
Jorge Hidalgo Aguilera. PhD. Thesis

Novel mechanisms 

for phase transitions 

and self-organization

in living systems

Advisor: Miguel Á. Muñoz Martínez

C
ov

e
r:

 G
lo

ri
a 

H
id

al
go

 A
ri

za



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Editor: Universidad de Granada. Tesis Doctorales 
Autor: Jorge Hidalgo Aguilera 
ISBN: 978-84-9125-014-2 
URI: http://hdl.handle.net/10481/39636 





Universidad de Granada

Facultad de Ciencias

Novel mechanisms for phase

transitions and self-organization

in living systems

Thesis submitted by Jorge Hidalgo Aguilera

for the degree of Doctor of Philosophy

2014

Departamento de Electromagnetismo y F́ısica de la Materia

e Instituto Carlos I de F́ısica Teórica y Computacional
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Chapter 1

Introduction

As an non-experienced complexsystemist, any PhD. student may have been got involved,

eventually, into a tense debate with other non-complexsystemist colleagues about the

role of statistical physics in other disciplines, such as ecology, sociology, neuroscience

or economics. The main topic focuses, usually, on the question: “why do you still call

it physics?”

At a certain point, one develops a strong feeling about it, and generates the au-

tomatic answer that, of course, “physical systems can represent any system in nature

susceptible to be modeled mathematically, in order to give an approximate description

of it, as well as to make right predictions about its behavior”. Consequently, com-

plex systems in nature fit quite well into this definition. However, at a second certain

point, another opinion arises: during many years, different scientific fields were strictly

separated, but today, with the development of interdisciplinary sciences, what we are

experiencing might be understood as the return – with a new look– of Natural Philos-

ophy; or just science, as we used to called it in the elementary school.

In this context, it is particularly interesting how, for the same system, different

“levels of knowledge” arise at each scale, that sometimes cannot be rationalized as an

effective description of the precedent one. To give a hypothetical example, let imag-

ine that computational technology would have never been developed. In this peculiar

scenario, one day, an advanced civilization appears and we are granted with one single

supercomputer, with no instructions about its functioning. Most probably, aimed at

understanding how it works, we would start by unraveling the microscopic dynamics of
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6 Chapter 1. Introduction

its tiny components. However, even in the case we reached to model and predict with

perfect accuracy the behavior of each part of the computer, we would still be missing

an additional and essential step to understand, for instance, what a program does or

what software in general really means.

In a similar way, if we want to understand our brain, we need to rationalize the

dynamics at the single neuron level, but this is not enough. If we want to understand

the robustness of an ecological system, it is not sufficient to know which species prey

upon other species. If we want to prevent a global epidemic outbreak, we need more

than explaining each person-to-person infection. We need something more, because

More is, actually, different.

1.1 Spotlight on phase transitions

Within the context of complex systems and collective phenomena, phase transitions

have aroused a particular interest[127, 16]. Since school, we have been told that matter

can be found at three different states: solid, liquid, and gas. Moreover, we learned that

matter can change its state by undergoing a phase transition, which is actually a very

common phenomenon, occurring, for instance, every time we put ice in a drink or cook

a tasty soup. Roughly speaking, we say that a system undergoes a phase transition if it

suddenly experiences a qualitative change on its global state. The archetypal example

corresponds to the phase transition of water, but many others can be found in nature

(see fig. 1.1). Specifically, the phase is characterized by the so-called order parameter

(for instance the density), which changes by tuning the –in the statistical mechanics

jargon– control parameter (as the temperature, pressure, etc.).

Among phase transitions, we distinguish two main types: discontinuous, or first-

order, and continuous, also called second-order, phase transitions. The first kind cor-

responds to the case in which change is performed discontinuously and it involves an

extra cost (latent heat), which is given to or received from the system. The already

cited transitions of water under ordinary conditions are some examples of this. On the

other hand, continuous phase transitions do not require any additional cost, and change

is immediate and progressive. In this context, we find the spontaneous magnetization

occurring on a piece of iron below 770 ◦C.
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Figure 1.1: Phase transitions are ubiquitous in nature: From top left to bottom
right: 1) A small piece of rapidly melting argon ice simultaneously shows the transitions
from solid to liquid to gas; 2) Example of ferromagnetic material (Alnico alloy) at
ordinary temperature; 3) Liquid helium at the superfluid phase, creeping up the wall
of the cup and falling down; 4) Magnet levitating above a superconductor, cold down
with liquid nitrogen; 5) Phase transition between nematic (left) to smectic A (right) in
a liquid crystal. Source: Wikipedia (Creative-Commons license).

The narrow line separating both phases displays many intriguing phenomena, being

this one of the principal reasons why statistical physicists enjoy so much their study. For

discontinuous transitions, two radically different phases meet at the separating point,

therefore it is expected that both may coexist under certain conditions. The triple point

of water constitutes an extreme case in which gas, liquid and solid water perfectly

do it. In parallel, continuous phase transitions are characterized by a critical point

separating both regimes; just at this point, systems exhibit a plethora of very interesting

features [127, 16], such as scale invariance on its structure, large scale correlations

and maximum susceptibility to external perturbations. The great lesson learned from

statistical mechanics is that, even though the elementary constituents are very simple,

criticality and scale invariance emerge as the collective behavior of a many-body system.

And, what it is more stunning, such complexity only depends on just a few general

aspects such as the symmetries in the system, and not on the specific details. This is
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all really good news for complexsystemists, who can neglect most of the specific details

about the real dynamics. As we said before, More is different, fortunately!

1.2 Operating at a narrow line

Although criticality is a very attractive phenomenon, it only constitutes a rare situation

among all possible states, most of which are, actually, quite boring. For this, we have

to poise the system just at the critical point. However, paradoxically enough, many

systems in nature exhibit fingerprints of criticality without the need of any external

fine-tuning. In particular, scale invariance has been evidenced in different contexts

such as in earthquakes [146, 32], solar flares [67], rainfall measurements [111], chemical

reactions [27], gluon-quark systems [71], turbulences in plasma [130, 117]... To be more

specific, earthquakes, for instance, occur at all scales, ranging from common unperceived

vibrations to, eventually, demolishing seisms. Such different magnitudes are distributed

as a power-law, which is the most characteristic fingerprint of criticality.

The theory of Self-Organized Criticality (SOC) has provided a general framework

to understand this enigmatic phenomenon. [4, 5, 44]. In a nutshell, such self-tuning is

produced when two mechanisms dynamically operate on the control parameter: a slow

external driving and a rapid dissipation with the activity (see fig. 1.2). We can illustrate

the mechanism in the example of earthquakes (in a very simplistic manner): let consider

two tectonic plates meeting in a fault; as a consequence of their slow motion, the stress

at the contact zone is slowly incremented (external driving). At a certain point, the

fault cannot take any more tension, and it releases all the accumulated energy in a very

fast event (rapid dissipation). These two mechanisms, operating with different time

scales, organize the system at the edge between the active and inactive phase.

However, we are forced to read the small print in the mechanism of SOC, as it

still requires the external tuning of a parameter. If the two processes (dissipation and

driving) occur with similar time scales, the dynamics gets into a complicated situation,

but, if they are separated, the system self-organizes at the critical point. The interesting

fact is that, contrary to any standard fine-tuning, this occurs in a more natural way,

and therefore a similar self-organization is more plausible to operate in nature.

Although the theory of SOC has been enthusiastically welcomed by complexsys-
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Figure 1.2: Self-organized criticality: a system with a continuous phase transition
can be self-tuned to its critical point, as a result of two balancing forces acting on the
control parameter: the slow external driving increases progressively the energy (control
parameter), pushing any silent state into the active region; on the other hand, rapid
energy dissipations are produced with activity. Consequently, the system self-organizes
at the edged of the two phases, exhibiting critical behavior.

temists, we would like to put a warning about its generality. Specifically, power-law

distributions, as the principal trace of SOC, can emerge in very different contexts which,

actually, nothing have to do with criticality nor even a phase transition, as for instance

in fractal geometries [87], Levy flights [87], and many other generative processes of such

distributions [99]. For this reason, relating a power-law decay –that, in many cases,

lacks of more than one or two scales– with SOC and universality, can be exposed to

considerable and justified criticism.

1.3 Preview-summary

Up to now, we have mainly talked about phase transitions and self-organization in

the context of inanimate matter. Thus the question is: How these phenomena affect

living systems? Do they play any relevant role in biology? Phase transitions and

self-organization are found in many biological contexts; the list is infinite, but some

of them correspond to flocking behavior [136], cerebral activity [118], quorum sensing

in bacterial communities [51], and so on. However, in contrast with inanimate mat-

ter, living systems are subjected to the Darwinian forces of survival, adaptation and
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evolution [38]. Therefore, we expect that any useful mechanism relying on a phase tran-

sition could have been selected and successfully exploited by living systems in nature.

The work developed during this thesis has tried to unravel different aspects of such

mechanisms and their implications for the proper functioning of biological systems.

In particular, Chapter 2 focuses on the empirical evidence that many aspect of

living systems might operate at the vicinity of critical points [101]. However, given the

diversity and heterogeneity between such systems, with examples ranging from brain

activity [118] to flock dynamics [15], a general theory for understanding why and how

living systems could dynamically tune themselves to be poised in the vicinity of a

critical point is lacking. Employing tools from statistical mechanics and information

theory, we show that complex adaptive or evolutionary systems can be much more

efficient in coping with diverse heterogeneous environmental conditions when operating

at criticality, while they remain non-critical for simple and predictable environments.

A more robust and non-expected a priori convergence to criticality emerges in co-

evolutionary and co-adaptive set-ups in which individuals aim to represent other agents

in the community with fidelity, and the environment is composed, essentially, by the

community itself. While, initially, this population consists of simple individuals, com-

plexity emerges as a global attractor of the dynamics, and the community ends to be

highly heterogeneous.

This result has a broad range of implications for general complex adaptive systems.

In particular it could apply to some bacterial communities [81] and viral populations

[129] for which a huge phenotypic variability has been empirically observed. Such a

large diversification can be seen as a form of “bet hedging”, an adaptive survival strat-

egy analogous to stock-market portfolio management [144], which turns out to be a

straightforward consequence of individuals in the community being critical. This inter-

pretation constitutes the linking point with Chapter 3, which focuses on the study of

bet-hedging strategies in the context of population dynamics. Here we analyze a simple

model of a community of individuals reproducing by means of two different strategies:

a poor but safe strategy or a better but risky (environment-dependent) one. Depending

on the characteristics for each strategy, the stationary density of individuals exhibits a

phase transition, changing from zero (extinction) to a sustained population (survival).

In this scenario, we show that, under certain conditions, pure strategies leading irreme-
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diably to extinction, when combined properly, can lead to survival. This phenomenon

constitutes an instance of the so-called Parrondo’s Paradox in game theory [57]. Ad-

ditionally, we show that the benefits derived from bet-hedging are much enhanced for

higher environmental variabilities and for small spatial dimensions, which are typical

circumstances encountered by living systems in nature.

A specific case of bet-hedging corresponds to hybrid dispersal strategies developed

by certain plants [68, 7, 3], which have evolved to spread their offspring by meas of two

kind of seeds: with aerial seeds, that are more likely to colonize distant sites, but a the

same time are much affected by fluctuations of the environment, and with terrestrial

seeds, which are subjected to the negative consequences of self-reproduction (inbreeding

depression), but not to external conditions. In Chapter 4 we study a simple model

of population dynamics equipped with such ingredients, and we analyze under which

conditions hybrid strategies provide a significant gain respect to the pure strategies.

Finally, Chapter 5 is dedicated to the study of neural dynamics, in particular to

the so-called Up and Down states [147, 143], cortical oscillations in which the activity

switches from intense activity intervals (Up) to quiescent periods (Down); such Up and

Down states have been also related to self-organized criticality in the brain [98, 84, 17].

We focus on the experimental evidence that a class of spontaneous oscillations can

emerge within the Up states, but not for Down states [128, 103, 49, 31]. By using

different computational models, we show that the collective phenomenon of “stochastic

amplification of fluctuations”, previously described in other contexts such as Ecology

[94] and Epidemiology [1], explains in an elegant manner, beyond model details, this

extra-rhythm emerging in the Up but not in the Down states.

Summing up, we have talked about the ubiquitousness of collective dynamics in

nature and living systems, self-organization to complex behavior through simple in-

teractions, and universality of several mechanisms underlying completely different sys-

tems. After all, a better answer for the misunderstood complexsystemist surrounded by

purists, without any intention of offending Mr. Feynman, could be: “Studying complex

systems is like physics: sure, it may give some practical results, but that’s not why we

do it.”





Introducción

Como un complexsystemista no experimentado, cualquier estudiante de doctorado podŕıa

haberse visto envuelto, alguna vez, en un tenso debate con otros colegas no complexsys-

temistas sobre el papel de la f́ısica estad́ıstica en otras disciplinas, como la ecoloǵıa, la

socioloǵıa, la neurociencia o la economı́a. La discusión principal, normalmente, gira en

torno a la pregunta: “¿Por qué los segúıs llamando f́ısica?”

Llegado un cierto punto, uno desarrolla una fuerte opinión al respecto, y genera

la respuesta automática de que, por supuesto, “los sistemas f́ısicos pueden represen-

tar cualquier sistema en la naturaleza susceptible de ser modelado matemáticamente,

con el objetivo de dar una descripción aproximada de él, además de hacer predicciones

correctas sobre su comportamiento”. De esta forma, los sistemas complejos en la natu-

raleza se ajustan bastante bien a esta definición. Sin embargo, llegado un segundo cierto

punto, uno crea otra opinión sobre ello: durante muchos años, los diferentes ámbitos de

la ciencia han estado fuertemente separados, pero hoy, con el desarrollo de las ciencias

interdisciplinares, lo que vivimos podŕıa ser visto como el retorno –con un cambio de

look– de la Filosof́ıa Natural; o “Cono”, como popularmente se la llama en la escuela

primaria.

En este contexto, es particularmente interesante cómo, para un mismo sistema,

distintos “niveles de conocimiento” aparecen en cada escala, que muchas veces no

pueden entenderse como una descripción efectiva de la precedente. Para dar un ejemplo

hipotético, imaginemos que la tecnoloǵıa computacional nunca se hubiera desarrollado.

En este peculiar escenario, un d́ıa, una civilización avanzada aparece y nos concede un

solo y único súper computador, sin más instrucciones sobre su funcionamiento. Lo más

probable es que, intentando entender para qué sirve, empezaŕıamos por desentrañar

los mecanismos de sus pequeños componentes. Sin embargo, incluso en el caso de que

13
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alcanzáramos un nivel absoluto con el que pudiéramos predecir con total precisión el

comportamiento de cada parte del ordenador, todav́ıa nos faltaŕıa un paso adicional y

esencial hasta entender, por ejemplo, en qué consiste un programa o qué significa la

palabra software en general.

De una forma similar, si queremos entender nuestro cerebro, necesitamos entender

la dinámica individual de las neuronas, pero esto no es suficiente. Si queremos entender

la estabilidad de un sistema ecológico, no basta con saber qué especies depredan otras

especies. Si queremos evitar una pandemia global, necesitamos más que explicar los

mecanismos de contagio de persona a persona. Necesitamos algo más, porque Más es,

de hecho, diferente.

El interés de las transiciones de fase

En el contexto de los sistemas complejos y los fenómenos colectivos, las transiciones de

fase han gozado de particular interés [127, 16]. Desde las escuela, nos han enseñado

que la materia puede encontrarse en tres estados diferentes: sólido, ĺıquido, o gaseoso.

Además, hemos aprendido que la materia puede cambiar su estado mediante una tran-

sición de fase. Esto es, de hecho, un fenómeno bastante común, y ocurre cada vez que

echamos hielo a nuestra bebida o preparamos una rica sopa. En términos generales,

decimos que un sistema experimenta una transición de fase si, de repente, su estado

global sufre un cambio cualitativo. El ejemplo más caracteŕıstico es el de la transiciones

hielo-agua-vapor, pero muchos otros se pueden encontrar en la naturaleza (ver fig. 1.1).

De forma espećıfica, la fase se caracteriza mediante el llamado parámetro de orden

(por ejemplo, la densidad), que cambia cuando variamos el –en términos de mecánica

estad́ıstica– parámetro de control (como puede ser la temperatura, presión, etc.).

Entre las transiciones de fase, distinguimos dos tipos principales: discontinuas, o de

primer orden, y continuas, también llamadas de segundo orden. El primer tipo corre-

sponde al caso en el que el cambio se lleva a cabo de forma discontinua, e involucra un

coste extra (calor latente), que es recibido o dado por el sistema. Las ya citadas tran-

siciones del agua en condiciones ordinarias constituyen ejemplos de ello. Por otro lado,

las transiciones de fase continuas no requieren de ningún coste adicional, y el cambio

se produce de madera inmediata y progresiva. En este segundo caso encontramos la
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magnetización espontánea del hierro por debajo de los 770 ◦.

En la estrecha ĺınea que separa ambas fases aparece una multitud de fenómenos in-

teresantes, siendo esta una de las principales razones por las que a los f́ısicos estad́ısticos

les encanta su estudio. En las transiciones discontinuas, dos fases completamente dis-

tintas convergen en el punto de separación; por tanto, cabe esperar que ambas puedan

coexistir en determinadas circunstancias. El punto triple del agua constituye un caso

extremo en el que vapor, agua y hielo lo hacen perfectamente. De forma paralela, las

transiciones de fase continuas están caracterizadas por un punto cŕıtico que separa am-

bos reǵımenes; justo en ese punto, los sistemas presentan una multitud de caracteŕısticas

interesantes [127, 16], como por ejemplo invariancia de escala en su estructura, correla-

ciones de largo alcance y máxima susceptibilidad frente a perturbaciones externas. La

gran lección que nos enseña la mecánica estad́ıstica es que, incluso si los elementos que

constituyen un sistema son muy simples, la criticidad e invariancia de escala emergen

como un fenómeno colectivo, y, lo que es más impresionante, que dicha complejidad

solo depende de algunos aspectos generales, como las simetŕıas del sistema, y no de los

detalles espećıficos. Esto es una noticia estupenda para los complexsystemistas, que

pueden olvidarse de la mayoŕıa de detalles sobre la dinámica real. Como hemos dicho

antes, Más es diferente, ¡afortunadamente!

Operando en un estrecho margen

Aunque la criticidad es un fenómeno muy atractivo, solo constituye una situación muy

rara de todos los posibles estados en los que podemos encontrar a un sistema, la mayoŕıa

de los cuales bastante aburridos. Para ello, debeŕıamos tunear el sistema justo en el

punto cŕıtico. Sin embargo, paradójicamente, muchos sistemas en la naturaleza pre-

sentan indicios de criticidad sin la necesidad de un ajuste externo. Por ejemplo, la in-

variancia de escala aparece en contextos muy diferentes, como en terremotos [146, 32],

erupciones solares [67], medidas de precipitaciones [111], reacciones qúımicas [27], sis-

temas de quarks-gluones [71], turbulencias en plasmas [130, 117]... Para ser más es-

pećıfico, los terremotos, por ejemplo, ocurren a todas las escalas, desde las más comunes

vibraciones imperceptibles hasta, de forma ocasional, los séısmos demoledores. Estas

magnitudes tan diferentes aparecen distribuidas en forma de ley de potencias, la huella
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más caracteŕıstica de criticidad.

La teoŕıa de la Criticidad Auto-Organizada (SOC, por las siglas del inglés Self-

Organized Criticality) ha proporcionado un marco general en el que entender este hecho

enigmático [4, 5, 44]. En pocas palabras, dicho auto-ajuste se produce cuando dos

mecanismos actúan sobre el parámetro de control: una carga externa lenta, y una

disipación rápida con la actividad (ver fig. 1.2). Podemos ilustrar este mecanismo con

el ejemplo de los terremotos (siendo muy simplistas): imaginemos dos placas tectónicas

que se encuentran en una falla. Como consecuencia del lento movimiento de la corteza

terrestre, el estrés en la zona de contacto se incrementa poco a poco. En un momento

dado, la falla no puede soportar más la tensión, y libera toda la enerǵıa acumulada en

un terremoto que ocurre de manera muy rápida (disipación). Estos dos mecanismos,

operando con diferentes escalas temporales, organizan al sistema al punto que separa

la fase activa e inactiva.

Sin embargo, estamos obligados a leer la letra pequeña en el mecanismo de SOC, ya

que todav́ıa requiere del ajuste externo de un parámetro. Si los dos procesos (disipación y

carga) ocurren con escalas de tiempo parecidas, la dinámica se vuelve muy complicada,

pero, solo cuando dichas escalas son separadas (o, equivalentemente, cuando la carga se

hace mucho más lenta que la disipación), el sistema se auto-organiza al punto cŕıtico.

El punto interesante es que, de forma contraria a cualquier tuneo estándar, este ajuste

ocurre de una forma muy natural, y por tanto una auto-organización similar es más

plausible que ocurra en la naturaleza.

Aunque la teoŕıa de SOC ha sido acogida con gran entusiasmo por los complexsys-

temistas, debeŕıamos hacer un pequeño inciso respecto a su aplicabilidad. Las leyes

de potencia, como la principal caracteŕıstica de SOC, pueden emergen en contextos

muy diferentes que, realmente, nada tienen que ver con criticidad o ni siquiera con una

transición de fase, como por ejemplo en geometŕıas fractales [87], vuelos de Levy [87],

y muchos otros procesos capaces de generar dichas distribuciones [99]. Por esta razón,

relacionar cualquier ley de potencias –que, en muchos casos carece de más de uno o

dos órdenes de magnitud– con universalidad y SOC, puede ser objeto de considerable

y justificada cŕıtica.
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Resumen

Hasta ahora, hemos hablado principalmente sobre transiciones de fase y auto-organización

en el contexto de la materia inanimada. La siguiente pregunta es: ¿Cómo afectan estos

fenómenos a los sistemas vivos? ¿Juegan algún papel relevante en bioloǵıa? Las tran-

siciones de fase y la auto-organización aparecen en muchos contextos biológicos; la lista

es infinita, pero, por nombrar unos pocos, dichas transiciones aparecen en el compor-

tamiento de manadas [136], actividad cerebral [118], quorum sensing en comunidades

de bacterias [51], y muchos más. Sin embargo, en contraste con la materia inanimada,

los sistemas vivos están sujetos a las reglas darwinianas de supervivencia, adaptación

y evolución [38]. Aśı pues, cabe esperar que cualquier mecanismo útil, con base en una

transición de fase, haya sido seleccionado y explotado por los sistemas biológicos en la

naturaleza. El trabajo desarrollado durante esta tesis ha tratado de descifrar distin-

tos aspectos de tales mecanismos y sus implicaciones en el buen funcionamiento de los

sistemas biológicos.

En particular, el Caṕıtulo 2 se centra en la evidencia emṕırica de que muchos

aspectos de los sistemas biológicos podŕıan estar operando en la cercańıa de puntos

cŕıticos [101]. Sin embargo, dada la heterogeneidad y diversidad entre tales sistemas,

con ejemplos que van desde la actividad cerebral [118] a las bandadas de pájaros [15],

una teoŕıa general con la que entender por qué y cómo los sistemas biológicos podŕıan

organizarse de forma dinámica para situarse en un punto cŕıtico aún no se ha lle-

vado acabo. Mediante herramientas de mecánica estad́ıstica y teoŕıa de la información,

nosotros mostramos que los sistemas adaptativos y evolutivos complejos son mucho

más eficientes haciendo frente a condiciones externas heterogéneas cuando operan en la

criticidad, mientras que no lo necesitan cuando los entornos son simples y predecibles

[62].

Una convergencia más robusta hacia la criticidad aparece en sistemas co-evolutivos

y co-adaptativos en los cuales los individuos intentan representarse unos a otros; en

este caso, el entorno está compuesto, esencialmente, por la comunidad en śı. Mientras

que, inicialmente, la población puede constar únicamente de individuos simples, la

complejidad emerge como el atractor global de esta dinámica, y la comunidad termina

por ser muy heterogénea.

Este resultado tiene muchas implicaciones en sistemas adaptativos generales. En
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particular, podŕıa aplicarse a ciertas comunidades de bacterias [81] y poblaciones de

virus [129] para las que se ha observado una alta variabilidad fenot́ıpica. Tal diver-

sificación puede ser entendida como una forma de “cobertura de riesgos” (en inglés

conocida como “bet-hedging”), una estrategia de supervivencia análoga a la gestión

del mercado de acciones en bolsa [144], y que resulta ser una consecuencia directa de

individuos en una comunidad cŕıtica.

Esta interpretación constituye el punto de conexión con el Caṕıtulo 3, el cual se

centra en el estudio de estrategias de bet-hedging en el contexto de dinámicas de pobla-

ciones. Aqúı, analizamos un modelo simple de una comunidad de individuos que se

reproducen a través de dos estrategias distintas: una estrategia pobre pero segura, y

otra muy arriesgada y dependiente de las condiciones externas. Dependiendo de las car-

acteŕısticas de cada estrategia, la densidad estacionaria de los individuos muestra una

transición de fase que va desde cero (extinción) a una población mantenida (superviven-

cia). En este escenario, nosotros mostramos que, bajo ciertas condiciones, estrategias

puras que llevaŕıan irremediablemente a la extinción, cuando se combinan adecuada-

mente, pueden llevar a la supervivencia. Este fenómeno constituye un ejemplo de la

llamada Paradoja de Parrondo en teoŕıa de juegos [57]. Adicionalmente, mostramos

que los beneficios derivados del bet-hedging se aumentan enormemente para condi-

ciones externas muy variables y para bajas dimensiones espaciales, que de hecho son

las circunstancias t́ıpicas con las que se encuentran los sistemas vivos en la naturaleza.

Un ejemplo espećıfico de bet-hedging corresponde a las estrategias de dispersión

h́ıbridas de algunas plantas [68, 7, 3], las cuales han evolucionado para propagar su

descendencia a través de dos tipos de semilla: mediante semillas aéreas, que son mu-

cho más propensas a colonizar sitios distantes, pero que, al mismo tiempo están muy

afectadas por las condiciones y fluctuaciones del entorno; y con semillas terrestres, las

cuales están sujetas a las consecuencias negativas de la intra-reproducción pero no a las

condiciones externas. En el Caṕıtulo 4 estudiamos un modelo sencillo de dinámica

de poblaciones equipado con tales ingredientes, y analizamos bajo qué condiciones las

estrategias de dispersión h́ıbridas proporcionan un beneficio significativo respecto a las

estrategias puras.

Finalmente, el Caṕıtulo 5 está dedicado al estudio de dinámicas neuronales, en

particular a los llamados estados Up-Down [147, 143], donde la actividad cerebral al-
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terna entre periodos de intensa actividad (Up) e intervalos completamente silenciosos

(Down); dicho estados Up-Down han sido también relacionados con criticidad auto-

organizada [98, 84, 17]. En nuestro estudio, nos centramos en la evidencia emṕırica

de que una serie de oscilaciones espontáneas emergen en los estados Up, mientras que

esto no sucede en los Down [128, 103, 49, 31]. Usando diferentes modelos computa-

ciones, mostramos que el fenómeno colectivo llamado “amplificación estocástica de las

fluctuaciones”, anteriormente descrito en otros contextos como la Ecoloǵıa [94] o la Epi-

demioloǵıa [1], explica de una forma elegante, más allá de los detalles del modelo, estas

oscilaciones extras emergentes únicamente en los peŕıodos Up, y aśı mismo justifica por

qué no lo hacen para los Down.

En definitiva, hemos hablado sobre la ubicuidad de las dinámicas colectivas en la

naturaleza y los sistemas biológicos, la auto-organización a comportamientos complejos

a través de interacciones simples, y la universalidad de varios mecanismos detrás de

sistemas muy diversos. Después de todo, una mejor respuesta para el complexsystemista

rodeado de puristas, sin la intención de ofender al Sr. Feynman, podŕıa ser: “El estudio

de los sistemas complejos es como la f́ısica: seguramente dará alguna aplicación práctica,

pero no es por eso por la que la hacemos”.





Chapter 2

The emergence of criticality in

living systems

2.1 ‘Are biological system poised at criticality?’

Empirical evidence has proliferated that living systems might operate at criticality [101],

with examples ranging from spontaneous brain behavior [9], gene expression patterns [107],

cell growth [50], morphogenesis [79], bacterial clustering [24], and flock dynamics [15].

Even if none of these examples is fully conclusive and even if the meaning of “critical-

ity” varies across these works, the criticality hypothesis –as a general strategy for the

organization of living matter– is a tantalizing idea worthy of further investigation.

Unlike models of self-organized criticality in which some inanimate systems are

found to become critical in a mechanistic way [70], we focus on general adaptive or

evolutionary mechanisms, specific to biological systems. In this context, the drive to

criticality may arise from functional advantages of being poised in the vicinity of a

critical point.

But why is a living system fitter when it is critical? Living systems need to perceive

and respond to environmental cues and to interact with other similar entities. Indeed,

biological systems constantly try to encapsulate the essential features of the huge vari-

ety of detailed information from their surrounding complex and changing environment

into manageable internal representations, and they use these to base their actions and

responses. The successful construction of these representations, which extract, summa-

21
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rize, and integrate relevant information [45], provides a crucial competitive advantage,

which can eventually make the difference between survival and extinction. We suggest

here that criticality is an optimal strategy to effectively represent the intrinsically com-

plex and variable external world in a parsimonious manner. This is in line with the

hypothesis that living systems benefit from having attributes akin to criticality –either

statistical or dynamical [101]– such as a large repertoire of dynamical responses, opti-

mal transmission and storage of information, and exquisite sensitivity to environmental

changes [16, 107, 25, 10, 77, 102, 122].

As conjectured long ago, the capability to perform complex computations, which

turns out to be the fingerprint of living systems, is enhanced in “machines” operating

near a critical point [82, 14, 75], i.e. at the border between two distinct phases: a

disordered phase, in which perturbations and noise propagate unboundedly –thereby

corrupting information transmission and storage – and an ordered phase where changes

are rapidly erased, hindering flexibility and plasticity. The marginal, critical, situation

provides a delicate compromise between these two impractical tendencies, an excellent

trade-off between reproducibility and flexibility [25, 122, 10] and, on larger time scales,

between robustness and evolvability [137]. Similarly, criticality has been recently shown

to emerge through adaptive information processing in machine learning, where networks

are trained to produce a desired output from a given input in a noisy environment;

when tasks of very different complexity need to be simultaneously learned, networks

adapt to a critical state to enhance their performance [55]. A specific example of this

general framework are genetic regulatory networks [75, 56]. Cells ranging from those in

complex organisms to single-celled microbes such as bacteria respond to signals in the

environment by modifying the expression of their genes. Any given genetic regulatory

network, formed by the genes (nodes) and their interactions (edges) [41]– can be tightly

controlled to robustly converge to a fixed almost-deterministic attractor –i.e. a fixed

“phenotype”– or it can be configured to be highly sensitive to tiny fluctuations in input

signals, leading to many different attractors, i.e. to large phenotypic variability [66].

These two situations correspond to the ordered and disordered phases respectively. The

optimal way for genetic regulatory networks to reconcile controllability and sensitivity to

environmental cues is to operate somewhere in between the two limiting and impractical

limits alluded to above [75] as has been confirmed in different experimental set-ups
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[107, 79, 6]. Still, it is not clear how such tuning to criticality comes about.

Our goal here is to exploit general ideas from statistical mechanics and information

theory to construct a quantitative framework showing that self-tuning to criticality is

a convenient strategy adopted by living systems to effectively cope with the intrinsi-

cally complex external world. In order to provide some further intuition, we employ

genetic regulatory networks as a convenient guiding example, but one could equally

well consider neural networks, models for the immune response, groups of animals ex-

hibiting collective behavior, etc., with each specific realization requiring a more detailed

modeling of its special attributes.

2.2 Mathematical framework: Mapping the exter-

nal world

The external environment in which living systems operate is highly variable, largely

unpredictable, and describable in terms of probability distribution functions. Living

systems need to modify their internal state to cope with external conditions and they

do so in a probabilistic manner.

To be specific, but without loss of generality, we represent an environmental cue

“perceived” and processed by a living system as a string of N (binary) variables,

s = (s1, s2, . . . sN). A specific environmental source is modeled by the probability

distribution Psrc with which it produces each of the 2N possible states. This distribu-

tion is assumed to depend on a set of parameters, α = (α1, α2, . . . ), accounting for

environmental variability. As Psrc is a positive quantity, it is always possible to write:

Psrc(s|α) =
exp

(
−Hsrc(s|α)

)
Zsrc(α)

, (2.1)

which defines Hsrc up to a constant, independent of s, which can be set equal to zero.

The factor Zsrc(α) is defined by normalization condition. The last representation re-

minds the usual notation of statistical mechanics, suggesting to express Hsrc(s|α) as:

Hsrc(s|α) =
E∑
µ=1

αµφ
µ
src(s) , (2.2)
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Figure 2.1: Living systems coping with the environment: Panel A illustrates a
living system responding to an environmental source (e.g. a bacteria responding to some
external conditions such as the presence/absence of some nutrients, pH concentration,
or temperature). A given source, labeled by the set of parameters α, can only be
probabilistically gauged by the system. Psrc(s|α) is the most accurate representation
that the system can potentially generate in terms of the Boolean variables (or bits)
s. However, such a representation might not be accessible to the system by merely
changing its internal-state parameters, β, and the actual internal state, Pint(s|β), is
usually an imperfect proxy for Psrc(s|α). Panel B shows a more complex scenario,
where the system has to cope with multiple and diverse sources. The internal state has
to be able to accommodate each of them. In panel C, the environment is not imposed
ad hoc but instead, it is composed of other individuals, and every agent needs to cope
with (“understand”) the states of the others. Each agent evolves similarly to the others
in the community, trying to exhibit the same kind of state, generating in this way a
self-organized environment.

where E is the number of “external” parameters specifying the source and φµ(s) are

suitable functions (“observables”). Equations 2.1 and 2.2 are a convenient parametriza-

tion of the probability distribution function, so that different values of α specify dis-

tinct source distributions Psrc. Although this parametrization has been introduced in a

heuristic way, it could constitute our starting point, i.e. we represent any external envi-

ronmental source by eqs. 2.1 and 2.2, with the number of parameters E and observable

functions φ needed.

We turn now to an individual living system or agent, which seeks to adapt itself to

cope with the perceived stimuli/signals emanating from a given environmental source.
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This is accomplished by changing its internal state, encapsulated in a second probability

distribution function, Pint, specified by a different –smaller in principle– parameter set

β = (β1, β2, . . . ) aimed at capturing the essential features of Psrc in the most efficient

–though in general imperfect– way (see fig. 2.1).

In analogy with eq. 2.1, Pint(s|β) can be written as

Pint(s|β) =
exp

(
−Hint(s|β)

)
Zint(β)

, (2.3)

where

Hint(s|β) =
I∑

µ=1

βµφ
µ
int(s) (2.4)

where I is the number of “internal” parameters. Henceforth we will denote the external

source and its internal representation by Psrc(s|α) and Pint(s|β) respectively.

In our guiding example, the external cues could be, for instance, the environmental

(temperature, pH,...) conditions, which are variable and can only be probabilistically

gauged by a cell/bacterium. The binary vector s = (s1, s2, . . . sN) can be thought of

as the on/off state of the different N genes in its (Boolean) genetic regulatory network

[75, 56, 41]. In this way, Psrc(s|α) can be interpreted as the probability that the most

convenient state aimed at by the system to cope with a given environmental condition

is s, while Pint(s|β) is the actual probability for the genetic-network state (attractor)

of a given individual –with its limitations– to be s.

Our hypothesis is that the capacity of living systems to tune their internal states to

efficiently cope with variable external conditions provides them with a strong competi-

tive advantage. Thus, the internal state Pint(s|β) should resemble as closely as possible

the one most in accord with the environmental signal Psrc(s|α); in other words, one seeks

the distribution that the system should express in order to best respond to the external

conditions. Information theory provides us with a robust measure of the “closeness”

between the aimed (source) and the actual (internal) probability distribution functions

[34]: the Kullback-Leibler divergence.
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Example: Ising parametrizations

Throughout this chapter, we test our ideas numerically with the archetypical (mean-

field) Ising model [16]:

Hsrc/int(s|γ) = − 1

N
γ

N∑
i<j

sisj = −N
2
γ

(∑
i

si
N

)2

+ constant, (2.5)

where γ can be either α or β. This constitutes a simple one-parameter system with

a continuous phase transition and hence, a critical point. In the guiding example of

genetic regulatory networks, this corresponds to an extremely simple fully-connected

network in which the state of each gene is equally determined by all the other genes

and, hence, the probability of a given state depends only on the total number of on/off

genes, controlled by a single parameter.

Additionally, we study the two-parameters (mean-field) Ising model with four-body

couplings:

Hsrc/int(s|γ) = −N
2
γ1

(∑
i

si
N

)2

− N

4!
γ2

(∑
i

si
N

)4

(2.6)

and the case with an additional external field:

Hsrc/int(s|γ) = −N
2
γ1

(∑
i

si
N

)2

− γ2

∑
i

si
N

(2.7)

Numerical factors (−N/2) and (−N/4!) have been introduced for convenience. In these

two cases, apart of a critical point –or a critical line– in the space γ = (γ1, γ2), we find

also a discontinuous phase transition, making these examples particularly interesting for

our purposes. The mean-field parametrization is particularly useful when performing

analytical and numerical calculations, but later we discuss the possibilities outside the

mean-field.
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2.2.1 Optimal mapping and Kullback-Leibler divergence

Given two general probability distributions P (s) and Q(s) for the set of variables s, the

Kullback-Leibler divergence (KLD from now) of Q(s) from P (s) is defined as

D(P |Q) :=
∑
s

P (s) log

(
P (s)

Q(s)

)
, (2.8)

and quantifies the loss of information when Q(s) is used to approximate P (s) [80, 34].

The KLD is non-negative and it vanishes if and only if both distributions are equal.

Observe also that the KLD is not symmetric and therefore is not a properly-defined

“distance”. Despite of that, we will still refer to the “closeness” between distributions.

The KLD can be understood in terms of the maximum likelihood principle [34].

Consider a long sequence of T data, sampled from the distribution P (s). In the infinite T

limit, the relative frequencies of s converge to P (s), but we can compute the probability

L (or likelihood) that another model Q(s) generates the same finite sequence of T

elements. We expect that, if P 6= Q, this probability rapidly goes to 0, but, as illustrated

in Appendix A, it decreases as

L ∼ exp (−TD(P |Q)) (2.9)

up to leading order. Therefore, maximizing the likelihood of a trial probability distri-

bution function Q is equivalent to minimizing its KL divergence from the original one,

P . This result is also known as Sanov’s theorem [115] in the context of large deviations

theory.

In the scenario where individuals capture the external information, minimizing the

KLD with respect to the internal-state parameters, β, generates the optimal, although

in general imperfect, internal state aimed at representing or coping-with a given source

α (see Fig. 2.1A):

βopt(α) = arg min
β′

D(Psrc(·|α)|Pint(·|β′)). (2.10)

In the following, we use the simplified notation D(Psrc(·|α)|Pint(·|β)) = D(α|β).

In an ever-changing world, the requirement for an individual is not just to reproduce

a single source with utmost fidelity but rather to be able to successfully cope with a
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group of highly different sources (see Fig. 2.1B). In order to account for broadly diverse

and variable external sources, we introduce a probability density of different parameter

sets ρsrc(α), which describes the variability of α or the probability to encounter a

source with a given choice of parameters. In this more complex situation, we define the

distance to the set of sources as the average of the KLDs:

d(ρsrc|β) =

∫
dαρsrc(α)D(α|β), (2.11)

and the optimal map, as the one which minimizes the average KLD,

βopt(ρsrc) = arg min
β′

d(ρsrc|β′). (2.12)

This result can be interpreted in an alternative way; introducing the “averaged envi-

ronment”

P̄src(s|ρsrc) :=

∫
dαρsrc(α)Psrc(s|α) , (2.13)

the KLD respect to Pint(s|β) can be rewritten as

D(P̄src(·|ρsrc)|Pint(·|β)) = d(ρsrc|β)−
∫
dαρsrc(α)D(Psrc(·|α)|P̄src(·|ρsrc)) . (2.14)

Since the last term on the right hand side does not depend on β, the minimization of

the KLD between the “averaged environment” and the internal mapping Psrc(s|β) leads

to the same result as the minimization of d(ρsrc|β) given by eq. 2.12. In both cases,

the Hessian matrix turns out to be strictly positive (see section 2.4), and therefore the

eventual extrema are local minima.

A particularly interesting example of this would comprise a community of similar

individuals which together strive to establish some kind of a common collective language

(see Fig. 2.1C). In any of these complex situations, our working hypothesis is that an

individual has a larger “fitness” when a characteristic measure, e.g. the mean, of its

KLDs from the set of diverse sources is small. Therefore, fit agents have internal states

close to those required by existing external conditions. This constitutes the starting

point for the computational models we are going to develop, but first, in section 2.2.2

we analyze the structure of the ‘information-based landscape’ of internal states.



2.2. Mathematical framework: Mapping the external world 29

Numerical computation in mean-field Ising parametrizations

When computing the KLD, as well as the normalization constant Z of parametrizations

2.1 and 2.3, a sum over states s = (s1, ..., sN) is involved. This is in general hard to

compute for large N , because the number of states grows as 2N .

However, since the mean-field Ising parametrizations of eqs. 2.5, 2.6 and 2.7 depend

on s only through the magnetization m =
∑

i si/N , the sums can be easily performed

for such cases. Defining Γ(m) as the number of states with
∑

i si/N = m, and using

the Stirling approximation, one readily obtains:

Γ(m) =

(
N

N(1+m)
2

)
=

N�1
exp

{
−N

(
1 +m

2
log

1 +m

2
+

1−m
2

log
1−m

2

)}
. (2.15)

Then, we can defined the continuous probability density function for the magnetization

m as

P̂src/int(m|γ) = Γ(m)
exp

(
−Hsrc/int(m|γ)

)
Ẑsrc/int(γ)

, (2.16)

where the normalization constant is fixed via integrating the previous formula in m ∈
[−1, 1]. A factor ∆m−1 = N/2 appearing when we pass to the continuum can been

re-absorbed in Ẑ.

Finally, the KLD can be computed with the integral

D(α|β) =
N�1

∫ 1

−1

dmP̂src(m|α) log
P̂src(m|α)

P̂int(m|β)
. (2.17)

2.2.2 Fisher information and criticality

We have defined the optimal map in both the cases of single and multiple sources. Now

we ask: How sensitive is the internal state, Pint(s|β), to changes in the value β? From

the point of view of information theory, the answer is given by the Fisher information.

Given a probability distribution P (s|β), the Fisher information (FI) is defined as

χµν(β) :=

〈
∂ logP (·|β)

∂βµ

∂ logP (·|β)

∂βν

〉
β

, (2.18)

where µ and ν are parameter labels and the average 〈·〉β is performed with respect to
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P (·|β). Eq. 2.18 constitutes a measure of the amount of information encoded in the

states s about the parameters β [34]. This follows from the Cramér-Rao inequality,

which states that the error made when we estimate β from one state s is, on average,

greater (or at least equal) than the inverse of the Fisher information [34]. In particular,

if χ happens to diverge at some point, it is possible to specify the associated parameters

with maximal precision. A more detailed analysis of this interpretation is included in

Appendix B.

Introducing the parametrization in eqs. 2.3 and 2.4, the FI becomes the generalized

susceptibility in the statistical mechanics terminology:

χµν(β) = −∂〈φ
µ
int〉β

∂βν
= 〈φµintφ

ν
int〉β − 〈φ

µ
int〉β〈φνint〉β , (2.19)

which measures the response of the system to parameter variations and is well-known

to peak at critical points [127, 16].

To give an intuitive explanation of the Fisher information, in Fig. 2.2A we represent

a two-dimensional Ising lattice at three different temperatures. From each snapshot, we

can infer (in a probabilistic manner) the temperature for each panel, but the error of this

estimation differs for each case. For instance, looking at the right (red) picture, we know

that, most probably, it corresponds to a high temperature, being hard to distinguish

the system with high temperature T = 103 or a ‘very high’ T = 105, because the

behavior is quite similar in both cases (the dynamics is basically random). A similar

argument holds for the left (blue) panel (frozen behavior). However, when we look at

the central picture, the one exhibiting a fractal structure, we know that, most probably,

it corresponds to a temperature close to the critical point, without much deviation from

this value. In fact, the error we make in this estimation is bounded by χ−1, that, in the

case of the Ising model, is proportional to the inverse of the specific heat [89] (see Fig.

2.2B).

In conclusion, if the internal states of individuals encode a continuous phase transi-

tion, the Fisher information reaches to identify the critical βc in terms of the original

probability Pint(s|β), which is where χ diverges, being maximum for finite system sizes.

Additionally, for multivariate parametrizations, we take the scalar χ = det(χµν) to ac-

count for potential divergences in any of the componentes of χµν . In the following, we

will refer to the critical point or maximum of the FI without distinction.
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Figure 2.2: A) Two-dimensional Ising lattice at different temperatures: spins
can point to either up (white dots) or down (black dots), and communicate with each
other by neighboring interaction. Depending on the temperature, two phases emerge:
order for low temperatures (left) and disorder for high temperatures (right), separated
by a critical point (middle). At this temperature, the system exhibits scale invariance,
as it can be seen from the four central panels, corresponding to different zooms (1x,
4x, 9x and 16x in clockwise order) of the same configuration. B) Fisher information
(or generalized susceptibility) in the Ising lattice, for different system sizes:
While it is small for low and high temperatures, the susceptibility peaks at the critical
temperature, diverging for infinite system sizes.

2.3 Computational models

We have developed diverse computational evolutionary and adaptive models exploiting

the ideas above. The dynamical rules employed in these models are not meant to,

necessarily, mimic the actual dynamics of living systems, rather they are efficient ways

to optimize fitness.

In the evolutionary models, inspired by the genetic algorithm [54, 56], a community

of M individuals –each one characterized by its own set of internal parameters β–

evolves in time through the processes of death, birth, and mutation. Individuals with

larger fitness, i.e. with a smaller mean Kullback-Leibler divergence from the rest of

sources, have a larger probability to produce an offspring, which –apart from small

random mutations– inherits its parameters from its ancestor. On the other hand,

agents with low fitness are more likely to die and be removed from the community.

In the adaptive models, individuals can change their internal parameters if the

attempted variation implies an increase of their corresponding fitnesses. These evolu-

tionary/adaptive rules result in the ensemble of agents converging to a steady state
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distribution, which we aim at characterizing.

We obtain similar results in two families of models, which differ in the way in which

the environment is treated. In one case (evolutionary/adaptive), the environment is

defined ad hoc, while, in the other (co-evolutionary/co-adaptive), the external world is

self-generated by a community of co-evolving/co-adapting individuals.

2.3.1 Evolutionary model

An ensemble of M agents is exposed at each particular time to a heterogeneous complex

environment consisting of S independent environmental sources, each one with a differ-

ent Psrc and thus parametrized by diverse αs (eqs. 2.1 and 2.2). The set of S sources is

randomly extracted from a broadly distributed pool of possible sources occurring with

different probabilities, ρsrc(α). The k-th agent has a representation Pint of the observed

sources, encoded in its parameter βk (eqs. 2.3 and 2.4).

Each of the agents is equipped with some initial parameter set extracted from some

arbitrary distribution p(β, t = 0), and the algorithm is run as follows:

1. At every time step, we generate S external sources, {αu}u=1,...,S, from the distri-

bution ρsrc(α).

2. We compute the average KLD of every individual’s internal representation to the

external sources

d({αu}|βk) :=
1

S

S∑
u=1

∑
s

Psrc(s|αu) log
Psrc(s|αu)
Pint(s|βk)

. (2.20)

3. One of the individuals of the community is removed with a probability propor-

tional to its average KLD:

Pkill(k) =
d({αu}|βk)∑
l d({αu}|βl)

(2.21)

and it is replaced by a copy of another individual (offspring), which is picked

randomly from the community with uniform probability.
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4. The offspring inherits its parameter set from its parent or, instead, mutates with

a probability ν, altering the original parameter, β → β+ ξ, where ξ is a random

Gaussian number of zero mean and deviation σ.

5. Time is incremented as t→ t+ 1/M .

6. Another set of parameters {αu}u=1,...,S is generated from ρsrc(α), and the process

is iterated.
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Figure 2.3: Evolutionary model leads to near to criticality for complex en-
vironments: Stimuli and internal states distributions correspond to mean-field Ising
model parametrizations (eq. 2.5). Panels on the left represent the evolution of three
different initial distributions of the parameter β in the community. In all cases the envi-
ronment is described by the uniform distribution of parameters ρsrc(α) = U([−10, 10]).
The distributions converge to the same stationary state –points and red line on the right
panel–, which is peaked at the maximum of the generalized susceptibility (dashed line
curve). Initial distribution are (red) uniform U([−4, 4]), (blue) Gaussian N(4, 0.25)
and (purple) N(−4, 0.25). Parameters are the same as in Table 2.1, and R = 104

independent realizations.

We are interested in the stationary distribution of the individual parameters, p(β) ≡
p(β, t → ∞) (we start measuring at some time Ti and stop at time Tf ), for which

the distribution is averaged over R independent realizations of the initial distribution

p(β, t = 0).



34 Chapter 2. The emergence of criticality in living systems

We have simulated the simple case in which both the external sources and internal

representations correspond to the simple mean-field Ising parametrization given in eq.

2.5. Similar results can be obtained for other parametrization of sources and internal

representations, for instance by considering eqs. 2.6, 2.7 with non-vanishing α2.

Parameter Value
N 100
M 100
S 10
ν 0.1
σ 0.1
ρsrc(α1) U([−10, 10])
(not used in Fig. 2.5)

Ti 104

Tf − Ti 105

R 100

Table 2.1: Parameters of the simulation of the evolutionary model: N is the
number of spins composing each of the individuals, M is the community size, S is the
number of stimuli received in every interaction with the environment, ν is the mutation
probability, σ is the deviation of the mutated offspring, Ti and Tf are the initial and
final time steps used for the measure and R is the number of independent realizations.

We first analyze the case of a very heterogeneous environment, which means that

sources α are picked from a broad distribution ρsrc(α) (a more accurate definition of

what this ’heterogeneity’ will be given, see below). Fig. 2.3 illustrates that starting from

different initial conditions p(β, 0) after some (sufficiently long) times the ensemble of

individuals converges to a unique steady state p(β, t→∞). The resulting distribution

is sharply peaked very near the critical point, at the very same location at which the

Fisher information or generalized susceptibility peaks. This peak approaches the critical

point β = βc in the limit N → ∞. The set of parameters used in this simulation is

listed in Table 2.1.

Fig. 2.4 illustrates the dependence of the results on parameters. The main conclu-

sions are:

• The system becomes closer and closer to the critical point as the system-size N

is enlarged.



2.3. Computational models 35

Figure 2.4: Dependence on parameters in the evolutionary model: Stationary
distribution p(β) as a function of diverse parameters; different colors in each plot stand
for different values of (from top to bottom and from left to right): number of spins
N , community size M , mutation probability ν, mutation deviation σ, and number of
external sources S. Unless otherwise stated, other parameters take the same values as
in Table 2.1. The dashed lines indicate the critical point location (in the limit N →∞).

• The distribution reaches an asymptotic shape as the ensemble size grows.

• The distribution becomes sharper for smaller mutation rates.

• The distribution becomes much sharper for small mutation variances.

• The distribution reaches an asymptotic shape as the number of external sources
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is increased.

At this point, we study the role of the environment in leading to criticality. Com-

puter simulations show that in the case of very homogeneous environments, occurring

when all sources in the pool are similar –ρsrc(α) sufficiently narrow– the optimal β

strongly depends on the specific sources, resulting in detail-specific internal states (see

bottom panels in Fig. 2.5). On the other hand, if the external world is sufficiently het-

erogeneous –broad ρsrc(α)– the optimal internal state becomes peaked near the critical

point (upper panels in Fig. 2.5).

This result is the key finding of this model: only when the environment is sufficiently

complex, individuals evolve to the vicinity of the critical point, while they do not if the

external world is very specific and predictable.

We note that there is some still dependence of the choice of the environment in

the resulting criticality (i.e. the mean β of the stationary p(β)), so the approach to

criticality is less precise in this model than in the co-evolutionary one, that we discuss

later, in which the environment changes progressively as the agents co-evolve, allowing

the system to systematically approach the critical point with precision.

Finally, all the results of the evolutionary model hold for the analogous “adaptive

model”, illustrated in section 2.3.3.

Heterogeneity of the environment

Up to now, we have referred to “homogeneity” and “heterogeneity” of the environ-

ment in a rather vague –but intuitive– manner. To objectively measure the level of

heterogeneity of the environment, we can use the (continuous) Shannon entropy of the

distribution of moments (observables) in the external distributions. Given the envi-

ronment characterized by its distribution of sources ρsrc(α), we compute its associated

distribution of moments %src(〈φ〉):

%src(〈φ〉) = ρsrc(α)

∣∣∣∣∂〈φ〉∂α

∣∣∣∣−1

. (2.22)

Then, the Shannon entropy can be computed as

S[%src] = −
∫
d〈φ〉%src(〈φ〉) log %src(〈φ〉). (2.23)
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Figure 2.5: Individuals become critical only for heterogeneous environments:
Using the parametrization of eq. 2.5 for both the sources and the internal states, we
run the evolutionary model and the community eventually reaches the steady state
distribution of parameters, p(β). The six panels in the figure correspond to different
supports (colored regions) for uniform source distributions, ρsrc(α). The dashed line is
the FI of the internal probability distribution, which exhibits a peak at the critical point
separating an ordered from a disordered phase. Heterogeneous source pools (Top and
Middle) lead to distributions peaked at criticality, whereas for homogeneous sources
(Bottom), the communities are not critical but specialized.

Note that, as it is defined in the continuum limit, the entropy can be negative [34].

To check the validity of this measure, we randomly generate different distributions

ρsrc(α) for the one-parameter case, where the parameter α refers to the mean-field Ising

model, eq. 2.5. For each distribution ρsrc(α), we compute its optimal representation β

as well as the entropy of %src(〈φ〉). The result is plotted in Fig. 2.6 and it is compared

with the corresponding Fisher information χ(β). We see that, when the entropy is low
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(homogeneous environments), the optimal mapping β can lie at any value, but, when the

entropy increases (heterogeneous environments), β is gradually confined into the critical

region. Thus, even though we have not been able to specify a quantitative distinction

between heterogeneous and homogeneous environments, the entropy of the distribution

of moments does constitute a good proxy for the environmental heterogeneity.

Figure 2.6: Measuring the heterogeneity of the environment: Each dot corre-
sponds to a randomly generated distribution of sources ρsrc(α), i.e. an environment. For
each of them, we compute the associated optimal representation β as well as the contin-
uous entropy of its moment distribution, S[%src(〈φ〉)]. Because the space of all possible
distributions ρsrc(α) can be sampled in many different ways, we restrict ourselves to the
case of uniform distributions with compact support in the range α ∈ [−10, 10]. The
purple line is the Fisher information (rescaled for visual comparing). We can see that,
as the entropy increases, the mapping is confined to the critical region, whereas it can
be at anywhere for low entropies. The parameters α, β refer to the mean-field Ising, eq.
2.5, with N = 100.

Effective criticality of the environment

As we have shown in section 2.2.1, minimizing the KLD to the “averaged environment”

–i.e. the distribution of sources resulting by averaging over different environmental

parameters– leads to the same result as minimizing the mean KLD to the sources,

which is what we implement in the simulations. With this equivalence, our results

show that agents seeing a complex “averaged environment” tend to become critical.
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One might wonder whether the resulting closeness to criticality in these models is

not just a byproduct of the environment itself being critical in some way. In fact, it has

been recently shown that complex environments, when hidden variables are averaged

out, can be effectively described by the Zipf’s law [119], a signature of criticality [101].

Thus it may not be surprising that individuals tune their parameters near the criticality

to minimize the KLD with respect to such a critical environment.

We show that our results cannot be generically explained in terms of this phe-

nomenon. For the cases in which the individuals end up near criticality, the averaged

environment is not necessarily critical. To illustrate this, we consider each of the pools

of sources used in Fig. 2.5 to illustrate the evolution of agents in the presence of complex

environments. As it is not possible to identify the criticality of the “average environ-

ment” by looking at the peak of a susceptibility, following the seminal paper by Mora

and Bialek[101] we say that a particular distribution is critical if it obeys Zipf’s law. To

check this, for each particular environment, we plot the probability of states ordered by

their rank and the energy as a function of the entropy (see [101]). In critical cases, the

energy should be a linear function of the entropy, and the rank ordering should obey

the Zipf’s law [101, 119].

The results are shown in Fig. 2.7, where we have kept the same relative position

and color code as in Fig. 2.5. Only two of the six averaged environments presented

in Fig. 2.5 turn out to be critical in the sense of Zipf’s law (upper panels in Fig.

2.7). In the two central cases, the averaged environment is not critical, but the optimal

internal distribution peaks around criticality (central panels in Fig. 2.7). This case

corresponds to an environment composed, essentially, of two very different type of

sources, and individuals have to accommodate to the critical point to respond to both

of them efficiently. This demonstrates that our approach works in a general scenario of

heterogeneous sources, without requiring the environment to be Zipfian.

2.3.2 Co-evolutionary model

Here we discuss the type of evolutionary model in which every individual receives stimuli

from its surrounding world, which is nothing but the set of the other individuals in the

community. Hence, the environment perceived by each individual consists of the other

systems in the community, which it aims at “understanding” and coping with.
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Figure 2.7: Heterogeneity and criticality of the averaged environment: Each
panel of the figure refers to the corresponding panel, with the same position and color
code, in Fig. 2.5. In each one, the main plot shows the probability of states in the
“averaged environment” P̄src(s|ρsrc) (eq. 2.13) with the states s ranked in order of
decreasing probability. The inset shows the energy associated to P̄src as a function of
the entropy. The black lines define the expected linear behavior in the critical case
[101]. Only the red and green settings correspond to a critical distribution obeying
also Zipf’s law (1/x). The more interesting cases are the blue and the orange ones: for
these, the internal distribution is critical even though the average environment is not.

In the simplest computational implementation of this idea, a pair of individual

agents is randomly selected from the community at each time step and each of these

two individuals constitutes the environmental source for the other (a more general
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implementation with multiple interactions at the same time is discussed later). Given

that the KLD is not symmetric, one of the two agents has a larger fitness and thus a

greater probability of generating progeny, while the less fit system is more likely to die.

More specifically, let call Pint(s|βk) ∝ exp
(
−Hint(s|βk)

)
the probability distribution

describing the k-th agent of the community (we use the same parametrization for all the

individuals, with different parameter βk). Starting with an ensemble of M individuals

whose coupling parameters are extracted from an arbitrary distribution, p(β, t = 0),

the evolutionary dynamics proceeds as follows:

1. At each time step, two individuals, i and j, are randomly selected.

2. Each individual has a probability to be removed proportional to its relative KLD

respect to the other:

Pkill(i) =
D(βj|βi)

D(βj|βi) +D(βi|βj)
, Pkill(j) = 1− Pkill(i), (2.24)

where –as the KLD is not symmetric– Pkill(i) 6= Pkill(j) unless βi = βj. One of

the two individuals is removed from the community, while the other creates and

offspring.

3. Offspring mutate with a probability ν, modifying its parameters from β to β →
β+ξ, where ξ is randomly chosen from a multivariate Gaussian distribution with

zero mean and deviation σ.

4. Time is updated to t→ t+ 1/M .

5. Another couple of individuals i′ and j′ is picked, and the process is iterated.

To compute the stationary distribution of parameters p(β) ≡ p(β, t → ∞), we

iterate Ti time steps and then perform measurements during Tf − Ti steps. Results are

averaged over R realizations of the evolutionary process.

As for the evolutionary model, we first study the stationarity of the final distribu-

tion of parameters β in the community. In Fig. 2.8, the co-evolution of M = 100 agents

–which on their turn are sources– leads to a very robust evolutionarily-stable steady-

state distribution (in this case, we illustrate our results with the Ising parametrization
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with an external field, eq. 2.7, but after we discuss other parametrizations). Indeed,

different panels on the left show that, for three substantially different initial parame-

ter distributions, the community co-evolves in time to a unique localized steady state

distribution, which turns out to be peaked at the critical point (i.e. where the Fisher

information peaks, see Fig. 2.8 right panel). This conclusion is robust against model

details, different parametrizations and computational implementations: the solution

peaked at criticality is an evolutionary stable attractor of the dynamics. The same con-

clusions hold for an analogous “co-adaptive model” in which the systems adapt rather

than dying and replicating (see section 2.3.3).
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Figure 2.8: Co-evolutionary model leads self-consistently to criticality: In
this case, each agent i (i = 1, ...,M) is characterized by a 2-parameter internal state
distribution of eq. 2.7 (mean-field Ising with an external field), and the rest of the
community acts as the external environment it has to cope with, i.e. the agents try to
“understand” each other. (Left) The co-evolutionary rules drive the community very
close to a unique localized steady state. As shown (Right), this is localized precisely at
the critical point, i.e. where the FI of the internal state distribution exhibits a sharp
peak (as shown by the contour plots and heat maps).

Numerical parameters are summarized in Table 2.2.

We study also the dependence on the parameters, in particular, on number of spins,

N , number of individuals, M , the mutation probability, ν, and the deviation of the

mutations, σ. Results are summarized in Fig. 2.9 for the same parametrization used
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Parameter Value
N 100
M 100
ν 0.1
σ 0.1
σ1, σ2 1σ, 0.1σ
Ti 104

Tf − Ti 105

Init. Distribution N(−3, 0.25) ·N(−0.25, 0.05)
N(3, 0.25) ·N(0.25, 0.05)
U([−4, 4]× [−0.8, 0.8])

R 100 (10000 for transients)

Table 2.2: Parameter values in the simulation of the co-evolutionary model.
See also Table 2.1.

in Fig. 2.8 (eq. 2.7)

Alternative parametrizations

We show that the convergence to the critical point is robust for alternative parametriza-

tions of the internal states Pint(s|β). Figs. 2.10 and 2.11 correspond to stationary dis-

tribution p(β) in the one-parameter case (eq. 2.5) and the quadratic-quartic case (eq.

2.6), respectively, together with the determinant of the FI.

Complex internal networked topologies

We now scrutinize a different parametrization of the model in which the internal prob-

ability distribution of each individual/agent is not a “mean-field” one, in the sense that

every si variable is coupled to all others, but instead, possible interactions are encoded

in a network, such that each si interacts only with other sj directly connected to it, i.e.

for which the adjacency matrix, element aij 6= 0. We have restricted this analysis to

the case of one parameter β.

The co-evolutionary dynamics is as before, with the only difference that now the

structure of the probability characterizing each individual is as follows:

• Given N spin variables, we generate a fixed adjacency matrix of interactions
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Figure 2.9: Parameter dependence in the co-evolutionary model: we plot the
stationary distribution p(β1, β2) as a function of parameters (for the linear-quadratic
case, eq. 2.7). Different colored lines in each plot correspond to different values of
N , community sizes M , mutation parameters ν, and σ. For larger communities sizes
the stationary distribution becomes sharper. Parameter values are listed in Table 2.2
(unless otherwise specified).
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Figure 2.10: Stationary distribution p(β) in the co-evolutionary model in the
1-parameter case, eq. 2.5: we compare the stationary distribution (orange line)
with the generalized susceptibility (purple dashed line). As in Fig. 2.8, the individual
parameters converge to the peak of the FI. Parameters are set to N = 100, M = 100,
ν = 0.1, σ = 0.1.
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Figure 2.11: Stationary distribution p(β1, β2) in the co-evolutionary Model
with the quadratic-quartic parametrization, eq. 2.6: as above, we compare
the stationary distribution (right panel) with the generalized susceptibility (left panel).
Again, the community evolves toward the global maximum of the FI. Parameter values:
N = 100, M = 100, ν = 0.1, and σ1 = σ2 = 0.1.
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â. The probability to find a certain configuration s in the k-th individual is

P â
int(s|βk) ∝ exp{−H â

int(s|βk)} with

H â
int(s|βk) = −βk 1

N

N∑
i,j>i

aijsisj. (2.25)

• The system is iterated as in the co-evolutionary model, leaving â fixed in time

and identical for all individuals.

As the structure of â is an arbitrary one, the calculation of the distances between

distributions needs to be explicitly computed by summing over the 2N possible states

(which severely limits the maximum size in computer simulations; N ∼ 20).

Results for the stationary distribution of parameters p(β) and different types of

network architectures, together with the corresponding curves of generalized suscepti-

bilities computed as

χâ(β) =

〈(
1

N

N∑
i,j>i

aijsisj

)2〉
P â(s|β)

−

〈
1

N

N∑
i,j>i

aijsisj

〉2

P â(s|β)

(2.26)

are shown in Fig. 2.12. In all cases, the main result of this chapter holds: the resulting

internal parameters distributions peak around the critical point.

Heterogeneity of the community

We find an interesting observation in Fig. 2.9 about the dependence on the mutations

variance σ2 of the resulting distribution: when this deviation increases, distributions

generally become more peaked around the critical point. In principle, this conclusion

could be confusing and paradoxical, but tells us that, when the progeny tends to diver-

sify (i.e. more heterogeneous), the community shrinks to the critical point.

To analyze this effect, we focus in the simple one-parameter case (eq. 2.5). We

study three different aspects of the stationary distribution of p(β) depending on σ: i)

The standard deviation of the stationary distribution, ii) the kurtosis, which gives a



2.3. Computational models 47

Figure 2.12: Stationary parameter distributions for three different network
structures â of N nodes: Three cases are studied: (left) Random Boolean network:
connections are not weighted, i.e. aij = aji = {0, 1}, with mean connectivity N/2,
(center) Random weighted network: in this case, aij = aji = η, where η is a random
number between 0 and 1 (right) Regular 2D lattice with periodic bounding conditions.
In all cases, parameters have been set to ν = 0.1, σ = 0.5, M = 100, and N = 20 for
the two left and central panesl, and N = 25 for right one. In dashed line, the FI has
been plotted and re-scaled for visual comparison.

measurement of the “peakedness” of the given distribution, which is defined as

kurtosis =
〈β4〉 − 〈β〉4

〈β2〉 − 〈β〉2
− 3, (2.27)

being null for a Gaussian distribution, positive if it is more peaked, and negative if it

is flatter, and finally iii) the position of the 25th, 50th, 75th and 90th percentiles.

Results are summarized in Fig. 2.13. In particular, we see that most of the pop-

ulation –but not all– concentrate in the critical point when increasing σ, which can

be seen for instance in the deviation where we get the 75% of the total population

(75th percentile). Additionally, the distribution becomes sharper (as it is seen from the

kurtosis). However, the standard deviation also increases because of highly mutated

offspring.

Multiple body interactions

The co-evolutionary model has been introduced taking only two individuals at each

time step. Are the previous results affected if a larger number of individuals is allowed

to interact at the same time?
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Figure 2.13: Mutation variability enhances the approach to criticality in the
co-evolutionary model (results shown for the 1-parameter distribution of eq. 2.5):
Most individuals concentrate in the critical point when increasing the mutation variance
σ2. This can be seen from the deviation where it is confined the 25%, 50% and 75% of
the total population (dark blue, magenta and light blue curves), which shrinks for high
values of σ. However, this variability produces also long tails (inset panel) due to the
highly mutated offspring, and therefore, increasing the kurtosis.

To answer this question, here we study a variant of the co-evolutionary model in

which K individuals (i1, ..., iK) are randomly picked at each time step, and they compete

among themselves; the probability to die is proportional to its (normalized) average

KLD to the remaining ones, i.e.

Pkill(ik) =

K∑
l=1

D(βil|βik)

K∑
m=1

K∑
l=1

D(βil|βim)

, k = 1, ..., K, (2.28)

and then it is replaced by a copy of one of the remaining K − 1 individuals (and

mutations are introduced with probability ν).

We have implemented the simulation with the simple parametrization of eq. 2.5

(Ising with one parameter). Results are summarized in Fig. 2.14 where we plot the

mean value of the parameter over the entire community and 103 realizations of the same

initial condition. It can be seen that the time to reach stationarity increases with K.

When K increases, the drift which moves the system towards the criticality is lower.

This is related to the fact that, by averaging over more and more individuals, the source
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Figure 2.14: Time evolution in the co-evolutionary model with K-body inter-
actions (with parametrization of eq. 2.5): Solid lines represent the time evolution of
mean values 〈β〉 :=

∫
dβ p(β, t)β. The relaxation to the stationary state depends on

the effective number of individuals K with which each single agent interacts. The larger
the value of K the larger the relaxation time. The community evolves very close to
the maximum of the generalized susceptibility (plotted with dashed lines). The initial
condition is β = 3 for all of the individuals and parameters are N = 100, M = 100,
ν = 1 and σ = 0.1.

effectively becomes more and more homogeneous.

2.3.3 Adaptive dynamics

We briefly show that our results are robust in the sense that criticality is also obtained in

a adaptive –rather than evolutionary– type of dynamics. For this purpose, analogously

to the previous evolutionary and co-evolutionary implementations, we introduce the

“adaptive” and “co-adaptive” model.

Adaptive model

The adaptive model, in which a agents in a community of M individuals change their

parameters to accommodate to an external environment, proceeds as follows:

1. As in the evolutionary models, every source is parametrized by eqs. 2.1 and 2.2

and the individuals by eqs. 2.3 and 2.4.

2. We start with M individuals whose parameters are distributed as p(β, t = 0).
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Note that, in this model the individuals are completely independent, and having

a big community is only useful in terms of the statistics.

3. At every time step, we generate S external sources from the pool ρsrc(α).

4. At every time step, every individual can change its parameters by a small jump

in one of them; among all the possibilities it chooses the one which minimizes the

mean KLD to the sources:

βi −→ arg min
ε∈E

1

S

S∑
u=1

D(αu|βi+ε), E = {(±ε1, 0, ...0), (0,±ε2, 0, ...), ...} (2.29)

5. With probability ν, we introduce some noise in the adaptation, and every individ-

ual can change its parameters with a Gaussian random fluctuation ξ, with mean

zero and variance σ.

6. Time is incremented as t→ t+1. Another set of sources is generated from ρsrc(α)

and the process is iterated.

Fig. 2.15 shows the dynamics of the community with three different environments

(the same ones as in the evolutionary simulation, Fig. 2.5, and similar parametrization).

As in the analogous evolutionary model, heterogeneous environments lead to a tuning

of parameters to criticality (top and middle panels), while very specific sources (bottom

panels) do not.

Co-adaptive model

We have also developed the following co-adaptive model (counterpart of the co-evolutionary

model):

1. We start with M individuals with parameters distributed as p(β, t = 0). Here t

refers to time.

2. At every time step, every individual can change its parameters by a small jump

in one of them. Among all the possibilities, it chooses the one which minimizes
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Figure 2.15: Adaptive dynamics in the presence of varying external environ-
ments: The figure shows the average of the internal parameters in the community and
the stationary distributions for different environments. As obtained for the analogous
evolutionary model, the stationary solution peaks at the critical point if the external
environment is sufficiently heterogeneous, while it does not for simpler environments.
Parameters, probability parametrization and initial conditions are similar to the ones
used in Fig. 2.5 (same color code), and ε = 0.1, ν = 0.3.

the mean KLD to the rest of the community:

βi −→ arg min
ε∈E

1

M − 1

M∑
j 6=i

D(βj|βi + ε), E = {(±ε1, 0, ...0), (0,±ε2, 0, ...), ...}

(2.30)

3. We introduce some noise in the adaptation, and with probability ν every indi-

vidual can change its parameter with a small random fluctuation ξ, Gaussian
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distributed with zero mean and deviation σ.

4. Time is incremented as t→ t+ 1 and the process is iterated.

In Fig. 2.16 we show the evolution of the mean and variance of β in the community

with three different initial conditions (same as in the co-evolutionary simulation, Fig.

2.8), together with the stationary distribution. Individuals cluster again in the vicinity

of the critical point, and the result is independent of the initial conditions.
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Figure 2.16: Co-adaptive dynamics. (Left) Time dependence of the first moments
of the distribution of internal parameters. Regardless of the initial conditions, the
community moves toward the critical point (β1 = 1 and β2 = 0) and reaches the
same stationary solution as the corresponding co-evolutionary model. The stationary
probability, on the right panel, shows a peak where the generalized susceptibility or FI
peaks (see contour plots). Parameters, probability distribution parametrization, and
initial conditions are similar to the ones used in Fig. 2.8. ε1 = 0.1, ε2 = 0.01, ν = 0.3

2.4 Analytical results

In the light of the results obtained, we present different mathematical approaches to

understand the previous findings. In general, our goal is to explicitly calculate the
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optimal representation for the cases in which individuals cope with an heterogeneous

environment or with themselves.

Given the external source α (which could also represent another individual), the

optimal map can be calculated by introducing the parametrization of Psrc and Pint

(eqs. 2.1, 2.2 and 2.3, 2.4, respectively) into the definition of the KLD (eq. 2.8); then,

deriving in β to find the minimum:

0 =
∂

∂βµ
D(α|β) = −〈φµint〉β + 〈φµint〉α =⇒ 〈φµint〉β = 〈φµint〉α, (2.31)

where the index µ runs for different internal parameters (µ = 1, ..., I). This equation,

which implicitly defines the optimal internal parameters, has an intuitive interpretation:

the minimum of the KLD is obtained when the first I moments of the distribution

Pint(s|β) exactly match those measured from Psrc(s|α).

To check whether extrema are minima or maxima, one needs to evaluate the Hessian

matrix at the stationary point,

∂2

∂βµ∂βν
D(α|β) = − ∂

∂βν
〈φµint〉β = 〈φµintφ

ν
int〉β − 〈φ

µ
int〉β〈φνint〉β = χµν(β), (2.32)

which coincides with the generalized susceptibility defined in eq. 2.19. As the FI matrix

is a positive-definite matrix (excluding the trivial case of a factorized Pint(s|β) for which

it vanishes), if the solution of eq. 2.31 exists, it corresponds to a minimum of the KLD.

Similarly for the case of multiple sources, we can optimize d(ρsrc|β), and the equation

is:

〈φµint〉β =

∫
dα ρsrc(α) 〈φµint〉α. (2.33)

Here the system adopts the single value of β that better describes on average the varying

environment.

2.4.1 External heterogeneous environment

We consider the simple example in which both the sources and the system are charac-

terized by a single parameter (E = I = 1) and same parametrization (φsrc = φint = φ),

and we assume that a phase transition occurs at some parameter value α = αc, i.e. the
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observable
〈
φ
〉
α

has a sigmoid shape (which becomes steeper as N increases) with an

inflection point at α = αc (our analysis can be extended to more general cases where

there is no built-in phase transition in the source distributions but they are merely

sufficiently heterogeneous). The two plateaus of the sigmoid function correspond to

the so-called disordered and ordered phases, respectively. When ρsrc(α) has support on

both sides of the sigmoid function, the distribution of moments %src(〈φ〉) (eq. 2.22) is

broad, and then we say that the sources are “heterogeneous”.

By solving the equation for the optimal β (eq. 2.33), i.e. the one with 〈φ〉β equal

to the average moment on the sources, it is obvious that the moment to be reproduced

lies somewhere in between the two asymptotic values of the sigmoid with the values of

β for which intermediate moments are concentrated near the inflection or critical point,

αc. Indeed, as χ = −d<φ>β
dβ

, the critical region, where the generalized susceptibility χ

has a peak, is the region of maximal variability in which different complex sources can

be best accounted for through small parameter changes, in agreement with the finding

that many more distinguishable outputs can be reproduced by models poised close to

criticality [89].

We illustrate this argument with a particular example in Fig. 2.17. In this case,

both the sources and the internal representations are modeled by eq. 2.5, each one

containing only one parameter. We considered ρsrc(α) uniform in the range (−10, 10).

We see that the minimum average KLD to the sources appears where the FI maximizes,

i.e. at the critical point.

2.4.2 Self-organized environment

Let consider two individual agents A and B, where the source for A is B and vice versa.

The relative fitnesses of A and B are determined by how well the set of cues (described

by the probability distribution Psrc) of one individual is captured by the other with

minimum information loss, and vice versa. For simplicity, let start by the simplest case

of single-parameter distributions. If βA = βB, the two distributions would be identical

and the KLD would vanish. However, this is not a stable solution. Indeed, if the two

parameters are not identical but close (βA ' βB), as the KLD is not symmetric, one of

the individuals has a larger fitness. Actually, introducing the general parametrizations
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Figure 2.17: Average KLD to the sources and optimal representation. The
orange line is the averaged KLD, d(ρsrc|β), of the internal parameters β (eq. 2.11). The
dashed line is proportional to the FI (eq. 2.19). The minimum of the distance is located
close to the critical point (characterized by the peak of the FI). In this case both the
sources and the internal representations are modeled by eq. 2.5 (one-parameter Ising)
with N = 50,source parameters are uniformly distributed in the range [−10, 10].

of eqs. 2.3, 2.4 in the definition of the KLD, it is possible to compute the difference

D(βA + δβ|βA)−D(βA|βA + δβ) =
1

6
∇χ(βA)δβ3 +O(δβ4) (2.34)

where ∇χ is the gradient of the generalized susceptibility and δβ = βB − βA. This

implies that the individual whose parameter corresponds to the state with larger χ has

a smaller KLD and is thus fitter. As χ peaks at the critical point, thus our key finding

is that, for a family of individuals with similar parameters, the fittest possible agent sits

exactly at criticality, and it is best able to encapsulate a wide variety of distributions.

We can illustrate the mechanism with a different approach. We consider an individ-

ual, characterized by the parameters β, coping with similar –but not equal– individuals

playing the role of the sources, characterized by the distribution ρsrc(α). Then we study

how the distance to the critical point is modified by the internal representation. That

is, we take a narrow distribution of α values, centered at some average value ᾱ at some

distance to criticality, and we wonder how does the distance to criticality change when

the optimal internal representation is constructed. Does it grow or does it generically
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diminish?

For this purpose, we take a distribution ρsrc(α) which is different from zero only in

a small region U . We can therefore expand both of the left and the right hand sides of

eq. 2.33 around the mean value ᾱ :=
∫
U
dααρsrc(α), and then we obtain

(βµ − ᾱµ) =
(
χ−1
)µν

(ᾱ)
1

2

∂

∂αν
χγδ(α)

∣∣∣∣
ᾱ

∫
U

dα′ρsrc(α
′)(α′γ − ᾱγ)(α′δ − ᾱδ) , (2.35)

where χµν(α) are the elements of the Fisher information matrix (eq. 2.19). This is an

equation for the deviation of the internal parameter β respect to ᾱ. To understand its

relation with the critical point, we rewrite eq. 2.35 as

(β − ᾱ) = χ−1(ᾱ)∇Ω(ᾱ), (2.36)

where we have defined the scalar field Ω(α) as

Ω(α) :=
1

2

∫
U

dα′ ρsrc(α
′)(α′ − ᾱ)T · χ(α) · (α′ − ᾱ) . (2.37)

As χ(α) is a positive-definite matrix, from eq. 2.37 we see that Ω(α) is a positive

quantity. If we introduce a base of eigenvectors of χ(α), vγ(α), with eigenvalues λγ(α),

we get

Ω(α) =
1

2
λγ(α)

∫
U

dα′ ρsrc(α
′)
[
vγ(α)T · (α′ − ᾱ)

]2
. (2.38)

At the critical point, at least one λγ(α) diverges (in the thermodynamic limit), so Ω(α)

has a maximum at the critical point. Note that vγ(α) cannot vanish because it is an

unitary vector. Therefore, the gradient of Ω points to the critical point, at least if ᾱ is

not too far from it in a such a way that there are not other local maxima to which the

gradient could be pointing.

Finally, we project both sides of eq. 2.36 over the gradient of Ω(ᾱ):

(∇Ω(ᾱ))T · (β − ᾱ) = (∇Ω(ᾱ))T · χ−1(ᾱ) · ∇Ω(ᾱ) . (2.39)

As χ is positive-definite, also its inverse χ−1 is a positive-definite matrix, and the

projection of (β − ᾱ) on the gradient of Ω(ᾱ) (which points to the critical point) is
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also positive.

Consequently, the internal map ρsrc(α) −→ β is closer to the critical point than ᾱ,

indicating that there is an overall drift towards parameter regions with larger Fisher

information. After iterating the same mapping for all the systems in the community,

they converge to the critical point.

To give and example, we can consider a system characterized by only one parameter.

As above, we want to find the optimal mapping β which solves eq. 2.33. We consider

a general functional form for 〈φ〉α (omitting the sub-indexes in φsrc/int) with a phase

transition in α = αc: at a finite size,
〈
φ
〉
α

has a sigmoid shape, with the inflection point

(i.e. the local maximum/minimum of its derivative) corresponding to the transition

point αc. Suppose that ρsrc(α) is uniform in an interval between ᾱ − a and ᾱ + a;

we want to compare the distance |ᾱ − αc| with |β − αc|, where β is the optimal value

obtained with eq. 2.33. In the limit of small interval a, we obtain

〈
φ
〉
β

=

∫ ᾱ+a

ᾱ−a
dα

1

2a

〈
φ
〉
α
∼
〈
φ
〉
ᾱ

+
〈
φ
〉′′
ᾱ

a2

6
, (2.40)

where
〈
φ
〉′′
ᾱ

is the second derivative of
〈
φ
〉
α

evaluated in ᾱ. Expanding the left hand

side of the equation around ᾱ we obtain

β − ᾱ ∼
〈
φ
〉′′
ᾱ〈

φ
〉′
ᾱ

a2

6
. (2.41)

Suppose now that the sigmoid has a positive (negative) derivative, then the second

derivative will be positive (negative) below the critical point and negative (positive)

above, giving β always closer to the inflection point (i.e. the critical point). Note that

the larger the value of a (i.e. more heterogeneous the distribution ρsrc(α)), the closer

β to the critical point.

In conclusion, both mathematical approaches lead to the same result: in the scenario

where individuals play the role of the sources for the others and co-evolve to improve

their mutual knowledge, the community dynamically self-organizes around the critical

point. Consequently, the critical point arises as the stable attractor of such information-

based interaction.
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2.5 Chapter summary

Summing up, in this chapter we have focused on the hypothesis that some aspect

of living systems may operate at critical points. We have addressed this question

by employing different analytical and computational tools, relying on concepts from

statistical mechanics and information theory. Under the mild assumption that living

systems need to construct good, although approximate, internal representations of the

complex world, and that such good maps provide a crucial competitive advantage, we

have shown for different scenarios that individuals evolve/adapt to a critical point –if

there is the possibility– in order to efficiently cope with a complex environment [62].

In particular:

• We have introduced the mathematical framework: sources can only be proba-

bilistically perceived by the individuals, but such representations might not be

accessible to the systems by tuning their internal structure. The optimal map

is given by the minimization of Kullback-Leibler divergence between the internal

and source distributions. We have also characterized the critical point in the

space of possible representations with the maximum of the Fisher information.

• We have implement an evolutionary model in which fitter individuals, i.e. those

with better maps, are selected to evolve in a genetic algorithm. At each time,

individuals are exposed to randomly generated sources. We show that, when the

the pool of sources is highly heterogeneous, individuals evolve around the critical

point, while the do not when the environment is very predictable and specific.

• We have given a more accurate definition of the heterogeneity/homogeneity of

the environment. Moreover, we have checked that this tuning to criticality in the

community is not, in general, a byproduct of the environment itself being critical.

• A more robust convergence to criticality is obtained for a co-evolutionary model,

in which the environment is not externally imposed, but it is composed of the com-

munity itself, i.e. individuals play the role of sources for the others. Surprisingly

enough, even if the only goal of individuals is to “understand” each other with

precision, the community turns out to be critical, thus becoming highly complex.
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• We have checked that our results are robust against different parametrizations

of the internal systems presenting a critical point, as well as in a variant of the

model in which many individuals interact simultaneously at each time.

• Similar results, for both externally and self-consistently introduced environments,

are obtained with analogous adaptive and co-adaptive models, in which individu-

als, rather than following a genetic algorithm, dynamically tune their parameters

to improve their fitness.

• We have developed several mathematical analyses that illustrate the previous

mechanisms. In particular for the co-evolutionary/co-adaptive dynamics, the crit-

ical point emerges as the evolutionarily stable strategy, where the non-symmetric

nature of interactions turns out to be a key ingredient.

Our results can be applied for general complex adaptive systems, but in particu-

lar, they could be related to populations in which a huge phenotypic variability has

been empirically observed, for instance in some bacterial communities [81] and viral

populations [129]. Such diversification represents and adaptive survival strategy when

the environment is highly unpredictable, in order to minimize the long-term risk of

extinction [144, 145]. In our framework, it constitutes a direct consequence of a com-

munity being critical. In the following chapters, we study this mechanism in the context

of population dynamics, popularly called “bet-hedging” in analogy with stock-market

portfolio management.





Chapter 3

Bet-hedging in population dynamics

3.1 ‘Bet hedging or not?’

In natural environments, individuals have to choose between a variety of different evo-

lutionary strategies, characterized by different time-dependent payoffs and risks. Par-

ticularly relevant is the case in which the choice is between a relatively safe strat-

egy, with low but stable payoff, and a variable one, potentially very productive, but

risky. An example of this are micro-organisms able to metabolize two different resources

[100, 134, 40, 125]: one consistently available at a fixed though low level, and a second,

more abundant on average but fluctuating in time.

The lack of knowledge about environmental conditions forces individuals to make a

blind decision on whether to specialize into exploiting one or the other, or instead to

develop a hybrid “bet-hedging” strategy, alternating both routes, either stochastically

or following information from sensory systems [120, 81]. Hybrid strategies can be also

exploited at a community level, for example by means of phenotypic variability [81, 125].

The concept of bet-hedging was first formalized in the context of information theory

[76] and portfolio management [46]. Later, it was conjectured that living organisms may

decrease their risk in unpredictable environments by developing bet-hedging strategies

[120, 140, 30, 37, 69], as it has been empirically confirmed in bacterial and viral commu-

nities [129, 144, 145, 134, 40, 125, 58], in insects [65], and in a wealth of other examples

in population ecology, microbiology, and evolutionary biology [140].

Given their ubiquity, bet-hedging strategies have attracted a lot of interest from the

61
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perspective of evolutionary game theory [124, 106]. An interesting and non-trivial result

in this context is the so-called Parrondo’s paradox [57, 110] in which an alternation of

two distinct losing strategies can lead to a winning one. Most of these studies, including

application in population dynamics [140], rely on mean-field analyses describing well-

mixed communities.

In this chapter, we study optimal bet-hedging strategies in the search of general

patterns and conditions. For this, we employ a parsimonious approach relying on

simple individual-based stochastic modeling.

3.2 Contact Process with hybrid dynamics

Our starting point is the simplest possible birth-death stochastic model on a lattice,

i.e. the contact process (CP) [88, 59]. Individuals occupy a square lattice or network,

with at most one individual per site (see fig. 3.1, left), and at every discrete time step,

each individual can either:

• With probability p, produce an offspring at a randomly chosen neighboring site,

provided it was empty,

• or, complementary with probability 1− p, die and be removed from the system.

This simple dynamics can either generate an active phase characterized by a non-

vanishing density of individuals or, alternatively, lead ineluctably to the absorbing state

in which the population is extinct, depending on the value of p. A critical point, pc,

separates these two different phases [88, 59] (see fig. 3.2).

We consider a variant in which individuals can choose between two strategies (see

fig. 3.1, right):

• A conservative one, corresponding to exploitation of a constantly available re-

source.

• A risky one, exploiting a variable/unpredictable resource.

These two alternatives affect the value of p experienced by each individual. The conser-

vative strategy corresponds to a CP in which p is kept constant at a relatively low value,
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Figure 3.1: (Left) Dynamics in a standard Contact Process: each particle in
the lattice either i) produces a new one, with prob. p, on a random neighboring site
(provided it was empty) or ii) is removed from the lattice, with prob 1 − p. (Right)
Contact Process with a hybrid dynamics: at each time, every particle chooses
between the conservative (with prob. 1−α) and the risky (with prob. 1−α) spreading
strategy. The conservative dynamics is characterized by a constant, relatively low
spreading prob. p0, while the risky one has a variable and unpredictable prob. p(t).

p0. In the risky strategy, demographic probabilities depend upon variable external con-

ditions, i.e. p = p(t), where p(t) is a random noise –common to all individuals choosing

the risky strategy in the community– drawn at every time-step. Individuals can hedge

their bets by randomly choosing between the conservative and the risky strategy at

each time step.

This choice is controlled by a risk parameter α which acts as a control parameter:

with probability α each individual chooses the risky strategy and with probability 1−α
the conservative one. In the language of game theory, α = 0 and α = 1 are “pure

strategies” and the range 0 < α < 1 describes a set of “hybrid strategies”.

We implement the dynamics with synchronous updating1 [59] in different network

topologies: one- two and three-dimensional regular lattices and fully-connected (FC)

network; after four dimensions, the CP is known to present similar properties to the

FC network [88], constituting the so-called critical dimension. While otherwise stated,

1In the literature, however, the name “Contact Process” is usually identified with an asynchronous
updating rule, as an instance of the SIS model.
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α is kept as a fixed control parameter. Simulations are initialized with a fully occupied

configuration; the dynamics proceeds as follows:

1. At every step, a fresh value of p(t) is extracted from a Gaussian distribution

N(p̄, σ2) (this choice will permit, later, an easier treatment in a continuous stochas-

tic theory). For large variance σ2, it can happen that p(t) < 0 or p(t) > 1; in this

case we simply enforce p(t) → 0, 1, respectively (actually, we make p(t) < 0 →
p(t) = ε, as we explain later).

2. The network/lattice is updated synchronously; with probabilities α and 1 − α,

each individual selects the risky or the conservative strategy respectively.

3. Each individual either reproduces or dies with the corresponding probabilities; all

dying individuals are removed from the system and afterward offspring are placed

at random neighbors of their corresponding parents, keeping the constraint of up

to one individual per site.

4. Finally, time is incremented in one unit and the process is iterated.

Before going the next section, let us clarify some technicalities about the computational

implementation:

• The synchronous updating presents some ambiguities; for instance, if a particle

occupying node 1 tries to produce an offspring on node 2, but, parallely, there

is a particle at node 2 which has decided to die, what is the state of node 2 at

the next time step? We choose to favor the activity (node 2 would stay active

at the next time step in the previous example), but the general features of the

model are insensitive to this choice. We do not use the standard asynchronous

updating, more common in simulations of the CP, because within this choice,

as the spreading probability depends on time (p = p(t)), one has to implement

the Gillespie’s algorithm [53] with time-dependent rates, becoming a cumbersome

task [2].

• Additionally, we introduce a cut-off in p(t) ≥ ε. This numerical trick only changes

slightly the kind of distribution we are using, and avoids deterministic global

extinctions (because the removal prob. is 1− p(t)) after a characteristic number
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of steps ∼ Prob(p(t) ≤ 0)−1. Note that this undesirable effect would appear also

in the “active” phase at the thermodynamic limit N → ∞, and therefore the

introduction of a cut-off becomes essential in order to compute mean extinction

times when the Gaussian variance is large.

• Finally, note that, unless we are interested in measuring the mean extinction

time, there always exists the possibility to fall into the absorbing state for any

finite system (even for the active phase and after the introduction of the cut-

off ε). This probability decreases exponentially for larger systems size, but it

can happen, and it actually do. Therefore, any finite system has to be treated

under the quasi-stationary approximation, which can be implemented in several

manners [52, 43, 104]: either i) we restrict our measurements to survival runs of

the dynamics, or, more easily, ii) we reactivate the system every time the activity

dies by introducing just one particle (equivalent to include a low external drift).

The last solution can be modified to provide exact solutions [42], but it is more

than enough for many purposes.

3.3 Phases of the pure strategies

We first analyze the phases of the CP with one of the pure strategies, either α = 0

or α = 1. The phase diagram for the risky strategy (α = 1) is shown in fig. 3.2 for

different network dimensions as a function of the parameters (p̄, σ2); note that α = 0

corresponds to a risky strategy with σ2 = 0. A critical line separates the absorbing

phase (zero density) and the active phase (positive density) in each dimension. Let us

remark that:

• For each network dimension, and fixing the mean reproducing probability p̄, ex-

ternal noise variance tends to destroy the activity, leading to the absorbing phase

for high enough values of σ2 [133].

• For a fixed external variability σ2, the critical point p̄c is shifted to higher values

of p̄ for lower dimensions, coinciding with the common idea that intrinsic noise,

larger in low dimensions, constitutes a negative effect for the activity.
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Figure 3.2: Phase diagram of the CP with time-dependent rates: the spreading
probability per site, p(t), is a random, non-correlated in time variable distributed as
a Gaussian N(p̄, σ2); complementary, the probability of a particle to be removed is
1− p(t). The standard CP, p(t) = p0, constitutes the particular case with zero variance
(Bottom axis). A critical line separates the active phase (non vanishing density) from
the absorbing phase (null density), being this region larger for lower dimensions. System
sizes are N = 10000 for 1D, 2D and FC lattices and N = 10648 in the 3D case.

Recent studies [133] has noted that, within the active region, a special phase, called

temporal Griffiths phase, emerges when temporal disorder (σ2 > 0) is introduced in the

parameters; there, the system presents scaling properties for a whole range of param-

eters, as if the critical point were stretched. We have made no attempt to distinguish

such a phase from the active one in our analysis.

3.4 Extinction times and Parrondo’s paradox

In well-mixed systems it is known that the alternation of two bad strategies can outper-

form a better one (see e.g. [76, 69, 140]). We describe the underlying mechanism with

a simple continuous-time mean-field calculation [52, 88, 59]. In the literature, however,

this effect is typically explained using discrete-time multiplicative processes; its discrete

analogy is discussed in Appendix C.

We consider the case p(t) = p̄+σξ(t) where ξ(t) is a delta-correlated Gaussian white
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noise. Given the presence of an external global noise, even in the large system-size limit

(N →∞) the mean-field dynamics needs to be described by a stochastic equation, and

the density of individuals, ρ(t), obeys the following Langevin equation:

ρ̇(t) = α [(p̄+ σξ(t)) ρ (1− ρ)− (1− p̄− σξ(t)) ρ] +

(1− α) [p0ρ (1− ρ)− (1− p0) ρ] . (3.1)

Defining the average spreading probability,

pav(α) = αp̄+ (1− α)p0, (3.2)

the equation is simply written as

ρ̇(t) = (2pav(α)− 1) ρ− pav(α)ρ2 + 2ασρ
(

1− ρ

2

)
ξ(t). (3.3)

Up to leading order, we can neglect the quadratic saturation effects and higher order

environmental-noise terms (valid for ρ� 1), obtaining, the linear Langevin equation

ρ̇ ≈ (2pav(α)− 1) ρ+ 2σαρξ(t). (3.4)

Changing variables (using Itô calculus) to y = log(ρ) and averaging over realizations

〈·〉, eq. 3.4 becomes d
dt
〈log ρ〉 = G(α) with the exponential growth rate

G(α) = −2σ2α2 + 2pav(α)− 1, (3.5)

whose sign determines whether the population tends to grow or to shrink, allowing to

distinguish between the active and the absorbing phase, respectively.

The growing rate is a parabola in α with negative quadratic coefficient. Therefore

there exists an optimal strategy α∗, that can be found by maximizing G(α) in the range

[0, 1]; the result is either a pure or a hybrid one depending on parameter values:

α∗ =


0 p̄ < p0

p̄− p0

2σ2
p0 < p̄ < p0 + 2σ2

1 p̄ > p0 + 2σ2.

(3.6)
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,

Figure 3.3: Upper panel: phase diagram for risky, conservative, and hybrid strategies.
The critical points for the pure strategies lie at pc(0) = 1/2 and pc(1) = 1/2 + σ2,
respectively. (Lower panel) The average value of p for a hybrid strategy, defined by
the risk parameter α, interpolates linearly between p0 and p̄ (blue/red line), while its
critical point is given by a quadratic interpolation (green/orange line). Consequently,
combining two subcritical values of p0 and p̄ (marked by arrows) with an intermediate
value of α between the two line intersections, the resulting hybrid strategy can be
supercritical. A similar enhancement of the stationary density is obtained generically,
independently of whether p0 and p̄ are subcritical.

As the critical point occurs for G(α) = 0, then

pc(α) =
1

2
+ σ2α2, (3.7)

interpolating quadratically between the critical points of the pure strategies (pc(0) = 1
2

and pc(1) = 1
2

+ σ2). On the other hand, the average spreading probability is a linear-

in-α interpolation between the two limiting pure values (eq. 3.2) . As illustrated

in Fig. 3.3, these two different types of behavior open the possibility for supercritical

behavior, pav(α) > pc(α), even when both pure strategies, p0 and p̄, are subcritical. This
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Condition Constraint
G(0) < 0 p0 < 1/2
G(1) < 0 p̄ < 1/2 + σ2

G(α∗) > 0 σ2 <
(p̄− p0)2

2(1− 2p0)
0 ≤ α∗ ≤ 1 p0 ≤ p̄ ≤ p0 + 2σ2

Table 3.1: Parameter constraints for the Parrodox’s paradox obtained from the
mean-field analysis.

paradoxical effect represents an instance of the Parrodox’s paradox [57], who illustrated

this mechanism in the study of Brownian ratchets. In a nutshell, the Parrondo’s paradox

states that there exist pairs of games, each with a higher probability of losing than

winning, for which it is possible to construct a winning strategy by playing the games

alternately. The set of constraints required for such a situation is summarized in table

3.1, and fig. 3.4 illustrates the region in the space of parameters.

In the case in which the two pure strategies are active, the same argument shows

that a larger density can be achieved by hybrid strategies. In the following we consider

both types of pure strategies, absorbing and active, and try to quantify the gain induced

by bet-hedging.

Fixing the parameters (p0, p̄, σ) to poise the respective pure strategies with α = 0, 1

in the absorbing phase, we look for values of α for which hybrid strategies are active.

For this, we measure the mean extinction time, τ , as a function of the system size N ,

for the 1D, 2D, 3D lattices and the FC network. Observe that, owing to fluctuations,

any finite system is condemned to end up in the absorbing state. However, its mean

lifetime increases exponentially with N , τ ∼ exp(N) in the active phase ([52, 133]; in

the presence of variable parameters, there can also be a slower-than-exponential power-

law scaling of τ(N) within the active temporal Griffiths phase [133]), making the system

stable in the large-N limit. On the other hand, a logarithmic increase, τ ∼ log(N) is

expected in the absorbing phase [52, 133].

As shown in fig. 3.5 for different values of α, τ grows with system size very slowly

(logarithmically) for the two different pure dynamics (α = 0, 1), while it increases ex-

ponentially for some hybrid strategies. We have made no attempt here to accurately

determine the values of α delimiting the active phase for each dimension, but just
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Figure 3.4: Region of parameters exhibiting the Parrondo’s paradox for differ-
ent values of the conservative spreading probability (p0 = 0.3 on the left, and p0 = 0.499
on the right): the blue shaded region represents a configuration of parameters where
both pure strategies lead to a deterministic extinction (G(α = 0, 1) < 0), while a
mixture of them can produce a persistent activity (G(α∗) > 0). The orange straight
line separates the absorbing phase (above the curve) of the active phase (below the
curve) for the risky strategy. When the conservative spreading probability approaches
its the critical value p0 → 1/2, any combination with a loosing risky strategy becomes
a winning one.

verified the stabilizing effect of hybrid strategies. Notice how the advantageous con-

sequences of bet-hedging are not limited to the mean-field case –for which analytical

understanding is available– but are important also in low-dimensional systems where

demographic fluctuations play a key role.

In what follows, we analyze how the benefits of bet-hedging depend on the level of

stochasticity, both external (environmental) and intrinsic (demographic).

3.5 Dependence on external/environmental variabil-

ity

First, we study the dependence on environmental variability σ2. For this, we tune the

two pure strategies to have the same stationary density 〈ρ(α = 0)〉 = 〈ρ(α = 1)〉 = 0.3

and analyze how the steady-state density, ρ, depends on α for different values of σ2.

We have chosen the low value 0.3 because it still permits the activity to grow up by
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Figure 3.5: Mean extinction times as a function of system size N for differ-
ent strategies α and spatial dimensions: for our parameter choice, the two pure
strategies α = 0, 1 have a logarithmic dependency (characteristic of subcritical behavior
[133]), while a range of hybrid strategies exhibits an exponential or power-law increase
typical of active phases [133]. Parameter values (p0, p̄, σ): 1D, (0.71, 0.80, 0.20); 2D,
(0.58, 0.71, 0.29); 3D, (0.54, 0.69, 0.30), and FC (fully connected), (0.499, 0.67, 0.33);
most error-bars are smaller than symbol sizes.

other mechanisms, but results do not depend on this choice.

Fig. 3.6A clearly illustrates that, for fully connected lattices, bet-hedging strategies

permit to achieve much larger values of ρ in more variable environments. The same

trend holds for low-dimensional lattices (not shown).

However, an enhancement in the activity does not necessarily mean that the hybrid

strategy corresponds to the best strategy; for instance, one could argue that extinctions

times could be shorter for the hybrid strategy than for the conservative one; contrarily,

the risky strategy could be more invasive when competing with many other strategies,
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Figure 3.6: A) Effect of the external-noise variability (σ2) on the stationary
density for different bet-hedging strategies. Curves are results of Monte Carlo
simulations of the fully-connected CP with bet-hedging. As σ2 is increased, the optimal
strategy induces larger stationary densities, even if the pure strategies α = 0, 1 lead
to the same density, 〈ρ(α = 0, 1)〉 = 0.3. B) Self-optimization with a genetic
algorithm: each particle inherits the value of α from its ancestor, and mutates with
a small Gaussian deviation ν = 10−3. We measure the histogram P (α) at stationarity
for each external noise variance σ2. The resulting distributions are located at the
optimal solution; the average density 〈ρ〉 and risk parameter 〈α〉 are represented in the
inset. Parameter values areN = 104, p0 = 0.567. (p̄, σ2) are (0.628, 0.05), (0.699, 0.10),
(0.765, 0.15) and (0.825, 0.20) in the different curves. Error bars are smaller than symbol
sizes in all cases.

as it experiences higher values of the spreading probability p(t) during short periods.

To answer these questions, we implement a genetic algorithm [54, 56] in the dynamics

and optimize the strategy in a self-consistent way. In this case, each particle has its

own value α and every time it reproduces, the offspring inherits the value α, except for

a small Gaussian-distributed random mutation with zero mean and standard deviation

ν (with hard boundaries conditions at α = 0, 1). In this case, we have computed the

histogram P (α) in the community once a steady state has been reached, as well as the

mean values 〈ρ〉 and 〈α〉 . As show in fig. 3.6B i) the resulting averaged values coincide

with the above-reported optimal ones and ii) the mean α appears a bit biased to α = 1

for lower dimension. Interestingly, the distribution appears extremely wide compare to

the mutations deviation (ν = 10−3 in the simulations).
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3.5.1 Analytics

The previous result can be easily rationalized within the linearized mean-field framework

above, eq. 3.4. Using the definition of G(α) and keeping the environmental variance σ2

as a control parameter, p0 and p̄ can be fixed by imposing identical growth rate of the

pure strategies, G(0) = G(1) ≡ G0,1. This determines the constraints p0 = (G0,1 + 1)/2

and p̄ = (G0,1 + 1)/2 + σ2, that, introduced in eq. 3.5 for the optimal α, lead to the

maximum growing rate as a function of σ2 and G0,1:

max(G) = G(α = 1/2) = G0,1 +
σ2

2
(3.8)

predicting a linear increase of the optimal G with σ2. Observe that the optimal value

of α in numerical simulations is typically slightly larger than the analytical prediction

α = 1/2, owing to non-linear saturation effects that have been neglected in the linear

approximation.

3.6 Dependence on internal/demographic variabil-

ity

We now explore the effect of demographic noise. To this aim, the spatial dimension of

the systems is varied while keeping a fixed external noise variance σ2. As above, to ease

comparison, we choose the pure strategies for each dimension so that 〈ρ(0)〉 = 〈ρ(1)〉 =

0.3, and measured computationally 〈ρ(α)〉 for hybrid strategies.

Fig. 3.6A clearly illustrates that the benefits of bet-hedging are much enhanced as

the system dimensionality is decreased, allowing for much larger densities.

For the risky strategy, as the parameter p̄ is increased as we decrease the dimension

in order to keep the same stationary density(see fig. 3.2), one could argue that it is not

fair to use the same environmental variance σ for all the lattices; however, the similar

result is obtained (indeed, more pronounced) if we repeat the same experiment but

keeping the ratio σ/p̄ constant.

As for the external noise analysis, we have implemented the genetic algorithm [54,

56] and verified that the emerging distributions of evolutionarily-stable strategies are

peaked at the previously obtained optimal strategies. Results are shown in fig. 3.7B,
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Figure 3.7: A) Effect of dimensionality at fixed σ2 on the stationary density
for different strategies: the net benefit of bet-hedging is much enhanced in lower-
dimension. Error bars are smaller than symbol sizes in all cases. B) Self-consistent
optimization with the genetic algorithm: as in fig. 3.6B, the self-tuned strategies
are located at the optimal strategies. Parameters: 〈ρ(α = 0, 1)〉 = 0.3, σ2 = 0.05,
N = 104 for 1D, 2D and FC, N = 10648 for 3D, and (p0, p̄) are 1D:(0.722, 0.847)
, 2D:(0.618, 0.704), 3D:(0.594, 0.665) and FC:(0.567, 0.628). In the genetic-algorithm,
ν = 10−3.

illustrating the robustness of the hybrid strategy.

3.6.1 Analytics

To give a mathematical argument that explains the previous result, we should develop

a rigorous analysis including explicitly spatial dependence in eq. 3.9. However, we can

avoid this very challenging task, which is beyond the scope of this work, and use a

simple and effective argument to shed some light on this finding.

For this purpose, we consider a refined version of eq. 3.4, including the non-linear

term ignored above as well as a demographic-noise term with tunable amplitude γ

[52, 104]:

ρ̇(t) ≈ (2pav(α)− 1) ρ− pav(α)ρ2 + 2ασρξ(t) + γ
√
ρη(t) (3.9)

where η(t) is a delta-correlated Gaussian noise and the factor
√
ρ is a direct consequence

of the central limit theorem [52]. Demographic noise is a key ingredient, missing in the
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mean-field limit, which phenomenologically accounts for intrinsic fluctuations in low di-

mensional systems. Demographic noise is known to be much stronger in low dimensions;

thus one should expect that the effective noise amplitude γ in our simplified approach

should increase as the dimension decreases. Note that, despite of this improvement, eq.

3.9 corresponds to an effective one-variable theory, so it will not capture all the essential

features of a low dimensional system, and we can only expect a qualitative description

of our results. Moreover, the
√
ρ term does not permit to compute the exponential

growing rate in the same way that we did for the external noise analysis. Therefore, we

have to work with stationary densities rather than growing rates; this is why we have

included the saturation term.

Associated with eq. 3.9, we write the Fokker-Planck equation[52] for the probability

distribution P (ρ, t). To work in the quasi-stationary approximation [52, 43, 104] (i.e.

avoiding the absorbing state ρ = 0), we include a small and constant drift ε; identifying

with a = (2pav(α)−1), b = pav(α) and β = 2ασ, the equation for the density distribution

is:

∂tP (ρ, t) = −∂ρ
[(
ε+ aρ− bρ2

)
P (ρ, t)

]
+

1

2
∂ρ2
[(
γ2ρ+ β2ρ2

)
P (ρ, t)

]
. (3.10)

Solving for the stationary solution P (ρ, t → ∞) (valid when the external flux ε � 1),

we find:

P (ρ, t→∞) =


C1 ρ

2ε
γ2
−1

exp
(

2aρ−bρ2
γ2

)
, β = 0

C2 ρ
2ε
γ2 (γ2 + β2ρ)

2a
β2

+ 2bγ2

β4
−1

exp
(
−2bρ

β2

)
, β > 0,

(3.11)

where C1 and C2 are normalization constants which has to be fixed via numerical

integration. At this point we can compute (numerically) the stationary density 〈ρ〉 =∫∞
0
dρ ρP (ρ, t → ∞). As we have eliminated the absorbing state, we do not have to

worry about potential divergences at ρ = 0.

To obtain an estimation of the effective values of γ in dimensions D = 3, 2 and 1,

we keep parameters other than γ fixed as in Monte Carlo simulations in fig. 3.7. We

then calculate the quasi-stationary density associated with eq. 3.9 from its associated

Fokker-Planck equation [52]. The parameter γ is determined by the condition that the
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quasi-stationary density satisfies 〈ρ(α = 0)〉 = 〈ρ(α = 1)〉 = 0.3. The resulting values

of γ are γ = 0.09, 0.15 and 0.28, for 3, 2 and 1 dimensions, respectively (each value is

an average of two very close results obtained for the two pure strategies).

Figure 3.8: A) Stationary density of the optimal hybrid strategy as a function
of the demographic noise amplitude γ: each point has been computed using the
value of γ inferred from eq. 3.11, for a different spatial dimension (1, 2, and 3), and γ = 0
for the mean-field of infinite dimensional case. Parameters p0, p̄ and σ are the same as
in Fig. 3.7 and γ is tuned to produce ρ(0, 1) = 0.3. The inferred γ changes slightly for
α = 0 and α = 1 as reflected in the errorbars (shaded region). These results confirm
that the effective noise amplitude γ increases as the system dimensionality decreases
and that the benefits of bet-hedging are enhanced by demographic noise. However, the
curve becomes non monotonous for larger values of γ. B) Density distributions in
the optimal strategy α∗ for different demographic noise amplitudes γ: We
represent the the quasi-stationary solution of 3.11 (ε = 10−2). The calculus fails for
higher values of γ, as the probability to decay into the absorbing state (emerging peak
at ρ = 0) becomes non negligible.

Having determined, for each dimension, the level of demographic fluctuations γ, we

compute the maximum density as a function of α in each case. Results are shown in fig.

3.8, which reveals that the benefits of bet-hedging are enhanced for larger demographic

noises and thus, for lower spatial dimensions. We remark that this phenomenologi-

cal theory only provides a qualitative explanation of the phenomenon and does not

quantitatively reproduce the actual stationary densities in fig. 3.7.
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3.7 Effect of temporal correlations

In the previous sections, our results were derived under the assumption that the external

environmental noise has no temporal correlations, as the risky spreading probability is

renewed at each time step independently of the previous value. However, a realistic

environment may present temporal correlations, thus we wonder how the benefits of

bet-hedging are enhanced or reduced when the environment is take in this other way.

A simple way to introduce such correlations is to take a stochastic environment p(t)

obeying the Ornstein-Uhlenbeck process, with time-series similar to that of a Brown-

ian particle moving in a parabolic potential. Mathematically, it follows the Langevin

equation [52]:

ṗ = θ(p− p̄) +
√

2θσξ(t), (3.12)

where p̄ and σ represent, as before, the mean and variance of the risky parameter,

respectively; with this choice, p(t) is distributed as a Gaussian N(p̄, σ2). The new

parameter θ controls the temporal correlations, as 〈p(0)p(t)〉 ∼ e−t/2θ; consequently,

θ → 0 and θ → ∞ represent the extreme cases of immutable –completely correlated–

and constantly changing –non-correlated, i.e. the original implementation– environ-

ments, respectively. In our case, θ ∼ 10 can be considered as very large.

We run our simulations integrating eq. 3.12 with the exact formula [52]

p(t+ 1) = p̄(1− e−θ) + p(t)e−θ + σ
√

1− e−2θGt(0, 1), (3.13)

where Gt(0, 1) is a Gaussian random number with zero mean and unit variance gener-

ated at each time step. Fixing the environmental variance σ2, we study the effect of

temporal correlations on bet-hedging for different values of θ in every dimension. Fol-

lowing the same strategy as above, we tune the parameters p0 and p̄ for each temporal

correlation θ to fix the stationary density at 〈ρ(α = 0, 1)〉, and we measure 〈ρ(α)〉.
Results are summarized in fig. 3.9; some remarks are in order:

• The optimal strategy is always a hybrid strategy between α = 0 and α = 1.

Additionally, curves coincide with those in fig. 3.7 when θ is high (θ ∼ 10), as

the external environment is poorly correlated.

• When θ increases moderately, the stationary density at the optimal strategy be-
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Figure 3.9: Stationary density as a function of the risk parameter for different
lattice topologies in temporal-correlated environments: the spreading proba-
bility of the risky strategy, p(t) obeys now an Ornstein-Uhlenbeck process with mean p̄,
variance σ2, and exponential temporal correlations with a characteristic time 2θ. The
benefits of the hybrid strategies in the stationary density become enhanced for interme-
diate values of θ. This result is much intensified in lower dimensions, while it is imper-
ceptible for the 3D and FC networks. Parameters: σ2 = 0.05; (p̄, θ) in 1D: (10, 0.848),
(3, 0.849), (1, 0.876), (0.3, 0.944); 2D: (10, 0.704), (3, 0.706), (1, 0.719), (0.3, 0.745); 3D:
(10, 0.665), (3, 0.667), (1, 0.674), (0.3, 0.681) and FC: (10, 0.628), (3, 0.629), (1, 0.631),
(0.3, 0.605); p0 and N are taken as in fig. 3.7.

comes larger compared to the non-correlated case. In other words, bet-hedging

strategies are worthier for temporally correlated environments. This effect be-

comes stronger for lower dimensions, whereas barely applies to higher dimensional

lattices.

• When the correlation is highly increased (θ < 0.1), the situation is reversed



3.8. Heterogeneous vs. homogeneous populations 79

and the benefits of hybrid strategies are reduced compared to the non-correlated

case. However, we are not interested in this “frozen” scenario, where the external

environment remains almost unchanged during long periods of time. In this highly

correlated situation, the dynamics are effectively sampling the stationary densities

of processes with different parameters. The inflection point in θ at which this effect

appears varies for different dimensions.

• Finally, the optimal strategy becomes more conservative when temporal correla-

tions are added to the environment, with a bias to α∗ → 0 when θ increases.

So far we have not developed a proper mathematical analysis to explain this finding.

However, it can be easily rationalized within the following argument: temporal corre-

lations affect the external environment in a way that, when it turns to be unfavorable

(p(t) � 1), it continuous to be unfavorable for a period (on the order of ∼ 2θ steps);

this can lead to catastrophic consequences in the system, specially for lower dimensions,

where internal fluctuations make the system to be less robust; additionally, although

favorable periods are also maintained, the effects of a global extinction is not reversible.

In conclusion, bet-hedging strategies represent a reliable possibility when the sys-

tem has to choose between a conservative, relatively poor solution, and a risky, even

correlated in time, one.

3.8 Heterogeneous vs. homogeneous populations

In CP model with hybrid strategies, each particle decides it spreading dynamics at

every time step; after many steps, a portion α of times it will choose the risky strategy

and (1−α) the conservative one. This scenario corresponds to an individual-based bet-

hedging, because each agent can perform, with different probabilities, both dynamics.

A different case can be, for instance, a population in which the bet hedging is done

at the community level: a portion α of the particles are risky, whereas (1 − α) are

conservative. In this section, we analyze the difference between exploiting bet-hedging

individually or at a community level.

The first case we can study is the simple generalization of the hybrid CP: the system

is composed only by particles of conservative type (spreading with constant probability

p0) and risky type (spreading at variable rate p(t)). Each time a particle reproduces, the
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offspring can be, with probability α, a risky particle, or, complementary with probability

(1− α), a conservative one. In this case, α is a control parameter, but, in principle, it

does not have to coincide with the relative concentration of risky agents in the network

(we use 〈α〉 to refer this magnitude, understanding that conservative and risky particles

have α = 0, 1, respectively).

In this situation, we repeated our previous analysis, and measured 〈ρ(〈α〉)〉 when

〈ρ(0)〉 = 〈ρ(1)〉 = 0.3. We have not encountered substantial differences respect to

our previous findings (not shown), except for a small bias in 〈α〉 > α due to the high

invasivility of the risky dynamics during the periods in which p(t) is large (see below).
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Figure 3.10: A) Stationary density for heterogeneous populations as a function
of the switch parameter δ: in this implementation of the hybrid CP, there coexist
particles which reproduce through either the conservative (α = 0) or the risky (α = 1)
strategy. Offspring inherit the strategy from the progenitor, but it can mutate and
switch α = 0 ↔ 1 with a probability δ. Separately (δ → 0), each strategy leads
to 〈ρ(0, 1)〉 = 0.3, while a combined system (δ > 0) exhibits a larger density. Inset:
average strategy in the community, which is tuned self-consistently for every δ. B)
Stationary density vs. average risky parameter 〈α〉: each point corresponds to
a pair (〈α〉, 〈ρ〉) on the left. To compare with the homogeneous case (all particles with
equal strategy α), we include in dashed line the curves from fig. 3.7. Parameters are
taken as in fig. 3.7.

More interesting is the case in which particles with α = 0, 1 are not well mixed,

and spatial correlations are included in the system. A possible implementation of this
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idea is: each time a particle reproduces, the offspring inherit the strategy α = 0 or

α = 1 from its ancestor, and with a small probability δ, mutate and switch to the be

of the other type. Consequently, if the original particle was a conservative particle, the

new one can be, with probability (1 − δ), still conservative, or, with probability δ, a

different, risky one. In this model, 〈α〉 is set self-consistently and depends on the value

of δ; when δ → 1, it is expected that 〈α〉 → 0.5.

We run our simulations tuning the parameters to have the same stationary density

for each strategy, as before, to be 〈ρ(α = 0, 1)〉 = 0.3. Results are shown in fig. 3.10;

summarizing, we find that:

• The stationary density for any hybrid situation is always higher than for the pure

strategies, 〈ρ〉 > 0.3.

• Even if both strategies are set to perform the same density separately, the self-

tuned average strategy 〈α〉 is always greater than 1/2; this constitutes an evidence

of the high invasivity of the risky strategy compared to the conservative one.

• Bet-hedging strategies in heterogeneous populations with average risk parameter

〈α〉 exhibit a lower density than bet-hedging in homogeneous populations with

risk parameter α, with the exception of the case δ → 1. This limit corresponds

to a scenario in which individuals always produce ’opposite’ offspring, i.e., if the

predecessor performs the risky strategy, the new particle has the conservative one,

and vice versa.

Such effect for δ = 1 (〈α〉 = 0.5) could be explained with the following argument:

in the homogeneous case, it can happen that, sometimes, a particle and its neighbors

choose to perform the same risky strategy, because their decisions are completely un-

correlated. This can be an unwise choice if the environment becomes unfavorable, and

consequently, the activity gets highly reduced. A good stratagem to avoid these events

is to place a different particle next to the progenitor every time it reproduces. Notice

that this argument only applies for networks where spatial correlations are relevant,

i.e. not for the mean-field. This is in perfect agreement with fig. 3.10B for the FC

network, where the optimal density at δ = 1 is exactly equal than for the homogeneous

case (meeting point of orange straight and dashed lines). In conclusion, we could say
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the best strategy is the one of having insolent children, doing just the opposite of what

their parents do.

Still, heterogeneous populations usually exhibit lower densities than homogeneous

communities (rest of points with δ < 1, 〈α〉 > 0.5). As such discrepancy is also found

in the mean-field case (FC network), it should be explained apart from the spatial

correlations between progenitors and offspring. This effect can be rationalized from

a mathematical derivation of the mean-field stochastic equation for the heterogeneous

population model (not shown), which leads to a pair of equations for ρ̇ and ˙〈α〉. The

first one corresponds to same eq. 3.3 (substituting α → 〈α〉), while the dynamics in

the second strongly depend on δ. Thus, the behavior of the homogeneous and the

heterogeneous population model do not coincide, not even when spatial correlations are

neglected, as ˙〈α〉 6= 0.

3.9 Chapter summary

In this chapter, we have studied a simple model for population dynamics with bet-

hedging, in which individuals can choose between a poor but safe reproductive strategy,

a better but risky alternative, or a combination of both. In this context, we have sought

under which conditions hybrid strategies suppose a substantial benefit respect to the

pure dynamics.

In particular:

• The model we have implemented corresponds to the Contact Process, with the

particularity that, at each time, particles choose, with probability α, to repro-

duce with a risky stochastic probability p(t), common to all individuals in the

community, or, with complementary probability (1−α), with a fixed conservative

probability p0. The first strategy provides high spreading rates at some times,

but, eventually, can turn very unfavorable.

• We have found that, for certain choices of the parameters, a population with

a combined dynamics exhibits larger densities, compared to the case with just

pure strategies. And, furthermore, we have found situations in which both pure

strategies lead to a deterministic extinction, while a combination of them gives a

stable population.
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• We have analyzed the role of external (environmental) and intrinsic (demographic)

fluctuations in enhancing the benefits of bet-hedging strategies. To this end,

we have compared different scenarios of environmental variability and spatial

dimension (1D, 2D, 3D and fully-connected network). For each of them, we

have tuned the pure strategies to give the same stationary density, and we have

analyzed how this density increases for different values of the risky parameter α.

The main finding is that both environmental and intrinsic fluctuations foster the

benefits of performing bet-hedging strategies.

• We have checked the robustness of such hybrid solutions with a genetic algorithm,

in which the parameter α is dynamically self-tuned by inheritance and mutations

of the community.

• We have studied the system when the environment presents temporal correla-

tions. With this purpose, we have described the risky probability p(t) as an

Ornstein-Uhlenbeck process with tunable correlation time scale. We have seen

that such correlations increase –when these are moderate– the benefits of bet-

hedging strategies, specially in lower dimensional systems.

• Finally, we have analyzed the case in which bet-hedging is performed at the

community level, rather than individually. We have studied a mixed population

where each individual follows only one of the pure dynamics. We have seen

that, in most of the cases, the best option corresponds to bet-hedging at the

single individual level. However, a more detailed study should be carried out to

compare these two scenarios, for instance, by including the cost of developing and

maintaining the hybrid mechanism for each individual.

Summing up, our main finding is that the relative benefits of bet-hedging strategies

are strongly enhanced in highly-fluctuating low-dimensional systems. Given that these

conditions are often met by biological populations, as for example in bacterial colonies

competing at the front of a range expansion in noisy environments [11, 78], our results

provide a strong justification for the ubiquitousness of bet-hedging in nature.

In general, these could be condensed as in the popular saying: “troubled waters,

fisherman’s gain”.





Chapter 4

Mixed dispersal strategies

4.1 ‘Diversity in times of adversity’

Plants in the wild, dealing with ever-changing environments, constitute a characteristic

example of bet-hedging organisms in nature [26, 135, 29, 35]. When the external condi-

tions are highly unpredictable, individuals cannot accurately predict the environment,

and individuals hedge their bets by producing different types of offspring phenotypes,

for instance by diversifying their reproduction timing [116, 123].

A particularly interesting example of this risk assessment corresponds to the way in

which plants disperse their seeds. In ecology, it is well known that dispersal constitutes a

key evolutionary mechanism for the plants, and therefore it has been extensively studied

in the literature [28, 112]. Dispersal is generally extended in plants [37, 30] because it

provides high competitive advantages such as the colonization of distant areas as well

as a reduction of the intra-community reproduction. This selfing, also called inbreeding,

has been reported to produce a negative effect on the individuals’ fitness [113, 112], in

contrast with the outcrossing, i.e. the mixing with different communities and genotypes.

On the other hand, seed dispersal implies an extra cost of resources for the plant, and

they are much subjected to external/environmental conditions.

Nature has reached to solve this problem in an efficient way. One can find many ex-

amples in which the same plant presents two clearly different reproductive mechanisms

[68, 7, 3]: one with open-pollinated external flowers, producing aerial seeds, and another

one with subterranean self-pollinated flowers, with internal seeds. Specific examples of

85
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this are the Lathyrus amphicarpos and Vicia amphicarpa (see fig. 4.1) which can be

found, for instance, in the Torcal de Antequera Nature Reserve (southern Spain).

Figure 4.1: Two examples of species exhibiting a hybrid reproductive mech-
anism: (Left) Aerial open-pollinated flowers of Lathyrus amphicarpos (red) and Vicia
amphicarpa (violet). (Right) Subterranean self-pollinated flower of Lathyrus amphi-
carpos. Photos by Rafael Rubio de Casas.

In the previous section, we provided a general scenario to study the conditions

under which bet-hedging strategies can emerge, in a simplistic model of population

dynamics, the Contact Process. Our aim now is to study a specific more-realistic

model from a computational point of view, and try to understand the empirical fact that

certain vegetable species mixed dispersal strategies, consisting in the evolutionary-stable

coexistence (even within a single individual) of two different reproduction mechanisms

(e.g. two different seed types): a dispersive and a non-dispersive one. To this end, we

introduce several biologically feasible mechanisms: i) effect of environmental variability

on dispersed seeds, ii) positive correlation between dispersal and outcrossing, and finally

iii) negative effect of inbreeding depression.

4.2 Simplistic model with inbreeding depression

We introduce a model in which a community of plants evolves in time through the

mechanism of birth, reproduction, competition, and death. These plants are annual and

reproduce by means of two different strategies: a conservative one, based on selfing,

which is not worthy at a large time scales, and a risky environment-dependent one,

based on outcrossing.
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Each plant lives in a fixed node of a L× L square lattice; the maximal occupation

per node is restricted to one plant, accounting for local competition for resources (see

Fig. 4.2). Plants reproduce by seeds that can be of two different types: external

seeds, produced through sexual reproduction, and internal seeds, produced from auto-

fecundation or inbreeding. External seeds travel by air to distant sites –for simplicity,

we assume that they can reach any random cell in the lattice–, whereas internal seeds

can only be implanted into the maternal or adjacent sites.

Figure 4.2: Community of plants with a hybrid dispersal mechanism: each
plant is located at a node of a square L× L lattice. At each reproduction period, each
plant produces αn external/aerial seeds and (1− α)n internal/terrestrial seeds, where
α is the bet-hedging parameter. External seeds (produced by sexual reproduction) can
arrive far away to any cell in the lattice, but in contrast have a variable environment-
dependent implementation prob. pext(t). On the other hand, internal seeds (produced
from inbreeding) are not affect by the environment, but they only can achieve adjacent
cells in the lattice. Additionally, its implantation prob. is penalized as they are pro-
duced by self-reproduction; this penalization is encoded in a quality q for every plant
(and its offspring), which modulates the implantation probability pint(q) = qpint; it is
reduced after inbreeding q → (1− δ)q and reseted to 1 after sexual reproduction.

Individuals have an intrinsic propensity to produce each of the two types of seeds,

which is encoded in the bet-hedging parameter α: for α = 1 all seeds are of the dispersive

type while for α = 0 all of them are “internal”. For the moment, we keep α as a control

parameter in the simulations, common for all plants in the community.

Each type of seed obeys a different implantation dynamics. External seeds do it

at a randomly chosen node with a probability pext(t), which is a fluctuating variable

subjected to environmental conditions. In contrast, internal seeds are assumed not to be
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influenced by the external environment; on the other hand, their offspring are placed at

local neighboring sites and experience an inbreeding depression in their “quality”, thus

their implantation probability pint is reduced after auto fecundation. A much realistic

version of this model should include a temporal dependency in the internal implantation

probability, but we restrict our analysis to the simplest version of the dynamics.

A dynamical process is implemented as follows. At each discrete time-step t –which

represents a reproduction period, i.e. typically one year– all occupied sites are updated

according to the following rules:

1. Environmental conditions are set at every t, encoded in the variable pext(t). We

take pext(t) to be an uncorrelated random variable with uniform distribution in

[p̄ext + σ, p̄ext − σ].

2. Each plant on the lattice produces n seeds. A similar implementation can be

done with a variable number of seeds, extracted from a Poisson distribution of

mean n, which is more realistic, but our results remain essentially the same. With

probability α, each seed comes out to be of the external type, or, complementary

with probability (1 − α), of the internal type. We take n = 5, but note that

the relevant parameter corresponds to the ratio number of seeds × implantation

probability.

3. Plants are equipped with an individual quality parameter q, different for each

one, which is inherited by the seeds and reduced as q → (1− δ)q after an inbreed-

ing event, or reset to q → 1 with outcrossing. A more realistic version of this

“resetting” mechanism can be implemented, where the quality factor increases

progressively after sexual reproduction, but we do not enter into such a detailed

level as our results remain qualitatively unaltered.

4. Seeds are dispersed on the lattice: external ones finish into a random site of the

whole system with probability pext(t), and internal seeds into the (1 + 4) next

locations with probability q · pint. To reduce the finite-size effects, we choose

periodic boundary conditions.

5. All the plants are removed from the ecosystem, i.e. generations are non-overlapping.
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6. At each location, only one of the implanted seeds (if there is any) is chosen at

randomly and grown at such a place.

This is the simpler version of our hybrid dispersal model and it contains the basic

ingredients we are interest in: positive correlation between dispersal and outcrossing,

inbreeding depression and environmental variability, as well as intrinsic mechanisms in

the lattice such as competition for the resources and saturation.

4.3 Phases of the pure strategies

First we analyze the behavior of the system for the pure strategies α = 0, 1. Although

this has been already studied in deep in the literature [88], it is a useful reference for

our specific model. To proceed, we compute the stationary density 〈ρ(α = 1)〉 as a

function of (p̄ext, σ) and 〈ρ(α = 0)〉 as a function of (pint, δ). Results, shown in Fig. 4.4,

exhibit a continuous phase transition for the density.

Notice that, for any non-vanishing inbreeding depression δ > 0, the system always

becomes extinct, regardless the value of pint.

4.4 Benefits of the hybrid strategy

We study now the stationary density 〈ρ〉 for different values of the bet-hedging param-

eter α. As we are more interested in the behavior of the system with environmental

variability σ and inbreeding depression δ, for simplicity we fix pint = pext.

Results are shown in fig. 4.4. We can see that:

• In the absence of any penalization nor variability (δ = σ = 0), the dispersive

strategy (α = 1) leads to a higher density. This is in agreement with the common

fact that plants always prefer to disperse as much as possible [37].

• When δ and σ increase (fixing pint and p̄ext), the stationary density of both pure

strategies α = 0, 1 is strongly decimated. Instead, communities dispersing through

a hybrid strategy (intermediate values of α) produce higher densities. This can

be rationalized within our previous finding in the Contact Process with hybrid

dynamics: the growing rate is a quadratic function of α; therefore, depending
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Figure 4.3: Density phases of the pure strategies. Both strategies exhibit a phase
transition between the absorbing state, where the community always become extinct,
and an active phase, with a maintained stationary density. In the case of the pure
internal strategy with some inbreeding forfeit (δ > 0, blue line in the top panel), the
plants always disappear after a few generations. In the pure external strategy, greater
values of the environmental variability (σ > 0) are prejudicial for the community, thus
expanding the absorbing phase (blue region in the bottom panel).

on the parameters, the system can exhibit larger densities at intermediate values

of α than in the extremal points (eq. 3.5). Consequently, bet-hedging strategies

can reduce the catastrophic consequences of inbreeding depression and external

variability.

• There are cases (δ > 0, σ & 0.3) in which the community becomes extinct if

plants disperse through one of the pure strategies, while it survives indefinitely

when they do so through a mixture of them. This constitutes another instance of
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Figure 4.4: Stationary density as a function of the bet-hedging parameter
α in different environments and types of inbreeding: We compute the density
for different values of the environmental variability σ (red, purple, blue and green
curves) and inbreeding depression δ (light to dark curves for each color set). Systems
with one of the pure strategies α = 0, 1 are dramatically affected when increasing δ
or σ, respectively (extremal points), while hybrid strategies do not (central region).
Parameters are set to pint = p̄ext = 0.3 and L = 100 (N = 104).

the Parrodo’s paradox [57], that we already studied in section 3.4.

• For low environmental variability, the optimal strategy can be located at some

intermediate value of α, but, compared to the pure strategy α = 1, it essentially

leads to the same stationary density (see middle purple curve in fig. 4.4), so one

could argue that it is not worthy to develop a hybrid mechanism. On the other

hand, for high environmental variability (and inbreeding depression δ > 0), the

optimal hybrid strategy produces a much higher density compared to the pure

ones (see bottom blue curve in fig. 4.4). This effect is analyzed in detail in the

following section.
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4.4.1 Relative gain enhancement of hybrid strategies

Fig. 4.4 illustrates that, for certain choices of the parameters, hybrid strategies not

only become optimal, but also lead to much higher densities, compared to the pure

strategies.

To measure this ‘relative gain’ in an objective manner, we define two metrics. The

first one corresponds to the stationary density of the optimal strategy α∗, compared to

the pure ones:

∆ρ0,1 = ρ(α∗)−max [ρ(0), ρ(1)] . (4.1)

However, as we have seen from the simulations, ρ(α = 0) = 0 for any δ > 0, so we

are loosing a lot of information about the non-dispersive strategy. One possibility is to

compare the optimal strategy α∗ (in the sense of the one producing the larger density)

with two similar strategies α∗ ± ∆α. Mathematically, this is the curvature of ρ(α) at

α∗, measured throw the discretized second derivative, or Laplacian:

∆ρ∆α =
1

∆α2

(
ρ(α∗)− ρ(α∗ + ∆α) + ρ(α∗ −∆α)

2

)
. (4.2)

Note that, for convenience, we have multiplied the original Laplacian by a factor −1/2.

Using data from fig. 4.4 (with more resolution), we have computed the measures

above as a function of (δ, σ). Results are shown in Fig. 4.5. In both cases, although sur-

face plots differ qualitatively, the same conclusion holds: bet-hedging strategies are more

likely to be developed in systems with low –but greater than zero- inbreeding depression

δ and high environmental variability σ.

4.4.2 Reduction of the mean extinction time

We study how the mean-extinction time can be reduced when plants perform a hybrid

dispersal strategy. It can happen that, in a temporal step, all plants and seeds are

removed from the lattice; consequently, no more individuals can be created unless we

include other mechanisms such as external migration. This collapse can be found when

parameters lie in the absorbing region (i.e. ρ = 0, see. fig. 4.3) or in the active

phase (ρ > 0) for small system sizes, where intrinsic fluctuations can lead to a global

extinction [88]. For larger system sizes in the active phase, the mean extinction time
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Figure 4.5: Relative gain enhancement of hybrid strategies. (Top) Density of
the optimal strategy α∗, compared to the best pure strategies. (Bottom) Density of
the optimal strategy, compared to similar strategies α∗ ± ∆α (∆α = 0.1 here). Note
that lower resolution, in contrast to previous figures, comes from that, for each point
(δ, σ), the whole function 〈ρ(α|δ, σ)〉 has to be computed.

increases exponentially with L (see section 3.4), thus the system can be considered, for

all purposes, stable and robust.

To this end, we compute the mean-extinction time in a small community (10× 10)

for different values of α; we have not analyze the behavior with L in this case. Fig. 4.6

illustrates that i) as expected, the extinction times are reduced when increasing both

the inbreeding depression (δ) and environmental variability (σ), and more interesting

ii) the optimal strategy, in this case the one which survives more generations, always

lies at intermediate values of α.

At this point, it does not seem clear what is the best strategy: the one producing

higher densities, or the one where the system survives more? As the answer does not
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Figure 4.6: Mean extinction time for hybrid strategies as a function of the
bet-hedging parameter α: Parameters of the pure strategies are set to pint = p̄ext =
0.3. In this case, as computational times grow exponentially with the system size, we
restricted ourselves to a small system size L = 10 (N = 100) for technical reasons.

seem evident, in the next section we implement a genetic algorithm-based dynamics to

study the self-organized stable strategy.

4.5 Evolutionary stable strategy

To identify the best strategy in terms of stability of the ecosystem, we simulate a second

variant of the model in which α becomes a dynamical variable, tuned self-consistently

through inheritance and mutation, i.e. with a genetic algorithm [54, 56].

In this case, every plant is characterized by its own parameter α; when it repro-

duces, offspring inherit its α with a small random mutation, that we suppose Gaussian

distributed with zero mean and standard deviation ν. To ensure that α belongs in

the interval [0, 1], we impose by hand that, every time the mixture parameter escapes

from it, we put it at either 0 or 1, respectively (hard bounds). Other inheritance rules

could be used for the same purpose in a more natural way (soft bounds), for instance

by implementing an α-dependent mutating rule. Here, we restrict the analysis to the

simpler rule.
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Note that this genetic algorithm constitutes a simple manner of measuring the sta-

ble, self-organized strategy, rather than representing a realistic evolutionary dynamics.

In fact, one could argue that mutations from α = 0, 1 to α′ 6= 0, 1 would require an

extra cost, because plants have to develop and maintain the hybrid mechanism (flower

and fruit tissues, architectural traits, etc.). However, the type of dynamics including

costs are far from the goal of this work and we will keep it for a future study.

After some generations, and regardless of the initial condition, the distribution of αs

in the community, P (α), reaches a stationary shape. In our simulations, we have chosen

a mutation deviation ν = 10−3, which, although too high and biologically unrealistic,

gives a good trade-off between accuracy and short convergence times.

Results for the stationary density, as well as the mean and standard deviation of α

in the community, are plotted in Fig. 4.7. From top to bottom, we find:

• The density is non zero even for higher values of the inbreeding depression δ.

However, the population always becomes extinct when both δ, σ are high enough.

• For low environmental variability (σ � 1), plants prefer the spreading strategy

(red region in the middle panel), while hybrid strategies are only selected for high

values of σ (green region). Note that the internal pure strategy α = 0 (blue

region) is rarely selected, highlighting its poor dispersal efficiency.

• Additionally, distributions are highly peaked at the optimal α∗, as inferred from

the small value of the deviation of α (bottom panel). Therefore, we do not

encounter heterogeneous populations from the genetic algorithm implementation,

where many different strategies may coexist; instead, populations appear to be

very homogeneous.
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Figure 4.7: Self-tuned strategy with a genetic algorithm: the bet-hedging param-
eter α is optimized dynamically through a genetic algorithm. Individuals inherits its
strategy α from its ancestor with a small Gaussian mutation of zero mean and deviation
ν, with hard bound conditions in α = 0, 1. (Top) Stationary density for different values
of δ and σ. The dashed line separates the absorbing from the active phase. (Middle)
Mean strategy in the community. (Bottom): Deviation of α; as the strategy is well
defined (narrow histograms), so we do not find heterogeneous populations. Parameters
are set to L = 100, pint = p̄ext = 0.3, ν = 10−3.
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4.6 Chapter summary

In this Chapter, we have analyzed the case of mixed dispersal strategies developed

by plants, as a specific example of bet-hedging in nature. Plants with hybrid disper-

sive mechanisms reproduce simultaneously trough a highly risky but profitable strategy

(with dispersive seeds), and a non-variable but poor one (with terrestrial seeds coming

from self-reproduction, also called inbreeding). In particular, our work can be summa-

rized as follows:

• We have implement a model in which individuals (plants) reproduce by means

of a hybrid dispersal mechanism; the model includes several biologically realistic

ingredients, such as competition for the resources, environmental variability and

inbreeding depression. The relative amount of energy (seeds) invested on each

strategy is controlled by the parameter α.

• In the absence of any environmental variability and inbreeding depression, a pure

dispersal strategy leads to a higher density than a non-dispersive one. Environ-

mental variability has a negative effect in dispersal, while inbreeding depression

radically leads to extinction in a population performing only the non-dispersive

strategy.

• We have computed the population density for different values of the parameter α,

with different levels of environmental variability and inbreeding depression. De-

pending on these values, we find that the optimal strategy can be either dispersal

or a combination of both dispersal and non-dispersal; the pure non-dispersive

strategy rarely becomes an optimal solution.

• We have seen that, for certain scenarios, a hybrid strategy not only maximizes the

density: when compared to any of the pure strategies, its relative benefit is much

enhanced. We have measure this relative gain with two different metrics, con-

cluding that larger relative benefits are obtained for highly variable environments

and moderate values of the inbreeding depression,

• We have seen how the mean extinction times are reduced when introducing a

hybrid mechanism.
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• Finally, we have checked the robustness of such optimal strategies with an evo-

lutionary dynamics, where each individual is characterized by its own parameter

α inherited from its predecessor with a small mutation. After many generations,

the average 〈α〉 converged to the previous optimal solutions. No stable heteroge-

neous populations emerged from this implementation, as all individuals exhibited

a similar value of α.

In conclusion, our main finding in Chapter 3 still holds, and the benefits of bet-

hedging, in particular of mixed dispersal strategies, are increased in highly fluctuating

conditions. However, we may ask ourselves why all plants in nature do not exhibit such

a mixed dispersal mechanism. The answer might rely in the cost derived of developing

and maintain a hybrid reproductive physiology, which has not been included in our

analysis. Therefore, plants in nature, through evolution and adaptation, make the best

choice depending on the trade-off between costs and benefits. Although we have not

taken into account this fact, our study provides a qualitative framework to understand

under which conditions individuals are more likely to evolve and develop a hybrid

dispersal mechanism.



Chapter 5

Stochastic amplification in neural

dynamics

5.1 ‘Rythms of the brain’

During the last decade, empirical evidence has been flourishing that the brain could

operate at the vicinity of a critical point [118]. At this point, “the edge of chaos”, criti-

cal dynamics might be useful for several cognitive tasks, such as optimal computational

capabilities[83], optimal transmission and storage of information[10], and maximal sen-

sitivity to sensory stimuli[77].

Special impact has the work of Beggs and Plenz [9]. In these experiments, authors

recorded the activity of intermittent neural avalanches on in vivo (with slices of mice

cortex submerged into cerebrospinal fluid) and in vitro experiments (grown neuron cul-

tures). In both cases, neurons exhibited spontaneous activity for hours or days. A

multi-electrode grid was introduced to detect the activity as well as its specific local-

ization. The main observations were that i) the activity comes in the form of neural

avalanches of variable size, and ii) the distribution of avalanche sizes is a power-law

with exponent −3/2. This result suggested the presence of self-organized criticality,

similarly to sandpiles and earthquakes, in the brain.

We also mention the work of Bialek and coauthors [101], who registered the activity

of 40 neurons in the retina and mapped it into a dynamics on a spin-glass lattice. From

measures of pairwise correlations between neurons in the real network, they inferred

99
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the parameters for the artificial network in order to exhibit similar activity patterns.

After this, they introduced a virtual temperature T in their artificial network, which

modulated the strength of spin interactions, and computed the behavior of the system

for different values of T (in particular, the specific heat). Interestingly, the spin glass

lattice exhibited a critical point at T = 1; or, in other words, the original lattice was

already poised at criticality.

However, such methodology has been sharply criticized by Mastromatteo and Marsili

[89], who suggested that, in these kind of experiments, there is still some external tuning.

The hidden parameter corresponds to the time window in which the activity becomes

discretized, in order to be mapped in the spin glass dynamics. For instance, if the

window is very narrow, most of the temporal “bins” do not catch capture any spike of

activity, and hence are empty. On the other hand, if the time window is very broad,

all bins contain at least one spike, and therefore all are considered as active. Only for

intermediate values, the discretized time series become non-trivial. From this point

of view, it is not surprising that, when inferring the Ising parameters, any non-trivial

dynamics usually lays close to the critical point.

Today, there is an ongoing discussion about critical behavior and self-organization in

spontaneous neural activity[118]. Of particular interest in this context are the so-called

Up and Down spontaneous oscillations [84, 85, 98, 39]. For instance, Fujisawa et al.

[49] showed that there is a maximum susceptibility to external stimuli during Up and

Down oscillations; a similar conclusion was obtained in [86], where the authors reached

to control the global brain state by the stimulation of one single neuron during Up and

Down states.

However, in this Chapter we skip the question of criticality and focus on the spon-

taneous dynamics itself, specifically for Up and Down states, and we analyze how the

mechanism of “stochastic amplification of fluctuations” , previously reported in the

context of Ecology[94] and Epidemiology[1], operates on these oscillations. Given its

general character, such mechanism could be of broad applicability on unraveling the

origin of different rhythms of the brain.
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5.1.1 Up and Down states

Cortical neurons are bistable; as a consequence, the neuron membrane potential fluc-

tuates between a quiescent, close to the resting potential, Down state, and a highly

depolarized, Up state [147]. Additionally, the membrane potential alternates between

these two metastable states, exhibiting Up and Down transitions [143] (see top panel of

fig. 5.1). Such bistability has been also observed in a mesoscopic level (at the local field

potential, LFP), in the form of a collective oscillatory rhythm [114, 33] (see bottom

panel of fig. 5.1). Two different hypothesis for the emergence of this global bistability

have been purposed: i) It is a consequence of an intrinsic neuron bistability [114, 142, 8],

or instead ii) it is the result of a collective interaction, where balancing mechanisms

such as inhibition and synaptic depression play a key role [109, 64, 121, 108, 98]. Even

if its nature is not universally agreed upon, most of the existing computational models

for cortical Up and Down states feature network rather than cellular mechanisms [143].

We focus on network models in which global bistability emerges as a collective network

phenomenon.

Additionally, the importance of Up and Down states relies on is relationship with

several cognitive tasks, such as working memory, selective attention and memory con-

solidation (see [93] and references therein). However, despite a large number of studies

on Up and Down oscillations, their function and role at the global network level are

not fully understood [93].

Given the apparent dichotomy between slow and high-frequency oscillations, the

empirical finding that slow and fast rhythms may coexist might sound surprising, but

it has been shown to occur by different experiments. In particular, we would like to

clarify two interesting observations:

• High-frequency oscillations have been observed to occur within the active, Up in-

tervals of slow oscillations but not in Down states [128, 103, 49, 31]. In particular,

the associated Up state power spectra develop a non-trivial peak between 20 and

30 Hz, together with a substantial increase in the spectral power all along the

β/γ (10− 100 Hz) range (see fig. 5.2 Left for a reproduction of fig. 1D in [31]).

• While global network measurements reveal robust oscillations in the β/γ range in

the Up state, individual membrane potentials or synaptic events detected at the
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Figure 5.1: Up and Down states observed in simultaneous whole cell (Top)
and local field potential (Bottom) recordings in rat cortex. In all cases, the
characteristic frequency of oscillations lies around ∼ 1 Hz. (Top-left panel) Neuron
bistability is also evidenced by the distribution of membrane potentials. (colors repre-
sent histograms for different neurons) Source: taken from [86].

intracellular level do not show any trace of oscillations in this range of frequencies

(see fig. 5.2 Right for a reproduction of fig. 4 in [31]).

This suggests that i) oscillations within Up states are a collective phenomenon emerging

at the network level and ii) that there is no global synchronization locking the rhythms

of individual neurons to the systemic one.

At the modeling side, several authors have before addressed some of these issues

and computed, in particular, the power-spectrum of network oscillations. For instance,

Kang et al. [74] studied a mean field model in the presence of noise. They performed

an analytical calculation of the power spectrum of a Wilson-Cowan-like model with

excitatory and inhibitory neurons and showed the emergence of a resonant peak at γ

frequency. In a similar model, Wallace et al. [138] made the noise variance to scale

with the network size and derived analytically the power-spectrum showing that it is

possible to have coexistence of high-frequency oscillations for the population without

having oscillations for individual neurons. On the other hand, for spiking neural net-
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Figure 5.2: (Left) Power spectra of oscillations within Up (red) and Down
(blue) states, measured at the LFP. A characteristic peak emerges in the range
20−30 Hz for Up states, illustrating the existence of a fast oscillation; none of this occurs
for Down states. Such phenomenon has been observed by several experimental groups
[128, 103, 49, 31]. (Bottom) Power spectra of oscillations within Up (red)
and Down (blue) states, measured at the intracellular level. Simultaneous to
the LFP measurements, individual records do not exhibit any trace of the previous fast
rhythm within Up states, suggesting that such oscillations are a collective phenomenon,
emerging at the global network level. Source: taken from [31].

works, Spiridon and Gerstner [126] showed that the noise accounting for network-size

effects affected the power-spectrum of the population activity. Similarly, and by using a

Fokker-Planck formalism, Mattia and Del Giudice [90, 91], described the time evolution

of the average network activity in presence of size-effects noise, and analytically derived

its power spectrum and their resonant peaks.

Even if much has been written and is known about neural oscillations, the goal

of this chapter is to shed some more light on the previously discussed questions by

studying general aspects, beyond modeling details, as well as a simple and general

theory accounting in general for the above described phenomenology and, in particular,

for the asymmetry between Up state and Down state power spectra [61, 60]. Deciphering

the cerebral oscillations and their correlates to behavior and function are still major

challenges in Neuroscience [23, 73].
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5.2 Synaptic dynamics

In this section, we briefly introduce some of the basic concepts in neural physiology.

Specifically, we focus on the mechanisms by which neurons communicate to each other,

the synapse.

Neurons encode and transmit the information by changing their membrane poten-

tial. This potential varies as a consequence of –active– ionic currents flowing across

the cellular membrane, thus changing the internal ionic concentration respect to the

surrounding media. In this sense, neurons act as a capacitor, storing electric voltage.

During the synapse, the pre-synaptic neuron sends the information to the post-

synaptic neuron, by means of modulating the membrane potential of the second one.

This can be done by releasing neurotransmitters; these chemical substances open or

close the ionic flows in the post-synaptic neuron, and consequently, changing its voltage.
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Figure 5.3: Sketch of a neuron and chemical synapse. Source: Wikipedia
(Creative-Commons license).

In a typical neuron (see fig. 5.3) –multiple anatomical shapes could be distinguished–

, we find three principal components: i) the soma, constituting the main cell body,

where the nucleus is located; ii) the dentrites, branching many times and collecting the

synaptic inputs; and iii) the axon, by where the electric impulse is directed to other

neurons.

When the neuron membrane potential is high enough, such electric impulse is sent

along the axon –the action potential (AP)–, activating the synaptic connections. The
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AP was first modeled by Hodgkin and Huxley [63], who represented the basic ingredients

in the AP generation as different components of an electric circuit. A less detailed

description is given by the oscillator-based model of FitzHugh and Nagumo [47, 48].

For our purposes, we do not enter into such a detailed level, and simply use the integrate-

and-fire (IF) approach [21].

In the synapse, we distinguish two main types: i) the electric synapse, consisting

in a direct linkage, as the cytoplasms of the pre- and post-synaptic neuron are directly

joined, allowing for an ion flux between the two cells;, and ii) the chemical synapse,

in which neurons are separated by an inter-synaptic gap, and the communication is

performed via neurotransmitters. The mathematical models we describe in this chapter

are based on this second type of synapse.

In a nutshell, the chemical synapse works as follows: the synaptic terminals are

plenty of vesicles fulfilled with neurotransmitters. The action potential induces the

open of Ca2+ ion channels, which enters into the neuron and releases the vesicle content

[13]. Neurotransmitters are received by the post-synaptic neuron, and, depending on

its chemical nature, induce the depolarization or hyperpolarization of the second cell

(excitatory and inhibitory synapse, respectively).

This process constitutes a dynamical mechanism, as the vesicle release (depletion),

the Ca2+ concentration, as well as the amount of available neurotransmitters depend

on the neuron activity, which changes for each time. For instance, after a depletion,

vesicles take a time to recover and be recycled for a latter use; therefore there is an

activity-depressor dynamics, called short-time synaptic depression (STDP) [131]. On

the other hand, if Ca2+ ions are already present in the axon terminal, as remains of a

previous spike, vesicles are more likely to be released with a second spike; this activity-

enhancing mechanism corresponds to the short-term synaptic facilitation (STSF)[72].

The synaptic dynamics cited above introduce an activator-depressor mechanism,

leading to a plethora of non-linear emerging phenomena in neural dynamics. In particu-

lar, STDP and STDF have been modeled to describe Up and Down states [131, 108, 98],

which are the central focus of this chapter. In the next section, we describe the models

with further detail.
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5.3 Models for Up and Down states

Hereafter, we present two different network models reproducing the dynamics of Up

and Down states, one based on a mean-field single population model (Model A) and

one based on a network of spiking-neurons (Model B). Our strategy is to keep models

as simple as possible to uncover the essence of Up and Down oscillations.

5.3.1 Model A: Minimal coarse-grained model

The simplest possible model for Up and Down states including synaptic depression

has a deterministic dynamics, and characterizes neural network activity by a global

(“mean-field”) variable, the population averaged firing rate (which is a proxy for mea-

surements of local field potential). We focus here on the model proposed by Tsodyks et

al. [131, 132] including short-time synaptic depression as the key regulatory mechanism

(in section 5.4.5 we present results for a similar coarse-grained model with inhibition).

This model is described by the mean membrane potential v, and the variable u account-

ing for the strength of synaptic depression (see fig. 5.4). This second variable mimics

the amount of available resources (varying between 0 and 1) in the presynaptic terminal

to be released after presynaptic stimulation; thus, the larger u, the more synaptic input

arriving to the postsynaptic cell.

The mean voltage grows owing to both external and internal inputs, and decreases

owing to voltage leakage. On the other hand, synaptic resources are consumed in the

process of transmitting information and generating internal activity (providing a self-

regulatory mechanism) and spontaneously recover to a target maximum value, fixed

here to u = 1:

v̇ = −v − Vr
τ

+ pruVinf(v) + Ie (5.1)

u̇ =
1− u
τr
− pruf(v), (5.2)

where τ = RC (R membrane resistance and C capacitance) and τr are the characteristic

times of voltage leakage and synaptic recovery, respectively, Vr is the resting potential,

pr is the release fraction indicating the efficiency of synapses, Vin is the contribution of

internal inputs, f is the network firing rate and Ie represents the external current (in
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Figure 5.4: Coarse-grained Model A[131, 132]: the dynamics is represented by two
mean-field variables: the mean voltage, v, and the mean synaptic utility, u. The voltage
v is constantly subjected to internal leaks, while the resources u recover to the target
value (u → 1). Additionally, the two variables are coupled through the firing rate f ,
which increases the voltage by consuming the available resources. External currents
can be added to increase the activity.

our analysis we simply take Ie = 0). The firing rate is assumed to depend on v as a

“threhold-linear” gain function:

f(v) =

{
α(v − T ) if v ≥ T

0 if v < T,
(5.3)

with T the threshold value. Although we introduce this function ad-hoc, eq. 5.3 is a

standard approach in coarse-grained models of neuron populations [141], and actually

it can be obtained from a neuron-based model, as we will see in the next section for

Model B. The notation and parametrization has been slightly modified with respect to

the original model in [64], but the numerical values of parameters are equivalent (see.

table 5.1).

In this context, Up and Down states correspond to fixed points of the deterministic

dynamics with, respectively, high and low firing-rates. Spontaneous transitions between

these two stable states can also be described within this framework by switching-on some

stochasticity. Possible sources of noise are network size effects, sparse connectivity,

unreliable synaptic connections, background net activity, synapses heterogeneity, or

irregular external inputs. An instance of this stochastic approach is the work of Holcman
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Figure 5.5: Up and Down states and Up-and-Down transitions in Model A
[64]: time-series for the membrane potential, v(t). Observe the presence of two steady
states, a lower one around −70 mV (Down state/blue curve) and a larger one (Up
state/green curve) at about −55 mV; these two are obtained for low noise amplitudes
(σv = 1.5 · 10−1 mV

√
Hz, σu = 1.5 · 10−3 mV

√
Hz) and different initial conditions.

Instead, the Up-and-Down state (red curve), corresponds to a high noise amplitude
(σv = 10 mV

√
Hz, σu = 0). Note that, typically, the Up state intervals start with an

abrupt spike which parallels empirical observations, as discussed in [64]. Parameters
are listed in table 5.1

and Tsodyks [64] (see also [95]) where a noise term was introduced into the above

mentioned mean-field model with synaptic depression. Indeed, adding uncorrelated

Gaussian white noises, ηv(t) and ηu(t), of amplitude σv and σu, respectively, to eqs.

5.1 and 5.2, converts them into a set of stochastic/Langevin equations [64]. While the

noiseless version of the model presents bistability, its noisy counterpart exhibits Up-

and-Down transitions (see fig. 5.5). The forthcoming results do not depend crucially

on the type of noise introduced.

For the chosen parameters (see table 5.1), eqs. 5.1 and 5.2 present two stable

fixed points (as well as a saddle-point between them). One of them corresponds to a

sustained Up-state with (v∗, u∗) = (Vr + 12.8 mV, 0.188), and the other to a Down-

state (v∗, u∗) = (Vr, 1). Moreover, if we decrease win, the system experiments a Hopf-

bifurcation, appearing a stable limit cycle with sustained –deterministic– oscillations

[64, 108], but we are not interested in this case.

Time-series produced by numerical simulations of Model A are shown in fig. 5.5.

Depending on the noise amplitude different outputs are produced. For low noises, either

an Up state (with a high firing rate) or a stable Down state (with mean v close to the
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resting potential, and therefore with a vanishing firing rate, and mean u close to unity)

coexist. For larger noise amplitude, transitions between the fixed points are induced

and Up-and-Down oscillations emerge.

Parameter Value
τ = RC 0.05 s
τr 0.8 s
Vr -70 mV
T -68 mV
Vin 252 mV
α 1 Hz/mV
pr 0.5
Ie 0

σv 10 mV
√

Hz
σu 0

Table 5.1: Parameters for the coarse-grained model (Model A). Numerical
values are taken from [64].

5.3.2 Model B: Spiking-neuron network model

Millman and coauthors [98] proposed an integrate-and-fire (neuron-level) generalization

of the model above, including some additional realistic factors. These refinements allow

us to compare the emerging results with empirical ones not only qualitatively but also

quantitatively.

The model (Model B, from now on) consists in a population of N leaky integrate-

and-fire neurons, each one connected by excitatory synapses with (on average) another

K of them, forming a random (Erdos-Renyi) network. Each neuron is described by

a dynamical equation for its membrane potential Vi (with i = 1, ..., N) in which Vi

increases owing to (i) external (stochastic) Poisson-distributed inputs arriving at rate

fe and (ii) internal inputs from connected spiking pre-synaptic neurons, and decreases

owing to voltage leakage (see fig. 5.6 for a graphical explanation).

When a neuron membrane potential Vi reaches a threshold value T , the neuron

fires: Vi is reset to Vr and its dynamics is switched-off during a refractory period τrp.

When a (pre-synaptic) neuron fires, it may open –with probability pr– each of the nr
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Figure 5.6: Spiking-neuron network Model B[98]: integrate-and-fire excitatory
neurons interact in a Erdos-Renyi network. Each neuron i increases its membrane
potential Vi by internal and external currents, and decreases by leaks. When Vi reaches
a threshold value T , it spikes, releasing the vesicles at every synapse j with a probability
pr and resetting its voltage during the refractory period. Each vesicle introduces a
current in the post-synaptic neuron, but, to account for the synaptic depression, this
happens with a probability Uij (available resources). Uij is reseted to zero at every
release and recovers to the target value Uij → 1. In this individual-based model, the
network firing rate emerges as a consequence of the internal dynamics.

release sites existing per synapse, inducing a current in the corresponding postsynaptic

neuron. External (resp. internal) inputs, Ie (resp. Iin) are modeled by exponentials of

amplitude we (resp. win) and time decay constant τs:

Ie/in(t) = we/in exp

(
−t− ts

τs

)
, t > ts (5.4)

where ts is the corresponding spiking time.

Similarly to Model A, a variable Uij ∈ [0, 1] (for neuron i and release site j) such

that the release probability is modulated by Uij, i.e. pr → prUij, allows to implement

short-time synaptic depression. Uij is set to 0 immediately after a release and recovers

exponentially to 1 at constant rate, τr.
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Mathematically, the mechanisms described above are summarized in the set of equa-

tions for the membrane potential Vi of neuron i and the synaptic utility Uij for each

release site j:

V̇i = −Vi − Vr
RC

+
1

C

∑
k

Ikei(t) +
1

C

∑
i′j′

linking i

∑
k

Θ(prUi′j′(t
k
si′

)− ζki′j′)Ikini′ (t) (5.5)

U̇ij =
1− Uij
τr

−
∑
k

UijΘ(pr − ζij(t))δ(t− tksi), (5.6)

where ζij(t) is a uniform random variable in [0, 1] and Θ(x) the Heaviside step function.

Indexes i and i′ run over different neurons, j and j′ over the nr release sites, and k over

spikes occurring at times tks . The first term in the r.h.s. of the first equation describes

the leakage, the second is the sum over external inputs, and the third represents the

internal currents arriving from every release site j′ in (pre-synaptic) neuron i′ to (post-

synaptic) neuron i. On the second equation, the first term in the r.h.s. corresponds

to the recovery of the synaptic resources, while the second comes from the depletion

produced by each spike.

We have scrutinized Model B by numerically integrating the corresponding integrate-

and-fire stochastic equations on sparse random networks as well as on regular networks.

Parameters are fixed –mostly as in [98]– to neuro-biologically realistic values (see table

5.2). We compute numerically membrane-potential and synaptic-resource time-series

for each individual neuron as well as for the network as a whole. The release probability,

pr, is kept as a control parameter [131]: for intermediate values as pr = 0.3 the system

exhibits Up-Down transitions as illustrated in fig. 5.7; for larger values (e.g. pr = 0.5)

it remains steadily in the Up state, while for sufficiently low ones (pr = 0.2) only Down

states are observed (see fig. 5.7).

From the complex dynamics described by eqs. 5.5 and 5.6, Millman et al. [98]

derive a theoretical prediction of the possible attractors of the dynamics. This is only

an approximation, but it provides very accurate results. In a nutshell, the approach

consists in converting eqs. 5.5 and 5.6 into a unique Langevin equation for the individual

membrane potential; from it authors compute the associated stationary probability

distribution of potentials, obtaining two possible solutions, idenfitied with the Up and

Down state, respectively. In the next point we reproduce their method, but the reader
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Figure 5.7: Up and Down states and Up-and-Down transitions in Model B
[98]: Time series of membrane potential. Curves and color code are as for Model A.
For pr = 0.3 the system exhibits Up-and-Down transitions, for larger (smaller) values
as pr = 0.5 (pr = 0.2), it remains steadily in the Up (Down) state. Parameters are
listed in table 5.2

Parameter Value Parameter Value
τ = RC 0.02 s we 95 pA
τr 0.1 s win 50 pA
τs 5 ms fe 5 Hz
τrp 1 ms nr 6
Vr -70 mV K 7.5
T -50 mV N 1000
C 30 pF

Table 5.2: Parameter values for the spiking-neuron network model (Model
B), taken from [98].

can skip this part and go directly to Section 5.4

Effective current contribution

To proceed, as the external inputs are Poisson-distributed for each neuron, the number

of inputs per unit of time at each terminal can be approximated as a Gaussian noise

with identical mean and variance fe:

1

C

∑
k

Ike,i(t) ' V e

(
fe +

√
feηe,i(t)

)
, (5.7)
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where ηe,i(t) is a delta-correlated Gaussian noise, fe is the spiking frequency of exter-

nal inputs and V e is the mean contribution of one external spike, defined as V e =

〈
∫ ∆

0
Ie(t)/C dt〉∆ (∆ identifies the input duration, see below).

Equivalently, we can do a similar approximation for the internal currents. The

simplest way is to suppose that, at the stationary state, the probability for the post-

synaptic neuron to receive a spike from the pre-synaptic on is constant in time, and

therefore it is Poisson-distributed (however, this is not completely true). Again, we

approximate the number of spikes per unit of time as a Gaussian noise with equal mean

and variance f :

1

C

∑
i′j′

∑
k

Θ(prUi′j′(t
k
si′

)− ζki′j′)Ikin(t) '
K∑
i′=1

nrpruV in

(
f +

√
fηin,i′(t)

)
, (5.8)

where ηin,i′(t) are Gaussian white noises (independent for each pre-synaptic neuron), f

is the spiking frequency of the pre-synaptic neurons and V in the mean contribution of

one internal spike. As the topology is Erdos-Renyi, all the neurons are equivalent and f

identifies the spiking frequency of the whole network. Finally, we have substituted the

summation over release sites by the average contribution nrpru, where u is the mean

synaptic utility (as in Model A), u = 〈Uij(t)〉i,j,t. The substitution is only valid in the

limit of many release vesicles, nr � 1, otherwise we should include other stochastic

terms. Notice that we have dropped the temporal dynamics in the synaptic utility u,

as we are more interested in the V variable.

We can plug the equations above in the original eq. 5.5, obtaining the Langevin

equation:

V̇i = V e

(
fe +

√
feηe,i(t)

)
+

K∑
i′=1

nrpruV in

(
f +

√
fηin,i′(t)

)
, (5.9)

with the extra condition that if Vi(t) = T =⇒ Vi(t+τrp) = Vr. However, we still need to

compute some of the quantities introduced above. The frequency of external inputs is a

parameter of the system, but not the network frequency f . This is easier to understand

from the Fokker-Planck scenario, that we describe in the next section, so for the while

we omit this calculation. Finally, the mean synaptic utility can be computed taking



114 Chapter 5. Stochastic amplification in neural dynamics

the average in eq. 5.6,

u̇ = 〈U̇ij〉i,j '
1− u
τr
− pr

(
uf +

√
f〈〈Uij〉j · ξin,i(t)〉i

)
. (5.10)

This replacement is valid when the number of release vesicles nr is large, while otherwise

it is just an approximation. In the limit N � 1, it becomes

u̇ =
1− u
τr
− pruf, (5.11)

with its correspondent stationary point at

u̇ = 0 =⇒ u =
1

1 + prτrf
. (5.12)

In the original work [98], the authors computed the average contribution per spike

by integrating over an infinite time the exponential function in eq. 5.4. However, when

a neuron fires, it is kept silent during the refractory period and it “ignores” all the

arriving currents. As the tails of exponential (internal or external) currents can be

interrupted by this mechanism, if we want to compute the overall contribution of the

spike to the membrane potential, it is not a good approximation to take the whole

integral.

We have obtained a simple and better estimation as follows. In the mean-field

approach, a neuron fires every f−1 seconds; meanwhile, the incoming currents contribute

to increment its membrane potential. Therefore, one can consider that the neuron

integrates on average from its spiking-time t = 0 to some effective final time t = f−1.

The contribution of an incoming spike arriving at t = ts, Ve/in(ts) = C−1
∫
Ie/in(t)dt,

can be computed as

Ve/in(ts) =

∫ f−1

ts

we/in

C
exp

(
−t− ts

τs

)
dt =

we/inτs
C

[
1− exp

(
−f

−1 − ts
τs

)]
, (5.13)

where ts is an stochastic variable. The simplest estimation is to suppose a uniform

distribution for the incoming times ts in the interval [0, f−1]. Then, the mean value of
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eq. 5.13 is:

V e/in(f) =

∫ f−1

0

1

f−1
Ve/in(ts) dts =

we/inτs
C

[
1− fτs

(
1− exp

(
− 1

fτs

))]
. (5.14)

Observe that an extra factor, which depends on the firing rate f , appears multiplying

the mean value of the exponential, we/inτs/C. This factor was omitted in the original

description of the model [98], and it supposes a better estimation of the contribution

of the incoming currents. For instance, it is re-scaled by a more than a 50 % for typical

values of f = 100 Hz and τs = 5 ms.

Self-consistent solution

For the Langevin equation for V̇i, eq. 5.9, the Fokker-Planck equation proposed in [98]

to describe the membrane potential is:

∂P (V, t)

∂t
= − ∂

∂V

[(
−V − Vr

RC
+ V efe +KnrpruV inf

)
P (V, t)

]
+

1

2

(
V

2

efe +K
(
nrpruV in

)2
f
) ∂2P (V, t)

∂2V
. (5.15)

We have dropped the sub-index i, because the equation is equivalent for all the neurons.

The first drift term in eq. 5.15 includes the potential leakage and the external and

internal input contributions. The second diffusive term stems from the Poisson-like

nature assumed for both external and internal spikes . Note that this equation describes

the membrane potential of one typical neuron, but not the mean-voltage in the network.

Let remark something about the diffusive term: in the fully connected case K =

N , assuming that internal input amplitudes are rescaled by the average connectivity

(i.e. win → win/K) in order to keep the total signal per spike constant, the internal

noise disappears in the infinite size limit. In other words, the internal contribution

to the diffusion term, proportional to V in, comes from the finite connectivity of each

individual neuron in sparse networks. Similarly, in the absence of external stochasticity,

the external contribution to the diffusion term, proportional to V e would disappear

for a homogeneously distributed excitation. If the two previous conditions hold, the

dynamics becomes purely deterministic.
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Eqs. 5.15 needs to be complemented with the following constrains:

• A neuron spikes when it achieves the threshold potential, resetting the membrane

potential after the refractory period [20, 98]. Mathematically, this corresponds to

the conservation of the total flux, defined as

F (V, t) =

(
−V − Vr

RC
+ V efe +KnrpruV inf

)
P (V, t)

−1

2

(
V

2

efe +K
(
nrpruV in

)2
f
) ∂P (V, t)

∂V
. (5.16)

The boundary condition is then written as F (T, t) = F (Vr, t+ τrp).

• Finally, the firing rate, f , is computed as the fraction of neurons overcoming T

per unit time, i.e. the outgoing probability flux:

f(t) = F (T, t). (5.17)

As the dynamics depends on the probability flux f , which on its turn is fixed by

the overall dynamics, the Fokker-Planck equation needs to be solved self-consistently.

This can be done numerically (for instance, with an Euler-implicit method) giving

results in agreement with those in [98]: there are two different stable states for the

probability distribution (see figure 5.8), which correspond to the Up and Down states.

Finally, although the dynamics have been much simplified, the real dynamics is more

complex and operates far away from the stationarity. Then, transitions between these

two attractors are expected to occur for a broad regime of parameter, exhibiting the

Up-and-Down transitions, as it actually happens (see fig. 5.7).

5.4 Stochastic amplification of fluctuations (SAF)

In this section we review the phenomenon of stochastic amplification of fluctuations

(SAF). This mechanism has been reported in the context of Ecology [94] (see also [105]

for an earlier reference) and Epidemiology [1]. The purpose of the present chapter is to

apply it to the Up and Down states [61], but mainly, to claim the general applicability

of this phenomenon to the field of Neuroscience.
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Figure 5.8: Solutions for the membrane potential distributions described by
equation 5.15 with parameters of Table 5.2. In the Down-state, membrane potentials
are closer to Vr, and the slope in T gives a low firing rate f = 0.00022 Hz, while in the
Up-state, the membrane potential biases to the threshold value T , giving f = 74.9 Hz.
Table 5.3 includes all the relevant values computed from such distributions.

It is well known in Ecology that many populations with prey-predator interactions

exhibit oscillations in nature [12]. This fact can be rationalized in a very intuitive

manner: for example, imagine a population of rabbits and lynxes, with populations

equilibrated at their stationary values. If, for any reason, certain year is particularly

good for the rabbits (for instance, the government prohibits the use of dangerous pesti-

cides), the population highly increases; this is a good new for the population of lynxes,

so they also proliferate. But, at a certain point, such growth of the lynx population is

in detrimental of the rabbits, reducing their abundance; so on, an oscillation comes out

from the fluctuations around the stationary density of preys and predators.

It is surprising how these oscillations are hard to be found out from a set of de-

terministic equations. Detailed mechanisms, such as predator satiation [92], have to

be incorporated into the basic prey-predator dynamics to reproduce the oscillations

described above. In contrast, McKane and Newman show in [94] that this phenomenon

can be achieved from a stochastic model in a very natural way.
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Let consider a pair of Langevin equations, representing the coarse-grained dynamics

of two relevant variables in the system (for instance the population densities of preys

and predators):

v̇ = gv(v, u) + σvηv(t) (5.18)

u̇ = gu(v, u) + σuηu(t) (5.19)

with additive Gaussian white noises ηv,u(t). These equations can be understood to

be a simplified approach of a microscopic interaction (described in terms of a master

equation), but for us, it constitutes the starting point of our analysis.

Let suppose that this dynamics leads to a stationary solution, and the pair (v, u)

ends and fluctuates around the fixed point (v∗, u∗). We are interested in the nature of

the attractor, so we first perform a standard linear stability analysis. Defining x = v−v∗

and y = u−u∗, one can linearize the deterministic part of the dynamics, leading to the

pair of linear Langevin equations

ẋ = avvx+ avuy + σvηv(t) (5.20)

ẏ = auvx+ auuy + σuηu(t), (5.21)

where azz′ = ∂gz(v,u)
∂z′

∣∣∣
(v∗,u∗)

(z and z′ standing for either v or u) are the elements of the

Jacobian matrix, A, evaluated at the fixed point. This matrix has two eigenvalues, λ±,

that can be expressed as

λ± = Γ/2±
√

Γ2/4− Ω2, (5.22)

with Ω2 = det(A) = avvauu − avuauv and Γ = Tr(A) = avv + auu.

A useful tool to identify oscillations in noisy time-series is the power spectrum

Px(w) = 〈|x̃(w)|2〉, where x̃(w) is the Fourier transform of x(t), F [x] = x̃ (similarly

Py(w) for y(t)), and 〈.〉 stands for independent runs average. The goal is to seek for

the possible peaks in the power spectrum, identifying the characteristic frequencies.

Fourier transforming eqs. 5.20 and 5.21, and solving for x̃(w) and ỹ(w) and averaging

its squared modulus, we find

Pz(ω) =
αz + σ2

zω
2

[Ω2 − ω2]2 + Γ2ω2
(5.23)
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where z stands for x or y, and αx = a2
vuσ

2
y + a2

uuσ
2
x, αy = a2

uvσ
2
x + a2

vvσ
2
y.

For low values of the noise amplitude (σz � 1), we can neglect the dependence of

ω in the numerator, and the maximum of the power spectra can be found where the

denominator minimizes, resulting at the frequency:

ω0 =
√

Ω2 − Γ2/2 =
√
−avuauv − (a2

vv + a2
uu)/2. (5.24)

If ω0 is not a real number, no peak is found, and therefore the power spectrum is

monotonous. In particular, to have a real ω0 requires that both avu and auv are non-

vanishing and of opposite sign; when this happens, both eigenvalues λ± are complex.

A detailed analysis of the conditions needed to achieve a peak in the power-spectrum

is described in the Appendix D.

Some remarks are in order:

• The presence of a non-trivial peak in the spectrum of fluctuations reflects the

existence of quasi-cycles of a leading characteristic frequency coexisting with many

other frequencies (as the peak is broad), producing a complex oscillatory pattern.

• The location of ω0 does not depend on the noise amplitude; it is determined by

the elements of the Jacobian matrix A, i.e. by the deterministic dynamics. This

is interesting because, sometimes, only the deterministic part of the dynamics are

known.

• Notice that, even if the peak location ω0 is noise independent (as long as the noise

amplitude does not vanish) the very presence of a peak is a noise induced effect:

in the noiseless limit the system reaches a fixed point, without any oscillations.

• Additionally, the characteristic frequency is equal for the two variables x(t) and

y(t). Moreover, only one stochastic source is needed to perform such oscillations,

thus similar results are found by making σv = 0 or σu = 0 (but not both).

• The peak only appears when the eigenvalues λ± are complex, i.e. the relax-

ation towards the stable fixed point should be in the form of damped oscilla-

tions (spiral trajectories). However, ω0 differs from the damping frequency ωd:

ωd =
√

Ω2 − Γ2/4 6= ω0.
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Figure 5.9: Mechanism of stochastic amplification of fluctuations: two coupled
dynamical variables v(t) and u(t) relax and fluctuate around a stable fixed point. (Top)
If the Jacobian matrix (evaluated at the fixed point) has complex eigenvalues, trajec-
tories have spiral form in the (v, u) plane; the system tries to relax to the fixed point,
but noise kicks it away, leading to an effective quasi-oscillation with a characteristic
frequency similar, but not equal, to the damping frequency, as it is shown by the peak
of the power-spectrum of fluctuations (right). (Bottom) None of this occurs for the
case in which eigevalues are real (straight trajectories), and consequently, no natural
frequencies are found (monotnous power spectrum of fluctuations).

• Finally, if the equations become decoupled, the eigenvalues λ± become real, there-

fore the power-spectrum does not exhibit any peak and the possibility of SAF is

lost.

In conclusion, SAF requires the presence of some noise source acting on top of the

underlying deterministic stable fixed point with complex eigenvalues λ±, i.e. with spiral

damped trajectories (this is, it is a “focus”) with a not too small damping frequency

(details are explained in the Appendix D). Noise “kicks” the system away from the

fixed point, and amplifies predominantly some frequency which turns out to be slightly
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different from the characteristic frequency of the deterministic damped oscillations. It is

also noteworthy that a set of at least two coupled equations is required to have complex

eigenvalues, and hence, too simplistic models in terms of only one effective variable

cannot give raise to SAF.

In the next section, we seek for this mechanism in the models of neural dynamics

described above.

5.4.1 SAF in Model A

By performing a linear stability analysis of equations for v̇ and u̇ (eqs. 5.1 and 5.2)

around the stable fixed points (v∗, u∗) as described above, we have measured the power-

spectrum at either the Up state and the Down state, both analytically and numerically.

The Jacobian matrix is

A =

(
avv = − 1

τ
+ pruVinf

′(v) avu = prVinf(v)

auv = −pruf ′(v) auu = − 1
τr
− prf(v)

)
. (5.25)

When evaluating at each stable fixed point, (v∗up, u
∗
up) or (v∗down, u

∗
down), the firing rate

–and its derivative– plays a fundamental role in the non-diagonal terms of the Jacobian

matrix. In the case of the Up state, as both f(v∗), f ′(v∗) > 0, the fixed point turns out

to be a focus, with complex eigenvalues, satisfying the conditions for the existence of a

non-trivial peak in the power spectra for both v and u. On the other hand, the Down

state fixed point (owing to the vanishing firing rate and, therefore, to the absence of

crossed coupling terms avu = auv = 0 in eq. 5.25) is a node with real eigenvalues and,

consequently, there is no peak in the power-spectrum.

The power-spectrum of the time series of Model A is illustrated in fig. 5.10. Observe

i) the perfect agreement between analytical and numerical results in all cases, ii) the

presence of a peak (around 1.6 Hz) for the v power spectrum in the Up state (note that

this rhythm is much faster than that of the Up-and-Down transitions, see fig. 5.10), as

well as iii) the absence of a similar peak for the Down-state.

Summing up, a mean-field single-population model in presence of short-term synaptic

depression as the key regulatory ingredient reproduces Up-and-Down transitions, with

a non-trivial peak in the Up state power spectrum emerging as a consequence of the

phenomenon of SAF; moreover, no analogous peak is found in Down states. Numerical
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Figure 5.10: Power spectrum of membrane potential v(t) (Top) and mean
synaptic utility u(t) (Bottom) time-series in Up and in Down states com-
puted in Model A. Curves are normalized to unit area. The main plots show the
power-spectra in linear scale: a pronounced peak appears for the Up state (green curve)
around≈ 1.6 Hz. Instead, there is no track of similar peaks for Down states (blue curve).
Observe the excellent agreement between simulation results (noisy curves) and analyti-
cal results, eq. (5.23) (black lines). Insets represent analogous double logarithmic plots,
illustrating in all cases the presence of w−2 tails.

results are in full agreement with this theory. To test the robustness of this hypothesis,

in section 5.4.4 we have checked how these results hold when the mechanism of synaptic

facilitation is turned on in the dynamics. Additionally, in section 5.4.5 we have also

considered the mean-field dynamics of a simple model in presence of synaptic inhibition

rather than synaptic depression.

Despite this success, the strategy of resorting to simplistic mean-field models presents

some undeniable drawbacks: i) given the lack of a detailed correspondence with neuro-

physiological realistic parameters it is not possible to quantitatively compare the results
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with experimental ones; ii) noise is implemented in a poorly understood way; and iii)

last but not least, mean-field models do not allow for comparison of individual-neuron

activity with collective rhythms, which is important to figure out whether single cells

frequency lock to emergent oscillations or not. Aimed at overcoming these difficulties,

in the next section we present results for a network of spiking-neurons, Model B.

5.4.2 SAF in Model B

The power-spectra of the time-series produced by Model B are illustrated in fig. 5.11

(green for the Up state, blue for the Down one, both in linear and in double-logarithmic

scale). Very similar plots can be obtained –in analogy with measurements in [31]– in

the Up-intervals within Up-and-Down states. In the Up state, the spectrum exhibits

a sharp peak at a frequency around ∼ 20 Hz, together with the expected power-law

decay. On the other hand, the power spectrum for Down states lacks a similar peak.

In analogy with the mean-field model in the previous section, there is a significant

enhancement of the power-spectrum for Up vs Down states in the β−γ range. Contrary

to the model above, the more detailed neuron-level modeling and the use of realistic

parameter values allows us to contrast quantitatively this result with the empirical find-

ings. Observe that, in this case, there is a remarkable accordance with the observation

in [31] (reproduced in fig. 5.2): the peak in the Up state spectrum lies in the range of

20-30 Hz. Let us remark that no parameter fine-tuning has been required to achieve

this result.

Furthermore, Millman et al. showed in [98] that Up-and-Down states in their model

(Model B) are robust against addition of other realistic features such as inhibitory cur-

rents, more structured (small-world) network topologies, voltage-dependent membrane

resistance and so on. Also, the non-trivial peak of the power-spectra and the associated

spectral power enhancement in the β/γ range for Up states, together with the absence

of similar traits for Down states, are robust features against the extensions of the model

we have scrutinized.

To establish the correspondence between the phenomenology described here and

SAF, we need to write down a set of Langevin equations for the mean-field potential

and mean synaptic utility. This turns out to be a non-trivial task, which is analyzed

step by step in what follows. However, even if the analysis is a bit cumbersome, we
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Figure 5.11: (Top) Power spectrum of mean potential v(t) and (Bottom) mean
synaptic utility u(t) time-series in Up and in Down states in Model B. Simi-
larly to fig. 5.10, a peak appears for the Up state (green curve) around ≈ 20 Hz, while
there is no track of similar peaks for Down states (blue curve). In this case, a precise
analytical prediction cannot be obtained. Insets represent analogous double logarithmic
plots.

anticipate that the mechanism works similarly than for Model A: the two mean variables

are coupled through the firing rate; in the Up state, such firing rate is high, leading

to complex eigenvalues of the Jacobian matrix, and hence, a non-trivial peak in the

power spectrum; in the Down state, the firing rate essentially vanishes, eigenvalues are

real, and no characteristic frequencies emerge. The most interesting feature of Model

B, apart of the quantitative agreement with experiments, is found at the microscopic

level, described in the next Section 5.4.3.

To proceed, the starting point is to obtain the equation for the mean voltage, v =∑N
i=1 Vi/N . Notice that eq. 5.9 corresponds to a Langevin equation for the membrane

potential dynamics of one neuron instead of being the coarse-grained variable. For this



5.4. Stochastic amplification of fluctuations (SAF) 125

purpose, we compute the mean potential variable as

v(t) =

∫ T

Vr

V P (V, t), (5.26)

with P (V, t) the membrane potential distribution. Multiplying the Fokker-Planck eq.

5.15 by V and integrating over all possible values, after integrating by parts, one obtains

v̇ = −(T − Vr)f(t)− v(t)− Vr
RC

+ V efe +Knrpru(t)V inf(t)

+
(
V

2

efe +K
(
nrpru(t)V in

)2
f(t)

)
P (Vr, t), (5.27)

where boundary conditions have been imposed and τrp has been, for simplicity, ne-

glected. Together with eq. 5.11, the pair constitutes the set of equations for the

coarse-grained variables (v, u).

Additionally, as we are interested in the limit of many-but-not-infinite neurons (i.e.

the local field potential), eq. 5.27 has to be equipped with noise, coming from the

finite-size population. The noise amplitude, as shown in fig. 5.12, decreases with the

network-size as expected from the central limit theorem [52]. However, we have not

written the noise term because i) we do not know its explicit form and ii) we do not

actually need it to compute the characteristic frequency of SAF via eq. 5.24, even

though it is a noise-induced phenomenon.

When studying the phenomenon of SAF, we need to compute the dynamical re-

sponse when a fluctuation puts the system away from the stationarity. This is why we

have explicitly written all the potential time dependences in eq. 5.27, i particular for

v(t), u(t), f(t) and P (Vr, t); also V in/e depend on on time through f(t) (eq. 5.14).

At this point, we have wirtten the dynamical equations for the coarse-grained vari-

ables v(t), u(t). Moreover, the self-consistent method used to solve the Fokker-Planck,

eq. 5.15, provides the numerical values of the stationary points v∗, u∗, f ∗ and P (Vr)
∗

(see fig. 5.8 and table 5.3). Still, we need additional equations for the spiking frequency

f(t) and the density of resting neurons P (Vr, t). Instead of adding more equations, we

suppose that fluctuations around the stationary point do not dramatically alter the

number of neurons in the resting state, as it is view from the simulations, so we keep it

constant, P (Vr, t) = P (Vr)
∗. This approximation cannot be done for the firing rate f ,
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Figure 5.12: Typical deviation of fluctuations for different variables as a func-
tion of the system size: Simulations -computed for a persistent Up state– show a
decay of 1/

√
N , as expected on the basis of the central limit theorem.

and inspired by Model A, we suppose a dependency of the firing rate f in the shape of

a threshold-lineal function, similar to eq. 5.3.

Fig. 5.13 confirms this hypothesis illustrating that f(t) is strongly correlated with

v(t), approximately in the shape of a “split” function. The inset of fig. 5.13, where f

is plotted as a function of v and u, shows the existence of two well-defined branches,

one for up-to-down transitions and another for down-to-up. For simplicity, we keep our

analytical study to the one-variable correlated f(t) = f(v(t)) and we take the numerical

estimation from the simulation in fig. 5.13.

Having an analytical approximation for f(v), it is now possible to perform a lineal
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Up (pr = 0.5) Down (pr = 0.2)
v∗ (mV) -61.16 -66.54
u∗ 0.2108 0.999996
f ∗ (Hz) 74.88 0.000216
P (Vr)

∗ (V−1) 40.75 150.04

Table 5.3: Results obtained from the Up and Down steady state distributions
shown in fig. 5.8. As the Fokker-Planck constitutes only an approximation, we
find discrepancies with the simulations: 〈v〉up = −61.67 mV, 〈u〉up = 0.2352; 〈v〉down =
−68.3 mV, 〈u〉down = 0.997.

stability analysis. The corresponding elements of the Jacobian matrix A are:

avv = − 1

RC
+ f ′

(
−(T − Vr) +

(
1 + nrpruV inP (Vr)

)
KnrpruV in

)
+G

(
V efe +KnrpruV inf + 2

(
V

2

efe +K(nrpruV in)2f
)2

P (Vr)

)
avu =

(
1 + nrprV inP (Vr)

)
KnrprV inf

auv = −uprf ′

auu = − 1

τr
− prf

(5.28)

where G is defined as the logarithmic derivative of the re-scaling factor in the incoming

currents V e/in (eq. 5.14), which depends on f :

G(f) =
V
′
e/in

V e/in

=
τsf
′
(

exp
(
− 1
fτs

)(
1 + 1

τsf

)
− 1
)

1− fτs
(

1− exp
(
− 1
fτs

)) , (5.29)

giving a non-trivial correction.

Finally we evaluate the Jacobian matrix at the fixed points of table 5.3. The ar-

gument that follows is similar to that for the Model A, where the firing rate played

the relevant role in the non-diagonal terms: at the Up-state fixed point this leads to

avv = −120.12 Hz, avu = 10.4272 V·Hz, auv = −1355.44 Hz/V, auu = −47.4422 Hz for

the coefficients of the stability matrix, and hence a minimum at the denominator of

P (w) at w0 = 76.1 rad/s =⇒ f0 = 12.11 Hz; instead, in the Down-state, the equation

for u becomes essentially decoupled from that for v, resulting in a complex ω0 (even
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Figure 5.13: Firing rate correlated to the the mean membrane potential v:
(Main) We plot f as a function of v in Model B. Red curve corresponds to the Up-
and-Down state (pr = 0.3, N = 103), blue to the Down-state (pr = 0.2, N = 103),
and green to the Up-state pr = 0.5. We approximate this shape to a “split” function:
fup(v) = (12.86 ± 0.05 Hz/mV)v + (850 ± 3)Hz for the Up state and f(v) = 0 for the
Down state. (Inset): f as a function of both v and u for the Up-and-Down state
(pr = 0.3) illustrating the origin of the two branches in the main plot.

for small but non zero firing rate, see Appendix D), i.e. in the absence of a non-trivial

peak in the spectrum.

In conclusion, we have shown that also for this more complex network model, an

analytical approach permits us to elucidate that the phenomenon of SAF is responsible

for the non-trivial enhancement of fluctuations in the whole β/γ range for the Up states.

The result is still an approximation, because the computed characteristic frequency is

located at f0 ' 12 Hz, in contrast with the 20 Hz from the simulation. Additionally,

the calculation explains why the peak does not appear for the Down state. Similarly

to Model A, the firing rate represents the major role in the mechanism, which strongly

couples the dynamical variables for the Up states, and vanishes for the Down state,

decoupling the system.
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5.4.3 SAF as a collective phenomenon (Model B)

Until now, Model B has only been used to illustrate the mechanism of SAF in a more

detailed and realistic model. However, its real advantage respect to Model A is that we

can look at the single neuron level, and relate the individual rhythms to the collective

dynamics. For this purpose, we have analyzed time-series of individual neurons and

compared them to that of the global, mean-field variable, v(t).

Fig. 5.14 (left) shows that individual neurons do follow the global trend in Up-and-

Down states: global high average membrane potentials correspond to high firing rates at

the individual neuron level; the opposite occurs for the Down-states, where the neurons

remain essentially silent. On the other hand, and contrary to naive expectations, within

Up states (as well as within Up periods of up-and-down states), individual neurons do

not lock themselves to the collective quasi-oscillatory rhythm. As shown in fig. 5.14

(right) individual neurons fire at a much faster pace than that of the global rhythm.

These results are in perfect agreement with the experiment, where individual neurons

are unlocked to the global wave [31].

Actually, a histogram of the inter-spike intervals for all neurons in the network

(fig. 5.15) has an averaged value ≈ 17 ms, corresponding to a frequency f ≈ 60 Hz.

Therefore, given that the peak-frequency of the collective quasi-oscillations is located

around 20 Hz each neuron fires on average 3 times before a cycle of the collective

rhythm is completed. The same result is obtained by analyzing the power-spectrum

for individual neurons (fig. 5.16), exhibiting a peak around f ≈ 60 Hz and no signs of

power enhancement in the 20-30 Hz band.

The fact that individual neurons do not lock to the global quasi-oscillation reminds

to what has been called asynchronous-states or sparse-synchronization. Here, a collec-

tive rhythm –to which individual neurons do not lock– emerges (see [19, 36] for related,

though different, phenomena). Observe that in the so-called “fast-oscillations”, as de-

scribed for instance in [19], the emerging global rhythm is much faster than individual

neurons, while here, it is the other way around.

Remarkably, the collective oscillations found by Wallace et al. [138], where the

underlying mechanism is still SAF, are much faster than individual neuron oscillations,

which is just the opposite of what we (and the experiments in [31]) find for Up states.

Certainly, although there is no trace of the global rhythm at the single neuron level,
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Figure 5.14: Raster plots and average membrane potential in the spiking-
neuron network model (Model B). Left: (Top) Raster plot of 15 randomly chosen
neurons (out of a total of N = 1000 neurons in the simulation). Sticks are plotted
whenever a neuron spikes. (Bottom) Time-series of the network-averaged membrane
potential in the same simulation. Comparison of the two left panels (both of them
sharing the same time axis) reveals that individual neurons fire often during Up states,
while they are essentially quiescent in Down-state intervals. Right: (Bottom) zoom of
an Up interval (green curve) and of a Down interval (blue curve); while the Up state
exhibits quasi-oscillations, the Down-state does not. (Top) Raster plot of 15 randomly
chosen neurons during the Up state. Remarkably, their spiking frequency is not locked
to the collective rhythm: it is about three times faster.

it is clear that the collective quasi-oscillation is produced by the effective activity of N

single oscillations in the network. The key point is that, as the Fourier transform is not

commutative, F
[∑N

i Vi/N
]
6=
∑N

i F [Vi] /N , the only way to understand the global

oscillation is to perform a theory for the coarse-grained level, where SAF applies.
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Figure 5.15: Probability distribution of the inter-spike-intervals in the random
network: its average gives 〈∆isi〉 ≈ 17 ms, corresponding to a mean firing rate of f ≈ 60
Hz. This result perfectly agrees with the mean firing rate of fig. 5.16. Heterogeneity
in the average inter-spike-intervals stems from the different connectivity degrees, as
illustrated in the inset. In the latter, we show the average value of ∆isi for different
(pre-synaptic) connectivity levels in the Erdos-Renyi network of mean degree K.

5.4.4 Robustness of the mechanism: effect of the synaptic fa-

cilitation

We have checked the robustness of the mechanism of SAF in the model with synaptic

plasticity when we introduce short-term synaptic facilitation [60]. We restrict this

extension to the coarse-grained Model A.

Following Tsodyks and Markram[132, 96], we equip the set of eqs. 5.1 and 5.2 with

a new equation for the release probability, pr = pr(t), which was taken to be a constant

in the first implementation. This new equation describe the dynamics of Ca++ ions

in the synaptic terminal, modulating the probability with which neurotransmitters are

released. During silent periods of activity, it decays to its baseline P0 with time constant

τf , while in the presence of activity it increases proportionally to (1− pr):

ṗr =
P0 − pr
τf

+ P0(1− pr)f(v). (5.30)
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Figure 5.16: Average power spectra for individual neuron potentials for both
a random network with average connectivity K = 7.5 (blue) and a regular network
with connectivity K = 7 (green) in the Up state. A sharp peak (around 60 Hz) is seen
for regular networks; instead in random networks the peak is blurred owing to node-
to-node heterogeneity. In any case, there is no peak at the characteristic frequency
of the global, network-averaged membrane potential ' 20 Hz (peak of the red curve):
individual neurons do not lock to the collective rhythm within Up states. The inset
shows a similar plot in logarithmic scale, putting forward the presence of a distinct peak
for regular networks together with a w−2 tail for all spectra. All curves are normalized
to unit area.

Fixing P0 = 0.01 and τf = 1.5 s as in [96], and other parameters as before (see table

5.1), we find that the stable fixed point corresponding to the Up state shifts to v∗ =

Vr + 12.5921 mV, u∗ = 0.2005 and p∗r = 0.4708. On the other hand, the Down state

remains at v∗ = Vr, u
∗ = 1 and p∗r = P0. Computing the power spectrum for each

variable, we can generalize eq. 5.23 to the case with an arbitrary number of coupled

equations, obtaining

Pz(ω) =
[Adj(A− iω1)〈~η ~ηt〉Adj(At + iω1)]zz

det (A2 + ω21)
, (5.31)

where A is the Jacobian matrix evaluated at the fixed point, Adj stands for the adjoint
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matrix (transpose of the cofactors) and 1 for the identity matrix. In the limit of

small noise amplitude, we find a peak at the frequency that minimizes the denominator

det (A2 + ω21). In the system, again, a non-trivial peak appears in the spectra only

for the Up state (at 1.4 Hz for the parameters above), while the distribution becomes

sharper even if its structure remains essentially unchanged (see red curve in fig. 5.17).

Therefore, the mechanism of stochastic amplification of fluctuations described above is

robust to the inclusion of synaptic facilitation.

Figure 5.17: Power spectrum of fluctuations in Model A in the presence of
synaptic facilitation: Red curve represents the power spectrum for the average po-
tential in the Up state when synaptic facilitation is incorporated, while green curve
corresponds to the model without it, i.e. with the release probability pr constant. The
peak moves slightly to a lower frequency, and the spectrum becomes sharper. The
power spectrum for the Down state remains unaltered (blue curve). The inset repre-
sents double-logarithmic plots of the same quantities as in the main plots. All spectra
have been generated with P0 = 0.01, τf = 1.5 s and σ2

z = 0.01z∗/τ (where z stands for
either v, u, pr) and parameters from table 5.1, and normalized to unit area.

5.4.5 Robustness of the mechanism: SAF in a network of

excitatory-inhibitory neurons

Here we show that SAF can be found also in models for Up and Down states relying on

populations of both excitatory and inhibitory neurons. We consider the Wilson-Cowan-
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like model as described, for example, in [96] (see also [18] and [90, 91, 138] where a

similar model has been recently studied). This is a mean-field like model, analogous in

this sense to Model A, but with inhibition rather than depression as leading regulatory

mechanism.

The model consists of two equations for the mean excitatory and inhibitory firing

rates in the network, E(t) and I(t) respectively:

τeĖ = −E + g(JeeE − JeiI + E0) (5.32)

τiİ = −I + g(JieE − JiiI + I0) (5.33)

with a threshold linear response function

g(x) =

{
0 x < T

β(x− T ) x ≥ T
(5.34)

where T is the threshold parameter and the couplings between excitatory/inhibitory are

represented by the J constants. For a wide range of parameter values these equations

exhibit bistability: there is a stable fixed point with with low-activity regime (Down

state) and a second one with a non-vanishing firing rate and significant activity (Up

state). Adding Gaussian white noises to eqs. 5.32 and 5.33, the system fluctuates

and eventually may jump between the two fixed points. We have verified by means of

computer simulations that indeed this model exhibits Up-and-Down transitions, that

a non-trivial peak appears for fluctuations within Up states and not for Down states.

The chosen parameters are shown in table 5.4.

Trajectories of the deterministic dynamics reveal spiral trajectories (i.e. damped

oscillations) near the Up-state fixed point but not in the Down state (straight trajecto-

ries corresponding to real eigenvalues). Therefore, one can expect a non-trivial peak to

appear in the Up-state power-spectrum but not in the Down one. This can be explicitly

seen from a linear stability analysis, so we compute the Jacobian matrix:

A =

(
aEE = − 1

τe
+ Jee g

′ aEI = −Jei g′

aIE = Jie g
′ aII = − 1

τi
− Jii g′

)
. (5.35)

When evaluating at the fixed points, g′up = β while g′down = 0. Therefore, A is already
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Parameter Value
τe, τi 0.01 s
Jee, Jie, Jii 5 mV/Hz
Jei 9 mV/Hz
β 0.5 Hz/mV
T 15 mV
E0 10 mV
I0 0 mV

Table 5.4: Parameter values for the excitation-inhibition model, taken from
[96].

diagonal in the Down state, with both real eigenvalues. From equation 5.24, ω0,down

turns out to be a complex number (i.e. there is no solution in the maximization problem)

and hence, no characteristic frequencies are found in the power spectrum of fluctuations.

On the other hand, eigenvalues are complex for the Up state, giving a peak near ω0,up =

200 rad/s = 31.8 Hz. These analytical predictions are in excellent agreement with

results of computer simulations for this model (not shown).

5.5 Chapter summary

In this Chapter, we have focused on the study of spontaneous brain activity, in par-

ticular in the so-called Up and Down oscillations, in which a population of neurons

collectively alternate between intervals of high activity (Up states) and completely

silent periods (Down states). Specifically, we have been attracted by the experimen-

tal evidence that rapid collective oscillations (20-30 Hz) appear within Up intervals,

but do not for Downs [31]. Additionally, such rapid oscillations are only found at the

meso-scale (local field potential), but not at the micro-scale (intracellular records) [31].

Our main finding is that this phenomenon can be rationalized under the mechanism of

stochastic amplification of fluctuations [61, 60].

In particular,

• We have introduced two computational models with different levels of complex-

ity, both of them including short-term synaptic depression (STDP) as the main

regulatory mechanism. The first model [131, 64] is a mean-field like model, with
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only two coupled variable, whereas in the second one [98] includes biologically

realistic features, and the dynamics is described for each neuron forming part of

the network. In both models, Up and Down states correspond with two different

attractors of the dynamics, and Up-and-Down transitions emerge in the presence

of stochastic sources.

• We have described the mechanism of stochastic amplification of fluctuations (SAF),

previously reported in the contexts of Ecology [94] and Epidemiology [1]. For

systems in which the dynamics are given by two (or more) coupled stochastic

variables, fluctuations around a stable attractor can lead to different patters, and

noise-induced oscillations can emerge depending on the deterministic dynamics.

• We have computed the power spectrum of fluctuations for either Up and Down

states, in the two models described above. A non-trivial peak appears for Up

states, but not for Downs (as in [31]); moreover, the peak location coincides with

the experimental findings (20-30 Hz) for the most realistic model. Such peak can

be easily explained with the theory of SAF: in the Up state, the stability matrix

of the attractor has complex eigenvalues (spiral deterministic trajectories), and

fluctuations around such attractor present a characteristic frequency of oscillation;

for the Down state, eigenvalues are real, and none of the previous applies. The

nature of such eigenvalues is controlled by the spiking firing rate.

• For the single neuron-based model, we have seen that individual rhythms do not

lock to the collective characteristic oscillations during Up intervals (as found in

[31]), in agreement with the fact that SAF only applies for the coarse-grained

variables.

• Finally, we have checked the robustness of the emergence of quasi-oscillations

described by SAF against specificities of the model, in particular under the addi-

tion of synaptic facilitation and when the self-regulatory mechanism is based on

inhibition rather than on synaptic depression, obtaining the same results.

Given the general character of SAF, we think that this mechanism could be of

relevant interest for the field of Neuroscience.
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Conclusions

In the study of collective phenomena, phase transitions and self-organized dynamics

have attracted particular attention. From their study, we have learned that simple

rules for the microscopic interactions can lead to a plethora of diverse and complex

patterns at the global scale. Here, we highlight the theory of self-organized criticality

[5], which has set up a general framework to understand why many systems in nature,

such as earthquakes or the distributions of rainfalls exhibit scale invariance, large scale

correlations and heterogeneous responses in a wide spectrum. Furthermore, during

the last decade, it has been conjectured, based on several empirical evidences [118,

107, 15, 24, 50, 79], that living systems might benefit from having attributes akin to

criticality [101], such as a large repertoire of dynamical responses, a high sensitivity to

environmental changes and an efficient management of the information.

In this thesis, first, we have addressed, from a general point of view, the hypothesis

that many aspects of living systems seem to operate at the vicinity of critical points

[101]. Under the assumption that biological systems need to construct good represen-

tations of the outer complex world, and that such representations are encoded in terms

of probability distributions, we have shown that the encoding probability distributions

do necessarily lie in the vicinity of critical points [62].

In the presence of broadly different ever-changing heterogeneous environments, com-

putational evolutionary and adaptive models have vividly illustrated how a collection of

living systems eventually cluster near the critical state, while they do not for homoge-

neous and predictable environments. This result could be rationalized, in a sense, from

137
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the known fact that most different dynamics are concentrated at the critical point [89].

A more accurate convergence to criticality is found in a co-evolutionary/co-adaptive

set-up in which individuals evolve/adapt to represent with fidelity other agents in the

community, thereby creating a collective “language”, which turns out to be critical; this

phenomenon cannot be understood in terms of [89], and therefore constitutes a novel

mechanism for self-organization, which living systems in nature may have learned to

exploit.

These ideas apply straightforwardly to genetic and neural networks –where they

could contribute to a better understanding of why neural activity seems to be tuned

to criticality– but have a broader range of implications for general complex adaptive

systems [56]. For example, our framework could be applicable to some bacterial com-

munities [81] and viral populations [129] for which a huge phenotypic variability has

been empirically observed. Such a large phenotypic diversification can be seen as a

form of “bet hedging”, an adaptive survival strategy analogous to stock-market port-

folio management [144], in which individuals diversify their “assets” to maximize their

long-term growth rate in the presence of environmental uncertainty. In our context,

such variability turns out to be a direct consequence of individuals in the community

being critical.

Bet-hedging strategies have attracted our attention in the general context of popu-

lation dynamics. To reach a better understanding of them, we have proposed a simple

birth-death stochastic model in which individuals can choose between a poor but safe

strategy, a better but risky alternative (environmental dependent), or a combination of

both. For instance, this general framework could be applied to micro-organisms able

to metabolize two different resources, with different levels of risks.

Our main finding is that the benefits of developing bet-hedging strategies are strongly

enhanced in highly fluctuating environments, as well as for low-dimensional systems,

where intrinsic fluctuations play a key role. Such conditions are usually faced by bio-

logical populations, for instance, in bacterial colonies competing at the front of a range

expansion in unpredictable environments [11, 78, 139]; therefore, our results provide a

justification for the ubiquitousness of bet-hedging strategies in nature.

Additionally, our work may offer a physical framework to answer different questions,

for instance, what is the difference between exploiting bet-hedging individually or at a
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community level. We have briefly addressed this question, leading to the conclusion that

individual-based bet-hedging provides the optimal strategy; however, further realistic

features should be properly taken into account to extract a more solid conclusion. For

instance, by including the cost derived of maintaining a hybrid mechanism when bet-

hedging is performed individually.

We have developed a specific model for bet-hedging strategies in plants, in particular

for mixed dispersal strategies. Here, organisms diversify their reproduction possibilities

by mean of two different kind of seeds, dispersive and non-dispersive. Including some

realistic features of these ecosystems, such as the negative effect of self-reproduction

(inbreeding depression), we have studied under which conditions bet-hedging strategies

lead to a substantial increase of the population growth rate.

In general, the previous result still holds, and the benefits of mixed dispersal strate-

gies are enhanced by environmental fluctuations. Moreover, depending on the envi-

ronmental variability and the strenth of inbreeding depression, the optimal strategy

can either ensure a high dispersal propensity, or a mixed situation in which both

of the previous dispersal mechanisms are employed; populations presenting only the

pure non-dispersing strategy are rarely found. Additionally, we have shown that, for

highly unpredictable environments and moderate inbreeding depression, hybrid disper-

sal mechanisms are not only optimal, but also provide a significant enhancement of

the density compared to the standard only-dispersive strategy. Our findings suggest

that plants living in such circumstances are more likely to evolve and develop a hybrid

reproductive mechanism in order to survive.

Finally, returning to the starting topic about critical behavior exhibited by many

living systems, we have focused on spontaneous brain activity, as another instance of

critical dynamics [118]. In particular, we have centered our study on the spontaneous

rhythms in the cortex called Up and Down states [147, 143]. However, rather than

focusing on the critical question, we have studied the dynamics of Up and Down states

itself, trying to explain the intriguing patterns emerging within such Up-and-Down

oscillations.

By implementing diverse computational models for Up and Down oscillations (with

different levels of complexity), we have measured the fluctuations of the activity for

either Up (active) and Down (silent) periods. Our computational experiments show
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a non-trivial peak in the power-spectrum of Up states, indicating the existence of a

characteristic frequency, while no similar peak is found for Down states. These results

are in excellent accordance with the experimental findings of several research groups

[128, 103, 49, 31].

Our main contribution has been to show that the reported phenomenology can be

perfectly explained by the mechanism of “stochastic amplification of fluctuations”, pre-

viously described in the context of Ecology [94] and Epidemiology [1]. This mechanism

consists in the resonant amplification of some frequencies in the spectra of stochastic

systems when the corresponding fixed-point of its deterministic dynamics is a focus (i.e.

with complex associated eigenvalues). The presence of any source of noise kicks the sys-

tem away from the deterministic fixed point leading to a non-trivial power-spectrum.

In the system we are studying, such circumstances only occur during Up periods, but

never for Downs. In addition, this explanation is robust beyond modeling specificities.

Furthermore, we have shown that the mechanism of stochastic amplification of fluc-

tuations operates for global variables but not for individual neurons, which perfectly

accounts for empirical findings in [31]. Such collective behavior is related to what has

been called asynchronous-states or sparse-synchronization in which a global rhythm –to

which individual neurons do not lock– emerges [19, 36].

Summing up, by using different tools from statistical mechanics, information theory,

game theory and stochastic processes, this thesis has tried to identify several underlying

mechanisms which allow biological systems to successfully operate in their everyday life.

Given their general character, it might be expected that living systems in nature have

learned, throughout the course of adaptation and evolution, to take advantage of these

mechanisms in a wide range of different contexts. As if, in some sense, the intricate

world of living matter interactions would act as a smart collective complexsystemist.
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En el estudio de los fenómenos colectivos, las transiciones de fase y las dinámicas de

auto-organización han atráıdo gran parte de la atención. De su estudio hemos apren-

dido que reglas simples para las interacciones microscópicas pueden lar lugar a complejos

patrones a nivel global. Aqúı, destacamos la teoŕıa de la Criticidad Auto-Organizada

[5], la cual ha conseguido establecer un marco general sobre el que entender por qué

diferentes sistemas en la naturaleza, como los terremotos o las distribuciones de precip-

itaciones, muestran invariancia de escala, correlaciones a larga escala y respuestas het-

erogéneas en un amplio espectro. Además, durante la última década, se ha especulado,

basándose en evidencias emṕıricas [118, 107, 15, 24, 50, 79], que los sistemas biológicos

podŕıan beneficiarse de tener atributos de criticidad [101], como un gran repertorio de

respuestas dinámicas, alta sensibilidad a cambios ambientales y un manejo eficiente de

la información.

En esta tesis, primeramente, hemos abordado, desde un punto de vista general, la

hipótesis de que muchos aspectos de los sistemas biológicos parecen operar en la cercańıa

de puntos cŕıticos [101]. Bajo la suposición de que los sistemas vivos necesitan construir

buenas representaciones del complejo mundo exterior, y que tales representaciones están

codificadas en términos de distribuciones de probabilidad, hemos mostrado que dicha

codificación necesariamente cae cerca de un punto cŕıtico [62].

En presencia de ambientes externos suficientemente heterogéneos y cambiantes,

diferentes modelos computacionales evolutivos y adaptativos han ilustrado cómo una

colección de sistemas vivos convergen hacia el estado cŕıtico, mientras que no lo ha-

cen para ambientes homogéneos y predecibles. Este resultado podŕıa entenderse, en

cierto modo, a partir del hecho conocido de que la mayoŕıa de “dinámicas diferentes”

se localizan en torno al punto cŕıtico [89].
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Una convergencia más precisa hacia la criticidad se encuentra en un escenario co-

evolutivo/co-adaptativo, en el cual los individuos evolucionan/adaptan para representar

con fidelidad al resto de agentes en la comunidad, creando un “lenguaje” colectivo, que

resulta ser cŕıtico [62]. Este fenómeno no puede entenderse en los términos anterior-

mente descritos [89], y por tanto constituye un nuevo mecanismo para auto-organización

que los sistemas biológicos podŕıan haber aprendido a explotar.

Estas ideas encuentran aplicación directa en redes genéticas y neuronales –donde

podŕıan contribuir a un mejor entendimiento de por qué la actividad cerebral parece

estar tuneada a la criticidad– pero tienen un rango más amplio de aplicaciones en

sistemas complejos adaptativos. Por ejemplo, nuestro marco teórico podŕıa ser aplicado

a ciertas comunidades de bacterias [81] y poblaciones de virus [129], para las cuales se

ha observado emṕıricamente una elevada variabilidad fenot́ıpica. Dicha variabilidad

puede verse como una forma de “cobertura de riesgos” (“bet-hedging” en inglés), una

estrategia de supervivencia similar a la gestión del mercado de acciones en bolsa [144],

en la cual los individuos diversifican sus “activos” para maximizar el crecimiento a largo

plazo en presencia de ambientes impredecibles. En nuestro contexto, dicha variabilidad

resulta ser una consecuencia directa de individuos en una comunidad en el punto cŕıtico.

Las estrategias de “bet-hedging” han atráıdo nuestra atención a su análisis general

en el contexto de dinámica de poblaciones. Para obtener un mejor entendimiento de

ellas, hemos propuesto un modelo estocástico sencillo de reproducción y muerte en el

que los individuos pueden elegir entre una estrategia pobre pero segura, una mejor

pero arriesgada (dependiente del medio ambiente), o una combinación de ambas. Por

ejemplo, este escenario podŕıa ser aplicado a micro-organismos que son capaces de

metabolizar dos fuentes de alimento diferentes, con distintos niveles de riesgo.

Nuestro principal descubrimiento es que los beneficios de desarrollar estrategias de

bet-hedging están fuertemente potenciadas en medios ambientes altamente fluctuantes

y en bajas dimensiones espaciales (donde las fluctuaciones intŕınsecas juegan un pa-

pel clave). Tales condiciones son justamente con las que normalmente se encuentran

las comunidades de individuos en la naturaleza, por ejemplo, en colonias de bacterias

compitiendo en el frente de expansión bajo entornos impredecibles [11, 78, 139]. Aśı

pues, nuestro resultado proporciona una justificación para la ubiquidad de estrategias

de bet-hedging en la naturaleza.
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Además, nuestro trabajo aporta un marco general con el que responder a diferentes

preguntas, por ejemplo, cuál es la diferencia entre explotar una estrategia de bet-hedging

a nivel individual o a nivel de comunidad. Nosotros hemos abordado brevemente la

cuestión, llegando a la conclusión de que el bet-hedging llevado a cabo individualmente

constituye la estrategia óptima; sin embargo, debeŕıamos incluir más ingredientes re-

alistas al modelo para extraer una conclusión sólida. Por ejemplo, incluyendo el coste

derivado de mantener un mecanismo h́ıbrido para cada agente.

También hemos desarrollado un modelo espećıfico para estrategias de bet-hedging

en plantas, en particular para estrategias dispersivas mixtas. Aqúı, los organismos di-

versifican sus posibilidades de reproducción a través de dos tipos de semillas, dispersivas

y no-dispersivas. Incluyendo algunos elementos realistas de estos ecosistemas, como el

efecto negativo de la auto-reproducción (depresión endogámica), hemos estudiado bajo

qué circunstancias las estrategias de bet-hedging llevan a un incremento substancial del

ritmo de crecimiento de la población.

En general, el resultado anterior se mantiene, y los beneficios de las estrategias mix-

tas dispersivas se potencian por las fluctuaciones ambientales. Además, dependiendo

de la intensidad relativa de la variabilidad ambiental y la depresión endogámica, la

estrategia óptima puede asegurar, o bien una alta propensión dispersiva, o bien una

situación mixta en la que los dos mecanismos de dispersión previamente descritos son

utilizados. Las poblaciones que solamente presentan la estrategia pura no-dispersiva

son raramente viables. Adicionalmente, hemos mostrado que, para entornos altamente

impredecibles, los mecanismos de dispersión h́ıbridos no solo son óptimos, sino que

además producen un beneficio relativo muy significativo comparado con la estrategia

solamente dispersiva estándar. Nuestro resultado sugiere que las plantas que viven en

dichas circunstancias tienen más probabilidad de evolucionar y desarrollar un mecan-

ismo reproductivo h́ıbrido para sobrevivir.

Por último, volviendo al tema del inicio sobre el comportamiento cŕıtico que pre-

sentan muchos sistemas biológicos, nos hemos concentrado en el estudio de la actividad

espontánea del cerebro, como otro ejemplo más de dinámica cŕıtica [118]. En particular,

hemos llevado nuestro estudio a los ritmos espontáneos del córtex llamados estados Up-

Down [147, 143]. Sin embargo, más que continuar investigando en la pregunta cŕıtica,

nos hemos focalizado en la dinámica misma de los estados Up-Down, con el objetivo de
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entender los interesantes patrones que emergen en dichas oscilaciones.

Implementando diferentes modelos computaciones que describen estados Up-Down

(con diferentes niveles de complejidad), hemos medido las fluctuaciones de la actividad

durante cada peŕıodo Up (activo) o Down (inactivo). Nuestros experimentos com-

putaciones muestran un pico no trivial en el espectro de potencias de los estados Up,

indicando la existencia de una frecuencia caracteŕıstica, mientras que dicho pico no

aparece para los estados Down. Estos resultados están en perfecta concordancia con

los medidos experimentalmente por diferentes grupos [128, 103, 49, 31].

Nuestra contribución principal ha sido mostrar que tal fenomenoloǵıa puede ser

perfectamente explicada por el mecanismo de “amplificación estocástica de las fluctua-

ciones”, anteriormente descrito en el contexto de la ecoloǵıa [94] y la epidemioloǵıa

[1]. Este mecanismo consiste en la amplificación resonante de algunas frecuencias en el

espectro de sistemas estocásticos cuando el correspondiente punto fijo de su dinámica

determinista es un foco (es decir, un punto fijo con autovalores complejos). La presencia

de cualquier fuente de ruido saca al sistema del punto fijo, dando lugar a un espectro

de potencias no trivial. En nuestro sistema en cuestión, dichas circunstancias solo se

dan durante los peŕıodos Up, pero nunca para los Down. Además, esta explicación es

robusta más allá de detalles del modelo.

Por último, hemos mostrado que el mecanismo de amplificación estocástica de las

fluctuaciones opera para las variables globales pero no para las neuronas individuales,

lo cual encaja perfectamente con los resultados experimentales [31], en los que no se

observa dicha resonancia a nivel celular. Este fenómeno colectivo está relacionado con

lo que han sido llamados “estados aśıncronos” [19, 36], en los cuales un ritmo global,

no seguido por las neuronas individuales, emerge a gran escala.

En resumen, utilizando diferentes herramientas de mecánica estad́ıstica, teoŕıa de la

información, teoŕıa de juegos y procesos estocásticos, esta tesis ha tratado de identificar

varios mecanismos que permiten a los sistemas biológicos operar de forma satisfactoria

en su d́ıa a d́ıa. Dado su carácter general, cabe esperar que los sistemas en la naturaleza

hayan aprendido, a través de la adaptación y la evolución, a sacar provecho de estos

mecanismos en un amplio rango de contextos. Como si el intrincado mundo de las inter-

acciones de la materia viva se comportara, de alguna forma, como un complexsystemista

colectivo e inteligente.



Appendix A

Approach to Sanov’s theorem

In Chapter 2 we introduced the Kullback-Leibler divergence (KLD, eq. 2.8) as a measure

of the closeness between two probability distributions P and Q, from one to the other.

As this statement is well understood from the Sanov’s theorem, in this appendix we

briefly sketch the derivation for physicists suggested in [97].

Le consider a discrete stochastic variable x distributed as P (x), that we call orig-

inal probability distribution. Then, we extract a sequence of T independent samples

{x1, x2, x3, ..., xT}, and we compute the experimental probability distribution Q(x), i.e.

the relative frequency histogram. We expect that Q → P for large datasets, but the

result differs for any finite sample. Therefore, the experimental distribution Q is an-

other stochastic variable, distributed as L(Q|P ). We can compute this function as the

probability of generate a sequence of P compatible with Q:

L(Q|P ) =
∑

x1,...,xT

P (x1, x2, ..., xT )
∏
x

δTQ(x),
∑T
i=1 δx,xi

. (A.1)

As realizations are independent, P (x1, ..., xT ) =
∏T

k=1 P (xk). To perform this calcula-

tion, we use the integral representation of the Kronecker delta:∫ 2π

0

dλ
exp (iaλ)

2π
= δa,0 , a ∈ Z. (A.2)

As there is one constraint for each value of x, we introduce the integral representation
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in eq. A.1 with a set of new variables λ = {λ(x)}x:

L(Q|P ) =
∑

x1,...,xT

T∏
k=1

P (xk)
∏
x

∫ 2π

0

dλ(x)

2π
exp

(
iλ(x)

[
TQ(x)−

T∑
i=1

δx,xi

])
. (A.3)

Note that the term in square brackets is always an integer number. This equation can

be rearranged as

L(Q|P ) =

∫ 2π

0

...

∫ 2π

0

(∏
x

dλ(x)

2π

)
eT(i

∑
x λ(x)Q(x)+log[

∑
x′ P (x′) exp (−iλ(x′))]), (A.4)

and solved by means of the saddle point approximation for T � 1[22],

∫
I

dλ exp (TF (λ)) '

√√√√(∏
x

2π

T

)
det

(
∂2F

∂λ(x)λ(x′)

∣∣∣∣
λ∗

)−1

exp (TF (λ∗)) (A.5)

with I the interval of integration and λ∗ the value which maximizes F (λ). Identifying

for our case F (λ) = i
∑

x λ(x)Q(x) + log [
∑

x′ P (x′) exp (−iλ(x′))], the condition of

extrema leads to

∂F

∂λ(x)

∣∣∣∣
λ∗

= 0 =⇒ −iλ∗(x) = log
Q(x)

P (x)
+ log

[∑
x′

P (x′)e−iλ
∗(x′)

]
(A.6)

and it can be checked that λ∗ represents a maximum. Note that, although eq. A.6

pretends to be a non-explicit result for λ∗(x), the last term is common to all of them,

and therefore it cannot depend on x, only on the specific choice of P and Q.

Finally, evaluating at the maximum we find that F (λ∗) = −
∑

xQ(x) log Q(x)
P (x)

+

F0(P ), where the constant F0 do not depend on Q. Consequently, the leading expo-

nential term in eq. A.5 is

L(Q|P ) ∼ exp (−TD(Q|P )) (A.7)

where D(Q|P ) =
∑

xQ(x) log Q(x)
P (x)

is the Kullback-Leibler divergence.

Let us remark that problem we have described is intrinsically non-symmetric, i.e. the

probability that Q generates characteristic states of P differs from the probability that
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P generates such states of Q. The Kullback-Leibler divergence, as it is non-symmetric

and therefore, not a proper distance, takes account of this dissimilarity.

In conclusion, Sanov’s theorem states that, given a set of realizations generated

from a distribution P (x), the probability of finding a dataset with relative frequency

histogram Q(x) 6= P (x) decays exponentially with the number of samples generated.

However, some histograms are more likely to be found than others, in particular those

with lower KLD respect to the original P (x). Thus, the KLD gives a measure for the

closeness between two probability distributions.



Appendix B

Fisher information and

Cramérs-Rao inequality

The Fisher Information (FI) was defined in Chapter 2 in eq. 2.18 for a system of states

s, randomly distributed as P (s|β); β is a multivariate parameter encoding some tunable

behaviour in the dynamics. In this context, we stated that the FI measures the amount

of information encoded in s about the internal parameters β. This can be rationalized

within the Cramér-Rao inequality [34], that we try to illustrate –not rigorously– in this

appendix.

In a nutshell, the inequality states that the error made when we infer the parameter

β from one realization s, on average, is always greater or equal than the inverse of the

FI.

Let consider a estimator of β(1) for the set of realizations (s1, ..., sn), which is a

function that converts a set of samples into a single value β. This estimator is expected

to give an approximate value of the “real”parameter β, hence the name estimator,

but it may differ for different realizations of the dynamics. Consequently, the error(
β(1) − β

)
is, in general, a stochastic variable.

We first want the estimator to be unbiased, i.e. with a zero error on average:

〈β(1) − β〉 =
∑

s1,...,sn

P (s1, ..., s2|β)
(
β(1) − β

)
=
∑

s1,...,sn

n∏
i=1

P (si|β)
(
β(1) − β

)
= 0,

(B.1)

where we have introduced the independence between realizations P (s1, ..., s2|β) =
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∏n
i=1 P (si|β).

Under this condition, it can be proved [34] that the covariance matrix for the error

variable obeys the following (Cramers-Rao) inequality:

〈β(1)
µ β(1)

ν 〉 ≥
1

n
χµν(β)−1, (B.2)

where χµν is the FI (defined in eq. 2.18) and µ and ν stand for different components

of the multivariate parameter β. If the inequality becomes an equality, the estimator

is called efficient.

This result tells us that, for high values of FI –as for instance in a critical point–, the

error made when we infer the parameter β with an efficient estimator is low. On the

other hand, if the FI is low, we expect a non accurate result in the inferred parameter.

In other words, the FI measures the information contained in s about the parameter β.

Example

Let consider the case of an exponential distribution P (s|β) = 1
β

exp(− s
β
), defined in

the continuous range [0,∞) for β > 0. We take n independent realizations {s1, ..., sn}
of P (s|β), and we try to infer, from these samples, the parameter β with two different

estimators:

β(1)(s1, ..., sn) = s1 (B.3)

β(2)(s1, ..., sn) =
1

n

n∑
i=1

si. (B.4)

First, we check that estimators are unbiased:

〈β(1)〉 =

∫ ∞
0

ds1...dsn

n∏
i=1

[
1

β
exp

(
−si
β

)]
(s1 − β) = 0, (B.5)

〈β(2)〉 =

∫ ∞
0

ds1...dsn

n∏
i=1

[
1

β
exp

(
−si
β

)](
1

n

n∑
i=1

si − β

)
= 0. (B.6)



150 Appendix B. Fisher information and Cramérs-Rao inequality

Secondly, we compute the error variance for each estimator:

〈
(
β(1)
)2〉 =

∫ ∞
0

ds1...dsn

n∏
i=1

[
1

β
exp

(
−si
β

)]
(s1 − β)2 = β2, (B.7)

〈
(
β(2)
)2〉 =

∫ ∞
0

ds1...dsn

n∏
i=1

[
1

β
exp

(
−si
β

)](
1

n

n∑
i=1

si − β

)2

=
β2

n
. (B.8)

In consequence, as the error for the second case has a lower variance, β(2) constitutes a

better estimator than β(1).

Finally, we compute the FI of the exponential distribution:

χ(β) =

∫ ∞
0

dsP (s|β)

(
∂

∂β
logP (s|β)

)2

=
1

β2
, (B.9)

which is a decreasing function of β; then, realizations are maximum informative when

β → 0+.

We see that the Cramér-Rao inequality is always satisfied, as var
(
β(1,2)

)
≥ χ−1(β)/n =

β2/n. The equality is only reached by β(2); then, among these estimators, only β(2) is

efficient.
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Discrete time calculation for the

Hybrid Contact Process

In chapter 3, we based our analysis of the contact process with two dynamics in the

stochastic, continuous in time, Langevin picture. In the literature, however, these

processes are usually explained using discrete-time multiplicative descriptions. In par-

ticular, Kelly showed that, in the context of a gambler investing his/her capital on two

different games, the exponential growth rate of the capital corresponds to the geometric

mean of the respective game rates [76].

We have not seen any similarity with this claim as we are dealing with a continuous

rather than a discrete-in-time equation, but we can re-formulate our results to this

other framework. To this end, we introduce the discrete (∆t = 1) analogous of eq. 3.4:

Nt+1 = 2pav(α)Nt + 2ασNtrt, (C.1)

with rt a Gaussian distributed variable with 0 mean and unit variance (i.e. not a white

noise) and where we have switched the notation to the number of particles Nt = ρ(t)N .

We also discretize the range of values of r, r = (r1, ..., rR). With this, starting from

some initial condition N0, the previous equation becomes

Nt =
R∏
i=1

[2pav(α) + 2ασri]
ni N0, (C.2)
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where ni is the number of times we got ri, and therefore
∑

i ni = t. The exponential

growth rate is derived from its definition G = limt→∞
1
t

log Nt
N0

:

G(α) =
R∑
i=1

ni
t

log [2pav(α) + 2ασri] , (C.3)

and, going back to the continuous random Gaussian variable, it reads:

G(α) =

∫ ∞
−∞

dr
e−

r2

2

√
2π

log [2pav(α) + 2ασri] . (C.4)

This result is exactly the geometric mean of the different game rates that we can find

in the system, i.e. all possible combinations of the conservative strategy p0 and a risky

one with p = p̄+ σr, with r Gaussian distributed. It has to be solved numerically, but

we can compute an approximation in the limit of σ � 1. Expanding the logarithm up

to order r2, we obtain:

G(α) = log (2pav(α))− 1

2

(
ασ

pav(α)

)2

. (C.5)

Fig C.1 shows the growth rate for different values of α obtained via eq. C.5 and its

analogous eq. 3.5 for a certain choice of the parameters p0, p̄ and σ, illustrating that

functions almost coincide.
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Figure C.1: Growth rate for hybrid strategies obtained from the discrete and
continuous time descriptions. Parameters: p0 = 0.499, p̄ = 0.51, σ = 0.1.
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Conditions for stochastic

amplification

Let us consider the stability (Jacobian) matrix, A, of a two-variable dynamical system

(as in eqs. 5.18, 5.19) evaluated at a fixed point, and let λ1 and λ2 be its associated

eigenvalues. In general, they can be written as complex numbers

λ1,2 = λR1,2 + iλI1,2. (D.1)

As A is a real matrix, its determinant and its trace are both real. This imposes some

constraints on the eigenvalues: Tr(A) = λR1 + λR2 + i(λI1 + λI2) ∈ R and hence

λI1 = −λI2 ≡ λI . (D.2)

Similarly, det (A) = λR1 λ
R
2 − λI1λI2 + i(λR1 λ

I
2 + λR2 λ

I
1) ∈ R, and therefore

λR1 = λR2 ≡ λR if λI 6= 0. (D.3)

As shown in Chapter 5, the power-spectrum of fluctuations has a maximum around

ω0 =
√

det (A)− (TrA)2/2 (eq. 5.24); taking into account eqs. D.2 and D.3, the

location of the peak can be rewritten as

ω0 =
√

(λI)2 − (λR)2, (D.4)
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which provides a direct way to compute ω0. In particular, observe that |λI | > |λR| is

a necessary and sufficient condition for a non-trivial maximum to exist, and hence, the

system does not exhibit stochastic amplification if λI is zero or not sufficiently large.

Note that, if A is diagonal (i.e. the two equations become decoupled), λI = 0 and no

stochastic amplification can occur. Indeed, it suffices that only one of the non-diagonal

terms of A is zero to rule out stochastic amplification.

Stochastic amplification of fluctuations occurs when the deterministic system falls

with damped oscillations (spiral decay towards the focus, as corresponds to complex

eigenvalues). Noise perturbs trajectories, kicking them away from the focus and sustain-

ing oscillations. It is noteworthy that the selected oscillation frequency does not coincide

with that of the transitory deterministic dynamics, ωd =
√

det (A)− Tr(A)2/4 = |λI |,
and consequently, ω0 < ωd.
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