionados como posibles predictores. Debido a ello, sólo unas pocas 

estaciones en las cuencas mediterránea andaluza e internas catalanas presentan cierta 

habilidad predictiva, siendo Adjf2 (relacionado con la NAO de invierno) y Pdjf3 

(relacionado con El Niño Modoki) los predictores utilizados. 

 En el caso del caudal de primavera, 8 modos de variabilidad acoplada se han utilizado 

como predictores. Cuatro de ellos están relacionados con la variabilidad climática de 

verano, Pjja1 (relacionado con el fenómeno de El Niño), Zjja1 (parecido al Modo Anular 

del Norte en verano), Tjja1 y Tjja2. Los modelos de predicción basados en estos cuatro 

predictores (escenario 3S) proporcionan algunas predicciones hábiles (hasta 21 

estaciones con RHO > 0.44, RMSESS > 10% y GSS > 0.2) en el cuadrante noreste de la 
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península (especialmente en las cuencas del Miño-Sil y del Duero). La calidad de la 

predicción aumenta en la cuenca del Tajo cuando Tdjf1 (relacionado con la NAO de 

invierno) se añade al conjunto de predictores en el escenario 1S. 

En resumen, el uso de SVD mejora la capacidad predictiva del caudal de otoño y 

primavera con respecto al uso de los índices de teleconexión como predictores. Esta mejora, 

probablemente debida a la inclusión de información adicional del sistema climático que no se 

refleja en los índices de teleconexión, es particularmente relevante para el escenario 3S. Por el 

contrario, no se obtienen predicciones para el caudal de invierno en la mayoría de las estaciones 

como consecuencia del bajo número de predictores obtenido. En este caso, el SAI de otoño 

parece ser el único predictor fiable. 

En conclusión, este estudio puede ser ventajoso en comparación con estudios anteriores 

que han examinado la potencial predictibilidad de la variabilidad del caudal estacional de los ríos 

de la Península Ibérica asociada a la variabilidad climática de gran escala en varios aspectos. En 

primer lugar, se basa de un conjunto de datos de series temporales suficientemente largas, con 

buena cobertura espacial y cuya calidad ha sido comprobada, lo que permite describir con una 

alta resolución espacial el uso potencial de las diferentes señales climáticas como predictores del 

caudal estacional en distintas áreas de la península. Este hecho se hace interesante para la toma 

de decisiones locales en la gestión de los recursos hídricos, destacando la necesidad de adoptar 

políticas y planes de desarrollo en una escala más local capaz de satisfacer las demandas futuras. 

A diferencia de este trabajo, otros estudios previos se han limitado al análisis de un pequeño 

número de estaciones de aforo. En segundo lugar, este estudio examina los vínculos entre la 

señal y la variabilidad climática del caudal de los ríos de la península, no sólo evaluando los 

índices climáticos más utilizados, sino también explorando nuevas relaciones entre la 

variabilidad climática y los caudales en estaciones posteriores. En tercer lugar, este estudio 

puede proporcionar una visión más completa de la relación entre la variabilidad del clima y el 

caudal en escalas de tiempo estacionales que puede contribuir de manera significativa al 

pronóstico de los caudales de los ríos (con diversos planes de previsión, de acuerdo con el 

tiempo de antelación con el que se hacen las predicciones). En particular, el uso de un enfoque 

basado en predicciones actualizadas estacionalmente permite la opción de desarrollar políticas de 

gestión del agua con algunas estaciones de antelación y con la posibilidad de modificar o ajustar 

estas estrategias conforme  se actualizan las predicciones. La disponibilidad de predicciones 

adecuadas con varios meses de antelación proporciona una información muy útil para el 

establecimiento de estrategias de gestión del agua. 
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Trabajo futuro 

Hay varias áreas de la investigación propuesta que se pueden mejorar de manera 

significativa en futuros trabajos, de acuerdo con las siguientes consideraciones: 

 Teniendo en cuenta que la cobertura temporal de la versión 'diaria' del SAI (que presenta 

una mayor correlación con el caudal de invierno que la versión 'semanal') sigue siendo 

corta, se puede concluir que conforme aumente la longitud temporal disponible del 

mismo, aumentará la calidad de las predicciones. Sin embargo, el carácter estacionario de 

la relación entre SAI de octubre y AO/NAO de invierno (recientemente cuestionado) ha 

de ser revisado en el futuro. 

 Se requiere una investigación más profunda para mejorar la comprensión de la relación 

entre la NAO de invierno y el caudal del otoño siguiente en la cuenca mediterránea 

andaluza, así como el papel que juega la temperatura de la superficie del mar 

Mediterráneo en verano y otros mecanismos relacionados. 

 Además del SAI, el papel que juega la criosfera y en particular, la variabilidad el hielo 

marino del Ártico en verano, en el caudal de los ríos de la península en estaciones 

posteriores es una cuestión que requiere más investigación. Concretamente, las relaciones 

entre la disminución del hielo marino y el Modo Anular del Norte en verano y su efecto 

sobre el clima del invierno siguiente. 

 Cuando la longitud de las series de caudal disponibles sea mayor, se podrán llevar a cabo 

investigaciones adicionales con el fin de explorar las relaciones no lineales entre el 

fenómeno de El Niño y el caudal, analizando por separado la respuesta del caudal a años 

de ocurrencia del fenómeno El Niño, años neutros y años de La Niña. Asimismo, la 

modulación que modos de variabilidad de baja frecuencia como la PDO o la AMO 

puedan originar en las condiciones del ENSO o la NAO, junto con su repercusión en la 

variabilidad del caudal estacional, podrían ser evaluados. 

 Además, series de tiempo más largas son más apropiadas para la aplicación de diferentes 

metodologías de predicción, como las basadas en la probabilidad de ocurrencia de 

eventos, de manera que se puedan explorar más a fondo las relaciones entre los 

predictores y predictandos. 

 Con la base establecida aquí, predicciones en escalas espaciales más pequeñas (de cuenca 

o subcuenca) pueden mejorarse teniendo en cuenta los efectos de variables tales como la 

cobertura del suelo, la contribución del deshielo, los factores de humedad del suelo o la 

topografía, así como con el uso de modelos hidrológicos. 
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APPENDIX A 

STATISTICAL TESTS 

 

A.1 Lilliefors test 

The Lilliefors test (LF), a normality test, is a modification of Kolmogorov-Smirnov used 

when the distribution parameters have been fitted to the same data used in the test. Given a 

sample of n observations, the Lilliefors statistic is defined as (Lilliefors, 1967): 

𝐷 = 𝑚𝑎𝑥𝑥|𝑆𝑛(𝑥) − 𝐹∗(𝑥)|  (a.1) 

where Sn(x) is the empirical cumulative probability, estimated as Fn(x(i))=i/n, for the i
th

 

smallest data value; and F*(x) is the theoretical cumulative distribution function evaluated at x, 

with 𝜇 = �̅� , the sample mean, and s
2
, the sample variance.  

Although the Lilliefors statistic is similar to the Kolmogorov-Smirnov statistic, the table 

for the critical values is different which leads to a different conclusion about the normality of the 

data (Razali and Wah, 2011). If D exceed the 1- quantile as given by the table of quantiles, then 

the null hypothesis (sample data follow a normal distribution) can be rejected at the level of 

significance .  

 

A.2 Jarque-Bera test 

The Jarque-Bera (JB) is a normality test where the departure from normality is detected 

by evaluating the sample moments of skewness and kurtosis. The JB statistic is given as 
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𝐽𝐵 = 𝑛 (
(√𝑏1)

2

6
+

(𝑏2−3)
2

24
) (a.2) 

where √𝑏1and 𝑏2 are sample skewness and kurtosis, respectively. 

 

A.3 Shapiro-Wilk test 

Shapiro and Wilk (1965) test (SW) for normality was originally restricted for sample size 

of less than 50. Given an ordered random sample,  y1 < y2 < … < yn,  the original Shapiro-Wilk 

test statistic is defined as, 

𝑊 =
(∑ 𝑎𝑖𝑦𝑖

𝑛
𝑖=1 )

2

∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1

 (a.3) 

where yi is the i
th

 order statistic 

�̅� is the sample mean, 

𝑎𝑖 = (𝑎1, … , 𝑎𝑛) =
𝑚𝑇𝑉−1

√𝑚𝑇𝑉−1𝑉−1𝑚
 (a.4) 

And mi = (m1,…mn)
T
 are the expected values of the order statistics of independent and 

identically distributed random variables sampled from the standard normal distribution and V is 

the covariance matrix of those order statistics. 

The value of W lies between zero and one. Small values of W lead to the rejection of 

normality whereas a value of one indicates normality of the data. This study use an 

approximation (algorithm AS R94) given by Royston (1992) improving the weights a, which can 

used for any n in the range 3  n  5000.  

 

A.4 Root Mean Square Error Skill Score (RMSESS) 

The Root Mean Square Error is a typical magnitude for forecast errors, sensible to large 

errors, and is given by: 

 
2

1

1 n

i i

i

RMSE f o
n 

   (a.5) 

being fi and oi each pair of forecasted and observed values and n the sample size. 

Range: 0 to ∞.  Perfect score: 0. 
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The RMSESS is given by: 

cli

perf cli

RMSE RMSE
RMSESS

RMSE RMSE





 (a.6) 

In this case, the RMSE is interpreted as a percentage improvement over the reference 

forecasts (climatology). 

Where RMSEperf is the value related to a perfect forecasts (zero). If RMSE = RMSEperf, 

the skill score attains its maximum value of 100%. If RMSE = RMSEcli then RMSESS = 0%, 

indicating no improvement over the climatology (reference forecasts). If the forecasts being 

evaluated are inferior to the climatology, RMSESS < 0%, implies that model is worst than 

reference forecast. 

 

A.5 Gerrity Skill Score (GSS) 

Gerrity (1992) has suggested a family of equitable, in the sense of Gandin and Murphy 

(1992), skill scores that are also sensitive to distance in this sense and appear to provide 

generally reasonable results for rewarding correct forecasts and penalizing incorrect ones 

(Livezey, 2003).  

In the definition of Gerrity Skill Score (GSS) a scoring matrix sij is used, which is a 

tabulation of the reward or penalty every forecast/observation outcome (represented by a 

contingency table) will be accorded: 

 
1 1

K K

ij sj

i j

GSS p s
 

  (a.7) 

where the weights are calculated as follow: 

 
1 1

1

1

i K

ij r r

r r i

s b a a
 



 

 
  

 
   (a.8) 

 
1

1

1

( ) ;1
i K

ij r r

r r i

s b a j i a i j K




 

 
       

 
   (a.9) 

 ji ijs s  (a.10) 

 
1

1
b

K



 (a.11) 
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being 

 1

1

1
i

r

r
i i

r

r

p

a

p











 (a.12) 

with the sample probabilities (observed frequencies) given by pi = N(oi)/N. 

Equation sii gives more credit for correct forecasts of rare events and less credit for 

correct forecasts of common events. Equation sij also accounts for the intrinsic rarity of the j 

events, and increasingly penalizes errors for greater differences between the forecast category i 

and the observed category j, through the penalty term (j-i) 

Range: -1 to 1, 0 indicates no skill. Perfect score: 1 

The GSS does not depend on the forecast distribution, and is equitable (i.e., random and 

constant forecasts score a value of 0). Additionally, GSS does not reward forecast of common 

events, but rather rewards forecasts for correctly predicting of rare events. Smaller errors are 

penalized less than larger forecast errors. This is achieved through the use of the scoring matrix.  
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APPENDIX B 

STANDARDIZATION 

 

B.1 Introduction 

In the methodology used to standardize the seasonal streamflow time series, a major step 

is the determination of the probability distribution function that better fits to the time series. To 

this end, a set of the most commonly probability distribution function used in hydrology was 

evaluated: Generalized Extreme Value (GEV), Generalized Pareto (GP), Generalized Logistic 

(GLO), 3-parameters Log-normal (LN3) and Pearson type III (PE3). These distributions are 

three parametric (scale, location and shape), which let them be more flexible and fit better to the 

data series. 

The first step consists on assigning a cumulative probability, F(x), to each x value. The 

expression of F(x) for each distribution used is shown in Table B1. As it can be seen in Table 

B1, the expression of F(x) depends on the distribution parameters (scale, shape and location). So, 

prior to calculate F(x), the distribution parameters have to be calculated. To do that, the L-

moments approach was used (a brief description of this method is given below). Once the L-

moments are calculated, the parameters of the distribution and the cumulative probability for 

each value are determined according with the formulas displayed in Table B1. Finally, the 

standardized time series (z scores) are obtained by applying the formula proposed in Abramowitz 

and Stegun (1964): 
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𝑧 =  − (𝑡 −
𝑐0+𝑐1𝑡+𝑐2𝑡2

1+𝑑1𝑡+𝑑2𝑡2+𝑑3𝑡3)      𝑓𝑜𝑟  0 < 𝐹(𝑥) ≤ 0.5 (b.1) 

 

𝑧 =  + (𝑡 −
𝑐0+𝑐1𝑡+𝑐2𝑡2

1+𝑑1𝑡+𝑑2𝑡2+𝑑3𝑡3)      𝑓𝑜𝑟  0.5 < 𝐹(𝑥) < 1 (b.2) 

 

where 

 

𝑡 = √𝑙𝑛 [
1

(𝐹(𝑥))2]              𝑓𝑜𝑟  0 < 𝐹(𝑥) ≤ 0. (b.3) 

 

𝑡 = √𝑙𝑛 [
1

(1−𝐹(𝑥))2]       𝑓𝑜𝑟  0.5 < 𝐹(𝑥) < 1 (b.4) 

 

being F(x) the cumulative distribution function, and 

c0 = 2.515517      c1 = 0.802853      c2 = 0.010328 

d1 = 1.432788      d2 = 0.189269      d3 = 0.001308 

 

B.2 Calculation of the parameters. L-moments approach 

The parameters (scale, shape and location) of the five previously mentioned distributions 

have been estimated using the L-moments method. This approach, introduced by Hosking (1990) 

is increasingly being used by hydrologists. Although a brief summary is given here about the L-

moments method, more details and properties can be found in Hosking and Wallis (1997). 

L-moments, r, are linear combinations of Probability Weighted Moments (PWMs) 

introduced by Greenwood et al. (1979). The reason behind use linear combinations of PWMs 

instead the original PWMs is because the PWMs are difficult to interpret directly as measures of 

the scale and shape of a probability distribution. The PWMs are defined as 

𝛽𝑟 = 𝐸[𝑥{𝐹(𝑥)}𝑟] (b.5) 

which can be rewritten as 
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𝛽𝑟 = ∫ 𝑥(𝐹)𝐹𝑟𝑑𝐹
1

0
 (b.6) 

where F = F(x) is the cumulative distribution function (CDF) for x, x(F) is the inverse 

CDF of x evaluated at the probability F, and r = 0, 1, 2,… is a nonnegative integer.  

For any distribution, the r
th

 L moment, r, is related to the r
th

 PWM (Hosking, 1990) via 

𝜆𝑟+1 = ∑ 𝛽𝑘(−1)𝑟−𝑘 (
𝑟
𝑘

)𝑟
𝑘=0 (

𝑟 + 𝑘
𝑘

)  (b.7) 

The first L-Moments are: 1, a measure of the location; 2, a measure of scale; 3, a 

measure of skewness; and 4, a measure of kurtosis (see Figure B1).  

 

 

 

 

 

 

 

 

Figure B1. Definition sketch for the first four L-moments. 

Although L-moments have been defined for a probability distribution, in practise, they 

are estimated from a finite sample. Let x1:n  x2:n  …  xn:n be the ordered sample. According 

with Landwerh et al. (1979) an estimator (unbiased) of the PWMs is: 

𝑏𝑟 = 𝑛−1 (
𝑛 − 1

𝑟
)

−1

∑ (
𝑗 − 1

𝑟
)𝑛

𝑗=𝑟+1 𝑥𝑗:𝑛 (b.8) 

This may be alternatively written as 

𝑏0 = 𝑛−1 ∑ 𝑥𝑗:𝑛
𝑛
𝑗=1  (b.9) 

𝑏1 = 𝑛−1 ∑
(𝑗−1)

(𝑛−1)
𝑥𝑗:𝑛

𝑛
𝑗=2  (b.10) 

𝑏2 = 𝑛−1 ∑
(𝑗−1)(𝑗−2)

(𝑛−1)(𝑛−2)

𝑛
𝑗=3 𝑥𝑗:𝑛 (b.11) 

𝑏3 = 𝑛−1 ∑
(𝑗−1)(𝑗−2)(𝑗−3)

(𝑛−1)(𝑛−2)(𝑛−3)
𝑥𝑗:𝑛

𝑛
𝑗=4  (b.12) 

and, in general 
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𝑏𝑟 = 𝑛−1 ∑
(𝑗−1)(𝑗−2)…(𝑗−𝑟)

(𝑛−1)(𝑛−2)…(𝑛−𝑟)
𝑥𝑗:𝑛

𝑛
𝑗=𝑟+1  (b.13) 

The sample L-moments are defined by: 

𝜆1 = 𝑏0 (b.14) 

𝜆2 = 2𝑏1 − 𝑏0 (b.15) 

𝜆3 = 6𝑏2 − 6𝑏1 + 𝑏0 (b.16) 

𝜆4 = 20𝑏3 − 30𝑏2 + 12𝑏1 − 𝑏0 (b.17) 

and, in general 

𝜆𝑟+1 = ∑ 𝑝𝑟,𝑘
∗𝑛

𝑗=1 𝑏𝑘 (b.18) 

where the p
*
r,k coefficients are defined as: 

𝑝𝑟,𝑘
∗ =

(−1)(𝑟−𝑘)(𝑟+𝑘)!

(𝑘!)2(𝑟−𝑘)!
 (b.19) 

An useful dimensionless version of L-moments is defined by dividing the higher order L-

moments by the scale measure. So, L-moments ratios are defined (Hosking, 1990) as: 

𝐿 − 𝐶𝑣 = 𝜏2 = 𝜆2 𝜆1⁄  (b.20) 

𝐿 − 𝑠𝑘𝑒𝑤 = 𝜏3 = 𝜆3 𝜆2⁄  (b.21) 

𝐿 − 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝜏4 = 𝜆4 𝜆2⁄  (b.22) 

L-moments ratios measure the shape of a distribution independently of its scale of 

measure. The L-moment ratio 2 is the L-coefficient of variation (L-Cv), and the L-moment ratios 

3 and 4 are the L-skewness and L-kurtosis, respectively. 

In terms of numerical values, 1 can take any value, and 2  0. The L-Cv is 

dimensionless measure of variability and, for a distribution that takes only positive values, is in 

the range 0  2<1. The L-skew and L-kurtosis are dimensionless measures of asymmetry and 

kurtosis. The absolute value of L-moment ratios 3 and 4 is lower than 1.  

Despite the samples L-moments are unbiased estimators of L-moments, the L-moment 

ratios are not unbiased. Their bias are very small for moderate or large samples (Hosking and 

Wallis, 1997). 

The main properties of L-moments (according Hosking 1989) are: 
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1) Existence: If the average of a distribution exists, then, all the L-moments of the 

distribution exist. 

2) Uniqueness: If the average of a distribution exists, then, the L-moments just characterize 

that distribution. There are not two distributions with the same values of L-moments. 

L-moments approach presents some advantages respect to other estimators. In particular, 

against the method of ordinary moments (MOM), these advantages are:   

 The L moments exist whenever the mean of the distribution exists. This includes cases in 

which some of the higher moments fail to exist. (Hosking and Wallis, 1997). 

 The L-moments are less sensitive to the presence of outliers (Hosking and Wallis, 1997). 

 The L-moments provide better identification of the parent distribution (Hosking, 1990), 

especially for skewed distributions. 

 Asymptotic approximations to sampling distributions are better for L-moments than for 

ordinary moments (Hosking, 1990). 

 The L-moments allow characterizing a greater number of distributions. A total of 13 

different distributions can be adjusted using the method of L-moments, of which 5 are 

generally used in regional frequency analysis (Sorman and Okur, 2000). 

 The L-moments show little bias (nearly unbiased) for all distributions applied and their 

advantages over traditional moments are not limited for small samples (Vogel and 

Fennessey, 1993). 

Additionally, L-moments approach also present some advantages respect to maximum 

likelihood estimator (MLE) method, which cannot be reduced to mere formulas, and is generally 

calculated using numerical methods. Also, MLE does not work well when the observations 

significantly deviate from the distribution to be adjusted. 
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 RANGE CUMULATIVE 

DISTRIBUTION 

FUNCTION 

PARAMENTER ESTIMATION 

GEV 

if  > 0:  -x+/  

if  = 0:  - < x <   

if  < 0:  +/ x  

𝐹(𝑥) = 𝑒−𝑒𝑦
 

if  ≠ 0; 

y = --1ln(1-(x-)/) 

if  = 0; 

y = (x-)/ 

 (location),  (scale),  (shape) 

𝜅 ≈ 7.8590𝑐 + 2.9554𝑐2 

𝑐 =
2

3 + 𝜏3
− 0.6309 

𝛼 =
𝜆2𝜅

(1 − 2−𝜅)Γ(1 + 𝜅)
 

𝜉 = 𝜆1 − 𝛼
1 − Γ(1 + 𝜅)

𝜅
 

GP 

if  > 0:   x +/  

if   0:    x    

𝐹(𝑥) = 1 − 𝑒−𝑦 

if  ≠ 0; 

y = --1ln(1-(x-)/) 

if  = 0; y = (x-)/ 

 (location),  (scale),  (shape) 

𝜅 =
1 − 3𝜏3

1 + 𝜏3
 

𝛼 = (1 + 𝜅)(2 + 𝜅)𝜆2 

𝜉 = 𝜆1 − (2 + 𝜅)𝜆2 

LN3 

if  > 0:  -x+/ 

if  = 0:   - < x <   

if  > 0:  +/ x  

  

(standard normal distribution) 

 

if  ≠ 0; 

y=--1ln(1-(x-)/) 

if  = 0; 

y = (x-)/ 

 

 (location),  (scale),  (shape), 

𝜅 ≈ −𝜏3

𝐸0 + 𝐸1𝜏3
2 + 𝐸2𝜏3

4 + 𝐸3𝜏3
6

1 + 𝐹1𝜏3
2 + 𝐹2𝜏3

4 + 𝐹3𝜏3
6  

E0=2.0466534         F1=-2.0182171 

E1=-3.6544371        F2=1.2420401 

E2=1.8396733         F3=-0.21741801 

E3=-0.2360244 

𝛼 =
𝜆2𝜅𝑒

−𝜅2
2⁄

1 − 2Φ(−𝜅
√2⁄ )

 

𝜉 = 𝜆1 −
𝛼

𝜅
(1 − 𝑒

𝜅2

2⁄ ) 

F(x) =f(y)
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GLO 

if  > 0: -x+/ 

if  = 0:  -  x   

if  < 0:  +/ x 

𝐹(𝑥) =
1

1 + 𝑒−𝑦
 

if  ≠ 0; 

y = --1ln(1-(x-)/) 

if  = 0;   y = (x-)/ 

 (location),  (scale),  (shape) 

𝜅 = −𝜏3 

𝛼 =
𝜆2sin (𝜅𝜋)

𝜅𝜋
 

𝜉 = 𝜆1 − 𝛼 (
1

𝜅
−

𝜋

sin (𝜅𝜋)
) 

PE3 

If   0,  

let 

 = 4/2, =(1/2)||, 

=-2/, 

 

if >0;    x  

if <0;  - x    

if =0;  - < x <  

if >0; 

𝐹(𝑥)

=
∫

(𝑥 − 𝜉)
𝛽

𝛽−1

𝑒
−

(𝑥−𝜉)
𝛽𝑥

𝜉
𝑑𝑥

Γ(𝛼)
 

if <0; 

𝐹(𝑥)

= 1

−
∫

(𝑥 − 𝜉)
𝛽

𝛽−1

𝑒
−

(𝑥−𝜉)
𝛽𝑥

𝜉
𝑑𝑥

Γ(𝛼)
 

If =0; 

𝐹(𝑥) = Φ (
𝑥 − 𝜇

𝜎
) 

(the standard normal 

distribution) 

 (location),  (scale),  (shape) 

if 1/3  |3| <1; z=33
2  

𝛼 ≈  
1 + 0.2906𝑧

𝑧 + 0.1882𝑧2 + 0.0442𝑧3
 

if 1/3  |3| <1 

𝛼

≈
0.36067𝑧 − 0.59567𝑧2 + 0.25361𝑧3

1 − 2.78861𝑧 + 2.56096𝑧2

− 0.77045𝑧3 

Given 𝛼, the parameters are: 

𝛾 = 2𝛼−
1
2𝑠𝑖𝑔𝑛(𝜏3) 

𝜎 =
𝜆2𝜋

1
2𝛼

1
2Γ(𝛼)

Γ(α + 1/2)
 

𝜇 = 𝜆1 

 

Table B1. Cumulative distribution functions of the Generalized Extreme Value (GEV), Generalized 

Pareto (GP), Lognormal (LN3), Generalized Logistic (GLO) and Pearson type 3 (PE3), along with the 

equations used to estimate the parameters according with the L-moments procedure (from Hosking 

and Wallis, 1997). 

 

B.3 Choosing an appropriate distribution  

The evaluation of which probability distribution function better fits to each seasonal time 

series at each gauging station was realized through two indices (similar to those used in Vicente-

Serrano et al., 2011): 
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Minimum Orthogonal Distance  

The L-moments ratio diagram is a graphical measure about if the data samples from 

different sites are consistent with the fitted probability distribution functions (see Figure B2). 

The Minimum Distance (MD) is the orthogonal distance between the sample L-moments at a site 

and the L-moment curve for the distributions described in the Table B1. Following this criterion, 

the distribution with minimum MD is selected as the more appropriate.  

 

Figure B2. L-moments plot for samples and theoretical distributions used. The fitted distribution 

curves were drawn using the polynomial approximations given by Hosking (1990). 

 

The Kolmogorov-Smirnov statistic  

The Kolmogorov-Smirnov (KS) statistic is a measure of the difference between the 

empirical distribution and the cumulative distribution function F(x), for a given probability 

distribution. The KS statistic is defined as the maximum vertical difference between the 

empirical and the cumulative distribution functions:  

𝐾𝑆 = max (𝑚𝑎𝑥𝑖|𝐹(𝑥𝑖) −
𝑟−1

𝑛
,

𝑟

𝑛
− 𝐹(𝑥𝑖)|) (b.23) 

where r is the rank of the i observation in ascending order. 
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According with this criterion, the distribution that presents the smaller KS statistic is 

selected.  

It should be mentioned that, when a particular distribution could not be defined for some 

values (according the range of values specified in Table B1), this distribution was not selected. 

These ‘out of range’ values use to appear when time series present large peaks, which do not 

follow the same theoretical distribution as the remaining data. 

Hence, the distribution that presents the best fit, according to KS and MD stats, was 

chosen. To do that, the distributions were classified according values of KS and MD stats. The 

distribution with the best ‘combined position’, taking into account both statistics, was selected. 

In case the existence of ‘out of range’ values for the selected distribution, the next distribution 

was chosen instead. Table B2 illustrates this method for a station selected as example (winter 

streamflow time series for station id=2101, in Douro Basin), which was standardized according 

the Pearson 3 distribution.  

 

 KS stat MD 

stat 

KS 

position 

MD 

position 

Combined 

position 

Out of range 

values 

GEV 0.0838 0.0526 3 4 7 0 

GP 0.0935 0.0154 4 2 6 1 

GLO 0.0995 0.0833 5 4 9 0 

LN3 0.0762 0.0398 2 3 5 0 

PE3 0.0713 0.0134 1 1 2 0 

 

Table B2. Example of the procedure followed to choose the distribution fitting better to the winter 

streamflow time series for station id=2101 (Douro Basin), using the KS and MD statistics. 

 

Additionally, following with the previous example, Figure B3 illustrates the next steps 

carried out to standardize the time series, once the appropriated distribution (Pearson 3 in this 

example) was selected. To each data, a cumulative probability is assigned (according the CDF of 

Pearson type 3 fitted to the data series). The value of a normal distribution that corresponds to 
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this cumulative probability is given to the original data as its ‘z-score’. In a red circle in the 

Figure B3 is shown a particular case. 

 

Figure B3. In top left panel, the empirical CDF of data series (in dots), and the CDF corresponding 

to the Pearson 3 distribution that fitted to the data series in a red line. Top right panel represent the 

CDF for a standard normal distribution. Bottom panels are the original winter streamflow time 

series (left) and the correspondent standardized time series. 

 

Taking into account the above-described procedure, finally, Figure B4 displays, for each 

season, the probability distribution function selected for each station. Seasonal maps are 

accompanied with superposed bar graphs summarizing the number of stations that follows each 

distribution. This figure shows that there is not a distribution that presents the best fit to all 

stations. Also, despite there is no clear grouping of stations fitted by a particular distribution, it 

could be remarked as Log-normal 3 fits an important amount of stations in winter.  
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Figure B4. For all seasons, probability distribution functions selected to standardize seasonal 

streamflow time series and bar plots summing up the number of stations that follow each 

probability distribution function. 
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APPENDIX C 

PRINCIPAL COMPONENT ANALYSIS OF 

CLIMATE FIELDS 

 

In this Appendix, the main modes of seasonal variability of climate fields were isolated 

using Principal Components Analysis. A brief description of this methodology is provided in 

Chapter 4 and further details can be obtained in Preisendorfer (1988). This main modes of 

variaiblity are compared with the main SVD modes identified in Chapter 6 between seasonal 

streamflow and the different climate variables. 

The large-scale atmospheric and oceanic variables, covering from September of 1974 to 

February of 2008, were obtained from the following datasets: 

 The monthly data for the sea surface temperature (SST) were obtained from The Hadley 

Centre Global Sea Ice and Sea Surface Temperature (HadISST, Rayner et al., 2003), with 

a resolution of 1º x 1º. The region of Pacific Ocean SST data used for the analysis is 

[120°E-70°W, 40°S-70°N], while the region of Atlantic Ocean SST data used is [80°W-

30°E, 40°S-70°N]. 

 The monthly mean geopotential height at 500 hPa (Z500) was downloaded from the 

NCEP Reanalysis (Kalnay et al., 1996), with a resolution of 2.5º x 2.5º. Only Z500 data 

northern than 20ºN are used here. 
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 The monthly values for global precipitation (RR) were downloaded from the Global 

Precipitation Climatology Centre (GPCC) version 6- Total Full (Schneider et al., 2014). 

The dataset has a 1º x 1º resolution.  

 The monthly global surface temperature data over land (TMP) were taken from the high-

resolution database of the Climatic Research Unit (CTU-TS.3.10, Harris et al., 2014), 

with a 0.5º x 0.5º of spatial resolution. 

For computational efficiency, all dataset were regridded into a coarse grid of 2.5º x 2.5º. 

Seasonal time series were created by averaging the months: September-October-November 

(SON) for autumn, December-January-February (DJF) for winter, March-April-May (MAM) for 

spring and June-July-August (JA) for summer.  

Figures C.1-C.5 show the ‘loading factors’ corresponding to each EOF. These loadings 

factors represent the correlation between the time series of each principal component and the 

seasonal time series of each field. In the title of each figure is displayed the percentage of 

explained variance of each mode.  
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