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Chapter 1

Introduction

Many interesting phenomena occurring in living systems emerge as the result of the

interaction among many constitutive elements. Memory is an attribute of the whole

brain network; it cannot be simply inferred from the properties of independent neurons,

even assuming a perfect understanding of their one-to-one interactions. Response of

cells to changing environments is regulated by their whole metabolic network, com-

posed by many different interdependent metabolic pathways, which means that under

different external conditions the cell reaction can be dramatically different. The coher-

ent behaviour of large moving flocks of birds or fish is not easily understood when one

just investigates isolated individuals. These three examples show a common trend: the

global emergent behaviour of these systems cannot be trivially explained in terms of

the features of their individual components. Even more remarkably, details of individ-

ual interactions do not play a determinant role on the emergent outcome; regardless of

whether one studies synchronisation of fireflies, circadian rhythms, neural activity, or

even economic cycles, it is possible to neglect specific details of the interactions between

animals, cells, neurons or companies and treat all these elements as oscillators of some

kind, and in many cases, similar phenomenologies emerge. Thus, these examples are

what we call “complex systems”, and as such, they should be tackled from a general

“systemic approach”. In other words, they seem natural candidates to be studied within

the general framework of statistical mechanics, which studies noting but the “macro-

scopic” or “collective” properties using knowledge from the “microscopic” or ‘individ-

ual” elementary components. In particular, one expects that the traditional methods
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and tools of statistical mechanics –complemented with novel and specifically devised

ones– may constitute the most appropriate framework to study, within a quantitative

perspective, the fascinating collective properties of living systems and communities of

them. In this way statistical mechanics has become, in the last decade or so, a highly

multidisciplinary discipline.

Within this system approach one of the concepts that pervades all fields and has

proven extremely valuable is that of “complex networks”. For example, in the case of

molecular biology, recent years have witnessed a transformation from studies limited

to the specific traits of a few particular genes into the development of extensive global

genetic maps that describe how such genes regulate (activate/repress) each other [63].

Networks are useful descriptors of complex systems that evidence the interactions

or links among their individual components, thus defining characteristic architectures.

Complex networks observed in nature have highly non-trivial structural properties,

such as compartmentalisation, clustering, scale-free connectivity patterns, etc. Scru-

tinising how these traits influence the behaviour of the underlying dynamical systems

and understanding how such features come spontaneously about are mayor key goals

in modern complex systems theory.

A systemic (or “holistic”) framework like this is conceptually useful for at least two

reasons:

First, a similar network architecture, shared by two completely different types of

systems, may arise from common requirements for proper functioning, such as overall

stability and robustness, or similar assembling processes. This allows us to compile

theoretical knowledge, to gain insight, as well as to make specific predictions.

Second, network structure greatly influences its response to perturbations. For

example, the robustness of a given ecosystem against species extinctions is highly de-

pendent on its connectivity pattern, given that this underlies the sequence of possible

secondary extinctions that the first can potentially induce [6]. Similarly, in gene net-

works, it is believed that the network architecture is such that its outcome is robust to

small mutations, individual gene knock-outs or to environmental fluctuations. More in

general, different dynamical models operating on top of underlying networked systems

have been reported to show qualitatively different behaviour depending on the network

degree distribution [192].
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The network or systemic approach can be straightforwardly applied to theoretical

ecology, were ecosystems consist of a large number of species interacting –in different

ways, such as, predation, mutualism, parasitism, etc– with each other, following quite

specific patterns. Ecosystems fall into the category of complex systems since the be-

haviour of a structured community as a whole cannot be straightforwardly inferred from

the properties of the individual species. To gain insight on how species-rich commu-

nities operate and are sustained one has to look first at the structure of the complex

network they form. It is the study of the whole system –and not that of the individual

pairwise interactions– what provides crucial knowledge about its global functioning.

All these ideas and concepts, are very useful to rationalise ecological systems [9, 10,

27, 167]. Indeed, the main goal of this thesis, is to analyse ecological complex commu-

nities from a network viewpoint. We will scrutinise their very distinctive architectural

traits and make an attempt to correlate them with prominent features such as stabil-

ity, resilience, robustness, and, in general, biodiversity. Our studies focus on ecological

networks, but some aspects of biological and technological systems are also analysed

up to a much lesser extent.

The idea of a complex network of interactions among species is as old as Darwin’s

contemplation of the tangled bank [62]. Lindenmayer, Odum, Margalef, and many

others described ecological communities as graphs of energy transfer. Feeding interac-

tions within a community can also be described in that form. Indeed, foodwebs depict

trophic relationships between species, that is, who eats whom. These are directed

networks were the species are represented by the nodes, and feeding interactions by

directed links, encoding the aforesaid energy transference from the prey species to the

predator.

Difficult to sample and difficult to model, foodwebs are nevertheless of central prac-

tical and theoretical importance. The interactions involving species on different trophic

levels mediate species’ responses to natural or intentional perturbations such as habitat

loss or species extinction. Understanding the ecology and mathematics of foodwebs, and

more broadly, ecological networks, is central to understanding the ecosystems response

to perturbations, and may serve as a first step toward a more predictive ecology.

For several decades up to the 1970s a dominant ecological paradigm was that com-

plex communities were more stable than simple ones [79, 141]. The argument in favour
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of complexity fostering stability in ecological communities was presented in a general

way by MacArthur [141], who stated that “a large number of paths through each species

is necessary to reduce the effects of overpopulation of one species”. He concluded that

“stability increases as the number of links increases” and that stability is easier to

achieve in more diverse communities of species, thus linking community stability with

both high number of trophic links and increased numbers of species. This convention

was challenged by May in a seminal paper [150] were, employing local stability analyses

of randomly assembled community matrices, he demonstrated that network stability

decreases with complexity. May found that simple, abstract communities of interacting

species will tend to change sharply from stable to unstable behaviour as the complexity

of the system increases. This apparent contradiction between the existence of large and

complex ecosystems and the instability associated to those two features started was is

known as the “diversity-stability debate”. Many relevant questions arise around this

controversy. Where does the exceptional stability of the ecosystems come from? Are

there any special feature in foodwebs architecture that could account for it? Taken

together recent ecological advances indicate that diversity can be expected, on average,

to give rise to ecosystem stability [156], however this is not a settled issue and the

debate remains open. Unravelling which features of foodwebs structure are involved in

the enhanced stability of the ecosystems, if any, is of central importance in ecology, and

one of the main issues we assess along this thesis.

A feature long related to system stability is that of the remarkable absence of loops

(closed path of nodes) in empirical networks. Feedback loops are well-known to have a

profound impact on dynamical stability in food webs [7, 21, 151, 164, 172, 173] as well

as in biological and generic networks [4, 12, 15, 35, 60, 124, 136, 143, 180, 198, 201, 216,

248]. Therefore their absence has been frequently associated with the enhanced stability

of these systems [7, 35, 121, 140, 164, 172]. However, is this the only explanation or

could some other feature be behind the absence of feedback loops in directed networks?

This is another of the points to be covered along this thesis.

Apart from the feeding relations described before, there are many other kind of

interactions between species in ecosystems. Of particular relevance are mutualistic

interactions. Ubiquitous in nature, up to 90% of tree species in the tropics depend

on interactions with animals to complete their life cycles, either through pollination of
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flowers or dispersal of seeds [119]. These interactions are mutually beneficial: plants

obtain the dispersing services of the animals, and the animals, in turn, obtain food or

other benefits in exchange for their services. Historically, the first studies on mutualism

focused on highly specialised interactions. The examples of an almost perfect matching

between the morphology of a flower and that of an insect that pollinates it seemed to

be accepted as a common feature of coevolution. However, these examples of extreme,

pairwise specialisation may more often be the exception than the rule. Mutualistic

interactions can involve dozens or even hundreds of species interacting in complex ways,

with different levels of specialisation [118, 259]

Mutualistic communities, such as plant-pollinator or seed-disperser communities,

can be described as a network of interactions between mutualistic partners (e.g. plants

and animals). However there is a marked difference between foodwebs and mutualistic

networks. As said before foodwebs are represented as directed networks, links depicting

who eats whom, with only a single type of node. In principle, all species could be

connected to any other. Mutualistic networks are described by means of bipartite

graphs, which encode the relationships between (but not within) two distinct sets:

plants and animals.

Plant-animal mutualistic networks exhibit common features among different com-

munities. Interestingly enough, the same architecture appears across systems regardless

of the mutualism type (pollination or seed dispersal), geographic location, or species

composition [29, 120]. Many of these topological properties found in mutualistic net-

works are emergent properties that result from the complex interaction between plants

and animals across time and space [264]. Inspection of plant-frugivore and plant-

pollinator networks evidenced that these networks are neither randomly assembled nor

organised in compartments arising from tight, reciprocal specialisation [29]. Plant-

animal mutualistic networks are highly nested, that is, species interaction are arranged

in such a way that specialists (species that have few mutualistic partners) interact only

with generalists (species with many mutualistic partners).

This particular feature has been associated with enhanced stability and coexistence

of mutualistic communities [33, 181], suggesting that nestedness has been, to some

extent, selected for by the forces of nature. However this effect is challenged in a recent

work [234] were the opposite is found: nested networks tend to promote instability.
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Other evidence indicate that neutral processes also have an important influence on the

architecture of mutualistic communities [129, 263], meaning that species abundance

distributions and random interactions between individuals may be the determinants

of mutualistic network properties. Many questions arise regarding this unexpected

property. Which are the factors that determine the nestedness of these important

networks sustaining much part of earth’s biodiversity? Is it necessary to call upon

optimisation processes to obtain nested networks [242] or can neutral theories explain

the nestedness present in empirical networks [129, 263]? How does this connectivity

patter affect other network features? If we were to decide on a protection policy, what

species should go first? the most connected? the most central? the better connected?

Those are the some of the issues we consider along this thesis regarding mutualistic

communities.

In this work we use the system approach of the statistical mechanics of complex

networks to answer some relevant questions regarding how does the architecture of bio-

logical and ecological networks affects their performance. Could there be some proper-

ties of foodweb structure that explains its stability? Is stability the solely responsible

for the “tree-like” appearance of many biological and ecological networks, or could any

other feature explain this? What are the main factors determining the nestedness of

a mutualistic community? Is it possible to identify the importance of the species in

a mutualistic network with the only information provided by its connectivity pattern?

These are the main questions we will investigate trough this thesis.

Summary

We reserve chapter two to briefly introduce the most relevant topological features

of ecological and biological networks that have been exposed by close inspection and

statistical analyses of empirical data. What are the main features of foodwebs and other

ecological networks? Are some of these properties shared by other kind of biological

networks? Do these features play some special role in the network performance? That

and similar questions is what we will cover in the first chapter.

Chapter three presents an analysis of the stability-complexity debate. Why are

large, complex ecosystems stable? Here we show that trophic coherence – a hitherto

ignored feature of food webs which current structural models fail to reproduce – is
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a better statistical predictor of linear stability than size or complexity. Furthermore,

we prove that a maximally coherent network with constant interaction strengths will

always be linearly stable. We also propose a simple model which, by correctly capturing

the trophic coherence of food webs, accurately reproduces their stability and other basic

structural features. Most remarkably, our model shows that stability can increase with

size and complexity. This suggests a key to May’ s Paradox, and a range of opportunities

and concerns for biodiversity conservation.

In chapter four we explore the hypothesis that the presence of feedback loops

in many empirical complex networks is severely reduced owing to the presence of an

inherent global directionality. Aimed at quantifying this idea, we propose a simple prob-

abilistic model in which a free parameter γ controls the degree of inherent directionality.

Upon strengthening such directionality, the model predicts a drastic reduction in the

fraction of loops which are also feedback loops. To test this prediction, we extensively

enumerated loops and feedback loops in many empirical biological, ecological and socio-

technological directed networks. We show that, in almost all cases, empirical networks

have a much smaller fraction of feedback loops than network randomisations. Quite

remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by

our model by fitting its only parameter γ. Moreover, the fitted value of γ correlates

quite well with another direct measurement of network directionality, performed by

means of a novel algorithm. We conclude that the existence of an inherent network

directionality provides a parsimonious quantitative explanation for the observed lack of

feedback loops in empirical networks.

In chapter five we move on to mutualistic communities. Along this chapter we

suggest a slightly refined version of the measure of nestedness and study how it is influ-

enced by the most basic structural properties of networks, such as degree distribution

and degree-degree correlations (i.e. assortativity). We find that most of the empirically

found nestedness stems from heterogeneity in the degree distribution. Once such an

influence has been discounted – as a second factor – we find that nestedness is strongly

correlated with disassortativity and hence – as random networks have been recently

found to be naturally disassortative – they also tend to be naturally nested just as the

result of chance.

Assessing the importance of any given species in mutualistic networks is a key task
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when evaluating extinction risks and possible cascade effects. In chapter six we develop

a technique to measure the importance of species in mutualistic networks. Inspired in a

recently introduced algorithm –similar in spirit to Google’ s PageRank but with a built-

in non-linearity– here we propose a method which allows us to derive a sound ranking

of species importance in mutualistic networks. This method clearly outperforms other

existing ranking schemes and can become very useful for ecosystem management and

biodiversity preservation, where decisions on what aspects of ecosystems to explicitly

protect need to be made.

Network research has become a fundamental framework for the study of complex

systems across many fields. Here we deal with its application to biological systems

and ecological communities. The fact that common features appear across so many

levels of biological and ecological organisation thrust forwards the idea that there really

are general principles shaping the function of these complex systems. The impact the

system approach has in modern science can be summed up in Strogatz words: “I hope

I ’ve given you a sense of how thrilling it is to be a scientist right now. It feels like

the dawn of a new era. After centuries of studying nature by teasing it into smaller

and smaller pieces, we’re starting to ask how to put the pieces back together again”.

We trust that this approach will provide a path towards a better understanding in the

search for principles governing living systems.



Introducción

Muchos de los fenómenos más interesantes que presentan los sistemas vivos son fruto de

una interacción entre sus constituyentes. La memoria, por ejemplo, es un atributo del

cerebro entero, y no se puede entender simplemente considerando las propiedades de

las neuronas independientes (incluso aunque asumiésemos que conocemos perfectamente

como funcionan, que no es el caso). El comportamiento de las células depende de toda

una red metabólica, compuesta por muchas rutas metabólicas relacionadas entre si, y

por tanto puede presentar respuestas totalmente diferentes en función de las condiciones

externas. El movimiento coherente que presentan las grandes bandadas de pájaros o

los bancos de peces no se entiende fácilmente si se estudian solamente unos cuantos

de esos individuos de manera aislada. Todos estos ejemplos tienen algo en común: el

comportamiento colectivo emergente no se puede explicar de una manera directa te-

niendo sólo en cuenta las caracteŕısticas de los componentes individuales. Algo incluso

más llamativo es que los detalles de las interacciones individuales no parecen jugar un

papel muy relevante en ese comportamiento emergente. Aśı, independientemente de si

estudiamos la sincronización de las luciérnagas, ritmos circadianos, actividad neuronal

o ciclos económicos incluso, podemos no tener en cuenta los detalles de las interac-

ciones que tienen lugar entre los insectos, células, neuronas o compañ́ıas y tratarlos a

todos como osciladores de algún tipo, que presentarán unas fenomenoloǵıas similares.

Todos estos son ejemplos de lo que se denominan como “sistemas complejos”, y como

tal, debeŕıan entenderse desde un enfoque sistémico. Aśı visto, parecen candidatos ide-

ales para ser estudiados dentro del marco de la mecánica estad́ıstica, que estudia las

propiedades “macroscópicas” (o colectivas) de un sistema partiendo de la información

“microscópica” (o individual) de sus componentes. Es de esperar que los métodos tradi-

cionales y las herramientas de la mecánica estad́ıstica -junto otros métodos nuevos y

14
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especialmente diseñados- constituya el mejor marco para estudiar, desde un punto de

vista cuantitativo, las propiedades fascinantes de los sistemas vivos y las comunidades

que los forman. En este sentido, la mecánica estad́ıstica ha pasado a transformarse en

una disciplina, valga la redundancia, multidisciplinar.

Dentro de este enfoque sistémico uno de los conceptos que encontramos en todas

las ramas y que ha demostrado ser de gran utilidad es el de las “redes complejas”.

En el caso de la bioloǵıa molecular, hemos visto como el uso de estas herramientas ha

transformado los estudios limitaos a unos cuantos genes part́ıculares en la construcción

de mapas genéticos globales que describen como los genes se regulan entre si [63]. Las

redes son una forma muy útil de describir este tipo de sistemas, puesto que ponen

de manifiesto las interacciones existentes entre los elementos del sistema, aśı como si

se encuentra una estructura particular en ellas. Las redes complejas que aparecen en

la naturaleza, de hecho, suelen tener unas caracteŕısticas estructurales altamente no

triviales, como por ejemplo la compartimentación, clustering, distribuciones de grado

muy heterogéneas, etc. Entender cómo estas estructuras determinan el comportamiento

colectivo y cuales son los fenómenos que llevan a su aparición son los objetivos clave en

la teoŕıa de sistemas complejos actual.

Un enfoque sistémico (u hoĺıstico) como este es interesante, al menos, por dos ra-

zones:

En primer lugar, redes que tengan una estructura similar aun siendo de sistemas muy

diferentes pueden ser el resultado de la existencia de necesidades similares en ambos

sistemas (como por ejemplo que sean estables o robustos) o de que ambas redes se

formen de una manera similar.

En segundo, la estructura de la red tiene una gran influencia en cómo responde el

sistema a las perturbaciones. La robustez de un ecosistema frente a la extinción de es-

pecies está determinada, en gran parte, por su patrón de conectividad, puesto que esto

decidirá las extinciones secundarias que pueden producirse como resultado [6]. De man-

era parecida, en las redes genéticas se cree que la arquitectura es tal que las hace muy

robustas frente a pequeñas mutaciones o al bloqueo de algunos genes o a pequeños cam-

bios del ambiente. En general muchas dinámicas sobre redes complejas han mostrado

tener un comportamiento diferente dependiendo de la distribución de grado[192]. Este

enfoque de “redes” (o sistémico) puede utilizarse también en ecoloǵıa teórica, donde los
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ecosistemas están compuestos por un gran numero de especies interaccionando entre

si de diferentes formas (predación, mutualismo, parasitismo, etc) pero con patrones

espećıficos. Podemos considerar a los ecosistemas como sistemas complejos porque el

comportamiento de estas comunidades estructuradas en su conjunto no puede ser in-

ferido de manera directa de las propiedades de las especies que forman parte de él.

Para entender realmente cómo se forman y funcionan estas comunidades es necesario

considerar la estructura completa de la red que forman. Es el estudio del sistema en su

conjunto, y no el de las interacciones individuales lo que nos dará información crucial

sobre su funcionamiento a nivel global.

Todas estas ideas y conceptos son muy útiles a la idea de racionalizar los sistemas

ecológicos [9, 10, 27, 167]. De hecho, el objetivo principal de esta tesis es analizar

comunidades ecológicas complejas desde un enfoque sistémico, usando redes. Estu-

diaremos sus caracteŕısticas arquitectónicas distintivas e intentaremos correlacionarlas

con comportamientos generales tales como estabilidad, resiliencia, robustez y en general

biodiversidad. Nuestros estudios se centran en redes ecológicas, pero algunos aspectos

de redes biológicas, y en menos medida tecnológicas, se analizarán también.

La idea de una red compleja de interacciones entre especies es, de hecho, muy an-

tigua, tanto como Darwin y su madeja enmarañada [62]. Lindermayer, Odum, Margalef

y muchos otros han descrito las comunidades ecológicas como grafos en los que se trans-

porta enerǵıa. Las interacciones de predación/alimentación en una comunidad pueden

ser vistas también de esta forma. De hecho, las redes tróficas representan este tipo de

interacciones entre especies, es decir, quién se come a quien. Son redes dirigidas donde

las especies se representan mediante nodos, y las interacciones de predación mediante

links, que codifican el transporte de masa desde la presa hasta el predador.

Aunque estas redes son muy dif́ıciles de obtener y de modelar son también de una

importancia crucial. Estas interacciones entre especies de diferentes niveles tróficos

determinan su respuesta a perturbaciones en los ecosistemas, ya sean intencionadas o

naturales. Entender la ecoloǵıa y las matemáticas de estas redes, y en general, de las

redes ecológicas es central para entender la respuesta de los ecosistemas a las pertur-

baciones, y podŕıa ser un paso hacia una ecoloǵıa más predictiva.

Durante varias décadas, hasta los 70, el paradigma dominante era que las comu-

nidades complejas son mas estables que las simples [79, 141]. El argumento a favor de
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que la complejidad es beneficiosa para la estabilidad de las comunidades ecológicas lo

presentó de una manera general McArthur [141]: “un gran numero de caminos entre

especies es necesario para reducir los efectos de superpoblación en una especie”. El

concluyó que “la estabilidad aumenta como el numero de links aumenta” y que la es-

tabilidad se alcanza mas fácilmente en comunidades mas diversas, conectando, por lo

tanto, la estabilidad tanto con un número grande de especies como con gran número de

links entre ellas. Esto fue puesto en cuestión por May en un art́ıculo donde, aplicando

análisis de estabilidad lineal sobre matrices de comunidades ensambladas de forma

aleatoria, demostró que la estabilidad de esas redes disminúıa con la complejidad [150].

Estas comunidades sufŕıan una transición de estable a inestables que era mas acentu-

ada cuento mas aumentaba la complejidad y el tamaño de los sistemas. Esta aparente

contradicción entre la existencia de ecosistemas grandes y complejos y la inestabilidad

asociada con esas dos caracteŕısticas inició el debate de “diversidad vs estabilidad”.

Muchas preguntas relevantes surgen relacionadas con esto ¿De dónde viene esta esta-

bilidad?¿Existe alguna estructura en las redes tróficas que pueda dar cuenta de ello? En

conjunto, los avances ecológicos recientes indican que la diversidad, en media, aumenta

la estabilidad de los ecosistemas [156], aunque este no es un tema cerrado. Descubrir

cuales son las caracteŕısticas topológicas implicadas en la gran estabilidad de los eco-

sistemas (si la hubiere) es un tema de una importancia central en ecoloǵıa, y uno de los

temas más importantes de esta tesis.

Una propiedad que también se ha relacionado con la estabilidad de los sistemas es

la ausencia de loops (caminos cerrados de nodos) en las redes reales. Se sabe que los

feedback loops tienen un impacto muy relevante en la estabilidad de redes tróficas[7,

21, 151, 164, 172, 173] , aśı como en las biológicas, o incluso en general [4, 12, 15, 35,

60, 124, 136, 143, 180, 198, 201, 216, 248]. Su ausencia ha sido frecuentemente asociada

a la estabilidad que estos sistemas debeŕıan tener [7, 35, 121, 140, 164, 172]. Aun aśı,

¿es esta la única explicación para la ausencia de loops? Este es otro de los puntos que

trataremos a lo largo de la tesis.

Aparte de las relaciones de predación de la que hemos hablado ya, existen muchos

otros tipos de interacciones en los ecosistemas. Una de gran relevancia es la interacción

mutualista. Estas interacción son ubicuas en la naturaleza. De hecho, casi el 90% de

las plantas tropicales depende de su interacción con animales para completar su ciclo
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vital, ya sea por polinización o por dispersión de semillas [119]. Originalmente los

primeros estudios de mutualismos se centraron en interacciones muy especiales. Los

ejemplos de una coincidencia perfecta entre la morfoloǵıa de una flor y la del animal

que la poliniza eran aceptados como algo normal. Resulta que estos ejemplos de ex-

trema especialización entre dos especies pueden ser más la excepción que la norma.

Las interacciones mutualistas pueden involucrar decenas o incluso cientos de especies

interaccionando entre si, con diferentes niveles de especialización [118, 259] . Las comu-

nidades mutualistas, como las formadas por plantas y sus polinizadores o por semillas y

sus dispersores, pueden describirse como una red de interacciones entre compañeros mu-

tualistas (plantas y animales en este caso). Estas, sin embargo, muestran una diferencia

fundamental con las redes tróficas . Mientras que en las redes tróficas todos los nodos

son del mismo tipo y podŕıan, en un momento dado conectarse todos con todos, este

no es el caso de las interacciones mutualistas. Estas comunidades son descritas por una

red bipartita, que contiene interacciones entre dos grupos diferenciados: plantas y ani-

males, pero no dentro de ellos. Las redes mutualistas de plantas y animales tienen unos

rasgos muy caracteŕısticos que aparecen repetidos a través de sistemas muy diferentes,

independientemente del tipo de mutualismo, localización geográfica, o composición de

especies [29, 120]. Muchas de estas caracteŕısticas son propiedades emergentes que re-

sultan de la interacción entre plantas y animales [264]. La inspección de estas redes

mutualistas evidenció que estas redes no son ni aleatorias, ni forman compartimentos

con mucha especialización rećıproca [29]. Las redes mutualistas de plantas y animales

son anidadas , lo que significa que las interacciones están dispuestas de tal manera que

los especialistas (especies que tienen muy pocos compañeros mutualistas) interaccionan

solo con generalistas (especies con muchos compañeros). Esta caracteŕıstica particu-

lar se ha asociado a una aumento de la estabilidad y coexistencia de especie en estas

comunidades [33, 181], lo que sugiere que el anidamiento ha podido ser, de alguna

manera, seleccionado por las fuerzas de la naturaleza. Esto es disputado en un tra-

bajo reciente [234] donde se encuentra justo lo contrario:las redes anidadas tienden a

promover la inestabilidad. Otras evidencias indican que los procesos neutrales tienen

también una gran importancia en la arquitectura de estas comunidades [129, 263], lo

que significaŕıa que es la distribución de abundancia de las especies y las interacciones

aleatorias entre individuos lo que determina las propiedades de estas redes. Muchas
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preguntas surgen también alrededor de este tema ¿Cuáles son los factores que determi-

nan el anidamiento de estas redes tan importantes?¿es necesario recurrir a procesos de

optimización para obtener redes anidadas [242] o pueden las teoŕıas neutrales explicar

el anidamiento presente en muchas de estas redes [129, 263]?¿Como afecta a todo esto el

patrón de conectividad?. Si quisiésemos diseñar una poĺıtica de protección de especies

¿cuales debeŕıan protegerse primero? ¿las más conectadas? ¿las más centrales? ¿las

mejor conectadas?. Esta son algunas de los problemas que trataremos en esta tesis

relacionados con redes mutualistas.

A lo largo de este trabajo usamos el enfoque sistémico de la mecánica estad́ıstica de

redes complejas para responder algunas preguntas relevantes sobre cómo la arquitectura

de las redes ecológicas y biológicas afecta a su funcionamiento. ¿Existe alguna propiedad

responsable de la estabilidad? ¿Es la estabilidad la única explicación para la estructura

con pocos loops presente en redes ecológicas y biológicas o existen otros factores que

podŕıan explicarlo? ¿Cuáles son los principales factores que determinan el anidamiento

de una comunidad mutualista? ¿Es posible identificar la importancia de las especies en

las comunidades mutualistas solamente con la información del patrón de conectividad?

Estas son las principales cuestiones que consideraremos a lo largo de esta tesis.

Resumen

Nos reservamos el capitulo dos para introducir de forma breve las caracteŕısticas mas

relevantes de las redes ecológicas y biológicas que han sido expuestas gracias al análisis

estad́ıstico de los datos. ¿Cuáles son sus caracteŕısticas principales? ¿Comparten otras

redes las mismas propiedades? ¿Qué papel juegan en el funcionamiento de la red? Esto

es lo que cubriremos en el segundo capitulo.

En el capitulo tres presentamos un análisis del debate complejidad vs estabilidad.

¿Por qué son tan estables los ecosistemas a pesar de ser grandes y complelos? Aqúı

mostramos que la coherencia trófica -una caracteŕıstica de estas redes que no hab́ıa

sido tenida en cuenta hasta ahora- es un mejor predictor estad́ıstico de la estabilidad

lineal que el tamaño o la complejidad. Demostramos también que una red totalmente

coherente con interacciones constantes será siempre estable. Proponemos un modelo

muy simple que, capturando correctamente la coherencia de las redes tróficas reproduce

su estabilidad y otras propiedades básicas. El modelo sugiere que la estabilidad puede
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aumentar con la complejidad y el tamaño en algunas circunstancias. Esto podŕıa ser

algo a considerar en la paradoja de May, y presenta una gama de oportunidades para

la conservación de la biodiversidad.

En el capitulo cuatro exploramos la hipótesis de que la presencia de loops en

muchas redes complejas se reduce mucho si existe una dirección global inherente. Para

cuantificar esta idea proponemos un modelo muy simple para generar redes con direc-

cionalidad, usando un solo parámetro. En este modelo un aumento de la direccionalidad

genera una disminución del numero de loops. Para probar esto cuantificamos los loops

existentes en mucas redes emṕıricas de diferente tipo. Ejn general las redes muestran

una ausencia de loops cuando se comparan con las randomizaciones, y el modelo es

capaz de predecir esta ausencia con bastante precisión ajustando el parámetro de direc-

cionalidad. Esta medida de la direccionalidad se correlaciona con una medida directa.

Concluimos que la existencia de una direccionalidad inherente es capaz de explicar la

ausencia de loops de una manera sencilla pero efectiva.

En el capitulo cinco pasamos a trabajar con redes mutualistas. A lo largo de este

capitulo introducimos una nueva medida del anidamiento y estudiamos como influyen

en ella las propiedades estructurales mas básicas (distribución de grado y correlaciones).

Encontramos que la mayoŕıa del anidamiento que encontramos en las redes emṕıricas

procede de la gran heterogeneidad de su distribución de grado. Una vez descontamos

este efecto, encontramos que la nestedness esta relacionada con la disasortatividad,

y puesto que las redes finitas muestran un nivel residual de anticorrelación, también

tienden a estar anidadas de forma natural.

En el capitulo seis desarrollamos una técnica para medir la importancia de las

diferentes especies en una red mutualista. El algoritmo, con un esṕıritu similar al

del Google-Rank, pero con un planteamiento no-lineal, nos permite obtener rankings

robustos en redes mutualistas. Este método supera a todos los demás que hemos usado

como marco comparativo, y puede ser útil para conservación de la biodiversidad o

administración de ecosistemas, donde haya que tomar decisiones explicitas sobre que

especies proteger.

Las redes se han convertido en un marco fundamental para el estudio de los sistemas

complejos en diversos campos. Aqúı tratamos con sus aplicaciones a sistemas biológicos

y ecológicos. El hecho de que patrones comunes aparezcan a través de campos muy
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diversos y a través de muchos niveles de organización da alas a la idea de que existen

realmente unos principios generales que definen la forma de funcionar de estos sistemas

complejos. El impacto que el enfoque sistémico ha tenido en la ciencia moderna puede

ser resumido en estas palabras de Strogatz :”Espero haberos transmitido lo emocionante

que es ser cient́ıfico ahora mismo. Parece que estamos en el amanecer de una nueva

era. Después de siglos en los que hemos dividido la naturaleza en piezas pequeñas

para estudiarla, estamos empezando a preguntarnos cómo montar las piezas de nuevo”.

Confiamos en que este enfoque puede proveer un camino hacia un mejor entendimiento

en la búsqueda de los principios que gobiernan los sistemas vivos.



Chapter 2

Topological features of ecological

and biological networks

2.1 Unimodal networks

The last 15 years have witnessed an explosion in the research field of complex net-

works [5, 14, 24, 176, 178, 192, 217, 239]. Several systems ranging from genetic net-

works, metabolic pathways and ecosystems to societies or the WWW could be described

with a common framework, in which elements (genes, chemical compounds, ecological

species, persons or web pages) are nodes connected by links. These links, that encode

the interplay between them, can take the form of gene activation/deactivation, reac-

tions, species interactions, relationships or hiperlinks). A major consequence of this

multidisciplinary approach was the recognition that several networks, notwithstanding

differences in the nature of their nodes, exhibit similar statistical properties. Despite

the fact that all these empirical networks are dynamical in their nature and thus may

change its structure over time (i.e predators can switch prey if a particular species is

scarce, some metabolic reactions only take place when certain compounds are present,

etc), the description in terms of static networks has proven valuable to identify struc-

tural features responsible for emerging functions [5, 16, 25, 29, 178]. Some structural

features, including clustering, degree assortativity[177], and the relative abundance of

specific motifs [12, 13], characterize the topology (i.e the structure) at the local scale.

Other traits, such as nestedness [29], community structure [87], and the existence of

22
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a hierarchy [56, 207] are related to the large-scale organization. From here on we are

going to focus on some characteristic patterns of biological and ecological networks, and

how these structural features affects their functioning.

Inspection of a wide collection of empirical networks evidenced that the connectivity

pattern they exhibit is far from what could be naively, and randomly, expected. For

instance, the degree distribution in both metabolic and protein networks is highly het-

erogeneous. It displays a scale-free connectivity pattern [110, 112], characterised by the

presence of a bulk of nodes with few connections and few nodes with many connections.

These kind of highly heterogeneous degree-distributions make networks highly tolerant

to random attacks/errors [6] and may be behind the alleged robustness of these systems

to small mutations or genes knock-outs. In addition to the number of connections of

each node, it is also possible to examine how is it connected to the other nodes in the

network. In this sense, we can speak of degree-degree correlation as the tendency of the

nodes to be connected to other nodes as a function of their neighbour’s degree. Several

biological and ecological networks exhibit a dissasortative pattern [177] in which nodes

with many connections are preferentially linked to nodes with few connections (social

network, on the contrary, tend to have nodes with similar number of connections link

together, i.e, they are assortative).

Akin to this idea but with different implications is the rich-club phenomenon, which

refers to the tendency of nodes with high centrality (the dominant elements of the sys-

tem) to form tightly interconnected communities. It is one of the crucial properties

accounting for the formation of dominant communities in both computer and social

sciences [54]. Interestingly enough this kind of organisation is also present in biological

systems. In some cases such as the human and macaque brains these “rich-clubs” are

identified as regions that play a key role in global information integration between dif-

ferent parts of the neural network [98, 258]. In others, such as protein-protein networks,

the presence of the phenomenon may indicate that key proteins act in concert, suggest-

ing a certain degree of stability in the activities for which they are responsible [155].

This relevant effect seems, however, to be absent in foodwebs, maybe because in these

networks there is not any structure scting as a “control-centre”. On the other hand, in-

spection these type of networks evidenced a high connectance, with species interacting

with many others, forming rather dense webs. Study of he “K-subwebs” (or K-cores)
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of foodwebs, defined as a subset of nodes that are connected to at least k nodes from

the same subset, revealed a highly cohesive organisation, with a high number of small

subwebs highly connected among themselves through the most dense subweb [160].

All these properties We have just seen that many different ecological and biological

systems can be visualized as networks made up of units linked whenever there is some

sort of interaction or “flow” between them. When these interactions have a determined

direction, i.e links have an origin and a target node, they constitute the so called

“directed networks”. Genetic regulatory circuits, metabolic pathways, neural networks

and foodwebs are examples of this type of webs. In general, the direction defined by

the interaction in these systems can be thought of in terms of flows, such as the energy

transfer in food webs or the flow of biological information in genetic or neural networks.

Directed networks also show features that appear repeatedly across different systems.

Following we cover some important structural characteristics of both ecological and

biological directed networks that will be of use along this study, paying special attention

to the structural features of ecological systems, such as foodwebs and plant-animal

mutualistic networks.

2.1.1 Community structure

Much attention has been paid in recent years to the community structure of complex

networks: how the nodes can be classified in groups such that a high proportion of

links fall within groups and few connections occur between groups [87]. One can, thus,

identify clusters, or communities, of densely linked nodes in the network structure,

connected to each other.

In biological networks this particular feature is frequently associated with task dif-

ferentiation: different functions being accomplished by different modules. For example,

the brain is known to exhibit a hierarchical-modular structure [168], where each mod-

ule specialises in carrying out a determined task [67]. Modules in genetic regulatory

networks and metabolic networks are associated with diverse kinds of subcircuits, each

performing a specific kind of function [64, 101]. Some subcircuits are used in many

diverse biological contexts, others are more complex and are dedicated to similar bio-

logical functions wherever they appear.

The idea of compartmentalisation in foodwebs has been present almost since the
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beginning. At the end of his seminal paper, May [150] noticed that model communities

tended to be more stable if organized in blocks, suggesting both that compartmental-

isation could enhance stability and that real ecological communities may be modular.

The high number of connections in foodwebs, compared with other types of networks,

jeopardices the search of such groups. However, application of powerful methods for

community structure detection to foodwebs resulted in revealing a compartmentalised

structure related to species habitat [127] or other features such as body size or phy-

logeny [209]. The dynamical consequence of this kind of organization seems to be an

enhance of the network robustness against the propagation of perturbations. Indeed,

the existence of these compartments favours species extinctions to be confined within

a module rather than to spread over the whole community[238].

Regardless of the nature of the network and the reason behind the community struc-

ture it is possible to quantify the degree of compartmentalisation. For a system with S

nodes and mean degree K = L/S, the configuration model [165] holds that the prob-

ability of there being a link from j to i is kini k
out
j /(KS) (where kini and kouti are the

numbers of i’s prey and predators, respectively) [178]. Using this, and given a particu-

lar partition (i.e., a classification of nodes into groups) of the network, one can define

the “modularity” of that particular partition of the network as:

Q =
1

KS

∑
ij

(
aij −

kini k
out
j

KS

)
δ(µi, µj),

where µi is a label corresponding to the partition that node i finds itself in, and δ(x, y) is

the Kronecker delta [178]. The modularity of the network is taken to be the maximum

value of Q obtainable with any partition. Since searching exhaustively is prohibitive

for all but very small and sparse networks, a stochastic optimization method is usually

called for. Throughout this work we use the algorithm of Arenas et al. [17], although

there are many in the literature and the most appropriate can depend on the kind of

network at hand [61, 68].

2.1.2 Hierarchy

Hierarchy is a polysemous word, involving order, levels, inclusion, or control as possible

descriptors [56]. However all of them stem from the idea of some nodes being “domi-
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Figure 2.1: Transcriptional regulatory network of the E. Coli [220], with different mod-
ules in different colours. The modules have been defined by application of community
detection software (Gephi [31]) and evidence the existence of different groups interlinked
to compose the whole regulatory network.

nant” over others. Different kind of biological and ecological directed networks present

such type of organization, generally associated with control or transport of some class.

For example in neuronal networks the flow of information propagates from sensory neu-

rons at the bottom of the hierarchy of control, to neurons in the central system, and

from there to the level of motor neurons[? ]. Hierarchical structure appears associated

to control also in genetic and transcriptional regulatory networks, were controller nodes

act upon controlled ones [80, 131, 213, 244, 276]. In networks were there is a transfer of

matter, as in foodwebs or metabolic networks, one can identify a hierarchy of “trophic”

levels were links tend to point from lower levels to higher ones. In this way, a hierar-

chy comes up, in which the trophic level of a species indicates how high up the “food

pyramid” it is (see Fig. 2.2).
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To extract this hierarchical ordering it is often useful to assign to each species a

number representing its “trophic” level as follows: the basal species, those with no prey

(no incoming connectivity), are assigned level one. The ones that only prey on basal

species are set to level two, and, in general, a given species takes the average level of

its prey plus one [135]

li =
1

kini

∑
j

aijlj + 1 (2.1)

where kini =
∑

j aij is the number of prey of species i (or i’s in-degree), and aij are

elements of the predation (or adjacency) matrix A. Along this study we will only deal

with unweighted networks in which the elements of A are either 1’s or 0’s, and hence we

omit the link strength term usually included in Eq. (2.1) [135] 1. Therefore, the trophic

level of each species can take non-integer values and is a purely structural property that

can be determined by solving a system of linear equations.

Although we have illustrated this algorithm to extract the hierarchical ordering

with foodwebs, it can be applyed to any directed network. As a matter of fact similar

methods have been proposed to infer the hierarchical ordering in biological networks

[131, 213, 276]. These methods are able to extract a hierarchical organization from a

given network and classify the nodes into a few discrete levels. In contrast, the method

we propose here produces more refined orderings since it is able to resolve possible

degeneracies between the coarser levels produced by previous methods.

2.1.3 Coherence

Once species are asigned a trophic level (section. 2.1.2), it is possible to define the

“trophic distance” spanned by each link in a foodweb (aij = 1) as xij = li − lj (which

is not a distance in the mathematical sense since it can take negative values). The

distribution of trophic distances over the network, p(x), will have mean 〈x〉 = 1 (since

for any node i the average over its incoming links is
∑

j aij(li − lj)/kini = 1 by defini-

tion). We define the “trophic coherence” of the network as the homogeneity of p(x):

the more similar the trophic distances of all the links, the more coherent. To say it

1However it is customary, when working with weighted networks, to weight each prey species con-
tribution with the strenght of its link
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Figure 2.2: Example of directed ecological network encoding feeding relations in a
simple community. Left panel (A) shows the network schematic representation were
the nodes represent trophic species and the links the feeding interactions. The links are
directed from the prey to the predator, reflecting the actual flow of biomass. Right panel
(B) presents the interaction (or adjacency) matrix where the green squares represent a
existing interaction (aij = 1) meaning species i consumes species j, and the grey squares
stand for non-existent interactions. In this network a hierarchy appears related with
the transport of biomass, with some species being dominant over others. The trophic
level of the species (li) gives an idea of how far is from the source of biomass.

simply, coherent networks have a well defined “stratified” structure, with highly defined

“trophic layers” while incoherent ones have not (see Fig. 2.3).

As a quantification of coherence, we use the standard deviation of the distribution

of trophic distances, which we will refer to, from now on, as an incoherence parameter:

q =
√
〈x2〉 − 1 (2.2)

where 〈·〉 = L−1
∑

ij(·)aij, and L is the total number of links, L =
∑

ij aij.

Trophic coherence bears a close resemblance to Levine’s measures of “trophic spe-

cialization” [135]. However, our average is computed over links instead of species, with

the consequence that we need not consider the distinction between resource and con-

sumer specializations. It is also related to measures of omnivory: in general, the more

omnivores one finds in a community, the less coherent the foodweb.
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We have introduced this concept in the context of foodwebs, however many kinds

of directed networks transport energy, matter, information or other entities in a similar

way to how food webs carry biomass from producers to apex predators. The adaptation

of this measure to any type of directed network is straightforward.

Figure 2.3: Two networks illustrating the extremes of trophic coherence: the network
on the left is completly coherent, q = 0, (all links are between species that are only one
trophic level apart) and hence have perfectly defined layers. On the other hand, the
network one on the right shown a highly incoherent structure, q = 0.7, without a clear
stratification.

2.1.4 Feedback loops and motifs

In a directed network a “feedback loop” of length k is defined as a closed sequence of

k different nodes in which a walker following the directions of the arrows returns to

the starting point after visiting once, and only once, all k nodes (fig. 2.4). Although

not many studies have dealt with loops statistics, inspection of empirical biological

networks evidence a under-representation of long feedback loops in the E. coli gene

regulatory network and the over-representation of short feedback loops in the S. cere-

visae’s [245]. Ref.[85] studies the statistics of the total number of feedback loops in

different complex networks, and reports a general absence of directed loops in different

foodwebs. We also study loops statistics in different directed complex networks and

obtain similar results (see chapter 4 and ref.[P2]): biological and ecological networks
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show an under-representation of long (i.e involving more than two nodes) loops. These

kind of network patterns are well-known to have a profound impact on dynamical sta-

bility. For instance, feedback loops are reported to be ubiquitous basic elements of

biological systems such as transcriptional regulatory networks, signaling transduction

pathways and cell cycle regulatory networks, where they are responsible for bistability

(i.e. it may creates discontinuous output response from continuous input) and oscila-

tions, [124, 143, 180, 198, 248]. However, as oberved in [140], biological networks display

a kind of antiferromagnetic ordering – were contiguous links have a statistical tendency

to point in opposite directions– causing a depletion of feedback loops which, the authors

claim, lead to an enhancement of network stability.

In foodwebs the impact of loops in stability is also wide acknowledged [7, 21, 151,

156, 164, 172, 173, 241], and studies mainly focus on the stabilising effects that weak

interactions taking place in long trophic loops confers to the community.

Overall, motif identification (i.e Patterns that occur in the real network significantly

more often than in randomized networks) in both ecological and biological networks

exhibit a characteristic pattern [163], that in biological networks represents the existence

of repeated circuits with similar functions [223, 273] and in foodwebs different ecological

relations such as apparent competition or intraguild predation [28], or different species

roles in the community [237].

2.1.5 Intervality

When Cohen first compiled a database of empirical foodwebs and studied them quanti-

tatively [51], in addition to observing that certain ratios (known as scaling laws) between

kinds of species are to some degree universal, he discovered that many of the networks

were what he called interval: the columns of the adjacency matrix could be ordered

in such a way that all the prey of any predator were contiguous [52](see fig. 2.5). In

other words, if all the species were placed appropriately on an axis – now labelled as the

niche dimension – then the set of prey of any given predator would lie on an unbroken

interval. More recently the degree of intervality of foodwebs has been measured with

several estimatorss that are close to unity if most of the prey lie on unbroken intervals,

or approach zero when very few do [236]. This streaking feature of foodwebs has been

related to the number of trophic dimensions characterizing the niches in a community,
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Figure 2.4: Empirical trophic web of the Mondego Stuary [194], showing the only two
loops of length 4 present in the network. Species trophic level is represented by the
species’ height, and the color is just a help to the eye.

and it is the core idea behind many customarily employed foodweb models such as the

Cascade [53] or the Niche model[270].

A simple way to quantify it is to measure, for each predator, the size of its largest

unbroken interval as a fraction of its total number of prey, and use the average value

over predators as a measure of the intervality – also sometimes called contiguity – of

the web. This is the magnitude we shall use in this work, represented as ξ.

To illustrate the concept of intervality the top left panel of fig.2.5 shows the adja-

cency matrix for the foodweb of Skipwith pond (U.K), with the species ordered so as to

maximize ξ. Since there are very many possible orderings of the columns (the factorial

of the number of species) it is not possible in general to exhaustively search for the best

– i.e., the most interval – one. Instead we do as Stouffer et al. [236] and use a Simulated

Annealing (SA) algorithm. For comparison, in the right panel of Fig.2.5 we show the

best ordering (also obtained with the SA method) for a random graph generated with

the same numbers of species, S, of basal species (producers), B, and of links, L, as the

empirical web. Within these constraints, the links are placed at random, as in an Erdos

Renyi graph [178]. The most immediate observation is that the empirical foodweb is

indeed significantly more interval than the random graph, indicating (as has often been
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Figure 2.5: Left panel: Adjacency matrix corresponding to the foodweb of Skipwith
pond [267]. Green square means that the predator (vertical axis) eats the prey species
(horizontal axis) in question. An ordering of the species has been sought which maxi-
mizes prey-intervality, ξ: the prey of any predator tend to be contiguous. Right panel:
The same for a random null-model corresponding to the Skipwith pond web, in which
links have been allocated randomly.

stated) that intervality is a highly non-trivial feature of natural foodwebs.

2.2 Bipartite networks

Whenever a biological or ecological system presents two different type of elements in-

teracting between each other they are susceptible to be described in terms of bipartite

networks. For instance, transcriptional regulatory bipartite networks depict the inter-

action between two different set of nodes: genes and the proteins they encode. The

links, that represent which genes codify each of the proteins, will link only elements

in one set with elements on the other. Metabolic reactions can also be described in

terms of bipartite networks, were reactions and metabolites are linked whenever the

metabolite takes part in a reaction.

There are different kinds of ecological bipartite networks, encoding different type of

interactions. Examples of them are host-parasitic networks, which represent interac-

tions between two species in which one of them takes advantage on the other, facilitation

networks, which encode the interactions in which an organism profits from the pres-
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ence of another (as happens with nurse plants that provide shade for new seedlings or

saplings) or mutualistic networks, representing mutually beneficial interactions. Here

we will only focus on this last kind.

Mutualistic communities, thus, can be described as a bipartite network of inter-

actions between two mutualistic partners, in our case plants and animals. The links

represent mutualistic interactions such as pollination of plants by different animals

(bees, butterflies, hummingbirds...) or dispersion of seeds by animals which feed on

the plants producing them (birds, monkeys...). Fig.2.6 represents an example of such

a network. Alternatively, mutualistic networks can also be described as a matrix, with

animals as rows and plants as columns. Each element of such interaction matrix is 1 if

that particular plant and animal interact, or 0 otherwise 2

As in the case of directed networks, inspection of diverse mutualistic communities

revealed the existence of common features. In fact, mutualistic networks have well-

defined structures and several patterns have been found in a vast array of datasets

encompassing highly diverse ecosystems and varying degrees of complexity.

2.2.1 Degree distribution

One important feature of complex networks is that their degree distribution is heavily

heterogeneous, characterized by having many nodes with few links and very few nodes

with many links [230]. Regardless of the differences in high, latitude, or species com-

position, mutualistic networks display a common and well-defined connectivity pattern

[120]. These networks are much more heterogeneous than expected by chance, although

not as heterogeneous as scale-free networks, they show an exponential cut-off. This im-

plies that as the number of interactions reaches a critical connectivity value kc, the

probability of finding species with more connections drops faster than expected for a

power-law. Mutualistic communities, as other networks with these type of connectivity

patterns, exhibit a high tolerance to random extinctions [42].

2These element can also be a positive number describing the strength of the interaction (i.e., the
relative frequency of visits, or relative frequency of pollen or seeds dispersed). In this case this would
be a weighted bipartite network.
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2.2.2 Community structure

As we have seen before, many biological and ecological systems are organized into

modules, where different subsets of units have a specific functionality. In mutualistic

networks modularity can emerge from spatio-temporal structure (as habitat separation)

and/or evolutionary processes leading to non-random patterns of interactions. Mod-

ules in mutualistic networks have been suggested to be units of coevolution, and some

phylogenetic studies support this idea [210]. Plant-animal mutualistic networks exhibit

a modular estucture with generalist species connecting peripheral species together into

modules, but also connecting modules between them [183]. These generalist species

act as modular hubs, spanning connections among modules, and so they are crucial to

maintain the cohesiveness of the network. The extinction of a module hub can lead to

fragmentation of the network, that is why they are considered very important for the

conservation of mutualistic communities.

2.2.3 Nestedness

Nestedness is a concept borrowed from island biogeography to illustrate how a pool

of animals is redistributed among a set of islands [19]. In the mutualistic network lit-

erature, nestedness describes a defined pattern of species interactions. Inspection of

plant-frugivore and plant-pollinator networks evidenced that these networks are nei-

ther randomly assembled nor organized in compartments arising from tight, reciprocal

specialization. Plant-animal mutualistic networks are highly nested, that is, specialists

(those with only a few mutualistic partners) interact with species that form well-defined

subsets of the species with which generalists (those with many mutualistic partners)

interact [29]. In other words, if we rank plants from the most specialized to the least

specialized, we find that the set of animals a plant interacts with are contained in a

larger set, which in turn is contained in a larger set, and so on, as in nested Chinese

boxes, see fig. 2.6.

Nested networks have two important features:

• First, most part of generalist species interacts among them, which means that

these networks are very cohesive. In other words: generalist species generate a

dense core of interactions to which the rest of the community is attached.
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Figure 2.6: Example of mutualistic community composed by plants and its pollinators.
It can be represented by a network of interactions (A) or by a plant-animal interaction
matrix (B). Left panel shows an explicit representation of the network, where green
nodes represent animal species and yellow nodes represent plant species. The lines
connecting them are the observed interactions in the community. Right panel shows
the interaction matrix, with animal species in rows and plant species in columns. Green
squares depict observed interactions between a plant and an animal while light gray
squares are non-observed interactions. This community is perfectly nested because
specialist species form perfect subsets of more generalized species interacting with their
mutualistic partners. The box outlined in B represents the central core of the network.

• Second, specialists tend to interact with the most generalist species, wich creates

a high asymmetry in terms of specialization levels.

The role this feature plays in mutualistic networks is still open to debate. Several

studies suggest that nestedness may increase the stability and foster coexistence in

mutualistic communities [33, 181]. The general idea behind this connection is that

since generalists tend to be more abundant and less-fluctuating species, when compared

with specialists (because generalists rely on so many other partners), this asymmetrical

structure provides pathways for the persistence of rare species [118]. Also, the cohesive

pattern can provide alternative routes for system responses to perturbation, since a

species is more unlikely to become isolated after the elimination of other species when

embedded on a highly cohesive network [29].

This positive effect is, however, challenged in a recent study were the opposite is

found: nested networks tend to promote instability. This work also suggest that in

order to correctly evaluate the effect of the nested structure one should consider the
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weight of the interactions and not only their presence [234].

The network properties mentioned above share a common feature: they are of-

ten asymmetrical. Asymmetry is present at all levels in mutualistic networks, from

species number of interactions (degree-heterogeneity), to their pattern (nestedness) and

strengths. In fact, the interaction strength (or species dependence) is highly heteroge-

neous and asymmetrical, which means that some plant species are highly dependent

on the service (e.g. dispersal) provided by an animal species, but this animal species

might depend much less on the resources (e.g. fruits) provided by the plant. Theoretical

studies in foodwebs suggest that this distribution of interaction strengths may promote

community persistence and stability [37]. In mutualisitc networks the reasoning goes

as follows: if both plant and animal depend strongly on each other, a decrease in plant

abundance will be followed by a similar decrease in the animal abundance, which in

turn will turn back on its partner. If their relation is assymetrical this kind of negative

feedback is less pronounced.



Chapter 3

Food webs coherence determines

stability

In the early seventies, Robert May addressed the question of whether a generic system

of coupled dynamical elements randomly connected to each other would be stable. He

found that the larger and more interconnected the system, the more difficult it would

be to stabilise [150, 152]. His deduction followed from the behaviour of the leading

eigenvalue of the interaction matrix, which, in a randomly wired system, grows with

the square root of the mean number of links per element.

This result clashed with the received wisdom in ecology – that large, complex

ecosystems were particularly stable – and initiated the “diversity-stability debate”

[73, 141, 156, 190]. Indeed, Charles Elton had expressed the prevailing view in 1958:

“the balance of relatively simple communities of plants and animals is more easily upset

than that of richer ones; that is, more subject to destructive oscillations in populations,

especially of animals, and more vulnerable to invasions” [79]. Even if this description

were not accurate, the mere existence of rainforests and barrier reefs seems incongruous

with a general mathematical principle that “complexity begets instability”, and has

become known as May’s Paradox.

One solution might be that the linear stability analysis used by May and many

subsequent studies does not capture essential characteristics of ecosystem dynamics,

and much work has gone into exploring how more accurate dynamical descriptions

might enhance stability [41, 65, 156]. But as ever better ecological data is gathered,

37
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it is becoming apparent that the leading eigenvalues of matrices related to foodwebs

do not exhibit the expected dependence on size or link density [109]. Food webs must,

therefore, have some unknown structural feature which accounts for this deviation from

randomness – irrespectively of other stabilising factors.

We show here that a network feature we call trophic coherence accounts for much

of the variance in linear stability observed in a dataset of 46 food webs, and we prove

that a perfectly coherent network with constant link strengths will always be stable.

Furthermore, the simple model that we proposed to capture this property suggests

that networks can become more stable with size and complexity if they are sufficiently

coherent.

3.1 Trophic coherence and stability

Each species in an ecosystem is generally influenced by others, via processes such as

predation, parasitism, mutualism or competition for various resources [78, 200, 228,

241]. A food web is a network of species which represents the first kind of influence

with directed links (arrows) from each prey node to its predators [70, 74, 199, 214]. Such

representations can therefore be seen as transport networks, where biomass originates

in the basal species (the sources) and flows through the ecosystem, some of it reaching

the apex predators (the sinks).

The trophic level of a species (li) can be defined as the average trophic level of its

prey, plus one [135, 195]. Thus, plants and other basal species are assigned level one,

pure herbivores have level two, but many species will have fractional values 1 (see sec.

2.1.2). A species’ trophic level provides a useful measure of how far it is from the sources

of biomass in its ecosystem. We can characterise each link in a network with a trophic

distance, defined as the difference between the trophic levels of the predator and prey

species involved as xij = li − lj (it is not a true “distance” in the mathematical sense,

since it can be negative). We then look at the distribution of trophic distances over all

links in a given network. The mean of this distribution will always be equal to one,

1In computing the mean trophic level, it is customary to weight the contribution of each prey
species by the fraction of the predator’s diet that it makes up. Since we are here only considering
binary networks, we do not perform this weighting. We also use the words predator and prey as
synonyms of consumer and resource, respectively, even in referring, say, to plants and herbivores.
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while we refer to its degree of homogeneity as the network’s trophic coherence. We shall

measure this degree of order with the standard deviation of the distribution of trophic

distances, q (we avoid using the symbol σ since it is often assigned to the standard

deviation in link strengths). A perfectly coherent network, in which all distances are

equal to one (implying that each species occupies an integer trophic level), has q = 0,

while less coherent networks have q > 0. We therefore refer to this q as an “incoherence

parameter”. (For a technical description of these measures, see secc.2.1.3).

A fundamental property of ecosystems is their ability to endure over time [214,

228]. “Stability” is often used as a generic term for any measure of this characteristic,

including for concepts such as robustness and resilience [92]. When the analysis regards

the possibility that a small perturbation in population densities could amplify into

runaway fluctuations, stability is usually understood in the sense of Lyapunov stability

– which in practice tends to mean linear stability [103]. This is the sense we shall

be interested in here, and henceforth “stability” will mean “linear stability”. Given

the equations for the dynamics of the system, a fixed (or equilibrium) point will be

linearly stable if all the eigenvalues of the Jacobian matrix evaluated at this point have

negative real part. Even without precise knowledge of the dynamics, one can still apply

this reasoning to learn about the stability of a system just from the network structure

of interactions between elements (in this case, species whose trophic interactions are

described by a food web) [9, 103, 152, 153]. Indeed, in Appendix A we describe how

an interaction matrix W can be derived from the adjacency (or predation) matrix, A,

representing a food web, such that the real part of W ’s leading eigenvalue, R = Re(λ1),

is a measure of the degree of self-regulation each species would require in order for

the system to be linearly stable. In other words, the larger R, the more unstable the

food web. For the simple yet ecologically unrealistic case in which the extent to which a

predator consumes a prey species is proportional to the sum of their (biomass) densities,

the Jacobian coincides with W and R describes the stability for any configuration of

densities (global stability). For more realistic dynamics – such as Lotka-Volterra, type

II or type III – the Jacobian must be evaluated at a given point, but we show that

the general form can still be related to W (see Appendix A). Furthermore, by making

assumptions about the biomass distribution, it is possible to check our results for such

dynamics (see subsection 3.1.1 below ). However, in gneral we shall focus simply on
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the matrix W without making any further assumptions about dynamics or biomass

distributions, and hence estimate the community stability with R (leading eigenvalue

of W ).

May considered a generic Jacobian in which link strengths were drawn from a ran-

dom distribution, representing all kinds of ecological interactions [150, 152]. Because,

in this setting, the expected value of the real part of the leading eigenvalue (R) should

grow with
√
SC, where S is the number of species and C the probability that a pair

of them be connected, larger and more interconnected ecosystems should be less sta-

ble than small, sparse ones [229]. (Allesina and Tang have recently obtained stability

criteria for random networks with specific kinds of interactions: although predator-

prey relationships are more conducive to stability than competition or mutualism, even

a network consisting only of predator-prey interactions should become more unstable

with increasing size and link density [9]).

Throughout this chapter we analyse the stability of a set of 46 empirical food webs

from several kinds of ecosystem (the details and references for these can be found in

Section 3.6 at the end of this chapter). We start by scrutinizing how do the complexity

and size of ecosystems relate to their stability. In Fig. 3.1.A we plot the R of each

web against
√
S, observing no significant correlation. Figure 3.1.B shows R against√

K, where K = SC is a network’s mean degree (often referred to as “complexity”). In

contrast to a recent study by Jacquet et al. [109], who in their set of food webs found no

significant complexity-stability relationship, we observe a positive correlation between

R and
√
K. However, less than half the variance in stability can be accounted for in

this way. In Section 3.1.1 below we also compare the empirical R values to the estimate

derived by Allesina and Tang for random networks in which all links are predator-prey.

Surprisingly, the correlation is lower than for
√
K (r2 = 0.230). The conclusion of

Jacquet and colleagues – namely, that food webs must have some non-trivial structural

feature which explains their departure from predictions for random graphs – therefore

seems robust.

Might this feature be trophic coherence? In Fig. 3.1.C we plot R for the same food

webs against the incoherence parameter q. The correlation is significantly stronger than

with complexity – stability increases with coherence. However, there are still outliers,

such as the food web of Coachella Valley. We note that although most forms of intra-
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species competition, such as the struggle for water, habitat or mating, are not described

by the interaction matrix, there is one form which is: cannibalism. This fairly common

practice is a well-known kind of self-regulation which contributes to the stability of a

food web (mathematically, negative elements in the diagonal of the interaction matrix

shift its eigenvalues leftwards along the real axis). In Fig. 3.1.D we therefore plot the

R and q we obtain after removing all self-links. Now Pearson’s correlation coefficient is

r2 = 0.804. In other words, cannibalism and trophic coherence together account for over

80% of the variation in stability observed in this dataset. In contrast, when we compare

stability without self-links to the other measures, we find that for
√
S the correlation

becomes negative (though insignificant), for
√
K it rises very slightly to r2 = 0.508,

and for Allesina and Tang’s estimate it drops below significance (see Section 3.1.1).

In Section 3.1.1, we measure stability in a slightly different way, according to Lotka

Volterra, type II and type III dynamics, and show that in every case trophic coherence

is still the best predictor of stability.
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Figure 3.1: Scatter plots of stability (as measured by R, the real part of the leading
eigenvalue of the interaction matrix) against several network properties in a dataset
of 46 food webs; Pearson’s correlation coefficient is shown in each case. A: Stability
against

√
S, where S is the number of species (r2 = 0.064). B Stability against

√
K,

where K is the mean degree (r2 = 0.461). C Stability against trophic incoherence,
q (r2 = 0.596). B Stability after all self-links (representing cannibalism) have been
removed (Rnc) against trophic coherence, q (r2 = 0.804).

3.1.1 Measuring stability

Let us assume that the populations of species making up an ecosystem (each charac-

terised by its total biomass) change through time according to some set of nonlinear
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differential equations, the interactions determined by the predation matrix, A (whose

elements aij take the value one if species i preys on species j, and zero otherwise). If

the system persists without suffering large changes it must, one assumes, find itself in

the neighbourhood of a fixed point of the dynamics. We can study how the system

would react to a small perturbation by expanding the equations of motion around this

fixed point and keeping only linear terms. The subsequent effect of the perturbation

is then determined by the corresponding Jacobian matrix, and the system will tend to

return to the fixed point only if the real parts of all its eigenvalues are negative [103].

Even without knowledge of the details of the dynamics, it is possible to draw some

conclusions about the stability of a food web solely from its predation matrix [153].

Independently of the exact interaction strengths, we know that not all the biomass

lost by a prey species when consumed goes to form part of the predator – in fact, this

efficiency is relatively low [137]. It is therefore natural to assume that the effect of

species j on species i will be mediated by wij = ηaij − aji, where η is an efficiency

parameter which, without further information, we can consider equal for all pairs of

species. We can thus treat the interaction matrix, given by

W = ηA− AT (3.1)

as the Jacobian of some unspecified dynamics. However, we have ignored the sta-

bilising effect of intra-species competition – the fact that individuals within a species

compete with each other for resources which are not specified by the predation ma-

trix, such as habitat or water. These would correspond to real values to be subtracted

from the diagonal elements of W , thereby shifting its set of eigenvalues (or spectrum)

leftwards along the real axis. Therefore, the eigenvalue with largest real part of W ,

as defined above, can be seen as a measure of the minimum intra-species competition

required for the system to be stable. Thus, the lower this value, R = Re(λ1), the higher

the stability.

In Appendix A we describe this analysis in more detail. Beginning with a general

consumer-resource differential equation for the biomass of each species, we obtain the

Jacobian in terms of the function F (xi, xj) which describes the extent to which species

i consumes species j. For the simple (and unrealistic) case F = xi + xj, the Jacobian

reduces to the matrix W as given above, independently of the fixed point. For more
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realistic dynamics, the Jacobian depends on the fixed point. For instance, for the Lotka-

Volterra function F = xixj, the off-diagonal elements of the Jacobian are Jij = wijxi.

If we set F = xiH(xj) (with H(x) = xh/(xh +xh0), x0 the half-saturation density and h

the Hill coefficient), we have either type II (h = 1) or type III (h = 2) dynamics [208].

Then the off-diagonal elements are Jij = [η̃(xi, xj)aij − aji]H(xi), where the effective

efficiency is η̃(xi, xj) = ηhxh0xix
−(h+1)
j H(xj)

2/H(xi).

The Jacobians for Lotka-Volterra, type II and type III dynamics are all similar

in form to the matrix W , although for an exact solution we require the fixed point.

Throughout this chapter we therefore use the leading eigenvalue of W as a generic

measure of stability. However, in the next subsection (3.1.1) we consider the effects that

different kinds of biomass distribution have on each of these more realistic dynamics.

The results are qualitatively the same as those for the matrix W , although we find that

both the squatness of a biomass pyramid and the level of noise in this structure affect

the strength of the diversity-stability relationship described in the main text. After

that we go on and scrutinize how do other features such as the proportion of herbivores

(sec. 3.1.1), stability criteria (sec. 3.1.1) and sampling errors or inconsistencies in the

resolution of the data (sec. 3.1.1) influence the correlation between trophic coherence

and stability.

It is evident that this measure of stability depends on the parameter η. In sec.

3.3.2 below we show that the results reported here remain qualitatively unchanged for

any η ∈ (0, 1), and discuss how stability is affected when we consider η > 1 or η < 0.

Further on we also look into the effects of including a noise term so that η does not

have the same value for each pair of species, and find that our results are robust to

this change too. For the main results in the chapter, however, we use the fixed value

η = 0.2.

Biomass distribution

As discussed at the beginning of section 3.1.1, the Jacobian corresponding to most

kinds of biologically plausible dynamics will depend on details of the fixed point. In

other words, we need to know the biomass of each species in order to evaluate the

Jacobian. Since only a fraction of the energy produced by a species can be used by

its consumers, ecosystems can often be regarded as pyramids in which biomass is a
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decreasing function of trophic level [3]. More specifically, if we assume that the biomass

of a species is a constant fraction of the combined biomass of its resources, biomass will

be exponentially related to trophic level. We can thus write

xi = ea(li−1) (3.2)

with a a parameter determining the difference in biomass between predator and prey

species (for a = 0 there is no dependence of biomass on trophic level), and set the

basal species to unity biomass. A negative value of a then corresponds to a pyramid in

which biomass decreases with trophic level (note that a graphical representation of this

situation will look like a pyramid if the size of each echelon corresponds to the logarithm

of its biomass). Although terrestrial food webs have this distribution, in certain aquatic

environments inverted pyramids can arise, corresponding to a positive a. This is due

to the effect of increasing longevity with trophic level, which can compensate to some

extent for the inefficiency of predation [3].

In order to examine the robustness of results to fluctuations in this exponential law,

we can consider instead a biomass given by

xi = (1 + ξi)e
a(li−1) (3.3)

where the variables ξi are randomly drawn from a normal distribution with mean zero

and standard deviation σx. We can then use these values of xxx to evaluate the Jacobian

for each kind of dynamics and study the behaviour of its leading eigenvalue, R.

Table 3.1 shows the correlations between stability and the various network measures

shown in Fig. 3.1 above, over the 46 food webs in the dataset. The first row displays

the values for the simple case where the Jacobian is considered equal to the interaction

matrix W . The second, third and fourth rows are for the cases of Lotka-Volterra, type II

and type III dynamics, with biomass distributed according to Eq. (3.2) and a = −0.2.

The general pattern shown in Fig. 3.1 is conserved for these more realistic dynamics.

Jacobian
√
S

√
K q q (no self-links)

W 0.064 0.461 0.596 0.804

WI 0.045 0.219 0.431 0.730



3.1. Trophic coherence and stability 45

WII 0.088 0.359 0.456 0.658

WIII 0.107 0.426 0.608 0.582

Table 3.1: First column: Jacobian used to compute stability of the empirical food

webs of Table 3.4 in sec. 3.6. W is simply the interaction matrix, as used throughout

the main text; WI , WII and WIII correspond to types I, II and III, respectively (where

Lotka-Volterra is type I). For these cases, we assume an uncorrupted biomass pyramid,

as given by a = −0.2 in Eq. (3.2). Second, third and fourth column, respectively: value

of the correlation coefficient r2 obtained for R (stability) against
√
S (where S is the

number of species),
√
K (where K is the mean degree), and q (incoherence parameter).

Fourth column: as the third column, after removing all self-links. Compare with Fig.

3.1 above.

Herbivory

Links from basal species (producers) to species which only consume basal species (her-

bivores) will necessarily have a trophic distance equal to one (see sec. 2.1.3). Since the

proportion of basal species, B/S, varies considerably among food webs, we can expect

this measure to have a strong bearing on trophic coherence. On the other hand, a

large number of basal species may provide a more stable configuration than a network

in which many species depend on just a few producers. Might this be the underlying

reason for the relation between trophic coherence and stability?

Figure 3.2.A is a scatter plot of q against B/S for the food webs listed in Table 3.4

(70 pg.). There is indeed a significant negative correlation (r2 = 0.559). Figures 3.2.B

and 3.2.C show how stability, as measured both before and after removing self-links,

varies with the proportion of basal species in the same dataset. The correlations are

also significant (r2 = 0.475 for R and r2 = 0.505 for Rnc), but slightly lower than we

observe in Fig. 3.2.A. In any case, they are much weaker than the correlations shown

in Fig. 3.1 between trophic coherence and stability. We can therefore conclude that

trophic coherence is the most powerful explanatory variable of stability, while the effect

of the proportion of basal species is either less important, or simply an artefact of its
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correlation with trophic coherence.
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Figure 3.2: Scatter plots, for the food webs listed in Table 3.4, of three network measures
against the proportion of basal species, B/S. A: Trophic coherence, q, against B/S
(r2 = 0.559). B: R (real part of the leading eigenvalue of W ) against B/S (r2 = 0.475).
C: Rnc (real part of the leading eigenvalue of W after self-links have been removed)
against B/S (r2 = 0.505).

Stability criteria

Throughout this chapter we discuss May’s result for random networks, according to

which the real part of the leading eigenvalue should scale as R ∼
√
SC =

√
K. We also

show that R does not exhibit a significant correlation with
√
S, although we do observe

a modest positive correlation (r2 = 0.480) with
√
K. In Figs. 3.3.A and 3.3.B we show

scatter plots, for the food webs listed in Table 3.4 in the Data supplement at the end of

the chapter, of the leading eigenvalue after self-links have been removed, Rnc, against√
S and

√
K. In the former case the correlation is now negative but still insignificant,

while in the latter the correlation increases slightly to r2 = 0.508. However, food webs

are network in which all the links stand for predation (as opposed to other ecological

relationships, such as competition or mutualism). Allesina and Tang have recently

derived stability criteria for specific kinds of interactions [9]. In particular, when the

links stand for predation but are randomly placed among the species, they find that
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the real part of the leading eigenvalue should scale as

R ∼ (1 + ρ)
√
SV , (3.4)

where V is the variance of the off-diagonal elements of the interaction matrix W , and

ρ is Pearson’s correlation coefficient between the elements Wij and Wji. Figure 3.3.C

is a scatter plot of Rnc against the prediction of Eq. (3.4). Somewhat surprisingly, the

correlation is very weak (r2 = 0.083). In Fig. 3.3.D we swap Rnc for R (the leading

eigenvalue when cannibalism is included) and now the correlation becomes significant

(r2 = 0.230), although still relatively low. These results provide further evidence that

the structure of food web is non-random in a way which is particularly relevant for their

stability.
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1 20
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Figure 3.3: Scatter plots, for the food webs listed in Table 3.4, of stability measures
against various network values. A: Rnc (real part of the leading eigenvalue after self-
links have been removed) against

√
S (r2 = 0.008). B: Rnc against

√
K (r2 = 0.508).

C: Rnc against Allesina and Tang’s prediction, given by Eq. (3.4) (r2 = 0.083). D: R
(real part of the leading eigenvalue without removing self-links) against Allesina and
Tang’s prediction (r2 = 0.230).

Missing links and trophic species

Despite important recent developments in food-web inference techniques, it is often hard

to ascertain from observation whether a given species consumes another (and even more

difficult to quantify the extent of predation). Furthermore, the food webs we have used

here for our analysis (described in Section 3.6) were obtained with a variety of different
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techniques. To assess whether the patterns we have observed in this dataset, shown in

Fig. 3.1 , are robust to possible experimental errors, we remove from each food web a

percentage of links, chosen randomly, and recompute each of the magnitudes of interest.

After averaging over 100 such tests for each food web, we then recalculate each of the

correlation coefficients shown in Fig. 3.1. These are shown in Table 3.2 for different

percentages of links removed. As we can see, the dependency of stability on the other

magnitudes is barely affected by the random deletion of links: the correlation of R

with size is never significant, while the correlation with both complexity and coherence

actually increases slightly with the percentage of deleted links.

Missing links
√
S

√
K q q (no self-links)

0% 0.064 0.461 0.596 0.804

1% 0.061 0.484 0.598 0.814

5% 0.064 0.497 0.635 0.831

10% 0.014 0.545 0.752 0.857

20% 0.002 0.582 0.783 0.845

Table 3.2: First column: percentage of links randomly deleted from the empirical

food webs of Table 3.4. Second, third and fourth column, respectively: value of the

correlation coefficient r2 obtained for R (stability) against
√
S (where S is the number

of species),
√
K (where K is the mean degree), and q (incoherence parameter). Fourth

column: as the third column, after removing all self-links. Compare with Fig. 3.1 in

page 41.

The nodes in the food webs found in the literature often represent “trophic species”.

This means that if two or more species in the community share their full sets of prey and

predators, they are coalesced into a single node, even if they are in fact taxonomically

distinct. However, with recent advances in empirical techniques of food-web inference,

larger networks are now being obtained in which nodes represent taxonomic, rather than

trophic, species. To find out whether our empirical findings are affected by the degree

of taxonomic resolution, we perform a similar test to that of link deletion: for each food
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web, we randomly choose a percentage of species to be duplicated – that is, we introduce

a new species with the same sets of predators and prey. As before, we average over

100 such tests and recalculate the correlation coefficient for each pair of magnitudes of

interest. In Table 3.3, below, we show these results for various percentages of duplicated

species. As with the deleted links, we find that the correlations are fairly robust to these

modifications, implying that they are not severely affected by the taxonomic resolution

of the food webs.

Species duplicated
√
S

√
K q q (no self-links)

0% 0.064 0.461 0.596 0.804

20% 0.002 0.582 0.783 0.845

50% 0.122 0.406 0.713 0.797

Table 3.3: First column: percentage of species duplicated (as described in Section 3.1.1)

in the empirical food webs of Table 3.4. Second, third and fourth column, respectively:

value of the correlation coefficient r2 obtained for R (stability) against
√
S (where

S is the number of species),
√
K (where K is the mean degree), and q (incoherence

parameter). Fourth column: as the third column, after removing all self-links. Compare

with Fig. 3.1 in page 41.

3.2 Preferential Preying:

foodwebs with tunable coherence

We have seen in the previous section that trophic coherence is a relevant factor in

the stability of foodwebs. However, as we show in Figure 3.13 (at the end of this

chapter) and Figure 3.7.A modern models of foodweb assembly do not seem to be

able to reproduce this feature of empirical networks. In order to be able to study this

characteristic we put forward a model we call “Preferential Preying”. The basic idea

behind this model is that the coherence of the network can be defined by the “trophic

preferences” of the species composing the community.
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3.2.1 The model

We begin with B nodes (basal species with no incoming connectivity) and no links.

New nodes (the consumer species) are sequentially added to the system until we have a

total of S species. Their prey is assigned in the following way: a new node i is awarded a

first prey j chosen randomly from the ones already existent in the community. Then

another κi nodes m are chosen with a probability Pim that decays with the trophic

distance between j and m. Specifically, we use the exponential form

Pim ∝ exp

(
−|lj − lm|

T

)
,

where j is the first node chosen by i, and T is a parameter that sets the degree of trophic

specialization of consumers (see Fig. 3.4). In this way, at high T all the prey are chosen

randomly, whereas for T close to zero a given node’s prey will all have similar trophic

levels and the network will be highly coherent (q = 0).

The number of prey of each species is drawn from a Beta distribution with a mean

value proportional to the number of available species, since this has been shown to

provide the best approximation to the in-degree distributions of food webs [235]. The

number of extra prey is determined in a similar manner to the Niche Model prescription:

κi = xini, where ni is the number of nodes already in the network when i arrives, and

xi is a random variable drawn from a Beta distribution with parameters

β =
S2 −B2

2L
− 1,

where L is the expected number of links. In this work, we only consider networks with

a number of links within an error margin of 5% of the desired L; thus, for all the results

reported, we have imposed this filter on the PPM networks and those generated with

the other models.

To allow for cannibalism, the new node i is initially considered to have a trophic

level li = lj + 1 according to which it might then choose itself as prey. Once i has been

assigned all its prey, li is updated to its correct value.

The PPM is reminiscent of Barabási and Albert’s model of evolving networks [23],

but it is also akin to a highly simplified version of an “assembly model” in which species
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enter via immigration [32, 158]. It assumes that if a given species has adapted to prey

off species A, it is more likely to be able to consume species B as well if A and B have

similar trophic levels than if not. It may seem that this scheme is similar in essence to

the Niche Model, with the role of niche-axis being played by the trophic levels. However,

whereas the niche values given to species in niche-based models are hidden variables,

meant to represent some kind of biological magnitude, the trophic level of a node is

defined by the emerging network architecture itself. We shall see that this difference

has a crucial effect on the networks generated by each model.

l=1

4

6 i

1 2 3 1 2 3

A)

i

1 2 3

B) C)

4 45 5 5

6 6 i

l=2

l=3

Figure 3.4: Diagram showing how networks are assembled in the Preferential Preying
Model (PPM). In Panel A a new node, labelled i, is introduced into the network, and
is randomly assigned node 4 as its first prey species. In Panel B, the probabilities of
next choosing node 5 or node 6 are calculated, as functions of their trophic distance to
node 4 (β = 1/T ). Node 5 is the closest, and in this case is taken as the second prey
species, as shown in Panel C.

3.2.2 Preferential preying performance

The model we put forward here is aimed to generate stratified networks (or networks

with tunable trophic coherence) in a simple way, and is not initially designed to capture

other features of foodweb structure. For the set of natural foodwebs considered in

Table 3.4 we have adjusted the free parameter T so as to fit the empirical value of

the coherence. This allows us to generate an “imitation” of the original community,

in a similar way to how other customarily used models do. However so as to asses to

what extent the topologies generated with our model are realistic we have compared
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the performance of the networks generated using the PPM against the ones generated

with other static models of wide use ( The complete description of the models we use

as a workbench are in Appendix B). We have considered a set of important measures

usually studied in foodwebs, such as stability (as measured in sec. 3.1.1), mean chain

lenght, modularity (sec. 2.1.1), mean trophic level and number of apex predators and

cannibalistic species. All of these measures have an imporant impact on the network

behaviour. We already know that a compartmentalized structure is associated with

enhanced resilience of the ecosystems to be perturbed by species extinctions (sec. 2.1.1),

and that coherence and cannibalism are strongly correlated with its stability (sec. 3.1).

However other features also have an important impact in foodweb performance. For

instance, a low mean chain length (MCL) has been associated with a high stability

[200]. It is defined as the average length (number of links) of all the food chains, i.e.

a directed path beginning at at basal species and ending at an apex predator [78],

composing a foodweb. The mean trophic level , is an average over all the species in

a food web of their trophic levels (i.e., l = S−1
∑

i li). It constitutes other importan

measure, since it has come to be regarded as an indicator of an ecosystem’s health, to

the extent that the Convention on Biological Diversity has mandated that signatory

states report changes in this measure [195].

We go on and study the overall performance of all the models regarding 8 important

measures in foodwebs. For each of the foodweb models and each network measure, we

compute the Mean Average Deviation (MAD) of the theoretical prediction, Xtheo from

the empirical value, Xempi, simply as MAD = 〈|Xtheo−Xempi|〉, where 〈·〉 stands for an

average over the 46 food web listed in Table 3.4. The results for each of the eight network

measures are shown in the panels of Fig. 3.5. The first panel (summing up the results

in Fig. 3.13) clearly show that the niche-based models tend to overestimate the value

of q significantly. The fact that none of these models differs substantially as regards q

from the predictions of the Cascade Model implies that the various features which they

are designed to capture – such as intervality, multiple niche dimensions or phylogenetic

constraints – have very little bearing on trophic coherence. The Preferential Preying

Model, on the other hand, can reproduce the correct value of q in 45 out of 46 food

webs by adjusting its parameter T . The odd web out is that of Coachella Valley, which

is slightly more incoherent even than the PPM achieves with low, negative T . This
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food web is also the only one in our dataset in which more than half the species indulge

in cannibalism, which allows the Coachella Valley food web to exhibit a relatively low

R, which it loses when we remove self-links.

The second and third panels show how the models fare as regards stability, both

with and without self-links. The PPM achieves significantly better results than the

other models in both cases, something we attribute to its reproducing the correct level

of trophic coherence. Furthermore, the niche-based models tend to predict less stability

than the food webs exhibit, especially in the case without cannibals. This is in keeping

with the observation by Allesina and Tang [9] that “realistic” food web structure (i.e.,

that generated with current structural models) is not conducive to stability.

Next we look at mean chain length and modularity, two measures which have been

associated with ecosystem robustness. In particular, a low mean chain length is thought

to increase stability [200], while a high modularity might contain cascades of extinctions

[95]. In keeping with the first observation, the niche-based models tend to predict longer

chains than found in nature; however, they also somewhat overestimate modularity. In

any case, the PPM also outperforms the other models on these two measures.

The numbers of cannibals and of apex predators are not very well predicted by any

of the models. All but the Nested Hierarchy Model tend to overestimate the cannibals

and underestimate the apex predators. Finally, we look at the mean trophic level – a

measure which, as mentioned above, is used nowadays to assess the health of marine

ecosystems and to monitor the effects of overfishing [195]. As we might expect from

this measure’s relationship to trophic structure, the PPM does significantly better than

the other models at predicting the mean trophic level of food webs. In general, the

niche-based models tend to overestimate the mean trophic level.

The comparison we have made here is not as rigorous as one might wish to establish

the best food-web model, and this was not our intention. For instance, we have not

controlled for the number of parameters, nor attempted to derive likelihoods for each

model, as Allesina et al. have done [10]. However, we believe it is sufficient to show

that a) the failure of current structural models to capture trophic coherence is an

important shortcoming; and b) the Preferential Preying Model, which overcomes this

problem, generates networks at least as realistic as any of the other structural models.

In fact, the PPM significantly outperforms the others on six out of the eight measures
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Figure S 3.5: Mean Average Deviation (MAD) form the empirical values returned by
each of the food web models discussed in Section Appendix B– Cascade, Niche, Nested
Hierarchy, Generalized Niche, Minimum Potential Niche and Preferential Preying – for
the network measures described before: trophic coherence q, stability R, stability after
removing self-links Rnc, mean chain length, modularity, and numbers of cannibals and
of apex predators.

we have analysed, and fares no worse on the remaining two. However, the PPM does

not capture some of the features known to be relevant in food webs, in particular a

phylogenetic signal [171]. The high degree of intervality exhibited by many food webs

[236] might be a spurious effect of phylogeny and trophic coherence (both of which we

know, from preliminary simulations, to contribute to intervality) or may need to be

modelled explicitly, as in the Niche Model. In any case, we hope to have shown that

any attempt to build a model which generates networks as similar as possible to real
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food webs must take account of trophic coherence.

3.3 The origins of stability

Figure 3.6.A shows three networks with varying degrees of trophic coherence. The one

on the left was generated with the PPM and T = 0.01, and since it falls into perfectly

ordered, integer trophic levels, it is maximally coherent, with q = 0. For the one on

the right we have used T = 10, yielding a highly incoherent structure, with q = 0.5.

Between these two extremes we show the empirical food web of a stream in Troy,

Maine [247], which has the same number of basal species, consumers and links as the

two artificial networks, and an intermediate trophic coherence of q = 0.18. Figure 3.6.B

shows how trophic coherence varies with T in PPM networks. At about T = 0.25 we

obtain the empirical trophic coherence of the Troy food web (indicated with a dashed

line). We also plot q for networks generated with the Generalized Niche Model against

“diet contiguity”, c, its only free parameter [236]. At c = 0 and c = 1 we recover the

Cascade and Niche Models, respectively (see Appendix B for more information about

the models). However, diet contiguity has little effect on trophic coherence.

Figure 3.6.C shows the stability – as measured by R, the leading eigenvalue of the

interaction matrix – for the same network. For the PPM networks, stability closely

mirrors trophic coherence: as T decreases, the networks become more stable (smaller

R) as well as more coherent (smaller q). The empirical value of R is obtained at about

the same T which best approximates the empirical q. The Generalized Niche Model also

generates more stable networks as diet contiguity is increased, but this effect cannot

be due to trophic coherence, which remains nearly constant. The origin of increasing

stability in this model is revealed when we measure Rnc (R after removing all self-

links from the networks): the Generalized Niche Model now displays only a very small

dependence of stability on diet contiguity. In contrast, the behaviour of Rnc with T

in the PPM networks remains qualitatively the same as in the previous case, and the

empirical stability continues to be obtained at T ' 0.25 (in this case, the empirical

stabilities R and Rnc coincide, since the Troy food web has no cannibals).

We perform this analysis for each of the 46 food webs in our dataset, obtaining

the value of T which best captures the empirical trophic coherence according to the



56 Chapter 3. Food webs coherence determines stability

A

B C

T
ro

ph
ic

 L
ev

el
 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

0 0.2 0.4 0.6 0.8 1

T
ro

ph
ic

 c
oh

er
en

ce

T

c

0

0.2

0.4

0 0.5 1 1.5 2 2.5

0 0.2 0.4 0.6 0.8 1
R

T

c

PPM
PPM no cannibals

GNM
GNM no cannibals

Figure 3.6: A: Three networks with differing trophic coherence, the height of each
node representing its trophic level. The networks on the left and right were generated
with the Preferential Preying Model (PPM), with T = 0.01 and T = 10, respectively,
yielding a maximally coherent structure (q = 0) and a highly incoherent one (q = 0.5).
The network in the middle is the food web of a stream in Troy, Maine, which has
q = 0.18 [247]. All three have the same numbers of species, basal species and links. B:
Incoherence parameter, q, against T for PPM networks with the parameters of the Troy
food web (green); and against c for Generalized Niche Model networks with the same
parameters (blue). The dashed line indicates the empirical value of q. C: Stability (as
given by R, the real part of the leading eigenvalue of the interaction matrix) for the
networks of panel B. Also shown is the stability of networks generated with the same
models and parameters, but after removing self-links (empty circles). In panels B and
C, the dashed line represents the empirical value of R, while bars on the symbols are
for one standard deviation.
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PPM. We then compute the ensemble averages of R and Rnc generated at this T , for

comparison with the empirical values. Similarly, we compute the average values of these

measures predicted by each of the niche-based models described above – the Cascade,

Niche, Nested Hierarchy, Generalized Niche and Minimum Potential Niche Models (see

B for details). The last two models have free parameters, but as these do not have a

significant effect on trophic coherence, we use the values published as optimal in Refs.

[235] and [10], respectively (or the mean optimal values for those food webs which were

not analysed in these papers). Figures 3.7.A-C show the average absolute deviations

from the empirical values for trophic coherence and stability, before and after removing

self-links, for each model. In Fig. 3.7.A we observe that, as mentioned above, the

niche-based models fail to capture the trophic coherence of these food webs. Stability,

whether with or without considering self-links, is predicted by the PPM significantly

better than by any of the other models, as shown in Fig. 3.7.B and Fig. 3.7.C. This is

in keeping with Alessina and Tang’s observation that current structural models cannot

account for food-web stability [9]. In the previous section (3.2.2) we show the results

of similar model comparisons for several other network measures: modularity, mean

chain length, mean trophic level, and numbers of cannibals and of apex predators. The

PPM does as well as any of the other models as regards numbers of cannibals and apex

predators, and is significantly better at predicting the other measures.2

Why does the trophic coherence of networks determine their stability? The case of a

maximally coherent structure, with q = 0 (such as the one on the left in Fig. 3.6.A), is

amenable to mathematical analysis. In Appendix D we consider the undirected network

that results from replacing each directed link of the predation matrix with a symmetric

link, the non-zero eigenvalues of which always come in pairs of real numbers ±µj. We

use this to prove that the eigenvalues of the interaction matrix we are actually interested

in, if q = 0, will in turn come in pairs λj = ±
√
−ηµj, where η is a parameter related to

the efficiency of predation (considered, for the proof, constant for all pairs of species).

All the eigenvalues will therefore be real if η < 0, zero if η = 0, and imaginary if η > 0.

A positive η is the situation which corresponds to a food web – or any system in which

2Allesina and co-workers have developed a likelihood-based approach for comparing food-web mod-
els [10]. We have not yet been able to obtain the corresponding likelihoods for the PPM, but if this
is done in the future it would provide a firmer basis from which to gauge the models’ relative merits,
and perhaps to build a more realistic model drawing on each one’s strengths.
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Figure 3.7: A: Mean Absolute Deviations (MAD) from empirical values of trophic co-
herence, q, for each food-web model – Cascade (CM), Generalized Niche (GNM), Niche
(NM), Nested Hierarchy (NHM), Minimum Potential Niche (MPNM) and Preferential
Preying (PPM) – as compared to a dataset of 46 food webs. B: MAD from empirical
values of stability, R, for the same models and food webs as in panel A. C: MAD from
empirical values of stability, R, after removing self-links, for the same models and food
webs as in panels A and B.

the gain in a “predator” is accompanied by some degree of loss in its “prey”. Therefore,

a perfectly coherent network is a limiting case which can be stabilised by an infinitesimal

degree of self-regulation (such as cannibalism or other intra-species competition) at any

of the nodes. Any realistic situation would involve some degree of self-regulation, so we

can conclude that a maximally coherent food web with constant link strengths would

be stable.

Although a general, analytical relationship between trophic coherence and stability

remains elusive, it is intuitive to expect that a deviation from maximal coherence will

drive the real part of the leading eigenvalue towards the positive values established for

random structures, as is indeed observed in our simulations.

Before we go on, in the rest of this section further inspect how do different consid-

erations of the stability criteria affect the results of coherence in networks generated

with the PPM and Generalized Niche models. In particular we will study how does

the biomass distribution (sec. 3.3.1), efficiency parameter η (sec. 3.3.2), and weight of

links (sec. 3.3.3) affect the overall stability of these networks.
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3.3.1 Effect of biomass distribution

So as to scrutinize how these results depend on the particular choice of stability criteria,

we go on and repeat the previous study but using Lotka-Volterra dynamics. We know

from section 3.1.1 that in order to evaluate the jacobian we need to impose some biomass

distribution. In Fig.3.8 we show the values of R obtained from the Lotka-Volterra

Jacobian given by Eq. (3.2) with different values of a, corresponding to pyramid,

flat and inverted pyramid distributions of biomass. The empirical values found for

the Chesapeake Bay food web [1, 253] with each distribution are compared to the

predictions of the Preferential Preying Model against T (left panel), and the Generalized

Niche Model against contiguity c (right panel). The effect of the parameter T on

stability in the PPM networks remains qualitatively the same as the results reported

in the main text for the matrix W given by Eq. (3.1). The more squat the biomass

pyramid (the more negative the parameter a), the more stable are both the empirical

and PPM networks. This is in keeping with observations of ecosystems [3]. In the

Generalized Niche Model networks, however, the effect is opposite: it is the inverted

pyramid (positive a), which is most stable. We do not have an explanation for such an

effect, but note that it marks a qualitative difference between the networks generated

with this model and real food webs.

3.3.2 Efficiency

According to the definition of R above, we must give a value to the parameter η in

order to measure stability. The value of this parameter affects the kind of interaction

we intend to model with the interaction matrix, W = ηA−AT , and has a strong bearing

on the values of R measured. The definition of W captures the fact that the effect of

a prey species on one of its predators is a proportion η of the effect of the predator on

the prey. If we are considering the flow of biomass from prey to predator, this should

be a relatively small fraction – for instance, the “ten percent law” is often used as a

rough estimate of the efficiency of predation [137]. On the other hand, our definition

of stability is only strictly independent of the fixed point for a dynamics such as the

one described above. For a more realistic dynamics, we might expect a multiplicative

factor to appear relating the fixed-point biomass of a prey species to that of one of its
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Figure 3.8: Value of R obtained for the Lotka-Volterra Jacobian given by Eq. (A.3),
with biomass distributed according to Eq. (3.2) for a = −0.2 (pyramid), 0 (flat),
and 0.2 (inverted pyramid). In each panel, the diamonds represent the values for the
empirical food web of Chesapeake Bay [1, 253]. Circles in the panel on the left show the
corresponding results for PPM networks against T using the same parameters; triangles
in the panel on the right are for networks generated with the Generalized Niche Model
against contiguity, c.

predators. The parameter η might therefore be increased (or decreased) by this effect.

As mentioned above, throughout this chapter we use the value η = 0.2. However,

simulations of the PPM show that using the value of the parameter T which best ap-

proximates the empirical degree of trophic coherence is enough to predict the empirical

R for a wide range of η. In Fig. 3.9 we show R against T for PPM networks constructed

with the parameters of the Chesapeake Bay food web [1, 253] for four cases. We also

plot, with an asterisk, the empirical value of R observed in each case, always at the

value T = 0.67 found to adjust the empirical trophic coherence, q = 0.47 (see Table

3.4 at the end of this chapter). The top left panel is for the case of η = 0, which

represents a situation in which the biomass of prey species is completely unaffected

by the biomass of their predators. We show in the proof we include in Appendix D

that a perfectly coherent network with η = 0 would have only zero eigenvalues. As

incoherence increases, R grows somewhat, though it remains small compared to most

cases in which the parameter η simulates a measure of feedback from predators to prey.

The top right panel is for η = 0.7, implying a relatively high efficiency and a strong

negative feedback acting on prey species. At η = 1, all the eigenvalues of W would have
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zero real part because it would be an antisymmetric matrix (intuitively, any increase in

one node’s biomass will be compensated by a decrease in another, so perturbations will

be maintained and neither dampened nor amplified). At η > 1 we simulate a situation

such that a predator extracts more biomass form its prey than the latter loses. As we

would expect intuitively, this scenario of runaway growth is significantly more unstable

than the ones described above. However, the behaviour of R with T is qualitatively

similar to that observed for 0 < η < 1. Finally, the bottom right panel corresponds to

the case η = −1, implying that predation reduces the biomass of a predator as well as

that of its prey. We know from the proof described in Methods that at q = 0 all the

eigenvalues of W are purely real for any η < 0. Similarly, the behaviour of R with T is

now inverted: the most coherent networks are now the most unstable.

In the panels corresponding to η = 0, 0.7 and −1, the value of T which adjusts the

empirical trophic coherence also predicts the empirical R very accurately (as we have

found for all the food webs in our dataset when using η = 0.2; see main text). The case

of η = 2 is slightly out: the PPM predicts a slightly higher value of R at T = 0.67,

although it is not out by much more than a standard deviation. This case of η > 1 is

unlikely to be relevant for ecology; but the small discrepancy serves to remind us that

the PPM does not capture all the structural features of real food webs.
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Figure 3.9: Real part of the leading eigenvalue, R, of the interaction matrix W =
ηA − AT against the parameter T , from averages over networks generated with the
PPM for the parameters of the Chesapeake Bay food web [1, 253]. In each panel a
different value of the parameter η is used, and the corresponding empirical value of R
is represented with a blue asterisk at the value T = 0.67, found to predict the empirical
trophic coherence q = 0.47 (as shown in Table 3.4 in sec. 3.6).



62 Chapter 3. Food webs coherence determines stability

3.3.3 Weighted networks

Although we have been considering the food webs as unweighted networks (the elements

in A are either zero or one), in reality certain interactions will be more important than

others, and the efficiency η need not be the same for all links. A simple way to look

into how these considerations might affect our results is as follows. We make the

change Wij → (1 + ξij)Wij, with ξij drawn from a Gaussian distribution of mean zero,

standard deviation σ and no correlation between ξij and ξji. For a given network we

then obtain the value of R for many different realizations of the noise {ξ}. In the left

panel of Fig. 3.10 we show the average and standard deviations of R thus defined for

three different levels of noise – σ = 0.0, 0.2 and 0.4 – for PPM networks with the

parameters of the Chesapeake Bay food web [1, 253]. We also show (with diamonds)

the corresponding averages and standard deviations obtained by performing the same

test on the empirical food web. As is to be expected, increased noise leads to a higher

average R (lower stability) and a wider standard deviation. However, the behaviour of

the average R against the parameter T remains similar with increasing noise, and the

value T = 0.67 which best adjusts the empirical trophic coherence (as given by Table

3.4 at the end of this chapter) continues to predict the empirical average R at each σ.

This is not, however, the case for the Generalized Niche Model. We show the mean and

standard deviation of R generated with this model against its contiguity parameter

c for the same food web. Whereas the empirical and simulated average values of R

correspond at c . 1 when there is little noise, as σ increases the model average R grows

faster than the empirical value. This suggests that trophically coherent networks, such

as the Chesapeake Bay food web or those generated by the PPM, are more robust to

fluctuations in interaction strengths than those generated with niche-based models.

The allometric relationship according to which metabolic rates decline with increas-

ing body size has been shown to reduce predation strength per unit biomass, thereby

contributing to stability [41]. Since body size tends to augment (exponentially) with

trophic level, this would mean that a more coherent structure would also involve a more

homogeneous distribution of link strengths (for a given predator). Therefore, in a more

realistic setting in which body sizes and link strengths are considered, we expect the

stabilising effect of trophic coherence to be greater than we have shown here for binary

networks.
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Figure 3.10: Value of R obtained after defining the modified interaction matrix
W̃ij = (1 + ξij)Wij, where ξij is drawn from a Gaussian distribution of mean zero
and standard deviation σ, and averaging over realizations of the noise {ξ}. In each
panel, the diamonds represent the average values for the empirical food web of Chesa-
peake Bay [1, 253], with standard deviations as error bars, for noise levels σ = 0, 0.2 and
0.4. The panel on the left shows the corresponding results for PPM networks against
T using the same parameters, while the panel on the right is for those generated by the
Generalized Niche Model against contiguity, c.

Feasibility

We have been discussing the potential stability of fixed points of ecosystem dynamics,

but for this to be relevant such a fixed point has to be feasible. That is, there must

exist a fixed point such that every species has a positive biomass. To determine a

potential fixed point one must, in general, know the details of the dynamics (as men-

tioned above). However, even with these specifications, given an unweighted network

is is highly unlikely that the fixed point will involve only positive biomasses. However,

nature does not have this problem, among other reasons because species’ biomasses

co-evolve with the interaction weights. If we are granted a certain freedom to set these

weights, even if other details of dynamics are set, the problem of finding a fixed point

becomes under-specified, and configurations allowing for feasible fixed points might be

located. We saw above that the stability of real food webs and those generated by the

PPM seem to be more robust to random changes in interaction strengths than their

niche-based model counterparts. This suggests that, given a prescription to modify
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interaction weights, trophic coherence might enhance the feasibility of fixed points as

well as their stability. Such an exercise lies beyond the scope of this paper, but we

believe it is a promising avenue of research to be undertaken in the future.

3.4 May’s paradox

As we have seen, the PPM can predict the stability of a food web quite accurately just

with information regarding numbers of species, basal species and links, and trophic

coherence. But what does this tell us about May’s Paradox – the fact that large,

complex ecosystems seem to be particularly stable despite theoretical predictions to

the contrary? To ascertain how stability scales with size, S, and complexity, K, in

networks generated by different models, we must first determine how K scales with S

– i.e. if K ∼ Sα, what value should we use for α? Data in the real world are noisy

in this regard, and both the “link-species law” (α = 0) and the “constant connectance

hypothesis” (α = 1) have been defended in the past, although the most common view

seems to be that α lies somewhere between zero and 1/2 [200, 215, 229]. The most

recent empirical estimate we are aware of is close to α ' 0.5, depending slightly on

whether predation weights are considered [22]. In our dataset, the best fit is achieved

with a slightly lower exponent, α = 0.41.

In Fig. 3.11.A we show how stability scales with S in each of the niche-based models

when complexity increases with size according to α = 0.5. The dashed line shows the

slope that May predicted for random networks (R ∼
√
K = S0.25) [150].

We also plot the curve recently shown by Allesina and Tang to correspond to random

networks in which all interactions are predator-prey [9], which has a similar slope to

May’s at large S. This scaling is indeed closely matched by the Cascade Model. The

behaviour of the other models is similar (except for the Nested Hierarchy Model, in

which R increases more rapidly at high S), and, as expected, networks always become

less stable with increasing size and complexity. In Fig. 3.11.B we show how the stability

of PPM networks scales in the same scenario. For high T , their behaviour is similar to

that of the Cascade Model: R ∼ Sγ, with γ ' 0.25. However, the exponent γ decreases

as T is lowered, until, for sufficiently large and coherent networks, it becomes negative

– in other words, stability increases with size and complexity. The inset in Fig. 3.11.B
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Figure 3.11: A: Scaling of stability, R, with size, S, in networks generated with each
of the models of previous panels except for the PPM. Mean degree is K =

√
S. The

dashed line indicates the slope predicted for random matrices by May [150], while the
dotted curve is from Allesina and Tang [9]. B: Scaling of stability, R, with size, S, in
PPM networks generated with different values of T . In descending order, T = 10, 0.5,
0.3, 0.2 and 0.01. B = 0.25S. Inset: Slope, γ, of the stability-size line against T for
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shows the exponent γ obtained against T , for different values of α. The smaller α, the

larger the range of T which yields a positive complexity-stability relationship.3

In Section 3.4.1 we extended this analysis to specific dynamics – Lotka-Volterra,

type II and type III – by assuming an exponential relationship between biomass and

trophic level which can be described as a pyramid. The positive complexity-stability

relationship does not appear to depend on the details of dynamics. However, the slope

of the R−S curve varies with both the squatness of the biomass pyramid and the extent

to which the pyramid is corrupted by noise. A squat pyramid (more biomass at low

trophic levels than at high ones) has the strongest relationship, while for an inverted

pyramid (more biomass at high trophic levels than at low ones) the slope can flatten

out or change sign. Noise in the biomass pyramid tends always to weaken the positive

3Plitzko and colleagues recently showed that there exists a range of parameters (in a Generalized
Modeling framework [93]) for which Niche Model networks can increase in stability with complexity
[202]. However, for this study networks were rejected unless they were stable and had exactly four
trophic levels. This selection may have screened for trophic coherence, cannibalism or other structural
features.
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complexity-stability relationship, and can also change its sign.

3.4.1 Effect of biomass distribution

In Fig. 3.12 we look into how the biomass distribution (as initially defined in sec.

3.1.1) affects the diversity-stability relationship. All networks are generated with the

Preferential Preying Model and T = 0.01. The first row of panels is for the case where

biomass decays with trophic level as an uncorrupted exponential (σx = 0), for Lotka-

Volterra, type II and type III dynamics (top panels from left to right). As compared

with the constant biomass case (a = 0), a decaying distribution is seen to increase the

slope whereby R falls with S. In other words, placing more biomass at the bottom of the

food web than at the top not only increases stability, but also strengthens the positive

diversity-stability relationship exhibited by trophically coherent networks. This occurs

for all three kinds of dynamics, although the effect is strongest for type III and weakest

for type II. For an inverted pyramid (positive a), R is approximately constant with S.

We go on to analyse the effect of corrupting the exponential distribution of biomass

with a noise of standard deviation σx. The second row of panels is for σx = 0.1.

Although the slope is now less pronounced in all cases, this degree of noise does not un-

dermine the positive diversity-stability relationship for any of the dynamics considered.

Finally, in the bottom row we apply a higher noise, σx = 0.4. Now the relationship is

inverted and diversity decreases stability. It is not, perhaps, surprising that noise in the

distribution of biomass (large σx) should have a similar effect on scaling as incoherence

in the trophic structure (large T ). However, it is interesting that the noise level at

which the transition from a positive to a negative diversity-stability relationship occurs

does not seem to depend on a or on the kind of dynamics.
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3.5 Chapter summary

• Inspection of the predation matrices of natural ecosystems shows they are clearly

peculiar in some way since their largest eigenvalues do not depend solely on their

size or complexity (as we would expect both from random graph theory and

structural foodweb models). We show that the network feature we call trophic

coherence is strongly correlated with linear stability of food webs. In fact,

trophic coherence and cannibalism account for an 80% of the variation in stability

in our dataset (Fig. 3.1). This strong correlation of trophic coherence with

stability constitues the main finding of this chapter.

• In Appendix A we detail a method to obtain the interaction matrix from the ad-

jacency in a general way, which allows us to computationally study many different

dynamics.

• We prove that a perfectly coherent network with constant link strengths will

always be stable (Appendix D), establishing an analytical connection between

those two features in these particular choice of interaction matrix.

• We put forward a model of foodweb assembly with tunable trophic coherence.

Most of the foodweb models to date fails to reproduce the actual cohernece of

trophic webs and generate less stratified networks. Although this simple model

does not attempt to replicate other characteristic features of food webs – such as

a phylogenetic signal or body-size effects – it reproduces the empirical stability of

the analysed empirical webs quite accurately once its only free parameter has been

adjusted to the empirical degree of trophic coherence (Fig. 3.11). Comparation

with other models shows that PPM performs at least as well as them in many

other relevant foodweb features (Fig. 3.5).

• Most remarkably, the model also predicts that networks should become more

stable with increasing size and complexity, as long as they are sufficiently coherent

and the number of links does not grow too fast with size (Fig. 3.11). Although

this result should be followed up with further analytical and empirical research,

it suggests that we need no longer be surprised at the high stability of large,

complex ecosystems
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3.6 Data supplement to chapter 2

Food-web data

We have compiled a dataset of 46 food webs available in the literature, pertaining to

several ecosystem types. The methods used by the researchers to establish the links

between species vary from gut content analysis to inferences about the behaviour of

similar creatures. In Table 3.4 we list the food webs used along with references to the

relevant work. We also list, for each case, the number of species S, of basal species

B, the mean degree K, the ecosystem type, the trophic coherence q, the value of the

parameter T found to yield (on average) the empirical q with the Preferential Preying

Model, and the numerical label used to represent the food web in several figures below.

Food web S B K Type q T Reference Label

Akatore Stream 84 43 2.70 River 0.16 0.26 [246, 247, 249] 18

Benguela Current 29 2 7.00 Marine 0.76 0.87 [275] 11

Berwick Stream 77 35 3.12 River 0.18 0.25 [246, 247, 249] 34

Blackrock Stream 86 49 4.36 River 0.19 0.25 [246, 247, 249] 27

Bridge Brook Lake 25 8 4.28 Lake 0.59 1.15 [99] 14

Broad Stream 94 53 6.01 River 0.16 0.16 [246, 247, 249] 35

Canton Creek 102 54 6.83 River 0.16 0.18 [249] 2

Caribbean (2005) 249 5 13.31 Marine 0.75 0.70 [30] 17

Caribbean Reef 50 3 11.12 Marine 0.99 -0.24 [186] 13

Carpinteria Salt Marsh Reserve 126 50 4.29 Marine 0.65 -8.27 [130] 33

Catlins Stream 48 14 2.29 River 0.20 0.27 [246, 247, 249] 19

Chesapeake Bay 31 5 2.19 Marine 0.47 0.67 [1, 253] 5

Coachella Valley 29 3 9.03 Terrestrial 1.34 -0.02 [203] 12

Crystal Lake (Delta) 19 3 1.74 Lake 0.28 0.33 [252] 37

Cypress (Wet Season) 64 12 6.86 Terrestrial 0.63 0.73 [254] 42

Dempsters Stream (Autumn) 83 46 5.00 River 0.23 0.30 [246, 247, 249] 36

El Verde Rainforest 155 28 9.74 Terrestrial 1.02 -0.82 [265] 15

Everglades Graminoid Marshes 63 5 9.79 Terrestrial 0.66 0.47 [256] 44

Florida Bay 121 14 14.60 Marine 0.59 0.48 [254] 26
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German Stream 84 48 4.20 River 0.21 0.29 [246, 247, 249] 28

Grassland (U.K) 61 8 1.59 River 0.40 0.72 [145] 4

Healy Stream 96 47 6.60 River 0.22 0.24 [246, 247, 249] 29

Kyeburn Stream 98 58 6.42 River 0.18 0.18 [246, 247, 249] 30

LilKyeburn Stream 78 42 4.81 River 0.23 0.29 [246, 247, 249] 31

Little Rock Lake 92 12 10.84 Lake 0.69 0.75 [144] 8

Lough Hyne 349 49 14.66 Lake 0.62 0.66 [76, 211] 46

Mangrove Estuary (Wet Season) 90 6 12.79 Marine 0.67 0.47 [254] 43

Martins Stream 105 48 3.27 River 0.32 0.49 [246, 247, 249] 20

Maspalomas pond 18 8 1.33 Lake 0.48 -9.22 [11] 39

Michigan Lake 33 5 3.91 Lake 0.38 0.21 [147] 40

Mondego Estuary 42 12 6.64 Marine 0.74 10.07 [? ] 41

Narragansett Bay 31 5 3.65 Marine 0.66 1.18 [166] 38

Narrowdale Stream 71 28 2.18 River 0.25 0.38 [246, 247, 249] 21

N.E. Shelf 79 2 17.76 Marine 0.82 0.67 [138] 10

North Col Stream 78 25 3.09 River 0.28 0.34 [246, 247, 249] 22

Powder Stream 78 32 3.44 River 0.22 0.28 [246, 247, 249] 23

Scotch Broom 85 1 2.62 Terrestrial 0.45 0.49 [162] 16

Skipwith Pond 25 1 7.88 Lake 0.68 0.23 [267] 6

St. Marks Estuary 48 6 4.60 Marine 0.69 1.02 [49] 9

St. Martin Island 42 6 4.88 Terrestrial 0.59 0.60 [89] 7

Stony Stream 109 61 7.61 River 0.17 0.18 [249] 3

Sutton Stream (Autum) 80 49 4.19 River 0.15 0.19 [246, 247, 249] 32

Troy Stream 77 40 2.35 River 0.18 0.30 [246, 247, 249] 24

Venlaw Stream 66 30 2.83 River 0.23 0.33 [246, 247, 249] 25

Weddell Sea 483 61 31.81 Marine 0.75 1.01 [108] 45

Ythan Estuary 82 5 4.82 Marine 0.46 0.38 [104] 1

Table 3.4: Details of the 46 foodwebs used throughout this chapter. From left to right,

the columns are for: name, number of species S, number of basal species B, mean

degree K, ecosystem type, trophic coherence q, value of the parameter T found to yield

(on average) the empirical q with the Preferential Preying Model, references to original

work, and the numerical label.
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Trophic coherence Dataset
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Figure S 3.13: Trophic coherence, as measured by q, for each of the food webs listed in
Table 3.4. The corresponding predictions of each food-web model discussed in Appendix
B – Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum Potential Niche
and Preferential Preying – are displayed with bars representing one standard deviation
about the mean. Empirical values are black squares. The labelling of the food webs is
indicated in the rightmost column of Table 3.4.
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Stability Dataset
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Figure S 3.14: Stability, as measured by R, for each of the food webs listed in Table
3.4. The corresponding predictions of each food-web model discussed in Appendix
B – Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum Potential Niche
and Preferential Preying – are displayed with bars representing one standard deviation
about the mean. Empirical values are black squares. The labelling of the food webs is
indicated in the rightmost column of Table 3.4.
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labelling of the food webs is indicated in the rightmost column of Table 3.4.



Chapter 4

Inherent directionality in biological

and ecological networks

Genetic regulatory circuits, metabolic pathways, foodwebs, and many different biologi-

cal or even socio-technological systems can be visualized as networks made up of units

linked pairwise whenever there is some sort of “interaction” or “flow” between them.

In many cases, real networks are dynamical, time-changing entities, and most of the

existing compiled datasets represent static snapshots or time-averages over some ob-

servation interval of these more complex processes. Nevertheless, the description in

terms of static networks has proven to be useful to identify structural features which

are responsible for emerging functions [5, 16, 25, 178]. Some structural features, includ-

ing clustering, degree assortativity [174], and the relative abundance of specific motifs

[12, 13], characterise the topology at the local scale. Other traits, such as nested-

ness [33, P3], community structure [87, 238], and the existence of a hierarchy [56, 207]

are related to the large-scale organization. Clearly, these features are not necessarily

independent.

In many real networks, interactions are directed, i.e. links have an origin and a

target node. This direction can be generally thought of in terms of flows, such as the

energy transfer in food webs [74] and the flow of biological information in genetic or

neural networks. Often, this flow identifies a global inherent directionality. By “inherent

directionality” we mean that all nodes can be ordered on a one-dimensional axis, in such

a way that links point preferentially from low to high values of their coordinates in such

74
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an axis. In this sense, the existence of an inherent directionality is deeply related to

the existence of a hierarchical structure [56, 269]. For example, (i) in networks where

there is a transfer of matter, such as foodwebs or metabolic networks, one can identify

a hierarchy of “trophic” levels (links tend to point from lower levels to higher ones), (ii)

in gene regulatory networks there is a hierarchy of control (controller nodes act upon

controlled ones), and (iii) in neural networks, the flow of information propagates from

sensory neurons at the bottom of the hierarchy, to neurons in the central system at

intermediate levels, and from there to the level of motor neurons.

The existence of an inherent directionality can have a deep impact on the network

small-scale structure, in particular on the statistics of motifs, such as feedback loops.

In a directed network, a “feedback loop” of length k is defined as a closed sequence

of k different nodes in which a walker following the directions of the arrows returns to

the starting point after visiting once and only once all k nodes. Feedback loops are

well-known to have a profound impact on dynamical stability in foodwebs [7, 21, 151,

156, 164, 172, 173, 241] as well as in biological and generic networks [4, 12, 15, 35, 60,

124, 136, 143, 180, 198, 201, 216, 248]. “Structural loops” or simply “loops”, defined

as closed sequences of pairwise connected nodes, independently of the direction of links

are also of interest. Clearly, the set of feedback loops is a subset of that of structural

loops.

The relationship between the existence of a inherent directionality and feedback

loops can be intuitively understood by considering the case of perfect directionality

–or feedforwardness– in which all links are aligned with the inherent directionality. In

such perfectly directional networks, feedback loops are completely absent, as at least

one link against the directionality is required to close a feedback loop. The impact

of directionality on the statistics of feedback loops is less trivial to assess in cases of

incomplete feedforwardness, where directionality only partially determines the direction

of links.

In this chapter we present a simple model relating an assumed degree of inherent

directionality with the statistics of feedback loops in networks. Our model depends on a

single parameter, γ, defined as the probability of any link in the network to point along

the inherent direction (see Fig. 4.1). An analytical calculation allows us to predict the

fraction F (k) of loops of length k which are feedback loops. We show that, as long as
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there exist a inherent directionality, i.e. as long as γ 6= 1/2, the fraction of feedback

loops F (k) of any loop length k –for which we provide analytical estimations– is much

smaller than it would be in network randomizations.

To test the model predictions against empirical data, we scrutinize a number of

real biological, ecological, and also socio-technological directed networks. For each of

these real networks, we perform an extensive computational study of the number of

structural and feedback loops it includes. In nearly all the networks we analyzed, we

find that F (k) is dramatically smaller than in randomizations of the same networks.

Remarkably, the model reproduces the curves F (k) with good precision for all the real

networks we studied, just by fitting its only free parameter, quantifying the degree of

inherent directionality.

Furthermore, we introduce a method to directly estimate the degree of direction-

ality in any given network by employing topological information only. The resulting

measurement for each specific network correlates quite well with the directionality pa-

rameter employed to obtain the fit for the statistics of feedback loops. We also verify

that our results are robust against network subsampling or lack of knowledge of exist-

ing connections. Therefore, we conclude that the lack of feedback loops stems from the

existence of a inherent directionality in real-world networks.

4.1 A model of network directionality

Let us consider a network consisting of N nodes and L directed links and imagine

that the fraction of loops which are also feedback loops, F (k), is known. We now

aim at constructing a probabilistic model able to predict the empirically-measured

function F (k). The model consists in taking the real network under consideration and

randomizing the direction of each single link with the constraint that some degree of

inherent directionality exists. We therefore assume that nodes can be characterized by

an index or coordinate i = 1 . . . N representing their position along the directionality

axis. As a convention, we choose higher nodes in the hierarchy to have larger labels,

as shown in Fig. 4.1.A. A direction to each existing link is (re-)assigned as follows (see

Fig. 4.1.B): a link is set to point from a lower label to the higher one, with probability

γ, where the “directionality parameter” γ satisfies 0 ≤ γ ≤ 1. With the complementary
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probability 1−γ the link points against the inherent directionality. In particular, γ = 1

(or γ = 0) stands for perfect inherent directionality, while for γ = 1/2, the inherent

directionality does not affect the direction of the links.
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Figure 4.1: Schematic representation of the directionality model. (A) A network
in which nodes are labeled according to some existing inherent ordering or hierarchy,
which identifies an inherent directionality. (B) In any given feedback loop, arrows
point in the direction of increasing labels, i.e. along the inherent directionality, with
probability γ (blue arrows) or against it with probability 1 − γ (red arrows). (C)
Example of networks with γ = 1/2 (random directionality) and with γ = 1 (perfect
directionality).

Our goal is to analytically estimate the expected value of F (k) for any given loop

length k as a function of the only parameter. To make progress, we consider loops

independently, i.e. we neglect possible correlations between for example loops having

common links in a same network. We also neglect the impact of possible heterogeneities

in the distribution of loops across hierarchical levels. In the case of real networks we

are interested in, we shall assume these as working hypotheses, whose validity will be

tested a posteriori by comparing our results against data.

Under these assumptions, we focus on a specific loop of arbitrary length k (see Fig.
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4.1). Without loss of generality, we re-label the node indexes onto the integer numbers

1 . . . k by preserving the ordering, i.e. we label the node having the lowest index in the

loop with 1, the second lowest with 2 and so on. In this way, the loop is associated

with a permutation {n} = n1, n2 . . . nk, where ni is the label of the i − th node in the

loop. Formally, we define nk+1 = n1 to ensure that the loop is closed.

Under the assumptions above, we consider that all the k! possible loop permutations

are equally likely to be found. In this way, the maximum number of feedback loops

is expected to occur for γ = 1/2, for which the two directions are equi-probable. In

this case, F (k) = 21−k as only 2 out of the possible 2k loops of length k are feedback

loops. In a more general case, the probability of a given loop to be a feedback loop

depends on the distribution of the number of ascents, i.e. the number A(l, k) counting

how many permutations of the basic sequence of length k are such that ni < ni+1 holds

for exactly l distinct values of i. For a non-periodic sequence, i.e. without establishing

any relation between nk with n1, the solution to this problem is given by the so-called

Eulerian numbers (see e.g. [55] chapter 6 or [91]). Since loops are closed, we need to

generalize the concept of Eulerian numbers to the periodic or cyclic case, i.e. we need

to count the number of ascents in a generic closed loop, which we call “cyclic Eulerian

numbers”, A(l, k). In sec. 4.1.1 we prove a recursion relation

(k − 1)A(l, k) = k[(k − l)A(l − 1, k − 1) + lA(l, k − 1)] (4.1)

which generalizes a similar relation for standard Eulerian numbers (see e.g. [55]) and

which allows us to recursively find all cyclic Eulerian numbers. Notice, in particular,

that A(0, k) = A(k, k) = 0 ∀k as it is clearly impossible to have all ascents/descent

in a closed loop. Examples of cyclic Eulerian numbers for values of k up to 9 are also

presented later in section 4.1.1.

The expected fraction F (k, γ) of loops of length k which are feedback loops can be

expressed as

F (k, γ) =
k∑
l=0

A(l, k)

k!

[
γl(1− γ)k−l + γk−l(1− γ)l

]
, (4.2)

where the two terms in square brackets account for the two different possible orienta-

tions of a feedback loop. The function F (k, γ) is plotted in Fig. (4.2) as a function

of γ for different values of k. F (k, γ) is symmetric by exchanging γ by 1 − γ, corre-
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sponding to reversing the direction of the inherent directionality. Note that imposing

the normalization condition
∑

lA(l, k) = k!, one can easily retrieve from Eq.(4.2) the

probability F (k, 1/2) = 21−k in the limiting case γ = 1/2.

The exact expression of Eq. (4.2) can be approximated in the asymptotic limit of

large k and γ not too small by the following expression (see sec. 4.1.2)

F (k, γ) ≈ 2 exp

{
k

2
log[γ(1− γ)] +

k

24
log2

(
γ

1− γ

)}
. (4.3)

Eq.(4.3) predicts that the fraction of feedback loops decays exponentially with the

loop length k with an amplitude factor 2 and with an exponential constant which

depends on γ.
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Figure 4.2: Fraction of feedback loops, F (k), versus the directionality param-
eter γ. F (k) has a maximum at γ = 1/2, for which all link directions are randomly
set, giving rise to the largest possible fraction of directed loops. On the other side,
F (k) vanishes for γ = 0 and for γ = 1 as expected. Notice also that the curves
are symmetric around γ = 1/2 and that for values of γ different from 1/2 one has a
directionality-induced lack of feedback loops.
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4.1.1 Number of ascents and Eulerian cyclic numbers

Let us consider a loop of length k, formed by a closed chain of k nodes and k edges,

and let us label the nodes with numbers from 1 to k. We consider all the k! possible

permutations of labels and aim at computing the number A(l, k) of such permutations

including l ascents, i.e. permutations in which exactly l labels in the sequence are

immediately followed by a larger one. The first goal is to verify that the A(l, k)’s satisfy

a simple recurrence relation, similar to that obeyed by standard Eulerian numbers (see

e.g. [55] chapter 6 and [91]). To establish such a relation, let us first observe that

the number of ascents does not depend on the specific ordering/permutation within a

cycle. For instance the permutations 123(1), 231(2) and 312(3), which correspond to

three different ways of labeling the cycle A → B → C → A, have the same number

of ascents (2, in this example). Therefore A(l, k) = kC(l, k) where C(l, k) corresponds

to the number of ascents in the case in which the symmetry has been broken and

one specific label has been chosen to be at the opening and closing extremes of the

representation above. Now we look for a recurrence relation for C(l, k), for which we

need to express C(l, k) as a function of C(j, k − 1), where j = l or j = l − 1. These

correspond to two different cases that can occur when a new node is inserted in a loop

to create a one-step larger sequence. If the node is inserted where there was an ascent,

it simply replaces the previous one, so that the number of ascents remains unaltered. If

it is inserted where there was a descent, a new ascent is created, so that l is increased

by one. These two possibilities can be summarized in the recursive equation

C(l, k) = C(l, k − 1)l + C(l − 1, k − 1)(k − 1− (l − 1)), (4.4)

where the two cases above have been weighted with the number of ascents and descents,

respectively. Eq. (4.1) follows straightforwardly from Eq. (4.4) and A(l, k) = kC(l, k).

Specific values for k ≤ 9 obtained by iterating the recursive formula are shown in Table

4.1 below.
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k l 0 1 2 3 4 5 6 7 8

1 1

2 2

3 3 3

4 4 16 4

5 5 55 55 5

6 6 156 396 156 6

7 7 399 2114 2114 399 7

8 8 960 9528 19328 9528 960 8

9 9 2223 38637 140571 140571 38637 2223 9

Table 4.1: Cyclic Eulerian numbers A(l, k),where k is the size of the loop and l the

number of ascents.

4.1.2 Devising an asymptotic result

The fraction A(l, k)/k! can be interpreted as the normalised probability of a loop of

length k to have l ascents. Using the recurrence relation (Eq. 4.1) it is possible to

compute the moments of the distribution

〈ln〉k ≡
∑
l

ln
A(l, k)

k!
. (4.5)

It is easy to see using symmetry arguments that its average value is k/2, while for

large enough values of k, the distribution can be well approximated by a Gaussian with

some variance σ2
k. It is easy to recursively show that the variance of this distribution is

exactly given by

σ2
k = 〈l2〉k − 〈l〉2k = k/12. (4.6)

Indeed, first, we can verify it explicitly for the smallest non-trivial case, k = 3 (in this

case one has l = 1 with probability 1/2 and l = 3 with probability 1/2). Multiplying
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Eq. (4.1) by l2/k! and summing over l yields

(k − 1)〈l2〉k = 〈(k − l − 1)(l + 1)2〉k−1 + 〈l3〉k−1. (4.7)

Upon simplifying some terms and using the explicit expression for the first moment,

〈l〉k = k/2, it becomes

(k − 1)〈l2〉k = (k − 3)〈l2〉k−1 + k2 − 3k

2
+

1

2
. (4.8)

The latter expression involves the unknowns 〈l2〉k and 〈l2〉k−1 only. Assuming 〈l2〉k−1 =

σ2
k−1+ < l >2

k−1= (k − 1)/12 + (k − 1)2/4, it is straightforward to show that Eq. (4.8)

yields 〈l2〉k = k/12 + k2/4, therefore proving that σ2
k = k/12 for any value of k. Now,

approximating the sum in eq.(4.2) by an integral gives finally

F (k, γ) ≈
∫ ∞
−∞

dl
e−

(l−k/2)2
k/6√
πk/6

[
γl(1− γ)k−l + γk−l(1− γ)l

]
. (4.9)

Evaluating the Gaussian integral explicitly leads to Eq.(4.3) . Let us caution that in

principle the integral in Eq.(4.9) should be evaluated between 0 and k, yielding a more

complicated expression than Eq.(4.3), involving error functions. Extending the integral

over all the real axis is legitimate only when 1 − γ is not too small, so that most of

the weight in the integrand is concentrated between 0 and k. When 1 − γ becomes

very small (1 − γ ≈ 0.0025), this assumption breaks down, and the simple expression

of Eq.(4.3) does not hold.

4.2 Infering directionality:

Counting loops in empirical networks

Now we go on to analyze a large set of empirical biological, ecological and socio-

technological directed networks taken from the literature (for the complete list see Ap-

pendix 4.5). We excluded from our analyses un-directed networks and tree-like networks

with no single loop of any size. Self-loops –being unrelated to inherent directionality–

have not been taken into account. For each network and each loop-length k, we ex-
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haustively count the number of structural loops and the fraction of them which are also

feedback loops, F (k). We remark that knowledge of the hierarchical level of each node

(if any) is not necessary for this computation. From a computational perspective, count-

ing loops is a non-polynomial (NP) hard problem, thus becoming an unfeasible task for

large network sizes. For this reason, previous studies often used less computationally-

expensive proxies –such as the Estrada index [81] or analytical estimations for large

network sizes [38]– to estimate the amount of loops in real networks. Despite the non-

polynomial nature of the problem, present computer power allows us to count loops up

to reasonably-large sizes by using an efficient breadth first algorithm (see sec. 4.2.1 for

more information on the algorithm).

We compare the measured fraction of feedback loops F (k) with two different ran-

domizations of the same network. The first one –that we term directionality random-

ization (DR)– preserves the existing links, but fully randomizes their directions. The

second one – configuration randomization (CR)– randomizes both links and directions,

but preserving the in and out connectivity of each single node [165] (see sec.4.2.2 for a

more detailed description of the randomization procedures).

Our results, shown in Fig. 4.4, exhibit a clear trend: the fraction of feedback loops

of any length k is much smaller in biological and ecological networks than would be

expected for any of the two different randomisations. Let us caution that randomly

wired networks of finite size can exhibit small statistical deviations from the large-size

limit γ = 1/2.

We remark that also the total number of feedback loops –not just its fraction– is

severely reduced with respect to network randomizations in all the considered biological

and ecological networks, as firstly noted in [85], and is shown in Figure 4.3. This con-

clusion holds both for the directionality and the configuration randomizations. Notice

that, in most networks, this effect becomes exponentially more pronounced for larger

loop sizes.

These trends are not so evident for socio-technological networks; while all of the con-

sidered ecological and biological networks have a smaller fraction of feedback loops than

their directionality randomizations, some of the social ones (e.g. “twitter followings”

and “political blogosphere”) have a larger F (k) than configurational randomizations

(see Fig.4.4).
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Figure 4.3: Total number of feedback loops, N(k), in real ecological and bi-
ological networks (black squares) as compared with the directional randomization
(magenta diamonds) and the configuration randomization (blue pentagons). Note the
logarithmic scale in the vertical axis. In all cases, the number of long feedback loops
in real networks is significantly smaller than the random ensemble averages. Errorbars,
in most cases smaller than symbol size, correspond to one standard deviation in the
randomized ensemble.

We now test the predictions of our probabilistic model against the empirically mea-

sured values of F (k) in all real networks. For each of the analyzed empirical networks we

consider loop lengths ranging from k = 3 to maximum values up to k = 12, determined

by computational capabilities and depending crucially on network size and connectivity.

For each network, we estimate the value of the directionality parameter γ which best

describes the observed fraction of feedback loops via an unweighted least-square fit of

logF (γ, k) as a function of k.

Results are summarized in Fig.4.4. The model reproduces remarkably well empirical

data for all loop lengths by fitting the only free parameter. In some cases, such as for

the neural connectivity (C. elegans) network, the agreement between empirical data and

model predictions is quite impressive, while significant deviations are observed in some
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Figure 4.4: Fraction of feedback loops, F (k), as a function of the loop length,
k, in empirical networks. Black squares correspond to empirical data and red dashed
lines stand for fits of the empirical data to an asymptotic exponential curve (fit done
using data for k > 4). Pale blue pentagons stand for configurational randomizations
and pale pink diamonds for directionality randomizations. Blue crosses mark the best
fit of our probabilistic model (the parameter γ has been fitted using a least-squares
method to logF (k) versus k). The resulting optimal γ values for the different networks
are compiled in Table 4.2 in sec.4.5, at the end of this chapter. Blue dashed lines
correspond to the asymptotic analytical estimate of Eq.(4.3) for the corresponding
γ. Notice the closeness between the exponential fit to real data and the analytical
prediction.
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other cases for small loop lengths, k ≤ 4. In particular, the worst agreement is obtained

for the Coachella valley foodweb. However, this network, with only 29 nodes, is the

smallest in the dataset, so it can deviate significantly from statistical predictions and

it has been previously reported to be anomalous from other viewpoints [114]. In some

cases, such as the N.E. Shelf foodweb and the two considered transcription regulatory

networks (E. coli TRN and Yeast TRN), γ > 0.999 indicating a rather extreme level of

inherent directionality (see Table 4.2). We obtained similar results for other empirical

networks with very few loops (listed in Table 4.2 as well), providing additional support

to our conclusion.

As the model predicts an asymptotic exponential decay of F (k) as the loop-length

k increases, we have performed –for each particular network– a fit of the empirical data

(for k > 4) to an exponential function (see dashed red lines in Fig. 4.4). In this case, the

quality of the fit of logF (k) versus k can be assessed via a linear regression coefficient, r.

Obtained values of r2 (Table 4.2) are larger than 0.99 in all cases except one –the Mam-

malian cell signaling network, for which r2 = 0.973– indicating that even for relatively

small loop-lengths the predicted asymptotic exponential decay holds. Furthermore,

each of these exponential fits is very close to its corresponding analytically-obtained

asymptotic result, Eq. (4.3) (blue discontinuous lines in Fig. 4.4). In the few cases in

which the analytical asymptotic prediction breaks down (see sec. 4.1.2) the blue dashed

lines correspond to a fit of the model data for k ≤ 4. This shows that the asymptotic

expression is reasonably accurate even for rather short loops.

We conclude this section with a remark on the possible impact of unknown links.

Our knowledge of biological and technological networks is often incomplete and it is

important to assess how this fact may affects our analyses. To test the robustness

of our framework, we mimicked the effect of undersampling of empirical networks by

eliminating a fraction of the links at random, and repeated the analysis above. While

this operation clearly affects the number of links, the conclusions of our model (in

particular the fitted value of γ) are very weakly modified even when a relatively large

fraction of nodes is removed 20% ∼ 50% (see figure 4.5 below).
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Figure 4.5: Fraction of feedback loops at removing a percentage of links. Black
squares correspond to empirical data. Other curves are obtained by randomly deleting
a fraction of the links (the fraction is shown in the legend). Fitted values of γ for a
fraction (0, 10%, 20%, 50%) of removed links are: Ecoli (0.9988, 0.0.9983, 0.9985, 0.9979)
Cell Signaling (0.89, 0.89, 0.90, 0.88) Neural Connectivity (0.88, 0.88, 0.90, 0.90) Political
Blogosphere (0.73, 0.76, 0.79, 083). Observe the very mild variations induced by random
deletion of links.

4.2.1 A novel algorithm for measuring loops in networks

We consider a generic network with N nodes and L directed edges, codified by its

adjacency or connectivity matrix A, such that aij = 1 if there is a directed link from

node i to node j and aij = 0 otherwise. We consider the simplest possible case of

unweighted and unsigned directed networks and keep generalizations to those cases for

a future study. Our aim is to count the number of directed and structural loops of any

possible length k. A feedback loop is a self-avoiding directed walk starting and finishing

at the same network node, i.e. the walk follows the direction of the links and any node

appears at most once in any particular loop.

We have devised a breadth first algorithm [126] that counts closed paths starting

from all possible root nodes, i ∈ [1, N ], in a sequential way. From any given node,
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the tree of possible paths branches out following the adjacency matrix. Within a given

search, a Boolean variable σ is assigned to each node to distinguish visited from un-

visited nodes. The process is iterated until either: (i) the starting node is reached,

(ii) a predetermined maximum allowed loop-size has been reached, or (iii) every acces-

sible node has been visited. Note that searches with arbitrarily long loops would be

prohibitively expensive for medium-sized and large networks and, therefore, we need

to limit our search to paths up to a maximum length (typically, from 7 to 20 depend-

ing on network size and connectivity). Similarly, to determine the total number of

structural loops we symmetrise the network (i.e. we construct a new adjacency matrix

B = A + AT ) and run the same algorithm as above. Given the proliferation of links

and paths, the search becomes much slower in this case. The algorithm has been tested

using as a benchmark Erdős-Rényi networks [178] for which analytical expressions for

the number of (directed and undirected) loops are known.

4.2.2 Network randomizations

Our measurements of the fraction of feedback loops F (k) for real networks have been

compared along the main text with two different network randomizations.

Configuration randomization (CR) consists in randomizing the original network

with the constraints that the total number of nodes and links, as well as the (in and out)

connectivities of each node are preserved. Algorithmically, this is achieved by randomly

selecting two different edges, say i→ j and k → l, switching the ending points: i→ l,

k → j, and repeating the operation many times. The ensemble generated iterating this

process is usually call the “configuration model” [165].

Directionality randomization (DR) consists in maintaining the original topol-

ogy of the network, but performing randomizations of the direction of all the links. For

each link, each of the two directions is chosen with probability 1/2. This randomization

preserves the number of nodes and links in the network as well as the degree sequence

[178]. A random network ensemble can be build up by repeating the randomization as

many times as needed. In such random ensemble, a loop of length k is a feedback loop

with probability 21−k and it is non-directed with complementary probability 1− 21−k.

For the sake of completeness, we have verified that our conclusions remain un-

changed when considering two further randomization ensembles[149, 197, 278]:
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(i) mean directionality randomization (MDR), in which directions are random-

ized but the total connectivity of each node is preserved only on average, i.e. links join

randomly selected origin and target nodes, which are chosen with probability propor-

tional to their total connectivity (including in and out links) in the corresponding real

network, and

(ii) mean configuration randomization (MCR) similar to the CR above, but where

the in and out connectivities of each node are preserved only on average (in particular,

two nodes are connected with a probability proportional to the out-connectivity of the

first times the in-connectivity of the second).
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Figure 4.6: Fraction of feedback loops, F (k), as a function of the loop length,
k, in empirical networks compared with 4 different randomisations. All the
attempted randomisations have a significantly larger fraction of feedback loops than
empirical ones (Black squares correspond to empirical data; pale pink diamonds cor-
respond to directionality randomisations (DR), pale blue pentagons to configurational
randomisations (CR), yellow downward triangles to mean directionality randomisations
(MDR), and, finally, green upward triangles to configuration randomisations (MCR).
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Fig. 4.6 shows results analogous to those of Fig. 4.4, in which F (k) is plotted as a

function of k for real networks as well as for the four different randomizations discussed

above. As it can be seen, the conclusions are robust for all these randomizations.

4.3 Measuring directionality in empirical networks

The directionality parameter γ in the probabilistic model represents how strongly the

hypothesised hierarchical ordering affects the direction of the links in the network;

γ = 1 (and also γ = 0) reflect perfect directionality while γ = 1/2 corresponds to

random directionality. In the previous section, γ has been inferred from the statistics

of feedback loops.

We now propose an algorithm to directly measure the degree of directionality of

a network from its topology. Similar methods have been proposed for this purpose

[131, 213, 276]. All of them are able to extract a hierarchical ordering from a given

network and classify nodes into a few discrete levels. Instead, the method we propose

produces more refined orderings, being able to resolve possible degeneracies between

the coarser levels produced by previous methods.

Our method is inspired by algorithms for determining trophic levels in food-webs,

but is applicable to any directed network; it can be also seen as a way to infer a “hidden

variable” from network topology [222]. The general idea is that basal nodes (those with

no incoming connections) are assigned the lowest value in the hierarchy (l = 1) and the

rest of the nodes are assigned the mean level of their incoming nodes plus one. The set

of equations defined by this method constitute a system of linear equations that can

be solved with standard methods. For turther deatils see sec. 4.3.1. Notice that, while

with existing methods [131, 213, 276] hierarchical levels associated to nodes are integer

numbers, here they are in general real numbers.

Using the hierarchical ordering resulting from applying the algorithm above, it is

straightforward to compute the fraction of links pointing from lower to higher hierar-

chical levels, i.e. aligned with the inherent directionality. We call this fraction “current

parameter”, and refer to it as χ (see sec. 4.2.1). In the limit of perfect feedforwardness

one expects χ = 1, while in the absence of a well-defined directionality χ ≈ 1/2.

Our results are summarized in Fig. 4.7, and they clearly show that all the consid-
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Figure 4.7: Correlation between inferred and explicitly measured levels of
directionality. Scatter plot of the optimal values of the directionality parameter γ
plotted against the current parameter χ. Values of either γ or χ close to 1 reflect a high
degree of directionality while smaller values close to 1/2 imply that link directions are
nearly uncorrelated with directionality. The value of the linear correlation coefficient
is r = 0.89 or r = 0.92 depending on whether the outlier “Coachella Valley” small
network is included or not.The corresponding best fits are γ = 0.487χ + 0.529 and
γ = 0.514χ+ 0.502, respectively.

ered biological, ecologial, and also –to much lesser extent– socio-technological networks

exhibit some degree of hierarchy, represented by a current parameter χ > 1/2. More

remarkably, the explicitly measured values of χ correlate quite well with the fitted value

of the directionality parameter γ in the set of networks under study. This correlation

implies that the free parameter we use to fit the directional model is consistent with a

direct measure of directionality (current) in the same networks.
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4.3.1 Algorithm details

Along this chapter we have proposed an algorithm to directly measure the degree of di-

rectionality in empirical networks. It is inspired in previous algorithms for determining

the trophic hierarchy in foodwebs, but can be applied to any kind of directed network..

Extract hierarchical ordering: As customarily done with food-webs, one iden-

tifies “basal nodes” as those having zero in-connectivity, i.e. with no link pointing to

them. In the conceivable case in which no basal node exists, we progressively identify

sets made out of two, three... nodes which –taken as a unique coarse-grained node–

are basal, i.e. no external node points to any node in the set. Basal nodes obtained in

this way are placed at the lowest level of the hierarchical ordering, l = 1 (see fig.4.8).

Then, the level of the remaining nodes is defined as the average of the trophic level of

all nodes pointing to it (its preys in food-webs) plus 1:

lj =
1

kj

∑
i

aijli + 1 (4.10)

where kj is the in-connectivity of node j, aij is the connectivity or adjacency matrix

and lj is the hierarchical level of node j. The conditions (4.10) define a set of linear

equations in the unknown lj’s, that can be written in terms of a modified laplacian

matrix

Λ~l = 1, (4.11)

where ~l is the vector of trophic levels. The modified laplacian matrix has off-diagonal

entries Λij = −1/kini if i eats j or 0 otherwise, and diagonal entries Λii = 1 .

The only necessary condition for the system of linear equations defined in 4.11 to

be solvable is that the matrix Λ has to be invertible. This requires at least one basal

species (else zero would be an eigenvalue of Λ). However, note that cycles are not, in

general, a problem, despite the apparent recursivity of Eq 4.10.

Quantifiying the current parameter χ: Once the trophic level of the nodes

have been assigned the current parameters is determined as the portion of links that

are aligned with the inherent directionality of the network (direction of increasing hi-

erarchy), as in fig.4.8. In a case of perfect directionality all links should be aligned

with the direction defined by the hierarchy, and hence χ = 1. In the absence of a
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Figure 4.8: Empirical representation of a trophic web of a Everglades Graminoid
Marshes ecosystem [256] in which the trophic hierarchy as been made apparent by
application of our algorithm. The height of the nodes represents the trophic level of
each species (labeled with its name), and the different colours are only a guide to the
eye. Links spanning negative trophic distances (pointing from higher to lower hierar-
chies) are represented in red, while links aligned with the inherent directionality are in
gray. Determination of the current parameter is straightforward once the levels have
been assigned. In this case from the 617 links in the community only 20 (hihglighted in
red) oppose the general directionality, and hence the current parameter of this network
is χ = 0.97. Curiously enough one of the species involved in many of the “against-
directional” interactions is the Utricularia, a carnivorous plant.

well-defined directionality, the direction of the links would be random and one expects

χ ≈ 1/2 (apart from small deviations due to finite-size effects). In general ecological

and biological networks exhibit a rather large directionality, with values of χ > 0.8 in

most of cases (see table 4.2 at the end of this chapter).
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4.4 Chapter summary

• In this chapter we have tackled the problem of exhaustively counting the number

of structural and feedback loops in a variety of biological, ecological, and socio-

technological networks. We then compared these numbers with those in random-

ized versions of the same graphs, where other basic structural features (such as

total number of nodes, number of links, connectivity of each link, etc.) were pre-

served. In general, ecological and biological networks show a similar trend, an

under-representation of long loops compared to the random expectations (Fig.4.3

and 4.6). This effect is much milder in socio-technological networks.

• We hypothesize that the (empirically observed) lack of feedback loops stems from

the existence of an inherent directionality. To investigate this conjecture, we

have constructed a simple computational model in which an inherent network

directionality –quantified by a directionality parameter γ– is built in. For this

model we are able to analytically compute the fraction of feedback loops of any

given length as a function of γ. We find that this intrinsically directional model

can reproduce quite well empirical curves of the fraction of feedback loops of any

length by just tuning its only parameter γ (Fig.4.4).

• Using the proposed model it is possible to infer a directionality in empirical net-

works. The inferred directionality is the value γ which gives a better fit of the

curves of fraction of feedback loops.

• We put forward a method to directly measure the directionality in empiric net-

works. Indeed, by employing a method inspired on how trophic levels are identi-

fied in foodwebs, we have been able to identify –just by looking at the network

structure– the current parameter χ as the fraction of links in the direction defined

by the hierarchy (Fig.4.8).

• The optimal value of the directionality parameter γ –derived from the statis-

tics of loops– correlates quite well with the current parameter, χ, computed by

quantifying the network degree of directionality. These two measures of network

inherent directionality are quantitatively different but they are strongly corre-

lated (Fig.4.7). In this way the existence of an inherent directionality constitutes
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a simple yet satisfactory parsimonious explanation for the empirically observed

lack of feedback loops in biological and ecological networks.
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4.5 Data supplement to chapter 3

Networks data

We have considered a number of different directed networks from the literature, exclud-

ing loop-less ones. Let us remark that real networks are more flexible and dynamical

than what is captured in existing databases. Current data can be considered as a

snapshot or time-average of such dynamical networks. Nevertheless, this should not

constitute a particular limitation for the analyses performed here. The list of employed

networks is:

• Foodweb: N.E. Shelf [138] (N = 79, L = 1, 403), Caribbean Reef [186] (N =

50, L = 556), Coachella Valley [203] (N = 29, L = 262), El Verde Rainforest [265]

(N = 155, L = 1509), Little Rock Lake [144] (N = 92, L = 997), Lough Hyne

[76, 211] (N = 349, L = 5117), and Weddell Sea [108] (N = 483, L = 15362).

• Biological networks: C. elegans Neural Connectivity Network (N = 297, L =

2345) [268], E. coli Transcriptional Regulatory Network (TRN) (N = 1037, L =

2687) [220], Mammalian Cell Signaling Network (N = 599, L = 1399) [140], and

Yeast Transcriptional Regulatory Network (TRN) (N = 4440, L = 12873) [276]

• Socio-technological networks: F.A.A. Flights (N = 1226, L = 2616) [140], Digg

News Forum Replies (N = 30398, L = 87627) [48], Twitter Followings (N =

81306, L = 1768149)[154], Political Blogs in the U.S.A. (N = 1490, L = 19025)

[2], Advogato Forum Replies (N = 6551, L = 51332) [148], Kaitiaki Friendship

(N = 62, L = 119) [250], Wikipedia Elections (N = 7115, L = 103689) [134], P2P

Connections (N = 6301, L = 20777) [212], and

• Other networks (with few loops):

– Foodwebs: Everglades Graminoid Marshes (N = 69, L = 916) [256], Man-

grove Estuary (N = 97, L = 1, 491) [255], Mondego Estuary - Zostrea site

(N = 46, L = 400) [? ], and Skipwith Pond [267] (N = 25, L = 197).

– Biological networks: Human TRN (N = 3088, L = 6886) [276] and Mouse

TRN (N = 72, L = 117) [276].
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– Social networks: Ownership (N = 7252, L = 6726) [179].

Other biological networks such as, for example, protein-protein networks –in which

two proteins are associated if they co-participate in some metabolic process– are un-

directed and, thus, not covered by our study.

Correlation between γ and χ

Network r2 γ χ

E. coli TRN 0.995 0.999 0.9316

Cell Signaling 0.973 0.888 0.7348

Yeast TRN 0.997 1.000 0.9887

Neural Connectivity 1.000 0.879 0.7429

Coachella Valley 0.984 0.988 0.7325

Caribbean Reef 0.997 0.958 0.8579

El Verde Rainforest 0.997 0.961 0.8381

N.E. Shelf 0.997 1.000 0.9470

Little Rock Lake 0.999 0.998 0.9350

Lough Hyne 0.980 0.999 0.9616

Weddell Sea 0.992 0.987 0.9072

F.A.A. 0.998 0.783 0.6183

Forum Replies 1.000 0.935 0.7359

Twitter Followings 0.984 0.967 -

Political Blogosphere 1.000 0.744 0.5217

Advocato Forum 0.999 0.714 0.5487

Kaitiaki friendship 0.975 0.860 0.8411

Wikipedia elections 0.998 0.934 0.7252

P2P Connections 0.991 0.993 0.8205

Everglades 0.979 0.999 0.9673

Mangrove Estuary 0.998 0.999 0.9704

Mondego Estuary 1.000 0.992 0.9373

Skipwith 0.000 0.997 0.9471

Human TRN 0.984 0.999 0.9626

Mouse TRN 1.000 0.970 0.8957



98 Chapter 4. Inherent directionality in biological and ecological networks

Ownership 1.000 0.977 0.9880

Tuberculosis TRN 1.000 0.998 0.9858

B. subtilis TRN 1.000 0.985 0.9459

Table 4.2: Quantification of network directionality. First and second columns: values

of the linear correlation coefficient r2 and of the fitted parameter γ, respectively, for the linear

fit of logF (k) versus k with Eq. (4.2) for the considered networks. Third column: measures

of the current parameter χ from the network structure (large values of χ indicate high levels

of hierarchy and thus of directionality). Networks below the central double line are those with

only a small number of short loops, i.e. not having any loop larger than k = 6. In the case of

the Skipwith network, the value of r2 is absent as we could not compute long enough loops

to observe the exponential decay. In the Twitter followings network the value of χ could not

be computed due to computational limitations.



Chapter 5

Factors determining nestedness in

complex networks

Networks have become a paradigm for understanding systems of interacting objects,

providing us with a unifying framework for the study of diverse phenomena and fields,

from molecular biology to social sciences [24]. Most real networks are not assembled

randomly but present a number of non-trivial structural traits such as the small-world

property, scale freeness, hierarchical organization, etc [5, 178]. Network topological fea-

tures are essential to determine properties of complex systems such as their robustness,

resilience to attacks, dynamical behavior, spreading of information, etc. [25, 40, 178]. A

paradigmatic case is that of ecosystems, in which species can be visualized as nodes of a

network and their mutual interactions (predation, mutualism, facilitation, etc) encoded

in the edges or links. One such feature of ecological networks, which has been studied

for some time by ecologists, is called nestedness [19]. Loosely speaking, a bipartite net-

work [178] –say, for argument’s sake, of species and islands, linked whenever the former

inhabits the latter– is said to be nested if the species that exist on a few islands tend

always to be found also on those islands inhabited by many different species. This can

be most easily seen by graphically representing a matrix such that species are columns

and islands are rows, with elements equal to one whenever two nodes are linked and

zero if not. If, after ordering all nodes by degree (number of neighbours), most of them

can be quite neatly packed into one corner, the network is considered highly nested

[19, 272]. Even if initially introduced for bipartite networks, the concept of nestedness

99
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can be readily generalized for generic networks. The idea of nestedness is illustrated in

Fig.5.1 where we plot different connectivity matrices with different levels of maximal

“compactability” and, thus, with different levels of nestedness.

Nestedness is usually measured with purposely-designed software. The most popular

nestedness calculator is the “temperature” of Atmar and Patterson (used to extract a

temperature from the matrices in Fig.5.1) [19]. It estimates a curve of equal density of

ones and zeros, calculates how many ones and zeros are on the “wrong” side and by how

much, and returns a number between 0 and 100 called “temperature” by analogy with

some system such as a subliming solid. A low temperature indicates high nestedness. It

is important to caution that nestedness indices should not be used as black-boxes, as this

can lead to false conclusions [83, 257]. The main drawback of these calculators is that

they are defined by complicated algorithms, hindering further analytical developments.

In a seminal work, Bascompte and collaborators [29] showed that real mutualistic

networks (i.e. bipartite networks of symbiotic interactions), such as the bipartite net-

work of plants and the insects that pollinate them, are significantly nested. They also

defined a measure to quantify the average number of shared partners in these mutual-

istic networks, and called it “nestedness” because of its close relation with the concept

described above. They go on to show evidence of how the so-defined nestedness of

empirical mutualistic networks is correlated with the biodiversity of the corresponding

ecosystems [34]: the global species competition is significantly reduced by developing a

nested network architecture and this entails a larger biodiversity. The principle behind

this is simple. Say nodes A and B are in competition with each other. An increase

in A will be to B’s detriment and vice-versa; but if both A and B engage in a sym-

biotic relationship with node C, then A’s thriving will stimulate C, which in turn will

be helpful to B. Thus, the effective competition between A and B is reduced, and the

whole system becomes more stable and capable of sustaining more nodes and more

individuals. The beneficial effect that “competing” nodes (i.e. those in the same side of

a bipartite network) can gain from sharing “friendly” partners (nodes in the other side)

is not confined to ecosystems. It is expected also to play a role, for instance, in financial

networks or other economic systems [240]. To what extent the measure introduced by

Bascompte et al. is related to the traditional concept of nestedness has not, to the best

of our knowledge, been rigorously explored. Irrespectively of this relation, however, the
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insight that mutual neighbours can reduce effective competition in a variety of settings

is clearly interesting in its own right, and it is for this reason that we analyze this

feature here. On a different front, Staniczenko et al.[234] have made some promising

analytical progress regarding the traditional concept of nestedness.

Here, we take up this idea of shared neighbours, though characterized, owing to rea-

sons we shall explain in the Methods, with a slightly different measure (see 5.1.1) and

study analytically and computationally how it is influenced by the most relevant topo-

logical properties, such as the degree distribution and degree-degree correlations. Our

aim is to understand to what extent nestedness is a property inherited from imposing

a given degree distribution or a certain type of degree-degree correlations.

5.1 Analytical quantification of nestedness

In this section we propose a new nestedness index that is inspired by the one introduced

in ref.[34] but with some additional advances. Our main aim is to be able to easily

discern the contribution of the degree-distribution to this measure, and hence obtain a

estimation of the nestedness of the networks beyond its heterogeneity. In order to do

so we will use the ensemble of the randomized networks provided by the (uncorrelated)

configuration ensemble.

5.1.1 introducing a refined measure

Consider an arbitrary network with N nodes defined by the adjacency matrix A: the

element aij is equal to the number of links (or edges) from node j to node i (typically

considered to be either 1 or 0 though extensions to weighted networks have also been

considered in the literature [234]). If A is symmetric, then the network is undirected

and each node i can be characterized by a degree ki =
∑

j aij. If it is directed, i has

both an in degree, kini =
∑

j aij, and an out degree, kouti =
∑

j aji; we shall focus

here on undirected networks, although most of the results could be easily extended to

directed ones.

Bastolla et al. [34] have shown that the effective competition between two species

can be reduced if they have common neighbours with which they are in symbiosis.

Therefore, in mutualistic networks it is beneficial for the species at two nodes i and
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j if the number of shared symbiotic partners, n̂ij =
∑

l ailalj = (a2)ij, is as large as

possible. Going on this, and assuming the network is undirected, the authors propose

to use the following measure:

ηB =

∑
i<j n̂ij∑

i<j min(ki, kj)
, (5.1)

which they call nestedness because it would seem to be highly correlated with the

measures returned by nestedness software. Note that, although the authors consider

only bipartite graphs, such a feature is not imposed in the above definition.

Here, we take up the idea of the importance of having an analytical expression for

the nestedness but, for several reasons, we use a definition slightly different from the one

in [34]. Actually, ηB suffers from a serious shortcoming; if one commutes the sums in the

numerator of Eq.(5.1), it is found that the result only depends on the heterogeneity of

the degree distribution:
∑

ij n̂ij =
∑

l

∑
i ail

∑
j alj = N〈k2〉 (in an undirected network,∑

i<j = 1
2

∑
ij; we shall always sum over all i and j, since it is easier to generalize to

directed networks and often avoids writing factors 2). Therefore, this index essentially

provides a measurement of network heterogeneity. Also, although the maximum value

n̂ij can take is min(ki, kj), this is not necessarily the best normalization factor, since

(as we show explicitly in the next Section) the randomly expected number of paths

of length 2 connecting nodes i and j depends on both ki and kj. Furthermore, it can

sometimes be convenient to have a local measure of nestedness (i.e. nestedness of any

given node) which cannot be inferred from the expresion above. For all these reasons,

we propose to use

η̃ij ≡
n̂ij
kikj

=
(a2)ij
kikj

, (5.2)

which is defined for every pair of nodes (i, j). This allows for the consideration of a

nestedness per node, η̃i = N−1
∑

j η̃ij, or of the global measure

η̃ =
1

N2

∑
ij

η̃ij (5.3)

which is very similar in spirit to the measure introduced by Bastolla et al. in [34] but,

as argued above, has a number of additional advantages.
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This new index can be easily applied to bipartite networks. In this case the commu-

nities are represented by a bipartite graph, with two different set of nodes. The ones

considered in Ref. [34], for instance, are composed of animals and plants which interact

in symbiotic relations of feeding-pollination; these interactions only take place between

animals and plants. Let us therefore consider a bipartite network and call the sets Γ1

and Γ2, with n1 and n2 nodes, respectively (n1 + n2 = N). Using the notation 〈·〉i for

averages over set Γi, the total number of edges is 〈k〉1n2 = 〈k〉2n1 = 1
2
〈k〉N . Assuming

that the network is defined by the configuration ensemble, though with the additional

constraint of being bipartite, the probability of node l being connected to node i is

ε̂il = 2
kikl
〈k〉N

if they belong to different sets, and zero if they are in the same one. Proceeding as

before, we find that the expected value of the nestedness for a bipartite network is

ηbip =
1

N2

[∑
i,j∈Γ1

1

kikj

∑
l∈Γ2

kikl
〈k〉1n2

klkj
〈k〉2n1

+
∑
i,j∈Γ2

1

kikj

∑
l∈Γ1

kikl
〈k〉1n2

klkj
〈k〉2n1

]
=

n1〈k2〉2 + n2〈k2〉1
〈k〉1〈k〉2(n1 + n2)2

. (5.4)

Interestingly, if n1 = n2, the fact that the network is bipartite has no effect on the

nestedness: ηbip = ηconf .

Having an analytical definition of nestedness, it becomes feasible to scrutinize how

it is influenced by the most basic structural features, such as the degree distribution

and degree-degree correlations. The standard procedure to determine how significantly

nested a given network is, is to generate randomizations of it (while keeping fixed some

properties such as the total number of nodes, links, or degree distribution) and compare

the nestedness of the initial network with the ensemble-averaged one. The set of features

kept fixed in randomizations determine the null-model used as reference.

5.1.2 Nestedness in the configuration model

Many networks exhibit quite broad degree distributions P (k), in many cases close to

the fairly ubiquitous scale-free pattern P (k) ∼ k−γ [5]. Since heterogeneity tends to
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Figure 5.1: Measures of nestedness in networks. The figure shows different connectivity
matrices with different levels of nestedness as measured by (i) our new nestedness index
[Eq.(5.7)] and (ii) the standard nestedness “temperature’ calculator”. Panels A and B
shows two different unimodal networks. As can be readily seen, the most packed matrix
corresponds to a very low temperature and to a high nestedness index (η > 1) and,
reciprocally, the least packed one exhibits a high temperature and an index close to its
expected value for a random network (η ' 1). Panels C and D shows two bipartite
networks, and again the most packed matrix has the higher value of nestedness (η > 1)
while the least packed has higher temperature and a η closer to 1.

have a significant influence on any network measure, it is important to analytically

quantify the influence of degree-distributions on nestedness. For any particular degree

sequence, the most natural choice is to use the configuration model [165, 178] –defined

as the ensemble of random networks wired according to the constraints that a given

degree sequence (k1, ..., kN) is respected– as a null model. In such an ensemble, the

averaged value of any element of the adjacency matrix is

aij ≡ ε̂cij =
kikj
〈k〉N

. (5.5)

We use an overline, (·), to represent ensemble averages and angles, 〈·〉, for averages over

nodes of a given network.
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Plugging Eq. (5.5) into Eq. (5.2), we obtain the expected value of η̃ in the config-

uration ensemble, which is our basic null model

η̃ij =
〈k2〉
〈k〉2N

≡ η̃conf . (5.6)

It is important to underline that η̃i,j is independent of i and j; hence, it coincides with

the expected value for the global measure, η̃ = η̃i,j (which justifies the normalization

chosen in Eq. (5.2)). Also, it is noteworthy that for degree distributions with finite

first and second moments, η̃conf goes to zero as the large-N limit is approached.

It is obvious from Eq. (5.6) that degree heterogeneity has an important effect on η̃;

for instance, scale-free networks (with a large degree variance) are much more nested

than homogeneous ones. Therefore, if we are to capture aspects of network structure

other than those directly induced by the degree distribution it will be useful to consider

the nestedness index normalized to this expected value,

η ≡ η̃

η̃conf
=
〈k〉2

〈k2〉N
∑
ij

(a2)ij
kikj

. (5.7)

Although η is unbounded, it has the advantage that it is equal to unity for any uncor-

related random network, independently of its degree heterogeneity, thereby making it

possible to detect additional non-trivial structure in a given empirical network.

Degree-degree correlations in the configuration model

In the configuration ensemble, the expected value of the mean degree of the nearest

neighbours (nn) of a given node is knn,i = k−1
i

∑
j ε̂

c
ijkj = 〈k2〉/〈k〉, which is independent

of ki. Still, specific finite-size networks constructed with the configuration model can

deviate from the ensemble average results (which hold exactly only in the N → ∞
limit). Real networks are finite, and they often display degree-degree correlations,

which result in knn,i = knn(ki). If knn(k) increases (decreases) with k, the network is

said to be assortative (disassortative), i.e. nodes with large degree tend to be connected

with other nodes of large (small) degree.

The measure usually employed to measure this phenomenon is Pearson’s coefficient

applied to the edges [40, 177, 178]: r = ([klk
′
l]− [kl]

2)/([k2
l ]− [kl]

2), where kl and k′l are



106 Chapter 5. Factors determining nestedness in complex networks

the degrees of each of the two nodes belonging to edge l, and [·] ≡ (〈k〉N)−1
∑

l(·) is an

average over edges. Writing
∑

l(·) =
∑

ij aij(·), r can be expressed as [177]

r =
〈k〉〈k2knn(k)〉 − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2
. (5.8)

In the infinite network-size limit we expect r = 0 in the configuration model (null

model) as there are no built in correlations. However even if the index r is widely used

to measure network correlations, some drawbacks of it have been put forward [69, 274]

5.2 Nestedness in finite-size random networks

The use of the configuration model allows us to determine to what extent some features

of networks are influenced by the degree-distribution. In the previous section we study

the effect the heterogeneity in the degree-distribution has in nestedness measures, and

devise a measure of nestedness that takes it into account. However, the predictions

of the configuration model (r = 0 and η = 1) only hold exactly in the infinite size

(N →∞) limit. Now, we go on an further study the nestedness and degree correlations

in uncorrelated networks with finite-size. In orther to do so we will use again the con-

figuration model to generate finite networks, and study its correlations and nestedness,

to determine whether the predictions of the infinite case hold or, on the other hand,

the finite size effect have a significant contribution.

5.2.1 Emergence of effective correlations in finite-size networks

We have computationally constructed finite random networks with different degree dis-

tributions; in particular, Poissonian, Gaussian, and scale-free distributions, assembled

using the configuration model as explained above (for the scale-free case see Ref.[46])

and measured their Pearson’s correlation coefficient. Results are illustrated in Fig.5.2;

the probability of obtaining negative (disassortative) values of r is larger than the one

for positive (assortative) values (observe the shift between r = 0 and the curve averaged

value). This means that the null-model expectation value of r is negative! i.e. finite

random networks are more likely to be disassortative than assortative. This result is

highly counterintuitive because the ensemble is constructed without assuming any type
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of correlations and is, clearly, a finite-size effect. Indeed, for larger network sizes the

averaged value of r converges to 0 as we have analytically proved and computationally

verified. For instance, for scale-free networks with P (k) ∝ k−γ with 2 < γ < 3, r can

be easily shown to converge to 0 as r ∝ N−1/3 in the large-N limit, as we detail below.

In this particular case the maximum expected degree, Kmax in a network of size N

is of the order N
1

γ−1 and this cut-off controls the scaling of the moments as

< km >∼
∫ Kmax

1

kmk−γdk ∼ km−γ+1|N
1

γ−1

1 ∼ N
m−γ+1
γ−1 − 1.

Combining the expressions for the first three moments appearing in the definition

of r in Eq.E(5.8), one readily obtains;

r =
aN

3−γ
γ−1 − bN2 3−γ

γ−1

cN
4−γ
γ−1 − dN2 3−γ

γ−1

∼ −eN
2−γ
γ−1 (5.9)

where a, b, c, d, and e are un-specified positive constants. In the case of a scale-free

network with γ = 2.5 this reduces to r ∼ N−
1
3 in agreement with numerical results

shown in Fig.5.2.B (observe that, as we use a logarithmic scale, the absolute value of r

rather than r itself is employed).

A well-known effect leading to effective disassortativity, is that simple algorithms,

which are supposed to generate uncorrelated networks, can instead lead to degree-

degree anti-correlations when the desired degree distribution has a heavy tail and no

more than one link is allowed between any two vertices (as hubs are not as connected

among themselves as they should be without such a constraint) [146, 191]. Also, our

observation is in agreement with the recent claim that, owing to entropic effects, real

scale-free networks are typically disassortative: simply, there are many more ways to

wire networks with disassortative correlations than with assortative ones [115]

5.2.2 Effective correlations imply nestedness in finite networks

A straightforward consequence of the natural tendency of finite networks to be disas-

sortative is that they thereby also become naturally nested. Indeed, the nestedness

index η was defined assuming there were no built-in correlations, but if degree-degree
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Figure 5.2: Correlation coefficient and nestedness in random networks. (Panel A): Cor-
relation coefficient, r for 106 networks generated independently using the configuration
model with N = 50 nodes, < k >= 5 and (from left to right) scale-free (with expo-
nent γ = 2.25), Poissonian, and Gaussian (σ2 = 10) degree distributions. (Panel B):
Pearson’s correlation coefficient as a function of network size for scale free networks
with γ = 2.25. (Panel C): Averaged nestedness (with error bars corresponding to one
standard deviation) as a function of Pearson’s correlation index r in random (scale-free,
Poissonian, and Gaussian) networks (as in the left panel). These curves are obtained
employing the Wang-Landau algorithm as described in sec.5.3.4. All three curves show
a positive (almost linear) correlation between disassortativity and nestedness: more dis-
assortative networks are more nested. By restricting the corresponding configuration
ensembles to their corresponding subsets in which r is kept fixed it is possible to define
a more constraint null model as discussed in the main text.

correlations effectively emerge in finite-size random networks, then deviations from the

neutral value η = 1 are to be expected.

Indeed, in Fig.5.2.C we have considered networks constructed with the configuration

model, employing the same probability distributions (Gaussian, Poissonian and scale

free) as above. For each so-constructed random network we compute both r and η and

plot the average of the second as a function of the first (technical details on how to

sample networks with extreme values of r –using the Wang-Landau algorithm [266]– are
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given in sec.5.3.4). The resulting three curves exhibit a neat (almost linear) dependence

of the expected value of η on r: disassortative networks are nested while assortative

ones are anti-nested. As disassortative ones are more likely to appear, a certain degree

of nestedness is to be expected in finite random networks. Observe, however, that for

truly uncorrelated random networks, i.e. with r = 0, the expectation value of η is 1.

Finally, in Appendix E, we provide an analytical connection between disassortativ-

ity and nestedness in infinite random networks with explicitly built-in degree-degree

correlations. Also in this case a clear relation between nestedness and disassortativity

emerges (as shown in figure E.1 in the aforesaid apprendix) for scale-free networks.

5.3 Nestedness in empiric networks

In the previous section we have seen that finite-size random networks do exhibit some

degree of nestedness, as expected from the existent effective degree-degree correlations.

The next logical step is to look at empirical networks and wonder whether their values

of nestedness and degree-degree correlations can be explained by a null model or not.

To study this we have considered 60 different empirical networks, both bipartite

and unimodal, from the literature. The set includes foodwebs, metabolic, neuronal,

ecological, social, and technological networks (for the whole dataset see sec. 5.5 at the

end of this chapter). We have performed randomizations preserving the corresponding

degree sequences (configuration ensemble) and avoiding multiple links between any pair

of nodes. Results for a subset of 16 networks are illustrated in Figure 5.3, which shows

the distribution of r and η values (see figure caption) compared with the actual values

of remp and ηemp in the empirical networks.

5.3.1 Degree correlations in real vs randomized networks

The actual value of r in empirical networks coincides with the ensemble average within

an error of the order of 1, 2, or 3 standard deviations in about two thirds of the cases

(53%, 67%, and 76% respectively (see fig.5.4)). Similarly, the corresponding p-values

are larger than the significance threshold (0.05) in 60% of the cases. Particularizing

for bipartite networks, the z-scores rise to: 60%, 76%, and 89%, respectively, and the

significant P-values go up to 68% (data are collected in Appendix 5.5).
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Figure 5.3: Correlation coefficient and nestedness in degree-preserving randomiaztions.
Probability distribution of Pearson’s coefficient r (red) and of the nestedness coefficient
η (green) as measured in degree-preserving randomizations of a subset of 16 (out of a
total of 60) real empirical networks (as described and referenced in Appendix 5.5). The
actual empirical values in the real network are marked with a black box and compared
(also in black) with a segment centered at the mean value of the random ensemble (con-
figuration model) with width equal to one standard deviation. In most cases but not
all, the empirical values lie in or near the corresponding interval, suggesting that typ-
ically empirical networks are not significantly more assortative/nested than randomly
expected.

Therefore, roughly speaking, the null model –in which networks are randomly wired

according to a specified degree sequence– explains well the correlations of about two-

thirds (or more) of the networks we have analyzed and, more remarkably, it explains

even better the correlations of bipartite networks. Thus, once it has been realized

that random networks have a slight natural tendency to be disassortative, in many
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cases, there does not seem to be a clear generic statistical tendency for real networks to

be more correlated (either assortatively or disassortatively) than expected in the null

model. For instance in almost all foodwebs we have analyzed the empirical value of r

is well explained by randomizations, while in some other social and biological networks

there are some residual positive correlations (assortativity).

5.3.2 Nestedness in real vs randomized networks

We have conducted a similar analysis for the nestedness index η and compare its value

in real networks with the expected value in randomizations (see Fig.5.3). In this case,

the actual value of η in empirical networks coincides with the ensemble average with

an error of the order of 1, 2, or 3 standard deviations also in about two thirds of the

cases (43%, 73%, and 83% respectively). As for the p-value, it is above threshold in

63% of the cases (which goes up to 76% for bipartite networks). Thus, in most of the

analysed examples, empirically observed values of nestedness are in agreement with

null-model expectations once the degree-distribution has been taken into consideration

(data shown in Appendix 5.5).

All these results can be summarized in fig. 5.4 below, where the number of empirical

networks with a z-score of 1,2,3 or more are represented.
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Figure 5.4: A: Number of empirical networks which value of r lies within 1, 2, 3, or more
standard deviations from the expected value in the randomized ensemble. B: Number of
networks which value of η as measured by Eq.(5.7) lies within 1, 2, 3, or more standard
deviations from the expected value in the randomized ensemble. C: Same analysis but
for the randomizations in the second null model, as defined in secc. 5.3.4. The use of
a more refined null-model
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5.3.3 Nestedness vs degree correlations in empirical networks

As said above, both Fig.5.2.C and Fig.5.3 reveal a global tendency: exceedingly disas-

sortative networks tend to be nested while assortative ones are anti-nested. To further

explore this relation, Fig.5.5 shows a plot of nestedness against assortativity for the

selection of empirical networks listed in Appendix 5.5. Although these networks are

highly disparate as regards size, density, degree distribution, etc., it is apparent that

the main contribution to η comes indeed from degree-degree correlations. The obser-

vation of such a strong generic correlation between the nestedness and disassortativity

constitutes one of the main messages of this chapter.
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Figure 5.5: Nestedness against assortativity (as measured by Pearson’s correlation coef-
ficient) for data on a variety of networks. Warm-coloured items correspond to unimodal
networks and green ones to bipartite networks of different kinds (see Appendix 5.5).
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5.3.4 A more refined null model

A unique criterion for choosing a proper null model does not exist [90]. For instance,

it is possible to go beyond the null model studied so far by preserving not just the

degree sequence but also empirical correlations. Indeed, from the full set of networks

generated with the configuration model for a given degree sequence, one could consider

the subset of networks with a fixed value of r, as done in Fig.5.2.C (and as explained

below). In particular, one could take the sub-ensemble with the same r as empirically

observed. This constitutes a more refined null model in which the number of nodes,

degree sequence, and degree-degree correlations are preserved. This more refined null

model reproduces slightly better than the configuration model the empirical values of

nestedness: 63% of networks fall within one standard deviation (as opposed to 42%

in the first null model), 85% within two (versus 72%), and 92% for three standard

deviations (as opposed to 82%). Interestingly, allowing for three standard deviations

bipartite networks are explained in a 100% of the cases (see Table 5.2 at the end of

this chapter). Thus, the null model preserving degree-degree correlations explains quite

well the observed levels of nestedness.

Sampling networks with a given value of r

Given that networks with very large r (in absolute value) are rare, and thus they seldom

appear in the randomization process used to built the configurational ensemble (or null

model) we have implemented the Wang-Landau (multi-canonical) algorithm to enrich

the sampling with such rare networks [266]. The gist of this technique is to perform a

“random” walk in the r-space, in such a way that jumps toward frequently visited r-

values are penalized and, instead, rarely visited r’s are favoured, which requires storing

the statistics of the number of times every value of r has been previously “extracted”.

Starting from an initial network (with r1), a small change in its topology is tentatively

made, and the resulting new network (with r2) is accepted with probability

P (r1 → r2) = min

[
g(r1)

g(r2)
, 1

]
(5.10)
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Figure 5.6: Averaged nestedness index, η, as measured in in the second null model in
which the value of r is preserved. The actual value of η in the real network is marked
with a black square, while the coloured intervals corresponds to one, two and three
standard deviations respectively. In most cases the empirical value lies in or near the
corresponding interval. Allowing for two or three standard deviations essentially all
empirical points yield within the corresponding interval.

where g(r) stands for the (previously observed) frequency. This algorithm allows for

uniform searches in “r-space”.

Obtaining an average η as a function of r The use of this algorithm allows us

to uniformly explore the r-space, and as such, to measure the nestedness of these rare

configurations that will be otherwise out of range. This has been the technique used to

obtain the data shown inf Fig.5.2.C. In this case, for the three different types of degree-

distributions considered in section 5.2, we have generated uncorrelated networks using

the configuration model, and progresively change their structure so as to sweep different

values of r. While running the search in the r-space, we also measure and store the
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nestedness values of Eq.(5.7) for every (binned) value of r; after properly normalizing,

we obtain the averaged value of nestedness as a function of r as shown in Fig.5.2.C.

In all three cases (scale-free, Poissonian, and Gaussian distributions), we obtain a very

clear (almost linear) dependence between r and η: disassortative networks are distinctly

nested (on average) while assortative ones are anti-nested (on average). Let us caution

that this conclusion holds “on average”, i.e. our results do not necessarily imply that

any particular disassortative network is actually nested.

Null model with correlations The configuration model generates uncorrelated net-

works with a given degree sequence. However, within this frame it is not possible to

obtain random networks with a determined value of its correlations. Since we are in-

terested in taking the correlations into account, we use the Wang-Landau algorithm to

sample rare configurations. Analogously to what we do in random finite networks, we

compute the average nestedness in this second ensemble for a fixed value of r. That

is, we only consider random networks with correlations close to the empirical values

(r ≈ remp). In particular, we have considered the same 16 workbench networks as

above, and produced Figure 5.6, where we show for each network, the averaged nest-

edness (with its corresponding standard deviation) as a function of r. The empirical

values of η are marked with black boxes.

In this new, more constrained, ensemble the null model performs only slightly better

than the configurational one, with in general, is to be expected given the fact that we

are reducing the ensemble. However, empirical values are still reasonably well explained

by randomized values, in almost all cases.
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5.4 Chapter summary

• The first contribution of this chapter is that a new analytical nestedness index

has been introduced. It is a variant of the one introduced in Ref.[34], allowing

for analytical developments, which are not feasible with standard computational

estimators (or calculators) of nestedness. Besides that, the new index exhibits

number of additional advantages: (i) it allows us to identify the amount of nest-

edness associated with each single node in a network, making it possible to define

a “local nestedness”; (ii) the new index is properly normalized and provides an

output equal to unity in uncorrelated random networks, allowing us in this way

to discriminate contributions to nestedness beyond network heterogeneity.

• There are more disassortative (negatively degree-degree correlated) networks than

assortative ones even among randomly assembled networks. Different reasons for

this have already being pointed out in the literature [115, 146, 191] and we have

confirmed that indeed this is the case for finite networks built with the configu-

ration model. Therefore ,the neutral expectation for finite random networks is to

have some non-vanishing level of disassortativity (r < 0). Analogously, there is

a very similar tendency for finite random networks to be naturally nested (Fig.

5.2).

• There is a clean-cut correspondence between nestedness and disassortativity: dis-

assortative networks are typically nested and nested networks are typically disas-

sortative (Fig. 5.2 and 5.5)

• Heterogeneity of natural networks can account for much of their nestedness. Anal-

yses of 60 empirical networks (both bipartite and non-bipartite) taken from the

literature reveal that in many cases the measured nestedness is in good corre-

spondence with that of the degree-preserving null model (Fig. 5.4). In particular,

almost 90% of the studied bipartite networks are well described by the null model

and this figure rises up to 100% when a more refined null model is considered

(Table 5.2). Degree heterogeneity together with the finite size of real networks

suffice to justify most of the empirically observed levels of nestedness in ecological

bipartite network.
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Chapter 6

Ranking species in mutualistic

networks

Assessing the stability and robustness of complex ecosystems is a fundamental problem

in conservation ecology [72, 74, 167, 228, 232]. The loss of an individual “keystone”

species can induce cascade effects –i.e. a series of secondary extinctions triggered by

the primary one– propagating the damage through the network. Thus, the relative

“importance” of a given species within a ecological network could be gauged as a func-

tion of the eventual size of the cascade of extinctions its loss would potentially cause.

A successful ranking of species importance should rank first those species that trigger

larger extinction cascades.

In the context of food webs, species rankings have been long sought (see e.g. [82,

116]). For example, Allesina and Pascual [8] successfully applied the Google’s PageRank

algoritm [189] to order species within food webs, much as Google ranks webpages.

Mutualistic ecological communities such as those formed by plants and their pollina-

tors, plant seeds and their dispersers, or anemone and the fishes that inhabit them, etc.

constitute another broadly studied set of ecological networks. These comprise two dif-

ferent sets of living beings that benefit from each other and as such can be represented

in terms of bipartite networks [178]. Mutualistic networks turn out to have a very

particular “nested” architecture [29, 34, 233] in which specialist species –interacting

with only a few mutualistic partners– tend to be connected with generalists (Figure

6.1). Such a nested design is believed to confer robustness against species loss and

122
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other systemic damages, thus fostering biodiversity [107, 122]. Determining a ranking

A B

Figure 6.1: Example of two different bipartite networks with different levels of nest-
edness. For simplicity, we focus on binary networks: blue squares correspond to ex-
isting interactions while empty ones describe absent links. A perfectly nested net-
work (A) shows a characteristic interaction matrix in which specialist species –with low
connectivity– interact only with generalist ones. The matrix in (B) has a lesser degree
of nestedness (see [233, P3] and [19] for quantifications of nestedness).

of species importance in mutualistic communities poses an important practical chal-

lenge, as it would be highly desirable to know which species are more crucial for the

long-term stability of the community. The goal would be to establish a proper ordering

of species, ranking them in order of decreasing importance for the community. This

would facilitate the design of sound conservation policies protecting the most important

species.

Following the experience from food webs we could, in principle, employ the PageR-

ank algorithm to rank mutualistic species in bipartite networks. PageRank [8, 189] is a

linear-algebra iterative algorithm which, in a nutshell, computes the “importance” of a

given node as the linear superposition of the importance of the nodes connecting to it,

in a recursive and self-consistent way 1. However, in this work, taking inspiration from

a recent breakthrough on economics/econometrics [57, 243], we propose to employ a

novel non-linear algorithm specially designed for bipartite networks.

Tacchella et al. [57, 243] analyzed economic data from the world trade network (i.e.

1PageRank measures the steady-state probability of finding a random walker –which moves following
the links of the network but also can perform random jumps to arbitrary nodes with small probability–
at any given node of the network.
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the bipartite network of countries and the products they export). The goal was to infer

an objective ranking of countries in terms of their “fitness” and a classification of the

products in terms of increasing “complexity”. Inspection of such economic data reveals

that rich (high fitness) countries are not specialized into producing complex products

(such as high-tech devices) exclusively. Rather, they export a highly diversified variety

of goods, including less-complex ones (e.g. cereals). On the other hand, poor (low

fitness) countries only produce low-complexity merchandises. These facts are reflected

in the nested structure of the corresponding bipartite network [57, 243], with a shape

similar to that in Figure 6.1. The main idea behind the novel algorithm of Tacchella

et. al. is that while the fitness of a country can be safely defined as the linear average

of the complexity of the products it exports, the reverse does not make sense. Indeed,

the complexity of a given product cannot be meaningfully estimated as the average

fitness of the countries producing it, but is much better characterised by the minimal

fitness required to produce it [243]. To implement this idea Tacchella et al. proposed

an iterative non-linear algorithm (see below) and were able to compute the fitness of

all countries and the complexity of all products in a self-consistent way, using solely

information contained in the matrix of economic transactions. The novel algorithm

clearly outperforms PageRank and leads to striking implications for understanding the

global trade market [57, 243].

Here, we consider a set of 63 real mutualistic networks taken from the literature (45

pollination networks, 16 frugivore seed-dispersal, and 2 other networks) and rank the

species accordingly to different criteria (such as node-connectivity, betweeness central-

ity, PageRank, etc.) including the novel non-linear algorithm. Each of the employed

criteria leads to a different ranking of species. We analyze the quality of any of these

orderings by monitoring how fast the network collapses if species are sequentially re-

moved in order of decreasing ranking. The best ranking is the one for which the network

breaks down more rapidly. Our conclusion is that the non-linear algorithm clearly out-

performs all others, thus providing us with an efficient and powerful scheme to gauge

the relative importance of species in mutualistic communities.
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6.1 MusRank: non-linear ranking algorithm for mu-

tualistic networks

Inspired by the work of Tacchella et. al., [57, 243] we propose a novel ranking algorithm

for mutualistic networks of ecological relevance. We shall refer to it as mutualistic

species rank (MusRank). To establish a common terminology for plant-pollinator,

seed-disperser, and anemone-fish networks, we refer to plants, seeds and anemones

as “passive” (P) elements, while pollinators, dispersers, and fishes are their “active”

(A) partners; rather than fitness and complexity now we use the terms importance

and vulnerability, for the two emerging species rankings, respectively. It is natural

to identify products with passive components and countries with active ones (but the

opposite identification can also be made; see below). We assume that the importance of

an active species, is determined by the number of its mutualistic passive partners, each

one weighted with its own vulnerability: the more partners and the more vulnerable

they are, the more important an active element is.

On the other hand, the vulnerability of a passive element will be bounded by the

less important species it interacts with. The rationale behind this is that, given that

mutualistic networks are nested, specialized species tend to interact with generalists.

If a passive element interacts only with generalists it is most certainly a specialist and

therefore highly vulnerable as it can disappear if a few generalists go extinct.

The non-linear algorithm, encoding these ideas, is summarized in Eq.(6.1). The im-

portance of active elements, IA=1,...,Amax , and the vulnerability of passive ones, VP=1,...,Pmax ,

are computed at iteration n as a function of their values in iteration n − 1 using the

interaction (or adjacency) matrix MAP as the only input:

Ĩ
(n)
A =

Pmax∑
P=1

MAPV
(n−1)
P −→ IA

(n) =
Ĩ

(n)
A

〈Ĩ(n)
A 〉A

Ṽ
(n)
P =

1
Amax∑
A=1

MAP
1

IA
(n−1)

−→ VP
(n) =

Ṽ
(n)
P

〈Ṽ (n)
P 〉P

. (6.1)

In a first step (left), intermediate values of the importance and vulnerability are cal-
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culated for each species: the first as the average of vulnerabilities of its partners and

the second as the inverse of the average of its partners inverse importances [243]. In

a second step (right), both values are normalised to their mean values. In this way,

starting from arbitrary initial conditions (e.g. IA
(0) = 1 for all A and VP

(0) = 1, for all

P ) the two-step transformation above is iterated until a fixed point is reached. Such

a fixed point –which does not depend on initial conditions– defines the output of the

algorithm: a ranking of importances and vulnerabilities for active and passive species,

respectively.
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Figure 6.2: Left and right panels show the iterative process of the calculation of active
species Importance and passive species Vulnerability defined by Eq.(6.1) in an empiri-
cal mutualistic community composed by 18 active species (pollinators) and 11 passive
species (plants) [169]. Iteration of the non-linear algorithm determines a fixed point, in-
dependent of initial conditions (in this case IAi

(0) and VP i
(0) are randomly distributed),

where two different rankings emerge: a classification of active species by its importance
and a classification of passive species by its vulnerability.

6.1.1 Other algorithms used in the study

Along this study we have used different ranking techniques as a workbench. Each of

them prioritizes a different quality of the nodes and provides a different ranking of

species. The details of each algorithm are as follows:

• CLOS: Nodes are sorted in order of decreasing closeness centrality. The closeness

centrality of a node is measured as the inverse of the average shortest distance

to all other nodes in the network. The higher the closeness of a node, the bet-
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ter it will spread information trough the network. We compute it using the

closeness centrality function of the bipartite package in Python NetworkX.

• EIG: Nodes are sorted in decreasing order of their overlap with the highest eigen-

value. To calculate the eigenvector centrality of the bipartite network we use the

gsl functions for solving non-symmetric matrices.

• BTW: Nodes are sorted in order of decreasing betweeness centrality. The be-

tweeness centrality of a node measures the fraction of shortest paths between all

possible node pairs in the network, in which it appears. Nodes with a high betwen-

ness acts as bridges amidst different “clusters” of the network, hence the higer

the betwenness of a node, the more control it has over the flow of information.

We use the betweeness centrality function of the bipartite section of algorithms

in the Python package NetworkX.

• DEG: Nodes are sorted in order of decreasing number of connections.

• NES: Nodes are sorted in order of the inverse contribution to network nestedness.

We calculate the total nestedness of a given bipartite matrix, and the contribution

of each species to the total as described in [P3]. Species that contribute most to

the community nestedness are the most vulnerable ones [218]. In order to look for

the fastest community collapse we target them in order of increasing contribution

to nestedness .

• PAGE: Nodes are sorted in decreasing order of Google’s PageRank.The ranking

is given by the projection over each node of the leading eigenvalue of the matrix

H, whose elements are defined as

hij = d · aij/
∑
j

aij + (1− d)/N.

The constant d is a “damping factor” needed to warrant that the matrix is ir-

reducible, and aij are the elements of the adjacency matrix. The value of d has

been set to 0.999, but results are not very sensitive to this choice.
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Genetic algorithm

The genetic algorithm is designed to seek for those sequences of extinction that max-

imize the extinction area. We start with 104 different random orderings of the Amax

active species. At each iteration-step two of these orderings are randomly selected.

Each one beats the other with a probability proportional to its associated extinction

area (normalized to the sum of both extinction areas). The loser sequence is erased

from the set and a copy of the winner will occupy its place. With a small probability,

µ = 0.005, this copy suffers a mutation, meaning that two random nodes exchange their

positions in the ordering. The algorithm is iterated until no better solutions are found

in a sufficiently large time window, that is, until no appreciable changes are seen in the

extinction area with increasing time. If the network is too large, this algorithm might

not be able to find a stationary optimal solution within a reasonable computation time.

6.2 Assessing the quality of a given ranking

In order to evaluate the quality of any possible ranking of species for a given mutualistic

network we proceed by computationally implementing the following protocol (see Figure

6.3.A). Active species are removed progressively following the ordering prescribed by any

specified ranking algorithm. Secondary extinctions are monitored (a species is declared

extinct when it no longer has any mutualistic partners to interact with). The process

is iterated until all the species in the network have gone extinct. The total fraction

of extinct species as a function of the number of deleted species defines a extinction

curve [8]. For each possible sequence of eradications the extinction area is obtained

as the integral of the extinction curve (see Figure 6.3.B). This procedure allows for a

quantitative discrimination of species rankings: the best possible ordering of species

would be the one for which the largest extinction area is obtained upon progressively

removing active species in order of decreasing rank.

An exhaustive search of the optimal ranking (in the space of all possible orderings)

can be performed for relatively small networks but becomes an unfeasible task for

larger ones. To have an estimation of the optimal ranking we implemented a genetic

algorithm (GA) (see sec. 6.1.1) devised to obtain the maximal possible extinction area

by searching in the space of all possible orderings. For some of the largest networks we
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Figure 6.3: Left: schematic representation of the extinction protocol for an empirical
mutualistic network: Arctic community [169]) with 18 active (pollinators) and 11 pas-
sive (plants) species. Both active (left) and passive (right) species are ordered following
some prescribed ranking; from the highest ranked species (top) to the lower-ranked ones
(bottom). The (blue and red) lines represent mutualistic interactions as encoded in the
interaction (or adjacency) matrix. Active species are progressively removed from the
community, their corresponding (red) links are erased, and passive species are declared
extinct whenever they lose al their connections. Right: extinction curve, showing the
fraction of extinct passive species as a function of the number of sequentially removed
active ones for a given specified ranking. The shaded region is the extinction area for
the ranking under consideration. Different rankings lead to different extinction areas.
The larger the area the better the ranking.

studied (in particular, for Montane forest and grassland, Beech forest and Phryganic

ecosystem with 275, 678, and 666 active nodes respectively; see table 6.5 at the end of

this chapter) the computational time required for the genetic algorithm to converge is

exceedingly large and satisfactory results were not found.

6.3 MusRank performance

We compared different rankings based on (see secc. 6.1.1): a) decreasing closeness cen-

trality (CLOS), b) decreasing eigenvector centrality (EIG), c) decreasing betweeness
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centrality (BTW), d) decreasing degree centrality (DEG), e) increasing contribution

to nestedness (NES) as described in [P3], f) decreasing PageRank (PAGE), and g)

decreasing importance as measured by MusRank (MUS).

The average extinction area of the different algorithms was obtained for all networks

in the dataset. In the frequent case in which the order is degenerate (more than one

node were rated with the same value), we considered 103 different randomizations and

computed the averaged extinction area.

For the sake of completeness we have also repeated all the protocol above, but

exchanging in Eq.(6.1) the roles of active and passive species, i.e. assigning importances

to passive species and vulnerabilities to active ones. We refer to this as “reversed”

algorithm. We have also studied extinction areas by progressively removing passive

species (rather than active ones) and monitoring secondary extinctions of active species.
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specified above) as obtained employing the different ranking schemes described in the
text. The upper dashed line shows the optimal performance corresponding to the rank-
ing found by the genetic algorithm (GA) search, and the lower one the null-expectation,
that is the averaged area obtained when targeting nodes in a random order. The dif-
ferent algorithms used to rank the nodes are: closeness centrality (CLOS), eigenvector
centrality (EIG), betweeness centrality (BTW), degree centrality (DEG), nestedness
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(MUS). MUSrev corresponds to the reversed version of the algorithm in which the
roles of active and passive species are exchanged. The height of the boxes corresponds
to the standard deviation of the results when averaging over 103 random ways to break
degeneracies in the orderings.
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Figure 6.4 illustrates the performance of the different rankings/algorithms for three

different instances of mutualistic networks. Extinction areas are plotted for each of the

considered ranking algorithms. In the three cases MusRank gives results closest to the

corresponding optimal solutions as derived from the genetic algorithm. In almost all

of the 63 studied cases, results are much better for the novel ranking than for any of

the other ones. PageRank gives similar results to MusRank in a few cases (including a

relative large network with 102 nodes). Apart from this, only for very small networks

(with less than 17 active species) some other method different from PageRank gives

extinction areas similar to the ones of the novel algorithm. In about one third of the

networks, the ranking provided by MusRank is as good as the one found by the GA

and in some cases (networks for which the GA could not converge in a reasonable time)

extinctions areas are larger for MusRank than for the GA.
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Figure 6.5: Averaged deviation of the extinction area obtained for each of the employed
rankings (or algorithms) from the maximal possible value as determined using the
genetic algorithm (average over 60 networks in the database). The left A (right B)
panel shows results when active (passive) species are targeted and passive (active)
species undergo secondary extinctions. Results are consistently much better for the
MusRank, in either the direct or the reversed version, than for any other ranking
scheme.

Figure 6.5 gives a global picture of the performance of the different rankings. It

shows the difference, averaged over 60 mutualistic networks, between the optimal solu-

tion as found by the GA and that of each specific ranking (the 3 networks for which
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the GA does not converge are excluded from this analysis). Figure 6.5.A illustrates

that the ranking provided by the MusRank –either in the direct or the reversed form–

greatly outperforms all others.

The same conclusion can be reached when progressively removing passive rather

than active species, ordered in a sequence of increasing vulnerability rather than de-

creasing importance (we target first the strongest species), see Figure 6.5.B. Therefore,

both targeting strategies and both the direct and the reversed versions of the algorithm

provide results of similar quality.

6.3.1 Optimally packed matrices

The ranking provided by MusRank, in which nodes are arranged by their level of im-

portance or vulnerability, permits us to obtain a highly packed matrix as illustrated in

Figure 6.6. By “packed” we mean that a neat curve separates densely occupied and

empty parts of the matrix. It could be thought that this ordering might be somewhat

similar to the one that allegedly packs the matrix in the most efficient way (as defined

by existing algorithms usually employed in the literature to measure nestedness [19]).

However, as Figure 6.6 vividly illustrates, the ordering provided by MusRank gives a

more packed matrix than that obtained by the standard method employed by nested-

ness calculators [19]. This suggests that MusRank should be used (rather than existing

ones) to measure nestedness in bipartite matrices.
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Final iteration of MusRank

Figure 6.6: Interaction matrix of a mutualistic community in the Andes [18] composed
of 42 pollinators and 61 plants ordered by decreasing importance and increasing vulner-
ability respectively, as measured by MusRank. Panels A and B show two different shots
of the iteration process: the initial random condition and the final (fixed-point) ranking
obtained after iteration. Panel C shows the same matrix but with nodes labelled in an
order which gives the maximally packed matrix according to the nestedness calculator
of Atmar and Patterson [19]. The novel algorithm provides a much more “packed”
matrix than this frequently employed method.
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6.4 Chapter summary

• In this chapter we present a new method to asses species importance in mutualistic

communities: Musrank. It is similar in spirit to Google’s PageRank, but of non-

linear character. The algorithm provides two complementary rankings: one for

active species (such as insects, birds, fish,...) in terms of their importance and

one for passive species (plants and their seeds, anemone, etc) in terms of their

vulnerability. This ranking outperforms all the others we study (fig. 6.5)

• We also put forward a general framework to asses the quality of importance rank-

ings in mutualistic communities: good rankings lead to a fast break-down of the

corresponding mutualistic network when species are progressively removed in de-

creasing ranking order (fig. 6.3).

• As a byproduct, the ranking with Musrank also provides a maximally packed

matrix. When active species are ordered by decreasing importance and passive

species by increasing vulnerability, a neat curve separates densely occupied and

empty parts of the matrix (fig. 6.6). We suggest this kind of packing should be

used in nestedness calculators.
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6.5 Data supplement to chapter 5

Networks dataset

Network Name Amax Pmax Label

Plant-Pollinator communities

Andean scrub (elevation 1), Cordon del Crepo (Chile) [18] 99 87 1

Andean scrub (elevation 2), Cordon del Crepo (Chile [18] 61 42 2

Andean scrub (elevation 3), Cordon del Crepo (Chile) [18] 28 41 3

Boreal forest (Canada) [26] 102 12 4

Montane forest and grassland (U.S.A.) [50] 275 96 5

grassland communities in Norfolk, Hickling (U.K.) [66] 61 17 6

grassland communities in Norfolk, Shelfanger (U.K.) [66] 36 16 7

High-altitude desert, Canary Islands (Spain) [75] 38 11 8

Alpine subarctic community (Sweden) [77] 118 23 9

Mauritius Island (un-published) 13 14 10

Mediterranean shrubland, Doñana (Spain) [100] 179 26 11

Arctic community (Canada) [102] 86 29 12

Snowy Mountains (Australia) [105] 91 42 13

Heathland -heavily invaded- (Mauritius Island) [122] 135 73 14

Heathland -no invaded- (Mauritius Island) [122] 100 58 15

Beech forest (Japan) [123] 678 89 16

Lake Hazen (Canada) [125] 110 27 17

Multiple Communities (Galápagos Islands) [157] 54 105 18

Woody riverine vegetation and xeric scrub (Argentina) [159] 72 23 19

Xeric scrub (Argentina) [159] 45 21 20

Meadow (U.K.) [161] 79 25 21

Arctic community (Canada) [169] 18 11 22

Deciduous forest (U.S.A.) [170] 44 13 23

Coastal forest, Azores Island (Portugal) [182] 12 10 24

Coastal forest, Mauritius Island (Mauritius) [182] 13 14 25

Coastal forest, Gomera Island (Spain) (un-published) 55 29 26

Upland grassland (South Africa) [184] 56 9 27

Coastal scrub (Jamaica) [196] 36 61 28
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Phryganic ecosystem (Greece) (un-published) 666 131 29

Mountain, Arthur’s Pass (New zealand) [205] 60 18 30

Mountain, Cass (New zealand) [205] 139 41 31

Mountain, Craigieburn (New zealand) [205] 118 49 32

Palm swamp community (Venezuela) [206] 53 28 33

Caatinga (N.E. Brazil) [219] 25 51 34

Maple-oak woodland (U.S.A.) [221] 32 7 35

Peat bog (Canada) [225] 34 13 36

Temperate rain forests, Chiloe (Chile) [226] 33 7 37

Evergreen montane forest, Arroyo Goye (Argentina) [261] 29 10 38

Evergreen montane forest, Cerro Lopez (Argentina) [261] 33 9 39

Evergreen montane forest, Llao Llao (Argentina) [261] 29 10 40

Evergreen montane forest, Mascardi (c) (Argentina) [261] 26 8 41

Evergreen montane forest, Mascardi (nc) (Argentina) [261] 35 8 42

Evergreen montane forest, Quetrihue (c) (Argentina) [261] 27 8 43

Evergreen montane forest, Quetrihue (nc) (Argentina) [261] 24 7 44

Evergreen montane forest, Safariland (Argentina) [261] 27 9 45

Seed-Disperser communities

Eastern forest, New Jersey (USA) [20] 21 7 46

Forest (Papua New Guinea) [36] 9 31 47

Forested landscape, Caguana (Puerto Rico) [45] 16 25 48

Forested landscape, Cialitos (Puerto Rico) [45] 20 34 49

Forested landscape, Cordillera (Puerto Rico) [45] 13 25 50

Forested landscape, Frontón (Puerto Rico) [45] 15 21 51

Tropical rainforest, Queensland (Australia) [58] 7 72 52

Coastal dune forest, Mtunzini (South Africa) [84] 10 16 53

Forest, Santa Genebra Reserve T1.(Brazil) [86] 18 7 54

Forest, Santa Genebra Reserve T2.(Brazil) [86] 29 35 55

Submontane rainforest (Central Philippine Islands) [96] 19 36 56

Mediterranean shrubland, Hato Ratón (Spain) [117] 17 16 57

Rainforest, Krau Game Reserve (Malaysia) [132] 61 25 58

Crater Mountain Research Station (Papua New Guinea) [142] 32 29 59

Atlantic forest (SE. Brazil) [224] 110 207 60

Montane forest (Costa Rica) [251] 40 170 61
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Other communities

Anemone-fish interactions in coral reefs [185] 26 10 62

Ant-plant interaction in rainforest (Australia) [39] 41 51 63

Table 6.1: Dataset of different mutualistic networks used throughout the study, with Amax

active and Pmax passive species.



Chapter 7

Conclusions

Along this thesis we have studied the way in which some particular architectural fea-

tures of ecological and biological networks determine their overall performance. The

system approach used here, based on the application of statistical mechanics of complex

networks to different biological and ecological systems, makes possible the study of the

emergent or collective behaviour of those living systems, such as linear stability, global

directionality, hierarchical structure, robustness against extinctions or the presence of

a nested structure, among others. In this way, the study of static networks has proven

extraordinarily useful. Our approach can be divided in three parts:

-This highly interdisciplinary approach let us contrast different systems using the same

methods, leading us to identify general patterns in their architecture, (as for example

the existence of a inherent directionality in ecological and biological networks).

-The design of simple models, subjected to diverse in-silico experiments, constitutes

our main “laboratory”. It let us contrast the natural network structures with the ones

generated by these simple models. Here we have tried to stick to a minimal approach,

introducing the less number of parameters and assumptions needed to model some phe-

nomena.

-And last, but not least, the use of null-models is vital to analyse the statistical relevance

of natural (or synthetic) structured networks, allowing us to discern whether a partic-

ular architectural feature is relevant or on the contrary, is present in random networks.

It is worth noting that one should be very careful on the desing of these null-models,

since this will determine the outcome. Within this minimal-system approach, we have

138
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covered different properties regarding both directed (foodwebs, transcriptional regula-

tory genetic networks, signaling networks, neural networks) and undirected networks

(plant-pollinator and seed-disperser bipartite mutualistic networks).

In the first part of this thesis we focus our attention in directed networks, mainly in

the unaccounted stability of foodwebs and the inherent directionality present in many

ecological and biological networks. Regarding foodwebs the most relevant finding is the

detection of a strong correlation between lineal stability and the network feature we

call trophic coherence. Indeed, cannibalism and trophic coherence together account for

most of the variance in stability observed in our dataset [P1].

Along this line we have suggested the Preferential Preying Model as a simple al-

gorithm for generating networks with tunable trophic coherence. Most remarkably, it

is able to create “syntethic” networks with similar stability properties to the natural

foodwebs. The model also predicts that networks should become more stable with in-

creasing size and complexity, as long as they are sufficiently coherent and the number

of links does not grow too fast with size. Although this result should be followed up

with further analytical and empirical research, it suggests that we need no longer be

surprised at the high stability of large, complex ecosystems.

We must caution that these findings do not imply that trophic coherence was some-

how selected for by the forces of nature in order to improve foodweb function. It seems

unlikely that there should be any selective pressure on the individuals of a species driv-

ing them to do what is best for their ecosystem. Rather, many biological features of a

species are associated with its trophic level. Therefore, adaptations which allow a given

predator to prey on species A are likely to be useful also in preying on species B if A

and B have similar trophic levels. This kind of organisation leads to trophic coherence,

which results in high stability. However, If real ecosystems are coherent enough that

they become more stable with size and complexity, as our model predicts, then the

reverse might be true. Ascertaining whether the loss of a few species would stabilise or

destabilise a given community could be important for conservation efforts, particularly

for averting “tipping points” [241].

On a different note, but still related to systems stability, we turn our attention to

the empirically observed absence of feedback loops in directed biological and ecological

networks [85, 94, 245, P2]. This feature have been oftentimes associated with the
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required stability these systems should present. However, while the important role

of feedback loops in determining dynamical properties of complex networks has been

widely recognised in the literature, their statistics remained scarcely studied. Further

broadening this line we hypothesize that the (empirically observed) lack of feedback

loops stems from the existence of an inherent directionality. To check the hypothesis

we devise a simple model with a built-in directionality, which reproduces quite well the

empirical fraction of feedback loops of any length by just tuning its only parameter γ.

It is worth noting that the qualities of the results seem remarkable considering that

our models assumes a number of simplifications that are not trivial. In general loops

are not independent (as we consider in the model) since they can share some nodes.

In particular hubs are more likely to take part in loops than other nodes with less

connectivity. What is more, node degree and hierarchical position could be correlated

in empiric networks. Such effects are neglected by our simple model and could be

responsible for the deviations of the empirical data from our model predictions.

This finding is similar in spirit to the remarkable observation by Mayaa’n et al. that

biological networks display a kind of antiferromagnetic ordering. However, while they

claim that this organization is behind a enhancement of the stability, our hypothesis

is that the existence of an inherent directionality constitutes a simple yet satisfactory

parsimonious explanation for the empirically observed lack of feedback loops [P2]. In

fact, under the light of Fig. 4.4 the presence of an inherent directionality seems to

pervade a vast majority of biological and ecological networks.

Clearly trophic coherence and inherent directionality are not uncorrelated. The fact

that there is a trend on the links to align along a direction eases the formation of more

“satratified” structures, and as such, is likely to foster the coherence of the networks.

This relation poses some interesting questions ¿Is also a high directionality correlated

with satbility? ¿Could trophic coherence be present in other biological networks? It

should be interesting to gain analytical insight on how are those two features related to

each other. We know that trophic coherence plays a relevant role on foodwebs stability.

Unraveling whether the absence of loops could be related with stability trough trophic

coherence seems a stimulating line of study.

Even if our findings of trophic coherence were reached by working with foodwebs,

many directed networks of different type transport energy, matter, information, capital
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or other entities in a similar way to how foodwebs carry biomass from producers to

apex predators. In this way the existence of a more or less stratified structure could be

latent in other networks. It seems likely that the relation between a network’s trophic

coherence and its leading eigenvalue will be of relevance to other disciplines, and perhaps

the preferential Preying model, though overly simplistic for many scenarios, may serve

as a first approximation for exploring these effects in a variety of systems.

Moving on to bipartite networks, our work is aimed both to determine which are the

topological features behind the nested architecture present in mutualistic plant-animal

networks and to bring forward a solid procedure to rank the importance of different

species in these valuable communities.

Our first contribution in this topic is the introduction of a new analytical nestedness

index. It is normalized so as to provide an output equal to unity in uncorrelated random

networks. In this way, having removed the direct effects of the degree distribution

–which has a dominant contribution to other measures of nestedness– it is possible

to move one step forward and ask how degree-degree correlations (as quantified by

Pearson’s coefficient) influence nestedness measurements.

Curiously enough, there are more disassortative (negatively degree-degree corre-

lated) networks than assortative ones even among randomly assembled networks. There-

fore, the neutral expectation for finite random networks is to have some non-vanishing

level of disassortativity (r < 0). Accordingly, there is a very similar tendency for finite

random networks to be naturally nested. Moreover, there is a clean-cut correspondence

between nestedness and disassortativity: disassortative networks are typically nested

and nested networks are typically disassortative [P3] (as vividly illustrated in Figure

5.2.C and Fig.5.5). Along this line, analyses of a wide dataset reveals that in many

cases the empirical measured nestedness is in good correspondence with that of the

degree-preserving null model. As a result, degree heterogeneity together with the fi-

nite size of real networks suffice to justify most of the empirically observed levels of

nestedness in ecological bipartite network [P3].

It is worth regarding that throughout all this work the use of random models have

been of crucial importance in order to determine the statistical relevance of different

features. It is the contrast of empirical structured systems with their randomized coun-

terparts which makes some pattern relevant or not. We have taken on a computational
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approach, that could be seen as a “microcanonical ensemble” where the network basic

properties (N , L, degree-sequence) are kept completely constant. There are other in-

teresting approaches were this restriction is loosened, and a “grandcanonical” approach

is rather used (?), allowing for analytical developments. Although both approaches

should give the same results in infinite size limit, maybe contrasting their results may

give information on finite-size induced effects.

It should be noted that the fact that empirical nestedness measures are in many

cases compatible with the random expectation does not mean that natural mutualis-

tic communities are not nested. The pattern of connections where specialist species

preferably interact with generalists is indeed present. In fact what our finding essen-

tially highlights it that the main factor contributing to create a nested structure is the

degree-heterogeneity (and degree-degree correlations to a much lesser extent). However

we do not go further and give any prediction about its origin. Devising a model that

render a similar connectivity pattern is crucial for fathom in the origin of the nest-

edness, and in which way (if any) it contributes to enhance the biodiversity in these

communities.

With the idea in mind of contributing to the preservation of these communities

we have put forward a novel framework to asses the relative importance of species in

mutualistic networks. Inspired by a recent work on economics/econometrics we employ

an algorithm, similar in spirit to Google’s PageRank but of non-linear character, that

we have named MusRank. We also propose a criterion to assess the quality of any

given ranking of species: good rankings lead to a fast break-down of the corresponding

mutualistic network when species are progressively removed in decreasing ranking order.

In most of the empirical mutualistic networks we analysed the use of our novel al-

gorithm rendered a ranking which clearly outperforms all the alternative ones used as

workbench. The emerging ordering allows for assessing the importance of individual

species within the whole system in a meaningful, efficient and robust way [P4]. This

novel approach –introduced in this work for the first time in the context of mutual-

istic ecological networks– may prove of practical use for ecosystem management and

biodiversity preservation, where decisions on what aspects of ecosystems to explicitly

protect need to be made. Furthermore, as a by-product, the excellent packing of nested

matrices provided by this non-linear approach (see Figure 6.6) calls for a redefinition
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of the way in which nestedness is measured. In particular we suggest that nestedness

calculators should use the ranking provided by the present algorithm, which clearly

outperforms others in making the nested architecture evident. It is worth noting that

the existence of a nested structure (with specialist species preferentially interacting

with generalists) is in the heart of the algorithm. Although we show that most of the

contribution to network nestedness is contained in the degree-sequence, this particular

choice of ranking (by degree) is clearly inferior to the one we propose. It should also

be interesting to test whether the technique is also of use in bipartite networks without

this particular feature.

Even if the system approach have render successful results in diverse fields, biological

and ecological systems still pose a great challenge. There are two main reasons for it. On

one hand the interactions that take place in these models are, in general, not well known,

and while it is true that the emergent behaviours are, to some extent, indifferent to those

“microscopic” details, a better understanding of those one-to-one interactions is crucial

to advance towards more predictive results. On the other hand these systems are highly

“interactive”, that is, they involve many agents that communicate in diverse ways.

Ecosystems, for instance, are build up of a vast number of components, interacting in

diverse forms: predation, mututalism, parasitism..... Here we have considered two of

these interactions independently, however in real ecosystems all these interaction are

interlinked, forming a “even-more-complex” system. In this sense, the use of multi-

layered (or multiplex) networks could prove of use in this context.

Besides that, we should remember that the systems underlying these webs are all

of a dynamical nature, with changing interactions, and hence, studying its “fixed pic-

ture” is like studying their time-average. Useful though it have been, one of the main

drawbacks of our “satic” approach is that many interesting phenomenology may be de-

pendent on this dynamical behaviour, and hence, will be lost in the fixed view. What is

more, these systems have emerged as a result of evolutionary processes. Our ecosystems

are the result of millions of years of evolution. Biological networks such as signalling

pathways and genetic regulatory webs are the results of different and parallel evolution-

ary processes in diverse organisms trough time. It is logical to think that in order to

fathom how these systems come about and take shape an evolutionary, co-adaptative

approach should be attempted, since some features may not be captured without this
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perspective.

Answering how the topology of different biological and ecological systems emerge

and how does it affects their dynamics is a subject of the utmost importance in our

rapid-changing environment. With this work we tried to make further developments

along this line, as also a increasing number of scientist do. Fortunately it seems we are

immerse in a kind of golden-era of interdisciplinarity, were the paradigm of enlighten-

ment through reductionism and division has been left behind. Now the transmission

of knowledge between disciplines and the use of an integrative approach seems to be

gaining momentum in the scientific community. The times they are a changing, let’s

hope the funding goes along with it.



Conclusiones

A lo largo de esta tesis hemos estudiado cómo algunas caracteŕısticas arquitectónicas

de las redes ecológicas y biológicas determinan su funcionamiento. Para este estudio

hemos usado un enfoque “sistémico”, considerando todo el sistema en su conjunto,

basado en la aplicación de la mecánica estad́ıstica de redes complejas a estos sistemas

vivos. Este enfoque hace posible el estudio de comportamientos emergentes de interés,

como estabilidad, direccionalidad, estructura jerárquica, robustez frente a extinciones

o la existencia de una estructura anidada. El estudio de la estructura “estática” de

estas redes ha resultado ser de mucha ayuda, y podemos distinguir tres cuestiones fun-

damentales de nuestro enfoque:

- Al ser muy interdisciplinar (puede aplicarse a sistemas muy diversos) permite con-

trastar redes de tipo muy diferente, y por tanto permite identificar patrones muy gen-

erales.

-Nos basamos en el diseño de modelos y simulaciones computacionales. Esto es nuestro

“laboratorio” básico. En este estudio intentamos mantener los modelos lo mas simple

posibles.

-Y por ultimo, pero no menos importante, el uso de modelos nulos es fundamental en

nuestro estudio. Comparar la estructura de las redes naturales (o sintéticas) con mod-

elos sin estructura (random) permite establecer la relevancia estad́ıstica de diferentes

patrones. Hay que prestar mucha atención al diseño de estos modelos, pues de eso

puede depender el resultado. Dentro de este enfoque “minimal” hemos estudiado difer-

entes propiedades tanto de redes dirigidas (redes tróficas, genéticas, neuronales) como

no dirigidas (redes mutualistas de polinizadores y plantas y de semillas y dispersores).

En la primera parte de la tesis nos centramos principalmente en la gran estabili-

dad que presentan las redes tróficas y en la direccionalidad inherente a muchas redes
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ecológicas y biológicas. En cuanto a redes tróficas, el resultado mas relevante es la fuerte

correlación entre estabilidad lineal y una caracteŕıstica de estas redes que hemos denom-

inado “coherencia trófica” [P1]. De hecho la coherencia trófica, junto con el canibalismo,

pueden explicar la mayor parte de la varianza en la estabilidad de las redes que usamos.

En esta ĺınea proponemos un modelo (Preferential Preying model) como algoritmo sen-

cillo para generar redes sintéticas con una estructura similar a las redes tróficas. Este

modelo es capaz de generar redes con un estabilidad similar a las naturales, y sugiere

que si las redes están suficientemente estratificadas podŕıa esperarse que la estabilidad

del sistema aumentase con el tamaño y la complejidad. Aunque es necesario estudiar

esto mas a fondo, esto sugiere que no tendŕıamos que estar tan sorprendidos por la gran

estabilidad de los ecosistemas. Debemos mencionar que estos resultados no implican

que la coherencia trófica haya sido, de alguna forma, seleccionada por las fueras de la

naturaleza para mejorar el funcionamiento de estas redes. Parece poco probable que

exista una presión selectiva actuando sobre los individuos de una especie que les lleve

a hacer lo que es mejor para su ecosistema. Mas bien, podŕıamos pensar que muchas

caracteŕısticas biológicas de las especies están asociadas con su nivel trófico. De esta

manera las adaptaciones que hacen que un predador pueda cazar a A es posible que le

sirvan también para cazar a B si A y B tienen niveles tróficos similares. Este tipo de or-

ganización genera coherencia trófica, que a su vez genera una alta estabilidad. Aunque,

si los ecosistemas reales son suficientemente coherentes como para volverse mas estables

con el tamaño y la complejidad, como predice nuestro modelo, entonces lo contrario

también podŕıa ser verdad. Poder determinar si la pérdida de unas cuantas especies

desestabilizaŕıa o estabilizaŕıa una comunidad es muy importante para la conservación,

particularmente evitando puntos de no retorno [241].

Cambiando ligeramente de tema, pero todav́ıa relacionado con la estabilidad, dirigi-

mos nuestra atención a la ausencia de loops (observada experimentalmente) en redes

ecológicas y biológicas[85, 94, 245, P2]. Esta caracteŕıstica ha sido asociada muchas

veces a la alta estabilidad de este tipo de sistemas[]. Aunque esta relación ha sido

ampliamente estudiada, la estad́ıstica de loops no lo ha sido tanto. Siguiendo esta

linea hacemos la hipótesis de que la ausencia de loops proviene de la existencia de una

direccionalidad intŕınseca en estos sistemas. Para contrastar esta hipótesis diseñamos

un modelo para generar redes con una direccionalidad determinada, dependiente de un
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parámetro, γ. Este modelo reproduce bien las curvas experimentales. Merece la pena

comentar que la calidad del resultado es sorprendente teniendo en cuenta que nuestro

modelo asume muchas simplificaciones que no son triviales, puesto que en general los

loops no son independientes, sino que hay nodos que tienen mas tendencia a aparecer

en ellos (los hubs, con mucha conectividad). Además la conectividad y la jerarqúıa

podŕıan estar correlacionados, cosa que tampoco consideramos en nuestro modelo sim-

ple. Este resultado es similar a la observación de Mayaa’n et al. de que las redes

emṕıricas muestran un tipo de organización “anrtiferromagnética” , y lo relacionan con

la estabilidad en estos sistemas. Nuestra hipótesis es que la existencia de una direc-

cionalidad inherente constituye una explicación simple pero efectiva de esta ausencia

de loops [P2].

Claramente la coherencia trófica y la direccionalidad inherente no son fenómenos

independientes. El hecho de que exista una tendencia a que los links se alineen en una

dirección y no en la otra facilita la formación de estructuras más estratificadas, y por

tanto es posible que favorezca la coherencia de las redes. Esta relación nos hace pre-

guntarnos varias cosas ¿Se correlaciona también una alta direccionalidad con una alta

estabilidad?¿Podŕıa la coherencia trófica estar presente en otro tipo de redes? Seŕıa

interesante avanzar en el conocimiento anaĺıtico de la relación entre estas dos magni-

tudes. Sabemos que la coherencia trófica juega un papel determinante en la estabilidad

de las redes tróficas, descubrir si la ausencia de loops podŕıa estar relacionada con la

estabilidad a trabes de la coherencia trófica parece una interesante ĺınea de estudio.

Hemos de decir que auqnue los resultados sobre la coherencia trófica los hemos

obtenido trabajando con redes tróficas, muchas redes de diferente tipo transportan en-

erǵıa, materia u otras cosas de una manera similar a como las redes tróficas transportan

biomasa. En este sentido podŕıa existir una estructura estratificada en otro tipo de re-

des. Parece probable que la relación entre la coherencia trófica y el autovalor deominante

podŕıa ser relevante en otras disciplinar, y quizás el modelo de predación preferencial,

aunque muy simple para muchos escenarios, podŕıa servir como una primera aproxi-

mación para explorar estos efectos en diferentes sistemas.

Pasando a redes mutualistas, nuestra primera aportación es la introducción de un

nuevo ı́ndice anaĺıtico para cuantificar el anidamiento. Este ı́ndice esta normalizado

para generar un valor igual a la unidad en redes random no correlacionadas. Esto
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nos permite no considerar el efecto que tiene la distribución de grado en la estructura

anidada (que es una contribución dominante en otras medidas) y estudiar el efecto

de otras caracteŕısticas, como las correlaciones de grado(medidas con el coeficiente de

correlación de Pearson). Curiosamente, existen mas redes disasortativas que asortativas

incluso en redes random. Por lo tanto es esperable que las redes random de tamaño

finito exhiban cierto nivel de correlación (r < 0). A la vez que esto ocurre, existe una

tendencia de las redes de tamaño finito a estar anidadas también de manera natural.

Lo que es más, existe una correlación clara entre nestedness y disasortatividad [P3]

(como puede verse en la figura 5.2.C y 5.5). En esta ĺınea,el análisis de nuestra base

de datos de redes muestra que en muchos casos la medida emṕırica de la nesteedness

es compatible con la del modelo nulo que conserva la distribución de grado. Como

resultado, la heterogeneidad de grado, junto con el tamaño finito de las redes reales es

suficiente para justificar la mayor parte de la estructura anidada presente en las redes

mutualistas.

Es interesante tener en cuenta que a lo largo de todo nuestro trabajo el uso de

modelos nulos es crucial para determinar la importancia estad́ıstica de algunas estruc-

turas de las redes naturales. Es el contraste entre estos sistemas estructurados y sus

versiones randomizadas (sin estructura) lo que nos da información sobre si un patrón

es relevante o no. Aqúı nosotros tomamos un enfoque computacional, que podŕıa verse

como una especie de “colectivo microcanónico” donde las caracteŕısticas básicas de la

red se mantienen constantes. Existen ostas maneras de acercarse a los modelos nulos

dónde esta restricción se elimina, y se usa un enfoque más parecido a un “colectivo

macrocanónico”, lo que permite hacer más desarrollos anaĺıticos. Aunque ambas for-

mas deben dar resultados similares es posible que estudiarlo de ambas maneras nos de

información sobre efectos inducidos por tamaño finito, por ejemplo. Queremos hacer

notar que el hecho de que las medidas emṕıricas del anidamiento sean en muchos casos

compatibles con lo que cabŕıa esperar en un modelo nulo no significa que las comu-

nidades mutualistas no tengan una estructura anidada. El patrón de conexiones donde

las especies especialistas interaccionan preferiblemente con las generalistas sigue pre-

sente. De hecho lo que nuestro resultado resalta es que el factor que más contribuye a la

existencia de este tipo de estructura es la existencia de una distribución de grado muy

heterogénea (y la presencia de correlaciones a una escala mucho menor). En cualquier
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caso, nosotros no hemos ido más allá y no damos ninguna hipótesis sobre el origen de

esta distribución. Diseñar un modelo que genere unos patrones de conectividad sim-

ilares seŕıa crucial para ahondar en cual es realmente el origen del anidamiento, y la

manera en la que contribuye a aumentar la biodiversidad en estas comunidades (si lo

hace).

Con la idea de contribuir a la preservación de estas comunidades proponemos un

marco novedoso para determinar la importancia que tiene cada una de las especies en

la comunidad mutualista. Nuestro algoritmo está inspirado en el Page-Rank de Google,

pero tienen un carácter no-lineal, y le hemos dado el nombre de MusRank. Además

proponemos también un criterio para determinar la calidad de los rankings en estas

redes: los buenos rankings llevan a un rápido colapso de la red cuando las especies son

eliminadas en ese orden. En la amplia mayoŕıa de las redes que analizamos el uso de

nuestro algoritmo genera un ranking que supera a todos los otros que hemos usado como

comparación. El ordenamiento emergente permite identificar la importancia de cada

especie de una manera eficiente, significativa y robusta [P4]. Este nuevo enfoque , que

introducimos aqúı por vez primera en el contexto de redes mutualistas, podŕıa ser útil

para preservar la biodiversidad y gestionar los ecosistemas, en el caso de que haya que

decidir que especies deben protegerse más. Además, si representamos las matrices con

las especies ordenadas según el ranking del algoritmo las matrices muestran una forma

de alto empaquetamiento, indicando que quizás habŕıa que considerar otras maneras

de medir el anidamiento. En particular sugerimos que las calculadoras de anidamiento

debeŕıan usar este algoritmo para hacer evidente la estructura anidada de estas redes.

Hay que tener en cuenta que la existencia de este tipo de estructuras está en el corazón

de nuestro algoritmo. Aunque demostramos que la mayor parte de la nestedness es una

contribución de la heterogeneidad, el ordenamiento por grado es claramente inferior

al que genera MusRank. Estaŕıa también interesante probar si esta técnica funciona

también en redes sin este tipo de estructura.

Aún considerando que el enfoque sistémico ha resultado muy exitoso en diversos

campos, los sistemas ecológicos y biológicos aún suponen un reto muy grande. Esto

tiene dos razones fundamentales. Por una parte las interacciones en estos modelos no

son, en general, bien conocidas, y aunque sea verdad que las propiedades emergentes

son, hasta cierto punto, independientes de los detalles, un mejor entendimiento de las
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interacciones individuales es crucial para avanzar hacia resultados más predictivos. Por

otra parte estos sistemas son muy “interactivos”, lo que significa que implican a mu-

chos agentes y de formas diversas. Los ecosistemas, por ejemplo, estan compuestos por

un gran número de especies, interaccionando de diferentes formas: predación mutual-

ismo, parasitismo,etc. Aqúı hemos considerado dos de esas interacciones por separado,

aunque en los ecosistemas reales todas ellas están interrelacionadas, formando un sis-

tema “más-complejo”, si cabe. En este aspecto, el uso de redes multi-capa (multiplex)

prod́ıa ser de gran utilidad. Aparte de todo esto, tenemos que recordar que los sis-

temas con los que estamos tratando son todos, en realidad, dinámicos, y que por tanto

estudiar su “foto fija” es como estudiar su promedio temporal. Aunque ha probado

ser muy útil, uno de los mayores problemas del enfoque con redes “estáticas” es que

buena parte de la fenomenoloǵıa interesante puede depender de un comportamiento

dinámico, y por tanto se perderá con esta visión. Aparte, estos sistemas son el resul-

tado de un proceso evolutivo. Los ecosistemas son el resultado de millones de años

de cambio. Las redes biológicas son resultado de diferentes procesos evolutivos. Es

lógico pensar, por tanto, que para comprender realmente como estos sistemas aparecen

y toman forma debeŕıan intentarse enfoques co-adaptativos y que tengan en cuenta la

evolución que pueden sufrir las estructuras, puesto que es probable que sin ello haya

efectos que no podamos explicar. Saber cómo emerge la topológica de los diferentes

sistemas biológicos y ecológicos y como afecta a sus dinámicas es algo de la mayor

importancia. En este trabajo hemos intentado aportar algo a este respecto, al igual

que muchos otros componentes de la comunidad cient́ıfica. Afortunadamente parece

que estamos en una era dorada de la interdisciplinariedad, y que el reduccionismo y

la compartimentación del conocimien ha sido dejado atrás . Ahora la transmisión de

conocimiento entre disciplinas y los enfoques mas integradores parecen estar ganando.

Los tiempos están cambiando, esperemos que la financiación acompañe.



Appendix A

Devising an interaction matrix from

an adjacency matrix

Let us assume that we have a set of ordinary differential equations governing the evo-

lution of the population of each species in an ecosystem, as measured, for instance, by

its total biomass xi. In vector form, we can write this as

d

dt
x = f(x).

The dynamics will have a fixed point at any configuration x∗ such that f(x∗) = 0. Let

us suppose that the system is placed at this fixed point but suffers a small perturbation

ζζζ(t):

x(t) = x∗ + ζζζ(t).

For small enough |ζζζ(t)|, its dynamics will be given by the linearised equation:

d

dt
ζζζ(t) = J(x∗)ζζζ(t),

where J(xxx∗) is the Jacobian matrix [∂fi/∂xj] evaluated at xxx∗. The fixed point will be

locally stable if all the eigenvalues of J(xxx∗) have negative real part [103].

Let us consider a fairly general dynamics for xxx∗ given by a consumer-resource model:

d

dt
xi = ηij

∑
j

aijF (xi, xj)−
∑
j

ajiF (xj, xi) +G(xi). (A.1)
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The first term on the right accounts for the increment in species i’s biomass through

consumption of its resources, the second term is the biomass lost to its consumers, and

the functionG represents any factors which are not due to interaction with other species.

Since we are interested here in effects of interactions between species, we shall simply

assume G(x) = γx with γ a constant. The function F describes how the interaction

between a consumer and a resource species depends on their respective biomasses. The

parameter η is the efficiency of predation – the proportion of biomass lost by a resource

which goes on to form part of the consumer. We shall in general consider this parameter

to be constant for all pairs of species (ηij = η, ∀i, j), but in Sections 3.3.2 and 3.3.3 we

look into the effects of varying its value. In the rest of this work we set this parameter

to η = 0.2.

The Jacobian, J , will be obtained by taking the partial derivatives of Eq. (A.1), for

each i, with respect to each xj.

In the simple case where the interaction between species is given by a sum,

F (xi, xj) = xi + xj,

we have

Jij = (ηaij − aji)(1 + δij) + γδij,

where δij is the Kronecker delta (equal to one when i = j, or else zero). Positive

terms added to or subtracted from the main diagonal of J simply shift its spectrum of

eigenvalues to the right or left, respectively. Therefore, we concentrate on the matrix

W = ηA− AT , (A.2)

where AT is the transpose of A, and consider λ1, the eigenvalue of W with the largest

real part. Then, R = Re(λ1) can be regarded as a measure of the minimum degree of

self-regulation at each node which this dynamics would require in order for the system

to be stable. In other words, the smaller R, the more stable we shall say the system is.

In this simple case defined by F (xi, xj) = xi +xj the Jacobian is independent of the

point xxx∗ where it is evaluated. However, this will not, in general, be the case and for

other dynamics we would need to specify this point in order to characterise the stability

of the system. For instance, in a generalised Lotka-Volterra dynamics, the interaction
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is proportional to the biomass of both consumer and resource,

F (xi, xj) = xixj,

and the Jacobian becomes

Jij = (1 + δij)wijxi + γδij, (A.3)

where wij are the elements of the matrix W as given by Eq. (3.1). Note that this

expression depends on the biomass of species i (though not on j’s) at the point of

interest.

To capture the nonlinearities expected in a prey species’ functional response, consumer-

resource models often describe the interaction as

F (xi, xj) = xiH(xj),

where H is the Hill equation,

H(x) =
xh

xh0 + xh
,

with x0 the half-saturation density. The Hill coefficient h determines whether the

functional response is of type II (h = 1) or type III (h = 2) [208]. Now we find that the

Jacobian is

Jij = [η̃(xi, xj)aij − aji]H(xi) (A.4)

if i 6= j, where the effective efficiency of predation is

η̃(xi, xj) =
xi

H(xi)

∂H(xj)

∂xj
η =

hxh0xi

xh+1
j

H(xj)
2

H(xi)
η,

and, for the main diagonal elements,

Jii = {h[1−H(xi)] + 1}H(xi)wii + γ.

In each of these kinds of dynamics it is necessary to evaluate the Jacobian at a particular

point: Equations (A.3) (Lotka-Volterra) and (A.4) (types II and III) are similar in
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form to the matrix W of Eq. (3.1), but their terms are modified by the biomass of

the predator, or the biomasses of both prey and predator, respectively. One might

suggest that we only need identify a fixed point and evaluate the equations there. But,

in general, a feasible fixed point (in which xi > 0 for all i) will not exist. Feasible

fixed points could be defined by attributing weights to the elements of the interaction

matrix A, but this would involve decisions on how to do this in a realistic way which

might render the results somewhat arbitrary. (For a discussion on the feasibility of

fixed points, see Section 3.3.3.)

Throughout most of chapter two we focus simply on the matrix W as given by Eq.

(3.1), for although the dynamics it describes exactly is not very realistic (corresponding

to the interaction term F (xi, xj) = xi + xj in Eq. (A.1)), it captures the essential

behaviour of better motivated dynamics without requiring any assumptions about the

fixed point. In fact, if all species had the same biomass at the fixed-point, then Eqs.

(A.3) (Lotka-Volterra) and (A.4) (types II and III) would also reduce to the matrix W

as given by Eq. (3.1), for an appropriate choice of the parameter η. However, so as to

test the robustness of our results to details of the dynamics, in Section 3.1.1, 3.3.1, and

3.4.1 we look into the effects of different distributions of biomass according together

with Lotka-Volterra, type II or type III dynamics. We find that the relationship between

trophic coherence and stability reported in chapter two is robust to these considerations,

although the dependence of biomass on trophic level introduces interesting effects, in

particular for the complexity-stability scaling.

In chapter two text we describe how stability in directed networks (and food webs

in particular) is determined to a large extent by their trophic coherence. In Fig. 3.14

we compare the predictions of each of the food-web models described in Appendix B

for each of the food webs listed in Table 3.4. Another network feature which influences

stability, as mentioned above, is the existence of self-links (representing cannibalism, in

the case of food webs), since this is a form of self-regulation. We disentangle this effect

from that of trophic coherence, we remove all self-links from the food webs and again

measure the real part of the leading eigenvalue, Rnc. The predictions of each model are

shown in Fig. 3.15.
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Mimicking reality: foodweb

modeling

The Cascade model

This was the first attempt to show how networks with a structure, in some sense, similar

to real food webs could come about via simple rules. Cohen and Newman studied the

proportion of basal, intermediate and top species composing the networks and concluded

that it was necessary to suppose the existence of an ordering (or cascade) of species that

constrains the possible predators and prey of each species. Is under this assumption that

they put forward the cascade model [53] to explain “the phenomenology of observed

food web structure, using a minimum of hypotheses”. This model is based on two

parameters: number of species S and link density L/S, and it distributes species and

feeding links stochastically, with two simple constraints: species are randomly placed

in a one-dimensional feeding hierarchy axis, and species can only feed on species that

are lower in the hierarchy than they are, as shown in Figure B.1. As is straightforward

feeding cycles or cannibalism are therefore not covered by this model.

Stouffer and co-workers later modified this model so that the number of prey would

be drawn from the Beta distribution used by the Niche Model (see below), and called

the new version the Generalized Cascade Model [235]. Since this amendment improves

the model’s predictions as regards distributions of prey and predators (without, to the

best of our knowledge, involving any drawbacks), throughout this work we use the
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Hierarchy

Figure B.1: Schematic representation of the Cascade model. Nodes are randomly placed
along the hierarchical axis, and they feed only in those below them, which renders
completely linear food webs.

Generalized Cascade Model.

Implementation details: In the Cascade model each species i is assigned a ran-

dom number ni drawn from a uniform distribution between 0 and 1. For any pair (i,

j), we set i to be a consumer of j with a constant probability p if ni > nj, and with

probability zero if ni ≤ nj. With S species, we obtain an expected number of links L

if we set

p =
2L

S(S − 1)
.

The Niche model

Based in the idea of an underlying order and a one-dimensional niche proposed by

Cohen [51] a new food-web model was proposed by Williams and Martinez [270], that

solved some problems of the previous one (as the assumption of link-species scaling,

the exclusion of looping, and the lack of trophic overlap among species).

This is an elegant way of generating non-trivial network topologies by randomly

assigning each species a position on a “niche axis”, together with a range of axis centered

at some lower niche value. Each species then consumes all other species lying within

its range, and none without. The rationale behind this model is that food webs were

thought to be interval – i.e., the species could be arranged in an ordering such that

the prey of any given predator were contiguous [52] (see sec. 2.1.5). The Niche Model

achieves this by construction. More recent analysis have shown that food webs are
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not, in general, perfectly interval, although they do usually exhibit a certain degree of

intervality [43, 236]. Nevertheless, the Niche Model has been tremendously successful,

since it outperforms the Cascade Model in approximating measurable features of food

webs, and even compares well to more elaborate models which take the Niche Model

as a basis [271]. It is still the most commonly used model whenever synthetic networks

similar to food webs are required, and in any case, the niche model showed that food-

web structure was far from random.

1 2 3 4

Niche axis

Figure B.2: Schematic representation of a construction of a foodweb with the Niche
model: species are placed randomly along the niche axis. Each species is assigned a
range ri, centered at ci and represented by a strip with the same color of the node, in
which it will feed. The species will prey upon all the nodes which ni falls within its
predation range, and none without. Cannibalism and feeding cycles are now allowed.

simulation details: in the Niche Model, each species i is awarded a niche value ni

as in the Cascade Model [270]. However, instead of choosing species with lower niche

values randomly for prey, i is constrained to consume the subset of species j such that

ci − ri/2 ≤ nj < ci + ri/2 – i.e., all those lying on an interval of the niche axis of size

ri and centred at ci, and none without. The range is defined as ri = xini, where xi

is drawn from a Beta distribution with parameters (1, β). For S species and a desired

number of links L, we must set

β =
S(S − 1)

2L
− 1.

The centre of the interval ci is drawn from a uniform distribution between ri/2 and

min(ni, 1− ri/2).
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The Nested Hierarchy Model

The Nested Hierarchy Model provides a way to take into account that phylogenetically

similar species should have prey in common. The model, put forward by Cattin et.

al [47], is based on the hypothesis that any species’ diet is the consequence of both

phylogenetic constraints and adaptation. In this way, the two-step assignation of links

(see below) seeks to model, on one part, the phylogenetical constraints (two consumers

that share prey are assumed to be phylogenetically related) and on the other, the effects

of independent adaptation (the links assigned at random). We find this is particularly

interesting model because phylogenetic constraints should indeed be taken into account.

One problem we find with the Nested Hierarchy Model, however, is that a given species

i is assumed to be related to a certain set A of species which share common prey with i;

but i will also belong to the set B of common prey of a different set of consumers, and

nothing constrains A and B to overlap. In other words, the species related to i due to

its prey are not the ones related to i due to its predators, whereas in nature it is to be

expected that phylogenetically similar species should have both prey and predators in

common. In fact, it has recently been reported that common predators are statistically

more significant than common prey [171].

i

12

3

123

Figure B.3: Illustration of food web assembly using the Nested Hierarchy model. In
this case we have a species with 3 potential preys. The first prey is randomly selected
from the network, establishing the first link -labeled as 1-. To establish the second
link, since the first prey did not have any other predator, we have to randomly select
a prey again, stablishing the second link -labeled as 2. In order to asses the third link,
now we look into the species that are being preyed upon by the predators of species 2,
highlighted in a coloured background, and choose the third prey within the set. This
aims to mimic the phylogenetic signal known to exist among predators who share prey.
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simulation details: This modeling framework gives each species a niche value and

a range, exactly as in the Niche Model. However, instead of establishing links directly

to species within the range, first the number of prey to be consumed by each species is

determined, in proportion to the range, kini ∝ ri, so as to generate an expected number

of links L. These links are then attributed in the following way. The species with lowest

niche value has no prey, while the one with the highest has no predators (so there is

always at least one basal species and one apex predator). Starting from the species

with second smallest niche value and going up in order of n, we take each species i and

apply the following rules to determine its kini prey:

1. We choose a random species j already in the network (so nj ≤ ni) and set it as the

first prey species of i.

2. If j has no predators other than i, we repeat 1 until either the chosen prey does have

other predators, or we reach kini . Else we go to 3.

3. We determine the set of species which are prey to the predators of j. We select,

randomly, species from this set to become also prey of i until we either complete kini ,

or we go to 4.

4. We continue choosing prey species randomly from among those with lower niche

values. If we still have not reached kini when these run out, we continue choosing them

randomly from those with higher niche values.

The Generalized Niche Model

The Generalized Niche Model was proposed to account for the fact that empirical food

webs turned out not to be maximally interval, as predicted by the Niche Model [236].

This model allows for tunable prey contiguity, so only a proportion 1 − c of the prey

are chosen from the fixed interval, while the remaining fraction c are randomly chosen

from among all the species further down the axis. It is therefore a combination of the

Niche Model and the Cascade Model, with the contiguity parameter, c, determining the

relative importance of each mechanism. The Generalized Niche Model has been shown

to emulate real food webs very successfully, at least as regards certain features, such

as community structure [95]. It is also often used as a convenient model for generating

synthetic networks with a view to studying foodwebs in silico [93].
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1 2 3 4

Niche axis

Figure B.4: Schematic representation of a food web constructed with the Generalized
Niche model. In this case the reduced range, ri, is represented by a strip of the same
color of the node. All species lying in the predation range of any other will be preyed
upon. However now some will be randomly selected among the ones with lower niche
values (blue dashed line).

simulation details: the Generalised Niche Model is implemented as the Niche

model but with reduced ranges ri = cxini. Then, for each species, the number of extra

prey kcascadei = (1− c)xiniS is drawn randomly from among the available species with

niche values lower than ni, as in the Generalized Cascade Model. For c = 1 we have

the Niche Model, while c = 0 results in the Generalized Cascade Model.

The Minimum Potential Niche Model

The Minimum Potential Niche Model is similar to the Generalized Niche Model in that

it is a modification of the Niche Model which breaks up complete intervality by means

of a parameter, f [10]. However, the motivation is slightly different. The idea is that

in reality there is more than one niche dimension constraining possible predation links

(hence the lack of complete, one-dimensional intervality), which implies that some of

the links determined by the Niche Model are actually “forbidden links”. The species

are all allocated niche values ni and ranges ri = xini as in the Niche Model. The species

at the extremes of this range are always consumed. However, the rest is considered a

potential range and the β parameter used in the Beta distribution from which xi is

drawn is now

β =
S(S − 1)

2(L+ F )
− 1,

where F = fP , P being the total number of potential links given the ranges, minus the

species at the extremes. Once all the species have their ranges, each species within will
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be consumed with a probability 1 − f . Therefore, f = 0 results in the original Niche

Model, but f > 0 produces a proportion of forbidden links.

Allesina et al. suggested a framework for comparing niche-based models [10]; they

computed the likelihood that the Cascade, Niche and Nested Hierarchy models have

of generating the links in a set of ten real food webs, and found theirs (the Minimum

Potential Niche Model) to be superior – and, in fact, the only one capable of generating

all the observed links.



Appendix C

Possible amendments to the PPM

In chapter two, where we propose the Preferential Preying model as a method to gen-

erate synthetic networks with tunable trophic coherence, we were only interested in

the effect this feature has in foodweb stability, and hence used the simplest version of

the model. However, many of the details are somewhat arbitrary, and several possible

amendments and generalisations spring to mind:

• Basal species. All the niche-based models discussed allow the number of produc-

ers, B, to emerge freely (although they are not, generally, particularly successful

in predicting B [271]). We chose here to begin with a set number of basal species,

as in the Preferential Attachment Model [23]. We imagine that for most appli-

cations where synthetic networks are required it would be useful to have control

over this parameter (which is itself related to trophic coherence, as we show in

Section 3.1.1). However, if a freely emerging B were preferred – for instance, for a

rigorous comparison against models which do not allow this value to be set easily

– it is straightforward to take the minimum κi equal to zero for incoming species,

thereby allowing a proportion of them to become producers.

• Numbers of prey. We have drawn the number of prey for each incoming species

from a Beta distribution, as in all the niche-based models, because Stouffer et al.

[235] have shown that this method yields a particularly good fit to food-web data

(we have also verified that this holds true for our 46 food-web dataset). However,

were the model to be applied to systems other than food webs, it may be preferable
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to use, for instance, a Poisson or a Pareto distribution, depending on the in-degree

distributions of the networks to be emulated.

• Boltzmann factor. The functional form we have used to determine the second

and subsequent prey of an incoming species (an exponential in the trophic distance

divided by the parameter T ) is arbitrary; careful fitting to data may suggest a

better function. There is also no reason other than simplicity to use the same

value of T for each incoming species: one could also draw a different value Ti for

each incoming species form some distribution, perhaps dependent on the trophic

level of its first prey.

• Cycles. Directed loops in food webs are relatively rare, yet often present. The

PPM as described does not generate any of these cycles, but it could easily be

amended to do so by assigning each incoming species a small number of predators

as well as prey from amongst the species already in the network. However, directed

loops require some predators to consume prey at higher trophic levels than theirs,

so the more coherent a network, the fewer directed loops are to be expected.

• Phylogeny and body size. In this simple incarnation, the PPM ignores the

main effects that most of the other models are based on, but these could be taken

into account in a “Generalized Preferential Preying Model”. Something akin to a

phylogenetic signal could be induced by introducing a bias in the Boltzmann factor

such that an incoming node tended to copy the prey and predators of a randomly

chosen species already in the network – perhaps limiting in the Nested Hierarchy

Model in the case where only prey are copied. The Niche, Generalized Niche and

Minimum Potential Niche models assume that the niche ordering (usually thought

to represent body size, possibly in combination with other biological features) to

some extent constrains species to find prey within closed intervals thereof. A

bias could likewise be introduced in the Boltzmann factor of the PPM such that

intervals of the sequence of entry were preferred, if this constraint in empirical

networks turned out to be more than a spurious effect of trophic coherence.



Appendix D

Analytical theory for maximally

coherent networks

Let us consider a maximally coherent network, with q = 0. The S species will thus fall

into M discrete trophic levels, with mi species in each level i, so that the number of

basal species is B = m1, and S =
∑M

i=1 mi. Each link of the predation (or adjacency)

matrix A will lead from a prey node at some level i to a predator node a level i + 1.

The interaction matrix W = ηA − AT (where the efficiency η is assumed equal for all

pairs of species) will therefore be an S ×S block matrix where the only nonzero blocks

are those above and below the main diagonal:

W =



0 ηA1 0 . . . 0 0

−At1 0 ηA2 . . . 0 0

0 −At2 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 ηAS−1

0 0 0 . . . −AtS−1 0


. (D.1)

Blocks Ai are mi ×mi+1 matrices representing the links between the species at level i

and those at level i+ 1.

Let us now consider the adjacency matrix Ã of the undirected network we obtain
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by replacing each directed link (or arrow) in A with an undirected (symmetric) one:

Ã =



0 A1 0 . . . 0 0

At1 0 A2 . . . 0 0

0 At2 0 . . . 0 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0 AS−1

0 0 0 . . . AtS−1 0


. (D.2)

The eigenvalues {µi} of Ã are all real since the matrix is symmetric. Furthermore, for

every non-negative eigenvalue µj ≥ 0 there is another eigenvalue µl = −µj since the

network is bipartite (species can be partitioned into two groups with no links within

each of them: species in even trophic levels and species in odd levels). Therefore, the

eigenvalues of Ã2 are either positive and doubly degenerate or zero. Moreover, the

matrix Ã2 can be written as:

Ã2 =


D1 0 B1 0 . . .

0 D2 0 B2 . . .

Bt
1 0 D3 0 . . .

0 Bt
2 0 D4 . . .

. . . . . . . . . .

 . (D.3)

where

Di =


A1A

t
1 for i = 1

Ati−1Ai−1 + AiA
t
i for 1 < i < M

AtM−1AM−1 for i = M,

Bi = AiAi+1.

(D.4)
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Now, the square of matrix W reads:

W 2 =


−ηD1 0 η2B1 0 . . .

0 −ηD2 0 η2B2 . . .

Bt
1 0 −ηD3 0 . . .

0 Bt
2 0 −ηD4 . . .

. . . . . . . . . . . . . . . .

 . (D.5)

We introduce a diagonal matrix U with diagonal blocks

Uii = (−η)b
i−1
2 cIi, (D.6)

where Ii is the identity matrix of size mi, and bxc denotes the floor function of x:

U =



I1 0 0 0 0 . . .

0 I2 0 0 0 . . .

0 0 −ηI3 0 0 . . .

0 0 0 −ηI4 0 . . .

0 0 0 0 η2I5 . . .

. . . . . . . . . . . . . .


. (D.7)

We can write

W 2 = −ηU−1Ã2U. (D.8)

Therefore, the eigenvalues of W 2 can be obtained by multiplying those of Ã2 by −η:

they are either negative and doubly degenerate or zero. Denoting by λj the eigenvalues

of W , we can write

λ2
j = −ηµ2

j . (D.9)

This means that for every µj = 0 we have λj = 0, and for every pair of real

eigenvalues ±µj of Ã there is a pair of imaginary eigenvalues λj = ±i
√
ηµj of W . In

any case, for η > 0, all the eigenvalues of the interaction matrix W have zero real

part. If η = 0 all its eigenvalues would be zero, while for η < 0, the imaginary parts

would vanish and all the eigenvalues would be real, all the nonzero ones coming in pairs

λj = ±
√
|η|µj.



Appendix E

Degree-degree correlations and

nestedness in heterogeneous

networks

It is possible to provide an analytical connection between disassirtativity and nest-

edness in random networks with explicitly built-in degree-degree correlations. It has

been recently shown [115] that there is a mapping between any mean-nearest-neighbour

function knn(k) –accounting for degree-degree correlations– and its corresponding mean-

adjacency-matrix ε̂, which is as follows:

knn(k) =
〈k2〉
〈k〉

+

∫
dνf(ν)σν+1

[
kν−1

〈kν〉
− 1

k

]
. (E.1)

This can be seen as an expansion of knn(k) in powers of k with some weight function

f and σν+1 ≡ 〈kν+1〉 − 〈k〉〈kν〉 (which can always be done [115]), the corresponding

matrix ε̂ takes the form

ε̂ij =
kikj
〈k〉N

+

∫
dν
f(ν)

N

[
(kikj)

ν

〈kν〉
− kνi − kνj + 〈kν〉

]
. (E.2)

Without entering here the details of this decomposition (for which we refer the

reader to Ref. [115]) let us just remark that the first term in Eq.(E.2) coincides with

the expected value for the standard configuration model, while the second one accounts
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for correlations. Hence, Eq.(E.2) can be seen as an extension of the configuration model

including correlations, i.e. a correlated configuration model. In particular, Eq.(E.2)

encodes the way a network should be wired (i.e. the probabilities with which any pair

of nodes should be connected) to have the desired degree sequence and degree-degree

correlations.

In many empirical scale-free networks, knn(k) can be fitted by knn(k) = A + Bkβ,

with A,B > 0 [40, 44, 193] – the mixing being assortative (disassortative) if β is positive

(negative). Such a case is described by Eq. (E.1) with f(ν) = C[δ(ν−β− 1)σ2/σβ+2−
δ(ν − 1)], with C a positive constant, which simplifies significantly the expressions

above. This choice yields

knn(k) =
〈k2〉
〈k〉

+ Cσ2

[
kβ

〈kβ+1〉
− 1

〈k〉

]
(E.3)

After plugging Eq. (E.3) into Eq.(5.8) one obtains:

r =
Cσ2

〈kβ+1〉

(
〈k〉〈kβ+2〉 − 〈k2〉〈kβ+1〉
〈k〉〈k3〉 − 〈k2〉2

)
. (E.4)

It turns out that the configurations most likely to arise naturally (i.e those with

maximal entropy) usually have C ' 1 [115]. Therefore, and for the sake of analyti-

cal simplicity, we shall consider this particular case (note that C = 1 corresponds to

removing the linear term, proportional to kikj, in Eq. (E.2), and leaving the leading

non-linearity, (kikj)
β+1, as the dominant one); that is, we shall use

ε̂ij =
1

N

{
σ2

σβ+2

[
(kiki)

β+1

〈kβ+1〉
− kβ+1

i − kβ+1
j + 〈kβ+1〉

]
+ ki + kj − 〈k〉

}
. (E.5)

Substituting the adjacency matrix for this expression in the definition of η in Eq.(5.7)

, we obtain its expected value as a function of the remaining parameter β:

η(β) =
〈k〉2

〈k2〉

[
1 + (σ2 − α2

βρβ)

(
2
〈kβ〉〈k−1〉
〈kβ+1〉

− 〈k−1〉2
)

+ α2
βρβ

(
〈kβ〉
〈kβ+1〉

)2
]
, (E.6)

where αβ ≡ σ2/σβ+2 and ρβ ≡ 〈k2(β+1)〉 − 〈k〉2(β+1). Note that η0 = 1, as corresponds

to uncorrelated networks. As r can be inferred from β using Eq.(E.4), then we can plot
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the resulting η as a function of r for different networks. In particular, for scale-free

networks with P (k) ∼ k−gamma we obtain the curves shown in Fig. E.1; they exhibit a

clear tendency (at least for γ > 2): disassortative networks tend to be nested and the

other way around.
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Figure E.1: Nestedness against assortativity (as measured by Pearson’s correlation
coefficient, r) for scale-free networks with different values of the degree-distribution
exponent, γ. 〈k〉 = 10, N = 1000.
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[22] C. Banašek-Richter, L. Bersier, M. Cattin, R. Baltensperger, J. Gabriel, and

J. Merz, et al. Complexity in quantitative food webs. Ecology, 90:1470–7, 2009.

[23] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,

286:509–512, 1999.

[24] A.L. Barabási. Linked: The New Science of Networks. Perseus Books Group,

2002.

[25] A. Barrat, M. Barthelemy, and A. Vespignani. Dynamical processes on complex

networks. Cambridge University Press, Cambridge, 2008.

[26] S. C. H. Barrett and K. Helenurm. The reproductive-biology of boreal forest

herbs.1. breeding systems and pollination. Canadian Journal of Botany, 65:2036–

2046, 1987.

[27] J. Bascompte and P. Jordano. Plant-animal mutualistic networks: the architec-

ture of biodiversity. Annual Review of Ecology Evolution and Systematics., 38:

567–593, 2007.

[28] J. Bascompte and C. J. Melián. Simple trophic modules for complex food webs.

Ecology, 86:2868–2873, 2005.

[29] J. Bascompte, P. Jordano, C. J. Melián, and J. M. Olesen. The nested assembly

of plant animal mutualistic networks. Proc. Nat. Acad. Sci., 100:9383–9387, 2003.

[30] J. Bascompte, C. Melián, and E. Sala. Interaction strength combinations and the

overfishing of a marine food web. 102(15):5443–5447, 2005.

[31] M. Bastian, S.n Heymann, and M. Jacomy. Gephi: An open source software

for exploring and manipulating networks. International AAAI Conference on

Weblogs and Social Media, 2009.



Bibliography 173

[32] U. Bastolla, M. Laessig, S. Manrubia, and A. Valleriani. Diversity patterns from

ecological models at dynamical equilibrium. J. Theor. Biol., 212:11–34, 2001.

[33] U. Bastolla, M. A. Fortuna, A. Pascual-Garcia, A. Ferrera, B. Luque, and J. Bas-

compte. The architecture of mutualistic networks minimizes competition and

increases biodiversity. Nature, 458(7241):1018–1020, 2009.

[34] U. Bastolla, M.A. Fortuna, A. Pascual-Garćıa, A. Ferrera, B. Luque, and J. Bas-
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[P4] V. Domı́nguez-Garćıa and MA. Muñoz. Ranking species in mutualistic networks.

submitted, 2014.


	Introduction
	Introducción
	Topological features of ecological and biological networks
	Unimodal networks
	Community structure
	Hierarchy
	Coherence
	Feedback loops and motifs
	Intervality

	Bipartite networks
	Degree distribution
	Community structure
	Nestedness


	Food webs coherence determines stability
	Trophic coherence and stability
	Measuring stability

	Preferential Preying:  foodwebs with tunable coherence
	The model
	Preferential preying performance

	The origins of stability
	Effect of biomass distribution
	Efficiency
	Weighted networks

	May's paradox
	Effect of biomass distribution

	Chapter summary
	Data supplement to chapter 2

	Inherent directionality in biological and ecological networks
	A model of network directionality
	Number of ascents and Eulerian cyclic numbers
	Devising an asymptotic result

	Infering directionality: Counting loops in empirical networks
	A novel algorithm for measuring loops in networks
	Network randomizations

	Measuring directionality in empirical networks
	Algorithm details

	Chapter summary
	Data supplement to chapter 3

	Factors determining nestedness in complex networks
	Analytical quantification of nestedness
	introducing a refined measure
	Nestedness in the configuration model

	Nestedness in finite-size random networks
	Emergence of effective correlations in finite-size networks
	Effective correlations imply nestedness in finite networks

	Nestedness in empiric networks
	Degree correlations in real vs randomized networks
	Nestedness in real vs randomized networks
	Nestedness vs degree correlations in empirical networks
	A more refined null model

	Chapter summary
	Data supplement to chapter 4

	Ranking species in mutualistic networks
	MusRank: non-linear ranking algorithm for mutualistic networks
	Other algorithms used in the study

	Assessing the quality of a given ranking
	MusRank performance
	Optimally packed matrices

	Chapter summary
	Data supplement to chapter 5

	Conclusions
	Conclusiones
	Devising an interaction matrix from an adjacency matrix
	Mimicking reality: foodweb modeling
	Possible amendments to the PPM
	Analytical theory for maximally coherent networks
	Degree-degree correlations and nestedness in heterogeneous networks
	Bibliography



