
Research Article
A Model-Driven Approach for Wearable Systems Developments

Angel Ruiz-Zafra,1 Manuel Noguera,1 Kawtar Benghazi,1 and Sergio F. Ochoa2

1Department of Languages and Informatics Systems, University of Granada, 18071 Granada, Spain
2Department of Computer Science, University of Chile, Santiago, Chile

Correspondence should be addressed to Angel Ruiz-Zafra; angelr@ugr.es

Received 24 May 2015; Accepted 15 July 2015

Academic Editor: Raffaele Gravina

Copyright © 2015 Angel Ruiz-Zafra et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper proposes a model-driven approach for developing high-level software interfaces that allow developers to interact with
wearable devices easily. These components hide the heterogeneity of the devices interfaces and provide developers with a simple
and homogeneous way to interoperate with these digital peripherals. The use of this approach also allows reducing risks and
development efforts.

1. Introduction

In recent years, the progress in several domains, such as
electronics, communications, and computing has led to the
creation of portable high-tech devices that provide several
services to people and systems. In particular, wearable devices
(or wearables) are launched on an almost weekly basis [1, 2].
From a simple wristwatch or GPS to the last state-of-the-
art smart glasses, wearables can be found in a variety of
application domains, ranging from healthcare and security
to entertainment and business, or simply as service providers
[3]. These devices (that usually embed sensing capabilities)
are becoming increasingly popular, because of their potential
for enhancing the quality of people’s everyday life [4, 5].

There is a large and still growing variety of wearables
since each vendor tries to differentiate their products from
other vendors, in terms of services provided and costs.
Consequently, they include proprietary software interfaces
for these products, which cause clients and users to become
highly dependent on the wearables of such a vendor.

Unfortunately, this lack of standard and open software
interfaces (i.e., APIs (Application Programming Interfaces))
to interact with these devices limits the development of
systems that really improve the quality of the people’s life. For
instance, if a developer has to implement a wearable system to
monitor patients with Alzheimer’s, the solution could involve
at least a GPS, a computing unit, and a network interface.

The GPS would determine the location of the monitored
person. The computing unit would process such informa-
tion to determine if the patient is moving according to
his/her behavioral patterns.When this unit detects important
changes in the person activity, it may assume that the patient
is getting lost, and therefore it uses the network interface
to notify other people (e.g., caregivers, relatives, or medical
personnel).

The development of such a monitoring system would
require that the software engineer would have to deal with the
low-level software interfaces of the involved devices (the GPS
and the computing unit), which probably vary depending
on the device and vendor. Moreover, the interfaces of each
device, as well as the details about data stream formats and
transmission protocols, are usually provided through verbose
datasheets, for which careful study and some training are also
required so as to understand them.

This situation not only limits devices integration and
interoperability of the solutions but also jeopardizes the
development efforts of these systems, since it requires under-
standing andmanaging every device interface as well as writ-
ing specific source code for each device and operating system
involved in the solution. Therefore, only highly experienced
developers are able to address these challenges. Moreover,
these developments require an extra effort (in terms of time
and cost) and push developers to face unconventional risks
derived from dealing with low-level abstractions used in

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 637130, 12 pages
http://dx.doi.org/10.1155/2015/637130

2 International Journal of Distributed Sensor Networks

datasheets device specifications, thereby reducing the success
rate of these projects.

This paper introduces a proposal to deal with the het-
erogeneity of software interfaces for wearable devices, by
enabling the design of high-level software interfaces that
ease the development of these systems. The proposal, called
model-driven approach for wearable system development
(MDWSD), reduces the complexity and effort of using wear-
ables, regardless of their specific characteristics (e.g., purpose,
API, and supported communication protocols).

MDWSD provides a user interface that allows vendors
to create high-level interfaces for their devices. Software
designers (or architects), who may want to provide simple
and homogeneous abstractions about these devices’ APIs, can
do the same for reducing the effort and risks of wearable
system developments. Thus, developers no longer have to
deal with low-level complex interfaces for interacting with a
wearable device.

The proposed approach considers the use of several
components: (1) a metamodel that eases the definition of the
device design features and its API; (2) a design tool to be
used by architects to model the wearables; (3) a mechanism
to generate the device model from the proposed metamodel;
(4) a software component, called coordinator, which uses the
instances of themetamodel (i.e., devicemodels) to handle the
devices; and (5) a process that shows how to articulate the use
of the previously mentioned components.

The device models are represented in a custom dynamic
language, named wearable markup language (WML), which
allows designers to specify the elements and features that are
mandatory to interact with the device. Because of this, each
wearable has only one model, as an instance of the proposed
metamodel. Furthermore, the design tool has been conceived
to generate wearable device models easily, particularly for
devices with sensing capabilities.The coordinator component
has been designed to handle the device models (i.e., the
instances of the metamodel) in an automatic and seamless
way, thereby enabling interaction through an easy-to-use
high-level software interface.The vendors’ software designers
are responsible for defining these high-level APIs using the
design tool.

The rest of the paper is organized as follows: Section 2
describes related work; Section 3 presents a brief background
on device development and integration; Section 4 presents
the proposedmodel-driven development approach; Section 5
describes a case study in which the proposed approach was
used; and Section 6 summarizes the conclusions and outlines
the future work.

2. Related Work

Wearable computing has become an emerging and promising
field because of the recent advantages in mobile computing
and wireless communication technology. Several proposals
based on the use of wearables are framed into the concept of
wireless body area network (WBAN), where wearables from
several natures support activities in various domains, such as
healthcare or entertainment [6–8].

Most of these proposals have been designed to monitor
people activities or health conditions. Provided that these
solutions are focused on addressing a particular problem
using specific devices, the seamless integration of several
wearables in software applications is usually not addressed.
Instead, the developers must create custom source code from
scratch to interact with the wearables used in these projects.

Some other projects have considered the wearables
integration an important challenge to address, and therefore
they have proposed design solutions and infrastructures
(e.g., middleware) to facilitate the software development
process. For instance, in [9] the authors present an approach
to improve the integration of Bluetooth based devices—in
existing systems. In [10, 11] the researchers describe a
middleware for supporting e-health environments, and in
[12] a revision of several middleware is presented exposing
their features, strengths, and weakness.

Most of middleware proposed to improve the integration
of wearable devices is linked to particular elements; for
example, specific communication protocols should be used
[10] or it can be applied to a certain domain [11, 13]. Although
they have shown to be useful, they provide a nonautomatic
integration of devices and a limited support for device
heterogeneity. This makes that developers have to write extra
code to perform the devices integration process.

There are also proposals that intend to address the
heterogeneity and lack of standardization for interacting with
wearables, using a model-driven approach. For instance, in
[14, 15] the authors propose an approach to enhance the data
acquisition of wearables. Going a step further, the projects
presented in [16, 17] explore the devices integration process,
the lack of standardization, and the heterogeneity of wearable
computing contexts. Based on that situation, the researchers
propose model-driven approaches in order to address these
challenges.

Recognizing the usefulness of the related proposals, they
have limitations to address the challenge presented in this
paper. Their main limitations are the following:

(i) The integration of new wearables in already deployed
systems, as well as the data management of wearables
to provide a proper dissemination, is not fully cov-
ered. This is because in some cases the developers
should create new source code from scratch.

(ii) The use of these solutions requires understanding
technical documentation, which is not usually written
for regular developers.

In order to help address these limitations, this paper
supports device development and integration, addressing
problems such as the large variety of devices to integrate and
the lack of the standardization about how to consume device
services. The model-driven approach for wearable systems
development (MDWSD) proposed in this paper intends to
provide a solution for the integration and data management
of wearable in an easy and quick way, providing a high-level
interface to developers. Typically, the use of these APIs helps
them reduce the development effort, risks, and complexity.

International Journal of Distributed Sensor Networks 3

Heart rate sensor

Smartwatch

GPS

Smartphone
(coordinator)

(a)

H Lat. Lon.

Bluetooth packets

H HR RR H HR

GPS
sensor 1

Heart rate
sensor 2

Heart rate
sensor 3

User

(b)

Figure 1: Smartphone as coordinator (a) and different packets of information (b).

3. Integration of Wearable Devices

Wearable devices are small independent digital components
that have been inserted in clothing, apparel, or personal
portable objects and that have been designed or created for a
specific purpose [18].These devices are able to provide one or
more functionalities, for example, to inform the user position,
body temperature, and heart rate.

Some devices, like smartphones or wristwatches, may use
these functionalities to provide complex services, like deter-
mining the health condition of a mobile user in real-time.
Particularly, smartphones have become reference devices
in wearable computing. Thanks to their computing power,
usability, and wireless communication capabilities, they are
gaining acceptance to coordinate other wearable devices of
mobile users.

Wearable devices can use several, wired and wireless,
communication interfaces, such asUSB, Bluetooth, andWiFi,
to exchange information with other components and devices.
Regardless of the communication technology to be used
and whether the information is sent by request (packets)
or stream, wearable devices are designed to serialize the
information and provide the results as an array of bytes
with a predefined or undetermined length, structure, and
content.

A customized device design entails that the structure of
the serialized information provided by one device may be
different from other devices that play the same role, since
they have been designed by other vendors according to
other criteria or requirements. Consequently, other aspects
(such as the packet length, the provided information, or
even the order of the information presentation) may be also
different.

The left-hand side of Figure 1 depicts a wearable com-
puting system with a smartphone as a central management

device (i.e., the smartphone acts as a coordinator device),
which monitors various other devices (a GPS, a smartwatch,
and a breast-band heart rate monitor). The information
gathered from these sensing devices (e.g., the user position,
heart rate, and RR interval, time between two beats) starts
with a header (H) to identify the starting point of the
information packet, due to the different format and length of
the packets they provide (right-hand side of Figure 1).

The API (Application Programming Interface), designed
by the architects from a particular vendor for interacting with
one of the devices, provides a datasheet with all the device
information (e.g., its technological features, size, and weight).
The developers should use this datasheet to know how to
interact with such a device, regardless of other concerns, like
the communication protocols supported by the device. As
a result, even two devices, designed by the same company,
by the same engineers, and for the same purpose, could
differ significantly in how to interact with them through their
respective APIs.

This lack of standardization of the APIs jeopardizes the
integration of wearables devices and leads software develop-
ers to several anomalous situations. For instance, if a vendor
decides to release a new firmware to include additional
communication capabilities in an already released device,
the developers should write new source code and sometimes
from scratch. Situations like this put in risk the development
and operation of wearable computing solutions.

The dynamic nature of technology evolution should also
be considered in the devices integration. For instance, we
still have solutions using legacy wearable devices, which
can only save information in an internal storage medium
(e.g., MMC, SDCard, or Hard Drive). Although this reality
represents a restriction in the design of wearable computing
systems, it should be also considered for ensuring the devices
integration.

4 International Journal of Distributed Sensor Networks

Model-driven
approach for

wearable
systems

development
(MDWSD)

Wearable specification
metamodel

Coordinator
(software component)

Design tool Device model
generation process

Figure 2: The proposed model-driven approach for wearable
systems development.

4. The Proposed Development Approach

In order to address the challenge of using heterogeneous
wearable devices in a system, we propose the model-driven
approach depicted in Figure 2, which encompasses (1) a
metamodel to define the different wearable device features,
(2) a design tool to specify the features and the manner to
interact with a device, (3) a device model generation process
to obtain a device model from the metamodel, and (4) a
coordinator component which is the software component
that interprets the device models (metamodel instances) to
interact with the corresponding devices. In the following
sections, we describe each contribution in further detail as
well as the integration process.

4.1. Wearable Specification Metamodel. The metamodel pro-
posed in this paper has been designed to be extendable and
open, in order to enable the idea that new features and
elements can be included in the future. This ensures that any
wearable device can be modeled and eases the interaction
with the devices from a software perspective.Themetamodel
is intended to support the design interface of any wearable
device.

In the design process of the metamodel, some key con-
cerns related to wearable devices have been identified. These
concerns are represented or managed differently depending
on the wearable device. The proposed metamodel encapsu-
lates this heterogeneity and provides a single API to the devel-
oper, regardless of the device that he/she is manipulating.
Thus, the metamodel helps ease the device integration. The
key concerns considered in the metamodel are as follows:

(i) The communication protocol is indicated in the
metamodel, but how to handle it depends on the
platform. For instance, protocols likeWiFi, Bluetooth,
and ZigBee are IEEE-defined communication stan-
dards; however, how these are used is still platform-
dependent.While BluetoothSocket andBluetoothDe-
vice are the API proposed in the Android Platform
to work with Bluetooth Protocol, CoreBluetooth is

the one proposed by iOS. They both work with the
same protocol, but not in the same way from a
developer’s point of view.

(ii) The wearable devices provide the information in a
serialized array of bytes using two alternative ways:
by request (synchronous packet) or by stream (asyn-
chronous).

(iii) The information provided by a specific wearable
device is typically variable in format and length
(buffer size, structure, and content).

(iv) The dynamic information provided by a wearable
device is specified in the same packet/stream. How-
ever, it can be in a predefined or undetermined
position; that is, the position of the payload and other
fields can vary within the buffer.

(v) The information provided by a wearable device starts
with a customized value that we called pivot (header
by the classical vendors and designers). This allows
the packets that compose the information to be
identified.

(vi) The information provided by a wearable device has
a cyclic redundancy check (CRC) or other similar
mechanism to check that the packet is valid.

(vii) The information provided by a wearable device is
divided into groups of bytes. The length and position
of these groups may be predefined or undetermined.
The length of the buffer and the information position
varies according to the service provided.

The metamodel is represented in a UML diagram in
Figure 3.

Depending on how the information provided through
a communication protocol is managed, various features
related to data structure/dissemination have been considered
and included in the metamodel, in order to represent an
abstraction of a wearable device. The considered features are
as follows:

(i) Type of Operation. It can be input (stream), output, or
both (request).

(ii) Pivot Element.This element indicates where the pack-
age of information (buffer) starts.

(iii) Payload Information. This is the cargo of the data
transmission, that is, the data representing the funda-
mental purpose of the transmission. For instance, the
latitude and longitude in a package of information are
sent by a GPS sensor.

(iv) Fields.This component includes the information from
the device, such as values to represent the packet
length or the starting point of the payload.

(v) CRC or Check Method. This represents the set of
operations to validate incoming packets/information.

(vi) Type of Buffer for Each Functionality/Service. As men-
tioned before, it can be predefined or undetermined.

International Journal of Distributed Sensor Networks 5

Protocol Sensor API

Type

Field

APISEN

StaticBuffer

Buffer

DynamicBuffer

CheckDynamicPosStatic Check Apival Payload

CheckDynamicPosDynamic
OutPutInputApival StaticPayload

Operation

Figure 3: Wearable device metamodel.

Communication
protocol

API sensor

Type of
information

Buffer type

Check

Field

Payload Metamodel

Device model

Bluetooth

Static buffer

Stream

Field 2: size,
0xF2

APIValue:
getHR

Check type
1

Wearable markup language (WML)

· · ·

· · ·

0xF8, offset = 1,
type = 2

Figure 4: Example of an instance of the metamodel.

One of the design objectives of the metamodel was to
make it customizable, so that it couldmeet present and future
requirements of new wearables, as they are released. Because
of this, it might be possible to create new customized models
to cover forthcoming technologies and functions, by simply
defining new concepts in themetamodel to support these new

features and their implementation in the coordinator. The
models generated from the metamodel (i.e., the instances)
are represented in a custommarkup language called wearable
markup language (WML). These models are identified by a
unique identifier called Wearable Unique Identifier (WUI)
and they contain all the information required to interact with

6 International Journal of Distributed Sensor Networks

Figure 5: User interface of the design tool.

the device, such as the communication protocol used, values
and functions provided by the wearable, and marshaling
information (Figure 4).

4.2. Design Tool. Most wearables usually provide a datasheet
or another kind of document where the developers can learn
the device features and functionalities, in order to find out
how the wearable works, that is, how to use the services of
the device to get access to the sensed data. In some cases
the datasheet is a huge file with all the device specifications
on low-level implementation and data representation details,
which hinders the use of the device for developers. Knowing
how the device works is mandatory, but it usually requires
expert knowledge.

In order to address this requirement, we have defined
the role of designer and developed a design tool to support
this task. The designer is a person with the required expert
knowledge to identify the features and functionalities of the
device. This person is also able to work with the device at
low level and define a model that represents the device, thus
avoiding the fact that developers have to deal with it. In order
to help designers specify the devices models we have created
a design tool. This tool is a web application conceived to be
easy to use, enabling the design of any wearable easily and
in a quick manner. Figure 5 shows a screenshot of the design
tool.

The designer, taking the datasheet and other information
concerning the device operation (usually provided by the
device’s vendor), uses the design tool to define the features of
any wearable at a high level of abstraction. The designer also
establishes how to interact with the device through its API,
generating thus a device model. Such a model is represented
in WML.

In this manner, just one user or team with the role of
designer is required to produce the model of a wearable. One
developer with the WUI of the device, together with its API
(defined by the designer), can use the device in an easy way
just using the coordinator.

4.3. Device Model Generation Process. The metamodel,
shown in Figure 3 and represented in an XML file, contains
the different features of any (so far) wearable device, for
example, the communication protocol, how the information
is sent, and the packet-checking method. In order to define
a device model (i.e., an instance of the metamodel), some of
these features will be used to represent the device features.

Designer
Design tool

XSLT fileMetamodel

XSLT processor

Device model
(WML)

Figure 6: Device model generation procedure.

Wearable devices

API

1
Orchestrator

WR

Comm.
protocol 1

Comm.
protocol 2

Comm.
protocol 3

2

Payload
processing

3

Developers

Coordinator

4
WR

component

Figure 7: Architecture of the coordinator component.

Therefore, it is mandatory to count on a procedure to get
instances of the metamodel. In this approach it was imple-
mented as a transformation process from the metamodel to
the device model, as shown in Figure 6.The process to obtain
the different device models is based on XSLT (Extensible
Stylesheet Language Transformation) approach [19].

The designer, using the design tool, models the device.
Then, the design tool automatically generates a style sheet
document (XML file) based on the XSLT that represents the
design of the device, that is, its communication protocol, type
of buffer, and API. After that, a service generates a custom
XMLfile (inWML) that represents the devicemodel, by using
an XSLT Processor, using the style sheet document and the
metamodel file.

4.4. Coordinator. The metamodel proposed in this approach
has been designed to generate device models to avoid facing
the complexity of managing low-level detail information
when coding for wearable-based systems. Although these
models contain the necessary information to interact with

International Journal of Distributed Sensor Networks 7

a circle buffer
Receive

bytes
Store bytes in
a circle buffer

Pivot
detected

No

Clean buffer

Yes

Sensor
static
buffer

Determinate
buffer length

No

Get subarray
of bytes

Yes

Valid
fields

Valid
payload

Valid size
packet

No

Get
(sub)payload

Deserialize
(sub)payload

Return value to
the orchestrator
through the pipe

Yes

Yes

Yes

Start

End

Figure 8: Payload processing.

the devices, it is also necessary that the software allows
applications to use the wearable through this model.

The coordinator component is responsible for the models
integration, and it acts as a bridge between the device models
and the developers, by automating the integration (detection,
synchronization) and easing the use of the devices for the
developers.

Figure 7 shows a diagram that represents the coordinator
design and its different elements. The coordinator is com-
posed of four main components, each one has a specific
purpose.

(1) Wearable Repository (WR). This component is responsible
for interacting with the wearable models repository hosted
on an external server (or in the cloud), where all the device
models are stored. The WR component (labeled as 1 in
Figure 7) uses a service specifying the WUI to obtain each
device model.

(2) Communication Protocols. In order to handle different
wearable devices, it is necessary to interact with them through
different communication protocols, such as Bluetooth, WiFi,
ZigBee, or Serial. Therefore, a software component for each
specific protocol (labeled as 2) should be implemented to
access the information provided by the device. This informa-
tion is supplied in the form of arrays of bytes. All the wearable
devices with the same communication protocol are handled
through the same component.

(3) Payload Processing. Once a wearable device has sent the
information, it is necessary to process it to ensure that is
correct as well as obtain the payload. The payload processing
component is responsible for transforming the payload rep-
resented in arrays of bytes into understandable information
using the specifications of the device model. Moreover, the
component should ensure the Quality of Service (QoS). The
payload processing component (labeled as 3) is depicted in
the flowchart presented in Figure 8.

Metamodel

Designer
Design

tool

WML-
sensor 1

WML-sensor 2

WML-
sensor N

WR

Wearable
repository

Coordinator
Developers

XSLT 1

2

3

Wearables

WUI + API

Figure 9: Process to use a new device based on the MDWSD
approach.

(4) Orchestrator. This component is responsible for con-
suming the services provided by other components and
orchestrating them to provide the proper information to
developers through its API. The API can be also used by
developers to interact with the coordinator, in order to define
the device to be used, the value of the variables that should
be retrieved from the device, turning on/off a device, or
enabling/disabling notifications.

In order to handle the asynchronous interaction with
devices, the coordinator uses a custom software component
called pipe. A pipe is an event-driven software element
responsible for transmitting the information from the devices
to the developers (e.g., heart rate, time between two beats,
use position, and contextual information) through the coor-
dinator module. In this manner, when a developer uses
this module to handle a device, it returns a pipe (one
pipe per device) to the developer. When the device sends

8 International Journal of Distributed Sensor Networks

Wearable
repository

Bluetooth
component

BluetoothAlgorithmCoordinator
Developer

Design
tool

Designer

10.1: (getHR, HR), (getTem, TEMP), (getRes, RESP), getPeakAcc(PEAKACC)

9: Algorithm process

10: HR, TEMP, RESP, PEAKACC values

8.1: process(getHR, getTem, getRes, getPeakAcc, bytes)

8: bytes

6.1: bytes
6: receiveBytes

3.6: getHR, getTem, getRes, getPeakAcc

7: ok

5.1: bytes
5: receiveBytes

4.1: ok
4: connection

3.5: initSensor(address)
3.4: addSensor(sensorModel.wml)

3.3: sensorModel.wml

3.2: getSensorModel(WUI)
3.1: pipe

3: use(WUI, address)

1.1: WUI and API
1: design bt heart rate sensor

process device

2: WUI + API

Figure 10: Sequence diagram of the process to use a new multifunctional device.

the information, which is processed by the coordinator using
the process of the Figure 8, an event/callback is sent to
the developer notifying him/her about relevant information
related to a specific API (defined in the device model).

4.5. Using a Wearable Device. The approach proposed in this
paper allows addressing the use of any device, regardless of
its technical features and the lack of standardized access to
the device information. This approach has been conceived
to improve the use of new wearable devices in wearable
computing contexts and facilitate and support part of the
development tasks, thereby reducing the implementation
effort (time and cost) and risk. In order to achieve this goal,
themetamodel and the coordinator presented before are used
in this process. Particularly, the use of a new wearable device
supported by this approach consists of three stages, and it is
represented in Figure 9.

4.5.1. Design. The designer uses the design tool to come up
with a device model API, compliant to the device features or
datasheet.During this stage, the designer uses different device
documentation to model the device interaction and defines a
custom API to interact with the device in order to obtain the
data provided/sensed by the device. The design tool uses the
metamodel anddevicemodel generation process to produce a
device model, which is stored in a wearable model repository
(WR).

4.5.2. API Release. Once the design is finished, the design
tool provides the API defined by the designer and also a
unique identifier for the device model (i.e., the WUI). Thus,
the developers are then able to access this API.

4.5.3. Interaction with the Device. With the API, the WUI,
and using the coordinator, the developers are able to easily
handle the device through the API and thus obtain the
information in an easy-to-understand format, without the
need to know about the device’s internal workings or low-
level details.

This approach entails the following advantages:

(i) The developer can use any wearable device with no
knowledge of communication protocols or the device
workings.

(ii) The possibility of defining a unique customized API
for each device standardizes the access to the infor-
mation, because all the users/developers utilize the
device in the same way.

(iii) If there is a bug in the device model, the designer
can redefine it. If this redesign does not involve
modifying the API, the software coordinator uses
this new model in a transparent way for developers.
Device models are platform-independent and they
can be used by any coordinator, independently of the

International Journal of Distributed Sensor Networks 9

Designer

Datasheet
D

es
ig

n
of

 th
e d

ev
ic

e

How does the wearable

12
13
14
15
16
17
18
19
20
21
22
23

work?

Wearable model (WML)

Heart rate (0 · · · 240)-LS byte
Heart rate (0 · · · 240)-MS byte

Respiration rate (0 · · · 70)-LS byte
Respiration rate (0 · · · 70)-MS byte
Skin temperature (0 · · · 60)-LS byte
Skin temperature (0 · · · 60)-MS byte

Posture (−180 · · · 180)-LS byte
Posture (−180 · · · 180)-MS byte

VMU (0 · · · 16)-LS byte
VMU (0 · · · 16)-MS byte

Peak acceleration (0 · · · 16)-LS byte
Peak acceleration (0 · · · 16)-MS byte

Figure 11: Device model design process.

particular platform in which they are used (e.g., iOS,
Android, and Windows).

(iv) Eachwearable devicemodel is designed only once but
used many times.

(v) The metamodel and coordinator are designed to be
open and extendable.Themetamodel is extendable to
ensure that it adapts to new technologies or require-
ments. Changes in the metamodel entail changes in
the new wearable model, and usually in the coordi-
nator. For example, although a new communication
protocol could be supported in the model, it should
be also implemented in the coordinator.

This approach ensures interaction and use. Firstly, any
developer with no expert knowledge can quickly use any
device by simply using the API. Secondly, the coordinator
should be able to detect new devices, access the repository
to find its model, and incorporate it automatically.

5. Case Study

In order to illustrate the process of using wearable devices in
a software application, Figure 10 shows a sequence diagram
that represents the use of a sensor, from the design to the

usage stage.The sample device is a Bluetooth multifunctional
sensor (heart rate, temperature, accelerometer, etc.) with the
specified API getHR to obtain the heart rate value, getResp
to get the respiration rate, getTemp for the body temperature,
and getPeakAcc to determine the linear acceleration.

The different steps to use a wearable, from scratch, are as
follows:

(1) The designer/expert reads about how the sensor
works using the datasheet or other information pro-
vided by the vendor.

(2) The designer, knowing how the sensor works, uses the
design tool to create the sensor model according to its
features and defines a high-level API for such a device.
Figure 11 represents a designer using the design tool
to model the wearable from the datasheet where,
for example, getHR is the tag defined to represent
the heart value information inside of the payload or
getTemp is to represent the body temperature.

(3) Once the designer concludes, the design tool gen-
erates the sensor model using the device model
generation process. Algorithm 1 represents an excerpt
of WML file with the sensor model considered in this
case study.

10 International Journal of Distributed Sensor Networks

<?xml version="1.0" encoding="UTF-8"?>
<sensor>
<id>JhDsX885Ip</id>
<protocol>802.15.1</protocol>
<name>Zephyr Bioharness 3</name>
<api>
<apisen>
<id>GENERALPACKET</id>
<type>0</type>
<maxbuffersize>58</maxbuffersize>
<buffertype>1</buffertype>
<pivot>0x02</pivot>
<payload>
<start>3</start>

</payload>
<fields>
<field>
<id>idop</id>
<value>0x20</value>
<start>1</start>
<offset>0</offset>
</field>
<field>
<id>length</id>
<value>0x53</value>
<start>2</start>
<offset>0</offset>
</field>

</fields>
<apival>
<id>getHR</id>
<start>12</start>
<end>13</end>
<datatype>0</datatype>

</apival>
<apival>
<id>getResp</id>
<start>14</start>
<end>15</end>
<datatype>0</datatype>

</apival>
<apival>
<id>getTemp</id>
<start>16</start>
<end>17</end>
<datatype>0</datatype>

</apival>
<apival>
<id>getPeakAcc</id>
<start>22</start>
<end>23</end>
<datatype>0</datatype>

</apival>
</apisen>

</api>
</sensor>

Algorithm 1: Device model represented in WML.

(4) The design tool also releases the WUI (JhDsX885Ip)
and the API (getHR, getResp, getTemp, and get-
PeakAcc) to the developers.These tags/identifiers cor-
respond to those required for retrieving the heart rate,
respiration rate, temperature, and linear acceleration
through the coordinator.

(5) The developer adds the coordinator (as a software
component, e.g., a .jar file in Android) into the
project.

(6) The developer uses the coordinator in conjunction
with the WUI and the sensor API to interact with
the sensor, as shown in Algorithm 2. Particularly, the
developer can use the WUI to request the WML file
through the coordinator. The coordinator, in turn,
uses the WR component to obtain the sensor model
and manages this model as an internal software
element to handle the sensor through a pipe (class
zPipe in Algorithm 2).

In the application side, once the wearable device has been
detected, connected, and synchronized, the coordinator starts
interacting with the sensor by means of the components
and processes the information according to the payload
processing component.

When the coordinator has a correct and understandable
value, according to the check error criteria specified in the
sensor model, it launches an event in the corresponding
pipe with the sensor information in a human-understandable
format (e.g., getHr returns 80 beats per minute and getTemp
informs 37.4 Celsius). The coordinator returns this informa-
tion to the developer, who handles it in the proper way; for
example, he/she shows it on the display, processes it, or stores
it in a database.

6. Conclusions and Future Work

Wearable devices are constantly being launched in many
different domains, such as healthcare, entertainment, well-
ness, and sport training. The architecture, operation modes,
data streams, and representation formats of these devices
are designed in a different way by vendors’ engineers. This
happens because of the absence of standards and reference
models in the field.

This situation results in heterogeneous possibilities of
interacting with these devices. Considering that designers are
responsible for defining themanner inwhich sensor informa-
tion is accessed through a custom and well-defined API, the
heterogeneity and lack ofAPI standardization hamper the use
and integration of these devices. Therefore, developers must
write source codemostly from scratch and deal with low-level
details about the wearable technical features and interfaces,
increasing the development effort and risk.

In order to help address these challenges, this proposal
presents a model-driven approach that abstracts the develop-
ers from these challenges, by providing them device models
and abstract APIs through which they can interact with the
wearable devices in a simple way.

International Journal of Distributed Sensor Networks 11

zCom.init();
zCom.setContext(getApplicationContext());
String WUI="jhDsX885Ip";
String MAC="00:22:D0:02:4C:49";
zPipe pipe=new zPipe(){

public void handleMessage(Message msg){
super.handleMessage(msg);
if(msg.getData().containskey("getHR")){

Object hr=msg.getData().get("getHR");
//manage heart rate value

}

else if(msg.getData().containskey("getTemp")){
object temp=msg.getData().get("getTemp");
//manage skin temperature

}

else if(msg.getData().containskey("getResp")){
Object resp=msg.getData().get("getResp");
//manage respiration rate

}

else if(msg.getData().containskey("getPeakAcc")){
Object peak=msg.getData().get("getPeakAcc");
//manage linear acceleration

}

}

};
zCom.addDevice(WUI, MAC, pipe);

Algorithm 2: Use of coordinator in Android platform.

The proposed approach, named model-driven wearable
systems development (MDWSD), comprises five main com-
ponents: a wearable specification metamodel, a design tool, a
device model generation process, a coordinator component, and
amodel-driven wearable integration process.

The metamodel allows developers to define the specifi-
cation of a wearable device, regardless of its vendor-specific
features. It also permits the specification of a custom API
to access sensor information. This metamodel has been
designed to be extendable in order to cover the requirements
and features of future-released devices.

The design tool supports the definition of wearable
models, which represent their features and how to interact
with them. The device model generation process is used by
the design toolto produce instances of the metamodel (i.e.,
each sensor model). The coordinator is the software com-
ponent that handles sensor models in order to facilitate the
integration of new devices and allow the use of these sensors
in a seamless and transparent manner. Finally, the model-
driven wearable integration process is the component that
allows theMDWSD approach components to be coordinated
through a single process.

This paper also presents a case study to illustrate the
development of a software application that gets several
functionalities from a commercial wearable device, by using
the MDWSD approach. As a future work, we plan to make
this proposal deployable as an open software solution, so that
it can be used by any developer community.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been partially funded by the Facultad de
Educación, Economı́a y Tecnologı́a de Ceuta under the
“Contrato-Programa” of research for the period 2013–2015.
Thiswork has also been supported by Fondecyt (Chile), Grant
no. 1150252.The authors would also like to acknowledge input
from COST Action AAPELE (IC1303).

References

[1] S. Mann, “Smart clothing: the shift to wearable computing,”
Communications of the ACM, vol. 39, no. 8, pp. 23–24, 1996.

[2] D. Roggen, D. G. Perez, M. Fukumoto, and K. van Laerhoven,
“ISWC 2013—wearables are here to stay,” IEEE Pervasive Com-
puting, vol. 13, no. 1, pp. 14–18, 2014.

[3] L. Gatzoulis and I. Iakovidis, “Wearable and portable eHealth
systems,” IEEE Engineering in Medicine and Biology Magazine,
vol. 26, no. 5, pp. 51–56, 2007.

[4] T. Kleinberger, M. Becker, E. Ras, A. Holzinger, and P. Müller,
“Ambient intelligence in assisted living: enable elderly people
to handle future interfaces,” in Universal Access in Human-
Computer Interaction. Ambient Interaction, vol. 4555 of Lecture

12 International Journal of Distributed Sensor Networks

Notes in Computer Science, pp. 103–112, Springer, Berlin, Ger-
many, 2007.

[5] A. J. Jara, M. A. Zamora, and A. F. G. Skarmeta, “An Internet
of things—based personal device for diabetes therapy manage-
ment in ambient assisted living (AAL),”Personal andUbiquitous
Computing, vol. 15, no. 4, pp. 431–440, 2011.

[6] Y.-D. Lee and W.-Y. Chung, “Wireless sensor network based
wearable smart shirt for ubiquitous health and activity moni-
toring,” Sensors and Actuators B: Chemical, vol. 140, no. 2, pp.
390–395, 2009.

[7] C. Chen,A.Knoll, H. E.Wichmann, andA.Horsch, “A reviewof
three-layer wireless body sensor network systems in healthcare
for continuous monitoring,” Journal of Modern Internet of
Things, vol. 2, no. 3, 2013.

[8] Q. Zhang, Y. Su, and P. Yu, “Assisting an elderly with early
dementia using wireless sensors data in smarter safer home,”
in Service Science and Knowledge Innovation, pp. 398–404,
Springer, Berlin, Germany, 2014.

[9] T.-W. Jo, Y.-D. You, H. Choi, and H.-S. Kim, “A bluetooth-
UPnP bridge for the wearable computing environment,” IEEE
Transactions on Consumer Electronics, vol. 54, no. 3, pp. 1200–
1205, 2008.

[10] D. Carr, M. J. O’Grady, G. M. O’Hare, and R. Collier, “SIXTH:
a middleware for supporting ubiquitous sensing in personal
health monitoring,” in Wireless Mobile Communication and
Healthcare, pp. 421–428, Springer, Berlin, Germany, 2013.

[11] P. Castillejo, J.-F.Martinez, J. Rodriguez-Molina, andA. Cuerva,
“Integration of wearable devices in awireless sensor network for
an E-health application,” IEEE Wireless Communications, vol.
20, no. 4, pp. 38–49, 2013.

[12] S. Hadim and N. Mohamed, “Middleware: middleware chal-
lenges and approaches for wireless sensor networks,” IEEE
Distributed Systems Online, vol. 7, no. 3, p. 1, 2006.

[13] C. Rodriguez-Dominguez, T. Ruiz-Lopez, J. Luis Garrido, M.
Noguera, andK. Benghazi, “Amodel-driven approach to service
composition on the basis of the specification of BPMN chore-
ographies,” Computer Systems Science and Engineering, vol. 30,
no. 1, pp. 69–77, 2015.

[14] B. Akbal-Delibas, P. Boonma, and J. Suzuki, “Extensible and
precise modeling for wireless sensor networks,” in Information
Systems: Modeling, Development, and Integration, pp. 551–562,
Springer, Berlin, Germany, 2009.

[15] F. Losilla, C. Vicente-Chicote, B. Álvarez, A. Iborra, and P.
Sánchez, “Wireless sensor network application development: an
architecture-centric MDE approach,” in Software Architecture,
pp. 179–194, Springer, Berlin, Germany, 2007.

[16] F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A.
Guerrieri, and M. Sgroi, “SPINE: a domain-specific framework
for rapid prototyping of WBSN applications,” Software: Practice
and Experience, vol. 41, no. 3, pp. 237–265, 2011.

[17] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and
R. Jafari, “Enabling effective programming and flexible man-
agement of efficient body sensor network applications,” IEEE
Transactions on Human-Machine Systems, vol. 43, no. 1, pp. 115–
133, 2013.

[18] S. Mann, “Wearable computing: a first step toward personal
imaging,” Computer, vol. 30, no. 2, pp. 25–32, 1997.

[19] J. Clark, P. Danielsen, B. Labs et al., XSL Transformations
(XSLT), World Wide Web Consortium (W3C), 1999, http://
www.w3.org/TR/xslt.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

